
Quantum Algorithms for Computational Geometry
Problems
Andris Ambainis
Faculty of Computing, University of Latvia, Raina bulvaris 19, Riga, LV-1586, Latvia
ambainis@lu.lv

Nikita Larka
Faculty of Computing, University of Latvia, Raina bulvaris 19, Riga, LV-1586, Latvia
nikitalarka@gmail.com

Abstract
We study quantum algorithms for problems in computational geometry, such as Point-On-3-Lines
problem. In this problem, we are given a set of lines and we are asked to find a point that lies on at
least 3 of these lines. Point-On-3-Lines and many other computational geometry problems are
known to be 3Sum-Hard. That is, solving them classically requires time Ω(n2−o(1)), unless there is
faster algorithm for the well known 3Sum problem (in which we are given a set S of n integers and
have to determine if there are a, b, c ∈ S such that a + b + c = 0).
Quantumly, 3Sum can be solved in time O(n log n) using Grover’s quantum search algorithm. This
leads to a question: can we solve Point-On-3-Lines and other 3Sum-Hard problems in O(nc) time
quantumly, for c < 2?
We answer this question affirmatively, by constructing a quantum algorithm that solves Point-
On-3-Lines in time O(n1+o(1)). The algorithm combines recursive use of amplitude amplification
with geometrical ideas. We show that the same ideas give O(n1+o(1)) time algorithm for many
3Sum-Hard geometrical problems.

2012 ACM Subject Classification Theory of computation → Quantum query complexity; Theory
of computation → Computational geometry

Keywords and phrases Quantum algorithms, quantum search, computational geometry, 3Sum
problem, amplitude amplification

Digital Object Identifier 10.4230/LIPIcs.TQC.2020.9

Funding Supported by the ERDF project 1.1.1.5/18/A/020 “Quantum algorithms: from complexity
theory to experiment”.

1 Introduction

The 3Sum problem is as follows: given a set of numbers S, do there exist a, b, c ∈ S such that
a+ b+ c = 0? There is a nearly trivial classical algorithm that solves this problem in time
O(n2). More advanced algorithms give only a logarithmic improvement to this quadratic
complexity [15]. It is conjectured that no classical algorithm can solve 3Sum problem in
O(n2−ε) time.
Many problems in computational geometry (for example, determining whether a given set
of points contains 3 points that lie on a line) also seem to require Ω(n2) time classically.
Gajentaan and Overmars [12] showed that the 3Sum problem can be embedded into them.
This implies that they cannot be solved in O(n2−ε) time, unless the 3Sum problem can also
be solved in O(n2−ε) time. Such problems are called 3Sum-Hard. Besides 3 points on a
line, examples of 3Sum-Hard problems include determining whether a given set of points
contain 3 points that lie on a line, determining whether a given set of triangles covers given
polygon, and determining whether a given set of axis-parallel segments are separable with a
line into two nonempty subsets [12].

© Andris Ambainis and Nikita Larka;
licensed under Creative Commons License CC-BY

15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020).
Editor: Steven T. Flammia; Article No. 9; pp. 9:1–9:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8716-001X
mailto:ambainis@lu.lv
mailto:nikitalarka@gmail.com
https://doi.org/10.4230/LIPIcs.TQC.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Quantum Algorithms for Computational Geometry Problems

Quantum computing allows designing quantum algorithms that outperform classical al-
gorithms. One such example is Grover search [14] which achieves quadratic speedup over
classical exhaustive search and can be used as a subroutine to speedup more complicated
problems [3, 17].

In particular, the 3Sum problem can be solved by a quantum algorithm in O(n logn) time,
by a fairly simple application of Grover search procedure. Indeed, we can do an exhaustive
search over pairs a, b ∈ S and look for −(a+ b) ∈ S using some data structure (for example,
we can use a balanced search tree). However, a direct application of Grover search does not
give a quadratic speedup for many geometrical 3Sum-Hard class problems. For example, if
we need to determine whether a set of points contain three points that lie on the same line,
we need to search for all possible triplets of points, which results in O(n 3

2) time quantum
algorithm [11].
In this paper we combine quantum effects with more sophisticated geometric techniques to
design a quantum algorithm with complexity O(n1+o(1)) for Point-On-3-Lines problem. We
use ideas from this algorithm to solve many other 3Sum-Hard problems in time O(n1+o(1)).

