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Abstract
We study block statistics in subcritical graph classes; these are statistics that can be defined as the
sum of a certain weight function over all blocks. Examples include the number of edges, the number
of blocks, and the logarithm of the number of spanning trees. The main result of this paper is a
central limit theorem for statistics of this kind under fairly mild technical assumptions.
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1 Introduction

The detailed analytic study of subcritical graph classes was initiated by Drmota et al. in their
seminal paper [4]; the formal definition, which will be given below, is based on properties
of the generating function. Intuitively speaking, subcritical classes are “tree-like” in some
sense, which is exhibited for instance by the fact that their scaling limit is the continuum
random tree [12], meaning that the global structure is essentially determined by the block-
cutpoint tree, while the blocks themselves are fairly small. Typical examples of subcritical
graph classes are trees, cacti, block graphs, outerplanar graphs and series-parallel graphs.
Unfortunately, there is probably no simple graph-theoretical characterisation of subcritical
graph classes, as it was shown that every proper minor-closed family of graphs is contained
in a subcritical family [9].

By a block statistic, we mean an invariant induced by a weight function w on all 2-
connected graphs (blocks) of the specific graph class. Any graph G can be decomposed
uniquely into maximal 2-connected subgraphs B1, B2, . . . , Bk (that can only be joined at
cutvertices), the so-called blocks of G. Using this decomposition, we define the block statistic
Sw associated with w by

Sw(G) =
k∑
j=1

w(Bj).

© Dimbinaina Ralaivaosaona, Clément Requilé, and Stephan Wagner;
licensed under Creative Commons License CC-BY

31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of
Algorithms (AofA 2020).
Editors: Michael Drmota and Clemens Heuberger; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:naina@sun.ac.za
mailto:clement.requile@tuwien.ac.at
mailto:stephan.wagner@math.uu.se
https://doi.org/10.4230/LIPIcs.AofA.2020.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Block Statistics in Subcritical Graph Classes

Let us give a few motivating examples of block statistics:
The trivial weight function defined by w(B) = 1 for all possible blocks B yields the
number of blocks.
If we fix some block A and define

wA(B) =
{

1 B ' A,
0 otherwise,

the associated block statistic is the number of (isomorphic) occurrences of A as a block.
If the weight function w(B) is the number of edges in B, then the associated block
statistic Sw(G) gives the number of edges of G.
Let τ(B) be the number of spanning trees of a block B, and set w(B) = log τ(B). Since
every spanning tree of a connected graph decomposes uniquely into spanning trees on all
the blocks, we have

τ(G) =
k∏
j=1

τ(Bj)

if B1, B2, . . . , Bk are the blocks of a connected graph G. This translates to

Sw(G) = log τ(G).

Since the Tutte polynomial is also multiplicative over blocks, the previous example
generalises to many others that are special values of the Tutte polynomial, specifically the
(logarithm of the) number of subforests, spanning forests, connected spanning subgraphs,
acyclic orientations and strongly connected orientations.
The number of nontrivial complete subgraphs (i.e., complete subgraphs with more than
one vertex) is also a block statistic in our sense, since every such subgraph needs to be
contained entirely in one of the blocks.
The number of occurrences of a fixed graph H as an induced subgraph, which was studied
in [6], is not always a block statistic (since a copy of H may involve vertices of several
blocks), but it becomes one if H is 2-connected.

The number of blocks and the number of edges were already shown by Drmota et al. [4]
to satisfy a central limit theorem, the latter under the assumption (that was satisfied for
all the examples studied in their paper) that the graphs are planar, so that the number of
edges is necessarily linear in the number of vertices. However, this is not satisfied for all
subcritical classes of graphs (block graphs, for example, are an exception), and there are
also other statistics among the aforementioned for which the weight function can grow faster
than linearly in the block size, for example the logarithm of the number of spanning trees,
for which the weight can be as large as w(B) = (|B| − 2) log |B| when B is a complete graph.
We are therefore interested in proving central limit theorems under weaker assumptions on
the growth of the weights.

Before we formulate our main results, let us recall the formal definition of a subcritical
graph class. For simplicity, we will restrict ourselves to the labelled case.

