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Abstract
We study here the so called subsequence pattern matching also known as hidden pattern matching in
which one searches for a given pattern w of length m as a subsequence in a random text of length
n. The quantity of interest is the number of occurrences of w as a subsequence (i.e., occurring in
not necessarily consecutive text locations). This problem finds many applications from intrusion
detection, to trace reconstruction, to deletion channel, and to DNA-based storage systems. In all of
these applications, the pattern w is of variable length. To the best of our knowledge this problem
was only tackled for a fixed length m = O(1) [6]. In our main result Theorem 5 we prove that
for m = o(n1/3) the number of subsequence occurrences is normally distributed. In addition, in
Theorem 6 we show that under some constraints on the structure of w the asymptotic normality
can be extended to m = o(

√
n). For a special pattern w consisting of the same symbol, we indicate

that for m = o(n) the distribution of number of subsequences is either asymptotically normal or
asymptotically log normal. We conjecture that this dichotomy is true for all patterns. We use
Hoeffding’s projection method for U -statistics to prove our findings.
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1 Introduction and Motivation

One of the most interesting and least studied problem in pattern matching is known as
the subsequence string matching or the hidden pattern matching [11]. In this case, we
search for a pattern w = w1w2 · · ·wm of length m in the text Ξn = ξ1 . . . ξn of length n

as subsequence, that is, we are looking for indices 1 ≤ i1 < i2 < · · · < im ≤ n such that
ξi1 = w1, ξi2 = w2, . . . , ξim = wm. We say that w is hidden in the text Ξn. We do not put
any constraints on the gaps ij+1− ij , so in language of [6] this is known as the unconstrained
hidden pattern matching. The most interesting quantity of such a problem is the number of
subsequence occurrences in the text generated by a random source. In this paper, we study
the limiting distribution of this quantity when m, the length of the pattern, grows with n.

Hereafter, we assume that a memoryless source generates the text Ξ, that is, all symbols
are generated independently with probability pa for symbol a ∈ A, where the alphabet A
is assumed to be finite. We denote by pw =

∏
j pwj the probability of the pattern w. Our

goal is to understand the probabilistic behavior, in particular, the limiting distribution of
the number of subsequence occurrences that we denote by Z := ZΞ(w). It is known that
the behavior of Z depends on the order of magnitude of the pattern length m. For example,
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17:2 Hidden Words Statistics for Large Patterns

for the exact pattern matching (i.e., the pattern w must occur as a string in consecutive
positions of the text), the limiting distribution is normal for m = O(1) (more precisely, when
npw → ∞, hence up to m = O(logn)), but it becomes a Pólya–Aeppli distribution when
npw → λ > 0 for some constant λ, and finally (conditioned on being non-zero) it turns
into a geometric distribution when npw → 0 [11] (see also [1]). We might expect a similar
behaviour for the subsequence pattern matching. In [6] it was proved by analytic combinatoric
methods that the number of subsequence occurrences, ZΞ(w), is asymptotically normal when
m = O(1), and not much is known beyond this regime. (See also [2]. Asymptotic normality
for fixed m follows also by general results for U -statistics [9].) However, in many applications
– as discussed below – we need to consider patterns w whose lengths grow with n. In this
paper, we prove two main results. In Theorem 5 we establish that for m = o(n1/3) the
number of subsequence occurrences is normally distributed. Furthermore, in Theorem 6 we
show that under some constraints on the structure of w, the asymptotic normality can be
extended to m = o(

√
n). Moreover, for the special pattern w = am consisting of the same

symbol repeated, we show in Theorem 4 that for m = o(
√
n), the distribution of number

of occurrences is asymptotically normal, while for larger m (up to cn for some c > 0) it
is asymptotically log-normal. We conjecture that this dichotomy is true for a large class
of patterns.

Regarding methodology, unlike [6] we use here probabilistic tools. We first observe that Z
can be represented as a U -statistic (see (2)). This suggests to apply the [9] projection method
to prove asymptotic normality of Z for some large patterns. Indeed, we first decompose
Z into a sum of orthogonal random variables with variances of decreasing order in n (for
m not too large), and show that the variable of the largest variance converges to a normal
distribution, proving our main results Theorems 5 and 6.

