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Abstract
In this article, we analyse the joint distribution of some given set of patterns in fundamental
combinatorial structures such as words and random walks (directed lattice paths on Z2). Our
method relies on a vectorial generalization of the classical kernel method, and on a matricial
generalization of the autocorrelation polynomial (thus extending the univariate case of Guibas and
Odlyzko). This gives access to the multivariate generating functions, for walks, meanders (walks
constrained to be above the x-axis), and excursions (meanders constrained to end on the x-axis).
We then demonstrate the power of our methods by obtaining closed-form expressions for an infinite
family of models, in terms of simple combinatorial quantities. Finally, we prove that the joint
distribution of the patterns in walks/bridges/excursions/meanders satisfies a multivariate Gaussian
limit law.
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1 Definitions and notations for directed lattice paths

Let S, the set of steps (or jumps), be some finite subset of Z that contains at least one
negative and at least one positive number. A lattice path with steps from S is a finite word
w “ ps1, s2, . . . , snq in which all letters belong to S, visualized as a directed polygonal line
in the plane, which starts in the origin and is formed by successive appending of vectors
p1, s1q, p1, s2q, . . . , p1, snq. The n letters that form the path w “ ps1, s2, . . . , snq are referred
to as its steps. The length of w, to be denoted by `pwq, is the number of steps in w. The final
altitude of w, to be denoted by hpwq, is the sum of all steps in w, that is s1 ` s2 ` . . .` sn.
Visually, `pwq and hpwq are the x- and the y-coordinates of the point where w terminates.
One considers four classes of paths: a walk is any path as described above; a bridge is a path
that terminates at the x-axis; a meander is a path that stays (weakly) above the x-axis; an
excursion is a path that stays (weakly) above the x-axis and terminates at the x-axis.
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1:2 Lattice Paths with Marked Patterns and the Multivariate Gaussian Distribution

Table 1 For the four types of paths (walks, bridges, meanders, excursions) and for any set of
steps encoded by Spuq, we give the corresponding generating function marking a set of patterns
p1, . . . , pm. The formulas involve the e small roots ui (i.e. uiptq „ 0 for t „ 0) of the kernel
Kpt, uq :“ p1´ tSpuqq∆`∆1, where ∆ and ∆1 are determinants related to the correlation matrix of
the patterns. (See Theorems 4, 10, and 12.)

ending anywhere ending at 0

on Z

walks

W pt, uq “
∆pt, uq

Kpt, uq

bridges

Bptq “ ´
e
ÿ

i“1

u1i
ui

∆pt, uiq

Ktpt, uiq

on N

meanders

Mpt, uq “
∆pt, uq

ueKpt, uq

e
ź

i“1

pu´ uiptqq

excursions

Eptq “
p´1qe`1

t

e
ź

i“1

uiptq

For each of these classes (in the simpler case of no pattern constraint), Banderier and
Flajolet [6] gave general expressions for the corresponding generating functions and the
asymptotics of their coefficients. A unified study of lattice paths with a single forbidden
pattern was recently started by Asinowski, Bacher, Banderier, and Gittenberger [1]: for
any fixed path p (a “pattern”) they give the generating function and the asymptotics for
paths that avoid p as a consecutive string. Moreover, they initiated the more general analysis
of marking a pattern: here, one considers a generating function with an extra variable v
which encodes the number of occurrences of the pattern p in the path. Setting v “ 0 gives
the generating function for walks that avoid p. In this article, we further generalize this work
to the case where several patterns are marked. The situation is more challenging: more
correlations create more obstacles; however, we shall see that one can still derive closed-form
expressions in terms of natural combinatorial quantities!

Throughout our article, in the generating functions, the variable t corresponds to the
length of a path, and the variable u to its final altitude. Spuq is the step polynomial of the
set of steps S, defined by

Spuq :“
ÿ

sPS
us.

The set of forbidden/marked patterns will be denoted by P “ tp1, . . . , pmu.
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2 Generating functions for walks and bridges with marked patterns

For the case of a single marked pattern p (see e.g. [1, Thm. 7.1]), the trivariate generating
function of walks is

W pt, u, vq “
v ` p1´ vqR

p1´ tSq
`

v ` p1´ vqR
˘

` p1´ vqt`ppquhppq
, (1)

where t, u, v are the variables as explained in Section 1; `ppq and hppq are the length and
the final altitude of the pattern p; and R “ Rpt, uq is the autocorrelation polynomial that
encodes the overlaps of p with itself – see the definition below. The specialization v “ 0 gives
W pt, u, 0q “ R{

`

p1´ tSqR` t`ppquhppq
˘

, the generating function of walks that avoid p; and
v “ 1 gives W pt, u, 1q “ 1{p1´ tSq – as expected, since it enumerates all the walks over S.

In this work, we consider the more general case of marking several patterns. To this
end, let S be a set of steps, and let P “ tp1, p2, . . . , pmu be a set of patterns (that is, fixed
words over S). In what follows, we assume that P is a reduced system, that is, the words
p1, p2, . . . , pm do not contain each other (where the inclusion is understood as that of strings,
for example ab Ă abcd and bc Ă abcd but ac Ć abcd).