I Definition 1. We call a class of graphs G block-stable if it has the property that a graph G
belongs to G if and only if each of its blocks belongs to G. Now let G be a block-stable class of
labelled graphs, and denote the subclasses of connected graphs and 2-connected graphs in G by
C and B respectively. Since every graph can be seen as the union of its connected components,
we have the symbolic decomposition

G = Set(C).



D. Ralaivaosaona, C. Requilé, and S. Wagner 24:3

More importantly (for the definition of subcriticality), rooted connected graphs (indicated
by C•) can be decomposed as follows:

C• = Z × Set(B′ ◦ C•),

where Z stands for a single vertex, and B′ for the class derived from B by not labelling one
of the vertices. In words: a rooted connected graph decomposes into the root, the set of blocks
that contain the root, and rooted connected graphs attached to all non-root vertices of the root
blocks.

On the level of generating functions G(z), C(z) and B(z) are associated with G, C and B
respectively, this yields

G(z) = exp(C(z)) (1)

and

C•(z) = z exp(B′(C•(z)), (2)

where C•(z) = zC ′(z) is the generating function for C•. The class G is now said to be
subcritical if the radii of convergence ρ and η of C and B satisfy the inequality

γ = C•(ρ) < η. (3)

As it was shown in [4], the generating function C• has a square root singularity for every
subcritical class, which allows us to apply singularity analysis to derive asymptotic formulas
for counting graphs of given order in G or C.

I Theorem 2 ([4]). For every subcritical family of graphs, the generating function C• is
analytic in a region of the form

{z ∈ C : |z| < r, |Arg(z − ρ)| > φ}

for some r > ρ and φ ∈ (0, π2 ). At the singularity ρ, it has an asymptotic expansion of the
form

C•(z) = γ + γ1(1− z/ρ)1/2 + γ2(1− z/ρ) + γ3(1− z/ρ)3/2 +O((1− z/ρ)2). (4)

Here, γ > 0 is the unique positive solution of the equation γB′′(γ) = 1, and ρ = γ exp(−B′(γ)).

It is sometimes useful to have explicit expressions for γ1 and γ2. They are given by

γ1 = −

√
2γ2

1 + γ2B′′′(γ) and γ2 = 2γ − γ4B′′′′(γ)
3(1 + γ2B′′′(γ))2 ,

respectively, as one can see e.g. by comparing coefficients on the two sides of the functional
equation (and using the identity γB′′(γ) = 1 to simplify).

2 The generating function for a block statistic

The functional equations (1) and (2) can be modified in a straightforward fashion to include
the block statistic Sw. Let us define the bivariate function

C(z, t) =
∑
C∈C

z|C|

|C|!e
Sw(C)t,

AofA 2020



24:4 Block Statistics in Subcritical Graph Classes

and G(z, t) in an analogous fashion. To keep notation simple, we do not indicate the
dependence of the generating functions on w. Since Sw is additive over connected components,
we clearly have

G(z, t) = exp(C(z, t)).

Moreover, if we set

B(z, t) =
∑
B∈B

z|B|

|B|!e
w(B)t,

then (2) changes to

C•(z, t) = z exp
(
Bz(C•(z, t), t)

)
, (5)

where Bz is the partial derivative with respect to z. Of course, when t = 0, everything
simplifies to (1) and (2). It is important to notice that the sum defining B might not be
convergent: if w(B) has faster than linear growth for at least some blocks B, then the radius
of convergence in z can become zero for all t > 0. Therefore, B and C are a priori only
regarded as formal power series.

If, however, w(B) = O(|B|), then the radius of convergence of B as a function of t
changes continuously, so if t is close enough to zero, the inequality that defines a subcritical
class remains true, and C• still has a square root singularity, the position of which moves
continuously with t. We are therefore in the scheme of [3, Theorems 2.21–2.23], and the
quasi-power theorem ([10], see also [8, Section IX.5]) yields a central limit theorem almost
automatically. This was in fact exploited in [4] to obtain the central limit theorems for
number of edges and number of blocks.

