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Preface

The 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods
for the Analysis of Algorithms (AofA 2020) was planned to be held in Klagenfurt, Austria,
June 15–19, 2020. Due to the Coronavirus outbreak the conference had to be shifted to an
online conference.

Analysis of algorithms is a scientific basis for computation, providing a link between
abstract algorithms and the performance characteristics of their implementations in the
real world. The general effort to predict precisely the performance of algorithms has come
to involve research in analytic combinatorics, the analysis of random discrete structures,
asymptotic analysis, exact and limiting distributions, and other fields of inquiry in computer
science, probability theory, and enumerative combinatorics. See http://aofa.cs.purdue.
edu/.

The Call for Papers invited papers in
analytic algorithmics and combinatorics,
probabilistic analysis of algorithms, and
randomized algorithms.

We also welcomed papers addressing problems such as: combinatorial algorithms, string
searching and pattern matching, sublinear algorithms on massive data sets, network al-
gorithms, graph algorithms, caching and memory hierarchies, indexing, data mining, data
compression, coding and information theory, and computational finance. Papers were
also welcomed that address bridges to research in related fields such as statistical physics,
computational biology, computational geometry, and simulation.

The present issue collects 25 contributions to the AofA 2020 conference that have been
refereed and selected by the Program Committee.

The planned invited speakers were
Wojciech Szpankowski (Flajolet Lecturer), Purdue University, USA,
Mireille Bousquet-Mélou, Université de Bordeaux, France,
James A. Fill, The Johns Hopkins University, Baltimore, USA,
Malwina Luczak, University of Melbourne, Australia,
Andrew Rechnitzer, University of British Columbia, Canada.

We acknowledge the financial support by the University of Klagenfurt.

Michael Drmota and Clemens Heuberger,
on behalf of the Program Committee
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On Lattice Paths with Marked Patterns:
Generating Functions and Multivariate Gaussian
Distribution
Andrei Asinowski
University of Klagenfurt, Austria
https://me.aau.at/~anasinowski

Cyril Banderier
Université Paris 13 (LIPN, UMR CNRS 7030), France
https://lipn.fr/~banderier

Abstract
In this article, we analyse the joint distribution of some given set of patterns in fundamental
combinatorial structures such as words and random walks (directed lattice paths on Z2). Our
method relies on a vectorial generalization of the classical kernel method, and on a matricial
generalization of the autocorrelation polynomial (thus extending the univariate case of Guibas and
Odlyzko). This gives access to the multivariate generating functions, for walks, meanders (walks
constrained to be above the x-axis), and excursions (meanders constrained to end on the x-axis).
We then demonstrate the power of our methods by obtaining closed-form expressions for an infinite
family of models, in terms of simple combinatorial quantities. Finally, we prove that the joint
distribution of the patterns in walks/bridges/excursions/meanders satisfies a multivariate Gaussian
limit law.

2012 ACM Subject Classification Mathematics of computingÑ Generating functions; Mathematics
of computing Ñ Distribution functions; Theory of computation Ñ Random walks and Markov
chains; Theory of computation Ñ Grammars and context-free languages

Keywords and phrases Lattice path, Dyck path, Motzkin path, generating function, algebraic
function, kernel method, context-free grammar, multivariate Gaussian distribution

Digital Object Identifier 10.4230/LIPIcs.AofA.2020.1

Funding Andrei Asinowski: supported by the Austrian Science Fund (FWF), in the framework of
the project Analytic Combinatorics: Digits, Automata and Trees (P 28466-N35).

Acknowledgements We thank the referees for their feedback.

1 Definitions and notations for directed lattice paths

Let S, the set of steps (or jumps), be some finite subset of Z that contains at least one
negative and at least one positive number. A lattice path with steps from S is a finite word
w “ ps1, s2, . . . , snq in which all letters belong to S, visualized as a directed polygonal line
in the plane, which starts in the origin and is formed by successive appending of vectors
p1, s1q, p1, s2q, . . . , p1, snq. The n letters that form the path w “ ps1, s2, . . . , snq are referred
to as its steps. The length of w, to be denoted by `pwq, is the number of steps in w. The final
altitude of w, to be denoted by hpwq, is the sum of all steps in w, that is s1 ` s2 ` . . .` sn.
Visually, `pwq and hpwq are the x- and the y-coordinates of the point where w terminates.
One considers four classes of paths: a walk is any path as described above; a bridge is a path
that terminates at the x-axis; a meander is a path that stays (weakly) above the x-axis; an
excursion is a path that stays (weakly) above the x-axis and terminates at the x-axis.

© Andrei Asinowski and Cyril Banderier;
licensed under Creative Commons License CC-BY
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1:2 Lattice Paths with Marked Patterns and the Multivariate Gaussian Distribution

Table 1 For the four types of paths (walks, bridges, meanders, excursions) and for any set of
steps encoded by Spuq, we give the corresponding generating function marking a set of patterns
p1, . . . , pm. The formulas involve the e small roots ui (i.e. uiptq „ 0 for t „ 0) of the kernel
Kpt, uq :“ p1´ tSpuqq∆`∆1, where ∆ and ∆1 are determinants related to the correlation matrix of
the patterns. (See Theorems 4, 10, and 12.)

ending anywhere ending at 0

on Z

walks

W pt, uq “
∆pt, uq

Kpt, uq

bridges

Bptq “ ´
e
ÿ

i“1

u1i
ui

∆pt, uiq

Ktpt, uiq

on N

meanders

Mpt, uq “
∆pt, uq

ueKpt, uq

e
ź

i“1

pu´ uiptqq

excursions

Eptq “
p´1qe`1

t

e
ź

i“1

uiptq

For each of these classes (in the simpler case of no pattern constraint), Banderier and
Flajolet [6] gave general expressions for the corresponding generating functions and the
asymptotics of their coefficients. A unified study of lattice paths with a single forbidden
pattern was recently started by Asinowski, Bacher, Banderier, and Gittenberger [1]: for
any fixed path p (a “pattern”) they give the generating function and the asymptotics for
paths that avoid p as a consecutive string. Moreover, they initiated the more general analysis
of marking a pattern: here, one considers a generating function with an extra variable v
which encodes the number of occurrences of the pattern p in the path. Setting v “ 0 gives
the generating function for walks that avoid p. In this article, we further generalize this work
to the case where several patterns are marked. The situation is more challenging: more
correlations create more obstacles; however, we shall see that one can still derive closed-form
expressions in terms of natural combinatorial quantities!

Throughout our article, in the generating functions, the variable t corresponds to the
length of a path, and the variable u to its final altitude. Spuq is the step polynomial of the
set of steps S, defined by

Spuq :“
ÿ

sPS
us.

The set of forbidden/marked patterns will be denoted by P “ tp1, . . . , pmu.



A. Asinowski and C. Banderier 1:3

2 Generating functions for walks and bridges with marked patterns

For the case of a single marked pattern p (see e.g. [1, Thm. 7.1]), the trivariate generating
function of walks is

W pt, u, vq “
v ` p1´ vqR

p1´ tSq
`

v ` p1´ vqR
˘

` p1´ vqt`ppquhppq
, (1)

where t, u, v are the variables as explained in Section 1; `ppq and hppq are the length and
the final altitude of the pattern p; and R “ Rpt, uq is the autocorrelation polynomial that
encodes the overlaps of p with itself – see the definition below. The specialization v “ 0 gives
W pt, u, 0q “ R{

`

p1´ tSqR` t`ppquhppq
˘

, the generating function of walks that avoid p; and
v “ 1 gives W pt, u, 1q “ 1{p1´ tSq – as expected, since it enumerates all the walks over S.

In this work, we consider the more general case of marking several patterns. To this
end, let S be a set of steps, and let P “ tp1, p2, . . . , pmu be a set of patterns (that is, fixed
words over S). In what follows, we assume that P is a reduced system, that is, the words
p1, p2, . . . , pm do not contain each other (where the inclusion is understood as that of strings,
for example ab Ă abcd and bc Ă abcd but ac Ć abcd).

A central role in our approach is played by the notion of mutual correlation, a way to
formalize how patterns overlap with each other. Given two patterns pi and pj , an overlap of
pi and pj is a non-empty string that occurs as a suffix in pi and as a prefix in pj . Let Oi,j

be the set of all overlaps of pi and pj . Further, let Ci,j be the set of words obtained from pj
by erasing all the of overlaps pi and pj (as prefixes of pj). More formally, this leads to the
following definition.

I Definition 1 (Mutual correlation polynomials). The mutual correlation sets are defined as

Ci,j “ tq : Dq1, q2pq2 ‰ εq : pi “ q1.q2, pj “ q2.qu. (2)

Accordingly, the mutual correlation polynomials are defined as

Ci,jpt, uq “
ÿ

qPCi,j

t`pqquhpqq. (3)

In particular, for i “ j, Ci,ipt, uq is the autocorrelation polynomial introduced in the case of
one single pattern by Schützenberger [38] for prefix codes and by Guibas and Odlyzko [27]
in the context of text searching and string overlaps, see also [25, Formula (8.81)] for a first
generalization.

I Example 2. Let p1 “ aaba, p2 “ abab. Then we have
O1,1 “ taaba, au, C1,1 “ tε, abau, C1,1 “ 1` t3u2a`b;
O1,2 “ taba, au, C1,2 “ tb, babu, C1,2 “ tub ` t3ua`2b;
O2,1 “ C2,1 “ ∅, C2,1 “ 0;
O2,2 “ tabab, abu, C2,2 “ tε, abu, C2,2 “ 1` t2ua`b.

Let W “W pt, u, v1, . . . , vmq be the generating function for the walks, where each occur-
rence of the pattern pi (i “ 1, . . . ,m) is marked by the variable vi. That is, the coefficient
of tαuβvγ1

1 . . . vγm
m in W is the number of walks of length α and final altitude β that have

exactly γi occurrences of pi for i “ 1, . . . ,m. (Note that occurrences of each pattern are
taking self-overlaps into account: thus, for example, the path aaaa contains three occurrences
of aa and two occurrences of aaa.)

AofA 2020



1:4 Lattice Paths with Marked Patterns and the Multivariate Gaussian Distribution

I Remark 3 (The automaton paradigm). Given S and P , walks with marked patterns can be
encoded by a finite automaton A: a walk w is in state Zα if α is the longest overlap of w
with some pattern(s) (if there are no such overlaps, then w is in the initial state Zε)1. This
approach leads to the formula

W pt, u, v1, . . . , vmq “
p1, 0, . . . , 0q adjpI ´ tAq p1, . . . , 1qJ

detpI ´ tAq , (4)

where A “ Apu, v1, . . . , vmq is the transition matrix of the automaton A. (NB: the first
row/column of A correspond to the initial state Zε.) In Formula (4), the vector p1, 0, . . . , 0q
encodes the fact that the state Zε is the single initial state of A, and the vector p1, . . . , 1qJ
encodes the fact that all states of A are final. (See the automaton in Example 9 for an
illustration.)

Our first result is another more combinatorial formula forW , bypassing the computational
cost inherent to the automaton paradigm approach. This formula can be established via the
cluster method, as popularized by Goulden and Jackson [24]. It is an instance of what Flajolet
called symbolic inclusion-exclusion and it was e.g. used in [1,11,32,35,39]. Below, we opt for
another proof strategy which emphasizes the role of the mutual correlation polynomials.

I Theorem 4. Let S be a set of steps, and P “ tp1, . . . , pmu a set of (mutually not included)
patterns. The multivariate generating function of walks (where t encodes the length,
u the final altitude, and vi occurrences of the pattern pi) is given by

W pt, u, v1, . . . , vmq “
∆

p1´ tSpuqq∆`

m
ÿ

i“1
∆it

`iuhi

, (5)

where ∆ “ ∆pt, u, v1, . . . , vmq is the determinant of the mutual correlation matrix
¨

˚

˚

˚

˚

˚

˚

˚

˝

v1 ` p1´ v1qC1,1 p1´ v2qC2,1 ¨ ¨ ¨ p1´ vmqCm,1
p1´ v1qC1,2 v2 ` p1´ v2qC2,2 ¨ ¨ ¨ p1´ vmqCm,2

...
...

. . .
...

p1´ v1qC1,m p1´ v2qC2,m ¨ ¨ ¨ vm ` p1´ vmqCm,m

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (6)

and, for i “ 1, . . . ,m, ∆i “ ∆ipt, u, v1, . . . , vmq is the determinant of the matrix obtained
from the mutual correlation matrix by replacing its ith row with p1´ v1, . . . , 1´ vmq, and `i
and hi are the length and the final altitude of pi.

Proof. It is convenient to introduce the generating function Wipt, u, v1, . . . , vmq of walks
having pi as a suffix. We first show that W,W1, . . . ,Wm satisfy the equation

WtS “W ´ 1`
m
ÿ

j“1
pv´1
j ´ 1qWj . (7)

To this end, we take a path w P W and append a single letter s P S at its end. If this
produces no new occurrence of a pattern from P, then w.s is counted by W ´ 1´

řm
j“1 Wj .

Otherwise, there is a new non-marked occurrence of a (uniquely determined) pattern pj P P
at the end of w.s, and thus w.s is counted by v´1

j Wj . Now, as s can take all values in S,
this covers all the pj ’s, and leads to the contribution

řm
j“1 v

´1
j Wj .

1 The notation Z, often used in statistical mechanics, is reminiscent of the word Zustand, which means
state in German.
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w p1

p1

p3

Wt`1uh1

−vi11 v
i2+1
2 vi33

−vi1+1
1 vi2+1

2 vi33

−vi1+1
1 vi2+1

2 vi3+1
3

−vi1+2
1 vi2+1

2 vi3+1
3

−vi1+2
1 vi2+1

2 vi3+2
3

vi11 v
i2
2 v

i3
3

vi11 v
i2+1
2 vi33

vi1+1
1 vi2+1

2 vi33

vi1+1
1 vi2+1

2 vi3+1
3

vi1+2
1 vi2+1

2 vi3+1
3

vi1+2
1 vi2+1

2 vi3+2
3

p1

p3

p2

p1

=
W3C3,1

v3
W2C2,1W1(C1,1 − 1)

W2C2,1

v2

W1C1,1

v1
+ − + +W3C3,1+

( )( )

−0

Figure 1 Illustration to the proof of Theorem 4. This schematic example (involving three patterns,
p1, p2, and p3) illustrates how the mutual correlation polynomials Ci,j lead to the fact that the
contributions of the decompositions w1.px.q cancel out telescopically in the right-hand side of (8),
and the full sum thus equals vi11 vi22 vi33 , which is indeed the same as the contribution of the left-hand
side of (8).

Next we show that, for each i “ 1, . . . ,m, we have

Wt`iuhi “Wi `

m
ÿ

j“1
pv´1
j ´ 1qWjCj,i. (8)

To prove this, we take a path w P W and append the pattern pi at its end, but do not
mark any new occurrences of patterns from P. For j “ 1, . . . ,m, let γj be the number
of occurrences of the pattern pj in w. Then w.pi in the left-hand side of (8) contributes
vγ1

1 vγ2
2 . . . vγm

m to the generating function. Apart from pi at the end, there are possibly some
new occurrences of some patterns in w.pi. Consider such a new occurrence of a pattern, say
of px, in w.pi. Then we have a decomposition w.pi “ w1.px.qx, where qx P Cx,i.

w pi

pxw′ qx ∈ Cx,i
For j “ 1, . . . ,m, let δj be the number of occurrences of the pattern pj in w1.px. Then

this decomposition contributes vδ1
1 v

δ2
2 . . . vδm

m {vx to v´1
x WxCx,i, and vδ1

1 v
δ2
2 . . . vδm

m to WxCx,i.
Now consider the next new occurrence of a pattern, say of py, in w.pi. The decomposition
w.pi “ w2.py.qy, where qy P Cy,i, contributes vδ1

1 v
δ2
2 . . . vδm

m to v´1
y WyCy,i and vδ1

1 v
δ2
2 . . . vδm

m vy
toWyCy,i. Therefore, in the right-hand side of (8), the contributions of all the decompositions
of w.pi will cancel out telescopically (we add Wi to cancel the contribution of w.pi itself),
except the very first term whose contribution is vγ1

1 vγ2
2 . . . vγm

m . See Fig. 1 for illustration.
Finally, we regard (8) as an mˆm linear system Cx “ d with x “ pW1, . . . ,Wmq and

d “ pWt`1uh1 , . . . ,Wt`muhmq. Let, further, e “ pv´1
1 ´1, . . . , v´1

m ´1q. We use the elementary
fact that if Cx “ d and CJy “ e, then x ¨ e “ d ¨ y, to find

řm
j“1pv

´1
j ´ 1qWj . The solution

y of CJy “ e can be written by Cramer’s rule: we have y “
`

detpC1q, . . . ,detpCmq
˘

{detpCq,
where Ci is the matrix obtained from C by replacing its ith row with e. Therefore we have

m
ÿ

j“1
pv´1
j ´ 1qWj “ x ¨ e “ d ¨ y “

`

W {detpCq
˘

m
ÿ

i“1
t`iuhidetpCiq. (9)

We substitute this to (7), and solve for W . Finally, we multiply the numerator and the
denominator by v1 . . . vm, and after some more rearrangement this yields the claimed for-
mula (5). J
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I Remark 5. Theorem 4 is a far-reaching generalization of several earlier results. For
v1 “ . . . “ vm “ 1, we have C “ I and hence ∆ “ 1, and ∆i “ 0 for 1 “ 1, . . . ,m; thus
W pt, u, 1, . . . , 1q “ 1{p1´tSq as expected. For v1 “ . . . “ vm “ 0, we get the formula for walks
that avoid p1, . . . , pm, which was first obtained in [2]. For m “ 1, we obtain [1, Thm. 7.1].
I Remark 6. Obtaining the generating function W by means of the finite automaton would
generically require the inversion of an LˆL matrix with symbolic coefficients, which is costly
in time and in memory (L :“

řm
i“1 `i is the sum of the lengths of the marked patterns). It is

nice that our formula based on the mutual correlation sets is algorithmically more efficient,
and directly gives the generating function, avoiding those larger costs. However, comparing
the two formulas for W leads to the following result (which will be used in the next section
for our derivation of the closed-form formula for meanders).

I Proposition 7. In the notation introduced above, we have

∆pt, u, v1, . . . , vmq “ p1, 0, . . . , 0q adjpI ´ tAq p1, . . . , 1qJ, (10)

Kpt, u, v1, . . . , vmq :“ p1´ tSpuqq∆`

m
ÿ

i“1
∆it

`iuhi “ detpI ´ tAq. (11)

Proof. Compare the formulas (4) and (5) for W , and notice that in both of them the
denominator is polynomial in t with constant term 1. J

I Definition 8. The expression K from (11) will be called the kernel of the walk.

I Example 9. Consider Dyck walks (we denote the steps by d :“ ´1, u :“ 1) with marked
patterns p1 “ udu and p2 “ dud. The following drawing shows the automaton for this model
and its transition matrix A (the ordering of states is Zε,Zu,Zud,Zd,Zdu).

Zε
Zu

Zud

Zd

Zdu

d

u

v1u

u

u

d

v2d

d

u d
A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 u 0 u´1 0

0 u u´1 0 0

0 0 0 u´1 v1u

0 0 0 u´1 u

0 u v2u´1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

We find C1,1 “ C2,2 “ 1` t2, C1,2 “ tu´1, C2,1 “ tu; so, the mutual correlation matrix is
¨

˝

v1 ` p1´ v1qp1` t2q p1´ v2qtu

p1´ v1qtu
´1 v2 ` p1´ v2qp1` t2q

˛

‚.

By Theorem 4, we obtain the generating function for Dyck walks with marked p1, p2:

W pt, u, v1, v2q “
1` t2p1´ v1v2q ` t

4p1´ v1qp1´ v2q

1´ tpu´1 ` uq ` t2p1´ v1v2q ´ t3
`

u´1v2p1´ v1q ` uv1p1´ v2q
˘

´ t4p1´ v1qp1´ v2q
.

Setting v1, v2 to be 1 or 0, we allow or forbid the corresponding patterns. In this easy
case, this recovers several known sequences, for example W pt, u, 1, 1q “ 1

1´ tpu´1 ` uq
(as

expected, since these are unrestricted walks); W pt, 1, 0, 1q “W pt, 1, 1, 0q “ 1` t2

1´ 2t` t2 ´ t3

(A005251)2 ; W pt, 1, 0, 0q “ 1` t2 ` t4

1´ 2t` t2 ´ t4 (A128588, double Fibonacci numbers).

2 This refers to the On-Line Encyclopedia of Integer Sequences (OEIS), available at https://oeis.org/.

https://oeis.org/A005251
https://oeis.org/A128588
https://oeis.org/
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I Theorem 10. Let S be a set of steps, and P “ tp1, . . . , pmu a set of (mutually not included)
patterns. The multivariate generating function of bridges is given by3

Bpt, v1, . . . , vmq “
e
ÿ

i“1

u1iptq

uiptq

∆pt, uiptqq
Ktpt, uiptqq

, (12)

where u1ptq, . . . , ueptq are the small roots of Kpt, uq (as defined in (11)).

Proof. To prove this formula, we extract ru0s from W , and obtain

B “ ru0spW q “
1

2πi

ż

|u|“ε

W

u
du “

e
ÿ

i“1
Resu“ui

∆pt, uq
uKpt, uq

“

e
ÿ

i“1

∆pt, uiq
d
du puKqpt, uiq

,

via Cauchy’s integral formula and the residue theorem, where the poles inside |u| “ ε happen
to be exactly the small roots ui. Finally, the chain rule for total derivative yields Eq. (12). J

I Example 11. We return to the example considered above – Dyck walks with marked
p1 “ udu and p2 “ dud. By Theorem 10 we obtain the generating function for bridges:

Bpt, v1, v2q “

d

1` p1´ v1v2qt2 ` p1´ v1qp1´ v2qt4

1` p´3´ v1v2qt2 ` p1´ v1qp1´ v2qt4
,

which, in its turn, yields sequences that appeared in earlier work in different contexts such as
patterns in binary strings, but also the Potts model from statistical mechanics: Bpt, 1, 1q “

1
?

1´ 4t2
(central binomial coefficients, as expected), Bpt, 0, 1q “ Bpt, 1, 0q “

c

1` t2
1´ 3t2

(A025565, [3, 16,30]), Bpt, 0, 0q “
c

1` t2 ` t4
1´ 3t2 ` t4 (A078678 [19, 34,36]), etc.

3 Generating functions for meanders and excursions with marked
patterns

While generating functions for walks can be found as a solution of a system of linear
equations (which, in particular, implies that they are rational), the generating functions for
meanders/excursions are typically algebraic (non-rational) and can be found by a suitable
variation of the kernel method. One of them, the vectorial kernel method, was recently
developed in [1] for dealing with enumerative problems encoded by a counter automaton. One
of the cases in which this method leads to explicit formulas was that of meanders/excursions
that avoid a single pattern p under the assumption that p itself is a meander. In this case,
one has

Mpt, uq “
Rpt, uq

ucKpt, uq

c
ź

i“1
pu´ uiptqq and Eptq “ ´

1
t

c
ź

i“1
p´uiptqq,

where c is the absolute value of the smallest number in S, Rpt, uq is the autocorrelation
polynomial, Kpt, uq is the kernel, and u1ptq, . . . , ucptq are the small roots of Kpt, uq. Our next
theorem expands this result in two directions: first, it deals with several patterns, second,
these patterns are marked and not just forbidden.

3 Here and below we frequently remove the markers in the list of arguments of a function, writing Kpt, uq,
∆pt, uq, uiptq for Kpt, u, v1, . . . , vmq, ∆pt, u, v1, . . . , vmq, uipt, v1, . . . , vmq, etc.

AofA 2020
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I Theorem 12. Let S be a set of steps, and P “ tp1, . . . , pmu a set of (mutually not included)
patterns, all of them being meanders themselves. Then the multivariate generating
function of meanders is

Mpt, u, v1, . . . , vmq “
∆pt, uq
ucKpt, uq

c
ź

i“1
pu´ uiptqq, (13)

where Kpt, uq is the kernel as in (11), ∆pt, uq is the determinant of the mutual correlation
matrix (6) as in (10), and u1ptq, . . . , ucptq are the small roots of Kpt, uq.
The multivariate generating function of excursions is given by

Ept, v1, . . . , vmq “Mpt, 0, v1, . . . , vmq “ ´
1
t

c
ź

i“1
p´uiptqq. (14)

Proof. To prove (13), we apply the vectorial kernel method. According to its general scheme,
we encode the meanders by the automaton, as explained before Theorem 4. We denote by Mi

the generating function for meanders that terminate in state Zi, and let M “ pM1,M2, . . .q.
Then we have the functional equation

M “ p1, 0, . . . , 0q ` tMA´ tuă0uptMAq, (15)

where tuă0uptMAq consists of all terms of tMA that contain negative powers of u (in other
words, tuă0uptMAq counts the paths w.s such that w is a meander and s P S, and w.s

crosses the x-axis at its last step). Next we rewrite (15) as

MpI ´ tAq “ p1, 0, . . . , 0q ´ tuă0uptMAq. (16)

At this point we claim that in tuă0uptMAq only the first component is non-zero. This
follows from the assumption that all our patterns are meanders. Therefore, if a walk w.s as
above has a non-empty overlap with p P P , it is impossible that its last step crosses the x-axis.
This means that w.s crosses the x-axis at its last step, then it is necessarily in state Zε.
Therefore, negative powers of u can occur only in the first component of tMA. Notice further
that all the terms of tuă0uptMAq contain u to some powers between ´c and ´1. Therefore
we can multiply (16) by uc and obtain

Muc pI ´ tAq “ pF pt, uq, 0, . . . , 0q, (17)

where F pt, uq is a monic polynomial in u of degree c.
Next we multiply (17) by adjpI ´ tAqp1, . . . , 1qJ, and obtain, due to (10) and (11),

Mpt, uqucKpt, uq “ F pt, uq∆pt, uq. (18)

Here, it is legitimate to substitute, for u, any small root uiptq of Kpt, uq. Then the left-hand
side of (18) vanishes. It is impossible that ∆pt, uiptqq “ 0 because ∆pt, uq, as polynomial
in t, has constant term 1 (this follows from the fact that Ci,ipt, uq has constant term 1, and
Ci,jpt, uq, i ‰ j, has constant term 0). Therefore we have F pt, uiptqq “ 0, that is, uiptq’s also
are roots of F pt, uq.

Finally, Kpt, uq has precisely c small roots, u1ptq, . . . , ucptq (this can be proven in the
same way as [1, Prop. 4.4]). Thus, u1ptq, . . . , ucptq, are roots of F pt, uq, which is a monic
polynomial of degree u. Therefore we know its decomposition, F pt, uq “

śc
i“1pu ´ uiptqq.

Now the formula (13) follows from (18).
To get (14), we substitute u “ 0 and notice that the only term in the denominator that

does not vanish is ´t∆. J
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I Example 13. Basketball walks are lattice paths with S “ t´2,´1, 1, 2u. We also denote
their steps by D “ ´2, d “ ´1, u “ 1, U “ 2. In this example we find the generating functions
for meanders and excursions with marked p1 “ UDU and p2 “ UdU. The automaton and its
transition matrix are shown in the next figure, the ordering of the states is Zε,ZU,ZUD,ZUd.

Zε ZU

ZUD

ZUd

U

d

D

u

v1U

v2U

D, d, u

D, d, u

D, d, u

U A “

¨

˚

˚

˚

˚

˚

˚

˝

u´2
` u´1

` u u2 0 0

u u2 u´2 u´1

u´2
` u´1

` u v1u2 0 0

u´2
` u´1

` u v2u2 0 0

˛

‹

‹

‹

‹

‹

‹

‚

We have Spuq “ u´2 ` u´1 ` u` u2 and c “ 2. The mutual correlation polynomials are
C11 “ 1` t2, C12 “ t2u, C21 “ t2, C22 “ 1` t2u. By Theorem 4, we obtain ∆ “ 1` t2` t2u
and K “ ´

`

pt` t3q ` pt` 2t3qu´ p1` t2 ´ t3qu2 ` pt´ t2 ` t3qu3 ` pt` t3qu4˘{u2. Thus,
u2K is a polynomial of degree 4 with two small roots given by given by Puiseux series

u1,2ptq “ ˘t
1
2`

1
2 t˘

1
8 t

3
2`

1
2 t

2˘
159
128 t

5
2`

3
2 t

3˘
1761
1024 t

7
2`

7
2 t

4˘
213435` 16384v1

32768 t
9
2`

19` 2v1 ` v2

2 t5˘. . .

By Theorem 12, we obtain generating functions for meanders/excursions with marked p1, p2:

Mpt, u, v1, v2q“
∆pt, uq
u2Kpt, uq

pu´u1ptqqpu´u2ptqq“

1`pu`u2qt̀ p2`u`u2`2u3`u4qt2`p2`5u`p5`v1qu
2`p2`v2qu

3`3u4`3u5`u6qt3 .̀ . . ,

Ept, v1, v2q“
u1ptqu2ptq

´t
“1`2t2`2t3`p10`v1qt

4`p21`v1`2v2qt
5`p79`9v1`4v2`v

2
1qt

6 .̀ . .

(For example, there is one excursion of size 5 that contains UDU, namely UDUdd, and
two excursions that contain UdU, namely UdUdD, and UdUDd.)

To obtain the univariate generating functions for all meanders and that for excursions
that avoid p1, p2, we substitute v1 “ v2 “ 0, and u “ 1 resp. u “ 0:

Mptq“ 1`2t`7t2`21t3`71t4`245t5`867t6`3091t7`11147t8`40491t9`148010t10`. . . ,

Eptq“ 1`2t2`2t3`10t4`21t5`79t6`224t7`771t8`2462t9`8409t10`. . .

I Remark 14. If some of the patterns are not meanders, then generically several components
of tuă0uptMAq are non-zero. Therefore, in general one does not get simple equations
as (17) and (18), and the formula (13) does not hold verbatim. However, it is then possible
to use the approach introduced in [1, Thm. 3.2]; this gives that Mpt, uq has the form
Gpt,uq
ucKpt,uq

śc
i“1pu´uiptqq, where Gpt, uq is polynomial in u. There are other cases, not covered

by Theorem 12, where it is possible to find formulas for Mpt, uq and Ept, uq. For example,
if the only negative step in S is ´1 (such paths are called Łukasiewicz walks), one can use
the fact that a path can cross the x-axis only when a p´1q-step is appended to an excursion.
Using further ideas developed (for avoidance) in [2], we can find, for example, generating
functions for Dyck meanders/excursions with marked p1 “ udu, p2 “ dud:

Mpt, u, v1, v2q “

ˆ

1´ t2p1´ v1qp1´ v2q

2

´

1´
a

1´ 4t2{∆
¯

˙

∆
uK

pu´ u1ptqq,

Ept, v1, v2q “
∆

1` t2v2p1´ v1q ` t3p1´ v1qp1´ v2qu1ptq

u1ptq

t
“

∆
2t2

˜

1´
c

1´ 4t2
∆

¸

,

where ∆ “ 1` t2p1´ v1v2q ` t
4p1´ v1qp1´ v2q as found in Example 9 (note that another

form of Ept, v1, v2q is mentioned in A145895).

AofA 2020
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4 Multivariate Gaussian limit laws for pattern occurrences

4.1 Gaussian and multivariate Gaussian distribution

The Gaussian distribution is ubiquitous is mathematics, physics, biology, astronomy, finance,
computer science, and even in human sciences, and, in fact, in any domain in which one
could collect numerical data and do some statistics with them.

There are two frequent simple explanations of this universality.
The first explanation is probabilistic: the central limit theorem of Laplace asserts that
if one considers a sequence of independent and identically distributed random variables
pXnqnPN (with expected value µ and finite variance σ2), then the sum

řn
k“1 Xk is

converging towards the Gaussian distribution N pµ, σq.
The second explanation is analytic: if the corresponding probability generating function
of ProbpXn “ kq behaves like a “quasi-power” (see [29]), then Xn has a Gaussian limit
distribution.

Both approaches have their own interest, as both admit some flexibility in their condition of
application. As masterfully presented by Flajolet and Sedgewick in [22], the second approach
is typically split into two steps: first a combinatorial step consists in getting a closed-form
expression (or a functional equation) for the generating function, and then a local analysis
of this function near its dominant singularity is performed in order to get some universal
behaviour (limit law, etc).

We apply a generalization of this analytico-combinatorial approach to the case of joint
laws PrpX1 “ k1, . . . , Xm “ kmq, including in cases where the random variables Xi are
dependent. The dependence (the correlations) will be handled at the level of the generating
function, on which some multivariate complex analysis is then performed in order to get
the limit law. As a first step towards more examples in the realm of “multivariate analytic
combinatorics” (as initiated in [12,20,28,37]), we present here some results related to the
multivariate Gaussian distribution.

For the tuple of random variables XXX “ pX1, . . . , Xmq of average µµµ “ pµ1, . . . , µmq the
associated covariance matrix ΣΣΣ is defined by

Σij :“ ErpXi ´ µiqpXj ´ µjqs (for i, j “ 1, . . . ,m). (19)

This matrix ΣΣΣ is also sometimes called the variance-covariance matrix, as the diagonal terms
are exactly the variance of each Xi. Note that ΣΣΣ is a positive-definite matrix, therefore
?

detΣΣΣ is well defined.
The multivariate Gaussian distribution (also called multivariate normal distribution, or

m-dimensional Gaussian distribution, see e.g. [17]), denoted by N pµµµ,ΣΣΣq, is a generalization
of the classical (one-dimensional) normal distribution; its density is

1
a

p2πqm detΣΣΣ
exp

ˆ

´
1
2 px
xx´µµµqJΣΣΣ´1 pxxx´µµµq

˙

. (20)

When all the bold quantities are scalars (i.e. when m “ 1), it is coinciding with the
classical expression for the density of the Gaussian distribution.

Let us now illustrate this multivariate approach on fundamental objects such as words
and constrained lattice paths. We first present a nice unifying example, before switching to
more general cases from the algebraic world.
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4.2 A multi-multivariate generating function for all patterns at once
There is a vast amount of literature on Dyck, Motzkin, Schröder etc. lattice paths (or some
related classes of RNA structures, ordered trees, permutations) in which some combination
of patterns (valleys, peaks, etc.) are considered. Proofs of such results often rely on some ad
hoc context-free grammar decompositions; see e.g. [10,15,18,21,31,33]. The power of our
approach is also in the fact that it enables us to obtain many such results at once by marking
sufficiently many patterns and then setting them to be 0 or 1 in any desirable combinations.

We illustrate this for the model of Motzkin walks (S “ td “ ´1, h “ 0, u “ 1u) in which
we mark all possible patterns of length 2. To this aim, we introduce nine markers for all such
patterns (vud for the pattern ud, etc.), and we obtain an even more explicit formula in cases
not covered by the closed-form formula from Theorem 12. We give the general expression for
excursions in the following theorem (the general expression for meanders is somewhat more
lengthy, see also [2, Thm. 4]).

I Theorem 15. The generating function Ept, vuu, vuh, vud, vhu, vhh, vhd, vdu, vdh, vddq of Motzkin
excursions, where each vp counts the number of occurrences of the pattern p, is

pvdd ´ 1q ´ tppvdd ´ 1qvhh ´ pvdh ´ 1qvhd ´ vdd ` vdhq `
`

1` tpvdh ´ vhhq
˘

uv1
tv4

ˇ

ˇ

u“u1ptq

vdd ` tpvdhvhd ´ vddvhhq
, (21)

where u1ptq is the unique small solution of the kernel Kpt, uq, and v1 and v4 are the 1st and
the 4th components of v :“ adjpI ´ tAqp1, . . . , 1qJ.

Proof (Sketch). This model is encoded by the following automaton and its transition matrix:

Zε

Zh

Zd

Zu

h

vduu
d

vddd

vudd
vhdd

vhhh
vuhh

vdhh

vuuu
vhuu

u

Zε Zu Zh Zd

A “

¨

˚

˚

˚

˚

˚

˝

0 u 1 u´1

0 vuuu vuh vudu´1

0 vhuu vhh vhdu´1

0 vduu vdh vddu´1

˛

‹

‹

‹

‹

‹

‚

A Motzkin path can cross the x axis only by reading d (that is, entering the 4th state).
Thus, only the fourth component of tMA has terms with negative powers of u. This leads to
the equation v1pt, uq ´ v4pt, uqNpt, uq “ 0 where Npt, uq is the generating function for the
terms with negative powers of u in the fourth component of tMA. Note that by analyzing
which patterns are read if w.s crosses the x-axis, we can express N in terms of E.

Finally, as uKpt, uq is a polynomial of degree 2 in u, it has one small root, u1ptq (we
dropped the dependency on the other variables vp’s of the kernel (11)). Now, by the vectorial
kernel method (see the proof of Theorem 12), this leads to the formula (21) for E. J

Setting the markers vp to be 1 or 0 in all possible combinations leads to 512 specific models.
An exhaustive analysis shows that they lead to 75 distinct sequences for excursions and 158
distinct sequences for meanders. In some cases we obtain new interpretations for existing
OEIS entries, thus potentially leading to new bijections between different combinatorial
structures.

AofA 2020
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walks bridges meanders excursions
ErXipnqs “

n
8 ´

1
4 ErXipnqs „

n
8 ´

1
8 ErXipnqs „

n
8 ˘

?
2πn
16 ErXipnqs „

n
8 `

1
8

Figure 2 Distribution pX1, X2q of the pair of patterns pudu, dudq in a Dyck walks/bridges/me-
anders/excursions of length n “ 200 (this corresponds to the model of Example 9). Already, for
this small value of n, one sees that ProbpX1 “ k1, X2 “ k2q is concentrated around the value
pErX1s,ErX2sq with Gaussian fluctuations. (This example has by design a symmetric behaviour for
X1 and X2 for walks, bridges, and excursions; this is not generically the case.)

Moreover, we checked that all these models satisfy the technical conditions (see [28, 37])
which ensure a multivariate Gaussian distribution. We now discuss more general models.

First, let us mention that the case of walks without positivity constraint or final altitude
constraint is easier: indeed, their generating function W is rational, and one can then more
directly apply results from [28,36] to get the multivariate Gaussian distribution. Note that if
one allows to mark a regular expression (and not just a finite set of words), then, already
in the rational case, one can get “any” arbitrary (non-Gaussian) distribution (see [4] for a
presentation of this huge diversity of the possible limit laws for pattern occurrences). It is
more involved to analyse the algebraic generating function cases; one can however still prove
that the multivariate Gaussian distribution also holds (see Figure 2 for an illustration):

I Theorem 16. For any generic model of walks, let Xipnq be the random variable counting
occurrences of the pattern pi (for i “ 1, . . . ,m) in a bridge/excursion/meander of length n.
Then the joint law pX1pnq, . . . , Xmpnqq convergences to a multivariate Gaussian distribution
N pµµµ,ΣΣΣq as defined in Section 4.1.

Proof (Sketch). Some technical conditions are required to avoid degenerated cases: for
lattice paths, this corresponds to what is called generic model of walks in [1, Definition 6.1];
this definition includes conditions like having a unique dominant singularity, that the number
of paths of length n is strictly increasing for large n, etc. Then, all the univariate asymptotics
follow the universal asymptotics established in [1, 5, 6].

Now, the multivariate asymptotics follow the algebraic schemes investigated in [23,26], and
thus lead to the multivariate Gaussian distribution. It is also possible to use a multivariate
Spitzer/Sparre Andersen formula (see [8, Theorem 8]), rephrased as

W`pt, u, v1, . . . , vmq :“ tuě0uW pt, u, v1, . . . , vmq “ rs
0sW pt, su, v1, . . . , vmq1{p1´ 1{sq,

Mpt, u, v1, . . . , vmq „ exp
ż t

0

W`pz, u, v1, . . . , vmq ´ 1
z

dz. (22)

In fact, Formula (22) is an equality when vi “ 1 (for i “ 1, . . . ,m), while, if one keeps track
of the vi’s, the counting of occurrences of pi (in a meander of length n) could differ by a few
Op1q occurrences between both sides of Formula (22): indeed, the proof uses a concatenation
of some final and initial parts of the path, and this can create/delete a few occurrences of pi’s.
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The advantage of using the multivariate Spitzer formula is that this relates the meanders
to a diagonal involving the rational generating function of walks, on which one can apply the
results of [36]; the drawback is that one loses asymptotics below the Op1q precision.

Let us now state how to derive the parameters of the multidimensional Gaussian limit
law N pµµµ,ΣΣΣq. Let F pt, u, v1, . . . , vmq be the corresponding generating function (where t
encodes the length, u the final altitude, and each vi encodes occurrences of the pattern pi).
The average of the marginals behaves linearly, as expected by the Borges theorem (see [1,22]):

ErXipnqs “
rtnsBvi

pF qpt, 1, . . . , 1q
rtnsF pt, 1, . . . , 1q “ µinp1` op1qq. (23)

Note that, in (23), there would be no difficulty in pushing the asymptotics further than op1q.
One sets µµµ :“ pµ1, . . . , µmq. Now, the entries of the covariance matrix ΣΣΣ are obtained by

ΣΣΣij “ lim
nÑ8

1
n2E rpXipnq ´ ErXipnqsq pXjpnq ´ ErXjpnqsqs

“ lim
nÑ8

1
n2
rtnsBviBvj pF qpt, 1, . . . , 1q

rtnsF pt, 1, . . . , 1q ´ µiµj . (24)

One has ΣΣΣij ą 0 as a consequence of the universal positivity of the variability condition [8,
Lemma 22]) and detΣΣΣ ‰ 0 when the patterns pi’s are not all equal.

Thus, when one considers the asymptotic regime of rznvµ1n
1 . . . vµmn

m sF pz, v1, . . . , vmq,
where the exponents of the vi’s can be rounded to the nearest integer whenever needed, one
gets an expansion which fits the framework of the multivariate version of the quasi-power
theorem (see [28,29,37]), leading to the multidimensional Gaussian limit law N pµµµ,ΣΣΣq. J

I Remark. Generic walks are aperiodic; a multivariate Gaussian distribution is also holding
for periodic walks, but additional care is required. (Recall that a walk is periodic if the
gcd of the differences between the steps of S is not 1, and then the paths live in a periodic
sub-lattice of Z2, and then the generating function has conjugate dominant singularities.)
These periodic cases can in fact be handled by combining the approaches of [5] and [9].

5 Conclusion and further works

To summarize, in this article we introduced/presented
the mutual correlation matrix, an extension of the notion of autocorrelation polynomial,
which has its own interest and which offers several algorithmic advantages,
closed-forms for all the main generating functions of constrained lattice paths (walks and
bridges in Section 2, meanders and excursions in Section 3), generalizing the previous
works [1, 2, 6] and leading to multidimensional Gaussian limit laws.

This will allow us to tackle further questions, like
faster uniform random generation of constrained paths of length n, extending the mul-
tivariate tuning of the Boltzmann method done in [14] to cases where the grammar is not
strongly connected (such cases are generic for lattice paths with forbidden patterns),
links with trace monoids and partial commutations in words [13],
to extend the analysis of fundamental non-Gaussian parameters under some pattern
constraints (like the area below the path [7] for walks with forbidden patterns, thus
interfering with the natural drift of the walk), possibly combined with further constraints
(like to be below a line of rational slope, extending [9]).

This work is also a first step towards more general schemes of multidimensional limit laws
in analytic combinatorics, for the important class of algebraic functions related to lattice
path statistics.
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In this article, we revisit and extend a list of formulas based on lattice path surgery: cut-and-
paste methods, factorizations, the kernel method, etc. For this purpose, we focus on the natural
model of directed lattice paths (also called generalized Dyck paths). We introduce the notion of
prime walks, which appear to be the key structure to get natural decompositions of excursions,
meanders, bridges, directly leading to the associated context-free grammars. This allows us to
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polynomials corresponds to a lattice path generating function, and that these symmetric polynomials
are accordingly needed to express the asymptotic enumeration of these paths and some parameters
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1 Introduction and definitions

The recursive nature of lattice paths makes them amenable to context-free grammar tech-
niques; their geometric nature makes them amenable to cut-and-paste bijections; their
step-by-step nature makes them amenable to functional equations solvable by the kernel
method (see e.g. [3–5,8–11,16,30,32,35] for many applications of these ideas). We present in
a unified way some consequences of these observations in Section 2 on context-free grammars
(where we introduce the fruitful notion of prime walks) and in Section 3 on Spitzer and
Wiener–Hopf identities. Additionally, we give new connections with symmetric functions in
Section 4, see Table 2. All of this allows us to greatly extend the enumerative formulas and
asymptotics given in [4], and gives us access to some limit laws, as shown in Section 5.

I Definition 1 (Jumps and lattice paths). A step set S is a finite subset of Z. The elements of
S are called steps or jumps. An n-step lattice path or walk ω is a sequence pj1, . . . , jnq P Sn.
The length |ω| of this lattice path is its number n of jumps.

Such sequences are one-dimensional objects. Geometrically, they can be interpreted as two-
dimensional objects which justifies the name lattice path. Indeed, pj1, . . . , jnq may be seen as
a sequence of points pω0, ω1, . . . , ωnq, where ω0 is the starting point and ωi ´ ωi´1 “ p1, jiq

for i “ 1, . . . , n. Except when mentioned differently, the starting point ω0 of these lattice
paths is p0, 0q.

Let σk :“
řk

i“1 ji be the partial sum of the first k steps of the walk ω. We define the
height or maximum of ω as maxk σk, and the final altitude of ω as σn. For example, the first
walk in Table 1 has height 3 and final altitude 1. Table 1 and Figure 1 are also illustrating
the four following classical types of paths:

I Definition 2 (Excursions, arches, meanders, bridges).
Excursions are paths never going below the x-axis and ending on the x-axis;
Arches are excursions that only touch the x-axis twice: at the beginning and at the end;
Meanders are prefixes of excursions, i.e., paths never going below the x-axis;
Bridges are paths ending on the x-axis (allowed to cross the x-axis any number of times).

Let c :“ ´min S be the maximal negative step, and let d :“ max S be the maximal
positive step. To avoid trivial cases we assume min S ă 0 ă max S. Furthermore we associate
to each step i P S a weight si. These weights si are typically real numbers, like probabilities
or non-negative integers encoding the multiplicity of each jump. The weight of a lattice path
is the product of the weights of its steps. Then we associate to this set of steps the following
step polynomial:

Spuq “
d
ÿ

i“´c

siu
i.

The generating functions of directed lattice paths can be expressed in terms of the roots
of the kernel equation

1´ zSpuq “ 0. (1)

More precisely, this equation has c` d solutions in u. The small roots uipzq, for i “ 1, . . . , c,
are the c solutions with the property uipzq „ 0 for z „ 0. The remaining d solutions are
called large roots as they satisfy |vipzq| „ `8 for z „ 0. The generating functions of the four
classical types of lattice paths introduced above are shown in Table 1.
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Table 1 The four types of paths: walks, bridges, meanders and excursions, and the corresponding
generating functions for directed lattice paths. The functions uipzq for i “ 1, . . . , c are the roots of
the kernel equation 1´ zSpuq “ 0 such that limz“0 uipzq “ 0.

ending anywhere ending at 0

unconstrained

(on Z)
walk/path (W) bridge (B)

W pzq “ 1
1´zSp1q Bpzq “ z

c
ř

i“1

u1ipzq

uipzq

constrained

(on Z)
meander (M) excursion (E)

Mpzq “ 1
1´zSp1q

c
ś

i“1
p1´ uipzqq Epzq “ p´1qc´1

s´cz

c
ś

i“1
uipzq

These results follow from the expression for the bivariate generating function Mpz, uq of
meanders. Indeed, let mn,k be the number of meanders of length n going from altitude 0 to
altitude k, then we have

Mpz, uq “
ÿ

k

Mkpzqu
k “

ÿ

n,kě0
mn,kz

nuk “

śc
i“1pu´ uipzqq

ucp1´ zSpuqq . (2)

This last formula is obtained by the kernel method: this method starts with the func-
tional equation which mimics the recursive definition of meanders, namely Mpz, uq “

1 ` zSpuqMpz, uq ´ tuă0uzSpuqMpz, uq (where tuă0u extracts the monomials of negative
degree in u, as one does not want to allow a jump going below the x-axis). Note that
tuă0uSpuqMpz, uq is a linear combination (with coefficients in u and z) of c unknowns,
namely M0pzq, . . . ,Mc´1pzq. Then, substituting u “ uipzq (each of the c small roots of (1))
into this system leads to the closed form (2). This also directly gives the generating function
of excursions Epzq :“Mpz, 0q and meanders Mpzq :“Mpz, 1q. The generating function for
bridges follows from the link given in Theorem 8 hereafter. See [4, 10] for more details.

It should be stressed that the closed forms of Table 1 grant easy access to the asymptotics
of all these classes of paths after the localization of the dominant singularities:

I Theorem 3 (Radius of convergence of excursions, bridges, and meanders [4]). The radius of
convergence of excursions Epzq :“Mpz, 0q and of bridges Bpzq is given by ρ “ 1{Spτq, where
τ is the smallest positive real number such that S1pτq “ 0. For meanders Mpzq :“Mpz, 1q,
the radius depends on the drift δ :“ S1p1q: It is ρ if δ ă 0 and it is 1{Sp1q if δ ě 0.

We shall make use of all these facts in Section 5 on asympotitcs and limit laws, but,
before to do so, we now present several combinatorial decompositions which will be the key
to get these new asymptotic results.
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2 Prime walks and context-free grammars

Context-free grammars are a powerful tool to tackle problems related to directed lattice
paths (we refer to [27] for a detailed presentation of grammar techniques). In this section,
we introduce some key families of lattice paths (generalized arches, prime walks), which will
also be used in the next section. Illustrating the philosophy of “latticepathology”, these new
families allow short concise visual proofs based on lattice path surgery: we give grammars
generating the most fundamental classes of lattice paths (excursions, bridges, meanders);
this generalizes and unifies results from [11,16,32,35].

All our grammars are non-ambiguous: there is only one way to generate each lattice path.
They require the introduction of two classes of paths: generalized arches and prime walks.

I Definition 4 (Generalized arches). An arch from i to j is a walk starting at altitude i
ending at altitude j and staying always strictly above altitude maxpi, jq except for its first
and final position; see Figure 1.

An important consequence of this definition is that generalized arches cannot have an
excursion as left or right factor. Note that an arch from i to j can be considered as an arch
from 0 to j ´ i. This justifies that we now focus on arches starting at 0. Let Ak be the
class of arches from 0 to k; see Figure 1. Following the tradition of several authors, we refer
to arches (omitting the start and end point) as arches from 0 to 0, see e.g. [4]. Thus, an
excursion is clearly a sequence of arches.

I Definition 5 (Prime walks). Given a set of steps S, with d “ max S, the set P of prime
walks is defined as the following sets of arches

P “

d
ď

k“0
Ak.

These prime walks are the key to get short proofs for the decomposition of several constrained
classes of paths (Section 3) and for meanders (Theorem 6). Note that these decompositions
hold for any set of jumps: it is straightforward to extend them to multiplicities (jumps with
different colours) or even to an infinite set of jumps.

I Theorem 6 (The universal context-free grammar for directed lattice paths). Meanders and
excursions are generated by the following grammar:

M Ñ ε` P M (meanders),
E Ñ ε`A0E (excursions),

which can be rephrased as “meanders are sequences of prime walks”: M “ Seq
´

řd
k“0 Ak

¯

and “excursions are sequences of arches”: E “ SeqpA0q, where the arches Ak from 0 to k
are generated by

Ak Ñ k `
d
ÿ

j“k`1
Aj E Ak´j parches for k ě 0q,

Ak Ñ k `
k´1
ÿ

j“´c

Ak´j E Aj parches for k ă 0q,

with the convention that, in these two rules, the part Ak Ñ k is omitted whenever k R S.
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5 −3 1 0 −2 0 2 1 −3 1 −1 4 0 −5 3 −2 −1

A0 E
A1 E A−1 A0

A2 A−1 A0 E A4 E A−5 A1 A−1
A5 A−3 A1 E A−2 A0 E A0 A3 A−2

A0 A2 A−2 A0

A1 A−3 A1 A−1

Figure 1 Example of our non-ambiguous decomposition of an excursion into generalized arches.
Similar decompositions hold for the factorization of meanders into prime walks.

Proof. Let us start with arches Ak from 0 to k ě 0. (The results for A´k follow analogously.)
For such arches of length ą 1, we cut them at the first and the last time their minimal
altitude (not taking end points into account) is attained. The first factor goes from 0 to j
and stays in-between always strictly above j, and therefore is given by Aj . The second factor
is a (possibly empty) excursion. The last factor is an arch from j to k given by Ak´j . This
gives Ak “ AjEAk´j . From this, it is immediate to get the grammar for excursions, as they
are a sequence of arches A0; thus E “ ε`A0E .

Now take any meander and cut it at the last time it touches altitude 0. The first part is
a (possibly empty) sequence of arches. We cut the second part at the first point where its
minimal altitude ą 0 is attained. The remaining part is again a meander. This gives the
factorization M “ E `

řd
k“1 E Ak M, which is in turn equivalent to M “ seqpPq.

All these decompositions are clearly 1-to-1 correspondences, as exemplified in Figure 1. J

We end this section with the grammar of bridges. It uses another class of walks: the
negative arches from 0 to k, denoted by sAk. These stay always strictly below minp0, kq.
Their grammar is just the mirror of the one for Ak given in Theorem 6.

I Theorem 7. Bridges B “ B0 are generated by the following grammar:

B0 Ñ ε`
ÿ

kPS
kB´k,

where Bk stands for the “bridges ending at k”, i.e. walks on Z from 0 to k, given by

Bk Ñ

0
ÿ

j“´c

Aj Bk´j pif k ą 0q,

Bk Ñ

d
ÿ

j“0

sAj Bk´j pif k ă 0q.
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In the next section we present some applications of our decompositions (obtained above in
the framework of the non-commutative world of words) to famous identities from probability
theory (stated below in the framework of the commutative world of generating functions).

3 Latticepathology and surgery of paths

The decompositions of lattice paths mentioned in the previous section find application in the
bivariate versions of the Spitzer/Sparre Andersen1/Wiener–Hopf formulas [2,25,26,34,37].
It gives for free elegant short proofs for these fundamental results which were definitively
missing in [4], neatly illustrating the latticepathology philosophy!

I Theorem 8 (Bivariate version of Spitzer/Sparre Andersen’s identities). The generating
function W`pz, uq “

ř

n w
`
n puqz

n of walks on Z ending at an altitude ě 0 and the generating
function Mpz, uq “

ř

n mnpuqz
n of meanders (where u encodes the final altitude and z

encodes the length of the lattice path) are related by the formulas

W`pz, uq “ 1` zM
1pz, uq

Mpz, uq
or, equivalently, (3a)

Mpz, uq “ exp
ˆ
ż z

0

W`pt, uq ´ 1
t

dt

˙

“ exp
˜

ÿ

ně1

w`n puq

n
tn

¸

. (3b)

Proof (Sketch). We give a bijective proof. It consists in factorizing any non-empty walk
ω ending at an altitude ě 0 into 3 factors: ω “ φ1.m.φ2 where m is the longest meander
starting at the first minimum of the walk and such that φ2.φ1 is a prime walk (pointed, in
order to remember where to split it); see Figure 2. The fact that this factorization exists
and is unique follows from the positivity of ω and from the grammar for meanders from
Theorem 6. This decomposition directly keeps track of the last altitude of each of its factors:

W`pz, uq ´ 1 “Mpz, uqz
B

Bz

ˆ

1´ 1
Mpz, uq

˙

. J

I Remark 9 (Spitzer/Sparre Andersen’s identities for excursions and bridges). Extracting the
constant coefficient with respect to u in the above identities leads to the following links
between bridges and excursions (these specific identities were also proven in [4]).

Bpzq “ 1` Epzqz B
Bz

ˆ

1´ 1
Epzq

˙

“ 1` zE
1pzq

Epzq
or, equivalently, (4a)

Epzq “ exp
ˆ
ż z

0

Bptq ´ 1
t

dt

˙

“ exp
˜

ÿ

ně1

bn

n
tn

¸

. (4b)

Nota bene: Spitzer’s formula is often given as a variant of Formula (3b), stated in terms of
characteristic functions instead of generating functions, and also keeping track of the height of
the path (see e.g. [37,39,42]). More generally, in Brownian motion theory, path decompositions
are also useful for Vervaat transformations, quantile transforms [13, 33, 40], Ray–Knight
theorems for local times and Lamperti, Jeulin, Bougerol, Donati-Martin identities [1,7,15,28].

We now illustrate such approaches with one more important surgery of lattice paths. (This
requires the natural classes of positive and negative meanders, see Definition 12 hereafter.)

1 Funnily, in the literature, this identity of Erik Albrecht Sparre Andersen (Andersen is the family name)
is often called the “Sparre Andersen identity”, probably as he was often signing E. Sparre Andersen.
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φ1 φ2M(z, u)

W+(z, u)

Figure 2 The bijection at the heart of Spitzer/Sparre Andersen identity decomposes a walk
ω P W` into ω “ φ1.m.φ2, where the meander m P M starts at the first minimum of ω and ends at
the rightmost point such that φ2.φ1 ends at altitude ě 0 (and φ2.φ1 is thus a prime walk).

I Theorem 10 (Bivariate version of Wiener–Hopf formula). The bivariate generating functions
W`hpz, uq and W´hpz, uq of walks on Z with u marking the positive and negative height (not
the altitude!) are related to the bivariate generating functions M`pz, uq of positive meanders
and M´pz, uq of negative meanders (with u marking the final altitude, see Figure 3):

W`hpz, uq “M´pzqEpzqM`pz, uq “ ´
1
sdz

˜

c
ź

j“1

1
1´ ujpzq

¸˜

d
ź

`“1

1
u´ v`pzq

¸

,

W´hpz, uq “M´pz, uqEpzqM`pzq “ ´
1
sdz

˜

c
ź

j“1

1
1´ ujpzq{u

¸˜

d
ź

`“1

1
1´ v`pzq

¸

.

This Wiener–Hopf factorization W “M´EM` thus gives

M´pzq “
W pzq

Mpzq
“

c
ź

j“1

1
1´ ujpzq

and M`pzq “
Mpzq

Epzq
“

d
ź

`“1

1
1´ 1{v`pzq

.

Proof (Sketch). The proof follows from the decomposition illustrated in Figure 3. Cutting
at the first and last maxima of the walk gives the factorization W “ M`EM´, where the
positive meander and the excursion are obtained after a 180o rotation, and it is thus clear
that the final altitude of this positive meander is the height of the initial walk. Similarly,
cutting the walk at its first and last minima gives the factorization W “ M´EM`. J

4 Lattice paths and symmetric functions

Building on the quantities introduced in the previous sections, we now show that three
fundamental classes of symmetric polynomials evaluated at the small roots of the kernel have
a natural combinatorial interpretation in terms of directed lattice paths. En passant, this
also gives the generating function of generalized arches. For our main results see Table 2.
We first recall the definitions of these symmetric polynomials (see e.g. [38] for more on these
objects).

I Definition 11. The complete homogeneous symmetric polynomials hk of degree k in the d
variables x1, . . . , xd are defined as

hkpx1, . . . , xdq “
ÿ

1ďi1ď¨¨¨ďikďd

xi1 ¨ ¨ ¨xik
, thus

ÿ

kě0
hkpx1, . . . , xdqu

k “

d
ź

i“1

1
1´ uxi

. (5)
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W (z, u)

M−(z, u) M+(z)

{

M+(z, u)

W (z, u)

M−(z)

positive height for W (z, u)
= final altitude for M+(z, u)

negative height for W (z, u)
= final altitude for M−(z, u)

E(z)

E(z)

Figure 3 The Wiener–Hopf decomposition of a walk: W “ M´EM`, a product of a negative
meander, an excursion, and a positive meander. See e.g. [25] for the importance of this factorization
for lattice path enumeration. It offers a link between two important parameters (height and final
altitude): the proof uses a 180o rotation of some of the factors (the ones indicated by a right to left
arrow in the picture). The above picture crystallizes the key idea behind the theorems given by Feller
in his nice introduction to the Wiener–Hopf factorization [19, Chapter XVIII.3 and XVIII.4]. It also
explains why this decomposition holds for Lévy processes, which can be seen as the continuous time
and space version of lattice paths, see [31].

The elementary homogeneous symmetric polynomials ek of degree k in the d variables
x1, . . . , xd are defined as

ekpx1, . . . , xdq “
ÿ

1ďi1ă¨¨¨ăikďd

xi1 ¨ ¨ ¨xik
, thus

c
ÿ

k“0
ekpx1, . . . , xdqu

k “

d
ź

i“1
p1` uxiq. (6)

The power sum homogeneous symmetric polynomials pk of degree k in the d variables x1, . . . , xd

are defined as

pkpx1, . . . , xdq “

d
ÿ

i“1
xk

i , thus
ÿ

kě0
pkpx1, . . . , xdqu

k “

d
ÿ

i“1

1
1´ uxi

. (7)

Many variants of directed lattice paths satisfy functional equations which are solvable by
the kernel method and lead to formulas involving a quotient of Vandermonde-like determinants,
see e.g. [4]. It is thus natural that Schur polynomials intervene, they e.g. play an important
role for lattice paths in a strip, see [5, 9]. It is nice that the other symmetric polynomials
also have a combinatorial interpretation, as presented in the following table.

Let us now give a more formal definition of the corresponding objects and a proof of the
formulas for the associated generating functions.

I Definition 12. A positive meander is a path from ` ě 0 to k ě 0 staying strictly above the
x-axis (and possibly touching it at at most one of its end points). The generating function
is denoted by M`

`,kpzq. Negative meanders are defined similarly, with the condition to stay
strictly below the x-axis.

In Table 2, we focus on positive meanders from 0 to k and from k to 0. Note that it
suffices to consider the paths from 0 to k as by time-reversion they are mapped to each other.
In particular, let uipzq and vjpzq be the small and large roots of the initial model. Then,
after time-reversion the small roots are 1

vjpzq
and the large roots are 1

uipzq
. More details are

given in the long version.
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Table 2 In this article, we show that the fundamental symmetric polynomials (of the complete
homogeneous, elementary, and power sum type) are counting families of positive meanders (walks
touching the x-axis only at one of the end points and staying always above the x-axis). The functions
vjpzq for j “ 1, . . . , d are the roots of the kernel equation 1´ zSpuq “ 0 with limz“0 |vjpzq| “ `8,
whereas the functions uipzq for i “ 1, . . . , c are the roots such that limz“0 uipzq “ 0.

from 0 to k from k to 0

k k
positive
meander

M`
0,kpzq“hk

´

1
v1pzq

, . . . , 1
vdpzq

¯

M`
k,0pzq“hk pu1pzq, . . . , ucpzqq

k k

positive
meander
avoiding
p0, kq

Mě
0,kpzq“p´1qk´1ek

´

1
v1pzq

, . . . , 1
vdpzq

¯

Mě
k,0pzq“p´1qk´1ek pu1pzq, . . . , ucpzqq

}
}
}

k

}
}

k

positive
meander
marked
below the
minimum

M ‚
0,kpzq“pk

´

1
v1pzq

, . . . , 1
vdpzq

¯

M ‚
k,0pzq“pk pu1pzq, . . . , ucpzqq

I Theorem 13 (Generating function of positive meanders).

M`
0,kpzq “ hk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof. Observe that a meander ending at altitude k can be uniquely decomposed into
an initial excursion followed by a positive meander from 0 to k. By [4, Theorem 2]
their generating function is the coefficient of uk in

śd
j“1

1
1´u{vjpzq

. Consequently, by Equa-
tion (5) this is the generating function of the complete homogeneous symmetric polynomials
hkp1{v1pzq, . . . , 1{vdpzqq. J

This theorem gives a shorter proof of [4, Corollary 3]:

I Corollary 14. The generating function Mkpzq of meanders ending at altitude k are given
by

Mkpzq “ Epzqhk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

“
1
sdz

d
ÿ

`“1

´

ź

j‰`

1
vjpzq ´ v`pzq

¯ 1
v`pzqk`1 .
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Proof. As in the proof of Theorem 13, we use that positive meanders are classical meanders
factored by excursions. Then a partial fraction decomposition of (5) yields the result. J

The last class we consider is the one of elementary symmetric polynomials. These are
associated to a decorated class of paths.

I Definition 15. A positive meander avoiding a strip of width k is a positive meander from 0
to k that always stays above any point of altitude j ă k except for its start point. The
generating function is denoted by Mě

0,kpzq.

I Theorem 16 (Positive meanders avoiding the strip r0, ks).

Mě
0,kpzq “ p´1qk´1ek

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof. We proceed by induction on k. The base case k “ 1 holds due toMě
0,1pzq “M`

0,1pzq “

1{v1pzq ` ¨ ¨ ¨ ` 1{vdpzq. Next assume the claim holds for Mě
0,1pzq, . . . ,M

ě
0,k´1pzq.

Take an arbitrary positive meander from 0 to k. Either it is a positive meander avoiding
the strip of width k, or at least one of its lattice points has an altitude smaller than k.

Let 0 ă i ă k be the altitude of the last step below altitude k. Then the path can be
uniquely decomposed into an initial part from altitude 0 to this altitude i and a part from
this point to the end. Note that by the construction the initial part starts at altitude 0 and
then always stays above the x-axis, whereas the last part avoids a strip of width k ´ i. In
terms of generating functions this gives

Mě
0,kpzq “M`

0,kpzq ´
k´1
ÿ

i“1
M`

0,ipzqM
ě
0,k´ipzq.

Inserting the known expressions, we get

Mě
0,kpzq “

k
ÿ

i“1
p´1qk´iek´i

ˆ

1
v1
, . . . ,

1
vd

˙

hi

ˆ

1
v1
, . . . ,

1
vd

˙

“ p´1qk´1ek

ˆ

1
v1
, . . . ,

1
vd

˙

,

thanks to the fundamental involution relation [38, Equation (7.13)] between elementary
symmetric polynomials and complete homogeneous symmetric polynomials. J

I Corollary 17. The generating functions of generalized arches (as introduced in Definition 4)
satisfy (for k ą 0)

Ak “
p´1qk´cs´cz

u1pzq ¨ ¨ ¨ucpzq
ek

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

,

A´k “
p´1qk´cs´cz

u1pzq ¨ ¨ ¨ucpzq
ek pu1pzq, . . . , ucpzqq.

Proof. This follows from Ak “Mě
0,k{E and A´k “Mě

k,0{E. J

We end our discussion with a third class of positive meanders.

I Definition 18. A positive meanders marked below the minimum is a positive meander with
an additional marker in t1, . . . ,mu where m is its minimal positive altitude. The generating
function for such paths from 0 to k is denoted by M ‚

0,kpzq.

For example it is immediate that M ‚
0,1pzq “Mě

0,1pzq “M`
0,1pzq as the only restriction is

to avoid the x-axis. Furthermore, M ‚
0,0pzq “ 0 while Mě

0,0pzq “M`
0,0pzq “ 1.
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I Theorem 19 (Positive meanders marked below the minimum).

M ‚
0,kpzq “ pk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof (Sketch). Every path from 0 to k has to touch at least one of the altitudes 1, . . . , d,
as the largest possible up step is `d. We decompose any positive meander from 0 to k
into two parts by cutting at the unique last positive minimum m. The first part is an arch
avoiding the strip of width m, whereas the second part is a positive meander from m to k.
Translating this decomposition into generating functions, we get

M ‚
0,kpzq “

d
ÿ

m“1
mMě

0,mpzqM
`
0,k´mpzq,

where the factor m encodes the m possible ways to put a mark below the minimum, see
Definition 18. Note that Mě

0,kpzq “ 0 for k ą d. Thus, by Theorems 13 and 16 we get

ÿ

kě1
M ‚

0,kpzqu
k “

˜

u
B

Bu

ÿ

jě0
Mě

0,jpzqu
j

¸˜

ÿ

iě0
M`

0,ipzqu
i

¸

“

d
ÿ

i“1

u{vipzq

1´ u{vipzq
.

By Equation (7) this proves the claim. J

5 Asymptotics and limit laws

We end the discussion on the symmetric polynomial expressions by deriving their respective
asymptotics: this allows us to revisit some limit laws in which the appearance of symmetric
polynomials was so far unrecognized.

We only consider aperiodic step sets S, which are defined by gcdt|i´ j| : i, j P Su “ 1.
For the treatment of periodic step sets see [6]. We only treat paths from k to 0, as the
formulas are a bit simpler. The results for paths from 0 to k follow in an analogous fashion.
The principal small branch u1pzq and the principal large branch v1pzq are defined by the
property that they are real positive for near 0` and meet at z “ ρ; see [4].

In the next theorem we give the asymptotics of our three classes of positive meanders.

I Theorem 20. Consider an aperiodic step set S. Let τ be the structural constant determined
by S1pτq “ 0, τ ą 0. For the different variants of positive meanders given in Table 2, the
number of paths from k to 0 of size n has the following asymptotic expansions

rznsM`
k,0pzq “ α1

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α1 “
Bek

Bx1
pτ, u2pρq, . . . , ucpρqq.

The number of positive meanders avoiding p0, kq from k to 0 of size n satisfies

rznsMě
k,0pzq “ α2

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α2 “
Bhk

Bx1
pτ, u2pρq, . . . , ucpρqq.

The number of positive meanders marked below the minimum from k to 0 of size n satisfies

rznsM ‚
k,0pzq “ α3

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α3 “
Bpk

Bx1
pτ, u2pρq, . . . , ucpρqq.

AofA 2020



2:12 Latticepathology and Symmetric Functions (Extended Abstract)

Proof. Let M`
k,0, Mě

k,0, and M ‚
k,0 be the sets of positive meanders, positive meanders

avoiding p0, kq, and positive meanders marked below the minimum, respectively; see Table 2.
Let ωk P Ak and ω´k P A´k be two generalized arches. Now, define the multiset Ek that
consists of d copies of the set tw : ωk ¨ w P Eu of excursions factored by ωk. Then, the
following chain of inclusions holds:

E ¨ ω´k Ď Mě
k,0 Ď M`

k,0 Ď M ‚
k,0 Ď Ek. (8)

The first inclusion holds as every walk e ¨ ω´k with e P E is a positive meander avoiding
p0, kq. The middle inclusions hold by definition (see Table 2). The last inclusion holds since,
for every m P M ‚

k,0, we have ωk ¨m P E after removing the marker from m. Therefore, the
exponential growth rates of the counting sequences of E ¨ ω´k and Ek are equal to the one
of classical excursions E , which has been explicitly computed in [4]. Hence, all 3 classes of
meanders in (8) have the same asymptotic growth Rn.

Next, we observe that the corresponding generating functions have non-negative coeffi-
cients, and whence Pringsheim’s Theorem [22, Theorem IV.6] guarantees the existence of a
dominant singularity on the positive real axis R`. By [4] this is the only dominant singularity
and we have ρ “ 1{R. Furthermore, it was shown that on the radius of convergence |z| “ ρ

only one root u1pzq is singular and has a square-root singularity, while the other ones are
analytic. Then, we combine this result with the explicit shape of the symmetric polynomials
from Definition 11. This gives the Puiseux expansion at z “ ρ on which we apply singularity
analysis to derive the claimed formulas. J

Before we continue, let us comment on an often overlooked phenomenon concerning the
analyticity of the small branches.
I Remark 21 (Singularities of the small roots). The small roots (and, in particular the principal
small branch u1pzq) can have a singularity inside the disk of convergence of Epzq. For example,
for Spuq “ u ` 13{u ` 6{u2, one easily checks that the radius of convergence of Epzq is
ρ “ 8{61 while u1pzq and u2pzq are singular at z “ ´1{8. However, their product u1u2 is
regular for |z| ă ρ; more generally what is proven in [4] is that the product of the small roots
is always regular for 0 ă |z| ă ρ, while in general not each single small root is regular for
0 ă |z| ă ρ.

Many theorems leading to a Gaussian distribution require that a key quantity (let us call
it σ) is nonzero. In [22], this nonzero assumption is called “variability condition”; see therein
Theorem IX.8 (Quasi-power theorem), Theorem IX.9 (Meromorphic schema), Theorem
IX.10 (Positive rational systems). Now, many lattice path statistics have a variance with an
expansion σn` opnq, where σ is defined as in the following lemma, and is therefore nonzero.

I Lemma 22 (Universal positivity of the variability condition). For any Laurent series Spuq “
ř

iě´c siu
i, with si ě 0 (at least two si ą 0), one has σ :“ S2p1qSp1q`S1p1qSp1q´S1p1q2 ą 0.

Proof. The trick is to introduce σpuq :“ uS2puqSpuq ` S1puqSpuq ´ uS1puq2. Then, all the
monomials of σpuq have positive coefficients: this follows from rsisjsσpuq “ ui`j´1pi´jq2 ě 0,
and thus σpuq ą 0 for u ą 0. J

It is worth noting that an alternative version of this lemma is: « uSpuq{S1puq “ n has no
double root for u ą 0 »; this plays a role in the tuning of Boltzmann random generation [17].
Such considerations are also related to Harald Cramér’s trick of shifting the mean which
transforms a problem with drift into a problem with zero drift, via the modification of the
weights of the step set rSpuq :“ Spτuq{Spτq (and choosing τ such that S1pτq “ 0 indeed
implies that rS1p1q “ 0). Compare also with the proof of [21, Formula (2.37)].
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As a consequence, Lemma 22 guarantees that we can apply the quasi-power theorem [22,
Theorem IX.8], and obtain a Gaussian limit theorem. This explains why many statistics
related to lattice paths are Gaussian. E.g., for paths with positive or zero drift, it furnishes
a Gaussian limit theorem for the final altitude of meanders or for the height of walks. When
the drift is negative, one gets some discrete limit laws of parameter given by our symmetric
polynomial expressions:

I Theorem 23 ( [4, Theorem 6] and [41, Theorem 4.7]; negative drift cases). Assume a negative
drift δ “ S1p1q ă 0 and let ρ “ 1{P pτq and ρ1 “ 1{P p1q.
1. Let Xn be the random variable of the final altitude of a meander of length n. Then, the

limit law is discrete and given by

lim
nÑ8

PrpXn “ kq “ p1´ τ´1q

řk
i“0 τ

i´khipv1pρq
´1, . . . , vdpρq

´1q
ř

iě0 hipv1pρq´1, . . . , vdpρq´1q
.

2. Let Yn be the random variable of the height of a walk of length n. Then, the limit law is
discrete and given by

lim
nÑ8

PrpYn “ kq “
hkpv1pρ1q

´1, . . . , vdpρ1q
´1q

ř

iě0 hipv1pρ1q´1, . . . , vdpρ1q´1q
.

Proof (Sketch). Recall that for a path represented by a sequence of points pω0, ω1, . . . , ωnq

the final altitude is ωn and the height is maxi ωi. In both cases the limit law follows from a
rewriting of the closed form of the discrete probability generating function which basically
consists of the generating function of hk (alternatively, M`) and proper rescaling. J

Note that the second case is an avatar of the Wiener–Hopf decomposition which links the
height of walks with the final altitude of meanders; see Theorem 10 and [41].

6 Conclusion and perspectives
In this article we introduced the notion of prime walks, a class of walks which leads to natural
decompositions of lattice paths and to concise proofs of several identities in probability
theory that we are even able to further generalize by capturing some additional statistics.
Moreover, these decompositions can keep track of some additional parameters (e.g. counting
the number of occurrences of some given patterns, see [3]), which then gives access to many
joint distribution studies, see e.g. [12].

Our work also offers new links with symmetric polynomials, adding to previous funda-
mental connections with algebraic combinatorics via Vandermonde determinants, the Jacobi–
Trudi identity, and Schur functions (see [5, 9]). In [6], we give an interpretation of Schur
polynomials (for some appropriate index) in terms of meanders ending at a given altitude.
Together with the results of the present work, this extends the table given in [38, Prop. 2.8.3]:
therein, Stanley gives some nice combinatorial expressions for the bases of symmetric func-
tions (Definition 11), when they are evaluated at specific values like xi “ 1 or xi “ qi. This
is what he calls the “principal specializations”. Our work shows that what we could call the
“kernel root specialization” of the symmetric function bases (i.e. evaluation at xi “ uipzq) is
leading to the enumeration of fundamental lattice path classes, holding for any set of jumps.

En passant, we illustrate the old Schützenberger philosophy: most of the identities in the
commutative world are images of structural identities in the non-commutative world. It is
natural to ask how far we can extend the link between lattice paths and the non-commutative
symmetric world; note that further non-commutative points of view are developed in [18,23,24].

AofA 2020
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It is striking that astonishingly powerful formulas can be obtained by astonishingly simple
tools from symbolic combinatorics. Such formulas, e.g. the Spitzer formula for bridges, have
some unexpected avatars. Indeed, bridges of length n can be seen as ru0sSpuqn for some
Laurent polynomial Spuq and the same holds with multivariate polynomials; this leads to
some interesting connections between the non-commutative world, the Laurent phenomenon
(i.e. the fact that some expressions which by design are a priori rational functions are in fact
some Laurent polynomial), and lattice paths (see [14,29,36]).

On the computer algebra side, the so-called “Platypus algorithm” from [4] is a way to
get the algebraic equation satisfied by the generating function of excursions. Another nice
consequence of our formulas is that they permit a generalization of this “Platypus algorithm”:
starting from the generating functions of the symmetric polynomials given in Definition 11,
we show in the long version of this article how to get the algebraic equations of the different
families of constrained meanders, bridges, etc. This offers an effective alternative to an
approach by resultants or Gröbner bases, which are quickly time and memory consuming.

For Motzkin paths (that is, paths with step set S “ t´1, 0,`1u), the generating functions
associated to starting/final altitude constraints can be expressed as continued fractions,
and thus as quotients of orthogonal polynomials [20]. Our work, in one sense, gives the
generalization of these formulas as soon as one has steps ą `1 or ă ´1. Many combinatorial
structures related to the Motzkin paths have some asymptotics in which the “algebra of
orthogonal polynomials” plays a role (e.g. the height of binary trees, related to the Mandelbrot
fractal equation involves Chebyshev polynomials, see e.g. [22]). It is thus natural to ask if
there is a nice “algebra of symmetric polynomials” in which plugging the Puiseux expansions
offered by the kernel method could lead to the limit laws of many parameters of lattice paths?

In conclusion, our work largely complements and extends [4], being part of a wider
program illustrating how lattice path surgery (which we call latticepathology) leads directly
to many neat enumerative, probabilistic, computational, and asymptotic formulas.
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Abstract
We describe a multiple string pattern matching algorithm which is well-suited for approximate
search and dictionaries composed of words of different lengths. We prove that this algorithm has
optimal complexity rate up to a multiplicative constant, for arbitrary dictionaries. This extends to
arbitrary dictionaries the classical results of Yao [SIAM J. Comput. 8, 1979], and Chang and Marr
[Proc. CPM94, 1994].
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1 The problem

1.1 Definition of the problem
Let Σ be an alphabet of s symbols, ξ = ξ0 . . . ξn−1 ∈ Σn a word of n characters (the input
text string), D = {w1, . . . , w`}, wi ∈ Σ∗ a collection of words (the dictionary). We say that
w = x1 . . . xm occurs in ξ with final position j if w = ξj−m+1ξj−m+2 · · · ξj . We say that w
occurs in ξ with final position j, with no more than k errors, if the letters x1, . . . , xm can
be aligned to the letters ξj−m′ , . . . , ξj with no more than k errors of insertion, deletion or
substitution type, i.e., it has Levenshtein distance at most k to the string ξj−m′ . . . ξj (see an
example in Figure 1). Let rm(D) be the number of distinct words of length m in D. We call
r(D) = {rm(D)}m≥1 the content of D, a notion of crucial importance in this paper.

The approximate multiple string pattern matching problem (AMPMP), for the datum
(D, ξ, k), is the problem of identifying all the pairs (a, j) such that wa ∈ D occurs in ξ with
final position j, and no more than k errors (cf. Figure 1). This is a two-fold generalisation of
the classical string pattern matching problem (PMP), for which the exact search is considered,
and the dictionary consists of a single word.
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Figure 1 Typical output of an approximate multiple string pattern matching problem, on
an English text (alphabet of 26 characters plus the space symbol .). In this case k = 2 and
r(D) = (0, 0, 0, 0, 1, 0, 2, 1, 0, . . .). The symbols D, S and i stand for deletion, substitution and
insertion errors, while X corresponds to an insertion or a substitution.

A precise historical account of this problem, and a number of theoretical facts, are
presented in Navarro’s review [8]. The first seminal works have concerned the PMP. Results
included the design of efficient algorithms (notably Knuth–Morris–Pratt and Boyer–Moore),
and have led to the far-reaching definition of the Aho–Corasick automata [1, 3, 7, 11]. In
particular, Yao [11] is the first paper that provide rigorous bounds for the complexity of
PMP in random texts. To make a long story short, it is argued that an interesting notion of
complexity is the asymptotic average fraction of text that needs to be accessed (in particular,
at least at this stage, it is not the time complexity of the algorithm), and is of order ln(m)/m
for a word of length m. The first works on approximate search, yet again for a single word
(APMP), are the description of the appropriate data structure, in [10, 4], and, more relevant
to our aims here, the derivation of rigorous complexity bounds in Chang and Marr [5]. Yet
again in simplified terms, if we allow for k errors, the complexity result of Yao is deformed
into order [ln(m)+k]/m. More recent works have concerned the case of dictionaries composed
of several words, all of the same length [9],1 however, also at the light of unfortunate flaws in
previous literature, the rigorous derivation of the average complexity for the MPMP has been
missing even in the case of words of the same length, up to our recent paper [2], where it is
established that the Yao scaling ln(m)/m is (roughly) modified into maxm ln(mrm)/m (a
more precise expression is given later on). By combining the formula of Chang and Marr for
APMP, and our formula for MPMP, it is thus natural to expect that the AMPMP may have
a complexity of the order maxm[ln(mrm) + k]/m. This paper has the aim of establishing a
result in this fashion.

Of course, the present work uses results, ideas and techniques already presented in [2],
for the PMPM. A main difference is that in [2] we show that, for any dictionary, a slight
modification of an algorithm by Fredriksson and Grabowski [6] is optimal within a constant,
while this is not true anymore for approximate search with Levenshtein distance (we expect
that it remains optimal for approximate search in which only substitution errors are allowed,
although we do not investigate this idea here). As a result, we have to modify this algorithm
more substantially, by combining it with the algorithmic strategy presented in Chang and
Marr [5], and including one more parameter (to be tuned for optimality). This generalised
algorithm is presented in Section 2.2.

Also, a large part of our work in [2] is devoted to the determination of a relatively tight
lower bound, while the determination of the upper bound consists of a simple complexity
analysis of the Fredriksson–Grabowski algorithm. Here, instead, we will make considerable

1 This is the reason why, before our paper [2], which deals with dictionaries having words of different
length, the forementioned notion of “content” of a dictionary did not appear in the literature.
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Table 1 Summary of average complexities for exact and approximate search, for a single word or
on arbitrary dictionaries. The results are derived from Yao [11], Chang and Marr [5], our previous
paper [2], and the present paper, respectively.

exact approximate

single word CYao
lnm
m

(Yao) CCM
lnm+ k

m
(Chang and Marr)

dictionary Cex
1

1
mmin

+ Cex
2 max

m

ln(smrm)
m

C1k + C′
1

mmin
+ C2 max

m

ln(smrm)
m

efforts in order to determine an upper bound for the complexity of our algorithm, which is
the content of Section 2.4, while we will content ourselves of a rather crude lower bound,
derived with small effort in Section 1.3 by combining the results of [5] and [2].

1.2 Complexity of pattern matching problems
In our previous paper [2] we have established a lower bound for the (exact search) multiple
pattern matching problem, in terms of the size s of the alphabet, and the content r = {rm}
of the dictionary, involving the length mmin of the shortest word in the dictionary, and a
function φ(r) with the specially simple structure φ(r) = maxm f(m, rm). More precisely,
calling Φaver(r) (resp. Φmax(r)) the average over random texts, of the average (res. maximum)
over dictionaries D of content r, of the asymptotic fraction of text characters that need to
be accessed, we have

I Theorem 1 (Bassino, Rakotoarimalala and Sportiello, [2]). Let s ≥ 2 and mmin ≥ 2, and
define κs = 5

√
s. For all contents r, the complexity of the MPMP on an alphabet of size s

satisfies the bounds

1
κs

(
φ(r) + 1

2smmin

)
6 Φaver(r) 6 Φmax(r) 6 2

(
φ(r) + 1

2smmin

)
, (1)

where

φ(r) := max
m

1
m

ln(smrm) . (2)

Note a relative factor ln s between the statement of the result above, and its original
formulation in [2], due to a slightly different definition of complexity.

As we have anticipated, such a result is in agreement with the result of Yao [11], for
dictionaries composed of a single word, which is simply of the form ln(m)/m. Combining
this formula with the complexity result for APMP, derived in Chang and Marr [5], it
is natural to expect that the AMPMP has a complexity whose functional dependence
on k and r is as in Table 1. Indeed, the bottom-right corner of the table is consistent
both with the entry above it, and the entry at its left. Furthermore, it is easily seen
that, up to redefining the constants, several other natural guesses would have this same
functional form in disguise. Let us give some examples of this mechanism. Write X ≷
aL/UY + bL/UZ as a shortcut for aLY + bLZ 6 X 6 aUY + bUZ. Now, suppose that we
establish that Φ(r, k) ≷ aL/U (k + 1)/mmin + bL/U maxm (ln(mrm) + k)/m. Then we also
have Φ(r, k) ≷ a′L/U (k + 1)/mmin + bL/U maxm ln(mrm)/m, with a′U = aU + bU (and all
other constants unchanged). On the other side, if we have Φ(r, k) ≷ aL/U (k + 1)/mmin +
bL/U maxm ln(mrm)/m, with aL > bL, then we also have Φ(r, k) ≷ aL/U (k + 1)/mmin +
b′L/U maxm(ln(mrm) + k)/m, with b′L = aL − bL.
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The precise result that we obtain in this paper is the following:

I Theorem 2. For the AMPMP, with k errors and a dictionary D of content {rm}, the
complexity rate Φ(D) is bounded in terms of the quantity

Φ̃(D) := C1(k + 1)
mmin

+ C2 max
m

ln(smrm)
m

(3)

as

1
C1 + κsC2

Φ̃(D) 6 Φ(D) 6 Φ̃(D) , (4)

with a = ln(2s2/(2s+ 1)), a′ = ln(4s2 − 1), κs = 5
√
s (as in Theorem 1) and

C1 = a+ 2a′

a
; C2 = 2(a+ 2a′)

aa′
= 2
a′
C1 . (5)

1.3 The lower bound
Now, let us derive a lower bound of the functional form as in Table 1 for the AMPMP, by
combining our results in [2] for the MPMP and the results in [5] for the APMP. Let us first
observe a simple fact. Suppose that we have two bounds ALB(r, k) 6 Φ(r, k) 6 AUB(r, k)
and BLB(r, k) 6 Φ(r, k) 6 BUB(r, k) (with ALB(r, k) and BLB(r, k) positive). Then, for all
functions p(r, k), valued in [0, 1], we have

p(r, k)ALB(r, k) + (1− p(r, k))BLB(r, k) 6 Φ(r, k) 6 AUB(r, k) +BUB(r, k) .

We want to exploit this fact by using as bounds ALB/UB(r, k) our previous result for the
exact search, and as lower bound BLB(r, k) the simple quantity (k + 1)/mmin. Then, later
on, in Section 2, we will work on the determination of a bound BUB(r, k) which has the
appropriate form for our strategy above to apply. Let us discuss why Φ(r, k) ≥ (k+ 1)/mmin.
We will prove that this quantity is a bound to the minimal density of a certificate, over a
single word of length m = mmin, and text ξ. A certificate, as described in [11], is a subset
I ⊆ {1, . . . , n} such that, for the given text, the characters {ξi}i∈I imply that no occurrences
of words of the dictionary may be possible, besides the ones which are fully contained in I.
Some reflection shows that: (1) for the interesting case m > k, the smallest density |I|/n of
a certificate is realised on a negative certificate, that is, on a text ξ with no occurrences of
the word w; (2) the smallest density is realised, for example, by the text ξ = bbb · · · b, and
the word w = aaa · · · a; (3) in such a certificate, we must have read at least k + 1 characters
in every interval of size m, otherwise the alignment of w to this portion of text, in which we
perform all the substitutions on the disclosed characters, would still be a viable candidate.
Note in particular that deletion and insertion errors do not lead to higher lower bounds
(although, for large m, they lead to bounds which are only slightly smaller).

As a result, recalling the expression for the lower bound in Theorem 1, by choosing p(r, k)
to satisfy p

1−p = κsC2
C1

we have

Φ(r, k) ≥ (1− p)k + 1
mmin

+ p

κs
φ(r) = p

κsC2

(
C1
k + 1
mmin

+ C2φ(r)
)

=
C1

k+1
mmin

+ C2φ(r)
C1 + κsC2

.

This proves the lower bound part of Theorem 2. Note that we could confine all the dependence
from {rm} to the function φ (in particular, the choice p

1−p = κsC2
C1

only depends on the size
of the alphabet s).
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2 The (q, L) search algorithm, and the upper bound

2.1 Definition of alignment
We define a partial alignment α of the word w = x1 . . . xm to the portion of text ξi1 . . . ξi2 ,
with k errors, and boundary parameters (ε, ε′) ∈ N, as the datum α = (w; i1, i2; ε, ε′;u),
where u is a string in {C, Sa, D, Ia}∗, (these letters stand for correct, substitution, deletion
and insertion, respectively, and the index a runs from 1 to s). Two integer parameters (for
example i2 and ε′) are not independent, as they are deduced (say) from i1, ε and the length
of u. Indeed, say that the string u has mC symbols C, mD symbols D, mS symbols of type
Sa (for all a’s altogether) and mI symbols of type Ia, then

k = mS +mD +mI (number of errors)
ε+ ε′ = m− (mC +mS +mD) (portion of the word on the sides)

i2 − i1 + 1 = mC +mS +mI (length of the aligned portion of text)

The alignment has the following pattern (with a dash − denoting a skipped character, in the
text or in the word):

i1 i2
ξi1 · · · ξi2 = ... ξi1 ... wj ... - ... a ... a ... ξi2 ...

u = ... C ... D ... Sa ... Ia ...

w = w1 · · ·wε︸ ︷︷ ︸
ε

wε+1 ... wj ... wj′ ... wj′′ ... - ... wm−ε′ wm−ε′+1 · · ·wm︸ ︷︷ ︸
ε′

For example, if w = counteroffers, in our reference text of Figure 1 we have the alignment
α = (w; i1, i2; ε, ε′;u) = (w; 14, 24; 3, 1;u) with k = 4 and u = CCCCI CCS SoIuC, as
indeed

i1 = 14 i2 = 24
ξ = · · · t h e . w i n t e r . o f . o u r . d i s c o n t e n t · · ·
u = C C C C I C C S So Iu C

w = c o u︸ ︷︷ ︸
ε = 3

n t e r - o f f e - r s︸︷︷︸
ε′ = 1

This example shows an important feature of this notion: several strings u may correspond
to equivalent alignments among the same word and the same portion of text, and with the
same offset ε. For example, the three last errors of u = · · ·S SoIuC can be replaced as in
u′ = · · ·S IoSuC or as in u′′ = · · · I SoSuC. As the underlying idea in producing an upper
bound from an explicit algorithm is to analyse the algorithm while using the union bound on
the possible alignments, it will be useful to recognise classes of equivalent alignments, and,
in the bound, “count” just the classes, instead of the elements (we are more precise on this
notion in Section 2.3).

We define a full alignment to be likewise a partial alignment, but with ε = ε′ = 0. That
is, the goal of any algorithm for the AMPMP is to output the list of (say) positions i2 of the
full alignments among the given text and dictionary. Note that we can always complete a
partial alignment with k errors and boundary parameters (ε, ε′) to a full alignment with no
more than k + ε+ ε′ errors, and no less than k errors, by including substitution or insertion
errors at the two sides.

We define a c-block partial alignment as the generalisation of the notion of partial
alignment to the case in which the portion of text consists of c non-adjacent blocks. In this
case, besides the natural alignment parameters ε, ε′, and i1,a, i2,a, and ua, for the blocks

AofA 2020
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now.is.the.winter.of.our.discontent.made.glorious

deformed.pattern def
I

ormed.pat-te
D
n

def
I

ormed.pat-te
Sn
rn

Figure 2 Typical outcome for the search of the pattern deformed pattern in our reference text.
In this example L = 3 and q = 12, the number of full blocks is c(α) = 2, and can be aligned to the
disclosed portion of the text (denoted by underline) with k = 3 errors: one deletion on the first
block, one insertion in the second block, and one deletion somewhere in between the two blocks. On
the bottom line, another alignment of the same word, in which, instead of inserting the letter r in
the second block, we have substituted n by r, still with k = 3. These two alignments are sufficiently
different to contribute separately to our estimate of the complexity, within our version of the union
bound (because the values of ε are different).

a = 1, . . . , c, we have c− 1 parameters δa ∈ Z, associated to the offset between the alignment
of the word to the blocks with index a and a+ 1. As a result, in order to extend a c-block
partial alignment to a full alignment, we need to perform at least −δa further insertion errors,
or +δa further deletion errors, depending on the sign of δa, for each of the c− 1 intervals
between the portions of text. That is, any c-block partial alignment α with k errors can be
completed to a full alignment with no less than k +

∑
a |δa| errors.

Note that in the following we will not need to count all of the possible ways in which
these deletions or insertions can be performed, as it may seem natural in a naïve perspective
on the use of the union bound. This fact will allow us to efficiently bound the number of
possible multi-block partial alignments arising in our algorithm analysis (instead of counting
directly the possible full alignments, which would result in a too large bound).

2.2 The algorithm

Here we introduce an algorithm for AMPMP, concentrating on the pertinent notion of
complexity, which is the ratio between the number of accesses to the text and the length of
the text, and neglecting all implementation issues, and analysis of time complexity.

The algorithm is determined by two integers q and L, such that k+1 6 L < q 6 mmin−k.
The emerging inequality 2k + 1 < mmin is not a limitation, as when this inequality is not
satisfied we have to read a fraction Θ(1) of the text, and in this regime there is no point in
showing that some algorithm can reach a complexity which is optimal up to a multiplicatve
constant. When L = 1, the algorithm coincides with the one described by Fredriksson and
Grabowski [6], and already analysed in detail in [2] for the MPMP. When we have a single
word of length m, and q has the maximal possible value q = m− k, the algorithm coincides
with the one used by Chang and Marr [5] for their proof of complexity of the APMP. As
we will see in Section 2.5, choosing the optimal values of q and L for a given dictionary D
(when the words are of different length) is not a trivial task.

Call the interval ξbqξbq+1 · · · ξbq+L−1 of the text ξ the b-th block of text. The text is thus
decomposed in a list of blocks of length L, and of intervals between the blocks, of length
q − L. To every possible full alignment α of the word w to the text, are associated two
integers: c(α) is the number of blocks which are fully contained in the alignment, and b(α) is
the index of the rightmost of these blocks. Furthermore, we define c(w) as the minimum of
c(α) among the possible alignments involving w (indeed, it is either c(α) = c(w) for all α, or
c(α) ∈ {c(w), c(w) + 1} for all α, and, of course, at fixed q and L, c(w) only depends on the
length |w| of the word).
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Our algorithm accesses the text in three steps, namely, for every block index b =
0, 1, . . . , dn/qe − 1:

We read all the characters ξi of the text, for bq 6 i < bq + L, that is we read the b-th
block;
We consider the possible c-block partial alignments α (with c = c(α)) such that b(α) = b,
and associated to the intervals of text read so far. If any of these alignments is not
excluded or determined positively, we read also the characters ξi for i = bq− 1, bq− 2, . . .,
one by one, in this order, up to when all partial alignments are either excluded, or reach
ε = 0. For a given instance of the problem, call EL(b) (left-excess at block b) the set of
positions of further characters that we need to access by this second step (with indices
shifted so that the block starts at 1), and eL(b) = |EL(b)|.
If at the previous step we still have partial alignments which are not excluded, we read
also the characters at positions i = bq + L, bq + L+ 1, . . ., in this order, up to when all
partial alignments are either excluded, or completed to a full alignment. Similarly to
above, introduce ER(b) and eR(b) = |ER(b)| (right-excess at block b).

An example with c(α) = 2 is in Figure 2. Note that, at all steps, the pattern of the accessed
part of the text consists of some blocks of length L and spacing q, plus one rightmost block
with length L′ ≥ L and spacing q′ 6 q. A typical situation within the second step is as
follows (here c = 5, L = 3, q = 8, L′ = 12 and q′ = 7):

�� �� �� �� �� �� �� �� �� ���� ��L L L L′
q q q′

Call E(b) = EL(b) ∪ ER(b), and e(b) = eL(b) + eR(b). Call Ψexact
h the average over random

texts of the indicator function for the event that e(b) ≥ h. Clearly, the average complexity
rate of our algorithm is bounded by the expression

Φalg(D) 6 L+ E(e(b))
q

=
L+

∑
h≥1 Ψexact

h

q
,

where the average is taken over random texts, at fixed dictionary. Note that, because of our
choice of range for q and L, c(α) ≥ 1 for all α, and c(|w|) ≥ 1 for all w.

Let α be a full alignment associated to the block b. Call E [α] the set of extra positions of
the text (besides the blocks) that we need to access in order to determine the alignment α.
Then clearly E(b) =

⋃
α E [α].

2.3 Proof strategy for the upper bound
Our proof strategy is to prove that there exists a choice of parameters L and q, with the
properties that q = Θ(mmin), L/q = Θ(φ(r(D))), and E(e(b)) = Θ(1). This last condition
is equivalent to the requirement that Ψexact

h is a summable series, and we will see that
indeed the first can be bounded by a geometric series, and the second is rather small. Up to
calculating the pertinent multiplicative constants, such a pattern would imply the functional
form of the complexity anticipated in Section 1.2.

The idea is that the exact calculation of E(e(b)) or of Ψexact
h , even at q and L fixed (which

is easier than optimising w.r.t. these parameters), is rather difficult, but we can produce a
simpler upper bound by:

For alignments α with c(α) > 1, neglect the information coming from the e(b′) extra
characters that we have accessed at blocks b′ < b. This allows to separate the analysis on
the different blocks of text.
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Naïvely, for different (full) alignments α, we could perform a union bound, that is,
e(b) = |E(b)| = |

⋃
α E [α]| 6

∑
α |E [α]|, which thus separates the analysis over the

different alignments. We will make an improved version of this bound, namely we use this
bound, not with full alignments, but rather with “classes of equivalent partial alignments”.

As we anticipated, the crucial point is that we count partial alignments instead of full
alignments. A further slight improvement of the bound comes from considering these ‘classes
of equivalent partial alignments’, instead of just the partial alignments. These two facts are
motivated by the same argument, that we now elucidate.

Consider the two following notions: (1) Each set Ah(w) of partial alignments is partitioned
into classes I. (2) There is a subset Āh(w) ⊆ Ah(w) of alignments, that we shall call basic
alignments. Now, suppose that the two following properties hold: (i) I ∩ Āh(w) 6= ∅
for all classes I of Ah(w). (ii) For each α ∈ I, there exists a ᾱ ∈ I ∩ Āh(w), such that
E(α) ⊆ E(ᾱ). In this case it is easily estalished that the bound above can be improved into
e(b) = |E(b)| = |

⋃
α E [α]| 6

∑
ᾱ |E [ᾱ]|, where the sum runs only on basic partial alignments.

Thus, calling Ψh :=
∑
w∈D

∑
α∈Āh(w) P(|E [ᾱ]| ≥ h), we have Ψh ≥ Ψexact

h .
We propose the following definition of basic alignment. Let α be in Ah(w). In the string

u, suppose that we write Ca instead of C, whenever the well-aligned character is a, and
Da when the deleted character is a (this is clearly just a bijective decoration of u). For
α ∈ Āh(w), we require that there are no occurrences of CaIa as factors of u (as these are
equivalent to IaCa), of CaDa (as these are equivalent to DaCa) and of IaDb or DbIa (as
these are equivalent to Ca or Sa, depending if a = b or not). If α can be obtained from α′ by
a sequence of these rewriting rules, then α and α′ are in the same class I.

It is easy to see that this definition of basic alignment and classes has the defining
properties above.

2.4 Evaluation of an upper bound at q and L fixed
Let us call pc,h,ε′(w) the probability that, for a given word w and parameter ε′, there exists
an alignment α ∈ Ah(w), to a text consisting of c− 1 blocks of length L and one block of
length L+ h, which is visited by the algorithm (that is, it makes at most k errors), that is,
in particular,

Ψh 6
q−1∑
ε′=0

pc,h,ε′(w) . (6)

We have the important fact

I Proposition 3.

pc,h,ε′(w) 6 βs−(cL+h)BcL+h+c−1,k (7)

for all ε′, where β = (2s−1)L+k
(2s−1)L−k and BL,k = (2s− 1)k

(
L+k
k

)
.

The proof of this proposition is slightly complicated, and is presented in Appendix A. Note
however that for the special case c = 1, and with exactly k errors (instead of at most k errors),
the bound s−(L+h)(2s)k

(
L+k
k

)
can be established trivially. Also note that the bound does

not depend on ε′, and, in particular, it only depends on h = |EL|+ |ER| for the alignments α
at given w and ε′, and not separately on the two summands.

We are now ready to evaluate the expressions for the upper bound on the quantity Ψh

in (6), in light of (7). Call Rc =
∑
m : c(m)=c rm =

∑q(c+1)+L−2
m=qc+L−1 rm, and pc,h as q times the

RHS of (7) (that is, an upper bound to
∑q−1
ε′=0 pc,h,ε′(w)). We have the bound∑

h

Ψh 6
∑
c

Rc
∑
h

pc,h =
∑
c

Rc
∑
h

β q s−(cL+h)BcL+h+c−1,k . (8)



F. Bassino, T. Rakotoarimalala, and A. Sportiello 3:9

Recalling that∑
h≥0

s−h
(
a+ k + h

k

)
6

1
1− 1

s
a+k+1
a+1

(
a+ k

k

)
,

(and that q < mmin), substituting in (8) gives

Φalg(D) 6 1
q

(
L+ βq

∑
c

Rc
1

1− 1
s
cL+k+c
cL+c

s−cL
(
cL+ c− 1 + k

k

)
(2s− 1)k

)
6

1
q

(
L+ βmmin(2s− 1)k

1− 1
s
L+k
L

∑
c

Rc s
−cL
(
c(L+ 1) + k

k

))
. (9)

We want to prove that

Φalg(D) 6 C1k + C ′1
mmin

+ C2 max
m

ln(smrm)
m

, (10)

with suitable constants C1, C ′1 and C2 (it will turn out at the end that we can set C ′1 = C1
and C1, C2 to be as in Theorem 2, but at this point it is convenient to let them be three
separate variables). This would prove the upper bound part of Theorem 2.

Note that, if k/mmin ≥ 1/C1, the upper bound expression (10) is larger than the trivial
bound Φalg(D) 6 1, and there is nothing to prove. So we can assume that k/mmin < 1/C1.

2.5 Optimisation of q and L

We now have to analyse the expression (9), in order to understand which values of q and L
make the bound smaller. The sum over c is the most complicated term. We simplify it by
using the fact that, for all ξ ∈ R+, ln

(
a+k
k

)
6 k ln(1 + ξ) + a ln(1 + ξ−1), which gives

T := mmin(2s− 1)k
∑
c

Rc s
−cL
(
c(L+ 1) + k

k

)
6
∑
c

1
c2

exp
[
− c
(
LA− 1

c
(ln(Rcmmin) + k ln((1 + ξ)(2s− 1)))− ln c2

c
− ln(1 + ξ−1)

)]
=
∑
c

1
c2

exp
[
−c(LA− φ′(c)− ln(1 + ξ−1))

]
, (11)

where A = ln(sξ/(1 + ξ)), A′ = ln((1 + ξ)(2s− 1)) and

φ′(c) = ln(c2Rcmmin) + kA′

c
. (12)

Ultimately, we want to choose L such that T is bounded by a constant, as its summands
over c are bounded by a convergent series. With this goal, let c∗ be the value maximising
the expression φ′(c), and φ∗ the value of the maximum. The sum above is then bounded by∑

c

1
c2

exp[−c(LA− φ∗ − ln(1 + ξ−1))] .

For any value of ξ such that A > 0 (that is, for ξ > (s− 1)−1), there exists a positive smallest
value of L such that the exponent in the expression above is negative. So we set

L∗ =
⌈
φ∗ + ln(1 + ξ−1)

A

⌉
,
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3:10 The Complexity of Approximate Multiple Pattern Matching

(as the choice of ξ is free, we can tune it at the end so that the ratio is an integer), and
recognise that the RHS of equation (11), specialised to L = L∗, is bounded by

∑
c

1
c2 = π2/6.

Note that

φ∗ ≥ φ′(1) ≥ kA′

so that

L∗

k
≥ A′

A
= ln((1 + ξ)(2s− 1))

ln(s ξ/(1 + ξ)) ,

which implies that we can set β = 2s−1+A/A′
2s−1−A/A′ , and

1
1− 1

s
L+k
L

6
1

1− 1
s (1 +A/A′)

= 1
1− 1

s
ln(sξ(2s−1))

ln((1+ξ)(2s−1))

.

Now, let us choose q =
⌊
mmin−k

2
⌋
, which coincides with the choice of the analogous parameter

in Chang and Marr [5]. This is the largest possible value such that c(w) ≥ 1 for all w ∈ D.
With this choice,

1
q
6

2
mmin

C1

C1 − 1 .

Collecting the various factors calculated above, we get that the expression (9) is bounded by

Φalg(D) 6 2
mmin

C1

C1 − 1

(
L∗ +

β π
2

6
1− 1

s (1 +A/A′)

)
.

We are left with two tasks: choosing suitable values for ξ and C1 (both of order 1), and
recognising that the expression for L∗ (and for φ∗) can be related to the quantity φ(r) in
(2). Let us start from the latter. Note that, as for any m ≥ mmin

m− k
q
− 2 6 c(m) 6 m

q

we can write2 m 6 mminc(m) 6 s2m, which gives

max
c

1
c

ln(c2mminRc) 6 max
m

mmin

m
ln(s2m2rm) 6 2mminφ(r) .

As, of course maxc(X(c) + Y (c)) 6 maxcX(c) + maxc Y (c), we have in particular that

φ∗ 6 2mminφ(r) + kA′ L∗ 6
2mminφ(r) + kA′ + ln(1 + ξ−1)

A
,

which thus implies

Φalg(D) 6 2
mmin

C1

C1 − 1

(
2mmin

A
φ(r) + k

A′

A
+

β π
2

6
1− 1

s (1 +A/A′)
+ ln(1 + ξ−1)

A

)
= 2C1

C1 − 1

[
A′

A

k

mmin
+
(

β π
2

6
1− 1

s (1 + A
A′ )

+ ln(1 + ξ−1)
A

)
1

mmin
+ 2
A
φ(r)

]
.

2 Because s > 2, and we anticipate that, under our choice, C1 ≥ 5, thus

m 6 2(m− k − q) 6 mmin

(
m− k
q
− 2
)
6 mminc(m) 6 mmin

m

q
6 2
(

C1

C1 − 1

)
m 6 s2m.
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Figure 3 Plot of the constant C1(s), C′
1(s) and C2(s), as given by the expressions in (13)

(respectively, in blue, green and red). The asymptotic values are 5, 5π2/12 and 0 respectively.

Let us choose C1 = 2A′/A+ 1. The expression above simplifies into

Φalg(D) 6 C1k

mmin
+ 2A′ +A

AA′

[(
Aβ π

2

6
1− 1

s (1 + A
A′ )

+ ln(1 + ξ−1)
)

1
mmin

+ 2φ(r)
]
,

in particular, this justifies the notation C1, which in the introduction was chosen to denote
the coefficient in front of the k

mmin
summand. Now we shall choose the optimal value of ξ.

The dependence on ξ is mild, provided that we are in the appropriate range ξ > 1/(s− 1).
The choice of ξ, in turns, determines the ratio between the lower and upper bound, which
has the functional form C ′1 + κsC2 (with notations as in the theorem). A choice which is
a good trade-off among the three summands in this expression, and for which the analytic
expression is relatively simple, is to take ξ = 2s. Under this choice we have

C1 = 1 + 2 ln(4s2 − 1)
ln(2s2/(2s+ 1)) , C2 = 4

ln(2s2/(2s+ 1)) + 2
ln(4s2 − 1) ,

C ′1 = C2

2

[
ln 2s+ 1

2s + βπ2

6
s ln(2s2/(2s+ 1)) ln(4s2 − 1)

(s− 1) ln(4s2 − 1)− ln(2s2/(2s+ 1))

]
,

or, in a more compact way, calling a = A|ξ=2s = ln(2s2/(2s + 1)) and a′ = A′|ξ=2s =
ln(4s2 − 1), and substituting back the value of β,

C1 = a+ 2a′

a
, C2 = a+ 2a′

a

2
a′
, (13a)

C ′1 = a+ 2a′

a

(
ln s− a
a′

+ π2

6
(2s− 1)a′ + a

(2s− 1)a′ − a
as

(s− 1)a′ − a

)
. (13b)

The behaviour in s of these constants is depicted in Figure 3.
It can be verified that, with our choice of ξ, C ′1 < C1 for all s ≥ 2.3 we can replace C ′1 by

C1 in the functional form (10) for the bound on Φalg(D), and thus obtain the statement of
Theorem 2. This concludes our proof.

3 One way to see this is by proving that both C1(s) and C′
1(s) decrease monotonically as functions on

the real interval [2,+∞[, that lims→∞ C1(s) = 5, that C1(s) > C′
1(s) for s ∈ {2, 3, . . . , 7}, and that

C′
1(8) < 5.
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A Proof of Proposition 3

In this section we evaluate an upper bound to pc,h,ε′ , which is the probability that, for a
given word w with c(|w|) = c, the disclosed text composed of c− 1 intervals of size L and
one interval of size L+ h corresponds to at least one basic alignment α by making no more
than k errors. The statement of the result, equation (14) below, is given in Proposition 3.

Let us introduce the recurring quantity

BL,k := (2s− 1)k
(
L+ k

k

)
.

First, let us analyse the case in which we have a single block, and exactly k errors. For w a
word of length m, it is clear that the result depends only on the m− ε′ left-most characters
of the word, not on the ε′ right-most ones, so we can assume without loss of generality that
ε′ = 0. Call HL,k(m) the number of different words of length L obtained by transforming
the suffixes of w and making exactly k errors. We have

I Proposition A.1. For all L ≥ k ≥ 1, HL,k 6 BL,k.

Proof. Note that the analogous statement with 2s− 1 replaced by 2s in BL,k is trivial, as we
have exactly 2s types of errors (one deletion, s insertions and s− 1 substitutions), and the
counting of their possible positions in the string u is a function of the length of the string,
bounded from above by the worst case, associated to all insertion errors.

We can gain the factor 2s− 1 instead of 2s by restricting to basic alignments, but this
requires a finer analysis involving generating functions. Let us call f(u, y, z) the generating
function such that [uayLzk]f(u, y, z) is the number of basic alignments of length L obtained
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by transforming a word of length a and making exactly k errors. Calculating f(u, y, z) exactly
is a difficult task, and the result would depend on w as a word, not only on m = |w|, but we
will calculate a simpler upper bound fUB(u, y, z), which in particular only depends on m. In
this context, a generating-function upper bound is an upper bound for partial sums, that
is g � f if

∑k
h=0[uayLzh](g(u, y, z)− f(u, y, z)) ≥ 0 for all L and a. Let us construct fUB

by starting from f0(u, y, z) := uy
1−uy , which is the generating function f specialised to z = 0,

and let us introduce the various types of errors one at the time.
The first operation corresponds to allow for insertion errors. The restriction to basic

alignments, however, brings to a subtlety. For example, starting with a word w = abcd, in
order to get the alignment aaabcd we can proceed in several ways: aaabcd or aaabcd or by
aaabcd (bold letters correspond to insertions). Under the notion of basic alignment we avoid
to overcount these manifestly equivalent alignments, as of these expressions we would only
keep the latter, aaabcd, that is, at the left of a letter a we can only insert letters different
from a. On the other hand, at the right end of the word one can insert strings consisting of
any character of the alphabet.

Calling fi the generating function in which insertion errors are allowed, we thus get

fi(u, y, z) = 1
1− syz f(u, y, z)|

uy→uy
(

1
1−(s−1)z

) = uy

(1− syz)(1− uy − (s− 1)yz) .

We now introduce deletion errors, which, consistently, we allow only on the characters of
the initial string (not on the ones which have just been insterted). Thus, any given original
character can be either left as is, or deleted. This gives the generating function fi,d, with

fi,d(u, y, z) = fi(u, y, z)|uy→uy+uz = uz + uy

(1− syz)(1− uy − uz − (s− 1)yz) .

Finally, for substitution errors, again we can either substitute any initial character with one
of the s− 1 other characters of the alphabet, or leave it unchanged, which brings to fi,d,s,
with

fi,d,s = fi,d(u, y, z)|uy→uy+(s−1)uyz = u(syz − yz + y + z)
(1− syz)(1− uz − (s− 1)(u+ 1)yz) .

Note that, by this procedure, we have already produced an upper bound, as fi,d,s � f (in
the sense defined above). Note also that it is not fi,d,s = f , because, for example, we have
overcounted the equivalent cases in which in a word w = · · · aa · · · we have deleted the first
or the second character.

If the word w is shorter than L+ k, we may miss some alignments because they do not
fit in the text interval. As we are evaluating an upper bound, we can restrict to the case in
which w is long enough for this not to happen, and thus sum over all suffixes by just setting
u = 1, and conclude that HL,k 6 [yLzk]f ′(1, y, z). Thus, in order to conclude, we must show
that [yLzk]f ′(1, y, z) 6 BL,k. Let us call

FL,k = [yLzk] 1
(syz − 1)(2syz − 2yz + y + z − 1) .

We can rewrite the inequality above as HL,k 6 FL−1,k +FL,k−1 + (s− 1)FL−1,k−1, and thus,
if we can prove that FL,k 6 BL,k, for all pairs of integers L > k, we could conclude in light
of the fact that

HL,k 6 BL−1,k +BL,k−1 + (s− 1)BL−1,k−1 = (2s− 1)k
(
L+ k

k

)
−RL,k ,

where RL,k = (2s− 1)k−1
(

2(s− 1)k−1
L

(
L+k−2
k−1

))
is indeed easily checked to be non-negative

for all L > k > 1.
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L1︷ ︸︸ ︷
q1+L1︷ ︸︸ ︷

L2︷ ︸︸ ︷
q2+L2︷ ︸︸ ︷

︸ ︷︷ ︸
ε

Lc︷ ︸︸ ︷

︸ ︷︷ ︸
ε′

q1+δ1︷ ︸︸ ︷ q2+δ2︷ ︸︸ ︷

bq

u1 u2 u3

Figure 4 Example of multi-interval alignment analysed for the estimate of pL1,...,Lc;k.

So, to finish the proof, let us show that FL,k 6 BL,k. First,

FL,k = [yLzk]
(

1
1− syz + 2syz − 2yz + y + z

1− 2syz + 2yz − y − z

)
= δL,ks

k + FL−1,k + FL,k−1 + 2(s− 1)FL−1,k−1 .

Since L > k > 1, we have RL,k > δL,ks
k for s > 2, and BL,k > FL,k > HL,k.

To conclude, we just check the boundary conditions in the recursion above for FL,k
and BL,k, which again are in agreement with the inequality. Indeed we have, for (L, k) ∈
{(0, 0), (0, 1), (1, 0)}, F0,0 = B0,0 = 1, B0,1 = 2s − 1 ≥ 1 = F0,1 and B1,0 = 4s − 2 ≥ 3s =
F1,0. J

Now we want to deal with the more general case, in which we have more than one block, and
we sum over the number of errors up to k. We will prove a more general statement, in which
we have c blocks of lengths L1, . . . , Lc, separated by gaps of lengths q1, . . . , qc−1, which in
particular is so general to allow us to treat in one stroke the case in which we add characters
at the left or at the right of the b-th algorithm block.

Similarly to the argument above, in order to produce an upper bound we can set without
loss of generality that ε′ = 0, all the qi’s are larger than k and that m is larger than∑
Li +

∑
qi + k, as any variant of this would give no more alignments. So, we will call

pL1,...,Lc;k the corresponding quantity, in which the dependence from the qi’s and m has
been dropped.

For multi-block partial alignments, we have parameters δ1, . . . , δc−1 for the offset among
the different consecutive blocks of the partial alignment, and, if we have an offset δi in the
alignment of two blocks, we have to perform at least |δi| deletions or insertions errors when
completing the partial alignment to a full one (cf. figure 4).

Calling L̄ =
∑c
i=1 Li, this leads to the following sum

pL1,...,Lc;k 6 s−L̄
k∑
t=0

t∑
∆=0

∑
k1,k2,...,kc∈N

k1+k2+...+kc=t−∆

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

BL1,k1BL2,k2 . . . BLc,kc
.

From the Vandermonde convolution formula,
k∑
i=0

(
l1+i
i

)(
l2+k−i
k−i

)
=
(
l1+l2+k+1

k

)
, which implies∑

hBL1,hBL2,k−h = BL1+L2+1,k, we can simplify the expression above into

pL1,...,Lc;k 6 s−L̄
k∑
t=0

t∑
∆=0

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

BL̄+c−1,t−∆ .
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The sum over the δi’s gives∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

1 = [z∆]
(

1 + z

1− z

)c−1

that is, by recognising that BL,k−h 6 BL,k

(
k

(2s−1)L

)h
, we get

pL1,...,Lc;k 6 s−L̄BL̄+c−1,k

(
(1 + z)c−1

(1− z)c

)∣∣∣∣
z= k

(2s−1)(L̄+c−1)

.

This is all we shall say at this level of generality. Now note that, in our patterns, L̄+c−1 ≥ cL
(and k 6 L), so that, in this range of parameters,

pL1,...,Lc;k 6 s−L̄BL̄+c−1,k

(
(1 + z)c−1

(1− z)c

)∣∣∣∣
z= 1

(2s−1)c
k
L

6
(2s− 1) + k

L

(2s− 1)− k
L

s−L̄BL̄+c−1,k . (14)
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1 Introduction

A source is a way of producing random words from a given alphabet (see Definition 1). We
study two arithmetical sources, each of them being associated with a classical family of
partitions. These two families are defined through the mediant (a+ b)/(c+ d) of the two
fractions a/b and c/d. The first one, the Stern-Brocot source, is defined with the sequence
of all the mediants, whereas the second one, the Sturm source, only keeps mediants whose
denominator is “not too large”. Even though the probabilistic features of the two sources
appear to be quite different, they are both of zero Shannon entropy and their Renyi entropies
appear to be quite similar. In Information Theory contexts, the trie structure built on words
emitted by the source is a powerful tool for comparing words emitted by a source, and
the shape of the trie – notably the average length of a branch, called the depth – can be
viewed as a “measure” of the quality of the source. We then may expect that the trie depth
behaves in a different way for each source, and provides a tool which strongly differentiates
the two sources.

The probabilistic behaviour of the depth Dn of a trie built on n independent infinite
words emitted by simple sources (memoryless and Markov sources) has been largely studied
(see the book by Szpankowski [20] for a complete review in this case). In the context of “good”
dynamical sources (with an entropy E > 0) introduced in [23], the average-case analysis was
first developed in [5], and [11], then a distributional analysis that exhibits a limit Gaussian
law for Dn was performed in [4]. In all cases, for n→∞, the asymptotic mean value E[Dn]
is of logarithmic order and involves the entropy, with the estimate E[Dn] ∼ (1/E) logn. The
moments E[Dk

n] are proven to be of order Θ(logk n).
For sources of zero entropy, and to the best of our knowledge, the analysis of trie depth

has not yet been performed in a general context. We study here the two arithmetical sources,
associated with classical partitions, that have been previously presented. We obtain two
results. First, for the two sources, all the moments of order k ≥ 2 of the trie depth Dn

behave in a similar way, as they are all infinite. However, the mean value E[Dn] exhibits a
strong difference between the two sources, as E[Dn] is of order Θ(log2 n) for the Stern-Brocot
source, and of order Θ(

√
n) for the Sturm source.

