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Abstract
We study the partial duplication dynamic graph model, introduced by Bhan et al. in [3] in which a
newly arrived node selects randomly an existing node and connects with probability p to its neighbors.
Such a dynamic network is widely considered to be a good model for various biological networks
such as protein-protein interaction networks. This model is discussed in numerous publications
with only a few recent rigorous results, especially for the degree distribution. Recently Jordan [9]
proved that for 0 < p < 1

e
the degree distribution of the connected component is stationary with

approximately a power law. In this paper we rigorously prove that the tail is indeed a true power law,
that is, we show that the degree of a randomly selected node in the connected component decays
like C/kβ where C an explicit constant and β 6= 2 is a non-trivial solution of pβ−2 + β − 3 = 0. This
holds regardless of the structure of the initial graph, as long as it is connected and has at least
two vertices. To establish this finding we apply analytic combinatorics tools, in particular Mellin
transform and singularity analysis.
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1 Introduction

Recent years have seen a growing interest in dynamic graph models [10]. These models are
often claimed to describe well various real-world structures, such as social networks, citation
networks and various biological data. For example, protein-protein are widely viewed as
driven by an internal evolution mechanism based on duplication and mutation. In this case,
new nodes are added to the network as copies of existing nodes together with some random
divergence. It has been claimed that graphs generated from these models exhibit many
properties characteristic for real-world networks such as power-law degree distribution, the
large clustering coefficient, and a large amount of symmetry [4]. However, some of these
results turned out not to be correct; in particular, the power-law degree distribution was
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16:2 Power-Law Degree Distribution in the Connected Component of a Duplication Graph

disproved in [7]. In this paper we focus on the tail distribution of the connected component
of such networks and show rigorously the existence of a power law improving and making
more precise recent result of Jordan [9].

The model analyzed in this paper is known as the partial (pure) duplication model, in
which a new node selects an existing node and connects to its neighbors with probability p.
More precisely, the model is defined formally as follows: let 0 < p ≤ 1 be the only parameter
of the model. In discrete steps repeat the following procedure: first, choose a single vertex u
uniformly at random. Then, add a new vertex v and for all vertices w such that uw is an
edge (i.e., w is a neighbor of u) flip a coin independently at random (heads with probability
p, tails with 1 − p) and add vw edge if and only if we got heads. The partial duplication
model was defined by Bhan et al. in [3] and then was further studied in [1, 4, 7, 9, 8].

The case when p = 1, also called the full duplication model, was analyzed recently in the
context of graph compression in [13]. In particular, it was formally proved that the expected
logarithm of the number of automorphisms (symmetries) for such graphs on n vertices is
asymptotically Θ(n logn), which in turn lead us to an asymptotically efficient compression
algorithm for such case.

The partial duplication case 0 < p < 1 was given much more attention, however, with very
few rigorous results. It was first and foremost analyzed to find the stationary distribution of
the degree, that is,

fk = lim
n→∞

fk(n) = lim
n→∞

Fk(n)
n

= lim
n→∞

Pr[deg(Un) = k],

where fk(n) and Fk(n) are, respectively, the average fraction and the average number of
vertices of degree k in a graph generated by this model and Un is a random variable denoting
a vertex chosen uniformly at random from a graph on n vertices generated from the partial
duplication model. Hermann and Pfaffelhuber in [7] proved that this process (fk(n))∞n=n0

converges always to the limit f0 = 1 and fk = 0 for all other k when p ≤ p∗ = 0.57 . . . (that
is, p∗ being the unique root of pep = 1), regardless of the initial graph. They have also shown
that if p > p∗ there exists only a defective distribution of the degrees with f0 = c < 1 for
a certain constant c (depending on the initial graph) and fk = 0 for all other k. For the
average degree distribution see also [14].