Related work. The he 3Sum problem has been studied in the context of query complexity
and it can be solved with O(n3/4) queries, as it is a special case of the subset finding
problem of Childs and Eisenberg [10] in which one has to find constant-size subset S of an
n-element set, with S satisfying a certain property. A matching Ω(n3/4) quantum query
lower bound is known [6]. However, the subset finding algorithm of [10] does not have
a time-efficient implementation in the general case. Some special cases (for example, the
element distinctness and k-distinctness algorithms of [2]) can be implemented efficiently but
no efficient implementation is known for the 3-SUM case.

We think that it is unlikely that this line of work would lead to an o(n) time quantum
algorithm for the 3Sum problem. The element distinctness algorithm [2] and the subset
finding algorithm [10] are special cases of a quadratic speedup for hitting times of Markov
chains [18, 4, 5]. It is unlikely that these methods will lead to a quantum algorithm that is
more than quadratically faster than the best classical algorithm.

More generally, we conjecture that the 3Sum problem cannot be solved in O(n1−ε)
quantum time in the QRAM model, neither with methods based on subset finding nor any
oher approach. This could serve as a basis for a quantum version of fine-grained complexity,
similarly to recent quantum fine grained lower bounds of [1, 8] based on quantum versions of
Strong Exponential Time Hypothesis (SETH).

2 Preliminaries

2.1 Problems
Here we define problems we focus on in this paper. All of them belong to 3Sum-Hard class.
[12]

Point-On-3-Lines: Given a set of lines in the plane, is there a point that lies on at least
three of them? [12]
3-Points-On-Line: Given a a set of points in the plane, is there a line that contains at
least three points? [12]
Strips-Cover-Box: Given a set of strips in the plane (strip is defined as an infinite area
between two parallel lines (see Figure 1)), does their union contain a given axis-parallel
rectangle? [12]

A. Ambainis and N. Larka 9:3

Triangles-Cover-Triangle: Given a set of triangles in the plane, does their union
contain another given triangle? [12]
Point-Covering: Given a set of n half-planes and a number t, determine whether there
is a point that is covered by at least t half-planes. [12]
Segment-Separator: Given a set of vertical line segments, does there exists a non
vertical line that does not intersect any of given segments and contaisn at least one given
segment in each of two half-planes? [12]
Visibility-Between-Segments: Given a set of n vertical line segments S and two
particular line segments s1 and s2, determine whether there is a point on s1 and a point
on s2, such that segment between these two points doesn’t intersect any segment from S.
[12]

We also define General-Covering problem. We will design quantum algorithm for this
problem with O(n1+o(1)) complexity and then reduce many 3Sum-Hard problems to this
problem.

General-Covering: We are given a set of n strips and angles (angle is defined as an
infinite area between two non-parallel lines (see Figure 2)) in the plane. The task is to
find a point X that satisfies the following conditions:

the point X is an intersection of two angle or strip boundary lines `1, `2 (`1 and `2
may be boundary lines of two different angles/strips);
the point X does not belong to the interior of any angle or strip;
the point X satisfies a given predicate P (X) that can be computed in O(1) time.

Figure 1 Strip. Figure 2 Angle.

2.2 Model
We assume a query model in which the query returns the description Di of the ith object
(point, line, strip, triangle, etc.), given i. The description consists of several numbers that
specify the ith object (e.g. coordinates of a point or values of coefficients in the equation
that specifies a line). In the quantum case, we can query superpositions of indices i. The
input to quantum query Q consists of two registers, with one register holding i and the other
register provides the space for Di. The query transformation acts as Q|i, x〉 = |i, x⊕Di〉. In
particular, given a superposition |ψ〉 =