Plan of the paper. Section 2 recalls the general context of sources, and focuses on the
Analytic Combinatorics point of view. It introduces the two sources, and provides expressions
for their Dirichlet generating functions (DGF’s). Section 3 is devoted to tries, and focuses on
the trie depth. It also presents the main analytical tool, the Rice formula, whose application
is based on the tameness of the DGF’s. Section 4 proves the tameness of DGF’s in the two
cases, and states the main result.

2 Sources, partitions, Dirichlet generating functions

We first recall two definitions of sources, and introduce the generating functions. We explain
their roles in the analysis, notably for good sources. We then present the two sources of
interest, with their DGF, and explain why the various notions of entropies are essentially the
same for the two sources.
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2.1 Sources and partitions
We first give a definition of a source, as it appears in Information Theory contexts.

I Definition 1. A probabilistic source S over the finite (ordered) alphabet Σ := [0..r − 1] is
a sequence Y := (Y0, Y1, . . . , Yi, . . .) of random variables Yi with values in Σ.

The value of the random variable Yi is the symbol emitted by the source at the discrete
time t = i, and the value of the sequence Y ∈ ΣN is the (infinite) word emitted by the source.

Consider a finite word w ∈ Σ?, and denote by pw the probability that Y begins with
the prefix w. The set (pw)w∈Σ? is called the set of fundamental probabilities, and the set
(pw)w∈Σk is the set of fundamental probabilities of depth k. We moreover assume

πk := max{pw | w ∈ Σk} tends to 0 as k →∞ .

With Kolmogorov’s extension theorem, the probabilistic source defines a probability P on
the space ΣN which is completely specified by the set (pw)w∈Σk of fundamental probabilities.

There are particular instances of sources that are defined via a family of (labelled)
partitions. We first recall this notion.

I Definition 2. A family (Pk)k≥0 of labelled partitions associated with the alphabet Σ :=
[0..r − 1] is built in a recursive way as follows.

(i) One begins with P0 = {[0, 1]} and we let Iε := [0, 1]
(ii) For each k ≥ 0, the partition Pk+1 is a refinement of the partition Pk.

(a) Pk+1 arises from Pk by dividing each (closed) interval of Pk into r (closed) intervals
using r − 1 points of the interval.

(b) Each interval of Pk is a closed interval labelled as Iw with w ∈ Σk and gives rise to r
closed intervals that are labelled from the left to the right as Iw·a with a ∈ Σ.

(c) The diameter δ(Pk) := max{|Iw| | w ∈ Σk} tends to 0 for k →∞.

0 1Iε

I0 I1

I00 I01 I10 I11

I000 I001 I010 I011 I100I101 I110 I111

u t

M
(u)

=
001

.
.
.

M
(t)

=
011

.
.
.

Figure 1 Example of a source defined via a family of partitions.

One now associates with this family (Pk)k≥0 of partitions a mapping M : [0, 1] → ΣN

that is defined outside the set D that gathers all the end-points of the intervals, as follows.
If u 6∈ D, there exists, indeed, for each k ≥ 0, a unique interval of Pk which contains

(in its interior) the real u. Such an interval is labelled with a prefix w ∈ Σk. This prefix
depends on the depth k and the real u, and is denoted as wk(u). As the partition Pk+1
is a refinement of Pk, and the diameter δ(Pk) → 0, this sequence wk(u) of finite prefixes
converges to a unique infinite word over the alphabet Σ that defines the value at u of the
mapping M . (See Fig. 1).
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4:4 Two Arithmetical Sources and Their Associated Tries

In this way, the interval Iw gathers (up to a denumerable set) the reals u for which the
word M(u) begins with the prefix w. This is the fundamental interval of the prefix w, and
its length is exactly the probability that M(u) begins with w. Then, the mapping M defines
a probabilistic source, whose fundamental probabilities are pw := |Iw|.

The paper deals with two instances of such a framework, over the binary alphabet
Σ := {0, 1}. In both cases, the end-points of the partition are rational numbers, and the
point which is added in the interval [a/c, b/d] is the mediant (a + b)/(c + d). It is always
added in the first case, and gives rise to the Stern-Brocot partition. It is only added in the
second case when its denominator is not too large: this partition is then defined via the Farey
sequence, and, labelled in a convenient way, gives rise to what we call the Sturm partition.

2.2 Generating functions
Following the analytic combinatorics principles described in [10], and the main ideas in-
troduced in [23], we associate, with a complex variable s, and a source, various Dirichlet
generating functions (DGF’s); first, Λk(s) is relative to a given depth k ≥ 0; second, Λ(s) is
associated with all possible depths; third, Λ(s, v) is the bivariate generating function where
the variable v “marks” the depth:

Λk(s) :=
∑
w∈Σk

psw , Λ(s) :=
∑
w∈Σ?

psw =
∑
k≥0

Λk(s) , Λ(s, v) :=
∑
k≥0

vkΛk(s) . (1)

The bivariate DGF Λ(s, v) proves very useful, due to the identity1 Λk(s) = [vk]Λ(s, v) which
possibly leads to use of singularity analysis.

All the main objects of a source that appear in a general Information Theory context –
entropies, coincidence, trie parameters – are expressed with these series, as it is shown in
[23] and [5], and now recalled: Entropies are the first classical parameters that describe the
probabilistic properties of a source. They are defined with the DGF Λk(s).

[Shannon entropy] E = lim
k→∞

(1/k) Ek, Ek :=
∑
w∈Σk

pw| log pw| = −Λ′k(1) . (2)

[Renyi entropies of depth k and exponent σ > 1] 1
1− σ log Λk(σ) . (3)

The coincidence between n words emitted by the source is defined as the length of
their largest common prefix. Then, when the n words are independently drawn from the
source, the coincidence becomes a random variable Cn defined on [ΣN]n whose distribution
Pr[Cn ≥ k + 1] exactly coincides with Λk(n) and expectation E[Cn] coincides with Λ(n).

The present paper mainly deals with another characteristic of the source, the trie-depth,
denoted by Dn, which is expressed with the DGF Λ(s), as recalled in (8).

2.3 A detour: review on the results for good sources
As it will be proven in Section 2.6, the two sources of interest are of zero entropy. They
thus provide instances of sources that do not have the same behaviour as “good” sources,
for instance memoryless sources or (ergodic) Markov Chains. Dynamical systems associated
with expanding surjective maps of the interval provide other instances of “good” sources.

1 As usual, the notation [vk]A(v) denotes the coefficient of vk in A(v).
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We then recall (in a quite informal way) the main properties of the DGF’s in the case
of “good” sources. The DGF Λ(s) is tame at s = 1 of order 1 (in the sense of Definition 9).
Furthermore, there exists a basic function s 7→ λ(s), attached to each source, that is analytic
on a neighborhood of the real axis <s > d (for some d < 1, possibly equal to −∞), and satisfies
λ(1) = 1. This mysterious function is just equal to the sum

∑r−1
i=0 p

s
i in the memoryless case.

In the Markov chain case, this is the dominant eigenvalue of the matrix Ps := (psi|j) that
extends the transition matrix P1. Finally, in the case of ergodic dynamical sources, this is
the dominant eigenvalue of the secant transfer operator Gs of the system.
The DGF’s Λ(s, v) and Λ(s) essentially behave as quasi-inverses, for s close to the real axis,

Λ(s, v) ≈ (1− vλ(s))−1, Λ(s) ∼s→1 (1− λ(s))−1 ∼s→1
−1
λ′(1)

1
s− 1 .

With properties of the bivariate DGF Λ(s, v) and singularity analysis, the function Λk(s) is
a k-th quasi-power for s close to the real axis, and

Λk(s) = [vk]Λ(s, v) ∼ a(s)λ(s)k (k →∞), in particular E = −λ′(1) .

These results, valid for “good” sources, will be used as comparison references in the rest
of the paper. We now focus on the analysis of the two sources presented in the end of the
Section 2.1 and obtain nice expressions for the DGF’s described in Propositions 3 and 4.

2.4 The Stern-Brocot source
The Stern-Brocot partition of depth k, denoted as Bk, is defined recursively as follows:
(i) One begins with B0 = {[0/1, 1/1]};
(ii) For each k ≥ 1, Bk arises from Bk−1
by dividing each interval [a/c, b/d] of Bk−1 by its mediant (a+ b)/(c+ d).

We now recall the relation between this family of partitions and the Farey map

T : [0, 1]→ [0, 1], T (x) = x/(1−x) for x ∈ [0, 1/2] , T (x) = (1−x)/x for x ∈ [1/2, 1] .

The set of the inverse branches of T is H := {a, b} with

a : [0, 1]→ [0, 1/2], a(x) = x/(1 + x) ; b : [0, 1]→ [1/2, 1], b(x) = 1/(1 + x) ;

Then, the set Hk := {a, b}k of inverse branches of the iterate T k generates the partition Bk,
and the set Bk gathers the fundamental intervals of depth k of the Farey map,

Bk = {[h(0), h(1)] | h ∈ Hk}.
The secant transfer operator Hs of the Farey map, defined as the sum Hs = As+Bs, with

As[G](x, y) :=
∣∣∣∣a(x)− a(y)

x− y

∣∣∣∣s G(a(x), a(y)),

Bs[G](x, y) :=
∣∣∣∣b(x)− b(y)

x− y

∣∣∣∣s G(b(x), b(y)) ,

provides, via its iterates, the following expressions for the DGF’s of the Stern-Brocot source,

Λk(s) = Hk
s [1](0, 1) for k ≥ 0, Λ(s, v) = (I − vHs)−1[1](0, 1) .

The decomposition H? = {a?b}? · a? leads to the analogous decomposition for the
quasi-inverse (I − vHs)−1, namely (I − vHs)−1 = (I − vAs)−1(I − vBs(I − vAs)−1)−1 .
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4:6 Two Arithmetical Sources and Their Associated Tries

For any m ≥ 1, the LFT 2 am−1 ◦ b coincides with the LFT gm : x 7→ 1/(m+ x) which is
an inverse branch of the Gauss map. Then, the operator vBs ◦ (I − vAs)−1 coincides with a
weighted version Gs,v of the secant transfer operator Gs of the Euclid DS, namely,

Gs,v[F ](x, y) :=
∑
m≥1

vm
∣∣∣∣( 1
m+ x

)(
1

m+ y

)∣∣∣∣s F ( 1
m+ x

,
1

m+ y

)
,

and coincides at v = 1 with the secant transfer operator Gs. We have proven:

I Proposition 3. The DGF’s of the Stern-Brocot source satisfy

Λ(s, v) = (I − vHs)−1[1](0, 1) = (I − vAs)−1(I −Gs,v)−1[1](0, 1) ;
Λ(s) = (I −Hs)−1[1](0, 1) = (I −As)−1(I −Gs)−1[1](0, 1) .

2.5 The Sturm source
We consider the source, called the Sturm source, which emits the Sturm characteristic words.
More precisely, for each α ∈ [0, 1], it emits the characteristic Sturm word S(α), whose
definition is now recalled. Consider α of the interval [0, 1], the two intervals I0(α) = [1−α, 1[
and I1(α) = [0, 1 − α[ it defines, together with the Kronecker-Weyl sequence n 7→ {nα}
(where {x} denotes the fractional part of x). By definition, the n-th symbol of the word S(α)
equals j ∈ {0, 1} if and only if {(n+ 1)α} belongs to Ij(α).

The partition Sk associated with the Sturm source of order k is defined by its end-points,
that are the elements of the Farey sequence of depth k + 1,

Fk+1 := {ac | a, c ≥ 1, gcd(a, c) = 1, c ≤ k + 1}.

The partition Sk is built from Sk−1 in a similar recursive way as the Stern-Brocot partition
Bk is built from Bk−1:
(i) One begins with S0 = B0 = {[0/1, 1/1]}
(ii) For each k ≥ 1, Sk arises from Sk−1
by dividing each interval [a/c, b/d] of Sk−1 by its mediant (a+ b)/(c+ d)
provided the denominator c+ d be at most k + 1.

Due to the previous condition, the partition Sk is thus a pruning of the partition Bk, and
satisfies two classical properties
(P1) For any k, for any interval [a/c, b/d] of Sk, one has ad− bc = −1.
(P2) The set Ck which gathers the pairs (c, d) which appear as denominators of the intervals

[a/c, b/d] ∈ Sk−1 is equal to

Ck := {(c, d) | max(c, d) ≤ k < c+ d, gcd(c, d) = 1} .

Moreover, each pair (c, d) appears at most once. Then, the partition Sk has a polynomial
number of intervals [of order O(k2)] whereas the partition Bk has exactly 2k intervals.

We now describe how to encode the partition Sk with the prefixes of length k of char-
acteristic Sturmian words. The prefix of length k of the word S(α), denoted as [S(α)]k,
satisfies two properties, described in [2, Proposition 3]:
(i) The two words 0 · [S(α)]k and 1 · [S(α)]k are both factors of the infinite word S(α);
(ii) For an interval [a/c, b/d] ∈ Sk with a/c 6= 0 and b/d 6= 1, one has the characterization

∀α ∈]a/c, b/d[, [S(α)]k is a palindrome⇐⇒ c+ d = k + 2 .
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S0 : (0) ε (1)
S1 : (0) 0 (1/2) 1 (1)
S2 : (0) 00 (1/3) 01 (1/2) 10 (2/3) 11 (1)
S3 : (0) 000 (1/4) 001 (1/3) 010 (1/2) 101 (2/3) 110 (3/4) 111 (1)

Figure 2 The coding of the partition Sk for k ≤ 3.

This property is used as follows for the coding of the partition Sk: We begin with the
coding of S0 as the empty word ε. Then, there are two cases: when the mediant can be
added, the interval is subdivided and the coding of the two sub-intervals is made in the usual
way, in the lexicographic order. When the mediant cannot be added, the interval is not
subdivided, and its new coding is obtained in a unique way with a palindromic completion.
(See Fig. 2)

We now study the generating functions.

I Proposition 4. The generating series of the Sturm source can be expressed with double
zeta functions ζ(a, b) together with the usual zeta function ζ(a) in the form

Λ(s) = 1 + 2ζ(s, s− 1)
ζ(2s− 1) with ζ(a) :=

∑
c≥1

1
ca
, ζ(a, b) :=

∑
c≥1

1
cb

∑
d|d>c

1
da
. (4)

Proof. With Property (P1), the length of an interval [a/c, b/d] ∈ Sk encoded by w, is equal
to pw = 1/(cd). With (P2), and the set Ck defined there, one obtains

Λk−1(s) =
∑

(c,d)∈Ck

(
1
cd

)s
, Λ(s) =

∑
(c,d)

gcd(c,d)=1

(
1
cd

)s∑
k≥0

[[(c, d) ∈ Ck]] ,

where [[·]] is Iverson’s bracket. Then,

Λ(s) =
∑
(c,d)

gcd(c,d)=1

(
1
cd

)s
[(c+ d)−max(c, d)] =

∑
(c,d)

gcd(c,d)=1

min(c, d)
(cd)s .

As the general term of the previous sum is homogeneous of weight 1− 2s, the two sums –
the sum relative to general pairs (c, d) and the sum relative to coprime pairs – are related.
The denominator ζ(2s− 1) appears, and, with the equality

∑
(c,d)

min(c, d)
csds

= ζ(2s− 1) + 2ζ(s, s− 1) ,

this yields the expression given in (4). J

The long version of the paper will provide an expression of the bivariate Sturm DGF
Λ(s, v) in terms of polylogarithms.

2 LFT = linear fractional transformation
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4:8 Two Arithmetical Sources and Their Associated Tries

2.6 Entropies
The Shannon entropy defined in (2) is the first parameter associated with a source.

I Proposition 5. The two sources are of zero Shannon entropy.

Proof. (a) This is clear for the Sturm source. Jensen’s inequality applied to the concave
map φ(t) = t| log t| relates Ek and the number Ak of (non empty) fundamental intervals of
depth k, via the inequality Ek ≤ logAk. One has indeed:

Ek
Ak

= 1
Ak

∑
w∈Σk

φ(pw) ≤ φ

 1
Ak

∑
w∈Σk

pw

 = φ

(
1
Ak

)
= logAk

Ak
, and thus Ek ≤ logAk .

Then a source for which Ak is polynomial has a zero entropy. This applies to the Sturm
source for which Ak = O(k2).

(b) This is also the case for the Stern-Brocot source. However, we do not find any direct
proof of this fact in the literature. This is why we provide two proofs in the annex. J

The Renyi entropies of depth k and exponent σ > 1, defined via Λk(σ) in (3), are already
studied in at least two papers: The first result, due to Moshchevitin and Zhigljavsky in [16]
describes the Stern-Brocot case. The second one, due to Hall [13] and Kanemitsu et al,
describes in [14] the Sturm case.

I Proposition 6. [16, 13, 14] As k →∞, the following asymptotic estimates hold for the
DGF’s Λk(σ),

[Stern-Brocot case, σ > 1] Λk(σ) = 2
kσ

ζ(2σ − 1)
ζ(2σ)

[
1 +O

(
log k

k(σ−1)/(2σ)

)]
; (5)

[Sturm case, σ ≥ 4] Λk(σ) = 2
kσ

ζ(σ − 1)
ζ(σ)

[
1 +O

(
1
k

)]
. (6)

The previous estimates for the two sources are then quite similar, with the same polynomial
behaviour in O(1/kσ) for k →∞. Even though the dominant constants are not the same,
they are however of the same spirit.

We then study another parameter of the source, the trie-depth, with the hope that it
may “differentiate” the two sources in a stronger way.

3 Tries built from words emitted by a source

The trie structure is an important data structure in algorithmics [12] that also plays a central
role in Theoretical Information Theory contexts. This is why it has already been deeply
analyzed, at least in the context of good sources. See [20] for analyses in the context of
simple sources and [5, 11, 4] for analyses in the context of dynamical sources.

3.1 Trie and its depth
A trie is a tree structure, used as a dictionary, which compares words emitted by a source S
via their prefixes. The trie T (x) is built on a finite sequence x of (infinite) words emitted
by the source S and is defined recursively by the following three rules which involve the
cardinality N(x) of the sequence x:
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(a) If N(x) = 0, then T (x) = ∅
(b) If N(x) = 1, with x = (x), then T (x) is a leaf labeled by x.
(c) If N(x) ≥ 2, then T (x) is formed with an internal node and r subtries equal to

T (x〈0〉), . . . , T (x〈r−1〉) ,

where x〈σ〉 denotes the sequence consisting of words of x which begin with symbol σ,
stripped of their initial symbol σ. If the set x〈σ〉 is non-empty, the edge which links the
subtrie T (x〈σ〉) to the internal node is labelled with the symbol σ.

x1 cacccaaac...
x2 aaacacbac...
x3 aaabcbbca...
x4 bacbaabcc...
x5 bcabbbbbc...
x6 bacaabbba ...
x7 ccbacbcbb... x

3

b

x
2

c

a

a

a

x
6

a

x
4

b

c

a
x

5
c

b
x

1

a

x
7

c

c

In this paper, we perform a probabilistic analysis of the shape of T (x). In our probabilistic
model, the sequence x is formed with words that are independently drawn from the source
S, and we are interested in the asymptotics when the cardinality n of x tends to ∞. Here,
we focus on a particular parameter of the trie, called the depth, and denoted by Dn: it is
defined as the depth Dn of a random branch, and it is now described.

Given a sequence x = (x1, . . . , xn), the trie T (x) has exactly n branches, and the length
(or the depth) of a branch is the number of the nodes it contains. For i ∈ [1..n], the length
of the i–th branch of the trie (corresponding to the word xi) is denoted by D(i)

n . Inside our
model, the depth Dn of a random branch satisfies

Pr[Dn ≥ k + 1] = 1
n

n∑
i=1

Pr[D(i)
n ≥ k + 1] . (7)

The parameter Dn will be simply called the trie depth. For a fixed source, this is a random
variable which depends on the set x of words emitted by the source, and the (well-known)
next proposition studies its moments. We remark that Assertion (iii) is less classical.

I Proposition 7. Consider a probabilistic source and a set of n infinite words independently
emitted by the source. Then, the depth Dn of the trie built on this set satisfies the following:
(i) The distribution of Dn involves the fundamental probabilities of the source,

Pr[Dn ≥ k+1] =
∑
|w|=k

pw[1−(1−pw)n−1] = 1
n

∑
|w|=k

n∑
`=2

(−1)`
(
n

`

)
` p`w for k ≥ 0.

(ii) If the generating series Λ(s) is well-defined for s ≥ 2, then the expectation E[Dn] is
expressed as an alternating sum which involves the values Λ(`), for ` ≥ 2

E[Dn] = 1
n

n∑
`=2

(−1)`
(
n

`

)
`Λ(`) . (8)

(iii) As soon as the source contains, for each k ≥ 1, a prefix of length k− 1 whose probability
is at least Ak−a with a ≤ 1 for some A > 0, all the moments of Dn of order k for any
n ≥ 2 and k ≥ 2 are infinite.
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4:10 Two Arithmetical Sources and Their Associated Tries

Proof.
(i) The event D(i)

n ≥ k + 1 means that there exists a prefix w of length k that is common
to the word xi and at least to another word xj of the sequence. Inside our model, this
entails the first expression in (i), and, with a binomial expansion, the second one.

(ii) Now, if Λ(2) is finite, any Λ(`) is also finite for ` ≥ 2. Taking the sum over k of the
previous expression entails (ii), after the exchange of two summations (over k and over
n).

(iii) The sequence n 7→ Pr[Dn ≥ k] is increasing, and it is thus sufficient to deal with the
case n = 2. Under the assumption, one has

Pr[D2 ≥ k] =
∑

|w|=k−1

p2
w ≥ A2 k−2a ,

E[D2
2] =

∑
k≥1

k2
(

Pr[D2 ≥ k]− Pr[D2 ≥ k + 1]
)

=
∑
k≥1

(2k − 1) Pr[D2 ≥ k] ≥ A2
∑
k≥1

k1−2a .

All the moments E[Dk
n] are thus infinite for n ≥ 2, k ≥ 2 as soon as a ≤ 1. J

I Proposition 8. For the two sources, the moments E[Dk
n] of order k ≥ 2 are infinite.

Proof. For each source, the prefix 0k has a probability 1/(k + 1). Then (iii) applies. J

3.2 Survey for the Rice method
The rest of the paper then studies the mean value E[Dn], starting with its expression given in
(8). We will use here the Rice method, that is dedicated to the study of sequences n 7→ f(n)
that are expressed as a binomial sum which involves another sequence n 7→ p(n),

f(n) =
n∑
`=a

(−1)`
(
n

`

)
p(`) , (a integer, a ≥ 0; here a = 2). (9)

The method was introduced by Nörlund [17, 18] and widely used in analytic combinatorics
since the seminal papers of Flajolet and Sedgewick [9, 8]. See also the survey in [24]. The
main role is then played by the analytical extension ψ of the sequence n 7→ p(n), provided it
be tame at s = c for c < a. We now recall this notion:

I Definition 9. A function ψ(s) is tame at c with order d if there exists δ0 > 0, called the
tameness width, for which
(i) ψ(s) is analytic on <s > c− δ0 except at s = c where it admits a pole of order d > 0,

with a singular expression at s = c of the form ψ(s) � ad(s−c)−d+. . .+a1(s−c)−1 +a0.
(ii) For any δ < δ0, ψ(s) is of polynomial growth on <s ≥ c− δ as |=s| → ∞.

There are three main steps in the method.

Step 1. The inequality c < a entails that ψ is analytic on <s > a, and the binomial formula
is transfered into a Rice integral formula.
Consider a real c with c ∈]a− 1, a[. Then, for any b ∈]c, a[ and n ≥ n0, the sequence f(n)
admits an integral representation

f(n) =
n∑
`=a

(−1)`
(
n

`

)
p(`) = 1

2iπ

∫ b+i∞

b−i∞
Ln(s) ·ψ(s) ds , Ln(s) := Γ(n+ 1)Γ(−s)

Γ(n+ 1− s) .
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Step 2. This integral representation is valid for any abscissa b ∈]c, a[. The vertical line
<s = b is shifted to the left, using the tameness properties of ψ on the left,
For any δ < δ0, the following asymptotic formula involving the tameness width δ holds:

f(n) = Res [Ln(s) · ψ(s); s = c] +O(nc−δ), (n→∞) .

Step 3. The residue Res [Ln(s) · ψ(s); s = c] admits the estimate

An[ψ] := Res [Ln(s) · ψ(s); s = c] = nc · P (logn) [1 +O(1/n)] , (10)

and involves a polynomial P that is computed from the singular expansion of ψ(s) and
Γ(−s) at s = c, with two cases:
(i) If c is integer, Γ(−s) has also a pole at s = c, and the product Γ(−s) · ψ(s) has a pole

of order d+ 1. Then the polynomial P has degree d, with a dominant term equal to
[1/Γ(d+ 1)] |ad|. We remark that the factor [1 +O(1/n)] equals 1 in the case c = 1.

(ii) If c is not an integer, the product Γ(−s) · ψ(s) has a pole of order d, and P (t) has
degree d− 1, with a dominant term equal to [Γ(−c)/Γ(d)] |ad|.

4 Tameness of the generating functions. Main result

We thus study the function s 7→ sΛ(s) for each source. We wish to prove that it is tame at
s = c with c > 2 and some order d. We have to make precise the location of the dominant
pole s = c, its order, and prove the polynomial growth of sΛ(s) on a half-plane <s > c− δ.
We then compute the residue An[sΛ(s)] defined in (10) following the principles of the previous
Step 3. Remembering the division by n in Eq. (8), we finally obtain our main result.

4.1 The Stern-Brocot source
The iterate An

s of the operator As is written as

An
s [F ](x, y) =

∣∣∣∣( 1
1 + nx

)(
1

1 + ny

)∣∣∣∣s F ( x

1 + nx
,

y

1 + ny

)
.

Then, in particular, when (x, y) = (0, 1), the quasi-inverse writes as

(I −As)−1[L](0, 1) = L(0, 1) +
∑
n≥1

(
1

n+ 1

)s
L

(
0, 1
n+ 1

)
. (11)

With Proposition 3, this is applied to the DGF Λ(s),

Λ(s) = Ls(0, 1) +
∑
n≥1

(
1

n+ 1

)s
Ls

(
0, 1
n+ 1

)
, with Ls := (I −Gs)−1[1] . (12)

As Ls belongs to C1([0, 1]2) (see Proposition 10), one deals with Ms : y 7→ (∂/∂y)Ls(0, y),
and the following estimate holds:

Λ(s) = ζ(s)Ls(0, 0)+O (ζ(s+ 1)) ||Ms||0 , ||F ||0 := sup{|F (x, y)| | (x, y) ∈ [0, 1]2} . (13)

We now use deep results due to Dolgopyat in [6], that have been adapted by Baladi and
Vallée in [1] to the plain quasi-inverse (I −Gs)−1, then extended by Cesaratto and Vallée [4]
to the quasi-inverse of the secant operator Gs. They prove the following:
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I Proposition 10 (Dolgopyat, Baladi, Cesaratto, Vallée). The mapping s 7→ Ls := (I −
Gs)−1[1] viewed as a mapping from C to C1([0, 1]2) is analytic for <s > 1 − δ, except at
s = 1, where it has a simple pole, and is of polynomial growth in the half-plane <s > 1− δ
for |=s| → ∞ for some δ > 0. Moreover, for s close to 1

Ls(x, y) ∼s→1
1
E

1
s− 1Φ(x, y), Ms(x, y) := ∂

∂y
Ls(x, y) ∼s→1

1
E

1
s− 1

∂

∂y
Φ(x, y) . (14)

Here, Φ is the extension3 of the Gauss density φ(x) = (1/ log 2)(1/(1 + x)) and satisfies
Φ(0, 0) = φ(0) = 1/(log 2) and E is the entropy of the Gauss map, equal to (1/ log 2)ζ(2).

The expression (12) and the estimate (13) prove that Λ(s) is analytic for <s > 1. Then,
with (12) and (14), we see that s = 1 is a pole of order 2 for Λ(s), with the estimate

Λ(s) ∼s→1 ζ(s)
[

1
E

1
s− 1Φ(0, 0)

]
∼s→1

1
ζ(2)

(
1

s− 1

)2
.

We now study the tameness of Λ(s) at s = 1. The function ζ(s) is tame at s = 1, with a
tameness width equal to 1, as it will be recalled in Lemma 12. The functions Ls and Ms are
tame at s = 1, as it was recalled in Proposition 10, with a tameness width δ < 1. Finally:

I Proposition 11. The DGF Λ(s) of the Stern-Brocot source is analytic on <s > 1− δ (for
some δ > 0), except at s = 1, where it has a pole of order 2. It is of polynomial growth on
<s ≥ 1− δ for |=s| → ∞. Moreover, the following estimates hold:

sΛ(s) ∼s→1
1
ζ(2)

(
1

s− 1

)2
Γ(−s) · sΛ(s) ∼s→1

6
π2

(
1

s− 1

)3
.

Using then Step 3 of Section 3.2, the equality holds for the residue defined in (10)

An[s ·Λ(s)] = nP2(logn), P2(t) = 3
π2 t

2 +b1 t+b0 for some constants b1, b0 . (15)

4.2 The Sturm source
With the expression of Λ(s) given in (4), we need properties of the zeta functions (plain or
double), together with its inverse 1/ζ(s). They are recalled in the following Lemma.

I Lemma 12. The following holds for the functions ζ and 1/ζ:
(a) For any a0 > 0, the function ζ(s) is meromorphic on the half-plane <s > 2a0 with only a

simple pole at s = 1 and is of polynomial growth on <s ≥ 2a, with a > a0 for |=s| → ∞.
(b) For any b0 > 0, the function 1/ζ(s) is analytic on the half-plane <s > 1 + 2b0 and its

modulus is less than ζ(1 + 2b) on any half-plane <s ≥ 1 + 2b with b > b0.

Proof. Assertion (a) is classical and proven for instance in [21], Chapter II.3, Theorem 7.
Assertion (b) is a consequence of Mertens’ inequality recalled in Chapter II.3, Corollary

8.1 of [21], that provides an upper bound for 1/ζ(s)

|ζ(σ + iτ)|−4 ≤ ζ(σ)3|ζ(σ + 2iτ)| for σ ≥ 1 + 2b > 1, b > 0 .

Using the inequality |ζ(σ + 2iτ)| ≤ ζ(σ), we obtain |ζ(σ + iτ)|−1 ≤ ζ(σ) ≤ ζ(1 + 2b). J

3 precisely described in [22, Théorème 5, Eq. (48)].
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We now return to the double zeta function. The following estimate holds on <s > 1, and
relates the double zeta function and the plain zeta function

ζ(s, s− 1) = 1
s− 1ζ(2s− 2) +O(ζ(2s− 1)) .

Then, Assertion (a) of Lemma 12 shows that ζ(s, s− 1) is analytic on <s > 1 + a0 (a0 > 0)
with a pole only at s = 3/2, and a residue equal to 1. It is of polynomial growth for
|=s| → ∞ on <s ≥ 1 + a for a > a0. Furthermore, with Assertion (b) of Lemma 12, the
inverse 1/ζ(2s−1) is analytic on <s > 1+b0 (b0 > 0) and of polynomial growth on <s ≥ 1+b
for b > b0. Choosing a0 = b0 provides a tameness width δ > 1/2− ε for any ε > 0. Finally:

I Proposition 13. For any a0 > 0, the DGF Λ(s) of the Sturm source is analytic on
<s > 1 + a0, except at s = 3/2 where it admits a simple pole. It is of polynomial growth on
<s ≥ 1 + a for any a > a0. Moreover, the following estimate holds:

sΛ(s) ∼s→3/2
36
π2

(
1

2s− 3

)
Γ(−s) · sΛ(s) ∼s→3/2

36
π2 Γ(−3/2)

(
1

2s− 3

)
.

Using then Step 3 of Section 3.2, and the value Γ(−3/2) = (4/3)
√
π, the following estimate

holds for the residue defined in (10):

An[s · Λ(s)] = 24
π3/2n

3/2 [1 +O(1/n)] . (16)

4.3 Statement of the main result
Using Step 3 of Section 3.2, with the estimates of the residue An[sΛ(s)] obtained in (15)
and (16), together with the remainder term associated with the tameness strip, and remem-
bering the division by n in Eq. (8), we obtain our final result.
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Figure 3 Instances of tries built on seven words emitted from each source of interest: the
Stern-Brocot source (on the left), the Sturm Source (in the middle). As the value n = 7 is small, and
the moments E[D2

n] are infinite, there does not really exist a “typical trie”. The third trie (on the
right) is built on seven words emitted by the Farey dynamical source mentioned in the Conclusion.

I Theorem 14. Consider, for each source, a trie built on n words independently drawn from
the source. Then, the mean value of the trie depth grows as Θ(log2 n) for the Stern-Brocot
source whereas it grows as Θ(n1/2) for the Sturm source,

[Stern-Brocot case] E[Dn] = 3
π2 log2 n+ b1 logn+ b0 +O(n−δ) for some δ > 0 ;

[Sturm case] E[Dn] = 24
π3/2 n

1/2 +O(na) for any a > 0 .

Figure 3 clearly exhibits some important features of each source. This explains –in an
experimental way– why the trie is a good tool for studying the characteristics of a source.
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5 Conclusions and further work

This paper appears as (one of) the first study dedicated to sources of zero Shannon entropy,
and performed with Analytic Combinatorics tools. It focuses on a particular parameter of
the source, the trie depth. We wish to extend this first study in several directions.

We wish to use Analytic Combinatorics tools, notably singularity analysis, to directly
derive estimates of Prop. 6, that are presently obtained via fine Number Theory arguments.
It is probably possible to directly deal with the bivariate DGF Λ(s, v), whose expression seems
closely related (in both cases) to generalized versions of the polylogarithm. We then hope
using the methods of Flajolet in [7], dedicated to singularity analyses of the polylogarithm.
This will be a first step towards the distribution of the coincidence Cn defined in Section 2.2.

The VLMC sources (VLMC = Variable Length Markov Chain) are the simplest sources
where the dependency from the past is unbounded. The paper [3] deeply studies this model
and analyzes the depth of associated suffix tries in some particular cases.
We wish to focus on a whole natural sub-class of VLMC sources, related to the intermittency
phenomenon. We consider the binary case, assume the equality Pr[Y0 = 1] = 1, and focus on
the events Sk := [the prefix finishes with a sequence of exactly k occurrences of 0].
A VLMC is intermittent of exponent a > 0 when the following conditional probability
distribution holds: Pr[0 | S0] = (1/2), Pr[0 | Sk] = (k/(k + 1))a , (k ≥ 1).
Then, the series Λ(s) involves two functions of Riemann ζ type, and strongly depends on the
parameter a. We wish to perform a complete analysis of the trie depth for this precise class,
exhibiting the dependence with respect to parameter a.

Fig 3 exhibits an instance of a trie built on the Farey dynamical source. As recalled
in Section 2.4, the Farey DS admits the Stern-Brocot partition as a generating partition.
Moreover, the Farey DS admits, as an invariant density, the density 1/t whose integral is
infinite. Then, the fundamental probabilities of the two sources [Stern-Brocot and Farey] are
not clearly related. This strongly differs from the framework of the papers [5, 11, 4] which
deal with ergodic dynamical sources, whose invariant measure is absolutely continuous with
respect to the Lebesgue measure. Then, the analysis of trie depth for the Farey source will
be both a natural and difficult question.
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A Appendix

We now give two proofs of the fact that the Shannon entropy E of the Stern-Brocot source
is zero.

A.1 About the entropy of the Stern-Brocot source. Analytical proof
We follow the approach of Prellberg and Slawny [19] that we adapt to our framework, and
there are three steps in the proof. The first two steps deal with the case s < 1, and the third
step lets s→ 1.
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Step 1. We study the operator Gs,v for a pair (s, v), with s real, s ∈]1/2, 1[ and v complex.
For |v| < 1, this operator acts on the space C1([0, 1]2). When v is real, with 0 < v < 1, it
admits a unique dominant eigenvalue denoted as λ(s, v) that depends analytically on the
pair (s, v). There is an inequality which relates the spectral radii, r[Gs,v] ≤ r[Gs,|v|] =
λ(s, |v|).
For v → 0, the eigenvalue λ(s, v) tends to 0, whereas it coincides at v = 1 with the
dominant eigenvalue λ(s) of Gs,1 = Gs that is strictly larger than 1 for s < 1. There
thus exists, for any s < 1, a real number v = v(s) for which the operator Gs,v(s) has a
dominant eigenvalue λ(s, v(s)) equal to 1.
Moreover, for any pair (v1, v2), with v1 < v2, the inequality λ(s, v2) ≥ λ(s, v1) [v2/v1]
holds, and entails the following:
(i) for any v < v(s), the strict inequality λ(s, v) < 1
(ii) the inequality λ′v(s, v(s)) > 0.
The Implicit Function Theorem can be applied, and it defines a real analytic function
v :]1/2, 1[→]0, 1[ that satisfies the equation

λ′s(s, v(s)) + v′(s)λ′v(s, v(s)) = 0 . (17)

All these remarks entail, that, for any s ∈]1/2, 1[, there exists w(s) > v(s) for which the
quasi-inverse v 7→ (I −Gs,v)−1[1] is meromorphic for |v| < w(s) with only a (simple) pole
at v = v(s), with the estimate,

(I −Gs,v)−1[1] ∼v→v(s)
λ(s, v(s))

1− λ(s, v(s))Ψs,ves,v(s)[1] ,

so that the residue at v = v(s) is

a(s) = 1
λ′v(s, v(s))Ψs,v(s) es,v(s)[1] (18)

and defines an analytical map s 7→ a(s) for s ∈]1/2, 1[.
Step 2. We return to the operator Hs (and its quasi-inverse). For any Ψ ∈ C1([0, 1]2),

the mapping v 7→ (I − vAs)−1[Ψ](0, 1) is well defined and analytic for v < 1. Then,
with Proposition 3, the previous properties can be transfered to the quasi-inverse v 7→
(I − vHs)−1[1](0, 1): it is meromorphic for v < u(s) := min(1, w(s)) with a unique pole
(simple) at v = v(s), and we remark the strict inequality u(s) > v(s) for s ∈]1/2, 1[. Then,
with singularity analysis of meromorphic functions, [for instance Theorem IV.10 p. 258
in [10]], we obtain

Hk
s [1](0, 1) = v(s)−k · a(s)

[
1 +O

(
u(s)
v(s)

)−k]
, for k →∞ ,

where the coefficient a(s) is related to dominant spectral properties of Gs,v(s) and is
strictly positive (see (18)). Now, the analytical dependence with respect to s entails that,
on any closed interval [s0, s1] with 1/2 < s0 < s1 < 1, the ratio v(s)/u(s) is bounded
by a constant b < 1, whereas |a(s)| and |v′(s)| admit strictly positive lower bounds and
s 7→ |a′(s)| an upper bound. One has there

ek(s) :=
∑
|w|=k

psw = Hk
s [1](0, 1) = v(s)−k · a(s)

[
1 +O(bk)

]
for k →∞ .
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One then takes the derivative with respect to s,

1
k
e′k(s) = 1

k

∑
|w|=k

psw log pw = −v′(s) v(s)−k−1 a(s)
[
1 + 1

k

a′(s)
a(s)

v(s)
v′(s)

] [
1 +O(bk)

]

= −v′(s) v(s)−k−1 a(s)
[
1 +O

(
1
k

)]
for k →∞ .

As this is true on any interval [s0, s1] ⊂]1/2, 1[, we deduce the asymptotic behaviour for
any s ∈]1/2, 1[,

lim
k→∞

1
k

[
e′k(s)
ek(s)

]
= −v

′(s)
v(s) . (19)

Step 3. When s → 1. Due to the equality Gs,1 = Gs, the operator Gs,1 has a dominant
eigenvalue equal to 1, and the function s 7→ v(s) may be extended at s = 1 via the equality
lims→1− v(s) = v(1) = 1. Moreover, as s → 1−, the derivative λ′s(s, v(s)) has a limit
(equal to the derivative of the dominant eigenvalue λ′(s) at s = 1), and thus the second
term in (17) has also a limit: as we have already seen, the derivative λ′v(s, 1) is closely
related to ζ(2s− 1) and tends to ∞ for s→ 1, and this entails that lims→1− v

′(s) = 0.
Finally the right member of (19) has a limit when s→ 1−, and thus

lim
s→1

lim
k→∞

1
k

[
e′k(s)
ek(s)

]
= 0 .

We are interested in the following limit (if it exists)

lim
k→∞

1
k

[
e′k(1)
ek(1)

]
= lim
k→∞

1
k

lim
s→1

[
e′k(s)
ek(s)

]
,

and we thus wish to exchange the limits. This is possible if we have uniform convergence
of the derivatives. Uniform convergence holds in the context of monotonic functions
whose (simple) limit is continuous. Here, this is the case: as the functions s 7→ ek(s) are
log concave for any k, thus, for any k, the quotient s 7→ e′k(s)/ek(s) defines a decreasing
mapping of s, whereas the map s 7→ v′(s)/v(s) is continuous on ]1/2, 1[ and extended
with its limit when s→ 1−. This legitimates the exchange of limits, and

lim
k→∞

1
k

[
e′k(1)
ek(1)

]
= lim
s→1

lim
k→∞

1
k

[
e′k(s)
ek(s)

]
= 0 .

A.2 About the entropy of the Stern-Brocot source. Ergodic proof
Step 1. Two sources and their fundamental intervals. Both sources, the Stern-Brocot

source and the Farey source, are associated with the binary coding, corresponding
to the choice of the inverse branches

a : x 7→ x

1 + x
, when x < 1/2, b : x 7→ 1

1 + x
, when x > 1/2.

Any Farey fundamental interval Jw is associated with a binary word w ∈ {a, b}?. Due to
the equality {a, b}? = {a?b}? · a?, any binary word w ∈ {a, b}k is written in a unique way
as

[an1b] · [an2b] · . . . · [an`b] ·ar, `+r+
∑̀
j=1

nj = k, r ≥ 0, nj ≥ 0 (∀j ∈ [1, `]) . (20)
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The integer mj defined for j ∈ [1 . . . `] as mj := nj + 1 satisfies mj ≥ 1, and the Farey
LFT am−1 ◦ b coincides with the Cfe LFT gm : x 7→ 1/(m+ x). Third, the LFT ar is of
the form ar : x 7→ x/(1 + rx). Then, the Farey LFT hw associated with the word w is
related to the sequence m = (m1,m2, . . . ,m`) via the Cfe LFT gm := gm1 ◦ gm2 . . . ◦ gm`

and the relation hw = gm ◦ ar holds.
Finally, the Farey fundamental interval Jw = [hw(0), hw(1)] associated with the word w
coincides with the interval [gm(0), gm(1/(1 + r))]. Then its length pw involves r together
the coefficients of the LFT gm(x) := (ax+ b)/(cx+ d). The equality |ad− bc| = 1 holds;
moreover the denominator coefficients satisfy 0 ≤ c ≤ d, and the coefficient d coincides
with the continuant q(m) relative to the sequence m = (m1,m2, . . .m`). Then, one has

pw =
∣∣∣∣gm(0)− gm

(
1

1 + r

)∣∣∣∣ = 1
d(c+ d(1 + r)) ≥

1
d2(r + 2) ,

1
pw
≤ q(m)2(r+ 2) .

(21)

Step 2. Changing base. For m ∈ N?, we denote by `(m) the number of components of m,
by c(m) the sum of the components of m, by q(m) the continuant associated with m.
We now fix a length k (that will tend to ∞ later). With x ∈ [0, 1], we associate the word
w〈k〉(x) of length k produced by the Stern-Brocot source on x. With (20), it defines almost
everywhere a pair (m(x), r(x)) with m(x) ∈ N? and r(x) ≥ 0, that depends on x and the
depth k. It is thus denoted as (m〈k〉(x), r〈k〉(x)) and the equality c(m〈k〉(x))+r〈k〉(x) = k

holds. It is clear (but important) to remark the following: as x belongs to the Cfe interval
relative to m〈k〉(x), then the sequence m〈k〉(x) provides the beginning of the Cfe of x.
Of course, this production may be quite slow (when `〈k〉(x) is much smaller than k), and
this is why the entropy of the Stern-Brocot source will be zero.
We then define three random variables on the unit interval that depend on k and relate
the Cfe of x together its Farey expansion of depth k,

`〈k〉(x) := `(m〈k〉(x)), c〈k〉(x) := c(m〈k〉(x)) = m1(x) + . . .+m`〈k〉(x)(x), (22)

q〈k〉(x) := q(m〈k〉(x)) = q(m1(x), . . . ,m`〈k〉(x)(x)) . (23)

By definition of the process, for each k, the inequality `〈k〉(x) ≤ c〈k〉(x) ≤ k holds.
Step 3. Entropy of the Stern-Brocot source. Denote by π〈k〉(x) the measure of the fun-

damental Farey interval of depth k the input x belongs to. Then, the entropy of the
Stern-Brocot source is the limit (if it exists) of the sequence e(k),

e(k) = 1
k
E
[
| log π〈k〉(x)|

]
= 1
k

∑
w∈{a,b}k

pw · | log pw| .

Using (21), and applying it to the pair (m〈k〉(x), r〈k〉(x)), one obtains

1
π〈k〉(x) ≤ q〈k〉(x)2 ·(r〈k〉(x)+2) ; | log π〈k〉(x)| ≤ 2 log q〈k〉(x)+log(r〈k〉(x)+2) . (24)

As the bound r〈k〉(x) ≤ k holds, this entails the inequality

e(k) ≤ 1
k

log(k + 2) + 2d(k), d(k) = E
[

1
k

log q〈k〉(x)
]
. (25)

As the first term in (25) tends to 0 for k →∞, we then focus on the second term d(k).
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We first remark that the sequence k 7→ `〈k〉(x) is increasing (not strictly in general).
Then, there are two cases: it is bounded (and then stationary) or it tends to ∞. For
an input x, the sequence `〈k〉(x) is stationary if and only if the Farey word produced on
x finishes by an infinite sequence of a or by a b. This arises if and only if x is rational.
Then, almost everywhere, the increasing sequence k 7→ `〈k〉(x) tends to ∞.

Step 4. Application of the Dominated Convergence Theorem. We now show that the se-
quence d(k) tends to 0 with the Dominated Convergence Theorem. We thus use two
inequalities for the random variable fk(x) := (1/k) log q〈k〉(x) . One has always, for any
m ∈ N?,

q(m) ≤
`(m)∏
i=1

(mi + 1) and log q(m) ≤
`(m)∑
i=1

log(mi + 1) ≤
`(m)∑
i=1

mi = c(m) . (26)

Applied to m := m〈k〉(x), this proves the domination :

1
k

log q〈k〉(x) ≤
c〈k〉(x)
k

≤ 1 for almost every x ∈ [0, 1] .

Moreover, for any m ∈ N?, using again (26) in a more precise way, we derive the bound

1
k

log q(m) ≤
[
c(m)
k

] [
`(m)
c(m)

] 1
`(m)

`(m)∑
i=1

log(mi + 1)

 ,
that holds in particular for m = m〈k〉(x).
The first factor is now at most 1 for x ∈ [0, 1]. Furthermore, almost everywhere, the
sequence `〈k〉(x) → ∞ when k → ∞. Then, with the Ergodic Theorem, the third
factor tends almost everywhere to a finite limit C. Furthermore, using a result due to
Khinchin described in [15, Theorem 35], together the Ergodic Theorem applied to the
sequence min(M,mi) (for any given constant M), the second factor also tends to 0 almost
everywhere. Finally, the sequence x 7→ (1/k) log q〈k〉(x) tends almost everywhere to 0.
We now apply the dominated convergence theorem to the sequence of random variables
fk(x) = (1/k) log q〈k〉(x) that is bounded by 1 and converges to 0 almost everywhere.
This proves that d(k) tends to 0. This is the same for the initial entropy sequence e(k).
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Abstract
The k-cut number of rooted graphs was introduced by Cai et al. [7] as a generalization of the classical
cutting model by Meir and Moon [16]. In this paper, we show that all moments of the k-cut number
of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in
distribution to the same limit law regardless of the offspring distribution of the trees. This extends
the result of Janson [13].
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1 Introduction and main result

In order to measure the difficulty for the destruction of a resilient network Cai et al. [7]
introduced a generalization of the cut model of Meir and Moon [16] where each vertex (or
edge) needs to be cut k ∈ N times (instead of only once) before it is destroyed. More precisely,
consider that the resilient network is a rooted tree Tn, with n ∈ N vertices. We destroy it
by removing its vertices as follows: Step 1: Choose a vertex uniformly at random from
the component that contains the root and cut the selected vertex once. Step 2: If this
vertex has been cut k times, remove the vertex together with the edges attached to it from
the tree. Step 3: If the root has been removed, then stop. Otherwise, go to step Step 1.
We let Kk(Tn) denote the (random) total number of cuts needed to end this procedure the
k-cut number, i.e., Kk(Tn) models how much effort it takes to destroy the network. (For
simplicity, we will omit the subscript k and write K(Tn).) It should be plain that one can
define analogously an edge deletion version of the previous algorithm, where one needs to cut
an edge k times before removing it from the root component. Then, one would be interested
in the number Ke(Tn) of cuts needed to isolate the root of Tn.
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5:2 The k-Cut Model in Conditioned Galton-Watson Trees

The case k = 1 (i.e., the traditional cutting model of Meir and Moon [16]) has been
well-studied by several authors in the past few decades. More precisely, Meir and Moon
estimated the first and second moment of the 1-cut number in the cases when Tn is a Cayley
tree [16] and a recursive tree [17]. Subsequently, several weak limit theorems for the 1-cut
number have been obtained for Cayley trees (Panholzer [18, 19]), complete binary trees
(Janson [12]), conditioned Galton-Watson trees (Janson [13] and Addario-Berry et al. [1]),
recursive trees (Drmota et al. [8], Iksanov and Möhle [11]), binary search trees (Holmgren [9])
and split trees (Holmgren [10]). In the general case k ≥ 1, the authors in [7] established first
moment estimates of K(Tn) for families of deterministic and random trees, such as paths,
complete binary trees, split trees, random recursive trees and conditioned Galton-Watson
trees. In particular, the authors in [7] have proven a weak limit theorem for K(Tn) when Tn

is a path consisting of n vertices. More recently, Cai and Holmgren [6] obtained also a weak
limit theorem in the case when Tn is a complete binary tree.

In this work, we continue the investigation of this general cutting-down procedure in
conditioned Galton-Watson trees and show that K(Tn), after a proper rescaling, converges
in distribution to a non-degenerate random variable. More precisely, let ξ be a non-negative
integer-valued random variable such that

E[ξ] = 1 and 0 < σ2 := Var(ξ) <∞, (1)

and consider a Galton-Watson process with (critical) offspring distribution ξ. Let Tn be the
family tree conditioned on its number of vertices being n ∈ N. The main result of this paper
is the following. We write d→ to denote convergence in distribution. (In the rest of the paper
CRT stands for Continuum Random Tree.)

I Theorem 1. Let k ∈ N. Let Tn be a Galton-Watson tree conditioned on its number of
vertices being n ∈ N with offspring distribution ξ satisfying (1). Then,

σ−1/kn−1+1/2kK(Tn) d→ZCRT, as n→∞, (2)

where ZCRT is a non-degenerate random variable whose law is determined entirely by its
moments: E[Z0

CRT] = 1, and for q ∈ N, E[Zq
CRT] = ηk,q with

ηk,q := q!
∫ ∞

0
· · ·
∫ ∞

0
y1(y1 + y2) · · · (y1 + · · ·+ yq)e−

(y1+···+yq)2

2 Fq(yq) dyq · · · dy1, (3)

where yq = (y1, . . . , yq) ∈ Rq
+ and

Fq(yq) :=
∫ ∞

0

∫ x1

0
· · ·
∫ xq−1

0
exp

(
−
y1x

k
1 + y2x

k
2 + · · ·+ yqx

k
q

k!

)
dxq · · · dx2 dx1.

Furthermore, if E[ξp] <∞ for every p ∈ Z≥0, then for every q ∈ Z≥0,

σ−q/kn−q+q/2kE[K(Tn)q]→ E[Zq
CRT]

as n→∞.

In the case k = 1, Theorem 1 reduces to ZCRT having a Rayleigh distribution with density
xe−x2/2, for x ∈ R+. More precisely, one can verify that η1,q = 2q/2Γ(1 + q/2), for q ∈ Z≥0,
which are the moments of a random variable with the Rayleigh distribution; in this paper Γ(·)
denotes the well-known gamma function. As we mentioned early, the case k = 1 has been
shown in [13, Theorem 1.6] (or Addario-Berry et al. [1]). We henceforth assume throughout
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this paper that k ≥ 2. It is also important to mention that we could not find a simpler
expression (in general) for the moments ηk,q except for some particular instances. For q = 1,
we have

ηk,1 = 2− 1
2k

(k!) 1
k

k
Γ
(

1
k

)
Γ
(

1− 1
2k

)
.

Then Theorem 1 provides a proof of [7, Lemma 4.10], where an estimation for the first
moment of K(Tn) was first announced but whose proof was left to the reader, see Lemma 10.
On the other hand, let (U1, . . . , Uq) be q i.i.d. leaves of a Brownian CRT and define the vector
(LCRT

0 , LCRT
1 , . . . , LCRT

q ) where LCRT
0 = 0 and LCRT

i is the total length of a Brownian CRT
reduced to the leaves of U1, . . . , Ui; see [3, Lemma 21] from where one can deduce explicitly
the distribution of (LCRT

0 , LCRT
1 , . . . LCRT

q ). From the proof of Theorem 1, we obtain, for
q ∈ N, that

ηk,q = q!
∫ ∞

0

∫ x1

0
· · ·
∫ xq−1

0
E

[
exp

(
−
∑q

i=1(LCRT
i − LCRT

i−1 )xk
i

k!

)]
d ~xq,

where ~xq = (xq, . . . , x1) ∈ Rq
+. This suggests that it ought to be possible to build the

random variable ZCRT by some construction that can be interpreted as the k-cut model on
the Brownian CRT defined by Aldous [2, 3]. The appearance of the Brownian CRT in this
framework should not come as a surprise since it is well-known that if we assign length n−1/2

to each edge of the Galton-Watson tree Tn, then the latter converges weakly to a Brownian
CRT as n→∞.

The approach used in this work consists of implementing an extension of the idea of Janson
[13], which was used in [7], in order to study the k-cut model on deterministic and random
trees. The authors in [7] introduced an equivalent model that allows them to define K(Tn)
in terms of the number of records in Tn when vertices are assigned random labels. More
precisely, let (Ei,v)i≥1,v∈Tn be a sequence of independent exponential random variables of
parameter 1; Exp(1) for short. Let Gr,v :=

∑
1≤i≤r Ei,v, for r ∈ N and v ∈ Tn. Clearly, Gr,v

has a gamma distribution with parameters (r, 1), which we denote by Gamma(r). Imagine
that each vertex v ∈ Tn has an alarm clock and v’s clock fires at times (Gr,v)r≥1. If we
cut a vertex when its alarm clock fires, then due to the memoryless property of exponential
random variables, we are actually choosing a vertex uniformly at random to cut. However,
this also means that we are cutting vertices that have already been removed from the tree.
Thus, for a cut on vertex v at time Gr,v (for some r ∈ {1, . . . , k}) to be counted in K(Tn),
none of its strict ancestors can already have been cut k times, i.e.,

Gr,v < min{Gk,u : u ∈ Tn and u is a strict ancestor of v}.

When the previous event happens, we say that Gr,v, or simply v, is an r-record and let

Ir,v := JGr,v < min{Gk,u : u ∈ Tn and u is a strict ancestor of v}K, (4)

where J·K denotes the Iverson bracket, i.e., JSK = 1 if the statement S is true and JSK = 0
otherwise. Let Kr(Tn) be the number of r-records, i.e., Kr(Tn) :=

∑
v∈Tn

Ir,v. Then, it
should be plain that

K(Tn) d=
∑

1≤r≤k

Kr(Tn), (5)

where d= denotes equal in distribution.

AofA 2020



5:4 The k-Cut Model in Conditioned Galton-Watson Trees

1 2 3 4 5 6 7 8 9 10

1

2

Figure 1 An example of a depth-first walk in a tree and the corresponding Vn.

Loosely speaking, we then consider the well-known depth-first walk (Vn(t), t ∈ [0, 2(n−1)])
of the tree Tn as depicted in Figure 1, that is, Vn(t) is “the depth of the t-th vertex” visited
in this walk; this will be made precise in the next section. As it is well-known (see Aldous [3,
Theorem 23 with Remark 2] or [15, Theorem 1]), when Tn is a conditioned Galton-Watson
with offspring distribution satisfying (1), we have that

(n−1/2Vn(2(n− 1)t), t ∈ [0, 1]) d→ 2σ−1Bex, as n→∞.

in C([0, 1],R+), with its usual topology, and where Bex = (Bex(t), t ≥ 0) is a standard nor-
malized Brownian excursion. It has been shown in [7, Lemma 1] that E[Ir,v] ∼ Cr,kdn(v)−r/k,
for some (explicit) constant Cr,k > 0, where dn(v) is the depth of the vertex v ∈ Tn. Let ◦
denote the root of Tn. Thus, informally

E [Kr(Tn) | Tn]

∼
∑

v∈Tn\{◦}

Cr,k

dn(v)r/k
∼ Cr,k

2

∫ 2(n−1)

0

dt
Vn(t)r/k

∼ Cr,k

n−1+ r
2k

∫ 1

0

(
Vn(2(n− 1)t)√

n

)− r
k

dt

∼ Cr,k

n−1+ r
2k

(σ
2

) r
k

∫ 1

0

dt
Bex(t)r/k

,

as n→∞. By taking expectation, we deduce that

σ−r/kn−1+ r
2k E [Kr(Tn)] ∼ Cr,kE

[∫ 1

0
(2Bex(t))−r/k dt

]
, as n→∞,

which coincides with the right-hand side of (3) when r = q = 1. Notice that this informal
computation suggests that E [Kr(Tn)] = O(n1− r

2k ), for r ∈ {1, . . . , k}. As a consequence, the
Markov’s inequality implies n−1+ 1

2kKr(Tn)→ 0 in probability, as n→∞, for r ∈ {2, . . . , k}.
If so, by the identity in (5), it would be enough to prove Theorem 1 for K1(Tn) instead of
K(Tn).

In the rest of the paper, we make the above argument precise and extend it to higher
moments in order to apply the method of moments for proving Theorem 1. In a full version
of this paper [4], we also apply the same idea to get all moments of the number of records
in paths and several types of trees of logarithmic height, e.g., complete binary trees, split
trees, uniform random recursive trees and scale-free trees. We omit the proofs of our more
technical lemmas since they can be found in [4].

2 Preliminary results

The purpose of this section is to establish a general convergence result for the number of
1-records K1(Tn) of a deterministic rooted ordered tree Tn. The results of this section can
also be viewed as a generalization of those of Janson [13] and Cai, et al. [7]. Furthermore,
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these results will allow us to study the convergence of the cut number K(Tn) not only for
conditioned Galton-Watson trees in Section 3, but also for other classes of random trees in a
full version of this paper [4].

We start by defining a probability measure through a continuous function in the same
spirit as in [13, Theorem 1.9]. Let I ⊆ R+ be an interval. For a function f : I → R+ and
t1, . . . , tq ∈ I with q ∈ N, we define

Lf (t1, . . . , tq) :=
q∑

i=1
f(t(i))−

q−1∑
i=1

inf
t∈[t(i),t(i+1)]

f(t), (6)

where t(1), . . . , t(q) are t1, . . . , tq arranged in nondecreasing order. Notice that Lf (t1, . . . , tq)
is symmetric in t1, . . . , tq and that Lf (t) = f(t) for t ∈ I. Define

Df (t1) := Lf (t1), Df (t1, . . . , tq) := Lf (t1, . . . , tq)− Lf (t1, . . . , tq−1), for q ≥ 2. (7)

We also consider the functional

Gf (tq,xq) := exp
(
−
Df (t1)xk

1 + · · ·+Df (t1, . . . , tq)xk
q

k!

)
, (8)

for xq = (x1, . . . , xq) ∈ Rq
+ and tq = (t1, . . . , tq) ∈ Iq. If I = [0, 1], we further define, for

q ∈ N, let m0(f) := 1 and

mq(f) := q!
∫ 1

0

∫ 1

0
· · ·
∫ 1

0

∫ ∞
0

∫ x1

0
· · ·
∫ xq−1

0
Gf (tq,xq) d ~xq d ~tq, q ≥ 2, (9)

where ~xq = (xq, . . . , x1) and ~tq = (tq, . . . , t1).

I Theorem 2. Let k ∈ N. Suppose that f ∈ C([0, 1],R+) is such that
∫ 1

0 f(t)−1/kdt < ∞.
Then there exists a unique probability measure νf on [0,∞) with finite moments given by∫

[0,∞)
xqνf (dx) = mq(f), for q ∈ Z≥0.

Consider a rooted ordered tree Tn with root ◦ and n ∈ N vertices. We now explain how
Tn can be coded by a continuous function. We define the so-called depth-first search function
[2, page 260], ψn : {0, 1, . . . , 2(n− 1)} → { vertices of Tn} such that ψn(i) is the (i+ 1)-th
vertex visited in a depth-first walk on the tree starting from the root ◦. Note that ψn(i)
and ψn(i+ 1) always are neighbours, and thus, we extend ψ to [0, 2(n− 1)] by letting, for
1 ≤ i < t < i + 1 ≤ 2(n − 1), ψn(t) to be the one of ψn(i) and ψn(i + 1) that has largest
depth (recall that the depth of a vertex v ∈ Tn is the distance, i.e., number of edges, between
◦ to v). Let dn(v) be the depth of a vertex v ∈ Tn. We further define the depth-first walk
Vn of Tn by

Vn(i) := dn(ψ(i)), 0 ≤ i ≤ 2(n− 1),

and extend Vn to [0, 2(n− 1)] by linear interpolation. Thus Vn ∈ C([0, 2(n− 1)],R+). See
Figure 1 for an example of Vn. Furthermore, we normalize the domain of Vn to [0, 1] by
defining

Ṽn(t) := Vn(2(n− 1)t) and V̂n(t) := dVn(2(n− 1)t)e, (10)

for t ∈ [0, 1]. Thus Ṽn, V̂n ∈ C([0, 1],R+). Note that dn(ψ(t)) = dVn(t)e, for t ∈ [0, 2(n− 1)].
Moreover,

max
v∈Tn

dn(v) = sup
t∈[0,2(n−1)]

Vn(t) = sup
t∈[0,1]

Ṽn(t). (11)
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5:6 The k-Cut Model in Conditioned Galton-Watson Trees

We now state the central result of this section, that is, a general limit theorem in
distribution for the number of 1-records K1(Tn) of a deterministic rooted tree Tn with n
vertices. It is important to notice that K1(Tn) is a random variable since the 1-records are
random.

I Lemma 3. Let k ∈ N. Suppose that (Tn)n≥1 is a sequence of (deterministic) ordered rooted
trees, and denote the corresponding normalized depth-first walks by Ṽn and V̂n. Suppose
that there exists a sequence (an)n≥1 of non-negative real numbers with limn→∞ an = 0,
limn→∞ na

1/k
n =∞ and a function f ∈ C([0, 1],R+) such that

(a) anṼn(t)→ f(t), in C([0, 1],R+), as n→∞.

(b)
∫ 1

0
(anV̂n(t))−1/k dt→

∫ 1

0
f(t)−1/k dt <∞, as n→∞.

Then, for each q ∈ Z≥0,

n−qa−q/k
n E[K1(Tn)q]→ mq(f),

as n → ∞, where mq(f) is defined in (9). Moreover, n−1a
−1/k
n K1(Tn) d→Zf , as n → ∞,

where Zf is a random variable with distribution νf defined by Theorem 2.

We can apply similar ideas as in the proofs of Lemma 3 in order to estimate the mean
of the number of r-records Kr(Tn). It is important to mention that we have not tried to
estimate higher moments of Kr(Tn) in order to obtain a limit theorem in distribution for
this quantity. We believe that our methods can be used but the computations will be more
involved and we decided not to do it. Furthermore, the next results shows that Kr(Tn) is of
smaller order than K1(Tn) and hence it will not contribute (in the limit) to the distribution
of the k-cut number K(Tn).

I Lemma 4. Let k ∈ N. Let Tn be a (deterministic) rooted tree with n ∈ N vertices. Suppose
that there exists a sequence (an)n≥1 of non-negative real numbers with limn→∞ an = 0,
limn→∞ nan = ∞ and maxv∈Tn

dn(v) = O(a−1
n ). Then, for r ∈ {1, . . . , k}, and uniformly

over Tn,

n−1a−r/k
n E[Kr(Tn)] = (1 +O(a

1
2k
n ))

∫ 1

0

∫ ∞
0

xr−1e−a1/k
n x

Γ(r) e−
anV̂n(t)xk

k! dx+ o(1).

I Lemma 5. Let k ∈ N. Suppose that (Tn)n≥1 is a sequence of (deterministic) ordered
rooted trees. Suppose that there exists a sequence (an)n≥1 of non-negative real numbers with
limn→∞ an = 0, limn→∞ nan = ∞ and a function f ∈ C([0, 1],R+) such that Ṽn satisfies
the condition (a) in Lemma 3 and that for r ∈ {1, . . . , k},∫ 1

0
(anV̂n(t))−r/k dt→

∫ 1

0
f(t)−r/k dt <∞, as n→∞.

Then,

n−1a−r/k
n E[Kr(Tn)]→ (k!)r/kΓ(r/k)

kΓ(r)

∫ 1

0
f(t)−r/k dt, as n→∞.

3 Proof of Theorem 1

Let Tn be a Galton-Watson tree conditioned on its number of vertices being n ∈ N with
offspring distribution ξ satisfying (1). Notice that in this case both the r-records and the tree
are random. Then we study Kr(Tn) as random variable conditioned on Tn. More precisely,
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we first choose a random tree Tn. Then we keep it fixed and consider the number of r-records.
This gives a random variable Kr(Tn) with distribution that depends on Tn. We have the
following lemma that corresponds to [13, Lemma 4.8].

I Lemma 6. Let k ∈ N. Let Tn be a Galton-Watson tree conditioned on its number of
vertices being n ∈ N with offspring distribution ξ satisfying (1). For r ∈ {1, . . . , k}. We have
that E[Kr(Tn)] = O(n1− r

2k ).

Proof. By an application of Lemma 4 with an = n−1/2, we see that

E[Kr(Tn)|Tn] ≤ (1 +O(a
1

2k
n ))

∑
v∈Tn\{◦}

∫ ∞
0

xr−1

Γ(r) e
− dn(v)xk

k! dx+ o(nar/k
n )

= (1 +O(a
1

2k
n ))

∑
v∈Tn\{◦}

(k!)r/kΓ(r/k)
kΓ(r) dn(v)−r/k + o(nar/k

n )

= (1 +O(a
1

2k
n )) (k!)r/kΓ(r/k)

kΓ(r)

∞∑
i=1

i−r/kwi(Tn) + o(nar/k
n ), (12)

where wi(Tn) denotes the number of vertices at depth i ∈ N in Tn. Notice that

∞∑
i=1

i−r/kwi(Tn) ≤ n1− r
2k +

bn1/2c∑
i=1

i−r/kwi(Tn),

by the fact that
∑

i≥0 wi(Tn) = n. Since E[ξ2] < ∞ by our assumption (1), [13, Theorem
1.13] implies that for all n, i ∈ N, E[wi(Tn)] ≤ Ci for some constant C > 0 depending on ξ
only. Therefore,

∞∑
i=1

i−r/kE[wi(Tn)] = n1− r
2k +

bn1/2c∑
i=1

E[wi(Tn)]i− 1
k = O(n1− r

2k ). (13)

By taking expectation in (12), our claim follows by (13). J

We continue by studying the moments of the number of 1-records K1(Tn). We denote
by µn the (random) probability distribution of σ−1/kn−1+1/2kK1(Tn) given Tn. Define the
random variables

mq(Tn) := E[K1(Tn)q|Tn], q ∈ Z≥0.

Notice that the moments of µn are given by σ−q/kn−q+q/2kmq(Tn). We have the following
lemma that corresponds to [13, Lemma 4.9].

I Lemma 7. Let k ∈ N. Let Tn be a Galton-Watson tree conditioned on its number of
vertices being n ∈ N with offspring distribution ξ satisfying (1). Furthermore, suppose that
for every fixed q ∈ N we have that E[ξq+1] <∞. Then E[mq(Tn)] = O(nq− q

2k ).

Let Ṽn and V̂n be the normalized depth-first walks associated with the conditioned
Galton-Watson tree Tn. Notice that in this case Ṽn and V̂n become random functions on
C([0, 1],R+). Recall that a remarkable result due to Aldous [3, Theorem 23 with Remark 2]
(see also [15, Theorem 1]) shows that

n−1/2Ṽn
d→ 2σ−1Bex, as n→∞, (14)

in C([0, 1],R+), with its usual topology, and where Bex = (Bex(t), t ≥ 0) is a standard
normalized Brownian excursion. Notice that Bex is a random element in C([0, 1],R+); see
for example [5] or [20].
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I Lemma 8. Let k ∈ N. For r ∈ {1, . . . , k}, we have that
∫ 1

0 B
ex(t)−r/k dt < ∞ almost

surely.

Proof. One only needs to show that E[
∫ 1

0 B
ex(t)−r/k dt] <∞. This follows by computing

E[Bex(t)−r/k], for every t ∈ [0, 1], from the well-known density function of Bex(t); see [5,
Chapter II, Equation (1.4)]. J

Therefore, Theorem 2 and Lemma 8 imply that there exists almost surely a (unique)
measure ν2Bex with moments given by mq(2Bex). The next result provides a generalization
of [13, Theorem 1.10] and it will be used in the proof of Theorem 1.

I Theorem 9. Let k ∈ N. Let Tn be a Galton-Watson tree conditioned on its number of
vertices being n ∈ N with offspring distribution ξ satisfying (1). Then

µn
d→ ν2Bex , as n→∞, (15)

in the space of probability measures on R. Moreover, we have that for every q ∈ N,

σ−q/kn−q+q/2kmq(Tn) d→mq(2Bex), as n→∞. (16)

The convergences in (14), (15) and (16), for all q ∈ N, hold jointly. In particular, if
E[ξp] <∞ for all p ∈ N, then for all q ∈ N and l ∈ N,

σ−lq/kn−lq/k+lq/2kE[mq(Tn)l]→ E[mq(2Bex)l], as n→∞. (17)

Proof. A simple adaptation of the proof for [13, Lemma 4.7] easily shows that(
Ṽn,

∫ 1

0
V̂n(t)−1/k dt

)
d→
(

2σ−1Bex, 2−1/kσ1/k

∫ 1

0
Bex(t)−1/k dt

)
, in C([0, 1],R+),

(18)

as n→∞. By the Skorohod coupling theorem (see e.g. [14, Theorem 4.30]), we can assume
that the trees (Tn)n≥1 are defined on a common probability space such that the convergence
in (18) holds almost surely. Therefore, the convergences (15) and (16) follow immediately
from Lemma 3. It only remains to prove (17). Recall that we assume that E[ξp] < ∞
for every p ∈ N. By Jensen’s inequality, we notice that mq(Tn)l ≤ mlq(Tn) for l, q ∈ N.
Hence Lemma 7 implies that E[mq(Tn)l] = O(nlq− lq

2k ). This shows that every moment of
the right-hand side of (16) stays bounded as n→∞ which implies (17). J

Proof of Theorem 1. Lemma 6 establishes that E[Kr(Tn)] = O(n1− r
2k ) for r ∈ {1, . . . , k}.

As a consequence, the Markov’s inequality implies n−1+ 1
2kKr(Tn) → 0 in probability, as

n → ∞, for r ∈ {2, . . . , k}. Then, by the identity in (5), it is enough to prove Theorem 1
for K1(Tn) instead of K(Tn). By the definition of µn and Theorem 9, for any bounded
continuous function g : R+ → R+,

E[g(σ−1/kn−1+1/2kK1(Tn))|Tn] =
∫
g dµn

d→
∫
g dν2Bex , as n→∞.

Taking expectations, the dominated convergence theorem implies that

σ−1/kn−1+1/2kK1(Tn) d→ZCRT,
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as n → ∞, where ZCRT has distribution ν(·) = E[ν2Bex(·)]. Suppose that E[ξp] < ∞ for
every p ∈ N. Lemma 7 implies that every moment of n−1+1/2kK1(Tn) stays bounded as
n → ∞ which implies the moment convergence in Theorem 1. It remains to identify the
moments of ZCRT (or equivalently ν). Notice that

E[Zq
CRT] =

∫
xq dν = E

[∫
xq dν2Bex

]
= E[mq(2Bex)], for q ∈ N.

For q ∈ N, let U1, . . . , Uq be independent random variables with the uniform distribution on
[0, 1]. Let Y1, . . . , Yq be the first q points in a Poisson process on (0,∞) with intensity x dx,
i.e., Y1, . . . , Yq have joint density function y1 · · · yqe

−y2
q /2 on 0 < y1 < · · · < yq < ∞. It is

well-known that L2Bex(U1, . . . , Uq) d= Yq, see, e.g., [13, Proof of Lemma 5.1]. Defining the
function

Hf,q(tq) :=
∫ ∞

0

∫ x1

0
· · ·
∫ xq−1

0
Gf (tq,xq) d ~xq, (19)

we see that

E[mq(2Bex)] = q!E[H2Bex,q(Uq)] = q!
∫ y1

0
· · ·
∫ yq−1

0

∫ ∞
0

y1 · · · yqe
−y2

q /2F̃q(yq) dyq, (20)

where Uq = (U1, . . . , Uq), yq = (y1, . . . , yq) ∈ Rq
+ and

F̃q(yq) :=
∫ ∞

0

∫ x1

0
· · ·
∫ xq−1

0
exp

(
−
y1x

k
1 + (y2 − y1)xk

1 + · · ·+ (yq − yq−1)xk
q

k!

)
d ~xq.

Finally, the expression for the moments in Theorem 1 follows by first changing the order
of integration in (20) and then by making the change of variables wi = yi − yi−1 for
2 ≤ i ≤ q. J

Following the idea of the proof of Theorem 1, we obtain the following convergence of the
first moment of the number of r-records Kr(Tn). This provides a proof of [7, Lemma 4.10].

I Lemma 10. Let k ∈ N. Let Tn be a Galton-Watson tree conditioned on its number of
vertices being n ∈ N with offspring distribution ξ satisfying (1). For r ∈ {1, . . . k}, we have
that

n−1+ r
2k E[Kr(Tn)]→ (k!) r

k

k

Γ( r
k )Γ

(
1− r

2k

)
Γ(r)

(
σ√
2

) r
k

, as n→∞.

Proof. The proof follows by a simple adaptation of the argument used in the proof of
Theorem 1 by using Lemma 5 (with an = n−1/2), Lemma 6 and Lemma 8. One only needs
to notice that

E
[∫ 1

0
Bex(t)−r/k dt

]
= 2 r

2k Γ
(

1− r

2k

)
which follows from the well-known density function of Bex(t); see [5, II.1.4]. J

AofA 2020



5:10 The k-Cut Model in Conditioned Galton-Watson Trees

References
1 Louigi Addario-Berry, Nicolas Broutin, and Cecilia Holmgren. Cutting down trees with a

Markov chainsaw. Ann. Appl. Probab., 24(6):2297–2339, 2014. doi:10/f22cjg.
2 David Aldous. The continuum random tree. II. An overview. In Stochastic Analysis (Durham,

1990), volume 167 of London Math. Soc. Lecture Note Ser., pages 23–70. Cambridge Univ.
Press, Cambridge, 1991.

3 David Aldous. The continuum random tree. III. Ann. Probab., 21(1):248–289, 1993. doi:
10/ckg9qj.

4 Gabriel Berzunza, Xing Shi Cai, and Cecilia Holmgren. The k-cut model in deterministic and
random trees. arXiv e-prints, July 2019. arXiv:1907.02770.

5 Robert M. Blumenthal. Excursions of Markov Processes. Probability and Its Applications.
Birkhäuser Boston, Inc., Boston, MA, 1992.

6 Xing Shi Cai and Cecilia Holmgren. Cutting resilient networks – complete binary trees. The
Electronic Journal of Combinatorics, 26(4):P4.43, December 2019. doi:10/ggmnn3.

7 Xing Shi Cai, Cecilia Holmgren, Luc Devroye, and Fiona Skerman. k-cut on paths and some
trees. Electron. J. Probab., 24:22 pp., 2019. doi:10/ggcq7j.

8 Michael Drmota, Alex Iksanov, Martin Moehle, and Uwe Roesler. A limiting distribution for
the number of cuts needed to isolate the root of a random recursive tree. Random Structures
Algorithms, 34(3):319–336, 2009. doi:10/ftj6gh.

9 Cecilia Holmgren. Random records and cuttings in binary search trees. Combin. Probab.
Comput., 19(3):391–424, 2010. doi:10/b56679.

10 Cecilia Holmgren. A weakly 1-stable distribution for the number of random records and
cuttings in split trees. Adv. in Appl. Probab., 43(1):151–177, 2011.

11 Alex Iksanov and Martin Möhle. A probabilistic proof of a weak limit law for the number of
cuts needed to isolate the root of a random recursive tree. Electron. Comm. Probab., 12:28–35,
2007. doi:10/fz3c45.

12 Svante Janson. Random records and cuttings in complete binary trees. In Mathematics and
Computer Science. III, Trends Math., pages 241–253. Birkhäuser, Basel, 2004.

13 Svante Janson. Random cutting and records in deterministic and random trees. Random
Structures Algorithms, 29(2):139–179, 2006. doi:10/dk76cq.

14 Olav Kallenberg. Foundations of Modern Probability. Probability and Its Applications (New
York). Springer-Verlag, New York, second edition, 2002.

15 Jean-François Marckert and Abdelkader Mokkadem. The depth first processes of Galton-
Watson trees converge to the same Brownian excursion. Ann. Probab., 31(3):1655–1678, 2003.
doi:10/dwgcwz.

16 A. Meir and J. W. Moon. Cutting down random trees. J. Austral. Math. Soc., 11:313–324,
1970. doi:10/b8bdzq.

17 A. Meir and J.W. Moon. Cutting down recursive trees. Mathematical Biosciences, 21(3):173–
181, 1974. doi:10/dkdjtv.

18 Alois Panholzer. Destruction of recursive trees. In Mathematics and Computer Science. III,
Trends Math., pages 267–280. Birkhäuser, Basel, 2004.

19 Alois Panholzer. Cutting down very simple trees. Quaest. Math., 29(2):211–227, 2006.
doi:10/chw83w.

20 Daniel Revuz and Marc Yor. Continuous Martingales and Brownian Motion, volume 293 of
Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, third edition, 1999.

https://doi.org/10/f22cjg
https://doi.org/10/ckg9qj
https://doi.org/10/ckg9qj
http://arxiv.org/abs/1907.02770
https://doi.org/10/ggmnn3
https://doi.org/10/ggcq7j
https://doi.org/10/ftj6gh
https://doi.org/10/b56679
https://doi.org/10/fz3c45
https://doi.org/10/dk76cq
https://doi.org/10/dwgcwz
https://doi.org/10/b8bdzq
https://doi.org/10/dkdjtv
https://doi.org/10/chw83w


Largest Clusters for Supercritical Percolation on
Split Trees
Gabriel Berzunza
Department of Mathematics, Uppsala University, Sweden
gabriel.berzunza-ojeda@math.uu.se

Cecilia Holmgren
Department of Mathematics, Uppsala University, Sweden
cecilia.holmgren@math.uu.se

Abstract
We consider the model of random trees introduced by Devroye [13], the so-called random split trees.
The model encompasses many important randomized algorithms and data structures. We then
perform supercritical Bernoulli bond-percolation on those trees and obtain a precise weak limit
theorem for the sizes of the largest clusters. The approach we develop may be useful for studying
percolation on other classes of trees with logarithmic height, for instance, we have also studied the
case of complete d-regular trees.
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1 Introduction

In this extended abstract, we investigate the asymptotic behaviour of the sizes of the largest
clusters created by performing Bernoulli bond-percolation on random split trees. Split
trees were first introduced by Devroye [13] to encompass many families of trees that are
frequently used to model efficient data structures or sorting algorithms (we will be more
precise shortly). Some important examples of split trees are binary search trees [18], m-ary
search trees [25], quad trees [16], median-of-(2k + 1) trees [27], fringe-balanced trees [12],
digital search trees [11] and random simplex trees [13, Example 5].

To be more precise, we consider trees Tn of large but finite size n ∈ N and perform
Bernoulli bond-percolation with parameter pn ∈ [0, 1] that depends on the size of the tree
(i.e., one removes each edge in Tn with probability 1− pn, independently of the other edges,
inducing a partition of the set of vertices into connected clusters). In particular, we are going
to be interested in the supercritical regime, in the sense that with high probability, there
exists a giant cluster, that is of a size comparable to that of the entire tree.

Bertoin [2] established a simple characterization of tree families with n vertices and
percolation regimes which results in giant clusters. Roughly speaking, Bertoin [2] showed
that the supercritical regime corresponds to percolation parameters of the form 1− pn =
c/`(n) + o(1/`(n)) as n→∞, where c > 0 is fixed and `(n) is an approximation of the height
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of a typical vertex in the tree structure1. Then the size Γn of the cluster containing the root
satisfies limn→∞ n−1Γn = Γ(c) in distribution to some random variable Γ(c) 6≡ 0. In several
examples the supercritical percolation parameter satisfies

pn = 1− c/ lnn+ o (1/ lnn) , (1)

for some fixed parameter c > 0. For example, this happens for some important families of
random trees with logarithmic height, such as random recursive trees, preferential attachment
trees, binary search trees; see [14], [15, Section 4.4]. In those cases the random variable Γ(c)
is an (explicit) constant and the giant cluster is unique.

A natural problem in this setting is then to estimate the size of the next largest clusters.
Concerning trees with logarithmic height, Bertoin [3] proved that in the supercritical regime,
the sizes of the next largest clusters of a uniform random recursive tree, normalized by a
factor lnn/n, converge to the atoms of some Poisson random measure; see also [1]. This
result was extended by Bertoin and Bravo [4] to preferential attachment trees. A different
example is the uniform Cayley trees where `(n) =

√
n and Γ(c) is not constant. But unlike

the previous examples, the number of giant components is unbounded as n→∞; see [24, 23].
As a motivation, it is important to point out that supercritical Bernoulli bond-percolation

on large but finite connected graphs is an ongoing subject of research in statistical physics
and mathematics. Furthermore, the estimation of the size of the next largest clusters is a
relevant question in this setting. An important example where the graph is not a tree is the
case of a complete graph with n vertices. A famous result due to Erdös and Rényi (see [9])
shows that Bernoulli bond-percolation with parameter pn = c/n + o(1/n) for c > 1 fixed,
produces with high probability as n→∞, a unique giant cluster of size close to θ(c)n, where
θ(c) is the unique solution to the equation x+ e−cx = 1, while the second, third, etc. largest
clusters have only size of order lnn.

The main purpose of this work is to investigate the case of random split trees which belong
to the family of random trees with logarithmic heights; see Devroye [13]. Informally speaking,
a random split tree T sp

n of “size” (or cardinality) n is constructed by first distributing n balls
(or keys) among the vertices of an infinite b-ary tree (b ∈ N) and then removing all sub-trees
without balls. Each vertex in the infinite b-ary tree is given a random non-negative split
vector V = (V1, . . . , Vb) such that

∑b
i=1 Vi = 1 and Vi ≥ 0, are drawn independently from

the same distribution. These vectors affect how balls are distributed. Its exact definition
is somewhat lengthy and we postpone it to Section 1.1. An important peculiarity is that
the number of vertices of T sp

n is often random which makes the study of split trees usually
challenging.

Recently, we have shown in [7, Lemma 1 and Lemma 2] that the supercritical percolation
regime in split trees of cardinality n corresponds precisely to parameters fulfilling (1). Notice
that here n corresponds to the number of balls (or keys) and not to the number of vertices.
More precisely, let C0

n (resp. Ĉ0
n) be the number of balls (resp. number of vertices) in the

percolation cluster that contains the root. Then, in the regime (1) and under some mild
conditions on the split tree, it holds that

n−1C0
n

d−→ e−c/µ
(
resp. n−1Ĉ0

n
d−→ αe−c/µ

)
, as n→∞, (2)

where µ = bE[−V1 lnV1] (α > 0 is some constant depending on the split tree) and d−→
denotes convergence in distribution. Furthermore, the giant cluster is unique. These results
agree with that of Bertoin [2] even when the number of vertices in split trees is random and
the cluster sizes can be defined as either the number of balls or the number of vertices.

1 For two sequences of real numbers (An)n≥1 and (Bn)n≥1 such that Bn > 0, we write An = o(Bn) if
limn→∞An/Bn = 0.
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Loosely speaking, our main result shows that in the supercritical regime (1) the next
largest clusters of a split tree T sp

n have a size of order n/ lnn. Moreover, we obtain a limit
theorem in terms of certain Poisson random measures. A more precise statement will be
given in Theorems 1 and 2 below. These results exhibit that cluster sizes, in the supercritical
regime, of split-trees, uniform recursive trees and preferential attachment trees present similar
asymptotic behaviour. Finally, we point out that our present approach also applies to study
the size of the largest clusters for percolation on complete regular trees (see Theorem 3).

The approach developed in this work differs from that used to study the cases of uniform
random recursive trees (RRT) in [3] and preferential attachment trees in [4]. The method
of [3] is based on a coupling of Iksanov and Möhle [20] connecting the Meir and Moon [22]
algorithm for the isolation of the root in a RRT and a certain random walk. This makes use
of special properties of recursive trees (the so-called randomness preserving property, i.e., if
one removes an edge from a RRT, then the two resulting subtrees, conditionally on their
sizes, are independent RRT’s) which fail for split-trees. The basic idea of [4] is based on the
close relation of preferential attachment trees with Markovian branching processes and the
dynamical incorporation of percolation as neutral mutations. The recent work of Berzunza
[5] shows that one can also relate percolation on some types of split trees (but not all) with
general age-dependent branching processes (or Crump-Mode-Jagers processes) with neutral
mutations. However, the lack of the Markov property in those general branching processes
makes the idea of [4] difficult to implement.

A common feature in these previous works, namely [3] and [4], is that, even though one
addressed a static problem, one can consider a dynamical version in which edges are removed,
respectively vertices inserted, one after the other in a certain order as time passes. Here we
use a fairly different route and view percolation on split trees as a static problem.

We next introduce formally the family of random split trees and relevant background,
which will enable us to state our main results in Section 1.2.

1.1 Random split trees
In this section, we introduce the split tree generating algorithm with parameters b, s, s0, s1,V
and n introduced by Devroye [13]. Some of the parameters are the branch factor b ∈ N, the
vertex capacity s ∈ N, and the number of balls (or cardinality) n ∈ N. The additional integers
s0 and s1 are needed to describe the ball distribution process. They satisfy the inequalities
0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. The so-called random split vector V = (V1, . . . , Vb)
is a random non-negative vector with

∑b
i=1 Vi = 1 and Vi ≥ 0, for i = 1, . . . , b.

Consider an infinite rooted b-ary tree T, i.e., every vertex has b children. We view each
vertex of T as a bucket with capacity s and we assign to each vertex u ∈ T an independent
copy Vu = (Vu,1, . . . , Vu,b) of the random split vector V . Let C(u) denote the number of balls
in vertex u, initially setting C(u) = 0 for all u. We call u a leaf if C(u) > 0 and C(v) = 0
for all children v of u, and internal if C(v) > 0 for some strict descendant v of u. The split
tree T sp

n is constructed recursively by distributing n balls one at time to generate a subset of
vertices of T. The balls are labeled using the set {1, 2, . . . , n} in the order of insertion. The
j-th ball is added by the following procedure.
1. Insert j to the root.
2. While j is at an internal vertex u ∈ T, choose child i with probability Vu,i and move j to

child i.
3. If j is at a leaf u with C(u) < s, then j stays at u and C(u) increases by 1.

If j is at a leaf with C(u) = s, then the balls at u are distributed among u and its children
as follows. We select s0 ≤ s of the balls uniformly at random to stay at u. Among the
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remaining s+ 1− s0 balls, we uniformly at random distribute s1 balls to each of the b
children of u. Each of the remaining s + 1 − s0 − bs1 balls is placed at a child vertex
chosen independently at random according to the split vector assigned to u. This splitting
process is repeated for any child which receives more than s balls.

We stop once all n balls have been placed in T and we obtain T sp
n by deleting all vertices

u ∈ T such that the sub-tree rooted at u contains no balls. Note that an internal vertex of
T sp
n contains exactly s0 balls, while a leaf contains a random amount in {1, ..., s}. Notice

also that in general the number N of vertices of T sp
n is a random variable while the number

of balls n is deterministic.
It is important to mention that depending on the choice of the parameters b, s, s0, s1

and the distribution of V, several important data structures may be modeled. For instance,
binary search trees correspond to b = 2, s = s0 = 1, s1 = 0 and V distributed as (U, 1− U),
where U is an uniform random variable on [0, 1] (in this case N = n). Some other relevant
(and more complicated) examples of split trees are m-ary search trees, median-of-(2k + 1)
trees, quad trees, simplex tree; see [13, 19, 10], for details and more examples.

In the present work, we assume without loss of generality that the components of the
split vector V are identically distributed; this can be done by using random permutations as
explained in [13]. In particular, we have that E[V1] = 1/b. We frequently use the following
notation. Set

µ := bE[−V1 lnV1]. (3)

Note that µ ∈ (0, ln b). The quantity was first introduced by Devroye [13] to study the height
of T sp

n as the number of balls increases.
In the study of split trees, the following condition is often assumed:

I Condition 1. Assume that P(V1 = 1) = P(V1 = 0) = 0 and that V1 is not monoatomic,
that is, V1 6= 1/b.

We sometimes consider the following condition:

I Condition 2. Suppose that lnV1 is non-lattice. Furthermore, for some α > 0 and ε > 0,

E[N ] = αn+O

(
n

ln1+ε n

)
.

Recall that for two sequences of real numbers (An)n≥1 and (Bn)n≥1 such that Bn > 0, one
writes An = O(Bn) if lim supn→∞ |An|/Bn <∞. Condition 2 first appears in [10, equation
(52)] for the study of the total path length of split trees.

Holmgren [19, Theorem 1.1] showed that if lnV1 is non-lattice then there exists a constant
α > 0 such that E[N ] = αn+ o(n) and furthermore V ar(N) = o(n2). However, this result is
not enough for our purpose since an extra control in E[N ] is needed (see Theorem 2 below).
On the other hand, Condition 2 is satisfied in many interesting cases. For instance, it holds
for m-ary search trees [21]. Moreover, Flajolet et al. [17] showed that for most tries (as long
as lnV1 is non-lattice) Condition 2 holds. However, there are some special cases of random
split trees that do not satisfy Condition 2. For instance, tries (where s = 1 and s0 = 0) with
a fixed split vector (1/b, . . . , 1/b), in which case lnV1 is lattice.

1.2 Main results
In this section, we present the main results of this work. We consider Bernoulli bond-
percolation with supercritical parameter pn satisfying (1) on T sp

n . We denote by C0 (resp. Ĉ0)
the number of balls (resp. the number of vertices) of the cluster that contains the root and
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by C1 ≥ C2 ≥ · · · (resp. Ĉ1 ≥ Ĉ2 ≥ · · · ) the sequence of the number of balls (resp. the
number of vertices) of the remaining clusters ranked in decreasing order. For the sake of
simplicity, we have decided to remove the parameter n from our notation of Ci and Ĉi.

We now state the central results of this work. The first result corresponds to the size
being defined as the number of balls in the cluster.

I Theorem 1. Let T sp
n be a split tree that satisfies Condition 1 and suppose that pn fulfills

(1). Then,

n−1C0
d−→ e−c/µ, as n→∞,

where µ is the constant defined in (3) and c is defined in (1). Furthermore, for every fixed
i ∈ N, we have the convergence in distribution(

lnn
n
C1, . . . ,

lnn
n
Ci

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cµ−1e−c/µx−2dx.

The second result corresponds to the size being defined as the number of vertices in the
cluster.

I Theorem 2. Let T sp
n be a split tree that satisfies Conditions 1-2 and suppose that pn fulfills

(1). Then,

n−1Ĉ0
d−→ αe−c/µ, as n→∞,

where µ is the constant defined in (3), α is defined in Condition 2 and c is defined in (1).
Furthermore, for every fixed i ∈ N, we have the convergence in distribution(

lnn
n
Ĉ1, . . . ,

lnn
n
Ĉi

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cαµ−1e−c/µx−2dx.

Alternatively, the law of the limiting sequence in Theorems 1 and 2 can be described as
follows: for i ∈ N, 1/x1, 1/x2−1/x1, . . . , 1/xi−1/xi−1 are i.i.d. exponential random variables
with parameter cµ−1e−c/µ in Theorem 1, while in Theorem 2 they are exponential random
variables with parameter cαµ−1e−c/µ.

It is important to point out the similarity with the results for uniform random recursive
trees in [3] and preferential attachment trees in [4]. More precisely, the size of the second
largest cluster, and more generally, the size of the i-th largest cluster (for i ≥ 2) in the
supercritical regime is of order n/ lnn as in [3] and [4]. Moreover, their sizes are described
by the atoms of a Poisson random measure on (0,∞) whose intensity measure only differ
by a constant factor. For example, for uniform random recursive trees [3] the intensity is
ce−cx−2dx.

As we mentioned in the introduction, we shall follow a different route to that used in [3]
and [4]. The approach developed in this work is based on a remark made in [2, Section 3] about
the behavior of the second largest cluster created by performing (supercritical) Bernoulli
bond-percolation on complete regular trees. More precisely, consider a rooted complete
regular d-ary tree T d

h of height h ∈ N, where d ≥ 2 is some integer (i.e., each vertex has
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exactly out-degree d). Notice that there are dk vertices at distance k = 0, 1, . . . , h from the
root and a total of (dh+1 − 1)/(d− 1) vertices. We then perform Bernoulli bond-percolation
with parameter

qh = 1− ch−1 + o(h−1), (4)

where c > 0 is some fixed parameter. It has been shown in [2, Section 3] that this choice
of the percolation parameter corresponds precisely to the supercritical regime, that is, the
root cluster is the unique giant component. Because the subtree rooted at a vertex at height
i ≤ h is again a complete regular d-ary tree with height h − i, [2, Corollary 1] essentially
shows that the size (number of vertices) G1

h of the largest cluster which does not contain the
root is close to

e−cdh−τ1(h)+1/(d− 1),

where τ1(h) is the smallest height at which an edge has been removed. Notice that there are
d(di − 1)/(d− 1) edges with height at most i, so the distribution of τ1(h) is given by

P(τ1(h) > i) = q
d(di−1)/(d−1)
h , i = 1, . . . , h.

We use the notation logd x = ln x/ ln d for the logarithm with base d of x > 0, and y =
byc+ {y} for the decomposition of a real number y as the sum of its integer and fractional
parts. It follows that in the regime (4) and as soon as one assumes {logd h} → ρ ∈ [0, 1), as
h→∞, then τ1(h)− logd h converges in distribution, and therefore, hd−hG1

h also converges
in distribution.

Our strategy is then to adapt and improve the above argument to study the size of the
i-th largest cluster, for i ≥ 2, in a random split tree with n balls. We also show that this
approach can be used to obtain a result similar as Theorem 1 or Theorem 2 for supercritical
percolation on complete d-regular trees of height h ∈ N. More precisely, write G0 for the
number of vertices of the cluster that contains the root and G1 ≥ G2 ≥ · · · for the sequence
of the number vertices of the remaining clusters ranked in decreasing order; for simplicity,
we omit the parameter h from our notation. We introduce for every ρ ∈ [0, 1) a measure Λρ
on (0,∞) by letting

Λρ([x,∞)) := d−ρ+bρ−logd xc+1/(d− 1), x > 0.

I Theorem 3. Let T d
h be a complete regular d-ary tree of height h ∈ N such that {logd h} →

ρ ∈ [0, 1), as h→∞, and suppose that qh fulfills (4). Then,

d−hG0
d−→ de−c/(d− 1), as h→∞,

where the constant c is defined in (4). Furthermore, for every fixed i ∈ N, we have the
convergence in distribution

(hd−hG1, . . . , hd
−hGi)

d−→ (x1, . . . , xi), as h→∞,

where x1 ≥ x2 ≥ · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity c d

d−1e
−cΛρ(dx).

We conclude this extended abstract by providing in Section 2 a fair enough guideline of
the proof of Theorem 1. The proofs of Theorem 2 and Theorem 3 follows by an adaptation
of the arguments used in the proof of Theorem 1. An important ingredient in the proof of
Theorem 1 is Lemma 5 that establishes a law of large number for the number of sub-trees
in T sp

n with cardinality (number of balls) larger than n/ lnn, which may be of independent
interest. Detailed proofs of all our results are going to be given in the complete version [6].
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2 Proof of Theorem 1

We split the proof of Theorem 1 in two parts. We start by studying the sizes of percolated
sub-trees that are close to the root. One could refer to these percolated sub-trees as the
early clusters since their distance to the root is the smallest. Then we show that the largest
percolation clusters can be found amongst those (early) percolated sub-trees.

2.1 Sizes of early clusters
For i ∈ N, let ei,n be the edge with the i-th smallest height (we break ties by ordering the
edges from left to right, however, the order is not relevant in the proofs) that has been
removed and vi,n the endpoint (vertex) of ei,n that is the furthest away from the root of
T sp
n . Let Ti,n be the sub-tree of T sp

n that is rooted at vi,n and let ni,n be the number of balls
stored in the sub-tree Ti,n. For t ∈ [0,∞), we write

Nn(0) := 0 and Nn(t) :=
∑
i≥1

1{ni,n≥ n
t ln n} =

∑
i≥1

1{(n/ni,n) 1
ln n≤t}

for the number of sub-trees Ti,n that store more than bn/(t lnn)c balls.

I Theorem 4. Suppose that Condition 1 holds and that pn fulfills (1). Then, the following
convergence holds in the sense of weak convergence of finite dimensional distributions,

(Nn(t), t ≥ 0) d−→ (N(t), t ≥ 0), as n→∞,

where (N(t), t ≥ 0) is a (classical) Poisson process with intensity cµ−1.

We stress that the convergence in Theorem 4 can be improved in order to show conver-
gence in distribution of the process (Nn(t), t ≥ 0) for the Skorohod topology on the space
D([0,∞),R) of right-continuous functions with left limits to a Poisson process with intensity
cµ−1; see, for instance, [8, Theorem 12.6, Chapter 3].

The proof of Theorem 4 uses the following result which provides a law of large number
for the number of sub-trees in T sp

n with cardinality larger than n/ lnn. More precisely, for a
vertex v ∈ T sp

n that is not the root ◦, let nv denote the number of balls stored in the sub-tree
of T sp

n rooted at v. Define

Mn(t) := #
{
v ∈ T sp

n : v 6= ◦ and nv ≥
n

t lnn

}
, for t ∈ [0,∞).

I Proposition 5. Suppose that Condition 1 holds. Then, for every fixed t ∈ [0,∞), we have
that (lnn)−1Mn(t)→ µ−1t, in probability, as n→∞.

The proof of Proposition 5 is rather technical and it is given in the complete version [6].

Proof of Theorem 4. For a vertex v ∈ T sp
n that is not the root ◦, let ev be the edge that

connects v with its parent. Define the event Ev := {the edge ev has been removed after
percolation} and write ξv := 1Ev

. So, (ξv)v 6=◦ is a sequence of i.i.d. Bernoulli random
variables with parameter 1 − pn (that is, the probability of removing an edge). Then, it
should be clear that

Nn(t) =
∑
v 6=◦

1{nv≥ n
t ln n}ξv, t ∈ [0,∞).
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6:8 Largest Clusters for Supercritical Percolation on Split Trees

Let Ω be the σ-algebra generated by (nv)v 6=◦. Conditioning on Ω, we have that
(Nn(t), t ≥ 0) has independent increments and that for 0 ≤ s ≤ t, Nn(t) − Nn(s) d=
Bin (Mn(t)−Mn(s), 1− pn), where Bin(m, q) denotes a binomial (m, q) random variable.
Therefore, our claim follows from Proposition 5 by appealing to [8, Theorem 12.6, Chapter 3].

J

I Corollary 6. Suppose that Condition 1 holds and that pn fulfills (1). Then, for every fixed
i ∈ N, we have the convergence in distribution(

lnn
n
n1,n, . . . ,

lnn
n
ni,n

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cµ−1x−2dx.

Proof. Notice that (n/n1,n) 1
lnn ≤ (n/n2,n) 1

lnn ≤ · · · is the sequence of atoms (or occurrence
times) of the counting process (Nn(t), t ≥ 0) ranked in increasing order. Then our claim
follows directly from Theorem 4, the mapping theorem ([8, Theorem 2.7, Chapter 1]) and
basic properties of Poisson random measures (see [26, Proposition 3.7, Chapter 3]). J

2.2 Asymptotic sizes of the largest percolation clusters
Recall that, for i ∈ N, we let ei,n be the edge with the i-th smallest height that has been
removed and vi,n the endpoint (vertex) of ei,n that is the furthest away from the root of T sp

n .
Recall also that Ti,n denotes the sub-tree of T sp

n that is rooted at vi,n and that we write ni,n
for the number of balls stored in the sub-tree Ti,n. We denote by C̃i the size (number of balls)
of the root-cluster of Ti,n after performing percolation (where here of course root means vi,n).
We also write C̃∗i for the size (number of balls) of the second largest cluster of Ti,n that does
not contain its root. In the sequel, we shall use the following notation An = Bn + op(f(n)),
where An and Bn are two sequences of real random variables and f : N→ (0,∞) a function,
to indicate that limn→∞ |An −Bn|/f(n) = 0 in probability.

I Proposition 7. Suppose that Condition 1 holds and that pn fulfills (1). For every fixed
i ∈ N, C̃∗i = op(n/ lnn). Furthermore, we have the convergence in distribution(

C̃1

n1,n
, . . . ,

C̃i
ni,n

)
d−→ (e−c/µ, . . . , e−c/µ), as n→∞.

Proof. Notice that it is enough to show our claim for i = 1 since convergence in distribution
to a constant is equivalent to convergence in probability, and thus, one can easily deduce
the joint convergence for every fixed i ∈ N. Given n1,n, we see that T1,n is a split tree with
n1,n balls. Notice that supercritical Bernoulli bond-percolation in T1,n corresponds to a
percolation parameter satisfying

1− pn1,n
= c/ lnn1,n + o (1/ lnn1,n) ,

where c > 0 is fixed. Notice also that Corollary 6 implies that (lnn1,n)/ lnn → 1, in
probability, as n → ∞. Hence 1 − pn1,n

= 1 − pn + op (1/ lnn). Therefore, a simple
application of [7, Lemma 2] shows that C̃1/n1,n → e−c/µ, in distribution, as n→∞, which
proves the second assertion. Moreover, [7, Lemma 2] also shows that C̃∗1/n1,n → 0, in
distribution, as n → ∞, and by Corollary 6, we conclude that C̃∗1 = op(n/ lnn). This
completes the proof. J
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I Corollary 8. Suppose that Condition 1 holds and that pn fulfills (1). Then, for every fixed
i ∈ N, we have the convergence in distribution(

lnn
n
C̃1, . . . ,

lnn
n
C̃i

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cµ−1e−c/µx−2dx.

Proof. This follows from Corollary 6, Proposition 7, the mapping theorem ([8, Theorem 2.7,
Chapter 1]) and basic distributional properties of the atoms of Poisson random measures. J

The last ingredient in the proof of Theorem 1 consists in verifying that for every fixed
i ∈ N, one can choose ` ∈ N large enough such that with probability tending to 1, as n→∞,
the i-th largest percolation cluster of T sp

n can be found amongst the root-clusters of the
percolated tree-components T1,n, . . . , T`,n. Rigorously, denote by

C̃1,` ≥ C̃2,` ≥ · · · ≥ C̃`,`

the rearrangement in decreasing order of the C̃i for i = 1, . . . , `. We then adapt the idea of
[3, Lemma 6] (details are given in the complete version [6]).

I Lemma 9. Suppose that Condition 1 holds and that pn fulfills (1). Then for each fixed
i ∈ N,

lim
`→∞

lim inf
n→∞

P
(
C̃k,` = Ck for every k = 1, . . . , i

)
= 1.

We can now finish the proof of Theorem 1.

Proof of Theorem 1. We have already proven the first claim in [7, Lemma 2]. We then only
prove the second claim. For every fixed i ∈ N, consider a continuous function f : [0,∞)i →
[0, 1] and fix ε > 0. According to Lemma 9, we may choose ` ∈ N sufficiently large so that
there exists nε ∈ N such that the upper bound

E
[
f

(
lnn
n
C1, . . . ,

lnn
n
Ci

)]
≤ E

[
f

(
lnn
n
C̃1,`, . . . ,

lnn
n
C̃i,`

)]
+ ε

holds for all n ≥ nε. We now deduce from Corollary 8 and the previous bound that

lim sup
n→∞

E
[
f

(
lnn
n
C1, . . . ,

lnn
n
Ci

)]
≤ E [f (x1, . . . , xi)] + ε.

Because ε can be arbitrary small and f replaced by 1− f , this establishes Theorem 1. J
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Abstract
Baxter permutations, plane bipolar orientations, and a specific family of walks in the non-negative
quadrant are well-known to be related to each other through several bijections. We introduce a
further new family of discrete objects, called coalescent-walk processes, that are fundamental for our
results. We relate these new objects with the other previously mentioned families introducing some
new bijections.

We prove joint Benjamini–Schramm convergence (both in the annealed and quenched sense) for
uniform objects in the four families. Furthermore, we explicitly construct a new fractal random
measure of the unit square, called the coalescent Baxter permuton and we show that it is the scaling
limit (in the permuton sense) of uniform Baxter permutations.

To prove the latter result, we study the scaling limit of the associated random coalescent-walk
processes. We show that they converge in law to a continuous random coalescent-walk process
encoded by a perturbed version of the Tanaka stochastic differential equation. This result has
connections (to be explored in future projects) with the results of Gwynne, Holden, Sun (2016) on
scaling limits (in the Peanosphere topology) of plane bipolar triangulations.

We further prove some results that relate the limiting objects of the four families to each other,
both in the local and scaling limit case.
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1 Introduction and main results

Baxter permutations were introduced by Glen Baxter in 1964 [3] to study fixed points of
commuting functions. Baxter permutations are permutations avoiding the two vincular
patterns 2 41 3 and 3 14 2, i.e. permutations σ such that there are no indices i < j < k such
that σ(j + 1) < σ(i) < σ(k) < σ(j) or σ(j) < σ(k) < σ(i) < σ(j + 1).
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Figure 1 The diagrams of two uniform Baxter permutations of size 3253 (left) and 4520 (right).
(How these permutations were obtained is discussed in Appendix C).

In the last 30 years, several bijections between Baxter permutations, plane bipolar
orientations and certain walks in the plane1 have been discovered. These relations between
discrete objects of different nature are a beautiful piece of combinatorics2 that we aim at
investigating from a more probabilistic point of view in this extended abstract. The goal of
our work is to explore local and scaling limits of these objects and to study the relations
between their limits. Indeed, since these objects are related by several bijections at the
discrete level, we expect that most of the relations among them also hold in the “limiting
discrete and continuous worlds”.

We mention that some limits of these objects (and related ones) were previously investig-
ated. Dokos and Pak [11] explored the expected limit shape of doubly alternating Baxter
permutations, i.e. Baxter permutations σ such that σ and σ−1 are alternating. In their
article they claimed that “it would be interesting to compute the limit shape of random Baxter
permutations”. One of the main goals of our work is to answer this question by proving
permuton convergence for uniform Baxter permutations (see Theorem 5 below). For plane
walks (i.e. walks in Z2) conditioned to stay in a cone, we mention the remarkable works of
Denisov and Wachtel [10] and Duraj and Wachtel [12] where they proved (together with many
other results) convergence towards Brownian meanders or excursions in cones. This allowed
Kenyon, Miller, Sheffield and Wilson [19] to show that the quadrant walks encoding uniformly
random plane bipolar orientations (see Section 2.2 for more details) converge to a Brownian
excursion of correlation −1/2 in the quarter-plane. This is interpreted as Peanosphere
convergence of the maps decorated by the Peano curve (see Section 2.2 for further details)
to a

√
4/3-Liouville Quantum Gravity (LQG) surface decorated by an independent SLE12.

This result was then significantly strengthened by Gwynne, Holden and Sun [14] who proved
joint convergence for the map and its dual, in the setting of infinite-volume triangulations. In
proving Theorem 5 we extend some of the methods and results of [14], with a key difference
in the way limiting objects are defined. We discuss this in more precise terms at the end of
this introduction.

So far we have considered three families of objects: Baxter permutations (denoted by P);
walks in the non-negative quadrant (W) starting on the y-axis and ending on the x-axis,
with some specific admissible increments defined in the forthcoming Equation (4); and
plane bipolar orientations (O). For our purposes, specifically for the proof of the permuton
convergence, we introduce in Section 2.4 a fourth family of objects called coalescent-walk
processes (C).

1 We refer to Section 2 for a precise definition of all these objects.
2 Quoting the abstract of [13].
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We denote by Wn the subset of W consisting of quadrant walks of size n (and similarly
Cn,Pn,On for the other three families). We will present four size-preserving bijections
(denoted using two letters that refer to the domain and co-domain) between these four
families, summarized in the following diagram:

W C

O P

WC

CPOW

OP

, (1)

where the mapping OW was introduced in [19] and OP in [5]; the others are new. Our first
result is the following:

I Theorem 1. The diagram in Equation (1) commutes. In particular, CP ◦WC :W → P
is a size-preserving bijection.

Our second result deals with local limits, more precisely Benjamini–Schramm limits.
Informally, Benjamini–Schramm convergence for discrete objects looks at the convergence of
the neighborhoods (of any fixed size) of a uniformly distinguished point of the object (called
root). In order to properly define the Benjamini–Schramm convergence for the four families,
we need to present the respective local topologies. We defer this task to the complete version
of this abstract, here we just mention that the local topology for graphs (and so plane bipolar
orientations) was introduced by Benjamini and Schramm [4] while the local topology for
permutations was introduced by the first author [6]. Local topologies for plane walks and
coalescent-walk processes can be defined in a similar way. We denote by W̃• the completion
of the space of rooted walks

⊔
n≥1Wn × [n] with respect to the metric defining the local

topology. The spaces C̃•, S̃•, m̃• are defined likewise from C,P,O.
We define below the candidate limiting objects. As a matter of fact, a formal definition

requires an extension of the mappings in Equation (1) to infinite-volume objects (for the
mappings WC and OW−1 also an extension to walks that are not conditioned in the quadrant).
We do not present all the details of such extensions, but they can be easily guessed from our
description of the mappings WC,OW,CP and OP given in Section 2.

Let ν denote the probability distribution on Z2 given by:

ν = 1
2δ(+1,−1) +

∑
i,j≥0

2−i−j−3δ(−i,j), where δ denotes the Dirac measure, (2)

and let3 W̄ = (X̄, Ȳ ) = (W̄t)t∈Z be a bidirectional random plane walk with step distribution
ν, with value (0, 0) at time 0. Let Z̄ = WC(W̄ ) be the corresponding infinite coalescent-walk
process, σ̄ = CP(Z̄) the corresponding infinite permutation on Z (in this context, an infinite
permutation is a total order of Z), and m̄ = OW−1(W̄ ) the corresponding infinite map.

I Theorem 2. For every n ∈ Z>0, let Wn, Zn, σn, and mn denote uniform objects of
size n in Wn, Cn, Pn, and On respectively, related by the bijections of Equation (1). For
every n ∈ Z>0, let in be an independently chosen uniform index of [n]. Then we have joint
convergence in distribution in the space W̃• × C̃• × S̃• × m̃•:

((Wn, in), (Zn, in), (σn, in), (mn, in)) d−−−−→
n→∞

(W̄ , Z̄, σ̄, m̄).

3 Here and throughout the paper we denote random quantities using bold characters.
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7:4 Scaling and Local Limits of Baxter Permutations

I Remark 3. We give a few comments on this result.
1. The mapping OW−1 naturally endows the map mn with an edge labeling and the root
in of mn is chosen according to this labeling.

2. We can also prove a quenched version of the above result (of annealed type) for all the
four objects (not presented in this extended abstract). It entails (see [6, Theorem 2.32])
that consecutive pattern densities of σn jointly converge in distribution.

3. The fact that the four convergences are joint follows from the fact that the extensions of
the mappings in Equation (1) to infinite-volume objects are a.s. continuous.

Our third (and main) result is a scaling limit result for Baxter permutations (see Figure 1
for some simulations), in the framework of permutons developed by [17]. A permuton µ

is a Borel probability measure on the unit square [0, 1]2 with uniform marginals, that is
µ([0, 1]× [a, b]) = µ([a, b]× [0, 1]) = b− a, for all 0 ≤ a ≤ b ≤ 1. Any permutation σ of size
n ≥ 1 may be interpreted as the permuton µσ given by the sum of Lebesgue area measures

µσ(A) = n

n∑
i=1

Leb
(
[(i− 1)/n, i/n]× [(σ(i)− 1)/n, σ(i)/n] ∩A

)
, (3)

for all Borel measurable sets A of [0, 1]2. LetM be the set of permutons. As for general
probability measure, we say that a sequence of (deterministic) permutons (µn)n converges
weakly to µ (simply denoted µn → µ) if

∫
[0,1]2 fdµn →

∫
[0,1]2 fdµ, for every (bounded and)

continuous function f : [0, 1]2 → R. With this topology, M is compact. Convergence for
random permutations is defined as follows:

I Definition 4. We say that a random permutation σn converges in distribution to a random
permuton µ as n → ∞ if the random permuton µσn

converges in distribution to µ with
respect to the weak topology.

Random permuton convergence entails joint convergence in distribution of all (classical)
pattern densities (see [1, Theorem 2.5]). The study of permuton limits, as well as other
scaling limits of permutations, is a rapidly developing field in discrete probability theory, see
for instance [1, 2, 7, 8, 16, 18, 20, 21, 22]. Our main result is the following:

I Theorem 5. Let σn be a uniform Baxter permutation of size n. There exists a random
permuton µB such that µσn

d−→ µB .

An explicit construction of the limiting permuton µB, called the coalescent Baxter
permuton, is given in Section 3.2. The proof of Theorem 5 is based on a result on scaling
limits of the coalescent-walk processes Zn, which appears to be of independent interest, and
is discussed in Section 3.1. In particular, the convergence of uniform Baxter permutations is
joint4 with that of the conditioned versions of Wn and Zn presented in Theorem 26.

We finally discuss the relations with the work of Gwynne, Holden and Sun [14]. They
show that for infinite-volume bipolar oriented triangulations, the explorations of the two
tree/dual tree pairs of the map and its dual converge jointly. The limit is the pair of planar
Brownian motions which encode the same

√
4/3-LQG surface decorated by both an SLE12

curve and the “dual” SLE12 curve, traveling in a direction perpendicular (in the sense of
imaginary geometry) to the original curve. As shown below (Lemma 12), the bijection of [5]

4 We leave a proper claim of joint convergence to the full version of this paper. However the joint
distribution of the scaling limits is the one presented in Section 3.2.
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between plane bipolar orientations and Baxter permutations can be rewritten in terms of
the interaction of these two tree/dual tree pairs, which explains the connection between our
work and the one of [14].

We prove Theorem 5 by extending some of their constructions to finite-volume general
maps, which allows us to provide an analog of their result (that are restricted to triangulations)
for general plane bipolar orientations in finite volume, jointly with the convergences above5.
More precisely, the coalescent-walk process defined in Section 2.4.1 is an extension of the
random walk X defined in [14, Section 2.1]. The fact that it encodes the spanning tree of the
dual map (Proposition 19) is a version of [14, Lemma 2.1], albeit we present it differently.
Our main technical ingredient is the convergence of the coalescent-walk process driven by
a random plane walk of Theorem 24. It corresponds to [14, Theorem 4.1]. The way the
limiting object (the right-hand side of Equation (10)) is defined is however very different,
and the proofs differ as a consequence. In our case, it comes from a stochastic differential
equation (Equation (7)), for which existence and uniqueness are known from the literature
[9, 23]. In their case, it is built using imaginary geometry, and characterized by its excursion
decomposition. These are nonetheless two descriptions of the same object, providing an SDE
formulation of an intricate imaginary geometry coupling. We wish to explore consequences
of this in further works.

Outline of the extended abstract. The remainder of the abstract is organized as follows.
In Section 2 we present the objects and the mappings involved in the diagram in Equation (1).
Moreover, we sketch the proof of Theorem 1. Section 3 is devoted to developing the theory
for the proof of Theorem 5. In particular, in Section 3.1 we present the aforementioned
results for scaling limits of coalescent-walk processes, and in Section 3.2 we give an explicit
construction of the limiting permuton for Baxter permutations. Finally, in Appendix A we
prove our main technical ingredient (Theorem 24), and in Appendix B we finish the proof of
Theorem 5. Note that we leave the proof of Theorem 2 out of this abstract.

2 Bipolar orientations, walks in the non-negative quadrant, Baxter
permutations and coalescent-walk processes

2.1 Plane bipolar orientations
We recall that a planar map is a connected graph embedded in the plane with no edge-
crossings, considered up to continuous deformation. A map has vertices, edges, and faces,
the latter being the connected components of the plane remaining after deleting the edges.
The outer face is unbounded, the inner faces are bounded.

I Definition 6. A plane bipolar orientation (or simply bipolar orientation) is a planar map
with oriented edges such that

there are no oriented cycles;
there is exactly one vertex with only outgoing edges (the source, denoted s), and exactly
one vertex with only incoming edges (the sink, denoted s′); all other vertices, called
non-polar, have both types of edges;
the source and the sink are both incident to the outer face.

The size of a bipolar orientation m is its number of edges and will be denoted with |m|.

5 Not presented in this extended abstract.
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7:6 Scaling and Local Limits of Baxter Permutations

Every bipolar orientation can be plotted in the plane in such a way that every edge is
oriented from bottom to top (as done for example in Figure 2).

s′

s
m

right external faceleft external face

m∗

s∗(s′)∗

Figure 2 In black, a bipolar orientation m of size 10. Note that every edge is oriented from
bottom to top. In red, its dual map m∗. Similarly, we plot the dual map in such a way that every
edge is oriented from right to left. This map will be used in several examples. In later pictures, the
orientation of each edge is not displayed.

Given a bipolar orientation, an edge e from v to w is bordered, in the clockwise cyclic
order, by its bottom vertex, its left face, its top vertex, its right face. It is useful, for the
consistency of definitions, to think of the external face as split in two (see Figure 2 for an
example): the left external face, and the right external face.

There is a natural notion of duality for a bipolar orientation m. It is the classical duality
for (unoriented) maps where the orientation of a dual edge between two primal faces is from
right to left. The primal right external face becomes the dual source, and the primal left
external face becomes the dual sink. This map m∗ is also a bipolar orientation (see Figure 2).
The map m∗∗ is just the reversal of the map m: the source and sink are exchanged, and all
edges are reversed.

Given a bipolar orientation m, its down-right tree T (m) may be defined as a set of edges
equipped with a parent relation, as follows.

The edges of T (m) are the edges of m.
Let e ∈ m and v its bottom vertex.

If v is the source, then e has no parent edge in T (m) (it is grafted to the root of T (m));
if v is not the source, the parent edge of e in T (m) is the right-most incoming edge
of v.

The tree T (m) can be drawn on top of m: the root of T (m) corresponds to the source s of
m, internal vertices of T (m) correspond to non-polar vertices of m, and leaves of T (m) are
the midpoints of some edges of m. Note that one can draw the trees T (m) and T (m∗∗) on
the map m without any crossing (see the left-hand side of Figure 3 for an example).

