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Abstract
We describe a multiple string pattern matching algorithm which is well-suited for approximate
search and dictionaries composed of words of different lengths. We prove that this algorithm has
optimal complexity rate up to a multiplicative constant, for arbitrary dictionaries. This extends to
arbitrary dictionaries the classical results of Yao [SIAM J. Comput. 8, 1979], and Chang and Marr
[Proc. CPM94, 1994].
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1 The problem

1.1 Definition of the problem
Let Σ be an alphabet of s symbols, ξ = ξ0 . . . ξn−1 ∈ Σn a word of n characters (the input
text string), D = {w1, . . . , w`}, wi ∈ Σ∗ a collection of words (the dictionary). We say that
w = x1 . . . xm occurs in ξ with final position j if w = ξj−m+1ξj−m+2 · · · ξj . We say that w
occurs in ξ with final position j, with no more than k errors, if the letters x1, . . . , xm can
be aligned to the letters ξj−m′ , . . . , ξj with no more than k errors of insertion, deletion or
substitution type, i.e., it has Levenshtein distance at most k to the string ξj−m′ . . . ξj (see an
example in Figure 1). Let rm(D) be the number of distinct words of length m in D. We call
r(D) = {rm(D)}m≥1 the content of D, a notion of crucial importance in this paper.

The approximate multiple string pattern matching problem (AMPMP), for the datum
(D, ξ, k), is the problem of identifying all the pairs (a, j) such that wa ∈ D occurs in ξ with
final position j, and no more than k errors (cf. Figure 1). This is a two-fold generalisation of
the classical string pattern matching problem (PMP), for which the exact search is considered,
and the dictionary consists of a single word.
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3:2 The Complexity of Approximate Multiple Pattern Matching
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now.is.the.winter.of.our.discontent.made.glorious.summer
sour ....................Xour.....................XouX.......

intent ............inteXX...........Xntent.....................
galore .........................................gilorX..........

therein .......theSSin..........................................

soul: 23, 48; intent: 16, 35; galore: 45; therein: 14.

Figure 1 Typical output of an approximate multiple string pattern matching problem, on
an English text (alphabet of 26 characters plus the space symbol .). In this case k = 2 and
r(D) = (0, 0, 0, 0, 1, 0, 2, 1, 0, . . .). The symbols D, S and i stand for deletion, substitution and
insertion errors, while X corresponds to an insertion or a substitution.

A precise historical account of this problem, and a number of theoretical facts, are
presented in Navarro’s review [8]. The first seminal works have concerned the PMP. Results
included the design of efficient algorithms (notably Knuth–Morris–Pratt and Boyer–Moore),
and have led to the far-reaching definition of the Aho–Corasick automata [1, 3, 7, 11]. In
particular, Yao [11] is the first paper that provide rigorous bounds for the complexity of
PMP in random texts. To make a long story short, it is argued that an interesting notion of
complexity is the asymptotic average fraction of text that needs to be accessed (in particular,
at least at this stage, it is not the time complexity of the algorithm), and is of order ln(m)/m
for a word of length m. The first works on approximate search, yet again for a single word
(APMP), are the description of the appropriate data structure, in [10, 4], and, more relevant
to our aims here, the derivation of rigorous complexity bounds in Chang and Marr [5]. Yet
again in simplified terms, if we allow for k errors, the complexity result of Yao is deformed
into order [ln(m)+k]/m. More recent works have concerned the case of dictionaries composed
of several words, all of the same length [9],1 however, also at the light of unfortunate flaws in
previous literature, the rigorous derivation of the average complexity for the MPMP has been
missing even in the case of words of the same length, up to our recent paper [2], where it is
established that the Yao scaling ln(m)/m is (roughly) modified into maxm ln(mrm)/m (a
more precise expression is given later on). By combining the formula of Chang and Marr for
APMP, and our formula for MPMP, it is thus natural to expect that the AMPMP may have
a complexity of the order maxm[ln(mrm) + k]/m. This paper has the aim of establishing a
result in this fashion.

Of course, the present work uses results, ideas and techniques already presented in [2],
for the PMPM. A main difference is that in [2] we show that, for any dictionary, a slight
modification of an algorithm by Fredriksson and Grabowski [6] is optimal within a constant,
while this is not true anymore for approximate search with Levenshtein distance (we expect
that it remains optimal for approximate search in which only substitution errors are allowed,
although we do not investigate this idea here). As a result, we have to modify this algorithm
more substantially, by combining it with the algorithmic strategy presented in Chang and
Marr [5], and including one more parameter (to be tuned for optimality). This generalised
algorithm is presented in Section 2.2.

Also, a large part of our work in [2] is devoted to the determination of a relatively tight
lower bound, while the determination of the upper bound consists of a simple complexity
analysis of the Fredriksson–Grabowski algorithm. Here, instead, we will make considerable

1 This is the reason why, before our paper [2], which deals with dictionaries having words of different
length, the forementioned notion of “content” of a dictionary did not appear in the literature.
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Table 1 Summary of average complexities for exact and approximate search, for a single word or
on arbitrary dictionaries. The results are derived from Yao [11], Chang and Marr [5], our previous
paper [2], and the present paper, respectively.

exact approximate

single word CYao
lnm
m

(Yao) CCM
lnm+ k

m
(Chang and Marr)

dictionary Cex
1

1
mmin

+ Cex
2 max

m

ln(smrm)
m

C1k + C′
1

mmin
+ C2 max

m

ln(smrm)
m

efforts in order to determine an upper bound for the complexity of our algorithm, which is
the content of Section 2.4, while we will content ourselves of a rather crude lower bound,
derived with small effort in Section 1.3 by combining the results of [5] and [2].

