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Abstract
We consider the model of random trees introduced by Devroye [13], the so-called random split trees.
The model encompasses many important randomized algorithms and data structures. We then
perform supercritical Bernoulli bond-percolation on those trees and obtain a precise weak limit
theorem for the sizes of the largest clusters. The approach we develop may be useful for studying
percolation on other classes of trees with logarithmic height, for instance, we have also studied the
case of complete d-regular trees.
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1 Introduction

In this extended abstract, we investigate the asymptotic behaviour of the sizes of the largest
clusters created by performing Bernoulli bond-percolation on random split trees. Split
trees were first introduced by Devroye [13] to encompass many families of trees that are
frequently used to model efficient data structures or sorting algorithms (we will be more
precise shortly). Some important examples of split trees are binary search trees [18], m-ary
search trees [25], quad trees [16], median-of-(2k + 1) trees [27], fringe-balanced trees [12],
digital search trees [11] and random simplex trees [13, Example 5].

To be more precise, we consider trees Tn of large but finite size n ∈ N and perform
Bernoulli bond-percolation with parameter pn ∈ [0, 1] that depends on the size of the tree
(i.e., one removes each edge in Tn with probability 1− pn, independently of the other edges,
inducing a partition of the set of vertices into connected clusters). In particular, we are going
to be interested in the supercritical regime, in the sense that with high probability, there
exists a giant cluster, that is of a size comparable to that of the entire tree.

Bertoin [2] established a simple characterization of tree families with n vertices and
percolation regimes which results in giant clusters. Roughly speaking, Bertoin [2] showed
that the supercritical regime corresponds to percolation parameters of the form 1− pn =
c/`(n) + o(1/`(n)) as n→∞, where c > 0 is fixed and `(n) is an approximation of the height
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6:2 Largest Clusters for Supercritical Percolation on Split Trees

of a typical vertex in the tree structure1. Then the size Γn of the cluster containing the root
satisfies limn→∞ n−1Γn = Γ(c) in distribution to some random variable Γ(c) 6≡ 0. In several
examples the supercritical percolation parameter satisfies

pn = 1− c/ lnn+ o (1/ lnn) , (1)

for some fixed parameter c > 0. For example, this happens for some important families of
random trees with logarithmic height, such as random recursive trees, preferential attachment
trees, binary search trees; see [14], [15, Section 4.4]. In those cases the random variable Γ(c)
is an (explicit) constant and the giant cluster is unique.

A natural problem in this setting is then to estimate the size of the next largest clusters.
Concerning trees with logarithmic height, Bertoin [3] proved that in the supercritical regime,
the sizes of the next largest clusters of a uniform random recursive tree, normalized by a
factor lnn/n, converge to the atoms of some Poisson random measure; see also [1]. This
result was extended by Bertoin and Bravo [4] to preferential attachment trees. A different
example is the uniform Cayley trees where `(n) =

√
n and Γ(c) is not constant. But unlike

the previous examples, the number of giant components is unbounded as n→∞; see [24, 23].
As a motivation, it is important to point out that supercritical Bernoulli bond-percolation

on large but finite connected graphs is an ongoing subject of research in statistical physics
and mathematics. Furthermore, the estimation of the size of the next largest clusters is a
relevant question in this setting. An important example where the graph is not a tree is the
case of a complete graph with n vertices. A famous result due to Erdös and Rényi (see [9])
shows that Bernoulli bond-percolation with parameter pn = c/n + o(1/n) for c > 1 fixed,
produces with high probability as n→∞, a unique giant cluster of size close to θ(c)n, where
θ(c) is the unique solution to the equation x+ e−cx = 1, while the second, third, etc. largest
clusters have only size of order lnn.