We conclude this section recalling that the exploration of a tree T is the visit of its vertices
(or its edges) following the contour of the tree in the clockwise order.

2.2 Kenyon-Miller-Sheffield-Wilson bijection
We now present a bijection between bipolar orientations and some walks in the non-negative
quadrant Z2

≥0, introduced in [19, Section 2] by Kenyon, Miller, Sheffield and Wilson.
Let m be a bipolar orientation. We consider the exploration of the tree T (m) (highlighted

in green in the middle picture of Figure 3) starting at the source s and ending at the last
visit of the sink s′. Note that this path (when reversed) is also the exploration of the tree
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1 2 3

4

5

s′

s s

s′

s

6

7

8

9 10

s′

Figure 3 Left: A bipolar orientation m with the trees T (m) (in blue) and T (m∗∗) (in red).
Middle: We add in green the interface path tracking the interface between the two trees (see
Section 2.2). Right: We label the edges of the bipolar orientations following the interface path.

T (m∗∗) stopped at the last visit of the source s. This path, called interface path6 since it
winds between the trees T (m) and T (m∗∗), identifies an ordering on the set E of edges of m
since every edge of T (m) corresponds exactly to one edge of m (see the right-hand side of
Figure 3 for an example). Let e1, e2, . . . , e|m| be the edges of m listed according to this order.

I Definition 7. Given a bipolar orientation m, the corresponding walk OW(m) =
(Wt)t∈[|m|] = (Xt, Yt)t∈[|m|] of size |m| in the non-negative quadrant Z2

≥0 is defined as
follows: for t ∈ [|m|], let Xt be the distance in the tree T (m) between the bottom vertex of et
and the root of T (m) (corresponding to the source s), and let Yt be the distance in the tree
T (m∗∗) between the top vertex of et and the root of T (m∗∗) (corresponding to the sink s′).

I Remark 8. The walk (0, X1 + 1, . . . , X|m| + 1) is the height process of the tree T (m). The
walk (0, Y|m| + 1, Y|m|−1 + 1, . . . , Y1 + 1) is the height process of the tree T (m∗∗).

Suppose that the left external face has h+ 1 edges and the right external face has k + 1
edges, for some h, k ≥ 0. Then the walk (Wt)1≤t≤|m| starts at (0, h), ends at (k, 0), and
stays in the non-negative quadrant Z2

≥0. We finally investigate the possible values for the
increments of the walk, i.e. the values of Wt+1 −Wt. We say that two edges of a tree are
consecutive if one is the parent of the other. We first highlight that the interface path of the
map m has two different behaviors when following the edges et and et+1:

either it is following two consecutive edges of T (m) (this is the case, for instance, of the
edges e3 and e4 on the right-hand side of Figure 3);
or it is first following et, then it is traversing a face of m, and finally is following et+1
(this is the case, for instance, of the edges e5 and e6 on the right-hand side of Figure 3).

When the latter case happens, the interface path splits the boundary of the traversed face in
two parts, a left and a right boundary.

Therefore the increments of the walk are either (+1,−1) (when et and et+1 are consecutive)
or (−i,+j), for some i, j ∈ Z≥0 (when, between et and et+1, the interface path is traversing
a face with i+ 1 edges on the left boundary and j + 1 edges on the right boundary). We
denote by A the set of possible increments, that is

A = {(+1,−1)} ∪ {(−i, j), i ∈ Z≥0, j ∈ Z≥0}. (4)

We denote by W the set of walks in the non-negative quadrant, starting at (0, h) and ending
at (k, 0) for some h ≥ 0, k ≥ 0, with increments in A.

6 The interface path goes sometimes under the name of Peano curve, see for instance [15].
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7:8 Scaling and Local Limits of Baxter Permutations

I Theorem 9 ([19, Theorem 1]). The mapping OW : O →W is a size-preserving bijection.

I Example 10. We consider the map m in Figure 3. The corresponding walk OW(m) is:(
(0, 2), (0, 3), (0, 3), (1, 2), (2, 1), (0, 3), (1, 2), (2, 1), (3, 0), (2, 0)

)
.

2.3 Baxter permutations and bipolar orientations
In [5], a bijection between Baxter permutations and bipolar orientations is given. We give
here a slightly different formulation of this bijection (more convenient for our purposes) and
then in Lemma 12 we state that the two formulations are equivalent.

I Definition 11. Let m be a bipolar orientation of size n ≥ 1. Recall that to every edge of
the map m corresponds its dual edge in the dual map m∗. The Baxter permutation OP(m)
associated with m is the only permutation π such that for every 1 ≤ i ≤ n, the i-th edge
visited in the exploration of T (m) corresponds to the π(i)-th edge visited in the exploration of
T (m∗). We say that this edge corresponds to the index i.

An example is given in Figure 4. The following result proves that OP is a bijection.

s′

sm

m∗

1

2

3

4

6
78

9

10

1
2 3

4

5

6

7

8

9 10

OP(m)=

8 1 2 456 7 9 10

1 2 3 4 5 6 7 8 9 10

3

5

Figure 4 Left: The bipolar orientation m and its dual m∗, already considered in Figure 2. We
plot in black the labeling of the edges of m obtained in Figure 3 and in red the labeling of the edges
of m∗ obtained using the same procedure used for m. Right: The permutation OP(m) obtained by
pairing the labels of the corresponding primal and dual edges between m and m∗.

I Lemma 12. The function OP : O → P is equal to the function Ψ : O → P defined in [5,
Section 3.2]. Therefore OP is a size-preserving bijection.

The definition of Ψ is the same as that of OP, with T (m∗) replaced by T (m−1), m−1 denoting
the symmetry of m along the vertical axis. So the proof (that we omit) amounts to showing
that these two trees visit the edges of m in the same order7.

2.4 Discrete coalescent-walk processes
Since the key ingredient for permuton convergence is the extraction of patterns (see Pro-
position 32), we introduce in this section a new tool in order to “extract patterns from the
plane walk” that encodes a Baxter permutation, namely coalescent-walk processes. Then,
in Section 2.4.1, we present a bijection between walks in the non-negative quadrant and

7 Actually they are related by a classic bijection between trees: the Lukasiewicz walk of T (m∗) is the
reversal of the height function of T (m−1).
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a specific kind of coalescent-walk processes, and in Section 2.4.2, we introduce a bijection
between these coalescent-walk processes and Baxter permutations. Composing these two
mappings we obtain another bijection between walks in the non-negative quadrant and
Baxter permutations. Finally, in Section 2.5 we complete the proof of Theorem 1.

I Definition 13. Let I be a (finite or infinite) interval of Z. We call coalescent-walk process
over I a family {(Z(t)

s )s≥t,s∈I}t∈I of one-dimensional walks such that
the walk Z(t) starts at zero at time t, i.e. Z(t)

t = 0;
if Z(t)

k ≥ Z
(t′)
k (resp. Z(t)

k ≤ Z
(t′)
k ) at some time k, then Z(t)

k′ ≥ Z
(t′)
k′ (resp. Z(t)

k′ ≤ Z
(t′)
k′ )

for every k′ ≥ k.

Note that, as a consequence, if Z(t)
k = Z

(t′)
k , at time k, then Z(t)

k′ = Z
(t′)
k′ for every k′ ≥ k.

In this case, we say that Z(t) and Z(t′) are coalescing and call coalescent point of Z(t) and
Z(t′) the point (`, Z(t)

` ) such that ` = min{k ≥ max{t, t′}|Z(t)
k = Z

(t′)
k }. We denote by C(I)

the set of coalescent-walk processes over some interval I.

2.4.1 The coalescent-walk process corresponding to a plane walk
We now introduce a particular family of coalescent-walk processes of interest for us. Let I be
a (finite or infinite) interval of Z. Recall the definition of A from Equation (4) page 7, and let
WA(I) be the set of plane walks of time space I (functions I → Z2) with increments in A.

Take W ∈WA(I) and denote Wt = (Xt, Yt) for t ∈ I. From X and Y we construct the
family of walks {Z(t)}t∈I , called the coalescent-walk process associated with W, by

for t ∈ I, Z(t)
t = 0;

for t ∈ I and k ∈ I ∩ [t+ 1,+∞),

Z
(t)
k =


Z

(t)
k−1 + (Yk − Yk−1), if Z

(t)
k−1 ≥ 0,

Z
(t)
k−1 − (Xk −Xk−1), if Z

(t)
k−1 < 0 and Z(t)

k−1 − (Xk −Xk−1) < 0,
Yk − Yk−1, if Z

(t)
k−1 < 0 and Z(t)

k−1 − (Xk −Xk−1) ≥ 0.
(5)

Let WC : WA(I) → C(I) map each W ∈ WA(I) to the corresponding coalescent-walk
process, i.e. WC(W ) = {Z(t)}t∈I . We also set Cn = WC(Wn) ⊂ C([n]) and C = ∪n∈Z≥0Cn.

We give a heuristic explanation of this construction in the following example.

I Example 14. We consider the plane walkW = (Wt)t∈[10] starting at (0, 0) on the left-hand
side of Figure 5. We plot in the second diagram of Figure 5 the walks Y in red and −X
in blue. We now explain how we reconstruct the ten walks {Z(t)}1≤t≤10 (in green on the
right-hand side of Figure 5). The walk Z(t) starts at height zero at time t. Then,

If Z(t)
k−1 is non-negative (in particular at the starting point), then the increment Z(t)

k −Z
(t)
k−1

is the same as the one of the red walk.
If Z(t)

k−1 is negative, then the increment Z(t)
k − Z

(t)
k−1 is the same as the one of the blue

walk, as long as this increment keeps Z(t)
k negative.

Now if at time k − 1, Z(t)
k−1 is negative but the blue increment would “force” it to cross

(or touch) the x-axis (that is if Xk −Xk−1 ≤ Z(t)
k−1 < 0), then Z(t)

k is equal to Yk − Yk−1
(i.e. Z(t) coalesces with Z(k−1) at time k). For instance this is the case of the second
increment of the walk Z(7).

I Observation 15. The y-coordinates of the coalescent points of a coalescent-walk process in
C(I) are non-negative.
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7:10 Scaling and Local Limits of Baxter Permutations

2.4.2 The permutation associated with a coalescent-walk process
Given a coalescent-walk process Z = {Z(t)}t∈I defined on a (finite or infinite) interval I, the
relation ≤Z on I defined as follows is a total order (we skip the proof of this fact):

i ≤Z j ⇐⇒ {i < j and Z(i)
j < 0} or {j < i and Z(j)

i ≥ 0} or {i = j}. (6)

This definition allows to associate a permutation to a coalescent-walk process.

I Definition 16. Fix n ∈ Z≥0. Let Z = {Z(t)}t∈[n] ∈ Cn be a coalescent-walk process over [n].
Denote CP(Z) the permutation σ ∈ Sn such that for 1 ≤ i, j ≤ n, σ(i) ≤ σ(j) ⇐⇒ i ≤Z j.

We have that pattern extraction in the permutation CP(Z) depends only on a finite
number of trajectories, a key step towards proving permuton convergence.

I Proposition 17. Let σ be a permutation obtained from a coalescent-walk process Z =
{Z(t)}t∈[n] via the map CP. Let I = {i1 < · · · < ik} ⊂ [n]. Then8 patI(σ) = π if the
following condition holds: for all 1 ≤ ` < s ≤ k, Z(i`)

is
≥ 0 ⇐⇒ π(s) < π(`).

We end this section with the following observation. Note that given a coalescent-walk
process on [n], the plane drawing of the trajectories {Z(t)}t∈I identifies a natural tree
structure Tr(Z) as follows (see for instance the middle and right-hand side of Figure 6):

vertices of Tr(Z) correspond to points 1, . . . , n on the x-axis, plus a root.
Edges are portions of trajectories starting at the right of a vertex i and interrupted at
the first encountered new vertex. Trajectories that do not encounter a new vertex before
time n are connected to the root. The label i is also carried by the edge at the right of i.

I Remark 18. In the case where I = [n] for some n ∈ Z≥0, the permutation π = CP(Z) is
readily obtained from Tr(Z): it is enough to label the points 1, . . . , n on the x-axis of the
diagram of the colaescent-walk process Z (these labels are painted in purple in the middle
picture of Figure 6) according to the exploration process of Tr(Z) and then to read these
labels from left to right.

2.5 From plane walks to Baxter permutations via coalescent-walk
processes

We sketch here the proof of Theorem 1. The key ingredient is to show that the dual tree
T (m∗) of a bipolar orientation can be recovered from its encoding plane walk by building
the associated coalescent-walk process Z and looking at the corresponding tree Tr(Z). More

8 See Appendix B for notation on patterns of permutations.

Z(7)

Z(1)

X

Y −X Y ,

t

−X Y ,

t

,Z = {Z(t)}1≤t≤10

−X

Y

−X

Y

Figure 5 Left: A plane walk (X,Y ) starting at (0,0). Middle: The diagram of the walks Y (in
red) and −X (in blue). Right: The two walks are shifted (one towards the top and one to the
bottom) and the ten walks of the coalescent-walk process are plotted in green.
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Yt + 1

−Xt − 1m

T (m∗)

1 2
3

4

5

6

7

8

9 10

1 2 3 4 6 7 9 10
168 9 105 7

5
2

8
4 3

These two points are
identified in Tr(Z)

10

9

85
41

3
2

7
6

Tr(Z)

CP(Z)=8 6 5 7 9 1 2 4 10 3

Figure 6 On the left-hand side the map m from Figure 4. In the middle the associated coalescent-
walk process Z = WC ◦OW(m) that naturally determines the tree Tr(Z) (shown on the right). Note
that the exploration of Tr(Z) gives the inverse permutation CP(Z)−1 = 6 7 10 8 3 2 4 1 5 9.

precisely, let W = (Wt)1≤t≤n = OW(m) be the walk encoding a given bipolar orientation m,
and Z = WC(W ) be the corresponding coalescent-walk process. Then the following result,
illustrated by an example in Figure 6, holds.

I Proposition 19. The tree Tr(Z) is equal to the dual tree T (m∗) with edges labeled according
to the order given by the exploration of T (m).

The proof requires a lot more notation so we skip it in this extended abstract. Theorem 1
then follows immediately, by construction of OP(m) from T (m∗) and T (m) (Definition 11)
and of CP(Z) from Tr(Z) (Remark 18).

3 Convergence to the Baxter permuton

We start this section by representing a uniform random walk in Wn as a conditioned random
walk. For all n ≥ 2, let WA,exc

n be the set of plane walks (Wt)0≤t≤n−1 of length n that stay
in the non-negative quadrant, starting and ending at (0, 0), with increments in A (defined
in Equation (4)). Remark that for n ≥ 1, the mapping WA,exc

n+2 → Wn removing the first
and the last step, i.e. W 7→ (Wt)1≤t≤n, is a bijection. Recall also that W̄ denotes the walk
defined below Equation (2). An easy calculation then gives the following (observed also in
[19, Remark 2]):

I Proposition 20. Conditioning on {(W̄t)0≤t≤n+1 ∈ WA,exc
n+2 }, the law of (W̄t)0≤t≤n+1 is

the uniform distribution on WA,exc
n+2 , and the law of (W̄t)1≤t≤n is the uniform distribution

on Wn.

As we said in the introduction, a key result to prove Theorem 5 is to determine the
scaling limit of coalescent-walk processes encoded by uniform elements of Wn. Thanks to
Proposition 20 we can equivalently study coalescent-walk processes encoded by quadrant
walks conditioned to start and end at (0, 0). We will first deal with the unconditioned case
(see Section 3.1.1) and then with the conditioned one (see Section 3.1.2).

3.1 Scaling limits of coalescent-walk processes
We start by defining our continuous limiting object: it is formed by the solutions of the
following family of stochastic differential equations (SDEs) indexed by u ∈ R, driven by a
two-dimensional process W = (X,Y){

dZ(u)(t) = 1{Z(u)(t)>0} dY(t)− 1{Z(u)(t)≤0} dX(t), t ≥ u,
Z(u)(t) = 0, t ≤ u.

(7)

Existence and uniqueness of solutions were already studied in the literature in the case where
the driving process W is a Brownian motion, in particular with the following result.
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7:12 Scaling and Local Limits of Baxter Permutations

I Theorem 21 (Theorem 2 of [23], Proposition 2.2 of [9]). Let I be a (finite or infinite)
interval of R and fix t0 ∈ I. Let W = (X,Y) denote a two-dimensional Brownian motion on
I with covariance matrix

( 1 ρ
ρ 1
)
for ρ ∈ (−1, 1). We have path-wise uniqueness (explained in

1 below) and existence (explained in 2 below) of a strong solution for the SDE:{
dZ(t) = 1{Z(t)>0} dY(t)− 1{Z(t)≤0} dX(t), t ∈ I ∩ [t0,+∞),
Z(t0) = 0.

(8)

Namely, letting (Ω,F , (Ft)t∈I ,P) be a filtered probability space satisfying the usual conditions,
and assuming that (X,Y) is an (Ft)t-Brownian motion,
1. if Z,Z? are two (Ft)t-adapted continuous processes that verify Equation (8) almost surely,

then Z = Z? almost surely.
2. There exists an (Ft)t-adapted continuous process Z which verifies Equation (8) almost

surely, and is adapted to the completion of the canonical filtration of (X,Y).

3.1.1 The unconditioned scaling limit result

Let us now work on the completed canonical filtered probability space of a Brownian motion
W = (X,Y) with covariance

(
1 −1/2
−1/2 1

)
. For u ∈ R, let Z(u) be the strong solution of

Equation (8) with I = [u,∞) and t0 = u, provided by Theorem 21. Note that Z(u) satisfies
Equation (8) (only) for almost all ω. For every u, Z(u) is adapted, and it is simple to see
that the map (ω, u) 7→ Z(u) is jointly measurable. By Tonelli’s theorem, for almost every ω,
Z(u) is a solution for almost every u.

I Remark 22. For fixed u, Z(u) is a Brownian motion on [u,∞). Note however that the
coupling of Z(u) for different values of u is highly non trivial.

I Remark 23. Given ω (even restricted to a set of probability one), we cannot say that
(Z(u))u∈R forms a whole field of solutions to Equation (7), since we cannot guarantee that
the SDE holds for all u simultaneously. Similarly, it is expected that there exists exceptional
u where uniqueness fails.

Now, let W̄ = (X̄, Ȳ ) = (X̄k, Ȳk)k∈Z be the random plane walk defined below Equa-
tion (2), and Z̄ = WC(W̄ ) be the corresponding coalescent-walk process. We define rescaled
versions: for all n ≥ 1, u ∈ R, let W̄n : R→ R2 and Z̄

(u)
n : R→ R be the continuous functions

defined by linearly interpolating the following points:

W̄n

(
k

n

)
= 1√

2n
W̄k, k ∈ Z, Z̄

(u)
n

(
k

n

)
= 1√

2n
Z̄

(bnuc)
k , u ∈ R, k ∈ Z. (9)

Our most important technical result is the following theorem (whose proof is postponed to
Appendix A).

I Theorem 24. Let u1 < . . . < uk. We have the following joint convergence in (C(R,R))k+2:

(
W̄n, Z̄

(u1)
n , . . . , Z̄

(uk)
n

)
d−−−−→

n→∞

(
W,Z(u1), . . . ,Z(uk)

)
. (10)
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3.1.2 The conditioned scaling limit result
As a standard application of [12, Theorem 4], the scaling limit of the random walk W̄n

conditioned on starting at the origin at time 0 and ending at the origin at time n + 1
is We = (Xe,Ye), the Brownian excursion in the non-negative quadrant of covariance(

1 −1/2
−1/2 1

)
. Let us denote by (Ω,F , (Ft)0≤t≤1,Pexc) the completed canonical probability

space of We, and work from now on in that space.
It makes sense that the scaling limit of the coalescent-walk process in this conditioned

setting should be the solution of Equation (7) driven by We, for which we have to show exist-
ence and uniqueness. First, let us remark that since Brownian excursions are semimartingales,
stochastic integrals are still well-defined. We skip the rather abstract proof of the following,
which relies on absolute continuity between Brownian excursion and Brownian motion:

I Theorem 25. Denote F (u)
t = σ(We(s) −We(u), u ≤ s ≤ t) completed by the Pexc-

negligible sets of Ω. There is a jointly measurable map (ω, u) 7→ Z(u)
e such that for all u, Z(u)

e

is (F (u)
t )t-adapted, and almost surely, for almost every u, Z(u)

e solves Equation (7) driven
by We. Moreover, for u ∈ (0, 1), if Z? is another (F (u)

t )t-adapted solution of Equation (7)
driven by We started at time u, then Z? = Z(u)

e almost surely.

From the above result and the discrete absolutely continuity arguments of [10, 12], we
can deduce the following analogous result of Theorem 24 (whose proof is omitted). We use
the same notation as in Equation (9), and state the result for uniform random times for later
convenience.

I Theorem 26. Let u1 < . . . < uk be k sorted independent continuous uniform random
variables on [0, 1], independent from all other random variables. We have the following
convergence in (C([0, 1],R))k+2:(

W̄n, Z̄
(u1)
n , . . . , Z̄

(uk)
n

∣∣∣(W̄t)0≤t≤n+1 ∈WA,exc
n+2

)
d−−−−→

n→∞

(
We,Z

(u1)
e , . . . ,Z(uk)

e

)
.

3.2 The construction of the limiting object
We introduce the limiting coalescent Baxter permuton. We place ourselves in the probability
space defined above, where We = (Xe,Ye) is a Brownian excursion of correlation −1/2
conditioned to stay in the non-negative quadrant. Let Ze = {Z(u)

e }u∈[0,1] be the family of
processes given by Theorem 25, which almost surely solves Equation (7) driven by We for
almost every u. From the continuous coalescent-walk process Ze we build a binary relation
≤Ze

on [0, 1] defined as in Equation (6). Clearly, (ω, x, y) 7→ 1x≤Zey
is measurable, and we

have the following property whose proof, which relies on path-wise uniqueness, is skipped.

I Proposition 27. The relation ≤Ze is a total order on [0, 1] \A, where A is a random set
of zero Lebesgue measure.

We then define the following random function (note that (ω, t) 7→ ϕZe
(t) is measurable):

ϕZe
(t) := Leb

({
x ∈ [0, 1]|x ≤Ze

t
})

= Leb
({
x ∈ [0, t)|Z(x)

e (t) < 0
}
∪
{
x ∈ [t, 1]|Z(t)

e (x) ≥ 0
})

,

where here Leb(·) denotes the one-dimensional Lebesgue measure. We define the coalescent
Baxter permuton as the push-forward of the Lebesgue measure via the map (Id, ϕZe), i.e.

µB(·) = µZe
(·) := (Id, ϕZe

)∗ Leb(·) = Leb ({t ∈ [0, 1]|(t, ϕZe
(t)) ∈ · }) .
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7:14 Scaling and Local Limits of Baxter Permutations

I Observation 28. We try to give an intuition behind the definition of µB. Recall that
given a coalescent-walk process Z = {Z(t)}t∈[n] ∈ C, we can associate to it the corresponding
Baxter permutation σ = CP(Z) and the total order ≤Z on [n]. The permutation σ satisfies
the following property: for every i ∈ [n], σ(i) = |{j ∈ [n]|j ≤Z i}|. The function ϕZe is a
continuous analogue of the permutation σ, when we consider the continuous coalescent-walk
process Ze instead of a discrete one, and µZe is the associated permuton.

The following result is proved as [20, Proposition 3.1], relying on Proposition 27.

I Proposition 29. Almost surely, µZe
is a permuton.

The final proof of Theorem 5, i.e. the convergence of uniform Baxter permutations to µB , can
be found in Appendix B. We give here a short sketch. The proof is based on the analysis of
pattern extraction from uniform Baxter permutations. Proposition 17 relates the probability
of extracting a specific pattern to the probability that some trajectories of the corresponding
coalescent-walk process have given signs at given times. Then, by Theorem 26, the latter
converges to the analogue probability for the limiting continuous coalescent-walk process.
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A The proof of Theorem 24

Recall that W̄ = (X̄, Ȳ ) = (X̄k, Ȳk)k∈Z is the random plane walk defined below Equation (2),
and Z̄ = WC(W̄ ) is the corresponding coalescent-walk process. We need the following result
whose proof is left to the complete version of this extended abstract.

I Proposition 30. For every u ∈ Z, Z̄(u) has the distribution of a random walk with the
same step distribution as Ȳ (which is the same as that of −X̄).

I Remark 31. Recall that the increments of a walk of a coalescent-walk process are not always
equal to one of the increments of the corresponding walk (see for instance Equation (5)).
The statement of Proposition 30 is a sort of “miracle” of the geometric distribution.

Proof of Theorem 24. The first step in the proof is to establish convergence of the compon-
ents of the vector on the left-hand side of Theorem 24. By a classical invariance principle,
we get that W̄n = (X̄n, Ȳn) converges to W = (X,Y) in distribution. Using Proposition 30,
and applying again the invariance principle, we get that (Z̄(u)

n (u+ t))t≥0, converges to a
one-dimensional Brownian motion. This gives the marginal convergence thanks to Remark 22.

The second step in the proof is to establish joint convergence. Marginal convergence
gives joint tightness, so that by Prokhorov’s theorem, to show convergence, one only needs to
identify the distribution of all joint subsequential limits. Assume that along a subsequence,
we have(

W̄n, Z̄
(u1)
n , . . . , Z̄

(uk)
n

)
d−−−−→

n→∞

(
W, Z̃1, . . . , Z̃k

)
.

Using Skorokhod’s theorem, we may define all involved variables on the same probability space
and assume that the convergence is almost sure. The joint distribution of the right-hand-side
is unknown for now, but we will show that for every 1 ≤ i ≤ k, Z̃i = Z(ui) a.s., which would
complete the proof. Recall that Z(ui) is the strong solution of Equation (8), started at time
ui and driven by W = (X,Y), which exists thanks to Theorem 21. Let us now fix i and
abbreviate u = ui, Z̃ = Z̃i. Our goal is to show that Z̃ also verifies Equation (8) and apply
path-wise uniqueness.
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7:16 Scaling and Local Limits of Baxter Permutations

Let Ft = σ(W(s), Z̃(s), s ≤ t). This gives a filtration for which W and Z̃ are adapted. We
will show thatW is an (Ft)t-Brownian motion, that is for t ∈ R, s ≥ 0, (W(t+s)−W(t)) ⊥⊥ Ft.
For fixed n, by definition of a random walk, W̄n(t+ s) − W̄n(t) is independent from
σ(W̄k, k ≤ bntc). Therefore, by the definition given in Equation (5),(

W̄n(t+ s)− W̄n(t)
)
⊥⊥

(
W̄n(r), Z̄(u)

n (r)
)
r≤n−1bntc

. (11)

By convergence, we obtain that W(t + s) −W(t) is independent from
(
W(r), Z̃(r)

)
r≤t,

completing the claim that W is an (Ft)t-Brownian motion.
Now fix a rational ε > 0 and a rational t > u such that Z̃(t) > ε. There is δ > 0 so that

Z̃ > ε/2 on [t − δ, t + δ]. By almost sure convergence, there is N0 such that for n ≥ N0,
Z̄

(u)
n > ε/4 on [t− δ, t+ δ]. On this interval, outside of the event

{ sup
1≤i≤n

|Ȳi − Ȳi−1| ≥
√

2nε/4},

Z̄
(u)
n − Ȳn is constant by construction of the coalescent-walk process. As a result (the

probability of the bad event is bounded by Ce−c
√
n ), the limit Z̃− Y is constant too almost

surely. We have shown that almost surely Z̃− Y is locally constant on {t : Z̃(t) > ε}. This
translates into the following equality:∫ t

u

1{Z̃(r)>ε} dZ̃(r) =
∫ t

u

1{Z̃(r)>ε} dY(r).

The stochastic integrals are well-defined: on the left-hand side by considering the canonical
filtration of Z̃, on the right-hand-side by considering (Ft)t. The same can be done for
negative values, leading to∫ t

u

1{|Z̃(r)|>ε} dZ̃(r) =
∫ t

u

1{Z̃(r)>ε} dY(r)−
∫ t

u

1{Z̃(r)<−ε} dX(r).

By stochastic dominated convergence theorem [24, Thm. IV.2.12], one can take the limit
as ε→ 0, and obtain∫ t

u

1{Z̃(r)6=0} dZ̃(r) =
∫ t

u

1{Z̃(r)>0} dY(r)−
∫ t

u

1{Z̃(r)<0} dX(r).

Thanks to the fact that Z̃ is Brownian,
∫ t
u
1{Z̃(r)=0} dZ̃(r) = 0, so that the left-hand side

equals Z̃(t). As a result Z̃ verifies Equation (8) and we can apply path-wise uniqueness
(Theorem 21) to complete the proof. J

B The proof of Theorem 5

Recall that permuton convergence has been defined in Definition 4. We present one its
characterizations (which comes from [1, Theorem 2.5]), expressed in terms of random induced
patterns. For n ∈ Z>0, we denote by Sn the set of permutations of size n. Let 1 ≤ k ≤ n,
σ ∈ Sn and I = {i1, . . . ik} with 1 ≤ i1 < · · · < ik ≤ n. The pattern in σ induced by I is
the only permutation π ∈ Sk such that the k values σ(i1), . . . , σ(ik) are order isomorphic to
π(1), . . . , π(k). In this case, we write patI(σ) = π.
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We also define permutations induced by k points in the square [0, 1]2. Take a sequence of
k points (X,Y ) = ((x1, y1), . . . , (xk, yk)) in [0, 1]2 in general position, i.e. with distinguished
x and y coordinates. We denote by (x(1), y(1)), . . . , (x(k), y(k)) the x-reordering of (X,Y ),
i.e. the unique reordering of the sequence ((x1, y1), . . . , (xk, yk)) such that x(1) < · · · < x(k).
Then the values (y(1), . . . , y(k)) are in the same relative order as the values of a unique
permutation, that we call the permutation induced by (X,Y ).

I Proposition 32. Let σn be a random permutation of size n, and Ikn = {i1n, . . . , ikn} be
a uniform k-element subset of [n], independent of σn. Let µ be a random permuton, and
denote Permk(µ) the unique permutation9 induced by k independent points in [0, 1]2 with
common distribution µ conditionally10 on µ. Then

µσn

d→ µ ⇐⇒ ∀k ∈ Z>0, ∀π ∈ Sk, P(patIk
n
(σn) = π)→ P(Permk(µ) = π).

We can now prove Theorem 5. First we state a consequence of the fact that µZe
is a

permuton and that Z(s)
e (t) are continuous random variables, which allows us to get rid of

equalities:

I Lemma 33. Almost surely, for almost every s < t ∈ [0, 1], Z(s)
e (t) 6= 0. Then Z(s)

e (t) > 0
implies ϕZe(s) < ϕZe(t), and Z(s)

e (t) < 0 implies ϕZe(s) > ϕZe(t).

Proof of Theorem 5. We reuse here the notation of Theorem 26. In particular W̄ is a ν-
random walk and Z̄ = WC(W̄ ) is the associated coalescent-walk process. Let σn = CP(Z̄|[n]).
Let En denote the event {(W̄t)0≤t≤n+1 ∈WA,exc

n+2 }. By Proposition 20 and the fact that the
mapping CP ◦WC is a size-preserving bijection, conditioned on En, σn is a uniform Baxter
permutation.

Fix k ≥ 1 and π ∈ Sk. For n ≥ k, let In = {i1n, . . . , ikn} be a uniform k-element subset of
[n], independent of σn. In view of Proposition 32, to complete the proof, we will show that

P(patIn
(σn) = π | En) −−−−→

n→∞
P(Permk(µZe) = π).

Thanks to Proposition 17, we have

P(patIn
(σn) = π | En) = P

(
∀1≤`<s≤k, Z̄

(i`
n)

is
n
≥ 0 ⇐⇒ π(`) > π(s) | En

)
.

Let (u1, . . . ,uk) be the sorted vector of k independent uniform continuous random variables
in [0, 1]. For every n ≥ 1, one can couple In and (u1, . . . ,uk) so that ijn = bnujc for every
1 ≤ j ≤ k, with an error of probability O(1/n). As a result,

P(patIn
(σn) = π | En) =P

(
∀1≤`<s≤k, (2n)−1/2Z̄(u`)

us
≥ 0 ⇐⇒ π(`) > π(s) | En

)
+O(1/n)

−−−−→
n→∞

P
(
∀1≤`<s≤k, Z

(u`)
e (us) ≥ 0 ⇐⇒ π(`) > π(s)

)
=P

(
∀1≤`<s≤k,

{
π(`) > π(s) =⇒ ϕZe (u`) > ϕZe (us)
π(`) < π(s) =⇒ ϕZe (u`) < ϕZe (us)

)
, (12)

where for the limit we used the convergence in distribution of Theorem 26 together with the
Portmanteau theorem. Additionally, Lemma 33 is used both to take care of the boundary
effect in the Portmanteau theorem, and to do the rewriting in the last line.

In order to finish the proof, it is enough to check that the probability on the right-hand
side of Equation (12) equals P(Permk(µZe) = π). This is clear since by definition of Permk

and µZe
, Permk(µZe

) is the permutation induced by
(
(u1, ϕZe

(u1)), . . . , (uk, ϕZe
(uk))

)
. J

9 Note that if µ is a permuton, then it has uniform marginals and so the x and y coordinates of k points
sampled according to µ are a.s. distinct.

10This is possible by considering the new probability space described in [1, Section 2.1].
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C Simulations of large Baxter permutations

The simulations for Baxter permutations presented in the first page of this extended abstract
have been obtained in the following way:
1. first, we have sampled a uniform random walk of size n+ 2 in the non-negative quadrant

starting at (0, 0) and ending at (0, 0) with increments distribution given by Equation (2).
This has been done using a “rejection algorithm”: it is enough to sample a walk W

starting at (0, 0) with increments distribution given by Equation (2), up to the first time
it leaves the non-negative quadrant. Then one has to check if the last step inside the
non-negative quadrant is at the origin (0, 0). When this is the case (otherwise we resample
a new walk), the part of the walk W inside the non-negative quadrant, denoted W̃ , is a
uniform walk of size |W̃ | in the non-negative quadrant starting at (0, 0) and ending at
(0, 0) with increments distribution given by Equation (2).

2. Removing the first and the last step of W̃ , thanks to Proposition 20, we obtained a
uniform random walk in Wn.

3. Finally, applying the mapping CP ◦WC to the walk given by the previous step, we
obtained a uniform Baxter permutation of size n (thanks to Theorem 1).

Note that our algorithm gives a uniform Baxter permutation of random size.
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1 Introduction

In this paper we continue the enumeration of plane lattice paths confined to non-convex cones
initiated by the first author in [1]. Therein the two most natural models of walks confined
to the three-quadrant cone C := {(i, j) : i ≥ 0 or j ≥ 0} were studied: walks with steps
{→, ↑,←, ↓}, and those with steps {↗,↖,↙,↘}. In both cases, the generating function
that counts walks starting at the origin was proved to differ (additively) from a simple explicit
D-finite series by an algebraic one. The tools essentially involved power series manipulations,
coefficient extractions, and polynomial elimination.

Later, Raschel and Trotignon gave in [13] sophisticated integral expressions for 8 models,
which imply that 3 additional models ({↗,←, ↓}, {→, ↑,↙}, and {→,↗, ↑,←,↙, ↓}) are
D-finite. Their results use an analytic approach inspired by earlier work on probabilistic and
enumerative aspects of quadrant walks [5, 12].

In this paper we first extend the results of [1] to the so-called king walks, which take
their steps from {→,↗, ↑,↖,←,↙, ↓,↘}. We show that the algebraicity phenomenon of [1]
persists: if Q(x, y; t) (resp. C(x, y; t)) counts walks starting from the origin that are confined
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8:2 More Models of Walks Avoiding a Quadrant

to the non-negative quadrant Q := {(i, j) : i ≥ 0 and j ≥ 0} (resp. to the cone C) by the
length (variable t) and the coordinates of the endpoint (variables x, y), then C(x, y; t) differs
from the series

1
3
(
Q(x, y; t)−Q(1/x, y; t)/x2 −Q(x, 1/y; t)/y2)

by an algebraic series, as detailed in our main theorem below. Moreover, we expect a similar
property to hold (with variations on the above linear combination of the series Q) for the 7
step sets of Figure 1, related to reflection groups, and for which the quadrant problem can
be solved using the reflection principle [7]. However, we also expect the effective solution
of these models to be extremely challenging in computational terms, mostly, because the
relevant algebraic series have very large degree. This is illustrated by our main theorem
below. There, and in the sequel, we use the shorthand x̄ = 1/x, ȳ = 1/y, and omit in the
notation the dependencies on t, writing for instance Q(x, y) instead of Q(x, y; t).

I Theorem 1. Take the step set {−1, 0, 1}2 \ {(0, 0)} and let Q(x, y) be the generating
function of lattice walks starting from (0, 0) that are confined to the first quadrant Q (this
series is D-finite and given in [3]). Then, the generating function of walks starting from
(0, 0), confined to C, and ending in the first quadrant (resp. at a negative abscissa) is

1
3Q(x, y) + P (x, y), (resp.− x̄2

3 Q(x̄, y) + x̄M(x̄, y)), (1)

where P (x, y) andM(x, y) are algebraic of degree 216 over Q(x, y, t). Of course, the generating
function of walks ending at a negative ordinate follows, using the x/y-symmetry.

The series P is expressed in terms of M by:

P (x, y) = x̄
(
M(x, y)−M(0, y)

)
+ ȳ
(
M(y, x)−M(0, x)

)
, (2)

and M is defined by the following equation:

K(x, y) (2M(x, y)−M(0, y)) = 2x
3 − 2tȳ(x+ 1 + x̄)M(x, 0) + tȳ(y + 1 + ȳ)M(y, 0)

+ t(x− x̄)(y + 1 + ȳ)M(0, y)− t
(
1 + ȳ2 − 2x̄ȳ

)
M(0, 0)− tȳMx(0, 0),

(3)

where K(x, y) = 1− t(x+ xy + y + x̄y + x̄+ x̄ȳ + ȳ + xȳ). The specializations M(x, 0) and
M(0, y) are algebraic each of degree 72 over Q(x, t) and Q(y, t), respectively, and M(0, 0)
and Mx(0, 0) have degree 24 over Q(t).

We have moreover a complete algebraic description of all the series needed to reconstruct
P (x, y) and M(x, y) from (2) and (3), namely the univariate series M(0, 0) and Mx(0, 0),
and the bivariate series M(x, 0) and M(0, y). In particular, both univariate series lie in the
extension of Q(t) (the field of rational functions in t) generated in 3 steps as follows: first,
u = t+ t2 +O(t3) is the only series in t satisfying

(1− 3u)3(1 + u)t2 + (1 + 18u2 − 27u4)t− u = 0, (4)

simple diagonal
simple

king double-tandem tandemdiabolo Gouyou-
Beauchamps

Figure 1 The seven step sets to which the strategy of this paper should apply. The first two are
solved in [1], the third one in this paper.
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then v = t+ 3t2 +O(t3) is the only series with constant term zero satisfying

(1 + 3v − v3)u− v(v2 + v + 1) = 0, (5)

and finally

w =
√

1 + 4v − 4v3 − 4v4 = 1 + 2t+ 4t2 +O(t3). (6)

Schematically, Q(t) 4
↪→ Q(t, u) 3

↪→ Q(t, v) 2
↪→ Q(t, w). Of particular interest is the series

M(0, 0): by (1), this is also the series C−1,0 that counts by the length walks in C ending at
(−1, 0). It is algebraic, as conjectured in [13], and given by

M(0, 0) = C−1,0 = 1
2t

(
w(1 + 2v)

1 + 4v − 2v3 − 1
)

= t+ 2t2 + 17t3 + 80t4 + 536t5 +O(t6). (7)

Due to the lack of space, the extensions of Q(x, t) generated by M(x, 0) and M(0, x) will
only be described in the long version of this paper.

Once the series C(x, y) is determined, we can derive detailed asymptotic results, which
refine general results of Denisov and Wachtel [4] and Mustapha [11] (who only obtain the
following estimates up to a multiplicative factor).

I Corollary 2. The number c0,0(n) of n-step king walks confined to C and ending at the
origin, and the number c(n) of walks of C ending anywhere satisfy for n→∞:

c0,0(n) ∼
(

229K

37

)1/3 Γ(2/3)
π

8n

n5/3 ,

c(n) ∼
(

232K

37

)1/6 1
Γ(2/3)

8n

n1/3 ,

where K is the unique real root of 1016K3 − 601275603K2 + 92811K − 1.

Outline of the paper

We begin in Section 2 with a general discussion on models of walks with small steps confined
to the cone C, and on the related functional equations. The main part of the paper, Section 3,
is devoted to the solution of the king model. We sketch in the final Section 4 what should be
the starting point for the 4 rightmost models of Figure 1.

Some definitions and notation

Let A be a commutative ring and x an indeterminate. We denote by A[x] (resp. A[[x]]) the
ring of polynomials (resp. formal power series) in x with coefficients in A. If A is a field,
then A(x) denotes the field of rational functions in x, and A((x)) the field of Laurent series
in x, that is, series of the form

∑
n≥n0

anx
n, with n0 ∈ Z and an ∈ A. The coefficient of xn

in a series F (x) is denoted by [xn]F (x).
This notation is generalized to polynomials, fractions, and series in several indeterminates.

If F (x, x1, . . . , xd) is a series in the xi’s whose coefficients are Laurent series in x, say

F (x, x1, . . . , xd) =
∑

i1,...,id

xi1
1 · · ·x

id

d

∑
n≥n0(i1,...,id)

a(n, i1, . . . , id)xn,

then the non-negative part of F in x is the following formal power series in x, x1, . . . , xd:

[x≥0]F (x, x1, . . . , xd) =
∑

i1,...,id

xi1
1 · · ·x

id

d

∑
n≥0

a(n, i1, . . . , id)xn.
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8:4 More Models of Walks Avoiding a Quadrant

We define similarly the negative part of F , its positive part, and so on. We denote with
bars the reciprocals of variables: that is, x̄ = 1/x, so that A[x, x̄] is the ring of Laurent
polynomials in x with coefficients in A.

If A is a field, a power series F (x) ∈ A[[x]] is algebraic (over A(x)) if it satisfies a
non-trivial polynomial equation P (x, F (x)) = 0 with coefficients in A. It is differentially
finite (or D-finite) if it satisfies a non-trivial linear differential equation with coefficients in
A(x). For multivariate series, D-finiteness requires the existence of a differential equation in
each variable. We refer to [8, 9] for general results on D-finite series.

As mentioned above, we usually omit the dependency in t of our series. For a series
F (x, y; t) ∈ Q[x, x̄, y, ȳ][[t]] and two integers i and j, we denote by Fi,j the coefficient of xiyj

in F (x, y; t). This is a series in Q[[t]].

2 Enumeration in the three-quarter plane

We fix a subset S of {−1, 0, 1}2 \ {(0, 0)} and we want to count walks with steps in S that
start from the origin (0, 0) of Z2 and remain in the cone C := {(x, y) : x ≥ 0 or y ≥ 0}. By
this, we mean that not only must every vertex of the walk lie in C, but also every edge: a
walk containing a step from (−1, 0) to (0,−1) (or vice versa) is not considered as lying in C.
We often say for short that our walks avoid the negative quadrant. The step polynomial of S
is defined by

S(x, y) =
∑

(i,j)∈S

xiyj = ȳH−(x) +H0(x) + yH+(x) = x̄V−(y) + V0(y) + xV+(y),

for some Laurent polynomials H−, H0, H+ and V−, V0, V+ (of degree at most 1 and valuation
at least −1) recording horizontal and vertical displacements, respectively. We denote by
C(x, y; t) ≡ C(x, y) the generating function of walks confined to C, where the variable t
records the length of the walk, and x and y the coordinates of its endpoints:

C(x, y) =
∑

(i,j)∈C

∑
n≥0

ci,j(n)xiyjtn =
∑

(i,j)∈C

xiyjCi,j(t). (8)

Here, ci,j(n) is the number of walks of length n that go from (0, 0) to (i, j) and that are
confined to C.

2.1 Interesting step sets
As in the quadrant case [3], we can decrease the number of step sets that are worth being
considered (a priori, there are 28 of them) thanks to a few simple observations:

Since the cone C (as well as the quarter plane Q) is x/y-symmetric, the models defined
by S and by its mirror image S := {(j, i) : (i, j) ∈ S} are equivalent; the associated
generating functions are related by C(x, y) = C(y, x).
If all steps of S are contained in the right half-plane {(x, y) : x ≥ 0}, then all walks with
steps in S lie in C, and the series C(x, y) = 1/(1− tS(x, y)) is simply rational. The series
Q(x, y) is known to be algebraic in this case [6].
If all steps of S are contained in the left half-plane {(x, y) : x ≤ 0}, then confining a
walk to C is equivalent to confining it to the upper half-plane: the associated generating
function is then algebraic, and so is Q(x, y).
If all steps of S lie (weakly) above the first diagonal (x = y), then confining a walk to C
is again equivalent to confining it to the upper half-plane: the associated generating
function is then algebraic, and so is Q(x, y).
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Finally, if all steps of S lie (weakly) above the second diagonal (x+ y = 0), then all walks
with steps in S lie in C, and C(x, y) = 1/(1− tS(x, y)) is simply rational. In this case
however, the series Q(x, y) is not at all trivial [3, 10]. Such step sets are sometimes called
singular in the framework of quadrant walks.

Symmetric statements allow us to discard step sets that lie in the upper half-plane Z×N, in
the lower half-plane Z× (−N), or weakly below the x/y diagonal.

In conclusion, one finds that there are exactly 51 essentially distinct models of walks
avoiding the negative quadrant that are worth studying: the 56 models considered for
quadrant walks (see Tables 1–4 in [3]) except the 5 singular models for which all steps of S
lie weakly above the diagonal x+ y = 0.

2.2 A functional equation
Constructing walks confined to C step by step gives the following functional equation:

C(x, y) = 1 + tS(x, y)C(x, y)− tȳH−(x)C−,0(x̄)− tx̄V−(y)C0,−(ȳ)− tx̄ȳC0,01(−1,−1)∈S ,

where the series C−,0(x̄) and C0,−(ȳ) count walks ending on the horizontal and vertical
boundaries of C (but not at (0, 0)):

C−,0(x̄) =
∑
i<0
n≥0

ci,0(n)xitn ∈ x̄Q[x̄][[t]],

C0,−(ȳ) =
∑
j<0
n≥0

c0,j(n)yjtn ∈ ȳQ[ȳ][[t]].

On the right-hand side of the above functional equation, the term 1 accounts for the empty
walk, the next term describes the extension of a walk in C by one step of S, and each of the
other three terms correspond to a “bad” move, either starting from the negative x-axis, or
from the negative y-axis, or from (0, 0). Equivalently,

K(x, y)C(x, y) = 1− tȳH−(x)C−,0(x̄)− tx̄V−(y)C0,−(ȳ)− tx̄ȳC0,01(−1,−1)∈S , (9)

where K(x, y) := 1− tS(x, y) is the kernel of the equation.
The case of walks confined to the first (non-negative) quadrant Q has been much studied

in the past 15 years. The associated generating function Q(x, y) ≡ Q(x, y; t) ∈ Q[x, y][[t]] is
defined similarly to (8) and satisfies a similarly looking equation:

K(x, y)Q(x, y) = 1− tȳH−(x)Q−,0(x)− tx̄V−(y)Q0,−(y) + tx̄ȳQ0,01(−1,−1)∈S ,

where now

Q−,0(x) =
∑
i≥0
n≥0

qi,0(n)xitn = Q(x, 0) ∈ Q[x][[t]],

Q0,−(y) =
∑
j≥0
n≥0

q0,j(n)yjtn = Q(0, y) ∈ Q[y][[t]].

3 The king walks

In this section we focus on the case where the 8 steps of {−1, 0, 1}2 \ {(0, 0)} are allowed.
That is,

S(x, y) = (x̄+ 1 + x)(ȳ + 1 + y)− 1 = x+ xy + y + x̄y + x̄+ x̄ȳ + ȳ + xȳ.
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8:6 More Models of Walks Avoiding a Quadrant

The functional equation (9) specializes to

K(x, y)C(x, y) = 1− tȳ(x+ 1 + x̄)C−(x̄)− tx̄(y + 1 + ȳ)C−(ȳ)− tx̄ȳC0,0, (10)

where we have denoted C−(x̄) = C−,0(x̄) = C0,−(x̄) (by symmetry). Equivalently,

xyK(x, y)C(x, y) = xy − t(x2 + x+ 1)C−(x̄)− t(y2 + y + 1)C−(ȳ)− tC0,0. (11)

The generating function Q(x, y) of quadrant walks satisfies

xyK(x, y)Q(x, y) = xy − t(x2 + x+ 1)Q(x, 0)− t(y2 + y + 1)Q(0, y) + tQ0,0. (12)

3.1 Reduction to an equation with orbit sum zero
A key object in the study of walks confined to the first quadrant is a certain group of
birational transformations that depends on the step set. For king walks, it is generated by
(x, y) 7→ (x̄, y) and (x, y) 7→ (x, ȳ). As in [1], the similarities between the equations for C
and Q, combined with the structure of this group, lead us to define a new series A(x, y) by

C(x, y) = A(x, y) + 1
3
(
Q(x, y)− x̄2Q(x̄, y)− ȳ2Q(x, ȳ)

)
. (13)

Then the combination of (11) and (12) gives

xyK(x, y)A(x, y) = 2xy+ x̄y+ xȳ

3 − t(x2 + x+ 1)A−(x̄)− t(y2 + y+ 1)A−(ȳ)− tA0,0,

and it follows from this equation that xyA(x, y) has orbit sum zero. By this, we mean:

xyA(x, y)− x̄yA(x̄, y) + x̄ȳA(x̄, ȳ)− xȳA(x, ȳ) = 0. (14)

Theorem 1 states that A(x, y) is algebraic. In Section 4 we define an analogous series A for
all models of Figure 1 which we expect to be systematically algebraic.

The proof of Theorem 1 starts as in the case of the simple and diagonal walks in [1]. The
first objective, achieved in Section 3.5, is to derive an equation that involves a single bivariate
series, essentially A−(x) (and no trivariate series). In principle, the “generalized quadratic
method” of [2] then solves it routinely. But in practise, the king model turns out to be much
more difficult to solve than the other two, and raises serious computational difficulties. In
what follows, we focus on the points of the derivation that differ from [1]. We have performed
all computations with the computer algebra system Maple. The corresponding sessions will
be available on the authors’ webpages with the long version of the paper.

3.2 Reduction to a quadrant-like problem
We separate in A(x, y) the contributions of the three quadrants, again using the x/y-symmetry
of the step set:

A(x, y) = P (x, y) + x̄M(x̄, y) + ȳM(ȳ, x),

where P (x, y) andM(x, y) lie in Q[x, y][[t]]. Note that this identity defines P andM uniquely
in terms of A. Replacing A by this expression, and extracting the positive part in x and y
from the orbit equation (14) relates the series P and M by

xyP (x, y) = y (M(x, y)−M(0, y)) + x (M(y, x)−M(0, x)) ,

which is exactly the same as [1, Eq. (22)], and as Eq. (2) in Theorem 1. We then follow the
lines of proof of [1, Sec. 2.3] to obtain the functional equation (3) for M .
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3.3 An equation between M(0, x), M(0, x̄), and M(x, 0)
Next we will cancel the kernel K. As a polynomial in y, the kernel admits only one root
that is a formal power series in t:

Y (x) =
1− t(x+ x̄)−

√
(1− t(x+ x̄))2 − 4t2(x+ 1 + x̄)2

2t(x+ 1 + x̄) = (x+ 1 + x̄)t+O(t2).

Note that Y (x) = Y (x̄). We specialize (3) to the pairs (x, Y (x)), (x̄, Y (x)), (Y (x), x), and
(Y (x), x̄) (the left-hand side vanishes for each specialization since K(x, y) = K(y, x)), and
eliminate M(0, Y ), M(Y, 0), and M(x̄, 0) from the four resulting equations. We obtain:

(x+ 1 + x̄)
(
Y (x)− 1

Y (x)

)
(xM(0, x)− 2x̄M(0, x̄)) + 3(x+ 1 + x̄)M(x, 0)

− 2x̄Y (x)
t

+ 3M1,0 + (2Y (x)− x− x̄)M0,0 = 0.
(15)

3.4 An equation between M(0, x) and M(0, x̄)
Let us denote the discriminant occurring in Y (x) by

∆(x) := (1− t(x+ x̄))2 − 4t2(x+ 1 + x̄)2 = (1− t(3(x+ x̄) + 2))(1 + t(x+ x̄+ 2)) (16)

and introduce the notation

R(x) := t2M(x, 0) = xt2

3 +
(

1 + x2

3

)
t3 +O(t4),

S(x) := txM(0, x) = x(1 + x)t2 + 2x(1 + x+ x2)t3 +O(t4).
(17)

Then (15) reads√
∆(x)

(
S(x)− 2S(x̄) + R(0)− tx̄

t(x+ 1 + x̄)

)
= 3(x+ 1 + x̄)R(x) + 3R′(0)

+1− t(x+ x̄)(x+ 2 + x̄)
t(x+ 1 + x̄) R(0)− 1− t(x+ x̄)

1 + x+ x2 .

(18)

Next, we square this equation and extract the negative part in x. The series R(x) (mostly)
disappears as it involves only non-negative powers of x. This gives an expression for the
negative part of ∆(x)S(x)S(x̄). Using the symmetry of ∆(x) in x and x̄, we then reconstruct
an expression of ∆(x)S(x)S(x̄) that does not involve R(x), as in [1, Sec. 2.5].

During these calculations, we have to extract the negative and non-negative parts in series
of the form F (x)/(1 + x+ x̄)m, where F (x) is a series in t with coefficients in Q[x, x̄]. Upon
performing a partial fraction expansion, and separating in F the negative and non-negative
parts, we see that the key question is how to extract and express the non-negative part in
series of the form F (x̄)/(1− ζix)m, where F (x) ∈ C[x][[t]] and

ζ1 := −1
2 + i

√
3

2 and ζ2 := −1
2 −

i
√

3
2

are the primitive cubic roots of unity. A simple calculation establishes the following lemma.

I Lemma 3 (Non-negative part at pole ρ). Let F (x) ∈ C[x][[t]] and ρ ∈ C. Then,

[x≥0] F (x̄)
1− ρx = F (ρ)

1− ρx,

[x≥0] F (x̄)
(1− ρx)2 = F (ρ)

(1− ρx)2 + ρF ′(ρ)
1− ρx .
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One outcome of the extraction procedure is the following identity:

S(ζ1) = S(ζ2) = −R(0) + 3R′(0)
1 + t

= −t2 − 11t4 − 30t5 +O(t6). (19)

Using these results, we finally arrive at an equation relating S(x) and S(x̄):

∆(x)
(
S(x)2 + S(x̄)2 − S(x)S(x̄) + S(x)(xt−R(0)) + x̄S(x̄)(x̄t−R(0))

t(x+ 1 + x̄)

)
=

(1 + t)S(ζ1)
(

2(x+ 1 + x̄)R(0)− (1− t(x+ x̄))(t(x+ x̄)− 2R(0))
t(x+ 1 + x̄)

)
+(1 + 4t)(x+ x̄)R(0)− (t2 + tR(0) +R(0)2)(x2 + x̄2) + ∆0,

(20)

where ∆0 is the coefficient of x0 in ∆(x)S(x)S(x̄).

3.5 An equation for M(0, x) only

Equation (20) is almost ready for a positive part extraction, except for the mixed term
S(x)S(x̄). To eliminate it, we multiply (20) by S(x) +S(x̄) + x+x̄−2R(0)/t

x+1+x̄ . Then we are able
to extract the non-negative terms in x. Hereby we repeatedly apply Lemma 3. Additionally,
we use R(0) = tS′(0) and (19). Furthermore, we work with the real and imaginary parts of
ζ1S
′(ζ1) and ζ2S′(ζ2). More precisely, we define

(1 + t)2ζ1S
′(ζ1) = B1 + i

√
3B2,

(1 + t)2ζ2S
′(ζ2) = B1 − i

√
3B2.

(Note that B1 and B2 here are series in t.) In the end we get a cubic equation in S(x):

Pol(S(x), S′(0), S(ζ1), B1, B2, t, x) = 0, (21)

where the polynomial Pol(x0, x1, x2, x3, x4, t, x) is given in Appendix A.

3.6 The generalized quadratic method

We now use the results of [2] to obtain a system of four polynomial equations relating the
series S′(0), S(ζ1), B1, and B2. Combined with a few initial terms, this system characterizes
these four series. Unfortunately, it turned out to be too big for us to solve it completely, be
it by bare hand elimination or using Gröbner bases: we did obtain a polynomial equation for
S′(0) and S(ζ1), but not for the other two series. Instead, we have resorted to a guess-and-
check approach, consisting in guessing such equations (of degree 12 or 24, depending on the
series), and then checking that they satisfy the system. This guess-and-check approach is
detailed in the next subsection. For the moment, let us explain how the system is obtained.

The approach of [2] instructs us to consider the fractional series X (in t), satisfying

Polx0(S(X), S′(0), S(ζ1), B1, B2, t,X) = 0, (22)

where Polx0 stands for the derivative of Pol with respect to its first variable. The number and
first terms of such series X depend only on the first terms of the series S(x), S′(0), S(ζ1), B1,
and B2 (see [2, Thm. 2]). We find that 6 such series exist:
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X1(t) = i+ 2t2 + 4t3 + (36− 2i)t4 +O(t5),
X2(t) = −i+ 2t2 + 4t3 + (36 + 2i)t4 +O(t5),

X3(t) =
√
t+ t+ 3

2 t
3/2 + 3t2 + 51

8 t
5/2 + 14t3 +O(t7/2),

X4(t) = −
√
t+ t− 3

2 t
3/2 + 3t2 − 51

8 t
5/2 + 14t3 +O(t7/2),

X5(t) = i
√
t− it3/2 + 2it5/2 + t3 − 4it7/2 + 2t4 +O(t9/2),

X6(t) = −i
√
t+ it3/2 − 2it5/2 + t3 + 4it7/2 + 2t4 +O(t9/2).

Note that the coefficients of X1 and X2 (resp. X5 and X6) are conjugates of one another.
As discussed in [2], each of these series X also satisfies

Polx(S(X), S′(0), S(ζ1), B1, B2, t,X) = 0, (23)

where Polx is the derivative with respect to the last variable of Pol, and (of course)

Pol(S(X), S′(0), S(ζ1), B1, B2, t,X) = 0. (24)

Using this, we can easily identify two of the series Xi: indeed, eliminating B1 and B2
between the three equations (22), (23), and (24) gives a polynomial equation between
S(X), S′(0), S(ζ1), t, and X, which factors. Remarkably, its simplest non-trivial factor does
not involve S(X), nor S′(0) nor S(ζ1), and reads

X2 − t(1 +X)2(1 +X2). (25)

By looking at the first terms of the Xi’s and the other factors, one concludes that the above
equation holds for X3 and X4, which are thus explicit.

Let D(x1, . . . , x4, t, x) be the discriminant of Pol(x0, . . . , x4, t, x) with respect to x0.
According to [2, Thm. 14], each Xi is a double root of D(S′(0), S(ζ1), B1, B2, t, x), seen as a
polynomial in x. Hence this polynomial, which involves 4 unknown series S′(0), S(ζ1), B1, B2,
has (at least) 6 double roots. This seems more information than we need! In principle, 4
double roots should suffice to give 4 conditions relating the 4 unknown series. However, we
shall see that there is some redundancy in the 6 series Xi, which comes from the special
form of D.

We first observe that D factors as

D(S′(0), S(ζ1), B1, B2, t, x) = 27x2(1 + x+ x2)2∆(x)D1(S′(0), S(ζ1), B1, B2, t, x),

where ∆(x) is defined by (16), and D1 has degree 24 in x. It is easily checked that none of
the Xi’s are roots of the prefactors, so they are double roots of D1. But we observe that D1
is symmetric in x and x̄. More precisely,

D1(S′(0), S(ζ1), B1, B2, t, x) = x12D2(S′(0), S(ζ1), B1, B2, t, x+ 1 + x̄),

for some polynomial D2(x1, . . . , x4, t, s) ≡ D2(s) of degree 12 in s. Since each Xi is a double
root of D1, each series Si := Xi + 1 + 1/Xi, for 1 ≤ i ≤ 6, is a double root of D2. The series
Si, for 2 ≤ i ≤ 6, are easily seen from their first terms to be distinct, but the first terms of
S1 and S2 suspiciously agree: one suspects (and rightly so), that X2 = 1/X1, and carefully
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concludes that D2 has (at least) 5 double roots in s. Moreover, since X3 and X4 satisfy (25),
the corresponding series S3 and S4 are the roots of 1 + t = tS2

i , that is, S3,4 = ±
√

1 + 1/t.
The other roots start as follows:

S2 = 1 + 4t2 + 8t3 +O(t4), S5,6 = ∓ i√
t

+ 1 + t2 ± it5/2 +O(t3).

But this is not the end of the story: indeed, D2 appears to be almost symmetric in s and
1/s. More precisely, we observe that

D2(S′(0), S(ζ1), B1, B2, s) = s6D3

(
S′(0), S(ζ1), B1, B2, ts+ t+ 1

s

)
,

for some polynomial D3(S′(0), S(ζ1), B1, B2, t, z) ≡ D3(z) of degree 6 in z. It follows that
each series Zi := tSi + (1 + t)/Si, for 2 ≤ i ≤ 6, is a root of D3(z), and even a double root,
unless tS2

i = 1 + t, which precisely occurs for i = 3, 4. One finds Z3,4 = ±2
√
t(1 + t),

Z2 = 1 + 2t− 4t2 +O(t3), Z5,6 = 2t+ 2t3 +O(t4).

Since Z5 and Z6 seem indistinguishable, we safely conclude that D3(z) has two double roots
Z2 and Z5, and a factor (z2 − 4t(1 + t)). Writing

D3(z) =
6∑

i=0
diz

i,

these properties imply, by matching the three monomials of highest degree, that

D3(z) =
(
z2 − 4 t(1 + t)

) (
8 z2d6

2 + 4 zd5d6 + 16 t2d6
2 + 16 td6

2 + 4 d4d6 − d5
2)2

64 d6
3 .

Extracting the coefficients of z0, . . . , z3 gives 4 polynomial relations between the coefficients di,
resulting in 4 polynomial relations between the 4 series S′(0), S(ζ1), B1, B2. One easily checks
that this system, combined with the first terms of these series, defines them uniquely.

As explained at the beginning of this subsection, we have at the moment only been able
to derive from this system polynomial equations (of degree 24) for S′(0) and S(ζ1). For the
other two, we had to resort to a guess-and-check approach, which we now describe.

3.7 Guess-and-check
Guessing. Returning to the functional equation (10) it is easy to extract a simple recurrence
for the polynomials cn(x, y) that count walks of length n by the position of their endpoint.
We implemented this recurrence in the programming language C using modular arithmetic
and the Chinese remainder theorem to compute the explicit values of this sequence up to
n = 2000. Then we were able to guess polynomial equations satisfied by S′(0), S(ζ1), B1,
and B2 using the gfun package in Maple [14]. Of course, those obtained for S′(0) and S(ζ1)
coincide with those that we derived from the system of the previous subsection. Details on
the corresponding equations are shown below.

Generating function Degree in GF Degree in t Number of terms
S′(0) 24 12 323
S(ζ1) 24 32 823
B1 12 26 229
B2 24 60 477
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Checking that the guessed series satisfy the system turns out to be much easier once the
algebraic structure of these series is elucidated, which we do below1. We have not tried a
direct check.

The algebraic structure of S′(0), S(ζ1), B1, and B2. We begin with the simplest series,
B1, of (conjectured) degree 12. Let P (F, t) be its guessed monic minimal polynomial. Using
the Subfields command of Maple for several fixed values of t, one conjectures that the
extension Q(t, B1) possesses a subfield Q(t, u) of degree 4 over Q(t). Maple gives a possible
generator u for fixed values of t, but how can we choose u for a generic t? Indeed, the value of
u given by Maple for fixed t has no reason to be canonical. But the factorisation of P (F, t)
over Q(t, u), of the form P3(F )P9(F ) (with Pi of degree i), with coefficients in Q(t, u), is
canonical. Hence we will compute this factorisation, first for fixed values of t. We proceed as
follows: we factor P (F, t) over Q(t, B1), and find, for fixed t = 3, . . . , 50, that

P (F, t) = (F −B1)P2(F,B1)P9(F,B1),

where P2 (resp. P9) is a monic polynomial of degree 2 (resp. 9) in F . Hence the cubic
factor P3(F ) = F 3 + p2F

2 + p1F + p0 must be (F −B1)P2(F,B1), and we have just found
its coefficients pi in terms of B1 (for t fixed). We now compute the minimal polynomial
over Q of each pi using a resultant or the evala/Norm command in Maple. If the above
factorization persists for all t, as we expect, each pi should have a minimal polynomial over
Q(t) of degree (at most) 4. Having computed this polynomial for sufficiently many values
of t, we reconstruct its generic form by rational reconstruction. We find that all pi generate
the same extension of degree 4 of Q(t), and we can take any of them as a first candidate for
the generator u. We may simplify this generator further to end with the choice (4). Then
we factor P (F, t) over Q(t, u), and check that our guess was correct: the series B1 is indeed
cubic over Q(t, u). Moreover, it can be written rationally in terms of t and the series v
given by (5).

Finally, we factor the guessed minimal polynomials of S′(0), S(ζ1), and B2 over Q(t, v),
and find that these three series all belong to the same quadratic extension of Q(t, v), generated
by the series w given by (6). In particular,

S′(0) = 1
2

(
w(1 + 2v)

1 + 4v − 2v3 − 1
)
,

which coincides with (7), given the Definition (17) of S(x).
Now that we have guessed rational expressions of S′(0), S(ζ1), B1, and B2 in terms of

t, v, and w, the 4 equations obtained in Section 3.6 are readily checked to hold, using the
minimal polynomials of v and w.

3.8 Back to S(x) and R(x)

For S(x) we start with Equation (21), with all one-variable series replaced by their expressions
in terms of t, v, and w. We eliminate w and v using resultants to arrive at an equation of
degree 72 over Q(t, x) for S(x) = txM(0, x).

1 For this section, we have greatly benefited from the help of Mark van Hoeij (https://www.math.fsu.
edu/~hoeij/), who explained us how to find subextensions of Q(t, B1), and “simple” series in these
extensions.
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We can simplify (21) by working with the depressed equation, i.e., removing the quadratic
term by a suitable change of variable. Indeed, defining T (x) by

S(x) = T (x) + 3xS′(0)− 2x2 − 1
3(x2 + x+ 1) ,

we find that T (x) satisfies a cubic equation with no quadratic term, involving t and v but
not w. That is, T (x) has degree 36 over Q(t, x), instead of 72 for S(x).

Introducing T (x) also helps understanding the algebraic structure of R(x). Returning
to (18), we recall that R(0) = tS′(0) and use (19) to express R′(0) in terms of t, v, and w.
The left-hand side simply reads

√
∆(x)(T (x) − 2T (x̄)), and is found to be an element of

wQ(t, x, T (x)). In the end, R(x) has degree 72 and belongs to the same extension of Q(t, x)
as S(x). This ends the proof of our main result, Theorem 1.

4 More models

For each of the 7 step sets S of Figure 1, we are able to define a series A(x, y) that
satisfies the same equation as C(x, y) (see (9)), but with a different constant term,
satisfies an orbit sum identity similar to (14).

Explaining where this series comes from would require us to introduce the group associated to
a step set. For the sake of conciseness, we simply define A(x, y) without further justification.

For the first four step sets S of Figure 1, the series A(x, y) is defined by (13) (with Q(x, y)
counting quadrant walks with steps in S) as we have seen. For the next two step sets,

C(x, y) = A(x, y) + 1
5
(
Q(x, y)− x̄2yQ(x̄y, y) + x̄3Q(x̄y, x̄) + ȳ3Q(ȳ, xȳ)− xȳ2Q(x, xȳ)

)
.

Finally, for the seventh one,

C(x, y) = A(x, y) + 1
7
(
Q(x, y)− x̄2yQ(x̄y, y) + x̄4yQ(x̄y, x̄2y)

−x̄4Q(x̄, x̄2y)− ȳ3Q(xȳ, ȳ) + x2ȳ3Q(xȳ, x2ȳ)− x2ȳ2Q(x, x2ȳ)
)
.

In all cases, the series A(x, y) satisfies the following variant of (9):

K(x, y)A(x, y) = P0(x, y)− tȳH−(x)A−,0(x̄)− tx̄V−(y)A0,−(ȳ)− tx̄ȳA0,01(−1,−1)∈S ,

where K(x, y) = 1− tS(x, y) as before, and P0(x, y) is a Laurent polynomial. This equation
is easily obtained by combining the equations for C(x, y) and Q(x, y).

Finally, the vanishing orbit sum, which is (14) for the first four models, reads

xyA(x, y)− x̄y2A(x̄y, y) + x̄2yA(x̄y, x̄)− x̄ȳA(ȳ, x̄) + xȳ2A(ȳ, xȳ)− x2ȳA(x, xȳ) = 0

for the next two, and

xyA(x, y)− x̄y2A(x̄y, y) + x̄3y2A(x̄y, x̄2y)− x̄3yA(x̄, x̄2y)
+ x̄ȳA(x̄, ȳ)− xȳ2A(xȳ, ȳ) + x3ȳ2A(xȳ, x2ȳ)− x3ȳA(x, x2ȳ) = 0

for the last one. We conjecture that the series A(x, y) is systematically algebraic (this is now
proved for the first three models). To support this conjecture, we have tried to guess (using
the gfun package [14] in Maple), for the 4 models for which it is still open, a polynomial
equation for the series A−1,0, which, in all cases, coincides with the generating function C−1,0
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of walks ending at (−1, 0) (for the second model we consider A−2,0 instead, since A−1,0 = 0
due to the periodicity of the model). This series has degree 4 (resp. 8, 24) in the three
solved cases. We could not guess anything for the 4th model (using the counting sequence
for such walks up to length n = 4000), but we discovered equations of degree 24 for each of
the next three.

We believe that it would be worth exploring if the guiding principles of the present paper
apply to these 4 other models. In all cases, we expect to face a system of quadrant-like
equations rather than a single one. We plan to investigate at least some of these models.

To conclude, we recall that the 4 small step models that are algebraic for the quadrant
problem are conjectured to be algebraic for the three-quadrant cone as well [1, Fig. 5]. In this
case, the series A(x, y) simply coincides with C(x, y), as the orbit sum of xyC(x, y) vanishes.

References

1 M. Bousquet-Mélou. Square lattice walks avoiding a quadrant. J. Combin. Theory Ser. A,
144:37–79, 2016. doi:10.1016/j.jcta.2016.06.010.

2 M. Bousquet-Mélou and A. Jehanne. Polynomial equations with one catalytic variable,
algebraic series and map enumeration. J. Combin. Theory Ser. B, 96:623–672, 2006. doi:
10.1016/j.jctb.2005.12.003.

3 M. Bousquet-Mélou and M. Mishna. Walks with small steps in the quarter plane. In Algorithmic
probability and combinatorics, volume 520 of Contemp. Math., pages 1–39. Amer. Math. Soc.,
Providence, RI, 2010. doi:10.1090/conm/520/10252.

4 D. Denisov and V. Wachtel. Random walks in cones. Ann. Probab., 43(3):992–1044, 2015.
doi:10.1214/13-AOP867.

5 G. Fayolle, R. Iasnogorodski, and V. Malyshev. Random walks in the quarter-plane: Algebraic
methods, boundary value problems and applications, volume 40 of Applications of Mathematics.
Springer-Verlag, Berlin, 1999.

6 I. Gessel. A factorization for formal Laurent series and lattice path enumeration. J. Combin.
Theory Ser. A, 28(3):321–337, 1980. doi:10.1016/0097-3165(80)90074-6.

7 I. M. Gessel and D. Zeilberger. Random walk in a Weyl chamber. Proc. Amer. Math. Soc.,
115(1):27–31, 1992. doi:10.1090/S0002-9939-1992-1092920-8.

8 L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373–378,
1988. doi:10.1016/0021-8693(88)90166-4.

9 L. Lipshitz. D-finite power series. J. Algebra, 122:353–373, 1989. doi:10.1016/0021-8693(89)
90222-6.

10 M. Mishna and A. Rechnitzer. Two non-holonomic lattice walks in the quarter plane. Theoret.
Comput. Sci., 410(38-40):3616–3630, 2009. doi:10.1016/j.tcs.2009.04.008.

11 S. Mustapha. Non-D-finite walks in a three-quadrant cone. Ann. Comb., 23(1):143–158, 2019.
doi:10.1007/s00026-019-00413-2.

12 K. Raschel. Counting walks in a quadrant: a unified approach via boundary value problems.
J. Eur. Math. Soc. (JEMS), 14(3):749–777, 2012. doi:10.4171/JEMS/317.

13 K. Raschel and A. Trotignon. On walks avoiding a quadrant. Electron. J. Combin., 26(3):Paper
3.31, 34, 2019. doi:10.37236/8019.

14 B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of generating
and holonomic functions in one variable. ACM Transactions on Mathematical Software,
20(2):163–177, 1994. doi:10.1145/178365.178368.

AofA 2020

https://doi.org/10.1016/j.jcta.2016.06.010
https://doi.org/10.1016/j.jctb.2005.12.003
https://doi.org/10.1016/j.jctb.2005.12.003
https://doi.org/10.1090/conm/520/10252
https://doi.org/10.1214/13-AOP867
https://doi.org/10.1016/0097-3165(80)90074-6
https://doi.org/10.1090/S0002-9939-1992-1092920-8
https://doi.org/10.1016/0021-8693(88)90166-4
https://doi.org/10.1016/0021-8693(89)90222-6
https://doi.org/10.1016/0021-8693(89)90222-6
https://doi.org/10.1016/j.tcs.2009.04.008
https://doi.org/10.1007/s00026-019-00413-2
https://doi.org/10.4171/JEMS/317
https://doi.org/10.37236/8019
https://doi.org/10.1145/178365.178368


8:14 More Models of Walks Avoiding a Quadrant

A Final polynomial equation for S(x) in the king model

The polynomial Pol involved in the cubic Equation (21) defining S(x) is:

Pol(x0, x1, x2, x3, x4, t, x) =
− 3(x2 + x+ 1)2(x2t+ 2xt+ x+ t)(3x2t+ 2xt− x+ 3t)x3

0

+ 3(x2 + x+ 1)(x2t+ 2xt+ x+ t)(3x2t+ 2xt− x+ 3t)(3x1x− 2x2 − 1)x2
0

+
[
3x2(x2 + x+ 1)2(2x4x1 + x4 − x3)− 3x2(t+ 1)2(x2 + x+ 1)2x2

2

+ 6x(t+ 1)(x2 + x+ 1)(x4t+ 2x2t+ x2 + t)x1x2

+ 3x(t+ 1)(x2 + x+ 1)(x4t− x3t− x3 + x2t− xt− x+ t)x2 − 3
(
x8t2 + 2x7t2

+10x6t2 + 20x5t2 + 4x5t+ 25x4t2 + 20x3t2 − 2x4 + 4x3t+ 10x2t2 + 2xt2 + t2
)
x2

1

− 3
(
x8t2 − 11x7t2 − x7t− 32x6t2 − 9x6t− 53x5t2 − 6x5t− 55x4t2 + 3x5 − 15x4t

−39x3t2 − 6x3t− 16x2t2 + x3 − 5x2t− 5xt2 − xt+ t2
)
x1 − 12x8t2 − 30x7t2 − 6x7t

− 51x6t2 − 60x5t2 + 3x6 − 12x5t− 54x4t2 − 36x3t2 + 3x4 − 6x3t− 21x2t2 − 6xt2

−3t2
]
x0 + x2(x2 + x+ 1)

[
(2x3x

2 − 6x4x− 2x3)x2
1 − (x2 + 2)x3 + 3x4x

2

+(2x− 1)(3x4x+ x3(x+ 2))x1] + 3x3(t+ 1)2(x2 + x+ 1)(x1 − x)x2
2

− 3x2(t+ 1)x2(x1 − x)((2(x2 + t(x2 + 1)2))x1 + t(x4 + x2 + 1)− (t+ 1)x(x2 + 1))
+ 3xt(x2 + x+ 1)2(x1 − x)(t(x2 − x+ 1)x2

1 + (x2t− 5xt− x+ t)x1 + t(x2 − x+ 1)).
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9:2 Polyharmonic Functions in Cones

1 Introduction and motivations

In the continuous setting, polyharmonic functions are functions which cancel some power of
the usual Laplacian. More precisely, a function v on some domain K of Rd satisfying

∆pv = 0

for some p ≥ 1, where ∆ is the usual Laplacian in Rd, is said to be polyharmonic of order
p, or polyharmonic for short. So polyharmonic functions of order 1 are just harmonic
functions. Obviously, a polyharmonic function vp of order p satisfies ∆vp = vp−1, where
vp−1 is polyharmonic of order p− 1. For example, polynomials are polyharmonic. Harmonic
functions have been tremendously investigated and pioneer works on polyharmonic functions
go back to the work of Almansi [1]. One can consult for instance the monograph [2] for an
introduction to this topic.

In particular, Almansi [1] proved that if the domain K is star-like with respect to the
origin, then every polyharmonic function of order p admits a unique decomposition

f(x) =
p−1∑
k=0
|x|2khk(x), (1)

where each hk is harmonic on K and |x| is the Euclidean length of x, hence completely
characterising continuous polyharmonic functions on such domains.

In comparison with the continuous case, much less is known in the discrete setting,
where the Laplacian has to be replaced by a discrete difference operator. Some progress in
understanding discrete polyharmonic functions has been made in the last two decades. For
instance, one may cite [12], where the authors investigated polyharmonic functions for the
Laplacian on trees, and proved a similar result as Almansi’s theorem (1) for homogeneous
trees. Recent works of Woess and co-authors [18, 21] are generalising this previous work.

Our original motivation to study discrete polyharmonic functions comes from the following
framework. Consider a walk in Zd with step set S confined in some cone K ⊂ Zd. Denote
by q(x, y;n) the number of n-length excursions between x and y staying in the cone K. To
simplify, we only consider the case where y is the origin, but all considerations below can be
generalised to y 6= 0. In various cases [15], the asymptotics of q(x, 0;n) as n→∞ is known
to admit the form

q(x, 0;n) ∼ v0(x)γnn−α0 , (2)

where v0(x) > 0 is a function depending only on x, γ ∈ (0, |S|] is the exponential growth,
and α0 is the critical exponent. It is easy to see that the function v0(x) in (2) defines a
discrete harmonic function. Indeed, plugging (2) into the obvious recursive relation

q(x, 0;n+ 1) =
∑
s∈S

q(x+ s, 0;n)1{x+s∈K}, (3)

dividing by γn+1n−α0 and letting n→∞, we obtain

v0(x) = 1
γ

∑
s∈S

v0(x+ s)1{x+s∈K}, (4)

which proves that, with the assumption that v0(x) = 0 for x /∈ K, v0(x) is discrete harmonic
for the Laplacian operator

Lf(x) = 1
γ

∑
s∈S

f(x+ s)− f(x), (5)

that is, Lv0 = 0. Denisov and Wachtel [15] go further and show that
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the exponential growth γ is minRd+

∑
(s1,...,sd)∈S x

s1
1 · · ·x

sd
d , it does not depend on K;

the critical exponent α0 equals 1 +
√
λ1 + (d/2− 1)2, where d is the dimension and λ1 is

the principal Dirichlet eigenvalue on some spherical domain constructed from K.

As a leading example, consider the simple random walk in the quarter plane, with step
set {←, ↑,→, ↓}. In this case, the number of excursions q((i, j), 0;n) is 0 if m = n−i−j

2 is not
a non-negative integer, and otherwise takes the value

q((i, j), 0;n) = (i+ 1)(j + 1)n!(n+ 2)!
m!(m+ i+ j + 2)!(m+ i+ 1)!(m+ j + 1)! , (6)

see [9] and our Example 6. The equivalence (2) is then

q((i, j), 0;n) ∼ 4
π

4n v0(i, j)
n3 , (7)

where v0(i, j) = (i + 1)(j + 1) is the well-known unique (up to multiplicative constants)
harmonic function positive within the quarter plane with Dirichlet boundary conditions.
Other examples of such asymptotics may be found for instance in [4, 10, 14].

Our aim in this discrete setting is to study more precise estimates than (2), by considering
complete asymptotic expansions of the following form, as n→∞,

q(x, 0;n) ∼ γn
∑
p≥0

vp(x)
nαp

. (8)

From such an asymptotic expansion and using similar ideas as in (3), (4) and (5), it is rather
easy to prove that the terms vp are polyharmonic functions, in the sense that a power Lkvp
of the Laplacian operator vanishes. We will provide examples of such asymptotic expansions
(at least for the first terms) and of the set of exponents {αp}p≥0 appearing in (8).

On the other hand, the functional equation approach has proved to be fruitful when
studying random walk problems. The reference book on this topic is the monograph [16]
by Fayolle, Iasnogorodski and Malyshev. This method has been used in [20] to construct
harmonic functions, both in the discrete and continuous settings. Basically, the method
consists of drawing from the harmonicity condition a functional equation satisfied by the
generating function (in the discrete setting) or by the Laplace transform (in the continuous
setting) of a harmonic function. Solving some boundary value problem for these quantities
leads, via Cauchy or Laplace inversion, to the sought harmonic function. We will provide an
implementation of this method to construct bi-harmonic functions, which can be generalised
to polyharmonic functions.

The main features of our results are as follows:
We shine a light on a new link between discrete polyharmonic functions and complete
asymptotic expansions in the enumeration of walks.
Our approach provides tools to study complete asymptotics expansions as in (8), but does
not allow to prove their existence. On the other hand, the powerful approach of Denisov
and Wachtel [15] seems restricted to the first term in the asymptotics (2). Indeed, one of
the main tools in [15] is a coupling result of random walks by Brownian motion, which
only provides an approximation of polynomial order, see [15, Lem. 17].
We introduce a new class of functional equations (see (21) and (29)), for which the
method of Tutte’s invariants introduced in [23, 5, 6] proves to be useful.
In the unweighted planar case, it has been shown [8] that knowing the rationality of the
exponent α0 in (8) was sufficient to decide the non-D-finiteness of the series of excursions.
However, for walks with big steps in dimension two or walk models in dimension three,

AofA 2020



9:4 Polyharmonic Functions in Cones

this information is not enough [7]. As a potential application of our results, we might
use arithmetic information on the other exponents αp to study the algebraic nature, for
example the transcendance, of the associated combinatorial series.

This paper is organised as follows. We choose to start with the continuous setting since
computations are more enlightening and accessible. In Section 2, we prove that polyharmonic
functions naturally arise when performing an asymptotic expansion of the Dirichlet heat
kernel in a cone. We next present the functional equation method to construct polyharmonic
functions. Our main result here is Theorem 4, where a class of solutions for the Laplace
transform of a bi-harmonic function is provided. It shows that the Laplace transform of a bi-
harmonic function can be expressed in terms of the Laplace transform of the related harmonic
function plus some additional terms. This can be thought of as a Laplace transform version
of Almansi’s theorem (1). In Section 3, we exhibit the same phenomenon in the random walk
setting. Discrete polyharmonic functions appear when considering the asymptotic expansion
of coefficients counting walks with fixed endpoints in a domain, and the functional equation
approach may be used to construct discrete polyharmonic functions.

These notes are the starting point of a long-term research project on discrete polyharmonic
functions in cones. Notice that many ideas and techniques are not specific to cones and
would work for many other domains of restriction K.

2 Classical polyharmonic functions and heat kernel expansions

As pointed out in [2, Chap. VI], the connection between the heat kernel and polyharmonic
functions is very profound. Here, we deepen this connection by proving an exact asymptotic
expansion for the heat kernel in terms of polyharmonic functions. We then implement the
functional equation method to construct polyharmonic functions.

2.1 Exact asymptotic expansion for the Brownian semigroup in a cone
Let K be some cone in Rd and consider the Brownian motion (Bt)t≥0 killed at the boundary
of K. Denote by p(x, y; t) its transition density, that is the density probability function of
the transition probability kernel

Px(Bt ∈ dy, τ > t),

where τ is the first exit time of K. Recall the well-known fact that p(x, y; t) corresponds
to the heat kernel, i.e., the fundamental solution of the heat equation on K with Dirichlet
boundary condition, see for instance [3]. Here, we prove that the heat kernel admits a
complete asymptotic expansion in terms of polyharmonic functions for the Laplacian.

Denote by ∆ the usual Laplacian on Rd. In polar coordinates (r, θ), where r is the radial
part and θ the angular part, it writes:

∆ = ∂2

∂r2 + d− 1
r

∂

∂r
+ 1
r2 ∆Sd−1 , (9)

where ∆Sd−1 denotes the spherical Laplacian. Let respectively mj and λj be the Dirichlet
(normalised) eigenfunctions and eigenvalues for the spherical Laplacian on the generating set
K ∩ Sd−1, that is,{

∆Sd−1mj = −λjmj in K ∩ Sd−1,

mj = 0 in ∂(K ∩ Sd−1). (10)
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The eigenvalues satisfy 0 < λ1 < λ2 ≤ λ3 ≤ . . . by [11, Chap. VII]. We introduce, for j ≥ 1,

βj =
√
λj + (d/2− 1)2 and bj = 1− d/2 +

√
λj + (d/2− 1)2. (11)

Lemma 1 in [3] gives an explicit expression for the transition density p(x, y; t) of the Brownian
motion in K. It states that, for x, y ∈ Rd and t ∈ R+,

p(x, y; t) =
exp

(
−ρ

2+r2

2t

)
t(ρr) d2−1

∞∑
j=1

Iβj

(ρr
t

)
mj(θ)mj(η), (12)

where in polar coordinates x = (ρ, θ) and y = (r, η). Here, Iβ is the modified Bessel function
of the first kind of order β, satisfying the differential equation I ′′β (z) + 1

z I
′
β(z) = (1 + β2

z2 )Iβ(z)
and admitting the series expansion

Iβ(z) =
∞∑
m=0

1
m!Γ(m+ β + 1)

(z
2

)2m+β
. (13)

The following easy lemma will allow us to define certain polyharmonic functions.

I Lemma 1. For any µ ≥ 0 and j ≥ 1, let fµ,j be defined in spherical coordinates by

fµ,j(r, θ) = rµmj(θ). (14)

Then fµ,j satisfies

∆fµ,j = (µ2 + (d− 2)µ− λj)fµ−2,j . (15)

Proof. The proof is elementary using (9) and (10). J

I Corollary 2. For any k ∈ N, the function fbj+2k,j defined in (14) is k-polyharmonic.

Proof. It is obvious that µ = bj satisfies µ2 + (d − 2)µ − λj = 0, see (11), so that fbj ,j is
harmonic by (15). An induction based on (15) completes the proof. J

Doing an expansion of the heat kernel (12) as t → ∞ and using series expansions of the
exponential function and of the Bessel function (13), one immediately obtains:

I Theorem 3. The Dirichlet heat kernel p(x, y; t) in K admits the following expansion, as
t→∞, where fbj+2k,j is defined in (14), and bj and βj in (11):

p(x, y; t) ∼∑
j≥1

∑
k,m≥0

k∑
n=0

1
t1+βj+k+2m

(−1)k
(
k
n

)
2kk!m!Γ(m+ βj + 1)fbj+2(m+n),j(ρ, θ)fbj+2(m+k−n),j(r, η).

As such, the above result shows that the transition density of the Brownian motion
in K admits, as t → ∞, an asymptotic expansion in descending powers of t and in terms
of polyharmonic functions for the Laplacian (see Corollary 2). Moreover, the set of these
exponents is (with N = {0, 1, 2, . . .})

∞⋃
j=1

(βj + 1 + N). (16)

AofA 2020



9:6 Polyharmonic Functions in Cones

Note that, depending on the cone, there might be an overlap between the sets βj + 1 + N.
For instance, in the quadrant in dimension 2, one has βj = 2j and the set in (16) reduces to
{3, 4, 5, . . .}. On the other hand, in dimension 2 in a cone of opening α such that π/α /∈ Q,
there is no overlap between the points in (16).

As a last remark, we note that the same phenomenon appears for the survival probability
Px(τ > t). Indeed, thanks to its explicit expression given by [3, Thm 1] (in terms of the
confluent hypergeometric function), one can write down an asymptotic expansion of Px(τ > t)
in descending powers of t in terms of polyharmonic functions for the Laplacian.

2.2 The functional equation approach
We apply here the functional equation approach in order to construct polyharmonic functions
for the 2-dimensional killed Brownian motion in a convex cone. This approach has been
previously introduced in [20] to compute harmonic functions, and is an adaptation of the
functional equation method of the random walk case. Our main result is Theorem 4, which
gives the general form of the Laplace transform of a bi-harmonic function.

Consider the Brownian motion B in the quarter plane R2
+ (compared to the last section,

we use (x, y) for the coordinates of a 2d point) with covariance matrix

Σ =
(
σ11 σ12
σ12 σ22

)
,

with σ11, σ22 > 0 and det Σ = σ11σ22 − σ2
12 ≥ 0. Its infinitesimal generator is the operator

Gf = 1
2

(
σ11

∂2f

∂x2 + 2σ12
∂2f

∂x∂y
+ σ22

∂2f

∂y2

)
.

Note that through some linear transformation φ (see [20, Eq. (5.1)]), one obtains the Brownian
motion with identity covariance matrix in the cone φ(R2

+).
The kernel associated to the Brownian motion is defined as the quantity

γ(x, y) = 1
2(σ11x

2 + 2σ12xy + σ22y
2),

for (x, y) ∈ C2. The Laplace transform of a function f , which in the continuous case is the
analogous quantity of the notion of generating function, is defined as

L(f)(x, y) =
∫∫

[0,∞)2
f(u, v)e−(xu+yv)dudv,

for (x, y) ∈ C2 with positive real parts.
Now, let h be a harmonic function associated with the Brownian motion with covariance

matrix Σ, that is, h vanishes on the boundary axes of the quadrant and satisfies Gh = 0.
The functional equation for h takes the following form (see [20, Eq. (A.1)]):

γ(x, y)L(h)(x, y) = 1
2(σ11L1(h)(y) + σ22L2(h)(x)) + L(Gh)(x, y),

where we have denoted
L1(h)(y) := L

(
∂h

∂x
(0, ·)

)
(y) =

∫ ∞
0

∂h

∂x
(0, v)e−yvdv,

L2(h)(x) := L

(
∂h

∂y
(·, 0)

)
(x) =

∫ ∞
0

∂h

∂y
(u, 0)e−xudu.



F. Chapon, É. Fusy, and K. Raschel 9:7

Using the harmonicity condition Gh = 0, the functional equation for h rewrites as

γ(x, y)L(h)(x, y) = 1
2(σ11L1(h)(y) + σ22L2(h)(x)). (17)

We recall below the key argument of the method of [20] to solve the functional equation (17),
which leads to harmonic functions for the Brownian motion via Laplace inversion. We will
subsequently apply a related method to obtain polyharmonic functions.

Consider the two solutions of γ (x, Y (x)) = 0, which, since γ is a homogeneous polynomial
of degree two, are explicitly given by Y±(x) = c±x, with

c± = −σ12 ± i
√

det Σ
σ22

, (18)

so that c+ = c−. We write c± = ce±iθ, with c =
√

σ11
σ22

and θ such that cos θ = − σ12√
σ11σ22

.
Denote by GY the domain delimited by the curve Y+([0,∞]) ∪ Y−([0,∞]) = c+[0,∞] ∪

c−[0,∞] and containing the positive axis [0,∞]. Plugging each of the solutions c±x into the
functional equation (17), one obtains a boundary value problem for L1(h), which states that:
1. L1(h) is analytic on GY ,
2. L1(h) is continuous on GY \ {0},
3. For all x ∈ (0,∞], L1(h) satisfies the boundary equation L1(h)(c+x) = L1(h)(c−x).

In order to solve this problem, one introduces the conformal mapping ω from GY onto
C \R− defined by ω(x) = x−π/θ. One eventually obtains that a class of solutions is obtained
by letting L1(h) to be of the form

L1(h)(y) = P

(
1

yπ/θ

)
, (19)

for any given polynomial P . The same applies to L2(h) (by considering the solutions of
γ(X(y), y) = 0), and using the functional equation (17) and the fact that (c±)π/θ = −cπ/θ,
one must have

L2(h)(y) = −σ11

σ22
P

(
− 1
cπ/θxπ/θ

)
,

with the same P as in (19). Hence, using again the functional equation (17), we deduce that
the Laplace transform of h writes

L(h)(x, y) = 1
2σ11

P
(

1
yπ/θ

)
− P

(
− 1
cπ/θxπ/θ

)
γ(x, y) . (20)

In particular, taking P to be a polynomial of degree 1, one gets

L(h)(x, y) =
σ22

µ2
xπ/θ

+ σ11
µ1
yπ/θ

γ(x, y) ,

where the constants are related by µ2 = µ1(σ22
σ11

)1−π/2θ. Taking the inverse Laplace transform,
one should recover the unique positive harmonic function (written in polar coordinates (ρ, η))

h(x, y) = ρ
π
θ sin

(π
θ
η
)
.

Suppose now that v is bi-harmonic and satisfies Gv = h, where h is harmonic. The
functional equation for v now reads

γ(x, y)L(v)(x, y) = 1
2(σ11L1(v)(y) + σ22L2(v)(x)) + L(h)(x, y). (21)

AofA 2020



9:8 Polyharmonic Functions in Cones

By considering the roots of the kernel γ and using the same method as above, we obtain

1
2σ11L1(v)(c+x)− 1

2σ11L1(v)(c−x) = L(h)(x, c−x)− L(h)(x, c+x). (22)

We now have an a priori non-homogeneous boundary value problem for v, that we can in
fact transform into an homogeneous one, thanks to the (already known) explicit form of L(h).
The key remark to this task is that (c+x)π/θ = (c−x)π/θ = −(cx)π/θ. Rewriting (20) as

L(h)(x, y) = σ11

σ22

P
(

1
yπ/θ

)
− P

(
1

(c±x)π/θ

)
(y − c−x)(y − c+x)

and letting y → c+x and y → c−x, one finds

L(h)(x, c±x) = ∓σ11

σ22

π

θ

1
(c±x− c∓x)P

′
(

1
(c±x)π/θ

)
1

(c±x)π/θ+1 .

Eventually, we get

L(h)(x, c−x)− L(h)(x, c+x)

= σ11

σ22

π

θ

 1
(c+x− c−x)

P ′
(

1
(c+x)π/θ

)
(c+x)π/θ+1 − 1

(c−x− c+x)

P ′
(

1
(c−x)π/θ

)
(c−x)π/θ+1


= σ11

σ22

π

θ

(
c+

c+ − c−
P ′
(

1
(c+x)π/θ

)
1

(c+x)π/θ+2 −
c−

c− − c+
P ′
(

1
(c−x)π/θ

)
1

(c−x)π/θ+2

)
= −σ11

σ22

π

θ

c+c−
(c+ − c−)2

(
P ′
(

1
(c+x)π/θ

)
1

(c+x)π/θ+2 − P
′
(

1
(c−x)π/θ

)
1

(c−x)π/θ+2

)
,

where the last equality follows from (c+x)π/θ = (c−x)π/θ. Therefore, the boundary value
equation (22) is now homogeneous, and of the form

1
2σ11L1(v)(c+x)− F (c+x) = 1

2σ11L1(v)(c−x)− F (c−x),

where F is equal on Y+([0,∞]) ∪ Y−([0,∞]) to

F (y) = −σ11

σ22

π

θ

c+c−
(c+ − c−)2P

′
(

1
yπ/θ

)
1

yπ/θ+2 . (23)

We note that the simpler case when F (c+x) = F (c−x) occurs exactly when c2
+ = c2

−, i.e., θ
is 0 or π/2. In this way, we obtain a boundary value problem analogous to the harmonic
case, which, on the boundary of GY except at 0, leads to

1
2σ11L1(v)(y)− F (y) = Q

(
1

yπ/θ

)
,

for any given polynomial Q. The same computation applies to L2(v). As such, using the
equation (21), the Laplace transform of the bi-harmonic function v admits the following form:
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I Theorem 4. For any polynomials P and Q, the formula

L(v)(x, y) = 1
γ(x, y)

[
Q

(
1

yπ/θ

)
−Q

(
1

(c+x)π/θ

)
+G(x, y) + L(h)(x, y)

]
is the Laplace transform L(v) of a bi-harmonic function v satisfying Gv = h, where h is a
harmonic function with Dirichlet boundary conditions, where the Laplace transform L(h) of
h has the form (20) and where

G(x, y) = F (y)− F (c+x)− L(h)(x, c+x),

with F defined in Eq. (23).

The above theorem can be understood as a Laplace transform counterpart of Almansi’s
theorem [1].

Recursively, if vn is polyharmonic of order n with Gvn = vn−1, where vn−1 is polyharmonic
of order n− 1, the above method permits to express the Laplace transform of vn through
the one of vn−1, allowing to construct polyharmonic functions via Laplace inversion.

Further computations for the Brownian motion with identity covariance matrix are
proposed in Appendix A.

3 Discrete polyharmonic functions

Similarly to the continuous setting, we first investigate the appearance of polyharmonic
functions in the asymptotic expansions of the counting coefficients of lattice paths with
prescribed endpoints, starting from an exact expression for these coefficients (such exact
expressions may typically be obtained from reflection principles). We then implement the
functional equation approach to construct polyharmonic functions.

Our framework is thus the following. We consider random walks in the quarter plane Z2
+

with the following assumptions:
1. The walk is homogeneous with transition probabilities {pi,j}−1≤i,j≤1 to the eight nearest

neighbours and p0,0 = 0 (so we are only considering walks with small steps),
2. In the list p1,1, p1,0, p1,−1, p0,−1, p−1,−1, p−1,0, p−1,1, p0,1, there are no three consecutive

zeros (to avoid degenerate cases),
3. The drifts

∑
i,j ipi,j and

∑
i,j jpi,j are zero.

The Markov operator P of the walk is defined on discrete functions by

Pf(x, y) =
∑

−1≤i,j≤1
pi,jf(x+ i, y + j),

and the Laplacian operator is L = P − I. A function f is said to be harmonic if Lf = 0 and
polyharmonic of order p if Lpf = 0.

3.1 Examples of asymptotic expansion in walk enumeration problems
We start by recalling a few exact expressions for the number of quarter plane walks of length
n with prescribed endpoints.

I Example 5 (The diagonal walk). The step set is {↗,↖,↘,↙}, with uniform transition
probabilities 1

4 . It is well known (see for instance [9]) that

q((i, j), (0, 0);n) = (i+ 1)(j + 1)
n+i+2

2
n+j+2

2

(
n
n+i

2

)(
n
n+j

2

)
, (24)
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9:10 Polyharmonic Functions in Cones

with i and j having the same parity as n. Starting from (24), one can prove that

q((i, j), (0, 0);n) ∼ 8
π

4n
∑
p≥0

vp(i, j)
n3+p , (25)

where the first few terms in the above asymptotic expansion are given by{
v0(i, j) = (i+ 1)(j + 1),
v1(i, j) = − 1

2 (i+ 1)(j + 1)(i2 + j2 + 2i+ 2j + 9).

The first term v0 is the well-known unique (up to multiplicative constants) positive harmonic
function, with Dirichlet conditions; it is the same as for the simple walk, see (7) and (26).
The next term satisfies Lv1 = −3v0, and therefore is bi-harmonic. Note that in fact, using
the explicit expression of the Laplacian L, it is obvious that any polynomial of degree at
most 2p− 1 is polyharmonic of order p, since for any polynomial f of degree k, Lf has degree
at most k − 2 (it is a discrete equivalent of Lemma 1).

To derive a full asymptotic expansion of (24), we shall use the Laplace method applied to
the counting coefficients rewritten as an integral, in the spirit of [22, p. 75–79] (alternatively
one can apply the saddle-point method [17, Chap. B VIII] in the framework of analytic
combinatorics in several variables [14, 19]). We choose to postpone it to Appendix B, since
the computations are a bit long, though straightforward.

I Example 6 (The simple random walk). The step set is {←, ↑,→, ↓}, with uniform transition
probabilities 1

4 . We have (6) by [9]. Again, starting from (6), one can prove that

q((i, j), (0, 0);n) ∼ 4
π

4n
∑
p≥0

vp(i, j)
n3+p ,

where the first few terms in the asymptotic expansion are{
v0(i, j) = (i+ 1)(j + 1),
v1(i, j) = − 1

4 (i+ 1)(j + 1)(2i2 + 2j2 + 4i+ 4j + 15). (26)

Again, v0 is harmonic, and since Lv1 = − 3
2v0, v1 is bi-harmonic.

I Example 7 (The tandem walk). The step set is {↖,→, ↓} with uniform transition probab-
ilities 1

3 . From [10, Prop. 9], we know that:

q((i, j), (0, 0);n) = (i+ 1)(j + 1)(i+ j + 2)(3m+ 2i+ j)!
m!(m+ i+ 1)!(m+ i+ j + 2)! ,

with n = 3m+ 2i+ j. In this case, writing the asymptotic expansion

q((i, j), (0, 0);n) ∼
√

3
2π 3n

∑
p≥0

vp(i, j)
n4+p ,

one has for the harmonic function v0 and the bi-harmonic function v1,{
v0(i, j) = (i+ 1)(j + 1)(i+ j + 2),
v1(i, j) = − 1

9 (i+ 1)(j + 1)(i+ j + 2)(3i2 + 3j2 + 3ij + 9i+ 9j + 38). (27)
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3.2 Functional equation approach in the discrete case
We implement here the functional equation method to construct polyharmonic functions.
We start by recalling the key arguments in the harmonic case; details may be found in [20].

For a harmonic function h, we denote by H its generating function, namely,

H(x, y) =
∑
i,j≥0

h(i, j)xiyj .

The kernel of the random walk is defined as the polynomial

K(x, y) = xy

 ∑
−1≤k,`≤1

pk,`x
−ky−` − 1

 .

The harmonic equation Lh = 0 yields the following functional equation

K(x, y)H(x, y) = K(x, 0)H(x, 0) +K(0, y)H(0, y)−K(0, 0)H(0, 0). (28)

To solve (28), one first proves that the function H(x, 0) (and similarly H(0, y)) satisfies a
boundary value problem (see [20]):
1. H(x, 0) is analytic in GX ,
2. H(x, 0) is continuous on GX \ {1},
3. For all x in the boundary of GX except at 1, H(x, 0) satisfies the boundary equation:

K(x, 0)H(x, 0)−K(x, 0)H(x, 0) = 0.

Here, GX is a certain domain bounded by the curve X+([y1, 1]) ∪X−([y1, 1]), where X±(y)
are the branches of the algebraic function defined by K(X(y), y) = 0. Indeed, writing K as

K(x, y) = α̃(y)x2 + β̃(y)x+ γ̃(y),

where α̃, β̃, γ̃ are polynomials of degree 2 whose coefficients depend on the model, we have

X±(y) =
−β̃(y)±

√
δ̃(y)

2α̃(y) ,

where δ̃(y) = β̃(y)2 − 4α̃(y)γ̃(y). The functions X± are thus meromorphic on a cut plane,
determined by the zeros of δ̃.

It follows by [20] that K(x, 0)H(x, 0) may be written as a function of a certain conformal
mapping ω (see [20, Eq. (3.1)] for its explicit expression):

K(x, 0)H(x, 0) = P (ω(x)),

where P is an arbitrary entire function, for example a polynomial. This represents the
analogous statement as (19) in the continuous setting. By the functional equation (28), one
eventually finds that

H(x, y) = P (ω(x))− P (ω(X+(x)))
K(x, y) ,

which again should be compared with (20) in the continuous case.
For a bi-harmonic function v, satisfying Lv = h with h a harmonic function, the functional

equation now writes

K(x, y)V (x, y) = K(x, 0)V (x, 0) +K(0, y)V (0, y)−K(0, 0)V (0, 0)− xyH(x, y), (29)

AofA 2020
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where V is the generating function of v, i.e., V (x, y) =
∑
i,j≥0 v(i, j)xiyj ; compare with (21).

Notice that the equation (29) is very close to functional equations coming up in walk
enumeration problems.

Plugging the roots of the kernel into (29), one has

K(X±(y), 0)V (X±(y), 0) +K(0, y)V (0, y)−K(0, 0)V (0, 0)−X±(y)yH(X±(y), y) = 0,

which leads to the boundary equation

K(x, 0)V (x, 0)−K(x, 0)V (x, 0) = y (xH(x, y)− xH(x, y)) , (30)

for x on the boundary of GX (except at 1).
Note that a general method to solve this kind of boundary value problem (30) exists [16],

for any quantity in the right-hand side, ending up in some contour integral expression for
the unknown function K(x, 0)V (x, 0). We choose to provide below examples with simpler,
integral-free expressions. Indeed, the resolution of (30) is made easier in some peculiar cases,
for instance when the right-hand side of (30) is zero (which occurs for the simple random
walk, see Example 6 below), or when it can be decoupled in the terminology of [6] (which is
analogous to the continuous setting and holds for the tandem walk, see Appendix C).

I Example 6 (continued). We consider here the case of the simple random walk,with kernel

K(x, y) = xy

(
1
4

(
x+ 1

x
+ y + 1

y

)
− 1
)
.

The domain GX is the open unit disk, and the conformal mapping ω admits the expression
ω(x) = x

(1−x)2 , see [20]. A computation shows that ω(X+(y)) = −ω(y), thus one gets that
the generating function of a harmonic function h may be written as

H(x, y) = P (ω(x))− P (−ω(y))
K(x, y) .

Choosing P (x) = x
4 leads to

H(x, y) =

1
4x

(1−x)2 +
1
4y

(1−y)2

xy
(

1
4 (x+ 1

x + y + 1
y )− 1

) = 1
(1− x)2(1− y)2 =

∑
i,j≥0

(i+ 1)(j + 1)xiyj ,

that is, H is the generating function of the unique positive harmonic function, see (26).
We now consider bi-harmonic functions. Using the explicit form of H, one sees that the

right-hand side of Eq. (30) vanishes. Indeed, we have

X+(y)H(X+(y), y)−X−(y)H(X−(y), y)

= X+(y)P
′(ω(X+(y)))ω′(X+(y))
α̃(y)(X+(y)−X−(y)) −X−(y)P

′(ω(X−(y)))ω′(X−(y))
α̃(y)(X−(y)−X+(y)) ,

which is equal to zero since ω(X+(y)) = ω(X−(y)) and

X+(y) ω′(X+(y))
X+(y)−X−(y) −X−(y) ω′(X−(y))

X−(y)−X+(y) = 0

by straightforward computations. The boundary equation has thus exactly the same form as
the one in the harmonic case, so we get that on the boundary of GX ,

K(x, 0)V (x, 0) = Q(ω(x)),
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for some polynomial Q. Using (twice) the functional equation (29), the general form for the
generating function of a bi-harmonic v satisfying Lv = h, with h harmonic, is thus

V (x, y) = Q(ω(x))−Q(−ω(y)) +X+(y)yH(X+(y), y)− xyH(x, y)
K(x, y) ,

with

H(x, y) = P (ω(x))− P (−ω(y))
K(x, y) and H(X+(y), y) = P ′(ω(X+(y)))ω′(X+(y))

α̃(y)(X+(y)−X−(y)) .

For instance, taking P (x) = x and Q the zero polynomial leads to the bi-harmonic function
(non symmetrical in i and j)

v(i, j) = (i+ 1)j(j + 1)(j + 2).

Indeed, one has

X+(y)H(X+(y), y) = − y

(1− y)4 ,

so the generating function V writes

V (x, y) = −4y
(1− x)2(1− y)4 ,

which is easily inverted. On the other hand, taking P (x) = x and Q(x) = −2x2 − 5
2x, one

obtains the bi-harmonic function

v(i, j) = (i+ 1)(j + 1)(2i2 + 2j2 + 4i+ 4j + 15),

which is (up to a multiplicative constant) the bi-harmonic function v1 appearing in Eq. (26).
Another example will be treated in Appendix C.
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− P
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− 1
x2
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More generally, the choice of P (x) = −(2j)!(−x)j leads to the Laplace transform (in
Cartesian coordinates) of the harmonic function f2j,j defined in (14). Indeed, recall that
f2j,j(ρ, θ) = ρ2j sin (2jθ), which is written in Cartesian coordinates as follows. Recall that
the Chebyshev polynomial Uj of the second kind is defined as Uj(cos θ) sin θ = sin(jθ), j ≥ 0,
and admits the expression

Uj(z) = zj
bj/2c∑
k=0

(
j + 1

2k + 1

)
(1− z−2)k.

Hence, thanks to the explicit expression of U2j−1, the harmonic function f2j,j can be written,
in Cartesian coordinates (x, y) = (ρ cos θ, ρ sin θ),

f2j,j(x, y) =
j−1∑
k=0

(−1)k
(

2j
2k + 1

)
y2k+1x2j−(2k+1).

The Laplace transform of f2j,j is now computed using L(xnyk) = n!k!
xn+1yk+1 , and one obtains

L(f2j,j)(x, y) = (2j)!
j−1∑
k=0

(−1)k 1
y2k+2x2j−2k = (2j)!

( 1
x2

)j − (− 1
y2

)j
x2 + y2 . (31)

For v bi-harmonic, the functional equation (21) is

(x2 + y2)L(v)(x, y) = L1(v)(y) + L2(v)(x) + 2L(h)(x, y),

and the general form of the Laplace transform of v writes

L(v)(x, y) =
Q
( 1
y2

)
−Q

(
− 1
x2

)
+ 2

x4P
′(− 1

x2

)
+ 2

P
(

1
y2

)
−P
(
− 1
x2

)
x2+y2

x2 + y2 , (32)

where P and Q are arbitrary polynomials. Choosing P (x) equal to x and Q(x) of degree 2,
equal to x2, gives that

L(v)(x, y) = x2 + y2

x4y4 = 1
x2y4 + 1

x4y2 ,

which is the Laplace transform of the function v(x, y) = (x2 + y2)xy, which corresponds in
polar coordinate (ρ, θ) to the bi-harmonic function f4,2(ρ, θ) = ρ4 sin 2θ defined in (14).

More generally, choosing

P (x) = (−1)j+1(2j)!2(2j + 1)xj and Q(x) = (−1)j+1(2j)!2(2j + 1)jxj+1

leads to the bi-harmonic function f2j+2,j . Indeed, since f2j+2,j(x, y) = (x2 + y2)f2j,j(x, y),
one has, from the usual properties of the Laplace transform, that L(f2j+2,j) = ∆L(f2j,j).
As such, by applying the Laplacian to the Laplace transform of f2j,j given in (31), one
obtains that

L(f2j+2,j)(x, y) =
(2j)!2(2j + 1)
x2y2(x2 + y2)2

{
(j + 2)x2y2

(( 1
x2

)j
−
(−1
y2

)j)
+ j

(
y4
( 1
x2

)j
− x4

(−1
y2

)j)}
.

Now, plugging the above choice of P and Q in Eq. (32) gives easily the formula.
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B Complete asymptotic expansion for the diagonal walk

As an explicit example, we provide a complete asymptotic expansion for the number (24) of
n-excursions from the origin to (i, j) for the diagonal walk with steps from {↗,↖,↘,↙}.
A straightforward way to obtain such an asymptotic expansion is to apply the standard
Laplace’s method (see [17, p. 755]) using an integral representation of (24) (in [22, p. 75–
79], this is applied to obtain first order asymptotic estimates in lattice paths enumeration
problems). This leads to an explicit new family of polynomials (vp)p≥0 of increasing degree,
where vp is the polyharmonic function of order p+ 1 appearing in the expansion (25), see
Corollary 9.

Let us first introduce the necessary notations. Projecting the walk onto the coordinate
axes, one gets two decoupled prefixes of Dyck paths. Hence (24) is obtained by a simple
application of the reflection principle in the one-dimensional case, which gives that the
number of non-negative paths from 0 to λ with n steps is given by

m(λ, n) :=
(

n
n+λ

2

)
−
(

n
n+λ+2

2

)
= λ+ 1

n+λ+2
2

(
n
n+λ

2

)
, (33)

with λ ≡ n mod 2. Using the simple integral representation of the binomial coefficient(
n

k

)
= 1

2π

∫ π

−π
e−ikt(1 + eit)ndt,

one readily obtains the following integral representation for m(λ, n):

m(λ, n) = 2
π

∫ π/2

−π/2
2n(cos y)n sin((λ+ 1)y) sin(y)dy. (34)

Now define the sequence (α(m))m≥1 as

α(m) = (4m − 1)|B2m|22m

2m(2m)! , (35)

where the B2m’s are the Bernoulli numbers, which can be defined through the Riemann zeta
function at even integers:

ζ(2m) = |B2m|(2π)2m

2(2m)! .

Define also, for s ≥ k ≥ 0,

Bαs,k := Bs,k (α(2), . . . , α(s− k + 2)) , (36)

the rational numbers obtained by evaluating the partial ordinary Bell polynomial in the
variables α(m+ 1). Recall that by definition, see for instance [13], the partial ordinary Bell
polynomials in the variables (xk)k≥1 are the polynomials obtained by performing the formal
double series expansion:

exp
(
u
∑
m≥1

xmt
m
)

=
∑

n≥k≥0
Bn,k(x1, . . . , xn−k+1)tnu

k

k! .

Note that the polynomial Bn,k contains p(n, k) monomials, where p(n, k) stands for the
number of partitions of n into k parts, see [13] for details and for an explicit expression of
these polynomials. Finally, define for p ≥ k ≥ 0,

Cαk,p = 1
k!

p∑
j=k

(−1)j

(2p− 2j + 1)!B
α
j,k. (37)

We first give a complete asymptotic expansion for prefixes of Dyck paths.
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I Theorem 8. Let m(λ, n) be the number of non-negative paths from 0 to λ ∈ Z+ given
by (33). The following asymptotic expansion holds as n→∞:

m(λ, n) ∼ 2
√

2 2n√
π

1
n3/2

∑
j≥0

(−1)j

nj
hj(λ),

where for j ≥ 0,

hj(λ) =
j∑
p=0

p∑
k=0

(−1)k

(2(j − p) + 1)!C
α
k,pm2(k+j+1)(λ+ 1)2(j−p)+1, (38)

where m2k = (2k)!
2kk! is the 2k-th Gaussian moment and Cαk,p is defined in (37).

Hence, the above theorem gives, in the one-dimensional case, an asymptotic expansion of
the number of non-negative paths in terms of polyharmonic functions. Indeed, it is easily
seen that the polynomial hj has degree 2j + 1, so is polyharmonic of order j + 1 for the
one-dimensional Laplacian Lf(x) = 1

2 (f(x+ 1) + f(x− 1))− f(x).
Since the number of n-excursions for the diagonal walk is the product of two numbers of

(decoupled) Dyck paths, one readily obtains the following corollary.

I Corollary 9. Let q(0, (i, j);n) be the number of diagonal paths with n steps from the origin
to (i, j) and confined in the quadrant, given by (24). Then

q(0, (i, j);n) ∼ 8
π

1
n3 4n

∑
p≥0

(−1)p

np
vp(i, j),

where, with hk defined in (38),

vp(i, j) =
p∑
k=0

hk(i)hp−k(j).

Clearly, the polynomial function vp has degree 2p+ 1 and thus is polyharmonic of order p+ 1
for the Laplacian associated to the diagonal walk. The set of exponents (16) appearing in
the asymptotic expansion is here 3 + N.

Proof of Theorem 8. To obtain the claimed asymptotic expansion, we apply the Laplace
method as in [17, p. 755] to the integral representation of m(λ, n) in (34). Indeed, the cosine
function admits only one maximum in the interval [−π2 ,

π
2 ], at y = 0, and the contribution to

the integral outside any fixed segment containing 0 is exponentially small and as such can be
discarded for an asymptotic consideration.

So, first, we perform the change of variable θ = y√
n
to get

m(λ, n) = 2n 2
π

1
n1/2

∫ π
2
√
n

−π2
√
n

cos
(

y√
n

)n
sin
(

y√
n

)
sin
(

(λ+ 1) y√
n

)
dy.

The next step is to consider an asymptotic expansion of the integrand as n→∞. Using the
Weierstrass product formula for the cosine function,

cos y =
∞∏
k=1

(
1− 4y2

π2(2k − 1)2

)
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and the Taylor series of the logarithm function, one has

log cos (y) = −
∑
m≥1

α(m)y2m,

where the sequence (α(m))m≥1 is defined in (35). Note that an interpretation of the sequence
(α(m))m≥1 is that they correspond to the cumulant sequence of the Bernoulli distribution
1
2δ+1 + 1

2δ−1. Now one has, using α(1) = 1
2 and the Taylor series of the exponential function,

cos
(

y√
n

)n
= exp

(
n log cos

(
y√
n

))
= e−y

2/2
∑
s≥0

1
ns

s∑
k=0

(−1)k

k! Bαs,k y
2(k+s),

where Bαs,k is the partial ordinary Bell polynomial defined in (36). Now, using the Taylor
series of the sine function, and after some elementary manipulations, one gets

cos
(

y√
n

)n
sin
(

y√
n

)
sin
(

(λ+ 1) y√
n

)
= e−y

2/2 1
n

∑
j≥0

(−1)j

nj

j∑
p=0

p∑
k=0

(−1)k
Cαk,p

(2(j − p) + 1)!y
2(k+j)+2(λ+ 1)2(j−p)+1,

where Cαk,p is defined in (37).
The next step in the Laplace method is to neglect the tails. Hence, we write

m(λ, n) ∼ 2
π

2n

n3/2

∑
j≥0

(−1)j

nj

j∑
p=0

p∑
k=0

(−1)kCαk,p
(2(j − p) + 1)! (λ+1)2(j−p)+1

∫ κn

−κn
e−y

2/2y2(k+j)+2dy,

where κn is chosen so that the error bounds are exponentially small (for instance one can
choose arbitrarily κn = n1/10). Completing the tails of the Gaussian integral, that is∫ κn

−κn
e−y

2/2y2(k+j)+2dy ∼
∫
R
e−y

2/2y2(k+j)+2dy =
√

2π (2(k + j + 1))!
2k+j+1(k + j + 1)!

=
√

2πm2(k+j+1),

where m2k = (2k)!
2kk! is the 2k-th Gaussian moment, one finally obtains, with hj defined in (38),

that

m(λ, n) ∼ 2
√

2 2n√
π

1
n3/2

∑
j≥0

(−1)j

nj
hj(λ). J

C The example of tandem walks

In this subsequent example, we consider the tandem walk with steps from {↖,→, ↓}, see
Example 7. In this case, the functional equation approach admits a nicer form because the
right-hand side of Eq. (30) can be decoupled, that is, can be written as G(X+(y))−G(X−(y)),
for some function G. The computations are close to the continuous case but are quite tedious.
First, we know [20] that the generating function H of a harmonic function h is of the form

H(x, y) = P (ω(x))− P (ω(X+(y)))
K(x, y) , (39)

where the conformal mapping ω is given by ω(x) = x2

(1−x)3 . The unique positive harmonic
function v0(i, j) = 1

2 (i+ 1)(j + 1)(i+ j + 2) of (27) is obtained choosing P (x) = 1
3x.
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Using the general form of H, one has

yX+(y)H(X+(y), y)− yX−(y)H(X−(y), y) =

3yX+(y)ω′(X+(y))
X+(y)−X−(y) P ′(ω(X+(y)))− 3yX−(y)ω′(X−(y))

X−(y)−X+(y) P ′(ω(X−(y))).

Define now the decoupling function on GX :

F (x) = − x3

(1− x)6 . (40)

Some computations show that

yX+(y)ω′(X+(y))
X+(y)−X−(y) −

yX−(y)ω′(X−(y))
X−(y)−X+(y) = F (X+(y))− F (X−(y)).

