
Fast and Effective Techniques for T-Count
Reduction via Spider Nest Identities
Niel de Beaudrap
Department of Computer Science, University of Oxford, United Kingdom
niel.debeaudrap@cs.ox.ac.uk

Xiaoning Bian
Department of Mathematics & Statistics, Dalhousie University, Halifax, Canada
bian@dal.ca

Quanlong Wang
Department of Computer Science, University of Oxford, United Kingdom
Cambridge Quantum Computing Ltd., Cambridge, United Kingdom
quanlong.wang@cs.ox.ac.uk

Abstract
In fault-tolerant quantum computing systems, realising (approximately) universal quantum com-
putation is usually described in terms of realising Clifford+T operations, which is to say a circuit
of CNOT, Hadamard, and π/2-phase rotations, together with T operations (π/4-phase rotations).
For many error correcting codes, fault-tolerant realisations of Clifford operations are significantly
less resource-intensive than those of T gates, which motivates finding ways to realise the same
transformation involving T -count (the number of T gates involved) which is as low as possible.
Investigations into this problem [5, 21, 4, 3, 10, 6] has led to observations that this problem is closely
related to NP-hard tensor decomposition problems [23] and is tantamount to the difficult problem
of decoding exponentially long Reed-Muller codes [6]. This problem then presents itself as one for
which must be content in practise with approximate optimisation, in which one develops an array
of tactics to be deployed through some pragmatic strategy. In this vein, we describe techniques to
reduce the T -count, based on the effective application of “spider nest identities”: easily recognised
products of parity-phase operations which are equivalent to the identity operation. We demonstrate
the effectiveness of such techniques by obtaining improvements in the T -counts of a number of
circuits, in run-times which are typically less than the time required to make a fresh cup of coffee.

2012 ACM Subject Classification Computer systems organization → Quantum computing

Keywords and phrases T-count, Parity-phase operations, Phase gadgets, Clifford hierarchy, ZX
calculus

Digital Object Identifier 10.4230/LIPIcs.TQC.2020.11

Supplementary Material The software which produced our results may be found on GitHub, at
https://github.com/njross/optimizer, commit 46b8ce0873ff09bf54cf704080b7daa252c48eba.

Funding N. de Beaudrap was supported in part by a Fellowship funded by a gift from Tencent
Holdings (tencent.com), and by the EPSRC National Hub in Networked Quantum Information
Technologies (NQIT.org). X. Bian is supported by NSERC and by AFOSR under Award No.
FA9550-15-1-0331. Q. Wang is supported by Cambridge Quantum Computing Ltd. and by the
AFOSR grant FA2386-18-1-4028. Our results were made possible in part by the use of the Dalhousie
University Mathstat Cluster [11].

Acknowledgements We thank Earl Campbell, Luke Heyfron, Alexander Cowtan, Aleks Kissinger,
and John van de Wetering for helpful discussions. We extend a very special thanks to Matthew Amy,
who wrote a small extension of feynver [2] to allow verification of procedures which post-select the
|+〉 state, for the express purpose of helping us to independently verify the correctness of reductions
such as appear in this work and in Ref. [14]. X. Bian would like to thank his Ph.D. supervisor Peter
Selinger for his support.

© Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang;
licensed under Creative Commons License CC-BY

15th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2020).
Editor: Steven T. Flammia; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9549-5146
mailto:niel.debeaudrap@cs.ox.ac.uk
mailto:bian@dal.ca
mailto:quanlong.wang@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.TQC.2020.11
https://github.com/njross/optimizer
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

1 Introduction

To achieve practical scalable quantum computation, it is important to find effective (both
useful and efficient) techniques to reduce the resources required to perform computations.
Error correction, and in particular realising operations in a fault-tolerant way, is expected to
be a particularly significant source of resource overheads. In most quantum error-correcting
codes, Clifford group operations involve less overhead than non-Clifford gates, such as the T
(or π/4 phase-rotation) gate. As the set of Clifford+T circuits is approximately universal for
quantum computation [32], this motivates the T -count — or the number of T gates — as a
quantity of interest in the resources required to realise a quantum computation.

On the other hand, in order to test the effectiveness of quantum technologies, it is helpful
to be able to simulate the outcomes of quantum computations inasmuch as this is feasible. As
circuits of Clifford operations can be efficiently simulated [22, 1], this motivates the approach
of simulating quantum circuits by extending those efficient simulation techniques [9, 8], this
again motivates the T -count as a measure of interest in the complexity of quantum circuits.

