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—— Abstract

Simple heuristics for (combinatorial) optimization problems often show a remarkable performance in
practice. Worst-case analysis often falls short of explaining this performance. Because of this, “beyond
worst-case analysis” of algorithms has recently gained a lot of attention, including probabilistic
analysis of algorithms.

The instances of many (combinatorial) optimization problems are essentially a discrete metric
space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been
conducted on instances drawn from Euclidean space, which provides a structure that is usually
heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little
work has been done on metric instances drawn from other, more realistic, distributions. Some initial
results have been obtained in recent years, where random shortest path metrics generated from
dense graphs (either complete graphs or Erdés—Rényi random graphs) have been used so far.

In this paper we extend these findings to sparse graphs, with a focus on grid graphs. A random
shortest path metric is constructed by drawing independent random edge weights for each edge
in the graph and setting the distance between every pair of vertices to the length of a shortest
path between them with respect to the drawn weights. For such instances generated from a grid
graph, we prove that the greedy heuristic for the minimum distance maximum matching problem,
and the nearest neighbor and insertion heuristics for the traveling salesman problem all achieve
a constant expected approximation ratio. Additionally, for instances generated from an arbitrary
sparse graph, we show that the 2-opt heuristic for the traveling salesman problem also achieves a
constant expected approximation ratio.
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1 Introduction

Large-scale optimization problems, such as the traveling salesman problem (TSP), are relevant
for many applications. Often it is not possible to solve these problems to optimality within a
reasonable amount of time, especially when instances get larger. Therefore, in practice these
kind of problems are tackled by using approximation algorithms or ad-hoc heuristics. Even
though the worst-case performance of these, often simple, heuristics is usually rather bad,
they often show a remarkably good performance in practice.
? Stefan Klootwijk a.nd Bodo Manth.ey;
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In order to find theoretical results that are closer to the practical observations, probabilistic
analysis has been a useful tool over the last decades. One of the main challenges here is to
choose a probability distribution on the set of possible instances of the problem: on the one
hand this distribution should be sufficiently simple in order to make the probabilistic analysis
possible, but on the other hand the distribution should somehow reflect realistic instances.

In the “early days” of probabilistic analysis, random instances were either generated
by using independent random edge lengths or embedded in Euclidean space (e.g. [2, 11]).
Although these models have some nice mathematical properties that enable the probabilistic
analysis, they have shortcomings regarding their realism: in practice, instances are often
metric, but not Euclidean, and independent random edge lengths are not even metric.

Recently, Bringmann et al. [6] widened the scope of models for generating random
instances by using the following model, already proposed by Karp and Steele in 1985 [17]:
given an undirected complete graph, draw edge weights independently at random and then
define the distance between any two vertices as the total weight of the shortest path between
them, measured with respect to those random weights. Even though this model broadens the
scope of random metric spaces, the resulting instances from this model are not very realistic.

In this paper we adapt this model in the sense that we start with a sparse graph instead
of a complete graph. We believe that this yields instances that are more realistic, for
instance since in practice the underlying (road, communication, etc.) networks are almost
always sparse.

Related Work

The model described above is known by two different names: random shortest path metrics
and first-passage percolation. It was introduced by Hammersley and Welsh under the latter
name as a model for fluid flow through a (random) porous medium [12, 14]. A lot of studies
have been conducted on first-passage percolation, mostly on this model defined on the
lattice Z.

For first-passage percolation on complete graphs many structural results exist. We know
for instance that the expected distance between two arbitrary fixed vertices is approximately
In(n)/n and that the distance from a fixed vertex to the vertex that is farthest away from it is
approximately 21n(n)/n [6, 15]. We also know that the diameter in this case is approximately
31n(n)/n [13, 15]. Bringmann et al. used this model to analyze heuristics for matching, TSP
and k-median [6].

There has been a lot of interest in first-passage percolation on the integer lattice Z<.
Although very few precise results are known for this model, there are many existential results
available. For instance, the distance between the origin and ne; (where e; is the unit vector
in the first coordinate direction) is known to be ©(n) [12]. Also, the set of vertices within
distance t from the origin grows linearly in ¢ and, after rescaling, converges to some convex
domain [20]. The survey by Auffinger et al. [1] contains a thorough overview.

Our Results

This paper aims at extending the results of Bringmann et al. [6] and Klootwijk et al. [18]
to the more realistic setting of random shortest path metrics generated from sparse graphs.
For simplicity, most of the results in this paper assume that these sparse graphs are (finite
square) grid graphs. We believe that the probabilistic analysis of simple heuristics in different
random models will enhance the understanding of the performance of these heuristics, which
are used in many applications.
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In this paper we consider two different types of simple heuristics. In Section 4 we conduct
a probabilistic analysis of three greedy-like heuristics: the greedy heuristic for the minimum-
distance perfect matching problem, and the nearest neighbor heuristic and insertion heuristic
for the TSP. In Section 5 we conduct a probabilistic analysis of a local search heuristic: the
2-opt heuristic for the TSP. We show that all four heuristics yield a constant approximation
ratio for random shortest path metrics generated from (finite square) grid graphs (greedy-like
in Section 4) or arbitrary sparse graphs (local search in Section 5). We are aware that our
results are mostly purely theoretical, because, e.g., cheapest insertion already achieves an
approximation ratio of 2 and is often used to initialize 2-opt [10, 21]. However, they are
non-trivial results about practically used algorithms, beyond the classical worst-case analysis.