A crucial point is to guess the function F in (40) satisfying the above equation. Minding the
fundamental fact that ω(X+(y)) = ω(X−(y)), it follows that

yX+(y)H(X+(y), y)− yX−(y)H(X−(y), y) = G(X+(y))−G(X−(y)),

where G(x) = 3F (x)P ′(ω(x)). One deduces that the generating function V (x, y) for a
bi-harmonic function v satisfying Lv = h admits the form

1
K(x, y)

(
Q(ω(x))−Q(ω(X+(y)))+G(x)−G(X+(y))+X+(y)yH(X+(y), y)−xyH(x, y)

)
,

where H has the general form given by Eq. (39) and G(x) = 3F (x)P ′(ω(x)) with the
decoupling function F defined in Eq. (40). Note that this has to be compared with Theorem 4.

Choosing P (x) = x and Q = 0 leads to the bi-harmonic function

v(i, j) = (j+ 1)(i+ 1)(i+ j+ 2)(2i3 + 3i2j+ 14i2 + 5ij+ 24i− 3ij2− 2j3− 4j2 + 6j). (41)

To obtain to bi-harmonic function v1 of (27), one chooses P (x) = − 8
9x and Q(x) = 8

3x
2 + 76

27x.
This is obtained by noticing that an appropriate linear combination of the bi-harmonic
function (41) and of v1 is harmonic and its generating function corresponds to the term

Q(ω(x))−Q(ω(X+(y)))
K(x, y) .

As such, computing its generating function leads to the polynomial Q.
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1 Introduction

A planar map is a connected planar graph, possibly with loops and multiple edges, together
with an embedding in the plane. A map is rooted if a vertex v and an edge e incident with
v are distinguished, and are called the root-vertex and root-edge, respectively. Sometimes
the root-edge is considered as directed away from the root-vertex. In this sense, the face to
the right of e is called the root-face and is usually taken as the outer face. All maps in this
paper are rooted.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the 1960’s.
Tutte (and Brown) introduced the technique now called “the quadratic method” in order to
compute the number Mn, n ∈ N, of rooted maps with n edges, proving the formula

Mn = 2(2n)!
(n+ 2)!n! 3

n.

This was later extended by Tutte and his school to several classes of planar maps: 2-connected,
3-connected, bipartite, Eulerian, triangulations, quadrangulations, etc.
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10:2 Cut Vertices in Random Planar Maps

Figure 1 A randomly generated planar map with 500 edges, embedded using a spring-electrical
method. Cut vertices are coloured red.

The standard random model is to assume that every map with n edges appears with the
same probabiltiy 1/Mn. Within this random setting several shape parameters of random
planar maps have been studied so far, see for example [2, 8, 10, 9]. However, the number of
cut vertices does not appear to have been studied. (A cut vertex is a vertex that disconnects
a graph when it is removed). Figure 1 displays a randomly generated planar map with cut
vertices coloured red. It is natural to expect that the number of cut vertices is asymptotically
linear – and this is in fact true.

I Theorem 1. Let Xn denote the number of cut vertices in random planar maps with n
edges. Then we have

Xn

n

p−→ 5−
√

17
4 ≈ 0.219223594.

Moreover, we have E[Xn] = (5−
√

17)/4 · n+O(1).

We provide two different approaches for Theorem 1. First, by a probabilistic approach,
that makes use of the local convergence of random planar maps re-rooted at a uniformly
selected vertex (see Section 3). Second, by a combinatorial approach based on generating
functions and singularity analysis (see Section 4). The combinatorial approach yields
additional information on related generating functions and on error terms, and one obtains
more precise information on the expected value (see Section 4).

We conjecture that the number Xn additionally satisfies a normal central limit theorem.
The intuition behind this is that Xn may be written as the sum of n seemingly weakly
dependent indicator variables. The conjecture is backed up by numerical simulations we
carried out, see the histogram in Figure 2. Sampling over 2 · 105 planar maps with n = 5 · 105

edges, we obtained an average value of approximately 0.219223677 · n cut vertices. This
value is already very close to the exact asymptotic value obtained in Theorem 1. The
variance was approximately 0.082788 · n. It is actually possible to extend our combinatorial
approach and the corresponding asymptotic analysis to second moments that leads to the
precise asympotic behavior of the variance (details will be given in the journal version of this
Extended Abstract).
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Figure 2 Histogram for the number of cut vertices in more than 2 · 105 randomly generated
planar maps with n = 5 · 105 edges each.

One important property of random planar maps that we will use in the proof of Theorem 1
is that it has a giant 2-connected component of linear size. There are, however, several
interesting subclasses of planar maps, for example outerplanar maps (that is, all vertices are
on the outer face), where all 2-connected components are (in expectation) of bounded size.
Informally this means that on a global scale the map looks more or less like a tree. Such
classes of maps are called subcritical – we will give a precise definition in Section 2.

I Theorem 2. Let Xn denote the number of cut vertices in random outerplanar (or bipartite
outerplanar) maps of size n. Then Xn satisfies a central limit theorem of the form

Xn − cn√
σ2n

d−→N(0, 1)

where c = 1/4 and σ2 = 5/32 in the outerplanar case and c = (
√

3 − 1)/2 and σ2 =
(11
√

3− 17)/12 in the bipartite outerplanar case.

We will give a generating function based proof for the case of outerplanar graphs in Section 5.
(The proof for the bipartite outerplanar case is very similar to that.)

2 Generating Functions for Planar Maps

The generating function of planar maps is given by

M(z) =
∑
n≥0

Mnz
n = 18z − 1 + (1− 12z)3/2

54z2 = 1 + 2z + 9z2 + 54z3 + · · · , (1)

This can be shown in various ways, for example by the so-called quadratic method, where it
is necessary to use an additional catalytic variable u that takes care of the root face valency.
The corresponding generating function M(z, u) (u takes care of the root face valency or
equivalently by duality of the root degree) satisfies then

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u)−M(z)

u− 1 (2)
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which follows from a combinatorial consideration (removal of the root edge). Then this
relation can be used to obtain (1) and to solve the counting problem. We refer to [11,
Sec. VII. 8.2.].

Similarly it is possible to count also the number of non-root faces (with an additional
variable x) which leads to the relation1

M(z, x, u) = 1 + zu2M(z, x, u)2 + uzx
uM(z, x, u)−M(z, x, 1)

u− 1 .

Note that by duality M(z, x, 1) can be also seen as the generating function that is related to
edges and non-root vertices of planar maps.

A planar map is 2-connected if it does not contain cut vertices. There are various ways to
obtain relations for the corresponding generating function B(z, x, u) of 2-connected planar
maps – as above z takes care of the number of edges, x of the number of non-root faces, and
u of the valency of the root face. By using the fact, that a 2-connected planar map, where
we delete the root edge, decomposes into a sequence of 2-connected maps or single edges, we
obtain the relation

B(z, x, u) = zxu

uB(z,x,1)−B(z,x,u)
1−u + zu

1− uB(z,x,1)−B(z,x,u)
1−u − zu

. (3)

We can use, for example, the quadratic method to solve this equation or we just check that
we have

B(z, x, u) = −1
2
(
1− (1 + U − V + UV − 2U2V )u+ U(1− V )2u2) (4)

+ 1
2(1− (1− V )u)

√
1− 2U(1 + V − 2UV )u+ U2(1− V )2u2,

where U = U(x, y) and V = V (x, y) are given by the algebraic equations

z = U(1− V )2, xz = V (1− U)2. (5)

Note that in the above counting procedure we do not take the one-edge map (nor the
one-edge loop) into account. Therefore we have to add the term zu on the right hand
side in order to cover the case of a single edges that might occur in the above mentioned
decomposition into a sequence of 2-connected maps or single edges.

Sometimes it is more convenient to include the one-edge map as well as the one-edge
loop to 2-connected maps (since they have no cut-points) which leads us to the alternative
generating function

A(z, x, u) = B(z, x, u) + zxu+ zu2.

Now a general rooted planar map can be obtained from a 2-connected rooted map (including
the one-edge map as well as the one-edge loop) by adding to every corner a rooted planar
map (a corner of a planar map is the angle region between two adjacent half-edges of the
same vertex – note that there are 2n corners if there are n edges):

M(z, x, u) = 1 +A

(
zM(z, x, 1)2, x,

uM(z, x, u)
M(z, x, 1)

)
. (6)

1 By abuse of notation we will use for simplicity for M(z), M(z, u), M(z, x, u) the same symbol.
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If x = 1 then V (z, 1) (and U(z, 1)) satisfies the equation z = V (1− V )2 and, thus, the
dominant singularity of V (z, 1) (and U(z, 1)) is z0 = 4

27 , and we also have V (z0, 1) = 1
3 (as

well as U(z0, 1) = 1
3 ). Hence, from (4) it follows that the function A(z, 1, 1) has its dominant

singularity at z0 = 4
27 , too. On the other hand, by (1) M(z) has its dominant singularity at

z1 = 1
12 and we also have M(z1) = 4

3 . Since z1M(z1)2 = 4
27 = z0, the singularities of M(z)

and A(z, 1, 1) interact. We call such a situation critical.
The relation (6) can also be seen as a way how all planar maps can be constructed

(recursively) from 2-connected planar maps – which reflects the block-decomposition of a
connected graph into its 2-connected components. Actually this principle holds, too, for
several sub-classes of planar maps. As an example we consider outerplanar maps – these are
maps, in which all vertices are on the outer face. Here the generating function MO(z) of
outerplanar (rooted) maps satisfies

MO(z) = z

1−AO(M(z)) , (7)

where AO(z) is the generating function for polygon dissections (plus a single edge) where z
marks non-root vertices, which satisfies

2AO(z)2 − (1 + z)AO(z) + z = 0. (8)

Note that the dominant singularity of AO(z) is z0,O = 3 − 2
√

2, whereas the dominant
singularity of MO(z) is z1,O = 1

8 and we have MO(z1,O) = 1
18 . So we clearly have

MO(z1,O) < z0,O, (9)

so that the singularities of MO(z) and AO(z) do not interact. Such a situation is called
subcritical.

3 A probabilistic approach to cut vertices of random planar maps

We let Mn denote the uniform random planar map with n edges. It is known that Mn

and related models of random planar maps admit local limits that describe the asymptotic
vicinity of a typical corner, see [16, 1, 13, 4, 6, 15].

In a recent work by Drmota and Stufler [9, Thm. 2.1], a related limit object M∞ was
constructed that describes the asymptotic vicinity of a uniformly selected vertex vn of Mn

instead. That is, M∞ is a random infinite but locally finite planar map with a marked vertex
such that

(Mn, vn) d−→M∞ (10)

in the local topology.
In the present section we provide a probabilistic proof of Theorem 1. There are two steps.

The first proves a law of large numbers for the number Xn of cut vertices in Mn without
determining the limiting constant explicitly:

I Lemma 3. We have Xn/n
p−→ p/2, with p > 0 the probability that the root of M∞ is a cut

vertex.

The factor 1/2 originates from the fact that the number of vertices in the random map
Mn has order n/2. We prove Lemma 3 in Section 3.4 below. In the second step, we determine
this limiting probability (the proof is given in Section 3.6),

I Lemma 4. It holds that p = 5−
√

17
2 .
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3.1 The local topology
We briefly recall the background related to local limits. Consider the collection M of vertex-
rooted locally finite planar maps. For all integers k ≥ 0 we may consider the projection
Uk : M→M that sends a map from M to the submap obtained by restricting to all vertices
with graph distance at most k from the root vertex. The local topology is induced by
the metric

dM(M1,M2) = 1
1 + sup{k ≥ 0 | Uk(M1) = Uk(M2)} , M1,M2 ∈M.

It is well-known that the metric space (M, dM) is a Polish space. A limit of a sequence
of vertex rooted maps in M is called a local limit. The vertex rooted map (Mn, vn) is a
random point of the space of M, and hence the standard probabilistic notions for different
types of convergence (such as distributional convergence in (10)) of random points in Polish
spaces apply.

3.2 Continuity on a subset
We consider the indicator variable f : M→ {0, 1} for the property, that the root vertex is a
cut vertex.

Note that f is not continuous on M. Therefore we consider the subset Ω ⊂ M of all
locally finite vertex-rooted maps with the property, that either the root is not a cut vertex,
or it is a cut vertex and deleting it creates at least one finite connected component.

I Lemma 5. The indicator variable f is continuous on Ω.

Proof. Let (Mn)n≥1 denote a sequence in M with a local limit M = limn→∞Mn that
satisfies M ∈ Ω. If the root of M is not a cut vertex, then there is a finite cycle containing it,
and this cycle must then be already present in Mn for all sufficiently large n. Hence in this
case limn→∞ f(Mn) = 0 = f(M). If the root of M is a cut vertex, then M ∈ Ω implies that
removing it creates a finite connected component, and this component must then also be
separated from the remaining graph when removing the root vertex of Mn for all sufficiently
large n. Thus, limn→∞ f(Mn) = 1 = f(M). This shows that f is continuous on Ω. J

Note that by similar arguments it follows that the subset Ω is closed.

3.3 Random probability measures
The collection M1(M) of probability measures on the Borel sigma algebra of M is a Polish
space with respect to the weak convergence topology.

For any finite planar map M with k vertices we may consider the uniform distribution
on the k different rooted versions of M . If the map M is random, then this is a random
probability measure, and hence a random point in the space M1(M). In particular, the
conditional law P((Mn, vn) | Mn) is a random point of M1(M). Let L(M∞) ∈M1(M) denote
the law of the random map M∞. It follows from [18, Thm. 4.1] that

P((Mn, vn) | Mn) p−→L(M∞). (11)

The explicit construction of the limit M∞ also entails that among the connected components
created when removing any single vertex of M∞ at most one is infinite. In particular,

P(M∞ ∈ Ω) = 1. (12)
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3.4 Proving Lemma 3 using the continuous mapping theorem
Let us recall the continuous mapping theorem (see, for example, the book by Billingsley [3,
Thm. 2.7]) that says that random variables X,X1, X2, . . . that take values in a Polish space X
have the property that Xn

d−→X implies g(Xn) d−→ g(X), where g : X→ Y is a measurable
map to a Polish space Y and X almost surely takes values on the subset of X, where g is
continuous.

Hence, by combining the convergence (10) with Lemma 5 and Equation (12) allows us to
apply the continuous mapping theorem with X = M and Y = {0, 1} to deduce

f(Mn, vn) d−→ f(M∞).

In other words, the probability for vn to be a cut vertex of Mn converges toward the
probability p = E[f(M∞)] that the root of M∞ is a cut vertex. Equivalently, the number of
vertices v(Mn) in the map Mn satisfies

E[Xn/v(Mn)]→ p.

Of course, it follows by the same arguments that in general for any sequence of probability
measures P1, P2, . . . ∈ M1(M) satisfying the weak convergence Pn ⇒ L(M∞), the push-
forward measures satisfy

Pnf
−1 ⇒ L(M∞)f−1. (13)

Let us now consider the setting X = M1(M), Y = R, and

g : M1(M)→ R, P 7→
∫
f dP = P (f = 1). (14)

That is, a probability measure P ∈M1(M) gets mapped to the expectation of f with respect
to P . In other words, to the P -probability that the root is a cut vertex. It follows from (13)
that g is continuous at the point L(M∞). Hence, using (11) and again the continuous
mapping theorem, it follows that

E[f(Mn, vn) | Mn] d−→ p. (15)

As p is a constant, this convergence actually holds in probability. Moreover,

E[f(Mn, vn) | Mn] = Xn/v(Mn). (16)

The number v(Mn) is known to satisfy v(Mn)/n p−→ 1/2. In fact, a normal central limit
theorem is known to hold (see, for example, [9, Lem. 4.1]). This allows us to apply Slutsky’s
theorem, yielding Xn/n

p−→ p/2. We have thus completed the proof of Lemma 3.

3.5 Structural properties of the local limit
We let M denote a random map following a Boltzmann distribution with parameter z1 = 1

12 .

That is, M attains a finite planar map M with c(M) corners with probability

P(M = M) = z
c(M)
1

M(z1) = 3
4

(
1
12

)c(M)
. (17)

The local limit M∞ exhibits a random number of independent copies of M close to its root.
This can be made more precise by the following property.
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I Lemma 6. There is an infinite random planar map M∗∞ with a root vertex u∗ that is not
a cut vertex of M∗∞, such that M∞ is distributed like the result of attaching an independent
copy of M to each corner incident to u∗.

Here we use the term attach in the sense that the origin of the root-edge of the independent
copy of M gets identified with the vertex u∗. In what follows we will only use the fact that
such a (random) map M∗∞ exists. The proof of Lemma 6 (that is given in Appendix A)
provides additional information about the distribution of M∞ and M∗∞.

3.6 Proving Lemma 4 via the asymptotic degree distribution
Let q(z) =

∑
k≥1 qkz

k denote the probability generating function of the root-degree of the
map M∗∞. If we attach an independent copy of M to each corner incident to the vertex u∗ in
the map M∗∞, then u∗ becomes a cut vertex if and only if at least one of these copies has at
least one edge. The probability for M to have no edges, that is, to consist only of a single
vertex, is given by 1/M(z1) = 3/4. Hence the probability p for the root of M∞ to be a cut
vertex may be expressed by

p =
∑
k≥1

qk

(
1−

(
3
4

)k
)

= 1− q
(

3
4

)
. (18)

Hence, in order to determine p we need to determine q(z). Surprisingly, we may do so
without concerning ourselves with the precise construction of M∗∞.

It was shown in [12] that the degree of the origin of the root-edge of the random planar
map Mn admits a limiting distribution with a generating series d(z) given by

d(z) = z
√

3√
(2 + z)(6− 5z)3

. (19)

That is, dk := [zk]d(z) is the asymptotic probability for the origin of the root-edge of Mn to
have degree k. Let sk denote the limit of the probability for a uniformly selected vertex of
Mn to have degree k. It follows from [14, Prop. 2.6] that

sk = 4dk/k (20)

for all integers k ≥ 1. Setting s(z) =
∑

k≥1 skz
k, Equation (20) may be rephrased by

zs′(z) = 4d(z). (21)

Via integration, this yields the expression

s(z) = 1
2

−1 +
√

2 + z√
2− 5z

3

 (22)

As M∞ is the local limit of Mn rooted at a uniformly chosen vertex, it follows that for
each k ≥ 1 the limit sk equals the probability for the root of M∞ to have degree k. Let
r(z) denote the probability generating series of the degree distribution of the origin of the
root-edge of the Boltzmann map M. It follows from Lemma 6 that

s(z) = q(zr(z)). (23)
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We are going to compute r(z). To this end, let M(z, v) denote the generating series of
planar maps with z marking edges and v marking the degree of the root vertex. By duality,
M(z, v) coincides with the bivariate generating series where the second variable marks the
degree of the outer face. The quadratic method (see [11, p. 515] or compare with (1) and
(2)) hence yields the known expression

M(z1, u) =
−3u2 + 36u− 36 +

√
3(u+ 2)(6− 5u)3

6u2(u− 1) . (24)

The series r(z) is related to M(z, u) via

r(u) = M(z1, u)/M(z1, 1) = 3
4M(z1, u). (25)

Forming the compositional inverse of zr(z) and plugging it into Equation (23) yields the
involved expression

q(z) = 1
2


√

20z2+48z−
√

2z−27(2z−3)3/2+123
z(4z+3)+24

2
√

6−4z
−14z+5

√
2z−27

√
2z−3+51

− 1

 . (26)

Equation (26) allows us to evaluate the constant q(3/4) in the expression for p given in
Equation (18), yielding

p = 1− q(3/4) = 5−
√

17
2 . (27)

This concludes the proof of Lemma 4.

4 A combinatorial approach to cut vertices of planar maps

The goal of this section is to re-derive the constant (5−
√

17)/4 = p/2 in Theorem 1 with
the help of a combinatorial approach by deriving an asymptotic expansion for the expected
value E[Xn]. We want to emphasize again that an extension of this approach (that will be
given in the journal version of this paper) provides the asymptotic expansion of the second
moment E[X2

n] and consequently of the variance.

4.1 Generating function for the expected number of cut vertices
By extending the combinatorial approach that relates all planar maps with 2-connected maps
(see (6)) it is possible to derive the following explicit formula for the generating function

Ea(z) =
∑
n≥0

MnE[Xn]zn.

I Lemma 7. Let u1(z) denote the function u1(z) = 1/(1 − V (z, 1), where V (z, x) (and
U(z, x)) is given by (5). Then we have

Ea(z) = 1
1− 2zM(z)Az(zM(z)2, 1, 1) (28)

×
[

A(zM(z)2, 1, 1) + Ax(zM(z)2, 1, 1)

− 2zM(z)− z −B(zM(z)2, 1, 1/M(z))−B•(zM(z)2, 1/M(z))

+ 2zM(z)Az(zM(z)2, 1, 1)
(
B(zM(z)2, 1, 1/M(z))−M(z) + zM(z) + z + 1

)]
,
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10:10 Cut Vertices in Random Planar Maps

where

B•(z, w) = zw

u1(z)B(z,1,w)−wB(z,1,u1(z))
w−u1(z) + zwu1(z)

1− u1(z)B(z,1,w)−wB(z,1,u1(z))
w−u1(z) − zwu1(z)

. (29)

The proof is given in Appendix B. Note that all involved functions are algebraic, which
shows that the generating function Ea(z) is algebraic, too.

4.2 Asymptotics
We start with a proper representation of Bx(z, 1, 1) and Bz(z, 1, 1).

I Lemma 8. Let B(z, x, u) be given by (4) and u1(z) = 1/(1 − V (z, 1)) as in Lemma 11.
Then we have

Bx(z, 1, 1) = u1(z)− 1
u1(z) Q(z)(1−Q(z)) (30)

and

Bz(z, 1, 1) = u1(z)− 1
z u1(z) Q(z)(1−Q(z)) + u1(z)− 1 (31)

where Q(z) abbreviates

Q(z) = V (z, 1)2

u1(z)− 1 −
u1(z)B(z, 1, 1)
u1(z)− 1 + z u1(z).

The proof is an easy application of the kernel method applied to the derivative of the
defining relation (3).

I Lemma 9. We have the following local expansions in powers of
(
1− 27

4 z
)
:

Bx(z, 1, 1) = 2
27 −

2
√

3
27

√
1− 27

4 z + 2
81

(
1− 27

4 z
)

+ 19
√

3
729

(
1− 27

4 z
)3/2

+ · · · (32)

Bz(z, 1, 1) = 1−
√

3
(

1− 27
4 z
)1/2

+ 4
3

(
1− 27

4 z
)
− 35

√
3

54

(
1− 27

4 z
)3/2

+ · · · (33)

B•(z, w) = −4
w
(
−2w +

√
4w2 − 60w + 81− 9

)
243− 54w + 27

√
4w2 − 60w + 81

(34)

+
16
√

3w2 (−2w +
√

4w2 − 60w + 81 + 3
)

9
(
9− 2w +

√
4w2 − 60w + 81

)2 (2w − 3)

√
1− 27

4 z + · · ·

Proof. By inverting the equation z = V (1−V )2 it follows that V (z, 1) has the local expansion

V (z, 1) = 1
3 −

2
3
√

3
Z + 2

27Z
2 − 5

81
√

3
Z3 + · · · ,

where Z abbreviates

Z =
√

1− 27
4 z.

Consequently u1(z) = 1/(1− V (z, 1)) is given by

u1(z) = 3
2 −
√

3
2 Z + 2

3Z
2 − 35

√
3

108 Z3 · · ·
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We already know that

B(z, 1, u1(z)) = V (z, 1)2 = 1
9 −

4
√

3
27 Z + 16

81Z
2 − 34

√
3

729 Z3 + · · ·

and from (4) we directly obtain

B(z, 1, 1) = 1
27 −

4
27Z

2 + 8
√

3
81 Z3 + · · ·

Hence, the local expansion of Q(z) = Q0(z, 1, u1(z)) can be easily calculated:

Q(z) = 1
3 −

2
√

3
9 Z + 2

27Z
2 − 5

√
3

243 Z
3 + · · · ,

and, thus, (32) and (33) follow from this expansion and from (30) and (31).
Finally we have to use (29) and the expansion for B(x, 1, w) to obtain (34). J

This leads us to the following local expansion for Ea(z) and a corresponding asymptotic
relation.
I Lemma 10. The function Ea(z) has the following local expansion

Ea(z) = 11
√

17− 37
24 − (5−

√
17)
√

1− 12z + · · · (35)

which implies

E[Xn] = [zn]Ea(z)
[zn]M(z) = (5−

√
17)

4 n+O(1).

Proof. We note that several parts of (28) have a dominant singulartiy of the form (1−12z)3/2.
For those parts only the value at z1 = 1/12 influences the constant term and coefficient of√

1− 12z in the local expansion of Ea(z). In particular we have

M(z1) = 4
3 ,

A(z1M(z1)2, 1, 1) = 1
3 ,

B(z1M(z1)2, 1, 1/M(z1)) = 3
√

17− 11
72 .

The other appearing function will have a non-zero coefficient at the
√

1− 12z–term. Note
also that we have√

1− 27
4 zM(z)2 =

√
3
√

1− 12z − 2
3
√

3(1− 12z) +O((1− 12z)3/2).

Hence we get

Az(zM(z)2, 1, 1) = 3− 3
√

1− 12z + · · · ,

Ax(zM(z)2, 1, 1) = 2
9 −

2
9
√

1− 12z + · · · ,

B•(zM(z)2, 1, 1, 1/M(z)) =
(
7−
√

17
) (

5−
√

17
)

72 −
(
1 +
√

17
) (
−5 +

√
17
)2

48
√

1− 12z + · · ·

and so (35) follows.
From (35) it directly follows that

[zn]Ea(z) = 5−
√

17
2
√
π

n−3/212n · (1 +O(1/n))

By dividing that by Mn = [zn]M(z) = (2/
√
π)n−5/212n · (1 + O(1/n)) the final result

follows. J
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10:12 Cut Vertices in Random Planar Maps

5 Outerplanar Maps

We give a proof of Theorem 2 for the case of (all) outerplanar maps. (The proof in the
bipartite case is very similiar.)

We recall that the generating function MO(z) of outerplanar maps satisfies (7), where
the function

AO(z) = 1
4

(
1 + z −

√
1− 6z + z2

)
is the generating function for polygon dissections (plus a single edge) has radius of convergence
z0,O = 3− 2

√
2. From this we obtain

MO(z) =
z
(
3−
√

1− 8z
)

2(1 + z) .

The radius of convergence of MO(z) is z1,O = 1
8 so that MO(z1,O) = 1

18 < z0,O. Note that
MO(z) has a squareroot singularity (as it has to be). Now let MO(z, y) denote the generating
function of outerplanar maps, where y takes care of the number of cut-vertices. We already
mentioned that MO(z, y) satisfies the functional equation

MO(z, y) = z

1−AO(z + y(MO(z, y)− z))

which gives

MO(z, y) =
z
(

3− z + yz −
√

(y − 1)z2 − (6 + 2y)z + 1
)

2(1 + yz) .

Clearly, if y is sufficiently close to 1 then the singularities of MO(z, y) and AO(z) do not
interact and so we obtain a squareroot singularity

ρ(y) = 3 + y − 2
√

2 + 2y
(y − 1)2 .

for the mapping z 7→ MO(z, y). Note that ρ(y) is actually regular at y = 1 and satisfies
ρ(1) = 1/8.

By [7, Theorem 2.25] we immediately obtain a central limit theorem with E[Xn] =
c n+O(1) and variance Var[Xn] = σ2n+O(1), where

c = −ρ
′(1)
ρ(1) = 1

4 and σ2 = −ρ
′′(1)
ρ(1) + µ+ µ2 = 5

32 .
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A Proof of Lemma 6

A direct description of the limit M∞ that uses a generalization of the Bouttier, Di Francesco
and Guitter bijection [5] was given in [18, Thm. 4.1]. Although the structure of M∞ may be
studied in this way, it will be easier to show that M∞ has the desired shape via a construction
related to limits of the 2-connected core within Mn.

Let B(Mn) ⊂ Mn denote the largest (meaning, having a maximal number of edges)
2-connected block in the map Mn. Typically B(Mn) is uniquely determined, as the number
c(n) of corners of B(Mn) is known to have order 2n/3, and the number of corners in the
second largest block has order n2/3.

Consider the random planar map M̄n constructed from the core Cn := B(Mn) by attaching
for each integer 1 ≤ i ≤ c(n) an independent copy M(i) of M at the ith corner of Cn. We use
the notation Cn instead of B(Mn) from now on to emphasize that we consider Cn always as
a part of M̄n (as opposed to Mn).

Clearly, the two models Mn and M̄n are not identically distributed. For example, the
number of edges in M̄n is a random quantity that fluctuates around n. However, analogously
as in the proof of [17, Lem. 9.2], local convergence of M̄n is equivalent to local convergence
of Mn, implying that M∞ is also the local limit of M̄n with respect to a uniformly selected
vertex un.
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The random 2-connected planar map Bn with n edges was shown to admit a local limit
B̂ that describes the asymptotic vicinity of a typical corner (equivalently, the root-edge of
Bn), see [17, Thm. 1.3]. Arguing entirely analogously as in [9], it follows that there is also a
local limit B∞ that describes the asymptotic vicinity of a typical vertex.

The number of vertices of M̄n has order n/2, and the number of vertices in Cn is known
to have order n/6. Let uB

n denote the result of conditioning the random vertex un to belong
to Cn. The probability for this to happen tends to 1/3. As uB

n is uniformly distributed
among all vertices of Cn, it follows that (Cn, u

B
n) d−→B∞ in the local topology. This implies

that (M̄n, u
B
n) converges in distribution towards the result MB

∞ of attaching an independent
copy of M to each corner of B∞. The limit MB

∞ has the desired shape.
Let uc

n denote the result of conditioning the random vertex un to lie outside of Cn.
It remains to show that the limit Mc

∞ of (M̄n, u
c
n) has the desired shape as well. Let

1 ≤ in ≤ c(n) denote the index of the corner where the component containing uc
n is attached.

It is important to note that given the maps M(1), . . . ,M(c(n)), the random integer in need
not be uniform, as it is more likely to correspond to a map with an above average number of
vertices. This well-known waiting time paradox implies that asymptotically the component
containing uc

n follows a size-biased distribution M•. That is, M• is a random finite planar
map with a marked non-root vertex, such that for any planar map M with a marked non-root
vertex v it holds that

P(M• = (M, v)) = P(M = M)/(E[v(M)]− 1),

with v(M) denoting the number of vertices in the Boltzmann planar map M.
In detail: Given the random number c(n), let i∗n be uniformly selected among the integers

from 1 to c(n). For each 1 ≤ i ≤ c(n) with i 6= i∗n let M̄(i) denote an independent copy of
M, and let M̄(i∗n) denote an independent copy of M•. Likewise, for each 1 ≤ i ≤ c(n) with
i 6= in set M∗(i) = M(i), and let M∗(in) = (M(in), uc

n). Analogously as in the proof of [17,
Lem. 9.2], it follows that

(M∗(i))1≤i≤c(n)
d
≈ (M̄(i))1≤i≤c(n).

This entails that the core Cn rooted at the corner with index in admits B̂ (and not B∞)
as local limit. Moreover, the local limit Mc

∞ of M̄n rooted at uc
n may be constructed by

attaching an independent copy of M to each corner of B̂, except for the root-corner of B̂,
which receives an independent copy of M•. The marked vertex of the limit object Mc

∞ is
then given by the marked vertex of this component.

To proceed, we need information on the shape of M•. Consider the ordinary generating
functions M(v, w) and A(v, w) of planar maps and 2-connected planar maps, with v marking
corners, and w marking non-root vertices. The block-decomposition yields

M(v, w) = A(vM(v, w), w). (36)

That is, a planar map consists of a uniquely determined block containing the root-edge,
with uniquely determined components attached to each of its corners. Let us call this block
the root block. For the trivial map consisting of a single vertex and no edges, this block is
identical to the trivial map, with nothing attached to it as it has no corners.

Marking a non-root vertex (and no longer counting it) corresponds to taking the partial
derivative with respect to w. It follows from (36) that

∂M

∂w
(v, w) = ∂A

∂w
(vM(v, w), w) + ∂A

∂v
(vM(v, w), w)v ∂M

∂w
(v, w).
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The combinatorial interpretation is that either the marked non-root vertex is part of the root
block (accounting for the first summand), or there is a uniquely determined corner of the
root block such that the component attached to this corner contains it. This is a recursive
decomposition, as in the second case we could proceed with this component, considering
whether the marked vertex belongs to its root block or not. We may do so a finite number
of times, until it finally happens that the marked vertex belongs to the root-block of the
component under consideration. That is, if we follow this decomposition until encountering
the marked non-root vertex, we have to pass through a uniquely determined sequence of
blocks, always proceeding along uniquely determined (and hence marked) corners, until
arriving at a block with a marked non-root vertex. On a generating function level, this is
expressed by

∂M

∂w
(v, w) = 1

1− ∂A
∂v (vM(v, w), w)v

∂A

∂w
(vM(v, w), w).

This allows us to apply Boltzmann principles, yielding that the random map M• may be
sampled in two steps, that may be described as follows: First, generate this sequence of
blocks by linking a geometrically distributed random number N of random independent
Boltzmann distributed blocks B◦1, . . . ,B◦N with marked corners into a chain, and attach an
extra random Boltzmann distributed block B• with a marked non-root vertex to the end of
the chain. The random number N has generating function

E[uN ] =
1− ∂A

∂v (z1M(z1, 1), 1)z1

1− u∂A
∂v (z1M(z1, 1), 1)z1

.

The corner-rooted blocks are independent copies of a Boltzmann distributed block B◦, whose
number of corners c(B◦) has generating function

E[uc(B◦)] =
∂A
∂v (uz1M(z1, 1), 1)
∂A
∂v (z1M(z1, 1), 1)

.

The distribution of B◦ is fully characterized by the fact that, when conditioning on the
number of corners, B◦ is conditionally uniformly distributed among the corner-rooted blocks
with that number of corners. The distribution of B• is defined analogously. If we attach a
block B̃ to the marked corner c of some block B, we say the resulting corner “to the right”
of B̃ corresponds to c. Hence the map obtained by linking (B◦1, . . . ,B◦N ,B•) has precisely
N corners that correspond to marked corners. We call these corners closed, and all other
corners open. The second and final step in the sampling procedure of M• is to attach an
independent copy of M to each open corner of the map corresponding to (B◦1, . . . ,B◦N ,B•).
Note that since the marked vertex of B• is a non-root vertex, all corners incident to the
marked vertex are open. Consequently, the limit Mc

∞ has the desired shape, and the proof is
complete.

B Proof of Lemma 7

First we introduce (formally) a generating function that takes care of all vertex degrees in
2-connected planar maps (including the one-edge map and the one-edge loop)

A(z;w1, w2, w3, w4, . . . ;u),

where wk, k ≥ 1, corresponds to vertices of degree k and we also take the root vertex into
account. As usual, u corresponds to the root degree.
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Similarly we introduce a variant of this generating function that takes care of all vertex
degrees in 2-connected planar maps (without the one-edge map and one-edge loop) and does
not take the root vertex into account:

B(z;w2, w3, w4, . . . ;u).

It seems to be impossible to work directly with A(z;w1, w2, w3, . . .) or with
B(z;w2, w3, w4, . . . ;u), however, we have the following easy relations:

A(z;xv, xv2, xv3, . . . ;u) = xA(zv2, x, u), B(z;xv2, xv3, . . . ;u) = B(zv2, x, u/v).

This follows from the fact that every vertex of degree k corresponds to k half-edges. So
summing up these half-edges we get twice the number of edges. In particular by taking
derivatives with respect to x and v it follows that∑

k≥1
Awk

(z; v, v2, v3, . . .)vk = A(zv2, 1, 1) +Ax(zv2, 1, 1) (37)

and∑
k≥1

kAwk
(z; v, v2, v3, . . .)vk−1 = 2zvAz(zv2, 1, 1). (38)

It turns out that we will also have to deal with the sum of all derivatives which is slightly
more difficult to understand.

I Lemma 11. Let u1(z) denote the function u1(z) = 1/(1 − V (z, 1), where V (z, x) (and
U(z, x)) is given by (5). Then we have∑

k≥1
Awk

(z; v, v2, v3, . . .) = 2zv + z +B(zv2, 1, 1/v) (39)

+ zv

u1(zv2)B(zv2,1,1/v)−B(zv2,1,u1(zv2))/v
1/v−u1(zv2) + zvu1(zv2)

1− u1(zv2)B(zv2,1,1/v)−B(zv2,1,u1(zv2))/v
1/v−u1(zv2) − zvu1(zv2)

Proof. We note that the derivative with respect to wk marks a vertex of degree k and
discounts it. By substituting wk by vk we, thus, see that the resulting exponent of v is twice
the number of edges minus the degree of the marked vertex. Hence we have to cover the
situation, where we mark a vertex and keep track of the degree of the marked vertex.

Let B•(z, x, u, w) be the generating function of vertex marked 2-connected planar maps,
where the marked vertex is different from the root and where u takes care of the root degree
and w of the degree of the pointed vertex. By duality this is also the generating function of
face marked 2-connected planar maps where u takes care of the root face valency and w of
the valency of the marked face (that is different from the root face). Then we have∑

k≥1
Awk

(z; v, v2, v3, . . .) = 2zv + z +B(zv2, 1, 1/v) +B•(zv2, 1, 1, 1/v).

The term 2zv corresponds to the one-edge map, the term z to the one-edge loop, the term
B(zv2, 1/v) to the case where the root vertex is marked and the third term B•(zv2, 1, 1, 1/v)
to the case where a vertex different from the root is marked. Note that the substitution
u = 1/v (or w = 1/v) discounts the degree of the marked vertex in the exponent of v
as needed.
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Thus, it remains to get an expression for B•(z, 1, u, w). For this purpose we start with
the generating function B(z, 1, u) and determine first the generating function B̃(z, x, u, w)
(for x = 1), where the additional variable w takes care of the valency of the second face
incident to the root edge. By using the same construction as above we have

B̃(z, 1, u, w) = zuw

uB(z,1,w)−wB(z,1,u)
w−u + zuw

1− uB(z,1,w)−wB(z,1,u)
w−u − zuw

.

This gives (by again applying this construction)

B•(z, 1, u, w) = B̃(z, 1, u, w) + zu

uB•(z,1,1,w)−B•(z,1,u,w)
1−u(

1− uB(z,1,1)−B(z,1,u)
1−u − zu

)2 .

This equation can be solved with the help of the kernel method. By rewriting it to

B•(z, 1, u, w)

1 + zu

1− u
1(

1− uB(z,1,1)−B(z,1,u)
1−u − zu

)2


= B(z, 1, u, w) + zu2B•(z, 1, 1, w)

1− u
1(

1− uB(z,1,1)−B(z,1,u)
1−u − zu

)2

we observe that by setting u1(z) = 1/(1− V (z, 1)) the left hand side cancels. This implies

B(z, 1, u1(z), w) + zu1(z)2B•(z, 1, 1, w)
1− u1(z)

1(
1− u1(z)B(z,1,1)−B(z,1,u1(z))

1−u1(z) − zu1(z)
)2 = 0

and leads (after some simple algebra) finally to (39). J

Let M0(z, y) denote the generating function of planar maps with at least one edge, where
the root vertex is not a cut point and where z takes care of the number of edges and y of
the number of cut-points (that are then different from the root vertex). Next let Mr(z, y)
denote the generating function of (all) planar maps, where z takes care of the number of
edges and y of the number of non-root cut-points. Finally let Ma(z, y) denote the generating
function of (all) planar maps, where z takes care of the number of edges and y of the number
of (all) cut-points. Obviously we have the following relation between these three generating
functions:

Ma(z, y) = yMr(z, y)− (y − 1)(1 +M0(z, y)). (40)

Note that M0(z, 1) = B
(
z;M(z)2,M(z)3, . . . ; 1

)
= B(zM(z)2, 1, 1/M(z)) + zM(z) + z.

Furthermore we set

Ea(z) = ∂Ma(z, y)
∂y

∣∣∣∣
y=1

=
∑
n≥0

MnE[Xn]zn and Er(z) = ∂Mr(z, y)
∂y

∣∣∣∣
y=1

.

By differentiating (40) with respect to y and setting y = 1 we obtain

Ea(z) = Er(z) +M(z)− 1−M0(z, 1). (41)

With the help of the above notions we obtain the following (formal relation):

Ma(z, y) = 1 +A
(
z; yMr(z, y)− y + 1, yMr(z, y)2 − y + 1, . . . ; 1

)
. (42)
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The right hand side is based on the block-decompostion (similarly to (6)) and takes care
whether the vertices of the block that contains the root edge become cut-vertices or not. By
differentiating (42) with respect to y and setting y = 1 we, thus, obtain

Ea(z) =
∑
k≥1

Awk

(
z;M(z),M(z)2, . . . ; 1

) (
M(z)k − 1 + kM(z)k−1Er(z)

)
=
∑
k≥1

Awk

(
z;M(z),M(z)2, . . .

)
M(z)k −

∑
k≥1

Awk

(
z;M(z),M(z)2, . . .

)
+ Er(z)

∑
k≥1

kAwk

(
z;M(z),M(z)2, . . .

)
M(z)k−1.

By using (41) we get a proper expression for Ea(z). At this stage we can apply (37) and (38)
with v = M(z). Furthermore Lemma 11 gives∑

k≥1

Awk (z; M(z), M(z)2, . . .)

= 2zM(z) + z + B(zM(z)2, 1, 1/M(z)) + B•(zM(z)2, 1, 1, 1/M(z))

= 2zM(z) + z + B(zM(z)2, 1, 1/M(z))

+ zM(z)
u1(zM(z)2)B(zM(z)2,1,1/M(z))−B(zM(z)2,1,u1(zM(z)2))/M/z)

1/M(z)−u1(zM(z)2) + zM(z)u1(zM(z)2)

1− u1(zM(z)2)B(zM(z)2,1,1/M(z))−B(zM(z)2,1,u1(zM(z)2))/M(z)
1/M(z)−u1(zM(z)2) − zM(z)u1(zM(z)2)

This finally leads to the proposed explicit formula for Ea(z).
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11:2 Asymptotics of Minimal DFAs Recognizing a Finite Binary Language

1 Introduction

A deterministic finite automaton (DFA) A is a 5-tuple (Σ, Q, δ, q0, F ), where Σ is a finite
set of letters called the alphabet, Q is a finite set of states, δ : Q× Σ→ Q is the transition
function, q0 is the initial state, and F ⊆ Q is the set of final states (sometimes called accept
states). States not in F are called non-final or reject states. A DFA can be represented by a
directed graph with one vertex vs for each state s ∈ Q, with the vertices corresponding to
final states being highlighted, and for every transition δ(s, w) = ŝ, there is an edge from s to
ŝ labeled w (see Figure 1).

q0

q1

q2

q3

q4

b
a

a

a a

a

b

b
b b

Figure 1 The unique minimal DFA for the language {a, b, bab, bb}. Here, q0 is the initial state,
q1 and q3 are the final states, and q4 is the unique sink.

A word w = w1w2 · · ·w` ∈ Σ∗ is accepted by A if the sequence of states (s0, s1, . . . , s`) ∈
Q`+1 defined by s0 = q0 and si+1 = δ(si, wi) for i = 0, . . . , ` − 1 ends with s` ∈ F a final
state. The set of words accepted by A is called the language L(A) recognized by A. It is
well-known that DFAs recognize exactly the set of regular languages. Note that every DFA
recognizes a unique language, but a language can be recognized by several different DFAs.
A DFA is called minimal if no DFA with fewer states recognizes the same language. The
Myhill-Nerode Theorem states that every regular language is recognized by a unique minimal
DFA (up to isomorphism) [8, Theorem 3.10]. For more details on automata see [8].

In this paper we show that the counting sequence (m2,n)n∈N of minimal DFAs of size n
recognizing a finite binary language admits a stretched exponential. Until now, the problem
of counting these automata, even asymptotically, was widely open, see for example [4].

I Theorem 1. The number m2,n of non-isomorphic minimal DFAs on a binary alphabet
recognizing a finite language with n+ 1 states satisfies for n→∞

m2,n = Θ
(
n! 8ne3a1n

1/3
n7/8

)
,

where a1 ≈ −2.338 is the largest root of the Airy function.

Since every regular language defines a unique minimal automaton, one may define
the (space) complexity of the language to be the number of states in this corresponding
automaton. Defining space complexity in this way, the number m2,n is simply the number of
finite languages over a binary alphabet of space complexity n+ 1.

In the recent paper [6] we showed lower and upper asymptotic bounds on m2,n by first
establishing a connection between automata counted by m2,n and classes of directed acyclic
graphs (DAGs) and then solving their asymptotic enumeration problem. In particular, we
proved that

2n−1cn ≤ m2,n ≤ 2n−1rn, (1)
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where cn is the number of compacted and rn the number of relaxed binary trees of size n.
These appear naturally in the compression of XML documents [3, 7]. In the same paper, we
showed that as n→∞,

cn = Θ
(
n! 4ne3a1n

1/3
n3/4

)
and rn = Θ

(
n! 4ne3a1n

1/3
n
)
,

leading to asymptotic lower and upper bounds on m2,n. The results of the present work arise
as a further application of the general method from [6] for proving the appearance of such
stretched exponentials. They showcase the strength of our method, and we expect that our
method may be applied to yet other combinatorial objects governed by similar recurrences.

The asymptotic proportion of general minimal DFAs (not necessarily recognizing a finite
language) was solved by Bassino, Nicaud, and Sportiello in [1], building on enumeration
results by Korshunov [9,10] and Bassino and Nicaud [2]. The result in [1] also exploits an
underlying tree structure of the related automata, but from a different traversal than what
we use. In that case, no stretched exponential appears in the asymptotic enumeration, and
the minimal automata account for a constant fraction of all automata.

2 Recurrence relation

To derive a recurrence for automata recognizing a finite language, we need the following
lemma. In the following, we only consider automata on the binary alphabet {a, b}.

I Lemma 2 ([11, Lemma 2.3], [8, Section 3.4]). A DFA A is the minimal automaton for
some finite language if and only if it has the following properties:
(a) There is a unique sink s. That is, a state which is not a final state such that all transitions

from s end at s that is, δ(s, w) = s.
(b) A is acyclic: the underlying directed graph has no cycles except for the loops at the sink.
(c) A is initially connected: for any state p there exists a word w ∈ Σ∗ such that A reaches

the state p upon reading w.
(d) A is reduced: for any two different states q, q′, the two automata with initial state q

and q′ recognize different languages.

Next, we identify a property that can replace the one of being reduced.

I Lemma 3. An acyclic, initially connected DFA A with a unique sink is reduced if and
only if it satisfies the following condition:
(d’) State uniqueness: there are no two distinct states q and q′ with δ(q, a) = δ(q′, a) and

δ(q, b) = δ(q′, b) such that both q and q′, or neither q nor q′, are accept states.

Proof. By definition, being reduced implies state uniqueness. Now suppose that A is not
reduced while state uniqueness holds. Then there are two states q 6= q′ in A such that the
two automata with initial state q and q′ recognize the same language L. As A is acyclic, L
is finite. We define the weight of L to be

∑
w∈L(|w| + 1), and we pick q, q′ such that the

weight of L is minimal.
Suppose that L is not empty. By the state uniqueness, we must have δ(q, a) 6= δ(q′, a) or

δ(q, b) 6= δ(q′, b). Without loss of generality, suppose that r = δ(q, a) 6= δ(q′, a) = r′. The
two automata with initial state r and r′ recognize the same language a−1L = {w | aw ∈ L}.
Since the weights of a−1L are strictly less that that of L, we have r and r′ violating the
minimality of the weight of L. Therefore, L must be empty.

Since L is empty, q and q′ are both rejecting. They cannot both be the sink as the sink
is unique. Suppose that q is not the sink. Then due to state uniqueness, among δ(q, a) and
δ(q, b) there is at least one state q1 that is not the sink. As L is empty, q1 is also rejecting.

AofA 2020



11:4 Asymptotics of Minimal DFAs Recognizing a Finite Binary Language

We can then replace q with q1 and perform the same argument to q1 and q′, repeating ad
infinitum. This creates an infinite sequence of states without repetition since A is acyclic.
This is impossible as A is a DFA. Therefore, the existence of q and q′ is impossible, meaning
that A is reduced. We thus have the desired equivalence. J

q0

a

a

a

a
a

a

a

b

b b

b

b

b

b

a, b

Figure 2 An acyclic DFA with its spanning subtree in black and all other edges in red. The
initial state is q0 and the finial states are colored green.

We now consider two sets of DFAs: the set F of minimal DFAs recognizing finite languages,
and the set G of acyclic and initially connected DFAs with a unique sink. From Lemmas 2
and 3, F consists of precisely the automata in G that also possess the state uniqueness.

In order to derive our recurrence, we first transform DFAs in G into decorated lattice
paths that we call B-paths. For a given A ∈ G, our first step is to construct a spanning
subtree of A (excluding the sink) using a depth-first search (DFS hereinafter) from the initial
state q0 as shown in Figure 2. This DFS is uniquely defined by taking edges marked by a
before edges marked by b. Since A is initially connected, the tree obtained is a spanning tree.

Using the same DFS, we construct a path P starting at the point (−1, 0) and illustrated
by a blue line in Figure 3 as follows:

Whenever the directed blue line around the tree in Figure 3 goes up we add a vertical
step V = (0, 1) to the path. We say that the state we just quit corresponds to this step.
Whenever the directed blue line crosses an outgoing edge (including the edge leading to
the sink), which is not part of the tree, we add a horizontal step H = (1, 0).

The order of states corresponding to V -steps is called the postorder of states. It is clear
that the first step of P is a H-step, and removing it from P gives a Dyck path under the
main diagonal. We now decorate P with spots and crosses. Each step V is decorated by a
green or white spot, according to whether the corresponding state is accepting or rejecting.

Since A is acyclic, during the DFS, for an edge e pointing from the current state q to an
already visited state q′, the state q′ must not be an ancestor of q in the constructed tree,
meaning that q′ must either come before q in postorder or be the sink. In the former case,
we put a cross in the cell at the intersection between the column of the H-step corresponding
to e, and the row of the V -step corresponding to q′, while in the latter case we put the cross
in the row just below y = 0. Clearly the crosses are under P and above y = −1. We thus
obtain a path B with decorations, and we say that B is the B-path of the automaton A.

To characterize B-paths obtained from DFAs in G, we propose the following definition.
An automatic B-path P of size n is defined as a lattice path consisting of up steps and
horizontal steps from (−1, 0) to (n, n) with decorations such that
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(0, 0)

(−1, 0)

(7, 7)

2a 2b 4a 4b 6a 6b 7b3a

Figure 3 The transformation from an acyclic DFA to a B-path. In the DFA, the states are
numbered in order of their corresponding up steps and we have labelled each outgoing edge not in
the tree with the number of the state it points to.

The first step is an H-step, and its removal leaves a Dyck path below the main diagonal;
Each H-step has a cross in its column, under P and above y = −1.
Every V -step has a white or green spot.

It is not difficult to see that automatic B-paths are in bijection with G, with the size preserved,
since a B-path P obtained from a DFA A ∈ G is clearly automatic, and the construction of
B-paths can be easily reversed to obtain a DFA in G from an automatic B-path.

Now we examine automatic B-paths corresponding to DFAs in F. By definition, we only
need to take the state uniqueness into account. Given A ∈ G, let T be its depth-first search
tree and B its corresponding automatic B-path. A state q ∈ A is called a cherry if it is a
leaf of T but not the sink. Seen on B, a cherry state corresponds to a sequence HHV of
steps. We now propose a seemingly weaker notion of state uniqueness called cherry-state
uniqueness, which is in fact equivalent in our case.

I Lemma 4. Suppose that A ∈ G, then A has state uniqueness if and only if it has cherry-
state uniqueness, i.e., any two states q, q′ such that q comes before q′ in postorder, and q′ is
a cherry state, satisfy the conditions in the definition of state uniqueness.

Proof. State uniqueness clearly implies cherry-state uniqueness. For the other direction, let
T be the DFS tree of A. Suppose that we have two states q 6= q′ such that δ(q, a) = δ(q′, a)
and δ(q, b) = δ(q′, b). We suppose that q precedes q′ in postorder. It is clear that q′ is not an
ancestor of q, but q is also not an ancestor of q, or else q would have a transition to itself or
to one of its ancestors, which is impossible as A is acyclic. This implies that both δ(q, a) and
δ(q, b) come before q in postorder, so neither δ(q, a) nor δ(q, b) can be a child of q′. Hence,
q′ is a cherry. Therefore, cherry-state uniqueness implies state uniqueness. J

We now try to construct step by step automatic B-paths corresponding to DFAs in F.
We denote by Bn,m the set of prefixes ending at (n,m) of such paths. We always start
by an H-step from (−1, 0), thus there is exactly one path in B0,0. Suppose that we have
constructed all automatic B-paths ending at 0 ≤ m′ ≤ m and m′ ≤ n′ ≤ n except for (n,m),
and we now construct paths in Bn,m. First, from any path in Bn−1,m, we can construct
a path P ∈ Bn,m by adding an H-step at height m with a cross, and there are (m + 1)

AofA 2020
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possibilities for the cross. Second, from any path in Bn,m−1, we can construct a path P by
adding a V -step with a spot that can be green or white. Such a path P ends in a V -step,
thus it is different from paths in the first case. However, it may not be in Bn,m, because it
may end in HHV with H-steps at height m− 1. In such a case it corresponds to a cherry
state that violates the cherry-state uniqueness. Such paths violating the condition for F are
all constructed by adding HHV at the end of paths in Bn−2,m−1, then adding crosses for
the last two H-steps to make the corresponding cherry state “copy” one of the m states
precedng it in postorder. Excluding such paths, we obtain all the paths in Bn,m. In this way,
we construct all automatic B-paths corresponding to DFAs in F. This construction can be
translated into the following recurrence.

I Proposition 5. Let bn,m be the number of initial segments of automatic B-paths corres-
ponding to DFAs in F ending at (n,m). Then

bn,m = 2bn,m−1 + (m+ 1)bn−1,m −mbn−2,m−1, for n ≥ m ≥ 1,
bn,m = 0, for n < m,

bn,0 = 1, for n ≥ −1.

The number m2,n of minimal binary DFAs of size n recognizing a finite language is equal
to bn,n.

This recurrence relation can be directly used to compute all elements of the sequence
(m2,n)n≥0 up to size n = N with O(N2) arithmetic operations. The first few numbers of
this sequence read

(m2,n)n≥0 = (1, 1, 6, 60, 900, 18480, 487560, 15824880, 612504240, 27619664640, . . .).

We have added it as sequence OEIS A331120 in the Online Encyclopedia of Integer Sequences1.
Previously, the first 7 elements were computed in [5, Section 6].

3 A stretched exponential appears

We now perform an asymptotic analysis of the numbers m2,n using the recurrence derived in
the previous section. As a first step we define an auxiliary sequence, which simplifies the
subsequent analysis by absorbing the leading exponential behaviour:

b̃n,m = bn,m
2m−1 , for m ≥ 1,

b̃n,0 = bn,0 = 1.

This gives
b̃n,m = b̃n,m−1 + (m+ 1)b̃n−1,m − m

2 b̃n−2,m−1, for n ≥ m > 1,
b̃n,m = 0, for n < m,

b̃n,0 = 1, for n ≥ −1.

Next, we transform the sequence (b̃n,m)0≤m≤n into a sequence (en,m) 0≤m≤n
n−m even

using

en,m = 1
((n+m)/2)! b̃(n+m)/2,(n−m)/2,

1 https://oeis.org

http://oeis.org/A331120
https://oeis.org
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(note that en,m is only defined when n−m is even). Then, the terms en,m are determined
by the following recurrence for n,m ≥ 1

en,m = n−m+2
n+m en−1,m−1 + en−1,m+1 − n−m

(n+m)(n+m−2)en−3,m−1, for n ≥ m ≥ 0,
e0,0 = 1,
en,m = 0, for n < m,

en,−1 = 0, for n ≥ −1.

The number of minimal DFAs of size n is equal to n!2n−1e2n,0. Now, for some simple cases
of en,m, elementary computations show that en,n = 1

n! , en,n−2 = 2n−1−1
(n−1)! , and en,n−4 =

3n−2−3·2n−3

(n−2)! . Comparing the recurrence above with the one of compacted binary trees given
in [6, Section 5] for en,m, we notice only two differences:
1. a slightly different factor 2(n−m−2)

(n+m)(n+m−2) of en−3,m−1 and
2. no special cases for n ≥ m > n− 3.
Therefore, we are anticipating the same method to be applicable. The very basic idea is
that we will prove lower and upper bounds which differ only in the constant term. This
method requires that the recurrence involves only non-negative terms on the right-hand side.
As in the case of compacted binary trees, we solve this problem by finding suitable upper
and lower bounds given in the subsequent Lemma. We omit its technical proof as it follows
exactly the same lines as [6, Lemma 5.1].

I Lemma 6. For n− 3 ≥ m ≥ 2, the term en,m is bounded below by

Le = n−m+ 2
n+m

en−1,m−1+n−m− 1
n−m en−1,m+1+n−m− 3

n−m− 2

( 1
n−men−2,m+2 + 1

n+m
en−3,m+1

)
and for n ≥ 5, n > m ≥ 0 bounded above by

Ue = n−m+ 2
n+m

en−1,m−1 + n−m− 1
n−m en−1,m+1 + 1

n−men−2,m+2 + 1
n+m

en−3,m+1.

That is, Le(n,m) ≤ en,m ≤ Ue(n,m).

3.1 Lower bound
The following technical Lemma is at the heart of the following inductive proof of the lower
bound. It links the recurrence of en,m (or rather its lower bound Le) with two explicit
sequences s̃n and X̃n,m involving the Airy function, shifted to its right-most root a1.

I Lemma 7. For all n,m ≥ 0 let

X̃n,m :=
(

1− 2m2

3n + 3m
8n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

s̃n := 2 + 22/3a1

n2/3 + 29
12n −

1
n7/6 .

Then, for any ε > 0, there exists a constant ñ0 such that

X̃n,ms̃ns̃n−1s̃n−2 ≤
n−m+ 2
n+m

X̃n−1,m−1s̃n−1s̃n−2 + n−m− 1
n−m

X̃n−1,m+1s̃n−1s̃n−2

+ n−m− 3
n−m− 2

(
1

n−m
X̃n−2,m+2s̃n−2 + 1

n+m
X̃n−3,m+1

)
,

for all n ≥ ñ0 and all 0 ≤ m < n2/3−ε.
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Let us show how this Lemma is used before stating its actual proof. First, we define the
sequence Xn,m := max{X̃n,m, 0} (note that the factor 1− 2m2

3n + 3m
8n is negative for large m).

Then, using Lemma 7 we have

Xn,ms̃ns̃n−1s̃n−2 ≤
n−m+ 2
n+m

Xn−1,m−1s̃n−1s̃n−2 + n−m− 1
n−m

Xn−1,m+1s̃n−1s̃n−2

+ n−m− 3
n−m− 2

(
1

n−m
Xn−2,m+2s̃n−2 + 1

n+m
Xn−3,m+1

)
,

for n large enough and all m ≤ n. Finally, we define the sequence h̃n such that h̃n = s̃nh̃n−1
for n > 0 and set h̃0 = s̃0. Then we deduce by induction that en,m ≥ b0h̃nXn,m for some
constant b0 > 0, all sufficiently large n, and all m ∈ [0, n]:

b0Xn,mh̃n ≤
n−m+ 2
n+m

en−1,m−1 + n−m− 1
n−m en−1,m+1 + n−m− 3

n−m− 2

(
en−2,m+2

n−m + en−3,m+1

n+m

)
≤ en,m,

where the first inequality follows by induction and the second one by Lemma 6 for m ≤ n−3.
For m > n− 3 and n large enough the inequality holds trivially as Xn,m = 0. Therefore,

m2,n = n!2n−1e2n,0

≥ b0n!2n−1h̃2nX2n,0

≥ b0n!2n−1
2n∏
i=1

(
2 + 22/3a1

i2/3 + 29
12i −

1
i7/6

)
Ai
(
a1 + 1

n1/3

)
≥ γLn!8ne3a1n

1/3
n7/8,

(2)

for some constant γL > 0.
I Remark 8. Let us compare the result of Lemma 7 to the respective results for compacted
and relaxed binary trees to which this method was applied first. Recall the lower and
upper bounds (1) which are tight up to the constant and the polynomial term. Indeed, the
corresponding results [6, Lemmas 4.2 and 5.2] possess a very similar structure: First, in X̃n,m

the only difference is in the factor 3m
8n which is m

2n for relaxed trees and m
4n for compacted trees.

The purpose of this term is of technical nature as it simplifies the Newton polygon method,
yet it has no influence on the final asymptotics; compare Figure 5. Second, in s̃n the only
difference is in the term 29

12n which is 8
3n for relaxed trees and 13

6n for compacted trees. Now
this term influences the polynomial factor in the asymptotics (compare with [6, Section 3.3]).
More generally, whenever the third term in the expansion of s̃n has the form α

n , we get in
the enumeration a polynomial factor with exponent α

2 −
1
3 . Finally, the similarity in all

other terms of the expansion for s̃n and X̃n,m is responsible for the fact that m2,n and the
families of trees enumerated in [6] have the same exponential growth, as well as the same
stretched-exponential behaviour.

Proof (Lemma 7). The proof follows nearly verbatim [6, Lemma 4.2], so we will only
introduce the main idea, omitting the technical details. Note that all (often tedious)
computations are available in the accompanying Maple worksheet [12].

We start by defining the following sequence

Pn,m := −Zn,msnsn−1sn−2

+ n−m+ 2
n+m

Zn−1,m−1sn−1sn−2 + n−m− 1
n−m

Zn−1,m+1sn−1sn−2

+ n−m− 3
n−m− 2

(
1

n−m
Zn−2,m+2sn−2 + 1

n+m
Zn−3,m+1

)
,
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where

sn := σ0 + σ1

n1/3 + σ2

n2/3 + σ3

n
+ σ4

n7/6 ,

Zn,m :=
(

1 + τ2m
2 + τ1m

n

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
,

with σi, τj ∈ R. Then the inequality is equivalent to Pn,m ≥ 0 with σ0 = 2, σ1 = 0,
σ2 = 22/3a1, σ3 = 29/12, and σ4 = −1 as well as τ1 = 3/8 and τ2 = −2/3. Next, we expand
Ai(z) in a neighborhood of

α = a1 + 21/3m

n1/3 , (3)

and we get

Pn,m = pn,mAi(α) + p′n,mAi′(α),

where pn,m and p′n,m are functions of m and n−1 and may be expanded as power series in
n−1/6 with coefficients polynomial in m. We will see that, as long as n > 1 and n > m, this
series converges absolutely because the Airy function is entire and so all the functions for
which we need to perform a bivariate expansion (in n and m) are indeed are analytic in the
region defined by |n| > 1 and |m| < |n|2/3−ε.

Now we proceed with the technical analysis, which is only performed on a superficial
level here. The first step is to show that [minj ]Pn,m = 0 for i + j > 1, i, j ∈ Q. Then, as
a second step, we strengthen this result by choosing suitable values σi for 0 ≤ i ≤ 4 in the
definition of sn in order to eliminate more terms. The results are summarized in Figure 4
where the initial non-zero coefficients are shown. A diamond at (i, j) is drawn if and only if
the coefficient [minj ]Pn,m is non-zero for generic values of σ and τ . It is an empty diamond
if the given choice of σi and τj makes it vanish, whereas it is a solid diamond if it remains
non-zero. The convex hull is formed by the following three lines

L1 : j = −7
6 −

7i
18 , L2 : j = −1

3 −
2i
3 , L3 : j = 1− i.

From now on, we distinguish between the contributions arising from pn,m and p′n,m. The
non-zero coefficients are shown in Figure 5. For technical reasons we choose at this point
τ1 = 8/3 and thereby reduce the slope of the convex hull of the non-zero coefficients of p′n,m.
The expansions for n tending to infinity start as follows, where the elements on the convex
hull are written in color:

Pn,m = Ai(α)
(
− 4σ4

n7/6 −
211/3a1m

3n5/3 −164m2

9n2 − 214/3a1m
3

3n8/3 −136m4

9n3 − 248m5

135n4 + . . .

)
+

Ai′(α)
(

21/3(8τ1 − 3)
n4/3 + 27/3

n3/2 −
32a1m

9n2 + 24/3m2(48τ1 − 65)
9n7/3 −219/3m3

9n7/3

−5210/3m4

9n10/3 − 89 210/3m5

135n13/3 + . . .

)
.

We now choose σ4 = −1 which leads to a positive term Ai(α)n−7/6. Next, for fixed (large)
n we prove that for all m the dominant contributions in Pn,m are positive. Motivated by
Figures 4 and 5, we consider three different regimes: m ≤ Cn1/3, Cn1/3 < m ≤ n7/18, and
n7/18 < m < n2/3−ε for a suitable constant C > 0. We end the proof by showing that there
exists an N > 0 such that all terms are positive for n > N and all m < n2/3. J

In the next section we will show an upper bound with the same asymptotic form, but
with a different constant γU.

AofA 2020



11:10 Asymptotics of Minimal DFAs Recognizing a Finite Binary Language

Figure 4 (Left) Non-zero coefficients of Pn,m =
∑

ai,jm
inj shown by diamonds for sn :=

σ0 + σ1
n1/3 + σ2

n2/3 + σ3
n

+ σ4
n7/6 and Zn,m :=

(
1 + τ2m

2+τ1m
n

)
Ai
(
a1 + 21/3(m+1)

n1/3

)
. There are no

terms in the blue dashed area. The blue terms vanish for σ0 = 2, the red terms vanish for σ1 = 0,
the green terms vanish for σ2 = 22/3a1, and the yellow terms vanish for σ3 = 29/12 and τ2 = −2/3.
The black and red lines represent the two parts L1 and L2, respectively, of the convex hull. (Right)
The solid gray diamonds are decomposed into the coefficients pn,m of Ai(α) (red boxes) and p′n,m of
Ai′(α) (blue diamonds).

3.2 Upper bound
The following lemma links as in the case of the lower bound en,m (and its upper bound Ue)
with two explicit sequences ŝn and X̂n,m involving again the Airy function.

I Lemma 9. Choose η > 2/9 fixed and for all n,m ≥ 0 let

X̂n,m :=
(

1− 2m2

3n + 3m
8n + η

m4

n2

)
Ai
(
a1 + 21/3(m+ 1)

n1/3

)
and

ŝn := 2 + 22/3a1

n2/3 + 29
12n + 1

n7/6 .

Then, for any ε > 0, there exists a constant n̂0 such that

X̂n,mŝnŝn−1ŝn−2 ≥
n−m+ 2
n+m

X̂n−1,m−1s̃n−1s̃n−2 + n−m− 1
n−m

X̂n−1,m+1s̃n−1s̃n−2

+ 1
n−m

X̂n−2,m+2s̃n−2 + 1
n+m

X̂n−3,m+1,

(4)

for all n ≥ n̂0 and all 0 ≤ m < n1−ε.

Proof (Sketch). The proof follows the same lines as that of Lemma 7, so we will only
elucidate the required modifications. As a first step we define the following sequence

Qn,m := X̂n,mŝnŝn−1ŝn−2 −
n−m+ 2
n+m

X̂n−1,m−1s̃n−1s̃n−2 −
n−m− 1
n−m X̂n−1,m+1s̃n−1s̃n−2

− 1
n−mX̂n−2,m+2s̃n−2 −

1
n+m

X̂n−3,m+1.

Then the inequality is equivalent to Qn,m ≥ 0. Again, we expand Ai(z) in a neighborhood
of α = a1 + 21/3m

n1/3 , and we get the following expansion (see the accompanying Maple
worksheet [12] for full details). As before, the elements on the convex hull are written
in color.
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Figure 5 Non-zero coefficients pn,m =
∑

ãi,jm
inj (red) and p′n,m =

∑
ã′i,jm

inj (blue) of the
expansion (3) for Pn,m. The coefficient of n−4/3 in the right picture depicted as a solid blue circle
disappears for τ1 = 3/8.

Qn,m = Ai(α)
(

4
n7/6 + 211/3a1m

3n5/3 +4m2(41− 108η)
9n2 + 214/3a1m

3(1− 6η)
3n8/3

+8m4(17− 132η)
9n3 − 211/3a1m

5η

n11/3 −68m6η

3n4 −
124m7η

45n5 + . . .

)
+

Ai′(α)
(

27/3

n3/2 + 32a1m

9n2 + 24/3m2(47− 216η)
9n7/3 +216/3m3(2− 9η)

9n7/3

+21/3m4(40− 549η)
9n10/3 −216/3m5η

3n10/3 − 5m627/3η

3n13/3 − 89m727/3η

45n16/3 + . . .

)
.

Then we can finish in the same way as in the proof of Lemma 7. For the full details we
refer to the proofs of [6, Lemma 4.4 and 5.3] which explains how to deal with the new cases
required in the treatment of the upper bound (that happen to be analogous for the sequence
at hand here, and the ones in that paper). Note that even the final convex hull in the Newton
polygons is the same. J

The idea is now similar to the lower bound, yet a bit more intricate: We want to find
an auxiliary sequence (ẽn,m)n,m≥0 satisfying en,m ≤ Cẽn,m for some constant C > 0, all n
large, and all m ≤ n such that

ẽn,m ≤ κ1ĥnX̂n,m, (5)

where the sequence (ĥn)n≥1 is defined by ĥn = ŝnĥn−1. As shown in (2), this implies that
there is a constant γU > 0 such that

ẽ2n,0 ≤ γU4ne3a1n
1/3
n7/8.

Now, in order to find such a sequence we use Lemma 6 and state the following definition
for (ẽn,m)n,m≥0:

ẽn,m = n−m+2
n+m ẽn−1,m−1 + n−m−1

n−m ẽn−1,m+1
+ 1
n−m ẽn−2,m+2 + 1

n+m ẽn−3,m+1, for n ≥ 5, n3/4 > m ≥ 0,
ẽn,m = en,m, for n < 5, n ≥ m ≥ 0,
ẽn,m = 0, otherwise.

(6)
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11:12 Asymptotics of Minimal DFAs Recognizing a Finite Binary Language

There are several ideas in the choice of the sequence (6) which we want to explain now.
Firstly, in order to prove (5), the sequence has to be zero for large values of m. We achieve
this by cutting off the values for m > n3/4. Secondly, it has to have positive coefficients,
because then we can prove (5) by induction as it was done in the lower bound. Thirdly,
it has to be an upper bound of en,m, i.e., en,m ≤ Cên,m for all n,m. Due to the cut off
for m > n3/4 this is, of course, impossible, so we introduce a second auxiliary sequence
(ên,m)n,m≥0 with the same rules as (6) yet with no cut off, i.e., the recurrence holds for n ≥ 5
and n > m ≥ 0. Then, by Lemma 6 we have en,m ≤ ên,m for all n,m.

Hence, it remains to prove that there is a choice of N and a constant C > 0 such that

ê2n,0 ≤ Cẽ2n,0

for all n > N . As a first step, we define a class C of weighted paths with the step set
S := {(1, 1), (1,−1), (2,−2), (3,−1)} and weights corresponding to the recurrence defining
ên,m. Then ên,m can be interpreted as the weighted enumeration of paths p0p1 . . . pk ∈ C
(pi ∈ Z2) from p0 to pk = (n,m) such that pi+1−pi ∈ S for 0 ≤ i ≤ k−1, with the additional
initial condition that p0 = (u0, v0) and p1 = (u1, v1) satisfy v0 ≤ u0 < 5 ≤ u1. In other
words, the first jump p1 − p0 has to exit I := {(i, j) : i < 5}. The weight given to each path
in this enumeration is eu0,v0

I Lemma 10. Let q`,m,2n denote the weighted number of paths p ∈ C from (`,m) to (2n, 0).
Then the numbers q`,m,2n satisfy the inequality

q`,j,2n
j + 1 ≥

q`,k,2n
k + 1 ,

for integers 0 ≤ j < k ≤ ` ≤ 2n satisfying 2|k − j and n ≥ 10.

Proof (Sketch). Reversing the steps in (6) we see that q satisfies the following recurrence
for ` < 2n:

q`,m,2n = 0, for m < 0,
q`,m,2n = `−m+1

`−m+2q`+1,m−1,2n + `−m+2
`+m+2q`+1,m+1,2n

+ 1
`−m+4q`+2,m−2,2n + 1

`+m+2q`+3,m−1,2n for m ≥ 0.

Then we follow nearly verbatim the lines of the proof of [6, Lemma 5.4]. For more details we
refer to the accompanying Maple worksheet [12]. J

The last ingredient we will need is that

ê2x,2y ≤ d2x,2y ≤
(

2x
x+ y

)
,

where the sequence dx,y corresponds to the weighted number of Dyck meanders of length x
ending at y; see [6, Proposition 3.2]. The first inequality is proved by induction using the
recurrence relations of êx,y and dx,y. The second inequality is proved in [6], yet simply a
consequence of the fact that

( 2x
x+y
)
is the (unweighted) number of Dyck meanders from (0, 0)

to (2x, 2y), while the weights of weighted Dyck meanders are always smaller than 1.
Finally, among the ê2n,0 weighted paths ending at (2n, 0), the proportion of those passing

through some point (2x, 2y) is

ê2x,2yq2x,2y,2n

ê2n,0
≤ ê2x,2yq2x,2y,2n

ê2x,0q2x,0,2n
≤ (2y + 1) ê2x,2y

ê2x,0
≤ 2y + 1
γL4xe3a1x1/3x3/4

(
2x
x+ y

)
.
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In the last inequality we used Lemma 10 as well as en,m ≤ ên,m and the lower bound (2)
for ê2x,0. Hence, we can use the same ideas as used in [6, Lemma 4.6] to show that there is
some choice for N such that ê2n,0 ≤ 2ẽ2n,0 for all n.

This proves the missing link and ends the proof of Theorem 1.
To conclude, we observe that all arguments in Section 2 can be extended to any finite

alphabet of any size at least 2. Our analysis may also be extended to this more general case,
but this remains a work in progress.
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Abstract
Alternating sign matrices are known to be equinumerous with descending plane partitions, totally
symmetric self-complementary plane partitions and alternating sign triangles, but a bijective proof
for any of these equivalences has been elusive for almost 40 years. In this extended abstract, we
provide a sketch of the first bijective proof of the enumeration formula for alternating sign matrices,
and of the fact that alternating sign matrices are equinumerous with descending plane partitions.
The bijections are based on the operator formula for the number of monotone triangles due to the
first author. The starting point for these constructions were known “computational” proofs, but the
combinatorial point of view led to several drastic modifications and simplifications. We also provide
computer code where all of our constructions have been implemented.
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1 Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {0,1,−1} such that
in each row and each column the non-zero entries alternate and sum up to 1. Robbins
and Rumsey introduced alternating sign matrices in the 1980s [22] when studying their
λ-determinant (a generalization of the classical determinant) and showing that the λ-deter-
minant can be expressed as a sum over all alternating sign matrices of fixed size. The
classical determinant is obtained from this by setting λ = −1, in which case the sum reduces
so that it extends only over all ASMs without −1’s, i.e., permutation matrices, and the
well-known formula of Leibniz is recovered. Numerical experiments led Robbins and Rumsey
to conjecture that the number of n × n alternating sign matrices is given by the surprisingly
simple product formula

n−1
∏
i=0

(3i + 1)!
(n + i)!

. (1)
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12:2 Bijective Proof of the ASM Theorem

Back then the surprise was even bigger when they learned from Stanley (see [9, 8]) that
this product formula had recently also appeared in Andrews’ paper [1] on his proof of the
weak Macdonald conjecture, which in turn provides a formula for the number of cyclically
symmetric plane partitions. As a byproduct, Andrews had introduced descending plane
partitions and had proved that the number of descending plane partitions (DPPs) with parts
at most n is also equal to (1). A descending plane partition is a filling of a shifted Ferrers
diagram with positive integers that decrease weakly along rows and strictly along columns
such that the first part in each row is greater than the length of its row and less than or
equal to the length of the previous row.

Since then the problem of finding an explicit bijection between alternating sign matrices
and descending plane partitions has attracted considerable attention from combinatorialists,
and to many of them it is a miracle that such a bijection has not been found so far. All
the more so because Mills, Robbins and Rumsey also introduced several “statistics” on
alternating sign matrices and on descending plane partitions for which they had strong
numerical evidence that the joint distributions coincide as well, see [20].

There were a few further surprises yet to come. Robbins introduced a new operation on
plane partitions, complementation, and had strong numerical evidence that totally symmetric
self-complementary plane partitions (TSSCPPs) in a 2n×2n×2n-box are also counted by (1).
Again this was further supported by statistics that have the same joint distribution as well as
certain refinements, see [21, 17, 18, 7]. We still lack an explicit bijection between TSSCPPs
and ASMs, as well as between TSSCPPs and DPPs.

In his collection of bijective proof problems (which is available from his webpage) Stanley
says the following about the problem of finding all these bijections: “This is one of the most
intriguing open problems in the area of bijective proofs.” In Krattenthaler’s survey on plane
partitions [18] he expresses his opinion by saying: “The greatest, still unsolved, mystery
concerns the question of what plane partitions have to do with alternating sign matrices.”

Many of the above mentioned conjectures have since been proved by non-bijective means.
Zeilberger [24] was the first who proved that n×n ASMs are counted by (1). Kuperberg gave
another shorter proof [19] based on the remarkable observation that the six-vertex model
(which had been introduced by physicists several decades earlier) with domain wall boundary
conditions is equivalent to ASMs, and he used the techniques that had been developed by
physicists to study this model. Andrews enumerated TSSCPPs in [2]. The equivalence of
certain statistics for ASMs and of certain statistics for DPPs has been proved in [5], while
for ASMs and TSSCPPs see [25, 16], and note in particular that already in Zeilberger’s first
ASM paper [24] he could deal with an important refinement. Further work including the
study of symmetry classes has been accomplished; for a more detailed description of this we
defer to [6]. Then, in very recent work, alternating sign triangles (ASTs) were introduced
in [3], which establishes a fourth class of objects that are equinumerous with ASMs, and also
in this case nobody has so far been able to construct a bijection.

The first author gave her “own” proof of the ASM theorem in [11, 12, 13] and expressed
some speculations in the direction of converting these proofs into bijections in the final
section of the last paper. Part of the objective, namely bijective proofs of the enumeration
formula for the number of ASMs and of the fact that ASMs and DPPs are equinumerous,
has now been achieved in [14, 15], the first two papers in a planned series. This extended
abstract presents the major steps in these constructions.

After having figured out how to actually convert computations and also having shaped
certain useful fundamental concepts related to signed sets (see Section 2), the translation
of several steps became quite straightforward; some steps were quite challenging. Then a
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certain type of (exciting) dynamics evolved, where the combinatorial point of view led to
simplifications and other (in some cases drastic) modifications, and after this process the
original “computational” proof is in fact rather difficult to recognize.

The bijection that underlies the bijective proof of the enumeration formula of ASMs as
well as the one of the refined enumeration formula involves the following sets:

Let ASMn denote the set of ASMs of size n × n, and, for 1 ≤ i ≤ n, let ASMn,i denote the
subset of ASMn of matrices that have the unique 1 in the first row in column i. There
is an obvious bijection ASMn,1 → ASMn−1 which consists of deleting the first row and
first column.
Let Bn denote the set of (2n − 1)-subsets of [3n − 2] = {1, 2, . . . , 3n − 2} and, for 1 ≤ i ≤ n,
let Bn,i denote the subset of Bn of those subsets whose median is n + i − 1. Clearly,
∣Bn ∣ = (3n−2

2n−1) and ∣Bn,i ∣ = (n+i−2
n−1 )(2n−i−1

n−1 ).
Let DPPn denote the set of descending plane partitions with parts no greater than n; let
DPPn,i the subset of descending plane partitions with i − 1 occurrences of n. We clearly
have DPPn,1 = DPPn−1.

To emphasize that we are not merely interested in the fact that two signed sets have
the same size, but want to use the constructed signed bijection later on, we will be using a
convention that is slightly unorthodox in our field. Instead of listing our results as lemmas
and theorems with their corresponding proofs, we will be using the Problem–Construction
terminology. See for instance [23] and [4]. Our main results are the constructions solving the
following two problems.

I Problem 1 ([15, Problem 1]). Given n ∈ N, 1 ≤ i ≤ n, construct a bijection

DPPn−1 ×Bn,1 ×ASMn,i Ð→ DPPn−1 ×ASMn,1 ×Bn,i .

Assume that we have constructed such bijections. Then we also have a bijection

DPPn−1 ×Bn,1 ×ASMn =⋃
i

(DPPn−1 ×Bn,1 ×ASMn,i)

Ð→⋃
i

(DPPn−1 ×ASMn,1 ×Bn,i) = DPPn−1 ×ASMn,1 ×Bn Ð→ DPPn−1 ×ASMn−1 ×Bn

for every n. But by induction, that gives a bijection

DPP0 × ⋅ ⋅ ⋅ ×DPPn−1 ×B1,1 ×⋯ ×Bn,1 ×ASMn Ð→ DPP0 × ⋅ ⋅ ⋅ ×DPPn−1 ×B1 ×⋯ ×Bn,

which, since DPPi is non-empty (as it contains the empty DPP), proves the ASM theorem

∣ASMn ∣ = ∏n
i=1 ∣Bi ∣

∏n
i=1 ∣Bi,1 ∣

=
∏n
i=1 (3i−2

2i−1)

∏n
i=1 (2i−2

i−1 )
=
n−1
∏
i=0

(3i + 1)!
(n + i)!

and also the refined ASM theorem

∣ASMn,i ∣ =
∣ASMn−1 ∣ ⋅ ∣Bn,i ∣

∣Bn,1 ∣
=

(n+i−2
n−1 )(2n−i−1

n−1 )
(3n−2

2n−1)

n−1
∏
i=0

(3i + 1)!
(n + i)!

.

Next we provide the bijection from Problem 1 for the case n = 3 and i = 2; in fact, our
bijection depends on an integer parameter x and we choose x = 0.
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(∅,12345, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,23457) (∅,12345, 0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,23456) (∅,12345, 0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,23456)

(∅,12346, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,13457) (∅,12346, 0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,13456) (∅,12346, 0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,13456)

(∅,12347, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,12457) (∅,12347, 0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,12456) (∅,12347, 0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,12456)

(∅,12356, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0 0
0 1 0
0 0 1

,13456) (∅,12356, 0 1 0
1 −1 1
0 1 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,12456) (∅,12356, 0 1 0
0 0 1
1 0 0

) ↔ (2, 1 0 0
0 1 0
0 0 1

,12456)

(∅,12357, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0 0
0 1 0
0 0 1

,13457) (∅,12357, 0 1 0
1 −1 1
0 1 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,12457) (∅,12357, 0 1 0
0 0 1
1 0 0

) ↔ (2, 1 0 0
0 1 0
0 0 1

,12457)

(∅,12367, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0 0
0 1 0
0 0 1

,13467) (∅,12367, 0 1 0
1 −1 1
0 1 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,12467) (∅,12367, 0 1 0
0 0 1
1 0 0

) ↔ (2, 1 0 0
0 1 0
0 0 1

,12467)

(2,12345, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,23467) (2,12345, 0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,23467) (2,12345, 0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,23457)

(2,12346, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,13467) (2,12346, 0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,13467) (2,12346, 0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,13457)

(2,12347, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0 0
0 1 0
0 0 1

,12467) (2,12347, 0 1 0
1 −1 1
0 1 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,12467) (2,12347, 0 1 0
0 0 1
1 0 0

) ↔ (∅, 1 0 0
0 0 1
0 1 0

,12457)

(2,12356, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0 0
0 1 0
0 0 1

,23456) (2,12356, 0 1 0
1 −1 1
0 1 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,23456) (2,12356, 0 1 0
0 0 1
1 0 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,13456)

(2,12357, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0 0
0 1 0
0 0 1

,23457) (2,12357, 0 1 0
1 −1 1
0 1 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,23457) (2,12357, 0 1 0
0 0 1
1 0 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,13457)

(2,12367, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0 0
0 1 0
0 0 1

,23467) (2,12367, 0 1 0
1 −1 1
0 1 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,23467) (2,12367, 0 1 0
0 0 1
1 0 0

) ↔ (2, 1 0 0
0 0 1
0 1 0

,13467)

The second bijection relates ASMs to DPPs.

I Problem 2 ([15, Problem 2]). Given n ∈ N, 1 ≤ j ≤ n, construct a bijection

DPPn−1 ×ASMn,j Ð→ ASMn−1 ×DPPn,j .

Once this is proven it follows that ∣DPPn−1 ∣ ⋅ ∣ASMn,j ∣ = ∣ASMn−1 ∣ ⋅ ∣DPPn,j ∣. By
induction, we can assume ∣DPPn−1 ∣ = ∣ASMn−1 ∣ and so ∣ASMn,j ∣ = ∣DPPn,j ∣. Summing
this over all j implies ∣DPPn ∣ = ∣ASMn ∣.

For several obvious reasons, we found it essential to check all our constructions with
computer code1; to name one it can possibly be used to identify new equivalent statistics.
Another is that it might be possible to find some patterns in the bijection and to simplify
the description. Finally, let us emphasize that our approach does give the first bijection of a
celebrated result, it fails to explain the simplicity of the product formula for ASMs.

2 Signed sets and sijections

It seems that signs and cancellations in the proof are unavoidable. In this section, we briefly
introduce the concepts of signed sets and sijections, signed bijections between signed sets.
We present the basic concepts here, and refer the reader to [14, §2] for all the details and
more examples.

A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+ ∩ S− = ∅. Equivalently,
a signed set is a finite set S together with a sign function sign∶S → {1,−1}, but we will
mostly avoid the use of the sign function. Signed sets are usually underlined throughout the
extended abstract with the following exception: an ordinary set S always induces a signed
set S = (S,∅), and in this case we identify S with S. We summarize related notions.

The size of a signed set S is ∣S∣ = ∣S+∣ − ∣S−∣.
The opposite signed set of S is −S = (S−, S+).
The Cartesian product of signed sets S and T is S×T = (S+×T +∪S−×T −, S+×T −∪S−×T +).
The disjoint union of signed sets S and T is S ⊔ T = (S × ({0},∅)) ∪ (T × ({1},∅)). The
disjoint union of a family of signed sets St indexed with a signed set T is

⊔
t∈T

St = ⋃
t∈T

(St × {t}).

Here {t} is ({t},∅) if t ∈ T + and (∅,{t}) if t ∈ T −.

1 The code (in python) is available at https://www.fmf.uni-lj.si/~konvalinka/asmcode.html.

https://www.fmf.uni-lj.si/~konvalinka/asmcode.html
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Most of the usual properties of Cartesian products and disjoint unions of ordinary sets
extend to signed sets.

An important type of signed sets are signed intervals: for a, b ∈ Z, define

[a, b] =
⎧⎪⎪⎨⎪⎪⎩

([a, b],∅) if a ≤ b
(∅, [b + 1, a − 1]) if a > b

.

Here [a, b] stands for the usual interval in Z. The signed sets that are of relevance in this
extended abstract are usually constructed from signed intervals using Cartesian products
and disjoint unions.

The role of bijections for signed sets is played by “signed bijections”, which we call
sijections. A sijection ϕ from S to T ,

ϕ∶S ⇒ T ,

is an involution on the set (S+ ∪S−)⊔ (T + ∪T −) with the property ϕ(S+ ⊔T −) = S− ⊔T +. It
follows that also ϕ(S− ⊔T +) = S+ ⊔T −. A sijection can also be thought of as a collection of a
sign-reversing involution on a subset of S, a sign-reversing involution on a subset of T , and a
sign-preserving matching between the remaining elements of S with the remaining elements
of T . The existence of a sijection ϕ∶S ⇒ T clearly implies ∣S∣ = ∣S+∣ − ∣S−∣ = ∣T +∣ − ∣T −∣ = ∣T ∣.

In Proposition 2 of [14] it is explained how to construct the Cartesian product and the
disjoint union of sijections, and also how to compose two sijections using a variant of the
Garsia-Milne involution principle. These constructions are fundamental for most of the
constructions in this extended abstract. It follows that the existence of a sijection between S
and T is an equivalence relation; it is denoted by “≈”.

The sijection that is underlying many of our constructions is the following.

I Problem 3 ([14, Problem 1]). Given a, b, c ∈ Z, construct a sijection

α = αa,b,c∶ [a, c]Ô⇒ [a, b] ⊔ [b + 1, c] = [a, b] ⊔ −[c + 1, b].

Construction. For a ≤ b ≤ c and c < b < a, there is nothing to prove. For, say, a ≤ c < b, we
have [a, b] ⊔ [b + 1, c] = ([a, c] ⊔ [c + 1, b]) ⊔ [b + 1, c] = [a, c] ⊔ ([c + 1, b] ⊔ (−[c + 1, b])). Since
there is a sijection [c + 1, b] ⊔ (−[c + 1, b]) ⇒ ∅, we get a sijection [a, b] ⊔ [b + 1, c] ⇒ [a, c].
The cases b < a ≤ c, b ≤ c < a, and c < a ≤ b are analogous. J

Using the map α, it is not difficult to construct some sijections on signed boxes, Cartesian
products of signed intervals. We sketch two such constructions (for the following problem,
and for the related Problem 6), and state other necessary results. The first construction
is related to Lemma 2.2 in [13], which plays a crucial role in the non-bijective proof that
was the starting point for our constructions. Also in the following we indicate such relations
whenever it is possible.

I Problem 4 ([14, Problem 2]). Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1,
x ∈ Z, write Si = ({ai},∅) ⊔ (∅,{bi + 1}), and construct a sijection

β = βa,b,x∶ [a1, b1] ×⋯ × [an−1, bn−1]

Ô⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2] × [l2, l3] ×⋯ × [ln−2, ln−1] × [ln−1, x].
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12:6 Bijective Proof of the ASM Theorem

Construction. The proof is by induction, with the case n = 1 being trivial and the case n = 2
was constructed in Problem 3. Now, for n ≥ 3,

[a1, b1]×⋯× [an−1, bn−1] ≈ [a1, b1]× ⊔
(l2,...,ln−1)∈S2×⋯×Sn−1

[l2, l3]×⋯× [ln−2, ln−1]× [ln−1, x]

≈
⎛
⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

[a2, l3] ×⋯ × [ln−1, x]
⎞
⎠

⊔
⎛
⎝
[a1, b1] × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

(−[b2 + 1, l3]) ×⋯ × [ln−1, x]
⎞
⎠
,

where we used induction for the first equivalence, and distributivity and the fact that
S2 = ({a2},∅)⊔(∅,{b2+1}) for the second equivalence. By Problem 3 and standard sijection
constructions, there exists a sijection from the last expression to

⎛
⎝
([a1, a2] ⊔ (−[b1 + 1, a2])) × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

[a2, l3] ×⋯ × [ln−1, x]
⎞
⎠

⊔
⎛
⎝
([a1, b2 + 1] ⊔ (−[b1 + 1, b2 + 1])) × ⊔

(l3,...,ln−1)∈S3×⋯×Sn−1

(−[b2 + 1, l3]) ×⋯ × [ln−1, x]
⎞
⎠

≈ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2] × [l2, l3] ×⋯⋯[ln−2, ln−1] × [ln−1, x],

where for the last equivalence we have again used distributivity. J

I Problem 5 ([14, Problem 3]). Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

γ = γk,x∶ [k1, k2] ×⋯ × [kn−1, kn]

Ô⇒
n

⊔
i=1

[k1, k2] ×⋯ × [ki−1, x + n − i] × [x + n − i, ki+1] ×⋯ × [kn−1, kn]

⊔
n−2
⊔
i=1

⋯× [ki−1, ki] × [ki+1 + 1, x + n − i − 1] × [ki+1, x + n − i − 2] × [ki+2, ki+3] ×⋯.

An important signed set is the set of all Gelfand-Tsetlin patterns, or GT patterns for
short (compare with [10]), with a prescribed bottom row. For k ∈ Z, define GT(k) = ({⋅},∅),2
and for k = (k1, . . . , kn) ∈ Zn, define recursively

GT(k) = GT(k1, . . . , kn) = ⊔
l∈[k1,k2]×⋯×[kn−1,kn]

GT(l1, . . . , ln−1).

In particular, GT(a, b) ≈ [a, b]. One can think of an element of GT(k) as a triangular
array A = (Ai,j)1≤j≤i≤n

A1,1
A2,1 A2,2

A3,1 A3,2 A3,3

. .
. ...

. . .
... . .

. ...
. . .

An,1 An,2 . . . . . . An,n,

so that Ai+1,j ≤ Ai,j ≤ Ai+1,j+1 or Ai+1,j > Ai,j > Ai+1,j+1 for 1 ≤ j ≤ i < n, and An,i = ki.

2 Instead of {⋅}, one can take any one-element set.
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The following sijections are crucial for GT patterns. In the constructions, we typically
use disjoint unions of previously constructed sijections on signed boxes (e.g. Problem 4).

I Problem 6 ([14, Problem 4]). Given a = (a1, . . . , an−1) ∈ Zn−1, b = (b1, . . . , bn−1) ∈ Zn−1,
x ∈ Z, construct a sijection

ρ = ρa,b,x∶ ⊔
l∈[a1,b1]×⋯×[an−1,bn−1]

GT(l)⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

GT(l1, . . . , ln−1, x),

where Si = ({ai},∅) ⊔ (∅,{bi + 1}).

Construction. In Problem 4, we constructed a sijection

[a1, b1]×⋯× [an−1, bn−1]⇒ ⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

[l1, l2]× [l2, l3]×⋯× [ln−2, ln−1]× [ln−1, x].

By standard sijection constructions, this gives a sijection

⊔
l∈[a1,b1]×⋯×[an−1,bn−1]

GT(l)⇒ ⊔
m∈⊔(l1,...,ln−1)∈S1×⋯×Sn−1

[l1,l2]×[l2,l3]×⋯×[ln−2,ln−1]×[ln−1,x]

GT(m).

This is equivalent to

⊔
(l1,...,ln−1)∈S1×⋯×Sn−1

⊔
m∈[l1,l2]×[l2,l3]×⋯×[ln−2,ln−1]×[ln−1,x]

GT(m),

and by definition of GT, this is equal to ⊔(l1,...,ln−1)∈S1×⋯×Sn−1
GT(l1, . . . , ln−1, x). J

The result is important because while it adds a dimension to GT patterns, it (typically)
greatly reduces the size of the indexing signed set. In fact, there is an analogy to the
fundamental theorem of calculus: instead of extending the disjoint union over the entire
signed box, it suffices to consider the boundary; x corresponds in a sense to the constant of
integration.

I Problem 7 ([14, Problem 5]). Given k = (k1, . . . , kn) ∈ Zn and i, 1 ≤ i ≤ n − 1, construct a
sijection

π = πk,i∶GT(k1, . . . , kn)⇒ −GT(k1, . . . , ki−1, ki+1 + 1, ki − 1, ki+2, . . . , kn).

Given a = (a1, . . . , an) ∈ Zn, b = (b1, . . . , bn) ∈ Zn such that for some i, 1 ≤ i ≤ n − 1, we have
ai+1 = ai − 1 and bi+1 = bi − 1, construct a sijection

σ = σa,b,i∶ ⊔
l∈[a1,b1]×⋯×[an,bn]

GT(l)⇒ ∅.

The reason we place these two sijections in the same problem is that the proof is by
induction, with the induction step for π using σ and vice versa.

I Problem 8 ([14, Problem 6]). Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

τ = τk,x∶GT(k1, . . . , kn)⇒
n

⊔
i=1

GT(k1, . . . , ki−1, x + n − i, ki+1, . . . , kn).
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3 Monotone triangles and the operator formula

Monotone triangles with bottom row 1, 2, . . . , n are in easy bijective correspondence with n×n
alternating sign matrices. For our purpose we need to have a notion of monotone triangles
with arbitrary integer bottom rows. In order to achieve this, suppose that k = (k1, . . . , kn)
and l = (l1, . . . , ln−1) are two sequences of integers. We say that l interlaces k, l ≺ k, if the
following holds:
1. for every i, 1 ≤ i ≤ n − 1, li is in the closed interval between ki and ki+1;
2. if ki−1 ≤ ki ≤ ki+1 for some i, 2 ≤ i ≤ n − 1, then li−1 and li cannot both be ki;
3. if ki > li = ki+1, then i ≤ n − 2 and li+1 = li = ki+1;
4. if ki = li > ki+1, then i ≥ 2 and li−1 = li = ki.
A monotone triangle of size n is a map T ∶{(i, j)∶ 1 ≤ j ≤ i ≤ n}→ Z so that line i − 1 (i.e. the
sequence Ti−1,1, . . . , Ti−1,i−1) interlaces line i (i.e. the sequence Ti,1, . . . , Ti,i). The sign of a
monotone triangle T is (−1)r, where r is the sum of:

the number of strict descents in the rows of T , i.e. the number of pairs (i, j) so that
1 ≤ j < i ≤ n and Ti,j > Ti,j+1, and
the number of (i, j) so that 1 ≤ j ≤ i − 2, i ≤ n and Ti,j > Ti−1,j = Ti,j+1 = Ti−1,j+1 > Ti,j+2.

It turns out that MT(k) satisfies a recursive “identity”. Let us define the signed set of
arrow rows of order n as ARn = ({↗,↖},{↖↗})n. The role of an arrow row µ of order n is
that it induces a deformation of [k1, k2] × [k2, k3] ×⋯ × [kn−1, kn] as follows. Consider

[k1, k2] [k2, k3] . . . [kn−2, kn − 1] [kn−1, kn]
µ1 µ2 µ3 . . . µn−1 µn,

and if µi ∈ {↖,↖↗} (that is we have an arrow pointing towards [ki−1, ki]) then ki is decreased
by 1 in [ki−1, ki], while there is no change for this ki if µi =↗. If µi ∈ {↗,↖↗} then ki is
increased by 1 in [ki, ki+1], while there is no change for this ki if µi =↖. For a more formal
description, we let δ↖(↖) = δ↖(↖↗) = δ↗(↗) = δ↗(↖↗) = 1 and δ↖(↗) = δ↗(↖) = 0, and we
define

e(k, µ) = [k1 + δ↗(µ1), k2 − δ↖(µ2)] × . . . × [kn−1 + δ↗(µn−1), kn − δ↖(µn)].

for k = (k1, . . . , kn) and µ ∈ ARn. The following is not difficult.

I Problem 9 ([14, Problem 7]). Given k = (k1, . . . , kn), construct a sijection

Ξ = Ξk∶MT(k)⇒ ⊔
µ∈ARn

⊔
l∈e(k,µ)

MT(l).

Our next goal is to define other objects that satisfy the same “recursion” as monotone
triangles. To this end, define the signed set of arrow patterns of order n as

APn = ({↙,↘},{↙↘})(
n
2).

Alternatively, we can think of an arrow pattern of order n as a triangular array T =
(tp,q)1≤p<q≤n arranged as

T =
t1,n

t1,n−1 t2,n

t1,n−2 t2,n−1 t3,n

⋰
...

. . .
... ⋰

...
. . .

t1,2 t2,3 ... ... tn−1,n

,

with tp,q ∈ {↙,↘,↙↘}, and the sign of an arrow pattern is 1 if the number of ↙↘’s is even and
−1 otherwise.
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The role of an arrow pattern of order n is that it induces a deformation of (k1, . . . , kn),
which can be thought of as follows. Add k1, . . . , kn as bottom row of T (i.e., ti,i = ki),
and for each ↙ or↙↘ which is in the same ↙-diagonal as ki add 1 to ki, while for each ↘
or ↙↘ which is in the same ↘-diagonal as ki subtract 1 from ki. More formally, letting
δ↙(↙) = δ↙(↙↘) = δ↘(↘) = δ↘(↙↘) = 1 and δ↙(↘) = δ↘(↙) = 0, we set

ci(T ) =
n

∑
j=i+1

δ↙(ti,j) −
i−1
∑
j=1

δ↘(tj,i) and d(k, T ) = (k1 + c1(T ), k2 + c2(T ), . . . , kn + cn(T ))

for k = (k1, . . . , kn) and T ∈ APn.
For k = (k1, . . . , kn) define shifted Gelfand-Tsetlin patterns, or SGT patterns for short, as

the following disjoint union of GT patterns over arrow patterns of order n:

SGT(k) = ⊔
T ∈APn

GT(d(k, T ))

The difficult part of [14] is to prove that SGT indeed satisfies the same “recursion” as MT.
While the proof of the recursion was easy for monotone triangles, it is very involved for
shifted GT patterns, and needs almost all the sijections we have mentioned so far.

I Problem 10 ([14, Problem 9]). Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Φ = Φk,x∶ ⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)⇒ SGT(k).

From the last problem, it is easy to construct a bijective proof of the operator formula
for monotone triangles. See [14, pp. 3–4] for a discussion of this formula.

I Problem 11 ([14, Problem 10]). Given k = (k1, . . . , kn) ∈ Zn and x ∈ Z, construct a sijection

Γ = Γk,x∶MT(k)⇒ SGT(k).

Construction. The proof is by induction on n. For n = 1, both sides consist of one (positive)
element, and the sijection is obvious. Once we have constructed Γ for all lists of length less
than n, we can construct Γk,x as the composition of sijections

MT(k) ΞkÔ⇒ ⊔
µ∈ARn

⊔
l∈e(k,µ)

MT(l) ⊔⊔ΓÔ⇒ ⊔
µ∈ARn

⊔
l∈e(k,µ)

SGT(l)
Φk,xÔ⇒ SGT(k),

where ⊔ ⊔ Γ means ⊔µ∈ARn
⊔l∈e(k,µ) Γl,x. J

4 Sketch of the main bijections

Equipped with the operator formula, one can construct the following crucial sijection. (This
corresponds to Theorem 2.4 in the non-bijective proof in [13].)

I Problem 12 ([15, Problem 16]). Given k = (k1, . . . , kn), construct a sijection

MT(k)Ô⇒ (−1)n−1 MT(rot(k)),

where rot(k) = (k2, . . . , kn, k1 − n).

AofA 2020



12:10 Bijective Proof of the ASM Theorem

Note that the construction is far from easy, even assuming that we have the map Γ. See
[15, §6] for a proof. On the other hand, the following is relatively simple.

Suppose that we are given a weakly increasing sequence k = (k1, . . . , kn) and i ∈ N. We
define

MTi(k) = {T ∈ MT(k)∶Tn−i+1,1 = . . . = Tn,1 = k1, Tn−i,1 ≠ k1}

as the signed subset of monotone triangles with k1 in the first position in exactly the
last i rows. Similarly, we define

MTi(k) = {T ∈ MT(k)∶Tn−i+1,n−i+1 = . . . = Tn,n = kn, Tn−i,n−i ≠ kn}

as the signed subset of monotone triangles with kn in the last position in exactly the
last i rows.

The following corresponds to Proposition 2.6 in [13].

I Problem 13 ([15, Problem 21]). Given a weakly increasing k = (k1, . . . , kn) and i ≥ 1,
construct sijections

MTi(k)Ô⇒
i−1
⊔
j=0

(−1)j([i − 1]
j

) ×MT(k1 + j + 1, k2, . . . , kn)

and

MTi(k)Ô⇒
i−1
⊔
j=0

(−1)j([i − 1]
j

) ×MT(k1, k2, . . . , kn − j − 1).

Based on the last two constructions, it is quite straightforward to do the following. It
corresponds to Proposition 2.7 in [13].

I Problem 14 ([15, Problem 22]). Given n ∈ N and i ∈ [n], construct a sijection

n

⊔
j=1

(−1)j+1([2n − i − 1]
n − i − j + 1

) ×ASMn,j Ô⇒ ASMn,i .

To complete the construction of the bijections for Problems 1 and 2, we need, among
other results, a few more ingredients from “bijective linear algebra”. Denote by Sm the
signed set of permutations (with the usual sign). Given signed sets P i,j , 1 ≤ i, j ≤m, define
the determinant of P = [P ij]mi,j=1 as the signed set

det(P) = ⊔
π∈Sm

P 1,π(1) ×⋯ × Pm,π(m).

Among other classical properties, we have the following version of Cramer’s rule.

I Problem 15 ([15, Problem 9]). Given P = [P p,q]mp,q=1, signed sets Xi, Y i and sijections
⊔mq=1 P i,q ×Xq ⇒ Y i for all i ∈ [m], construct sijections

det(P) ×Xj Ô⇒ det(Pj),

where Pj = [P jp,q]mp,q=1, P jp,q = P p,q if q ≠ j, P jp,j = Y p, for all j ∈ [m].

Essentially, sijections like the one in Problem 15 tell us that “linear equalities” for
sijections like the one in Problem 14 can be used to find bijections on the sets involved. See
the constructions for Problems 1 and 2 in [15, §7] for all details.
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5 Summary

In this extended abstract, we present the first bijective proof of the enumeration formula for
alternating sign matrices. The bijection is by no means simple; the papers [14, 15] combined
have about 40 pages, with the technical constructions taking about 20 pages. We also needed
more than 2000 lines to produce a working python code. However, note that the first proof
of the ASM theorem by Zeilberger was 84 pages long. We certainly hope that our proof will
be simplified and shortened in the future.
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Abstract
We derive an asymptotic expression for the number of cubic maps on orientable surfaces when the
genus is proportional to the number of vertices. Let Σg denote the orientable surface of genus g and
θ = g/n ∈ (0, 1/2). Given g, n ∈ N with g → ∞ and n

2 − g → ∞ as n → ∞, the number Cn,g of
cubic maps on Σg with 2n vertices satisfies

Cn,g ∼ (g!)2 α(θ)β(θ)n γ(θ)2g, as g →∞,

where α(θ), β(θ), γ(θ) are differentiable functions in (0, 1/2). This also leads to the asymptotic
number of triangulations (as the dual of cubic maps) with large genus. When g/n lies in a closed
subinterval of (0, 1/2), the asymptotic formula can be obtained using a local limit theorem. The
saddle-point method is applied when g/n→ 0 or g/n→ 1/2.
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1 Introduction

Since the seminal work of Tutte on planar maps [19], various types of maps on surfaces have
attracted much attention (see e.g. [3, 4, 11, 13]). Most of results on maps deal with the case
when the genus is constant. When the genus is proportional to the number of vertices, edges
or faces, there are only a few results, which deal with either maps with one face (also known
as unicellular maps) [1, 7, 18] or triangular maps (also known as triangulations) [6].

In this paper we study cubic maps (and their dual, triangular maps) on orientable surfaces
of non-constant genus. As demonstrated in [8, 15], such cubic maps form base cases in the
study of sparse random graphs of non-constant genus. Furthermore, the study of random
graphs of non-constant genus has only been initiated very recently [8, 16], and it is likely to
prove to be the most interesting – the “evolution” of random graphs of non-constant genus
depends heavily on the ratios between the genus, the number of edges, and the number of
vertices, and it “transforms” from a random forest to the classical Erdős-Rény random graph.
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13:2 Counting Cubic Maps with Large Genus

We let Σg denote the orientable surface of genus g. A map on Σg is a connected graph
G that is embedded on Σg in such a way that each component of Σg −G, called a face, is
simply connected region. A map on Σg will be called a map with genus g. Throughout the
paper, a map is always rooted, meaning that an edge is distinguished together with an end
vertex and a side of it.

A map is called cubic if all its vertices have degree 3. The dual of a cubic map is called a
triangular map whose faces all have degree 3. Let Cn,g be the number of cubic maps with 2n
vertices and genus g and Tn,g be the number of triangular maps with n vertices and genus g.
Recall Euler’s formula for a map with v vertices, e edges, f faces, and genus g:

v − e+ f = 2− 2g.

In addition, a triangular map with e edges and f faces satisfies 2e = 3f , and therefore a
triangular map with v vertices and genus g has exactly 2(v + 2g − 2) faces, which in dual
corresponds to a cubic map with 2(v + 2g − 2) vertices and genus g. Thus, we have

Cn,g = Tn−2g+2,g. (1)

A direct consequence is that there are no cubic maps on Σg with 2n vertices (and hence
Cn,g = 0), if 2g > n+ 1. Therefore, throughout the paper we assume 2g ≤ n+ 1.

When g is constant, the following asymptotic formulas for Tn,g and Cn,g were determined
by Gao [10]: as n→∞,

Cn,g ∼ 3 · 6(g−1)/2 tg n
5(g−1)/2 (12

√
3)n, (2)

Tn,g ∼ 3 · (29 · 37)(g−1)/2 tg n
5(g−1)/2 (12

√
3)n. (3)

In fact, the constant tg appears universally in the asymptotic formulas for various rooted
maps on Σg [3, 4, 11, 13]. Its asymptotic expression was derived by Bender, Gao, and
Richmond [5]:

tg ∼
10 (3/5)1/2 Γ(1/5) Γ(4/5) sin(π/5)

21/2 π5/2

(
1440 g
e

)−g/2
, as g →∞. (4)

In this paper we study cubic maps on Σg when g is non-constant, particularly when
g/n ∈ (0, 1/2). We determine the asymptotic behavior of the generating function for Cn,g
(Theorem 1) and an asymptotic expression for Cn,g (Theorems 2 and 3) as g → ∞ and
n− 2g →∞.

Following the notation in [5] we let Cg(x) :=
∑
n≥0 Cn,gx

n denote the generating function
for cubic maps on Σg. The parametrization given by (15) in [5]

x = 1
12
√

3
(1− s)

√
1 + 2s (0 < s < 1)

was quite useful when the genus g is constant. However, in order to study the asymptotic
behaviors of Cg(x) and Cn,g for non-constant genus g satisfying g/n ∈ (0, 1/2), it turns out
to be more convenient to use the following parametrization

x(t) := t

4(1 + 2t)−3/2. (5)

Note that x(t) is monotonically increasing in t ∈ [0, 1]. In addition, we define functions
θ, r, A, σ2 in t ∈ (0, 1) by
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θ(t) := 1
2 −

3t
4(1 + 2t)

√
1− t

ln 1 +
√

1− t
1−
√

1− t
, (6)

r(t) := 2(1 + 2t)
√

1− t
3t θ(t), (7)

σ2(t) := 1
2θ2(t) −

2t2 − t+ 2
2(1− t)2θ(t) , (8)

A(t) := 27K
8 (1 + 2t)−1/2

(
t

2(1− t)θ(t)

)3/2
, (9)

where K .= 1.2× 10−6 is some positive constant.
Our first main result is the following asymptotic expression for Cg(x).

I Theorem 1. Let x be on the complex plane. Uniformly for |x| in any given closed
subinterval of

(
0, 1/(12

√
3)
)
, the generating function Cg(x) for cubic maps with genus g

satisfies

Cg(x) = Cg(x(t)) = (g!)2 A(t) r(t)−2g (1 +O(1/g)) , as g →∞. (10)

Our next main result is the following asymptotic expression for Cn,g.

I Theorem 2. For g/n in a given closed subinterval of (0, 1/2), let τ ∈ (0, 1) be determined
by θ(τ) = g/n. Then the number Cn,g of cubic maps with 2n vertices and genus g satisfies

Cn,g ∼ (g!)2 A(τ)√
2π g σ2(τ)

x(τ)−n r(τ)−2g, as g →∞. (11)

Using (11) and (1) we also obtain the following asymptotic formula for the number of
triangular maps (i.e. triangulations) with n vertices and genus g:

Tn,g ∼ (g!)2 A(τ)x(τ)2√
2π g σ2(τ)

x(τ)−n (x(τ)r(τ))−2g
, as g →∞. (12)

The rest of the paper is organized as follows. In the next section, we provide proofs of
Theorems 1 and 2. In Section 4 we extend Theorem 2 to cover the boundary cases g/n→ 0
or g/n→ 1/2 (Theorem 3). In Section 5 we compare our asymptotic result on Cn,g with a
very recent result on the asymptotic number of triangular maps by Budzinski and Louf [6].
We conclude the paper with further discussions on cubic graphs on orientable surfaces in
Section 6.

2 Proof of Theorems 1 and 2

Proof of Theorem 1. We begin with the function Fg(x) defined by

Fg(x) = 3x3C ′g(x) + 2x2Cg(x) (g ≥ 0). (13)

Rewriting (13) in [5], which is derived from the Goulden-Jackson recursion for cubic maps [14],
we obtain the following recursion: for g ≥ 1,

AofA 2020



13:4 Counting Cubic Maps with Large Genus

1− t
1 + 2tFg(x) + x2Cg(x)

= 36x4F ′′g−1(x) + 12x3F ′g−1(x) + 6x3δg,1 + 12
g−1∑
h=1

Fh(x)Fg−h(x), (14)

where δg,1 is equal to 1 if g = 1 and 0 otherwise.
Furthermore, by definition of the functions x(t) and r(t) in (5)–(7) and with some

computation, we obtain
dx

dt
= 1

4(1− t)(1 + 2t)−5/2, (15)

x(t)
x′(t) = t+ 3t2

1− t , (16)

dr

dt
= −1

3 t
−2(1− t)3/2, (17)

dr

dx
= −4

3 t
−2(1− t)1/2(1 + 2t)5/2, (18)

d2r

dx2 = 8
3 t
−3(1− t)−3/2(1 + 2t)4(4t2 − 5t+ 4). (19)

In terms of the new parameter t, the expression for C1(x) found in [5] becomes

C1(t) = t(1 + 2t)
4(1− t)2 . (20)

It follows from (5) and (13) that

F1(t) = t3(t+ 5)
64(1 + 2t)(1− t)4 . (21)

To derive the asymptotic expression (10), we write

Cg(x) = (g!)2r(t)−2gAg(t), Ag(t) = A(t) + a1(t)g−1 + a2(t)g−2 + · · · ,

and substitute it into (14). We note
g−2∑
h=2

(h!(g − h)!)2

(g!)2 =
g−2∑
h=2

((
g

h

))−2
= O

(
g−4) ,

C ′g(x) = (g!)2r(t)−2g
(
A′g(t)−

2gr′(t)Ag(t)
r(t)

)
1

x′(t) .

Divide both sides of (14) by (g!)2 and expand the resulting expressions in powers of g. Both
sides become Laurent series in g with highest power equal to 1. Comparing the coefficients
of g and using (13) and (5), we obtain (with the help of computer algebra system Maple)

r′(t) = −1
3 t
−2(1− t)3/2,

which is (17). Observing limt→1 r(t) = 0 (see (31) in Section 4), we obtain (7).
Next we compare the coefficients of g0 in Laurent series to obtain

A′(t)
A(t) = 11− 2t

4(1− t)(1 + 2t) + (1− t)3/2

2t2r(t) . (22)

Integrating both sides, we obtain (9) for some constant K. The approximate value of K is
obtained in Section 3. J
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Proof of Theorem 2. Define functions u(t) and µ(t) in t ∈ (0, 1) by

u(t) : = −2 ln r(t), (23)

µ(t) : = x(t)
x′(t)

du

dt
. (24)

Figure 1 The plot of θ(t).

With some algebra (and with help of Maple), we find θ(t) = 1/µ(t) and σ2(t) = x(t)
x′(t)

dµ
dt

are as in (6) and (8), respectively (see Figures 1–2). We note that σ2(t) is positive for
t ∈ (0, 1).

In order to apply a generalized version (Theorem 4 in [12]) of the local limit theorem in
[2, Theorem 3], we need to verify the technical condition that

|r(x)| > r(|x|), for |x| ∈
(

0, 1/(12
√

3)
)

and x 6= |x|. (25)

We first check (by Maple) that

r(t) = 1
3t + 1

2 − ln 2− 1
2 ln 1

t
− 1

8 t−
1
96 t

2 − 1
384 t

3 − 1
1024 t

4 − · · · ,

where all the positive powers of t have negative coefficients. Applying the Lagrange inversion
formula to (5), we see that t(x) is a power series in x such that [xn]t(x) are all positive for
all n ≥ 1. Also the radius of convergence of t(x) is 1/(12

√
3) .= 0.048. This implies that

|t(x)| < t(|x|) for all x 6= |x| with |x| ∈ (0, 1/(12
√

3)), which leads to (25). Figure 3 shows
the plots of |r(ρeiφ)| for ρ ∈ {0.01, 0.02, 0.03, 0.04} and 0 ≤ φ ≤ π.
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Figure 2 The plot of σ2(t).

Applying [12, Theorem 4] and using (23)–(24), we obtain

Cn,g ∼ (g!)2A(τ)r(τ)−2g x(τ)−n 1√
2π g σ2(τ)

.

This completes the proof of Theorem 2. J

3 Estimate the value of K

Our approach in the previous section does not give any information about the constant K
that appeared in A(t) – see (9). We may compare the exact values of Cn,g and its asymptotic
values given by (2) to obtain numerical estimation of K.

Define

Bn,g := 3n+ 2
(g!)2 Cn,g for n ≥ 1, g ≥ 0.

It follows from the Goulden-Jackson recursion [5, (8)] that

B−1,0 = 1/2,
B0,0 = 2,
B−1,g = B0,g = 0 for g ≥ 1,
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Figure 3 The plots of |r(ρeiφ)|.

and for n ≥ 1, g ≥ 0,

Bn,g = 4(3n+ 2)
n+ 1

(
n(3n− 2)

g2 Bn−2,g−1 +
n−1∑
i=−1

g∑
h=0

1(
g
h

)2Bi,hBn−2−i,g−h

)
, (26)

where Bn−2,g−1/g
2 is understood to be 0 when g = 0.

Using (9) and (11) we obtain

lnK .= lnBn,g −
1
2 ln g + g

(
ln x
θ

+ 2 ln r
)

+ 1
2 ln

(
2πσ2)− ln 3

θ
−
(

ln 27
8 −

1
2 ln(1 + 2t) + 3

2 ln t

2(1− t)θ

)
.

We used θ = 1/3 and calculated B3g,g for 1 ≤ g ≤ 150 using (26). We then obtain

t
.= 0.0569135164, x .= 0.0121039967, r .= 4.223432731, σ2 .= 1.212044822,K .= 1.2× 10−6.

4 Extend to the boundary

In this section we extend Theorem 2 to cover the ranges of g satisfying g/n→ 0 or g/n→ 1/2.
More specifically, we shall apply the saddle-point method to prove

I Theorem 3. Assume the same notation as in Theorem 2. Then (11) and (12) hold when

g →∞ and n

2 − g →∞ as n→∞. (27)
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Proof Sketch. To study the asymptotic behaviours of Cn,g when θ = g/n is near 0 or 1/2,
we need to find the asymptotic expansions of relevant functions as t→ 0 or t→ 1. With the
help of Maple and using (5)–(9), we obtain the following asymptotic expansions.

x(t) =
{

t
4 −

3t2
4 +O

(
t3
)
, t→ 0,

1
12
√

3

(
1− 1

6 (1− t)2 − 5
27 (1− t)3 +O

(
(1− t)4)) , t→ 1, (28)

x(t)
x′(t) =

{
t+ 3t2

∑
k≥0 t

k, t→ 0,
3(1− t)−1 − 5 + 2(1− t), t→ 1, (29)

θ(t) =
{ 1

2 + 3t
4 ln t

4 +O
(
t2 ln t

)
, t→ 0,

1
15 (1− t)2 + 23

315 (1− t)3 +O
(
(1− t)4) , t→ 1, (30)

r(t) =
{ 1

3t + 1
2 ln et

4 +O(t), t→ 0,
2

15 (1− t)5/2 + 4
21 (1− t)7/2 +O

(
(1− t)9/2) , t→ 1. (31)

µ(t) =
{

2− 3t ln t+ (6 ln 2)t+O
(
(t ln t)2) , t→ 0,

15(1− t)−2 +O
(
(1− t)−1) , t→ 1, (32)

σ2(t) =
{
−3t ln t+O(t), t→ 0,
90(1− t)−4 +O

(
(1− t)−3) , t→ 1, (33)

M3(t) : = x(t)
x′(t)

dσ2

dt
=
{
−3t ln t+O(t), t→ 0,
1080(1− t)−6 +O

(
(1− t)−5) , t→ 1, (34)

A(t) =
{

27K
8 t3/2 +O

(
t5/2 ln t

)
, t→ 0,

405
√

10K
32 (1− t)−9/2 +O

(
(1− t)−7/2) , t→ 1.