However, not all interesting block statistics satisfy the condition w(B) = O(|B|). The
example of the logarithm of the number of spanning trees was mentioned earlier; others
include the logarithm of the number of subforests, spanning forests or connected spanning
subgraphs and the number of nontrivial complete subgraphs. Thus, we follow a slightly
different route imposing somewhat milder conditions on the weight function w. Specifically,
we will prove the following theorem:

I Theorem 3. Consider a subcritical class of graphs with a weight function w on the blocks.
Let Wn be the average of w(B)2 over all blocks B on n vertices. Suppose that

lim sup
n→∞

W 1/n
n <

η

γ
, (6)

with γ and η as in (3). Let Cn denote a random connected graph with n vertices in our
subcritical class of graphs. The following statements on the distribution of Sw(Cn) hold:
1. There exist constants µ and λ such that the mean E(Sw(Cn)) is asymptotically equal to

µn− λ+O(n−1).
2. There exists a constant σ2 ≥ 0 such that the variance V(Sw(Cn)) is asymptotically equal

to σ2n + O(1). Moreover, we have σ2 > 0 unless the weight function w is of the form
w(B) = c(|B| − 1) for some constant c.

3. If σ2 > 0, then the distribution of Sw(Cn) converges, suitably normalised by subtracting
the mean and dividing by the standard deviation, weakly to a standard normal distribution.
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Intuitively, (6) states that the block generating function, with blocks weighted by w(B)2,
still satisfies the subcriticality condition. Most of the examples mentioned in the introduction
satisfy the conditions of the theorem for all subcritical classes, since the growth of the weight
function w is subexponential. Notable examples include the number of blocks, the number of
edges and the (logarithm of the) number of spanning trees. It is possible that the condition
is satisfied even if the weight grows exponentially in the block size, though. Importantly,
blocks in random graphs from a subcritical class are typically small (the largest block only
being logarithmic in size). This makes it possible that E(Sw(Cn)) is linear in n even in cases
where w can grow exponentially.
I Remark 4. While we are focusing on connected graphs in this paper, it would also be
possible to transfer our results to arbitrary random graphs from the specific subcritical class
of graphs.
I Remark 5. We remark that Sw(C) = c(|C| − 1) holds deterministically for all connected
graphs C in the “degenerate” case that w(B) = c(|B|−1), so that the variance is identically 0.

Several explicit examples are presented in detail in the appendix. The following table
gives an overview:

Graph class Block statistic µ σ2 Sect.
Cacti Number of blocks 0.64780 0.21218 A.1

Number of edges 1.19149 0.06272 A.1
Number of spanning trees (log) 0.24985 0.08007 A.1
Number of connected spanning subgraphs (log) 0.29690 0.12113 A.1

Block graphs Number of blocks 0.76322 0.12512 A.2
Number of edges 1.28357 0.31267 A.2
Number of spanning trees (log) 0.28580 0.23671 A.2
Number of nontrivial complete subgraphs 1.69146 4.55177 A.2

Series-parallel Number of blocks 0.14937 0.14875 A.3
graphs Number of edges 1.61673 0.21125 A.3

Number of spanning trees (log) ?? ?? A.3

In the last example, numerical values of µ and σ2 are surprisingly difficult to determine.
This will be explained in Section A.3.

3 Mean and variance

It is somewhat easier for our calculations to consider rooted graphs. However, since every
labelled graph with n vertices corresponds to precisely n rooted graphs, all distributional
results that we obtain for rooted graphs in the following hold automatically for unrooted
graphs as well.

In order to obtain asymptotic formulas for mean and variance, we consider the partial
derivatives of C•(z, t) with respect to t at t = 0. Differentiating (5) with respect to t yields

C•t (z, t) = z exp
(
Bz(C•(z, t), t)

)(
Bzz(C•(z, t), t)C•t (z, t) +Bzt(C•(z, t), t)

)
= C•(z, t)

(
Bzz(C•(z, t), t)C•t (z, t) +Bzt(C•(z, t), t)

)
.

We solve for C•t (z, t), which gives us

C•t (z, t) = C•(z, t)Bzt(C•(z, t), t)
1− C•(z, t)Bzz(C•(z, t), t)

.

AofA 2020



24:6 Block Statistics in Subcritical Graph Classes

In the same way, we can also differentiate with respect to z, which yields

C•z (z, t) = C•(z, t)
z(1− C•(z, t)Bzz(C•(z, t), t))

.