∑
i αi|i, 0〉 in which x = 0, applying Q gives the state

Q|ψ〉 =
∑
i αi|i,Di〉. Applying Q to |φ〉 =

∑
i αi|i,Di〉 gives the state Q|φ〉 =

∑
i αi|i, 0〉 in

which the descriptions Di are erased from the second register.
Our algorithms work in the commonly used QRAM (quantum random access memory)

model of computation [13] which assumes quantum memory can be accessed in a superposition.
QRAM has the property that any time-T classical algorithm that uses random access memory

TQC 2020

9:4 Quantum Algorithms for Computational Geometry Problems

can be invoked as a subroutine for a quantum algorithm in time O(T). We can thus use
primitives for quantum search (e.g., Grover’s quantum search or Amplitude amplification)
with conditions checking which requires data stored in a random access memory.

2.3 Tools
We will use two well known quantum procedures in our algorithm.

I Theorem 1 (Grover search [16]). Given a set of n elements X = {x1, x2, ..., xn} and a
boolean function f : X → {0, 1}. The task is to find x ∈ X such that f(x) = 1. There is a
bounded-error quantum procedure that solves this problem using O(

√
n) quantum queries.

I Theorem 2 (Amplitude amplification [7]). Let A be a quantum procedure with one-sided
error and success probability at least ε. Then, there is a quantum procedure B that solves the
same problem with success probability 2

3 invoking A O(1√
ε
) times.

Note that any constant success probability 1− ε can be achieved with repeating Amplitude
Amplification constantly many times.

We will also use the following well known computational geometry algorithm.

I Theorem 3 (Arrangement of lines [9]). Given a set of n lines in the plane, we can compute
partition of the plane formed by those lines in time O(n2).

We will also use point-line dualization for problem reductions. Point-line dualization is a
plane transformation that maps points to lines and lines to points in the following way:

Line ` : y = ax+ b is mapped to point `∗ = (a,−b)
Point P = (a, b) is mapped to line P ∗ : y = ax− b

One may note, that the following properties are true:
1. (P ∗)∗ = P and (`∗)∗ = `

2. P ∈ ` ⇐⇒ `∗ ∈ P ∗
3. If point A,B,C lie on one non-vertical line, then lines A∗, B∗, C∗ meet at one point.
4. If non-vertical lines p, q, r meet at one point, then points p∗, q∗, r∗ lie on one line.
5. Points from vertical line segment are mapped to a strip.
6. Points from non-vertical line segment are mapped to an angle.

3 Point on three lines

In this part we describe a quantum algorithm which solves Point-On-3-Lines problem in
O(n1+o(1)) time, improving over the O(n3/2) time quantum algorithm of Furrow [11]. The
idea behind our algorithm is as follows. Suppose we are given a set S of lines in the plane.
From this set we randomly pick k lines. Those k lines split plane into no more than

(
k+1

2
)

+ 1
regions. Each line from set S intersects k+ 1 regions. So, on average, a region contains O(nk)
lines crossing that region.
These facts give an opportunity to design a quantum algorithm that improves over the
complexity O(n 3

2) of simple quantum search (as in Furrow’s algorithm [11]). If we have a
point A, then we can decide if A belongs to some line from S using O(

√
n
k + k) quantum

time. To do so, we need to find a region which contains point A and check if A belongs
to a line which crosses that region. For finding the region, O(k) time suffices. Checking if
A belongs to a line from S can be done by Grover’s search over O(nk) lines that cross this
region. For this, O(

√
n
k) time suffices.

A. Ambainis and N. Larka 9:5

If we need to find three lines that intersect in one point, we run Grover search over all pairs
of lines (`i, `j). For each pair, we find the intersection point Pi,j = li ∩ lj and check if point
Pi,j belongs to a third line using algorithm described earlier. If the subdivision of the plane
into regions can be done in time O(nk2), this algorithm runs in time O(nk2 +

√
n2(k+

√
n
k)).