(35)

A more careful analysis of (10) gives

Cg(x) = (g!)2 A(t) r(t)−2g (1 +O (1/g)) ,

where the O-term is uniform for 0 < t < 1. In fact, we have (with the help of Maple)

Ag(t) = A(t)
(

1− 3
8

(
2 + 20t2 − 42t+ 31

1 + 2t
t r(t)

(1− t)5/2

)
g−1 +O(g−2)

)
. (36)

Using (31), we see that the coefficient of g−1 in (36) is bounded for t ∈ (0, 1).
The Cauchy integration formula and the standard saddle-point method give

[xn]Cg(x) = 1
2πi

∮
|x|=x(τ)

Cg(x)x−n−1dx

∼ (g!)2

2π x(τ)−n
∫
|φ|≤π

A(τeiφ) exp
(
gu(τeiφ)

)
e−inφdφ

∼ (g!)2

2π A(τ)x(τ)−nr(τ)−2g
∫
|φ|≤δ

exp
(
−gσ

2(τ)φ2

2 +O
(
gM3(τ)δ3)) dφ,

where τ is determined by the saddle-point equation θ(τ) = g/n, M3(τ) is given in (34), and
δ satisfies

gσ2(τ)δ2 →∞ and gM3(τ)δ3 → 0.

It follows from (33) and (34) that this condition is satisfied, provided that

gt ln(1/t)→∞ as t→ 0. (37)

Using (30), we see that (37) is equivalent to

g

(
1
2 −

g

n

)
→∞ as g

n
→ 1

2 , i.e.
n

2 − g →∞ as g

n
→ 1

2 .

This completes the proof of Theorem 3. J
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When the order of g/n or n − 2g is known, the asymptotic expression of Cn,g can be
simplified using the asymptotic expansions (29)–(36). For example, we have the following
corollary to Theorem 3.

I Corollary 4. Let θ = g/n. Suppose g →∞ and g = o
(
n1/2). Then

Cn,g ∼
9K

32 (15)1/4√2πg
θ−5/4 (g!)2

(
12
√

3
)n

exp
((

5
2 ln e

15θ + 2 ln 15
2 −

5
63(15θ)1/2

)
g

)
.

Proof. When g = o(n1/2), we have the following expansions

1− t = (15θ)1/2
(

1− 23
42(15θ)1/2 +O(θ)

)
,

A ∼ 405K
√

10
32 (15θ)−9//4,

σ ∼ 3
√

10(15θ)−1,

ln x = ln 1
12
√

3
− 5

2θ −
5
27(15θ)3/2 +O

(
θ2) ,

ln r = ln 2 + 1
4 ln 15 + 5

4 ln θ + 10
7 (15θ)1/2 +O(θ),

r−2gx−n ∼ (12
√

3)n exp
(
g

(
5
2 − ln 4− 1

2 ln 15− 5
2 ln θ − 5

63(15θ)1/2
))

.

Now the result follows from Theorem 3. J

The following result from [6] is an immediate consequence of Theorem 2.

I Corollary 5. Let g, n → ∞ such that g/n → θ0 ∈ (0, 1/2). Let t0 be determined by
θ(t0) = θ0 and x0 = x(t0), where x(t) and θ(t) are defined by (6) and (5). Then we have

Cn+1,g

Cn,g
→ 1

x0
, as n→∞.

Proof. Let t1 be determined by θ(t1) = g/(n+ 1). Since

g

n+ 1 = θ0 −
θ0

n
+O

(
θ0

n2

)
,

and the function θ(t) is differentiable and has nonzero derivative in (0, 1), we have

t1 = t0 +O

(
1
n

)
.

Hence

x(t1)→ x(t0), r(t1)→ r(t0), A(t1)→ A(t0), σ2(t1)→ σ2(t0) as n→∞.

Writing f(t) := ln x(t) + 2θ0 ln r(t) and applying Theorem 2, we obtain

Cn+1,g

Cn,g
∼ 1
x(t0)

(
x(t1)
x(t0)

)−n(
r(t1)
r(t0)

)−2g

= 1
x(t0) exp (−n (f(t1)− f(t0)))

= 1
x(t0) exp

(
−n
(
f ′(t0)(t1 − t0) +O

(
(t1 − t0)2))) .
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Using (23) and (24) and noting θ0 = 1/µ(t0), we obtain

f ′(t0) = x′(t0)
x(t0) + 2θ0

r′(t0)
r(t0) = 0.

Thus
Cn+1,g

Cn,g
∼ 1
x(t0) exp

(
−O

(
n/n2))→ 1

x0
,

as desired. J

5 Cross-check with a result on triangulations in [6]

In [6] Budzinski and Louf resolved a conjecture of Benjamini and Curien on the local limits
of uniform random triangulations whose genus is proportional to the number of faces. As
a consequence, they derived an asymptotic formula for the number of triangulations up to
sub-exponential factors.

Using notations in [6], let τ(n, g) denote the number of triangulations (i.e. triangular
maps) with 2n faces and genus g, which of course is equal to the number Cn,g to cubic maps
(as dual) with 2n vertices and genus g. For any λ ∈ (0, 1/(12

√
3)] let h ∈ (0, 1/4] be such that

λ = h

(1 + 8h)3/2 and ψ(λ) =
h ln

(
1 +
√

1− 4h)/(1−
√

1− 4h)
)

(1 + 8h)
√

1− 4h
.

For any ϑ ∈ [0, 1/2) let λ = λ(ϑ) be the unique solution of the equation

ψ(λ) = 1− 2ϑ
6 .

In [6, Theorem 3] it was shown that for g = g(n) satisfying 0 ≤ g ≤ n+1
2 and g/n → ϑ ∈

[0, 1/2], we have

τ(n, g) = n2g exp(f(ϑ)n+ o(n)), as n→∞, (38)

where f(0) = log(12
√

3), f(1/2) = log(6/e), and

f(ϑ) = 2ϑ ln(12ϑ/e)− (1− 2ϑ)
∫ 1

2ϑ
lnλ(ϑ/z)dz, for ϑ ∈ (0, 1/2),

in which we have corrected the factor −(1 − 2ϑ) in front of the integral – see (3) in [6,
Theorem 3] for comparison.

In order to compare (38) with our result (11), we note the following relations between
parameters:

t = 4h, x = λ, µ = 1
ϑ
.

Using Stirling’s formula (up to the sub-exponential factor), we may rewrite our asymptotic
expression of Cn,g in (11) as

Cn,g ≈ n2g exp(q(t)n), as n→∞, (39)

where

q(t) = 2(− ln r + ln θ − 1)θ − ln x. (40)
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We note that, as t→ 0, θ → 1/2 and consequently

q(t) → − ln(rx)− ln(2e) → ln(6/e) = f(1/2).

As t→ 1, we have θ → 0 and

q(t) → 2θ ln(θ/r)− ln x → ln 12
√

3 = f(0).

These two values match with those in (38).

6 Discussions: cubic graphs on orientable surfaces

Graphs that are closely related to cubic maps on Σg are cubic graphs with genus at most
g, which play a crucial role in the study of phase transitions in sparse random graphs on
orientable surfaces, as it was shown in [8, 15]. Let H̃n,g denote the number of vertex-labeled
cubic graphs with 2n vertices and genus at most g and let Hn,g = H̃n,g/(2n)!. In [8, 9], it
was shown that if g is constant, then

Hn,g ∼ cg n
5(g−1)/2−1γn,

where γ does not depend on g and is the same constant as planar case (i.e. when g = 0),
and if g ≤ n+1

2 , then

ag n
2g ≤ Hn,g ≤ bg g

−4g n6g. (41)

Note that if g > n+1
2 , then Hn,g is equal to the total number of cubic graphs with 2n

vertices (without restriction on the genus). Therefore, we have

Hn,g ∼ e−2 (6n− 1)!!
(3!)2n = e−2 (6n)!

(3n)! 23n (3!)2n ∼ e−2
(

6
e3

)n
n3n. (42)

So far, an asymptotic expression for Hn,g when g/n ∈ (0, 1/2] is not known.

I Problem 1. Derive an asymptotic expression for Hn,g when 1� g ≤ n+1
2 .

As it turned out, it is quite difficult to resolve Problem 1. Let us first compare asymptotic
behaviors of Hn,g and Cn,g, particularly when g/n→ 1/2. If the asymptotic formula (11) of
Cn,g would hold also for g/n→ 1/2, then

Cn,g ≈ nn, as g/n→ 1/2. (43)

The upper bound in (41) indicates that the super-exponential factor of Hn,g could be

Hn,g ≈ nn, as g/n→ 1/2, (44)

which matches with (43). Note however that (42) suggests that the super-exponential factor
of Hn,g might be

Hn,g ≈ n3n, as g/n→ 1/2, (45)

which is substantially larger than (43).
It would be interesting to check whether or not the asymptotic formula of Cn,g in Theorem

2 holds even for g/n→ 1/2.
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I Problem 2. Determine asymptotic behavior of Cn,g when g/n→ 1/2.

Another natural, but challenging task in view of (44) and (45) is the following.

I Problem 3. Does there exist a threshold function t∗ = t∗(n) = o(n) such that

Hn,g ≈


nn, as g − n/2 = o(t∗),
nh(c)n, as g − n/2 = c t∗ (for c ∈ R),
n3n, as g − n/2 = ω(t∗),

for some function h : R→ [1, 3] satisfying h(c)→ 1 as c→ −∞ and h(c)→ 3 as c→∞?

As very recent results on sparse random graphs with large genus [8] revealed, the most
interesting unknown case is when the genus is linear in the number of vertices.

I Problem 4. Derive an asymptotic expression for Hn,g when g/n ∈ (0, 1/2].

To this end, we may apply the following steps (analogous ideas were successfully utilized
in [9] when g is constant).

(S1) We first derive asymptotic formula for 2-connected cubic maps (equivalently, loopless
triangular maps) of genus g = θn. This will be done as follows.

Show that triangular maps with a non-contractible loop are negligible by cutting
through such a loop and bounding the number of such maps by triangular maps of
genus g − 1.
For contractible loops, we can apply the usual composition technique to derive equa-
tions of generating functions relating loopless triangular maps and all triangular maps.

(S2) Similarly, we derive formulas for 3-connected cubic maps (equivalently, triangular maps
without loops or multiple edges).

(S3) In order to go from 3-connected cubic maps on Σg to 3-connected cubic graphs on Σg, we
apply Robertson-Vitray uniqueness embedding result or Thomassen’s LEW result (see
e.g. [17]). We need to show that almost all such cubic maps have representativity lar-
ger than 2g+3 (equivalently, all non-contractible cycles have length greater than 2g+3).

(S4) Finally, in order to go from 3-connected cubic graphs to cubic graphs with lower con-
nectivity we apply standard connectivity-decomposition arguments.

Note that (S3) can be quite challenging since the genus g is linear in n, and we only have g2

to play with the error term.
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Abstract
In the stochastic sequential optimisation problems it is of interest to study features of strategies
more delicate than just their performance measure. In this talk we focus on variations of the
online monotone subsequence and bin packing problems, where it is possible to give a fairly explicit
asymptotic description of the selection processes under strategies that are sufficiently close to
optimality. We show that the transversal fluctuations of the shape and the length of selected
subsequence approach Gaussian functional limits that are very different from their counterparts in
the offline problem, where the full set of data can be used in selection algorithms.
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1 Introduction

In many stochastic optimisation problems units of the data become available in real time,
whereas admissible decision strategies involve a series of irrevocable choices. The analysis of
such problems is largely focused on finding optimal or near-optimal strategies to maximise a
given performance criterion subject to constraints. Much less attention has been devoted to
the structure of decison processes as a whole, in all intermediate states.

In this paper we mainly focus on the online monotone subsequence problem of Samuels and
Steele [18]. Suppose i.i.d. marks drawn from the uniform distribution on [0, 1] are observed,
one by one, at times of an independent homogeneous Poisson process of intensity ν on [0, 1].
Each mark can be selected or rejected. The sequence of selected marks must increase. The
task is to maximise the expected length of selected increasing subsequence using an online
strategy. The online constraint requires that each decision becomes immediately irrevocable
as the mark is observed, and must be based exclusively on the information accumulated
previously without foresight of the future.

The optimal online strategy is defined recursively in terms of a variable acceptance
window, which limits the difference between the next and previous selections. The strategy
and its value can be found, in principle, by solving a dynamic programming equation, see
[4, 6, 11] for properties of the solution and approximations. We are interested in the time
evolution of increasing subsequences under online strategies that are within O(1) gap from
the optimum for large ν.
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14:2 Online Subsequence Selection

Let Lν(t) and Xν(t), respectively, denote the length and the last element of the increasing
subsequence selected by time t ∈ [0, 1] under the optimal strategy. The interest to date
focused on the total length Lν(1). Samuels and Steele derived the principal asymptotics
ELν(1) ∼

√
2ν, which was later found to be an upper bound with the optimality gap of

order log ν [6]. See [1, 2, 4, 6, 10] for refinements and generalisations. In a recent paper
[11] we combined asymptotic analysis of the dynamic programming equation with a renewal
approximation to the range of the process Zν(t) :=

√
ν(1− t)(1−Xν(t)) to derive expansions

for the mean

ELν(1) ∼
√

2ν − 1
12 log ν + c∗0, ν →∞, (1)

and the variance

VarLν(1) ∼ 1
3
√

2ν − 1
72 log ν + c∗1, ν →∞, (2)

where c∗0 and c∗1 are unknown constants. A central limit theorem for Lν(1) was proved
in [7] by analysis of a related martingale, and further extended in [11] to a larger class of
asymptotically optimal strategies by the mentioned renewal theory approach.

The offline counterpart of the selection problem is the Ulam-Hammersley problem on
the longest increasing subsequence of the Poisson scatter in the square [0, 1]2. Here, the
well known principal asymptotics of the expected maximum length, 2

√
ν, is similar, but the

second term of its asymptotic expansion and the principal term of the standard deviation are
both of the order ν1/6. The limit law for the offline maximum length is the Tracy-Widom
distribution from the random matrix theory. For survey and history see [17].

In the offline problem, some work has been done on the size of transversal fluctuations
about the diagonal x = t in [0, 1]2. Johansson [12] proved a measure concentration result
asserting that, with probability approaching 1, every longest increasing subsequence (which
is not unique) lies in a diagonal strip of width of the order ν−1/6+ε. Duvergne, Nica and
Virág [8] recently proved the existence and gave some description of the functional limit,
which is not Gaussian. But for smaller exponent −1/2 < α < −1/6, Joseph and Peled [15]
showed that if the increasing sequence is restricted to lie within the strip of width ν−α, the
expected maximum length remains to be asymptotic to 2

√
ν, while the limit distribution of

the length switches to normal.
To extend the parallels and gain further insight into the optimal selection it is of

considerable interest to examine fluctuations of the processes Lν and Xν as a whole. On this
path, one is lead to study the following scaled and centred versions of the running maximum
and length processes:

X̃ν(t) := ν1/4(Xν(t)− t), L̃ν(t) = ν1/4
(
Lν(t)√

2ν
− t
)
, t ∈ [0, 1]. (3)

To compare, in the offline problem by similar centring the critical transversal and longitudinal
scaling factors appear to be ν1/6 and ν1/3, respectively. Our central result (Theorem 4) is
a functional limit theorem which entails that the process (X̃ν , L̃ν) converges weakly to a
simple two-dimensional Gaussian diffusion. In particular, X̃ν approaches a Brownian bridge.
The limit of L̃ν is a non-Markovian process with the covariance function

(s, t) 7→ 2s(2− t)− (2− s− t) log(1− s)
6
√

2
, 0 ≤ s ≤ t ≤ 1,

which corresponds to a correlated sum of a Brownian motion and a Brownian bridge.
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The question about functional limits for Lν and Xν has been initiated by Bruss and
Delbaen [7]. They employed the Doob-Meyer decomposition to compensate the processes,
and in an analytic tour de force showed that the scaled martingales jointly converge to a
correlated Brownian motion in two dimensions. However, the compensation keeps out of
sight a drift component absorbing much of the fluctuations immanent to the selection process,
let alone that the compensators themselves are nonlinear integral transforms of Xν . Looking
at the generator of (3) we shall recognise the limit process without difficulty, showing that
this is a Gaussian diffusion driven by the same Brownian motion as in [7]. But in order to
justify the weak convergence in the Skorokhod space on the closed interval [0, 1] we will need
to circumvent a difficulty caused by pole singularities of the control function and the drift
coefficient at the right endpoint.

A mathematically equivalent problem appears if the monotonicity condition is replaced by
the constraint that the sum of of selected marks cannot exceed 1. A more general form of the
latter “online bin-packing” problem has also been studied in the literature [9, 16], under the
assumption that (positive) marks are sampled from some distribution with regular behaviour
near 0. In the last section we sketch functional limit results for this bin-packing problem.

2 Selection strategies

It will be convenient to extend slightly the underlying framework by considering a homogen-
eous Poisson random measure Π with intensity ν in the halfplane R+ × R, along with the
filtration induced by restricting Π to [0, t]×R for t ≥ 0. We interpret the generic atom (t, x)
of Π as random mark x observed at time t. A sequence (t1, x1), . . . , (t`, x`) of atoms is said
to be increasing if it is a chain in two dimensions, i.e. t1 < · · · < t`, x1 < · · · < x`.

For a given bounded measurable control function ψ : [0, 1]× R→ R+, an online strategy
selecting such increasing sequence is defined by the following intuitive rule. Let x be the last
mark selected before time t, or some given x0 if no selection has been made. Given the next
mark x′ is observed at time t, this mark is selected if and only if x < x′ ≤ x+ψ(t, x). One can
think of more general online strategies, with the acceptance window shaped differently from
an interval or possibly depending on the history in a more complex way. Yet the considered
class is sufficient for the sake of optimisation and can be further reduced to controls of a
special type.

For a given control ψ, define X(t) and L(t) to be, respectively, the last mark selected and
the number of marks selected within the time interval [0, t]. The processX = (X(t), t ∈ [0, 1]),
which we call the running maximum, is a time-inhomogeneous Markov process, jumping from
the generic state x at rate ψ(t, x) to another state uniformly distributed on [x, x+ψ(t, x)]. The
length process L = (L(t), t ∈ [0, 1]) just counts the jumps of X, hence the bivariate process
(X,L) is also Markovian. Moreover, the conditional distribution of ((X(t), L(t)), t ≥ s)
depends on the pre-s history only through X(s).

Intuitively, the bigger ψ the faster X and L increase. To enable comparisons of selection
processes with different controls it is very convenient to couple them by means of an additive
representation through another Poisson random measure Π∗, thought of as a reserve of
positive increments. The underlying properties of the planar Poisson process are translation
invariance and spatial independence: Π restricted to the shifted quadrant (t, x) + R2

+ is
independent of Π|[0,t]×R and has the same distribution as the translation of Π|R2

+
by vector

(t, x). So, letting Π∗ to be a distributional copy of Π, a solution to the system of stochastic
differential equations
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dX(t) =
∫ ψ(t,X(t))

0
xΠ∗(dtdx), dL(t) =

∫ ψ(t,X(t))

0
Π∗(dtdx) (4)

with initial values X(0) = x0 and L(0) = 0 will have the same distribution as (X,L).

I Lemma 1. For i = 1, 2 let Xi be selection processes driven by controls ψi. By coupling
via (4), each time a process with smaller acceptance window jumps, the other process also
has a jump of the same size.

Conditionally on (X(s), L(s)) = (x, `), the process (X(s+ ·)− x, L(s+ ·)− `)) has the
same distribution as (X(s,x), L(s,x)), which similarly to (4) is given by

dX(s,x)(u) =
∫ ψ(s+u,x+X(s,x)(u))

0
yΠ∗(dudy), dL(s,x)(u) =

∫ ψ(s+u,x+X(s,x)(u))

0
Π∗(dudy).

Averaging, we obtain formulas for the predictable compensators of X and L

CX(t) := ν

2

∫ t

0
ψ2(s,X(s))ds, CL(t) := ν

∫ t

0
ψ(s,X(s))ds, (5)

so X − CX , L− CL are zero-mean martingales.
With every control we may further relate a zero-mean martingale

M(t) := L(t) + E{L(1)− L(t)|X(t)} − EL(1) (6)

with terminal value L(1)− EL(1). If ψ does not depend on x, L has independent increments
and M(t) = L(t)− EL(t).

The selected increasing chain fits in the unit square if X(1) ≤ 1, which translates in terms
of the control function as the condition of feasibility:

0 < ψ(t, x) ≤ 1− x for (t, x) ∈ [0, 1]2.

In the sequel, if not stated otherwise we set x0 = 0 and only consider feasible controls.

2.1 Principal convergence of the moments
Let

p(t) := EX(t) = ECX(t), q(t) := EL(t)√
2ν

= ECL(t)√
2ν

.

Some general relations between the moments follow straight from formulas for the
compensators (5). For shorthand, write ψ = ψ(X(s), s). We have

0 ≤ E
∫ t

0

(
1±

√
ν/2ψ

)2
ds = t± 2q(t) + p(t),

where the right-hand side in increasing in t. It follows,

p(t)− t ≥ 2 (q(t)− t). (7)

Using the Cauchy-Schwarz inequality

(p(t)− t)2 =
(
E
∫ t

0

(
1− ν

2ψ
2
)

ds
)2

≤ (t+ 2q(t) + p(t))(t− 2q(t) + p(t)). (8)
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Similarly

(q(t)− t)2 =
(
E
∫ t

0
1 ·
(

1−
√
ν/2ψ

)
ds
)2

≤ t (t− 2q(t) + p(t)) (9)

The above relations did not use the feasibility constraint. For feasible control we have
p(1) < 1, hence from (7) also q(1) < 1. Since all factors in the right-hand sides of (8), (9) are
increasing, replacing them by their maximal values at t = 1 we obtain

(p(t)− t)2 < 8(1− q(1)), (q(t)− t)2 < 2(1− q(1)). (10)

We say that a strategy ψ = ψν is asymptotically optimal in the principal term if q(1)→ 1,
as ν → ∞, i.e. ELν(1) ∼

√
2ν; in that case (10) imply the uniform convergence of the

moments

sup
t∈[0,1]

|p(t)− t| → 0, sup
t∈[0,1]

|q(t)− t| → 0.

It follows from (1) that under the optimal strategy

1− q(1) ∼ log ν
12
√

2ν
, ν →∞. (11)

This relation can be called a two-term asymptotic optimality. Whenever this holds, the general
bounds (10) imply that both supt∈[0,1] |p(t)− t| and supt∈[0,1] |q(t)− t| can be estimated as
O(
√

log ν/ν1/4).

2.2 The stationary strategy
We call the strategy with control ψ(t, x) =

√
2/ν stationary. Although not feasible, the

stationary strategy is an important benchmark. Clearly, L is a Poisson counting process with
intensity EL(1) =

√
2ν. Taking general constant control ψ(t, x) =

√
c/ν with some c > 0

will yield a strategy outputting the mean length
√
{c ∧ (2/c)}ν, which is maximal for c = 2.

In fact, a much stronger optimality property holds: the stationary strategy achieves the
maximum expected length over the class of strategies that satisfy the mean-value constraint
EX(1) ≤ 1, see [1, 4, 10, 11] for proof and generalisations. This gives the well-known upper
bound mentioned in the Introduction, because each feasible strategy meets the mean-value
constraint.

It is seen from (4) that X is a compound Poisson process

X(t) =
√

2
ν

L(t)∑
i=0

Ui ,

where U1, U2, . . . are independent of L, uniformly distributed on [0, 1]. Straightforward
calculation of moments using Wald’s identities yields

EX(t) = t, VarX(t) = 23/2t

3
√
ν
, Cov(X(t), L(t)) = t.

Since (X,L) has independent increments, a functional limit in the Skorohod topology on
D[0, 1] follows easily from the multidimensional invariance principle:

(X̃, L̃)⇒ (W1,W2), as ν →∞,
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where⇒ denotes weak convergence, and the limit process W := (W1,W2) is a two-dimensional
Brownian motion with zero drift and covariance matrix

E{W (t)TW (t)} = tΣ, where Σ :=
(

2
√

2
3

1√
2

1√
2

1√
2

)
. (12)

So, marginally, W1 and W2 are centred Brownian motions with diffusion coefficients and
correlation, respectively,

σ1 := 23/4
√

3
, σ2 := 1

21/4 , ρ :=
√

3
2 . (13)

Notably, ρ = σ2/σ1, which implies that the process W satisfies the identity 2W2 −W1
d=

W1, which has a pre-limit analogue 2L̃− X̃ d= X̃. The identity can be explained by symmetry
of the uniform distribution about 1/2, which allows us to write

X(t) d=
√

2
ν

L(t)∑
i=0

(1− Ui) =
√

2
ν
L(t)−X(t) .

The martingale (6) just coincides with the naturally centred L.

2.3 Self-similar asymptotically optimal strategies
We call strategy self-similar if the control ψ = ψν has the form

ψ(t, x) := (1− x)δ(ν(1− t)(1− x)), (t, x) ∈ [0, 1]2. (14)

for some function δ : R+ → [0, 1]. Note that such a strategy is feasible and ψν(0, 0) = δ(ν).
The rationale behind this definition is the following. Assuming x to be the running maximum
at time t, the remaining part of the chain should be selected from the north-east rectangle
spanned on (t, x) and (1, 1), and by the optimality principle the subsequence selected from
the rectangle should have maximal expected length. Mapping the rectangle onto [0, 1]2 it is
readily seen that the subproblem is an independent replica of the original problem of optimal
selection from the unit square with intensity parameter ν(1− t)(1− x). The martingale (6)
assumes the form

M(t) = L(t) + F (ν(1− t)(1−X(t))− F (ν), (15)

where the value function F , for given control, depends on one variable

F (ν) := ELν(1), F (0) = 0.

Assumption. From this point on we assume that the selection strategy is self-similar as
defined by (14), with function δ having asymptotics

δ(ν) =
√

2/ν +O
(
ν−1) , ν →∞. (16)

The assumption is central and deserves comments. Whenever ν(1 − x)(1 − t) is large,
(16) implies asymptotics of the control

ψ(t, x) ∼

√
2(1− x)
ν(1− t) , (17)
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which shows that near the diagonal x = t the acceptance window is about the same as for
the stationary strategy. Away from the diagonal the acceptance window is close to that for
the stationary strategy adjusted to the rectangle north-east of (t, x).

It is known [11] that the optimal strategy satisfies the asymptotic expansion

δ∗(ν) ∼
√

2/ν − (3ν)−1 +O(ν−3/2). (18)

A minor adjustment of Theorem 6 in [11] shows that if we assume, more generally, the
relation δ(ν) ∼

√
2/ν + β/ν with some parameter β ∈ R, then asymptotic expansions of

the moments (1), (2) are still valid, with only constant terms depending on β. Using a
sandwich argument based on Lemma 1, it can be further shown that under the assumption
(16) expansions of the moments hold but with constant terms being replaced by some O(1)
remainders. In particular, condition (16) ensures the two-term asymptotic optimality (11),
equivalent to the asymptotic expansion of the value function,

F (ν) =
√

2ν − 1
12 log(ν + 1) +O(1). (19)

We stress that the logarithmic term here (as well as in the counterpart of the variance formula
(2)) is not affected by the remainder in (16), rather appears due to the self-similar adjustment
of the (feasible version of) stationary strategy, as incorporated in (17).

Approximation (17) is not useful when t or x are too close to 1, so that ν(1− t)(1− x)
varies within O(1). To embrace the full range of the variables, for the sequel we choose β > 1
large enough to meet the bounds∣∣∣∣∣ψ(t, x)−

√
2(1− x)
ν(1− t)

∣∣∣∣∣ <
β

ν(1− t) , for (t, x) ∈ [0, 1)× [0, 1). (20)

This will be employed along with the bound

ψ(t, x) <
1

ν(1− t) , for 1− x < 1
ν(1− t) (21)

which follows by feasibility.

3 Generators

A major technical difficulty in showing the convergence in D[0, 1] is the singularity of (17)
at t = 1. This will be handled in two steps. First, we bound the time variable away from
t = 1 and show the convergence of the generators on a sufficiently big space of test functions.
Then we will apply domination arguments to bound fluctuations near the right endpoint,
thus justifying convergence on the full [0, 1].

The processes we consider are not time-homogeneous, therefore by computing generators
we include the time variable in the state vector. From (4), the generator of the jump process
(X,L) is

Lνf(t, x, `) = ft(t, x, `) + ν

∫ ψ(t,x)

0
{f(t, x+ u, `+ 1)− f(t, x, `)}du.

For the processes centered by t we should include −fx − f` in the generator. Then, with the
change of variables

x→ xν−1/4 + t, `→ (`ν−1/4 + t)
√

2ν, ψ̃(t, x) := ν1/4ψ(t, xν−1/4 + t)
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we arrive at the generator of (X̃, L̃)

L̃νf = ft − ν1/4(fx + f`) + ν3/4
∫ ψ̃(t,x)

0
{f(t, x+ u, `+ v)− f(t, x, `)}du, (22)

where we abbreviate f = f(t, x, `) etc., and

v := (4ν)−1/4 (23)

We extend L̃νf by 0 outside the reachable range of (X̃, L̃). Note that the range of X̃(t)
lies within the bounds

−tν1/4 ≤ x ≤ (1− t)ν1/4.

We fix h ∈ (0, 1) and focus on t ∈ [0, 1− h], so achieving uniformly in this range

ψ̃(t, x) = O(ν−1/4), (24)

and for k ≥ 1

ψ̃k(t, x) =
(

2− 2x
ν1/4(1− t)

)k/2
ν−k/4+O(ν−(k+2)/4), for x ≤ (1−t)ν1/4− 1

ν3/4(1− t)
(25)

as dictated by the bounds (20), (21).
Now let D be the space of vanishing at infinity functions f ∈ C3

0 ([0, 1]×R2) which satisfy
a rapid decrease property

sup |xkf•(t, x, `)| <∞,

where f• is any derivative of f of the first or second order and k > 0. Set

D>
h,ν := {(t, x, `) : t ∈ [0, 1−h], |x| > ν1/16}, D<

h,ν := {(t, x, `) : t ∈ [0, 1−h], |x| ≤ ν1/16}.

We shall be using that for f ∈ D

lim
ν→∞

sup
D>
h,ν

|νkf•(x)| = 0. (26)

The integrand in (22) expands as

f(t, x+ u, `+ v)− f(t, x, `) = fxu+ f`v + 1
2fxx u

2 + fx` uv + 1
2f`` v

2 +R,

where the remainder can be estimated as

|R| ≤ c
3∑
i=0

uiv3−i,

with constant c chosen bigger than the maximum absolute value of any third derivative of f .
Hence for the integrated remainder we have a uniform estimate

ν3/4

∣∣∣∣∣
∫ ψ̃

0
Rdu

∣∣∣∣∣ ≤ ν3/4c

4∑
i=1

ψ̃iv4−i = O(ν−1/4),

using (24), (23).
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Integrating the Taylor polynomial yields

L̃νf = ft−ν1/4(fx+f`)+ν3/4

{
fx ψ̃

2

2 + f` vψ̃ + fxxψ̃
3

6 + fx` ψ̃
2

2 v + f``v
2ψ̃

2

}
+O(ν−1/4).

Applying (26)

lim
ν→∞

sup
D>
h,ν

|L̃νf(t, x, `)| = 0. (27)

Thus we focus on the range D<
h,ν , where (20) and (25) can be employed. From (20)

−ν1/4fx + ν3/4 1
2fxψ̃

2 = − x

1− tfx +O(ν−1/4).

Observing that in this range |xν−1/4| ≤ ν−3/16 for k > 0 we expand as

ψ̃k(t, x, `) = 2k/2ν−k/4 − 2k/2−1x

1− t ν−(k+1)/4 +O(ν−(k+1)/4−1/8),

with the remainder estimate being uniform over D<
h,ν . The remaining calculations is a careful

book-keeping using this formula and that the derivatives are uniformly bounded.
Define operator

L̃f := ft −
x

1− tfx −
x

2(1− t)f` + σ1
2

2 fxx + σ2
2

2 f`` + σ1σ2ρfx`,

with σ1, σ2, and ρ given by (13).

I Lemma 2. For f ∈ D and h ∈ (0, 1)

lim
ν→∞

sup
(t,x,`)∈[0,1−h]×R2

|L̃νf(t, x, `)− L̃f(t, x, `)| = 0.

Operator L̃ is the generator of a Gaussian diffusion process which satisfies the stochastic
differential equation

dY1(t) = −Y1(t)
1− t dt + dW1(t), (28)

dY2(t) = − Y1(t)
2(1− t) dt + dW2(t), (29)

with zero initial value, where W = (W1,W2) is the two-dimensional Brownian motion with
covariance Σ introduced in (12).

From the equation for the first component (28), it is seen that Y1 is a Brownian bridge

Y1(t) = (1− t)
∫ t

0

dW1(s)
1− s , (30)

with the covariance function Cov(Y1(s), Y1(t)) = σ1s(1 − t), 0 ≤ s ≤ t ≤ 1. In particular,
Y1(1) = 0. We shall discuss the second component later on.

The space D is dense in a larger space C3
0 ([0, 1 − h] × R2). Since the differentiability

properties of functions are preserved under averaging over normally distributed translations,
D is invariant under the semigroup of Y . Thus by Watanabe’s theorem (see [13], Proposition
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17.9) D is a core of operator L̃. The above Lemma 2 and Theorem 17.25 from [13] now imply
weak convergence

(X̃ν , L̃ν)⇒ (Y1, Y2) in D[0, 1− h] (31)

for every h ∈ (0, 1). A closer inspection of the above approximation errors suggests that the
quality of convergence deteriorates as h→ 0.

We encountered the Brownian motion W in connection with the free-endpoint stationary
strategy in Section 2.2. Now we see that the variable control (17) causes a drift that forces
the running maximum to timely arrive at the north-east corner of the square.

4 The functional limit in D[0, 1]

The martingale problem for L̃ is well-posed on the complete interval, and the SDE (28) has
a unique strong solution. This suggests to extend convergence (31) to the full [0, 1]. To that
end, we need to monitor the behaviour of L̃νf for t close to 1.

Since (31) entails convergence of finite-dimensional distributions for times t < 1 and
ensures that the modulus of continuity behaves properly over [0, 1− h], to justify tightness
of X̃ν ’s, and hence their convergence on [0, 1], it will be enough to show that

lim
h→0

lim sup
ν

P( sup
t∈[1−h,1]

|X̃ν(t)| > h1/4) = 0. (32)

Define ξν,h by setting

X̃ν(1− h) = σ1
√
h(1− h) ξν,h.

Since X̃ν(1− h) d→ Y1(1− h) the distribution of ξν,h is close to N (0, 1) for large ν.
By self-similarity of the selection strategy, ((Xν(t)−t), t ∈ [1−h, 1]) has the same distribu-

tion as (h−1(Xνh2(t)−t), t ∈ [0, 1]) with the initial value Xνh2(0) = ν−1/4σ1
√

(1− h)/h ξν,h,
as is seen by zooming in the corner square north-east of the point (1− h, 1− h) with factor
h−1. Changing variable νh2 → ν, (32) translates as a compact containment condition

lim
h→0

lim sup
ν

P( sup
t∈[0,1]

|X̃ν(t)| > h−1/4) = 0 (33)

under the initial value X̃ν(0) =
√

1− h ξν,h.
To verify (33) we shall squeeze the running maximum X between X↓ and X↑ whose

normalised versions satisfy the compact containment condition. We force the majorant and
the minorant to live on the opposite sides of the diagonal. Both have independent, almost
stationary increments, so that functional limits can be readily identified. For simplicity we
will assume Xν(0) = 0. The general case with Xν(0) of the order ν−1/4 can be handled by
the same method.

4.1 Majorant
Define process X↑ = X↑ν as solution to

dX↑(t) =
∫ ψ↑(t)

0
xΠ∗(dtdx) + 1(X↑(t) = t)dt,
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X↑(0) = Kν−1/2 for some big enough K > 0, with control

ψ↑(t) :=
√

2
ν

+ β

ν(1− t) 1(t ≤ 1−Kν−1/2)

not depending on x. Notation 1(· · · ) is used for indicators. The process never drops below
the line x = Kν−1/2 + t, and whenever the line is hit the path drifts along it for some time.
By the construction, above the diagonal the process X↑ increases faster than X, and is, in
fact, a majorant.

I Lemma 3. By coupling via (4), X↑ ≥ X a.s.

Let

S(t) :=
∫ t

0

∫ ψ↑(t)

0
xΠ∗(dsdx)− t.

This is a process with independent increments, which we can split in two independent
components

S(t) =
(∫ t

0

∫ √2/ν

0
xΠ∗(dsdx)− t

)
+
∫ t

0

∫ ψ↑(t)

√
2/ν

xΠ∗(dsdx).

The mean value of the second part is estimated as

2ν√
ν

∫ 1−K/
√
ν

0

β

ν(1− t)dt = O

(
log ν√
ν

)
,

and the first is a compensated compound Poisson process. Thus ν1/4S ⇒W1 as ν →∞.
Processes akin to (X↑(t) − t, t ∈ [0, 1]) are common in applied probability [3, 5]. In

particular, by the interpretation as the content of a single-server M/G/1 queue, the positive
increments present jobs that arrive by Poisson process and are measured in terms of the
demand on the service time. The downward drift occurs due to the unit processing rate
when the server is busy. Borrowing a useful identity,

X↑(t)− t = S(t)− inf
u∈[0,t]

S(u),

we conclude on the weak convergence (ν1/4(X↑(t) − t), t ∈ [0, 1]) ⇒ |W1| to a reflected
Brownian motion.

4.2 Minorant

ψ↓(t, x) =


(√

2
ν −

β
ν(1−t)

)
∧ (t− x), for 0 ≤ t ≤ 1−K/

√
ν,

0, for 1−K/
√
ν < t ≤ 1.

where K is sufficiently large. We can regard this as a suboptimal strategy that never selects
marks x > t. Starting at state 0, the running maximum process stays below the diagonal
throughout, and gets frozen at t = 1−K/

√
ν. A counterpart of Lemma 3, X↓ < X a.s., is

readily checked.
Switching general β > 0 to β = 0 impacts EX↓(t) by O(ν−1/2 log ν) uniformly in t ∈ [0, 1].

Indeed, the jumps are bounded by 2/
√
ν, and the expected number of jumps increases by

O(log ν).
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Assuming β = 0, the process (X↓(t)− t, t ∈ [0, 1−Kν−1/2]) is a compensated compound
Poisson process on the negative halfline, with reflection at 0. We have therefore

(ν1/4(X↓(t)− t), t ∈ [0, 1])⇒ −|W1|.

A rigorous proof can be obtained by inspecting convergence of the generator acting on the
functions f ∈ D with fx(t, 0) = 0.

4.3 The length process near termination
Having established weak convergence of X̃, the fluctuations of L̃ near t = 1 are estimated by
verifying that

lim
h→0

lim sup
ν

P( sup
t∈[1−h,1]

|L̃(t)− L̃(1− h)| > ε) = 0. (34)

This is done with the help of analysis of the martingale M .

5 Main result

By the domination argument, tightness of (X̃ν , L̃ν) follows on the whole [0, 1], and we arrive
at our main result.

I Theorem 4. The normalised running maximum and the length process (3) driven by a
control satisfying (14) and (16) (in particular, under the optimal online selection strategy)
converge weakly in the Skorokhod space D[0, 1],

(X̃ν , L̃ν)⇒ (Y1, Y2), as ν →∞,

where the limit bivariate process is a Gaussian diffusion defined by the equations (28), (29)
with zero initial conditions.

We observed already that Y1 is the Brownian bridge (30) and from (29)

Y2(t) = Y1(t)
2 − W1(t)

2 +W2(t),

so splitting the martingale part in independent components, we get, explicitly,

Y2(t) =
∫ t

0

(1− t)
2(1− s)dW1(s) + 1

4 W1(t) +
(
W2(t)− 3

4 W1(t)
)
, (35)

which is a sum of a Brownian motion, derived Brownian bridge and another independent
Brownian motion.

To find the covariance structure, it is convenient to resort to matrix calculations. We
may write the solution to (28), (29) as

Y (t)T = ea(t)
∫ t

0
e−a(u)dW (u)T ,

where

a(t) := A

∫ t

0

1
1− udu = A log (1− t), A :=

(
1 0
1
2 0

)
,
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which yields by the Itó isometry

E{Y (s)TY (t)} =
∫ t

0
ea(s)−a(u)Σe(a(t)−a(u))T du, 0 ≤ s ≤ t ≤ 1.

Since A is idempotent matrix, the exponents are readily calculated as

ea(t) =
(

1− t 0
− t

2 1

)
, e−a(t) =

(
1

1−t 0
t

2(1−t) 1

)
,

and we arrive at the cross-covariance matrix

E{Y (s)TY (t)} =

 2
√

2 s(1−t)
3

2s(1−t)−(1−s) log (1−s)
3
√

2

(1−t)(2s−log (1−s))
3
√

2
2s(2−t)−(2−s−t) log (1−s))

6
√

2

 ,

where 0 ≤ s ≤ t ≤ 1.
The limit length process Y2 is not Markovian, since its covariance function does not

satisfy the factorisation criterion (see [14], p. 148). The sum of two first terms in (35) is
non-Markovian too.

6 Diffusion approximation in the bin-packing problem

We turn to a version of the bin-packing problem. Suppose that i.i.d., positive marks arrive
by a Poisson process of intensity ν on [0, 1], and that the marks are sampled from a density
satisfying f(y) ∼ Aαyα−1 as y → 0, with α,A > 0. The stochastic optimisation task is to
maximise the expected number of online selections under the constraint that their total does
not exceed given c > 0.

Let Zν(t), Nν(t), t ∈ [0, 1] denote the sum and the number of selected marks at time t under
the optimal selection policy, which has a control function ψ(t, z) = (c− z) δ(ν(1− t)(c− z)α),
where

δ(ν) = γ1

ν1/(α+1) +O(ν−2/(α+1)), ν →∞, γ1 =
(

(α+ 1)
Aα

)1/(α+1)
,

see [9]. It was shown in [9] that the mean number of selections has asymptotics u(ν) ∼
γ2 ν

1/(α+1), ν →∞, with

γ2 =
(
c(α+ 1)
Aα

)1/(α+1)
.

This suggests the normalisations

Z̃ν(t) := ν1/(2(α+1)) (Zν(t)− ct) , Ñν(t) := ν1/(2(α+1))
(

Nν(t)
γ2ν1/(α+1) − t

)
.

The infinitesimal generator of (t, Z̃ν(t), Ñν(t)) is

Lνf(t, z, n) = ft − ν1/(α+1)(cfz + fn)

+ ν1−1/(2(α+1))
∫ ψ̃(t,z)

0

(
f

(
t, z + y, n+ 1

γ2ν1/(2(α+1))

)
− f(t, z, n)

)
f(y)dy,

where

ψ̃(t, z) = ν1/(2(α+1)) ψ(t, zν−1/(2(α+1)) + tc).
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A fairly long computation yields the asymptotics, as ν →∞,

Lνf(t, z, n) ∼ ft −
z

1− tfz −
αz

c(α+ 1)(1− t)fn + σ3
2

2 fzz + σ4
2

2 fnn + ρ0σ3σ4fzn,

where

σ3 = (α+ 1)(α+2)/(2(α+1))√c√
α+ 2

, σ4 = 1
A1/(2(α+1))(α+ 1)α/(2(α+1)) ,

and

ρ0 = αα/(α+1)√α+ 2
c(α−1)/(2(α+1))Aα/(2(α+1))(α+ 1)2α/(α+1) .

Using this we were able to show the functional convergence

(Z̃ν , Ñν)⇒ (Y3, Y4), as ν →∞,

in D[0, 1−h] for every h ∈ (0, 1), where the limit process (Y3(t), Y3(t)) is a Gaussian diffusion
satisfying the SDE

dY3(t) = −Y3(t)
1− t dt + dW3(t), dY4(t) = − αY3(t)

c(α+ 1)(1− t) dt + dW4(t)

with zero initial conditions. Here, (W3,W4) is a two-dimensional centred Brownian motion

with the covariance matrix Σ0 =
(

σ3
2 ρ0σ3σ4

ρ0σ3σ4 σ4
2

)
.
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Abstract
Lempel-Ziv’78 is one of the most popular data compression algorithms. Over the last few decades
fascinating properties of LZ78 were uncovered. Among others, in 1995 we settled the Ziv conjecture
by proving that for a memoryless source the number of LZ78 phrases satisfies the Central Limit
Theorem (CLT). Since then the quest commenced to extend it to Markov sources. However, despite
several attempts this problem is still open. The 1995 proof of the Ziv conjecture was based on two
models: In the DST-model, the associated digital search tree (DST) is built over m independent
strings. In the LZ-model a single string of length n is partitioned into variable length phrases such
that the next phrase is not seen in the past as a phrase. The Ziv conjecture for memoryless source
was settled by proving that both DST-model and the LZ-model are asymptotically equivalent. The
main result of this paper shows that this is not the case for the LZ78 algorithm over Markov sources.
In addition, we develop here a large deviation for the number of phrases in the LZ78 and give a
precise asymptotic expression for the redundancy which is the excess of LZ78 code over the entropy
of the source. We establish these findings using a combination of combinatorial and analytic tools.
In particular, to handle the strong dependency between Markov phrases, we introduce and precisely
analyze the so called tail symbol which is the first symbol of the next phrase in the LZ78 parsing.
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1 Introduction

The Lempel-Ziv compression algorithm [16] is a universal compression scheme. It partitions
the text to be compressed into consecutive phrases such that the next phrase is the unique
shortest prefix (of the uncompressed text) not seen before as a phrase. For example,
aababbababbb is parsed as ()(a)(ab)(abb)(aba)(b)(bb). The LZ78 compression code consists of
a pointer to the previous phrase and the last symbol of the current phrase. The distribution
of the number of phrases and other related quantities (such as redundancy and code length)
are known for memoryless sources [10, 14] but research over the past 40 years has failed
to produce any significant progress for Markov sources. In this paper, we present novel
large deviations and precise redundancy results that had been wanting since the algorithm
inception, as well as some surprising findings regarding the difference between the memoryless
case and the Markov case.
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15:2 Lempel-Ziv’78 for Markov Sources

It is convenient to organize phrases (dictionary) of the Lempel-Ziv scheme in a digital
search tree (DST) [6] which represents a parsing tree. We assume throughout that A = {a, b}.
Then the root contains an empty phrase. The first phrase is the first symbol, say “a ∈ A”
which is stored in a node appended to the root. The next phrase is either (aa) ∈ A2 stored
in another node that branches out from the node containing the first phrase “a” or (ab) that
is stored in a node attached to the root. This process repeats recursively until the text is
parsed into full phrases (see Figure 1). A detailed description can be found in [3, 6, 8].

Figure 1 The DST-model vs LZ-model. In the DST-model we inserted eight (infinite) strings:
X1 = abb · · · , X2 = abb · · · , X3 = bbba · · · , X4 = abaaa · · · , X5 = bbaa · · · , X6 = baaa · · · ,
X7 = bbba · · · and X8 = abbbb · · · , where bold symbols denote DST tail symbols. In the LZ-model
we parsed one string X = ()(a)(ab)(b)(aaba)(bb)(bbb)(abb) with bold denoting LZ tail symbols.

We consider two models called the DST-model and the LZ-model. In the DST-model we
insert independent strings although each string may be generated by a source with memory
like a Markov source. In the LZ-model we parse a single string as shown in Figure 1. We
distinguish two types of DST and LZ models. To define them we need to introduce the path
length L as the sum of all depths in the digital search tree or the sum of all phrases in the
LZ model. In the “m”-DST model we insert m independent strings into a digital search
tree – leading to a variable path length denoted as Lm – while the “n”-DST model is built
over a random number of independent strings such that the total path length is equal to n.
Similarly, we have “m”-LZ and “n”-LZ models: In the former we construct m LZ phrases
to form a string of (variable) length denoted as Lm while in the “n”-LZ model we parse a
string of length n into a variable number of phrases that we denote as Mn. Throughout, m
will denote number of strings or phrases while n will stand for the length of a string.

There is a simple relation between Mn and Lm called the renewal equation which asserts

P (Mn > m) = P (Lm < n). (1)

Finally, observe that the code length of the LZ78 algorithm is Cn =
∑Mn

k=1dlog2(k)e +
dlog2(|A|)e since the pointer to the kth node requires at most dlog2 ke bits, while the next
symbol costs dlog2 |A|e bits. For binary alphabet A = {a, b} we simplify the code length to
Cn = Mn (log2Mn + 1).

To understand LZ78 behavior one must analyze the limiting distribution of Mn and/or
Lm connected through the renewal equation (1). For memoryless sources we benefited from
the fact the random variable Lm and Lm are probabilistically equivalent as shown in 1995
paper [3]. Unfortunately, this equivalence breaks for sources with memory such as Markov
sources. To capture this dependency we introduce the notion of the tail symbol. In the
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DST-model the tail symbol of an inserted string is the first non-inserted symbol of that string,
as shown in Figure 1. In the LZ-model the tail symbol of a phrase is the first symbol of the
next phrase (see Figure 1). Furthermore, in the Markov case there is additional complication,
even for the DST-model. In the DST-model we need to consider two digital search trees: one
built over all (independent) strings starting with symbol a ∈ A, and the second one built
over all strings that start with b ∈ A. At the end we construct a cumulative knowledge by
weighting over the initial symbols (see [7]).

In this paper, we present large deviation results for the number of phrases Mn in “n”-LZ
model and the average length of a LZ (Markov) string built over m phrases in the “m”-LZ
model.1 In the memoryless case we could read the number of phrases Mn directly from the
path length Lm of the m-DST model. It is not the case in the Markov model but through
the tail symbol distribution we will connect both quantities. Recall that Lm is the length of
a string generated by a Markov source which is parsed by the LZ78 scheme until we see m
phrases (our m-LZ model). This should be compared to the total path length Lm (notice
roman font for L) in the the m-DST model. In the memoryless case, we proved in [3, 5]
that the expected value of Lm and the expected value of the length of a string built from m

phrases, Lm, are the same. Somewhat surprisingly it is not the case for the Markov case.
We will prove in Theorem 5 that E[Lm]−E[Lm] = Θ(m).

Let us now briefly review literature on LZ78 and DST analysis. The goal is to prove
the Central Limit Theorem (CLT) for the number of phrases and establish precise rate of
decay of the LZ78 code redundancy for Markov sources. For memoryless sources, CLT was
already proved in [3] while the average redundancy was presented in [10, 14]. It should be
pointed out that since 1995 paper [3] no simpler, in fact, no new proof of CLT was presented
except the one by Neininger and Rüschendorf [13] but only for unbiased memoryless sources
(as in [1]). The only known to us analysis of LZ78 for Markov sources is presented in [7],
but the authors restricted their attention to a single phrase. We should point out that for
another Lempel-Ziv scheme known as LZ’77 algorithm, Fayolle and Ward [2] analyzed an
associated suffix tree built over a Markov string and obtained the distribution of the depth,
which allows us to conclude the limiting distribution of a phrase in the LZ’77 scheme (see
also [11, 12]). Regarding analysis of digital search trees, and in general digital trees, more
is known [8, 6, 15]. Digital trees for memoryless sources were analyzed in [1, 10, 6] while
digital trees under Markovian models were studied in [7, 9, 2]. This information is surveyed
in detail in [6].

The paper is organized as follows. In the next section we present our main results
regarding the LZ and DST models including the mean, variance and distribution of the
number of tail symbols in the DST model (see Theorem 2–4), and large deviations as well
as precise redundancy for the LZ model (see Theorems 5–6). We prove these findings in
Section 3 (DST model) and in Section 4 (LZ model), with most details delayed till the
appendix. Throughout we use combinatorics on words and analytic tools such as generating
functions, Poisson transform, analytic depoissonization, and Mellin transform.

2 Main Results

We consider a stationary ergodic Markov source generating a sequence of symbols drawn
from a finite alphabet A. In this paper we study only a binary Markovian process of order 1
with the transition matrix P = [P (c|d)]c,d∈A where A = {a, b}. In this section we present
our main results with proof delayed till Sections 3–4 and appendix. However, first we present
a road map of our methodology and findings.

1 From now on we drop the quotes around m and n to simplify the presentation.
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Our main goal is to analyze the Lempel-Ziv’78 scheme for Markovian input. However,
as discussed before, we first consider an auxiliary model named DST-model built over m
independent Markov strings, also called the m-DST model. However, for Markov sources
we need to construct two conditional digital search trees: one built over m Markov strings
all starting with symbol a ∈ A and the other DST built over m strings starting with b ∈ A.
We write c ∈ A for a generic symbol from A, that is, either c = a or c = b. For a given
c ∈ A, we consider m independent Markov strings all starting with c and build an m-DST
tree. For such a tree we analyze two quantities, namely the total path length denoted as
Lcm, and the number T cm(a) of inserted strings (all starting with c) with the tail symbol a,
that is, among m Markov strings there are T cm(a) strings with the tail symbol a. Clearly,
T cm(a) + T cm(b) = m. Throughout, we also assume that the tail symbol is always a so we just
write T cm := T cm(a). In Theorems 2-3 we summarize our new results regarding T cm, while in
Theorem 4 we present large deviation results for both T cm and Lcm.

Second, we consider the m-LZ model (in which we run LZ78 algorithm on a single
string until we see m phrases) and tie it up to the m-DST model just discussed. Here we
use a combinatorial approach. For a given sequence s over A of length m we compare in
Lemmas 10-11 two probabilities: (i) the probability that in the m-LZ model (constructed
from m LZ phrases) we end up with a LZ sequence of length n having all tail symbols equal
to s; and (ii) the probability that in the m-DST model (built over m independent Markov
strings) the resulting digital search tree has path length equal to n and all tail symbols are
equal to s. Using this, we present in Theorem 5 our large deviations for the m-LZ model and
using the renewal equation (1) in Theorem 6 we establish large deviations for the n-LZ model.
In Corollary 7 we find a precise expression for the redundancy of LZ78 for Markov sources.

Finally, when comparing the average path length Lcm in the m-DST model with the
length Lcm in the m-LZ model we shall use the following simple fact.

I Proposition 1. For δ < 1 let there exist B,C > 0 such that for a discrete random variable
Xm the following holds uniformly

P (Xm = k) ≤ B exp
(
−Cm−δ|k −Am|

)
. (2)

Then

E[Xm] = Am +O(mδ). (3)

Proof. Define Bm = mδ(logB)/C ≤ |k − Am|. Then it is easy to see that EXm =∑
k kP (Xm = k) = Am +

∑
k(k −Am)P (Xm = k), and the latter term can be estimated by

the integral 2B
∫∞

0 exp(−Cm−δx)(x+ 1)dx = O(mδ). This completes the proof. J

2.1 Results on DST
In this section we summarize our results for the m-DST model: We first focus on the number
of times, T cm := T cm(a), the tail symbol is a when all m Markov sequences start with c ∈ A.
Then we study the path length Lcm in the m-DST model when all sequences start with c.
Finally, we present large deviations for both T cm and Lcm.

For c ∈ A, let Dc
m(u) = E[uT cm ] be the probability generating function of T cm defined for

a complex variable u. We have the recursion:

Dc
m+1(u) = (P (a|c)u+ 1− P (a|c))

∑
k

(
m

k

)
P (a|c)kP (b|c)m−kDa

k(u)Db
m−k(u) (4)
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subject to Dc
0(u) = 1 and Dc

1(u) = P (a|c)u+ 1− P (a|c). Furthermore, define the bivariate
Poisson transform Dc(z, u) =

∑
m≥0 E[uT cm ] z

m

m! e
−z. From above we easily find the following

differential-functional equation

∂zDc(z, u) +Dc(z, u) = Dc
1(u)Da(P (a|c)z, u)) ·Db(P (b|c)z, u) (5)

with Dc(z, 1) = 1 where ∂z is the partial derivative with respect to variable z.
We now focus on the first Poisson moment Xc(z) = ∂uDc(z, 1) where ∂u is the derivative

with respect to variable u. We also study the Poisson variance Vc(z) = ∂2
uDc(z, 1) +Xc(z)−

(Xc(z))2, and the limiting distribution of T cm. After finding the asymptotic behavior of the
Poisson mean Xc(z) and variance Vc(z) for large z → ∞ we invoke the depoissonization
lemma of [4] to extract the original mean and variance:

E[T cm] = Xc(m)− 1
2m∂zXc(m) +O(Xc(m)/m), Var[T cm] ∼ Vc(m)−m[∂zXc(m)]2.

Let us start with the Poisson mean Xc(z). Taking the derivative of (5) with respect to u
and setting u = 1 we find

∂zXc(z) +Xc(z) = P (a|c) +Xa(P (a|c)z) +Xb(P (b|c)z). (6)

To complete this equation we need to calculate the initial values of E[T cm]. It is easy to
see that

E[T c0 ] = 0, E[T c1 ] = P (a|c), E[T c2 ] = P (a|c) + P (a|c)P (a|a) + P (b|c)P (a|b). (7)

In a similar fashion we can derive the differential-functional equation for the Poisson
variance. After some tedious algebra we arrive at

∂zVc(z) + Vc(z) = P (a|c)− P 2(a|c) + [∂zXc(z)]2 + Va(P (a|c)z) + Vb(P (b|c)z). (8)

Both differential-functional system of equations (5) and (7) can be solved using complicated
Mellin transform approach [15]. We provide details of our approach in the Appendix. For
now we need to introduce some extra notation to present our main results. For complex s
define

P(s) =
[
P (a|a)−s P (b|a)−s
P (a|b)−s P (b|b)−s

]
. (9)

For such P(s) we denote by λ(s) the main eigenvalue and π(s) the main eigenvector. We
notice that π(−1) is the stationary vector of the Markov process. We also need another
matrix

Q(s) =
∏
i≥1

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j))

defined for <(s) ∈ (−2, 0). Furthermore, 〈x,y〉 is the scalar product of vectors x and y.
Now we are in the position to formulate our main result.

I Theorem 2. Consider a digital search tree built over m independent sequences (m-DST)
generated by a Markov source. We have E[T cm] = τc(m)m and E[Lcm] = m logm/h + m +
µc(m)m such that:

τc(m+ 1)− τc(m) = O(1/m) and µc(m+ 1)− µc(m) = O(1/m)
∀(c, d) ∈ A2 τc(m)− τd(m) = O(1/m) and µc(m)− µd(m) = O(1/m).
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Thus τc(m) = τ(m) +O(1/m) where τ(m) does not depend on initial symbol c. In fact,
τ(m) depends on the tail symbol, but since throughout the paper we assume the tail symbol
is always a, we drop this dependency on a in τ(m). We present precise formula on τ(m) in
the next theorem.

Similarly we have µc(m) = µ(m) + O(1/m). The function µ(m) for Markov sources is
given in Theorem 1 of [7]. For the memoryless source, it is h2

h + γ − 1 + α and the average
path length is m logm/h+mµ(m), as discussed in [3].

To complete our analysis of the tail symbol, we present now precise behaviour of τ(m).
We give a detailed proof in the Appendix.

I Theorem 3. For (a, b, c) ∈ A3 define

αabc = log
[
P (a|b)P (c|a)

P (c|b)

]
. (10)

(i) Aperiodic case. If not all {αabc} are rational, then τ(m) = τ̄ + o(1) with

τ̄ = πa + 1
λ′(−1) 〈

(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉, (11)

where πa is the stationary distribution of symbol a, and ea is the vector made of a single
1 at the position corresponding to symbol a and zero otherwise.

Periodic case. If all {αabc} are rationally related, then for some ε > 0 we have τ(m) =
τ̄(m) +O(m−ε) with τ̄(m) = τ̄ +Q1(logm), where Q1(.) is a periodic function.

(ii) Variance. The variance Var[T cm] grows linearly, that is Var[T cm] ∼ mωa(m), where
ωa(m) = ω̄a for the aperiodic case and ωa(m) = ω̄a +Q2(m) for the periodic case, where
ω̄a is given explicitly in the Appendix in (B.16) of Theorem 14, and Q2(m) is a nonzero
periodic function for rationally related case, and zero otherwise.

(iii) Central Limit Theorem. For any c ∈ A we have

T cm −E[T cm]
Var[T cm]

d→ N(0, 1)

where N(0, 1) denotes the standard normal distribution.

Similarly we have the same behaviour for µ(m) which is equal to µ̄+ o(1) in the aperiodic
case and, in the periodic case, is equal to µ̄+Q3(logm) + O(m−ε) whose expressions are
in [3] and [7] where Q3(.) is a periodic function. For details the reader is referred to [7].

We notice that, unexpectedly, the number of tail symbols equal to a is not converging to
nπa as we should expect from a Markovian sequence. The reason is that the tail symbol is
not picked up at random in the sequence but occurs when the sequence path leaves the tree.

Finally, we present joint large deviations for both T cm and Lcm which is a new result
needed to establish large deviations for the LZ model. We prove it in Section 3.

I Theorem 4. Consider a digital search tree (DST) built over m independent sequences
generated by a Markov source. For all δ > 1/2 there exist B, C and β strictly positive such
that for all x > 0 uniformly in x

P
(
|T cm −E[T cm]|+ |Lcm −E[Lcm]| ≥ xmδ

)
≤ Be−xCm

β

(12)

for large m.
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Figure 2 The difference E[Lc
m]−E[Lc

m] by simulation confirming that it grows linearly with m.

2.2 Results for the LZ78 Model
Let us start with the m-LZ model. For a given m, let Lcm (note calligraphic L) be the length
of the LZ78 string composed of m phrases when the first phrase starts with symbol c. For
memoryless sources, this quantity is equivalent to the path length Lm in the associated DST
built over m independent strings. However, it is not the case for Markov sources. In Section 4
we prove Theorem 5 presented below by showing that E[Lcm]−E[Lcm] = Θ(m), unlike in the
memoryless case. Figure 2 compares the difference E[Lcm]−E[Lcm] obtained by simulation
results confirming our theoretical findings.

I Theorem 5. For m given, let m∗ := m∗(m) be the root of x− xτ(x)− (m− x)τ(m− x).
(i) The average length E[Lcm] of the LZ-sequence consisting of the first m phrases is (for

the aperiodic case)

E[Lcm] = m logm/h+µ(m∗)m∗+µ(m−m∗)(m−m∗) +m(1−H(m∗/m)/h) +O(mδ)
(13)

where H(x) = −x log x − (1 − x) log(1 − x) is the binary entropy and h the source
entropy.

(ii) For all δ > 1/2 there exist B,C, β > 0, and γ > 0 such that uniformly for all x > 0

P
(
|Lcm − E[Lcm]| ≥ xmδ

)
≤ Bmγe−xCm

β

(14)

for large m.

I Remark. The property of function τ(·) implies that the equation x−xτ(x)−(m−x)τ(m−x)
has a single root as we will see in the proof of Section 4. Notice that m∗/m converges to
τ̄ in the aperiodic case, and similarly µ(m∗)m∗ + µ(m −m∗)(m −m∗) is asymptotically
equivalent to µ̄m. In the periodic case there will be small periodic contributions (contained
in τ(m) and µ(m)) as shown in Theorem 3. Notice that H(m∗/m) is the tail symbol entropy,
which is equal to h when the source is memoryless.

Our next goal is to present large deviation for the number of LZ phrases in the n-LZ
model. LetM c

n be the number of phrases obtained by parsing a Markovian sequence of length
n starting with symbol c. By the renewal equation (1) we have P (M c

n > m) = P (Lcm < n)
for all legitimate m and n. This allows us to read large deviation of M c

n from Theorem 5.
Following the footsteps of Theorem 2 of [5] we arrive at our next main result.
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I Theorem 6. For all δ > 1/2 there exist B, C, β, and γ all strictly positive such that

P
(
|M c

n − `−1
c (n)| ≥ xnδ

)
≤ Bnγe−xCn

β

where `−1
c (.) is the inverse function of `c(m)= `(m)+o(1) defined as `(m) = m

h (logm+ β(m))
with

β(m) = hµ(m∗)m∗/m+ hµ(m−m∗)(m−m∗)/m− h+H(m∗/m)

where m∗ is defined in Theorem 5 and µ(m) has extra fluctuating function in the periodic case.

Using Theorem 6 we can find a precise estimate on the LZ78 redundancy. Indeed,
a good approximation for the LZ78 code length is Ccn = M c

n(logM c
n + 1). The average

conditional redundancy is defined as rcn := E[Ccn]/n− h, while the total average redundancy
is rn = πar

a
n + πbr

b
n.

I Corollary 7. The average redundancy rate rn satisfies for all 1
2 < δ < 1:

rn = h
1− β(`−1(n))

log `−1(n) + β(`−1(n)) +O(nδ−1 logn) ∼ h1− β(`−1(n))
logn ,

and more specifically in the aperiodic case we have

rn ∼ h
1− µ̄
logn + H(τ̄)− h

logn

where m∗/m→ τ̄ .

3 Proof of Theorem 4 for DST

Now we prove Theorem 4, that is, the joint large deviations for T cm and Lcm in the m-DST
model. We use Chernoff’s bounds, so we need to introduce some bivariate generating
functions. Define P cm,k,` = P (T cm = k & Lcm = `), P cm(u, v) = E[uT cmvLcm ] =

∑
k,` P

c
m,k,`u

kv`

and Pc(z, u, v) to be the Poisson generating function Pc(z, u, v) =
∑
m P

c
n(u, v) z

m

m! e
−z. The

following partial differential equation for Pc(z, u, v) is easy to establish from (5)

∂zPc(z, u, v) + Pc(z, u, v) = (uP (a|c) + P (b|c))Pa(P (a|c)zv, u, v)Pb(P (b|c)zv, u, v).

Lemma below is equivalent to Theorem 10 of [5] so we skip the proof in this conference
paper.

I Lemma 8. For all reals ε′ > 0 and ε > 0, there exists 0 < ϑ < π/2 and a complex
neighborhood U(0) of 0 such that iuniformly for (t1, t2) ∈ U(0)2 and | arg(z)| < ϑ so that
log(Pc(z, et1|z|

−ε′

, et2|z|
−ε′ )) exists and log(Pc(z, et1|z|

−ε′

, et2|z|
−ε′ ) = O(z1+ε).

To prove Theorem 4 we need the following property that will be established in the final
version of this paper.

I Lemma 9. For all δ > 1/2 there exists B such that∣∣∣P cm(eτ1m
−δ
, eτ2m

−δ
) exp(−m−δ(τ1E[T cm] + τ2E[Lcm]))

∣∣∣ ≤ B√m. (15)
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Now we proceed to prove Theorem 4. We apply Markov inequality for all θ and for all x > 0

P (|T cm−E[T cm|+ |Lcm−E[Lcm]|≥2xmδ) ≤ P (|T cm −E[T cm]| ≥ xmδ∨(|Lcm −E[Lcm]| ≥ xmδ)

≤
(
P cm(eθ, 1)e−E[T cm]θ + P cm(e−θ, 1)eE[T cm])θ

)
e−xθm

δ

+
(
P cm(1, eθ)e−E[Lcm]θ + P cm(1, e−θ)eE[Lcm])θ

)
e−xθm

δ

.

To complete the proof we will use (15) of Lemma 9. If we take τ1 = ±C and τ2 = 0 (and
reverse) for some C > 0 such that (τ1, τ2) ∈ U(0)2, and θ = Cm−δ

′ for some δ′ < δ, then we
find eθmδ = e−Cm

β with β = δ − δ′ > 0, and

P (|T cm −E[T cm]|+ |Lcm −E[Lcm]| ≥ 2xmδ) ≤ 4
√
mBe−xCm

β

which prove (12) of Theorem 4. We can readjust by taking 0 < β′ < β and the value of B to
omit the factor

√
m.

4 Proof of Theorem 5 for LZ

We now consider the LZ78 algorithm over a single infinite sequence generated by a Markov
source, that is, the n-LZ model and connect it to the n-DST model in which the path length
is equal to n (over a variable number of independently inserted strings). In the m-LZ model
there are exactly m LZ phrases, each being a block carved in the Markovian sequence. The
blocks are not i.i.d Markovian sequences.

Let Pcm,n be the probability that the length of the first m LZ phrases is exactly n (when
the first symbol is c), leading to the n-LZ model. Notice that not every pair (n,m) is feasible
in the LZ model since by adding another phrase the path length may “jump” by more than
one. We are interested in finding an asymptotic estimate of Pcm,n. We start by introducing
yet another model. Let s be a sequence of m symbols, namely s = (c1, . . . , cm) ∈ Am. For
c ∈ A we now compute the probability Pcs,n that an infinite Markovian sequence starting
with symbol c when parsed by LZ algorithm satisfies the following two properties: (i) the
first m blocks have tail symbols ci ∈ s for i ≤ m so that ci is the first symbol of block i+ 1;
(ii) the length of the first m LZ phrases is equal to n. If a string satisfies these two conditions,
then we say it is (s, n) compatible and that it belongs to the (s, n)-LZ model.

Given a string s of tail symbols we denote by tac (s) (resp. tbc(s)) the subsequence of s
consisting of tail symbols of the LZ blocks starting with symbol a (resp. starting by symbol
b). Now, it is easy to see that given the initial symbol c we can deduce the sequence of
tails symbols and initial symbols of all phrases just by looking at the sequence s, where the
initial symbol of the next phrase is the tail symbol of the previous phrase. For example, if
s = (a, b, a, b, b) and c = a we have the following tail symbol and initial symbol sequence
displayed in the following table:

block # initial symbol tail symbol
1 a a

2 a b

3 b a

4 a b

5 b b

By taking the blocks (phrases) starting with c = a we find taa(s) = (a, b, b) and the blocks
starting with b yield tba(s) = (a, b).
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Now we consider a sequence t of m symbols and introduce a new n-DST model which
we call (t, n)-DST model. We define by P ct,n the probability that m i.i.d. (independent)
Markovian sequences all starting with c satisfy the following two conditions (notice that
we use roman P for this probability and calligraphic P for LZ model): (i) the tail symbol
sequence follows the sequence t; (ii) the external path length of the DST is exactly n. We
will say that such m strings are (t, n)-fit if they satisfy the above conditions and call it
(t, n)-DST model. We also define

P cm,k,n =
∑

t: |t|=m,|t|a=k

P ct,n (16)

with |t| being the length of sequence t and |t|a being the number of symbols equal to a in it.
We finally establish the following fundamental lemma that connects the above two

parameters which also connects the LZ parsing over a single Markovian sequence and the
DST made of independent Markovian sequences, that is, (s, n)-LZ model and (t, n)-DST
model where t is a function of s.

I Lemma 10. For any s ∈ Am we have

Pcs,n =
∑
na

P atac (s),naP
b
tbc(s),n−na (17)

where nc (equal either to na or nb) is the path length in nc-DST model with all strings
starting with c, and tac (s), tbc(s) are substrings of s as defined above.

Proof. In this conference paper, we give a proof using an example to ease the present-
ation. Let us consider X = aabbababab · · · which results in the following LZ blocks:
()(a)(ab)(b)(aba)(ba)(b · · · ). Or equivalently X = aabbababab · · · where the initial block
(phrase) symbols are displayed in bold. We notice that the first five blocks (excluding
the initial empty block) accounts for a string of length 9. Thus the sequence X is (s, 9)
compatible with s = (a, b, a, b, b). Given that X starts with symbol a we have P (X) =
P (a|a)P (aa|a)P (abb|a)P (ba|b))P (abab|a)P (bab|b). Notice that we display in bold the tail
symbol of each block (which is the initial symbol of the next block). We must incorporate
P (X) into P as,9. In fact X should be viewed as the set of (infinite) strings having aabbababab
as the common prefix. We can rewrite P (X) by regrouping the terms with respect to the
initial symbol of each block as: P (X) = [P (aa|a)P (abb|a)P (abab|a)] × [P (ba|b)P (bab|b)] .
Observe that the sequence of strings (aa, abb, abab) are the prefixes of a set of tuples of
independent infinite strings that are all (sa, 6) compatible with sa = taa(s) = (a, b, b) under
the condition that the strings start with symbol a (the path length in the DST excludes the
tail symbols, thus we must remove one from the length of each prefix). The probability of such
event is exactly P (aa|a)P (abb|a)P (abab|a) and must be incorporated in P asa,6. Furthermore,
these sequences are used to build one (left) part of the DST tree with independent Markov
strings all starting with a. The same holds for the sequence of strings (ba, bab) which is (sb, 3)
compatible with sb = tba(s) = (a, b) and used to build the other part (right) of the DST tree.
This leads to (17). J

The next crucial lemma connects n-LZ and n-DST models.

I Lemma 11. The following holds

Pcm,n ≤
∑
na

∑
k

∑
ma

(
P ama,k,naP

b
m−ma,ma−k,n−na (18)

+P ama,k,naP
b
m−ma,ma−k−1,n−na + P ama,k,naP

b
m−ma,ma−k+1,n−na

)
where na is the total path length of the first ma phrases starting with an “a”.
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Proof. We naturally have Pcm,n =
∑
|s|=m Pcs,n where |s| is the length of the sequence s.

Similarly we have P cm,k,n =
∑

t,|t|=m,|t|a=k P
c
t,n with |t|a is the number of symbols identical

to a in t. The rest follows from Lemma 10 but we need to take into account some boundary
effects.

Let’s look at it in more details. By (17) and above we find

Pcm,n =
∑
|s|=m

∑
na

P atac (s),naP
b
tbc(s),n−na .

We now partition Aminto four sets Sc0(m), Sc1(m), Sc2(m) and Sc3(m):
s ∈ Sc0(m): if neither of the initial symbol c or the final symbol of s, namely cm is identical
to a. Thus the total number of tail symbols equal to a, namely |s|a is equal to |tac (s)|.
s ∈ Sc1(m): if both the final symbol and c are equal to a so that the total number of tail
(and initial) symbols equal to a is |tac (s)|.
s ∈ Sc2(m): if c = a but cm 6= a so that the number of tail symbols equal to a is |tac (s)|−1.
s ∈ Sc3(m): if c 6= a but the final symbol cm = a. Thus the number of tail symbols equal
to a is |tac (s)|+ 1.

Regrouping we have

Pcm,n =
∑

s∈Sc0(m)∪Sc1(m)

Pcs,n +
∑

s∈S2(m)

Pcs,n +
∑

s∈S3(m)

Pcs,n.

Now we have to deal with the right hand side of (18), that is, with the DST model. Let
T1(m) be the set of pairs of arbitrary sequences denoted as (ta, tb) such that |ta|+ |tb| = m

and |ta|a + |tb|a = |ta|. We notice that for s ∈ Sc1(m) ∪ Sc2(m): (tac (s), tbc(s)) ∈ T1(m), hence∑
s∈Sc0(m)∪Sc1(m)

Pcs,n =
∑
na

∑
s∈Sc0∪Sc1(m)

P ata(s),naP
b
tb(s),n−na

≤
∑
na

∑
(ta,tb)∈T1(m)

P ata,naP
b
tb,n−na .

Notice that we have an upper bound, since for some pair (ta, tb) in T c1 (m) there may not
exist s ∈ Sc1(m) ∪ Sc2(m) such that ta = ta(s) and tb = tb(s). For example, let c = a and for
m = 4 we set ta = (a, b) and tb = (b, a), so that |ta|a + |tb|a = |ta| but it is impossible to
find s such that (taa(s), tb(s)) = (ta, tb).

Thanks to (16) we have
∑

t: |t|=m,|t|a=k P
c
t,n = P cm,k,n leading to∑

(ta,tb)∈T1(m)

∑
na

P ata,naP
b
tb,n−na =

∑
ma,k

P ama,k,naP
b
m−ma,ma−k,n−na .

This proves the first term in the right hand side of (18). To prove the other two terms
we introduce T2(m) as the set of pairs of sequence (ta, tb) such that |ta| + |tb| = m and
|ta|a + |tb|a = |ta| − 1. In this case∑

s∈S2(m)

Pcs,n ≤
∑
na

∑
(ta,tb)∈T2(m)

P ata,naP
b
tb,n−na ,

and the second term of (18) is proved. And finally with T3(m) as the set of pairs of
sequence (ta, tb) such that |ta|+ |tb| = m and |ta|a + |tb|a = |ta|+ 1, we establish the third
term of (18). J
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To finish the proof of Theorem 5 we now use the previous lemmas to upper bound Pcm,n.
Let Pcm,n ≤ Kc

m,n(0) +Kc
m,n(1) +Kc

m,n(−1) with

Kc
m,n(i) =

∑
ma

∑
na

∑
k

P ama,k,naP
b
m−ma,ma−k−i,n−na .

To simplify our presentation we only studyKc
m,n(0). First, we rewrite the bound in Theorem 4

for the DST model as follows: for δ > 1/2 there exist B and C strictly positive such that

P cm,k,n ≤ B exp
[
−Cm−δ|k −E[T cm]| − Cm−δ|n−E[Lcm]|

]
.

Thus

Kc
m,n(0) ≤

∑
ma+mb=m

∑
k≤ma

∑
na+nb=nB

2 exp
[
−Cm−δa |k −E[T cma ]

−Cm−δa |na −E[Lama | − Cm
−δ
b |ma − k −E[T bmb ]− Cm

−δ
b |nb −E[Lbmb |

]
.

From here we use ma,mb ≤ m to find

Cm−δa |k−E[T cma ] +Cm−δa |na−E[Lama |+Cm−δb |ma−k−E[T bmb ] +Cm−δb |nb−E[Lbmb | ≥

Cm−δ|k −E[T cma ] +Cm−δ|na −E[Lama |+Cm−δ|ma − k −E[T bmb ] +Cm−δ|nb −E[Lbmb |

≥ Cm−δ|ma −E[T ama ]−E[T bmb ]|+ Cm−δ|n−E[Lama ]−E[Lbmb ]|.

Replacing the E[T cm] by τc(m)m and E[Lcm] by m logm/h+m+mµc(m) we arrive at

Kc
m,n(0) ≤ B2m

∑
ma+mb=m

exp
(
−Cm−δ|ma −maτa(ma)−mbτb(mb)|

)
× exp

(
−Cm−δ|n−m logm/h+m(H(ma/m)/h− 1)−maµa(ma)−mbµb(ma)|

)
.

Without changing the order of magnitude we further can replace τc(m) by τ(m) and µc(m)
by µ(m).

We now focus only on the aperiodic case and set τ(m) = τ̄m and µ(m) = µ̄m. (We know
that even in this case for small values of m, the µ(m) and τ(m) are not exactly linear in m,
but we handle it later.) Thus our term Kc

m,n(0) is bounded by

B2m
∑
ma≤m

exp[−Cm−δ|ma− τ̄m|] exp[−Cm−δ|n−m logm/h−µ̄m+m(H(ma/m)/h−1)|].

If we take any δ′ > δ we find

Kc
m,n(0) ≤ B2m

∑
ma≤m

exp[−Cm−δ|ma − τ̄m|]

× exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(ma/m)/h− 1)|].

We observe that exp[−Cm−δ|ma − τ̄m|] attains its maximum at ma = m∗ = τ̄m. Thus

Kc
m,n(0) ≤ B2

∑
ma≤m∗

eCm
−δ(m−m∗)×exp[−Cm−δ

′
|n−m logm/h−µ̄m+m(H(ma/m)/h−1)|]]

+B2
∑

ma≥m∗
eCm

−δ(m∗−m) × exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(ma/m)/h− 1)|]].
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Notice that the terms eCm−δ(m−m∗) and eCm−δ(m∗−m) form a geometrically decreasing series
with rate e−Cm−δ . Since |mH((ma + 1)/m)−mH(ma/m)| ≤ logm, the term

exp[−Cm−δ
′
|n−m logn/h− µ̄m+m(H(ma/m)/h− 1)|]]

is at most geometrically increasing with a rate em−δ
′

logm/h which is smaller than eCm−δ .
Therefore, the whole series has its maximum at ma = m∗ and

Kc
m,n(0) ≤ 2B2

∑
k=0∞

e−Ck(m−δ−logm/hm−δ
′
)

× exp[−Cm−δ
′
|n−m logn/h− µ̄m+m(H(m∗/m)/h− 1)|]]

= 2B2

1− e−(m−δ−logm/hm−δ′ )C

× exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(m∗/m)/h− 1)|]]

= O(2B2mδ) exp[−Cm−δ
′
|n−m logm/h− µ̄m+m(H(τ̄)/h− 1)|]].

Including all contributions, the final estimate for some B′ > 0 is

Pcm,n ≤ B′m1+δ exp[−Cm−δ|n−m logm− µ̄m+m(H(τ̄)/h− 1)|].

This gives the large deviation estimate and E[Lcm,n] = m logm/h+ µ̄m−m(H(τ̄)/h− 1) +
O(mδ) by Fact 1. We recognize in H(τ̄) the entropy of the tail symbol.

In fact the quantities τ(m) and µ(m) are not exactly τ̄m and mµ̄. To handle it we observe
that due to their slowly varying properties, the function exp(−Cm−δ|ma−τ(ma)ma−τ(m−
mb)(m−ma)| attains the maximum for m∗ such that

m∗ = −τa(m∗)m∗ − τb(m∗)(m−m∗).

Indeed the function ma − E[T ama ] − E[T bmb ] is strictly increasing thus this value is unique.
Then again E[Lcm] = m logm/h+m∗µ(m∗) + (m−m∗)µ(m−m∗)−m(H(m∗/m)/h− 1),
and therefore E[Lcm] +mH(m∗/m) + o(m). The latter is equal to E[Lcm] +mH(τ̄) + o(m)
in the aperiodic case. To complete the proof of Theorem 5 we just use Fact 1 applied to Lm.

5 Conclusions

In this paper we analyze the Lempel-Ziv’78 algorithm for binary Markov sources, a problem
left open since the algorithm inception. To handle the strong dependency between Markov
phrases, we introduce and precisely analyze the so called tail symbol which is the first symbol
of the next phrase in the LZ78 parsing. We focus here on the large deviations for the number
of phrases in the LZ78 and also give a precise asymptotic expression for the redundancy which
is the excess of LZ78 code over the entropy of the source. In future work we plan to extend
our analysis to non-binary Markov sources and present some bounds on the central limit
theorem. Furthermore, we shall study LZ78 for Markov sources of higher order, however, this
will require a new approach to the tail symbols which may span over consecutive phrases.
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A Proof of Theorem 3(i): Mean

We first analyze asymptotically X(z) = (Xa(z), Xb(z)) that satisfies the system of differential-
functional equations (6). We solve this system, and then apply Mellin transform and
depoissonization to prove Theorem 3(i).

Since for all integer m, we have T cm ≤ m, we notice that the function Xc(z) is O(z) both
when z → ∞ and when z → 0. Thus the function X(z) has no Mellin transform defined
as Xc(s) =

∫∞
0 Xc(z)zs−1dz (see [15] for more on the Mellin transform). To correct this

we introduce X̃c(z) = Xc(z)−Gc(z) with Gc(z) = (E[T c1 ]z + E[T c2 ]z2/2)e−z which is O(z3)
when z → 0, where E[T c1 ] and E[T c2 ] are defined in (7).

The Mellin transform X∗c (s) of X̃c(z) on the strip <(s) ∈] − 3,−1[ exists. The Mellin
transform of ∂zX̃c(z) exists too on the strip <(s) ∈]− 2, 0[. Thus the two Mellin transforms
coexist on the strip <(s) ∈]− 2,−1[ and satisfies [15]
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− (s− 1)(X∗c (s− 1) +G∗c(s)) +X∗c (s) +G∗c(s)
= P (a|c)−s(X∗a(s) +G∗a(s)) + P (b|c)−s(X∗b (s) +G∗b(s))

where G∗c(s) for c ∈ A is the Mellin transform of Gc(z) and has the explicit expression
E[T c1 ]Γ(1 + s) + E[T c2 ]Γ(s+ 2)/2. This expression is here for completeness.

An alternative but convenient way to see this equations is to consider the vector X∗(s)
made of the quantities X∗c (s), c ∈ A which is also the Mellin transform of the vector X̃(z)
made of the coefficients X̃c(z). This yields the linear equation

−(s− 1)(X∗(s− 1) + G∗(s− 1)) + X∗(s) + G∗(s) =

= P(s)(X∗(s) + G∗(s))

where G∗(s) is the vector of the G∗c(s). It can be rewritten in

(s− 1)(X∗(s− 1) + G∗(s− 1)) = (I−P(s))(X∗(s) + G∗(s)).

This kind of equation has been studied in [7] where we introduce a new function x(s)

X∗(s) + G∗(s) = Γ(s)x(s).

Thus the equation becomes x(s− 1) = (I−P(s))x(s), which leads to x(s) =
∏
i≥0(I−P(s−

i))−1K where K is a constant vector. Notice that the matrices very likely don’t commute
thus the product order is specified from the left to right. Indeed we have

K =

∏
j≥2

(I−P(−j))−1

−1

x(−2) =
j=2∏
j=−∞

(I−P(j))x(−2). (A.1)

To handle it we need an explicit formula for x(−2). The following lemma from [7] is
useful in this regard. We provide a proof for completeness.

I Lemma 12. Let {fn}∞n=0 be a sequence of real numbers having the Poisson transform

F̃ (z) =
∞∑
n=0

f̃n
zn

n! e
−z :=

∞∑
n=0

fn
zn

n! , (A.2)

which is an entire function. Furthermore, let its Mellin transform F (s) have the following
factorization

F (s) =M[F̃ (z); s] = Γ(s)γ(s).

Assume that F (s) exists for <(s) ∈ (−2,−1), and that γ(s) is analytic for <(s) ∈ (−∞,−1).
Then

γ(−n) =
n∑
k=0

(
n

k

)
(−1)kf̃k = (−1)nfn, for n ≥ 2. (A.3)

Proof. Notice that fn and f̃n are related by [15]

f̃n =
n∑
k=0

(
n

k

)
(−1)n−kfk , n ≥ 0 .
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Define for some fixedM ≥ 2, the function F̃M (z) =
∑M−1
n=0 fn

zn

n! . Due to our assumptions,
we can continue F (s) analytically to the whole complex plane except s = −2,−3, . . . . In
particular, for <(s) ∈ (−M,−M + 1) we have F (s) =M[F̃ (z)− F̃M (z); s]. As s→ −M , due
to the factorization F (s) = Γ(s)γ(s), we have

F (s) = 1
s+M

(−1)M

M ! γ(−M) +O(1) ;

thus by the inverse Mellin transform, we have

F̃ (z)− F̃M (z) = (−1)M

M ! γ(−M)zM +O(zM+1) as z → 0 . (A.4)

But

F̃ (z)− F̃M (z) =
∞∑
i=M

fn
zn

n! = fM
zM

M ! +O(zM+1) . (A.5)

Comparing (A.4) and (A.5) shows that γ(−M) = (−1)MfM =
∑M
k=0

(
M
k

)
(−1)kf̃k. J

Now we can compute x(−2) using above and (7) leading to

x(−2) =
[
T a2 − 2P (a|a)
T b2 − 2P (a|b)

]
. (A.6)

In another notation x(−2) = (P2 − P)ea, where ea is the vector made of a single 1 at a
position and zero otherwise.

Next, we notice that the vector

Γ(s)
∏
i≥0

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j))x(−2)

may have a double pole on s = −1 since Γ(s) has a pole and also (I − P(s))−1 since
I−P(−1) = I−P is singular. But in fact the pole multiplicity is reduced by one, as prove
below. Let us also define

Q(s) =
∏
i≥1

(I−P(s− i))−1
j=−2∏
j=−∞

(I−P(j)).

Then x(s) = (I−P(s))−1Q(s)x(−2).
We notice that when s→ −1, then Q(s) = I + (s+ 1)Q′(−1) +O((s+ 1)2). Furthermore

let λ(s) be the main eigenvalue of matrix P(s) and 1(s) and π(s) be respectively the right
and left main eigenvectors. We have λ(−1) = 1, 1(−1) = 1 is all made of one’s, and π(−1)
is the stationary distribution of the Markov source.

From the matrix spectral representation [15] we have

P(s) = λ(s)1(s)⊗ π(s) + R(s) = λ(s)Π(s) + R(s) (A.7)

where R(s) is the automorphism of the eigenplan orthogonal to the main eigenvector and
Π(s) = 1(s)⊗ π(s) where ⊗ is the tensor product. Note that Π ·P = P ·Π = Π. Then

(I−P(s))−1 = 1
1− λ(s)1(−s)⊗ π(s)

− 1
λ′(−1) (1′(−1)⊗ π(−1) + 1⊗ π′(−1)) + R(−1)−1 +O(s+ 1).
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Finally

(I−P(s))−1Q(s)x(−2) = 1⊗ π(s)(I−P)ea
1− λ(s) − 1

λ′(−1) (1′(−1)⊗ π + 1⊗ π′(−1))

+R−1(−1) + (s+ 1)
1− λ(s)1⊗Q′(−1) +O(s+ 1).

Since
s+ 1

1− λ(s) → −
1

λ′(−1)

when s→ −1, and ΠP(I−P)ea = (Π−Π)ea = 0. Also

R−1(−1)(I−P)Pea = Pea − 〈πPea〉1 = Pea − 〈πea〉1. (A.8)

We finally have

lim
s→−1

x(s) = Pea − πa1− 1
λ′(−1)1〈

(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉, (A.9)

where πa is the coefficient of the stationary distribution π at symbol a.
Now we are in position to establish asymptotics of Xc(z) for large z and through

depoissonization asymptotics of E[T cm]. The inverse Mellin transform is

X̃c(z) = 1
2iπ

∫ x+i∞

x−i∞
X∗c (s)z−sds (A.10)

valid for all x ∈]− 2,−1[. Remembering that Tc(z) = X̃c(z) + P (a|c)z we have indeed

X̃(z) = 1
2iπ

∫ x+i∞

x−i∞
Γ(s)x(s)z−sds− 1

2iπ

∫ x+i∞

x−i∞
G∗(s)z−sds. (A.11)

We know that T(z)− X̃(z) is decaying exponentially fast when z →∞.
Moving the line of integration toward the right, we meet a single pole at s = −1 of

G∗(s)z−z and its residues is −zPea. Then

1
2iπ

∫ x+i inf ty

x−i∞
G∗(s)z−sds = −Pea +O(z−M )

for all M > 0.
The value −1 is also a simple pole for z−sΓ(s)x(s). We know that its residue is

−z
(

Pea − πa1− 1
λ′(−1)1〈

(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉

)
. (A.12)

Therefore we have

X(z) = z

(
πa + 1

λ′(−1)1〈
(
π′(−1) + πQ′(−1)

)
(I−P)Pea〉

)
1 + o(z). (A.13)

For irrational case, we know that s = −1 is the only pole on the line <(s) = −1, leading to
the error term o(z) coming from other poles of (I−P(s))−1 which may occur on the right
half plan of s = −1.

But in the rational case, there is the possibility of other poles regularly spaced on the
axis <(s) = −1 with some specific matrices P detailed in [7] where the coefficients αabc are
introduced. In these very specific cases (the uniform probability distribution on A is one
of them) the o(z) term should be replaced by a term zQc(log z) + O(z1−ε), where Qc is a
periodic vector of very small amplitude and mean zero, and ε > 0 depends on the matrix P.
This proves Theorem 3(i).
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B Proof of Theorem 3(ii): Variance

We now analyze asymptotically V(z) = (Va(z), Vb(z)) that satisfies the system of differential-
functional equations (8). In order to apply depoissonization, for θ ∈ [0, π/2] we define C(θ)
as the complex cone containing the complex number z such that | arg(z)| ≤ θ on increasing
domains [15, 5]

Ck(θ) = {z, z ∈ C(θ)&|z| ≤ ρk}

with ρ = minc{ 1
P (a|c) ,

1
P (b|c)}.

Our first goal is to prove that Vc(z) = O(z). We shall use use the increasing domain
approach [15] applied to (8) following the footsteps of the proof of Lemma 7A of [3]. From
Fact 1 of [3] we conclude that

Vc(z) = Vc(ρz)e−z(1−ρ) + e−z
∫ z

ρz

ex (Va(P (a|c)x) + Vb(P (b|c)x) + g(x)) dx (B.14)

where g(z) = P (a|c)− P 2(a|c) + [Xc
z(z)]2 = O(1). Indeed, it follows from Fact 1 of [3] that

the differential equation like

f ′(z) = b(z)− a(z)f(z) (B.15)

satisfies

f(z) = f(z0)eA(z0)−A(z) +
∫ z

z0

b(x)eA(x)−A(z)dx

where A(z) =
∫
a(z) is the primitive function of a(z). Setting in (B.15) f(z) = Vc(z),

b(z) = Va(P (a|c)z) + Vb(P (b|c)z) + g(z) and a(z) = 1 we obtain (B.14).
Now we apply induction over the increasing domains. In short, we assume that for

z ∈ Ck(θ) we have |Vc(z)| ≤ Bk|z| for some Bk. Using the induction of the increasing
domains we prove, as in the Appendix of [3] that Bk are bounded. This completes the proof,
after applying the depoissonization lemma of [4].

In order to find a precise estimate of the asymptotic development of V(z) we denote
V∗(s) the Mellin transform of V(z). From (8) we arrive at

−(s− 1)V∗(s− 1) + V∗(s) = P(s)V∗(s) + g∗(s),

where g∗(s) is the Mellin transform of the vector made of the coefficients (∂zXc(z))2. Let
V∗(s) = Γ(s)B(s) and g∗(s) = Γ(s)G(s). Then

B(s) = (I−P(s))−1 (B(s− 1) + G(s)) .

The quantity (I−P(s))−1 has a pole at s = −1. Together with Γ(s) it would give a double
pole at s = −1 which is not possible, as proved above. Indeed, notice that the coefficient at
the double pole at s = 1 is Π(B(−2) + G(−1). But G(−1) is the the coefficient at z of g(z)
and B(−2) is the coefficient at z2 of V(z), as already proved in Lemma 12. Then we easily
see that B(−2) + G(−1) = P2ea −Pea, and consequently the coefficient at the double pole
at s = 1− is equal to Π(P2ea −Pea) = (Π−Π)ea = 0, as desired.

Therefore, the contribution of pole s = −1 to the asymptotic of V(z) is B(−1) becomes

B(−1) = 1
λ′(−1)

(
〈π′(−1)(B(−2) + G(−1))〉+ 〈π(B′(−2) + G′(−1))〉

)
1

+(I−R(−1))−1(B(−2) + G(−1)).
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Notice also that (I−R(−1))−1(P2ea −Pea) = 〈πPea〉1−Pea = 〈πea〉1−Pea.
The real issue here is how to compute B′(−2) and G′(−1), which we address next.

I Lemma 13. Let a function g(z) =
∑
n≥1

an
n! z

n and f(z) = g(z)e−z =
∑
n≥1

bn
n! z

n. Let
also gk(z) =

∑
n≤k

an
n! z

n and fk(z) = f(z)− gk(z)e−z with f∗k (s) being its Mellin transform
defined for −k − 1 < <(s) < 0. Then

lim
s→−k

(
f∗(s)
Γ(s)

)′
= f∗k (−k)

(
1

Γ(s)

)′
s=−k

+
∑
n≤k

an
n!

(
s〈n〉

)′
s=−k

= f∗k (−k)(−1)n−1n! +
∑
n≤k

an
n!

(
s〈n〉

)′
s=−k

where s〈n〉 = Γ(s+n)
Γ(s) = (s+ n− 1)× · · · × s.

Proof. We start with a simple identity

f∗(s)− f∗k (s)
Γ(s) =

∑
n≤k

an
n! s
〈n〉

which is easy to derive. But the Mellin transform of fk(z) and f∗k (s) are defined for
−k− 1 < <(s) < 0. The derivative of f∗k (s)/Γ(s) at s = −k is equal to f∗k (−k)

(
Γ−1(s)

)′
s=−k

since Γ−1(−k) = 0. Finally we notice that [15]

lim
s→−k

(
1

Γ(s)

)′
= lim
s→−k

Ψ(s)
Γ(s) = lim

s→−k

(s+ n)Ψ(s)
(s+ n)Γ(s) = (−1)n−1n!

where Ψ(s) is the psi function. J

In absence of specific properties on fk(z) there is no other way than numerical computation
to get an estimate of f∗k (−k). Finally, we can present a precise asymptotic expression for the
variance.

I Theorem 14. We have V(z) = ω̄a1z + o(z) in the aperiodic case, and in the periodic case
V(z) = ω̄a1z +Q2(log z)z +O(z1−ε) for some ε > 0 and Q2(.) being a periodic function of
small amplitude and mean zero, where

ω̄a = 1
λ′(−1)

(
〈π′(−1)((P− I)Pea〉+ 〈π(B′(−2) + G′(−1))〉

)
+ 〈πea〉. (B.16)

Notice that ω = B(−1) + Pea.
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Abstract
We study the partial duplication dynamic graph model, introduced by Bhan et al. in [3] in which a
newly arrived node selects randomly an existing node and connects with probability p to its neighbors.
Such a dynamic network is widely considered to be a good model for various biological networks
such as protein-protein interaction networks. This model is discussed in numerous publications
with only a few recent rigorous results, especially for the degree distribution. Recently Jordan [9]
proved that for 0 < p < 1

e
the degree distribution of the connected component is stationary with

approximately a power law. In this paper we rigorously prove that the tail is indeed a true power law,
that is, we show that the degree of a randomly selected node in the connected component decays
like C/kβ where C an explicit constant and β 6= 2 is a non-trivial solution of pβ−2 + β − 3 = 0. This
holds regardless of the structure of the initial graph, as long as it is connected and has at least
two vertices. To establish this finding we apply analytic combinatorics tools, in particular Mellin
transform and singularity analysis.
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1 Introduction

Recent years have seen a growing interest in dynamic graph models [10]. These models are
often claimed to describe well various real-world structures, such as social networks, citation
networks and various biological data. For example, protein-protein are widely viewed as
driven by an internal evolution mechanism based on duplication and mutation. In this case,
new nodes are added to the network as copies of existing nodes together with some random
divergence. It has been claimed that graphs generated from these models exhibit many
properties characteristic for real-world networks such as power-law degree distribution, the
large clustering coefficient, and a large amount of symmetry [4]. However, some of these
results turned out not to be correct; in particular, the power-law degree distribution was
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disproved in [7]. In this paper we focus on the tail distribution of the connected component
of such networks and show rigorously the existence of a power law improving and making
more precise recent result of Jordan [9].

The model analyzed in this paper is known as the partial (pure) duplication model, in
which a new node selects an existing node and connects to its neighbors with probability p.
More precisely, the model is defined formally as follows: let 0 < p ≤ 1 be the only parameter
of the model. In discrete steps repeat the following procedure: first, choose a single vertex u
uniformly at random. Then, add a new vertex v and for all vertices w such that uw is an
edge (i.e., w is a neighbor of u) flip a coin independently at random (heads with probability
p, tails with 1 − p) and add vw edge if and only if we got heads. The partial duplication
model was defined by Bhan et al. in [3] and then was further studied in [1, 4, 7, 9, 8].

The case when p = 1, also called the full duplication model, was analyzed recently in the
context of graph compression in [13]. In particular, it was formally proved that the expected
logarithm of the number of automorphisms (symmetries) for such graphs on n vertices is
asymptotically Θ(n logn), which in turn lead us to an asymptotically efficient compression
algorithm for such case.

The partial duplication case 0 < p < 1 was given much more attention, however, with very
few rigorous results. It was first and foremost analyzed to find the stationary distribution of
the degree, that is,

fk = lim
n→∞

fk(n) = lim
n→∞

Fk(n)
n

= lim
n→∞

Pr[deg(Un) = k],

where fk(n) and Fk(n) are, respectively, the average fraction and the average number of
vertices of degree k in a graph generated by this model and Un is a random variable denoting
a vertex chosen uniformly at random from a graph on n vertices generated from the partial
duplication model. Hermann and Pfaffelhuber in [7] proved that this process (fk(n))∞n=n0

converges always to the limit f0 = 1 and fk = 0 for all other k when p ≤ p∗ = 0.57 . . . (that
is, p∗ being the unique root of pep = 1), regardless of the initial graph. They have also shown
that if p > p∗ there exists only a defective distribution of the degrees with f0 = c < 1 for
a certain constant c (depending on the initial graph) and fk = 0 for all other k. For the
average degree distribution see also [14].

This result, although it refuted the power law behavior of the whole graph claimed by
[4, 2], also showed that asymptotically almost all vertices are isolated. This has still left the
possibility that it might be the case that a graph generated by the partial duplication model
with the isolated vertices removed exhibits such property. Note that by a simple inductive
argument it is obvious that if a vertex is isolated at the time of its insertion, then it stays
isolated forever, and if it was connected to other vertex, then it remains connected, so if the
inital graph is connected, then there can only be one component containing all non-isolated
vertices. This was exactly the route pursued by Jordan in [9]. Using probabilistic tools such
as the quasi-stationary distribution of a certain continuous time Markov chain embedding
of the original discrete graph growth process, Jordan was able to prove that for 0 < p < 1

e

there is an approximate power law behavior in the pure duplication graphs. More precisely,
let us define for a vertex (denoted by Un) picked uniformly at random from a graph on n
vertices generated from the duplication model the following conditional probability

ak(n) = Pr[deg(Un) = k|deg(Un) 6= 0] = fk(n)∑∞
i=1 fi(n)

= fk(n)
1− f0(n) . (1)

Jordan proved that ak(n) → ak as n → ∞ as long as the underlying process is positive
recurrent which holds for p < 1

e [9]. Moreover, Jordan showed that for β(p) 6= 2 being the
solution of pβ−2 + β − 3 = 0 the tail behavior of ak is approximately a power law in the
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sense that it is lighter than any heavier tailed power law (with any index β(p) + ε, ε > 0)
and heavier than any lighter tailed power law (with index β(p)− ε, ε > 0). This is of vital
interest in this area since β(p) ∈ (2, 3), which is exactly the range of the power law exponents
for various real-world biological graphs, such as protein-protein newtorks [4].

It is worth noting that it partially confirmed the non-rigorous result by Ispolatov et al.
from [8], who claimed that the connected component exhibits a power-law distribution both
for 0 < p < 1

e (with index β(p) as above), and for 1
e ≤ p <

1
2 (with index 2). Furthermore,

by the virtue of (1) observe, following [9, 7], that f0(n) = 1− o(1) and fk(n) = o(1) for k ≥ 1
which begs the question of the asymptotic behavior of fk(n) for large k and n. Certainly
fk(n) does not grow linearly with n as suggested in some papers (cf. [2]). We conjecture
that fk(n) = O(n−α(p)k−β(p)) for some 1 < α(p) < 2 and β(p) > 2, but this problem is left
for future research.

In this paper we finally establish the precise behavior of the tail of the degree distribution
for pure duplication model for 0 < p < 1

e completing the work of Jordan [9]. More precisely,
we use tools of analytic combinatorics such as the Mellin transform and singularity analysis
to prove in Theorem 2 that the tail of a node degree in the connect component of the partial
duplication model decays as C/kβ(p) where C an explicit constant.

The paper is organized as follows: in Section 2 we present a formal definition of the model,
introduce the tracked vertex approach, and the quasi-stationary distribution as defined by
Jordan in [9]. In Section 3 we state and establish our main results using Mellin transform
and singularity analysis. In concluding Section 4 we indicate a possible extension of our
findings and point to some further work.

2 The model and Jordan’s approach

We follow the standard graph-theoretical notation, e.g., from [5]. We consider only simple
graphs, i.e., graphs without loops or parallel edges.

Let us recall first the definition of the pure duplication model. Let Gn0 = (Vn0 , En0) be
an initial graph with a set of vertices Vn0 and a set of edges En0 , such that |Vn0 | = n0 ≥ 2.
Throughout the paper, let us assume that Gn0 is fixed and connected. For n = n0, n0 + 1, . . .
we build Gn+1 = (Vn+1, En+1) from Gn = (Vn, En) in the following way:
1. pick a vertex u ∈ Vn uniformly at random,
2. create a new node vn+1 and let Vn+1 = Vn ∪ {vn+1}, En+1 = En,
3. for every w ∈ Vn such that uw ∈ En add edge vn+1w to En+1 independently at random

with probability p.
We call the process G = (Gn)∞n=n0

the partial duplication graph.
Jordan in [9] introduced the continuous-time embedding of this process, defined as

following: start at time t = 0 with a fixed connected graph Γ0 = Gn0 and let (Γt)t≥0 be
a continuous time Markov chain on graphs, where each vertex is duplicated independently
at times following a Poisson process of rate 1, with the rules for duplication as in the pure
duplication model.

Jordan also defined the so called vertex tracking approach: we pick a vertex from Γ0
uniformly at random and then define the continuous-time process (Vt)t≥0 in the following
way: at time t we jump to a vertex v if and only if the vertex Vt− was duplicated and its
„child” is v. He proved that for any k ≥ 1 and for another continuous-time process (Ut)t≥0
being defined as a uniform choice of vertices over Γt we have

lim
t→∞

Pr[deg(Ut) = k]
Pr[deg(Vt) = k] = 1.

Therefore, asymptotically the behavior of a tracked vertex approximates the behavior of a
random vertex in Γt when t→∞, and therefore in Gn when n→∞.
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The tracked vertex approach allowed Jordan to construct the generatorQ of the continuous-
time Markov chain (deg(Vt))t≥0, defined over the state space N0, with the following transitions

qj,k =
(
j

k

)
pk(1− p)j−k for 0 ≤ k ≤ j − 1,

qj,j = −jp−
(
1− pj

)
,

qj,j+1 = jp.

Then Jordan proceeded to the analysis of the quasi-stationary distribution (ak)∞k=1, i.e.,
the left eigenvector of a subset of Q, defined as before. We relate this distribution to the
eigenvalue −λ (see [11] for details of this approach) being the solution of the equation
AQ = −λQ, where A = (ak)∞k=1. This leads us to the following equation:

∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k = −(k − 1)pak−1 − (λ− kp− 1) ak (2)

for k = 1, 2, 3, . . ..
Using (2) and the generating function A(z) =

∑∞
k=0 akz

k Jordan found the following
differential-functional equation

A(pz + 1− p) = (1− λ)A(z) + pz(1− z)A′(z) +A(1− p). (3)

Notice that the above equation implies that A(0) = 0. Since it is a sum of limits for
probability distributions, by Fatou’s lemma |A(z)| ≤ 1 for |z| ≤ 1. By letting z → 1− in (3)
and assuming finite A′(1) we get A(1− p) = λA(1).

Furthermore with the identity

A′(z) = A(pz + 1− p)−A(1)
pz(1− z) − (1− λ)A(z)−A(1)

pz(1− z) (4)

and letting z → 1− Jordan found

A′(1) = −A′(1) + 1− λ
p

A′(1),

namely, if A′(1) is non-zero and finite, then λ = 1− 2p. Finally, using the assumptions that
the distribution (ak)∞k=0 is non-degenerate (i.e.,

∑∞
k=0 ak = A(1) = 1) and that the mean

degree A′(1) is finite, Jordan found that for 0 < p < 1
e the quasi-stationary distribution ak

does not have q-th moment for pq−2 + q − 3 < 0.
In summary Jordan proved the following result.

I Theorem 1 ([9, Theorem 2.1(3)]). Assume 0 < p < 1
e . Let β(p) > 2 be the solution of

pβ−2 + β − 3 = 0. Then the tail behaviour of (ak)∞k=0 has a power law of index β(p), in the
sense that as k →∞,

lim
k→∞

ak
kq

= 0 for q < β(p),

lim
k→∞

ak
kq

=∞ for q > β(p).

In the next section we present our refinement of this theorem and provide precise
asymptotics for (ak)∞k=0.
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3 Main results

In this section we state and prove the main result of our paper that is a refinement of
Theorem 1.

I Theorem 2. If 0 < p < 1
e , then the stationary distribution (ak)∞k=0 of the pure duplication

model has the following asymptotic tail behavior as k →∞:

ak
kβ(p) = 1

E(1)− E(∞) ·
p−

1
2 (β(p)− 3

2 )2Γ(β(p)− 2)
D(β(p)− 2)(p−β(p)+2 + ln(p))Γ(−β(p) + 1)

(
1 +O

(
1
k

))
(5)

where β(p) > 2 is the non-trivial solution of pβ−2 + β − 3 = 0, Γ(s) is the Euler gamma
function and

D(s) =
∞∏
i=0

(
1 + p1+i−s(s− i− 2)

)
, (6)

E(1)− E(∞) = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s) ds, for c ∈ (0, 1).

In Figure 1 we present numerical values of the functions involved in the formula above.
It clear that that all coefficients in (5) are positive for 0 < p < 1

e .
The rest of this section is devoted to the proof of our main result. We will accomplish

it by a series of lemmas. The main idea is as follows: we take (3) and apply a series of
substitutions to obtain a functional equation which is in suitable form for applying Mellin
transform. Observe that we cannot apply directly Mellin transform to the functional equation
(5) due to the term A(pz + 1− p).

It is already known from [9] that A′(1) is non-zero and finite, hence λ = 1− 2p. First, let
us substitute z = 1− v and B(v) = A(1− v) in (3). Thus

A(1− pv) = 2pA(1− v) + pv(1− v)A′(1− v) +A(1− p),
B(pv) = 2pB(v)− pv(1− v)B′(v) +A(1− p).

Observe now that the functional equation on B(v) is suitable for the Mellin transform. To
ease some computation let w = 1

v and C(w) = B
( 1
w

)
. Then

B
( p
w

)
= 2pB

(
1
w

)
− p

w

(
1− 1

w

)
B′
(

1
w

)
+A(1− p),

C

(
w

p

)
= 2pC(w) + p(w − 1)C ′(w) +A(1− p). (7)

Therefore, we are essentially looking at the solution of (7) with boundary conditions
C(1) = A(0) = 0 and limw→∞ C(w) = A(1) (which is equal to 1, as pointed out in [9]).

Our objective is to find an asymptotic expansion for C(w) when w →∞. Notice that it
is equivalent to finding the asymptotic expansion of A(z) when z → 1 by inferior values. For
this purpose we will use the Mellin transform which is a powerful tool for extracting accurate
asymptotic expansions [12]. Unfortunately we cannot directly apply the Mellin transform
over function C(w) since the behavior of C(w) for w → 0 is yet unknown. To circumvent this
problem we search for a similar function E(w) defined by the following functional equation

E

(
w

p

)
= 2pE(w) + p(w − 1)E′(w) +K (8)
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(a) β(p). (b) E(1)− E(∞).

(c) D(β(p)− 2). (d) p−
1
2 (β(p)− 3

2 )2
Γ(β(p)−2)

(p−β(p)+2+ln(p))Γ(−β(p)+1)
.

Figure 1 Numerical values of different parts of (3) for 0 < p < 1
e
.

for some constant K for which we shall postulate that the Mellin transform

E∗(s) =
∫ ∞

0
ws−1E(w) dw

exists in some fundamental strip.
To connect E(w) with our function C(w) we notice that it holds necessarily that C(1) = 0

which corresponds to the fact that A(0) = 0. Clearly, if E(w) is the solution of (8) with
finite values of both E(1) and E(∞) = limw→∞E(w) (which will be shown later to be the
case), then it is also true that

C(w) = A(1) E(w)− E(1)
E(∞)− E(1) (9)

is the solution of (7) with C(1) = 0 which also satisfies limw→∞ C(w) = A(1) = 1.
Let us now proceed through definition and lemmas. We first define

E∗(s) = p−
1
2 (s− 1

2 )2 Γ(s)
D(s) (10)

for D(s) =
∏∞
j=0

(
1 + p1+j−s(s− j − 2)

)
defined already in (6).
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Now notice that D(s) = 0 implies 1 +p1+j−s(s− j−2) = 0 for some j ∈ N. This equation
for 0 < p < 1

e has only two solutions: s = j+ 1 and s = j+ 1 + s∗, where s∗ is the non-trivial
(i.e. other than s = 0) solution of ps + s− 1 = 0.

Therefore, E∗(s) has only simple, isolated poles of three types:
for s = 0,−1,−2, . . ., introduced by Γ(s),
for s = 1, 2, 3, . . ., introduced by 1

D(s) ,
for s = s∗ + 1, s∗ + 2, s∗ + 3, . . ., introduced by 1

D(s) .
Moreover, if we omit these poles, then D(s) converges to a non-zero finite value when
Re(s) < 0 because pi−s exponentially decays. We summarize it in the next lemma.

I Lemma 3. For Re(s) ∈ (−1, 0) and 0 < p < 1
e it holds that 1

|D(s)| is absolutely convergent.

Due to its technical intricacies, the proof of Lemma 3 was moved to the Appendix. In
Figure 2 we present an example plot of values of 1

|D(s)| .

Figure 2 Numerical values of 1
|D(c+it)| for p = 0.2 and c = −0.5.

I Lemma 4. For 0 < p < 1
e it holds that

E∗(s) = p(s− 1)
ps + ps− 2pE

∗(s− 1).

Proof. We have the identity

p
1
2 (s− 1

2 )2

Γ(s) E∗(s) = p
1
2 (s− 3

2 )2

Γ(s− 1)E
∗(s− 1) 1

1 + p1−s(s− 2) .

Thus

E∗(s) = p−
1
2 (s− 1

2 )2+ 1
2 (s− 3

2 )2

1 + p1−s(s− 2)
Γ(s)

Γ(s− 1)E
∗(s− 1) = p1−s

1 + p1−s(s− 2)(s− 1)E∗(s− 1)

since Γ(s)
Γ(s−1) = s − 1. Multiplying by numerator and denominator by ps completes the

proof. J
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We now define for any given c ∈ (−1, 0)

E(w) = 1
2πi

∫
Re(s)=c

E∗(s)w−s ds = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s)w

−s ds. (11)

Notice that this integral converges for any complex value of w with Im(w)→ ±∞ because
from Lemma 3 it follows that 1

|D(s)| is bounded by a constant and Γ(s)p− 1
2 (s− 1

2 )2 decays
faster than any polynomial. Furthermore the value of E(w) does not depend on the value of
quantity c thanks to Cauchy’s theorem.

I Lemma 5. The function E(w) has function E∗(s) as its Mellin transform with its funda-
mental strip being {s : Re(s) ∈ (−1, 0)}.

Proof. We have

|E(w)| ≤ |w|
−c

2π

∫ +∞

−∞
|E∗(c+ it)| exp(arg(w)t) dt.

Now, it is easy to spot that E(c+ it) = O
(

exp
(
− t

2

2

))
since ln(p) < −1, thus the integral∫ +∞

−∞ |E
∗(c + it)| exp(arg(w)t) dt absolutely converges and it follows that E(w) = O(w−c).

Since it is true for any values of c ∈ (−1, 0) when w → 0 and w → ∞, then the Mellin
transforms of function E(w) exists with the fundamental strip {s : Re(s) ∈ (−1, 0)}.

Furthermore, its Mellin transform is E∗(s) because (11) is exactly the inverse Mellin
transform formula. J

I Lemma 6. There exists a value K independent of w such that

R(w) = −Res
[
E∗(s− 1)p(s− 1)w−s, s = 0

]
= −K.

Proof. The expression

R(w) = E

(
w

p

)
− 2pE(w)− p(w − 1)E′(w)

can be also expressed via an integral as

R(w) = 1
2πi

∫
Re(s)=c

E∗(s)
(
psw−s − 2pw−s + spw−s − spw−s−1) ds

which can be rewritten as follows

R(w) = 1
2πi

∫
Re(s)=c

E∗(s) (ps − 2p+ ps)w−s ds

− 1
2πi

∫
Re(s)=c+1

E∗(s− 1)p(s− 1)w−s ds

= 1
2πi

∫
Re(s)=c

((ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1))w−s ds

− Res[p(s− 1)E∗(s− 1), s = 0]

since∫
Re(s)=c+1

p(s− 1)E∗(s− 1)w−s ds−
∫

Re(s)=c
p(s− 1)E∗(s− 1)w−s ds

define a contour path which encircles a simple pole at s = 0 in the counter-clockwise (i.e.,
positive) direction.
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Furthermore from Lemma 3 it follows that

(ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1) = 0,

therefore the integral vanishes and finally R(w) = −Res[p(s− 1)E∗(s− 1), s = 0] = −K for
some constant K independent of w. J

I Lemma 7. It holds that

K = −p
− 1

8 (1− 2p)
D(0) , E(∞) = p−

1
8

D(0) .

Furthermore,

E(∞)− E(1) = − 1
2πi

∫
Re(s)=c

E∗(s) ds, for c ∈ (0, 1). (12)

Proof. From Lemma 6 we have

K = Res[p(s− 1)E∗(s− 1), s = 0] = p−
1
8

D(−1) .

Moreover, from the definition D(0) = (1− 2p)D(−1), which establishes the first identity.
To find an expression for E(∞) is a little more delicate. Indeed from (11) we find

E(w) = −Res
[
E∗(s)w−s, s = 0

]
+ 1

2πi

∫
Re(s)=c′

E∗(s)w−s ds

by assuming the contour path is moved right to origin for some c′ ∈ (0, 1). It turns out that
0 is the simple pole encountered in the move, as D(s) 6= 0 for all other s with Re(s) ∈ (0, 1).

Furthermore, the integral on Re(s) = c′ is in O(w−c′) as w →∞, which allows to conclude
that E(w) = −Res[E∗(s)w−s, s = 0] +O(w−c′) with c′ ∈ (0, 1), thus

E(∞) = lim
w→∞

E(w) = − lim
w→∞

Res
[
E∗(s)w−s, s = 0

]
= −Res[E∗(s), s = 0] = − p−

1
8

D(0) .

Finally,

E(∞)− E(1) = −Res[E(s), s = 0]− 1
2πi

∫
Re(s)=c

E∗(s) ds = − 1
2πi

∫
Re(s)=c′

E∗(s) ds

for, respectively, c ∈ (−1, 0) and c′ ∈ (0, 1) since

1
2πi

∫
Re(s)=c′

E∗(s) ds− 1
2πi

∫
Re(s)=c

E∗(s) ds = Res[E(s), s = 0].

This completes the proof. J

Note that D(0) > 0 since every element in the product is positive for 0 < p < 1
e . Therefore

K > 0 and E(∞) < 0.
Finally we proceed with the proof of the main theorem.

Proof of Theorem 2. Recall the observation that E∗(s) has poles for s ∈ {1, 2, . . .} ∪ {s∗ +
1, s∗ + 2, . . .} ∪ {0,−1,−2, . . .}, for s∗ – the non-zero solution of ps + s− 1 = 0. Note that if
0 < p < 1

e , then s
∗ > 0.
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Re(s)

Im(s)

−3 −2 −1 0 1 2 3

−3

−2

−1

1

2

3

Figure 3 Example integration area for E∗(s) and E(w) with s∗ = 0.7 and M = 2.5.

Therefore, for any c ∈ (−1, 0) and a rectangle as presented in Figure 3, we are in position
to write

C(w) = 1
E(∞)− E(1)

1
2πi

∫
Re(s)=c

E∗(s)w−s ds− E(1)
E(∞)− E(1)

= − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res

[
E∗(s)w−s, s = 1

])
− 1
E(∞)− E(1)

(
Res
[
E∗(s)w−s, s = 2

]
+ Res

[
E∗(s)w−s, s = s∗ + 1

])
+ 1
E(∞)− E(1)

1
2πi

∫
Re(s)=M

E∗(s)w−s ds (13)

for any number M ∈ (2, 2 + s∗).
The quantity

1
2πi

∫
Re(s)=M

E∗(s)w−s ds = O(w−M )

since w−s = w−Mw− Im(s) and the integral in E∗(s)w− Im(s) absolutely converge. Again this
holds by a similar argument that was used in Lemma 3: p− 1

2 (s− 1
2 )2 decays exponentially

faster than Γ(s)
D(s)w

Im(s) for complex s.
By virtue of the residue theorem

C(w) = − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res[E∗(s), s = 1]w−1)

− 1
E(∞)− E(1)

(
Res[E∗(s), s = 2]w−2 + Res[E∗(s), s = s∗ + 1]w−1−s∗

)
+O(w−M ). (14)

This formula gives us an asymptotic expansion of C(w) up to order w−M whereM ∈ (2, 2+s∗).
In fact, for more precise computations it is possible an expansion to any desired value M ,

just by including all the residues of the poles in k (k ∈ N) and k + s∗ (k ∈ N+) which are
smaller than M as for 0 < p < 1

e all poles are simple.