The hidden pattern matching problem, especially for large patterns, finds many applica-
tions from intrusion detection, to trace reconstruction, to deletion channel, to DNA-based
storage systems [8, 5, 3, 11, 16]. Here we discuss below in some detail two of them, namely
the deletion channel and the trace reconstruction problem.

A deletion channel [5, 3, 4, 13, 16, 17] with parameter d takes a binary sequence Ξn =
ξ1 · · · ξn where ξi ∈ A as input and deletes each symbol in the sequence independently with
probability d. The output of such a channel is then a subsequence ζ = ζ(x) = ξi1 ...ξiM of
Ξ, where M follows the binomial distribution Binom(n, (1− d)), and the indices i1, ..., iM
correspond to the bits that are not deleted. Despite significant effort [3, 13, 14, 16, 17] the
mutual information between the input and output of the deletion channel and its capacity are
still unknown. We hope to provide a more detailed characterization of the mutual information
for memoryless sources using results of this and forthcoming papers. Indeed, it turns out
that the mutual information I(Ξn; ζ(Ξn)) can be exactly formulated as the problem of the
subsequence pattern matching. In [5] it was proved that

I(Ξn;ζ(Ξn))=
∑
w

dn−|w|(1− d)|w|(E[ZΞn(w)logZΞn(w)] −E[ZΞn(w)] logE[ZΞn(w)]) , (1)

where the sum is over all binary sequences of length smaller than n and ZΞn(w) is the
number of subsequence occurrences of w in the text Ξn. As one can see, to find precise
asymptotics of the mutual information we need to understand the probabilistic behavior of
Z for m ≤ n and typical w, which is our long term goal. The trace reconstruction problem
[10, 15, 18] is related to the deletion channel problem since we are asking how many copies
of the output deletion channel we need to see until we can reconstruct the input sequence
with high probability.
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2 Main Results

In this section we formulate precisely our problem and present our main results. Proofs are
delayed till the next section.

2.1 Problem formulation and notation
We consider a random string Ξn = ξ1 . . . ξn of length n. We assume that ξ1, ξ2, . . . are i.i.d.
random letters from a finite alphabet A; each letter ξi has the distribution P(ξi = a) = pa
where a ∈ A, for some given vector p = (pa)a∈A; we assume pa > 0, a ∈ A.

Let w = w1 · · ·wm be a fixed string of length m over the same alphabet A. We assume
n ≥ m. Let pw :=

∏m
j=1 pwj , which is the probability that ξ1 · · · ξm equals w.

Let Z = Zn,w(ξ1 · · · ξn) be the number of occurrences of w as a subsequence of ξ1 · · · ξn.
For a set S (in our case [n] or [m]) and k ≥ 0, let

(S
k

)
be the collection of sets α ⊆ S with

|α| = k. Thus,
∣∣(S
k

)∣∣ =
(|S|
k

)
. For k = 0,

(S
0
)
contains just the empty set ∅. For k = 1, we

identify
(S

1
)
and S in the obvious way. We write α ∈

([n]
k

)
as {α1, . . . , αk}, where we assume

that α1 < · · · < αk. Then

Z =
∑

α∈([n]
m)
Iα, where Iα =

m∏
j=1

1{ξαj = wj}, α1 < . . . < αm. (2)

I Remark 1. In the limit theorems, we are studying the asymptotic distribution of Z. We
then assume that n→∞ and (usually) m→∞; we thus implicitly consider a sequence of
words w(n) of lengths mn = |w(n)|. But for simplicity we do not show this in the notation.

We have E Iα = pw for every α. Hence,

EZ =
∑

α∈([n]
m)

E Iα =
(
n

m

)
pw. (3)

Further, let Yα := p−1
w Iα, so EYα = 1, and

Z∗ := p−1
w Z =

∑
α∈([n]

m)
Yα, (4)

so EZ∗ =
(
n
m

)
and

Z∗ − EZ∗ = p−1
w Z −

(
n

m

)
=

∑
α∈([n]

m)

(
Yα − 1

)
. (5)

We also write ‖Y ‖p :=
(
E |Y |p

)1/p for the Lp norm of a random variable Y , while ‖x‖
is the usual Euclidean norm of a vector x in some Rm. C denotes constants that may be
different at different occurrences; they may depend on the alphabet A and (pa)a∈A, but
not on n, m or w. Finally, d−→ and p−→ mean convergence in distribution and probability,
respectively.