1.2 Complexity of pattern matching problems
In our previous paper [2] we have established a lower bound for the (exact search) multiple
pattern matching problem, in terms of the size s of the alphabet, and the content r = {rm}
of the dictionary, involving the length mmin of the shortest word in the dictionary, and a
function φ(r) with the specially simple structure φ(r) = maxm f(m, rm). More precisely,
calling Φaver(r) (resp. Φmax(r)) the average over random texts, of the average (res. maximum)
over dictionaries D of content r, of the asymptotic fraction of text characters that need to
be accessed, we have

I Theorem 1 (Bassino, Rakotoarimalala and Sportiello, [2]). Let s ≥ 2 and mmin ≥ 2, and
define κs = 5

√
s. For all contents r, the complexity of the MPMP on an alphabet of size s

satisfies the bounds

1
κs

(
φ(r) + 1

2smmin

)
6 Φaver(r) 6 Φmax(r) 6 2

(
φ(r) + 1

2smmin

)
, (1)

where

φ(r) := max
m

1
m

ln(smrm) . (2)

Note a relative factor ln s between the statement of the result above, and its original
formulation in [2], due to a slightly different definition of complexity.

As we have anticipated, such a result is in agreement with the result of Yao [11], for
dictionaries composed of a single word, which is simply of the form ln(m)/m. Combining
this formula with the complexity result for APMP, derived in Chang and Marr [5], it
is natural to expect that the AMPMP has a complexity whose functional dependence
on k and r is as in Table 1. Indeed, the bottom-right corner of the table is consistent
both with the entry above it, and the entry at its left. Furthermore, it is easily seen
that, up to redefining the constants, several other natural guesses would have this same
functional form in disguise. Let us give some examples of this mechanism. Write X ≷
aL/UY + bL/UZ as a shortcut for aLY + bLZ 6 X 6 aUY + bUZ. Now, suppose that we
establish that Φ(r, k) ≷ aL/U (k + 1)/mmin + bL/U maxm (ln(mrm) + k)/m. Then we also
have Φ(r, k) ≷ a′L/U (k + 1)/mmin + bL/U maxm ln(mrm)/m, with a′U = aU + bU (and all
other constants unchanged). On the other side, if we have Φ(r, k) ≷ aL/U (k + 1)/mmin +
bL/U maxm ln(mrm)/m, with aL > bL, then we also have Φ(r, k) ≷ aL/U (k + 1)/mmin +
b′L/U maxm(ln(mrm) + k)/m, with b′L = aL − bL.

AofA 2020



3:4 The Complexity of Approximate Multiple Pattern Matching

The precise result that we obtain in this paper is the following:

I Theorem 2. For the AMPMP, with k errors and a dictionary D of content {rm}, the
complexity rate Φ(D) is bounded in terms of the quantity

Φ̃(D) := C1(k + 1)
mmin

+ C2 max
m

ln(smrm)
m

(3)

as

1
C1 + κsC2

Φ̃(D) 6 Φ(D) 6 Φ̃(D) , (4)

with a = ln(2s2/(2s+ 1)), a′ = ln(4s2 − 1), κs = 5
√
s (as in Theorem 1) and

C1 = a+ 2a′

a
; C2 = 2(a+ 2a′)

aa′
= 2
a′
C1 . (5)

1.3 The lower bound
Now, let us derive a lower bound of the functional form as in Table 1 for the AMPMP, by
combining our results in [2] for the MPMP and the results in [5] for the APMP. Let us first
observe a simple fact. Suppose that we have two bounds ALB(r, k) 6 Φ(r, k) 6 AUB(r, k)
and BLB(r, k) 6 Φ(r, k) 6 BUB(r, k) (with ALB(r, k) and BLB(r, k) positive). Then, for all
functions p(r, k), valued in [0, 1], we have

p(r, k)ALB(r, k) + (1− p(r, k))BLB(r, k) 6 Φ(r, k) 6 AUB(r, k) +BUB(r, k) .

We want to exploit this fact by using as bounds ALB/UB(r, k) our previous result for the
exact search, and as lower bound BLB(r, k) the simple quantity (k + 1)/mmin. Then, later
on, in Section 2, we will work on the determination of a bound BUB(r, k) which has the
appropriate form for our strategy above to apply. Let us discuss why Φ(r, k) ≥ (k+ 1)/mmin.
We will prove that this quantity is a bound to the minimal density of a certificate, over a
single word of length m = mmin, and text ξ. A certificate, as described in [11], is a subset
I ⊆ {1, . . . , n} such that, for the given text, the characters {ξi}i∈I imply that no occurrences
of words of the dictionary may be possible, besides the ones which are fully contained in I.
Some reflection shows that: (1) for the interesting case m > k, the smallest density |I|/n of
a certificate is realised on a negative certificate, that is, on a text ξ with no occurrences of
the word w; (2) the smallest density is realised, for example, by the text ξ = bbb · · · b, and
the word w = aaa · · · a; (3) in such a certificate, we must have read at least k + 1 characters
in every interval of size m, otherwise the alignment of w to this portion of text, in which we
perform all the substitutions on the disclosed characters, would still be a viable candidate.
Note in particular that deletion and insertion errors do not lead to higher lower bounds
(although, for large m, they lead to bounds which are only slightly smaller).