P. Jacquet, K. Turowski, and W. Szpankowski 16:11

Next, there are computed the first residues, e.g.,

Res
[
E∗(s)w−s, s = 0

]
=
[
p−

1
2 (s− 1

2 )2 w−s

D(s)

]
s=0

= p−
1
8

D(0) = −E(∞),

Res
[
E∗(s)w−s, s = 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1)

]
s=1

= p−
1
8

1 + ln(p)
w−1

D(0) ,

Res
[
E∗(s)w−s, s = s∗ + 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1)

]
s=s∗+1

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ − (s∗ − 1)p−s∗ ln(p)

w−s
∗−1

D(s∗)

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ + ln(p)

w−s
∗−1

D(s∗) .

Observe that in the formulas above both 1 and s∗+1 are not the zeros of p1−s−(s−2)p1−s ln(p),
so all the presented expressions have finite value.

Now it is the moment to use the classic Flajolet-Odlyzko transfer theorem [6] to (9) and
(14) and obtain

A(z) = 1− 1
E(∞)− E(1)

p−
1
8

1 + ln(p)
1− z
D(0)

− 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )Γ(s∗)
p−s∗ + ln(p)

(1− z)1+s∗

D(s∗)

− 1
E(∞)− E(1) Res[E∗(s), s = 2](1− z)2

− 1
E(∞)− E(1) Res[E∗(s), s = s∗ + 2](1− z)s

∗+2 + o((1− z)2+s∗).

Finally, (1− z)α for α ∈ N is a polynomial and does not contribute to the asymptotics.
And for α ∈ R+ \ N [6] it holds that

[zk](1− z)α = k−α−1

Γ(−α)

(
1 +O

(
1
k

))
,

[zk]o(1− z)α = o(k−α−1).

This leads to the final result, which holds for large k:

ak = [zk]A(z)

= − 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )2Γ(s∗)
(p−s∗ + ln(p))Γ(−s∗ − 1)

1
D(s∗)k

−s∗−2
(

1 +O

(
1
k

))
.

Note that since s∗ is the non-trivial real solution of ps + s − 1 = 0, equivalently the
exponent may be written as β(p) = s∗ + 2 – the the non-trivial (i.e., other than 2) real
solution of the equation pβ−2 + β − 3 = 0.

Putting all the results together we obtain (5) of Theorem 2. Now it is sufficient to confirm
that if 0 < p < 1

e , then the tail exponent β(p) > 2, which means that A′(1) is indeed finite.
This proves Theorem 2. J
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4 Discussion

We proved rigorously the power-law behavior for asymptotic degree distribution of the
connected component of the duplication graph 0 < p < 1

e . There remains therefore an open
question whether the similar results may be obtained for p ≥ 1

e .
On the one hand, recall the non-rigorous claim in [8] that for 1

e ≤ p <
1
2 the index of the

power law is equal to 2. Interestingly, β = 2 is the largest solution of pβ−2 + β − 3 = 0 for
p ≥ 1

e .
On the other hand, Jordan [9, Proposition 3.7] has shown that the dual Markov chain

with respect to the eigenvalue λ = 1− 2p is transient for all p > 1
e – which suggests that the

eventual proof should rely on other value of λ. This problem is left for future research.
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A Proof of Lemma 3

We now proceed to the proof of Lemma 3. First, let us introduce f(s) = ps + ps− 2p, so that

D(s) =
∞∏
i=0

f(s− i)p−(s−i).

Observe that f(s) has only two roots, given by Lambert function W , which is the inverse
of function xex: W−1(x) = xex. There are only two roots for real numbers which corresponds
to two branches W0 and W−1 of the function W . Therefore, any chosen c < 0 is smaller than
the roots of f(s) and the distance between c and any root is at least 1.

I Lemma 8. For all 0 < ε < 1 and c < 0 it holds that minRe(s)=c |f(s)| ≥ Θ(p(1−ε)(c−1)) > 0.

Proof. We have f ′(s) = ps ln(p) + p and f ′′(s) = ps ln2(p).
Let us consider a complex disk of radius R = p−ε(c−1) (R < 1) centered on s. For

θ ∈ (0, 2π) by virtue of Taylor-Young theorem we have:

f(s+Reiθ) = f(s) + f ′(s)eiθR+
∫ R

0
f ′′(s+ ρeiθ)e2iθρdρ.

Now observe that∣∣∣∣∣
∫ R

0
f ′′(s+ ρeiθ)e2iθρdρ

∣∣∣∣∣ =

∣∣∣∣∣ps ln2(p)e2iθ
∫ R

0
pρ exp(iθ)ρ dρ

∣∣∣∣∣
=
∣∣∣ps (eR exp(iθ) ln(p) [R exp(iθ) ln(p)− 1] + 1

)∣∣∣
= O

(∣∣psR2e2iθ∣∣) = O
(
pcR2) ,

where the last line follows from the fact that asymptotically ex(x− 1) + 1 = O(x2) for x→ 0.
When θ varies the quantity f ′(s)eiθR describes a circle of radius |f ′(s)|R = (−pc ln(p) +

O(p))R around f(s). The error term bound implies that each point of f(s + Reiθ) is at
distance O(pcR2) of this circle. Thus the image by f of the disk with center s and radius R
contains the disk of center f(s) and radius

R|f ′(s)| −O(R2pc) = −p−ε(c−1)pc ln(p)−O(p1−ε(c−1))−O
(
p−2ε(c−1)pc

)
= p(1−ε)(c−1)

(
−p ln(p)−O(p1−c)−O(p−ε(c−1))

)
= Θ(p(1−ε)(c−1)).

The point s = 0 cannot be in this disk, otherwise the function f(s) would have other
roots than the expected ones, thus necessarily |f(s)| ≥ Θ(p(1−ε)(c−1)). J

Let now g(s) = p−sf(s) so that

D(s) =
∞∏
i=0

g(s− i).

I Lemma 9. For t real and c < 0, the following inequality holds

|g(c+ it)| ≥ |1− p1−c(2− c)− p1−c|t||.

Proof. We have

|g(c+ it)| = |p−cf(c+ it)| = |pit + p1−c(c− 2) + p1−cit|
≥ ||pit| − |p1−c(c− 2)| − |p1−cit||.

But now observe that |pit| = 1, which completes the proof. J
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I Lemma 10. For c ∈ (−1, 0) and for all real number t outside any neighborhood of 0, for
all ε > 0 it is true that 1

D(c+it) = O(exp
(
−(log2

p |t|/2 +O(log |t|)
)
.

Proof. From Lemmas 8 and 9, it follows that:

|D(c+ it)| ≥
∏
k≥0

max{Bp−ε(1−c),
∣∣1− (|t|+ 2 + k − c)pk+1−c∣∣}

For a given real number t, we denote k(t) the largest integer k such that (|t|+2+k−c)pk+1−c >

1, and we split the product at k = k(t):

|D(c+ it)| ≥
∏

k<k(t)

(
(|t|+ 2 + k − c) pk+1−c − 1

)
B′|t|−ε

∏
k>k(t)

(
1− (|t|+ 2 + k − c) pk+1−c)

≥

 ∏
k<k(t)

(
pk−k(t)

(
1− (k(t)− k) pk(t)+1−c

)
− 1
)

B′|t|−ε
∏

k>k(t)

(
1− pk−k(t)

(
1− (k(t)− k) pk(t)−c

))
Now∏

k>k(t)

(
1− pk−k(t)

(
1− (k(t)− k) pk(t)−c

))
≥
∏
k>0

(1− pk).

Furthermore
∏
k<k(t) p

k−k(t) ≥ pk(t)(k(t)−1)/2, thus∏
k<k(t)

(
pk−k(t)

(
1− (k(t)− k) pk(t)+1−c − 1

))
≥ pk(t)(k(t)−1)/2

∏
k>0

(1− pk).

Finally, p−k(t) = |t|p−c and therefore

|D(c+ it)| ≥ pk(t)(k(t)−1)/2B′|t|−ε
∏
k>0

(1− pk)2 = B′′
|t|−ε

(|t|p−c)(k(t)−1)/2 .

We conclude, since k(t) = c− logp |t|. J

Notice that D(c+ it) tends to infinity when |t| → ∞. To conclude the proof of Lemma 3
it is sufficient to observe that the function 1/D(s) for s is any compact set containing a
neighborhood of Re(s) and away from the roots of f(s) is naturally bounded by dominated
convergence of the product.



Hidden Words Statistics for Large Patterns
Svante Janson
Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden
svante.janson@math.uu.se

Wojciech Szpankowski
Center for Science of Information, Department of Computer Science, Purdue University,
West Lafayette, IN, USA
spa@cs.purdue.edu

Abstract
We study here the so called subsequence pattern matching also known as hidden pattern matching in
which one searches for a given pattern w of length m as a subsequence in a random text of length
n. The quantity of interest is the number of occurrences of w as a subsequence (i.e., occurring in
not necessarily consecutive text locations). This problem finds many applications from intrusion
detection, to trace reconstruction, to deletion channel, and to DNA-based storage systems. In all of
these applications, the pattern w is of variable length. To the best of our knowledge this problem
was only tackled for a fixed length m = O(1) [6]. In our main result Theorem 5 we prove that
for m = o(n1/3) the number of subsequence occurrences is normally distributed. In addition, in
Theorem 6 we show that under some constraints on the structure of w the asymptotic normality
can be extended to m = o(

√
n). For a special pattern w consisting of the same symbol, we indicate

that for m = o(n) the distribution of number of subsequences is either asymptotically normal or
asymptotically log normal. We conjecture that this dichotomy is true for all patterns. We use
Hoeffding’s projection method for U -statistics to prove our findings.
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1 Introduction and Motivation

One of the most interesting and least studied problem in pattern matching is known as
the subsequence string matching or the hidden pattern matching [11]. In this case, we
search for a pattern w = w1w2 · · ·wm of length m in the text Ξn = ξ1 . . . ξn of length n

as subsequence, that is, we are looking for indices 1 ≤ i1 < i2 < · · · < im ≤ n such that
ξi1 = w1, ξi2 = w2, . . . , ξim = wm. We say that w is hidden in the text Ξn. We do not put
any constraints on the gaps ij+1− ij , so in language of [6] this is known as the unconstrained
hidden pattern matching. The most interesting quantity of such a problem is the number of
subsequence occurrences in the text generated by a random source. In this paper, we study
the limiting distribution of this quantity when m, the length of the pattern, grows with n.

Hereafter, we assume that a memoryless source generates the text Ξ, that is, all symbols
are generated independently with probability pa for symbol a ∈ A, where the alphabet A
is assumed to be finite. We denote by pw =

∏
j pwj the probability of the pattern w. Our

goal is to understand the probabilistic behavior, in particular, the limiting distribution of
the number of subsequence occurrences that we denote by Z := ZΞ(w). It is known that
the behavior of Z depends on the order of magnitude of the pattern length m. For example,
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for the exact pattern matching (i.e., the pattern w must occur as a string in consecutive
positions of the text), the limiting distribution is normal for m = O(1) (more precisely, when
npw → ∞, hence up to m = O(logn)), but it becomes a Pólya–Aeppli distribution when
npw → λ > 0 for some constant λ, and finally (conditioned on being non-zero) it turns
into a geometric distribution when npw → 0 [11] (see also [1]). We might expect a similar
behaviour for the subsequence pattern matching. In [6] it was proved by analytic combinatoric
methods that the number of subsequence occurrences, ZΞ(w), is asymptotically normal when
m = O(1), and not much is known beyond this regime. (See also [2]. Asymptotic normality
for fixed m follows also by general results for U -statistics [9].) However, in many applications
– as discussed below – we need to consider patterns w whose lengths grow with n. In this
paper, we prove two main results. In Theorem 5 we establish that for m = o(n1/3) the
number of subsequence occurrences is normally distributed. Furthermore, in Theorem 6 we
show that under some constraints on the structure of w, the asymptotic normality can be
extended to m = o(

√
n). Moreover, for the special pattern w = am consisting of the same

symbol repeated, we show in Theorem 4 that for m = o(
√
n), the distribution of number

of occurrences is asymptotically normal, while for larger m (up to cn for some c > 0) it
is asymptotically log-normal. We conjecture that this dichotomy is true for a large class
of patterns.

Regarding methodology, unlike [6] we use here probabilistic tools. We first observe that Z
can be represented as a U -statistic (see (2)). This suggests to apply the [9] projection method
to prove asymptotic normality of Z for some large patterns. Indeed, we first decompose
Z into a sum of orthogonal random variables with variances of decreasing order in n (for
m not too large), and show that the variable of the largest variance converges to a normal
distribution, proving our main results Theorems 5 and 6.

The hidden pattern matching problem, especially for large patterns, finds many applica-
tions from intrusion detection, to trace reconstruction, to deletion channel, to DNA-based
storage systems [8, 5, 3, 11, 16]. Here we discuss below in some detail two of them, namely
the deletion channel and the trace reconstruction problem.

A deletion channel [5, 3, 4, 13, 16, 17] with parameter d takes a binary sequence Ξn =
ξ1 · · · ξn where ξi ∈ A as input and deletes each symbol in the sequence independently with
probability d. The output of such a channel is then a subsequence ζ = ζ(x) = ξi1 ...ξiM of
Ξ, where M follows the binomial distribution Binom(n, (1− d)), and the indices i1, ..., iM
correspond to the bits that are not deleted. Despite significant effort [3, 13, 14, 16, 17] the
mutual information between the input and output of the deletion channel and its capacity are
still unknown. We hope to provide a more detailed characterization of the mutual information
for memoryless sources using results of this and forthcoming papers. Indeed, it turns out
that the mutual information I(Ξn; ζ(Ξn)) can be exactly formulated as the problem of the
subsequence pattern matching. In [5] it was proved that

I(Ξn;ζ(Ξn))=
∑
w

dn−|w|(1− d)|w|(E[ZΞn(w)logZΞn(w)] −E[ZΞn(w)] logE[ZΞn(w)]) , (1)

where the sum is over all binary sequences of length smaller than n and ZΞn(w) is the
number of subsequence occurrences of w in the text Ξn. As one can see, to find precise
asymptotics of the mutual information we need to understand the probabilistic behavior of
Z for m ≤ n and typical w, which is our long term goal. The trace reconstruction problem
[10, 15, 18] is related to the deletion channel problem since we are asking how many copies
of the output deletion channel we need to see until we can reconstruct the input sequence
with high probability.
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2 Main Results

In this section we formulate precisely our problem and present our main results. Proofs are
delayed till the next section.

2.1 Problem formulation and notation
We consider a random string Ξn = ξ1 . . . ξn of length n. We assume that ξ1, ξ2, . . . are i.i.d.
random letters from a finite alphabet A; each letter ξi has the distribution P(ξi = a) = pa
where a ∈ A, for some given vector p = (pa)a∈A; we assume pa > 0, a ∈ A.

Let w = w1 · · ·wm be a fixed string of length m over the same alphabet A. We assume
n ≥ m. Let pw :=

∏m
j=1 pwj , which is the probability that ξ1 · · · ξm equals w.

Let Z = Zn,w(ξ1 · · · ξn) be the number of occurrences of w as a subsequence of ξ1 · · · ξn.
For a set S (in our case [n] or [m]) and k ≥ 0, let

(S
k

)
be the collection of sets α ⊆ S with

|α| = k. Thus,
∣∣(S
k

)∣∣ =
(|S|
k

)
. For k = 0,

(S
0
)
contains just the empty set ∅. For k = 1, we

identify
(S

1
)
and S in the obvious way. We write α ∈

([n]
k

)
as {α1, . . . , αk}, where we assume

that α1 < · · · < αk. Then

Z =
∑

α∈([n]
m)
Iα, where Iα =

m∏
j=1

1{ξαj = wj}, α1 < . . . < αm. (2)

I Remark 1. In the limit theorems, we are studying the asymptotic distribution of Z. We
then assume that n→∞ and (usually) m→∞; we thus implicitly consider a sequence of
words w(n) of lengths mn = |w(n)|. But for simplicity we do not show this in the notation.

We have E Iα = pw for every α. Hence,

EZ =
∑

α∈([n]
m)

E Iα =
(
n

m

)
pw. (3)

Further, let Yα := p−1
w Iα, so EYα = 1, and

Z∗ := p−1
w Z =

∑
α∈([n]

m)
Yα, (4)

so EZ∗ =
(
n
m

)
and

Z∗ − EZ∗ = p−1
w Z −

(
n

m

)
=

∑
α∈([n]

m)

(
Yα − 1

)
. (5)

We also write ‖Y ‖p :=
(
E |Y |p

)1/p for the Lp norm of a random variable Y , while ‖x‖
is the usual Euclidean norm of a vector x in some Rm. C denotes constants that may be
different at different occurrences; they may depend on the alphabet A and (pa)a∈A, but
not on n, m or w. Finally, d−→ and p−→ mean convergence in distribution and probability,
respectively.

We are now ready to present our main results regarding the limiting distribution of Z,
the number of subsequence w = a1, . . . am occurrences when m→∞. We start with a simple
example, namely, w = am = a · · · a for some a ∈ A, and show that depending on whether
m = o(

√
n) or not the number of subsequences will follow asymptotically either the normal

distribution or the log-normal distribution.
Before we present our results we consider asymptotically normal and log-normal distribu-

tions in general, and discuss their relation.
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2.2 Asymptotic normality and log-normality
If Xn is a sequence of random variables and an and bn are sequences of real numbers, with
bn > 0, then Xn ∼ AsN(an, bn) means that

Xn − an√
bn

d−→ N(0, 1). (6)

We say that Xn is asymptotically normal if Xn ∼ AsN(an, bn) for some an and bn, and
asymptotically log-normal if lnXn ∼ AsN(an, bn) for some an and bn (this assumes Xn ≥ 0).
Note that these notions are equivalent when the asymptotic variance bn is small, as made
precise by the following lemma.

I Lemma 2. If bn → 0, and an are arbitrary, then

lnXn ∼ AsN(an, bn) ⇐⇒ Xn ∼ AsN(ean , bne2an). (7)

Proof. By replacing Xn by Xn/e
an , we may assume that an = 0. If lnXn ∼ AsN(0, bn)

with bn → 0, then lnXn
p−→ 0, and thus Xn

p−→ 1. It follows that lnXn/(Xn − 1) p−→ 1
(with 0/0 := 1), and thus

Xn − 1
b
1/2
n

= Xn − 1
lnXn

lnXn

b
1/2
n

d−→ N(0, 1), (8)

and thus Xn ∼ AsN(1, bn). The converse is proved by the same argument. J

I Remark 3. Lemma 2 is best possible. Suppose that lnXn ∼ AsN(an, bn). If bn → b > 0,
then ln

(
Xn/e

an
)

= lnXn − an
d−→ N(0, b), and thus

Xn/e
an d−→ eζb , ζb ∼ N(0, b). (9)

In this case (and only in this case), Xn thus converges in distribution, after scaling, to a
log-normal distribution. If bn →∞, then no linear scaling of Xn can converge in distribution
to a non-degenerate limit, as is easily seen.

2.3 A simple example
We consider first a simple example where the asymptotic distribution can be found easily by
explicit calculations. Fix a ∈ A and let w = am = a · · · a, a string with m identical letters.
Then, if N = Na is the number of occurrences of a in ξ1 · · · ξn, then

Z =
(
Na
m

)
. (10)

We will show that Z is asymptotically normal if m is small, and log-normal for larger m.

I Theorem 4. Suppose that m < npa, with npa −m� n1/2.
(i) Then

lnZ ∼ AsN
(

ln
(
npa
m

)
, n
∣∣∣ln(1− m

npa

)∣∣∣2pa(1− pa)
)
. (11)

(ii) In particular, if m = o(n), then

lnZ ∼ AsN
(

ln
(
npa
m

)
,
(
p−1
a − 1

)m2

n

)
. (12)
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(iii) If m = o
(
n1/2), then this implies

Z/EZ ∼ AsN
(

1,
(
p−1
a − 1

)m2

n

)
, (13)

and thus

Z ∼ AsN
(
EZ,

(
p−1
a − 1

)m2

n
(EZ)2

)
. (14)

Proof. (i) We have Na ∼ Bin(n, pa). Define Y := Na − npa. Then, by the Central Limit
Theorem,

Y ∼ AsN
(
0, npa(1− pa)

)
. (15)

By (10), we have

lnZ − ln
(
npa
m

)
= ln

(
npa + Y

m

)
− ln

(
npa
m

)
= ln Γ(npa + Y + 1)− ln Γ(npa + Y −m+ 1)− lnm!
−
(
ln Γ(npa + 1)− ln Γ(npa −m+ 1)− lnm!

)
=
∫ Y

y=0

∫ 0

x=−m
(ln Γ)′′(npa + x+ y + 1) dxdy. (16)

We fix a sequence ωn →∞ such that npa−m� ωn � n1/2; this is possible by the assumption.
Note that (15) implies that Y/ωn

p−→ 0, and thus P(|Y | ≤ ωn) → 1. We may thus in the
sequel assume |Y | ≤ ωn. We assume also that n is so large that npa −m ≥ 2ωn > 0.

Stirling’s formula implies, by taking the logarithm and differentiating twice (in the
complex half-plane Re z > 1

2 , say)

(ln Γ)′′(x) = 1
x

+O
( 1
x2

)
= 1
x

(
1 +O

( 1
x

))
, x ≥ 1. (17)

Consequently, (16) yields, noting the assumptions just made imply |Y | ≤ ωn ≤ 1
2 (npa −m),

lnZ − ln
(
npa
m

)
=
∫ Y

y=0

∫ 0

x=−m

1
npa + x+ y + 1

(
1 +O

( 1
npa −m

))
dxdy

=
∫ Y

y=0

∫ 0

x=−m

1
npa + x

(
1 +O

( ωn
npa −m

))
dxdy

=
(

1 +O
( ωn
npa −m

))
Y

∫ 0

x=−m

1
npa + x

dx

=
(
1 + o(1)

)
Y ln npa

npa −m
. (18)

Consequently, using also (15), we obtain

lnZ − ln
(
npa
m

)
n1/2

∣∣ln(1− m
npa

)∣∣ =
(
1 + op(1)

) Y

n1/2
d−→ N

(
0, pa(1− pa)

)
, (19)

which is equivalent to (11).
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(ii) If m = o(n), then
∣∣ln(1− m

npa

)∣∣ ∼ m
npa

, and (12) follows.
(iii) If m = o(n1/2), then (ii) applies, so (12) holds; hence Lemma 2 implies

Z/

(
npa
m

)
∼ AsN

(
1,
(
p−1
a − 1

)m2

n

)
. (20)

Furthermore,

EZ =
(
n

m

)
pma = nmeO(m2/n)

m! pma ∼
nm

m! p
m
a (21)

and, similarly,
(
npa
m

)
∼ nmpma

m! . Hence, EZ ∼
(
npa
m

)
and (13) follows from (20); (14) is an

immediate consequence. J

2.4 General results
We now present our main results. However, first we discuss the road map of our approach.
First, we observe that the representation (2) shows that Z can be viewed as a U -statistic.
For convenience, we consider Z∗ in (4), which differs from Z by a constant factor only,
and show in (41) that Z∗ − EZ∗ can be decomposed into a sum

∑m
`=1 V` of orthogonal

random variables V` such that, when m is not too large, Var
(∑m

`=2 V`
)

= o(VarV1). Next,
in Lemma 11 we prove that V1 appropriately normalized converges to the standard normal
distribution. This will allow us to conclude the asymptotic normality of Z.

In this paper, we only consider the region m = o
(
n1/2). First, for m = o

(
n1/3) we claim

that the number of subsequence occurrences always is asymptotically normal.

I Theorem 5. If m = o
(
n1/3), then

Z ∼ AsN
((n

m

)
pw, σ

2
1p

2
w

)
, (22)

where

σ2
1 =

n∑
i=1

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1
j − 1

)(
n− i
m− j

)2

− n
(
n− 1
m− 1

)2
. (23)

Furthermore, EZ =
(
n
m

)
pw and VarZ ∼ p2

wσ
2
1.

In the second main result, we restrict the patterns w to such that are not typical for the
random text; however, we will allow m = o

(
n1/2).

I Theorem 6. Let q = (qa)a∈A be the proportions of the letters in w, i.e., qa :=
1
m

∑m
j=1 1{wj = a}. Suppose that lim infn→∞ ‖q−p‖ > 0. If further m = o

(
n1/2), then the

asymptotic normality (22) holds.

3 Analysis and Proofs

In this section we will prove our main results. We start with some preliminaries.

3.1 Preliminaries and more notation
Let, for a ∈ A,

ϕa(x) := p−1
a 1{x = a} − 1. (24)
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Thus, letting ξ be any random variable with the distribution of ξi,

Eϕa(ξ) = 0, a ∈ A. (25)

Let p∗ := mina pa and

B := p−1
∗ − 1. (26)

I Lemma 7. Let ϕa and B be as above.
(i) For every a ∈ A,

E
[
ϕa(ξ)2] = p−1

a − 1 ≤ B. (27)

(ii) For some c1 > 0 and every a ∈ A,

‖ϕa(ξ)‖2 =
(
p−1
a − 1

)1/2 ≥ c1. (28)

(iii) For any vector r = (ra)a∈A with
∑
a ra = 1,∥∥∥∑

a∈A
raϕa(ξ)

∥∥∥
2
≥ ‖r− p‖ :=

(∑
a∈A
|rα − pα|2

)1/2
. (29)

Proof. The definition (24) yields

E
[
ϕa(ξ)2] = p−2

a Var
[
1{ξ = a}

]
= p−2

a pa(1− pa) = p−1
a − 1. (30)

Hence, (27) and (28) follow, with B given by (26).
Finally, for every x ∈ A, by (24) again,∑
a∈A

raϕa(x) = rxp
−1
x −

∑
a∈A

ra = rx/px − 1 (31)

and thus

E
(∑
a∈A

raϕa(ξ)
)2

=
∑
a∈A

pa
(
ra/pa − 1

)2 =
∑
a∈A

p−1
a

(
ra − pa

)2 (32)

and (29) follows. J

3.2 A decomposition
The representation (2) shows that Z is a special case of a U -statistic. For fixed m, the
general theory of [9] applies and yields asymptotic normality. (Cf. [12, Section 4] for a related
problem.) For m→∞ (our main interest), we can still use the orthogonal decomposition of
[9], which in our case takes the following form.

By the definitions in Section 2.1 and (24),

Yα =
m∏
j=1

(
p−1
wj 1{ξαj = wj}

)
=

m∏
j=1

(
ϕwj (ξαj ) + 1

)
. (33)

By multiplying out this product, we obtain

Yα =
∑
γ⊆[m]

∏
j∈γ

ϕwj (ξαj ). (34)

AofA 2020
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Hence,

Z∗ =
∑

α∈([n]
m)
Yα =

∑
α∈([n]

m)

∑
γ⊆[m]

∏
j∈γ

ϕwj (ξαj ) =
∑

α∈([n]
m)

∑
γ⊆[m]

|γ|∏
k=1

ϕwγk (ξαγk ). (35)

We rearrange this sum. First, let ` := |γ| ∈ [m], and consider all terms with a given `. For
each α and γ, with |γ| = `, let

αγ := {αγ1 , . . . , αγ`} ∈
(

[n]
`

)
. (36)

For given γ ∈
([m]
`

)
and β ∈

([n]
`

)
, the number of α ∈

([n]
m

)
such that αγ = β equals the

number of ways to choose, for each k ∈ [`+ 1], γk − γk−1− 1 elements of α in a gap of length
βk − βk−1 − 1, where we define β0 = γ0 = 0 and β`+1 = n+ 1, γ`+1 = m+ 1; this number is

c(β, γ) :=
`+1∏
k=1

(
βk − βk−1 − 1
γk − γk−1 − 1

)
. (37)

Consequently, combining the terms in (35) with the same αγ ,

Z∗ =
m∑
`=0

∑
γ∈([m]

` )

∑
β∈([n]

` )
c(β, γ)

∏̀
k=1

ϕwγk (ξβk). (38)

We define, for 0 ≤ ` ≤ m and β ∈
([n]
`

)
,

V`,β :=
∑

γ∈([m]
` )
c(β, γ)

∏̀
k=1

ϕwγk (ξβk) (39)

and

V` :=
∑

β∈([n]
` )
V`,β . (40)

Thus (38) yields the decomposition

Z∗ =
m∑
`=0

V`. (41)

For ` = 0,
([n]

0
)
contains only the empty set ∅, and

V0 = V0,∅ =
(
n

m

)
= EZ∗. (42)

Furthermore, note that two summands in (38) with different β are orthogonal, as a con-
sequence of (25) and independence of different ξi. Consequently, the variables V`,β (` ∈ [m],
β ∈

([n]
`

)
) are orthogonal, and hence the variables V` (` = 0, . . . ,m) are orthogonal.

Let

σ2
` := Var(V`) = EV 2

` =
∑

β∈([m]
` )

EV 2
`,β , 1 ≤ ` ≤ m. (43)
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Note also that by the combinatorial definition of c(β, γ) given before (37), we see that∑
β∈([n]

` )
c(β, γ) =

(
n

m

)
, (44)

since this is just the number of α ∈
([n]
m

)
, and∑

γ∈([m]
` )
c(β, γ) =

(
n− `
m− `

)
, (45)

since this sum is the total number of ways to choose m− ` elements of the n− ` elements of
α in the gaps.

3.3 The projection method
We use the projection method used by [9] to prove asymptotic normality for U -statistics.
Translated to the present setting, the idea of the projection method is to approximate
Z∗ − EZ∗ = Z∗ − V0 by V1, thus ignoring all terms with ` ≥ 2 in the sum in (41). In order
to do this, we estimate variances.

First, by (27) and the independence of the ξi,∥∥∥∏̀
k=1

ϕwγk (ξβk)
∥∥∥

2
=
(∏̀
k=1

E
∣∣ϕwγk (ξβk)

∣∣2)1/2
≤ B`/2. (46)

By Minkowski’s inequality, (39), (46) and (45),∥∥V`,β∥∥2 ≤
∑

γ∈([m]
` )
c(β, γ)B`/2 = B`/2

(
n− `
m− `

)
(47)

or, equivalently,

EV 2
`,β ≤ B`

(
n− `
m− `

)2
. (48)

This leads to the following estimates.

I Lemma 8. For 1 ≤ ` ≤ m,

σ2
` := EV 2

` ≤ σ̂2
` := B`

(
n

`

)(
n− `
m− `

)2
. (49)

Proof. The definition of V` in (40) and (48) yield, since the summands V`,β are orthogonal,

σ2
` := EV 2

` =
∑

β∈([n]
` )

EV 2
`,β ≤

(
n

`

)
B`
(
n− `
m− `

)2
, (50)

as needed. J

Note that, for 1 ≤ ` < m,

σ̂2
`+1
σ̂2
`

= B

(
n
`+1
)(
n−`−1
m−`−1

)2(
n
`

)(
n−`
m−`

)2 = B
n− `
`+ 1

(m− `
n− `

)2
≤ B m2

(`+ 1)n. (51)
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I Lemma 9. If m ≤ B−1/2n1/2, then

Var
(
Z∗ − V1

)
≤ B2m2

(
n− 1
m− 1

)2
. (52)

Proof. By (51) and the assumption, for 1 ≤ ` < m,

σ̂2
`+1
σ̂2
`

≤ 1
`+ 1 ≤

1
2 , (53)

and thus, summing a geometric series,

Var
(
Z∗ − V1

)
=

m∑
`=2

Var
(
V`
)
≤

m∑
`=2

σ̂2
` ≤

m∑
`=2

22−`σ̂2
2 ≤ 2σ̂2

2

= B2n(n− 1)
(
n− 2
m− 2

)2
≤ B2m2

(
n− 1
m− 1

)2
. (54)

J

3.4 The first term V1

For ` = 1, we identify
([n]
`

)
and [n], and we write V1,i := V1,{i}. Note that, by (37),

c(i, j) := c
(
{i}, {j}

)
=
(
i− 1
j − 1

)(
n− i
m− j

)
. (55)

Thus (40) and (39) become

V1 =
n∑
i=1

V1,i (56)

with, using (55),

V1,i =
m∑
j=1

c(i, j)ϕwj (ξi) =
m∑
j=1

(
i− 1
j − 1

)(
n− i
m− j

)
ϕwj (ξi). (57)

Note that V1,i is a function of ξi, and thus the random variables V1,i are independent.
Furthermore, (25) implies EV1,i = 0. Let τ2

i := VarV1,i = EV 2
1,i. Then, see (43),

σ2
1 = VarV1 =

n∑
i=1

VarV1,i =
n∑
i=1

τ2
i . (58)

Observe that it follows from (57) and (24) that

τ2
i =

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1
j − 1

)(
n− i
m− j

)2

−
(
n− 1
m− 1

)2
. (59)

Taking ` = 1 in (48) yields the upper bound

τ2
i = EV 2

1,i ≤ B
(
n− 1
m− 1

)2
, i ∈ [n]. (60)
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Summing over i, or using (49), we obtain

σ2
1 := EV 2

1 ≤ σ̂2
1 := Bn

(
n− 1
m− 1

)2
. (61)

We notice that the upper bound is achievable. Indeed, for w = a · · · a, by (59) and (58),

τ2
i = (p−1

a − 1)
(
n− 1
m− 1

)2
, σ2

1 = n(p−1
a − 1)

(
n− 1
m− 1

)2
. (62)

We show also a general lower bound.

I Lemma 10. There exists c, c′ > 0 such that

σ2
1 ≥

c

m
σ̂2

1 = c′
n

m

(
n− 1
m− 1

)2
. (63)

Proof. We consider the first term in the sum in (57) separately, and write

V1,i = c(i, 1)ϕw1(ξi) + V ′1,i, (64)

where

V ′1,i :=
m∑
j=2

c(i, j)ϕwj (ξi). (65)

We have, by (55), c(i, 1) =
(
n−i
m−1

)
. Consequently, for any i ∈ [n],

c(i, 1)
c(1, 1) =

(
n−i
m−1

)(
n−1
m−1

) =
∏m−2
k=0 (n− i− k)∏m−2
k=0 (n− 1− k)

=
m−2∏
k=0

(
1− i− 1

n− 1− k

)
≥ 1−

m−2∑
k=0

i− 1
n− 1− k ≥ 1− m(i− 1)

n−m+ 1 . (66)

Let δ ≤ 1/4 be a fixed small positive number, chosen later. Assume that i ≤ 1 + δn/m.
In particular, either i = 1 or m ≤ m(i− 1) ≤ δn < n/2, and thus (66) implies

c(i, 1)
c(1, 1) ≥ 1− m(i− 1)

n−m
≥ 1− δn

n/2 = 1− 2δ. (67)

By (45), (67) implies

m∑
j=2

c(i, j) =
(
n− 1
m− 1

)
− c(i, 1) = c(1, 1)− c(i, 1) ≤ 2δc(1, 1). (68)

Hence, by (65), Minkowski’s inequality and (27), cf. (47),

∥∥V ′1,i∥∥2 ≤
m∑
j=2

c(i, j)
∥∥ϕwj (ξi)∥∥2 ≤

m∑
j=2

c(i, j)B1/2 ≤ 2δB1/2c(1, 1). (69)

Furthermore, (28) and (67) yield∥∥c(i, 1)ϕw1(ξi)
∥∥

2 ≥ c(i, 1)c1 ≥ c1(1− 2δ)c(1, 1) ≥ 1
2c1c(1, 1). (70)
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Finally, (64) and the triangle inequality yield, using (70) and (69),∥∥V1,i
∥∥

2 ≥
∥∥c(i, 1)ϕw1(ξi)

∥∥
2 −

∥∥V ′1,i∥∥2 ≥
( 1

2c1 − 2δB1/2)c(1, 1). (71)

We now choose δ := c1/(8B1/2), and find that for some c2 > 0,

τ2
i :=

∥∥V1,i
∥∥2

2 ≥ c2c(1, 1)2, i ≤ 1 + δn/m. (72)

Consequently, by (58),

σ2
1 =

n∑
i=1

τ2
i ≥

δn

m
c2c(1, 1)2 = c3

n

m

(
n− 1
m− 1

)2
. (73)

This proves (63), with c′ := c3 and c = c′/B. J

The next lemma is proved in the Appendix in which we verify Lyapunov’s condition to
prove asymptotic normality of V1.

I Lemma 11. Suppose that m = o(n). Then V1 is asymptotically normal:

V1/σ1
d−→ N(0, 1). (74)

3.5 Proofs of Theorem 5 and 6
We next prove a general theorem showing asymptotic normality under some conditions.

I Theorem 12. Suppose that n→∞ and that

m2
(
n− 1
m− 1

)2
= o
(
σ2

1
)
. (75)

Then

VarZ = p2
w VarZ∗ ∼ p2

wσ
2
1 (76)

and
Z∗ − EZ∗

σ1

d−→ N(0, 1), (77)

Z − EZ
(VarZ)1/2 = Z∗ − EZ∗

(VarZ∗)1/2
d−→ N(0, 1). (78)

Proof. By Lemma 9 and (75),

Var
(Z∗ − V1

σ1

)
= Var(Z∗ − V1)

σ2
1

≤ B2m
2(n−1
m−1

)2
σ2

1
= o(1). (79)

Hence, recalling EV1 = 0,

Z∗ − EZ∗ − V1

σ1

p−→ 0. (80)

Combining (74) and (80), we obtain (77).
Furthermore, by (79), and since the terms in (41) are orthogonal,

VarZ∗ = VarV1 + Var
(
Z∗ − V1

)
= σ2

1 + o(σ2
1) ∼ σ2

1 , (81)

which yields (76), and also shows that we may replace σ1 by (VarZ∗)1/2 in (77), which yields
(78); the equality in (78) is a trivial consequence of (4). J
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Now we are ready to prove our main results.

Proof of Theorem 5. By Lemma 10,

m2(n−1
m−1

)2
σ2

1
≤ Cm

3

n
= o(1). (82)

Thus (75) holds, and the result follows by Theorem 12 together with (3) and (4). J

Recall that in Theorem 6, the range of m is improved, assuming that w is not typical for
the random source with probabilities p = (pa)a∈A that we consider.

Proof of Theorem 6. By Theorem 12, with (75) verified by Lemma 13 below. J

I Lemma 13. Let q = (qa)a∈A be the proportions of the letters in w. Then

σ2
1 ≥

m2

n

(
n

m

)2
‖q − p‖2 = n

(
n− 1
m− 1

)2
‖q − p‖2. (83)

Proof. Let

ψi(x) :=
m∑
j=1

c(i, j)ϕwj (x). (84)

Thus (57) is V1,i = ψi(ξi), and (58) is, since Eψi(ξ) = 0,

σ2
1 = VarV1 =

n∑
i=1

E
[
ψi(ξi)2] = E

n∑
i=1

ψi(ξ)2. (85)

Hence, by the Cauchy–Schwarz inequality,

nσ2
1 = nE

n∑
i=1

ψi(ξ)2 ≥ E
( n∑
i=1

ψi(ξ)
)2
. (86)

Furthermore, by (84) and (44)
n∑
i=1

ψi(x) =
n∑
i=1

m∑
j=1

c(i, j)ϕwj (x) =
m∑
j=1

(
n

m

)
ϕwj (x) =

(
n

m

)∑
a∈A

mqaϕa(x). (87)

Hence, (29) yields∥∥∥ n∑
i=1

ψi(ξ)
∥∥∥

2
= m

(
n

m

)∥∥∥∑
a∈A

qaϕa(ξ)
∥∥∥

2
≥ m

(
n

m

)
‖q − p‖. (88)

Combining (86) and (88) yields (83). J

References
1 E. Bender and F. Kochman. The distribution of subword counts is usually normal. European

J. Combin., 14:265–275, 1993.
2 J. Bourdon and B. Vallée. Generalized pattern matching statistics. In Mathematics and

Computer Science II (Versailles, 2002), Trends. Math., pages 249–265. Birkhäuser, 2002.
3 S. Diggavi and M. Grossglauser. Information transmission over finite buffer channels. IEEE

Trans. Information Theory, 52:1226–1237, 2006.

AofA 2020



17:14 Hidden Words Statistics for Large Patterns

4 R. L. Dobrushin. Shannon’s theorem for channels with synchronization errors. Prob. Info.
Trans., pages 18–36, 1967.

5 M. Drmota, K. Viswanathan, and W. Szpankowski. Mutual information for a deletion channel.
In IEEE International Symposium on Information Theory, 2012.

6 P. Flajolet, W. Szpankowski, and B Vallée. Hidden word statistics. J. ACM, 53(1):147–183,
2006. doi:10.1145/1120582.1120586.

7 Allan Gut. Probability: A Graduate Course. Springer, New York, 2013.
8 R. Gwadera, M. Atallah, and W. Szpankowski. Reliable detection of episodes in event sequences.

In 3rd IEEE Conf. on Data Mining, pages 67–74. IEEE Computer Soc., 2003.
9 W. Hoeffding. A class of statistics with asymptotically normal distribution. Ann. Mat.

Statistics, 19:293–325, 1984.
10 N. Holden and R. Lyones. Lower bounds for trace reconstruction, 2018. arXiv:1808.02336.
11 P. Jacquet andW. Szpankowski. Analytic Pattern Matching: From DNA to Tiwitter. Cambridge

University Press, 2015.
12 S. Janson, B. Nakamura, and D. Zeilberger. On the asymptotic statistics of the number of

occurrences of multiple permutation patterns. J. Comb., 6:117–143, 2015.
13 A. Kalai, M. Mitzenmacher, and M. Sudan. Tight asymptotic bounds for the deletion channel

with small deletion probabilities. In IEEE International Symposium on Information Theory,
2010.

14 Y. Kanoria and A. Montanari. On the deletion channel with small deletion probability. In
IEEE International Symposium on Information Theory, 2010.

15 A. McGregor, E. Price, and S. Vorotnikova. Trace reconstruction revisisted. In European
Symposium on Algorithms, pages 689–700, 2014.

16 M. Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probab. Surveys, pages 1–33, 2009.

17 R. Venkataramanan, S. Tatikonda, and K. Ramchandran. Achievable rates for channels with
deletions and insertions. In IEEE International Symposium on Information Theory, 2011.

18 Y.Peres and A. Zhai. Average-case reconstruction for the deletion channel: subpolynomially
many traces suffice. In FOCS. IEEE Computer Society Press, 2017.

A Appendix

A.1 Proof of Lemma 11
We show that the central limit theorem applies to the sum V1 =

∑
i V1,i in (56). The terms

V1,i are independent and have means EV1,i = 0. We verify Lyapunov’s condition.
The random variable ξ is defined on some probability space (Ω,F , P ) and takes values

in the finite set A. Thus the linear space V of functions Ω→ R of the form f(ξ) has finite
dimension |A|. Moreover, every function in V is bounded. The L2 and L3 norms ‖ · ‖2 and
‖ · ‖3 are thus finite on V , and are thus both norms on the finite-dimensional vector space V ;
hence there exists a constant C such that for any function f ,

‖f(ξ)‖3 ≤ C‖f(ξ)‖2. (89)

In particular, since the definition (57) shows that V1,i is a function of ξi
d= ξ,

‖V1,i‖3 ≤ C‖V1,i‖2 = Cτi, 1 ≤ i ≤ n. (90)

Furthermore, by (60) and (63),

maxi τ2
i

σ2
1

≤
B
(
n−1
m−1

)2
c′ nm

(
n−1
m−1

)2 = C
m

n
= o(1). (91)

https://doi.org/10.1145/1120582.1120586
http://arxiv.org/abs/1808.02336
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Consequently, using (90), (58) and (91),∑n
i=1 E |V1,i|3

σ3
1

=
∑n
i=1 ‖V1,i‖33
σ3

1
≤
C
∑n
i=1 τ

3
i

σ3
1

≤ C
maxi τi

∑n
i=1 τ

2
i

σ3
1

= C
maxi τi
σ1

= o(1). (92)

This shows the Lyapunov condition, and thus a standard form of the central limit theorem,
[7, Theorem 7.2.4 or 7.6.2], yields (74).
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Let A(n, m) be a graph chosen uniformly at random from the class of all vertex-labelled outerplanar
graphs with n vertices and m edges. We consider A(n, m) in the sparse regime when m = n/2 + s
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1 Introduction

1.1 Motivation

In 1959 Erdős and Rényi [5] introduced the so-called Erdős-Rényi graph G(n,m), a graph
chosen uniformly at random from the class of all vertex-labelled graphs on vertex set {1, . . . , n}
with m = m(n) edges. Since then, the asymptotic behaviour of G(n,m) was extensively
studied (see e.g. [2, 8, 11]). In particular, it was investigated how the component structure
of G(n,m) changes, when m = m(n) varies and whether there are ranges of m, where this
change is very significant. Such dramatic changes are called phase transitions. For example,
Erdős and Rényi [6] showed that the order (that is, the number of vertices) of the largest
component in G(n,m) changes drastically when m ∼ n/2. Later Bollobás [1] and Łuczak [14]
looked more closely at the critical range m = n/2 + o(n).

Throughout the paper, we denote the components of a graph G by H1 = H1(G), H2 =
H2(G), . . . in such a way that |Hi| ≥ |Hj |, whenever i ≤ j, where |Hi| is the number of
vertices in Hi. In addition, we use the asymptotic notation from [9].
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I Theorem 1 ([1, 14]). Let m = n/2 + s, where s = s(n) = o(n) and let G = G(n,m). Then
for every i ∈ N the following holds with high probability1.
(i) If s3

n2 → −∞, then Hi is a tree and |Hi| = (1/2 + o(1)) n
2

s2 log |s|
3

n2 .

(ii) If s3

n2 → c ∈ R, then |Hi| = Θp

(
n2/3) .

(iii) If s3

n2 →∞, then |H1| = (4 + o(1)) s. For i ≥ 2, we have |Hi| = o
(
n2/3).

This drastic change of the component structure at m = n/2 + O
(
n2/3) is called the

emergence of the giant component. These results raised the question whether there are also
phase transitions in other classes of random graphs. Łuczak and Pittel [15] considered this
question for F (n,m), a graph chosen uniformly at random from all vertex-labelled forests
with n vertices and m edges. They showed that, analogous to G(n,m), the giant component
in F (n,m) emerges at m = n/2 +O

(
n2/3). Kang and Łuczak [12] showed that the same is

true for P (n,m), a graph chosen uniformly at random from all vertex-labelled planar graphs
with n vertices and m = m(n) edges. Later Kang, Moßhammer, and Sprüssel [13] extended
this result even to graphs on orientable surfaces.

Surprisingly, this problem for a random outerplanar graph is still open, although the
class of outerplanar graphs lies “between” the class of forests and the class of planar graphs
and therefore we expect similar behaviours. (A graph is outerplanar if it has an embedding
in the plane in such a way that every vertex lies on the outer face, equivalently, a graph is
outerplanar iff it contains neither K4 nor K2,3 as a minor.) In this paper we solve this open
problem on the emergence of the giant component in a random outerplanar graph.

Kang, Moßhammer, and Sprüssel [13] used the core-kernel approach to obtain their
results on the giant component in Sg(n,m), a graph chosen uniformly at random from all
vertex-labelled graphs with n vertices, m = m(n) edges and genus at most g (for any constant
g ≥ 0). This method is mainly based on the following decomposition. We call a component
of a graph G complex if it has at least two cycles. We decompose G into the complex part
QG, which is the union of all complex components, and into non-complex components. Then
we extract the core CG, which is the maximal subgraph of QG of minimum degree at least
two. Finally, we consider the kernel KG, which can be obtained from CG by the following
operation. Every maximal path P consisting of vertices of degree two is replaced by an
edge between the vertices of degree at least three that are adjacent to the end vertices of P .
Conversely, starting from kernels (as base cases) we can construct cores by subdividing edges
with additional vertices. Similarly, the complex part can be formed by replacing every vertex
in the core by a rooted tree. Finally, we obtain the whole graph G by choosing the complex
part and non-complex components.

However, we cannot apply the core-kernel approach to outerplanar graphs, because this
method is mainly based on the fact that a graph G is embeddable on a surface if and only
if its kernel KG is. But an analogous statement for outerplanar graphs is not true, since a
subdivision of an outerplanar graph is not necessarily outerplanar. Therefore, in this paper
we shall start directly from cores (as base cases), not from the kernels. One of key steps
in this direct core approach is to investigate how the number of outerplanar cores (and
complex parts, respectively) changes by addition of a vertex and an edge. Using our core
approach we prove that the giant component in a random outerplanar graph with n vertices
and m = m(n) edges emerges at m = n/2 +O

(
n2/3).

1 With probability tending to 1 as n tends to infinity, whp for short.
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1.2 Main results
To state our main results we need to introduce some notations. Given a graph G, we define
the excess of a complex component of G to be the difference between the number of its edges
and the number of its vertices. The excess of G, denoted by ex(G) or `(G), is the sum of the
excesses of all complex components of G. In addition, we denote by nC(G) the number of
vertices in the core CG. Let A(n,m) denote a graph chosen uniformly at random from all
vertex-labelled outerplanar graphs with n vertices and m = m(n) edges.

I Theorem 2. Let m = n/2 + s, where s = s(n) = o(n) and let G = A(n,m). For every
i ∈ N whp the following holds.
(i) If s3

n2 → −∞, then Hi is a tree and |Hi| = (1/2 + o(1)) n
2

s2 log |s|
3

n2 .

(ii) If s3

n2 → c ∈ R, then |Hi| = Θp

(
n2/3) .

(iii) If s3

n2 → ∞, then |H1| = 2s + Op
(
n2/3) . For i ≥ 2, we have |Hi| = Θp

(
n2/3). In

addition, we have nC(G) = Θ
(
sn−1/3) and ex(G) = Θ

(
sn−2/3).

To prove Theorem 2 we shall use some auxiliary results about cactus graphs, which
form a subfamily of the class of outerplanar graphs and are interesting in their own – a
cactus graph is a graph in which every edge belongs to at most one cycle. A simple, but
important observation is that a graph is a cactus graph if and only if its kernel is a cactus
graph. Therefore, analogously to the case of random graphs on surfaces [13] we can apply
the aforementioned core-kernel approach to obtain results on the component structure of a
random cactus graph, such as the order of the largest component, the core, and the kernel.
In addition, we determine the asymptotic number of cubic (i.e. 3-regular) cactus multigraphs
using singularity analysis of generating functions which arise from the standard decomposition
of graphs into smaller building blocks.

We denote by T (n,m) a graph chosen uniformly at random from all vertex-labelled cactus
graphs with n vertices and m = m(n) edges. In addition, let K(2n, 3n) be the class of all
cubic cactus weighted multigraphs with 2n vertices and 3n edges, and Kc(2n, 3n) be the
subclass of K(2n, 3n) containing all connected graphs. Here every multigraph K is counted
with a weight of w(K) = 2−e1(K)−e2(K), where e1(K) denotes the number of loops in K and
e2(K) the number of double edges (see [10, p.5] for details of the weight of a multigraph).

I Theorem 3.
(i) Let m = n/2 + s, where s = s(n), n2/3 � s � n and G = T (n,m). Then whp
|H1| = 2s+Op

(
n2/3), nC(G) = Θ

(
sn−1/3), ex(G) = Θ

(
sn−2/3), and the kernel KG

is cubic.
(ii) There are constants c0, c1, γ > 0 such that as n→∞,

|K(2n, 3n)| = (1 + o(1))c0n
−5/2γ2n(2n)!,

and |Kc(2n, 3n)| = (1 + o(1))c1n
−5/2γ2n(2n)!.

Finally, we use Theorem 2 to show that when m = n/2 + s for n2/3 � s� n, the two
random graphsA(n,m) and T (n,m) are “contiguous”, meaning that they are indistinguishable
in view of properties that hold whp. Such a contiguity of two models will turn out to be very
helpful for further investigations of the behaviour of A(n,m), partly because the core-kernel
approach is applicable for T (n,m).

I Theorem 4. Let m = n/2 + s, where s = s(n) and n2/3 � s� n. Then, whp every edge
in A(n,m) belongs to at most one cycle. In other words, whp A(n,m) is a cactus graph.

AofA 2020
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2 Proof strategy of Theorem 2

We start with the cases s3/n2 → −∞ and s3/n2 → c ∈ R. By a well-known fact (see Lemma
12(i),(ii)) we obtain lim infn→∞ P [G(n,m) is outerplanar] > 0. Thus, each property that
holds whp in G(n,m) is also true whp in A(n,m) and the Statements (i) and (ii) follow from
Theorem 1. Thus, it suffices to prove (iii), for which we use the direct core approach. To
illustrate this approach, we introduce further notations.

I Definition 5. We denote by
A the class of all outerplanar graphs;
Q the class of all complex outerplanar graphs (i.e. complex parts of graphs in A);
C the class of all complex outerplanar graphs with minimum degree at least two (i.e. cores
of graphs in A);
U the class of all graphs without complex components.

In addition, for any graph class X we denote by X (n,m) the subclass containing those graphs
with n vertices and m edges.

I Definition 6. Let G be a graph with n vertices and m edges. We denote by
nQ = nQ(G) the number of vertices in the complex part QG;
nC = nC(G) the number of vertices in the core CG;
` = `(G) the excess of G, i.e. the difference between the number of edges and the number
of vertices in the complex part QG;
nU = nU (G) := n− nQ the number of vertices in G outside the complex part QG;
mU = mU (G) := m−nQ− ` the number of edges in G outside the complex part QG (with
nQ vertices and nQ + ` edges).

We reverse the decomposition in the core approach to obtain relations between the classes
defined above. We observe that each outerplanar graph can be constructed in a unique way
by combining a complex graph and non-complex components. Similarly, a complex graph
can be formed by choosing the core and replacing each vertex of the core by a rooted tree. It
is well known that we have nCn

nQ−nC−1
Q different possibilities for choosing these trees (see

e.g. [17]). Hence, we obtain

|A(n,m)| =
∑

nQ,`

(
n

nQ

)
|Q(nQ, nQ + `)| · |U(nU ,mU )| =

∑
nQ,`

τ(nQ, `), (1)

|Q(nQ, nQ + `)| =
∑

nC

(
nQ
nC

)
|C(nC , nC + `)|nCn

nQ−nC−1
Q =

∑
nC

ρ(nC), (2)

where we define

τ(nQ, `) :=
(
n

nQ

)
|Q(nQ, nQ + `)| · |U(nU ,mU )|,

ρ(nC) :=
(
nQ
nC

)
|C(nC , nC + `)|nCn

nQ−nC−1
Q .

In the sums of (1) and (2) we did not specify precisely in which sets the summation indices lie.
But it is convenient to consider only terms, which are non-zero. We call the corresponding
indices admissible. The next step is to find in the sums (1) and (2) those terms, which are
significantly larger than the other ones. In order to make that more precise, we use the
following terminology.
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I Definition 7. For each n ∈ N let I0(n), I(n) ⊆ N be finite index sets such that I0(n) ⊆ I(n).
In addition, let σn(i) ≥ 0 for each i ∈ I(n). Then the main contribution to the sum∑

i∈I(n) σn(i) is provided by i ∈ I0(n) if
∑
i∈I(n)\I0(n) σn(i) = o

(∑
i∈I(n) σn(i)

)
for n→∞.

In that case, we also say that the terms provided by i ∈ I(n)\I0(n) are negligible.

Now the goal is to find sets InQ
, I` and InC

such that the main contributions to (1) and (2)
are provided by nQ ∈ InQ

, ` ∈ I`, and nC ∈ InC
. Having such sets we immediately get

results about the structure of a random outerplanar graph G = A(n,m). Namely, that whp
nQ(G) ∈ InQ

, `(G) ∈ I`, and nC(G) ∈ InC
. To get strong results, we aim to find sets InQ

, I`,
and InC

, which are as small as possible. Afterwards we use this concentration information
and a double counting argument (see Lemma 21) to deduce the component structure of G.
The main challenge is to determine InQ

, I`, and InC
.

In order to illustrate our main idea of the analysis of the sums (1) and (2), we consider
the generic sums Σn =

∑
i∈I(n) σn(i) from Definition 7. The goal is to find “small” sets I0(n)

such that the main contribution to Σn is provided by i ∈ I0(n) or equivalently “large” sets
I1(n) such that the terms provided by i ∈ I1(n) are negligible in Σn. Our method to find
these sets I1(n) is mainly based on the following observation.

I Lemma 8. For each n ∈ N let I1(n), I(n) ⊆ N be finite index sets such that I1(n) ⊆ I(n)
and let σn(i) ≥ 0 for each i ∈ I(n). In addition, for each n ∈ N let fn : I1(n)→ I(n) be a
function. We assume that there are a function ε with ε(n) = o(1) and a constant M > 0
such that for all n ∈ N, i ∈ I1(n) and j ∈ I(n)

σn(i)
σn (fn(i)) ≤ ε(n), (3)

and
∣∣f−1
n ({j})

∣∣ ≤M. (4)

Then the terms provided by i ∈ I1(n) are negligible in
∑
i∈I(n) σn(i).

In most cases when we apply Lemma 8, the functions fn will be of the form fn(i) = i+g(n)
for some function g : N→ Z or of the form fn(i) = bδic for some constant δ > 0. We note
that such functions fn always fulfil (4) for some M > 0. Thus, it remains to find a function
ε with ε(n) = o(1) such that (3) is satisfied. For simplicity, we demonstrate our method
of doing that only for the case when fn(i) = i + g(n) for some function g with g(n) > 0.
Moreover, we assume that I(n) = {an, an + 1, . . . , bn} for some an < bn. We observe that

σn(i)
σn(fn(i)) = σn(i)

σn(i+ g(n)) =
i+g(n)−1∏
k=i

σn(k)
σn(k + 1) . (5)

Thus, we aim to find good upper bounds for σn(k)
σn(k+1) . We commonly state these bounds in

the form exp(h(n)) for some function h : N→ R. Then, if we assume

σn(k)
σn(k + 1) ≤ exp(h(n)), ∀n ∈ N,∀k ∈ {i, . . . , i+ g(n)− 1} , (6)

we get together with (5), σn(i)
σn(fn(i)) ≤ exp (g(n)h(n)) . If we find such functions g and h with

g(n)h(n)→ −∞ for n→∞, then we can apply Lemma 8 (see Appendix A for an application
of Lemma 8). We can summarise the above idea as follows. The key for a good analysis of
the sum

∑
i∈I(n) σn(i) is to have good bounds for the fractions σn(k)

σn(k+1) or equivalently good
bounds for σn(k+1)

σn(k) .

AofA 2020



18:6 Sparse Random Outerplanar Graphs

Now we describe how we find these bounds for the sums in (1) and (2). In order to find
good bounds for ρ(nC +1)

ρ(nC) , it suffices to estimate |C(nC+1,nC +1+`)|
|C(nC ,nC +`)| (see Lemma 9). To that

end, we construct graphs in C (nC + 1, nC + 1 + `) as follows: Let H ∈ C(nC , nC + `) and an
edge e of H be given. Then we obtain in “most” cases a graph H ′ ∈ C(nC + 1, nC + 1 + `) if
we subdivide e by one vertex and label this new vertex with nC + 1. By a careful analysis of
this construction we will obtain good estimates for ρ(nC+1)

ρ(nC ) .
In the next step we consider the sum in (1) and shall determine InQ

and I`. To that
end, we look at the fractions τ(nQ+1,`)

τ(nQ,`) and τ(nQ,bδ`c)
τ(nQ,`) for a constant δ > 0. To get bounds

for the term |U(nU ,mU )|, we will use Lemma 12. Thus, it remains to find estimates for
|Q(nQ+1,nQ+1+`)|
|Q(nQ,nQ+`)| and |Q(nQ,nQ+bδ`c)|

|Q(nQ,nQ+`)| . For the first fraction (see Lemma 13) we define for
i ∈ {0, 1}

ρi(nC) = ρi(nC , nQ, `) :=
(
nQ + i

nC

)
|C(nC , nC + `)|nC(nQ + i)nQ+i−nC−1.

With this notation we have

|Q(nQ + 1, nQ + 1 + `)|
|Q(nQ, nQ + `)| =

∑
nC
ρ1(nC)∑

nC
ρ0(nC) . (7)

From the analysis of (2) we already know sets I0, I1 such that the main contributions to∑
nC
ρ0(nC) and

∑
nC
ρ1(nC) are provided by nC ∈ I0 and nC ∈ I1, respectively. We will

see that we may assume I := I0 = I1. Then we will get a good bound for (7) if for nC ∈ I
we estimate the fraction

ρ1(nC)
ρ0(nC) = (nQ + 1)2

nQ − nC + 1

(
nQ + 1
nQ

)nQ−nC−1
. (8)

For the fraction |Q(nQ,nQ+bδ`c)|
|Q(nQ,nQ+`)| (see Lemma 16), we will use that

|QC(nQ, nQ + bδ`c)|
|QP (nQ, nQ + `)| ≤

|Q(nQ, nQ + bδ`c)|
|Q(nQ, nQ + `)| ≤

|QP (nQ, nQ + bδ`c)|
|QC(nQ, nQ + `)| , (9)

where QP (nQ, nQ + `) denotes the class of all complex planar graphs with nQ vertices and
nQ + ` edges and QC(nQ, nQ + `) the class of all complex cactus graphs with nQ vertices
and nQ + ` edges. We get estimates for |QC(nQ, nQ + `)| and |QP (nQ, nQ + `)| by using
the core-kernel approach (see Lemmas 14 and 15). In order to show that these bounds are
tight enough, we make the following observations. We will see that there is a constant c > 0
such that

|QP (nQ, nQ + `)|
|QC(nQ, nQ + `)| ≤ c

`, (10)

Thus, we make a multiplicative error of at most c` if we use |QP (nQ, nQ + `)| as an estimate
for |Q(nQ, nQ + `)|. We observe that the possible error increases at most by the constant

factor c if we increase ` by one. On the other hand, we will get τ(nQ,`+1)
τ(nQ,`) ≈ Θ(1)n

3/2
Q

`3/2
1
n . Hence,

τ(nQ, `) decays in ` outside the range ` = Θ
(
nQn

−2/3) “much faster” than the growth of the
error in (10). Having found estimates for |Q(nQ+1,nQ+1+`)|

|Q(nQ,nQ+`)| and |Q(nQ,nQ+bδ`c)|
|Q(nQ,nQ+`)| , we obtain

bounds for τ(nQ+1,`)
τ(nQ,`) and τ(nQ,bδ`c)

τ(nQ,`) . Then we can apply Lemma 8 to find InQ
and I`.
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3 Cores and complex parts: proof of Theorem 2

We recall that for a given graph G we denote by nC the number of vertices in the core CG
and by ` the excess of G. In addition, C is the class of all outerplanar cores. Now we use the
ideas presented in Section 2 and start by finding InC

. To that end, we obtain the following
estimates for |C(nC+1,nC +1+`)|

|C(nC ,nC +`)| .

I Lemma 9.
(i) For all admissible nC and ` we have

|C(nC + 1, nC + 1 + `)|
|C(nC , nC + `)| ≥ nC + `

80 .

(ii) If in addition nC − 8` ≥ 0, then

|C(nC + 1, nC + 1 + `)|
|C(nC , nC + `)| ≤ (nC + `) nC + 1

nC + 1− 8` .

Using Lemma 9 we obtain bounds for ρ(nC +1)
ρ(nC) , which we can use to analyse the sum

in (2) and find InC
. The following two lemmas state that we can choose InC

= Θ
(√

nQ`
)
,

provided that ` = ω(1). In Lemmas 18 and 19 we shall see that we may assume ` = ω(1).

I Lemma 10. There are b, c > 0 such that for all admissible nQ and `, we have∑
nC≤c

√
nQ`

ρ(nC) ≤ exp(−b`)
∑

nC

ρ(nC).

I Lemma 11. For all admissible nQ, ` and c ≥ 14, we have∑
nC≥c

√
nQ`

ρ(nC) ≤ exp
(
− c2`

)∑
nC

ρ(nC).

Next, we recall that U is the class of all graphs without complex components and Q the
class of all complex outerplanar graphs. In addition, for a given graph G we denote by nQ
the number of vertices in the complex part QG, by nU the number of vertices outside the
complex part and by mU the number of edges outside the complex part. We aim to find InQ

and I` by analysing τ(nQ+1,`)
τ(nQ,`) and τ(nQ,bδ`c)

τ(nQ,`) . To that end, we need the following estimates
for |U(nU ,mU )|.

I Lemma 12 ([3, 10, 13]). Let m = n/2 + s with s = s(n) < n/2 and u(n,m) :=
|U(n,m)|

((n
2)
m

)−1
. Then there is a constant c > 0 such that for

f(n,m) := c

(
2
e

)2m−n
mm+1/2nn−2m+1/2

(n−m)n−m+1/2 ,

we have
(i) u(n,m)→ 1, if s3

n2 → −∞;
(ii) for each a ∈ R, there exists a constant b > 0 such that u(n,m) ≥ b, whenever s ≤ an2/3;
(iii) u(n,m) ≤ n−1/2f(n,m), if 0 < s ≤ n3/4

2 ;
(iv) u(n,m) ≤ f(n,m), if s > 0.

In addition, we use Lemmas 10 and 11 and (8) to obtain estimates for |Q(nQ+1,nQ+1+`)|
|Q(nQ,nQ+`)| .

AofA 2020
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I Lemma 13. There exist constants a1, a2, ε > 0 and K ∈ N such that for all admissible nQ
and ` with K ≤ ` ≤ εnQ, we have

(nQ + 1) exp
(

1 + a1
`

nQ

)
≤ |Q(nQ + 1, nQ + 1 + `)|

|Q(nQ, nQ + `)| ≤ (nQ + 1) exp
(

1 + a2
`

nQ

)
.

Next, we estimate |Q(nQ,nQ+bδ`c)|
|Q(nQ,nQ+`)| by using (9). To that end, we need the following two

results, which can be obtained by using the core-kernel approach.

I Lemma 14. There exist constants a1, a2, γ,K, ε > 0 and b1, b2 ∈ R such that for all
admissible nQ and ` with K ≤ ` ≤ εnQ, we have

|QC(nQ, nQ + `)| ≥ a1n
nQ+3`/2−1/2
Q γ``−3`/2−2 exp

(
b1

√
`3n−1

Q

)
;

|QC(nQ, nQ + `)| ≤ a2n
nQ+3`/2−1/2
Q γ``−3`/2−2 exp

(
b2

√
`3n−1

Q

)
.

I Lemma 15 ([13]). There exist constants a3, a4, γ1,K, ε > 0 and b3, b4 ∈ R such that for
all admissible nQ and ` with K ≤ ` ≤ εnQ, we have

|QP (nQ, nQ + `)| ≥ a3n
nQ+3`/2−1/2
Q γ`1`

−3`/2−3 exp
(
b3

√
`3n−1

Q

)
;

|QP (nQ, nQ + `)| ≤ a4n
nQ+3`/2−1/2
Q γ`1`

−3`/2−3 exp
(
b4

√
`3n−1

Q

)
.

I Lemma 16. There exist constants c1, c2,K, ε > 0 and δ ∈ (0, 1) such that for all admissible
nQ and ` with K ≤ ` ≤ εnQ, we have

c`1

(nQ
`

)3/2(bδ`c−`)
≤ |Q(nQ, nQ + bδ`c)|
|Q(nQ, nQ + `)| ≤ c

`
2

(nQ
`

)3/2(bδ`c−`)
.

In order to apply Lemmas 13 and 16, we need the condition K ≤ ` ≤ εnQ. The next
lemma shows that this is indeed not a restriction for our considerations.

I Lemma 17. Let m = m(n) = n/2 + s, where s = s(n) and n2/3 � s� n. Then for each
K ∈ N and ε > 0 the main contribution to

∑
nQ,`

τ(nQ, `) is provided by nQ and ` with
K ≤ ` ≤ εnQ.

In Lemma 12 we observe that u(nU ,mU ) stays close to one, as long as nU ≥ 2mU . Thus,
we will use in that case

((nU
2 )
mU

)
as an estimate for |U(nU ,mU )|. In contrast, u(nU ,mU ) starts

becoming quite small if nU < 2mU . Hence, in that case we will use stronger bounds given by
Lemma 12(iii) and (iv). Thus, we define

T1 :=
∑

nU≥2mU

τ(nQ, `) and T2 :=
∑

nU<2mU

τ(nQ, `).

I Lemma 18. Let m = m(n) = n/2 + s, where s = s(n) and n2/3 � s � n. Then
the main contribution to T1 =

∑
nU≥2mU

τ(nQ, `) is provided by nQ = 2s + Op
(
n2/3) and

` = Θ
(
sn−2/3).

I Lemma 19. Let m = m(n) = n/2 + s, where s = s(n) and n2/3 � s � n. Then
the main contribution to T2 =

∑
nU<2mU

τ(nQ, `) is provided by nQ = 2s + Op
(
n2/3) and

` = Θ
(
sn−2/3).
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Combining Lemmas 18 and 19 we can choose InQ
= 2s+Op

(
n2/3) and I` = Θ

(
sn−2/3).

Thus, we also obtain InC
= Θ

(√
nQ`

)
= Θ

(
sn−1/3). This leads to the following results on

the asymptotic order of the core and excess.

I Lemma 20. Let m = m(n) = n/2 + s, where s = s(n) and n2/3 � s � n, and let
G = A(n,m). Then whp nC(G) = Θ

(
sn−1/3) and ex(G) = Θ

(
sn−2/3).

In order to obtain the order of the largest component, we look at the complex part QG.
Intuitively we expect that the largest component of QG is also the largest in G. The following
lemma tells us that this is indeed the case.

I Lemma 21. Let m = m(n) = n/2 + s, where s = s(n) and n2/3 � s� n. Moreover, let
G = A(n,m). Then nQ(G)− |H1(QG)| = Op

(
n2/3) .

Lemma 21 together with InQ
= 2s+Op

(
n2/3) implies that the complex part QG has one

component with 2s+Op
(
n2/3) vertices, while all other components are of order Op

(
n2/3).

For the non-complex components we observe that mU = nU/2 +Op

(
n

2/3
U

)
. Thus, for each

i ∈ N the i−th largest non-complex component has Θp

(
n2/3) vertices by Theorem 1 and

Lemma 12. This concludes the proof of Theorem 2.

4 Singularity analysis: proof of Theorem 3

It suffices to show Theorem 3(ii), since (i) follows from (ii) and Remark 8.6 in [13]. We
denote by K◦c the class of connected cubic cactus weighted multigraphs, where one vertex
is marked. Moreover, let B be the class of connected cactus weighted multigraphs, where
all but one vertex have degree three and the exceptional vertex has degree two. We denote
by B(z),K(z),Kc(z) and K◦c (z) the exponential generating functions of the classes B,K,Kc,
and K◦c , respectively. By considering the marked vertex of a graph in K◦c and distinguish
some cases we obtain

K◦c (z) = zB(z)
2(1− zB(z)) + zB(z)3

6 .

Similarly, by considering the vertex of degree two in graphs in B we get

B(z) = z

2(1− zB(z)) + z

2B(z)2. (11)

We observe that the even coefficients in B(z) are all zero, i.e. B(z) =
∑
i≥1 b2i−1z

2i−1 for
some b2i−1 ∈ N. By taking B̃(u) :=

∑
i≥1 b2i−1u

i, we observe that (11) translates to

B̃(u) = u

2
(

1− B̃(u)
) + 1

2 B̃(u)2.

Using techniques from [4, 7] we obtain that for u→ r,

B̃(u) = t− ρ
√

1− u

r
+O

(
1− u

r

)
,

where t = 1−
√

3
3 , r = 2

√
3

9 , and ρ =
√

2
3 . Moreover, r is the unique dominant singularity of

B̃(u), due to the aperiodicity of B̃(u). Next, we define K̃◦c (u) := K◦c (
√
u), K̃c(u) := Kc(

√
u)

and K̃(u) := K(
√
u). Using u · K̃◦c (u) = B̃(u)2 − B̃(u)3/3 and Kc(z) =

∫
K◦c (z)/zdz we

obtain that there are k1, k2, k3 ∈ R such that for u→ r

K̃c(u) = k1 + k2

(
1− u

r

)
+ k3

(
1− u

r

) 3
2 +O

((
1− u

r

)2
)
.
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Hence, there is a constant c1 > 0 such that with γ := r−1/2 we obtain[
z2n]Kc(z) = [un] K̃c(u) = c1γ

2nn−
5
2 (1 + o(1)) , as n→∞.

Finally, we use K̃(u) = exp
(
K̃c(u)

)
to obtain that there is a c0 > 0 such that

[
z2n]K(z) =

[un] K̃(u) = c0γ
2nn−

5
2 (1 + o(1)) for n→∞.

5 Blocks and chords: proof of Theorem 4

We will use a double counting argument to show Theorem 4. To that end, we need some
structural information about G = A(n,m). By Lemma 20 we know that whp nC(G) =
Θ
(
sn−1/3) and ex(G) = `(G) = Θ

(
sn−2/3). Apart from that we need the two following

lemmas about blocks and chords, where we call a maximal 2-connected subgraph of G a
block. In addition, a chord is an edge in G that lies in a block B, but not in the unique
Hamiltonian cycle of B.
I Lemma 22. Let m = m(n) = n/2 + s, where s = s(n) and n2/3 � s � n. Then whp
A(n,m) does not contain a vertex that lies in three blocks.

Given a chord xy, we denote by Bxy the block that contains x and y and by B′xy the
unique Hamiltonian cycle of Bxy. A chord xy is said to be good (with respect to a function
h(n) = ω(1)) if there is a path Pxy = z0z1 . . . zrzr+1 from z0 = x to zr+1 = y in B′xy such
that

z1, . . . , zr are not endpoints of any chords in Bxy;
r ≥ n1/3h(n)−1 + 1;
zi has degree 2 for all i ∈ N with 1 ≤ i ≤ n1/3h(n)−1.

I Lemma 23. Let m = m(n) = n/2 +s, where s = s(n) and n2/3 � s� n and h(n) = ω(1).
Then whp A(n,m) has either no chord or a good chord xy (with respect to h(n)).

Now we fix h(n) = ω(1) such that sh(n) = o(n). We denote by A′(n,m) the subclass of
A(n,m) containing those graphs H that have a good chord, have no vertex lying in three
blocks, and satisfies nC(H) = Θ

(
sn−1/3) and `(H) = Θ

(
sn−2/3). Due to Theorem 2 and

Lemmas 22 and 23, it suffices to show |A′(n,m)| = o (|A(n,m)|). To that end, we consider
the following operation for H ∈ A′(n,m):

We choose a good chord xy and denote by Pxy = z0z1 . . . zrzr+1 the corresponding good
path from z0 = x to zr+1 = y.
We choose i ∈ N with 1 ≤ i ≤ n1/3h(n)−1.
We add the edge zizr and delete zry.

We observe that we have at least n1/3h(n)−1 − 1 options for performing this operation. In
addition, we note that the following holds in the new graph H ′ resulting from H by the
above operation:

H ′ ∈ A(n,m), nC(H ′) = nC(H), and `(H ′) = `(H);
zi has degree 3;
zi and zr are neighbours;
there is a path from zi to x such that all internal vertices have degree two;
x lies in at most two blocks;
y is a neighbour of x such that xy lies in the unique Hamiltonian cycle of the block
containing x and y.

Thus, for a fixed graph H ′ there are at most 2` · 3 · 3 · 4 = Θ
(
sn−2/3) many different

graphs H such that we can obtain H ′ by performing our operation in H. Hence, we obtain
|A′(n,m)| = O

(
sn−2/3

n1/3h(n)−1

)
|A(n,m)| = o (|A(n,m)|).
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6 Sketches of proofs of auxiliary results

Proof of Lemma 9. For a graph H ∈ C(nC , nC + `) we consider the following two construc-
tions for building a graph in C(nC + 1, nC + 1 + `):
(C1) We choose an edge e of H which is not a chord. Then we subdivide e by one vertex

and label this new vertex with nC + 1.
(C2) We choose a vertex v in H of degree 3, 4, 5 or 6 and an edge e which is incident to v

and not a chord. Then we relabel v with label nC + 1 and subdivide e by one vertex
which obtain the label of v.

We observe that if H has b chords, then we have nC + `− b options for performing (C1). In
addition, H has at least b/2 vertices of degree at least three and at most 2`/5 vertices of
degree at least seven. Hence, we have at least b/2− 2`/5 choices for performing (C2). Now
if b ≤ 19`/20, then we have at least nC + `/20 choices for (C1). Otherwise if b > 19`/20,
then we have at least nC choices for (C1) and at least 3`/40 options for (C2). We note that
each graph H ′ ∈ C(nC + 1, nC + 1 + `) can be obtained at most once by performing (C1)
and if this is the case, then it cannot be obtained by (C2). Finally, observing that H ′ can be
obtained at most six times by performing (C2) yields statement (i).
For (ii) we call a vertex v of H ′ ∈ C(nC + 1, nC + 1 + `) nice if it has degree two and the
two neighbours are not adjacent. We observe that H ′ can be obtained by (C1) if the vertex
nC + 1 is nice. We note that if v has degree two and is not nice, then v has a neighbour of
degree at least three. Thus, H ′ has at least nC + 1− 8` nice vertices, since the sum of all
degrees of vertices of degree at least three is at most 6`. As H ′ was arbitrary, (ii) follows. J

The statements of Lemmas 10, 11 and 17-19 are all of the type that they determine the main
contribution to some sum. In order to show these results we use Lemma 8, which usually
requires a long and technical computation. Therefore, we provide only sketches of these
proofs in this chapter, but we shall give a full proof of Lemma 10 in Appendix A to illustrate
how to work out the details.

Proof of Lemma 10 and 11. If ` is “small” compared to nC , we get by Lemma 9 that
|C(nC+1,nC +1+`)|
|C(nC ,nC +`)| = nC + Θ(1)`. Using this, we obtain ρ(nC +1)

ρ(nC ) =
(

1− nC

nQ

)(
1 + Θ(1) `

nC

)
.

Hence, we expect that the main contribution to (2) is provided by terms with nC =
Θ
(√

nQ`
)
. J

Proof of Lemma 13. Combining Lemmas 10 and 11 together with (8) we obtain

|Q(nQ + 1, nQ + 1 + `)|
|Q(nQ, nQ + `)| ≈

ρ1
(√

nQ`
)

ρ0
(√

nQ`
)

≈ (nQ + 1) exp
( √

nQ`

nQ −
√
nQ`+ 1

+
nQ −

√
nQ`− 1

nQ

)
≈ (nQ + 1) exp

(
1 + `

nQ

)
. J

Proof of Lemma 14. Using the core-kernel approach from [13] and following the lines of the
proofs of Lemma 4.9(ii) and Corollary 4.11 in [13] yields the assertion. (A detailed proof can
be found in Appendix B). J

Proof of Lemma 16. We note that ` = O (nQ), which implies exp
(

Θ(1)
√
`3n−1

Q

)
=

exp (Θ (1) `). Then the statement follows by combining Lemmas 14 and 15 together
with (9). J
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18:12 Sparse Random Outerplanar Graphs

Proof of Lemma 17. We denote by T the class of cactus graphs. Clearly, we have |A(n,m)|
≥ |T (n,m)|, because every cactus graph is also an outerplanar graph. By the core-kernel
approach we obtain that there is a c > 0 and N ∈ N such that |T (n,m)| ≥

nn−1/2

(n−2s)n/2−s exp
(
n
2 − s+ c · s

n2/3

)
for all n ≥ N . On the other hand, we can bound τ(nQ, `)

by Lemmas 12 and 15. By doing so we obtain that
∑
`<K,nQ

τ(nQ, `) = o (|T (n,m)|). Hence,
the terms provided by ` < K are negligible in

∑
nQ,`

τ(nQ, `). Similarly, one can also show
that this is true for the terms provided by ` > εnQ. J

Proof of Lemma 18. By Lemma 12 we may consider Y1 =
∑
nU≥2mU

υ1(nQ, `) instead of
T1, where υ1(nQ, `) :=

(
n
nQ

)
|Q(nQ, nQ + `)|

((nU
2 )
mU

)
. Then we obtain by Lemma 16 that

υ1(nQ,bδ`c)
υ1(nQ,`) =

(
Θ(1)n

3/2
Q

mU

`3/2n2

)bδ`c−`
. Thus, the main contribution to Y1 is provided by nQ and

` with nQ

` = Θ
(
n4/3m

−2/3
U

)
. Combining that together with Lemma 13 we get

υ1(nQ + 1, `)
υ1(nQ, `)

= exp
(
O
(
n−2/3

)
−Θ(1)

(
1− 2mU

nU

)2
)
.

Thus, the main contribution to Y1 is provided by nQ and ` with nQ+2`−2s
nU

=
(

1− 2mU

nU

)
=

Op
(
n−1/3), which yields nQ + 2`− 2s = Op

(
n2/3). Together with nQ

` = Θ
(
n4/3m

−2/3
U

)
this

implies nQ = 2s+Op
(
n2/3) and ` = Θ

(
sn−2/3). J

Proof of Lemma 19. We define

υ2(nQ, `) :=
(
n

nQ

)
|Q(nQ, nQ + `)|

((nU

2
)

mU

)
c

(
2
e

)2mU−nU m
mU +1/2
U n

nU−2mU +g(nQ)
U

(nU −mU )nU−mU +1/2 ,

where c > 0, h(n) = ω(1) and g(nQ) := 1
2 if nQ ≤ 2s−n2/3h(n) and g(nQ) := 0 otherwise. By

Lemma 12 we can choose h(n) and c so that for all admissible nQ and `, we have τ(nQ, `) ≤
υ2(nQ, `). Similarly as in the proof of Lemma 18 we obtain that the main contribution to
Y2 :=

∑
nU<2mU

υ2(nQ, `) is provided by nQ = 2s+Op
(
n2/3) and ` = Θ

(
sn−2/3). For such

nQ and ` we have g(nQ) = 0 and by Lemma 12(ii) |U(nU ,mU )| = Θp(1)
((nU

2 )
mU

)
. Using that

we obtain υ2(nQ,`)
τ(nQ,`) = Θp(1), which shows the statement. J

Proof of Lemma 21. Let ñ = nQ−|H1(QG)| and we look at the following operation inG. We
add an edge between two different complex components and delete an edge in a non-complex
component. We have whp Ω (sñn) choices for performing this operation. We observe that in
the reverse operation we delete an edge from the core and add some edge. We can do that
whp in O

(
sn−1/3n2) different ways. Hence, it follows that ñ = Op

(
sn5/3

sn

)
= Op

(
n2/3). J

Proof of Lemma 22. Let H ∈ A(n,m) be a graph that has a vertex lying in three blocks.
We consider the following operation in the core CH :

We choose a vertex x that lies in three blocks;
Let X be the component of CH containing x. Then we choose a component Y of X − x
that contains at most nC(H)/3 vertices, but two neighbours of x (in H);
We choose a vertex y in CH which is not in Y and has degree two;
For all neighbours z of x in Y we delete the edge xz and insert the edge yz.

We observe that we have at least 2nC(H)/3− 2` = Θ
(
sn−1/3) options for performing this

operation. On the other hand, we note that in a constructed graph H ′ the following holds:
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H ′ ∈ A(n,m), nC(H ′) = nC(H) and `(H ′) = `(H);
y lies in one or two blocks and has at least degree four;
x has at least degree four.

Hence, a fixed graph H ′ can be constructed in at most 2` ·2 ·2` = Θ
(
s2n−4/3) many different

ways. Now the statement follows, since Θ
(
s2n−4/3

sn−1/3

)
= o(1). J

Proof of Lemma 23. We consider the kernel KH of a graph H ∈ A(n,m) which has a chord.
Then KH has a chord xy with the following property: If B′ is the unique Hamiltonian
cycle of the block B containing x and y, then there is a path z0 = x, z1, . . . , zt+1 = y in
B′ such that there is no chord in B containing one of the vertices z1, . . . , zt. Next, we
choose a random core which can be obtained by subdividing the edges of KH which are
not chords by nC(H)− |KH | additional vertices. We denote by X the number of vertices
which subdivide the edge z0z1. Using a “bins and balls” type argument, we can show that
P [X = j] ≤ P [X = 0] for any j ∈ N and P [X = 0] = O

(
|KH |

nC(H)−|KH |

)
= O

(
n−1/3). Thus,

P
[
X ≤ n1/3h(n)−1] ≤ (n1/3h(n)−1 + 1

)
P [X = 0] = o(1), i.e. whp z0z1 is subdivided by at

least n1/3h(n)−1 + 1 vertices, which shows the statement. J

7 Concluding remarks

Kang, Moßhammer, and Sprüssel [13] showed that graphs on orientable surfaces feature
a second phase transition at m = n + O

(
n3/5), where the number of vertices outside the

largest component becomes sublinear. By Theorem 3 and Remark 8.6 in [13] this is also true
for random cactus graphs. Thus, we believe that this should also be the case for random
outerplanar graphs, since the class of outerplanar graphs lies “between” the class of cactus
graphs and the class of graphs on orientable surfaces. Unfortunately, our method does not
seem to work when m = n+ o(n). This is mainly because the bound in Lemma 16 is not
good enough in that regime.

Theorem 4 raises the following question. How does the probability that A(n,m) is a
cactus graph behave if m grows? By looking at the proof of Theorem 4 a natural guess would
be the following.

I Conjecture 24. If m = αn for 1/2 < α < 1, then the probability that A(n,m) is a cactus
graph is bounded away from 0 and 1.

I Conjecture 25. If m = n+ t for t = o(n), then whp A(n,m) is not a cactus graph.
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A An application of Lemma 8: proof of Lemma 10

To illustrate how to apply Lemma 8 we prove Lemma 10 in this section (the proof of Lemma
11 is similar). We start by getting an upper bound for ρ(nC )

ρ(nC+1) . By Lemma 9(i) we obtain

ρ (nC)
ρ(nC + 1) = nC + 1

nQ − nC
· nCnQ
nC + 1 ·

|C(nC , nC + `)|
|C(nC + 1, nC + 1 + `)|

≤ nCnQ
nQ − nC

1
nC + `

80

=
(

1− `

80nC + `

)(
1 + nC

nQ − nC

)
≤ exp

(
− `

80nC + `
+ nC
nQ − nC

)
.

Next, we observe that ` ≤ nC ≤ nQ, since an outerplanar graph on nC vertices can have at
most 2nC edges. Hence, we can choose c > 0 small enough such that for all nC ≤ 2c

√
nQ`

ρ (nC)
ρ(nC + 1) ≤ exp

(
− `

81nC
+ 2nC

nQ

)
≤ exp

(
− `

81 · 2c
√
nQ`

+
2 · 2c

√
nQ`

nQ

)

≤ exp
(
−

√
`

nQ

)
= exp (h(n)) ,

https://www.math.tugraz.at/~missethan/masters_thesis/arbeit.pdf
https://www.math.tugraz.at/~missethan/masters_thesis/arbeit.pdf
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where h(n) := −
√

`
nQ

. We also define g(n) := c
√
nQ` and fn(nC) := nC + g(n). Then we

obtain for all nC ≤ c
√
nQ`

ρ (nC)
ρ (fn(nC)) =

fn(nC )−1∏
k=nC

ρ(k)
ρ(k + 1) ≤ exp (h(n))g(n) = exp (−c`) .

Finally, that yields∑
nC≤c

√
nQ`

ρ(nC) ≤ exp (−c`)
∑

nC≤c
√
nQ`

ρ(fn(nC)) ≤ exp (−c`)
∑
nC

ρ(nC),

which shows the statement.
We conclude this section by observing an immediate consequence of Lemma 10. Assuming
` = ω(1), which is true due to Lemmas 18 and 19, we have ρ(nC )

ρ(fn(nC )) ≤ exp (−c`) = o(1). Then
Lemma 8 implies that the terms provided by I1(n) :=

{
nC | nC ≤ c

√
nQ`

}
are negligible in∑

nC
ρ(nC).

B Proof of Lemma 14

We shall focus on the proof of the lower bound, since the upper bound can be shown in a
similar way. We will use the core-kernel approach from [13] and recall that T is the class of
all cactus graphs. Then we denote by CC the class of all cores of graphs in T and by KC the
class of all kernels of graphs in T . Analogously to (2) we obtain

|QC(nQ, nQ + `)| =
∑

nC

(
nQ
nC

)
|CC(nC , nC + `)|nCn

nQ−nC−1
Q . (12)

We claim that

|CC(nC , nC + `)| ≥
(
nC
2`

)
|KC(2`, 3`)| (nC − 2`)!

(
nC − 5`− 1

3`− 1

)
. (13)

Indeed, we can construct (not necessarily all) graphs from CC(nC , nC+`) in the following way.
We choose 2` labels from [nC ] for the vertices of the kernel. Then we pick a kernel K from
KC(2`, 3`) and assign the labels chosen before to the vertices of K. Finally, we subdivide
the edges of the kernel by the (nC − 2`) remaining vertices such that each edge is subdivided
by at least two vertices, which guarantees that the obtained graph is simple. Thus, all
constructed graphs are in CC(nC , nC + `). We note that there are w(K) (nC − 2`)!

(
nC−5`−1

3`−1
)

many ways to get such a subdivision, where w(K) = 2−e1(K)−e2(K) and e1(K) denotes the
number of loops in K and e2(K) the number of double edges in K. In addition, we note
that in |KC(2`, 3`)| each kernel K is counted with a weight of w(K). Then inequality (13)
follows by the aforementioned construction. Combining (12) and (13) we obtain

|QC(nQ, nQ + `)| ≥
|KC(2`, 3`)|nnQ−1

Q

(2`)!(3`− 1)!
∑

nC

(nQ)nC
(nC − 5`− 1)3`−1 nCn

−nC

Q

=
|KC(2`, 3`)|nnQ−1

Q

(2`)!(3`− 1)!
∑

nC

ν(nC), (14)

where ν(nC) := (nQ)nC
(nC − 5`− 1)3`−1 nCn

−nC

Q . Next, we observe that

ν(nC + 1)
ν(nC) = nQ − nC

nQ

nC − 5`
nC − 8`+ 1

nC + 1
nC

.
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We note that ν(nC +1)
ν(nC) is decreasing in nC and that ν(nC+1)

ν(nC ) ≈ 1 for nC =
√

3nQ`. Thus,
we expect that we obtain a good approximation for

∑
nC
ν(nC) by considering only terms

whose index is “close” to nC . In the following we make that more precise. We note that for
` ≤ εnQ and ε > 0 small enough, we get

ν (nC) ≥
(

1−
√

3nQ`
nQ

)√3nQ` (√
3nQ`− 8`

)3`
≥ exp (−6`)

√
nQ`

3`
. (15)

Next, we distinguish two cases. First we assume ` ≤ √nQ. Then we get for all nC ≥ nC−
√
nQ

and ε > 0 small enough

ν(nC + 1)
ν (nC) ≤

(
1− nC

nQ

)(
1 + 3`

nC − 8`

)(
1 + 1

nC

)
≤ exp

(
−

√
3`
nQ

+ 3`√
3nQ`−

√
nQ − 8`

+ 3
√
nQ

)

≤ exp
(√

3`
nQ
·

27√nQ√
3nQ`

+ 3
√
nQ

)
= exp

(
30
√
nQ

)
.

Hence, we obtain ν (nC) ≥ ν (nC) exp(−30) for all nC −
√
nQ ≤ nC ≤ nC . Combining that

together with (14), (15) and Theorem 3 yields

|QC(nQ, nQ + `)| ≥
|KC(2`, 3`)|nnQ−1

Q

(2`)!(3`− 1)!
√
nQν (nC) exp(−30)

≥ Θ(1)`nnQ+3`/2−1/2
Q `3`/2−5/2−3`+1/2

= Θ(1)`nnQ+3`/2−1/2
Q `−3`/2−2,

which shows the statement for the case ` ≤ √nQ. Finally, we assume ` > √nQ. Then we get
by (14), (15) and Theorem 3 for ε > 0 small enough

|QC(nQ, nQ + `)| ≥
|KC(2`, 3`)|nnQ−1

Q

(2`)!(3`− 1)! ν (nC)

≥ Θ(1)`nnQ−1+3`/2
Q `3`/2−5/2−3`+1/2

= Θ(1)`nnQ+3`/2−1/2
Q `−3`/2−2n

−1/2
Q

≥ Θ(1)`nnQ+3`/2−1/2
Q `−3`/2−2 exp

(
−

√
`3

nQ

)
,

as desired.
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Abstract
Simple heuristics for (combinatorial) optimization problems often show a remarkable performance in
practice. Worst-case analysis often falls short of explaining this performance. Because of this, “beyond
worst-case analysis” of algorithms has recently gained a lot of attention, including probabilistic
analysis of algorithms.

The instances of many (combinatorial) optimization problems are essentially a discrete metric
space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been
conducted on instances drawn from Euclidean space, which provides a structure that is usually
heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little
work has been done on metric instances drawn from other, more realistic, distributions. Some initial
results have been obtained in recent years, where random shortest path metrics generated from
dense graphs (either complete graphs or Erdős–Rényi random graphs) have been used so far.

In this paper we extend these findings to sparse graphs, with a focus on grid graphs. A random
shortest path metric is constructed by drawing independent random edge weights for each edge
in the graph and setting the distance between every pair of vertices to the length of a shortest
path between them with respect to the drawn weights. For such instances generated from a grid
graph, we prove that the greedy heuristic for the minimum distance maximum matching problem,
and the nearest neighbor and insertion heuristics for the traveling salesman problem all achieve
a constant expected approximation ratio. Additionally, for instances generated from an arbitrary
sparse graph, we show that the 2-opt heuristic for the traveling salesman problem also achieves a
constant expected approximation ratio.
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1 Introduction

Large-scale optimization problems, such as the traveling salesman problem (TSP), are relevant
for many applications. Often it is not possible to solve these problems to optimality within a
reasonable amount of time, especially when instances get larger. Therefore, in practice these
kind of problems are tackled by using approximation algorithms or ad-hoc heuristics. Even
though the worst-case performance of these, often simple, heuristics is usually rather bad,
they often show a remarkably good performance in practice.
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In order to find theoretical results that are closer to the practical observations, probabilistic
analysis has been a useful tool over the last decades. One of the main challenges here is to
choose a probability distribution on the set of possible instances of the problem: on the one
hand this distribution should be sufficiently simple in order to make the probabilistic analysis
possible, but on the other hand the distribution should somehow reflect realistic instances.

In the “early days” of probabilistic analysis, random instances were either generated
by using independent random edge lengths or embedded in Euclidean space (e.g. [2, 11]).
Although these models have some nice mathematical properties that enable the probabilistic
analysis, they have shortcomings regarding their realism: in practice, instances are often
metric, but not Euclidean, and independent random edge lengths are not even metric.

Recently, Bringmann et al. [6] widened the scope of models for generating random
instances by using the following model, already proposed by Karp and Steele in 1985 [17]:
given an undirected complete graph, draw edge weights independently at random and then
define the distance between any two vertices as the total weight of the shortest path between
them, measured with respect to those random weights. Even though this model broadens the
scope of random metric spaces, the resulting instances from this model are not very realistic.

In this paper we adapt this model in the sense that we start with a sparse graph instead
of a complete graph. We believe that this yields instances that are more realistic, for
instance since in practice the underlying (road, communication, etc.) networks are almost
always sparse.

Related Work

The model described above is known by two different names: random shortest path metrics
and first-passage percolation. It was introduced by Hammersley and Welsh under the latter
name as a model for fluid flow through a (random) porous medium [12, 14]. A lot of studies
have been conducted on first-passage percolation, mostly on this model defined on the
lattice Zd.

For first-passage percolation on complete graphs many structural results exist. We know
for instance that the expected distance between two arbitrary fixed vertices is approximately
ln(n)/n and that the distance from a fixed vertex to the vertex that is farthest away from it is
approximately 2 ln(n)/n [6, 15]. We also know that the diameter in this case is approximately
3 ln(n)/n [13, 15]. Bringmann et al. used this model to analyze heuristics for matching, TSP
and k-median [6].

There has been a lot of interest in first-passage percolation on the integer lattice Zd.
Although very few precise results are known for this model, there are many existential results
available. For instance, the distance between the origin and ne1 (where e1 is the unit vector
in the first coordinate direction) is known to be Θ(n) [12]. Also, the set of vertices within
distance t from the origin grows linearly in t and, after rescaling, converges to some convex
domain [20]. The survey by Auffinger et al. [1] contains a thorough overview.

Our Results

This paper aims at extending the results of Bringmann et al. [6] and Klootwijk et al. [18]
to the more realistic setting of random shortest path metrics generated from sparse graphs.
For simplicity, most of the results in this paper assume that these sparse graphs are (finite
square) grid graphs. We believe that the probabilistic analysis of simple heuristics in different
random models will enhance the understanding of the performance of these heuristics, which
are used in many applications.
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In this paper we consider two different types of simple heuristics. In Section 4 we conduct
a probabilistic analysis of three greedy-like heuristics: the greedy heuristic for the minimum-
distance perfect matching problem, and the nearest neighbor heuristic and insertion heuristic
for the TSP. In Section 5 we conduct a probabilistic analysis of a local search heuristic: the
2-opt heuristic for the TSP. We show that all four heuristics yield a constant approximation
ratio for random shortest path metrics generated from (finite square) grid graphs (greedy-like
in Section 4) or arbitrary sparse graphs (local search in Section 5). We are aware that our
results are mostly purely theoretical, because, e.g., cheapest insertion already achieves an
approximation ratio of 2 and is often used to initialize 2-opt [10, 21]. However, they are
non-trivial results about practically used algorithms, beyond the classical worst-case analysis.

2 Notation and Model

For n ∈ N, we use [n] as shorthand notation for {1, . . . , n}. Sometimes we use exp(·) to denote
the exponential function. We denote by X ∼ P that a random variable X is distributed
according to a probability distribution P , where in particular Exp(λ) denotes the exponential
distribution with parameter λ. We write X ∼

∑n
i=1 Exp(λi) if X is the sum of n independent

exponentially distributed random variables having parameters λ1, . . . , λn. In particular,
X ∼

∑n
i=1 Exp(λ) denotes an Erlang distribution with parameters n and λ. If a random

variable X1 is stochastically dominated by a random variable X2, i.e., we have F1(x) ≥ F2(x)
for all x (where Fi is the distribution function of Xi), we denote this by X1 - X2.

Random Shortest Path Metrics

Given an undirected connected graph G = (V,E), the corresponding random shortest path
metric is constructed as follows. First, for each edge e ∈ E, draw a random edge weight w(e)
independently according to the exponential distribution with parameter 1. (Exponential
distributions are technically easiest to handle since they are memoryless.) Then, define the
distance function d : V × V → R≥0 as follows: for each u, v ∈ V , d(u, v) is the total weight
of a lightest u, v-path in G (w.r.t. to the random weights w(·)). Observe that this definition
immediately implies that d(v, v) = 0 for all v ∈ V , that d(u, v) = d(v, u) for all u, v ∈ V , and
that d(u, v) ≤ d(u, s) + d(s, v) for all u, s, v ∈ V . We call the distance function d obtained by
this process a random shortest path metric generated from G.

We use the following notation to denote properties of these random shortest path metrics.
∆max := maxu,v d(u, v) denotes the diameter of the random metric. The ∆-ball around a
vertex v, B∆(v) := {u ∈ V | d(u, v) ≤ ∆}, is the set of vertices within distance ∆ of v. Let
πk(v) denote the kth closest vertex from v (including v itself and breaking ties arbitrarily).
Note that v = π1(v) for all v ∈ V . The distance from a vertex v to this kth closest vertex from
it is denoted by τk(v) := d(v, πk(v)) = min{∆ | |B∆(v)| ≥ k}. Slightly abusing notation, we
let Bτk(v)(v) := {πi(v) | i = 1, . . . , k} denote the set of the k closest vertices to v (including
v itself). The size of the cut in G induced by this set, which plays an important role in our
analysis, is denoted by χk(v) := |δ(Bτk(v)(v))|, where δ(U) := {{u, v} ∈ E | u ∈ U, v 6∈ U}
denotes the cut induced by U .

During our analysis in Sections 4 and 5 it is convenient to describe (partial) solutions to
the minimum-distance perfect matching problem and the TSP as sets of “edges”. In order to
emphasize that such “edges” in principle do not coincide with edges from G, we use quotation
marks to distinguish them.

AofA 2020
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Sparse Graphs

Throughout this paper, G is a sparse connected undirected simple graph on n vertices, i.e., we
have |E| = Θ(|V |) = Θ(n). Most of the results in this paper are restricted to a specific class
of sparse graphs, namely the finite square grid graph. This graph has vertex set V = [N ]2,
and two vertices (x1, y1), (x2, y2) ∈ V are connected if and only if |x1 − x2|+ |y1 − y2| = 1.
It is easy to see that for these graphs we have |V | = n = N2 and |E| = 2N2 − 2N = Θ(n).

For practical reasons we assume in this paper that n is even. Note that the results
concerning the minimum-distance perfect matching problem are only valid when n is even.
All results concerning the travelling salesman problem can easily be extended to odd n.

3 Structural Properties

In this section, we provide some structural properties regarding sparse random shortest
path metrics that are used later on in our probabilistic analyses of the greedy heuristic for
maximum matching and the 2-opt heuristic for the TSP in such random metric spaces. We
start of with some technical lemmas from known literature and some results regarding sums
of lightest edge weights in G (which hold for arbitrary sparse graphs). After that, we consider
a random growth process that is closely related to the special case of random shortest path
metrics generated from a finite square grid graph and use it to derive a clustering result and
a tail bound on the diameter ∆max.

Technical Lemmas

I Lemma 1 ([16, Thm. 5.1(i,iii)]). Let X ∼
∑m
i=1 Exp(ai). Let µ = E[X] =

∑m
i=1 1/ai and

a∗ = mini ai.
(i) For any λ ≥ 1,

P (X ≥ λµ) ≤ λ−1 exp (−a∗µ (λ− 1− ln(λ))) .

(iii) For any λ ≤ 1,

P (X ≤ λµ) ≤ exp (−a∗µ (λ− 1− ln(λ))) .

I Corollary 2. Let X ∼
∑m
i=1 Exp(ai). Let µ = E[X] =

∑m
i=1 1/ai and a∗ = mini ai. For

any x,

P (X ≤ x) ≤ exp (a∗µ (1 + ln(x/µ))) .

Proof. Let λ := x/µ. If λ ≤ 1, the result is a weaker version of Lemma 1(iii). If λ > 1, then
1 + ln(x/µ) > 0 and hence P(X ≤ x) ≤ 1 < exp(a∗µ(1 + ln(x/µ))). J

I Lemma 3 ([5, Thm. 2(ii)]). Let X ∼
∑m
i=1 Exp(λi) and Y ∼

∑m
i=1 Exp(η). Then

X % Y if and only if
m∏
i=1

λi ≤ ηm.

Sums of Lightest Edge Weights in G

All main results in this paper make use of some observations relating sums of the m lightest
edge weights in a sparse graph G. The lemmas and corollary below summarize some structural
properties concerning these sums. They hold for arbitrary sparse graphs G.
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I Lemma 4. Let Sm denote the sum of the m lightest edge weights in G. Then
m−1∑
i=0

Exp
(
e|E|
m

)
- Sm -

m−1∑
i=0

Exp
(
|E|
m

)
.

Proof. Let σk denote the kth lightest edge weight in G. Since all edge weights are independent
and standard exponentially distributed, we have σ1 = S1 ∼ Exp(|E|). Using the memory-
lessness property of the exponential distribution, it follows that σ2 ∼ σ1 + Exp(|E| − 1),
i.e., the second lightest edge weight is equal to the lightest edge weight plus the min-
imum of |E| − 1 standard exponential distributed random variables. In general, we get
σk+1 ∼ σk + Exp(|E| − k). The definition Sm =

∑m
k=1 σk yields

Sm ∼
m−1∑
i=0

(m− i) · Exp (|E| − i) ∼
m−1∑
i=0

Exp
(
|E| − i
m− i

)
.

Now, the first stochastic dominance relation follows from Lemma 3 by observing that
m−1∏
i=0

|E| − i
m− i

= |E|!
m!(|E| −m)! =

(
|E|
m

)
≤
(
e|E|
m

)m
,

where the inequality follows from applying the well-known inequality
(
n
k

)
≤ (en/k)k.

The second stochastic dominance relation follows by observing that |E| ≥ m, which implies
that (|E| − i)/(m− i) ≥ |E|/m for all i = 0, . . . ,m− 1. J

I Corollary 5. Let Sm denote the sum of the m lightest edge weights in G. Then E[Sm] =
Θ(m2/n).

Proof. From Lemma 4 we can immediately see that

E

[
m−1∑
i=0

Exp
(
e|E|
m

)]
≤ E [Sm] ≤ E

[
m−1∑
i=0

Exp
(
|E|
m

)]
.

The result follows by observing that

E

[
m−1∑
i=0

Exp
(
e|E|
m

)]
= m2

e|E|
and E

[
m−1∑
i=0

Exp
(
|E|
m

)]
= m2

|E|
,

and recalling that |E| = Θ(n) by our restrictions imposed on G. J

I Lemma 6. Let Sm denote the sum of the m lightest edge weights in G. Then we have

P (Sm ≤ cn) ≤ exp
(
m

(
2 + ln

(
c|E|n
m2

)))
.

Proof. First of all, Lemma 4 yields

Sm %
m−1∑
i=0

Exp
(
e|E|
m

)
.

Now, we apply Corollary 2 with µ = m2/e|E|, a∗ = e|E|/m, and x = cn to obtain

P (Sm ≤ cn) ≤ P

(
m−1∑
i=0

Exp
(
e|E|
m

)
≤ cn

)
≤ exp

(
m

(
1 + ln

(
ce|E|n
m2

)))
.

The result follows immediately. J
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I Lemma 7. Let Sm denote the sum of the m lightest edge weights in G. Then we have
TSP ≥ MM ≥ Sn/2, where TSP and MM are the total distance of a shortest TSP tour and a
minimum-distance perfect matching, respectively.

Proof. The first inequality is trivial. For the second one, consider a minimum-distance
perfect matching in G, and take the union of the shortest paths between each pair of matched
vertices. This union H must contain at least n/2 different edges of G, since H is a forest
with n vertices, all of which are non-isolated in H. These n/2 different edges together have a
weight of at least Sn/2 and at most MM. So, the second inequality follows. J

A Random Growth Process

In this subsection, and the following ones, we assume that G is a finite square grid graph with
n = N2 vertices. It is possible to obtain qualitatively similar results for more general classes
of sparse graphs, but in order to improve readability we chose to stick with grid graphs.

In order to understand sparse random shortest path metrics it is important to get a
feeling for the distribution τk(v). However, this distribution depends heavily on the exact
position of v within G, which makes it rather complicated to derive it. In order to overcome
this, we derive instead a stochastic upper bound on τk(v) which holds for any vertex v ∈ V .
The following lemma and corollary establish this.

I Lemma 8 ([4, Thm. 3]). Let U ⊆ V . Then we have

|δ(U)| ≥


2
√
|U | if |U | ≤ n/4,√

n if n/4 ≤ |U | ≤ 3n/4,
2
√
n− |U | if |U | ≥ 3n/4.

I Remark. Bollobás and Leader [4] proved (a more general version of) this result for all
|U | ≤ n/2. The result for |U | > n/2 follows immediately from their result by observing that
δ(U) = δ(V \U) and |V \U | = n− |U | for all U ⊆ V .

I Corollary 9. For any v ∈ V and any k ≤ n/4 we have

τk(v) -
k−1∑
i=1

Exp(2
√
i).

Proof. The values of τk(v) are generated by a birth process as follows. (Similar birth
processes have been analysed before (e.g. [6, 8, 18]).) For k = 1 we have τk(v) = 0 and also∑k−1
i=1 Exp(2

√
i) = 0. For k ≥ 2, we can obtain τk(v) from τk−1(v) by looking at all edges that

“leave” Bτk−1(v)(v), i.e., edges (u, x) with u ∈ Bτk−1(v)(v) and x 6∈ Bτk−1(v)(v). By definition
there are χk−1(v) such edges, and from Lemma 8 it follows that χk−1(v) ≥ 2

√
k − 1 (since

k ≤ n/4). Moreover, by definition of τk−1(v) these edges are conditioned to have a length
of at least τk−1(v)− d(v, u). Using the memorylessness of the exponential distribution, it
follows that τk(v)− τk−1(v) is the minimum of χk−1(v) exponential random variables (with
parameter 1), or, equivalently, τk(v)− τk−1(v) ∼ Exp(χk−1(v)) - Exp(2

√
k − 1)), where the

stochastic dominance follows since χk−1(v) ≥ 2
√
k − 1. The result follows by induction. J

Now we use this stochastic upper bound on τk(v) that holds for any v ∈ V to derive some
bounds on the cumulative distribution functions of τk(v) and |B∆(v)|. The final bound is a
crucial ingredient for the construction of clusterings in the next section.
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I Lemma 10. For any ∆ > 0, v ∈ V , and k ∈ [n] such that k ≤ min{n/4,∆2 + 1}, we have

P (τk(v) ≤ ∆) ≥ 1−
√
k − 1
∆ · exp

(
−2(
√
k − 1)

(
∆√
k − 1

− 1− ln
(

∆√
k − 1

)))
.

Proof. From Corollary 9 we can see that

P (τk(v) ≤ ∆) ≥ P

(
k−1∑
i=1

Exp(2
√
i) ≤ ∆

)
= 1− P

(
k−1∑
i=1

Exp(2
√
i) ≥ ∆

)
.

Next, we want to apply the result of Lemma 1(i). For this purpose, set

µ := E

[
k−1∑
i=1

Exp(2
√
i)
]

=
k−1∑
i=1

1
2
√
i

and λ := ∆
µ
,

and observe that
√
k − 1 ≤ µ ≤

√
k − 1. Also note that λ = ∆/µ ≥ ∆/

√
k − 1 ≥ 1 since

k ≤ ∆2 + 1. Lemma 1(i) now yields

1− P

(
k−1∑
i=1

Exp(2
√
i) ≥ ∆

)
≥ 1− λ−1 exp (−2µ(λ− 1− ln(λ))) .

It can now be seen that this final expression is increasing in both µ and λ. Therefore, we
may apply the inequalities µ ≥

√
k − 1 and λ ≥ ∆/

√
k − 1 to obtain the desired result. J

I Lemma 11. For any ∆ > 0, v ∈ V , and k ∈ [n] such that k ≤ min{n/4,∆2 + 1}, we have

P (|B∆(v)| ≥ k) ≥ 1−
√
k − 1
∆ · exp

(
−2(
√
k − 1)

(
∆√
k − 1

− 1− ln
(

∆√
k − 1

)))
.

Proof. This lemma follows immediately from Lemma 10 by observing that |B∆(v)| ≥ k if
and only if τk(v) ≤ ∆. J

I Corollary 12. Let n ≥ 9. There exists a constant c1 ≥ 4 such that for any ∆ > 0 and
v ∈ V we have

P
(
|B∆(v)| < min

{
∆2

4 ,
n

4

})
≤ c1

∆2 .

Proof. First of all, observe that for ∆ ≤ 2 the statement is trivial since in that case we have
c1/∆2 ≥ 1. Therefore, from now on assume w.l.o.g. that ∆ > 2. Let s∆ := min{∆2/4, n/4}.
Using Lemma 11 with k = s∆ we obtain

P (|B∆(v)| < s∆) ≤
√
s∆ − 1

∆ · exp
(
−2(
√
s∆ − 1)

(
∆√
s∆ − 1

− 1− ln
(

∆√
s∆ − 1

)))
.

So, it remains to show that there exists a constant c1 such that for any ∆ > 2 we have

∆
√
s∆ − 1 · exp

(
−2(
√
s∆ − 1)

(
∆√
s∆ − 1

− 1− ln
(

∆√
s∆ − 1

)))
≤ c1.

The tedious computations needed to show that this is true can be found in Appendix A. J
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Clustering

The following theorem shows that we can partition the vertices of sparse random shortest
path metrics into a suitably small number of clusters with a given maximum diameter. Its
proof follows closely the ideas of Bringmann et al. [6], albeit with a different value of s∆.

I Theorem 13. Let G be a finite square grid graph on n = N2 vertices, consider a (sparse)
random shortest path metric generated using this graph, and let ∆ > 0. There exists a
partition of vertices into clusters, each of diameter at most 4∆, such that the expected number
of clusters needed is bounded from above by O(1 + n/∆2), where constant of the O-term is
uniform with respect to ∆.

Proof. Let n be sufficiently large (n ≥ 9 suffices) and let s∆ := min{∆2/4, n/4}, as in
Corollary 12. We call vertex v ∆-dense if |B∆(v)| ≥ s∆ and ∆-sparse otherwise. Using
Corollary 12 we can bound the expected number of ∆-sparse vertices by O(n/∆2). We put
each ∆-sparse vertex in its own cluster (of size 1), which has diameter 0 ≤ 4∆.

Now, only the ∆-dense vertices remain. We cluster them according to the following
process. Consider an auxiliary graph H whose vertices are the ∆-dense vertices and where
two vertices u, v are connected by an edge if and only if B∆(u) ∩B∆(v) 6= ∅. Consider an
arbitrary maximal independent set S in H, and observe that |S| ≤ n/s∆ by construction of
H. We create the initial clusters C1, . . . , C|S|, each of which equals B∆(v) for some vertex
v ∈ S. These initial clusters have diameter at most 2∆.

Next, consider an arbitrary ∆-dense vertex v that is not yet part of any cluster. By the
maximality of S, we know that there must exist a vertex u ∈ S such that A := B∆(u) ∩
B∆(v) 6= ∅. Let x ∈ A be arbitrarily chosen, and observe that d(v, u) ≤ d(v, x) + d(x, u) ≤
∆ + ∆ = 2∆. We add v to the initial cluster corresponding to u, and repeat this step until
all ∆-dense vertices have been added to some initial cluster. By construction, the diameter
of all these clusters is now at most 4∆: consider two arbitrary vertices w, y in a cluster that
initially corresponded to u ∈ S; then we have d(w, y) ≤ d(w, u) + d(u, y) ≤ 2∆ + 2∆ = 4∆.

So, now we have in expectation at most O(n/∆2) clusters containing one (∆-sparse)
vertex each, and at most n/s∆ = O(1 + n/∆2) clusters containing at least s∆ (∆-dense)
vertices each, all with diameter at most 4∆. The result follows. J

A Tail Bound for ∆max

Recall that ∆max = maxu,v d(u, v) is the diameter of the random metric. The following
lemma shows that ∆max ≤ O(

√
n) with high probability. Due to space constraints, its proof

can be found in Appendix B.

I Lemma 14. Let x ≥ 9
√
n. Then we have P(∆max ≥ x) ≤ ne−x.

4 Analyses of Greedy-like Heuristics for Matching and TSP

In this section, we show that three greedy-like heuristics (greedy for minimum-distance
perfect matching, and nearest neighbor and insertion for TSP) achieve a constant expected
approximation ratio on sparse random shortest path metrics generated from a finite square
grid graph. The three proofs are very alike, and the ideas behind them are built upon ideas
by Bringmann et al. [6]: we divide the steps of the greedy-like heuristics into bins, depending
on the value which they add to the total distance of our matching or TSP tour. Using the
clustering (Theorem 13) we bound the total contribution of these bins by O(n), and using
our observation regarding sums of lightest edge weights (Lemmas 6 and 7) we show that the
optimal matching or TSP tour has a distance of Ω(n) with sufficiently high probability.
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Greedy Heuristic for Minimum-Distance Perfect Matching

The first problem that we consider is the minimum-distance perfect matching problem. Even
though solving the minimum-distance perfect matching problem to optimality is not very
difficult (it can be done in O(n3) time), in practice this is often too slow, especially if the
number of vertices is large. Therefore, people often rely on (simple) heuristics to solve this
problem in practical situations. The greedy heuristic is arguably the simplest one among
these heuristics. It starts with an empty matching and iteratively adds a pair of currently
unmatched vertices (an “edge”) to the matching such that the distance between them is
minimal. Let GR denote the total distance of the matching computed by the greedy heuristic,
and let MM denote the total distance of an optimal matching.

It is known that the worst-case approximation ratio for this heuristic on metric instances
is O(nlog2(3/2)) [19]. Moreover, for random Euclidean instances, the greedy heuristic has an
approximation ratio of O(1) with high probability [2], and for random shortest path metrics
generated from complete graphs or Erdős–Rényi random graphs the expected approximation
ratio of the greedy heuristic is O(1) as well [6, 18]. We show that a similar result holds for
sparse random shortest path metrics generated from a finite square grid graph.

I Theorem 15. E[GR] = O(n).

Proof. We put “edges” that are being added to the greedy matching into bins according
to their distance: bin i receives all “edges” {u, v} with d(u, v) ∈

(
4(i − 1), 4i

]
. Let Xi

denote the number of “edges” that end up in bin i and set Yi :=
∑∞
k=iXk, i.e., Yi is the

number of “edges” in the greedy matching with distance at least 4(i − 1). Observe that
Y1 = n/2. For i > 1, by Theorem 13, we can partition the vertices in an expected number
of O(1 + n/(i − 1)2) clusters (where the constant of the O-term is uniform with respect
to i), each of diameter at most 4(i − 1). Just before the greedy heuristic adds for the
first time an “edge” of distance more than 4(i− 1), it must be the case that each of these
clusters contains at most one unmatched vertex (otherwise the greedy heuristic would have
chosen an “edge” between two vertices in the same cluster). Therefore, we can conclude that
E[Yi] ≤ O(1 + n/(i− 1)2) for i > 1. On the other hand, for 4(i− 1) ≥ 9

√
n, it follows from

Lemma 14 that E[Yi] ≤ n · P(∆max ≥ 4(i− 1)) ≤ n2e−4(i−1).
Now we sum over all bins, bound the length of each “edge” in bin i by 4i, and subsequently

use Fubini’s theorem and the derived bounds on E[Yi]. This yields

E[GR] ≤
∞∑
i=1

4i · E[Xi] =
∞∑
i=1

4 · E[Yi] = 2n+
3
√
n∑

i=2
4 · E[Yi] +

∞∑
i=3
√
n

4 · E[Yi]

≤ 2n+
3
√
n∑

i=2
O

(
1 + n

(i− 1)2

)
+

∞∑
i=3
√
n

4n2e−4(i−1) = O(n) +O(n) + o(1) = O(n),

which finishes the proof. J

I Theorem 16. For random shortest path metrics generated from a finite grid graph we have
E
[ GR

MM
]

= O(1).

Proof. Let c > 0 be a sufficiently small constant. Then the approximation ratio of the greedy
heuristic on random shortest path metrics generated from a finite grid graph is

E
[

GR
MM

]
≤ E

[
GR
cn

]
+ P (MM < cn) ·O

(
nlog2(3/2)

)
,
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since the worst-case approximation ratio of the greedy heuristic on metric instances is
O(nlog2(3/2)) [19]. By Theorem 15 the first term is O(1). Combining Lemmas 6 and 7, the
second term can be bounded from above by exp(n(1 + 1

2 ln(c ·Θ(1)))) ·O(nlog2(3/2)) = o(1)
since c is sufficiently small. J

Nearest Neighbor Heuristic for TSP

One of the most intuitive heuristics for the TSP is the nearest neighbor heuristic. This
greedy-like heuristic starts with an arbitrary vertex as its current vertex and iteratively
builds a TSP tour by traveling from its current vertex to the closest unvisited vertex and
adding the corresponding “edge” to the tour (and closing the tour by going back to its first
vertex after all vertices have been visited). Let NN denote the total distance of the TSP tour
computed by the nearest neighbor heuristic, and let TSP denote the total distance of an
optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic on metric instances
is O(ln(n)) [21]. Moreover, for random Euclidean instances, the nearest neighbor heuristic
has an approximation ratio of O(1) with high probability [3], and for random shortest
path metrics generated from complete graphs or Erdős–Rényi random graphs the expected
approximation ratio of the nearest neighbor heuristic is O(1) as well [6, 18]. We show that a
similar result holds for sparse random shortest path metrics generated from a finite square
grid graph.

I Theorem 17. E[NN] = O(n).