We are now ready to present our main results regarding the limiting distribution of Z,
the number of subsequence w = a1, . . . am occurrences when m→∞. We start with a simple
example, namely, w = am = a · · · a for some a ∈ A, and show that depending on whether
m = o(

√
n) or not the number of subsequences will follow asymptotically either the normal

distribution or the log-normal distribution.
Before we present our results we consider asymptotically normal and log-normal distribu-

tions in general, and discuss their relation.

AofA 2020
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2.2 Asymptotic normality and log-normality
If Xn is a sequence of random variables and an and bn are sequences of real numbers, with
bn > 0, then Xn ∼ AsN(an, bn) means that

Xn − an√
bn

d−→ N(0, 1). (6)

We say that Xn is asymptotically normal if Xn ∼ AsN(an, bn) for some an and bn, and
asymptotically log-normal if lnXn ∼ AsN(an, bn) for some an and bn (this assumes Xn ≥ 0).
Note that these notions are equivalent when the asymptotic variance bn is small, as made
precise by the following lemma.

I Lemma 2. If bn → 0, and an are arbitrary, then

lnXn ∼ AsN(an, bn) ⇐⇒ Xn ∼ AsN(ean , bne2an). (7)

Proof. By replacing Xn by Xn/e
an , we may assume that an = 0. If lnXn ∼ AsN(0, bn)

with bn → 0, then lnXn
p−→ 0, and thus Xn

p−→ 1. It follows that lnXn/(Xn − 1) p−→ 1
(with 0/0 := 1), and thus

Xn − 1
b
1/2
n

= Xn − 1
lnXn

lnXn

b
1/2
n

d−→ N(0, 1), (8)

and thus Xn ∼ AsN(1, bn). The converse is proved by the same argument. J

I Remark 3. Lemma 2 is best possible. Suppose that lnXn ∼ AsN(an, bn). If bn → b > 0,
then ln

(
Xn/e

an
)

= lnXn − an
d−→ N(0, b), and thus

Xn/e
an d−→ eζb , ζb ∼ N(0, b). (9)

In this case (and only in this case), Xn thus converges in distribution, after scaling, to a
log-normal distribution. If bn →∞, then no linear scaling of Xn can converge in distribution
to a non-degenerate limit, as is easily seen.

2.3 A simple example
We consider first a simple example where the asymptotic distribution can be found easily by
explicit calculations. Fix a ∈ A and let w = am = a · · · a, a string with m identical letters.
Then, if N = Na is the number of occurrences of a in ξ1 · · · ξn, then

Z =
(
Na
m

)
. (10)

We will show that Z is asymptotically normal if m is small, and log-normal for larger m.

I Theorem 4. Suppose that m < npa, with npa −m� n1/2.
(i) Then

lnZ ∼ AsN
(

ln
(
npa
m

)
, n
∣∣∣ln(1− m

npa

)∣∣∣2pa(1− pa)
)
. (11)

(ii) In particular, if m = o(n), then

lnZ ∼ AsN
(

ln
(
npa
m

)
,
(
p−1
a − 1

)m2

n

)
. (12)
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(iii) If m = o
(
n1/2), then this implies

Z/EZ ∼ AsN
(

1,
(
p−1
a − 1

)m2

n

)
, (13)

and thus

Z ∼ AsN
(
EZ,

(
p−1
a − 1

)m2

n
(EZ)2

)
. (14)

Proof. (i) We have Na ∼ Bin(n, pa). Define Y := Na − npa. Then, by the Central Limit
Theorem,

Y ∼ AsN
(
0, npa(1− pa)

)
. (15)

By (10), we have

lnZ − ln
(
npa
m

)
= ln

(
npa + Y

m

)
− ln

(
npa
m

)
= ln Γ(npa + Y + 1)− ln Γ(npa + Y −m+ 1)− lnm!
−
(
ln Γ(npa + 1)− ln Γ(npa −m+ 1)− lnm!

)
=
∫ Y

y=0

∫ 0

x=−m
(ln Γ)′′(npa + x+ y + 1) dxdy. (16)

We fix a sequence ωn →∞ such that npa−m� ωn � n1/2; this is possible by the assumption.
Note that (15) implies that Y/ωn

p−→ 0, and thus P(|Y | ≤ ωn) → 1. We may thus in the
sequel assume |Y | ≤ ωn. We assume also that n is so large that npa −m ≥ 2ωn > 0.