2 Notation and Model

For n € N, we use [n] as shorthand notation for {1,...,n}. Sometimes we use exp(-) to denote
the exponential function. We denote by X ~ P that a random variable X is distributed
according to a probability distribution P, where in particular Exp()A) denotes the exponential
distribution with parameter \. We write X ~ > | Exp();) if X is the sum of n independent
exponentially distributed random variables having parameters \1,...,A,. In particular,
X ~ 3" | Exp()\) denotes an Erlang distribution with parameters n and A. If a random
variable X7 is stochastically dominated by a random variable X5, i.e., we have F;(z) > Fs(x)
for all = (where F; is the distribution function of X;), we denote this by X1 3 Xo.

Random Shortest Path Metrics

Given an undirected connected graph G = (V, E), the corresponding random shortest path
metric is constructed as follows. First, for each edge e € E, draw a random edge weight w(e)
independently according to the exponential distribution with parameter 1. (Exponential
distributions are technically easiest to handle since they are memoryless.) Then, define the
distance function d : V' x V' — Ry as follows: for each u,v € V, d(u,v) is the total weight
of a lightest u, v-path in G (w.r.t. to the random weights w(-)). Observe that this definition
immediately implies that d(v,v) = 0 for all v € V, that d(u,v) = d(v,u) for all u,v € V, and
that d(u,v) < d(u, s) +d(s,v) for all u,s,v € V. We call the distance function d obtained by
this process a random shortest path metric generated from G.

We use the following notation to denote properties of these random shortest path metrics.
Apax 1= max, , d(u,v) denotes the diameter of the random metric. The A-ball around a
vertex v, Ba(v) := {u € V | d(u,v) < A}, is the set of vertices within distance A of v. Let
7 (v) denote the kth closest vertex from v (including v itself and breaking ties arbitrarily).
Note that v = 71 (v) for all v € V. The distance from a vertex v to this kth closest vertex from
it is denoted by 7 (v) := d(v, mi(v)) = min{A | |Ba(v)| > k}. Slightly abusing notation, we
let B, (»)(v) := {m(v) | i =1,...,k} denote the set of the k closest vertices to v (including
v itself). The size of the cut in G induced by this set, which plays an important role in our
analysis, is denoted by xx(v) := [0(B, (v)(v))], where 6(U) := {{u,v} € E |u € U,v ¢ U}
denotes the cut induced by U.

During our analysis in Sections 4 and 5 it is convenient to describe (partial) solutions to
the minimum-distance perfect matching problem and the TSP as sets of “edges”. In order to
emphasize that such “edges” in principle do not coincide with edges from G, we use quotation
marks to distinguish them.
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Sparse Graphs

Throughout this paper, G is a sparse connected undirected simple graph on n vertices, i.e., we
have |E| = ©(|V|) = ©(n). Most of the results in this paper are restricted to a specific class
of sparse graphs, namely the finite square grid graph. This graph has vertex set V = [N]?,
and two vertices (x1,y1), (x2,y2) € V are connected if and only if |z1 — za| + |y1 — y2| = 1.
It is easy to see that for these graphs we have |V| =n = N? and |E| = 2N? — 2N = O(n).

For practical reasons we assume in this paper that n is even. Note that the results
concerning the minimum-distance perfect matching problem are only valid when n is even.
All results concerning the travelling salesman problem can easily be extended to odd n.

3  Structural Properties

In this section, we provide some structural properties regarding sparse random shortest
path metrics that are used later on in our probabilistic analyses of the greedy heuristic for
maximum matching and the 2-opt heuristic for the TSP in such random metric spaces. We
start of with some technical lemmas from known literature and some results regarding sums
of lightest edge weights in G (which hold for arbitrary sparse graphs). After that, we consider
a random growth process that is closely related to the special case of random shortest path
metrics generated from a finite square grid graph and use it to derive a clustering result and
a tail bound on the diameter Ay ax.

Technical Lemmas

» Lemma 1 ([16, Thm. 5.1(i,iii)]). Let X ~ > Exp(a;). Let p =E[X] =", 1/a; and
a, = min; a;.
(i) For any A\ > 1,

P(X > M) < A lexp (—aspu(A—1—1In(\)).
(iii) For any A <1,
P(X < Au) <exp(—a.pu(A—1—1In(}N))).