As a result, recalling the expression for the lower bound in Theorem 1, by choosing p(r, k)
to satisfy p

1−p = κsC2
C1

we have

Φ(r, k) ≥ (1− p)k + 1
mmin

+ p

κs
φ(r) = p

κsC2

(
C1
k + 1
mmin

+ C2φ(r)
)

=
C1

k+1
mmin

+ C2φ(r)
C1 + κsC2

.

This proves the lower bound part of Theorem 2. Note that we could confine all the dependence
from {rm} to the function φ (in particular, the choice p

1−p = κsC2
C1

only depends on the size
of the alphabet s).
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2 The (q, L) search algorithm, and the upper bound

2.1 Definition of alignment
We define a partial alignment α of the word w = x1 . . . xm to the portion of text ξi1 . . . ξi2 ,
with k errors, and boundary parameters (ε, ε′) ∈ N, as the datum α = (w; i1, i2; ε, ε′;u),
where u is a string in {C, Sa, D, Ia}∗, (these letters stand for correct, substitution, deletion
and insertion, respectively, and the index a runs from 1 to s). Two integer parameters (for
example i2 and ε′) are not independent, as they are deduced (say) from i1, ε and the length
of u. Indeed, say that the string u has mC symbols C, mD symbols D, mS symbols of type
Sa (for all a’s altogether) and mI symbols of type Ia, then

k = mS +mD +mI (number of errors)
ε+ ε′ = m− (mC +mS +mD) (portion of the word on the sides)

i2 − i1 + 1 = mC +mS +mI (length of the aligned portion of text)

The alignment has the following pattern (with a dash − denoting a skipped character, in the
text or in the word):

i1 i2
ξi1 · · · ξi2 = ... ξi1 ... wj ... - ... a ... a ... ξi2 ...

u = ... C ... D ... Sa ... Ia ...

w = w1 · · ·wε︸ ︷︷ ︸
ε

wε+1 ... wj ... wj′ ... wj′′ ... - ... wm−ε′ wm−ε′+1 · · ·wm︸ ︷︷ ︸
ε′

For example, if w = counteroffers, in our reference text of Figure 1 we have the alignment
α = (w; i1, i2; ε, ε′;u) = (w; 14, 24; 3, 1;u) with k = 4 and u = CCCCI CCS SoIuC, as
indeed

i1 = 14 i2 = 24
ξ = · · · t h e . w i n t e r . o f . o u r . d i s c o n t e n t · · ·
u = C C C C I C C S So Iu C

w = c o u︸ ︷︷ ︸
ε = 3

n t e r - o f f e - r s︸︷︷︸
ε′ = 1

This example shows an important feature of this notion: several strings u may correspond
to equivalent alignments among the same word and the same portion of text, and with the
same offset ε. For example, the three last errors of u = · · ·S SoIuC can be replaced as in
u′ = · · ·S IoSuC or as in u′′ = · · · I SoSuC. As the underlying idea in producing an upper
bound from an explicit algorithm is to analyse the algorithm while using the union bound on
the possible alignments, it will be useful to recognise classes of equivalent alignments, and,
in the bound, “count” just the classes, instead of the elements (we are more precise on this
notion in Section 2.3).

We define a full alignment to be likewise a partial alignment, but with ε = ε′ = 0. That
is, the goal of any algorithm for the AMPMP is to output the list of (say) positions i2 of the
full alignments among the given text and dictionary. Note that we can always complete a
partial alignment with k errors and boundary parameters (ε, ε′) to a full alignment with no
more than k + ε+ ε′ errors, and no less than k errors, by including substitution or insertion
errors at the two sides.

We define a c-block partial alignment as the generalisation of the notion of partial
alignment to the case in which the portion of text consists of c non-adjacent blocks. In this
case, besides the natural alignment parameters ε, ε′, and i1,a, i2,a, and ua, for the blocks

AofA 2020



3:6 The Complexity of Approximate Multiple Pattern Matching

now.is.the.winter.of.our.discontent.made.glorious

deformed.pattern def
I

ormed.pat-te
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def
I

ormed.pat-te
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rn

Figure 2 Typical outcome for the search of the pattern deformed pattern in our reference text.
In this example L = 3 and q = 12, the number of full blocks is c(α) = 2, and can be aligned to the
disclosed portion of the text (denoted by underline) with k = 3 errors: one deletion on the first
block, one insertion in the second block, and one deletion somewhere in between the two blocks. On
the bottom line, another alignment of the same word, in which, instead of inserting the letter r in
the second block, we have substituted n by r, still with k = 3. These two alignments are sufficiently
different to contribute separately to our estimate of the complexity, within our version of the union
bound (because the values of ε are different).

a = 1, . . . , c, we have c− 1 parameters δa ∈ Z, associated to the offset between the alignment
of the word to the blocks with index a and a+ 1. As a result, in order to extend a c-block
partial alignment to a full alignment, we need to perform at least −δa further insertion errors,
or +δa further deletion errors, depending on the sign of δa, for each of the c− 1 intervals
between the portions of text. That is, any c-block partial alignment α with k errors can be
completed to a full alignment with no less than k +

∑
a |δa| errors.