Stirling’s formula implies, by taking the logarithm and differentiating twice (in the
complex half-plane Re z > 1

2 , say)

(ln Γ)′′(x) = 1
x

+O
( 1
x2

)
= 1
x

(
1 +O

( 1
x

))
, x ≥ 1. (17)

Consequently, (16) yields, noting the assumptions just made imply |Y | ≤ ωn ≤ 1
2 (npa −m),

lnZ − ln
(
npa
m

)
=
∫ Y

y=0

∫ 0

x=−m

1
npa + x+ y + 1

(
1 +O

( 1
npa −m

))
dxdy

=
∫ Y

y=0

∫ 0

x=−m

1
npa + x

(
1 +O

( ωn
npa −m

))
dxdy

=
(

1 +O
( ωn
npa −m

))
Y

∫ 0

x=−m

1
npa + x

dx

=
(
1 + o(1)

)
Y ln npa

npa −m
. (18)

Consequently, using also (15), we obtain

lnZ − ln
(
npa
m

)
n1/2

∣∣ln(1− m
npa

)∣∣ =
(
1 + op(1)

) Y

n1/2
d−→ N

(
0, pa(1− pa)

)
, (19)

which is equivalent to (11).

AofA 2020
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(ii) If m = o(n), then
∣∣ln(1− m

npa

)∣∣ ∼ m
npa

, and (12) follows.
(iii) If m = o(n1/2), then (ii) applies, so (12) holds; hence Lemma 2 implies

Z/

(
npa
m

)
∼ AsN

(
1,
(
p−1
a − 1

)m2

n

)
. (20)

Furthermore,

EZ =
(
n

m

)
pma = nmeO(m2/n)

m! pma ∼
nm

m! p
m
a (21)

and, similarly,
(
npa
m

)
∼ nmpma

m! . Hence, EZ ∼
(
npa
m

)
and (13) follows from (20); (14) is an

immediate consequence. J

2.4 General results
We now present our main results. However, first we discuss the road map of our approach.
First, we observe that the representation (2) shows that Z can be viewed as a U -statistic.
For convenience, we consider Z∗ in (4), which differs from Z by a constant factor only,
and show in (41) that Z∗ − EZ∗ can be decomposed into a sum

∑m
`=1 V` of orthogonal

random variables V` such that, when m is not too large, Var
(∑m

`=2 V`
)

= o(VarV1). Next,
in Lemma 11 we prove that V1 appropriately normalized converges to the standard normal
distribution. This will allow us to conclude the asymptotic normality of Z.

In this paper, we only consider the region m = o
(
n1/2). First, for m = o

(
n1/3) we claim

that the number of subsequence occurrences always is asymptotically normal.

I Theorem 5. If m = o
(
n1/3), then

Z ∼ AsN
((n

m

)
pw, σ

2
1p

2
w

)
, (22)

where

σ2
1 =

n∑
i=1

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1
j − 1

)(
n− i
m− j

)2

− n
(
n− 1
m− 1

)2
. (23)

Furthermore, EZ =
(
n
m

)
pw and VarZ ∼ p2

wσ
2
1.

In the second main result, we restrict the patterns w to such that are not typical for the
random text; however, we will allow m = o

(
n1/2).

I Theorem 6. Let q = (qa)a∈A be the proportions of the letters in w, i.e., qa :=
1
m

∑m
j=1 1{wj = a}. Suppose that lim infn→∞ ‖q−p‖ > 0. If further m = o

(
n1/2), then the

asymptotic normality (22) holds.

3 Analysis and Proofs

In this section we will prove our main results. We start with some preliminaries.