A central role in our approach is played by the notion of mutual correlation, a way to
formalize how patterns overlap with each other. Given two patterns pi and pj , an overlap of
pi and pj is a non-empty string that occurs as a suffix in pi and as a prefix in pj . Let Oi,j

be the set of all overlaps of pi and pj . Further, let Ci,j be the set of words obtained from pj
by erasing all the of overlaps pi and pj (as prefixes of pj). More formally, this leads to the
following definition.

I Definition 1 (Mutual correlation polynomials). The mutual correlation sets are defined as

Ci,j “ tq : Dq1, q2pq2 ‰ εq : pi “ q1.q2, pj “ q2.qu. (2)

Accordingly, the mutual correlation polynomials are defined as

Ci,jpt, uq “
ÿ

qPCi,j

t`pqquhpqq. (3)

In particular, for i “ j, Ci,ipt, uq is the autocorrelation polynomial introduced in the case of
one single pattern by Schützenberger [38] for prefix codes and by Guibas and Odlyzko [27]
in the context of text searching and string overlaps, see also [25, Formula (8.81)] for a first
generalization.

I Example 2. Let p1 “ aaba, p2 “ abab. Then we have
O1,1 “ taaba, au, C1,1 “ tε, abau, C1,1 “ 1` t3u2a`b;
O1,2 “ taba, au, C1,2 “ tb, babu, C1,2 “ tub ` t3ua`2b;
O2,1 “ C2,1 “ ∅, C2,1 “ 0;
O2,2 “ tabab, abu, C2,2 “ tε, abu, C2,2 “ 1` t2ua`b.

Let W “W pt, u, v1, . . . , vmq be the generating function for the walks, where each occur-
rence of the pattern pi (i “ 1, . . . ,m) is marked by the variable vi. That is, the coefficient
of tαuβvγ1

1 . . . vγm
m in W is the number of walks of length α and final altitude β that have

exactly γi occurrences of pi for i “ 1, . . . ,m. (Note that occurrences of each pattern are
taking self-overlaps into account: thus, for example, the path aaaa contains three occurrences
of aa and two occurrences of aaa.)

AofA 2020



1:4 Lattice Paths with Marked Patterns and the Multivariate Gaussian Distribution

I Remark 3 (The automaton paradigm). Given S and P , walks with marked patterns can be
encoded by a finite automaton A: a walk w is in state Zα if α is the longest overlap of w
with some pattern(s) (if there are no such overlaps, then w is in the initial state Zε)1. This
approach leads to the formula

W pt, u, v1, . . . , vmq “
p1, 0, . . . , 0q adjpI ´ tAq p1, . . . , 1qJ

detpI ´ tAq , (4)

where A “ Apu, v1, . . . , vmq is the transition matrix of the automaton A. (NB: the first
row/column of A correspond to the initial state Zε.) In Formula (4), the vector p1, 0, . . . , 0q
encodes the fact that the state Zε is the single initial state of A, and the vector p1, . . . , 1qJ
encodes the fact that all states of A are final. (See the automaton in Example 9 for an
illustration.)

Our first result is another more combinatorial formula forW , bypassing the computational
cost inherent to the automaton paradigm approach. This formula can be established via the
cluster method, as popularized by Goulden and Jackson [24]. It is an instance of what Flajolet
called symbolic inclusion-exclusion and it was e.g. used in [1,11,32,35,39]. Below, we opt for
another proof strategy which emphasizes the role of the mutual correlation polynomials.

I Theorem 4. Let S be a set of steps, and P “ tp1, . . . , pmu a set of (mutually not included)
patterns. The multivariate generating function of walks (where t encodes the length,
u the final altitude, and vi occurrences of the pattern pi) is given by

W pt, u, v1, . . . , vmq “
∆

p1´ tSpuqq∆`

m
ÿ

i“1
∆it

`iuhi

, (5)

where ∆ “ ∆pt, u, v1, . . . , vmq is the determinant of the mutual correlation matrix
¨

˚

˚

˚

˚

˚

˚

˚

˝

v1 ` p1´ v1qC1,1 p1´ v2qC2,1 ¨ ¨ ¨ p1´ vmqCm,1
p1´ v1qC1,2 v2 ` p1´ v2qC2,2 ¨ ¨ ¨ p1´ vmqCm,2

...
...

. . .
...

p1´ v1qC1,m p1´ v2qC2,m ¨ ¨ ¨ vm ` p1´ vmqCm,m

˛

‹

‹

‹

‹

‹

‹

‹

‚

, (6)

and, for i “ 1, . . . ,m, ∆i “ ∆ipt, u, v1, . . . , vmq is the determinant of the matrix obtained
from the mutual correlation matrix by replacing its ith row with p1´ v1, . . . , 1´ vmq, and `i
and hi are the length and the final altitude of pi.

Proof. It is convenient to introduce the generating function Wipt, u, v1, . . . , vmq of walks
having pi as a suffix. We first show that W,W1, . . . ,Wm satisfy the equation

WtS “W ´ 1`
m
ÿ

j“1
pv´1
j ´ 1qWj . (7)

To this end, we take a path w P W and append a single letter s P S at its end. If this
produces no new occurrence of a pattern from P, then w.s is counted by W ´ 1´

řm
j“1 Wj .