Note that in the following we will not need to count all of the possible ways in which
these deletions or insertions can be performed, as it may seem natural in a naïve perspective
on the use of the union bound. This fact will allow us to efficiently bound the number of
possible multi-block partial alignments arising in our algorithm analysis (instead of counting
directly the possible full alignments, which would result in a too large bound).

2.2 The algorithm

Here we introduce an algorithm for AMPMP, concentrating on the pertinent notion of
complexity, which is the ratio between the number of accesses to the text and the length of
the text, and neglecting all implementation issues, and analysis of time complexity.

The algorithm is determined by two integers q and L, such that k+1 6 L < q 6 mmin−k.
The emerging inequality 2k + 1 < mmin is not a limitation, as when this inequality is not
satisfied we have to read a fraction Θ(1) of the text, and in this regime there is no point in
showing that some algorithm can reach a complexity which is optimal up to a multiplicatve
constant. When L = 1, the algorithm coincides with the one described by Fredriksson and
Grabowski [6], and already analysed in detail in [2] for the MPMP. When we have a single
word of length m, and q has the maximal possible value q = m− k, the algorithm coincides
with the one used by Chang and Marr [5] for their proof of complexity of the APMP. As
we will see in Section 2.5, choosing the optimal values of q and L for a given dictionary D
(when the words are of different length) is not a trivial task.

Call the interval ξbqξbq+1 · · · ξbq+L−1 of the text ξ the b-th block of text. The text is thus
decomposed in a list of blocks of length L, and of intervals between the blocks, of length
q − L. To every possible full alignment α of the word w to the text, are associated two
integers: c(α) is the number of blocks which are fully contained in the alignment, and b(α) is
the index of the rightmost of these blocks. Furthermore, we define c(w) as the minimum of
c(α) among the possible alignments involving w (indeed, it is either c(α) = c(w) for all α, or
c(α) ∈ {c(w), c(w) + 1} for all α, and, of course, at fixed q and L, c(w) only depends on the
length |w| of the word).
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Our algorithm accesses the text in three steps, namely, for every block index b =
0, 1, . . . , dn/qe − 1:

We read all the characters ξi of the text, for bq 6 i < bq + L, that is we read the b-th
block;
We consider the possible c-block partial alignments α (with c = c(α)) such that b(α) = b,
and associated to the intervals of text read so far. If any of these alignments is not
excluded or determined positively, we read also the characters ξi for i = bq− 1, bq− 2, . . .,
one by one, in this order, up to when all partial alignments are either excluded, or reach
ε = 0. For a given instance of the problem, call EL(b) (left-excess at block b) the set of
positions of further characters that we need to access by this second step (with indices
shifted so that the block starts at 1), and eL(b) = |EL(b)|.
If at the previous step we still have partial alignments which are not excluded, we read
also the characters at positions i = bq + L, bq + L+ 1, . . ., in this order, up to when all
partial alignments are either excluded, or completed to a full alignment. Similarly to
above, introduce ER(b) and eR(b) = |ER(b)| (right-excess at block b).

An example with c(α) = 2 is in Figure 2. Note that, at all steps, the pattern of the accessed
part of the text consists of some blocks of length L and spacing q, plus one rightmost block
with length L′ ≥ L and spacing q′ 6 q. A typical situation within the second step is as
follows (here c = 5, L = 3, q = 8, L′ = 12 and q′ = 7):

�� �� �� �� �� �� �� �� �� ���� ��L L L L′
q q q′

Call E(b) = EL(b) ∪ ER(b), and e(b) = eL(b) + eR(b). Call Ψexact
h the average over random

texts of the indicator function for the event that e(b) ≥ h. Clearly, the average complexity
rate of our algorithm is bounded by the expression

Φalg(D) 6 L+ E(e(b))
q

=
L+

∑
h≥1 Ψexact

h

q
,

where the average is taken over random texts, at fixed dictionary. Note that, because of our
choice of range for q and L, c(α) ≥ 1 for all α, and c(|w|) ≥ 1 for all w.

Let α be a full alignment associated to the block b. Call E [α] the set of extra positions of
the text (besides the blocks) that we need to access in order to determine the alignment α.
Then clearly E(b) =

⋃
α E [α].

2.3 Proof strategy for the upper bound
Our proof strategy is to prove that there exists a choice of parameters L and q, with the
properties that q = Θ(mmin), L/q = Θ(φ(r(D))), and E(e(b)) = Θ(1). This last condition
is equivalent to the requirement that Ψexact

h is a summable series, and we will see that
indeed the first can be bounded by a geometric series, and the second is rather small. Up to
calculating the pertinent multiplicative constants, such a pattern would imply the functional
form of the complexity anticipated in Section 1.2.

The idea is that the exact calculation of E(e(b)) or of Ψexact
h , even at q and L fixed (which

is easier than optimising w.r.t. these parameters), is rather difficult, but we can produce a
simpler upper bound by:

For alignments α with c(α) > 1, neglect the information coming from the e(b′) extra
characters that we have accessed at blocks b′ < b. This allows to separate the analysis on
the different blocks of text.