3.1 Preliminaries and more notation
Let, for a ∈ A,

ϕa(x) := p−1
a 1{x = a} − 1. (24)
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Thus, letting ξ be any random variable with the distribution of ξi,

Eϕa(ξ) = 0, a ∈ A. (25)

Let p∗ := mina pa and

B := p−1
∗ − 1. (26)

I Lemma 7. Let ϕa and B be as above.
(i) For every a ∈ A,

E
[
ϕa(ξ)2] = p−1

a − 1 ≤ B. (27)

(ii) For some c1 > 0 and every a ∈ A,

‖ϕa(ξ)‖2 =
(
p−1
a − 1

)1/2 ≥ c1. (28)

(iii) For any vector r = (ra)a∈A with
∑
a ra = 1,∥∥∥∑

a∈A
raϕa(ξ)

∥∥∥
2
≥ ‖r− p‖ :=

(∑
a∈A
|rα − pα|2

)1/2
. (29)

Proof. The definition (24) yields

E
[
ϕa(ξ)2] = p−2

a Var
[
1{ξ = a}

]
= p−2

a pa(1− pa) = p−1
a − 1. (30)

Hence, (27) and (28) follow, with B given by (26).
Finally, for every x ∈ A, by (24) again,∑
a∈A

raϕa(x) = rxp
−1
x −

∑
a∈A

ra = rx/px − 1 (31)

and thus

E
(∑
a∈A

raϕa(ξ)
)2

=
∑
a∈A

pa
(
ra/pa − 1

)2 =
∑
a∈A

p−1
a

(
ra − pa

)2 (32)

and (29) follows. J

3.2 A decomposition
The representation (2) shows that Z is a special case of a U -statistic. For fixed m, the
general theory of [9] applies and yields asymptotic normality. (Cf. [12, Section 4] for a related
problem.) For m→∞ (our main interest), we can still use the orthogonal decomposition of
[9], which in our case takes the following form.

By the definitions in Section 2.1 and (24),

Yα =
m∏
j=1

(
p−1
wj 1{ξαj = wj}

)
=

m∏
j=1

(
ϕwj (ξαj ) + 1

)
. (33)

By multiplying out this product, we obtain

Yα =
∑
γ⊆[m]

∏
j∈γ

ϕwj (ξαj ). (34)

AofA 2020
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Hence,

Z∗ =
∑

α∈([n]
m)
Yα =

∑
α∈([n]

m)

∑
γ⊆[m]

∏
j∈γ

ϕwj (ξαj ) =
∑

α∈([n]
m)

∑
γ⊆[m]

|γ|∏
k=1

ϕwγk (ξαγk ). (35)

We rearrange this sum. First, let ` := |γ| ∈ [m], and consider all terms with a given `. For
each α and γ, with |γ| = `, let

αγ := {αγ1 , . . . , αγ`} ∈
(

[n]
`

)
. (36)

For given γ ∈
([m]
`

)
and β ∈

([n]
`

)
, the number of α ∈

([n]
m

)
such that αγ = β equals the

number of ways to choose, for each k ∈ [`+ 1], γk − γk−1− 1 elements of α in a gap of length
βk − βk−1 − 1, where we define β0 = γ0 = 0 and β`+1 = n+ 1, γ`+1 = m+ 1; this number is

c(β, γ) :=
`+1∏
k=1

(
βk − βk−1 − 1
γk − γk−1 − 1

)
. (37)

Consequently, combining the terms in (35) with the same αγ ,

Z∗ =
m∑
`=0

∑
γ∈([m]

` )

∑
β∈([n]

` )
c(β, γ)

∏̀
k=1

ϕwγk (ξβk). (38)

We define, for 0 ≤ ` ≤ m and β ∈
([n]
`

)
,

V`,β :=
∑

γ∈([m]
` )
c(β, γ)

∏̀
k=1

ϕwγk (ξβk) (39)

and

V` :=
∑

β∈([n]
` )
V`,β . (40)

Thus (38) yields the decomposition

Z∗ =
m∑
`=0

V`. (41)

For ` = 0,
([n]

0
)
contains only the empty set ∅, and

V0 = V0,∅ =
(
n

m

)
= EZ∗. (42)

Furthermore, note that two summands in (38) with different β are orthogonal, as a con-
sequence of (25) and independence of different ξi. Consequently, the variables V`,β (` ∈ [m],
β ∈

([n]
`

)
) are orthogonal, and hence the variables V` (` = 0, . . . ,m) are orthogonal.

Let

σ2
` := Var(V`) = EV 2

` =
∑

β∈([m]
` )

EV 2
`,β , 1 ≤ ` ≤ m. (43)
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Note also that by the combinatorial definition of c(β, γ) given before (37), we see that∑
β∈([n]

` )
c(β, γ) =

(
n

m

)
, (44)

since this is just the number of α ∈
([n]
m

)
, and∑

γ∈([m]
` )
c(β, γ) =

(
n− `
m− `

)
, (45)

since this sum is the total number of ways to choose m− ` elements of the n− ` elements of
α in the gaps.