This result, although it refuted the power law behavior of the whole graph claimed by
[4, 2], also showed that asymptotically almost all vertices are isolated. This has still left the
possibility that it might be the case that a graph generated by the partial duplication model
with the isolated vertices removed exhibits such property. Note that by a simple inductive
argument it is obvious that if a vertex is isolated at the time of its insertion, then it stays
isolated forever, and if it was connected to other vertex, then it remains connected, so if the
inital graph is connected, then there can only be one component containing all non-isolated
vertices. This was exactly the route pursued by Jordan in [9]. Using probabilistic tools such
as the quasi-stationary distribution of a certain continuous time Markov chain embedding
of the original discrete graph growth process, Jordan was able to prove that for 0 < p < 1

e

there is an approximate power law behavior in the pure duplication graphs. More precisely,
let us define for a vertex (denoted by Un) picked uniformly at random from a graph on n
vertices generated from the duplication model the following conditional probability

ak(n) = Pr[deg(Un) = k|deg(Un) 6= 0] = fk(n)∑∞
i=1 fi(n)

= fk(n)
1− f0(n) . (1)

Jordan proved that ak(n) → ak as n → ∞ as long as the underlying process is positive
recurrent which holds for p < 1

e [9]. Moreover, Jordan showed that for β(p) 6= 2 being the
solution of pβ−2 + β − 3 = 0 the tail behavior of ak is approximately a power law in the
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sense that it is lighter than any heavier tailed power law (with any index β(p) + ε, ε > 0)
and heavier than any lighter tailed power law (with index β(p)− ε, ε > 0). This is of vital
interest in this area since β(p) ∈ (2, 3), which is exactly the range of the power law exponents
for various real-world biological graphs, such as protein-protein newtorks [4].

It is worth noting that it partially confirmed the non-rigorous result by Ispolatov et al.
from [8], who claimed that the connected component exhibits a power-law distribution both
for 0 < p < 1

e (with index β(p) as above), and for 1
e ≤ p <

1
2 (with index 2). Furthermore,

by the virtue of (1) observe, following [9, 7], that f0(n) = 1− o(1) and fk(n) = o(1) for k ≥ 1
which begs the question of the asymptotic behavior of fk(n) for large k and n. Certainly
fk(n) does not grow linearly with n as suggested in some papers (cf. [2]). We conjecture
that fk(n) = O(n−α(p)k−β(p)) for some 1 < α(p) < 2 and β(p) > 2, but this problem is left
for future research.

In this paper we finally establish the precise behavior of the tail of the degree distribution
for pure duplication model for 0 < p < 1

e completing the work of Jordan [9]. More precisely,
we use tools of analytic combinatorics such as the Mellin transform and singularity analysis
to prove in Theorem 2 that the tail of a node degree in the connect component of the partial
duplication model decays as C/kβ(p) where C an explicit constant.

The paper is organized as follows: in Section 2 we present a formal definition of the model,
introduce the tracked vertex approach, and the quasi-stationary distribution as defined by
Jordan in [9]. In Section 3 we state and establish our main results using Mellin transform
and singularity analysis. In concluding Section 4 we indicate a possible extension of our
findings and point to some further work.

2 The model and Jordan’s approach

We follow the standard graph-theoretical notation, e.g., from [5]. We consider only simple
graphs, i.e., graphs without loops or parallel edges.

Let us recall first the definition of the pure duplication model. Let Gn0 = (Vn0 , En0) be
an initial graph with a set of vertices Vn0 and a set of edges En0 , such that |Vn0 | = n0 ≥ 2.
Throughout the paper, let us assume that Gn0 is fixed and connected. For n = n0, n0 + 1, . . .
we build Gn+1 = (Vn+1, En+1) from Gn = (Vn, En) in the following way:
1. pick a vertex u ∈ Vn uniformly at random,
2. create a new node vn+1 and let Vn+1 = Vn ∪ {vn+1}, En+1 = En,
3. for every w ∈ Vn such that uw ∈ En add edge vn+1w to En+1 independently at random

with probability p.
We call the process G = (Gn)∞n=n0

the partial duplication graph.
Jordan in [9] introduced the continuous-time embedding of this process, defined as

following: start at time t = 0 with a fixed connected graph Γ0 = Gn0 and let (Γt)t≥0 be
a continuous time Markov chain on graphs, where each vertex is duplicated independently
at times following a Poisson process of rate 1, with the rules for duplication as in the pure
duplication model.