Thus we have

C•t (z, t) = zC•z (z, t)Bzt(C•(z, t), t). (7)

The second derivative is determined in a similar fashion. Differentiating (7) with respect to
z and t respectively (and plugging in t = 0), we obtain

C•zt(z, 0) = C•z (z, 0)Bzt(C•(z, 0), 0)+zC•zz(z, 0)Bzt(C•(z, 0), 0)+zC•z (z, 0)2Bzzt(C•(z, 0), 0)

and

C•tt(z, 0) = zC•zt(z, 0)Bzt(C•(z, 0), 0) + zC•z (z, 0)C•t (z, 0)Bzzt(C•(z, 0), 0)
+ zC•z (z, 0)Bztt(C•(z, 0), 0).

We plug the former equation into the latter, and also replace C•t (z, 0) by the equation given
in (7) to arrive at the following representation for C•tt(z, 0):

C•tt(z, 0) = z2C•zz(z, 0)Bzt(C•(z, 0), 0)2 + 2z2C•z (z, 0)2Bzt(C•(z, 0), 0)Bzzt(C•(z, 0), 0)
+ zC•z (z, 0)

(
Bzt(C•(z, 0), 0)2 +Bztt(C•(z, 0), 0)

)
. (8)

Note that this representation, like (7), only involves derivatives of C•(z, t) with respect to z,
so that we can use our knowledge of the behaviour of C•(z, 0) given in Theorem 2.

I Theorem 6. Under the conditions stated in Theorem 3, the mean of the block statistic Sw
over all graphs in C with n vertices is asymptotically

E(Sw(Cn)) = µn− λ+O(n−1),

with µ = Bzt(γ, 0) and

λ = 3γ2

2 Bzzt(γ, 0) + γ2
1
4 Bzzzt(γ, 0).

Proof. Note that

Btt(z, 0) =
∑
n≥2

( ∑
B∈B
|B|=n

w(B)2
)zn
n! =

∑
n≥2

WnBn
zn

n! ,

where Bn is the number of blocks with n labelled vertices. The radius of convergence of
B(z, 0) is η = 1/ lim supn→∞(Bn/n!)1/n, since the coefficient of zn in B(z, 0) is Bn/n!. The
technical condition (6) has been chosen in such a way that the radius of convergence of
Btt(z, 0), which is

1
lim supn→∞(WnBn/n!)1/n >

1
lim supn→∞W

1/n
n

· 1
lim supn→∞(Bn/n!)1/n

= η

lim supn→∞W
1/n
n

,
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is greater than γ. The radius of convergence of B(z, 0) is η > γ by the definition of
subcriticality, and the Cauchy-Schwarz inequality implies that

|Bt(z, 0)|2 =
∣∣∣ ∑
B∈B

z|B|w(B)
|B|!

∣∣∣2 ≤∑
B∈B

|z||B|w(B)2

|B|!
∑
B∈B

|z||B|

|B|! = Btt(|z|, 0)B(|z|, 0).

This shows that Bt(z, 0) also has greater radius of convergence than γ. Thus Bt(z, 0), Btt(z, 0)
and all their derivatives with respect to z are analytic in a disk around 0 that includes γ.
Now since C• is amenable to singularity analysis, so is

C•t (z, 0) = zC•z (z, 0)Bzt(C•(z, 0), 0).

In particular, this function and other partial derivatives of C• that we consider have a
Puiseux expansion around the singularity ρ whose exponents are integers or half-integers.
Specifically, in view of (4), we have

Bzt(C•(z, 0), 0) = Bzt(γ, 0) +Bzzt(γ, 0)(C•(z, 0)− γ) + Bzzzt(γ, 0)
2 (C•(z, 0)− γ)2

+O
(
(C•(z, 0)− γ)3)

= Bzt(γ, 0) + γ1Bzzt(γ, 0)(1− z/ρ)1/2

+
(
γ2Bzzt(γ, 0) + γ2

1Bzzzt(γ, 0)
2

)
(1− z/ρ) +O

(
(1− z/ρ)3/2).