3.3 The projection method
We use the projection method used by [9] to prove asymptotic normality for U -statistics.
Translated to the present setting, the idea of the projection method is to approximate
Z∗ − EZ∗ = Z∗ − V0 by V1, thus ignoring all terms with ` ≥ 2 in the sum in (41). In order
to do this, we estimate variances.

First, by (27) and the independence of the ξi,∥∥∥∏̀
k=1

ϕwγk (ξβk)
∥∥∥

2
=
(∏̀
k=1

E
∣∣ϕwγk (ξβk)

∣∣2)1/2
≤ B`/2. (46)

By Minkowski’s inequality, (39), (46) and (45),∥∥V`,β∥∥2 ≤
∑

γ∈([m]
` )
c(β, γ)B`/2 = B`/2

(
n− `
m− `

)
(47)

or, equivalently,

EV 2
`,β ≤ B`

(
n− `
m− `

)2
. (48)

This leads to the following estimates.

I Lemma 8. For 1 ≤ ` ≤ m,

σ2
` := EV 2

` ≤ σ̂2
` := B`

(
n

`

)(
n− `
m− `

)2
. (49)

Proof. The definition of V` in (40) and (48) yield, since the summands V`,β are orthogonal,

σ2
` := EV 2

` =
∑

β∈([n]
` )

EV 2
`,β ≤

(
n

`

)
B`
(
n− `
m− `

)2
, (50)

as needed. J

Note that, for 1 ≤ ` < m,

σ̂2
`+1
σ̂2
`

= B

(
n
`+1
)(
n−`−1
m−`−1

)2(
n
`

)(
n−`
m−`

)2 = B
n− `
`+ 1

(m− `
n− `

)2
≤ B m2

(`+ 1)n. (51)

AofA 2020



17:10 Hidden Words Statistics for Large Patterns

I Lemma 9. If m ≤ B−1/2n1/2, then

Var
(
Z∗ − V1

)
≤ B2m2

(
n− 1
m− 1

)2
. (52)

Proof. By (51) and the assumption, for 1 ≤ ` < m,

σ̂2
`+1
σ̂2
`

≤ 1
`+ 1 ≤

1
2 , (53)

and thus, summing a geometric series,

Var
(
Z∗ − V1

)
=

m∑
`=2

Var
(
V`
)
≤

m∑
`=2

σ̂2
` ≤

m∑
`=2

22−`σ̂2
2 ≤ 2σ̂2

2

= B2n(n− 1)
(
n− 2
m− 2

)2
≤ B2m2

(
n− 1
m− 1

)2
. (54)

J

3.4 The first term V1

For ` = 1, we identify
([n]
`

)
and [n], and we write V1,i := V1,{i}. Note that, by (37),

c(i, j) := c
(
{i}, {j}

)
=
(
i− 1
j − 1

)(
n− i
m− j

)
. (55)

Thus (40) and (39) become

V1 =
n∑
i=1

V1,i (56)

with, using (55),

V1,i =
m∑
j=1

c(i, j)ϕwj (ξi) =
m∑
j=1

(
i− 1
j − 1

)(
n− i
m− j

)
ϕwj (ξi). (57)

Note that V1,i is a function of ξi, and thus the random variables V1,i are independent.
Furthermore, (25) implies EV1,i = 0. Let τ2

i := VarV1,i = EV 2
1,i. Then, see (43),

σ2
1 = VarV1 =

n∑
i=1

VarV1,i =
n∑
i=1

τ2
i . (58)

Observe that it follows from (57) and (24) that

τ2
i =

∑
a∈A

p−1
a

 ∑
j: wj=a

(
i− 1
j − 1

)(
n− i
m− j

)2

−
(
n− 1
m− 1

)2
. (59)

Taking ` = 1 in (48) yields the upper bound

τ2
i = EV 2

1,i ≤ B
(
n− 1
m− 1

)2
, i ∈ [n]. (60)
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Summing over i, or using (49), we obtain

σ2
1 := EV 2

1 ≤ σ̂2
1 := Bn

(
n− 1
m− 1

)2
. (61)

We notice that the upper bound is achievable. Indeed, for w = a · · · a, by (59) and (58),

τ2
i = (p−1

a − 1)
(
n− 1
m− 1

)2
, σ2

1 = n(p−1
a − 1)

(
n− 1
m− 1

)2
. (62)

We show also a general lower bound.