Jordan also defined the so called vertex tracking approach: we pick a vertex from Γ0
uniformly at random and then define the continuous-time process (Vt)t≥0 in the following
way: at time t we jump to a vertex v if and only if the vertex Vt− was duplicated and its
„child” is v. He proved that for any k ≥ 1 and for another continuous-time process (Ut)t≥0
being defined as a uniform choice of vertices over Γt we have

lim
t→∞

Pr[deg(Ut) = k]
Pr[deg(Vt) = k] = 1.

Therefore, asymptotically the behavior of a tracked vertex approximates the behavior of a
random vertex in Γt when t→∞, and therefore in Gn when n→∞.

AofA 2020
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The tracked vertex approach allowed Jordan to construct the generatorQ of the continuous-
time Markov chain (deg(Vt))t≥0, defined over the state space N0, with the following transitions

qj,k =
(
j

k

)
pk(1− p)j−k for 0 ≤ k ≤ j − 1,

qj,j = −jp−
(
1− pj

)
,

qj,j+1 = jp.

Then Jordan proceeded to the analysis of the quasi-stationary distribution (ak)∞k=1, i.e.,
the left eigenvector of a subset of Q, defined as before. We relate this distribution to the
eigenvalue −λ (see [11] for details of this approach) being the solution of the equation
AQ = −λQ, where A = (ak)∞k=1. This leads us to the following equation:

∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k = −(k − 1)pak−1 − (λ− kp− 1) ak (2)

for k = 1, 2, 3, . . ..
Using (2) and the generating function A(z) =

∑∞
k=0 akz

k Jordan found the following
differential-functional equation

A(pz + 1− p) = (1− λ)A(z) + pz(1− z)A′(z) +A(1− p). (3)

Notice that the above equation implies that A(0) = 0. Since it is a sum of limits for
probability distributions, by Fatou’s lemma |A(z)| ≤ 1 for |z| ≤ 1. By letting z → 1− in (3)
and assuming finite A′(1) we get A(1− p) = λA(1).

Furthermore with the identity

A′(z) = A(pz + 1− p)−A(1)
pz(1− z) − (1− λ)A(z)−A(1)

pz(1− z) (4)

and letting z → 1− Jordan found

A′(1) = −A′(1) + 1− λ
p

A′(1),

namely, if A′(1) is non-zero and finite, then λ = 1− 2p. Finally, using the assumptions that
the distribution (ak)∞k=0 is non-degenerate (i.e.,

∑∞
k=0 ak = A(1) = 1) and that the mean

degree A′(1) is finite, Jordan found that for 0 < p < 1
e the quasi-stationary distribution ak

does not have q-th moment for pq−2 + q − 3 < 0.
In summary Jordan proved the following result.

I Theorem 1 ([9, Theorem 2.1(3)]). Assume 0 < p < 1
e . Let β(p) > 2 be the solution of

pβ−2 + β − 3 = 0. Then the tail behaviour of (ak)∞k=0 has a power law of index β(p), in the
sense that as k →∞,

lim
k→∞

ak
kq

= 0 for q < β(p),

lim
k→∞

ak
kq

=∞ for q > β(p).

In the next section we present our refinement of this theorem and provide precise
asymptotics for (ak)∞k=0.
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3 Main results

In this section we state and prove the main result of our paper that is a refinement of
Theorem 1.

I Theorem 2. If 0 < p < 1
e , then the stationary distribution (ak)∞k=0 of the pure duplication

model has the following asymptotic tail behavior as k →∞:

ak
kβ(p) = 1

E(1)− E(∞) ·
p−

1
2 (β(p)− 3

2 )2Γ(β(p)− 2)
D(β(p)− 2)(p−β(p)+2 + ln(p))Γ(−β(p) + 1)

(
1 +O

(
1
k

))
(5)

where β(p) > 2 is the non-trivial solution of pβ−2 + β − 3 = 0, Γ(s) is the Euler gamma
function and

D(s) =
∞∏
i=0

(
1 + p1+i−s(s− i− 2)

)
, (6)

E(1)− E(∞) = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s) ds, for c ∈ (0, 1).