The main purpose of this work is to investigate the case of random split trees which belong
to the family of random trees with logarithmic heights; see Devroye [13]. Informally speaking,
a random split tree T sp

n of “size” (or cardinality) n is constructed by first distributing n balls
(or keys) among the vertices of an infinite b-ary tree (b ∈ N) and then removing all sub-trees
without balls. Each vertex in the infinite b-ary tree is given a random non-negative split
vector V = (V1, . . . , Vb) such that

∑b
i=1 Vi = 1 and Vi ≥ 0, are drawn independently from

the same distribution. These vectors affect how balls are distributed. Its exact definition
is somewhat lengthy and we postpone it to Section 1.1. An important peculiarity is that
the number of vertices of T sp

n is often random which makes the study of split trees usually
challenging.

Recently, we have shown in [7, Lemma 1 and Lemma 2] that the supercritical percolation
regime in split trees of cardinality n corresponds precisely to parameters fulfilling (1). Notice
that here n corresponds to the number of balls (or keys) and not to the number of vertices.
More precisely, let C0

n (resp. Ĉ0
n) be the number of balls (resp. number of vertices) in the

percolation cluster that contains the root. Then, in the regime (1) and under some mild
conditions on the split tree, it holds that

n−1C0
n

d−→ e−c/µ
(
resp. n−1Ĉ0

n
d−→ αe−c/µ

)
, as n→∞, (2)

where µ = bE[−V1 lnV1] (α > 0 is some constant depending on the split tree) and d−→
denotes convergence in distribution. Furthermore, the giant cluster is unique. These results
agree with that of Bertoin [2] even when the number of vertices in split trees is random and
the cluster sizes can be defined as either the number of balls or the number of vertices.

1 For two sequences of real numbers (An)n≥1 and (Bn)n≥1 such that Bn > 0, we write An = o(Bn) if
limn→∞An/Bn = 0.
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Loosely speaking, our main result shows that in the supercritical regime (1) the next
largest clusters of a split tree T sp

n have a size of order n/ lnn. Moreover, we obtain a limit
theorem in terms of certain Poisson random measures. A more precise statement will be
given in Theorems 1 and 2 below. These results exhibit that cluster sizes, in the supercritical
regime, of split-trees, uniform recursive trees and preferential attachment trees present similar
asymptotic behaviour. Finally, we point out that our present approach also applies to study
the size of the largest clusters for percolation on complete regular trees (see Theorem 3).

The approach developed in this work differs from that used to study the cases of uniform
random recursive trees (RRT) in [3] and preferential attachment trees in [4]. The method
of [3] is based on a coupling of Iksanov and Möhle [20] connecting the Meir and Moon [22]
algorithm for the isolation of the root in a RRT and a certain random walk. This makes use
of special properties of recursive trees (the so-called randomness preserving property, i.e., if
one removes an edge from a RRT, then the two resulting subtrees, conditionally on their
sizes, are independent RRT’s) which fail for split-trees. The basic idea of [4] is based on the
close relation of preferential attachment trees with Markovian branching processes and the
dynamical incorporation of percolation as neutral mutations. The recent work of Berzunza
[5] shows that one can also relate percolation on some types of split trees (but not all) with
general age-dependent branching processes (or Crump-Mode-Jagers processes) with neutral
mutations. However, the lack of the Markov property in those general branching processes
makes the idea of [4] difficult to implement.

A common feature in these previous works, namely [3] and [4], is that, even though one
addressed a static problem, one can consider a dynamical version in which edges are removed,
respectively vertices inserted, one after the other in a certain order as time passes. Here we
use a fairly different route and view percolation on split trees as a static problem.

We next introduce formally the family of random split trees and relevant background,
which will enable us to state our main results in Section 1.2.

1.1 Random split trees
In this section, we introduce the split tree generating algorithm with parameters b, s, s0, s1,V
and n introduced by Devroye [13]. Some of the parameters are the branch factor b ∈ N, the
vertex capacity s ∈ N, and the number of balls (or cardinality) n ∈ N. The additional integers
s0 and s1 are needed to describe the ball distribution process. They satisfy the inequalities
0 < s, 0 ≤ s0 ≤ s, 0 ≤ bs1 ≤ s+ 1− s0. The so-called random split vector V = (V1, . . . , Vb)
is a random non-negative vector with

∑b
i=1 Vi = 1 and Vi ≥ 0, for i = 1, . . . , b.