Thus we can represent C•t (z, 0) as follows:

C•t (z, 0) = Bzt(γ, 0)zC•z (z, 0)+κ1−
(3γ2Bzzt(γ, 0)

2 + γ2
1Bzzzt(γ, 0)

4

)
C•(z, 0)+O

(
1−z/ρ

)
for some constant κ1. It would be possible to add further terms to the expansion. By the
principles of singularity analysis, we obtain

[zn]C•t (z, 0) = µ[zn]zC•z (z, 0)− λ[zn]C•(z, 0) +O(n−1[zn]C•(z, 0))

with µ and λ as given in the statement of the theorem. Therefore,

E(Sw(Cn)) = [zn]C•t (z, 0)
[zn]C•(z, 0) = µn− λ+O(n−1). J

I Theorem 7. Under the conditions stated in Theorem 3, the variance of the block statistic
Sw over all graphs in C with n vertices is asymptotically V(Sw(Cn)) = σ2n+O(1), with

σ2 = Bztt(γ, 0)− γ2Bzzt(γ, 0)2

1 + γ2Bzzz(γ, 0) .

If the weight w is not of the form w(B) = c(|B| − 1) (where c is constant), then σ2 is strictly
positive.

Proof. The asymptotic formula for the variance is derived in a similar fashion as the mean.
We now need to consider the second derivative with respect to t as well. The expression
for C•tt(z, 0) in (8) can be expanded around the dominant singularity ρ in the same way
as C•t (z, 0). Without going through the full calculation, let us just give the final result
stating that

C•tt(z, 0) = µ2(z2C•zz(z, 0) + zC•z (z, 0)
)

+ (σ2 − 2λµ)zC•z (z, 0) +O(1)

AofA 2020
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around the singularity, with µ, λ, σ2 as defined above. Again, it would be possible to improve
on the error term by including further terms. Now we get

[zn]C•tt(z, 0) =
(
µ2n2 + (σ2 − 2λµ)n+O(1)

)
[zn]C•(z, 0).

This gives us the second moment of Sw(Cn) as µ2n2 + (σ2 − 2λµ)n+O(1), and subtracting
the square of the mean yields the stated asymptotic formula for the variance.

It remains to prove that σ2 6= 0 except for trivial cases where Sw(C) depends on the
number of vertices of C only. To this end, recall first that γ is determined by the equation

γB′′(γ) = γBzz(γ, 0) = 1.

Thus we can rewrite the denominator in the expression for σ2 as follows:

1 + γ2Bzzz(γ, 0) = γBzz(γ, 0) + γ2Bzzz(γ, 0) =
∑
B∈B

(|B| − 1)2γ|B|−1

(|B| − 1)! .

The remaining two terms in the expression are

Bztt(γ, 0) =
∑
B∈B

w(B)2γ|B|−1

(|B| − 1)!

and

γ2Bzzt(γ, 0)2 =
(∑
B∈B

w(B)(|B| − 1)γ|B|−1

(|B| − 1)!

)2
,

respectively. Thus

σ2 =
∑
B∈B

w(B)2γ|B|−1

(|B| − 1)! −
(∑

B∈B
w(B)(|B|−1)γ|B|−1

(|B|−1)!
)2∑

B∈B
(|B|−1)2γ|B|−1

(|B|−1)!

. (9)

The Cauchy-Schwarz inequality immediately shows that σ2 > 0 unless w(B) is a constant
multiple of |B| − 1, in which case σ2 is clearly 0. J

In order to illustrate the formulas for mean and variance, let us consider a concrete
example that satisfies the conditions of Theorem 3 for all subcritical graph classes: the
number of blocks. In this case, we have B(z, t) = etB(z), which allows us to express µ and
σ2 in terms of B and γ only: the following formulas can also already been found in [4].

µ = B′(γ) and σ2 = B′(γ)− 1
1 + γ2B′′′(γ) . (10)

4 Limit distribution

Next we derive a general central limit theorem for the block statistic Sw. As a first step,
we consider the case where w is finitely supported, i.e., where w(B) = 0 for all but finitely
many blocks. In this case, B(z, t) differs from B(z) only in finitely many terms: letting B0
be the set of blocks for which w(B) = 0, we have

B(z, t) =
∑
B∈B

z|B|

|B|!e
w(B)t =

∑
B∈B\B0

z|B|

|B|!e
w(B)t+

∑
B∈B0

z|B|

|B|! = B(z)+
∑

B∈B\B0

z|B|

|B|! (e
w(B)t−1).
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The sum over B \B0 is finite and thus represents a function that is entire in both z and t. We
are therefore in a position to apply a general result on perturbations of functional equations:
by [3, Theorem 2.21], there exists a positive constant δ > 0 such that C•(z, t) still has a
dominant square root singularity for |t| < δ:

C•(z) = γ(t) + γ1(t)(1− z/ρ(t))1/2 +O(1− z/ρ(t)),

where ρ(t) is analytic as a function of t for |t| < δ. Singularity analysis gives us an asymptotic
formula for the moment generating function of Sw(Cn):

E
(
etSw(Cn)) = [zn]C•(z, t)

[zn]C•(z, 0) = γ1(t)
γ1

( ρ

ρ(t)

)n(
1 +O(n−1)

)
.