Otherwise, there is a new non-marked occurrence of a (uniquely determined) pattern pj P P
at the end of w.s, and thus w.s is counted by v´1

j Wj . Now, as s can take all values in S,
this covers all the pj ’s, and leads to the contribution

řm
j“1 v

´1
j Wj .

1 The notation Z, often used in statistical mechanics, is reminiscent of the word Zustand, which means
state in German.
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Figure 1 Illustration to the proof of Theorem 4. This schematic example (involving three patterns,
p1, p2, and p3) illustrates how the mutual correlation polynomials Ci,j lead to the fact that the
contributions of the decompositions w1.px.q cancel out telescopically in the right-hand side of (8),
and the full sum thus equals vi11 vi22 vi33 , which is indeed the same as the contribution of the left-hand
side of (8).

Next we show that, for each i “ 1, . . . ,m, we have

Wt`iuhi “Wi `

m
ÿ

j“1
pv´1
j ´ 1qWjCj,i. (8)

To prove this, we take a path w P W and append the pattern pi at its end, but do not
mark any new occurrences of patterns from P. For j “ 1, . . . ,m, let γj be the number
of occurrences of the pattern pj in w. Then w.pi in the left-hand side of (8) contributes
vγ1

1 vγ2
2 . . . vγm

m to the generating function. Apart from pi at the end, there are possibly some
new occurrences of some patterns in w.pi. Consider such a new occurrence of a pattern, say
of px, in w.pi. Then we have a decomposition w.pi “ w1.px.qx, where qx P Cx,i.

w pi

pxw′ qx ∈ Cx,i
For j “ 1, . . . ,m, let δj be the number of occurrences of the pattern pj in w1.px. Then

this decomposition contributes vδ1
1 v

δ2
2 . . . vδm

m {vx to v´1
x WxCx,i, and vδ1

1 v
δ2
2 . . . vδm

m to WxCx,i.
Now consider the next new occurrence of a pattern, say of py, in w.pi. The decomposition
w.pi “ w2.py.qy, where qy P Cy,i, contributes vδ1

1 v
δ2
2 . . . vδm

m to v´1
y WyCy,i and vδ1

1 v
δ2
2 . . . vδm

m vy
toWyCy,i. Therefore, in the right-hand side of (8), the contributions of all the decompositions
of w.pi will cancel out telescopically (we add Wi to cancel the contribution of w.pi itself),
except the very first term whose contribution is vγ1

1 vγ2
2 . . . vγm

m . See Fig. 1 for illustration.
Finally, we regard (8) as an mˆm linear system Cx “ d with x “ pW1, . . . ,Wmq and

d “ pWt`1uh1 , . . . ,Wt`muhmq. Let, further, e “ pv´1
1 ´1, . . . , v´1

m ´1q. We use the elementary
fact that if Cx “ d and CJy “ e, then x ¨ e “ d ¨ y, to find

řm
j“1pv

´1
j ´ 1qWj . The solution

y of CJy “ e can be written by Cramer’s rule: we have y “
`

detpC1q, . . . ,detpCmq
˘

{detpCq,
where Ci is the matrix obtained from C by replacing its ith row with e. Therefore we have

m
ÿ

j“1
pv´1
j ´ 1qWj “ x ¨ e “ d ¨ y “

`

W {detpCq
˘

m
ÿ

i“1
t`iuhidetpCiq. (9)

We substitute this to (7), and solve for W . Finally, we multiply the numerator and the
denominator by v1 . . . vm, and after some more rearrangement this yields the claimed for-
mula (5). J

AofA 2020



1:6 Lattice Paths with Marked Patterns and the Multivariate Gaussian Distribution

I Remark 5. Theorem 4 is a far-reaching generalization of several earlier results. For
v1 “ . . . “ vm “ 1, we have C “ I and hence ∆ “ 1, and ∆i “ 0 for 1 “ 1, . . . ,m; thus
W pt, u, 1, . . . , 1q “ 1{p1´tSq as expected. For v1 “ . . . “ vm “ 0, we get the formula for walks
that avoid p1, . . . , pm, which was first obtained in [2]. For m “ 1, we obtain [1, Thm. 7.1].
I Remark 6. Obtaining the generating function W by means of the finite automaton would
generically require the inversion of an LˆL matrix with symbolic coefficients, which is costly
in time and in memory (L :“

řm
i“1 `i is the sum of the lengths of the marked patterns). It is

nice that our formula based on the mutual correlation sets is algorithmically more efficient,
and directly gives the generating function, avoiding those larger costs. However, comparing
the two formulas for W leads to the following result (which will be used in the next section
for our derivation of the closed-form formula for meanders).

I Proposition 7. In the notation introduced above, we have

∆pt, u, v1, . . . , vmq “ p1, 0, . . . , 0q adjpI ´ tAq p1, . . . , 1qJ, (10)

Kpt, u, v1, . . . , vmq :“ p1´ tSpuqq∆`

m
ÿ

i“1
∆it

`iuhi “ detpI ´ tAq. (11)

Proof. Compare the formulas (4) and (5) for W , and notice that in both of them the
denominator is polynomial in t with constant term 1. J

I Definition 8. The expression K from (11) will be called the kernel of the walk.