In Figure 1 we present numerical values of the functions involved in the formula above.
It clear that that all coefficients in (5) are positive for 0 < p < 1

e .
The rest of this section is devoted to the proof of our main result. We will accomplish

it by a series of lemmas. The main idea is as follows: we take (3) and apply a series of
substitutions to obtain a functional equation which is in suitable form for applying Mellin
transform. Observe that we cannot apply directly Mellin transform to the functional equation
(5) due to the term A(pz + 1− p).

It is already known from [9] that A′(1) is non-zero and finite, hence λ = 1− 2p. First, let
us substitute z = 1− v and B(v) = A(1− v) in (3). Thus

A(1− pv) = 2pA(1− v) + pv(1− v)A′(1− v) +A(1− p),
B(pv) = 2pB(v)− pv(1− v)B′(v) +A(1− p).

Observe now that the functional equation on B(v) is suitable for the Mellin transform. To
ease some computation let w = 1

v and C(w) = B
( 1
w

)
. Then

B
( p
w

)
= 2pB

(
1
w

)
− p

w

(
1− 1

w

)
B′
(

1
w

)
+A(1− p),

C

(
w

p

)
= 2pC(w) + p(w − 1)C ′(w) +A(1− p). (7)

Therefore, we are essentially looking at the solution of (7) with boundary conditions
C(1) = A(0) = 0 and limw→∞ C(w) = A(1) (which is equal to 1, as pointed out in [9]).

Our objective is to find an asymptotic expansion for C(w) when w →∞. Notice that it
is equivalent to finding the asymptotic expansion of A(z) when z → 1 by inferior values. For
this purpose we will use the Mellin transform which is a powerful tool for extracting accurate
asymptotic expansions [12]. Unfortunately we cannot directly apply the Mellin transform
over function C(w) since the behavior of C(w) for w → 0 is yet unknown. To circumvent this
problem we search for a similar function E(w) defined by the following functional equation

E

(
w

p

)
= 2pE(w) + p(w − 1)E′(w) +K (8)

AofA 2020
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(a) β(p). (b) E(1)− E(∞).

(c) D(β(p)− 2). (d) p−
1
2 (β(p)− 3

2 )2
Γ(β(p)−2)

(p−β(p)+2+ln(p))Γ(−β(p)+1)
.

Figure 1 Numerical values of different parts of (3) for 0 < p < 1
e
.

for some constant K for which we shall postulate that the Mellin transform

E∗(s) =
∫ ∞

0
ws−1E(w) dw

exists in some fundamental strip.
To connect E(w) with our function C(w) we notice that it holds necessarily that C(1) = 0

which corresponds to the fact that A(0) = 0. Clearly, if E(w) is the solution of (8) with
finite values of both E(1) and E(∞) = limw→∞E(w) (which will be shown later to be the
case), then it is also true that

C(w) = A(1) E(w)− E(1)
E(∞)− E(1) (9)

is the solution of (7) with C(1) = 0 which also satisfies limw→∞ C(w) = A(1) = 1.
Let us now proceed through definition and lemmas. We first define

E∗(s) = p−
1
2 (s− 1

2 )2 Γ(s)
D(s) (10)

for D(s) =
∏∞
j=0

(
1 + p1+j−s(s− j − 2)

)
defined already in (6).
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Now notice that D(s) = 0 implies 1 +p1+j−s(s− j−2) = 0 for some j ∈ N. This equation
for 0 < p < 1

e has only two solutions: s = j+ 1 and s = j+ 1 + s∗, where s∗ is the non-trivial
(i.e. other than s = 0) solution of ps + s− 1 = 0.

Therefore, E∗(s) has only simple, isolated poles of three types:
for s = 0,−1,−2, . . ., introduced by Γ(s),
for s = 1, 2, 3, . . ., introduced by 1

D(s) ,
for s = s∗ + 1, s∗ + 2, s∗ + 3, . . ., introduced by 1

D(s) .
Moreover, if we omit these poles, then D(s) converges to a non-zero finite value when
Re(s) < 0 because pi−s exponentially decays. We summarize it in the next lemma.

I Lemma 3. For Re(s) ∈ (−1, 0) and 0 < p < 1
e it holds that 1

|D(s)| is absolutely convergent.