Consider an infinite rooted b-ary tree T, i.e., every vertex has b children. We view each
vertex of T as a bucket with capacity s and we assign to each vertex u ∈ T an independent
copy Vu = (Vu,1, . . . , Vu,b) of the random split vector V . Let C(u) denote the number of balls
in vertex u, initially setting C(u) = 0 for all u. We call u a leaf if C(u) > 0 and C(v) = 0
for all children v of u, and internal if C(v) > 0 for some strict descendant v of u. The split
tree T sp

n is constructed recursively by distributing n balls one at time to generate a subset of
vertices of T. The balls are labeled using the set {1, 2, . . . , n} in the order of insertion. The
j-th ball is added by the following procedure.
1. Insert j to the root.
2. While j is at an internal vertex u ∈ T, choose child i with probability Vu,i and move j to

child i.
3. If j is at a leaf u with C(u) < s, then j stays at u and C(u) increases by 1.

If j is at a leaf with C(u) = s, then the balls at u are distributed among u and its children
as follows. We select s0 ≤ s of the balls uniformly at random to stay at u. Among the
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6:4 Largest Clusters for Supercritical Percolation on Split Trees

remaining s+ 1− s0 balls, we uniformly at random distribute s1 balls to each of the b
children of u. Each of the remaining s + 1 − s0 − bs1 balls is placed at a child vertex
chosen independently at random according to the split vector assigned to u. This splitting
process is repeated for any child which receives more than s balls.

We stop once all n balls have been placed in T and we obtain T sp
n by deleting all vertices

u ∈ T such that the sub-tree rooted at u contains no balls. Note that an internal vertex of
T sp
n contains exactly s0 balls, while a leaf contains a random amount in {1, ..., s}. Notice

also that in general the number N of vertices of T sp
n is a random variable while the number

of balls n is deterministic.
It is important to mention that depending on the choice of the parameters b, s, s0, s1

and the distribution of V, several important data structures may be modeled. For instance,
binary search trees correspond to b = 2, s = s0 = 1, s1 = 0 and V distributed as (U, 1− U),
where U is an uniform random variable on [0, 1] (in this case N = n). Some other relevant
(and more complicated) examples of split trees are m-ary search trees, median-of-(2k + 1)
trees, quad trees, simplex tree; see [13, 19, 10], for details and more examples.

In the present work, we assume without loss of generality that the components of the
split vector V are identically distributed; this can be done by using random permutations as
explained in [13]. In particular, we have that E[V1] = 1/b. We frequently use the following
notation. Set

µ := bE[−V1 lnV1]. (3)

Note that µ ∈ (0, ln b). The quantity was first introduced by Devroye [13] to study the height
of T sp

n as the number of balls increases.
In the study of split trees, the following condition is often assumed:

I Condition 1. Assume that P(V1 = 1) = P(V1 = 0) = 0 and that V1 is not monoatomic,
that is, V1 6= 1/b.

We sometimes consider the following condition:

I Condition 2. Suppose that lnV1 is non-lattice. Furthermore, for some α > 0 and ε > 0,

E[N ] = αn+O

(
n

ln1+ε n

)
.

Recall that for two sequences of real numbers (An)n≥1 and (Bn)n≥1 such that Bn > 0, one
writes An = O(Bn) if lim supn→∞ |An|/Bn <∞. Condition 2 first appears in [10, equation
(52)] for the study of the total path length of split trees.