Proof. We put “edges” that are being added to the nearest neighbor TSP tour into bins
according to their distance: bin i receives all “edges” {u, v} with d(u, v) ∈

(
4(i − 1), 4i

]
.

Let Xi and Yi be defined as in the proof of Theorem 15. Now we have Y1 = n. For i > 1,
by Theorem 13, we can partition the vertices in an expected number of O(1 + n/(i− 1)2)
clusters (where the constant of the O-term is uniform with respect to i), each of diameter
at most 4(i − 1). Every time the nearest neighbor heuristic adds an “edge” of distance
more than 4(i− 1), this must be an “edge” from a vertex in some cluster Ck to a vertex in
another cluster C`, and the tour must have already visited all other vertices in Ck (otherwise
the nearest neighbor heuristic would have chosen an “edge” to an unvisited vertex in Ck).
Therefore, we can conclude that E[Yi] ≤ O(1 + n/(i− 1)2) for i > 1. On the other hand, for
4(i− 1) ≥ 9

√
n, it follows from Lemma 14 that E[Yi] ≤ n · P(∆max ≥ 4(i− 1)) ≤ n2e−4(i−1).

Note that we have derived exactly the same bounds as in the proof of Theorem 15. So,
using the same calculations as in that proof, it follows now that E[NN] = O(n). J

I Theorem 18. For random shortest path metrics generated from a finite grid graph we have
E
[ NN

TSP
]

= O(1).

The proof of this theorem is similar to that of Theorem 16, with the worst-case approximation
ratio of the nearest neighbor heuristic on metric instances being O(ln(n)) [21].

Insertion Heuristics for TSP

Another group of greedy-like heuristics for the TSP are the insertion heuristics. An insertion
heuristic starts with an initial optimal tour on a few vertices that are selected according to
some predefined rule R, and iteratively chooses (according to the same rule R) a vertex that
is not in the tour yet and inserts this vertex in the current tour such that the total distance
of the tour increases the least. An example of such a rule R would be to start with an initial
(optimal) tour on three arbitrary vertices, and then use farthest insertion, i.e., at each step
insert the vertex whose minimal distance to a vertex already in the tour is maximal.
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Let INR denote the total distance of the TSP tour computed by the insertion heuristic
using rule R, and let TSP denote the total distance of an optimal TSP tour. It is known that
the worst-case approximation ratio for this heuristic for any rule R on metric instances is
O(ln(n)) [21]. Moreover, for random shortest path metrics generated from complete graphs
or Erdős–Rényi random graphs the expected approximation ratio of the nearest neighbor
heuristic is O(1) for any rule R [6, 18]. We show that a similar result holds for sparse random
shortest path metrics generated from a finite square grid graph.

I Theorem 19. E[INR] = O(n).

Proof. We put the steps of the insertion heuristic into bins according to the distance they
add to the tour: bin i receives all steps with a contribution in the range

(
8(i− 1), 8i

]
. Let

Xi and Yi be defined as in the proof of Theorem 15. Again we have Y1 = n. For i > 1, by
Theorem 13, we can partition the vertices in an expected number of O(1+n/(i−1)2) clusters
(where the constant of the O-term is uniform with respect to i), each of diameter at most
4(i− 1). Every time the contribution of a step of the insertion heuristic is more than 8(i− 1),
this step must add a vertex to the tour that is part of a cluster Ck of which no other vertex
is in the tour yet (otherwise the contribution of this step would have been less than 8(i− 1)).
Therefore, we can conclude that E[Yi] ≤ O(1 + n/(i− 1)2) for i > 1. On the other hand, for
8(i−1) ≥ 9

√
n, it follows from Lemma 14 that E[Yi] ≤ 2n ·P(∆max ≥ 8(i−1)) ≤ 2n2e−8(i−1).

Using the same method as in the proof of Theorem 15 (i.e., summing over all bins,
bounding the contribution of each step in bin i by 8i and using Fubini’s theorem and the
derived bounds on E[Yi]), and adding the expected contribution E[TR] of the initial tour, yields

E[INR] ≤ E[TR] +
∞∑
i=1

8i · E[Xi] = E[TR] +
∞∑
i=1

8 · E[Yi]

= E[TR] + 8n+
2
√
n∑

i=2
8 · E[Yi] +

∞∑
i=2
√
n

8 · E[Yi]

≤ O(n) + 8n+
2
√
n∑

i=2
O

(
1 + n

(i− 1)2

)
+

∞∑
i=2
√
n

16n2e−8(i−1) = O(n),

where we used Theorem 17 to bound the expected contribution of the initial tour by
E[TR] ≤ E[TSP] ≤ E[NN] = O(n). Observe that this proof is independent of the choice of
rule R. J

I Theorem 20. For random shortest path metrics generated from a finite grid graph we have
E
[ INR

TSP
]

= O(1).

The proof of this theorem is similar to that of Theorem 16, with the worst-case approximation
ratio of the insertion heuristic on metric instances being O(ln(n)) [21].

5 Analysis of 2-opt for TSP

In this section, we consider the probably most famous local search heuristic for the TSP, the
2-opt heuristic, and show that it achieves a constant expected approximation ratio as well.
Since we do not make use of any of the lemmas that have been tailored to random shortest
path metrics generated from finite square grid graphs, the results in this section hold for
random shortest path metrics generated from any sparse graph.
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The 2-opt heuristic starts with an arbitrary initial solution and iteratively improves this
solution by applying so-called 2-exchanges until no improvement is possible anymore. In a 2-
exchange, two “edges” {u1, v1} and {u2, v2} that are visited in this order in the current solution
are removed from it and replaced by the two “edges” {u1, u2} and {v1, v2} to obtain a new
solution. The improvement of this 2-exchange is δ = d(u1, v1)+d(u2, v2)−d(u1, u2)−d(v1, v2).
A solution is called 2-optimal if δ ≤ 0 for all possible 2-exchanges.

The actual performance of the 2-opt heuristic strongly depends on the choice of the initial
solution and the sequence of improvements. In this paper we look at the worst possible
outcome of the 2-opt heuristic, as others have been doing before (see e.g. [7, 9]), since
this decouples the actual heuristic from the initialization and therefore keeps the analysis
tractable. Let WLO denote the total distance of the worst 2-optimal TSP tour, and let TSP
denote the total distance of an optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic on metric instances
is O(

√
n) [7]. Moreover, for Euclidean instances, the 2-opt heuristic has an expected

approximation ratio of O(1) [7]. For random shortest path metrics on complete graphs,
there is a trivial upper bound of O(ln(n)) for the expected approximation ratio of the 2-opt
heuristic, but it is an open problem whether this can be improved or not [6]. We show that
for random shortest path metrics generated from sparse graphs, the expected approximation
ratio of the 2-opt heuristic is O(1).

The crucial observation that enables us to show this result is the fact that for any
2-optimal solution for the TSP it holds that each edge e ∈ E can appear at most twice in
the disjoint union of all shortest paths that correspond to this solution. In other words, the
total distance of any 2-optimal solution can be bounded by twice the sum of all edge weights
in G. The following lemma and theorems formalize this observation and its consequences.

I Lemma 21. Consider a 2-optimal solution for the TSP. For each i, j ∈ V , let Pij denote
the set of all (directed) edges in the shortest i, j-path. Moreover, let xij = 1 if the solution
travels directly from vertex i to vertex j, and xij := 0 otherwise. Then, for any i, j, k, l ∈ V
with xij = xkl = 1 we have either Pij ∩ Pkl = ∅ or (i, j) = (k, l).

Proof. Let i, j, k, l ∈ V such that xij = xkl = 1, and suppose that (i, j) 6= (k, l). Set
A := {i, j, k, l} and observe that |A| equals either 3 or 4. (|A| = 2 would imply (i, j) = (k, l).)

First, suppose that |A| = 4. Suppose, by way of contradiction, that Pij ∩ Pkl 6= ∅. Take
e = (s, t) ∈ Pij∩Pkl. Then d(i, j) = d(i, s)+w(e)+d(t, j) and d(k, l) = d(k, s)+w(e)+d(t, l).
Moreover, using the triangle inequality, we can see that d(i, k) ≤ d(i, s) + d(s, k) and
d(j, l) ≤ d(j, t) + d(t, l). Let δ = δ(i, j, k, l) denote the improvement of the 2-exchange where
{i, j} and {k, l} are replaced by {i, k} and {j, l}, and note that δ ≤ 0 since we are considering
a 2-optimal solution for the TSP. It follows that

0 ≥ δ = d(i, j) + d(k, l)− d(i, k)− d(j, l)
≥ d(i, s) + w(e) + d(t, j) + d(k, s) + w(e) + d(t, l)− d(i, s)− d(s, k)− d(j, t)− d(t, l)
= 2w(e) > 0,

which is clearly a contradiction. Therefore we must have Pij ∩ Pkl = ∅ in this case.
Now, suppose that |A| = 3. Since the x variables describe a solution to the TSP, this

implies that either j = k or i = l. These cases are analogously, so w.l.o.g. we assume that
j = k. The proof that Pij ∩ Pkl = ∅ in this case is similar to the proof for |A| = 4, with the
exception that here we have δ = d(i, j) + d(j, l)− d(i, j)− d(j, l) = 0 (instead of δ ≤ 0). The
result follows. J
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I Theorem 22. E[WLO] = O(n).

Proof. For each i, j ∈ V , let Pij denote the set of all (directed) edges in the shortest i, j-path.
Moreover, let xij = 1 if WLO travels directly from vertex i to vertex j, and xij = 0 otherwise.

From Lemma 21 we know that each edge e ∈ E can appear at most twice in the disjoint
union of all shortest i, j-paths that form a 2-optimal tour (at most once per direction).
This yields

WLO =
∑
i,j∈V

d(i, j)xij =
∑
i,j∈V
xij=1

∑
e∈Pij

w(e) ≤
∑
e∈E

2w(e) = 2S|E|,

where Sm denotes the sum of the m lightest edge weights in G as before. Combining this
with Corollary 5, it follows that

E[WLO] ≤ E
[
2S|E|

]
= O

(
|E|2

n

)
= O(n),

where the last equality follows by recalling that |E| = Θ(n) for sparse graphs. J

I Theorem 23. For random shortest path metrics generated from a sparse graph we have
E
[WLO

TSP
]

= O(1).

The proof of this theorem is similar to that of Theorem 16, with the worst-case approximation
ratio of the 2-opt heuristic on metric instances being O(

√
n) [7].

6 Concluding Remarks

We have analyzed simple heuristics for matching and TSP on random shortest path metrics
generated from sparse graphs, since we believe that these models yield more realistic metric
spaces than random shortest path metrics generated from dense or even complete graphs.
However, for the greedy-like heuristics we had to restrict ourselves to (finite square) grid
graphs. It is possible to adapt our proofs for all classes of sparse graphs that have sufficiently
fast growing cut sizes |δ(U)| (as long as |U | is not too large). It seems to be sufficient to have
|δ(U)| ≥ Ω(|U |ε) if |U | ≤ c′n for some constants ε, c′ ∈ (0, 1). Sparse graphs that have this
property include d-dimensional grid graphs and other lattice graphs. We raise the question
whether it is possible to extend our findings for these heuristics to arbitrary sparse graphs.

On the other hand, especially if we consider random shortest path metrics generated from
grid graphs, in our view the model could be improved by using only a (possibly random)
subset of the vertices of G for defining the random metric space, i.e., restricting the distance
function d of the metric to some sub-domain V ′ × V ′, where V ′ ⊂ V . It would be interesting
to see whether this model could be analyzed as well.

Finally, in our analysis of the 2-opt local search heuristic, we had to decouple the actual
heuristic from the initialization in order to make the analysis tractable. We leave it as an
open problem to prove rigorous results about hybrid heuristics that consist of an initialization
and a local search algorithm.
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A Computations for the Proof of Corollary 12

In this appendix we show that there exists a constant c1 such that for any ∆ > 2 we have

∆
√
s∆ − 1 · exp

(
−2(
√
s∆ − 1)

(
∆√
s∆ − 1

− 1− ln
(

∆√
s∆ − 1

)))
≤ c1,

where s∆ := min{∆2/4, n/4} and n ≥ 9. We consider two cases: ∆2 ≤ n and ∆2 ≥ n.
For the first case, suppose that ∆2 ≤ n. Then we have s∆ = ∆2/4, and we need to show

that

f(∆) := ∆
√

∆2/4− 1 · exp
(
−(∆− 2)

(
∆√

∆2/4− 1
− 1− ln

(
∆√

∆2/4− 1

)))
≤ c1.

Now observe that λ− 1− ln(λ) is an increasing function of λ for λ ≥ 1. Combining this with
the observation that

√
∆2/4− 1 ≤

√
∆2/4 = ∆/2 (for any ∆ ≥ 2), it follows now that

f(∆) ≤ 1
2∆2e−(∆−2)(1−ln(2)).

So, f(∆) is upper bounded by a function g(∆) of the form g(∆) = c2∆2e−c3∆ for some
constants c2, c3 ≥ 0. It is well-established that such a function has a finite global maximum
(which can be shown to be equal to 1

4c2c
2
3e
−c2

3/2). Therefore, we can conclude that in this
case there exists a constant c1 such that f(∆) ≤ c1 for all ∆ > 2.

For the second case, suppose that ∆2 ≥ n. Then we have s∆ = n/4, and we need to show
that we have

h(∆, n) := ∆
√
n/4− 1 · exp

(
−(
√
n− 2)

(
∆√

n/4− 1
− 1− ln

(
∆√

n/4− 1

)))
≤ c1,

for all pairs (∆, n) satisfying ∆2 ≥ n ≥ 9. The first step of the proof is to show that
h(∆, n) ≤ h(

√
n, n) for all ∆ ≥

√
n. To do so, we compute the partial derivative of

h(∆, n) with respect to ∆, and show that it is non-positive for all ∆ ≥
√
n. The partial

derivative equals

∂h(∆, n)
∂∆ =

(√
n/4− 1− (

√
n− 2)(∆−

√
n/4− 1)

)
· exp

(
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√
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.
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Now observe that for all n ≥ 9 we have√
n/4− 1 ·

√
n− 1√
n− 2

≤
√
n/4 · 2 =

√
n ≤ ∆.

This inequality can be rewritten into
√
n/4− 1 − (

√
n − 2)(∆ −

√
n/4− 1) ≤ 0, which

(together with the fact that ex > 0 for all x ∈ R) shows that the partial derivative of h(∆, n)
with respect to ∆ is indeed non-positive for all ∆ ≥

√
n. So, we may now conclude that

h(∆, n) ≤ h(
√
n, n) for all ∆ ≥

√
n.

Next, notice that h(
√
n, n) = f(

√
n). In the first case we have already shown that there

exists a constant c1 such that f(∆) ≤ c1 for all ∆ > 2. So, it follows immediately that
h(∆, n) ≤ h(

√
n, n) = f(

√
n) ≤ c1 for all pairs (∆, n) satisfying ∆2 ≥ n ≥ 9.

Combining both cases, we can now see that indeed there exists a constant c1 such that
for any ∆ > 2 we have

∆
√
s∆ − 1 · exp

(
−2(
√
s∆ − 1)

(
∆√
s∆ − 1

− 1− ln
(

∆√
s∆ − 1

)))
≤ c1,

where s∆ := min{∆2/4, n/4} and n ≥ 9.
I Remark. Numerical computations show that c1 ≥ 4.0647 is sufficient for this result to hold.

B Proof of Lemma 14

I Lemma 14. Let x ≥ 9
√
n. Then we have P(∆max ≥ x) ≤ ne−x.

Proof. Fix an arbitrary v ∈ V and recall that we assume n to be even (the proof for odd n
is similar, but requires some more care with the bounds of the summations). We first show
that P(τn(v) ≥ x) ≤ e−x. Using a similar argument as in the proof of Corollary 9, we can
derive from Lemma 8 that

τn(v) -
1
4n−1∑
i=1

Exp(2
√
i) +

3
4n∑

i= 1
4n

Exp(
√
n) +

n−1∑
i= 3

4n+1

Exp(2
√
n− i).

From this, we can see that

P (τn(v) ≥ x) ≤ P

 1
4n−1∑
i=1

Exp(2
√
i) +

3
4n∑

i= 1
4n

Exp(
√
n) +

n−1∑
i= 3

4n+1

Exp(2
√
n− i) ≥ x

 .

In order to bound this probability, we once more use Lemma 1(i). For this purpose, set

µ := E

 1
4n−1∑
i=1

Exp(2
√
i) +

3
4n∑

i= 1
4n

Exp(
√
n) +

n−1∑
i= 3

4n+1

Exp(2
√
n− i)

 = n+ 2
2
√
n

+
1
4n−1∑
i=1

1√
i
,

and λ := x/µ, and observe that µ ≤ 1
2
√
n+
√
n− 4 + 1/

√
n ≤ 3

2
√
n. Together with x ≥ 9

√
n

this implies λ ≥ 6. Lemma 1(i) now yields

P (τn(v) ≥ x) ≤ λ−1e−2µ(λ−1−ln(λ)) ≤ e−2µ(λ/2) = e−λµ = e−x,

where we used λ−1−ln(λ) ≥ λ/2 (which holds for all λ ≥ 5.36) for the second inequality. The
final results follows from observing that ∆max = maxv τn(v) and applying the appropriate
union bound. J
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The random greedy algorithm for finding a maximal independent set in a graph has been studied
extensively in various settings in combinatorics, probability, computer science – and even in chemistry.
The algorithm builds a maximal independent set by inspecting the vertices of the graph one at a
time according to a random order, adding the current vertex to the independent set if it is not
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In this paper we present a natural and general framework for calculating the asymptotics of the
proportion of the yielded independent set for sequences of (possibly random) graphs, involving a
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We conclude our work by analysing the random greedy algorithm more closely when the base
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1 Introduction

Algorithmic problems related to finding or approximating the independence number of a
graph, or to producing large independent sets, have long been in the focus of the computer
science community. Computing the size of a maximum independent set is known to be
NP-complete [30] and the groundbreaking work [16] on the difficulty of approximating it
even made its way to The New York Times. A natural way to try to efficiently produce a
large independent set in an input graph G is to output a maximal independent set (MIS)
in G, where a vertex subset I ⊆ V (G) is a MIS in G if I is maximal by inclusion. While
in principle a badly chosen MIS can be very small (like, say, the star center in a star), one
might hope that quite a few of the maximal independent sets will have size comparable in
some sense to the independence number of G.

In this paper, we study the random greedy algorithm for producing a maximal independent
set, which is defined as follows. Consider an input graph G on n vertices. The algorithm first
orders the vertices of G uniformly at random, and then builds an independent set I(G) by
considering each of the vertices v one by one in order, adding v to I(G) if the resulting set
does not span any edge. Observe that the set I(G) is in fact the set of vertices coloured in
the first colour in a random greedy proper colouring of G. A basic quantity to study, which
turns out to have numerous applications, is the proportion of the yielded independent set
(which we call the greedy independence ratio). In particular, it is of interest to study
the asymptotic behaviour of this quantity for natural graph sequences.

Due to its simplicity, this greedy algorithm has been studied extensively by various
authors in different fields, ranging from combinatorics [48], probability [42] and computer
science [18] to chemistry [20]. As early as 1931 this model was studied by chemists under
the name random sequential adsorption (RSA), focusing mostly on d-dimensional grids. The
1-dimensional case was solved by Flory [20] (see also [38]), who showed that the expected
greedy independence ratio tends to ζ2 = (1− e−2)/2 as the path length tends to infinity.

A continuous analogue, where “cars” of unit length “park” at random free locations on
the interval [0, X], was introduced (and solved) by Rényi [43], under the name car-parking
process. The limiting density, as X tends to infinity, is therefore called Rényi’s parking
constant, and ζ2 may be considered as its discrete counterpart (see, e.g., [17]). Following
this terminology, the final state of the car-parking process is often called the jamming limit
of the graph, and the density of this state is called the jamming constant. For dimension 2,
Palásti [39] conjectured, in the continuous case (where unit square “cars” park in a larger
square), that the limiting density is Rényi’s parking constant squared. This conjecture may
be carried over to the discrete case, but to the best of our knowledge, in both cases it remains
open. For further details see [17] (see also [15] for an extensive survey on RSA models).

In combinatorics, the greedy algorithm for finding a maximal independent set was analysed
in order to give a lower bound on the (usually asymptotic) typical independence number of
(random) graphs1. The asymptotic greedy independence ratio of binomial random graphs
with linear edge density was studied by McDiarmid [35] (but see also [25, 9]). The asymptotic
greedy independence ratio of random regular graphs was studied by Wormald [48], who
used the so-called differential equation method (see [49] for a comprehensive survey; see also
[47] for a short proof of Wormald’s result). His result was further extended in [33] for any
regular graph sequence with growing girth (see also [29, 28] for similar extensions for more
sophisticated algorithms). Recently, the case of uniform random graphs with given degree
sequences was studied (independently) in [5] and [11].

1 In this regard, the greedy algorithm has long been superseded by more sophisticated algorithms; these
algorithms often lack, however, the local properties of the greedy algorithm.
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In a more general setting, where we run the random greedy algorithm on a hypergraph,
the model recovers in particular the triangle-free process (or, more generally, the H-free
process). In this process, which was first introduced in [14], we begin with the empty graph,
and at each step add a random edge as long as it does not create a copy of a triangle (or a
copy of H). To recover this process we take the hypergraph whose vertices are the edges
of the complete graph, and whose hyperedges are the triples of edges that span a triangle
(or k-sets of edges that form a copy of H, if H has k edges). Bohman’s key result [7] is
that for this hypergraph, |I| is asymptotically almost surely Θ(n3/2

√
lnn), where n is the

number of vertices. The exact asymptotics was later found by Bohman and Keevash [8] and
by Fiz Pontiveros, Griffiths and Morris [19]. Similar results were obtained for the complete
graph on 4 vertices by Warnke [46] and for cycles independently by Picollelli [41] and by
Warnke [45]. For a discussion about the general setting, see [4].

Consider the following alternative but equivalent definition of the model. Assign an
independent uniform label from [0, 1] to each vertex of the graph, and consider it as the
arrival time of a particle at that vertex. All vertices are initially vacant, and a vertex
becomes occupied at the time denoted by its label if and only if all of its neighbours are
still vacant at that time. Clearly, we do not need to worry that two particles will arrive
at the same time. The set of occupied vertices at time 1 is exactly the greedy MIS. The
advantage of this formulation of the model is that under mild assumptions, it can be defined
on an infinite graph. We may think of the resulting MIS as a factor of iid (fiid)2, meaning,
informally, that there exists a local rule which is unaware of the “identity” of a given vertex,
that determines whether that vertex is occupied. It was conjectured (formally by Hatami,
Lovász and Szegedy [26]) that, using a proper rule, fiid can produce an asymptotically
maximum independent set in random regular graphs. However, this was disproved recently
by Gamarnik and Sudan [23]. In fact, they showed that this kind of local algorithms has a
uniformly limited power for sufficiently large degree, and later Rahman and Virág [42] showed
that the density of fiid independent sets in regular trees and in Poisson Galton–Watson
trees, with large average degree, is asymptotically at most half-optimal, concluding (after
projecting to random regular graphs or to binomial random graphs) that local algorithms
cannot achieve better.

However, on other families of graphs, local algorithms may clearly do better than that. A
trivial example is the set of stars, where the greedy algorithm typically performs perfectly. A
less trivial example is that of uniform random trees. The expected independence ratio of
a uniform random tree is the unique solution of the equation x = e−x (see [36]), which is
approximately 0.5671..., while the greedy algorithm yields an independent set of expected
density 1/2 as we will see in Section 2.3.

Finally, we note that the following parallel/distributed algorithm gives a further way to
look at the maximal independent set generated by the greedy algorithm. After (randomly)
ordering the vertices, we colour “red” all the sinks, that is, all the vertices which appear
before their neighbours in the order, and then remove them and their neighbours from the
graph and continue. Formulated this way, the algorithm is very easy to implement, and
requires only local communication between the nodes. Also, conditioning on the initial
random ordering, it is deterministic, a property which appears to be of importance (see,
e.g., [6]). A main question of interest is the number of rounds it takes the algorithm to
terminate. In [18] it was shown that with high probability (whp)3 it terminates in O(lnn)
steps on any n-vertex graph, and that this is tight. Thus, even though these algorithms may
be suboptimal, they are strikingly simple and can be surprisingly efficient.

2 The letters iid abbreviate “independent and identically distributed”.
3 That is, with probability tending to 1 as n tends to infinity.
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1.1 Our Contribution
The goal of this work is to introduce a simple and fairly general framework for calculating the
asymptotics of the greedy independence ratio for a wide variety of (random) graph sequences.
The general approach is to study a suitable limiting object, typically a random rooted infinite
graph, which captures the local view of a typical vertex, and to calculate the probability that
its root appears in a random independent set in this graph, which is created according to
some natural “local” rule, to be described later. We show that this probability approximates
the expected greedy independence ratio.

Let us formulate this more precisely. For a (random) finite graph G let I(G) be the
random greedy maximal independent set of G, let ι(G) := |I(G)|/|V (G)| be its density, and
let ῑ(G) be its expected density (taken over the distribution of G and over the random greedy
maximal independent set). Suppose (U, ρ) is a random rooted infinite graph (that is, (U, ρ)
is a distribution on rooted infinite graphs). A random labelling σ = (σv)v∈V (U) of U is
a process consisting of iid random variables σv, each distributed uniformly in [0, 1]. The
past of a vertex v, denoted Pv, is the set of vertices in U reachable from v by a monotone
decreasing path (with respect to σ). We say that (U, ρ) has nonexplosive growth if the
past of ρ is almost surely finite. For such (U, ρ) we may define

ι(U, ρ) = P[ρ ∈ I(U [Pρ])],

where P denotes the probability space of the random labellings of U and I respects the vertex
ordering induced by that random labelling.

We say that a graph sequence Gn converges locally to (U, ρ), and denote it by Gn
loc−−→

(U, ρ), if for every r ≥ 0, the ball of radius r around a uniformly chosen point from Gn
converges in distribution to the ball of radius r around ρ in U . To make this notion precise,
we need to endow the space of rooted locally finite connected graphs with a topology. This
will be done rigorously in Section 3. The following key theorem gives motivation for the
definitions above.

I Theorem 1.1. If Gn
loc−−→ (U, ρ) and (U, ρ) has nonexplosive growth then ῑ(Gn)→ ι(U, ρ).

We remark that ι(U, ρ) is almost surely positive, implying that for locally convergent
graph sequences the expected size of the random greedy maximal independent set is linear.

With some mild growth assumptions on the graph sequence, we can also obtain asymptotic
concentration of the greedy independence ratio around its mean. For a graph G let NG(r)
be the random variable counting the number of paths of length at most r from a uniformly
chosen random vertex of G. For two real numbers x, y denote by x ∧ y their minimum. Let

µ∗(r) = lim
M→∞

lim sup
n→∞

E[NGn(r) ∧M ].

We say that Gn has subfactorial path growth (sfpg) if µ∗(r) �r r!.4 Note that every
graph sequence with uniformly bounded degrees has sfpg, but there are graph sequences
with unbounded degrees, and even with unbounded average degree, which still have sfpg.
For most cases, and for all of the applications presented in this paper, requiring that
the somewhat simpler expression lim supn→∞ E[NGn(r)] is subfactorial would have sufficed;
however, requiring that µ∗(r) is subfactorial is less strict, and is more natural for the following
reason: if the graph sequence converges locally, then µ∗(r) is the expected number of paths
of length at most r in the limit. For two functions f1(n), f2(n) write f1(n) ∼ f2(n) if
f1(n) = (1 + o(1))f2(n). We are now ready to state our concentration result.

4 By g1(r)�r g2(r) we mean that limr→∞ g1(r)/g2(r) = 0.
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I Theorem 1.2. If Gn has sfpg and Gn
loc−−→ (U, ρ) then ι(Gn) ∼ ι(U, ρ) with high probability.

I Remark. Gamarnik and Goldberg [22] have established concentration of ι(Gn) around its
mean, under the assumption that the degrees of Gn are uniformly bounded. Here we relax
that assumption.
I Remark. A sequence of graphs which has sfpg does not necessarily have a local limit,
but it does have a locally convergent subsequence. Any limit of such a sequence will have
nonexplosive growth.

When the limiting object is supported on rooted trees, we call the (random) graph
sequence locally tree-like. Our next result is a general differential-equations based tool
for analysing the asymptotics of the greedy independence ratio of locally tree-like (random)
sfpg graph sequences, with the restriction that their limit may be emulated by a simple
branching process with at most countably many types. Roughly speaking, a multitype
branching process is a rooted tree, in which each node is assigned a type, and the number
and types of each node’s “children” follow a law which depends solely on the node’s type,
and is independent for distinct nodes. Such a branching process is called simple if each
such law is a product measure. Formal definitions will be given in Section 5. The following
theorem reduces the problem of calculating ι(U, ρ) in these cases to the problem of solving a
(possibly infinite) system of ODEs.

I Theorem 1.3. Let (U, ρ) be a simple multitype branching process with finite or countable
type set T , root distribution µ̇ and offspring distributions µk→j. For every x ∈ [0, 1] and
k, j ∈ T let µk→jx = Bin(µk→j , x) denote the distribution of the number of children of type j
of a node of type k with random label at most x. Then,

ι(U, ρ) =
∑
k∈T

yk(1)µ̇(k), (1)

where {yk}k∈T is a solution to the following system of ODEs:

y′k(x) =
∑
`∈NT

∏
j∈T

µk→jx (`j)
(

1− yj(x)
x

)`j
, yk(0) = 0. (∗)

We call (∗) the fundamental system of ODEs of the branching process (U, ρ). While
this system of ODEs may seem complicated, in many important cases it reduces to a fairly
simple system, as we will demonstrate in Section 2. In particular, the proof of Theorem 1.3
implies that a solution to (∗) exists, and in the presented applications it will be unique.
In the cases where (U, ρ) is either a single type branching process or a random tree with
iid degrees, we provide an easy probability generating function tool that may be used to
“skip” solving (∗). This is described in Appendix B. We mention that a somewhat related,
but apparently less applicable statement, providing differential equations for the occupancy
probability of a given vertex in bounded degree graphs, appears in [40].
I Remark. The proof of Theorem 1.3 actually yields a stronger statement. Replacing yk(1)
with yk(x) in the RHS of (1), the obtained quantity is the probability that the root is
occupied “at time x”, namely, when vertices whose label is above x are ignored.

We conclude our work with a theorem, according to which on the set of all trees of a
given order the expected size of the greedy MIS achieves its minimum on the path.

I Theorem 1.4. Let n ≥ 1, let T be a tree on n vertices and let Pn be the path on n vertices.
Then ῑ(Pn) ≤ ῑ(T ).

AofA 2020
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This theorem gives us an exact (non-asymptotic) explicit lower bound for the expected greedy
independence ratio of trees (an asymptotic upper bound is trivial). The methods used to
prove it are different from the ones used in the rest of this paper, and are more combinatorial
in nature. In particular, we make use of a transformation on trees, originally introduced by
Csikvári in [12], which gives rise to a graded poset of all trees of a given order, in which the
path is the unique minimum (say). While we are not able to show that this transformation
can only increase the expected greedy independence ratio, we show it can only increase some
other quantitative property of trees, which allows us to argue that paths indeed achieve the
minimum expected greedy independence ratio.

1.2 Organisation of the Paper
We start by a short list of important applications in Section 2, where we prove some new
results and reprove some known ones, using the machinery of Theorems 1.2 and 1.3. In
a few cases, we are assisted by the claims from Appendix B. In particular, we calculate
the asymptotics of the greedy independence ratio for paths and cycles (reproving results
from [20, 38]), binomial random graphs (reproving a result from [35]), uniform random trees
and random functional digraphs (new results) and random regular graphs or regular graphs
with high girth (reproving results from [48, 33]).

We then shift our focus to the formal definitions and proofs. We begin by introducing the
metric that is used to define the notion of local convergence in Section 3, where we also prove
Theorem 1.1. In Section 4 we prove Theorem 1.2, by essentially proving a decay of correlation
between vertices in terms of their distance, and showing that typical pairs of vertices are
distant. In fact, the results of Section 4 imply that even without local convergence, under
mild growth assumptions, the variance of the greedy independence ratio is decaying.

In Section 5 we turn our attention to locally tree-like graph sequences, define (simple,
multitype) branching processes, and prove Theorem 1.3. We enhance this in Appendix B by
introducing a probability generating functions based “trick”, which allows, in some cases, a
significant simplification. In Section 6 we focus further on tree sequences, where we prove
Theorem 1.4. To this end we pinpoint several interesting properties of the expected greedy
independence ratio of the path.

2 Applications

The goal of this section is to demonstrate the power of the introduced framework by finding
ι for several natural (random) graph sequences, via finding their local limit and solving its
fundamental system of ODEs, as described in Theorem 1.3. In some cases, we may use
probability generating functions, as described in Appendix B, to ease calculations.

2.1 Infinite-Ray Stars
For d ≥ 1, let Sd be the infinite-ray star with d branches. Formally, the vertex set of Sd is
{(0, 0)} ∪ {(i, j) : i ∈ [d], j = 1, 2, . . .}, and (i, j) ∼ (i′, j′) if |j − j′| = 1 and either i = i′ or
ii′ = 0. Note that S1 = N and S2 = Z. This is a two-type branching process, with types
d for the root and 1 for a branch vertex. The fundamental system of ODEs in this case is
y′d(x) = (1− y1(x))d, and for d = 1 we obtain the equation y′1 = 1− y1 of which the solution
is y1(x) = 1 − e−x. For d > 1 we obtain the equation y′d = e−dx of which the solution is
yd(x) = 1

d (1− e−dx). Since τ = d a.s., it follows that ι(Sd) = yd(1) = ζd := 1
d (1− e−d). In

particular, ι(N) = 1− e−1 ≈ 0.6321... and ι(Z) = 1
2 (1− e−2) ≈ 0.43233....
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As N is a single type branching process and Z is a random tree with iid degrees, we
may use the alternative approach for calculating ι(N) and ι(Z), as described in Appendix B.
Solving

∫ 1
h
dz
z = 1 gives h = e−1, hence by Claim B.1, ι(N) = 1 − e−1, and by Claim B.2,

ι(Z) = 1
2
(
1− e−2).

The local limit of the sequences Pn of paths and Cn of cycles is clearly Z. It follows from
the discussion above that ι(Pn), ι(Cn) ∼ 1

2 (1− e−2) whp. This was already calculated by
Flory [20] (who only considered the expected ratio) and independently by Page [38], and can
be thought of as the discrete variant of Rényi’s parking constant (see [17]).

2.2 Poisson Galton–Watson Trees

A Poisson Galton–Watson tree Tλ is a single type branching process with offspring distribution
Pois(λ) for some parameter λ ∈ (0,∞). The fundamental ODE in this case is y′(x) = e−λy(x).
(This can be calculated directly using (4)). The solution for this differential equation is
y(x) = ln(1+λx)/λ, hence ι(Tλ) = y(1) = ln(1+λ)/λ. The same result can be obtained using
the probability generating function of the Poisson distribution, as described in Appendix B.

Consider the binomial random graph G(n, λ/n), which is the graph on n vertices
in which every pair of nodes is connected by an edge independently with probability λ/n.
It is easy to check that it converges locally to Tλ, hence ι(G(n, λ/n)) ∼ ln(1 + λ)/λ whp,
recovering a known result (see [35]).

2.3 Size-Biased Poisson Galton–Watson Trees

For 0 < λ ≤ 1, a size-biased Poisson Galton–Watson tree T̂λ can be defined (see [34]) as a
two-type simple branching process, with types s (spine vertices) and t (tree vertices), where
a spine vertex has 1 spine child plus Pois(λ) tree children, a tree vertex has Pois(λ) tree
children, and the root is a spine vertex. The fundamental system of ODEs in this case is

y′s(x) = x

∞∑
d=0

(λx)d

eλxd!

(
1− ys(x)

x

)(
1− yt(x)

x

)d
+ (1− x)

∞∑
d=0

(λx)d

eλxd!

(
1− yt(x)

x

)d
= (1− ys(x))

∞∑
d=0

(λx)d

eλxd!

(
1− yt(x)

x

)d
= (1− ys(x))e−λyt(x),

and from Section 2.2 we obtain yt(x) = ln(1 + λx)/λ. Hence y′s(x) = (1− ys(x))/(1 + λx),
and the solution for that equation is ys(x) = 1− exp(− ln(1 + λx)/λ). Thus ι(T̂λ) = ys(1) =
1− (1 + λ)−1/λ = 1− e−ι(Tλ). In particular, ι(T̂1) = 1/2.

It is a classical (and beautiful) fact (see, e.g., [32, 24]) that if Tn is a uniformly chosen
random tree drawn from the set of nn−2 trees on (labelled) n vertices, then Tn converges
locally to T̂1, hence ι(Tn) ∼ 1/2 whp. To the best of our knowledge, this intriguing fact
was not previously known. In fact, it was shown recently in [27] that if Gn is a sequence of
connected regular graphs that converges to a nondegenerate graphon, and Tn is the uniform
spanning tree of Gn, then Tn also converges locally to T̂1, hence it follows that ι(Tn) ∼ 1/2
whp in this case as well.

It can be easily verified that the local limit of a random functional digraph ~G1(n) (the
digraph on n vertices whose edges are (i, π(i)) for a uniform random permutation π), with
orientations ignored, is also T̂1, hence ι(~G1)→ 1/2 whp.
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2.4 d-ary Trees
For d > 1, let Td be the d-ary tree. It may be viewed as a (single type) branching process. It
thus immediately follows from (4) that y′(x) = (1− y(x))d. The solution for this differential
equation is y(x) = 1− ((d− 1)x+ 1)−1/(d−1). It follows that ι(Td) = y(1) = 1− d−1/(d−1).
This fact also follows easily using the generating functions approach described in Appendix B.
A remarkable example is ι(T2) = 1/2.

2.5 Regular Trees
For d ≥ 3, let Td be the d-regular tree. It may viewed as a two-type branching process
with types d for the root and 1 for the rest of the vertices. The fundamental system
of ODEs in this case is y′d(x) = (1 − y1(x))d, and from Section 2.4 we obtain y1(x) =
1− ((d−2)x+1)−1/(d−2). It follows that y′d(x) = ((d−2)x+1)−d/(d−2), of which the solution
is yd(x) = (1− ((d− 2)x+ 1)−2/(d−2))/2. Therefore,

ι(Td) = yd(1) = 1
2

(
1− (d− 1)−2/(d−2)

)
.

As with d-ary trees, here again the generating functions approach works easily: the solution
to
∫ 1
h(x) z

d−1dz = x is h(x) = (1− (2− d)x)1/(2−d), and the result follows from Claim B.2.
Remarkable examples include ι(T3) = 3/8 and ι(T4) = 1/3.

Since the random regular graph G(n, d) (a uniformly sampled graph from the set of all
d-regular graphs on n vertices, assuming dn is even) converges locally to Td (see, e.g., [50]),
the above result for this case is exactly [48, Theorem 4]. In fact, since any sequence of
d-regular graphs with girth tending to infinity converges locally to Td, we also recover [33,
Theorem 2].

3 Local Limits

In order to study asymptotics, it is often useful to construct a suitable limiting object first.
Local limits were introduced by Benjamini and Schramm [3] and studied further by Aldous
and Steele [2] (A very similar approach has already been introduced by Aldous in [1]). Local
limits, when they exist, encapsulate the asymptotic data of local behaviour of the convergent
graph sequence, and in particular, that of the performance of the greedy algorithm.

We start with basic definitions. Consider the space G• of rooted locally finite connected
graphs viewed up to root preserving graph isomorphisms. We provide G• with the met-
ric dloc((G1, ρ1), (G2, ρ2)) = 2−R, where R is the largest integer for which BG1(ρ1, R) '
BG2(ρ2, R). Here we understand BG(ρ,R) as the rooted subgraph of (G, ρ) spanned by the
vertices of distance at most R from ρ, and ' as rooted-isomorphic. It is an easy fact that
(G•, dloc) is a separable complete metric space, hence it is a Polish space. (G•, dloc), while
being bounded, is not compact (the sequence of rooted stars Sn does not have a convergent
subsequence).

Recall that a sequence of random elements {Xn}∞n=1 converges in distribution to a
random element X, if for every bounded continuous function f we have that E[f(Xn)]→
E[f(X)]. Let Gn be a sequence of (random) finite graphs. We say that Gn converges
locally to a (random) element (U, ρ) of G• if for every r ≥ 0, the sequence BGn(ρn, r)
converges in distribution to BU (ρ, r), where ρn is a uniformly chosen vertex of Gn. Since the
inherited topology on all rooted balls in G• with radius r is discrete, this implies convergence
in total variation distance.

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. Fix ε > 0. For a given labelling σ of U , let `σ be the length of the
longest decreasing sequence (w.r.t. σ) starting from ρ. Since (U, ρ) has nonexplosive growth,
there exists rε for which for every r ≥ rε, P[`σ ≥ r] < ε. For r ≥ 0, let Grn = BGn(ρn, r)
and Ur = BU (ρ, r). We couple Grn and a random permutation π on its vertices with Ur

and a random labelling σ as follows. First, since Grn converges in distribution (and hence
in total variation distance) to Ur, there exists nr such that for all n ≥ nr we have that
P[Grn 6' Ur] ≤ ε. If this event occurs, we say that the coupling has failed. Otherwise,
for some isomorphism ϕ : Grn → Ur, we let π be the permutation on the vertices of
Grn which agrees with the ordering of the labels on the vertices of the isomorphic image
(that is, πu < πv ⇐⇒ σϕ(u) < σϕ(v)). Note that under this coupling, if it succeeds,
ρn ∈ I(Grn) ⇐⇒ ρ ∈ I(Ur). However, on the event “`σ ≤ r”, ρn ∈ I(Grn) ⇐⇒ ρn ∈ I(Gn)
and ρ ∈ I(Ur) ⇐⇒ ρ ∈ I(U [Pρ]). Observing that ῑ(Gn) = P[ρn ∈ I(Gn)] we obtain that for
r ≥ rε and n ≥ nr, |ῑ(Gn)− ι(U, ρ)| < 2ε. J

4 Concentration

With some mild growth assumptions on the graph sequence, without assuming local conver-
gence, we obtain asymptotic concentration of the greedy independence ratio around its mean.
Under these assumptions we show that the dependence between the inclusion of distinct
nodes in the maximal independent set decays as a functions of their distance, a phenomenon
which is sometimes called correlation decay or long-range independence. To prove that the
model exhibits this phenomenon, we show that with high probability there are no “long”
monotone paths emerging from a typical vertex, which is the contents of the next claim. We
then observe that two independent random vertices are typically distant, and use a general
lemma about exploration algorithms to prove decay of correlation. We remark that similar
locality arguments appear in [37]. Some of the proofs are given in Appendix A.

B Claim 4.1. Suppose that Gn has sfpg. Let π be a uniform random permutation of the
vertices of Gn, and let u be a uniformly chosen vertex from Gn. Then, for every ε > 0, there
exists r > 0 such that for every large enough n, the probability that there exists a monotone
decreasing path of length r (w.r.t. π), emerging from u, is at most ε.

B Claim 4.2. Suppose that Gn has sfpg. Let u, v be two independently and uniformly
chosen vertices from Gn. Then, for every ε, r ≥ 0 we have that for every large enough n,
P[distGn(u, v) ≤ r] ≤ ε.

Let G = (V,E) be a graph. An exploration-decision rule for G is a (deterministic)
function Q, whose input is a pair (S, g), where S is a non-empty sequence of distinct vertices
of V , and g : S → [0, 1], and whose output is either a vertex v ∈ V r S or a “decision” T or
F. An exploration-decision algorithm for G, with rule Q, is a (deterministic) algorithm
A, whose input is an initial vertex v ∈ V and a function f : V → [0, 1], which outputs
T or F, and operates as follows. Set u1 = v. Suppose A has already set u1, . . . , ui. Let
x = Q((u1, . . . , ui), f �{u1,...,ui}). If x ∈ V , set ui+1 = x and continue. Otherwise stop and
return x. We call the set u1, . . . , ui at this stage the range of the algorithm’s run. We
denote the output of the algorithm by A(v, f) and its range by rngA(v, f). The radius of the
algorithm’s run, denoted radA(v, f), is the maximum distance between v and an element of
its range.

I Lemma 4.3. Let ε > 0. Let G = (V,E) be a graph, let σ be a random labelling of
its vertices, let A be an exploration-decision algorithm for G and let r ≥ 1. Let u, v be
sampled independently from some distribution over V . Suppose that w.p. at least 1− ε both
distG(u, v) ≥ 3r, and radA(u, σ), radA(v, σ) ≤ r. Then | cov[A(u, σ),A(v, σ)]| = oε(1).
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We now apply the lemma in our setting.

B Claim 4.4. Suppose that Gn has sfpg. Let u, v be two independently and uniformly chosen
vertices from Gn. Denote by Ru, Rv the events that u ∈ I(Gn), v ∈ I(Gn), respectively.
Then | cov[Ru, Rv]| = o(1).

Proof. Let ε > 0. We describe an exploration-decision algorithm A by defining its rule. Given
a vertex sequence S = (u1, . . . , ui) and labels g : S → [0, 1], the rule checks for monotone
decreasing sequences emerging from u1, in S, with respect to g. Denote by E the set of ends
of these sequences. If there are vertices in V r S with neighbours in E , return an arbitrary
vertex among these. Otherwise, perform the Greedy MIS algorithm on the past of u1 inside
S, and return T if u1 ends up in the MIS, or F otherwise. We observe that if σ is a random
labelling of Gn then for w ∈ {u, v} the event A(w, σ) = T is in fact the event Rw. We also
note that if the longest monotone decreasing sequence, w.r.t. σ, emerging from w is of length
r − 1, then radA(w, σ) ≤ r.

By Claim 4.1 there exists r > 0 such that for every large enough n the probability that
there exists a monotone decreasing path of length r − 1 from either u or v is at most ε. By
Claim 4.2, for large enough n, the probability that the distance between u and v is at most
3r is at most ε. Therefore, by Lemma 4.3, | cov[A(u, σ),A(v, σ)]| = oε(1). C

B Claim 4.5. Suppose that Gn has sfpg. Then Var[ι(Gn)] = o(1).

Proof. For a vertex w, denote by Rw the event that w ∈ I(Gn). Let u, v be two independently
and uniformly chosen vertices from Gn. Since the random variables E[Ru | u] and E[Rv | v]
are independent, by Claim 4.4,

Var[ι(Gn)] = E[cov[Ru, Rv | u, v]]
= cov[Ru, Rv]− cov[E[Ru | u]E[Rv | v]] = cov[Ru, Rv] = o(1). C

Proof of Theorem 1.2. Let ε > 0. Note that since Gn has sfpg, (U, ρ) has nonexplosive
growth, hence by Theorem 1.1 there exists n0 such that for every n ≥ n0, |ῑ(Gn)−ι(U, ρ)| ≤ ε.
Thus, by Chebyshev’s inequality and Claim 4.5,

P[|ι(Gn)− ι(U, ρ)| > 2ε] ≤ P[|ι(Gn)− ῑ(Gn)| > ε] ≤ ε−2 Var[ι(Gn)] = o(1). J

5 Branching Processes and Differential Equations

As promised, we begin with a formal definition of multitype branching processes. Let T
be a finite or countable set, which we call the type set. Let µ̇ be a distribution on T ,
which we call the root distribution, and for each k ∈ T let (µk→j)j∈T be an offspring
distribution, which is a distribution on vectors with nonnegative integer coordinates. Let
τ ∼ µ̇ and for every finite sequence of natural numbers v let (ξk→jv )j∈T ∼ (µk→j)j∈T be
a random vector, where these random vectors are independent for different indices v and
are independent of τ . A multitype branching process (Zt)t∈N with type set T , root
distribution µ̇ and offspring distributions (µk→j)j∈T is a Markov process on labelled trees,
in which each vertex is assigned a type in T , which may be described as follows. At time
t = 0 the tree Z0 consists of a single vertex of type τ , labelled by the empty sequence. At
time t + 1 the tree Zt+1 is obtained from Zt as follows. For each k ∈ T and v of length
t and type k in Zt, we add the vertices v _ i for all 0 ≤ i <

∑
j∈T ξ

k→j
v , having exactly

ξk→jv of them being assigned type j, uniformly at random, and connecting them with edges
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to v.5 If in addition (µk→j)j∈T is a product measure, namely, if ξk→jv ∼ µk→j are sampled
independently for distinct j ∈ T , the process is called simple. We often think of a multitype
branching process as the possibly infinite (random) rooted graph Z∞ =

⋃
t≥0 Zt, rooted at

the single vertex of Z0.

Proof of Theorem 1.3. Let σ be a random labelling of U . To ease notation, set ι = ι(U, ρ)
and I = I(U [Pρ]), and recall that ι = P[ρ ∈ I]. Let τ ∼ µ̇ be the type of the root. For k ∈ T
and x ∈ [0, 1], define ι(k) = P[ρ ∈ I | τ = k] and ι(k)

x = P[ρ ∈ I | σρ = x, τ = k]. Note that
this is well defined, even if the event that σρ = x has probability 0. Let further

ι
(k)
<x =

∫ x

0
ι(k)
z dz,

so ι(k) = ι
(k)
<1 , hence

ι =
∑
k∈T

ι
(k)
<1 · P[τ = k].

It therefore suffices to show that the family yk(x) := ι
(k)
<x satisfies (∗) (it clearly satisfies the

boundary conditions). The key observation is that distinct children in the past of the root
are roots to independent subtrees. Formally, conditioning on the event that v1, . . . , va are
the children of ρ in its past, the events “vi ∈ I” for i = 1, . . . , a are mutually independent.
Since ρ ∈ I if and only if vi /∈ I for every i = 1, . . . , a,

y′k(x) = (ι(k)
<x)′ = ι(k)

x =
∑
`∈NT

∏
j∈T

µk→jx (`j)(1− P[ρ ∈ I | σρ < x, τ = j])`j

=
∑
`∈NT

∏
j∈T

µk→jx (`j)
(

1− yj(x)
x

)`j
. J

6 Lower Bound on Tree Sequences

Let us focus on tree sequences. How large can the expected greedy independent ratio be? How
small can it be? The sequence of stars is a clear witness that the only possible asymptotic
upper bound is the trivial one, namely 1. Apparently, the lower bound is not trivial. An
immediate corollary of Theorems 1.1 and 1.4 is that a tight asymptotic lower bound is
ι(Z) = (1− e−2)/2 (compare with [44]). The statement of Theorem 1.4 is, however, much
stronger: paths achieve the exact (non-asymptotic) lower bound for the expected greedy
independence ratio among the set of all trees of a given order.

To prove Theorem 1.4 we will need to first understand the behaviour of the greedy
algorithm on the path.

For a graph G denote by i(G) the cardinality of its greedy independent set, and let
ī(G) = E[i(G)]. Let αn = ī(Pn). Suppose the vertices of Pn are 1, . . . , n, and let S be the
vertex which is first in the permutation of the vertices. Setting α−1 = α0 = 0, we obtain
the recursion

αn = E[E[i(Pn) | S]] = 1
n

n∑
i=1

(1 + αi−2 + αn−i−1) = 1 + 2
n

n∑
i=1

αi−2, (2)

5 By v _ i we mean the sequence obtained from v by appending the element i.
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from which an explicit formula for αn can be derived (see [21]). We will need the following
two properties of αn, whose proofs (which are rather long and technical) we omit in this
extended abstract.

B Claim 6.1. αn is monotone increasing and subadditive.

Let ξn,` =
∑`
j=1 αn+j .

B Claim 6.2. For every `, a, b ≥ 1 it holds that ξa,` + ξb,` ≤ ξa+b,` + ξ0,`.

6.1 KC-Transformations
In this section we introduce the main tool that will be used to prove Theorem 1.4. Let T be
a tree and let x, y be two vertices of T . We say that the path between x and y is bare if for
every vertex v 6= x, y on that path, dT (v) = 2. Suppose x, y are such that the unique path
P in T between them is bare, and let z be the neighbour of y in that path. For a vertex v,
denote by N(v) the neighbours of v in T . The KC-transformation KC(T, x, y) of T with
respect to x, y is the tree obtained from T by deleting every edge between y and N(y) r z

and adding the edges between x and N(y) r z instead. Note that KC(T, x, y) ' KC(T, y, x),
so if we care about unlabelled trees, we may simply write KC(T, P ), for a bare path P in T .
The term “KC-transformation” was coined by Bollobás and Tyomkyn [10] after Kelmans,
who defined a similar operation on graphs [31], and Csikvári, who defined it in this form [12]
under the name “generalized tree shift” (GTS).

A nice property of KC-transformations, first observed by Csikvári [12], is that they induce
a graded poset on the set of unlabelled trees of a given order, which is graded by the number
of leaves. In particular, this means that in that poset, the path is the unique minimum (say)
and the star is the unique maximum. Note that if P contains a leaf then KC(T, P ) ' T ,
and otherwise KC(T, P ) has one more leaf than T . In the latter case, we say that the
transformation is proper.

Here is the plan for how to prove Theorem 1.4. For a tree T and a vertex v, denote by
T ? v the forest obtained from T by shattering T at v, that is, by removing from T the
set {v} ∪ N(v). Denote by κv(T ) the multiset of orders of trees in the forest T ? v, and
by κ(T ) the sum of κv(T ) for all vertices v in T . Note that for trees with up to 3 vertices,
Theorem 1.4 is trivial; we proceed by induction. By the induction hypothesis,

ī(T ) = 1
n

∑
v∈V (T )

∑
S∈T?v

(1 + ī(S)) ≥ 1 + 1
n

∑
v∈V (T )

∑
k∈κv(T )

αk = 1 + 1
n

∑
k∈κ(T )

αk. (3)

Therefore, it makes sense to study the quantities νv(T ) =
∑
k∈κv(T ) αk and ν(T ) =∑

k∈κ(T ) αk. In fact, it would suffice to show that for any tree T on n vertices ν(T ) ≥ ν(Pn),
since by (2) and (3) we would obtain

ī(T ) ≥ 1 + 1
n
ν(T ) ≥ 1 + 1

n
ν(Pn) = ī(Pn).

We therefore reduced our problem to proving the following theorem about KC-transformations.

I Theorem 6.3. If T is a tree and P is a bare path in T then ν(KC(T, P )) ≥ ν(T ).

It would have been nice if for every v ∈ V (T ) we would have had νv(KC(T, P )) ≥ νv(T );
unfortunately, this is not true in general. However, the following statement, whose proof can
be found in Appendix C, would suffice.
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I Theorem 6.4. Let T be a tree and let x 6= y be two vertices with the path between them
being bare. Denote T ′ = KC(T, x, y). Let A be the set of vertices v 6= x in T for which every
path between v and y passes via x, and similarly, let B be the set of vertices v 6= y in T for
which every path between v and x passes via y. Let P be the set of vertices on the bare path
between x and y, so A ∪B ∪ P is a partition of V (T ). Then
1. For v ∈ A ∪B we have that νv(T ′) ≥ νv(T ).
2.
∑
v∈P νv(T ′) ≥

∑
v∈P νv(T ).

7 Concluding Remarks and Open Questions

Non Locally Tree-Like Graph Sequences

Our local limit approach does not assume that the converging sequence is locally tree-like.
However, the differential equation tool fails completely if short cycles appear in a typical
local view. As it seems, to date, there is no general tool to handle these cases, and indeed,
even the asymptotic behaviour of the random greedy MIS algorithm on d-dimensional tori
(for d ≥ 2) remains unknown.

Better Local Rules

The random greedy algorithm presented here follows a very simple local rule. More com-
plicated local rules may yield, in some cases, larger maximal independent sets; for example,
the initial random ordering may “favour” low degree vertices. It would be nice to adapt our
framework, or at least some of its components, to other settings. For adaptive “better” local
algorithms we refer the reader to [48, 51].

The Second Colour

In this work we have analysed the output of the random greedy algorithm for producing a
maximal independent set. As already remarked, this is in fact the set of vertices in the first
colour class in the random greedy colouring algorithm. It is rather easy to see, that, after
slight modifications (in particular, in Theorem 1.3) this approach allow us to calculate the
asymptotic proportion of the size of the set of vertices in the second colour class (or in the
k’th colour class in general, for any fixed k) as well. Non-asymptotic questions about the
expected cardinality of the set of vertices in the second colour class might be also of interest.
For example, is it true that the path has the smallest expected number of vertices in the
first two colour classes among all trees of the same order? It is not hard to see that this
statement is not true for the first three colour classes (as three colours suffice to greedily
colour the path).

Monotonicity With Respect to KC-Transformations

It is likely that the expected greedy independence ratio in trees is monotone with respect
to KC-transformations, and strictly monotone with respect to proper KC-transformations.
If true, this would imply that the greedy independence ratio in trees achieves its unique
minimum on the path and its unique maximum on the star.
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n we have E[NGn(r) ∧M ] ≤ 2µ∗(r). Hence, for large enough n,

P[Arn] ≤
M∑
m=0

P[Arn | NGn(r) = m] · P[NGn(r) = m] + P[NGn(r) > M ]

≤ 1
r! · E[NGn(r) ∧M ] + ε ≤ 3ε. C

Proof of Claim 4.2. Let ε, r ≥ 0. We couple NGn(r) and u such that the former counts the
number of paths of length at most r emerging from the latter. Note that under this coupling,
|BGn(u, r)| ≤ NGn(r). Since µ∗(r) is finite, there existsM ≥ 0 such that P[NGn(r) > M ] < ε

for every large enough n. Hence, for large enough n,
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P[distGn(u, v) ≤ r] = P[v ∈ BGn(u, r)]

≤
M∑
m=0

P[v ∈ BGn(u, r) | NGn(r) = m] · P[NGn(r) = m] + P[NGn(r) > M ]

≤ 1
n
· E[NGn(r) ∧M ] + ε ≤ M

n
+ ε ≤ 2ε. C

I Remark. We only used the fact that NGn(r) are uniformly integrable for every r ≥ 0.

Proof of Lemma 4.3. Let Q be the rule of the algorithm A. The r-truncated version of
Q, denoted Qr, is defined as follows. To determine Qr((u1, . . . , ui), g), Qr checks the value
x = Q((u1, . . . , ui), g). If x ∈ {T,F} or distG(u1, x) ≤ r, Q returns x. Otherwise it returns
F. The r-truncated version of the algorithm A, denoted Ar, is the exploration-decision
algorithm with rule Qr. Note that for every v and f , radAr (v, f) ≤ r.

For a vertex w ∈ {u, v}, let Xw be the event “A(w, σ) = T”, let Yw be the event
“Ar(w, σ) = T”, and let rw = radA(w, σ). Note that P[Xw∧rw ≤ r] = P[Yw∧rw ≤ r] = P[Yw],
thus P[Xw] = P[Yw] + oε(1). Since for x, y satisfying distG(x, y) ≥ 3r we have that Yx, Yy
are independent, it follows that P[Yu ∧ Yv] = P[Yu]P[Yv] + oε(1).

P[Xu ∧Xv] = P[Xu ∧Xv ∧ (max{ru, rv} ≤ r)] + P[Xu ∧Xv ∧ (max{ru, rv} > r)]
= P[Yu ∧ Yv ∧ (max{ru, rv} ≤ r)] + oε(1)
= P[Yu ∧ Yv] + oε(1) = P[Yu]P[Yv] + oε(1) = P[Xu]P[Xv] + oε(1). J

B Probability Generating Functions

The goal of this section is to demonstrate how generating functions may aid solving the
fundamental system of ODEs (∗) (and thus finding ι) for certain simple branching processes.
In the following sections, we will use the notation yk(x) as in (∗), and omit the subscript k
when the branching process has a single type.

Single Type Branching Processes

For a probability distribution p = (pd)∞d=0, let Tp be the p-ary tree, namely, it is a (single
type) branching process, for which the offspring distribution is p. The fundamental ODE in
this case is

y′(x) =
∞∑
d=0

pd

d∑
`=0

(
d

`

)
(1− x)d−`x`

(
1− y(x)

x

)`
=
∞∑
d=0

pd(1− y(x))d. (4)

This differential equation may not be solvable, but in many important cases it is, and we
will use it. Denote by gp(z) the probability generating function (pgf) of p, that is,

gp(z) =
∞∑
d=0

pdz
d. (5)

Let hp(x) be the solution to the equation∫ 1

hp(x)

dz

gp(z) = x. (6)
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B Claim B.1. y(x) = 1− hp(x).

Proof. Fix x ∈ [0, 1], let h = hp(x) and g(z) = gp(z). Define ϕ : [0, β] → [h, 1], where
β = y−1(1− h), as follows: ϕ(u) = 1− y(u). Note that by (4),

ϕ′(u) = −y′(u) = −g(ϕ(u)).

Thus

x =
∫ 1

h

dz

g(z) = −
∫ ϕ(β)

ϕ(0)

dz

g(z) = −
∫ β

0

ϕ′(z)dz
g(ϕ(z)) = β,

hence y(x) = 1− h. C

In particular, it follows from Claim B.1 that ι(Tp) = 1− hp(1).

Random Trees With IID Degrees

For a probability distribution p = (pd)∞d=1, let Tp be the p-tree, namely, it is a random tree
in which the degrees of the vertices are independent random variables with distribution p.
We may view it as a two-type branching process, with type 0 for the root and 1 for the rest
of the vertices. Let gp(z) be the pgf of p (see (5), and note that p0 = 0). The fundamental
system of ODEs in this case is

y′0(x) =
∞∑
d=1

pd

d∑
`=0

(
d

`

)
(1−x)d−`x`

(
1− y1(x)

x

)`
=
∞∑
d=1

pd(1− y1(x))d = gp(1−y1(x)), (7)

and by (4),

y′1(x) =
∞∑
d=0

pd+1(1− y1(x))d = 1
1− y1(x)

∞∑
d=1

pd(1− y1(x))d = gp(1− y1(x))
1− y1(x) . (8)

Let hp(x) be the solution to the equation∫ 1

hp(x)

zdz

gp(z) = x.

The next claim is [13, Theorem 1].6

B Claim B.2. y0(x) = 1
2
(
1− h2

p(x)
)
.

Proof. Fix x ∈ [0, 1], let h = hp(x) and g(z) = gp(z). Define ϕ : [0, β] → [h, 1], where
β = y−1

1 (1− h), as follows: ϕ(u) = 1− y1(u). Note that by (8),

ϕ′(u) = −y′1(u) = −g(ϕ(u))
ϕ(u) .

Thus

x =
∫ 1

h

zdz

g(z) = −
∫ ϕ(β)

ϕ(0)

zdz

g(z) = −
∫ β

0

ϕ′(z)ϕ(z)dz
g(ϕ(z)) = β,

hence y1(x) = 1− h. From (7) and (8) it follows that y′0(x) = g(h) = y′1(x) · h = −hh′, and
since y0(0) = 0 it follows that y0(x) = 1

2
(
1− h2). C

In particular, it follows from Claim B.2 that ι(Tp) = 1
2
(
1− h2

p(1)
)
.

6 In [13] the authors required that the the degrees of the tree are all at least 2; we do not require this here.
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C Proof of Theorem 6.4

1. It suffices to prove the claim for v ∈ A. First note that there exists a unique tree Sv
in T ? v which is not fully contained in A, and the rest of the trees are retained in the
KC-transformation. The set of trees in T ′ ? v which are not fully contained in A may
be different from Sv, but they are on the same vertex set, so the result follows from
subadditivity of αn (Claim 6.1).

2. Write |A| = a, |B| = b and |P | = `+ 1. Let A1, . . . , As be the trees of T ? x which are
fully contained in A, and denote ai = |Ai|. Let B1, . . . , Bt be the trees of T ? y which
are fully contained in B, and denote bi = |Bi|. Let αA =

∑s
i=1 αai , α

+
A =

∑s
i=1 α1+ai ,

αB =
∑t
i=1 αbi and α

+
B =

∑t
i=1 α1+bi . Denote the vertices of P by x = u0, u1, . . . , u`.

The following table summarises the values of ν in T, T ′ along vertices of P , in the case
where ` ≥ 3 (similar tables can be made for the cases ` = 1, 2).

νuj (T ) νuj (T ′)
j = 0 αA + αb+`−1 αA + αB + α`−1

j = 1 α+
A + αb+`−2 α+

A + α+
B + α`−2

2 ≤ j ≤ `− 2 αa+j−1 + αb+`−j−1 αa+b+j−1 + α`−j−1

j = `− 1 αa+`−2 + α+
B αa+b+`−2

j = ` αa+`−1 + αB αa+b+`−1

It follows (for every ` ≥ 1) that

∑
v∈P

(νv(T ′)− νv(T )) =
`−1∑
j=1

(αa+b+j + αj − αa+j − αb+j)

= ξa+b,`−1 + ξ0,`−1 − ξa,`−1 − ξb,`−1,

which is, by Claim 6.2, nonnegative. J
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1 Introduction

In this paper we investigate properties of the largest family at a large but fixed time in a
sequence of growing families that have different birth times and different exponential growth
rates. The growth rates are given by a sequence F1, F2, . . . of bounded independent and
identically distributed random variables, while the birth times τ1, τ2, . . . may be random
and can depend in a general fashion on the growth processes. In the most interesting cases
the birth times are themselves arising from an exponentially growing process so that the
largest family at time t arises from a competition between the few families born early, which
have more time to grow, and the many families born late, among which the occurrence of a
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21:2 The Disordered Chinese Restaurant and Competing Growth Processes

higher birth rate is more probable. Our framework includes dynamic network models, where
the families are nodes and their size is the degree, or a disordered version of the Chinese
restaurant process, where the families are tables and their size is the number of occupants.

In the introduction, we illustrate and motivate our results in the context of the disordered
Chinese restaurant process. In Sec. 2 we introduce our general framework and main result.
Then, in Sec. 3, we show how our results apply to the Chinese restaurant process and a
further example, the preferential attachment tree with fitness. Finally, in Sec. 4, we sketch
the proofs of our main result and its corollary.

The disordered Chinese restaurant process

Fix a parameter θ ≥ 0 and a probability distribution µ on (0, 1). The disordered Chinese res-
taurant process is a Markov process (Z(n))n≥1 such that, for all n ≥ 1, Z(n) = (Z(n)

1 , Z(n)
2 , . . .)

is a sequence of integers satisfying that, for all n ≥ 1,∑∞
i=1 Z

(n)
i = n,

there exists k such that Z(n)
i = 0 for all i > k and Z(n)

i ≥ 1 for all i ≤ k.
In particular

Z̄(n) :=
( 1
nZ

(n)
1 , 1

nZ
(n)
2 , . . . , 1

nZ
(n)
k

)
are the proportions of sets in the random partition, for every n ∈ N. At time n, the vector
Z(n) can be interpreted as describing the distribution of n customers sitting at different
(ordered) tables in a restaurant; for all i ≥ 1, Z(n)

i is the number of customers sitting at
the i-th table at time n. The distribution of the process is defined as follows: we sample
a sequence (Fi)i≥1 of i.i.d. random variables (the attractivenesses or fitnesses) from the
distribution µ. We set Z(1) = (1, 0, 0, . . .) and, for all n ≥ 1, given Z(n), we define Z(n+1) as
follows: A new customer enters the restaurant, and

with probability FiZ
(n)
i /(n+ θ) the new customer sits at the i-th table, i.e. we set

Z(n+1)
j = Z(n)

j + 1j=i for all 1 ≤ j ≤ n;
otherwise, i.e. with the remaining probability

1−
∑∞
i=1 FiZ

(n)
i

n+ θ
,

the new customer sits at table k + 1 := min{i ≥ 1: Z(n)
i 6= 0}, i.e. we set Z(n+1)

k+1 = 1 and
Z(n+1)
i = Z(n)

i for all 1 ≤ i ≤ k.
Taking µ = δ1 (i.e. all fitnesses equal to one) gives the original Chinese restaurant process
of Pitman, sometimes also called temporal Dirichlet process in the context of community
detection algorithms (see e.g. [10]). In this case the sequence (Z̄(n)) with entries arranged in
decreasing order converges in distribution to the Poisson-Dirichlet distribution of parameter θ.
A corollary of our main result is that, under mild assumptions on µ, the proportion of
customers sitting at the largest table in the disordered Chinese restaurant process vanishes
asymptotically. In fact, we prove convergence of the properly-rescaled size of the busiest
table to a Fréchet distribution. We state our precise assumptions on the distribution µ before
stating our limiting theorems for the disordered Chinese restaurant process.

Assumptions on the fitness distribution

The behaviour of (Z(n))n≥1 depends on the fitness distribution µ. In this paper, we assume
that µ is supported by a bounded interval, which we may take as (0, 1). We are interested in
the largest tables in the disordered Chinese restaurant process, and fitter tables are more
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likely to get larger; therefore, records in the sequence of random fitnesses play an important
role. These records are governed by the fitness distribution µ, more precisely by its tail
near 1, and extreme value theory gives information about their behaviour.

The Fisher–Tippett–Gnedenko theorem of extreme value theory says that, if there exist
two sequences (αn)n≥1, (βn)n≥1 and a probability distribution Υ such that

max1≤i≤n Fi − βn
αn

→ Υ,

then Υ is either the Gumbel or the Weibull distribution (for unbounded random variabes
it can be either Gumbel or Fréchet). Intuitively, the Gumbel distribution corresponds to
fitness distributions µ with light, and the Weibull distribution to fitness distributions with
heavy tail near 1. In this paper, we therefore distinguish between (A) distributions µ that
are in the maximum domain of attraction of a Gumbel distribution and (B) distributions
that are in the maximum domain of attraction of a Weibull distribution.

More precisely, we assume one of the following:
(A0) The function m(x) = − logµ((x, 1)) is twice differentiable and satisfies

(A0.1) m′(x) > 0 and m′′(x) > 0 for all x ∈ (0, 1);
(A0.2) limx↑1

m′′(x)
(m′(x))2 = 0;

(A0.3) ∃κ > 0 such that limx↑1
m′′(x)m(x)x

(m′(x))2 = κ;
(A0.4) limx↑1

m(x)
m′(x) = 0.

(B0) The fitness distribution µ has a regularly varying tail in one, meaning that there
exists α > 1 and a slowly varying function ` with µ((1− ε, 1)) = εα`(ε).

I Note 1. A typical example of probability distribution satisfying (A0) is µ((x, 1)) =
exp

(
1− (1− x)−ρ

)
for all x ∈ (0, 1), ρ > 0. Heuristically, (A0) asks for a lighter tail near

the essential supremum than (B0).
I Note 2. Assumptions (A0-i) and (A0-ii) imply that the fitness distribution µ lies in the
maximum domain of attraction of the Gumbel distribution. Although most of the natural
examples satisfy Assumptions (A0-iii) and (A0-iv), some probability distributions in the
maximum domain of attraction of the Gumbel distribution do not fall into our framework.
One example is m(x) = log

( e
1−x

)
log log

( e
1−x

)
(see [9, 8] for details).

Limiting theorems for the disordered Chinese restaurant process

We first state a result on the number of tables occupied after n steps.

I Proposition 3. The number Kn of occupied tables when there are n customers satisfies

lim
n→∞

Kn

n
=
(∫

µ(dx)
1− x

)−1
almost surely.

This result is in contrast to the classical Chinese restaurant process where the number of
tables grows only logarithmically. The next two propositions follow from our main result,
which we state in Section 2 in the much more general context of competing growth processes.

First, we look at the rescaled occupancy of the largest table. Other than in the classical
Chinese restaurant process the occupancy of tables turns out not to be macroscopic and
the proportions (Z̄(n)) do not converge to a limiting partition. This is not surprising, as the
probability of the n-th customer starting a new table is of constant order in this case but of
order 1/n in the classical case.
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21:4 The Disordered Chinese Restaurant and Competing Growth Processes

I Proposition 4. If µ satisfies either (A0) or (B0), then the number of occupants at the
largest table satisfies

lim
n→∞

1
n

(
max
i≥1

Z(n)
i

)
= 0 almost surely.

Under Assumption (B0), we further have that, in distribution when n→∞,

(logn)α

n`( 1
logn )

(
max
i≥1

Z(n)
i

)
⇒W,

where W is a standard Fréchet distribution.

I Note 5. In the context of our main result we also provide a limit theorem under assumption
(A0), which reveals the universal nature of the limiting Fréchet distribution, see Corollary 12.

Second, we look at the ratio of the sizes of the two busiest tables and again see universal
behaviour, irrespective of whether µ is from the maximum domain of attraction of the
Gumbel or Weibull distribution.

I Proposition 6. For all integers n, we denote by Rn ≥ 1 the ratio of the sizes of the largest
and second largest tables at time n. If µ satisfies (A0) or (B0), then

lim
n→∞

P(Rn ≥ x) = 1/x for all x ≥ 1.

2 General framework and main result

We now describe our general framework (in a slightly less general version than in [5]), which is
a continuous time process defined as follows: Given µ a probability distribution on (0, 1), let

(Fn)n≥1 be a sequence of i.i.d. µ-distributed random variables;
(τn)n≥1 be a non-decreasing sequence of positive random variables with τ1 = 0;
for all n ≥ 1 and t ≥ τn, Zn(t) = Yn(Fn(t− τn)) for a family (Yn(t) : t ≥ 0)n≥1 of i.i.d.
non-decreasing integer-valued processes independent of (Fn)n≥1.

Define M(t) := max{n : τn ≤ t} and N(t) :=
∑M(t)
n=1 Zn(t). We view this as a population of

immortal individuals and we refer to Zn(t) as the size of the n-th family, M(t) the number of
families in the system and N(t) the total size of the population respectively, at time t. From
this perspective τn represents the foundation time of the n-th family. We see Fn as a fitness
parameter of the n-th family, determining the rate at which new offsprings are born into it.

In this paper we aim at proving convergence results for the maximal family in the
population. For this we require the following assumptions (A1), (A3), (A4) on the growth
processes, in addition to Assumption (A0) or (B0) on the fitness distribution (a condition
called (A2) is only needed in the more general setup of [5]).

Assumptions

(A1) Families’ foundation times: There exists λ > 0 such that, for all n ∈ N,

τn = τ∗n + T + εn,

where τ∗n := 1
λ logn, T is a finite random variable, and εn → 0 almost surely as n→∞.
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(A3) Growth rate: There exists γ > 0 and an integrable random variable ξ with
density ν defined on [0,∞), such that

e−γtY1(t) −→ ξ, almost surely as t→∞.

(A4) Concentration of growth: There exist c0, η > 0 such that

P
(

max
u≥0

Y1(u)e−γu ≥ x
)
≤ c0e−ηx, for all x ≥ 0.

I Note 7. These three assumptions all have the same aim: our results rely on controlling
the growth rates of the population and of each of the families. Assumption (A1) gives some
control over the growth of the process in terms of numbers of families; λ can be interpreted
as the “Malthusian” parameter of the process (see, e.g. [6], where the concept of Malthusian
growth is studied in the context of Crump-Mode-Jagers processes). Assumptions (A3) and
(A4) gives some control over the growth of each of the families.

To state our main result, we need to define σt, which approximates the birth time of the
family that is the largest at time t.

Under Assumption (A0) on µ, we define σt as the unique solution of

(log g)′(λσt) = 1
λ(t− σt)

, (1)

where g(x) = m−1(x), see [5, Lemma 5] for a proof of existence and uniqueness of σt.
Under Assumption (B0) on µ, we set σt := τn(t), where n(t) = dµ(1− t−1, 1)−1e. Then
logn(t) ∼ α log t− log `(1/t) and Assumption (A1) implies that

σt = 1
λ

logn(t) + T + o(1) = α

λ
log t− 1

λ
log `(1/t) + T + o(1) (2)

Main result under Assumption (B0)

We now state our results, first in the easier case of µ satisfying Assumption (B0). For all
t ≥ 0, we define the point process

Γt =
M(t)∑
n=1

δ
(
τn − σt, t(1− Fn), e−γ(t−σt)Zn(t)

)
, (3)

on (−∞,∞)× (0,∞)× (0,∞), where δ(x) is the Dirac mass at x.

I Theorem 8 (Poisson limit). Under Assumptions (B0) and (A1), (A3), (A4), the point
process (Γt)t≥0 converges vaguely1 on the space [−∞,∞] × [0,∞] × (0,∞] to the Poisson
point process with intensity measure

dζ(s, f, z) = αfα−1λeλseγ(s+f)ν(zeγ(s+f)) ds df dz,

where ν is defined in (A3).

Observe that the compactification of the intervals in Theorem 8 ensures that the point with
the largest z-component in the Poisson point process corresponds asymptotically to the
family of maximal size. Theorem 8 therefore implies the following distributional limit.

1 We say that a sequence of measures (µn)n∈N on a topological space X converges vaguely to µ iff∫
fdµn →

∫
fdµ, as n→∞, for all continuous functions f : X→ R with compact support.
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I Corollary 9. Let V (t) be the fitness of the family of maximal size at time t. Then,

t(1− V (t))⇒ V as t→∞,

where V is Gamma distributed with shape parameter α and scale parameter λ.

Theorem 8 and Corollary 9 are proved in [9]. The proofs are based on similar ideas as the
proofs outlined here, but the execution of these ideas is much simpler. A similar result in a
different, less general setup can be found in [3].

Main result under Assumption (A0)

To now state our main results we look at fitness distributions satisfying Assumption (A0).
For all t ≥ 0, we define

Γt =
M(t)∑
n=1

δ
(τn − σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , e−γg(λσt)(t−σt)−a1g(λσt) logσt+γTZn(t)

)
, (4)

where δ(x) is the Dirac mass at x, and a1 := γ
2λ .

I Theorem 10 (Poisson limit). Under Assumptions (A0), (A1), (A3), (A4), the point
process (Γt)t≥0 converges vaguely on the space [−∞,∞]× [−∞,∞]× (0,∞] to the Poisson
point process with intensity measure

dζ(s, f, z) = λe−fes
2a2−fa3ν(zes

2a2−fa3) ds df dz,

where a2 := γ
2κ, a3 := γ

λ and ν is as in (A3).

I Note 11. The existence of a density for the random variable ξ is assumed in Assump-
tion (A3) for convenience only. For example, Theorem 8 and 10 continue to hold if ν = δ1.

The technical difference between Theorems 8 and 10 is that in the latter the first
(birthtime) coordinate needs to be scaled. As a result the scaling of the second (fitness)
component depends on the birth rank n of the family as well as on the observation time
t. Therefore we cannot derive a general scaling limit for the fitness of the largest family as
in Corollary 9. However, results for the size of this family are still possible and allow an
interesting comparison.

I Corollary 12.
(i) Under Assumption (B0), asymptotically as t→∞,

e−γt+
γα
λ log t− γλ log `(1/t)+γT max

n∈N
Zn(t)⇒W,

where W is Fréchet-distributed with shape parameter λ/γ and scale parameter s, where

s
λ
γ = Γ(α+ 1)λ−α

∫ ∞
0

ν(w)w
λ
γ dw.

(ii) Under Assumption (A0), asymptotically as t→∞,

e−γg(λσt)(t−σt)−a1g(λσt) log σt+γT max
n∈N

Zn(t)⇒W,

where W is Fréchet-distributed with shape parameter λ/γ and scale parameter s, where

s
λ
γ =

√
2πλ
κ

∫ ∞
0

ν(w)w
λ
γ dw.

I Note 13. Observe that irrespective of whether µ is in the maximum domain of attraction
of the Weibull or Gumbel distribution, the size of the largest family scaled by a deterministic
function of time and the random factor eγT converges to a Fréchet distribution.
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3 Applications of our main results

Embedding the disordered Chinese restaurant process

The key to the application of our main result to a discrete process such as the disordered
Chinese restaurant process is a clever choice of embedding into continuous time. Customers
now enter the restaurant at some random times 0 =: T0 < T1 < T2, . . . defined inductively as
follows. At time Tn we start n+1 independent exponential clocks, one clock of parameter one
for each of the n customers seated in the restaurant and one additional clock of parameter
θ for the creation of an additional table. We let Tn+1 be the time when the first of these
clocks rings.

If it is the clock corresponding to customer m sitting at table j we toss a coin with success
probability Fj .

If there is a success the (n+ 1)-th customer joins this table,
if there is no success the (n+ 1)-th customer seats at a new table which, if it is the
(k + 1)-th occupied table, gets fitness Fk+1.

If it is the clock for the creation of additional tables, the (n+ 1)-th customer also sits at
a new table which, if it is the (k + 1)-th occupied table, gets fitness Fk+1.

Suppose F1, F2, . . . are given. We note that, as required, the overall probability that a new
table is created at time Tn+1 is∑k

j=1 Zj(Tn)(1− Fj) + θ

n+ θ
= 1−

∑k
j=1 Zj(Tn)Fj
n+ θ

,

where Zj(Tn) is the number of occupants at the j-th table at time Tn, and the probability
that the (n + 1)-th customer joins the j-th table is Zj(Tn)Fj/(n + θ). Therefore this
continuous-time processes taken at the successive times T0, T1, . . . is equal in distribution to
the disordered Chinese restaurant process defined in Section 1, as required.

Looking at the j-th table, we let τj be the time when it is first occupied. If at time t
this table is occupied by m customers the rate at which new customers join this table is
mFj , independently of the occupancy of other tables. The processes (Zj(t+ τj) : t ≥ 0) are
therefore independent Yule processes with rate Fj . Hence Assumptions (A3), (A4) are
satisfied for γ = 1. To check Assumption (A1) we note that the process of introduction
of new tables is a general branching process with immigration. The immigration process
corresponds to the creation of the additional tables, which is a homogeneous Poisson process
with rate θ. The point process of creation of tables by unsuccessful coin tossing is a Cox
process (Π(t) : t ≥ 0), i.e. a Poisson process with random intensity. Its intensity is given
by (1 − F )Y (t) dt where F has distribution µ and given F the process (Y (t) : t ≥ 0) is a
Yule process with parameter F . The relevant results for general branching processes can be
found in [6] with the case of branching processes with immigration treated in [7]. The crucial
assumption is the existence of a Malthuisan parameter α ≥ 0 such that

1 =
∫

e−αt EΠ(dt) =
∫ ∫ ∞

0
(1− w)e−αtewt dt µ(dw) =

∫ 1− w
α− w

µ(dw),

which is always satisfied for α = 1. Under an additional x log x condition on
∫

e−tΠ(dt),
which can be checked by straightforward but long calculations, we get from [6, Theorem 5.4]
for general branching processes without immigration (our case θ = 0) and modifications
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21:8 The Disordered Chinese Restaurant and Competing Growth Processes

described in [7, Theorem 4.2] for the general case (stated there only for convergence in L1)
that there exists a positive random variable Nθ such that the total nnumber M(t) of tables
occupied by time t satisfies

e−tM(t) −→ Nθ almost surely,

from which we infer that τn = logn− logNθ + o(1), implying that (A1) holds with λ = 1.

Disordered Chinese restaurant process – proof of Proposition 3

We first find the limit of the empirical fitness distributions. This can be accomplished using
the stochastic approximation technique of Dereich and Ortgiese [4] and does not require
continuous time embedding. Suppose for illustration that µ has finite support {f1, . . . , fm}
and let Xn(i) be the proportion of customers sitting at a table with attractiveness fi and
(Gn)n≥1 be the natural filtration. Then we have the equality

E
[
Xn+1(i)−Xn(i)

∣∣Gn] = 1
n+ 1

(
µ({fi})

[
1− n

n+ θ
F̄n

]
+ nfi
n+ θ

Xn(i)−Xn(i)
)
,

where F̄n =
∑m
j=1 fjXn(j) = 1

n

∑Kn
i=1 FiZ

(n)
i . Using stochastic approximation techniques

developed by [4] (these techniques also work without our illustrative assumption), one can
show that if lim sup F̄n ≤ η (resp. lim inf F̄n ≥ η), then for all 0 ≤ a ≤ b ≤ 1,

lim inf 1
n

Kn∑
i=1

1Fi∈(a,b]Z
(n)
i ≥

∫ b

a

1− η
1− x µ(dx) (5)

(
resp. lim sup 1

n

Kn∑
i=1

1Fi∈(a,b]Z
(n)
i ≤

∫ b

a

1− η
1− x µ(dx)

)
.

Iterating, e.g. the upper bound, we get

lim sup F̄n ≤ (1− η)
∫

x

1− x µ(dx) =: T (η),

and eventually convergence of (F̄n) to the fixed point η∗ ∈ (0, 1) of T , which is

η∗ = 1−
(∫ µ(dx)

1− x

)−1
.

Together with Equation (5), this implies that, for all 0 ≤ a ≤ b ≤ 1,

lim
n→∞

1
n

Kn∑
i=1

1Fi∈(a,b]Z
(n)
i =

∫ b

a

1− η∗

1− x µ(dx) almost surely.

By construction, the conditional probability that a newly arriving customer establishes a
new table is therefore converging to∫

(1− x)1− η∗

1− x µ(dx) =
(∫ µ(dx)

1− x

)−1
,

which is also the asymptotic ratio of tables per customer, as claimed.
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Disordered Chinese restaurant process – proof of Proposition 4

This follows from Corollary 12 (recall that in this case λ = γ = 1). In both parts, plugging
t = τn shows that the leading term in the scaling is 1

n and all further factors together go to
infinity. Under Assumption (B0), we get that

exp(−τn + α log τn − log `(1/τn) + T )

= exp
(
− logn− T − log `( 1

logn ) + α log logn+ T + o(1)
)

= (logn)α

n`( 1
logn )

(1 + o(1)),

and thus, by Corollary 12(i), (logn)α maxZ(n)
i /(n`( 1

logn )) converges in distribution to a
Fréchet as claimed. Under Assumption (A0), we have that, asymptotically when t ↑ ∞,

−g(σt)(t− σt)− g(σt) log σt = −t+ σt + h(σt)t+ o(σt) + o(h(σt)t),

where h(x) = 1 − g(x) ↓ 0 when x ↑ ∞. Taking t = τn = logn + T + εn thus gives
eun maxZ(n)

i /n⇒W, where un = (στn +h(στn)τn)(1 + o(1)) ↑ ∞, which concludes the proof.

Disordered Chinese restaurant process – proof of Proposition 6

We denote by R(t) the ratio of the sizes of the largest and second largest tables (i.e. families in
the competing growth process) at time t. Let us first assume that µ satisfies Assumption (A0).
By Theorem 10, we have, for all x > 1,

lim
t→∞

P
(
R(t) ≥ x

)
=
∫∫∫

exp
(
− ζ
(
(−∞,∞)× (−∞,∞)× (z/x,∞)

))
ζ(ds df dz).

Using that ν(x) = e−x and a3 = 1 in the first equality and the change of variable v = f− log y
in the second, we get that

ζ
(
(−∞,∞)× (−∞,∞)× (z/x,∞)

))
=
∫∫

ds df es
2a2−2f

∫ ∞
z/x

e−yes
2a2−f dy

=
∫∫

ds dv es
2a2−2ve−es

2a2−v
∫ ∞
z/x

y−2 dy = a5
x

z
,

where a5 is a positive constant. Hence, substituting f by f + log x in the final step,

lim
t→∞

P
(
R(t) ≥ x

)
=
∫∫

ds df
∫ ∞

0
dz e−fes

2a2−fe−z(es
2a2−f )−a5

x
z

=
∫∫

ds df
∫ ∞

0
dw e−fe−w−a5

1
w es

2a2−f+log x
= 1
x
.

Similarly, if µ satisfies Assumptions (B0), we have ζ
(
(−∞,∞)× (0,∞)× (z/x,∞)

))
= a6

x
z ,

and hence by Theorem 8 (and using the change of variable z → z/x in the second equality),

lim
t→∞

P
(
R(t) ≥ x

)
=
∫

ds
∫ ∞

0
df
∫ ∞

0
dz αfα−1e2s+fe−zes+f−a6

x
z

=
∫

ds
∫ ∞

0
df
∫ ∞

0
dz xαfα−1e2s+fe−zes+f+log x−a6

1
z = 1

x
,

substituting s by s+ log x in the final step. This concludes the proof of Proposition 6.
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Preferential attachment networks with fitness

In this subsection, we show how our results can be used to get asymptotic information about
the node of largest degree in preferential attachment networks with fitness. We focus on the
Bianconi-Barabási model, first introduced by Bianconi and Barabási in [1], but one can also
find an application of our main results to the model of Dereich [2] in [5, Sec. 2.2.2]. In the
Bianconi and Barabási model, nodes join a network one by one and create a link with an
existing node chosen at random with probability proportional to its degree in the network
times its fitness. The process starts with two vertices connected by an edge. The fitness of
each node is a positive number sampled according to a distribution µ, independently from
the rest of the process. Although generalisations exists, we only treat the tree-version of
this model: each node creates only one extra edge when joining the network. We show that
under a Malthusian condition the continuous-time embedding of the Bianconi and Barabási
tree is a competing growth process and that our main results apply to this model.

In this embedding, τn is the birthtime of the n-th vertex, Fn its fitness and Zn(t) its
degree at time t. One can show (see [5, Sec. 5.1]) that under the Malthusian condition∫ 1

0

µ(dx)
1− x > 2,

the process satisfies (A1), (A3), (A4) with γ = 1 and λ > 1 the unique solution of∫ 1

0

x

λ− x
µ(dx) = 1.

Our main results thus apply and give, for example, precise asymptotic estimates for the
largest degree in the network.

I Proposition 14. Assume that there exists % ∈ (0, 1) such that, for all x ∈ (0, 1), µ((x, 1)) =
exp(1− (1− x)−%). Denote by Dn the largest degree in the Bianconi and Barabási tree with
n vertices. Then, as n→∞, we have, in probability,

Dn = exp
( 1
λ

logn− a4

λ
(logn)

%
%+1 − a5

λ
log logn+O(1)

)
,

where a4 = %−
%
%+1 + %

1
%+1 and a5 = %

2(%+1) .

Proof. First recall that this fitness distribution satisfies Assumption (A0), and thus The-
orem 10 and Corollary 12(ii) apply. We estimate σt as defined in Equation (1). Since
g(x) = m−1(x) = 1− (x+ 1)−1/%, we have that x = λσt is the unique solution of

(log g)′(x) = 1
λt+ 1− (x+ 1) = 1

%(x+ 1)
%+1
% − %(x+ 1)

,

which implies σt = λ−
1
%+1 (t/%)

%
%+1 +O

(
t
%−1
%+1
)
. By definition of κ in Assumption (B0) we get

κ = lim
x↑1

m′′(x)m(x)x
(m′(x))2 = lim

x↑1

(%+ 1)x
(
1− (1− x)%

)
%

= %+ 1
%

.

By Corollary 10(ii), we get that, asymptotically when t→∞,

e−
(
t−a4λ

− 1
1+% t

%
%+1 + 1

λ

)
− 1
λa5 log t+T max

n∈N
Zn(t)⇒W,

where W is a Fréchet-distributed random variable with shape parameter λ and scale para-
meter s given by sλ =

√
2π%
%+1 Γ(λ+ 1). To get a result for discrete-time process we need

to estimate the time τn when the (n + 1)-th vertex is introduced to the network. By
Assumption (A1), we know that τn = 1

λ logn+ T + εn, which concludes the proof. J
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4 Sketch of the proofs

We give sketches of the proofs in the case of Assumption (A0); the proofs under Assump-
tion (B0) are similar but easier (these proofs are detailed in [9, Ch. 3]).

Sketch of the proof of Corollary 12(ii)

We fix x > 0 and B := [−∞,∞]× [−∞,∞]× [x,∞]. By Theorem 10, we get that, as t ↑ ∞,

M(t)∑
n=1

1B
(
τn−σt√

σt
,
Fn−g(log(n√σt))
g′(log(n√σt)) , e−γg(λσt)(t−σt)−a1g(λσt) logσt+γTZn(t)

)
⇒ Poisson

(∫
B

dζ
)
,

since B is a compact set. Hence, as t ↑ ∞,

P
(

e−γg(λσt)(t−σt)−a1g(λσt) logσt+γT max
n∈{1,...,M(t)}

Zn(t) ≥ x
)

(6)

→ P
(
Poisson

(∫
B

dζ
)
≥ 1
)

= 1− P
(
Poisson

(∫
B

dζ
)

= 0
)

= 1− exp
(
−
∫
B

dζ
)
.

One can check that∫
B

dζ = λ

√
π
a3

a2

(∫ ∞
0

ν(w)w
1
a3 dw

)
x−

1
a3 . (7)

Recall that a2 = γκ/2 and a3 = γ/λ. Thus the right hand side in (6) is 1− exp(−sηx−η), for

sη =
√

2πλ
κ

∫ ∞
0

ν(w)w
λ
γ dw, and η = λ

γ
.

In summary, for all x > 0, we have

P
(

e−γg(λσt)(t−σt)−a1g(λσt) logσt+γT max
n∈{1,...,M(t)}

Zn(t) ≤ x
)
→ e−(x/s)−

λ
γ = P

(
W ≤ x

)
,

where W ∼ Fréchet
(
λ
γ , s
)
, which concludes the proof.

Sketch of the proof of Theorem 10 (for details see [5, Sec. 4])

The idea of the proof is to first give convergence of the point process on the domain
(−∞,∞)× (−∞,∞)× [0,∞] and second get the “right” shapes of the brackets by showing
that all the families that are born either too early or too late, or have a fitness that is too
small have a renormalised size that goes to zero. First we prove the following result, which
we sketch-proof in the next paragraph:

I Proposition 15. The point process

Γt =
M(t)∑
n=1

δ
(τn − σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , e−γg(λσt)(t−σt)−a1g(λσt) logσt+γTZn(t)

)
,

converges vaguely in distribution on (−∞,∞)×(−∞,∞)× [0,∞] to the Poisson point process
with intensity

ζ(ds, df, dz) = λe−fes
2a2−fa3ν(zes

2a2−fa3) ds df dz.
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The main difference between Proposition 15 and Theorem 10 is the shape of the brackets in
the domain of convergence. To get the “right” shapes, we show that all the families that are
born either too early or too late, or have a fitness that is too small have a renormalised size
that goes to zero. More precisely:

I Lemma 16. Let η, ε > 0. There exists κ1 = κ1(ε, η) such that

lim
t→∞

inf P
(

Γt
(
[−∞,∞]× [−∞,−κ1]× (ε,∞]

)
= 0
)
≥ 1− η.

There exists v = v(ε, η) > 1 such that

lim
t→∞

inf P
(

Γt
(
[−∞,−v] ∪ [v,∞]× [−∞,∞]× (ε,∞]

)
= 0
)
≥ 1− η.

And, finally, there exists κ2 = κ2(ε, η) such that

lim
t→∞

inf P
(

Γt
(
[−v, v]× [κ2,∞]× (ε,∞]

)
= 0
)
≥ 1− η.

This lemma is proved in [5, Sec. 4]. Proposition 15 then gives that Γt converges on (−v, v)×
(−κ1, κ2) × (ε,∞] to the Poisson process with intensity measure ζ. Combining this with
Lemma 16 and using that η > 0 is arbitrarily small, we get convergence on [−∞,∞] ×
[−∞,∞]× (ε,∞]. The fact that this holds for all ε > 0 concludes the proof.

Sketch of the proof of Proposition 15

The proof of Proposition 15 is done in two steps: First we prove convergence of the following
Poisson process, whose only difference with Γt is the last coordinate, which has been replaced
by a quantity that, by Assumption (A3), converges almost surely to a ν-distributed random
variable:

I Proposition 17. We have vague convergence in distribution of the point process

Ψt =
M(t)∑
n=1

δ
(τn − σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , e−γFn(t−τn)Zn(t)

)
to the Poisson point process on (−∞,∞)× (−∞,∞]× [0,∞] with intensity

ζ∗(ds, df, dz) = λe−fν(z)ds df dz.

This is enough to imply convergence of Γt because Γt is the image of Ψt by a continuous
function: we show (see [5, Sec. 3.3]) that, if φ : (s, f, z)→ (s, f, e−s2a2+fa3z), then Ψt ◦ φ−1

is asymptotically equivalent to Γt, i.e. for all Lipschitz continuous compactly-supported
functions f : (−∞,∞)× (−∞,∞)× [0,∞]→ R,∣∣∣∣ ∫ fdΨt ◦ φ−1 −

∫
fdΓt

∣∣∣∣→ 0 in probability, as t ↑ ∞.

This, together with Proposition 17, implies that Γt converges to the Poisson point process of
intensity ζ = ζ∗ ◦ φ, as claimed in Proposition 15.
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Sketch of the proof of Proposition 17. The advantage of Ψt over Γt is that, because of
Assumption (A3), the third coordinate converges almost surely to a ν-distributed random
variable. In fact, using also the fact that, by Assumption (A1), τn is close to (logn)/λ, one
can show (see [5, Lemma 9]) that Ψt is asymptotically equivalent to

Ψ∗t =
∑
n∈N

δ

(
(logn)/λ− σt√

σt
,
Fn − g

(
log(n√σt)

)
g′
(

log(n√σt)
) , ξn

)
,

where the ξn’s are i.i.d. random variables of distribution ν. This implies that to prove
Proposition 17 it is enough to prove convergence of Ψ∗t to the Poisson point process of
intensity ζ∗. The advantage of Ψ∗t over Ψt is that the three coordinates are three independent
sequences of independent random variables: one can thus apply Kallenberg’s theorem (see
[8, Proposition 3.22]), which says that it is enough to prove that for every precompact
relatively-open box B ⊂ (−∞,∞)× (−∞,∞]× [0,∞],
(a) P(Ψ∗t (B) = 0)→ exp(−ζ∗(B)), as t ↑ ∞, and
(b) E[Ψ∗t (B)]→ ζ∗(B), as t ↑ ∞.

Conditions (a) and (b) are checked in [5, Sec. 3.2]: this concludes the proof of Proposi-
tion 17 and thus of Proposition 15. J
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Abstract
In this extended abstract a general framework is developed to bound rates of convergence for
sequences of random variables as they mainly arise in the analysis of random trees and divide-and-
conquer algorithms. The rates of convergence are bounded in the Zolotarev distances. Concrete
examples from the analysis of algorithms and data structures are discussed as well as a few examples
from other areas. They lead to convergence rates of polynomial and logarithmic order. Our results
show how to obtain a significantly better bound for the rate of convergence when the limiting
distribution is Gaussian.
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computation → Divide and conquer

Keywords and phrases weak convergence, probabilistic analysis of algorithms, random trees, prob-
ability metrics

Digital Object Identifier 10.4230/LIPIcs.AofA.2020.22

1 Introduction and notation

In this extended abstract we consider a general recurrence for (probability) distributions
which covers many instances of complexity measures of divide-and-conquer algorithms and
parameters of random search trees. We consider a sequence (Yn)n≥0 of d-dimensional random
vectors satisfying the distributional recursion

Yn
d=

K∑
r=1

Ar(n)Y (r)
I

(n)
r

+ bn, n ≥ n0, (1)

where (A1(n), . . . , AK(n), bn, I(n)), (Y (1)
n )n≥0, . . . , (Y (K)

n )n≥0 are independent, the coefficients
A1(n), . . . , AK(n) are random (d× d)-matrices, bn is a d-dimensional random vector, I(n) =
(I(n)

1 , . . . , I
(n)
K ) is a random vector in {0, . . . , n}K , n0 ≥ 1 and (Y (r)

n )n≥0
d= (Yn)n≥0 for

r = 1, . . . ,K. Moreover, K ≥ 1 is a fixed integer, but extensions to K being random and
depending on n are possible.

This is the framework of [14] where some general convergence results are shown for
appropriate normalizations of the Yn. The content of the present extended abstract is to
also study the rates of convergence in such limit theorems.

We define the normalized sequence (Xn)n≥0 by

Xn := C−1/2
n (Yn −Mn), n ≥ 0,

where Mn is a d-dimensional vector and Cn a positive definite (d× d)-matrix. Essentially,
we choose Mn as the mean and Cn as the covariance matrix of Yn if they exist or as the
leading order terms in expansions of these moments as n→∞. The normalized quantities
satisfy the following modified recursion:

© Ralph Neininger and Jasmin Straub;
licensed under Creative Commons License CC-BY

31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2020).
Editors: Michael Drmota and Clemens Heuberger; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neininger@math.uni-frankfurt.de
mailto:jstraub@math.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.AofA.2020.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0, (2)

with

A(n)
r := C−1/2

n Ar(n)C1/2
I

(n)
r

, b(n) := C−1/2
n

(
bn −Mn +

K∑
r=1

Ar(n)M
I

(n)
r

)
(3)

and independence relations as in (1).
In the context of the contraction method the aim is to establish transfer theorems of the

following form: After verifying the assumptions of appropriate convergence of the coefficients
A

(n)
r → A∗r , b

(n) → b∗ then convergence in distribution of random vectors (Xn) to a limit X
is implied. The limit distribution L(X) is identified by a fixed-point equation obtained from
(2) by considering formally n→∞:

X
d=

K∑
r=1

A∗rX
(r) + b∗.

Here (A∗1, . . . , A∗K , b∗), X(1), . . . , X(K) are independent and X(r) d= X for r = 1, . . . ,K.
The aim of the present extended abstract is to endow such general transfer theorems

with bounds on the rates of convergence. As a distance measure between (probability)
distributions we use the Zolotarev metric. For various of the applications we discuss, bounds
on the rate of convergence have been derived one by one for more popular distance measures
such as the Kolmogorov–Smirnov distance. However, the transfer theorems of the present
paper in terms of the smoother Zolotarev metrics are easy to apply and cover a broad range
of applications at once. A crucial role is played by a factor 3 in the exponent of these orders
in cases where the normal distribution is the limiting distribution, see Remark 4.

In the rest of this section we fix some notation. Regarding norms of vectors and (random)
matrices we denote for x ∈ Rd by ‖x‖ its Euclidean norm and for a random vector X and
some 0 < p < ∞, we set ‖X‖p := E[‖X‖p](1/p)∧1. Furthermore, for a (d × d)-matrix A,
‖A‖op := sup‖x‖=1 ‖Ax‖ denotes the spectral norm of A and for a random such A we define
‖A‖p := E[‖A‖pop](1/p)∧1 for a random square matrix and 0 < p < ∞. Note that for a
symmetric (d × d)-matrix A, we have ‖A‖op = max{|λ| : λ eigenvalue of A}. By Idd the
d-dimensional unit matrix is denoted. For multilinear forms the norm is defined similarly.

Furthermore we define by Pd the space of probability distributions in Rd (endowed with
the Borel σ-field), by Pds := {L(X) ∈ Pd : ‖X‖s < ∞} and for a vector m ∈ Rd, and a
symmetric positive semidefinite (d× d)-matrix C the spaces

Pds (m) := {L(X) ∈ Pds : E[X] = m}, s > 1, (4)
Pds (m,C) := {L(X) ∈ Pds : E[X] = m,Cov(X) = C}, s > 2.

We use the convention Pds (m) := Pds for s ≤ 1 and Pds (m,C) := Pds (m) for s ≤ 2.
The Zolotarev metrics ζs, [19], are defined for probability distributions L(X),L(Y ) ∈ Pd

by

ζs(X,Y ) := ζs(L(X),L(Y )) = sup
f∈Fs

|E(f(X)− f(Y ))|,

where for s = m+ α, 0 < α ≤ 1,m ∈ N0,

Fs := {f ∈ Cm(Rd,R) : ‖f (m)(x)− f (m)(y)‖ ≤ ‖x− y‖α}.

Note that these distance measures may be infinite. Finite metrics are given by ζs on Pds for
0 ≤ s ≤ 1, by ζs on Pds (m) for 1 < s ≤ 2, and by ζs on Pds (m,C) for 2 < s ≤ 3, cf. (4).
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2 Results

We return to the situation outlined in the introduction, where we have normalized (Yn)n≥0
in the following way:

Xn := C−1/2
n (Yn −Mn), n ≥ 0, (5)

where Mn is a d-dimensional random vector and Cn a positive definite (d× d)-matrix. As
recalled in Section 1, for s > 1, we may fix the mean and covariance matrix of the scaled
quantities to guarantee the finiteness of the ζs-metric. Therefore, we choose Mn = E[Yn]
for n ≥ 0 and s > 1. For s > 2, we additionally have to control the covariances of Xn. We
assume that there exists an n1 ≥ 0 such that Cov(Yn) is positive definite for n ≥ n1 and
choose Cn = Cov(Yn) for n ≥ n1 and Cn = Idd for n < n1. For s ≤ 2, we just assume that
Cn is positive definite and set n1 = 0 in this case.

The normalized quantities satisfy the modified recursion

Xn
d=

K∑
r=1

A(n)
r X

(r)
I

(n)
r

+ b(n), n ≥ n0,

with A(n)
r and b(n) given in (3). The following theorem discusses a general framework to

bound rates of convergence for the sequence (Xn)n≥0. For the proof, we need some technical
conditions which guarantee that the sizes I(n)

r of the subproblems grow with n. More precisely,
we will assume that there exists some monotonically decreasing sequence R(n) > 0 with
R(n)→ 0 such that∥∥1{I(n)

r <`}A
(n)
r

∥∥
s

= O(R(n)), n→∞, (6)

for all ` ∈ N and r = 1, . . . ,K and that∥∥1{I(n)
r =n}A

(n)
r

∥∥
s
→ 0, n→∞, (7)

for all r = 1, . . . ,K.

2.1 A general transfer theorem for rates of convergence
Our first result is a direct extension of the main Theorem 4.1 in [14], where we essentially
only make all the estimates there explicit. The main result of the present extended abstract
is contained in Section 2.2.

I Theorem 1. Let (Xn)n≥0 be Ls-integrable, 0 < s ≤ 3, and satisfy recurrence (5) with the
choices for Mn and Cn specified there. We assume that there exist s-integrable A∗1, . . . , A∗K , b∗
and some monotonically decreasing sequence R(n) > 0 with R(n)→ 0 such that, as n→∞,

∥∥b(n) − b∗
∥∥
s

+
K∑
r=1

∥∥A(n)
r −A∗r

∥∥
s

= O(R(n)). (8)

If conditions (6) and (7) are satisfied and if

lim sup
n→∞

E
K∑
r=1

(
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥s
op

)
< 1, (9)

then we have, as n→∞,

ζs(Xn, X) = O(R(n)),
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where L(X) is given as the unique fixed point in Pds (0, Idd) of the equation

X
d=

K∑
r=1

A∗rX
(r) + b∗, (10)

with (A∗1, . . . , A∗K , b∗), X(1), . . . , X(K) independent and X(r) d= X for r = 1, . . . ,K.

I Remark 2. In applications, the convergence rate of the coefficients (conditions (6) and (8))
is often faster than the convergence rate of the quantities Xn, see, e.g., Section 4.4. In these
cases, it is often possible to perform the induction step in the proof of Theorem 1 although
condition (9) does not hold. To be more precise, we may assume∥∥1{I(n)

r <`}A
(n)
r

∥∥
s

+
∥∥b(n) − b∗

∥∥
s

+
∥∥A(n)

r −A∗r
∥∥
s

= O(R̃(n))

for every ` ≥ 0, r = 1, . . . ,K and n→∞. Then, instead of condition (9), it is sufficient to
find some K > 0 such that

E
[ K∑
r=1

1{n1≤I(n)
r <n}

R(I(n)
r )

R(n) ‖A
(n)
r ‖sop

]
≤ 1− pn −

R̃(n)
KR(n)

for all large n with pn := E
[∑K

r=1 1{I(n)
r =n}‖A

(n)
r ‖sop

]
.

2.2 An improved transfer theorem for normal limit distributions
We now consider the special case where the sequence (Xn)n≥0 has finite third moments and
satisfies recursion (2) with (A(n)

1 , . . . , A
(n)
K , b(n)) L3−→ (A∗1, . . . , A∗K , b∗) for some coefficients

A∗1, . . . , A
∗
K , b

∗ with finite third moments and

b∗ = 0,
K∑
r=1

A∗r(A∗r)T = Idd

almost surely. Corollary 3.4 in [14] implies that, if E[
∑K
r=1 ‖A∗r‖3

op] < 1, equation (10) has a
unique solution in the space Pd3 (0, Idd). Furthermore, e.g., using characteristic functions, it
is easily checked that this unique solution is the standard normal distribution N (0, Idd).

In this special case of normal limit laws, it is possible to derive a refined version of
Theorem 1. Instead of the technical condition (6), we now need the weaker condition∥∥1{I(n)

r <`}A
(n)
r

∥∥3
3 = O(R(n)), n→∞, (11)

for all ` ∈ N and r = 1, . . . ,K. Moreover, condition (8) concerning the convergence rates of
the coefficients can be weakened, which is formulated in the following theorem.

I Theorem 3. Let (Xn)n≥0 be given as in (5) with finite third moments. We assume that
for some R(n) > 0 monotonically decreasing with R(n)→ 0 as n→∞ we have∥∥∥ K∑

r=1
A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2
+
∥∥b(n)∥∥3

3 = O(R(n)), (12)

and the technical conditions (7) and (11) being satisfied for s = 3. If

lim sup
n→∞

E
K∑
r=1

(
R(I(n)

r )
R(n)

∥∥A(n)
r

∥∥3
op

)
< 1, (13)

then we have, as n→∞,

ζ3(Xn,N (0, Idd)) = O(R(n)).
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Proof. (Sketch) We define an accompanying sequence (Z∗n)n≥0 by

Z∗n :=
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n), n ≥ 0,

where (A(n)
1 , . . . , A

(n)
K , I(n), b(n)), N (1), . . . , N (K) are independent, L(N (r)) = N (0, Idd) for

r = 1, . . . ,K and TnT
T
n = Cov(Xn) for n ≥ 0. Hence, Z∗n has a finite third moment,

E[Z∗n] = 0 and Cov(Z∗n) = Idd for all n ≥ n1. By the triangle inequality, we have

ζ3(Xn,N (0, Idd)) ≤ ζ3(Xn, Z
∗
n) + ζ3(Z∗n,N (0, Idd)).

Then, the assertion follows inductively if one has shown the bound ζ3(Z∗n,N (0, Idd)) =
O(R(n)): Using the convolution property of the multidimensional normal distribution, we
obtain the representation

Z∗n =
K∑
r=1

A(n)
r T

I
(n)
r
N (r) + b(n) d= GnN + b(n),

where GnGTn =
∑K
r=1 A

(n)
r T

I
(n)
r
TT
I

(n)
r

(A(n)
r )T , L(N) = N (0, Idd) and N is independent of

(Gn, b(n)). As Cov(Z∗n) = Idd for all n ≥ n1, we have E[GnGTn +b(n)(b(n))T ] = Idd for n ≥ n1.
Furthermore, we have

∥∥b(n)
∥∥3

3 = O(R(n)) and

∥∥GnGTn − Idd
∥∥3/2

3/2 =
∥∥∥ K∑
r=1

A(n)
r T

I
(n)
r
TT
I

(n)
r

(A(n)
r )T − Idd

∥∥∥3/2

3/2

= O
(∥∥∥ K∑

r=1
1{I(n)

r <n1}
A(n)
r (T

I
(n)
r
TT
I

(n)
r
− Idd)(A(n)

r )T
∥∥∥3/2

3/2

+
∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2

)

= O
(

K∑
r=1

∥∥1{I(n)
r <n1}

A(n)
r

∥∥3
3 +

∥∥∥ K∑
r=1

A(n)
r (A(n)

r )T − Idd
∥∥∥3/2

3/2

)
= O(R(n)).

Thus, the following Lemma 5 implies ζ3(Z∗n,N (0, Idd)) = O(R(n)). Lemma 5 is the main
part of the present proof. J

I Remark 4. Theorem 3, when applicable, often improves over Theorem 1 by a factor 3 in
the exponent, see Remark 9 for an example. This is caused by the additional exponents in
(12) in comparison to (8).

I Lemma 5. Let (Z∗n)n≥0 be a sequence of d-dimensional random vectors satisfying Z∗n
d=

GnN + b(n) with some random (d× d)-matrix Gn and some random vector b(n) such that
E[Z∗n] = 0, Cov(Z∗n) = Idd and N ∼ N (0, Idd) is independent of (Gn, b(n)). Furthermore, we
assume that, as n→∞,∥∥GnGTn − Idd

∥∥3/2
3/2 +

∥∥b(n)∥∥3
3 = O(R(n))

for appropriate R(n). Then, we have, as n→∞,

ζ3(Z∗n,N (0, Idd)) = O(R(n)).

The proof of Lemma 5 builds upon ideas of [15].
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3 Expansions of moments

In applications to problems arising in theoretical computer science, where the recurrence
(1) is explicitly given, one usually has no direct means to identify the orders of the terms
‖b(n) − b∗‖s and ‖A(n)

r − A∗r‖s. This is due to the fact that the mean vector Mn and the
covariance matrix Cn, for the cases 1 < s ≤ 2 and 2 < s ≤ 3 respectively, which are used
for the normalization (5) are typically not exactly known or too involved to be amenable
to explicit calculations. As a substitute one usually has asymptotic expansions of these
sequences as n→∞.

In the present section we assume the dimension to be d = 1 and Ar(n) = 1 for all
r = 1, . . . ,K and provide tools to apply the general Theorems 1 and 3 on the basis of
expansions of the mean and variance. We assume that

E[Xn] = µ(n) = f(n) + O(e(n)), Var(Xn) = σ2(n) = g(n) + O(h(n)), (14)

with e(n) = o(f(n)) and h(n) = o(g(n)). To connect Theorems 1 and 3 to recurrences with
known expansions we use the following notion.

I Definition 6. A sequence (a(n))n≥0 of non-negative numbers is called essentially non-
decreasing if there exists a c > 0 such that a(m) ≤ ca(n) for all 0 ≤ m < n.

The scaling introduced in (5) with the special choices Ar(n) = 1 for all r = 1, . . . ,K leads to
the scaled recurrence for (Xn) given in (2) with

A(n)
r = σ(I(n)

r )
σ(n) , b(n) = 1

σ(n)

(
bn − µ(n) +

K∑
r=1

µ(I(n)
r )

)
. (15)

Additionally, we consider the corresponding quantities

A
(n)
r = g1/2(I(n)

r )
g1/2(n)

, b
(n) = 1

g1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
. (16)

Then we have:

I Lemma 7. With A(n)
r , b(n) given in (15), A(n)

r , b(n) given in (16), and the expansions for
µ(n), σ2(n) given in (14) the following holds.
If the sequence h/g1/2 is essentially non-decreasing then∥∥A(n)

r −A∗r
∥∥
s
≤
∥∥A(n)

r −A∗r
∥∥
s

+ O
(h(n)
g(n)

)
. (17)

If the sequence h is essentially non-decreasing then∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
s
≤
∥∥∥ K∑
r=1

(A(n)
r )2 − 1

∥∥∥
s

+ O
(h(n)
g(n)

)
. (18)

If the sequence e is essentially non-decreasing then∥∥b(n) − b∗
∥∥
s
≤
∥∥b(n) − b∗

∥∥
s

+ O
(h(n)
g(n) + e(n)

g1/2(n)

)
. (19)

If the sequence g/h is essentially non-decreasing and

T (n) := E
K∑
r=1

gs/2−1(I(n)
r )h(I(n)

r )R(I(n)
r )

gs/2(n)R(n)

then we have

E
K∑
r=1

σs(I(n)
r )R(I(n)

r )
σs(n)R(n) ≤ E

K∑
r=1

gs/2(I(n)
r )R(I(n)

r )
gs/2(n)R(n)

+ O(T (n)). (20)



R. Neininger and J. Straub 22:7

Proof. We show (17), the other bounds can be shown similarly. Note that σ2(n) = g(n) +
O(h(n)) implies σ(n) = g1/2(n)+O(h(n)/g1/2(n)) and that for any essentially non-decreasing
sequence (a(n))n≥0 we have ‖a(I(n)

r )‖∞ = O(a(n)). Since h/g1/2 is essentially non-decreasing
we obtain

A(n)
r = σ(I(n)

r )
σ(n) = g1/2(I(n)

r ) + O(h(I(n)
r )/g1/2(I(n)

r ))
σ(n)

= g1/2(I(n)
r ) + O(h(n)/g1/2(n))

g1/2(n)
· g

1/2(n)
σ(n)

=
(
g1/2(I(n)

r )
g1/2(n)

+ O
(
h(n)
g(n)

))(
1 + O

(
h(n)
g(n)

))

= g1/2(I(n)
r )

g1/2(n)
+ O

(
h(n)
g(n)

(
1 + g1/2(I(n)

r )
g1/2(n)

))
.

Hence, we obtain

‖A(n)
r −A∗r‖s ≤ ‖A

(n)
r −A∗r‖s + O

(
h(n)
g(n)

(
1 +

∥∥∥A(n)
r

∥∥∥
s

))
.

Since A(n)
r → A∗r in Ls we have ‖A(n)

r ‖s = O(1), hence

‖A(n)
r −A∗r‖s ≤ ‖A

(n)
r −A∗r‖s + O

(
h(n)
g(n)

)
,

which is bound (17). J

Note that in applications the terms on the right hand side in the estimates (17)–(20) can
easily be bounded when expansions as in (14) with explicit functions e, f, g, h are available.

4 Applications

We start by deriving a known result to illustrate in detail how to apply our framework of the
previous sections.

4.1 Quicksort: Key comparisons
The number of key comparisons Yn needed by the Quicksort algorithm to sort n randomly
permuted (distinct) numbers satisfies the distributional recursion

Yn
d= YIn

+ Y ′n−1−In
+ n− 1, n ≥ 1, (21)

where Y0 := 0 and (Yk)k=0,...,n−1, (Y ′k)k=0,...,n−1, In are independent, In is uniformly distrib-
uted on {0, . . . , n− 1}, and Yk

d= Y ′k, k ≥ 0. Hence, equation (21) is covered by our general
recurrence (1). For the expectation and variance of Yn exact expressions are known which
imply the asymptotic expansions

EYn = 2n log(n) + (2γ − 4)n+ O(logn),
Var(Yn) = σ2n2 − 2n log(n) + O(n),

where γ denotes Euler’s constant and σ :=
√

7− 2π2/3 > 0. We introduce the normalized
quantities X0 := X1 := X2 := 0 and

Xn := Yn − EYn√
Var(Yn)

, n ≥ 3.
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To apply Theorem 1 we need to find an 0 < s ≤ 3 and a sequence (R(n)) with (8) and (9).
Note that the Yn are bounded, thus Ls-integrable for any s > 0. To bound the Ls-norms
appearing in (8) we use Lemma 7 and choose

f(n) = 2n log(n) + (2γ − 4)n, e(n) = logn,
g(n) = σ2n2, h(n) = n logn.

With these functions we obtain for the quantities defined in (16) that

A
(n)
1 = In

n
, A

(n)
2 = n− 1− In

n
,

b
(n) = 1

σ

(
2In
n

log In
n

+ 2n− 1− In
n

log n− 1− In
n

+ n− 1
n

+ O
(

logn
n

))
.

With the embedding In = bnUc with U uniformly distributed over the unit interval [0, 1] we
have

A∗1 = U, A∗2 = 1− U, b∗ = 1
σ

(2U log(U) + 2(1− U) log(1− U) + 1) =: 1
σ
ϕ(U).

The limit theorem Xn → X has been derived by different methods by Régnier [16] and
Rösler [17]. Rösler [17] also found that the scaled limit Y := σX satisfies the distributional
fixed-point equation

Y
d= UY + (1− U)Y ′ + ϕ(U).

Lower and upper bounds for the rate of convergence in Xn → X have been studied for
various metrics in Fill and Janson [6] and Neininger and Rüschendorf [13].

Now, we apply the framework of the present paper: For r = 1, 2 and any s ≥ 1 we
find that

‖A(n)
r −A∗r‖s = O

( 1
n

)
.

Using Proposition 3.2 of Rösler [17] we obtain

‖b(n) − b∗‖s = O
( logn

n

)
.

Moreover, we have
h(n)
g(n) = O(R(n)) and e(n)

g1/2(n)
= O(R(n)) with R(n) := logn

n
,

thus Lemma 7 implies that condition (8) is satisfied for our choice of the sequence R. To
verify condition (9) by use of (20) we obtain that for T (n) given in Lemma 7 we find
T (n) = O(log(n)/n)→ 0 and that

E
2∑
r=1

gs/2(I(n)
r )R(I(n)

r )
gs/2(n)R(n)

= E
2∑
r=1

(
I

(n)
r

n

)s−1
log I(n)

r

logn .