Due to its technical intricacies, the proof of Lemma 3 was moved to the Appendix. In
Figure 2 we present an example plot of values of 1

|D(s)| .

Figure 2 Numerical values of 1
|D(c+it)| for p = 0.2 and c = −0.5.

I Lemma 4. For 0 < p < 1
e it holds that

E∗(s) = p(s− 1)
ps + ps− 2pE

∗(s− 1).

Proof. We have the identity

p
1
2 (s− 1

2 )2

Γ(s) E∗(s) = p
1
2 (s− 3

2 )2

Γ(s− 1)E
∗(s− 1) 1

1 + p1−s(s− 2) .

Thus

E∗(s) = p−
1
2 (s− 1

2 )2+ 1
2 (s− 3

2 )2

1 + p1−s(s− 2)
Γ(s)

Γ(s− 1)E
∗(s− 1) = p1−s

1 + p1−s(s− 2)(s− 1)E∗(s− 1)

since Γ(s)
Γ(s−1) = s − 1. Multiplying by numerator and denominator by ps completes the

proof. J

AofA 2020
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We now define for any given c ∈ (−1, 0)

E(w) = 1
2πi

∫
Re(s)=c

E∗(s)w−s ds = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s)w

−s ds. (11)

Notice that this integral converges for any complex value of w with Im(w)→ ±∞ because
from Lemma 3 it follows that 1

|D(s)| is bounded by a constant and Γ(s)p− 1
2 (s− 1

2 )2 decays
faster than any polynomial. Furthermore the value of E(w) does not depend on the value of
quantity c thanks to Cauchy’s theorem.

I Lemma 5. The function E(w) has function E∗(s) as its Mellin transform with its funda-
mental strip being {s : Re(s) ∈ (−1, 0)}.

Proof. We have

|E(w)| ≤ |w|
−c

2π

∫ +∞

−∞
|E∗(c+ it)| exp(arg(w)t) dt.

Now, it is easy to spot that E(c+ it) = O
(

exp
(
− t

2

2

))
since ln(p) < −1, thus the integral∫ +∞

−∞ |E
∗(c + it)| exp(arg(w)t) dt absolutely converges and it follows that E(w) = O(w−c).

Since it is true for any values of c ∈ (−1, 0) when w → 0 and w → ∞, then the Mellin
transforms of function E(w) exists with the fundamental strip {s : Re(s) ∈ (−1, 0)}.

Furthermore, its Mellin transform is E∗(s) because (11) is exactly the inverse Mellin
transform formula. J

I Lemma 6. There exists a value K independent of w such that

R(w) = −Res
[
E∗(s− 1)p(s− 1)w−s, s = 0

]
= −K.

Proof. The expression

R(w) = E

(
w

p

)
− 2pE(w)− p(w − 1)E′(w)

can be also expressed via an integral as

R(w) = 1
2πi

∫
Re(s)=c

E∗(s)
(
psw−s − 2pw−s + spw−s − spw−s−1) ds

which can be rewritten as follows

R(w) = 1
2πi

∫
Re(s)=c

E∗(s) (ps − 2p+ ps)w−s ds

− 1
2πi

∫
Re(s)=c+1

E∗(s− 1)p(s− 1)w−s ds

= 1
2πi

∫
Re(s)=c

((ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1))w−s ds

− Res[p(s− 1)E∗(s− 1), s = 0]

since∫
Re(s)=c+1

p(s− 1)E∗(s− 1)w−s ds−
∫

Re(s)=c
p(s− 1)E∗(s− 1)w−s ds

define a contour path which encircles a simple pole at s = 0 in the counter-clockwise (i.e.,
positive) direction.
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Furthermore from Lemma 3 it follows that

(ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1) = 0,

therefore the integral vanishes and finally R(w) = −Res[p(s− 1)E∗(s− 1), s = 0] = −K for
some constant K independent of w. J

I Lemma 7. It holds that

K = −p
− 1

8 (1− 2p)
D(0) , E(∞) = p−

1
8

D(0) .

Furthermore,

E(∞)− E(1) = − 1
2πi

∫
Re(s)=c

E∗(s) ds, for c ∈ (0, 1). (12)

Proof. From Lemma 6 we have

K = Res[p(s− 1)E∗(s− 1), s = 0] = p−
1
8

D(−1) .