Holmgren [19, Theorem 1.1] showed that if lnV1 is non-lattice then there exists a constant
α > 0 such that E[N ] = αn+ o(n) and furthermore V ar(N) = o(n2). However, this result is
not enough for our purpose since an extra control in E[N ] is needed (see Theorem 2 below).
On the other hand, Condition 2 is satisfied in many interesting cases. For instance, it holds
for m-ary search trees [21]. Moreover, Flajolet et al. [17] showed that for most tries (as long
as lnV1 is non-lattice) Condition 2 holds. However, there are some special cases of random
split trees that do not satisfy Condition 2. For instance, tries (where s = 1 and s0 = 0) with
a fixed split vector (1/b, . . . , 1/b), in which case lnV1 is lattice.

1.2 Main results
In this section, we present the main results of this work. We consider Bernoulli bond-
percolation with supercritical parameter pn satisfying (1) on T sp

n . We denote by C0 (resp. Ĉ0)
the number of balls (resp. the number of vertices) of the cluster that contains the root and
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by C1 ≥ C2 ≥ · · · (resp. Ĉ1 ≥ Ĉ2 ≥ · · · ) the sequence of the number of balls (resp. the
number of vertices) of the remaining clusters ranked in decreasing order. For the sake of
simplicity, we have decided to remove the parameter n from our notation of Ci and Ĉi.

We now state the central results of this work. The first result corresponds to the size
being defined as the number of balls in the cluster.

I Theorem 1. Let T sp
n be a split tree that satisfies Condition 1 and suppose that pn fulfills

(1). Then,

n−1C0
d−→ e−c/µ, as n→∞,

where µ is the constant defined in (3) and c is defined in (1). Furthermore, for every fixed
i ∈ N, we have the convergence in distribution(

lnn
n
C1, . . . ,

lnn
n
Ci

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cµ−1e−c/µx−2dx.

The second result corresponds to the size being defined as the number of vertices in the
cluster.

I Theorem 2. Let T sp
n be a split tree that satisfies Conditions 1-2 and suppose that pn fulfills

(1). Then,

n−1Ĉ0
d−→ αe−c/µ, as n→∞,

where µ is the constant defined in (3), α is defined in Condition 2 and c is defined in (1).
Furthermore, for every fixed i ∈ N, we have the convergence in distribution(

lnn
n
Ĉ1, . . . ,

lnn
n
Ĉi

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cαµ−1e−c/µx−2dx.

Alternatively, the law of the limiting sequence in Theorems 1 and 2 can be described as
follows: for i ∈ N, 1/x1, 1/x2−1/x1, . . . , 1/xi−1/xi−1 are i.i.d. exponential random variables
with parameter cµ−1e−c/µ in Theorem 1, while in Theorem 2 they are exponential random
variables with parameter cαµ−1e−c/µ.

It is important to point out the similarity with the results for uniform random recursive
trees in [3] and preferential attachment trees in [4]. More precisely, the size of the second
largest cluster, and more generally, the size of the i-th largest cluster (for i ≥ 2) in the
supercritical regime is of order n/ lnn as in [3] and [4]. Moreover, their sizes are described
by the atoms of a Poisson random measure on (0,∞) whose intensity measure only differ
by a constant factor. For example, for uniform random recursive trees [3] the intensity is
ce−cx−2dx.

As we mentioned in the introduction, we shall follow a different route to that used in [3]
and [4]. The approach developed in this work is based on a remark made in [2, Section 3] about
the behavior of the second largest cluster created by performing (supercritical) Bernoulli
bond-percolation on complete regular trees. More precisely, consider a rooted complete
regular d-ary tree T d

h of height h ∈ N, where d ≥ 2 is some integer (i.e., each vertex has
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6:6 Largest Clusters for Supercritical Percolation on Split Trees

exactly out-degree d). Notice that there are dk vertices at distance k = 0, 1, . . . , h from the
root and a total of (dh+1 − 1)/(d− 1) vertices. We then perform Bernoulli bond-percolation
with parameter

qh = 1− ch−1 + o(h−1), (4)

where c > 0 is some fixed parameter. It has been shown in [2, Section 3] that this choice
of the percolation parameter corresponds precisely to the supercritical regime, that is, the
root cluster is the unique giant component. Because the subtree rooted at a vertex at height
i ≤ h is again a complete regular d-ary tree with height h − i, [2, Corollary 1] essentially
shows that the size (number of vertices) G1

h of the largest cluster which does not contain the
root is close to

e−cdh−τ1(h)+1/(d− 1),

where τ1(h) is the smallest height at which an edge has been removed. Notice that there are
d(di − 1)/(d− 1) edges with height at most i, so the distribution of τ1(h) is given by