Setting k = n
1
5 gives O(n 7

5). But we can find even better algorithm. After dividing the
plane into regions, instead of searching for an intersection point of three lines, we search
for a region which has this point (search is done using Grover search) and we recursively
apply O(n 7

5) algorithm to find the intersection point of three lines inside that region. We
can then add more levels of recursion to decrease the complexity further. We now describe
the final algorithm (in which we recurse at the optimal choice of k and the number of levels
of recursion grows with n).
Let S be the given set of lines in a plane. Let P be a subset of S containing exactly k lines.
Lines in P divide plane into convex (possibly infinite) polygons. We arbitrarily triangulate
regions, which are bounded by at least 4 lines. This results in a subdivision of the plane into
regions R1, R2, ..., Rt where each region is bounded by at most 3 segments (see Figure 3).
Let s(Ri) = {` | ` ∈ S and ` intersect Ri}.

Figure 3 Blue lines divide plate into 13 regions: R1, R2, ..., R13. Red line ` passes through regions:
` ∈ s(R1), s(R3), s(R6), s(R7), s(R8), s(R10).

We start with the following three observations:

I Lemma 4. If after the triangulation we get t regions: R1, R2, ..., Rt, then t ≤ 2|P |2 = 2k2

Proof. If fi is the number of faces bounded by i lines before the triangulation, then

t = f1 + f2 + f3 + 2f4 + 3f5 + ...+ (k − 2)fk ≤
k∑
i=1

ifi ≤ 2k2 (1)

The last inequality holds because
∑k
i=1 ifi is equal to twice the total number of line segments

before the triangulation (because each line segment is on the boundary of two faces, one on
each side) and the number of line segments is at most k2 (because each of k lines is split by
the other k − 1 lines into at most k segments). J

TQC 2020

9:6 Quantum Algorithms for Computational Geometry Problems

I Lemma 5. Sets s(R1), ..., s(Rt) can be built classically in time O(|S| × |P |2).

Proof. We can construct regions R1, R2, ..., Rt in time O(|P |2) using Theorem 3. We build
s(Ri) by iterating through each line from S and checking whether the line intersects region
Ri. This step takes time O(|S| × t) = O(|S| × |P |2). J

I Lemma 6. If P is chosen uniformly at random, then

Pr[max
i
|s(Ri)| ≥ 3 |S|

|P |
(5 log(|S|) + log(ε−1))] ≤ ε (2)

Proof. Let ` be an arbitrary line (possibly not from the set S). Lines from set S intersect
line ` in points X1, X2, ..., Xm in this order (if two lines `i and `j intersect ` in the same
point, then Xi = Xj). We note that m ≤ |S|, since some lines from S might be parallel to
`. We color a point Xi with white color if the corresponding line `i from S is in the set P .
Otherwise we color the point Xi with black color. We define L =

⌈
|S|
|P | (5 log(|S|) + log(ε−1))

⌉
and we assume that L ≤ |S|, since otherwise lemma is obviously true.

We say that a line ` is bad, if there exists index i, such that Xi+j is black for all
j ∈ [0...L− 1]. The probability of ` being bad can be upper bounded as follows

Pr
[m−L+1∨

i=1
(Xi, Xi+1, ..., Xi+L−1 are all black)

]
= (3)

≤
m−L+1∑
i=1

Pr[Xi, Xi+1, ..., Xi+L−1 are all black] = (m− L+ 1)

(|S|−L
|P |

)(|S|
|P |
) (4)

≤ |S|
(
|S| − L
|S|

)|P |
≤ |S|

[(
1− L

|S|

) |S|
L

]L |P ||S|
≤ |S|
e5 log |S|+log ε−1 = ε

|S|4
(5)

Consider set S′ which consists of lines from S and lines that pass through at least two
intersection points of lines from S. Then, every edge e of every region Ri lies on a line that
belongs to S′ (because e is either a segment of one of original lines from S or is created
during the triangulation and, in the second case, both endpoints of e are intersection points
of two lines from S) Since there are at most

(|S|
2
)
intersection points of lines from S, we have

|S′| ≤ |S|4 and

Pr[S′ contains bad line] ≤
∑
`∈S′

Pr[` is bad] ≤ |S′| × ε

|S4|
≤ ε (6)

To finish the proof, it is enough to see that the fact that S′ doesn’t contain bad line
implies |s(Ri)| ≤ 3(L− 1) < 3 |S||P | (5 log(|S|) + log(ε−1)) for all i. Indeed, if no lines in S′ is
bad, then each side of each region Ri contains less than L black points. Since a black point
corresponds to a line which intersects a region Ri and each region is bounded by at most
three segments, the region Ri is intersected by no more than 3(L− 1) lines from S. J

I Theorem 7. There is a bounded error quantum algorithm for Point-On-3-Lines problem,
that runs in time O(|S|1+o(1)).