AofA 2020



3:8 The Complexity of Approximate Multiple Pattern Matching

Naïvely, for different (full) alignments α, we could perform a union bound, that is,
e(b) = |E(b)| = |

⋃
α E [α]| 6

∑
α |E [α]|, which thus separates the analysis over the

different alignments. We will make an improved version of this bound, namely we use this
bound, not with full alignments, but rather with “classes of equivalent partial alignments”.

As we anticipated, the crucial point is that we count partial alignments instead of full
alignments. A further slight improvement of the bound comes from considering these ‘classes
of equivalent partial alignments’, instead of just the partial alignments. These two facts are
motivated by the same argument, that we now elucidate.

Consider the two following notions: (1) Each set Ah(w) of partial alignments is partitioned
into classes I. (2) There is a subset Āh(w) ⊆ Ah(w) of alignments, that we shall call basic
alignments. Now, suppose that the two following properties hold: (i) I ∩ Āh(w) 6= ∅
for all classes I of Ah(w). (ii) For each α ∈ I, there exists a ᾱ ∈ I ∩ Āh(w), such that
E(α) ⊆ E(ᾱ). In this case it is easily estalished that the bound above can be improved into
e(b) = |E(b)| = |

⋃
α E [α]| 6

∑
ᾱ |E [ᾱ]|, where the sum runs only on basic partial alignments.

Thus, calling Ψh :=
∑
w∈D

∑
α∈Āh(w) P(|E [ᾱ]| ≥ h), we have Ψh ≥ Ψexact

h .
We propose the following definition of basic alignment. Let α be in Ah(w). In the string

u, suppose that we write Ca instead of C, whenever the well-aligned character is a, and
Da when the deleted character is a (this is clearly just a bijective decoration of u). For
α ∈ Āh(w), we require that there are no occurrences of CaIa as factors of u (as these are
equivalent to IaCa), of CaDa (as these are equivalent to DaCa) and of IaDb or DbIa (as
these are equivalent to Ca or Sa, depending if a = b or not). If α can be obtained from α′ by
a sequence of these rewriting rules, then α and α′ are in the same class I.

It is easy to see that this definition of basic alignment and classes has the defining
properties above.

2.4 Evaluation of an upper bound at q and L fixed
Let us call pc,h,ε′(w) the probability that, for a given word w and parameter ε′, there exists
an alignment α ∈ Ah(w), to a text consisting of c− 1 blocks of length L and one block of
length L+ h, which is visited by the algorithm (that is, it makes at most k errors), that is,
in particular,

Ψh 6
q−1∑
ε′=0

pc,h,ε′(w) . (6)

We have the important fact

I Proposition 3.

pc,h,ε′(w) 6 βs−(cL+h)BcL+h+c−1,k (7)

for all ε′, where β = (2s−1)L+k
(2s−1)L−k and BL,k = (2s− 1)k

(
L+k
k

)
.

The proof of this proposition is slightly complicated, and is presented in Appendix A. Note
however that for the special case c = 1, and with exactly k errors (instead of at most k errors),
the bound s−(L+h)(2s)k

(
L+k
k

)
can be established trivially. Also note that the bound does

not depend on ε′, and, in particular, it only depends on h = |EL|+ |ER| for the alignments α
at given w and ε′, and not separately on the two summands.

We are now ready to evaluate the expressions for the upper bound on the quantity Ψh

in (6), in light of (7). Call Rc =
∑
m : c(m)=c rm =

∑q(c+1)+L−2
m=qc+L−1 rm, and pc,h as q times the

RHS of (7) (that is, an upper bound to
∑q−1
ε′=0 pc,h,ε′(w)). We have the bound∑

h

Ψh 6
∑
c

Rc
∑
h

pc,h =
∑
c

Rc
∑
h

β q s−(cL+h)BcL+h+c−1,k . (8)
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Recalling that∑
h≥0

s−h
(
a+ k + h

k

)
6

1
1− 1

s
a+k+1
a+1

(
a+ k

k

)
,

(and that q < mmin), substituting in (8) gives

Φalg(D) 6 1
q

(
L+ βq

∑
c

Rc
1

1− 1
s
cL+k+c
cL+c

s−cL
(
cL+ c− 1 + k

k

)
(2s− 1)k

)
6

1
q

(
L+ βmmin(2s− 1)k

1− 1
s
L+k
L

∑
c

Rc s
−cL
(
c(L+ 1) + k

k

))
. (9)

We want to prove that

Φalg(D) 6 C1k + C ′1
mmin

+ C2 max
m

ln(smrm)
m

, (10)

with suitable constants C1, C ′1 and C2 (it will turn out at the end that we can set C ′1 = C1
and C1, C2 to be as in Theorem 2, but at this point it is convenient to let them be three
separate variables). This would prove the upper bound part of Theorem 2.

Note that, if k/mmin ≥ 1/C1, the upper bound expression (10) is larger than the trivial
bound Φalg(D) 6 1, and there is nothing to prove. So we can assume that k/mmin < 1/C1.