» Corollary 2. Let X ~ > " Exp(a;). Let p=E[X]| =" 1/a; and a, = min; a;. For
any .,

P(X <) < exp (aupe (1 + In(a/p))

Proof. Let X := x/u. If A <1, the result is a weaker version of Lemma 1(iii). If A > 1, then
1+ In(z/u) > 0 and hence P(X < z) <1 < exp(a.pu(l +1n(x/p))). <

» Lemma 3 ([5, Thm. 2(ii)]). Let X ~ > " Exp(\;) and Y ~ > Exp(n). Then

1=

XY if and only if H A <™
i=1

Sums of Lightest Edge Weights in G

All main results in this paper make use of some observations relating sums of the m lightest
edge weights in a sparse graph GG. The lemmas and corollary below summarize some structural
properties concerning these sums. They hold for arbitrary sparse graphs G.
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» Lemma 4. Let S, denote the sum of the m lightest edge weights in G. Then

m— m—1
Z <6|E><S ‘<ZEXp<|E|>
=0 =0
Proof. Let o denote the kth lightest edge weight in G. Since all edge weights are independent
and standard exponentially distributed, we have o1 = S; ~ Exp(|E|). Using the memory-
lessness property of the exponential distribution, it follows that oy ~ o1 + Exp(|E| — 1),
e., the second lightest edge weight is equal to the lightest edge weight plus the min-
imum of |E| — 1 standard exponential distributed random variables. In general, we get
okt+1 ~ o + Exp(|E| — k). The definition S,,, = Y7~ o) yields

m—1 m—1
El -1
S~ Y (m—i)-Exp(|B] —i) ~ ZExp<m|_Z)

=0 =0

Now, the first stochastic dominance relation follows from Lemma 3 by observing that

iij @__; = m!(gfi m)l (|51|) : <elnE|>m

where the inequality follows from applying the well-known inequality (Z) < (en/k)*.
The second stochastic dominance relation follows by observing that |E| > m, which implies
that (|E| —1¢)/(m —i) > |E|/m for all i =0,...,m — 1. <

» Corollary 5. Let S,,, denote the sum of the m lightest edge weights in G. Then E[S,,] =
©(m?2/n).

Proof. From Lemma 4 we can immediately see that

) mz (e|E|>- <E[Sm] <E lmzlEXp (fw')

=0 =0

The result follows by observing that

fm—1 ] m—1
e|E| m? |E| m?
E E — )| == d E E — ==
; Xp( m> Bl M l; Xp<m Elk
and recalling that |E| = ©(n) by our restrictions imposed on G. <

» Lemma 6. Let S,, denote the sum of the m lightest edge weights in G. Then we have

P (S,, < cn) < exp (m (2+ln (clﬂn))) :

Proof. First of all, Lemma 4 yields

m—1
S = S Ex <€|E|)
1=0

Now, we apply Corollary 2 with u = m?/e|E|, a. = e|E|/m, and 2 = cn to obtain

P (S, < cn) <P<; Exp < Lf') <cn> < exp (m <1+1n (Ciiln)».

The result follows immediately. <
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» Lemma 7. Let S, denote the sum of the m lightest edge weights in G. Then we have
TSP > MM > S, /2, where TSP and MM are the total distance of a shortest TSP tour and a
minimum-distance perfect matching, respectively.

Proof. The first inequality is trivial. For the second one, consider a minimum-distance
perfect matching in G, and take the union of the shortest paths between each pair of matched
vertices. This union H must contain at least n/2 different edges of G, since H is a forest
with n vertices, all of which are non-isolated in H. These n/2 different edges together have a
weight of at least S, /2 and at most MM. So, the second inequality follows. <

A Random Growth Process

In this subsection, and the following ones, we assume that G is a finite square grid graph with
n = N2 vertices. It is possible to obtain qualitatively similar results for more general classes
of sparse graphs, but in order to improve readability we chose to stick with grid graphs.

In order to understand sparse random shortest path metrics it is important to get a
feeling for the distribution 74 (v). However, this distribution depends heavily on the exact
position of v within G, which makes it rather complicated to derive it. In order to overcome
this, we derive instead a stochastic upper bound on 74 (v) which holds for any vertex v € V.
The following lemma and corollary establish this.

» Lemma 8 ([4, Thm. 3]). Let U C V. Then we have

2y/|U| iUl <n/4,
s> Vi if /A< U] < 3n/4,
2y/n—|U| if |U| > 3n/4.

» Remark. Bollobds and Leader [4] proved (a more general version of) this result for all
|U| < n/2. The result for |U| > n/2 follows immediately from their result by observing that
§(U)=6(V\U) and |[V\U|=n—|U| for allU C V.

» Corollary 9. For any v € V and any k < n/4 we have
k—1
Tr(v) 3 ZEXP(Q\/%).
i=1

Proof. The values of 7i(v) are generated by a birth process as follows. (Similar birth
processes have been analysed before (e.g. [6, 8, 18]).) For k =1 we have 7, (v) = 0 and also
Zf;ll Exp(2v/i) = 0. For k > 2, we can obtain 73 (v) from 7, (v) by looking at all edges that
“leave” B, (y)(v), i.e., edges (u,z) with u € B, (,)(v) and = € B, | (,)(v). By definition
there are x;_1(v) such edges, and from Lemma 8 it follows that x;_1(v) > 2v/k — 1 (since
k < n/4). Moreover, by definition of 7,_1(v) these edges are conditioned to have a length
of at least 7,_1(v) — d(v,u). Using the memorylessness of the exponential distribution, it
follows that 74 (v) — 71 (v) is the minimum of xj_1(v) exponential random variables (with
parameter 1), or, equivalently, 7 (v) — 7x—1(v) ~ Exp(xx—1(v)) 3 Exp(2vk — 1)), where the
stochastic dominance follows since x;—_1(v) > 2v/k — 1. The result follows by induction. <«

Now we use this stochastic upper bound on 74(v) that holds for any v € V' to derive some
bounds on the cumulative distribution functions of 74 (v) and |Ba(v)|. The final bound is a
crucial ingredient for the construction of clusterings in the next section.
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» Lemma 10. For any A >0, v € V, and k € [n] such that k < min{n/4, A% + 1}, we have

P(r(v) <A)>1— \/T-exp<—2(\/é—1)< kA—l —l—ln( kA_1>)>.