Thus we can apply the quasi-power theorem ([10], [8, Section IX.5]), which proves that
Sw(Cn) satisfies a central limit theorem in the case that w has finite support:

Sw(Cn)− E(Sw(Cn))√
V(Sw(Cn))

d→ N(0, 1).

This line of reasoning does not apply if w grows too fast; with the weaker assumptions of
Theorem 3, C•(z, t) may no longer have a square root singularity for t > 0 (and might in
fact have radius of convergence 0 as a power series in z). Therefore, we rather approximate
Sw by considering truncated versions of the weight function w.

For a positive integer M , set

w(M)(B) =
{
w(B) if |B| ≤M ,
0 otherwise.

We observe that w(M) has finite support, so the block statistic S(M)
w associated with w(M)

satisfies a central limit theorem as stated above. Clearly, every block statistic with finitely
supported weight function satisfies the conditions of Theorem 3, thus in particular the
statements on mean and variance in Theorem 6 and Theorem 7 apply:

E(S(M)
w (Cn)) = µMn+O(1),

V(S(M)
w (Cn)) = σ2

Mn+O(1),
S(M)

w (Cn)−µMn

σM
√
n

d→ N(0, 1), or equivalently S(M)
w (Cn)−E(S(M)

w (Cn))√
n

d→ N(0, σ2
M ).

We can now apply the following lemma (see for instance [11, Theorem 4.28]):

I Lemma 8. Let (Xn)n≥1 and (WN,n)N,n≥1 be sequences of random variables with mean 0.
Assume that for some random variables WN (N ≥ 1) and W , we have

WN,n
d→WN as n→∞ for every N ≥ 1, and WN

d→W as N →∞.
V(Xn −WN,n) ≤ CN for some constants CN uniformly in n, and CN → 0 as N →∞.

Then we also have Xn
d→W as n→∞.

In our setting, we take

Xn = Sw(Cn)− E(Sw(Cn))√
n

and WN,n = S
(N)
w (Cn)− E(S(N)

w (Cn))√
n

.

Note that these random variables all have mean 0. Since the sums in the formula (9)
for σ2 converge by our assumptions on the weight function w, the constants σ2

N converge:
limN→∞ σ2

N = σ2. So we have WN,n
d→ WN = N(0, σ2

N ) as n → ∞ for every N , and
WN

d→W = N(0, σ2) as N →∞.

AofA 2020
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Lastly, the conditions of Theorem 3 also apply to Sw(Cn)− S(N)
w (Cn), which is the block

statistic associated with the weight function that is given by

w(B)− w(N)(B) =
{

0 if |B| ≤ N ,
w(B) otherwise.

Thus the formula of Theorem 7 applies, which yields

V(Xn −WN,n) = V
(Sw(Cn)− S(N)

w (Cn)− E(Sw(Cn)− S(N)
w (Cn))√

n

)
= 1
n
V
(
Sw(Cn)− S(N)

w (Cn)
)

= τ2
N +O(n−1)

for some constants τ2
N that satisfy limN→∞ τ2

N = 0. One can verify that the O-constant
can be chosen to depend only on the graph class and the weight function w, but not on
N . Moreover, we clearly have Xn = WN,n and thus V(Xn −WN,n) = 0 for n ≤ N . Thus
all conditions of Lemma 8 are satisfied, and we obtain the desired central limit theorem
for Sw(Cn):

Sw(Cn)− E(Sw(Cn))√
n

d→ N(0, σ2)

as n→∞. This finally completes the proof of Theorem 3.

5 Conclusion

We obtained a central limit theorem for block statistics under rather mild conditions that
cover many natural cases. It would be interesting to see if there are natural examples where
the conditions fail and there is no central limit theorem. There are also many examples of
statistics that are not block statistics, but of a similar nature, for example the number of
(arbitrary, maximal or maximum) independent sets or matchings, see [5] for some examples.
One would still expect a log-normal limit law to hold in these cases, akin to spanning trees.
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A Examples

A.1 Cacti
Cacti are graphs whose blocks are either single edges or cycles. Thus there are (n−1)!