I Example 9. Consider Dyck walks (we denote the steps by d :“ ´1, u :“ 1) with marked
patterns p1 “ udu and p2 “ dud. The following drawing shows the automaton for this model
and its transition matrix A (the ordering of states is Zε,Zu,Zud,Zd,Zdu).

Zε
Zu

Zud

Zd

Zdu

d

u

v1u

u

u

d

v2d

d

u d
A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 u 0 u´1 0

0 u u´1 0 0

0 0 0 u´1 v1u

0 0 0 u´1 u

0 u v2u´1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

We find C1,1 “ C2,2 “ 1` t2, C1,2 “ tu´1, C2,1 “ tu; so, the mutual correlation matrix is
¨

˝

v1 ` p1´ v1qp1` t2q p1´ v2qtu

p1´ v1qtu
´1 v2 ` p1´ v2qp1` t2q

˛

‚.

By Theorem 4, we obtain the generating function for Dyck walks with marked p1, p2:

W pt, u, v1, v2q “
1` t2p1´ v1v2q ` t

4p1´ v1qp1´ v2q

1´ tpu´1 ` uq ` t2p1´ v1v2q ´ t3
`

u´1v2p1´ v1q ` uv1p1´ v2q
˘

´ t4p1´ v1qp1´ v2q
.

Setting v1, v2 to be 1 or 0, we allow or forbid the corresponding patterns. In this easy
case, this recovers several known sequences, for example W pt, u, 1, 1q “ 1

1´ tpu´1 ` uq
(as

expected, since these are unrestricted walks); W pt, 1, 0, 1q “W pt, 1, 1, 0q “ 1` t2

1´ 2t` t2 ´ t3

(A005251)2 ; W pt, 1, 0, 0q “ 1` t2 ` t4

1´ 2t` t2 ´ t4 (A128588, double Fibonacci numbers).

2 This refers to the On-Line Encyclopedia of Integer Sequences (OEIS), available at https://oeis.org/.

https://oeis.org/A005251
https://oeis.org/A128588
https://oeis.org/
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I Theorem 10. Let S be a set of steps, and P “ tp1, . . . , pmu a set of (mutually not included)
patterns. The multivariate generating function of bridges is given by3

Bpt, v1, . . . , vmq “
e
ÿ

i“1

u1iptq

uiptq

∆pt, uiptqq
Ktpt, uiptqq

, (12)

where u1ptq, . . . , ueptq are the small roots of Kpt, uq (as defined in (11)).

Proof. To prove this formula, we extract ru0s from W , and obtain

B “ ru0spW q “
1

2πi

ż

|u|“ε

W

u
du “

e
ÿ

i“1
Resu“ui

∆pt, uq
uKpt, uq

“

e
ÿ

i“1

∆pt, uiq
d
du puKqpt, uiq

,

via Cauchy’s integral formula and the residue theorem, where the poles inside |u| “ ε happen
to be exactly the small roots ui. Finally, the chain rule for total derivative yields Eq. (12). J

I Example 11. We return to the example considered above – Dyck walks with marked
p1 “ udu and p2 “ dud. By Theorem 10 we obtain the generating function for bridges:

Bpt, v1, v2q “

d

1` p1´ v1v2qt2 ` p1´ v1qp1´ v2qt4

1` p´3´ v1v2qt2 ` p1´ v1qp1´ v2qt4
,

which, in its turn, yields sequences that appeared in earlier work in different contexts such as
patterns in binary strings, but also the Potts model from statistical mechanics: Bpt, 1, 1q “

1
?

1´ 4t2
(central binomial coefficients, as expected), Bpt, 0, 1q “ Bpt, 1, 0q “

c

1` t2
1´ 3t2

(A025565, [3, 16,30]), Bpt, 0, 0q “
c

1` t2 ` t4
1´ 3t2 ` t4 (A078678 [19, 34,36]), etc.

3 Generating functions for meanders and excursions with marked
patterns

While generating functions for walks can be found as a solution of a system of linear
equations (which, in particular, implies that they are rational), the generating functions for
meanders/excursions are typically algebraic (non-rational) and can be found by a suitable
variation of the kernel method. One of them, the vectorial kernel method, was recently
developed in [1] for dealing with enumerative problems encoded by a counter automaton. One
of the cases in which this method leads to explicit formulas was that of meanders/excursions
that avoid a single pattern p under the assumption that p itself is a meander. In this case,
one has

Mpt, uq “
Rpt, uq

ucKpt, uq

c
ź

i“1
pu´ uiptqq and Eptq “ ´

1
t

c
ź

i“1
p´uiptqq,

where c is the absolute value of the smallest number in S, Rpt, uq is the autocorrelation
polynomial, Kpt, uq is the kernel, and u1ptq, . . . , ucptq are the small roots of Kpt, uq. Our next
theorem expands this result in two directions: first, it deals with several patterns, second,
these patterns are marked and not just forbidden.

3 Here and below we frequently remove the markers in the list of arguments of a function, writing Kpt, uq,
∆pt, uq, uiptq for Kpt, u, v1, . . . , vmq, ∆pt, u, v1, . . . , vmq, uipt, v1, . . . , vmq, etc.