Proof. From Corollary 9 we can see that

k—1

k—1
P(m(v) <A)>P (Z Exp(2V/i) < A) =1-P (Z Exp(2V/i) > A) .

i=1

Next, we want to apply the result of Lemma 1(i). For this purpose, set

k—1 k—1 1 A
=F Exp2Vi)| =Y — and A=,
7 ; p( )1 ; o u

and observe that vk —1 < p < vk — 1. Also note that A = AJu > AJvVEk—12> 1 since
k < A%+ 1. Lemma 1(i) now yields

k—1
1-P (Z Exp(2Vi) > A) >1—A"texp(—2u(A —1—1In(N)).

i=1

It can now be seen that this final expression is increasing in both g and A. Therefore, we
may apply the inequalities p1 > vk — 1 and A > A/y/k — 1 to obtain the desired result. <

» Lemma 11. For any A >0, v €V, and k € [n] such that k < min{n/4, A% + 1}, we have

P(|Ba(v)| = k) >1— ‘/kAj.exp (—2(\/E—1) (kAl—1—1n (1?1)))

Proof. This lemma follows immediately from Lemma 10 by observing that |Ba(v)| > k if
and only if 7 (v) < A. <

» Corollary 12. Let n > 9. There exists a constant ¢y > 4 such that for any A > 0 and
v € V we have

. AQ n C1

Proof. First of all, observe that for A < 2 the statement is trivial since in that case we have

c1/A? > 1. Therefore, from now on assume w.l.o.g. that A > 2. Let sa := min{A?%/4,n/4}.

Using Lemma 11 with k£ = sa we obtain

P(|Ba(v)| < 54) < @ exp <—2(\/5_ 1) (\/% - (\/Sfil))) .

So, it remains to show that there exists a constant ¢; such that for any A > 2 we have

s n () oo

The tedious computations needed to show that this is true can be found in Appendix A. <«

avsa=T-ew (-2 -1
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Clustering

The following theorem shows that we can partition the vertices of sparse random shortest
path metrics into a suitably small number of clusters with a given maximum diameter. Its
proof follows closely the ideas of Bringmann et al. [6], albeit with a different value of sa.

» Theorem 13. Let G be a finite square grid graph on n = N? wvertices, consider a (sparse)
random shortest path metric generated using this graph, and let A > 0. There exists a
partition of vertices into clusters, each of diameter at most 4, such that the expected number
of clusters needed is bounded from above by O(1 +n/A?), where constant of the O-term is
uniform with respect to A.

Proof. Let n be sufficiently large (n > 9 suffices) and let sp := min{A?/4,n/4}, as in
Corollary 12. We call vertex v A-dense if |Ba(v)| > sa and A-sparse otherwise. Using
Corollary 12 we can bound the expected number of A-sparse vertices by O(n/A?). We put
each A-sparse vertex in its own cluster (of size 1), which has diameter 0 < 4A.

Now, only the A-dense vertices remain. We cluster them according to the following
process. Consider an auxiliary graph H whose vertices are the A-dense vertices and where
two vertices u,v are connected by an edge if and only if Ba(u) N Ba(v) # @. Consider an
arbitrary maximal independent set S in H, and observe that |S| < n/sa by construction of
H. We create the initial clusters C1, ..., C|g|, each of which equals Ba (v) for some vertex
v € S. These initial clusters have diameter at most 2A.

Next, consider an arbitrary A-dense vertex v that is not yet part of any cluster. By the
maximality of S, we know that there must exist a vertex u € S such that A := Ba(u) N
Ba(v) # @. Let x € A be arbitrarily chosen, and observe that d(v,u) < d(v,z) + d(x,u) <
A+ A =2A. We add v to the initial cluster corresponding to u, and repeat this step until
all A-dense vertices have been added to some initial cluster. By construction, the diameter
of all these clusters is now at most 4A: consider two arbitrary vertices w,y in a cluster that
initially corresponded to u € S; then we have d(w,y) < d(w,u) + d(u,y) < 2A + 2A = 4A.

So, now we have in expectation at most O(n/A?) clusters containing one (A-sparse)
vertex each, and at most n/sx = O(1 + n/A?) clusters containing at least sn (A-dense)
vertices each, all with diameter at most 4A. The result follows. |

A Tail Bound for A ax

Recall that Ay = max, , d(u,v) is the diameter of the random metric. The following
lemma shows that Ap.x < O(y/n) with high probability. Due to space constraints, its proof
can be found in Appendix B.

» Lemma 14. Let x > 9v/n. Then we have P(Apax > x) < ne 7.