2
(labelled) blocks on n vertices for every n > 2, and precisely one block on two vertices. We
find that the block generating function is given by

B(z) = z2

2 +
∞∑
n=3

(n− 1)!
2n! zn = −1

2 log(1− z) + z2

4 −
z

2 .

One finds that γ is the positive root of the polynomial z3 − 4z2 + 6z − 2, and

ρ = γ exp
(
−B′(γ)

)
= γ exp

(
− γ(2− γ)

2(1− γ)

)
.

Numerically, γ ≈ 0.45631 and ρ ≈ 0.23874. Let us now determine the modified generating
function B(z, t) for different choices of the weight function.

Number of blocks
In this case, we have B(z, t) = etB(z), and we can apply the formulas in (10), which give us

µ = B′(γ) ≈ 0.64780 and σ2 = B′(γ)− 1
1 + γ2B′′′(γ) ≈ 0.21218.

Number of edges
Here, w(B) = |B| for all blocks B other than a single edge. Thus we have B(z, t) =
B(zet) + z2

2 (et − e2t). It is straightforward to determine numerical values for µ and σ2 using
this explicit formula for B(z, t): we have µ ≈ 1.19149 and σ2 ≈ 0.06272.

Number of spanning trees and number of connected spanning subgraphs
For the number of spanning trees (more precisely, its logarithm), the appropriate weight
function is given by w(B) = log |B| for |B| > 2, since a cycle of length k has precisely k
spanning trees, and w(B) = 0 for |B| = 2. Thus

B(z, t) = z2

2 +
∞∑
n=3

(n− 1)!
2n! znet logn = z2

2 + 1
2

∞∑
n=3

nt−1zn.

Thus the logarithm of the number of spanning trees in cacti is asymptotically normally
distributed, with mean and variance asymptotically equal to µn and σ2n respectively, where

µ = Bzt(γ, 0) = 1
2

∞∑
n=3

γn−1 logn ≈ 0.24985
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and σ2 ≈ 0.08007. The number of connected spanning subgraphs is very similar, except
that w(B) = log(|B| + 1) for |B| > 2. We get an analogous result with µ ≈ 0.29690 and
σ2 ≈ 0.12113.

A.2 Block graphs
Block graphs are similar to cacti: every block is a complete graph. Thus there is precisely
one type of block for every size. Since there is only one way of labelling a complete graph,
the block generating function is

B(z) =
∞∑
n=2

1
n!z

n = ez − z − 1.

Therefore, γ ≈ 0.56714 is the positive real solution to the equation zez = 1, and ρ ≈ 0.26438.
We consider several block statistics again:

Number of blocks
Again, the formulas given in (10) apply, and we have µ ≈ 0.76322 and σ2 ≈ 0.12512 in
Theorem 3.

Number of edges
For the number of edges, we now have to take w(B) =

(|B|
2
)
. As a result, we obtain

µ = Bzt(γ, 0) =
∞∑
n=2

(
n

2

)
1

(n− 1)!γ
n−1 =

(
γ + γ2

2

)
eγ = 1 + γ

2 ≈ 1.28357.

Similar calculations for higher order partial derivatives of B yield σ2 = γ(γ2+2γ+2)
4(γ+1) ≈ 0.31267.

Number of spanning trees
For the (logarithm of the) number of spanning trees, we need to take w(B) = (|B|−2) log |B|,
since a complete graph with b vertices has bb−2 spanning trees. It follows that

µ = Bzt(γ, 0) =
∞∑
n=2

(n− 2) logn
(n− 1)! γn−1 ≈ 0.28580,

and we find the numerical value of σ2 to be 0.23671.

Number of complete subgraphs
The number of complete subgraphs is an example of a block statistic whose weight function has
exponential growth. However, since the block generating function has radius of convergence
η = ∞ in this case, the conditions of Theorem 3 are still clearly satisfied. We have
w(B) = 2|B| − |B| − 1 in this case: recall here that we are only counting nontrivial complete
subgraphs with at least two vertices – if we want to count all complete subgraphs, we only
need to add the number of vertices, which is a deterministic quantity in our setting.