2.5 Optimisation of q and L

We now have to analyse the expression (9), in order to understand which values of q and L
make the bound smaller. The sum over c is the most complicated term. We simplify it by
using the fact that, for all ξ ∈ R+, ln

(
a+k
k

)
6 k ln(1 + ξ) + a ln(1 + ξ−1), which gives

T := mmin(2s− 1)k
∑
c

Rc s
−cL
(
c(L+ 1) + k

k

)
6
∑
c

1
c2

exp
[
− c
(
LA− 1

c
(ln(Rcmmin) + k ln((1 + ξ)(2s− 1)))− ln c2

c
− ln(1 + ξ−1)

)]
=
∑
c

1
c2

exp
[
−c(LA− φ′(c)− ln(1 + ξ−1))

]
, (11)

where A = ln(sξ/(1 + ξ)), A′ = ln((1 + ξ)(2s− 1)) and

φ′(c) = ln(c2Rcmmin) + kA′

c
. (12)

Ultimately, we want to choose L such that T is bounded by a constant, as its summands
over c are bounded by a convergent series. With this goal, let c∗ be the value maximising
the expression φ′(c), and φ∗ the value of the maximum. The sum above is then bounded by∑

c

1
c2

exp[−c(LA− φ∗ − ln(1 + ξ−1))] .

For any value of ξ such that A > 0 (that is, for ξ > (s− 1)−1), there exists a positive smallest
value of L such that the exponent in the expression above is negative. So we set

L∗ =
⌈
φ∗ + ln(1 + ξ−1)

A

⌉
,
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(as the choice of ξ is free, we can tune it at the end so that the ratio is an integer), and
recognise that the RHS of equation (11), specialised to L = L∗, is bounded by

∑
c

1
c2 = π2/6.

Note that

φ∗ ≥ φ′(1) ≥ kA′

so that

L∗

k
≥ A′

A
= ln((1 + ξ)(2s− 1))

ln(s ξ/(1 + ξ)) ,

which implies that we can set β = 2s−1+A/A′
2s−1−A/A′ , and

1
1− 1

s
L+k
L

6
1

1− 1
s (1 +A/A′)

= 1
1− 1

s
ln(sξ(2s−1))

ln((1+ξ)(2s−1))

.

Now, let us choose q =
⌊
mmin−k

2
⌋
, which coincides with the choice of the analogous parameter

in Chang and Marr [5]. This is the largest possible value such that c(w) ≥ 1 for all w ∈ D.
With this choice,

1
q
6

2
mmin

C1

C1 − 1 .

Collecting the various factors calculated above, we get that the expression (9) is bounded by

Φalg(D) 6 2
mmin

C1

C1 − 1

(
L∗ +

β π
2

6
1− 1

s (1 +A/A′)

)
.

We are left with two tasks: choosing suitable values for ξ and C1 (both of order 1), and
recognising that the expression for L∗ (and for φ∗) can be related to the quantity φ(r) in
(2). Let us start from the latter. Note that, as for any m ≥ mmin

m− k
q
− 2 6 c(m) 6 m

q

we can write2 m 6 mminc(m) 6 s2m, which gives

max
c

1
c

ln(c2mminRc) 6 max
m

mmin

m
ln(s2m2rm) 6 2mminφ(r) .

As, of course maxc(X(c) + Y (c)) 6 maxcX(c) + maxc Y (c), we have in particular that

φ∗ 6 2mminφ(r) + kA′ L∗ 6
2mminφ(r) + kA′ + ln(1 + ξ−1)

A
,

which thus implies

Φalg(D) 6 2
mmin

C1

C1 − 1

(
2mmin

A
φ(r) + k

A′

A
+

β π
2

6
1− 1

s (1 +A/A′)
+ ln(1 + ξ−1)

A

)
= 2C1

C1 − 1

[
A′

A

k

mmin
+
(

β π
2

6
1− 1

s (1 + A
A′ )

+ ln(1 + ξ−1)
A

)
1

mmin
+ 2
A
φ(r)

]
.

2 Because s > 2, and we anticipate that, under our choice, C1 ≥ 5, thus

m 6 2(m− k − q) 6 mmin

(
m− k
q
− 2
)
6 mminc(m) 6 mmin

m

q
6 2
(

C1

C1 − 1

)
m 6 s2m.
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2 4 6 8 10

s

5

10

15

Figure 3 Plot of the constant C1(s), C′
1(s) and C2(s), as given by the expressions in (13)

(respectively, in blue, green and red). The asymptotic values are 5, 5π2/12 and 0 respectively.

Let us choose C1 = 2A′/A+ 1. The expression above simplifies into

Φalg(D) 6 C1k

mmin
+ 2A′ +A

AA′

[(
Aβ π

2

6
1− 1

s (1 + A
A′ )

+ ln(1 + ξ−1)
)

1
mmin

+ 2φ(r)
]
,

in particular, this justifies the notation C1, which in the introduction was chosen to denote
the coefficient in front of the k

mmin
summand. Now we shall choose the optimal value of ξ.