P(τ1(h) > i) = q
d(di−1)/(d−1)
h , i = 1, . . . , h.

We use the notation logd x = ln x/ ln d for the logarithm with base d of x > 0, and y =
byc+ {y} for the decomposition of a real number y as the sum of its integer and fractional
parts. It follows that in the regime (4) and as soon as one assumes {logd h} → ρ ∈ [0, 1), as
h→∞, then τ1(h)− logd h converges in distribution, and therefore, hd−hG1

h also converges
in distribution.

Our strategy is then to adapt and improve the above argument to study the size of the
i-th largest cluster, for i ≥ 2, in a random split tree with n balls. We also show that this
approach can be used to obtain a result similar as Theorem 1 or Theorem 2 for supercritical
percolation on complete d-regular trees of height h ∈ N. More precisely, write G0 for the
number of vertices of the cluster that contains the root and G1 ≥ G2 ≥ · · · for the sequence
of the number vertices of the remaining clusters ranked in decreasing order; for simplicity,
we omit the parameter h from our notation. We introduce for every ρ ∈ [0, 1) a measure Λρ
on (0,∞) by letting

Λρ([x,∞)) := d−ρ+bρ−logd xc+1/(d− 1), x > 0.

I Theorem 3. Let T d
h be a complete regular d-ary tree of height h ∈ N such that {logd h} →

ρ ∈ [0, 1), as h→∞, and suppose that qh fulfills (4). Then,

d−hG0
d−→ de−c/(d− 1), as h→∞,

where the constant c is defined in (4). Furthermore, for every fixed i ∈ N, we have the
convergence in distribution

(hd−hG1, . . . , hd
−hGi)

d−→ (x1, . . . , xi), as h→∞,

where x1 ≥ x2 ≥ · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity c d

d−1e
−cΛρ(dx).

We conclude this extended abstract by providing in Section 2 a fair enough guideline of
the proof of Theorem 1. The proofs of Theorem 2 and Theorem 3 follows by an adaptation
of the arguments used in the proof of Theorem 1. An important ingredient in the proof of
Theorem 1 is Lemma 5 that establishes a law of large number for the number of sub-trees
in T sp

n with cardinality (number of balls) larger than n/ lnn, which may be of independent
interest. Detailed proofs of all our results are going to be given in the complete version [6].
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2 Proof of Theorem 1

We split the proof of Theorem 1 in two parts. We start by studying the sizes of percolated
sub-trees that are close to the root. One could refer to these percolated sub-trees as the
early clusters since their distance to the root is the smallest. Then we show that the largest
percolation clusters can be found amongst those (early) percolated sub-trees.

2.1 Sizes of early clusters
For i ∈ N, let ei,n be the edge with the i-th smallest height (we break ties by ordering the
edges from left to right, however, the order is not relevant in the proofs) that has been
removed and vi,n the endpoint (vertex) of ei,n that is the furthest away from the root of
T sp
n . Let Ti,n be the sub-tree of T sp

n that is rooted at vi,n and let ni,n be the number of balls
stored in the sub-tree Ti,n. For t ∈ [0,∞), we write

Nn(0) := 0 and Nn(t) :=
∑
i≥1

1{ni,n≥ n
t ln n} =

∑
i≥1

1{(n/ni,n) 1
ln n≤t}

for the number of sub-trees Ti,n that store more than bn/(t lnn)c balls.