It follows that Theorem 3 applies with

µ = Bzt(γ, 0) = 2e2γ − (γ + 2)eγ = 2− 2γ − γ2

γ2 ≈ 1.69146

and (by a similar calculation) σ2 = 12γ3−24γ2+4γ+4
γ4(γ+1) ≈ 4.55177.
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A.3 Series-parallel graphs
Series-parallel graphs are the most complicated example that we consider, since the block
generating function can only be defined implicitly in terms of generating functions in two
variables z and y, respectively marking the number of vertices and edges.

In fact, each block b with a distinguished vertex admits a tree-like decomposition τ(b) into
components that are either of types ring or multi-edge, where the nodes of τ(b) correspond
to the different components of b. We refer the reader to [2] for more details. Using then a
vertex-distinguished version of the dissymmetry theorem for tree-decomposable classes (see
[2, Section 5.3.3]), one can relate the generating function of blocks with a distinguished
vertex to the generating functions T (r)(z, y), T (m)(z, y) and T (rm)(z, y) of their associated
tree-decompositions, respectively rooted at a node of type ring, multi-edge or at an edge
between a ring and a multi-edge node.

Those generating functions are in turn expressed in terms of D(z, y), the generating
function of series-parallel networks, i.e. 2-connected graphs with a pair of distinguished
vertices called its poles. Such networks can either be the single edge, with generating function
y, or of types series, with generating function S(z, y), or parallel, with generating function
P (z, y), see [1] for a detailed exposition. Altogether, this gives:

Bz(z, y) = zy + T (r)(z, y) + T (m)(z, y)− T (rm)(z, y),

T (r)(z, y) = zS(z, y)(D(z, y)− S(z, y))/2,

T (m)(z, y) = zP (z, y)− zyS(z, y)− zS2(z, y)/2,

T (rm)(z, y) = zS(z, y)P (z, y),
D(z, y) = y + S(z, y) + P (z, y),
S(z, y) = zD(z, y)(D(z, y)− S(z, y)),
P (z, y) = y exp(S(z, y))− y + exp(S(z, y))− S(z, y)− 1. (11)

From the last three equations of (11) we obtain an implicit equation defining D(z, y).
Furthermore, one can write Bz(z, y) in terms of D(z, y) only. This gives:

D(z, y) = (1 + y)e
zD(z,y)2

1+zD(z,y) − 1,

Bz(z, y) = zD(z, y)(2− zD(z, y)2)
2zD(z, y) + 2 . (12)

So any partial derivative of Bz(x, y) can be computed from the system (12). In particular,
we get numerically that γ ≈ 0.12797.

Number of blocks
For the number of blocks, one now sets y = 1 and w(B) = 1 in (12). The required conditions
are satisfied, so we obtain a central limit theorem. In this case, the numerical values µ and
σ2 are 0.14937 and 0.14875 respectively.

Number of edges
Although the number of edges is now no longer just dependent on the number of vertices of
a block, it is already controlled by the variable y = et in the decomposition given in (12).
We obtain a central limit theorem with µ ≈ 1.61673 and σ2 ≈ 0.21125 (cf. [1]).
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Number of spanning trees
The number of spanning trees in series-parallel graphs was studied in a paper by Ehrenmüller
and Rué [7]. They determined an asymptotic formula for the mean, but no limit distribution.
As we find by means of our general result now, the distribution of the number of spanning
trees in series-parallel graphs is asymptotically lognormal. Letting τ(G) be the number of
spanning trees of a graph G, we simply set w(B) = log τ(B) for all blocks (as for the other
two graph classes), so that Sw(G) = log τ(G). The conditions of Theorem 3 are clearly
satisfied again, but the constants µ and σ2 are rather difficult to evaluate in this example, as
they can no longer be expressed directly by means of functional equations. Moreover, the
infinite series

µ = Bzt(γ, 0) =
∑
B∈B

w(B)γ|B|−1

(|B| − 1)!

converges poorly in this example, since γ ≈ 0.12797 is only a little smaller than the radius
of convergence of B(z, 0), which is η ≈ 0.12800. Therefore, the series representation is also
not suitable to compute a numerical approximation, as determining w(B) = log τ(B) for all
blocks up to a certain size is rather costly.
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