Proof. The algorithm has a parameter k and allowable error probability ε. The algorithm
consists of a recursive procedure that takes a set of lines X as input and returns 3 lines from
the set X which intersects at one point or tells that there are no such 3 lines.

A. Ambainis and N. Larka 9:7

Procedure Algok(X).

if |X| < k then
Check for an intersection of 3 lines classically, by exhaustive search

end
R1, R2, ..., Rt = RandomPlaneSeparation ε

2
(X)

Build sets: s(R1), s(R2), ..., s(Rt)
if maxi|s(Ri)| > 3 |X|k (5 log(|X|) + log(2

ε)) then
return error

end
Let A be the algorithm that randomly chooses j ∈ [t] and runs Algok(s(Rj)).
With Amplitude amplification, run A with the success probability amplified to at
least 1− ε

2 .

The recursive procedure can be described as follows. If the input set X contains less than
k lines, we solve Point-On-3-Lines classically in time O(|X|2). Otherwise, we split the plane
into regions R1, R2..., Rt with k random lines from X and build sets s(R1), s(R2), ..., s(Rt).
If there are three lines that intersect at one point, then this point is located in one of the
regions Ri (if this point is on the boundary of a region, then this point can be found during
the construction of sets s(Ri)). We use amplitude amplification to find the region Ri which
contains intersection point of three lines and recursively apply the procedure to lines from
s(Ri).

Suppose that S contains three lines that intersect at one point. If |S| < k, the algorithm
finds those 3 lines with certainty. Let |S| ≥ k. The probability that s(Ri) > 3 |S|k (5 log(|S|) +
log(2

ε)) for some Ri and the algorithm returns an error is less than ε
2 . By executing amplitude

amplification (running Algok(s(Ri)) O(
√
t) = O(k) times), we can reduce probability of not

finding the 3 lines to ε
2 . So, Algok(S) finds desired three lines with probability at least 1− ε.

If T (|X|) is a runtime of Algok(X), then:

T (|X|) = O(|X| × k2) +O
(√
k2
)
× T

(
3 |X|
k

(5 log(|X|) + log(2
ε

))
)

(7)

If k = |S| 1
α · 3(5 log(|S|) + log(2

ε)), then:

T (|X|) ≤ O(|X| × |S| 2
α log2(|S|)) +O

(√
k2
)
× T

(
|X| × |S|− 1

α

)
(8)

There are (C1k)2j problems on recursion level j for some constant C1 and each problem size
is at most |S|1−

j
α .

T (|S|) ≤
α∑
j=0

√
(C1k)2j ×

[
|S|1−

j
α × |S| 2

α log2(|S|)
]

=

=
α∑
j=0

(
C1k

|S| 1
α

)j(
|S|1+ 2

α log2(|S|)
)
≤

≤ α
(
C2 log(|S|)

)α(|S|1+ 2
α log2(|S|)

)
(9)

If α =
√

2 log(|S|)
log(C2)+log log |S| , then T (|S|) = O(α|S|1+ 4

α log2(|S|)) = O(|S|1+o(1)) J

TQC 2020

9:8 Quantum Algorithms for Computational Geometry Problems

4 Other 3SUM hard problems

In this section, we show how it is possible to apply plane separation ideas, described in the
previous section, to speed up other 3-Sum-Hard problems defined in [12].