I Theorem 4. Suppose that Condition 1 holds and that pn fulfills (1). Then, the following
convergence holds in the sense of weak convergence of finite dimensional distributions,

(Nn(t), t ≥ 0) d−→ (N(t), t ≥ 0), as n→∞,

where (N(t), t ≥ 0) is a (classical) Poisson process with intensity cµ−1.

We stress that the convergence in Theorem 4 can be improved in order to show conver-
gence in distribution of the process (Nn(t), t ≥ 0) for the Skorohod topology on the space
D([0,∞),R) of right-continuous functions with left limits to a Poisson process with intensity
cµ−1; see, for instance, [8, Theorem 12.6, Chapter 3].

The proof of Theorem 4 uses the following result which provides a law of large number
for the number of sub-trees in T sp

n with cardinality larger than n/ lnn. More precisely, for a
vertex v ∈ T sp

n that is not the root ◦, let nv denote the number of balls stored in the sub-tree
of T sp

n rooted at v. Define

Mn(t) := #
{
v ∈ T sp

n : v 6= ◦ and nv ≥
n

t lnn

}
, for t ∈ [0,∞).

I Proposition 5. Suppose that Condition 1 holds. Then, for every fixed t ∈ [0,∞), we have
that (lnn)−1Mn(t)→ µ−1t, in probability, as n→∞.

The proof of Proposition 5 is rather technical and it is given in the complete version [6].

Proof of Theorem 4. For a vertex v ∈ T sp
n that is not the root ◦, let ev be the edge that

connects v with its parent. Define the event Ev := {the edge ev has been removed after
percolation} and write ξv := 1Ev

. So, (ξv)v 6=◦ is a sequence of i.i.d. Bernoulli random
variables with parameter 1 − pn (that is, the probability of removing an edge). Then, it
should be clear that

Nn(t) =
∑
v 6=◦

1{nv≥ n
t ln n}ξv, t ∈ [0,∞).
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6:8 Largest Clusters for Supercritical Percolation on Split Trees

Let Ω be the σ-algebra generated by (nv)v 6=◦. Conditioning on Ω, we have that
(Nn(t), t ≥ 0) has independent increments and that for 0 ≤ s ≤ t, Nn(t) − Nn(s) d=
Bin (Mn(t)−Mn(s), 1− pn), where Bin(m, q) denotes a binomial (m, q) random variable.
Therefore, our claim follows from Proposition 5 by appealing to [8, Theorem 12.6, Chapter 3].

J

I Corollary 6. Suppose that Condition 1 holds and that pn fulfills (1). Then, for every fixed
i ∈ N, we have the convergence in distribution(

lnn
n
n1,n, . . . ,

lnn
n
ni,n

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cµ−1x−2dx.

Proof. Notice that (n/n1,n) 1
lnn ≤ (n/n2,n) 1

lnn ≤ · · · is the sequence of atoms (or occurrence
times) of the counting process (Nn(t), t ≥ 0) ranked in increasing order. Then our claim
follows directly from Theorem 4, the mapping theorem ([8, Theorem 2.7, Chapter 1]) and
basic properties of Poisson random measures (see [26, Proposition 3.7, Chapter 3]). J

2.2 Asymptotic sizes of the largest percolation clusters
Recall that, for i ∈ N, we let ei,n be the edge with the i-th smallest height that has been
removed and vi,n the endpoint (vertex) of ei,n that is the furthest away from the root of T sp

n .
Recall also that Ti,n denotes the sub-tree of T sp

n that is rooted at vi,n and that we write ni,n
for the number of balls stored in the sub-tree Ti,n. We denote by C̃i the size (number of balls)
of the root-cluster of Ti,n after performing percolation (where here of course root means vi,n).
We also write C̃∗i for the size (number of balls) of the second largest cluster of Ti,n that does
not contain its root. In the sequel, we shall use the following notation An = Bn + op(f(n)),
where An and Bn are two sequences of real random variables and f : N→ (0,∞) a function,
to indicate that limn→∞ |An −Bn|/f(n) = 0 in probability.