4 Analyses of Greedy-like Heuristics for Matching and TSP

In this section, we show that three greedy-like heuristics (greedy for minimum-distance
perfect matching, and nearest neighbor and insertion for TSP) achieve a constant expected
approximation ratio on sparse random shortest path metrics generated from a finite square
grid graph. The three proofs are very alike, and the ideas behind them are built upon ideas
by Bringmann et al. [6]: we divide the steps of the greedy-like heuristics into bins, depending
on the value which they add to the total distance of our matching or TSP tour. Using the
clustering (Theorem 13) we bound the total contribution of these bins by O(n), and using
our observation regarding sums of lightest edge weights (Lemmas 6 and 7) we show that the
optimal matching or TSP tour has a distance of Q(n) with sufficiently high probability.
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Greedy Heuristic for Minimum-Distance Perfect Matching

The first problem that we consider is the minimum-distance perfect matching problem. Even
though solving the minimum-distance perfect matching problem to optimality is not very
difficult (it can be done in O(n?) time), in practice this is often too slow, especially if the
number of vertices is large. Therefore, people often rely on (simple) heuristics to solve this
problem in practical situations. The greedy heuristic is arguably the simplest one among
these heuristics. It starts with an empty matching and iteratively adds a pair of currently
unmatched vertices (an “edge”) to the matching such that the distance between them is
minimal. Let GR denote the total distance of the matching computed by the greedy heuristic,
and let MM denote the total distance of an optimal matching.

It is known that the worst-case approximation ratio for this heuristic on metric instances
is O(n'°22(3/2)) [19]. Moreover, for random Euclidean instances, the greedy heuristic has an
approximation ratio of O(1) with high probability [2], and for random shortest path metrics
generated from complete graphs or Erdés—Rényi random graphs the expected approximation
ratio of the greedy heuristic is O(1) as well [6, 18]. We show that a similar result holds for
sparse random shortest path metrics generated from a finite square grid graph.

» Theorem 15. E[GR] = O(n).

Proof. We put “edges” that are being added to the greedy matching into bins according
to their distance: bin i receives all “edges” {u,v} with d(u,v) € (4(i — 1),4i]. Let X;
denote the number of “edges” that end up in bin ¢ and set Y; := ZZ‘;% X, i.e., Y; is the
number of “edges” in the greedy matching with distance at least 4(i — 1). Observe that
Y; =n/2. For i > 1, by Theorem 13, we can partition the vertices in an expected number
of O(1 +n/(i —1)?) clusters (where the constant of the O-term is uniform with respect
to i), each of diameter at most 4(¢: — 1). Just before the greedy heuristic adds for the
first time an “edge” of distance more than 4(i — 1), it must be the case that each of these
clusters contains at most one unmatched vertex (otherwise the greedy heuristic would have
chosen an “edge” between two vertices in the same cluster). Therefore, we can conclude that
E[Y;] < O(1+n/(i —1)?) for i > 1. On the other hand, for 4(i — 1) > 9y/n, it follows from
Lemma 14 that E[Y;] < n - -P(Apax > 4G — 1)) < n2e—40-1),

Now we sum over all bins, bound the length of each “edge” in bin 4 by 44, and subsequently
use Fubini’s theorem and the derived bounds on E[Y;]. This yields

0o 0o 3vn 0o
E[GR] <) 4i-E[X;]=> 4 -E[Yi]=2n+ Y 4-E[Yi]+ > 4-E[Y]]
i=1 i=1 i=2 i=3vn

3vn oo
<2n+) 0 <1 + (Z_”DQ> + Y 4n?e 7D = O(n) + O(n) + o(1) = O(n),
i=2 i=3v/n

which finishes the proof. |

» Theorem 16. For random shortest path metrics generated from a finite grid graph we have
E[$R] =0(1).

Proof. Let ¢ > 0 be a sufficiently small constant. Then the approximation ratio of the greedy
heuristic on random shortest path metrics generated from a finite grid graph is

GR GR |
GR| g |CR .0 (nloes(3/2)
E[MM] _E[Cn}+P(MM<cn) O(n )
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since the worst-case approximation ratio of the greedy heuristic on metric instances is
O(n'°82(3/2)) [19]. By Theorem 15 the first term is O(1). Combining Lemmas 6 and 7, the
second term can be bounded from above by exp(n(1 + 3 In(c- ©(1)))) - O(n'°223/2)) = o(1)
since c is sufficiently small. <

Nearest Neighbor Heuristic for TSP

One of the most intuitive heuristics for the TSP is the nearest neighbor heuristic. This
greedy-like heuristic starts with an arbitrary vertex as its current vertex and iteratively
builds a TSP tour by traveling from its current vertex to the closest unvisited vertex and
adding the corresponding “edge” to the tour (and closing the tour by going back to its first
vertex after all vertices have been visited). Let NN denote the total distance of the TSP tour
computed by the nearest neighbor heuristic, and let TSP denote the total distance of an
optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic on metric instances
is O(In(n)) [21]. Moreover, for random Euclidean instances, the nearest neighbor heuristic
has an approximation ratio of O(1) with high probability [3], and for random shortest
path metrics generated from complete graphs or Erd6s-Rényi random graphs the expected
approximation ratio of the nearest neighbor heuristic is O(1) as well [6, 18]. We show that a
similar result holds for sparse random shortest path metrics generated from a finite square
grid graph.

» Theorem 17. E[NN] = O(n).