3-Points-On-Line
This problem is dual to the Point-On-3-Lines problem [12], and so is solvable with the
same quantum algorithm in time O(n1+o(1)), as described in the previous section.
General-Covering
The given n strips and angles form 2n lines. We divide the plane into regions by randomly
choosing k out of those 2n lines, similarly to the algorithm described in the previous
section. A region and a strip/angle can be in one of the following relations: the strip/angle
fully covers the region, the strip/angle partly covers the region or the strip/angle has
no common points with the region. We can identify all regions that are fully covered
by some strip/angle in time O(nk2). For regions that are not fully covered by some
strip/angle, we identify the set s(Ri) of strips and angles which cross that region. Non
covered regions may contain the desired intersection point, but this intersection point is
formed by the lines that are boundary lines of the strips/angles in the set s(Ri). Similarly
to the algorithm Point-On-3-Lines, our task is divided into O(k2) tasks, each of which
involved O(n logn

k) objects. The time complexity is

T (n) = O(nk2) +O
(√
k2
)
× T

(
32n
k

(5 log(2n) + log(2
ε

))
)
. (10)

Similarly to the analysis of Point-On-3-Lines problem, we get T (n) = O(n1+o(1)).
Strips-Cover-Box
This problem is just the special case of the General-Covering problem with the
predicate P (X) being true if the point X is located inside the given box. Then, the point
X from General-Covering problem corresponds to an uncovered point in Strips-
Cover-Box problem. So, Strips-Cover-Box can also be solved in time O(n1+o(1)).
Triangles-Cover-Triangle
The given n triangles consist of 3n segments. We extend each segment to a line and
separate the plane into regions, similarly to the Point-On-3-Lines problem with ran-
domly chosen k lines. A triangle and a region can be in one of the following relations:
the triangle fully covers the region, the triangle partly covers the region or the triangle
has no common point with the region. We can identify all regions that are fully covered
by some triangle in time O(nk2). All other regions may contain a point X which is not
covered by any triangle. Similarly to the Point-On-3-Lines problem, we search for the
region Ri which contains that point. Note that, if a triangle partly covers the region Ri,
then at least one of the segments that form this triangle is in s(Ri). So, we can finish our
algorithm, just as in General-Covering problem, with the predicate P (X) being true,
if the point X is located inside the triangle that must be covered.
Point-Covering
The given n half-planes are specified by n lines. We separate the plane into regions,
similarly to the Point-On-3-Lines problem, by randomly choosing k out of n given lines.
For each region Ri we compute the number of half-planes ri that fully cover this region.
This takes O(nk2) time. To determine if there exists a point that is covered by at least
t half-planes, we need to tell, if there exists a point inside a region Ri that is covered
by at least t− ri half-planes from s(Ri). As in the General-Covering problem, the
algorithm takes O(n1+o(1)) time.

A. Ambainis and N. Larka 9:9

Visibility-Between-Segments
We dualize the given n vertical segments, to get n strips. We need to find a point that
does not belong to any of the strips and has the property that the corresponding line
in the initial plane intersects two given segments s1 and s2. This problem is just the
special case of the General-Covering problem, where the predicate P (X) is true if
the line corresponding to X intersects two given segments s1 and s2. Just like in the
General-Covering problem, this problem can also be solved in O(n1+o(1)) time.
Segment-Separator
This problem can be solved in exactly the same way as the Visibility-Between-
Segments problem, with the only difference being the predicate P (X). Now this
predicate is true, if the line corresponding to a point separates the given segments in the
way required for the Segment-Separator problem. Since X is the intersection point of
two lines in the dual plane, the line, corresponding to the point X, must go through two
endpoints of two different given segments. So, P (X) is false, if the corresponding line
goes through an edge of the convex hull of the endpoints of given segments. This can be
detemined in time O(1), after we precompute the convex hull in time O(n log(n)). This
results in an O(n1+o(1)) time quantum algorithm.

References
1 Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin, Chunhao Wang, and Ruizhe Zhang. On

the quantum complexity of closest pair and related problems. CoRR, abs/1911.01973, 2019.
arXiv:1911.01973.

2 Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM J. Comput.,
37(1):210–239, 2007. doi:10.1137/S0097539705447311.