The dependence on ξ is mild, provided that we are in the appropriate range ξ > 1/(s− 1).
The choice of ξ, in turns, determines the ratio between the lower and upper bound, which
has the functional form C ′1 + κsC2 (with notations as in the theorem). A choice which is
a good trade-off among the three summands in this expression, and for which the analytic
expression is relatively simple, is to take ξ = 2s. Under this choice we have

C1 = 1 + 2 ln(4s2 − 1)
ln(2s2/(2s+ 1)) , C2 = 4

ln(2s2/(2s+ 1)) + 2
ln(4s2 − 1) ,

C ′1 = C2

2

[
ln 2s+ 1

2s + βπ2

6
s ln(2s2/(2s+ 1)) ln(4s2 − 1)

(s− 1) ln(4s2 − 1)− ln(2s2/(2s+ 1))

]
,

or, in a more compact way, calling a = A|ξ=2s = ln(2s2/(2s + 1)) and a′ = A′|ξ=2s =
ln(4s2 − 1), and substituting back the value of β,

C1 = a+ 2a′

a
, C2 = a+ 2a′

a

2
a′
, (13a)

C ′1 = a+ 2a′

a

(
ln s− a
a′

+ π2

6
(2s− 1)a′ + a

(2s− 1)a′ − a
as

(s− 1)a′ − a

)
. (13b)

The behaviour in s of these constants is depicted in Figure 3.
It can be verified that, with our choice of ξ, C ′1 < C1 for all s ≥ 2.3 we can replace C ′1 by

C1 in the functional form (10) for the bound on Φalg(D), and thus obtain the statement of
Theorem 2. This concludes our proof.

3 One way to see this is by proving that both C1(s) and C′
1(s) decrease monotonically as functions on

the real interval [2,+∞[, that lims→∞ C1(s) = 5, that C1(s) > C′
1(s) for s ∈ {2, 3, . . . , 7}, and that

C′
1(8) < 5.
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A Proof of Proposition 3

In this section we evaluate an upper bound to pc,h,ε′ , which is the probability that, for a
given word w with c(|w|) = c, the disclosed text composed of c− 1 intervals of size L and
one interval of size L+ h corresponds to at least one basic alignment α by making no more
than k errors. The statement of the result, equation (14) below, is given in Proposition 3.

Let us introduce the recurring quantity

BL,k := (2s− 1)k
(
L+ k

k

)
.

First, let us analyse the case in which we have a single block, and exactly k errors. For w a
word of length m, it is clear that the result depends only on the m− ε′ left-most characters
of the word, not on the ε′ right-most ones, so we can assume without loss of generality that
ε′ = 0. Call HL,k(m) the number of different words of length L obtained by transforming
the suffixes of w and making exactly k errors. We have

I Proposition A.1. For all L ≥ k ≥ 1, HL,k 6 BL,k.

Proof. Note that the analogous statement with 2s− 1 replaced by 2s in BL,k is trivial, as we
have exactly 2s types of errors (one deletion, s insertions and s− 1 substitutions), and the
counting of their possible positions in the string u is a function of the length of the string,
bounded from above by the worst case, associated to all insertion errors.

We can gain the factor 2s− 1 instead of 2s by restricting to basic alignments, but this
requires a finer analysis involving generating functions. Let us call f(u, y, z) the generating
function such that [uayLzk]f(u, y, z) is the number of basic alignments of length L obtained
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by transforming a word of length a and making exactly k errors. Calculating f(u, y, z) exactly
is a difficult task, and the result would depend on w as a word, not only on m = |w|, but we
will calculate a simpler upper bound fUB(u, y, z), which in particular only depends on m. In
this context, a generating-function upper bound is an upper bound for partial sums, that
is g � f if

∑k
h=0[uayLzh](g(u, y, z)− f(u, y, z)) ≥ 0 for all L and a. Let us construct fUB

by starting from f0(u, y, z) := uy
1−uy , which is the generating function f specialised to z = 0,

and let us introduce the various types of errors one at the time.
The first operation corresponds to allow for insertion errors. The restriction to basic

alignments, however, brings to a subtlety. For example, starting with a word w = abcd, in
order to get the alignment aaabcd we can proceed in several ways: aaabcd or aaabcd or by
aaabcd (bold letters correspond to insertions). Under the notion of basic alignment we avoid
to overcount these manifestly equivalent alignments, as of these expressions we would only
keep the latter, aaabcd, that is, at the left of a letter a we can only insert letters different
from a. On the other hand, at the right end of the word one can insert strings consisting of
any character of the alphabet.

Calling fi the generating function in which insertion errors are allowed, we thus get

fi(u, y, z) = 1
1− syz f(u, y, z)|

uy→uy
(

1
1−(s−1)z

) = uy

(1− syz)(1− uy − (s− 1)yz) .

We now introduce deletion errors, which, consistently, we allow only on the characters of
the initial string (not on the ones which have just been insterted). Thus, any given original
character can be either left as is, or deleted. This gives the generating function fi,d, with

fi,d(u, y, z) = fi(u, y, z)|uy→uy+uz = uz + uy

(1− syz)(1− uy − uz − (s− 1)yz) .

Finally, for substitution errors, again we can either substitute any initial character with one
of the s− 1 other characters of the alphabet, or leave it unchanged, which brings to fi,d,s,
with

fi,d,s = fi,d(u, y, z)|uy→uy+(s−1)uyz = u(syz − yz + y + z)
(1− syz)(1− uz − (s− 1)(u+ 1)yz) .

Note that, by this procedure, we have already produced an upper bound, as fi,d,s � f (in
the sense defined above). Note also that it is not fi,d,s = f , because, for example, we have
overcounted the equivalent cases in which in a word w = · · · aa · · · we have deleted the first
or the second character.