Proof. We put “edges” that are being added to the nearest neighbor TSP tour into bins
according to their distance: bin i receives all “edges” {u,v} with d(u,v) € (4(i — 1),44].
Let X; and Y; be defined as in the proof of Theorem 15. Now we have Y; = n. For i > 1,
by Theorem 13, we can partition the vertices in an expected number of O(1 + n/(i — 1)?)
clusters (where the constant of the O-term is uniform with respect to i), each of diameter
at most 4(¢ — 1). Every time the nearest neighbor heuristic adds an “edge” of distance
more than 4(¢ — 1), this must be an “edge” from a vertex in some cluster Cj, to a vertex in
another cluster Cy, and the tour must have already visited all other vertices in C}, (otherwise
the nearest neighbor heuristic would have chosen an “edge” to an unvisited vertex in C).
Therefore, we can conclude that E[Y;] < O(1+n/(i — 1)?) for i > 1. On the other hand, for
4(i — 1) > 9y/n, it follows from Lemma 14 that E[Y;] < n - P(Apax > 4(i — 1)) < n2e 201,

Note that we have derived exactly the same bounds as in the proof of Theorem 15. So,
using the same calculations as in that proof, it follows now that E[NN] = O(n). <

» Theorem 18. For random shortest path metrics generated from a finite grid graph we have

E [$85] = O(1).

The proof of this theorem is similar to that of Theorem 16, with the worst-case approximation
ratio of the nearest neighbor heuristic on metric instances being O(In(n)) [21].

Insertion Heuristics for TSP

Another group of greedy-like heuristics for the TSP are the insertion heuristics. An insertion
heuristic starts with an initial optimal tour on a few vertices that are selected according to
some predefined rule R, and iteratively chooses (according to the same rule R) a vertex that
is not in the tour yet and inserts this vertex in the current tour such that the total distance
of the tour increases the least. An example of such a rule R would be to start with an initial
(optimal) tour on three arbitrary vertices, and then use farthest insertion, i.e., at each step
insert the vertex whose minimal distance to a vertex already in the tour is maximal.
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Let INg denote the total distance of the TSP tour computed by the insertion heuristic
using rule R, and let TSP denote the total distance of an optimal TSP tour. It is known that
the worst-case approximation ratio for this heuristic for any rule R on metric instances is
O(In(n)) [21]. Moreover, for random shortest path metrics generated from complete graphs
or Erd6s—Rényi random graphs the expected approximation ratio of the nearest neighbor
heuristic is O(1) for any rule R [6, 18]. We show that a similar result holds for sparse random
shortest path metrics generated from a finite square grid graph.

» Theorem 19. E[INg] = O(n).

Proof. We put the steps of the insertion heuristic into bins according to the distance they
add to the tour: bin 7 receives all steps with a contribution in the range (8(2 - 1), Si]. Let
X; and Y; be defined as in the proof of Theorem 15. Again we have Y7 =n. For ¢ > 1, by
Theorem 13, we can partition the vertices in an expected number of O(1+n/(i —1)?) clusters
(where the constant of the O-term is uniform with respect to i), each of diameter at most
4(i —1). Every time the contribution of a step of the insertion heuristic is more than 8(i — 1),
this step must add a vertex to the tour that is part of a cluster C} of which no other vertex

is in the tour yet (otherwise the contribution of this step would have been less than 8(i — 1)).

Therefore, we can conclude that E[Y;] < O(1+ n/(i — 1)?) for i > 1. On the other hand, for

8(i—1) > 9y/n, it follows from Lemma 14 that E[Y;] < 2n-P(Apax > 8(i — 1)) < 2n2e=80-1),

Using the same method as in the proof of Theorem 15 (i.e., summing over all bins,
bounding the contribution of each step in bin 7 by 8i and using Fubini’s theorem and the
derived bounds on E[Y;]), and adding the expected contribution E[Tg] of the initial tour, yields

E[INg] < E[Tr] + i 8i - E[X;] = E[Tr] + i 8- E[V]]

=1 i=1

2y
=E[Tp] +8n+ ) 8-E[Y, Z 8- E[Y;
i=2 i=2v/n
2y
<O0(n )+8n+ZO(1+ ) Z 16n2e~80=Y = O(n),
=2 i=2y/n

where we used Theorem 17 to bound the expected contribution of the initial tour by
E[Tr] < E[TSP] < E[NN] = O(n). Observe that this proof is independent of the choice of
rule R. |

» Theorem 20. For random shortest path metrics generated from a finite grid graph we have
E[1s] =00
TSP :

The proof of this theorem is similar to that of Theorem 16, with the worst-case approximation
ratio of the insertion heuristic on metric instances being O(In(n)) [21].

5 Analysis of 2-opt for TSP

In this section, we consider the probably most famous local search heuristic for the TSP, the

2-opt heuristic, and show that it achieves a constant expected approximation ratio as well.

Since we do not make use of any of the lemmas that have been tailored to random shortest
path metrics generated from finite square grid graphs, the results in this section hold for
random shortest path metrics generated from any sparse graph.
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The 2-opt heuristic starts with an arbitrary initial solution and iteratively improves this
solution by applying so-called 2-exchanges until no improvement is possible anymore. In a 2-
exchange, two “edges” {u1,v1} and {ug, vo} that are visited in this order in the current solution
are removed from it and replaced by the two “edges” {u1,us} and {v1,v2} to obtain a new
solution. The improvement of this 2-exchange is § = d(u1, v1)+d(uz, v2)—d(u1, uz) —d(vy, v2).
A solution is called 2-optimal if § < 0 for all possible 2-exchanges.