Moreover, from the definition D(0) = (1− 2p)D(−1), which establishes the first identity.
To find an expression for E(∞) is a little more delicate. Indeed from (11) we find

E(w) = −Res
[
E∗(s)w−s, s = 0

]
+ 1

2πi

∫
Re(s)=c′

E∗(s)w−s ds

by assuming the contour path is moved right to origin for some c′ ∈ (0, 1). It turns out that
0 is the simple pole encountered in the move, as D(s) 6= 0 for all other s with Re(s) ∈ (0, 1).

Furthermore, the integral on Re(s) = c′ is in O(w−c′) as w →∞, which allows to conclude
that E(w) = −Res[E∗(s)w−s, s = 0] +O(w−c′) with c′ ∈ (0, 1), thus

E(∞) = lim
w→∞

E(w) = − lim
w→∞

Res
[
E∗(s)w−s, s = 0

]
= −Res[E∗(s), s = 0] = − p−

1
8

D(0) .

Finally,

E(∞)− E(1) = −Res[E(s), s = 0]− 1
2πi

∫
Re(s)=c

E∗(s) ds = − 1
2πi

∫
Re(s)=c′

E∗(s) ds

for, respectively, c ∈ (−1, 0) and c′ ∈ (0, 1) since

1
2πi

∫
Re(s)=c′

E∗(s) ds− 1
2πi

∫
Re(s)=c

E∗(s) ds = Res[E(s), s = 0].

This completes the proof. J

Note that D(0) > 0 since every element in the product is positive for 0 < p < 1
e . Therefore

K > 0 and E(∞) < 0.
Finally we proceed with the proof of the main theorem.

Proof of Theorem 2. Recall the observation that E∗(s) has poles for s ∈ {1, 2, . . .} ∪ {s∗ +
1, s∗ + 2, . . .} ∪ {0,−1,−2, . . .}, for s∗ – the non-zero solution of ps + s− 1 = 0. Note that if
0 < p < 1

e , then s
∗ > 0.

AofA 2020
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Re(s)

Im(s)

−3 −2 −1 0 1 2 3

−3

−2

−1

1

2

3

Figure 3 Example integration area for E∗(s) and E(w) with s∗ = 0.7 and M = 2.5.

Therefore, for any c ∈ (−1, 0) and a rectangle as presented in Figure 3, we are in position
to write

C(w) = 1
E(∞)− E(1)

1
2πi

∫
Re(s)=c

E∗(s)w−s ds− E(1)
E(∞)− E(1)

= − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res

[
E∗(s)w−s, s = 1

])
− 1
E(∞)− E(1)

(
Res
[
E∗(s)w−s, s = 2

]
+ Res

[
E∗(s)w−s, s = s∗ + 1

])
+ 1
E(∞)− E(1)

1
2πi

∫
Re(s)=M

E∗(s)w−s ds (13)

for any number M ∈ (2, 2 + s∗).
The quantity

1
2πi

∫
Re(s)=M

E∗(s)w−s ds = O(w−M )

since w−s = w−Mw− Im(s) and the integral in E∗(s)w− Im(s) absolutely converge. Again this
holds by a similar argument that was used in Lemma 3: p− 1

2 (s− 1
2 )2 decays exponentially

faster than Γ(s)
D(s)w

Im(s) for complex s.
By virtue of the residue theorem

C(w) = − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res[E∗(s), s = 1]w−1)

− 1
E(∞)− E(1)

(
Res[E∗(s), s = 2]w−2 + Res[E∗(s), s = s∗ + 1]w−1−s∗

)
+O(w−M ). (14)

This formula gives us an asymptotic expansion of C(w) up to order w−M whereM ∈ (2, 2+s∗).
In fact, for more precise computations it is possible an expansion to any desired value M ,

just by including all the residues of the poles in k (k ∈ N) and k + s∗ (k ∈ N+) which are
smaller than M as for 0 < p < 1

e all poles are simple.
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Next, there are computed the first residues, e.g.,

Res
[
E∗(s)w−s, s = 0

]
=
[
p−

1
2 (s− 1

2 )2 w−s

D(s)

]
s=0

= p−
1
8

D(0) = −E(∞),

Res
[
E∗(s)w−s, s = 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1)

]
s=1

= p−
1
8

1 + ln(p)
w−1

D(0) ,

Res
[
E∗(s)w−s, s = s∗ + 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1)

]
s=s∗+1

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ − (s∗ − 1)p−s∗ ln(p)

w−s
∗−1

D(s∗)

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ + ln(p)

w−s
∗−1

D(s∗) .