I Lemma 10. There exists c, c′ > 0 such that

σ2
1 ≥

c

m
σ̂2

1 = c′
n

m

(
n− 1
m− 1

)2
. (63)

Proof. We consider the first term in the sum in (57) separately, and write

V1,i = c(i, 1)ϕw1(ξi) + V ′1,i, (64)

where

V ′1,i :=
m∑
j=2

c(i, j)ϕwj (ξi). (65)

We have, by (55), c(i, 1) =
(
n−i
m−1

)
. Consequently, for any i ∈ [n],

c(i, 1)
c(1, 1) =

(
n−i
m−1

)(
n−1
m−1

) =
∏m−2
k=0 (n− i− k)∏m−2
k=0 (n− 1− k)

=
m−2∏
k=0

(
1− i− 1

n− 1− k

)
≥ 1−

m−2∑
k=0

i− 1
n− 1− k ≥ 1− m(i− 1)

n−m+ 1 . (66)

Let δ ≤ 1/4 be a fixed small positive number, chosen later. Assume that i ≤ 1 + δn/m.
In particular, either i = 1 or m ≤ m(i− 1) ≤ δn < n/2, and thus (66) implies

c(i, 1)
c(1, 1) ≥ 1− m(i− 1)

n−m
≥ 1− δn

n/2 = 1− 2δ. (67)

By (45), (67) implies

m∑
j=2

c(i, j) =
(
n− 1
m− 1

)
− c(i, 1) = c(1, 1)− c(i, 1) ≤ 2δc(1, 1). (68)

Hence, by (65), Minkowski’s inequality and (27), cf. (47),

∥∥V ′1,i∥∥2 ≤
m∑
j=2

c(i, j)
∥∥ϕwj (ξi)∥∥2 ≤

m∑
j=2

c(i, j)B1/2 ≤ 2δB1/2c(1, 1). (69)

Furthermore, (28) and (67) yield∥∥c(i, 1)ϕw1(ξi)
∥∥

2 ≥ c(i, 1)c1 ≥ c1(1− 2δ)c(1, 1) ≥ 1
2c1c(1, 1). (70)
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Finally, (64) and the triangle inequality yield, using (70) and (69),∥∥V1,i
∥∥

2 ≥
∥∥c(i, 1)ϕw1(ξi)

∥∥
2 −

∥∥V ′1,i∥∥2 ≥
( 1

2c1 − 2δB1/2)c(1, 1). (71)

We now choose δ := c1/(8B1/2), and find that for some c2 > 0,

τ2
i :=

∥∥V1,i
∥∥2

2 ≥ c2c(1, 1)2, i ≤ 1 + δn/m. (72)

Consequently, by (58),

σ2
1 =

n∑
i=1

τ2
i ≥

δn

m
c2c(1, 1)2 = c3

n

m

(
n− 1
m− 1

)2
. (73)

This proves (63), with c′ := c3 and c = c′/B. J

The next lemma is proved in the Appendix in which we verify Lyapunov’s condition to
prove asymptotic normality of V1.

I Lemma 11. Suppose that m = o(n). Then V1 is asymptotically normal:

V1/σ1
d−→ N(0, 1). (74)

3.5 Proofs of Theorem 5 and 6
We next prove a general theorem showing asymptotic normality under some conditions.

I Theorem 12. Suppose that n→∞ and that

m2
(
n− 1
m− 1

)2
= o
(
σ2

1
)
. (75)

Then

VarZ = p2
w VarZ∗ ∼ p2

wσ
2
1 (76)

and
Z∗ − EZ∗

σ1

d−→ N(0, 1), (77)

Z − EZ
(VarZ)1/2 = Z∗ − EZ∗

(VarZ∗)1/2
d−→ N(0, 1). (78)

Proof. By Lemma 9 and (75),

Var
(Z∗ − V1

σ1

)
= Var(Z∗ − V1)

σ2
1

≤ B2m
2(n−1
m−1

)2
σ2

1
= o(1). (79)

Hence, recalling EV1 = 0,

Z∗ − EZ∗ − V1

σ1

p−→ 0. (80)

Combining (74) and (80), we obtain (77).
Furthermore, by (79), and since the terms in (41) are orthogonal,

VarZ∗ = VarV1 + Var
(
Z∗ − V1

)
= σ2

1 + o(σ2
1) ∼ σ2

1 , (81)

which yields (76), and also shows that we may replace σ1 by (VarZ∗)1/2 in (77), which yields
(78); the equality in (78) is a trivial consequence of (4). J
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Now we are ready to prove our main results.