In this article, we consider the problem of reducing the T -count required to represent
a unitary circuit provided as input. Following Heyfron and Campbell [23], we consider
transformations of circuits which isolate a subcircuit of diagonal operations which is the only
part of the algorithm with non-trivial T -count. The approach of Heyfron and Campbell [23]
is to transform Clifford+T circuits, to circuits with the following structure:
1. An initial stage of CNOT gates; followed by
2. A stage of diagonal non-Clifford operations; followed by
3. A sequence of (possibly classically controlled) Clifford operations.
This allows Ref. [23] to reduce the problem of T -count reduction to an analysis of the diagonal
non-Clifford portion of this circuit, in terms of phase polynomials. This builds on a sequence
of results which revolve around such operations [5, 21, 4, 3, 10, 6] presented in various but
similar ways, and in particular establishes a connection between T -count optimisation and
difficult coding problems and tensor decomposition problems [6, 23]. Our approach is to
elaborate on that of Campbell and Heyfron as follows:

Reduce the complexity of the diagonal non-Clifford operation by more flexible (but
essentially elementary) separation of the circuit into stages by allowing the first stage to
contain arbitrary Clifford gates;
Analyse the diagonal non-Clifford portion of the circuit directly in terms of “π/4-parity-
phase operations” — essentially operators of the form exp(iπ8 (Z ⊗ · · · ⊗ Z)) — rather
than as phase polynomials, simplifying them through the efficient application of identities
of such operations.

We call these “π/4-parity-phase operations” as they induce a eiπ/4 relative phase on standard
basis states, depending on some parity computation f(x) = xk1 ⊕ xk2 ⊕ · · · ⊕ xkm

. As each
π/4-parity-phase gate can be realised in principle using a single T or T † gate (and some
CNOT gates), simplifying π/4-parity-phase circuits is directly productive to reducing T -count.

This line of investigation, first identified in the context of T -count by Amy, Maslov, and
Mosca [4], was further developed upon by Gosset et al. [21], Amy and Mosca [6], Kissinger
and van de Wetering [26], and Zhang and Chen [34]. In previous work [14], we described
a family of identities of π/4-parity-phase operations — “spider nest identities”’ — which,
when used in combination with Heyfron and Campbell’s “TODD” subroutine [23], led to new
records in T -count for several benchmark circuits.

In this work, we report new techniques for T -count reduction through the use of spider
nest identities, and compare their effectiveness (the reduced T count and run-times) against
the best previous result found in the literature. While these techniques could easily be

N. de Beaudrap, X. Bian, and Q. Wang 11:3

combined with other high-performance reduction subroutines such as TODD, our results do
not involve any other recently developed techniques beyond those of Ref. [14]. We obtain
a number of new records for the T -count, obtained almost exclusively1 in very practical
run-times on a consumer-grade laptop. (For example, the second-largest circuit, on 768
qubits, was simplified in less than 3 minutes.) This opens the door to further improvements
through the identification of further useful identities of π/4-parity-phase operations, and
improved techniques for deploying these identities.

2 Preliminaries

We first set out some basic or existing results, using the following notation. Let [n] :=
{1, 2, . . . , n} and 1 be the 2×2 identity matrix. For sets S, T ⊆ V we write S ∆ T for the
symmetric difference (S ∪ T) \ (S ∩ T), and x(S) ∈ {0, 1}V denote the incidence vector of S,
where x (S)

j = 1 if and only if j ∈ S. We let Pn :=
{
ikP1⊗ · · ·⊗Pn

∣∣k∈Z & Pj ∈{1,X,Y,Z}
}

denote the n-qubit Pauli group. We define the Clifford hierarchy (on n qubits) by defining
Cn1 := Pn, and

Cnk =
{
U ∈Un(C)

∣∣ ∀P ∈Pn. UPU†∈ Cnk–1
}

(1)

for k > 1; we call Cnk (for arbitrary n) the kth level of the Clifford hierarchy. As an abuse of
notation, we identify Cnk as a subset of CNk for n < N ; we may then write S ∈ Cn2 and T ∈ Cn3
for all n > 1.