3 Andris Ambainis, Kaspars Balodis, Jānis Iraids, Martins Kokainis, Krišjānis Prūsis, and
Jevgēnijs Vihrovs. Quantum speedups for exponential-time dynamic programming algorithms.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’19, pages 1783–1793, Philadelphia, PA, USA, 2019. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=3310435.3310542.

4 Andris Ambainis, András Gilyén, Stacey Jeffery, and Martins Kokainis. Quadratic speedup for
finding marked vertices by quantum walks. CoRR, abs/1903.07493, 2019. arXiv:1903.07493.

5 Simon Apers, András Gilyén, and Stacey Jeffery. A unified framework of quantum walk search.
CoRR, abs/1912.04233, 2019. arXiv:1912.04233.

6 Aleksandrs Belovs and Robert Spalek. Adversary lower bound for the k-sum problem. In
Robert D. Kleinberg, editor, Innovations in Theoretical Computer Science, ITCS ’13, Berkeley,
CA, USA, January 9-12, 2013, pages 323–328. ACM, 2013. doi:10.1145/2422436.2422474.

7 Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Contemporary Mathematics, 305:53–74, 2002.

8 Harry Buhrman, Subhasree Patro, and Florian Speelman. The quantum strong exponential-
time hypothesis. CoRR, abs/1911.05686, 2019. arXiv:1911.05686.

9 Bernard Chazelle, Leo J. Guibas, and D. T. Lee. The power of geometric duality. BIT
Numerical Mathematics, 25, 1985. doi:10.1007/BF01934990.

10 Andrew M. Childs and Jason M. Eisenberg. Quantum algorithms for subset finding. Quantum
Information & Computation, 5(7):593–604, 2005. URL: http://portal.acm.org/citation.
cfm?id=2011663.

11 Bartholomew Furrow. A panoply of quantum algorithms. Quantum Information & Computa-
tion, 8(8):834–859, 2008. URL: http://www.rintonpress.com/xxqic8/qic-8-89/0834-0859.
pdf.

12 Anka Gajentaan and Mark H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.

TQC 2020

http://arxiv.org/abs/1911.01973
https://doi.org/10.1137/S0097539705447311
http://dl.acm.org/citation.cfm?id=3310435.3310542
http://arxiv.org/abs/1903.07493
http://arxiv.org/abs/1912.04233
https://doi.org/10.1145/2422436.2422474
http://arxiv.org/abs/1911.05686
https://doi.org/10.1007/BF01934990
http://portal.acm.org/citation.cfm?id=2011663
http://portal.acm.org/citation.cfm?id=2011663
http://www.rintonpress.com/xxqic8/qic-8-89/0834-0859.pdf
http://www.rintonpress.com/xxqic8/qic-8-89/0834-0859.pdf
https://doi.org/10.1016/0925-7721(95)00022-2

9:10 Quantum Algorithms for Computational Geometry Problems

13 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory.
Physical review letters, 100:160501, April 2008. doi:10.1103/PhysRevLett.100.160501.

14 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages
212–219, New York, NY, USA, 1996. ACM. doi:10.1145/237814.237866.

15 Allan Grønlund Jørgensen and Seth Pettie. Threesomes, degenerates, and love triangles.
CoRR, abs/1404.0799, 2014. arXiv:1404.0799.

16 Lov K. Grover. Framework for fast quantum mechanical algorithms. Conference Proceedings
of the Annual ACM Symposium on Theory of Computing, 80, December 1997. doi:10.1145/
276698.276712.

17 Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the triangle
problem. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’05, pages 1109–1117, Philadelphia, PA, USA, 2005. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1070432.1070591.

18 Mario Szegedy. Quantum speed-up of markov chain based algorithms. In 45th Symposium on
Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings,
pages 32–41. IEEE Computer Society, 2004. doi:10.1109/FOCS.2004.53.

https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
http://arxiv.org/abs/1404.0799
https://doi.org/10.1145/276698.276712
https://doi.org/10.1145/276698.276712
http://dl.acm.org/citation.cfm?id=1070432.1070591
https://doi.org/10.1109/FOCS.2004.53

	Introduction
	Preliminaries
	Problems
	Model
	Tools

	Point on three lines
	Other 3SUM hard problems