Proof of Theorem 5. By Lemma 10,

m2(n−1
m−1

)2
σ2

1
≤ Cm

3

n
= o(1). (82)

Thus (75) holds, and the result follows by Theorem 12 together with (3) and (4). J

Recall that in Theorem 6, the range of m is improved, assuming that w is not typical for
the random source with probabilities p = (pa)a∈A that we consider.

Proof of Theorem 6. By Theorem 12, with (75) verified by Lemma 13 below. J

I Lemma 13. Let q = (qa)a∈A be the proportions of the letters in w. Then

σ2
1 ≥

m2

n

(
n

m

)2
‖q − p‖2 = n

(
n− 1
m− 1

)2
‖q − p‖2. (83)

Proof. Let

ψi(x) :=
m∑
j=1

c(i, j)ϕwj (x). (84)

Thus (57) is V1,i = ψi(ξi), and (58) is, since Eψi(ξ) = 0,

σ2
1 = VarV1 =

n∑
i=1

E
[
ψi(ξi)2] = E

n∑
i=1

ψi(ξ)2. (85)

Hence, by the Cauchy–Schwarz inequality,

nσ2
1 = nE

n∑
i=1

ψi(ξ)2 ≥ E
( n∑
i=1

ψi(ξ)
)2
. (86)

Furthermore, by (84) and (44)
n∑
i=1

ψi(x) =
n∑
i=1

m∑
j=1

c(i, j)ϕwj (x) =
m∑
j=1

(
n

m

)
ϕwj (x) =

(
n

m

)∑
a∈A

mqaϕa(x). (87)

Hence, (29) yields∥∥∥ n∑
i=1

ψi(ξ)
∥∥∥

2
= m

(
n

m

)∥∥∥∑
a∈A

qaϕa(ξ)
∥∥∥

2
≥ m

(
n

m

)
‖q − p‖. (88)

Combining (86) and (88) yields (83). J
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A Appendix

A.1 Proof of Lemma 11
We show that the central limit theorem applies to the sum V1 =

∑
i V1,i in (56). The terms

V1,i are independent and have means EV1,i = 0. We verify Lyapunov’s condition.
The random variable ξ is defined on some probability space (Ω,F , P ) and takes values

in the finite set A. Thus the linear space V of functions Ω→ R of the form f(ξ) has finite
dimension |A|. Moreover, every function in V is bounded. The L2 and L3 norms ‖ · ‖2 and
‖ · ‖3 are thus finite on V , and are thus both norms on the finite-dimensional vector space V ;
hence there exists a constant C such that for any function f ,

‖f(ξ)‖3 ≤ C‖f(ξ)‖2. (89)

In particular, since the definition (57) shows that V1,i is a function of ξi
d= ξ,

‖V1,i‖3 ≤ C‖V1,i‖2 = Cτi, 1 ≤ i ≤ n. (90)

Furthermore, by (60) and (63),

maxi τ2
i

σ2
1

≤
B
(
n−1
m−1

)2
c′ nm

(
n−1
m−1

)2 = C
m

n
= o(1). (91)

https://doi.org/10.1145/1120582.1120586
http://arxiv.org/abs/1808.02336
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Consequently, using (90), (58) and (91),∑n
i=1 E |V1,i|3

σ3
1

=
∑n
i=1 ‖V1,i‖33
σ3

1
≤
C
∑n
i=1 τ

3
i

σ3
1

≤ C
maxi τi

∑n
i=1 τ

2
i

σ3
1

= C
maxi τi
σ1

= o(1). (92)

This shows the Lyapunov condition, and thus a standard form of the central limit theorem,
[7, Theorem 7.2.4 or 7.6.2], yields (74).
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