Note that the latter expression has a limit superior of less than 1 if and only if s > 2. Hence,
Theorem 1 is applicable for s > 2 and yields that

ζs(Xn, X) = O
(

logn
n

)
, for 2 < s ≤ 3. (22)

The bound (22) had previously been shown for s = 3 in [13], where also the optimality of
the order was shown, i.e., that ζ3(Xn, X) = Θ (log(n)/n).

In the planned full paper version we also discuss bounds on rates of convergence for
various cost measures of the related Quickselect algorithms under various models for the
rank to be selected.
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4.2 Size of m-ary search trees
The size of m-ary search trees satisfies the recurrence (1) with K = m ≥ 3, A1(n) = · · · =
Am(n) = 1, n0 = m, bn = 1, i.e., we have

Yn
d=

m∑
r=1

Y
(r)
I

(n)
r

+ 1, n ≥ m.

For a representation of I(n) we define for independent, identically unif[0, 1] distributed random
variables U1, . . . , Um−1 their spacings in [0, 1] by S1 = U(1), S2 = U(2) − U(1), . . . , Sm :=
1− U(m−1), where U(1), . . . , U(m−1) denote the order statistics of U1, . . . , Um−1. Then I(n)

has the mixed multinomial distribution:

I(n) d= M(n−m+ 1, S1, . . . , Sm).

By this we mean that given (S1, . . . , Sm) = (s1, . . . , sm) we have that I(n) is multinomial
M(n −m + 1, s1, . . . , sm) distributed. Expectations, variances and limit laws for Yn have
been studied, see [12, 4]. We have

EYn = µn+ O(1 + nα−1), m ≥ 3, (23)
Var(Yn) = σ2n+ O(1 + n2α−2), 3 ≤ m ≤ 26, (24)

Here, the constants µ, σ > 0 depend on m and α ∈ R depends on m such that α < 1 for
m ≤ 13, 1 ≤ α ≤ 4/3 for 14 ≤ m ≤ 19, and 4/3 ≤ α ≤ 3/2 for 20 ≤ m ≤ 26, see, e.g.,
Mahmoud [12, Table 3.1] for the values α = αm depending on m. It is known that Yn
standardized by mean and variance satisfies a central limit law for m ≤ 26, whereas the
standardized sequence has no weak limit for m > 26 due to dominant periodicities, see
Chern and Hwang [4]. The rate of convergence in the central limit law for m ≤ 26 for the
Kolmogorov metric has been identified in Hwang [9]. Our Theorem 3 implies the central limit
theorem for Yn with m ≤ 26 with the same (up to an ε for 3 ≤ m ≤ 19) rate of convergence
for the Zolotarev metric ζ3:

I Theorem 8. The size Yn of a random m-ary search tree with n items inserted satisfies,
for m ≤ 26 and any ε > 0,

ζ3

( Yn − EYn√
Var(Yn)

,N (0, 1)
)

=
{

O
(
n−1/2+ε), 3 ≤ m ≤ 19,

O
(
n−3(3/2−α)), 20 ≤ m ≤ 26,

as n→∞.

Proof. In order to apply Theorem 3 we have to estimate the orders of ‖
∑m
r=1(A(n)

r )2− 1‖3/2

and ‖b(n)
∥∥

3 with A(n)
r and b(n) defined in (3). For this we apply Lemma 7. From (23) and

(24) we obtain that for the quantities appearing in Lemma 7 we can choose f(n) = µn,
e(n) = 1 ∨ nα−1, g(n) = σ2n, and h(n) = 1 ∨ n2(α−1). Hence we obtain

∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥
3/2

=
∥∥∥ m∑
r=1

I
(n)
r

n
− 1
∥∥∥

3/2
= m− 1

n
= O

(
n−1)

and O(h(n)/g(n)) = O(n−(1∧(3−2α))). This implies∥∥∥ m∑
r=1

(A(n)
r )2 − 1

∥∥∥3/2

3/2
= O

(
n−((3/2)∧(3(3/2−α)))).
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Similarly we obtain

∥∥b(n)∥∥
3 = 1

σ
√
n

∥∥∥1− µn+
m∑
r=1

µI(n)
r

∥∥∥
3

= 1
σ
√
n

∥∥1− µ(m− 1)
∥∥

3 = O
(
n−1/2)

and O(e(n)/g1/2(n)) = O(n−(1/2∧(3/2−α))). This implies∥∥b(n)∥∥3
3 = O

(
n−((3/2)∧(3(3/2−α)))).

Hence, condition (12) is satisfied with R(n) = n−((3/2)∧(3(3/2−α))). J

I Remark 9. Using Theorem 1 instead of Theorem 3 in the latter proof is also possible
but leads to a bound O(n−(3/2−α)) for 20 ≤ m ≤ 26, missing the factor 3 appearing in
Theorem 8.

In the full paper version we also discuss rates of convergence for the number of leaves of
d-dimensional random point quadtrees in the model of [7, 3, 8] where a similar behavior
as in Theorem 8 appears. A technically related example is the number of maxima in right
triangles in the model of [1, 2], where the order n−1/4 appears. Our framework also applies.

4.3 Periodic functions in mean and variance

We now discuss some applications where the asymptotic expansions of the mean and the
variance include periodic functions instead of fixed constants. This is the case for several
quantities in binomial splitting processes such as tries, PATRICIA tries and digital search
trees. Throughout this section, we assume that we have a sequence (Yn)n≥0 with finite third
moments satisfying the recursion

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)
I

(n)
2

+ bn, n ≥ n0, (25)

with (I(n), bn), (Y (1)
n )n≥0 and (Y (2)

n )n≥0 independent and (Y (r)
n )n≥0

d= (Yn)n≥0 for r = 1, 2.
Furthermore, I(n)

1 has the binomial distribution Bin(n, 1
2 ) and I

(n)
2 = n − I(n)

1 or I(n)
1 is

binomially Bin(n−1, 1
2 ) distributed and I(n)

2 = n−1−I(n)
1 . Mostly, these binomial recurrences

are asymptotically normally distributed, see [10, 11, 14, 18] for some examples.
Our first theorem covers the case of linear mean and variance, i.e. we assume that, as

n→∞,

E[Yn] = nP1(log2 n) + O(1), (26)
Var(Yn) = nP2(log2 n) + O(1), (27)

for some smooth and 1-periodic functions P1, P2 with P2 > 0. Possible applications would
start with the analysis of the number of internal nodes of a trie for n strings in the symmetric
Bernoulli model and the number of leaves in a random digital search tree, see, e.g., [10].

I Theorem 10. Let (Yn)n≥0 have finite third moments and satisfy (25) with ‖bn‖3 = O(1),
(26) and (27). Then, for any ε > 0 and n→∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).
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We now consider the case where our quantities Yn satisfy recursion (25) with bn being
essentially n. We assume that, as n→∞, we have

E[Yn] = n log2(n) + nP1(log2 n) + O(1), (28)
Var(Yn) = nP2(log2 n) + O(1), (29)

for some smooth and 1-periodic functions P1, P2 with P2 > 0. This covers, for example, the
external path length of random tries and related digital tree structures constructed from n

random binary strings under appropriate independence assumptions.

I Theorem 11. Let (Yn)n≥0 have finite third moments and satisfy (25) with ‖bn−n‖3 = O(1),
(28) and (29). Then, for any ε > 0 and n→∞, we have

ζ3

(Yn − E[Yn]√
Var(Yn)

,N (0, 1)
)

= O(n−1/2+ε).

4.4 A multivariate application
We consider a random binary search tree with n nodes built from a random permutation of
{1, . . . , n}. For n ≥ 0, we denote by L0n the number of nodes with no left descendant and
by L1n the number of nodes with exactly one left descendant. Defining Yn := (L0n, L1n), we
have Y0 = (0, 0) and we obtain the following distributional recurrence:

Yn
d= Y

(1)
I

(n)
1

+ Y
(2)
I

(n)
2

+ bn, n ≥ 1,

where (Y (1)
j )j≥0 and (Y (2)

j )j≥0 are independent copies of (Yj)j≥0, I(n)
1 is uniformly distributed

on {0, . . . , n − 1} and independent of (Y (1)) and (Y (2)), I(n)
2 = n − 1 − I

(n)
1 and bn =

(1{I(n)
1 =0},1{I(n)

1 =1}). In Devroye [5] it is shown that, for n ≥ 2,

E[L0n] = 1
2(n+ 1), E[L1n] = 1

6(n+ 1),

and that the standardized quantities have a limiting normal distribution. Using Devroye’s
description with local counters one also obtains the covariance structure:

I Lemma 12. For n ≥ 4, we have Cov(Yn) = (n+ 1) Γ with

Γ = 1
360

(
30 −15
−15 28

)
.

For n ≥ 0, we now set Mn := E[Yn], Cn = Id2 for n ≤ 3, Cn := Cov(Yn) for n ≥ 4 and
define Xn := C

−1/2
n (Yn −Mn) for n ≥ 0. Note that the matrix Γ in Lemma 12 is symmetric

and positive definite, which implies, for n ≥ 4,

C1/2
n =

√
n+ 1 Γ1/2 and C−1/2

n = 1√
n+ 1

Γ−1/2.

The normalized quantities satisfy X0 = (0, 0) and recursion (2) with K = 2, n0 = 1,

A(n)
r = C−1/2

n C
1/2
I

(n)
r

= 1{I(n)
r ≥4}

√
I

(n)
r + 1
n+ 1 Id2 + 1{I(n)

r <4}
1√
n+ 1

Γ−1/2

for r = 1, 2 and

b(n) = C−1/2
n (bn −Mn +M

I
(n)
1

+M
I

(n)
2

).
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Modeling all quantities on a joint probability space such that I(n)
1 /n converges almost surely

to a uniform random variable U in [0, 1], we have the L3-convergences A(n)
1 →

√
U Id2,

A
(n)
2 →

√
1− U Id2 and b(n) → 0 as n → ∞. Thus, we are in the situation of Section 2.2

and obtain the limiting equation

X
d=
√
UX(1) +

√
1− UX(2),

with U uniformly distributed on [0, 1] and X(1), X(2) and U independent. We now check the
conditions of Theorem 3. Since A(n)

1 (A(n)
1 )T +A(n)

2 (A(n)
2 )T = Id2 on the event {I(n)

1 , I
(n)
2 ≥ 4},

we obtain, as n→∞,

∥∥∥ 2∑
r=1

A(n)
r (A(n)

r )T − Id2

∥∥∥3/2

3/2
= O

(∥∥∥1{I(n)
1 <4}

( 1
n+ 1 Γ−1 + I

(n)
2 + 1
n+ 1 Id2 − Id2

)∥∥∥3/2

3/2

)

= O
(
E
[
1{I(n)

1 <4}

∥∥∥ 1
n+ 1 Γ−1 − I

(n)
1 + 1
n+ 1 Id2

∥∥∥3/2

op

])
= O

(
n−5/2).

Similarly, we obtain∥∥b(n)∥∥3
3 = O(n−5/2).

Since we have ‖1{I(n)
r <`}A

(n)
r ‖3

3 = O(n−5/2) for ` ∈ N and r = 1, 2, the technical conditions
are satisfied. We now use Theorem 3 with R(n) = n−1/2. Note that condition (13) is not
satisfied for R(n) = n−1/2, but we can use the weakened condition stated in Remark 2 to
obtain the following result.

I Theorem 13. Denoting by Yn := (L0n, L1n) the vector of the numbers of nodes with no
and with exactly one left descendant respectively in a random binary search tree with n nodes
we have, for n→∞, that

ζ3
(
Cov(Yn)−1/2(Yn − E[Yn]),N (0, Id2)

)
= O(n−1/2).
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Abstract
We describe a novel way to represent the probability distribution of a random binary string as a
mixture having a maximally weighted component associated with independent (though not necessarily
identically distributed) Bernoulli characters. We refer to this as the latent independent weight of
the probabilistic source producing the string, and derive a combinatorial algorithm to compute it.
The decomposition we propose may serve as an alternative to the Boolean paradigm of hypothesis
testing, or to assess the fraction of uncorrupted samples originating from a source with independent
marginal distributions. In this sense, the latent independent weight quantifies the maximal amount
of independence contained within a probabilistic source, which, properly speaking, may not have
independent marginal distributions.
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1 Introduction

Consider the Bayesian network [5] in Figure 1, given in [11, Chapter 2]. As the reader may
find familiar, each random variable (node) in the network, given the configurations of its
parents, is by definition conditionally independent from its non-descendants. Accordingly,
the joint probability mass function of the binary random vector (P, T, S, L,X) factorizes
as follows:

P(P = p, T = t, S = s, L = l,X = x) = P(P = p) · P(T = t) · P(S = s | T = t)
· P(L = l | P = p, T = t) · P(X = x | L = l).

In particular, the joint distribution of P , T , S, L and X can be encoded with 10 free
parameters. Perhaps unexpectedly, however, one can represent this joint distribution as a
mixture with a heavily weighted “independent” component. Specifically:

P = 0.94 ·Be(0.02)⊗Be(0.005)⊗Be(0.6)⊗Be(0.01)⊗Be(0.6) + 0.06 ·R, (1)
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23:2 Latent Independent Weights

where Be(p) denotes a Bernoulli distribution with success probability p, the operator ⊗
denotes product measures, and R is a “residual” probability distribution over the sample space
{0, 1}5. This decomposition of P is possible because for each outcome (p, t, s, l, x) ∈ {0, 1}5 a
computation shows that:

P(P = p, T = t, S = s, L = l,X = x)

≥ 0.94 · 0.02p 0.981−p×0.005t 0.9951−t×0.6l 0.41−l×0.01x 0.991−x×0.6s 0.41−s.

The residual distribution R may be obtained solving for it in equation (1). It turns out
in this case that R has low entropy (≈ 3.2 bits, compared to the uniform distribution over
{0, 1}5, which has 5 bits of entropy), and gives probability 0 to twelve of the thirty-two
outcomes.

The identity in equation (1) means that, conditioned on a hidden event of 94% probability,
the presence of lung infiltrates, the outcome of an X-ray and sputum smear, and the status of
a patient having tuberculosis or pneumonia will all be rendered independent. Thus, while in
a clinical setting, the dependencies encoded in the Bayesian network may be relevant, on the
population level, these covariates often behave independently; in particular, most samples
from the Bayesian network can be attributed to a much simpler model (with 5 instead of 10
free parameters).

The decomposition in (1) bears the question: what’s the largest weight a product of
independent Bernoulli distributions can have as component of P? Remarkably, the marginal
distributions of P are associated with a weight that is significantly smaller than 94%. Indeed,
a computation shows that P ∼ Be(0.05), T ∼ Be(0.02), S ∼ Be(0.6), L ∼ Be(0.05), and
X ∼ Be(0.6), and that P admits the mixture representation:

P = ε ·Be(0.05)⊗Be(0.02)⊗Be(0.6)⊗Be(0.05)⊗Be(0.6) + (1− ε) ·R′,

where ε ≈ 0.104, and R′ is a probability distribution that can be determined from the
above identity.

In this article we develop the mathematics of the so-called (latent) independent weight of
an arbitrary joint probability distribution over a sample space of the form {0, 1}d, with d ≥ 1
finite. We argue that the independent weight of a probabilistic source describes the largest
average fraction of samples from it that can be attributed to (conditionally) independent
Bernoulli random variables, and describe an algorithm to compute this weight, along with
some heuristics to approximate it.

The independent weight of a probabilistic source is an intrinsic property of it, which can
be used as an objective measure of the approximate correctness of the null hypothesis that
“the source has independent marginal distributions,” which may be nevertheless false (as the
example associated with Figure 1). The concept of independent weight may also be used to
distill corrupted data from a source with otherwise independent marginal distributions.

1.1 Related Work
The present work may be regarded as a non-trivial specialization of the recent theory
developed in [8]. This previous work introduces the concept of the latent weight of a
probabilistic source (such as P in the previous example) with respect to a structured class Q
of probability models over a finite sample space. Specifically, the latent weight of a source P
with respect to a class Q of models is defined as [8]:

λQ(P ) := sup{λ ≥ 0 | P ≥ λ ·Q for some Q ∈ Q}. (2)
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L

P T

X S

P(P = 1) = 0.05 P(T = 1) = 0.02

t P(S = 1 | T = t)
0 0.6
1 0.8

l P(X = 1 | L = l)
0 0.6
1 0.8

p t P(L = 1 | P = p, T = t)
0 0 0.01
0 1 0.2
1 0 0.6
1 1 0.8

Figure 1 Bayesian network that models the interaction between two lung conditions, tuberculosis
(T), and pneumonia (P), and how they jointly affect the probability that a patient will have lung
infiltrates (L), the presence of said infiltrates in an X-ray (X), and the outcome of a sputum smear
test (S) for tuberculosis. Nodes represent Bernoulli random variables, with conditional probability
tables indicated, and the value 1 (0) indicates the presence (absence) of the corresponding condition.

This coefficient represents the largest weight that can be given to a model in Q as a component
in a mixture decomposition of P . In fact, under mild technical conditions, there always exists
Q ∈ Q and a probabilistic model R such that

P = λQ(P ) ·Q+ (1− λQ(P )) ·R. (3)

Furthermore, when Q is convex, Q is unique when λQ(P ) > 0, and so is R when λQ(P ) < 1.
In the current setting, Q is the class of probability distributions associated with independ-

ent binary random variables. We emphasize that much of what we present in this extended
abstract may be generalized to more general discrete random variables, however, the binary
setting presents enough mathematical challenges to consider it in isolation.

2 Latent Independent Weights

In what follows, P denotes the set of all probability distributions on {0, 1}d, with d ≥ 1 a
given integer. In particular, we may think of elements in P as non-negative real vectors of
dimension 2d, with entries that sum up to 1.

For P,Q ∈ P and λ ∈ R, we write P ≥ λ · Q to mean that P (ω) ≥ λ · Q(ω), for
each ω ∈ {0, 1}d. Further, we say that Q has independent marginal distributions (in short,
independent marginals) if and only if there are probability distributions µ1, . . . , µd defined
over {0, 1} such that Q = ⊗di=1µi. Equivalently, Q has independent marginals if and only if it
is the probability distribution of a random vector of the form (X1, . . . , Xd), with X1, . . . , Xd

independent (though not necessarily identically distributed) Bernoulli random variables. (In
this case, each Xi has distribution µi.)

AofA 2020



23:4 Latent Independent Weights

We associate to each P ∈ P the real coefficient:

λ(P ) := λQ(P ), (4)

where λQ(P ) is as in equation (2) and Q ⊂ P denotes the set of models with independent
marginal distributions.

Clearly, 0 ≤ λ(P ) ≤ 1. In fact, according to [8], λ(P ) = 1 if and only if P has independent
marginal distributions itself. Furthermore, because the subset of distributions in P with
independent marginal distributions is compact, the supremum in equation (4) is always
achieved [8]. Namely, there is Q ∈ P with independent marginals such that P ≥ λ(P ) ·Q.
As a result, since (P −λ(P ) ·Q) is a measure with total mass (1−λ(P )), there is also R ∈ P
such that P admits the mixture decomposition:

P = λ(P ) ·Q+
(
1− λ(P )

)
·R. (5)

This decomposition motivates calling λ(P ) the latent independent weight of P , or simply
the independent weight of P . It follows that λ(P ) is the largest weight that can be attributed
to a probability measure over {0, 1}d with independent marginals as a component of P .
Equivalently: λ(P ) is the maximal expected fraction of samples from P which may be
attributed to a probabilistic source with independent marginal distributions. More precisely, if
X = (X1, . . . , Xd) has distribution P then, up to a hidden event with probability λ(P ), the
Bernoulli random variables X1, . . . , Xd are (conditionally) independent.

We note that the model Q with independent marginal distributions in equation (5) is
not necessarily unique. For example, let d = 2 and P be the uniform distribution over
{(0, 0), (1, 1)}; in this case, P = δ(0,0)/2 + δ(1,1)/2, where δx is the point probability mass at
x. The reader can verify that the only models with independent marginals that can be given
positive weight in a probability mixture decomposition of P are δ(0,0) and δ(1,1), hence the
supremum in equation (4) is achieved by δ(0,0) as well as δ(1,1).

2.1 Alternative Formulations
In this section we show how to compute latent independents weights.

Henceforth, P ∈ P is assumed fixed. Moreover, we assume that P > 0, i.e. P (ν) > 0 for
each ν ∈ {0, 1}d. This assumption can be relaxed but goes beyond the scope of this extended
abstract.

In what follows, ∞ denotes +∞.
For each ω = (ω1, . . . , ωd) ∈ {0, 1}d, let fω : [0, 1]d → [1,∞] be the function defined as

fω(q) := 1
P(Xq = ω) =

d∏
i=1

q−ωi
i (1− qi)ωi−1, for q = (q1, . . . , qd);

where Xq = (X1, . . . , Xd) is a vector of independent Bernoulli random variables, with
Xi ∼ Be(qi). (The second identity above requires to define 00 := 1.) Clearly, fω(q) is a
continuous function of q.

For each ω ∈ {0, 1}d, define

Qω :=
{

q ∈ [0, 1]d | ∀ν ∈ {0, 1}d : P (ω)fω(q) ≤ P (ν)fν(q)
}
. (6)

I Lemma 1. If P > 0 then λ(P ) = max
ω∈{0,1}d

max
q∈Qω

P (ω)fω(q).
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Proof. Since a probability measure over {0, 1}d with independent marginal distributions
may be represented in terms of d independent Bernoulli random variables, we may restate
equation (4) equivalently as follows:

λ(P ) = sup
{
λ ≥ 0

∣∣∣∣∣∃q ∈ [0, 1]d ∀ν ∈ {0, 1}d : P (ν) ≥ λ ·
d∏
i=1

qνi
i (1− qi)1−νi

}

= sup
{
λ ≥ 0

∣∣∣∣∃q ∈ [0, 1]d : λ ≤ min
ν∈{0,1}d

P (ν)fν(q)
}

= sup
q∈[0,1]d

min
ν∈{0,1}d

P (ν)fν(q)

= max
q∈[0,1]d

min
ν∈{0,1}d

P (ν)fν(q),

where for the second identity we have used that P > 0, which prevents the possibility of
dealing with anomalous products of the form 0 · ∞, and for the last identity we have used
that [0, 1]d is compact and that the functions fν , with ν ∈ {0, 1}d, are continuous.

But observe that for each q ∈ [0, 1]d there must exist an ω which minimizes (possibly
with ties) the quantity P (ν)fν(q), with ν ∈ {0, 1}d; that is, [0, 1]d ⊂ ∪ω∈{0,1}dQω. Since, by
definition, Qω ⊂ [0, 1]d for each ω, we obtain that

[0, 1]d =
⋃

ω∈{0,1}d

Qω.

Finally, from the last identity for λ(P ), the defining property of the set Qω implies that

λ(P ) = max
ω∈{0,1}d

max
q∈Qω

min
ν∈{0,1}d

P (ν)fν(q) = max
ω∈{0,1}d

max
q∈Qω

P (ω)fω(q). J

Lemma 1 reduces the calculation of λ(P ) to 2d optimization problems, one for each
ω ∈ {0, 1}d, of the form:

max
q∈Qω

P (ω) fω(q), with ω ∈ {0, 1}d. (7)

Our next result aids in making these optimization problems more explicit.

I Lemma 2. Assume P > 0. For a given ω ∈ {0, 1}d, the transformation q −→ x with
x = (x1, . . . , xd) and xi := ( qi

1−qi
)1−2ωi , is a bijection between [0, 1]d and [0,∞]d, and in

terms of the variable x:

fω(q) =
d∏
i=1

(1 + xi). (8)

Under this reparameterization, for each q ∈ (0, 1)d:

q ∈ Qω if and only if ∀ν ∈ {0, 1}d :
∏

i: νi 6=ωi

xi ≤
P (ν)
P (ω) , (9)

where
∏
i: νi 6=ωi

xi := 1 when ν = ω.

Proof. If ωi = 1 then xi = 1−qi

qi
, which is a strictly decreasing function of qi. Instead, if

ωi = 0 then xi = qi

1−qi
, which is a strictly increasing function of qi. Thus, in either case,

xi is a strictly monotone function of qi, with range [0,∞] when qi ∈ [0, 1]. From this it is

AofA 2020



23:6 Latent Independent Weights

immediate that the transformation q→ x from [0, 1]d to [0,∞]d is one-to-one and onto. On
the other hand, if ωi = 1 then qi = 1

1+xi
, hence

q−ωi
i (1− qi)ωi−1 = 1

qi
= 1 + xi.

Likewise, if ωi = 0 then qi = xi

1+xi
i.e. (1− qi) = 1

1+xi
, hence

q−ωi
i (1− qi)ωi−1 = 1

1− qi
= 1 + xi.

In either case, q−ωi
i (1− qi)ωi−1 = (1 + xi), which implies the identity in equation (8).

Because P > 0, observe for q ∈ (0, 1)d that:

q ∈ Qω if and only if ∀ν ∈ {0, 1}d : fω(q)
fν(q) ≤

P (ν)
P (ω) . (10)

But, in terms of the original variable q:

fω(q)
fν(q) =

d∏
i=1

qνi−ωi
i (1− qi)ωi−νi .

Note however that if ωi = νi then qνi−ωi
i (1− qi)ωi−νi = 1. If instead ωi 6= νi, there are only

two possibilities. On the one hand, if ωi = 0 and νi = 1, then

qνi−ωi
i (1− qi)ωi−νi = qi

1− qi
=
(

qi
1− qi

)1−2ωi

= xi.

On the other hand, if ωi = 1 and νi = 0, then

qνi−ωi
i (1− qi)ωi−νi = 1− qi

qi
=
(

qi
1− qi

)1−2ωi

= xi.

As a result:
fω(q)
fν(q) =

∏
i:νi 6=ωi

xi,

which together with equation (10) implies the lemma. J

The special nature of the constraints in (9), suggests introducing the additional change
of variables x → y, with y = (y1, . . . , yd) and yi := ln(xi). The following result is now
immediate from the previous lemma.

I Corollary 3. For a given ω ∈ {0, 1}d, the transformation q −→ y with y = (y1, . . . , yd)
and yi := (1− 2ωi) · ln

(
qi

1−qi

)
, is a bijection between [0, 1]d and [−∞,∞]d, and in terms of

the variable y:

fω(q) =
d∏
i=1

(1 + eyi). (11)

Under this reparameterization, for each q ∈ (0, 1)d:

q ∈ Qω if and only if ∀ν ∈ {0, 1}d :
∑

i: νi 6=ωi

yi ≤ ln
(
P (ν)
P (ω)

)
, (12)

where
∑
i: νi 6=ωi

yi := 0 when ν = ω.
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The characterization in equation (12) is not necessarily valid on the boundary of [0, 1]d
because, for some q ∈ ∂[0, 1]d and different ω, ν ∈ {0, 1}d, the summation on the right-hand
side may be ill-posed due to the simultaneous occurrence of plus and negative infinity terms
in the sum. Nevertheless, due to the continuity of fω in terms of the variables q and y (see
equation (11)), if a solution to maxq∈Qω

fω(q) lives on ∂[0, 1]d then said solution is the limit
of points in Qω ∩ (0, 1)d. In particular, for each ω ∈ {0, 1}d, the associated optimization
problem in equation (7) may be restated in terms of the variable y as follows:

sup
y∈Rd

P (ω)
d∏
i=1

(1 + eyi)

subject to ∀ν ∈ {0, 1}d :
∑

i: νi 6=ωi

yi ≤ ln
(
P (ν)
P (ω)

)
.

(13)

Each of these new optimization problems has various advantages – compared to the ones
in (7). First, up to the factor P (ω), the objective function does not depend explicitly on ω.
Second, the feasible region is a polyhedron [10, Chapter 8], which is a well-studied geometric
object. And third, the objective function is monotonically increasing in each coordinate of y;
which implies that any solution must lie on the boundary of said polyhedron. We show how
to exploit these properties in the next section.

2.2 Geometric Insights

In this section, we fix an outcome ω ∈ {0, 1}d and describe a combinatorial algorithm to
solve the associated optimization problem in equation (13). Define

Q̃ω :=

y ∈ Rd
∣∣∣∣∣∣
∑

i:νi 6=ωi

yi ≤ ln
(P (ν)
P (ω)

)
for each ν ∈ {0, 1}d

 ,

to denote the feasible region in (13).
In what follows, all vectors are represented as column vectors.
The following result is now immediate from the previous corollary.

I Corollary 4. Assume that P > 0. For a given ω ∈ {0, 1}d, let Aω be the binary matrix
of dimensions (2d − 1) × d with entries Aω(ν, i) := Jνi 6= ωiK, for each ν ∈ {0, 1}d \ {ω}
and i ∈ {1, . . . , d}. Furthermore, let bω be a column vector of dimension (2d − 1) with
entries bω(ν) := log(P (ν)/P (ω)), for each ν ∈ {0, 1}d \ {ω}. Then the feasible region Q̃ω
corresponds to the set of y ∈ Rd satisfying the coordinatewise inequalities:

Aω y ≤ bω. (14)

The above inequality characterizes Q̃ω as a non-empty convex polyhedron in Rd. Recall,
y ∈ Q̃ω is called a vertex if there exists an invertible sub-matrix A′ω of Aω of dimensions
d × d and a corresponding sub-vector b′ω of bω of dimension d such that A′ωy = b′ω [10,
Chapter 8, equation (23)]. (The sub-matrix A′ω and the sub-vector b′ω are associated with
the same rows of Aω and bω, respectively.)

I Lemma 5. The polyhedron in equation (14) is pointed, i.e. it contains at least one vertex.

AofA 2020



23:8 Latent Independent Weights

Proof. For each i ∈ {1, . . . , d}, let νi ∈ {0, 1}d be such that νi(j) = ω(j) for j 6= i, and
νi(i) = 1 − ω(i). Then the sub-matrix of Aω associated with rows in the set {ν1, . . . , νd}
corresponds to the (d× d) identity matrix. As a result, the kernel of Aω – which coincides
exactly with the so-called “lineality space” of the polyhedron – is {0}, which implies that the
polyhedron is pointed [10, Chapter 8, equations (6) and (23)]. J

In the language of polyhedral programming, a vertex is a zero-dimensional face. More
generally, if c ∈ Rd \ {0}, δ ∈ R, and G := {y ∈ Rd | cty = δ} we say the affine hyperplane
G is a supporting hyperplane of Q̃ω at the point y ∈ Q̃ω if y ∈ G ∩ Q̃ω and Q̃ω is contained
in one of the closed half-spaces bounded by G [7, p. 20]. The non-empty set F := G ∩ Q̃ω is
called a face of Q̃ω. Equivalently, a face of Q̃ω is any set of the form {y ∈ Q̃ω | A′ωy = b′ω},
where A′ω and b′ω are a sub-matrix and sub-vector associated with the same rows of Aω and
bω, respectively [7, Theorem 2.3.3]. (Here, A′ω does not need to be a square matrix.) The
dimension of a face F associated with the subsystem A′ωy = b′ω is d− rank(A′ω).

I Corollary 6. If y ∈ ∂Q̃ω, the boundary of Q̃ω, and y is not a vertex of Q̃ω, then y
lies in the relative interior of some positive-dimensional face of Q̃ω. That is, there is a
positive-dimensional face F and some ε > 0 such that the intersection of the closed ε-ball
around y and the affine hull of F is contained in F .

Proof. First, Q̃ω equals the union of the relative interiors of its faces, which are disjoint [7,
Corollary 2.3.7]. In particular:

∂Q̃ω = t
faces F$Q̃ω

relint(F )

=
(

t
non-vertex faces F$Q̃ω

relint(F )
)
t
(

t
vertices v∈Q̃ω

{v}
)
,

where relint(·) denotes the relative interior, and t denotes a disjoint union. Since a face
coincides with its own relative interior if and only if it is a vertex, if y ∈ ∂Q̃ω but y is not a
vertex then y must lie in the relative interior of a unique positive-dimensional face. J

Next we address the optimization problem in equation (13) for a fixed ω ∈ {0, 1}d.
Hereafter, we abuse notation slightly and define

fω(y) :=
d∏
i=1

(1 + eyi),

to denote the reparameterized version of fω(q) in terms of the variable y (see Corollary 3).
The following result rules out points in the relative interior of positive-dimensional faces of
Q̃ω as maximizers of fω(y).

I Lemma 7. Let F ⊂ Q̃ω denote a positive-dimensional face of Q̃ω, and ŷ denote a point
in the relative interior of F . Then fω(ŷ) < maxy∈Q̃ω

fω(y). More specifically:
1. If the gradient ∇fω(ŷ) is not orthogonal to F , then fω can be strictly increased on F ,

that is, there is some ẑ ∈ F such that fω(ẑ) > fω(ŷ).
2. If the gradient ∇fω(ŷ) is orthogonal to F , then fω(ŷ) is a local minimum on F .

Proof. Clearly, fω has continuous partial derivatives of any order.
First observe that
∂fω
∂yi

(y) = eyi

∏
j 6=i

(1 + eyj ) = fω(y) eyi

1 + eyi
.
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Therefore, if y→ γ is the transformation defined as γ = (γ1, . . . , γd)t, with γi := eyi

1+eyi
, then

∇fω(y) = fω(y) γ,

which implies that ∇fω(y) 6= 0, for all y ∈ Rd. In particular, if ∇fω(y) is not orthogonal to
F , a small perturbation in the direction of the projection of ∇fω(y) onto F will increase fω.
This shows the first statement in the lemma.

On the other hand:

∂2fω
∂y2

i

(y) = eyi

∏
j 6=i

(1 + eyj ) = fω(y) γi,

and for i 6= j:

∂2fω
∂yjyi

(y) = eyieyj

∏
k 6=i,j

(1 + eyk ) = fω(y) γiγj .

As a result, ∇2fω(y), the Hessian matrix of fω at y, admits the decomposition:

∇2fω(y) = fω(y)
(
Γ1 + Γ2

)
,

where Γ1 := diag
(
γ1(1− γ1), . . . , γd(1− γd)

)
, and

Γ2 :=


γ2

1 γ1γ2 . . . γ1γd
γ2γ1 γ2

2 . . . γ2γd
...

...
. . .

...
γdγ1 γdγ2 . . . γ2

d

 = γγt.

Because each 0 < γi < 1, Γ1 is strictly positive definite. Since Γ2 is positive semidefinite, and
fω(y) > 0 for all y ∈ Rd, ∇2fω(y) is strictly positive definite regardless of y. As a result, if
∇fω(ŷ) is orthogonal to F , then ŷ is a local minimum of fω along F . This completes the
proof of the lemma. J

Finally, combining Corollary 6 and Lemma 7, we obtain the following central result,
which implies that the maxima in (13) can occur only occur among a finite number of
well-characterized points in Q̃ω.

I Theorem 8. If P > 0 then, for each ω ∈ {0, 1}d, the maximum max
y∈Q̃ω

fω(y), can only

occur at a vertex of Q̃ω.

3 Algorithms for λ(P )

Computing λ(P ) requires solving the optimization problem (13) for each of 2d possible binary
outcomes. As previously described, solving each optimization problem can be achieved by
evaluating fω at each vertex of Q̃ω, and the vertices can be found as unique solutions of
invertible (d× d)-subsystems A′ωy = b′ω. This motivates Algorithm 1, which computes λ(P )
by exploring square subsystems of Aωy ≤ bω to find vertices, evaluating fω(y∗) at each
vertex y∗ for each outcome ω, and returning the largest of these.

For each outcome ω, there are
(2d−1

d

)
subsystems A′ωy = b′ω of size (d × d) to check.

For each subsystem A′ωy = b′ω, simple Gaussian elimination will find a unique solution,
if it exists, in O(d3) time, and often terminates in less time if A′ω is singular. If y′ is a

AofA 2020
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Algorithm 1 A naïve exact algorithm for λ(P ).
Require: P > 0
M ← 0
for ω ∈ {0, 1}d do

Aω ← {Jωi 6= νiKi=1,...,d}ν∈{0,1}d\{ω}

bω ← {log( P (ν)
P (ω) )}ν∈{0,1}d\{ω}

for {ν(1), ν(2), . . . , ν(d)} ⊂ {0, 1}d \ {ω} do
A′ω ← {Jωi 6= ν

(j)
i K}i,j=1,...,d

b′ω ← {log(P (ν(j))
P (ω) )}j=1,...,d

if A′ω is invertible then
y∗ ← (A′ω)−1b′ω
if Aωy∗ ≤ bω then

M ←M ∨ fω(y∗)
return λ(P )←M

unique solution to the square subsystem A′ωy′ = b′ω, it takes O(d2d) operations to check
that y′ is feasible, i.e., Aωy′ ≤ bω. If y′ is infeasible, it often takes many fewer operations to
confirm this.

Taking these operations together, and using the well-known bound on binomial coefficients,(
n
k

)
< (n·ek )k, in the worst case there are O

(
d4( 2d+1e

d )d
)
operations required to compute

λ(P ). The memory required by this algorithm grows much less slowly, as O(2d), if square
subsystems are iterated without loading every set of d indices into memory. This is common
in standard combinatorial software like the itertools module in Python [4, Section 3.2]. In
practice, we find that without any parallelization strategies and without supercomputing
resources, it is feasible to compute λ(P ) for binary sources up to dimension d = 6 by naïvely
searching for vertices.

We note that specialized algorithms to explore only those subsystems A′ωy = b′ω which
are invertible, and ignore singular subsystems, are still unlikely to allow computation of
λ(P ) in very high dimensions. In fact, the number of invertible submatrices A′ω of dimension
d has previously been recognized as a noteworthy sequence [3]. This sequence is hard to
compute explicitly, but appears to grow exponentially fast. In fact, there are approximately
2.52× 1014 invertible subsystems in only 8 binary dimensions [12].

Specialized polyhedral programming algorithms may help to accelerate computation of
λ(P ). For example, the vertex enumeration algorithm given in [1], runs in O(d2dV ) time,
where V is the number of vertices of Q̃ω. The number of vertices is hard to characterize (it
depends on bω), but based on simulation we believe it is typically much smaller than the
number of invertible subsystems. We believe a pivoting method similar to [1] can be adapted
to take advantage of Aω’s binary structure.

Some readers may note that each optimization program:

max
y∈Rd

fω(y)

subject to Aωy ≤ bω

resembles a linear program. However, the objective function fω(y) is nonlinear, and therefore
linear programming techniques such as Dantzig’s simplex algorithm [2, Chapter 5] are not
suitable. Moreover, positive definiteness of the Hessian derived in Lemma 7 implies that
fω(y) is strictly convex. Although the feasible region is also convex, the fact that we seek to
maximize fω(y) means most nonlinear convex programming techniques cannot be guaranteed
to converge to true maxima.
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T1 T2

T3 T4

t1 w(t1)
0 100
1 0.2

t2 w(t2)
0 100
1 0.2

t3 w(t3)
0 100
1 0.2

t4 w(t4)
0 100
1 0.2

t1 t2 w(t1, t2)
0 0 2
0 1 0.5
1 0 0.5
1 1 1

t3 t4 w(t3, t4)
0 0 2
0 1 0.5
1 0 0.5
1 1 1

t1 t3 w(t1, t3)
0 0 2
0 1 0.5
1 0 0.5
1 1 1

t2 t4 w(t2, t4)
0 0 2
0 1 0.5
1 0 0.5
1 1 1

Figure 2 Markov network that models the interaction of four hypothetical patients that may or
may not have tuberculosis. Patient i is healthy if Ti = 0, and infected if Ti = 1.

Due to the aforementioned difficulties in the combinatorial approach in high dimensions,
we have also explored numerical approximation of each optimization program using nonlinear
algorithms including sequential gradient-free linear approximation (COBYLA) [9], and
sequential quadratic programming (SLSQP) [6]. These show some promise but tend to suffer
from numerical instability in moderate to high dimensions (above d = 5 or so). However,
because the structure of fω makes computing higher-order derivatives very straightforward,
it may be possible to devise a specialized interior point method that makes approximating
λ(P ) efficient even in higher dimensions.

4 Proof of Concept

Consider the Markov network [5] in Figure 2, borrowed from [11, Chapter 2]. In this
setting, undirected edges represent interactions in a social network of four patients, each
of whom may or may not have tuberculosis (represented as four Bernoulli random vari-
ables T1, . . . , T4). Here, the complete subgraphs (cliques) of the Markov network are
{T1}, {T2}, {T3}, {T4}, {T1, T2}, {T1, T3}, {T2, T4}, and {T3, T4}. To each clique C we as-
sociate a factor w : {0, 1}|C| → R+, and to each configuration (t1, t2, t3, t4) ∈ {0, 1}4 of sick
and healthy patients, we associate the probability:

P (t1, t2, t3, t4) ∝ w(t1) · w(t2) · w(t3) · w(t4) · w(t1, t2) · w(t1, t3) · w(t2, t4) · w(t3, t4).

This network reflects the intuition that, if one patient who has tuberculosis interacts with
another, it is more likely for the latter to have tuberculosis. In fact, the joint distribution
P of (T1, T2, T3, T4) is exchangeable (i.e. labels on the patients can be permuted without
affecting the joint probability of their tuberculosis status). Using Algorithm 1, we find that
λ(P ) is very close to one. We transform a vertex y∗ which achieves λ(P ) back to a probability
q∗ (see Corollary 3) and find explicitly:

P = 0.999999 ·Be(0.000125)⊗Be(0.000125)⊗Be(0.000125)⊗Be(0.000125)+0.0000001 ·R,
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T1 T2

t1 w(t1)
0 2
1 1

t2 w(t2)
0 2
1 1

t1 t2 w(t1, t2)
0 0 10
0 1 1
1 0 1
1 1 10

Figure 3 Markov network that models the interaction of two hypothetical patients which may
or may not have tuberculosis. In this setting, the marginal probability of a patient being infected
with tuberculosis is moderate (≈ 22%), and the probability that exactly one of the two patients is
infected is relatively low (≈ 8%). This might be a realistic model for, e.g., two inmates sharing a
cell in a prison with a tuberculosis outbreak.

where R is a residual probability distribution with low entropy (≈ 2 bits, compared to the
uniform distribution over {0, 1}4, which has 4 bits of entropy). This means that, despite the
dependence implied by the interactions, a large fraction of the time it will appear as though
the patients are infected with tuberculosis independently, each with a very small probability
of infection.

It is not always the case that a source represented by a probabilistic graphical model has
a very large independent weight. Consider a simpler version of the previous Markov network,
shown in Figure 3. In this case, a non-negligible fraction of the data produced by the source
cannot be recapitulated by a model with independent marginal distributions. Let P denote
the joint distribution of (T1, T2). Using Algorithm 1, we find that λ(P ) = 0.817. Moreover,

P = 0.817 ·Be(0.048)⊗Be(0.048) + 0.183 · δ(1,1).

That is, a large fraction of the time a realization of these two patients’ tuberculosis states
cannot be attributed to the largest independent component of P .

These two examples demonstrate how scientists and engineers may benefit from detecting
a source’s independent weight. If a source under study is known to have λ(P ) ≈ 1, even
if the source fails a hypothesis test of independence, the modeler might save considerable
complexity while still recapitulating most of the features of the source. In contrast, if a
source has very low independent weight, the scientist could find meaningful mechanistic
insights in the residual component, such as in the latter example, where a sample originates
either from a hidden non-degenerate probability model with independent marginals or a
deterministic one.
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Abstract
We study block statistics in subcritical graph classes; these are statistics that can be defined as the
sum of a certain weight function over all blocks. Examples include the number of edges, the number
of blocks, and the logarithm of the number of spanning trees. The main result of this paper is a
central limit theorem for statistics of this kind under fairly mild technical assumptions.
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1 Introduction

The detailed analytic study of subcritical graph classes was initiated by Drmota et al. in their
seminal paper [4]; the formal definition, which will be given below, is based on properties
of the generating function. Intuitively speaking, subcritical classes are “tree-like” in some
sense, which is exhibited for instance by the fact that their scaling limit is the continuum
random tree [12], meaning that the global structure is essentially determined by the block-
cutpoint tree, while the blocks themselves are fairly small. Typical examples of subcritical
graph classes are trees, cacti, block graphs, outerplanar graphs and series-parallel graphs.
Unfortunately, there is probably no simple graph-theoretical characterisation of subcritical
graph classes, as it was shown that every proper minor-closed family of graphs is contained
in a subcritical family [9].

By a block statistic, we mean an invariant induced by a weight function w on all 2-
connected graphs (blocks) of the specific graph class. Any graph G can be decomposed
uniquely into maximal 2-connected subgraphs B1, B2, . . . , Bk (that can only be joined at
cutvertices), the so-called blocks of G. Using this decomposition, we define the block statistic
Sw associated with w by

Sw(G) =
k∑
j=1

w(Bj).
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Let us give a few motivating examples of block statistics:
The trivial weight function defined by w(B) = 1 for all possible blocks B yields the
number of blocks.
If we fix some block A and define

wA(B) =
{

1 B ' A,
0 otherwise,

the associated block statistic is the number of (isomorphic) occurrences of A as a block.
If the weight function w(B) is the number of edges in B, then the associated block
statistic Sw(G) gives the number of edges of G.
Let τ(B) be the number of spanning trees of a block B, and set w(B) = log τ(B). Since
every spanning tree of a connected graph decomposes uniquely into spanning trees on all
the blocks, we have

τ(G) =
k∏
j=1

τ(Bj)

if B1, B2, . . . , Bk are the blocks of a connected graph G. This translates to

Sw(G) = log τ(G).

Since the Tutte polynomial is also multiplicative over blocks, the previous example
generalises to many others that are special values of the Tutte polynomial, specifically the
(logarithm of the) number of subforests, spanning forests, connected spanning subgraphs,
acyclic orientations and strongly connected orientations.
The number of nontrivial complete subgraphs (i.e., complete subgraphs with more than
one vertex) is also a block statistic in our sense, since every such subgraph needs to be
contained entirely in one of the blocks.
The number of occurrences of a fixed graph H as an induced subgraph, which was studied
in [6], is not always a block statistic (since a copy of H may involve vertices of several
blocks), but it becomes one if H is 2-connected.

The number of blocks and the number of edges were already shown by Drmota et al. [4]
to satisfy a central limit theorem, the latter under the assumption (that was satisfied for
all the examples studied in their paper) that the graphs are planar, so that the number of
edges is necessarily linear in the number of vertices. However, this is not satisfied for all
subcritical classes of graphs (block graphs, for example, are an exception), and there are
also other statistics among the aforementioned for which the weight function can grow faster
than linearly in the block size, for example the logarithm of the number of spanning trees,
for which the weight can be as large as w(B) = (|B| − 2) log |B| when B is a complete graph.
We are therefore interested in proving central limit theorems under weaker assumptions on
the growth of the weights.

Before we formulate our main results, let us recall the formal definition of a subcritical
graph class. For simplicity, we will restrict ourselves to the labelled case.

I Definition 1. We call a class of graphs G block-stable if it has the property that a graph G
belongs to G if and only if each of its blocks belongs to G. Now let G be a block-stable class of
labelled graphs, and denote the subclasses of connected graphs and 2-connected graphs in G by
C and B respectively. Since every graph can be seen as the union of its connected components,
we have the symbolic decomposition

G = Set(C).
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More importantly (for the definition of subcriticality), rooted connected graphs (indicated
by C•) can be decomposed as follows:

C• = Z × Set(B′ ◦ C•),

where Z stands for a single vertex, and B′ for the class derived from B by not labelling one
of the vertices. In words: a rooted connected graph decomposes into the root, the set of blocks
that contain the root, and rooted connected graphs attached to all non-root vertices of the root
blocks.

On the level of generating functions G(z), C(z) and B(z) are associated with G, C and B
respectively, this yields

G(z) = exp(C(z)) (1)

and

C•(z) = z exp(B′(C•(z)), (2)

where C•(z) = zC ′(z) is the generating function for C•. The class G is now said to be
subcritical if the radii of convergence ρ and η of C and B satisfy the inequality

γ = C•(ρ) < η. (3)

As it was shown in [4], the generating function C• has a square root singularity for every
subcritical class, which allows us to apply singularity analysis to derive asymptotic formulas
for counting graphs of given order in G or C.

I Theorem 2 ([4]). For every subcritical family of graphs, the generating function C• is
analytic in a region of the form

{z ∈ C : |z| < r, |Arg(z − ρ)| > φ}

for some r > ρ and φ ∈ (0, π2 ). At the singularity ρ, it has an asymptotic expansion of the
form

C•(z) = γ + γ1(1− z/ρ)1/2 + γ2(1− z/ρ) + γ3(1− z/ρ)3/2 +O((1− z/ρ)2). (4)

Here, γ > 0 is the unique positive solution of the equation γB′′(γ) = 1, and ρ = γ exp(−B′(γ)).

It is sometimes useful to have explicit expressions for γ1 and γ2. They are given by

γ1 = −

√
2γ2

1 + γ2B′′′(γ) and γ2 = 2γ − γ4B′′′′(γ)
3(1 + γ2B′′′(γ))2 ,

respectively, as one can see e.g. by comparing coefficients on the two sides of the functional
equation (and using the identity γB′′(γ) = 1 to simplify).

2 The generating function for a block statistic

The functional equations (1) and (2) can be modified in a straightforward fashion to include
the block statistic Sw. Let us define the bivariate function

C(z, t) =
∑
C∈C

z|C|

|C|!e
Sw(C)t,
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and G(z, t) in an analogous fashion. To keep notation simple, we do not indicate the
dependence of the generating functions on w. Since Sw is additive over connected components,
we clearly have

G(z, t) = exp(C(z, t)).

Moreover, if we set

B(z, t) =
∑
B∈B

z|B|

|B|!e
w(B)t,

then (2) changes to

C•(z, t) = z exp
(
Bz(C•(z, t), t)

)
, (5)

where Bz is the partial derivative with respect to z. Of course, when t = 0, everything
simplifies to (1) and (2). It is important to notice that the sum defining B might not be
convergent: if w(B) has faster than linear growth for at least some blocks B, then the radius
of convergence in z can become zero for all t > 0. Therefore, B and C are a priori only
regarded as formal power series.

If, however, w(B) = O(|B|), then the radius of convergence of B as a function of t
changes continuously, so if t is close enough to zero, the inequality that defines a subcritical
class remains true, and C• still has a square root singularity, the position of which moves
continuously with t. We are therefore in the scheme of [3, Theorems 2.21–2.23], and the
quasi-power theorem ([10], see also [8, Section IX.5]) yields a central limit theorem almost
automatically. This was in fact exploited in [4] to obtain the central limit theorems for
number of edges and number of blocks.

However, not all interesting block statistics satisfy the condition w(B) = O(|B|). The
example of the logarithm of the number of spanning trees was mentioned earlier; others
include the logarithm of the number of subforests, spanning forests or connected spanning
subgraphs and the number of nontrivial complete subgraphs. Thus, we follow a slightly
different route imposing somewhat milder conditions on the weight function w. Specifically,
we will prove the following theorem:

I Theorem 3. Consider a subcritical class of graphs with a weight function w on the blocks.
Let Wn be the average of w(B)2 over all blocks B on n vertices. Suppose that

lim sup
n→∞

W 1/n
n <

η

γ
, (6)

with γ and η as in (3). Let Cn denote a random connected graph with n vertices in our
subcritical class of graphs. The following statements on the distribution of Sw(Cn) hold:
1. There exist constants µ and λ such that the mean E(Sw(Cn)) is asymptotically equal to

µn− λ+O(n−1).
2. There exists a constant σ2 ≥ 0 such that the variance V(Sw(Cn)) is asymptotically equal

to σ2n + O(1). Moreover, we have σ2 > 0 unless the weight function w is of the form
w(B) = c(|B| − 1) for some constant c.

3. If σ2 > 0, then the distribution of Sw(Cn) converges, suitably normalised by subtracting
the mean and dividing by the standard deviation, weakly to a standard normal distribution.
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Intuitively, (6) states that the block generating function, with blocks weighted by w(B)2,
still satisfies the subcriticality condition. Most of the examples mentioned in the introduction
satisfy the conditions of the theorem for all subcritical classes, since the growth of the weight
function w is subexponential. Notable examples include the number of blocks, the number of
edges and the (logarithm of the) number of spanning trees. It is possible that the condition
is satisfied even if the weight grows exponentially in the block size, though. Importantly,
blocks in random graphs from a subcritical class are typically small (the largest block only
being logarithmic in size). This makes it possible that E(Sw(Cn)) is linear in n even in cases
where w can grow exponentially.
I Remark 4. While we are focusing on connected graphs in this paper, it would also be
possible to transfer our results to arbitrary random graphs from the specific subcritical class
of graphs.
I Remark 5. We remark that Sw(C) = c(|C| − 1) holds deterministically for all connected
graphs C in the “degenerate” case that w(B) = c(|B|−1), so that the variance is identically 0.

Several explicit examples are presented in detail in the appendix. The following table
gives an overview:

Graph class Block statistic µ σ2 Sect.
Cacti Number of blocks 0.64780 0.21218 A.1

Number of edges 1.19149 0.06272 A.1
Number of spanning trees (log) 0.24985 0.08007 A.1
Number of connected spanning subgraphs (log) 0.29690 0.12113 A.1

Block graphs Number of blocks 0.76322 0.12512 A.2
Number of edges 1.28357 0.31267 A.2
Number of spanning trees (log) 0.28580 0.23671 A.2
Number of nontrivial complete subgraphs 1.69146 4.55177 A.2

Series-parallel Number of blocks 0.14937 0.14875 A.3
graphs Number of edges 1.61673 0.21125 A.3

Number of spanning trees (log) ?? ?? A.3

In the last example, numerical values of µ and σ2 are surprisingly difficult to determine.
This will be explained in Section A.3.

3 Mean and variance

It is somewhat easier for our calculations to consider rooted graphs. However, since every
labelled graph with n vertices corresponds to precisely n rooted graphs, all distributional
results that we obtain for rooted graphs in the following hold automatically for unrooted
graphs as well.

In order to obtain asymptotic formulas for mean and variance, we consider the partial
derivatives of C•(z, t) with respect to t at t = 0. Differentiating (5) with respect to t yields

C•t (z, t) = z exp
(
Bz(C•(z, t), t)

)(
Bzz(C•(z, t), t)C•t (z, t) +Bzt(C•(z, t), t)

)
= C•(z, t)

(
Bzz(C•(z, t), t)C•t (z, t) +Bzt(C•(z, t), t)

)
.

We solve for C•t (z, t), which gives us

C•t (z, t) = C•(z, t)Bzt(C•(z, t), t)
1− C•(z, t)Bzz(C•(z, t), t)

.
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In the same way, we can also differentiate with respect to z, which yields

C•z (z, t) = C•(z, t)
z(1− C•(z, t)Bzz(C•(z, t), t))

.

Thus we have

C•t (z, t) = zC•z (z, t)Bzt(C•(z, t), t). (7)

The second derivative is determined in a similar fashion. Differentiating (7) with respect to
z and t respectively (and plugging in t = 0), we obtain

C•zt(z, 0) = C•z (z, 0)Bzt(C•(z, 0), 0)+zC•zz(z, 0)Bzt(C•(z, 0), 0)+zC•z (z, 0)2Bzzt(C•(z, 0), 0)

and

C•tt(z, 0) = zC•zt(z, 0)Bzt(C•(z, 0), 0) + zC•z (z, 0)C•t (z, 0)Bzzt(C•(z, 0), 0)
+ zC•z (z, 0)Bztt(C•(z, 0), 0).

We plug the former equation into the latter, and also replace C•t (z, 0) by the equation given
in (7) to arrive at the following representation for C•tt(z, 0):

C•tt(z, 0) = z2C•zz(z, 0)Bzt(C•(z, 0), 0)2 + 2z2C•z (z, 0)2Bzt(C•(z, 0), 0)Bzzt(C•(z, 0), 0)
+ zC•z (z, 0)

(
Bzt(C•(z, 0), 0)2 +Bztt(C•(z, 0), 0)

)
. (8)

Note that this representation, like (7), only involves derivatives of C•(z, t) with respect to z,
so that we can use our knowledge of the behaviour of C•(z, 0) given in Theorem 2.

I Theorem 6. Under the conditions stated in Theorem 3, the mean of the block statistic Sw
over all graphs in C with n vertices is asymptotically

E(Sw(Cn)) = µn− λ+O(n−1),

with µ = Bzt(γ, 0) and

λ = 3γ2

2 Bzzt(γ, 0) + γ2
1
4 Bzzzt(γ, 0).

Proof. Note that

Btt(z, 0) =
∑
n≥2

( ∑
B∈B
|B|=n

w(B)2
)zn
n! =

∑
n≥2

WnBn
zn

n! ,

where Bn is the number of blocks with n labelled vertices. The radius of convergence of
B(z, 0) is η = 1/ lim supn→∞(Bn/n!)1/n, since the coefficient of zn in B(z, 0) is Bn/n!. The
technical condition (6) has been chosen in such a way that the radius of convergence of
Btt(z, 0), which is

1
lim supn→∞(WnBn/n!)1/n >

1
lim supn→∞W

1/n
n

· 1
lim supn→∞(Bn/n!)1/n

= η

lim supn→∞W
1/n
n

,
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is greater than γ. The radius of convergence of B(z, 0) is η > γ by the definition of
subcriticality, and the Cauchy-Schwarz inequality implies that

|Bt(z, 0)|2 =
∣∣∣ ∑
B∈B

z|B|w(B)
|B|!

∣∣∣2 ≤∑
B∈B

|z||B|w(B)2

|B|!
∑
B∈B

|z||B|

|B|! = Btt(|z|, 0)B(|z|, 0).

This shows that Bt(z, 0) also has greater radius of convergence than γ. Thus Bt(z, 0), Btt(z, 0)
and all their derivatives with respect to z are analytic in a disk around 0 that includes γ.
Now since C• is amenable to singularity analysis, so is

C•t (z, 0) = zC•z (z, 0)Bzt(C•(z, 0), 0).

In particular, this function and other partial derivatives of C• that we consider have a
Puiseux expansion around the singularity ρ whose exponents are integers or half-integers.
Specifically, in view of (4), we have

Bzt(C•(z, 0), 0) = Bzt(γ, 0) +Bzzt(γ, 0)(C•(z, 0)− γ) + Bzzzt(γ, 0)
2 (C•(z, 0)− γ)2

+O
(
(C•(z, 0)− γ)3)

= Bzt(γ, 0) + γ1Bzzt(γ, 0)(1− z/ρ)1/2

+
(
γ2Bzzt(γ, 0) + γ2

1Bzzzt(γ, 0)
2

)
(1− z/ρ) +O

(
(1− z/ρ)3/2).

Thus we can represent C•t (z, 0) as follows:

C•t (z, 0) = Bzt(γ, 0)zC•z (z, 0)+κ1−
(3γ2Bzzt(γ, 0)

2 + γ2
1Bzzzt(γ, 0)

4

)
C•(z, 0)+O

(
1−z/ρ

)
for some constant κ1. It would be possible to add further terms to the expansion. By the
principles of singularity analysis, we obtain

[zn]C•t (z, 0) = µ[zn]zC•z (z, 0)− λ[zn]C•(z, 0) +O(n−1[zn]C•(z, 0))

with µ and λ as given in the statement of the theorem. Therefore,

E(Sw(Cn)) = [zn]C•t (z, 0)
[zn]C•(z, 0) = µn− λ+O(n−1). J

I Theorem 7. Under the conditions stated in Theorem 3, the variance of the block statistic
Sw over all graphs in C with n vertices is asymptotically V(Sw(Cn)) = σ2n+O(1), with

σ2 = Bztt(γ, 0)− γ2Bzzt(γ, 0)2

1 + γ2Bzzz(γ, 0) .

If the weight w is not of the form w(B) = c(|B| − 1) (where c is constant), then σ2 is strictly
positive.

Proof. The asymptotic formula for the variance is derived in a similar fashion as the mean.
We now need to consider the second derivative with respect to t as well. The expression
for C•tt(z, 0) in (8) can be expanded around the dominant singularity ρ in the same way
as C•t (z, 0). Without going through the full calculation, let us just give the final result
stating that

C•tt(z, 0) = µ2(z2C•zz(z, 0) + zC•z (z, 0)
)

+ (σ2 − 2λµ)zC•z (z, 0) +O(1)
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around the singularity, with µ, λ, σ2 as defined above. Again, it would be possible to improve
on the error term by including further terms. Now we get

[zn]C•tt(z, 0) =
(
µ2n2 + (σ2 − 2λµ)n+O(1)

)
[zn]C•(z, 0).

This gives us the second moment of Sw(Cn) as µ2n2 + (σ2 − 2λµ)n+O(1), and subtracting
the square of the mean yields the stated asymptotic formula for the variance.

It remains to prove that σ2 6= 0 except for trivial cases where Sw(C) depends on the
number of vertices of C only. To this end, recall first that γ is determined by the equation

γB′′(γ) = γBzz(γ, 0) = 1.

Thus we can rewrite the denominator in the expression for σ2 as follows:

1 + γ2Bzzz(γ, 0) = γBzz(γ, 0) + γ2Bzzz(γ, 0) =
∑
B∈B

(|B| − 1)2γ|B|−1

(|B| − 1)! .

The remaining two terms in the expression are

Bztt(γ, 0) =
∑
B∈B

w(B)2γ|B|−1

(|B| − 1)!

and

γ2Bzzt(γ, 0)2 =
(∑
B∈B

w(B)(|B| − 1)γ|B|−1

(|B| − 1)!

)2
,

respectively. Thus

σ2 =
∑
B∈B

w(B)2γ|B|−1

(|B| − 1)! −
(∑

B∈B
w(B)(|B|−1)γ|B|−1

(|B|−1)!
)2∑

B∈B
(|B|−1)2γ|B|−1

(|B|−1)!

. (9)

The Cauchy-Schwarz inequality immediately shows that σ2 > 0 unless w(B) is a constant
multiple of |B| − 1, in which case σ2 is clearly 0. J

In order to illustrate the formulas for mean and variance, let us consider a concrete
example that satisfies the conditions of Theorem 3 for all subcritical graph classes: the
number of blocks. In this case, we have B(z, t) = etB(z), which allows us to express µ and
σ2 in terms of B and γ only: the following formulas can also already been found in [4].

µ = B′(γ) and σ2 = B′(γ)− 1
1 + γ2B′′′(γ) . (10)

4 Limit distribution

Next we derive a general central limit theorem for the block statistic Sw. As a first step,
we consider the case where w is finitely supported, i.e., where w(B) = 0 for all but finitely
many blocks. In this case, B(z, t) differs from B(z) only in finitely many terms: letting B0
be the set of blocks for which w(B) = 0, we have

B(z, t) =
∑
B∈B

z|B|

|B|!e
w(B)t =

∑
B∈B\B0

z|B|

|B|!e
w(B)t+

∑
B∈B0

z|B|

|B|! = B(z)+
∑

B∈B\B0

z|B|

|B|! (e
w(B)t−1).
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The sum over B \B0 is finite and thus represents a function that is entire in both z and t. We
are therefore in a position to apply a general result on perturbations of functional equations:
by [3, Theorem 2.21], there exists a positive constant δ > 0 such that C•(z, t) still has a
dominant square root singularity for |t| < δ:

C•(z) = γ(t) + γ1(t)(1− z/ρ(t))1/2 +O(1− z/ρ(t)),

where ρ(t) is analytic as a function of t for |t| < δ. Singularity analysis gives us an asymptotic
formula for the moment generating function of Sw(Cn):

E
(
etSw(Cn)) = [zn]C•(z, t)

[zn]C•(z, 0) = γ1(t)
γ1

( ρ

ρ(t)

)n(
1 +O(n−1)

)
.

Thus we can apply the quasi-power theorem ([10], [8, Section IX.5]), which proves that
Sw(Cn) satisfies a central limit theorem in the case that w has finite support:

Sw(Cn)− E(Sw(Cn))√
V(Sw(Cn))

d→ N(0, 1).

This line of reasoning does not apply if w grows too fast; with the weaker assumptions of
Theorem 3, C•(z, t) may no longer have a square root singularity for t > 0 (and might in
fact have radius of convergence 0 as a power series in z). Therefore, we rather approximate
Sw by considering truncated versions of the weight function w.

For a positive integer M , set

w(M)(B) =
{
w(B) if |B| ≤M ,
0 otherwise.

We observe that w(M) has finite support, so the block statistic S(M)
w associated with w(M)

satisfies a central limit theorem as stated above. Clearly, every block statistic with finitely
supported weight function satisfies the conditions of Theorem 3, thus in particular the
statements on mean and variance in Theorem 6 and Theorem 7 apply:

E(S(M)
w (Cn)) = µMn+O(1),

V(S(M)
w (Cn)) = σ2

Mn+O(1),
S(M)

w (Cn)−µMn

σM
√
n

d→ N(0, 1), or equivalently S(M)
w (Cn)−E(S(M)

w (Cn))√
n

d→ N(0, σ2
M ).

We can now apply the following lemma (see for instance [11, Theorem 4.28]):

I Lemma 8. Let (Xn)n≥1 and (WN,n)N,n≥1 be sequences of random variables with mean 0.
Assume that for some random variables WN (N ≥ 1) and W , we have

WN,n
d→WN as n→∞ for every N ≥ 1, and WN

d→W as N →∞.
V(Xn −WN,n) ≤ CN for some constants CN uniformly in n, and CN → 0 as N →∞.

Then we also have Xn
d→W as n→∞.

In our setting, we take

Xn = Sw(Cn)− E(Sw(Cn))√
n

and WN,n = S
(N)
w (Cn)− E(S(N)

w (Cn))√
n

.

Note that these random variables all have mean 0. Since the sums in the formula (9)
for σ2 converge by our assumptions on the weight function w, the constants σ2

N converge:
limN→∞ σ2

N = σ2. So we have WN,n
d→ WN = N(0, σ2

N ) as n → ∞ for every N , and
WN

d→W = N(0, σ2) as N →∞.
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24:10 Block Statistics in Subcritical Graph Classes

Lastly, the conditions of Theorem 3 also apply to Sw(Cn)− S(N)
w (Cn), which is the block

statistic associated with the weight function that is given by

w(B)− w(N)(B) =
{

0 if |B| ≤ N ,
w(B) otherwise.

Thus the formula of Theorem 7 applies, which yields

V(Xn −WN,n) = V
(Sw(Cn)− S(N)

w (Cn)− E(Sw(Cn)− S(N)
w (Cn))√

n

)
= 1
n
V
(
Sw(Cn)− S(N)

w (Cn)
)

= τ2
N +O(n−1)

for some constants τ2
N that satisfy limN→∞ τ2

N = 0. One can verify that the O-constant
can be chosen to depend only on the graph class and the weight function w, but not on
N . Moreover, we clearly have Xn = WN,n and thus V(Xn −WN,n) = 0 for n ≤ N . Thus
all conditions of Lemma 8 are satisfied, and we obtain the desired central limit theorem
for Sw(Cn):

Sw(Cn)− E(Sw(Cn))√
n

d→ N(0, σ2)

as n→∞. This finally completes the proof of Theorem 3.

5 Conclusion

We obtained a central limit theorem for block statistics under rather mild conditions that
cover many natural cases. It would be interesting to see if there are natural examples where
the conditions fail and there is no central limit theorem. There are also many examples of
statistics that are not block statistics, but of a similar nature, for example the number of
(arbitrary, maximal or maximum) independent sets or matchings, see [5] for some examples.
One would still expect a log-normal limit law to hold in these cases, akin to spanning trees.
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A Examples

A.1 Cacti
Cacti are graphs whose blocks are either single edges or cycles. Thus there are (n−1)!

2
(labelled) blocks on n vertices for every n > 2, and precisely one block on two vertices. We
find that the block generating function is given by

B(z) = z2

2 +
∞∑
n=3

(n− 1)!
2n! zn = −1

2 log(1− z) + z2

4 −
z

2 .

One finds that γ is the positive root of the polynomial z3 − 4z2 + 6z − 2, and

ρ = γ exp
(
−B′(γ)

)
= γ exp

(
− γ(2− γ)

2(1− γ)

)
.

Numerically, γ ≈ 0.45631 and ρ ≈ 0.23874. Let us now determine the modified generating
function B(z, t) for different choices of the weight function.

Number of blocks
In this case, we have B(z, t) = etB(z), and we can apply the formulas in (10), which give us

µ = B′(γ) ≈ 0.64780 and σ2 = B′(γ)− 1
1 + γ2B′′′(γ) ≈ 0.21218.

Number of edges
Here, w(B) = |B| for all blocks B other than a single edge. Thus we have B(z, t) =
B(zet) + z2

2 (et − e2t). It is straightforward to determine numerical values for µ and σ2 using
this explicit formula for B(z, t): we have µ ≈ 1.19149 and σ2 ≈ 0.06272.

Number of spanning trees and number of connected spanning subgraphs
For the number of spanning trees (more precisely, its logarithm), the appropriate weight
function is given by w(B) = log |B| for |B| > 2, since a cycle of length k has precisely k
spanning trees, and w(B) = 0 for |B| = 2. Thus

B(z, t) = z2

2 +
∞∑
n=3

(n− 1)!
2n! znet logn = z2

2 + 1
2

∞∑
n=3

nt−1zn.

Thus the logarithm of the number of spanning trees in cacti is asymptotically normally
distributed, with mean and variance asymptotically equal to µn and σ2n respectively, where

µ = Bzt(γ, 0) = 1
2

∞∑
n=3

γn−1 logn ≈ 0.24985
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and σ2 ≈ 0.08007. The number of connected spanning subgraphs is very similar, except
that w(B) = log(|B| + 1) for |B| > 2. We get an analogous result with µ ≈ 0.29690 and
σ2 ≈ 0.12113.

A.2 Block graphs
Block graphs are similar to cacti: every block is a complete graph. Thus there is precisely
one type of block for every size. Since there is only one way of labelling a complete graph,
the block generating function is

B(z) =
∞∑
n=2

1
n!z

n = ez − z − 1.

Therefore, γ ≈ 0.56714 is the positive real solution to the equation zez = 1, and ρ ≈ 0.26438.
We consider several block statistics again:

Number of blocks
Again, the formulas given in (10) apply, and we have µ ≈ 0.76322 and σ2 ≈ 0.12512 in
Theorem 3.

Number of edges
For the number of edges, we now have to take w(B) =

(|B|
2
)
. As a result, we obtain

µ = Bzt(γ, 0) =
∞∑
n=2

(
n

2

)
1

(n− 1)!γ
n−1 =

(
γ + γ2

2

)
eγ = 1 + γ

2 ≈ 1.28357.

Similar calculations for higher order partial derivatives of B yield σ2 = γ(γ2+2γ+2)
4(γ+1) ≈ 0.31267.

Number of spanning trees
For the (logarithm of the) number of spanning trees, we need to take w(B) = (|B|−2) log |B|,
since a complete graph with b vertices has bb−2 spanning trees. It follows that

µ = Bzt(γ, 0) =
∞∑
n=2

(n− 2) logn
(n− 1)! γn−1 ≈ 0.28580,

and we find the numerical value of σ2 to be 0.23671.

Number of complete subgraphs
The number of complete subgraphs is an example of a block statistic whose weight function has
exponential growth. However, since the block generating function has radius of convergence
η = ∞ in this case, the conditions of Theorem 3 are still clearly satisfied. We have
w(B) = 2|B| − |B| − 1 in this case: recall here that we are only counting nontrivial complete
subgraphs with at least two vertices – if we want to count all complete subgraphs, we only
need to add the number of vertices, which is a deterministic quantity in our setting.

It follows that Theorem 3 applies with

µ = Bzt(γ, 0) = 2e2γ − (γ + 2)eγ = 2− 2γ − γ2

γ2 ≈ 1.69146

and (by a similar calculation) σ2 = 12γ3−24γ2+4γ+4
γ4(γ+1) ≈ 4.55177.
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A.3 Series-parallel graphs
Series-parallel graphs are the most complicated example that we consider, since the block
generating function can only be defined implicitly in terms of generating functions in two
variables z and y, respectively marking the number of vertices and edges.

In fact, each block b with a distinguished vertex admits a tree-like decomposition τ(b) into
components that are either of types ring or multi-edge, where the nodes of τ(b) correspond
to the different components of b. We refer the reader to [2] for more details. Using then a
vertex-distinguished version of the dissymmetry theorem for tree-decomposable classes (see
[2, Section 5.3.3]), one can relate the generating function of blocks with a distinguished
vertex to the generating functions T (r)(z, y), T (m)(z, y) and T (rm)(z, y) of their associated
tree-decompositions, respectively rooted at a node of type ring, multi-edge or at an edge
between a ring and a multi-edge node.

Those generating functions are in turn expressed in terms of D(z, y), the generating
function of series-parallel networks, i.e. 2-connected graphs with a pair of distinguished
vertices called its poles. Such networks can either be the single edge, with generating function
y, or of types series, with generating function S(z, y), or parallel, with generating function
P (z, y), see [1] for a detailed exposition. Altogether, this gives:

Bz(z, y) = zy + T (r)(z, y) + T (m)(z, y)− T (rm)(z, y),

T (r)(z, y) = zS(z, y)(D(z, y)− S(z, y))/2,

T (m)(z, y) = zP (z, y)− zyS(z, y)− zS2(z, y)/2,

T (rm)(z, y) = zS(z, y)P (z, y),
D(z, y) = y + S(z, y) + P (z, y),
S(z, y) = zD(z, y)(D(z, y)− S(z, y)),
P (z, y) = y exp(S(z, y))− y + exp(S(z, y))− S(z, y)− 1. (11)

From the last three equations of (11) we obtain an implicit equation defining D(z, y).
Furthermore, one can write Bz(z, y) in terms of D(z, y) only. This gives:

D(z, y) = (1 + y)e
zD(z,y)2

1+zD(z,y) − 1,

Bz(z, y) = zD(z, y)(2− zD(z, y)2)
2zD(z, y) + 2 . (12)

So any partial derivative of Bz(x, y) can be computed from the system (12). In particular,
we get numerically that γ ≈ 0.12797.

Number of blocks
For the number of blocks, one now sets y = 1 and w(B) = 1 in (12). The required conditions
are satisfied, so we obtain a central limit theorem. In this case, the numerical values µ and
σ2 are 0.14937 and 0.14875 respectively.

Number of edges
Although the number of edges is now no longer just dependent on the number of vertices of
a block, it is already controlled by the variable y = et in the decomposition given in (12).
We obtain a central limit theorem with µ ≈ 1.61673 and σ2 ≈ 0.21125 (cf. [1]).
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Number of spanning trees
The number of spanning trees in series-parallel graphs was studied in a paper by Ehrenmüller
and Rué [7]. They determined an asymptotic formula for the mean, but no limit distribution.
As we find by means of our general result now, the distribution of the number of spanning
trees in series-parallel graphs is asymptotically lognormal. Letting τ(G) be the number of
spanning trees of a graph G, we simply set w(B) = log τ(B) for all blocks (as for the other
two graph classes), so that Sw(G) = log τ(G). The conditions of Theorem 3 are clearly
satisfied again, but the constants µ and σ2 are rather difficult to evaluate in this example, as
they can no longer be expressed directly by means of functional equations. Moreover, the
infinite series

µ = Bzt(γ, 0) =
∑
B∈B

w(B)γ|B|−1

(|B| − 1)!

converges poorly in this example, since γ ≈ 0.12797 is only a little smaller than the radius
of convergence of B(z, 0), which is η ≈ 0.12800. Therefore, the series representation is also
not suitable to compute a numerical approximation, as determining w(B) = log τ(B) for all
blocks up to a certain size is rather costly.
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1 Introduction

By a simple digraph, we mean a digraph (directed graph) without loops, (directed) 2-cycles
or multiple edges. Such a digraph is called acyclic if it has no directed cycles, i.e., cycles
that follow the direction of the edges. One easily observes that the only strongly connected
components of an acyclic digraph are its vertices. Acyclic digraphs form an important class of
digraphs that occurs naturally in many applications, such as scheduling or Bayesian networks.

The enumeration of acyclic digraphs is a classical combinatorial problem that was first
considered in the 1970s, see Harary and Palmer [17], Liskovec [23, 24], Robinson [31, 32]
and Stanley [34]. It is based on a recursion for the number of acyclic digraphs, which we
briefly recall here. Let an denote the number of acyclic digraphs on n (labelled) vertices.
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Distinguishing by the number of sinks (vertices without an outgoing edge; equivalently, one
can also consider sources, which are vertices without an incoming edge) and applying an
elegant inclusion-exclusion argument, one finds that

an =
n∑
k=1

(−1)k−1
(
n

k

)
2k(n−k)an−k

for n > 1, with initial value a0 = 1. This can be rewritten as

n∑
k=0

(−1)k

k!(n− k)!2
−(k2)−(n−k2 )an−k =

{
1 n = 0,
0 n > 0.

Introducing the special generating function A(x) =
∑
n≥0

1
n!2
−(n2)anxn, one finds that

A(x) = 1∑
n≥0

(−1)n
n! 2−(n2)xn

.

It can be shown that this function is meromorphic, and that the pole with minimum modulus
occurs at x ≈ 1.48808. From this, one can derive the asymptotic formula

an
n! 2−(n2) ∼ C ·Bn,

where C ≈ 1.74106 and B ≈ 0.67201. These results can be found in the work of Robinson [31]
(see also Liskovec [23] and Stanley [34]).

It is not difficult to include the number of edges in the count: let an,m denote the number
of labelled acyclic digraphs with n vertices and m edges, and set

A(x, y) =
∑
n,m≥0

1
n! (1 + y)−(n2)an,mxnym. (1)

Then, we can also write this bivariate generating function in a reciprocal form:

A(x, y) = 1
φ(x, y) , where φ(x, y) =

∞∑
k=0

(−x)k

k! (1 + y)(
k
2)
. (2)

This was already observed by Robinson in [31]. Bender, Richmond, Robinson and Wormald [1]
exploited this generating function identity to prove asymptotic formulas for the number of
acyclic digraphs with a given number of vertices and edges if the number of edges is “large”
(i.e., quadratic in the number of edges). In particular, it is shown in [1] that the number of
edges in a random acyclic digraph with n vertices satisfies a central limit theorem with mean
∼ n2

4 and variance ∼ n2

8 .
Next, let us discuss models of random digraphs. D(n, p) denotes a directed digraph on n

labelled vertices in which each of the n(n− 1) directed edges is present with probability p,
independently of the others, as described in [20,26]. The model exhibits a phase transition
that is somewhat similar to the binomial model G(n, p) of undirected graphs. This phase
transition was, among others, studied by Karp [20] and Łuczak [25]. They proved the
following: if np is fixed with np < 1 then every strong component has at most ω(n) vertices,
for any sequence ω(n) tending to infinity arbitrarily slowly, and all strong components
are either cycles or single vertices. If np is fixed with np > 1, then there exists a unique
strong component of linear size, while all the other strong components are of logarithmic
size (see also [15, Chapter 13]). Recently, Łuczak and Seierstad [26] obtained more precise
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results about the width and behaviour of the window where the phase transition occurs.
They established that the scaling window is given by np = 1 + µn−1/3, where µ is fixed.
There, the largest strongly connected components have size of order n1/3. Bounds on the
tail probabilities of the distribution of the size of the largest component are also given by
Coulson [7].

We use a slightly different model of random digraphs that has already been considered
in similar contexts: first, we generate a random undirected graph according to the classical
Erdős-Rényi model, where each of the possible

(
n
2
)
edges between n fixed vertices is inserted

with the same probability 2p and all edges are independent of each other. Thereafter, each
edge is given a direction, where each of the two directions has probability 1

2 and all choices
are made independently again. Note that each possible directed edge is present in the
graph with the same probability p in this model. The result is a random digraph without
loops, multiple edges and 2-cycles (the latter is relevant since the presence of 2-cycles would
immediately mean that the digraph is not acyclic). The random digraph generated in this
way is denoted by D(n, p), and we ask the simple question: with what probability is D(n, p)
acyclic? Throughout this paper, this probability will be denoted by P(n, p). In the case
where p is of constant order, the asymptotic behaviour of P(n, p) can be inferred from the
aforementioned results of Bender, Richmond, Robinson and Wormald. In this paper, however,
we will be interested in the sparse regime, where p = λ/n for some fixed real λ. In this
case, the number of edges is only linear in n, resulting in a much higher probability of being
acyclic. There is no particular reason why we chose to work with D(n, p) in this paper. Both
models have appeared in the literature, but due to lack of space we only treat one model
here. We will include D(n, p) in the long version of this paper.

Before we get to the statement of our main result, let us also review some related works.
The model D(n, p) of simple random digraphs was used by Subramanian in [30], where the
author studied induced acyclic subgraphs in random digraphs for fixed p. Following this
work, there are also some relatively recent results on the related question of the largest
acyclic subgraph in random digraphs in the stated range [9–11,33].

The structure of the strong components of a random digraph for the D(n, p) model has
been studied by many authors in the dense case, i.e., when np → ∞ as n → ∞. The
largest strong components in a random digraph with a given degree sequence are studied
by Cooper and Frieze [4] and the strong connectivity of an inhomogeneous random digraph
was studied by Bloznelis, Göetze and Jaworski in [3]. The hamiltonicity of D(n, p) was
investigated by Hefetz, Steger and Sudakov [18] and by Ferber, Nenadov, Noever, Peter
and Škorić [13], by Cooper, Frieze and Molloy [5] and by Ferber, Kronenberg and Long [12].
Krivelevich, Lubetzky and Sudakov [21] also proved the existence of cycles of linear size with
high probability (w.h.p.) when np is large enough.

Interestingly, since the enumeration of acyclic digraphs by Robinson [31] and the asymp-
totic results on acyclic digraphs by Bender et al. [1, 2], dense random graphs have been
the focus of research in this context. However, a forthcoming independent approach of De
Panafieu and Dovgal [8] gives a characterization of the probability that a digraph is acyclic
inside the critical window using techniques from analytic combinatorics and the uniform
model for digraphs.

Returning to the functional equation relating A(x, y) and φ(x, y) in (2), it is clear that
the behaviour of the zeros of φ(x, y) plays an important role in the study of acyclic digraphs.
Here, by a zero of φ(x, y) we mean a function x = x(y) that satisfies φ(x, y) = 0. The
properties of these zeros are certainly interesting in their own right. There are some known
results in this direction. It is, for example, known that all zeros of φ are real, positive and
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25:4 Acyclic Digraphs

distinct when y > 0, see [22, 29]. For a given y > 0 and j ∈ N, let %j(y) be the j-th smallest
solution to the equation φ(x, y) = 0. So, as mentioned before, we have %1(1) ≈ 1.48808.
Grabner and Steinsky [16] studied the behaviour of the other zeros of φ(x, 1), extending the
work of Robinson. Our first result provides asymptotic formulas for the zeros of φ as y → 0+.

I Theorem 1. Let φ(x, y) be the function defined in (2). For a given y, let %j(y) be the
solution to the equation φ(x, y) = 0 that is the j-th closest to zero. If j ∈ N is fixed, then
we have

%j(y) = 1
e
y−1 − aj

21/3e
y−1/3 − 1

6e +O(y1/3), as y → 0+, (3)

where aj is the zero of the Airy function Ai(z) that is j-th closest to 0. Furthermore, we
have the following estimate for the partial derivative of φ(x, y) at %j(y):

φx(%j(y), y) ∼ −κj y1/6 exp
(
− 1

2y
−1 + 2−1/3aj y

−1/3
)

as y → 0+, (4)

where

κj = π1/227/6e11/12Ai′(aj).

Using Theorem 1, we are able to obtain the following result on the probability that D(n, p)
has no directed cycles.

I Theorem 2. Let p = λ/n with λ ≥ 0 fixed. Then, the probability P(n, p) that a random
digraph D(n, p) is acyclic satisfies the following asymptotic formulas as n→∞:

P(n, p) ∼


(1− λ)eλ+λ2/2 if 0 ≤ λ < 1,
γ1n
−1/3 if λ = 1,

γ2n
−1/3e−c1n−c2n

1/3 if λ > 1,
(5)

where

γ1 = 2−1/3e3/2

2π

∫ ∞
−∞

1
Ai(−i21/3t)

dt ≈ 2.19037,

γ2 = 2−2/3

Ai′(a1)λ
5/6e−λ

2/4+8λ/3−11/12,

c1 = λ2−1
2λ − log λ,

c2 = 2−1/3a1λ
−1/3(1− λ),

and a1 is the zero of the Airy function Ai(z) with the smallest modulus.

We are also able to determine an asymptotic formula for the probability P(n, p) in the
critical window, i.e., when np = 1 + µn−1/3 and µ is bounded. This result is formulated in
the next theorem.

I Theorem 3. If np = 1 + µn−1/3 such that µ is contained in a fixed bounded real interval,
then

P(n, p) = (ϕ(µ) + o(1))n−1/3, as n→∞, (6)

where

ϕ(µ) = 2−1/3e3/2−µ3/6 × 1
2πi

∫ i∞

−i∞

e−µs

Ai(−21/3s)
ds. (7)
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The term that follows after “×” in Equation (7) is an inverse (two-sided) Laplace transform.
Hence, the function 21/3eµ

3/6−3/2ϕ(µ) can be interpreted as the inverse (two-sided) Laplace
transform of the function Ai(−21/3s)−1. We provide a numerical plot of ϕ(µ) in Figure 1.
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Figure 1 Numerical plot of ϕ(µ).

Throughout this paper, we use the Vinogradov notation � interchangeably with the
O-notation, i.e., as x→ a (resp. x→∞), f(x)� g(x) and f(x) = O(g(x)) both mean that
there exists C > 0 independent of x such that |f(x)| ≤ Cg(x) for all x sufficiently close to a
(resp. all sufficiently large x > 0).

2 Estimates of φ(x, y) and its zeros

The main ingredients in the proofs of our theorems are asymptotic estimates for φ(x, y)
as y → 0+, for various ranges of x, including complex values. These estimates are given
in Proposition 4 and Proposition 7. The proofs of these propositions are long and rather
technical, so we will not include them in this extended abstract. However, sketched proofs
are provided in the Appendix. The proofs are based on the saddle-point method as it is
possible to express φ(x, y) in an integral form via a formula due to Mahler [27].

2.1 Mahler’s transformation
The function φ(x, y) can be expressed in terms of the function F (z) in [27, Equation (6)]. In
fact, they are equal if we set z = −x and q = (1 + y)−1. Thus using the integral form of F (z)
in [27, Equation (4)] we obtain the following formula:

φ(x, y) =
√

log(1 + y)
2π

∫ ∞
−∞

exp
(
−1

2 log(1 + y)z2 − x(1 + y)1/2−iz
)

dz. (8)

It is worth noting that this equation can also derived from [14, Lemma 1]. To simplify this
expression, from now on, we shall use the abbreviations

α := log(1 + y) and β :=
√

1 + y. (9)

Moreover, by making the change of variable z 7→ z/α, we can rewrite Equation (8) as

φ(x, y) = 1√
2πα

∫ ∞
−∞

ef(z)dz, where f(z) := − 1
2αz

2 − xβe−iz. (10)

The function f depends on the variables x and y, but we drop these dependencies in the
notation for easy reading. In addition, when we say derivative of f , we always mean derivative
with respect to z. In the rest of this section, we assume that x is real.
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25:6 Acyclic Digraphs

2.2 Saddle-point method
The integral in the formula for φ(x, y) in (10) is an integral over the real line. However, since
the function f is entire as a function of z, we can change this path of integration without
affecting the validity of the equation (Figure 2 in the appendix shows the paths that we
considered). This allows us to apply the saddle-point method to the integral (10). The
objective is to find a path that goes through a saddle-point, i.e., a solution of f ′(z) = 0.
Since the derivative of f is f ′(z) = − 1

αz + ixβe−iz, we can see that f ′(z) = 0 if and only if

izeiz = −xαβ. (11)

Hence, the solutions can be expressed in terms of the branches of the Lambert-W function,
which is implicitly defined by the equation W(s)eW(s) = s. We choose a solution to
Equation (11) that is given by the principal branch of W. So, set

w := W0(−xαβ) and z0 := −iw, (12)

where W0 is the principal branch of the Lambert function. Note that z0 still depends on the
variables x and y. The fact that the Lambert function W0(z) has a singularity at z = −1/e
suggests that we should consider x to be a function of y such that xαβ is close to 1/e.
Motivated by this, let us define x0 and δ such that

x0 = 1
eαβ

and x = (1 + δ)x0. (13)

With this setting, we are now able to give asymptotic estimates of φ(x, y) when y → 0+ for
several ranges of δ. This result is summarized in the following proposition.

I Proposition 4. If x is of the form x = (1 + δ)x0, then φ(x, y) satisfies the following
asymptotic formulas as y → 0+:

(a) If δ ≥ −1 and δ = −1 + o(1), then

φ(x, y) ∼ e 1
2α (w2+2w). (14)

(b) If δ < 0 and α2/3 � |δ| ≤ 1− ε for some constant ε > 0, then

φ(x, y) ∼ 25/6π1/2α−1/6|w|−1/3Ai(R)e 2
3R

3/2+ 1
2α (w2+2w) (15)

where

R = 2−2/3(1 + w)2w−4/3α−2/3.

(c) If we let δ = θα2/3, then

φ(x, y) = 2−1/2π−1/2α−1/6
(
K1(θ) +K2(θ)α1/3 +O(α2/3)

)
e−

1
2α
−1−θα−1/3

, (16)

uniformly for θ in any fixed bounded closed interval, where

K1(θ) = π24/3Ai(−21/3θ),

K2(θ) = 5
3π 21/3θ2Ai(−21/3θ)− 1

3π22/3Ai′(−21/3θ).

Proof. A sketch of the proof is given in the appendix. J
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Observe that there is an overlap in the conditions of Part (b) and Part (c), but one can
show that the asymptotic formulas (15) and (16) agree in the overlap. To check this, one
needs to use the classic asymptotic formula for the Airy function Ai(z) as well as the
asymptotic formula for W0(z) near its singularity −1/e. These are well known facts, see for
example [28, (9.7.5)] and [6, (4.22)]. Since these estimates will be referred to quite often in
this paper, let us state them here. For any ε > 0,

Ai(z) ∼ e−
2
3 z

3/2

2
√
πz1/4 as |z| → ∞, and |Arg(z)| ≤ π − ε. (17)

As for the Lambert function, as z → −1/e, we have

W0(z) = −1 + p− 1
3p

2 + 11
72p

3 + · · · (18)

where p =
√

2(ez + 1) (here,
√
· denotes the principal branch of the square root function).

We are now ready to prove Theorem 1.

2.3 Proof of Theorem 1
Proof. We already know that the zeros of φ(x, y) are real and positive. Observe that the
main terms of φ(x, y) in Part (a) and Part (b) of Proposition 4 cannot vanish (in Part (b),
R is always positive, which implies Ai(R) 6= 0). However for Part (c), the term K1(θ) in (16)
can be zero, and this happens precisely when θ = −2−1/3aj , where aj is one of the zeros of
Ai(z).

If we let x = (1 + θα2/3)x0, and make θ vary in a small interval around −2−1/3aj , then
the main term of φ(x, y) changes sign. So by the intermediate value theorem there must be a
zero close to (1− 2−1/3ajα

2/3)x0. The asymptotic formula of such a zero can be obtained by
a simple bootstrapping argument using (16). This eventually gives an asymptotic formula of
the form

1
e
y−1 − aj

21/3e
y−1/3 − 1

6e +O(y1/3), as y → 0+. (19)

To show that there is only one zero that satisfies this asymptotic formula for every aj , we
make use of the functional equation

φx(x, y) = −φ
(
(1 + y)−1x, y

)
,

which follows easily from the definition of φ(x, y) in (2). Now, suppose that there are two
different zeros %′ and %′′ that both satisfy (19) for the same j. Then by Rolle’s theorem,
there exists C between %′ and %′′ (which also means that C satisfies the asymptotic formula
(19)) such that (1 + y)−1C is a zero of φ. This leads to a contradiction, because if C satisfies
(19) then (1 +y)−1C does not (not even if aj is replaced by another zero of the Airy function)
if y is sufficiently small. So (1 + y)−1C cannot be a zero of φ(x, y).

Now that we have established that there is only one zero of φ(x, y) that satisfies (19) for
each fixed j ∈ N and sufficiently small y, we name it %j(y). Finally, to estimate φx(%j(y), y)
as y → 0+, we make use of the above functional equation again, which gives us

φx(%j(y), y) = −φ
(
(1 + y)−1%j(y), y

)
.

Then, we use (19) and (16) to estimate the right-hand side. J
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25:8 Acyclic Digraphs

3 Proving Theorem 2 and Theorem 3

3.1 Case 0 ≤ λ < 1
I Lemma 5. Consider the random digraph D (n, p) with p = λ/n and 0 ≤ λ < 1 fixed. Let
Xn be the total number of (directed) cycles in this graph. Then,
(a) w.h.p., all strong components of D(n, p) are either cycles or single vertices.
(b) the number of vertices on a cycle is at most ω, for any ω(n)→∞.
(c) Xn converges in distribution to Po(− log(1− λ)− λ− λ2

2 ).

Proof. If there is a strong component that is not a cycle or a single vertex, then there are
three internally disjoint paths connecting two vertices u and v such that two of them do
not have the same orientation or there are two directed cycles with a common vertex. The
expected number of such components is bounded above by

2
(
n

2

) n∑
i=1

n∑
j=1

n∑
k=1

(
n

i

)
i!pi+1

(
n

j

)
j!pj+1

(
n

k

)
k!pk+1 +

(
n

1

) n∑
i=2

n∑
j=2

(
n

i

)
i!pi+1

(
n

j

)
j!pj+1

≤ λ3

n

∞∑
i=0

∞∑
j=0

∞∑
k=0

λi+j+k + λ2

n

∞∑
i=0

∞∑
j=0

λi+j = O(n−1).

By the Markov inequality, this means that there are, w.h.p., no such components.
For (b), we can bound the expected number of cycles of length larger than ω by
n∑

k=ω

(
n

k

)
(k − 1)!pk =

n∑
k=ω

∏k−1
i=0 (n− i)
nk

λk

k
≤

n∑
k=ω

λk = O (λω) .

As 0 < λ < 1, (b) follows from the Markov inequality.
Now to tackle (c), we compute first the expectation of Xn. Here, we have

E [Xn] =
n∑
k=3

(
n

k

)
(k − 1)!pk.

It follows that

lim
n→∞

E(Xn) = lim
n→∞

n∑
k=3

∏k−1
i=0 (n− i)
nk

λk

k
∼
∞∑
k=3

λk

k
= − log(1− λ)− λ− λ2

2 = a(λ).

Since the falling factorial (Xn)r = Xn(Xn− 1) · · · (Xn− r+ 1) counts the number of ordered
r-tuples of r disjoint cycles, the r-th factorial moment of Xn is

E [(Xn)r] =
n∑

k1=3

n−k1∑
k2=3

. . .

n−
∑r−1

i=1
ki∑

kr=3

(
n

k1, k2, . . . , kr, n− k1 − · · · − kr

) r∏
i=1

(ki − 1)!pki .

Without going into the technical details, one can now use the statement in (b) to show that
the summations can be taken to ∞. One finds that for fixed r ≥ 2, the r-th factorial moment
E [(Xn)r] is asymptotically equivalent to a(λ)r as n→∞. So by means of [19, Corollary 6.8],
we have convergence to a Poisson distribution of parameter a(λ). J

Now, the case 0 ≤ λ < 1 of Theorem 2 is a simple consequence of Lemma 5. Indeed Part (c)
of Lemma 5 implies that

lim
n→∞

P(n, p) = lim
n→∞

P (Xn = 0) = e−a(λ) = (1− λ)eλ+λ2/2.
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3.2 Case λ ≥ 1

3.2.1 Preliminaries
Let us begin with a crucial lemma which relates the probability P(n, p) to the coefficient
[xn]A(x, y).

I Lemma 6. The probability P(n, p) that a random digraph D(n, p) is acyclic is given by

P(n, p) = n!(1− p)(
n
2)[xn]A

(
x, p

1−2p

)
. (20)

Proof. Define An(y) =
∑(n2)
m=0 an,my

m where an,m is the number of acyclic digraphs with n
vertices and m edges defined in (1). Therefore, we have

A(x, y) =
∑
n≥0

An(y)(1 + y)−(n2)xn

n! and An(y) = n!(1 + y)(
n
2)[xn]A(x, y) . (21)

Since P(n, p) is defined to be the probability that D(n, p) is acyclic, we can express it as
P(n, p) =

∑
D P(D(n, p) = D), where the sum runs over all acyclic digraphs on n fixed

vertices. The probability P(D(n, p) = D) does not depend on the structure of D but only on
its number of edges. Hence, by distinguishing the number of edges, we have

P(n, p) =
(n2)∑
m=0

an,mp
m(1− 2p)(

n
2)−m

= (1− 2p)(
n
2)

(n2)∑
m=0

an,m

(
p

1− 2p

)m
= (1− 2p)(

n
2)An

(
p

1− 2p

)
.

Applying (21) with y replaced by p/(1− 2p), we get after a bit of algebra that the last term
is the same as the right-hand side of Equation (20). J

By Lemma 6, it suffices to estimate the coefficient [xn]A(x, y) when y is of order n−1. To
this end, we use the Cauchy integral formula

[xn]A(x, y) = 1
2πi

∮
|x|=ρ

A(x, y)
xn+1 dx = 1

2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx, (22)

where 0 < ρ < %1(y). Notice that x here is a complex variable, so in order to estimate
[xn]A(x, y) via the above integral, we need an estimate of φ(x, y) where x is complex and
y → 0+. This is done in the next proposition.

I Proposition 7. Let θ be a fixed real number which satisfies Ai(−21/3θ) 6= 0 and let
δ = θα2/3. Moreover, let

x = (1 + δ)x0e
iu, and w = W0(−(1 + δ)eiu−1).

Then, we have the following asymptotic formulas for φ(x, y) as y → 0+:
(a) If α1/2 � |u| ≤ π, then

φ(x, y) ∼ e
1

2α (w2+2w)
√

1 + w
. (23)
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25:10 Acyclic Digraphs

(b) If u = tα2/3 and 1� |t| � α−1/6, then

φ(x, y) ∼ π1/2 25/6α−1/6Ai(−21/3(θ + it))e− 1
2α
−1−(θ+it)α−1/3− 5

6α
1/3t2 . (24)

(c) If u = tα2/3, then the estimate

φ(x, y) ∼ π1/2 25/6α−1/6Ai(−21/3(θ + it))e− 1
2α
−1−(θ+it)α−1/3

(25)

holds uniformly for t in any bounded closed interval on R.

Proof. A sketch of the proof is given in the appendix. J

I Remark 8. Once again, one can verify that these asymptotic formulas agree in those regions
where conditions overlap.

The next lemma is a direct consequence of Proposition 7, which will be useful to estimate
the integral in (22).

I Lemma 9. Let θ be a fixed real number such that Ai(−21/3θ) 6= 0, and let ρ = (1+θα2/3)x0.

Then, as y → 0+,

1
2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx� α2/3|Ai(−21/3θ)|

2πφ(ρ, y)ρn

∫ ∞
−∞

1
|Ai(−21/3(θ + it))|

dt, (26)

where the implied constant is independent of n. If we assume further that n and α are
connected by a relation of the form n = α−1 + bα−2/3, where b can be a function of α but
with b = O(1), then we have

1
2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx = α2/3Ai(−21/3θ)

2πφ(ρ, y)ρn

(∫ ∞
−∞

e−ibt

Ai(−21/3(θ + it))
dt+ o(1)

)
. (27)

Proof. We will only present the proof of the second estimate, which is the harder one, the
idea of the proof of the first estimate will be very similar but simpler since it is only an upper
bound. First, we have

1
2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx = 1

2πφ(ρ, y)ρn

∫ π

−π

φ(ρ, y)e−iun

φ(ρeiu, y) du.

Next, we choose a fixed constant c ∈ (1/2, 2/3), and we split the integral on the right-
hand side into three pieces corresponding to each of the following ranges of u: |u| ≤ αc,
αc < |u| ≤ α1/2, and α1/2 < |u| ≤ π. Let us now treat these cases separately.

If α1/2 < |u| ≤ π, then we can use Part (a) of Proposition 7 to estimate |φ(ρeiu, y)| and
Part (c) of Proposition 4 to estimate |φ(ρ, y)|. We get∣∣∣∣φ(ρ, y)e−iun

φ(ρeiu, y)

∣∣∣∣� α−1/6
√
|1 + w| e− 1

2α
−1Re((1+w)2)−θα−1/3

,

with w as defined in (12). Note that w is bounded in this case. Moreover, one can show
(see Lemma 10 in the appendix) that Re((1 + w)2) remains positive if u is bounded away
from zero, and by means of (18) (with p =

√
2(1− (1 + θα2/3)eiu)), one gets

Re((1 + w)2) = −2θα2/3 + (1 + o(1))4
3 |u|

3/2, (28)

if u→ 0 and |u| ≥ α1/2. Hence, we have

−1
2α
−1Re((1 + w)2)− θα−1/3 = −( 2

3 + o(1))α−1|u|3/2 � α−1/4

uniformly for α1/2 < |u| ≤ π. This implies that the contribution from α1/2 < |u| ≤ π to
the above integral tends to zero exponentially quickly.
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If αc < |u| ≤ α1/2, then we use Part (b) of Proposition 7 to estimate |φ(ρeiu, y)|. We
obtain∣∣∣∣φ(ρ, y)e−iun

φ(ρeiu, y)

∣∣∣∣ ∼ e
5
6α

1/3t2

|Ai(−21/3(θ + it))|
,

where t = uα−2/3. So, in particular |t| > αc−2/3. But since we chose c < 2/3, we have
|t| → ∞. Since θ is fixed, we have |Arg(−21/3(θ + it))| → π/2. Therefore, by the
asymptotic formula (17) for the Airy function, the contribution from αc < |u| ≤ α1/2 to
the integral above is also tending to zero exponentially fast in α.
If |u| ≤ αc, then we let u = tα2/3. So α1/3t2 = O(α2c−1), which tends to zero. Also by
the assumption on n in the statement of the lemma, we have

−iun = −itα−1/3 − ibt.

Using Part (c) of Proposition 7 and n = α−1 + bα−2/3, we get

φ(ρ, y)e−iun

φ(ρeiu, y) ∼ Ai(−21/3θ)e−ibt

Ai(−21/3(θ + it))
.

By making the change of variable u = tα2/3, we obtain∫ αc

−αc

φ(ρ, y)e−iun

φ(ρeiu, y) du ∼ α2/3Ai(−21/3θ)
∫ αc−2/3

−αc−2/3

e−ibt

Ai(−21/3(θ + it))
dt.

Once again, by the asymptotic formula (17) for the Airy function, the integral on the
right-hand side can be extended to infinity with an exponentially small error term,
uniformly in b.

The proof of the asymptotic formula (27) is complete. J

We now have everything we need to complete the proof of Theorem 2 and to prove
Theorem 3. Since the case λ = 1 in Theorem 2 is a particular case of Theorem 3, it does not
need to be treated separately. Let us begin with a proof of Theorem 3.

3.2.2 Case λ = 1 + µn−1/3

Let np = 1 + µn−1/3, where µ is contained in a fixed bounded interval. In view of Lemma 6
we set y = p/(1− 2p), and with α = log(1 + y), we can show that n satisfies

n = α−1 + µα−2/3 +O(α−1/3).

We choose ρ = x0 = 1
eαβ (which is smaller than %1(y)). Hence, by Equation (27) of Lemma 9

(with θ = 0), we have

[xn]A(x, y) = α2/3Ai(0)
2πφ(ρ, y)ρn

(∫ ∞
−∞

e−iµt

Ai(−21/3it)
dt+ o(1)

)
.

Thus Lemma 6 yields

P(n, p) = n!(1− p)(
n
2) α2/3Ai(0)

2πφ(ρ, y)ρn

(∫ ∞
−∞

e−iµt

Ai(−21/3it)
dt+ o(1)

)
.

We apply Part (c) of Proposition 4 (or Part (c) of Proposition 7) to estimate φ(ρ, y), then
write everything in terms of n. With the help of a computer algebra system (we used
asymptotic expansions in SageMath [35]) we obtain the asymptotic formula

P(n, p) = 2−1/3e3/2−µ3/6 n−1/3 × 1
2π

(∫ ∞
−∞

e−iµt

Ai(−21/3it)
dt+ o(1)

)
as n→∞, which is equivalent to the estimate of P(n, p) in Theorem 3.
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3.2.3 Case λ > 1
Let λ > 1 be a fixed real number, and let np = λ. We follow the same argument as above, but
we choose ρ = (1 + θα2/3)x0, where θ is fixed and satisfies −a1 < 21/3θ < −a2. This implies
that Ai(−21/3θ) 6= 0 and that %1(y) < ρ < %2(y). Hence, by the residue theorem, we have

[xn]A(x, y) = − 1
%1(y)n+1φx(%1(y), y) + 1

2πi

∮
|x|=ρ

1
φ(x, y)xn+1 dx. (29)

Then, we use (26) of Lemma 9 to estimate the integral on the right-hand side, so we get

[xn]A(x, y) = − 1
%1(y)n+1φx(%1(y), y) +O

(
α2/3

|φ(ρ, y)|ρn

)
.

In view of the formula P(n, p) = n!(1 − p)(
n
2)[xn]A(x, y), we can express the contribution

to P(n, p) from each of the terms above in terms of n: we use Theorem 1 to estimate %1(y)
and φx(%1(y), y) and Part (c) of Proposition 4 to estimate φ(ρ, y). Then, with the help of a
computer algebra system, we obtain

− n!(1− p)(
n
2)

%1(y)n+1φx(%1(y), y) ∼ γ2n
−1/3e−c1n+21/3a1λ

−1/3(λ−1)n1/3
, (30)

n!(1− p)(
n
2)α2/3

|φ(ρ, y)|ρn � n−1/3e−c1n−θλ−1/3(λ−1)n1/3
, (31)

where the constants γ2 and c1 are precisely as defined in Theorem 2. Since we chose θ in
such a way that θ > −2−1/3a1, the left-hand side of (31) is exponentially (in n1/3) smaller
than that of (30) as n→∞. Therefore, the right-hand side of (30) is indeed the main term
of P(n, p).
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A Sketched Proof of Proposition 4

The proof is based on the saddle-point method applied to the integral in the formula for
φ(x, y) in (10). Recall that we set x = (1 + δ)x0, where x0 = (eαβ)−1. Note that the case
δ = −1 corresponds to x = 0, and so it immediately follows from the definition of φ(x, y)
in (2) that φ(0, y) = 1. Hence, we may assume that δ > −1, but it can be a function of α.
Recall the saddle-point z0 defined in (12), z0 = −iw, where w = W0(−(1 + δ)e−1). One
can see that if δ goes from −1 to 0, then w goes from 0 to −1. So if δ ∈ (−1, 0], then the
point z0 lies on the segment [0, i]. The Taylor series around z0 is

f(z) = f(z0) + f ′(z0)(z − z0) + f ′′(z0) (z − z0)2

2! + f ′′′(z0) (z − z0)3

3! + · · ·

where

f(z0) = − 1
2αz

2
0 + iz0

α
= 1

2α (w2 + 2w) (32)

f ′′(z0) = − 1
α

(1 + iz0) = − 1
α

(1 + w) (33)

f ′′′(z0) = −z0

α
= i

α
w (34)

|f (k)(η + z0)| = |w|
α
≤ 1
α

for every η ∈ R and k ≥ 4. (35)

Looking at the first few terms in the Taylor series above, note that the quadratic term
f ′′(z0)(z − z0)2 also vanishes when z0 = i. So we proceed as follows: if z0 is sufficiently far
from i (for our case it means |z0 − i| � α2/3), then we shift the path of integration to the
horizontal line passing through z0, and if |z0 − i| � α2/3, then we take the path Γ on the
right in Figure 2.

i

z0

Horizontal Path.

−
√

3
√

3

i

Path Γ.

Figure 2 Two Paths.

We can use the path Γ in the integral (10) since f(z) is an entire function. But we can
also shift the path of integration to any horizontal line. To see this, for any real numbers
a, b, (assuming that x is real for now) we have

Re(f(a+ ib)) = − 1
2α (a2 − b2)− xβeb cos(a).

This implies that |ef(z)| = eRe(f(z)) tends to zero exponentially fast as |Re(z)| → ∞ on any
fixed horizontal strip for α > 0. Hence we can shift the path of integration within this strip.

Before we begin proving each part of Proposition 4, let us adopt some terminology. The
dashed circles in the two graphs in Figure 2 represent circles of radius αc, where c is a positive
constant. But c will be chosen separately for each range of x. The part of the integral from
the path within the circle will be called the local integral and the rest will be called the tail.
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A.1 Part (a)
Here, we assume that δ > −1, but that the asymptotic formula δ = −1 + o(1) is satisfied as
α→ 0+. Then, we choose c ∈ (1/3, 1/2). To estimate the local integral, we have

f(t+ z0) = f(z0) + f ′′(z0) t
2

2 +O(α3c−1),

for |t| ≤ αc, where the implicit constant in the O term is independent of t. This implies that∫ αc

−αc
ef(t+z0)dt = (1 +O(α3c−1))ef(z0)

∫ αc

−αc
ef
′′(z0)t2/2dt.

The condition δ = −1 + o(1) implies that w = o(1), hence f ′′(z0) ∼ −α−1. This allows us
to extend the range of integration in the integral above to infinity at the expense of an
exponentially small error term. Thus, we have∫ αc

−αc
ef(t+z0)dt ∼ ef(z0)

∫ ∞
−∞

ef
′′(z0)t2/2dt ∼

√
2π

−f ′′(z0)e
f(z0).

Now for the estimate of the tail. From the definition of the function f(z), we can show
that

Re(f(t+ z0))− f(z0) = − 1
2α
(
t2 + 2(1− cos t)w

)
≤ − 1

2α (1 + w)t2. (36)

The last line follows using the well known inequality 1− cos t ≤ t2/2 for all t ∈ R and
the fact that w < 0. Thus, we have∫

|t|>αc
ef(t+z0)dt ≤ ef(z0)

∫
|t|≥αc

eRe(f(t+z0))−f(z0)dt ≤ 2ef(z0)
∫ ∞
αc

e−(1+w)α−1t2/2dt.

Again, since w = o(1) the rightmost integral tends to zero faster than any power of α. Thus,
we deduce that∫ ∞

−∞
ef(t+z0)dt ∼

√
2π

−f ′′(z0)e
f(z0).

Therefore, from (10), we get φ(x, y) ∼ ef(z0), which is equivalent to Part (a) of Proposition 4.

A.2 Part (b)
In this case, δ ∈ (−1, 0) is assumed to satisfy the condition α2/3 � |δ| � 1− ε for some fixed
ε > 0. We proceed in the same manner as in the previous case, but since w can be very close
to −1, f ′′(z0) can be small. We can still use the horizontal line passing through z0 as our
path of integration. However, this time, we do not ignore the term with f ′′′(z0) in the local
integral. We choose c ∈ (1/4, 1/3), and the Taylor approximation gives

f(t+ z0) = f(z0) + f ′′(z0) t
2

2 + f ′′′(z0) t
3

6 +O(α4c−1),

uniformly for |t| ≤ αc. Thus,∫ αc

−αc
ef(t+z0)dt = (1 +O(α4c−1))ef(z0)

∫ αc

−αc
ef
′′(z0)t2/2+f ′′′(z0)t3/6dt.
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Let us denote the integral on the right-hand side by J . Making use of the values of f ′′(z0)
and f ′′′(z0) in (33) and (34) respectively, and with the change of variable t 7→ α1/3t, we can
rewrite J in the following way:

J = 2α1/3
∫ αc−1/3

0
e−(1+w)α−1/3t2/2 cos

(
w t3

6

)
dt.

The term 1 + w is always positive, and since δ � α2/3, we can show from the asymptotic
estimate (18) of the LambertW function that 1+w � α1/3. This implies that (1+w)α−1/3 �
1. Adding the fact that αc−1/3 →∞, we can extend the range of integration of J to infinity
at the expense of a negligible error term. So we have

J ∼ 2α1/3
∫ ∞

0
e−(1+w)α−1/3t2/2 cos

(
w t3

6

)
dt.

With an appropriate change of variable, the right-hand side can be written in terms of the
Airy function Ai(z) (here we can use the integral representation of Ai(z) in [28, (9.5.7)]).
Skipping the calculations, we have

J ∼ 24/3π|w|−1/3α1/3e2R3/2/3Ai(R),

where R = 2−2/3(1 + w)2w−4/3α−2/3.

Now for the estimates of the tail, we use the same argument as in the previous case.
Inequality (36) is valid in this case as well, so we still have∫

|t|≥αc
ef(t+z0)dt ≤ 2ef(z0)

∫ ∞
αc

e−(1+w)α−1t2/2dt.

With 1+w � α1/3 and c > 1/3 the integral on the right-hand side tends to zero faster than any
power of α. Hence, the main contribution would come from the local integral if we can show
that e2R3/2/3Ai(R) is bounded below by some power of α. But the definition of R given above
guarantees that R is always positive, and it is bounded above by a function that is O(α−2/3).
Hence, by the asymptotic formula of the Airy function e2R3/2/3Ai(R) � R−1/4 � α−1/6.

Therefore, we deduce that

φ(x, y) ∼ 25/6π1/2|w|−1/3Ai(R)α−1/6e2R3/2/3+f(z0).

The latter gives the formula in Part (b) of Proposition 4.

A.3 Part (c)
This case is slightly different from the previous two. The saddle-point z0 is too close to i so
we choose the path of integration Γ shown in Figure 2. For the local integral, we consider
up to the 5-th term in the Taylor approximation of the function f(z) around i. We have
f ′(i) = iδα−1, f ′′(i) = δα−1, f ′′′(i) = −i(1 + δ)α−1 and f (4)(i) = −(1 + δ)α−1. We choose
c ∈ (1/5, 1/3). For |z − i| ≤ αc and z ∈ Γ, we can write

ef(z) = ef(i)+µ1(z−i)+µ3(z−i)3 (
1 + ζ2(z − i)2 + ζ4(z − i)4 +O(α5c−1)

)
,

where µ1 = iθα−1/3, µ3 = − 1
6 iα
−1, ζ2 = 1

2θα
−1/3, ζ4 = − 1

24 (1 + θα2/3)α−1 (we used the
fact that δ = θα2/3). Let us denote by Γc the part of Γ that lies in the disk |z − i| ≤ αc. For
each integer k ≥ 0, let

Ik :=
∫

Γc
(z − i)keµ1(z−i)+µ3(z−i)3

dz.
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We parametrize Γc and show that the the two half-segments of Γc can be extended to∞ with
an error smaller than any power of α. Then, with some suitable change of variable, (skipping
all details) we can express Ik in terms of the k-th derivative of the Airy function as follows

Ik = −ik+2 π 2(k+4)/3(1 + δ)−(k+1)/3α(k+1)/3Ai(k)(R) + · · ·

where by “· · · ” we mean an exponentially small term, and

R = iµ1(3iµ3)−1/3 = −21/3δ(1 + δ)−1/3δα−2/3 = −21/3θ (1 + δ)−1/3.

Thus, we obtain

ζ0 I0 = π 24/3(1 + δ)−1/3α1/3Ai(R) + · · ·

ζ2 I2 = −2πθ (1 + δ)−1α2/3Ai(2)(R) + · · ·

ζ4 I4 = − 1
3π 2−1/3(1 + δ)−2/3α2/3Ai(4)(R) + · · ·

The higher derivatives of the Airy function can be written in terms of Ai(z) and Ai′(z) using
the well known Airy differential equation as we can easily show by induction on k that

Ai(k+3)(z) = (k + 1) Ai(k)(z) + zAi(k+1)(z) for k ≥ 0.

Reducing all higher derivatives of the Airy function and using Taylor approximation to
estimate each of the Ai(k)(R)’s, we get∫

Γc
ef(z)dz ∼ ef(i)

(
K1(θ)α1/3 +K2(θ)α2/3 +O(α)

)
,

where K1(θ) and K2(θ) are precisely as defined in Proposition 4.
Now we estimate the contribution of the tail. First, if t is real and |t| ≥

√
3, then we have

Re(f(t))− f(i) = − 1
2α (t2 − 1)− cos t

eα
+ δ

α

(
1− cos t

e

)
≤ − |t|2α

(
1 +O(α2/3)

)
,

where the constant in the O term is independent of t. The inequality follows from the fact
that if |t| ≥

√
3 then we have ((t2 − 1)/2 − cos(t)/e) ≤ 0.5|t|, which is not too difficult to

verify. The above estimate is enough to show that the contribution from the real half-lines
|t| ≥

√
3 is negligible.

If z = i+ teiπ/6 and t ∈ [−2,−αc]}, then we let ξ(t) = 2et/2 cos(
√

3t/2) so that we have

Re(f(i+ teπi/6))− f(i) = − 1
2α

(
ξ(t)− 2− t+ t2

2 + δ (ξ(t)− 2)
)
.

We can show (e.g., using a Taylor approximation of ξ(t)) that there exist positive absolute
constants C1 and C2 such that |ξ(t) − 2| ≤ C1|t| and ξ(t) − 2 − t + t2

2 ≥ C2|t|3, for any
t ∈ [−2, 0]. Hence, uniformly for t ∈ [−2,−αc],

Re(f(i+ teπi/6))− f(i) ≤ − 1
2α

(
C2|t|3 +O(α2/3|t|)

)
≤ −C2

|t|3

2α (1 +O(α2/3−2c)).

In particular, Re(f(i+teπi/6))−f(i) is negative for sufficiently small α and |Re(f(i+teπi/6))−
f(i)| � α3c−1 uniformly for t ∈ [−2,−αc]. This is enough to show that the contribution
from the segment {i+ teiπ/6 : t ∈ [−2,−αc]} is also negligible. The contribution from the
segment {i+ te−iπ/6 : t ∈ [αc, 2]} can also be dealt with in the same way.
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B Idea of the Proof of Proposition 7

We are unable to give much detail here due to lack of space. But the proof of Proposition 7
is essentially the same as the one above. The main difference is, of course, that x is complex.
Let x = (1 + δ)x0e

iu where u ∈ (−π, π], δ = θα2/3 and θ is a fixed number that satisfies
Ai(−21/3θ) 6= 0. This implies that the number w, which is now defined as W0(−(1 + δ)eiu−1),
is no longer real.

The proof of Part (c) above proceeds in essentially the same way as δ and u are both
O(α2/3). But for Part (a) and Part (b) to work, we need the following result about w.

I Lemma 10. The functions Re((1+w)2), Re(1+w) and 1−|w| are all positive and nonzero
if u is bounded away from 0. Moreover, if |u| → 0 as α→ 0+, but |u| � α2/3, then

w = −1 + α1/3
√
−2(θ + it) + 2

3α
2/3(θ + it) +O(|u|3/2), (37)

where t = uα−2/3, and the implied constant does not depend on u. In particular, we have
Re(1 + w)� α1/3 uniformly for α2/3 � |u| ≤ π.

Proof. The asymptotic formula (37) follows easily from (18). Now to show that Re(1 + w)
and 1 − |w| stay positive, we just need to show that this is the case for 1 − |w| since
Re(1 + w) ≥ 1− |w|.

If |w| = 1, then from the definition of w we have

|w|eRe(1+w) = eRe(1+w) = 1 +O(α2/3).

This implies that Re(1 +w)→ 0, which means w = −1 + o(1). The latter forces u to tend to
zero.

Similarly if Re((1 + w)2) = 0, then w must be of the form w = −1 + a(1 ± i), where
a ∈ R. This implies that

|w|eRe(1+w) =
√
a2 + (a− 1)2 ea = 1 +O(α2/3).

This is only possible if a→ 0 as α→ 0. J

This lemma will be very useful in proving Part (a) and Part (b). It shows, for example, that
Re(−f ′′(z0)) is positive and it satisfies Re(−f ′′(z0)) = Re((1 + w)α−1)� α−2/3 uniformly
for α2/3 � |u| ≤ π. This will make the proofs of Part (a) and Part (b) above work in this
case as well.
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