I Proposition 7. Suppose that Condition 1 holds and that pn fulfills (1). For every fixed
i ∈ N, C̃∗i = op(n/ lnn). Furthermore, we have the convergence in distribution(

C̃1

n1,n
, . . . ,

C̃i
ni,n

)
d−→ (e−c/µ, . . . , e−c/µ), as n→∞.

Proof. Notice that it is enough to show our claim for i = 1 since convergence in distribution
to a constant is equivalent to convergence in probability, and thus, one can easily deduce
the joint convergence for every fixed i ∈ N. Given n1,n, we see that T1,n is a split tree with
n1,n balls. Notice that supercritical Bernoulli bond-percolation in T1,n corresponds to a
percolation parameter satisfying

1− pn1,n
= c/ lnn1,n + o (1/ lnn1,n) ,

where c > 0 is fixed. Notice also that Corollary 6 implies that (lnn1,n)/ lnn → 1, in
probability, as n → ∞. Hence 1 − pn1,n

= 1 − pn + op (1/ lnn). Therefore, a simple
application of [7, Lemma 2] shows that C̃1/n1,n → e−c/µ, in distribution, as n→∞, which
proves the second assertion. Moreover, [7, Lemma 2] also shows that C̃∗1/n1,n → 0, in
distribution, as n → ∞, and by Corollary 6, we conclude that C̃∗1 = op(n/ lnn). This
completes the proof. J
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I Corollary 8. Suppose that Condition 1 holds and that pn fulfills (1). Then, for every fixed
i ∈ N, we have the convergence in distribution(

lnn
n
C̃1, . . . ,

lnn
n
C̃i

)
d−→ (x1, . . . , xi), as n→∞,

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random measure on
(0,∞) with intensity cµ−1e−c/µx−2dx.

Proof. This follows from Corollary 6, Proposition 7, the mapping theorem ([8, Theorem 2.7,
Chapter 1]) and basic distributional properties of the atoms of Poisson random measures. J

The last ingredient in the proof of Theorem 1 consists in verifying that for every fixed
i ∈ N, one can choose ` ∈ N large enough such that with probability tending to 1, as n→∞,
the i-th largest percolation cluster of T sp

n can be found amongst the root-clusters of the
percolated tree-components T1,n, . . . , T`,n. Rigorously, denote by

C̃1,` ≥ C̃2,` ≥ · · · ≥ C̃`,`

the rearrangement in decreasing order of the C̃i for i = 1, . . . , `. We then adapt the idea of
[3, Lemma 6] (details are given in the complete version [6]).

I Lemma 9. Suppose that Condition 1 holds and that pn fulfills (1). Then for each fixed
i ∈ N,

lim
`→∞

lim inf
n→∞

P
(
C̃k,` = Ck for every k = 1, . . . , i

)
= 1.

We can now finish the proof of Theorem 1.

Proof of Theorem 1. We have already proven the first claim in [7, Lemma 2]. We then only
prove the second claim. For every fixed i ∈ N, consider a continuous function f : [0,∞)i →
[0, 1] and fix ε > 0. According to Lemma 9, we may choose ` ∈ N sufficiently large so that
there exists nε ∈ N such that the upper bound

E
[
f

(
lnn
n
C1, . . . ,

lnn
n
Ci

)]
≤ E

[
f

(
lnn
n
C̃1,`, . . . ,

lnn
n
C̃i,`

)]
+ ε

holds for all n ≥ nε. We now deduce from Corollary 8 and the previous bound that

lim sup
n→∞

E
[
f

(
lnn
n
C1, . . . ,

lnn
n
Ci

)]
≤ E [f (x1, . . . , xi)] + ε.

Because ε can be arbitrary small and f replaced by 1− f , this establishes Theorem 1. J
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