AofA 2020
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I Theorem 12. Let S be a set of steps, and P “ tp1, . . . , pmu a set of (mutually not included)
patterns, all of them being meanders themselves. Then the multivariate generating
function of meanders is

Mpt, u, v1, . . . , vmq “
∆pt, uq
ucKpt, uq

c
ź

i“1
pu´ uiptqq, (13)

where Kpt, uq is the kernel as in (11), ∆pt, uq is the determinant of the mutual correlation
matrix (6) as in (10), and u1ptq, . . . , ucptq are the small roots of Kpt, uq.
The multivariate generating function of excursions is given by

Ept, v1, . . . , vmq “Mpt, 0, v1, . . . , vmq “ ´
1
t

c
ź

i“1
p´uiptqq. (14)

Proof. To prove (13), we apply the vectorial kernel method. According to its general scheme,
we encode the meanders by the automaton, as explained before Theorem 4. We denote by Mi

the generating function for meanders that terminate in state Zi, and let M “ pM1,M2, . . .q.
Then we have the functional equation

M “ p1, 0, . . . , 0q ` tMA´ tuă0uptMAq, (15)

where tuă0uptMAq consists of all terms of tMA that contain negative powers of u (in other
words, tuă0uptMAq counts the paths w.s such that w is a meander and s P S, and w.s

crosses the x-axis at its last step). Next we rewrite (15) as

MpI ´ tAq “ p1, 0, . . . , 0q ´ tuă0uptMAq. (16)

At this point we claim that in tuă0uptMAq only the first component is non-zero. This
follows from the assumption that all our patterns are meanders. Therefore, if a walk w.s as
above has a non-empty overlap with p P P , it is impossible that its last step crosses the x-axis.
This means that w.s crosses the x-axis at its last step, then it is necessarily in state Zε.
Therefore, negative powers of u can occur only in the first component of tMA. Notice further
that all the terms of tuă0uptMAq contain u to some powers between ´c and ´1. Therefore
we can multiply (16) by uc and obtain

Muc pI ´ tAq “ pF pt, uq, 0, . . . , 0q, (17)

where F pt, uq is a monic polynomial in u of degree c.
Next we multiply (17) by adjpI ´ tAqp1, . . . , 1qJ, and obtain, due to (10) and (11),

Mpt, uqucKpt, uq “ F pt, uq∆pt, uq. (18)

Here, it is legitimate to substitute, for u, any small root uiptq of Kpt, uq. Then the left-hand
side of (18) vanishes. It is impossible that ∆pt, uiptqq “ 0 because ∆pt, uq, as polynomial
in t, has constant term 1 (this follows from the fact that Ci,ipt, uq has constant term 1, and
Ci,jpt, uq, i ‰ j, has constant term 0). Therefore we have F pt, uiptqq “ 0, that is, uiptq’s also
are roots of F pt, uq.

Finally, Kpt, uq has precisely c small roots, u1ptq, . . . , ucptq (this can be proven in the
same way as [1, Prop. 4.4]). Thus, u1ptq, . . . , ucptq, are roots of F pt, uq, which is a monic
polynomial of degree u. Therefore we know its decomposition, F pt, uq “

śc
i“1pu ´ uiptqq.

Now the formula (13) follows from (18).
To get (14), we substitute u “ 0 and notice that the only term in the denominator that

does not vanish is ´t∆. J
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I Example 13. Basketball walks are lattice paths with S “ t´2,´1, 1, 2u. We also denote
their steps by D “ ´2, d “ ´1, u “ 1, U “ 2. In this example we find the generating functions
for meanders and excursions with marked p1 “ UDU and p2 “ UdU. The automaton and its
transition matrix are shown in the next figure, the ordering of the states is Zε,ZU,ZUD,ZUd.

Zε ZU

ZUD

ZUd

U

d

D

u

v1U

v2U

D, d, u

D, d, u

D, d, u

U A “

¨

˚

˚

˚

˚

˚

˚

˝

u´2
` u´1

` u u2 0 0

u u2 u´2 u´1

u´2
` u´1

` u v1u2 0 0

u´2
` u´1

` u v2u2 0 0

˛

‹

‹

‹

‹

‹

‹

‚

We have Spuq “ u´2 ` u´1 ` u` u2 and c “ 2. The mutual correlation polynomials are
C11 “ 1` t2, C12 “ t2u, C21 “ t2, C22 “ 1` t2u. By Theorem 4, we obtain ∆ “ 1` t2` t2u
and K “ ´

`

pt` t3q ` pt` 2t3qu´ p1` t2 ´ t3qu2 ` pt´ t2 ` t3qu3 ` pt` t3qu4˘{u2. Thus,
u2K is a polynomial of degree 4 with two small roots given by given by Puiseux series

u1,2ptq “ ˘t
1
2`

1
2 t˘

1
8 t

3
2`

1
2 t

2˘
159
128 t

5
2`

3
2 t

3˘
1761
1024 t

7
2`

7
2 t

4˘
213435` 16384v1

32768 t
9
2`

19` 2v1 ` v2

2 t5˘. . .