Observe that in the formulas above both 1 and s∗+1 are not the zeros of p1−s−(s−2)p1−s ln(p),
so all the presented expressions have finite value.

Now it is the moment to use the classic Flajolet-Odlyzko transfer theorem [6] to (9) and
(14) and obtain

A(z) = 1− 1
E(∞)− E(1)

p−
1
8

1 + ln(p)
1− z
D(0)

− 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )Γ(s∗)
p−s∗ + ln(p)

(1− z)1+s∗

D(s∗)

− 1
E(∞)− E(1) Res[E∗(s), s = 2](1− z)2

− 1
E(∞)− E(1) Res[E∗(s), s = s∗ + 2](1− z)s

∗+2 + o((1− z)2+s∗).

Finally, (1− z)α for α ∈ N is a polynomial and does not contribute to the asymptotics.
And for α ∈ R+ \ N [6] it holds that

[zk](1− z)α = k−α−1

Γ(−α)

(
1 +O

(
1
k

))
,

[zk]o(1− z)α = o(k−α−1).

This leads to the final result, which holds for large k:

ak = [zk]A(z)

= − 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )2Γ(s∗)
(p−s∗ + ln(p))Γ(−s∗ − 1)

1
D(s∗)k

−s∗−2
(

1 +O

(
1
k

))
.

Note that since s∗ is the non-trivial real solution of ps + s − 1 = 0, equivalently the
exponent may be written as β(p) = s∗ + 2 – the the non-trivial (i.e., other than 2) real
solution of the equation pβ−2 + β − 3 = 0.

Putting all the results together we obtain (5) of Theorem 2. Now it is sufficient to confirm
that if 0 < p < 1

e , then the tail exponent β(p) > 2, which means that A′(1) is indeed finite.
This proves Theorem 2. J
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4 Discussion

We proved rigorously the power-law behavior for asymptotic degree distribution of the
connected component of the duplication graph 0 < p < 1

e . There remains therefore an open
question whether the similar results may be obtained for p ≥ 1

e .
On the one hand, recall the non-rigorous claim in [8] that for 1

e ≤ p <
1
2 the index of the

power law is equal to 2. Interestingly, β = 2 is the largest solution of pβ−2 + β − 3 = 0 for
p ≥ 1

e .
On the other hand, Jordan [9, Proposition 3.7] has shown that the dual Markov chain

with respect to the eigenvalue λ = 1− 2p is transient for all p > 1
e – which suggests that the

eventual proof should rely on other value of λ. This problem is left for future research.
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A Proof of Lemma 3

We now proceed to the proof of Lemma 3. First, let us introduce f(s) = ps + ps− 2p, so that

D(s) =
∞∏
i=0

f(s− i)p−(s−i).

Observe that f(s) has only two roots, given by Lambert function W , which is the inverse
of function xex: W−1(x) = xex. There are only two roots for real numbers which corresponds
to two branches W0 and W−1 of the function W . Therefore, any chosen c < 0 is smaller than
the roots of f(s) and the distance between c and any root is at least 1.

I Lemma 8. For all 0 < ε < 1 and c < 0 it holds that minRe(s)=c |f(s)| ≥ Θ(p(1−ε)(c−1)) > 0.

Proof. We have f ′(s) = ps ln(p) + p and f ′′(s) = ps ln2(p).
Let us consider a complex disk of radius R = p−ε(c−1) (R < 1) centered on s. For

θ ∈ (0, 2π) by virtue of Taylor-Young theorem we have:

f(s+Reiθ) = f(s) + f ′(s)eiθR+
∫ R

0
f ′′(s+ ρeiθ)e2iθρdρ.