If the word w is shorter than L+ k, we may miss some alignments because they do not
fit in the text interval. As we are evaluating an upper bound, we can restrict to the case in
which w is long enough for this not to happen, and thus sum over all suffixes by just setting
u = 1, and conclude that HL,k 6 [yLzk]f ′(1, y, z). Thus, in order to conclude, we must show
that [yLzk]f ′(1, y, z) 6 BL,k. Let us call

FL,k = [yLzk] 1
(syz − 1)(2syz − 2yz + y + z − 1) .

We can rewrite the inequality above as HL,k 6 FL−1,k +FL,k−1 + (s− 1)FL−1,k−1, and thus,
if we can prove that FL,k 6 BL,k, for all pairs of integers L > k, we could conclude in light
of the fact that

HL,k 6 BL−1,k +BL,k−1 + (s− 1)BL−1,k−1 = (2s− 1)k
(
L+ k

k

)
−RL,k ,

where RL,k = (2s− 1)k−1
(

2(s− 1)k−1
L

(
L+k−2
k−1

))
is indeed easily checked to be non-negative

for all L > k > 1.

AofA 2020



3:14 The Complexity of Approximate Multiple Pattern Matching

ξ :

w : �
�
�
�
�
�
��

C
C
C
C
C
C
CC

• •

• • E
E
E
E
E
E
EE

�
�
�
�
�
�
��

• •

• •

�
�
�
�
�
�
�

•

•

•

•

L1︷ ︸︸ ︷
q1+L1︷ ︸︸ ︷

L2︷ ︸︸ ︷
q2+L2︷ ︸︸ ︷

︸ ︷︷ ︸
ε

Lc︷ ︸︸ ︷

︸ ︷︷ ︸
ε′

q1+δ1︷ ︸︸ ︷ q2+δ2︷ ︸︸ ︷

bq

u1 u2 u3

Figure 4 Example of multi-interval alignment analysed for the estimate of pL1,...,Lc;k.

So, to finish the proof, let us show that FL,k 6 BL,k. First,

FL,k = [yLzk]
(

1
1− syz + 2syz − 2yz + y + z

1− 2syz + 2yz − y − z

)
= δL,ks

k + FL−1,k + FL,k−1 + 2(s− 1)FL−1,k−1 .

Since L > k > 1, we have RL,k > δL,ks
k for s > 2, and BL,k > FL,k > HL,k.

To conclude, we just check the boundary conditions in the recursion above for FL,k
and BL,k, which again are in agreement with the inequality. Indeed we have, for (L, k) ∈
{(0, 0), (0, 1), (1, 0)}, F0,0 = B0,0 = 1, B0,1 = 2s − 1 ≥ 1 = F0,1 and B1,0 = 4s − 2 ≥ 3s =
F1,0. J

Now we want to deal with the more general case, in which we have more than one block, and
we sum over the number of errors up to k. We will prove a more general statement, in which
we have c blocks of lengths L1, . . . , Lc, separated by gaps of lengths q1, . . . , qc−1, which in
particular is so general to allow us to treat in one stroke the case in which we add characters
at the left or at the right of the b-th algorithm block.

Similarly to the argument above, in order to produce an upper bound we can set without
loss of generality that ε′ = 0, all the qi’s are larger than k and that m is larger than∑
Li +

∑
qi + k, as any variant of this would give no more alignments. So, we will call

pL1,...,Lc;k the corresponding quantity, in which the dependence from the qi’s and m has
been dropped.

For multi-block partial alignments, we have parameters δ1, . . . , δc−1 for the offset among
the different consecutive blocks of the partial alignment, and, if we have an offset δi in the
alignment of two blocks, we have to perform at least |δi| deletions or insertions errors when
completing the partial alignment to a full one (cf. figure 4).

Calling L̄ =
∑c
i=1 Li, this leads to the following sum

pL1,...,Lc;k 6 s−L̄
k∑
t=0

t∑
∆=0

∑
k1,k2,...,kc∈N

k1+k2+...+kc=t−∆

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

BL1,k1BL2,k2 . . . BLc,kc
.

From the Vandermonde convolution formula,
k∑
i=0

(
l1+i
i

)(
l2+k−i
k−i

)
=
(
l1+l2+k+1

k

)
, which implies∑

hBL1,hBL2,k−h = BL1+L2+1,k, we can simplify the expression above into

pL1,...,Lc;k 6 s−L̄
k∑
t=0

t∑
∆=0

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

BL̄+c−1,t−∆ .
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The sum over the δi’s gives∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

1 = [z∆]
(

1 + z

1− z

)c−1

that is, by recognising that BL,k−h 6 BL,k

(
k

(2s−1)L

)h
, we get

pL1,...,Lc;k 6 s−L̄BL̄+c−1,k

(
(1 + z)c−1

(1− z)c

)∣∣∣∣
z= k

(2s−1)(L̄+c−1)

.

This is all we shall say at this level of generality. Now note that, in our patterns, L̄+c−1 ≥ cL
(and k 6 L), so that, in this range of parameters,

pL1,...,Lc;k 6 s−L̄BL̄+c−1,k

(
(1 + z)c−1

(1− z)c

)∣∣∣∣
z= 1

(2s−1)c
k
L

6
(2s− 1) + k

L

(2s− 1)− k
L

s−L̄BL̄+c−1,k . (14)
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