By Theorem 12, we obtain generating functions for meanders/excursions with marked p1, p2:

Mpt, u, v1, v2q“
∆pt, uq
u2Kpt, uq

pu´u1ptqqpu´u2ptqq“

1`pu`u2qt̀ p2`u`u2`2u3`u4qt2`p2`5u`p5`v1qu
2`p2`v2qu

3`3u4`3u5`u6qt3 .̀ . . ,

Ept, v1, v2q“
u1ptqu2ptq

´t
“1`2t2`2t3`p10`v1qt

4`p21`v1`2v2qt
5`p79`9v1`4v2`v

2
1qt

6 .̀ . .

(For example, there is one excursion of size 5 that contains UDU, namely UDUdd, and
two excursions that contain UdU, namely UdUdD, and UdUDd.)

To obtain the univariate generating functions for all meanders and that for excursions
that avoid p1, p2, we substitute v1 “ v2 “ 0, and u “ 1 resp. u “ 0:

Mptq“ 1`2t`7t2`21t3`71t4`245t5`867t6`3091t7`11147t8`40491t9`148010t10`. . . ,

Eptq“ 1`2t2`2t3`10t4`21t5`79t6`224t7`771t8`2462t9`8409t10`. . .

I Remark 14. If some of the patterns are not meanders, then generically several components
of tuă0uptMAq are non-zero. Therefore, in general one does not get simple equations
as (17) and (18), and the formula (13) does not hold verbatim. However, it is then possible
to use the approach introduced in [1, Thm. 3.2]; this gives that Mpt, uq has the form
Gpt,uq
ucKpt,uq

śc
i“1pu´uiptqq, where Gpt, uq is polynomial in u. There are other cases, not covered

by Theorem 12, where it is possible to find formulas for Mpt, uq and Ept, uq. For example,
if the only negative step in S is ´1 (such paths are called Łukasiewicz walks), one can use
the fact that a path can cross the x-axis only when a p´1q-step is appended to an excursion.
Using further ideas developed (for avoidance) in [2], we can find, for example, generating
functions for Dyck meanders/excursions with marked p1 “ udu, p2 “ dud:

Mpt, u, v1, v2q “

ˆ

1´ t2p1´ v1qp1´ v2q

2

´

1´
a

1´ 4t2{∆
¯

˙

∆
uK

pu´ u1ptqq,

Ept, v1, v2q “
∆

1` t2v2p1´ v1q ` t3p1´ v1qp1´ v2qu1ptq

u1ptq

t
“

∆
2t2

˜

1´
c

1´ 4t2
∆

¸

,

where ∆ “ 1` t2p1´ v1v2q ` t
4p1´ v1qp1´ v2q as found in Example 9 (note that another

form of Ept, v1, v2q is mentioned in A145895).

AofA 2020
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4 Multivariate Gaussian limit laws for pattern occurrences

4.1 Gaussian and multivariate Gaussian distribution

The Gaussian distribution is ubiquitous is mathematics, physics, biology, astronomy, finance,
computer science, and even in human sciences, and, in fact, in any domain in which one
could collect numerical data and do some statistics with them.

There are two frequent simple explanations of this universality.
The first explanation is probabilistic: the central limit theorem of Laplace asserts that
if one considers a sequence of independent and identically distributed random variables
pXnqnPN (with expected value µ and finite variance σ2), then the sum

řn
k“1 Xk is

converging towards the Gaussian distribution N pµ, σq.
The second explanation is analytic: if the corresponding probability generating function
of ProbpXn “ kq behaves like a “quasi-power” (see [29]), then Xn has a Gaussian limit
distribution.

Both approaches have their own interest, as both admit some flexibility in their condition of
application. As masterfully presented by Flajolet and Sedgewick in [22], the second approach
is typically split into two steps: first a combinatorial step consists in getting a closed-form
expression (or a functional equation) for the generating function, and then a local analysis
of this function near its dominant singularity is performed in order to get some universal
behaviour (limit law, etc).

We apply a generalization of this analytico-combinatorial approach to the case of joint
laws PrpX1 “ k1, . . . , Xm “ kmq, including in cases where the random variables Xi are
dependent. The dependence (the correlations) will be handled at the level of the generating
function, on which some multivariate complex analysis is then performed in order to get
the limit law. As a first step towards more examples in the realm of “multivariate analytic
combinatorics” (as initiated in [12,20,28,37]), we present here some results related to the
multivariate Gaussian distribution.

For the tuple of random variables XXX “ pX1, . . . , Xmq of average µµµ “ pµ1, . . . , µmq the
associated covariance matrix ΣΣΣ is defined by

Σij :“ ErpXi ´ µiqpXj ´ µjqs (for i, j “ 1, . . . ,m). (19)

This matrix ΣΣΣ is also sometimes called the variance-covariance matrix, as the diagonal terms
are exactly the variance of each Xi. Note that ΣΣΣ is a positive-definite matrix, therefore
?

detΣΣΣ is well defined.
The multivariate Gaussian distribution (also called multivariate normal distribution, or

m-dimensional Gaussian distribution, see e.g. [17]), denoted by N pµµµ,ΣΣΣq, is a generalization
of the classical (one-dimensional) normal distribution; its density is

1
a

p2πqm detΣΣΣ
exp

ˆ

´
1
2 px
xx´µµµqJΣΣΣ´1 pxxx´µµµq

˙

. (20)

When all the bold quantities are scalars (i.e. when m “ 1), it is coinciding with the
classical expression for the density of the Gaussian distribution.