The actual performance of the 2-opt heuristic strongly depends on the choice of the initial
solution and the sequence of improvements. In this paper we look at the worst possible
outcome of the 2-opt heuristic, as others have been doing before (see e.g. [7, 9]), since
this decouples the actual heuristic from the initialization and therefore keeps the analysis
tractable. Let WLO denote the total distance of the worst 2-optimal TSP tour, and let TSP
denote the total distance of an optimal TSP tour.

It is known that the worst-case approximation ratio for this heuristic on metric instances
is O(y/n) [7]. Moreover, for Euclidean instances, the 2-opt heuristic has an expected
approximation ratio of O(1) [7]. For random shortest path metrics on complete graphs,
there is a trivial upper bound of O(In(n)) for the expected approximation ratio of the 2-opt
heuristic, but it is an open problem whether this can be improved or not [6]. We show that
for random shortest path metrics generated from sparse graphs, the expected approximation
ratio of the 2-opt heuristic is O(1).

The crucial observation that enables us to show this result is the fact that for any
2-optimal solution for the TSP it holds that each edge e € E can appear at most twice in
the disjoint union of all shortest paths that correspond to this solution. In other words, the
total distance of any 2-optimal solution can be bounded by twice the sum of all edge weights
in G. The following lemma and theorems formalize this observation and its consequences.

» Lemma 21. Consider a 2-optimal solution for the TSP. For each i,j € V, let P;; denote
the set of all (directed) edges in the shortest i, j-path. Moreover, let x;; = 1 if the solution
travels directly from vertex i to vertex j, and x;j := 0 otherwise. Then, for any i,j,k,l €V
with x;; = xp = 1 we have either Py; N Py = & or (i,7) = (k,1).

Proof. Let i,j,k,l € V such that z;; = xy = 1, and suppose that (i,j) # (k,1). Set
A :={i,j,k,l} and observe that |A| equals either 3 or 4. (|A| = 2 would imply (4, 5) = (k,1).)

First, suppose that |A| = 4. Suppose, by way of contradiction, that P;; N Py # @. Take
e = (s,t) € P;jNPy. Then d(i,j) = d(i, s) +w(e)+d(t, j) and d(k,1) = d(k, s)+w(e)+d(t,1).
Moreover, using the triangle inequality, we can see that d(i,k) < d(i,s) + d(s,k) and
d(4,1) <d(j,t) +d(t,1). Let 6 = 6(i, j, k,1) denote the improvement of the 2-exchange where
{i,7} and {k,[} are replaced by {i, k} and {j,1}, and note that § < 0 since we are considering
a 2-optimal solution for the TSP. It follows that

0>0=d(i,j)+dk,1)—d(i,k)—d(,1)
>d(i,s) +w(e) +d(t, ) +d(k,s) +w(e) +d(t, 1) —d(i,s) — d(s, k) — d(j,t) — d(t,1)
= 2w(e) > 0,

which is clearly a contradiction. Therefore we must have P;; N Py, = @ in this case.

Now, suppose that |A| = 3. Since the = variables describe a solution to the TSP, this
implies that either j = k or ¢ = [. These cases are analogously, so w.l.o.g. we assume that
j = k. The proof that P;; N Py, = @ in this case is similar to the proof for |A| = 4, with the
exception that here we have § = d(i,7) + d(4,1) — d(i,7) — d(j,1) = 0 (instead of § < 0). The
result follows. <
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» Theorem 22. E[WLO] = O(n).

Proof. For eachi,j € V, let P;; denote the set of all (directed) edges in the shortest ¢, j-path.
Moreover, let x;; = 1 if WLO travels directly from vertex i to vertex j, and z;; = 0 otherwise.

From Lemma 21 we know that each edge e € E can appear at most twice in the disjoint

union of all shortest i, j-paths that form a 2-optimal tour (at most once per direction).

This yields

WLO = Y " d(i,jlzg = Y Y wle) <Y 2uw(e) =28z,
i,jEV i,jEV e€P;; e€E
1?1‘]'11

where S,,, denotes the sum of the m lightest edge weights in G as before. Combining this
with Corollary 5, it follows that

EWLO] < E [2S)g|] = O (|Enl2> = O(n),

where the last equality follows by recalling that |E| = ©(n) for sparse graphs. <

» Theorem 23. For random shortest path metrics generated from a sparse graph we have

E [Y&2] = 0(1).

The proof of this theorem is similar to that of Theorem 16, with the worst-case approximation
ratio of the 2-opt heuristic on metric instances being O(y/n) [7].

6 Concluding Remarks

We have analyzed simple heuristics for matching and TSP on random shortest path metrics
generated from sparse graphs, since we believe that these models yield more realistic metric

spaces than random shortest path metrics generated from dense or even complete graphs.