Now observe that∣∣∣∣∣
∫ R

0
f ′′(s+ ρeiθ)e2iθρdρ

∣∣∣∣∣ =

∣∣∣∣∣ps ln2(p)e2iθ
∫ R

0
pρ exp(iθ)ρ dρ

∣∣∣∣∣
=
∣∣∣ps (eR exp(iθ) ln(p) [R exp(iθ) ln(p)− 1] + 1

)∣∣∣
= O

(∣∣psR2e2iθ∣∣) = O
(
pcR2) ,

where the last line follows from the fact that asymptotically ex(x− 1) + 1 = O(x2) for x→ 0.
When θ varies the quantity f ′(s)eiθR describes a circle of radius |f ′(s)|R = (−pc ln(p) +

O(p))R around f(s). The error term bound implies that each point of f(s + Reiθ) is at
distance O(pcR2) of this circle. Thus the image by f of the disk with center s and radius R
contains the disk of center f(s) and radius

R|f ′(s)| −O(R2pc) = −p−ε(c−1)pc ln(p)−O(p1−ε(c−1))−O
(
p−2ε(c−1)pc

)
= p(1−ε)(c−1)

(
−p ln(p)−O(p1−c)−O(p−ε(c−1))

)
= Θ(p(1−ε)(c−1)).

The point s = 0 cannot be in this disk, otherwise the function f(s) would have other
roots than the expected ones, thus necessarily |f(s)| ≥ Θ(p(1−ε)(c−1)). J

Let now g(s) = p−sf(s) so that

D(s) =
∞∏
i=0

g(s− i).

I Lemma 9. For t real and c < 0, the following inequality holds

|g(c+ it)| ≥ |1− p1−c(2− c)− p1−c|t||.

Proof. We have

|g(c+ it)| = |p−cf(c+ it)| = |pit + p1−c(c− 2) + p1−cit|
≥ ||pit| − |p1−c(c− 2)| − |p1−cit||.

But now observe that |pit| = 1, which completes the proof. J
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I Lemma 10. For c ∈ (−1, 0) and for all real number t outside any neighborhood of 0, for
all ε > 0 it is true that 1

D(c+it) = O(exp
(
−(log2

p |t|/2 +O(log |t|)
)
.

Proof. From Lemmas 8 and 9, it follows that:

|D(c+ it)| ≥
∏
k≥0

max{Bp−ε(1−c),
∣∣1− (|t|+ 2 + k − c)pk+1−c∣∣}

For a given real number t, we denote k(t) the largest integer k such that (|t|+2+k−c)pk+1−c >

1, and we split the product at k = k(t):

|D(c+ it)| ≥
∏

k<k(t)

(
(|t|+ 2 + k − c) pk+1−c − 1

)
B′|t|−ε

∏
k>k(t)

(
1− (|t|+ 2 + k − c) pk+1−c)

≥

 ∏
k<k(t)

(
pk−k(t)

(
1− (k(t)− k) pk(t)+1−c

)
− 1
)

B′|t|−ε
∏

k>k(t)

(
1− pk−k(t)

(
1− (k(t)− k) pk(t)−c

))
Now∏

k>k(t)

(
1− pk−k(t)

(
1− (k(t)− k) pk(t)−c

))
≥
∏
k>0

(1− pk).

Furthermore
∏
k<k(t) p

k−k(t) ≥ pk(t)(k(t)−1)/2, thus∏
k<k(t)

(
pk−k(t)

(
1− (k(t)− k) pk(t)+1−c − 1

))
≥ pk(t)(k(t)−1)/2

∏
k>0

(1− pk).

Finally, p−k(t) = |t|p−c and therefore

|D(c+ it)| ≥ pk(t)(k(t)−1)/2B′|t|−ε
∏
k>0

(1− pk)2 = B′′
|t|−ε

(|t|p−c)(k(t)−1)/2 .

We conclude, since k(t) = c− logp |t|. J

Notice that D(c+ it) tends to infinity when |t| → ∞. To conclude the proof of Lemma 3
it is sufficient to observe that the function 1/D(s) for s is any compact set containing a
neighborhood of Re(s) and away from the roots of f(s) is naturally bounded by dominated
convergence of the product.
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