Let us now illustrate this multivariate approach on fundamental objects such as words
and constrained lattice paths. We first present a nice unifying example, before switching to
more general cases from the algebraic world.
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4.2 A multi-multivariate generating function for all patterns at once
There is a vast amount of literature on Dyck, Motzkin, Schröder etc. lattice paths (or some
related classes of RNA structures, ordered trees, permutations) in which some combination
of patterns (valleys, peaks, etc.) are considered. Proofs of such results often rely on some ad
hoc context-free grammar decompositions; see e.g. [10,15,18,21,31,33]. The power of our
approach is also in the fact that it enables us to obtain many such results at once by marking
sufficiently many patterns and then setting them to be 0 or 1 in any desirable combinations.

We illustrate this for the model of Motzkin walks (S “ td “ ´1, h “ 0, u “ 1u) in which
we mark all possible patterns of length 2. To this aim, we introduce nine markers for all such
patterns (vud for the pattern ud, etc.), and we obtain an even more explicit formula in cases
not covered by the closed-form formula from Theorem 12. We give the general expression for
excursions in the following theorem (the general expression for meanders is somewhat more
lengthy, see also [2, Thm. 4]).

I Theorem 15. The generating function Ept, vuu, vuh, vud, vhu, vhh, vhd, vdu, vdh, vddq of Motzkin
excursions, where each vp counts the number of occurrences of the pattern p, is

pvdd ´ 1q ´ tppvdd ´ 1qvhh ´ pvdh ´ 1qvhd ´ vdd ` vdhq `
`

1` tpvdh ´ vhhq
˘

uv1
tv4

ˇ

ˇ

u“u1ptq

vdd ` tpvdhvhd ´ vddvhhq
, (21)

where u1ptq is the unique small solution of the kernel Kpt, uq, and v1 and v4 are the 1st and
the 4th components of v :“ adjpI ´ tAqp1, . . . , 1qJ.

Proof (Sketch). This model is encoded by the following automaton and its transition matrix:

Zε

Zh

Zd

Zu

h

vduu
d

vddd

vudd
vhdd

vhhh
vuhh

vdhh

vuuu
vhuu

u

Zε Zu Zh Zd

A “

¨

˚

˚

˚

˚

˚

˝

0 u 1 u´1

0 vuuu vuh vudu´1

0 vhuu vhh vhdu´1

0 vduu vdh vddu´1

˛

‹

‹

‹

‹

‹

‚

A Motzkin path can cross the x axis only by reading d (that is, entering the 4th state).
Thus, only the fourth component of tMA has terms with negative powers of u. This leads to
the equation v1pt, uq ´ v4pt, uqNpt, uq “ 0 where Npt, uq is the generating function for the
terms with negative powers of u in the fourth component of tMA. Note that by analyzing
which patterns are read if w.s crosses the x-axis, we can express N in terms of E.

Finally, as uKpt, uq is a polynomial of degree 2 in u, it has one small root, u1ptq (we
dropped the dependency on the other variables vp’s of the kernel (11)). Now, by the vectorial
kernel method (see the proof of Theorem 12), this leads to the formula (21) for E. J

Setting the markers vp to be 1 or 0 in all possible combinations leads to 512 specific models.
An exhaustive analysis shows that they lead to 75 distinct sequences for excursions and 158
distinct sequences for meanders. In some cases we obtain new interpretations for existing
OEIS entries, thus potentially leading to new bijections between different combinatorial
structures.

AofA 2020
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walks bridges meanders excursions
ErXipnqs “

n
8 ´

1
4 ErXipnqs „

n
8 ´

1
8 ErXipnqs „

n
8 ˘

?
2πn
16 ErXipnqs „

n
8 `

1
8

Figure 2 Distribution pX1, X2q of the pair of patterns pudu, dudq in a Dyck walks/bridges/me-
anders/excursions of length n “ 200 (this corresponds to the model of Example 9). Already, for
this small value of n, one sees that ProbpX1 “ k1, X2 “ k2q is concentrated around the value
pErX1s,ErX2sq with Gaussian fluctuations. (This example has by design a symmetric behaviour for
X1 and X2 for walks, bridges, and excursions; this is not generically the case.)

Moreover, we checked that all these models satisfy the technical conditions (see [28, 37])
which ensure a multivariate Gaussian distribution. We now discuss more general models.

First, let us mention that the case of walks without positivity constraint or final altitude
constraint is easier: indeed, their generating function W is rational, and one can then more
directly apply results from [28,36] to get the multivariate Gaussian distribution. Note that if
one allows to mark a regular expression (and not just a finite set of words), then, already
in the rational case, one can get “any” arbitrary (non-Gaussian) distribution (see [4] for a
presentation of this huge diversity of the possible limit laws for pattern occurrences). It is
more involved to analyse the algebraic generating function cases; one can however still prove
that the multivariate Gaussian distribution also holds (see Figure 2 for an illustration):

I Theorem 16. For any generic model of walks, let Xipnq be the random variable counting
occurrences of the pattern pi (for i “ 1, . . . ,m) in a bridge/excursion/meander of length n.
Then the joint law pX1pnq, . . . , Xmpnqq convergences to a multivariate Gaussian distribution
N pµµµ,ΣΣΣq as defined in Section 4.1.