However, for the greedy-like heuristics we had to restrict ourselves to (finite square) grid
graphs. It is possible to adapt our proofs for all classes of sparse graphs that have sufficiently
fast growing cut sizes |§(U)| (as long as |U] is not too large). It seems to be sufficient to have
[0(U)] > QUF) if |U| < ¢'n for some constants €,¢’ € (0,1). Sparse graphs that have this
property include d-dimensional grid graphs and other lattice graphs. We raise the question
whether it is possible to extend our findings for these heuristics to arbitrary sparse graphs.

On the other hand, especially if we consider random shortest path metrics generated from
grid graphs, in our view the model could be improved by using only a (possibly random)
subset of the vertices of G for defining the random metric space, i.e., restricting the distance
function d of the metric to some sub-domain V’ x V', where V' C V. It would be interesting
to see whether this model could be analyzed as well.

Finally, in our analysis of the 2-opt local search heuristic, we had to decouple the actual
heuristic from the initialization in order to make the analysis tractable. We leave it as an
open problem to prove rigorous results about hybrid heuristics that consist of an initialization
and a local search algorithm.
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A Computations for the Proof of Corollary 12

In this appendix we show that there exists a constant ¢; such that for any A > 2 we have

mm ) =

where sa 1= min{A2/4,n/4} and n > 9. We consider two cases: A? <n and A% > n.
For the first case, suppose that A% < n. Then we have s = A?/4, and we need to show
that

fA) ;== A\/A2/4 -1 exp <(A -2) (\/ﬁ —1—1In <\/ﬁ>>> <c.

Now observe that A — 1 —In()\) is an increasing function of A for A > 1. Combining this with
the observation that \/A2/4 — 1 < \/A2/4 = A/2 (for any A > 2), it follows now that

AV =T exp (-2v5x 1)

f(A) < %AQe—(A—Q)(l—ln(Q)).

So, f(A) is upper bounded by a function g(A) of the form g(A) = coA2e=%4 for some
constants cg, c3 > 0. It is well-established that such a function has a finite global maximum
(which can be shown to be equal to iCQCge*C?ﬂ/ 2). Therefore, we can conclude that in this
case there exists a constant ¢; such that f(A) <¢; for all A > 2.

For the second case, suppose that A% > n. Then we have sa = n/4, and we need to show
that we have

h(A,n) == Ay/n/4 —1-exp (—(\/5—2) <\/71/A471 —1—-In (%))) <ey,

for all pairs (A, n) satisfying A? > n > 9. The first step of the proof is to show that
h(A,n) < h(y/n,n) for all A > \/n. To do so, we compute the partial derivative of
h(A,n) with respect to A, and show that it is non-positive for all A > /n. The partial
derivative equals

OE) — (VAT ~ (i~ 2)(A Vol 1))

A A
- exp (—(\/5—2) <\/m—l—ln <n/4—1>)>
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Now observe that for all n > 9 we have

vn/4— ‘f < Vn/d-2=+/n<A.
This inequality can be rewritten into y/n/4 —1 — (y/n — 2)(A — y/n/4 —1) < 0, which

(together with the fact that e® > 0 for all x € R) shows that the partial derivative of h(A,n)
with respect to A is indeed non-positive for all A > /n. So, we may now conclude that
h(A,n) < h(y/n,n) for all A > /n.
Next, notice that h(y/n,n) = f(y/n). In the first case we have already shown that there
exists a constant ¢; such that f(A) < ¢ for all A > 2. So, it follows immediately that
h(A,n) < h(y/n,n) = f(y/n) < ¢ for all pairs (A, n) satisfying A2 >n > 9.

Combining both cases, we can now see that indeed there exists a constant ¢; such that

for any A > 2 we have
A 1-1 A <
— 1 —-In| —— cq,
\/SAfl \/SAfl =
where sa := min{A%/4,n/4} and n > 9.
» Remark. Numerical computations show that ¢; > 4.0647 is sufficient for this result to hold.

avia=T-ew (-2(vss -1

B Proof of Lemma 14

» Lemma 14. Let x > 9v/n. Then we have P(Apa.x > x) < ne 7.

Proof. Fix an arbitrary v € V and recall that we assume n to be even (the proof for odd n
is similar, but requires some more care with the bounds of the summations). We first show
that P(7,(v) > z) < e *. Using a similar argument as in the proof of Corollary 9, we can
derive from Lemma 8 that

4nl

Z Exp( 2\[ Z Exp(v/n Z Exp(2vn —1).

z—4n z—4n+1

From this, we can see that

P(r,(v) >z) <P ZZ Exp(2Vi) + Z Exp(v/n Z Exp(2vn —1i) >

2——n z—zn+1
In order to bound this probability, we once more use Lemma 1(i). For this purpose, set

jn—1 in—1

u:=E ZExp%f ZEXP Z Exp(2vn — 1) :n+2 Z \/

1—471 z—4n+1

and A := z/p, and observe that pu < 2\/n++v/n—4+41/y/n < 3\/n. Together with z > 9/n
this implies A > 6. Lemma 1(i) now yields

]P(Tn('l}) > {E) < )\—le—2p(A—1—ln(A)) < e—2u(A/2) — e—)\u — e 7

)

where we used A—1—1In(\) > A/2 (which holds for all A > 5.36) for the second inequality. The
final results follows from observing that Ap.x = max, 7,(v) and applying the appropriate
union bound. |
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