Proof (Sketch). Some technical conditions are required to avoid degenerated cases: for
lattice paths, this corresponds to what is called generic model of walks in [1, Definition 6.1];
this definition includes conditions like having a unique dominant singularity, that the number
of paths of length n is strictly increasing for large n, etc. Then, all the univariate asymptotics
follow the universal asymptotics established in [1, 5, 6].

Now, the multivariate asymptotics follow the algebraic schemes investigated in [23,26], and
thus lead to the multivariate Gaussian distribution. It is also possible to use a multivariate
Spitzer/Sparre Andersen formula (see [8, Theorem 8]), rephrased as

W`pt, u, v1, . . . , vmq :“ tuě0uW pt, u, v1, . . . , vmq “ rs
0sW pt, su, v1, . . . , vmq1{p1´ 1{sq,

Mpt, u, v1, . . . , vmq „ exp
ż t

0

W`pz, u, v1, . . . , vmq ´ 1
z

dz. (22)

In fact, Formula (22) is an equality when vi “ 1 (for i “ 1, . . . ,m), while, if one keeps track
of the vi’s, the counting of occurrences of pi (in a meander of length n) could differ by a few
Op1q occurrences between both sides of Formula (22): indeed, the proof uses a concatenation
of some final and initial parts of the path, and this can create/delete a few occurrences of pi’s.
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The advantage of using the multivariate Spitzer formula is that this relates the meanders
to a diagonal involving the rational generating function of walks, on which one can apply the
results of [36]; the drawback is that one loses asymptotics below the Op1q precision.

Let us now state how to derive the parameters of the multidimensional Gaussian limit
law N pµµµ,ΣΣΣq. Let F pt, u, v1, . . . , vmq be the corresponding generating function (where t
encodes the length, u the final altitude, and each vi encodes occurrences of the pattern pi).
The average of the marginals behaves linearly, as expected by the Borges theorem (see [1,22]):

ErXipnqs “
rtnsBvi

pF qpt, 1, . . . , 1q
rtnsF pt, 1, . . . , 1q “ µinp1` op1qq. (23)

Note that, in (23), there would be no difficulty in pushing the asymptotics further than op1q.
One sets µµµ :“ pµ1, . . . , µmq. Now, the entries of the covariance matrix ΣΣΣ are obtained by

ΣΣΣij “ lim
nÑ8

1
n2E rpXipnq ´ ErXipnqsq pXjpnq ´ ErXjpnqsqs

“ lim
nÑ8

1
n2
rtnsBviBvj pF qpt, 1, . . . , 1q

rtnsF pt, 1, . . . , 1q ´ µiµj . (24)

One has ΣΣΣij ą 0 as a consequence of the universal positivity of the variability condition [8,
Lemma 22]) and detΣΣΣ ‰ 0 when the patterns pi’s are not all equal.

Thus, when one considers the asymptotic regime of rznvµ1n
1 . . . vµmn

m sF pz, v1, . . . , vmq,
where the exponents of the vi’s can be rounded to the nearest integer whenever needed, one
gets an expansion which fits the framework of the multivariate version of the quasi-power
theorem (see [28,29,37]), leading to the multidimensional Gaussian limit law N pµµµ,ΣΣΣq. J

I Remark. Generic walks are aperiodic; a multivariate Gaussian distribution is also holding
for periodic walks, but additional care is required. (Recall that a walk is periodic if the
gcd of the differences between the steps of S is not 1, and then the paths live in a periodic
sub-lattice of Z2, and then the generating function has conjugate dominant singularities.)
These periodic cases can in fact be handled by combining the approaches of [5] and [9].

5 Conclusion and further works

To summarize, in this article we introduced/presented
the mutual correlation matrix, an extension of the notion of autocorrelation polynomial,
which has its own interest and which offers several algorithmic advantages,
closed-forms for all the main generating functions of constrained lattice paths (walks and
bridges in Section 2, meanders and excursions in Section 3), generalizing the previous
works [1, 2, 6] and leading to multidimensional Gaussian limit laws.

This will allow us to tackle further questions, like
faster uniform random generation of constrained paths of length n, extending the mul-
tivariate tuning of the Boltzmann method done in [14] to cases where the grammar is not
strongly connected (such cases are generic for lattice paths with forbidden patterns),
links with trace monoids and partial commutations in words [13],
to extend the analysis of fundamental non-Gaussian parameters under some pattern
constraints (like the area below the path [7] for walks with forbidden patterns, thus
interfering with the natural drift of the walk), possibly combined with further constraints
(like to be below a line of rational slope, extending [9]).

This work is also a first step towards more general schemes of multidimensional limit laws
in analytic combinatorics, for the important class of algebraic functions related to lattice
path statistics.

AofA 2020
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