Let Dnk ⊆ Cnk be the subset of diagonal operations in the kth level of the Clifford hierarchy.
(We again identify Dnk as a subset of DNk for n < N .) It is easy to show that Dnk forms an
abelian group. In particular: consider any diagonal operation as a product of operators
exp
(
iθx |x〉〈x|

)
for various x ∈ {0, 1}n, and expand each |x〉〈x| as a linear combination of

Pauli operators. Then one may show (see Ref. e.g. [14, Appendix A]) that Dnk is generated
by the operators ω ·1⊗n for any global phase ω, together with all operations of the form DS,k
for sets S = {s1, . . . , sm} ⊆ [n] for m > 1, defined by

DS,k = exp
(
− iπ2k

(
Zs1⊗ · · · ⊗Zsm

))
= exp

(
− iπ2k ZS

)
= cos

(
π
2k

)
1− i sin

(
π
2k

)
ZS , (2)

where ZS =
⊗

j∈SZj .2 Note that XaZSX†a = (−1)x(S)
a ZS , and that CNOTa,b ZS CNOT†a,b =

ZS′ , where here S′ = S ∆ {a} if b ∈ S and S′ = S otherwise. From this it follows that

XbDS,kX
†
b = D−1

S,k ∈ D
n
k (3a)

if b ∈ S (and XbDS,kX
†
b = DS,k otherwise); and

CNOTa,bDS,k CNOT†a,b = DS′,k ∈ Dnk (3b)

so that Dnk is preserved under conjugation by CNOT and X operations. Also note that
D 2
S,k = DS,k−1, from which it follows that Dnk−1 ⊆ Dnk .

1 The one circuit which we did not simplify on a laptop was the largest benchmark circuit that we tested,
acting on 1536 qubits and involving nearly two million T gates alone. This was instead simplified on
Dalhousie University’s Mathstat Cluster [11], which took less than 15 minutes to realise a 43% reduction
in T -count.

2 We define DS,k for all k ∈ Z; however, as one may easily show DS,0 =−1⊗n and DS,k =1
⊗n for all k < 0

and S ⊆ [n], these operations are of interest principally for k > 0.

TQC 2020

11:4 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

We refer to the operators DS,k+1 , and their inverses, as “π/2k -parity-phase” operations,
as the action of DS,k+1 on standard basis states is given by

DS,k+1 |z〉 = eiπ/2k+1
exp
(
i [x(S) · z]π/2k

)
|z〉 (4)

inducing a relative phase of π/2k depending on the result of a parity computation x(S) · z =
zs1 ⊕ zs2 ⊕ · · · ⊕ zsm

. More generally, we may refer to exp(± 1
2 iθZS) as a θ-parity-phase

operation.
From Eqn. (3b), it follows that any operation DS,k can be reduced to an operation

Dj,k ∝ diag(1, e2πi/2k) acting on a single qubit j, by conjugation with an appropriate CNOT
circuit. In particular, it follows that the operation DS,3 can be easily realised with a T -
count of 1. This allows us to approach the question of reducing T count by considering
decompositions of unitaries involving few π/4-parity-phase operations, acting on many qubits.
Amy and Mosca [6] noted the relevance of the operators DS,k in this context, and both
Kissinger and van de Wetering [26] and Zhang and Chen [34] make direct use of them in their
analysis of T count to achieve their results. (Litinski [27] similarly considers these operators
in the context of compilation of quantum circuits to lattice surgery [24]).

An important role of DS,3 gates for S ⊆ [n] is their relationship to diagonal gates in Dn3
which are controlled-unitaries in a more straightforward sense, such as CS and CCZ:

CS = exp
(iπ

2 |11〉〈11|
)
, CCZ = exp

(
iπ |111〉〈111|

)
; (5)

we may describe how to generate these from Dk,3 operations by decomposing the projectors
|11〉〈11| or |111〉〈111| into tensor products of |1〉〈1| = 1

2
(
1− Z), and expanding to obtain a

product of DS,3 gates. Disregarding any D∅,3 factors, which realise global phases, we obtain

CSh,j ∝ D{h},3D{j},3D−1
{h,j},3 ;

CCZg,h,j ∝ D{g},3D{h},3D{j},3D−1
{g,h},3D

−1
{g,j},3D

−1
{h,j},3D{g,h,j},3 . (6)

More generally, we may relate (t−1)-controlled π/2k-phase gates to π/2k−t+1-phase parity
gates:∏

S∈℘(V)
S 6=∅

D
(−1)|S|
S,k ∝ exp

(iπ

2k−|V |+1 |1〉〈1|
⊗V
)
, (7)

where the right-hand operator applies a phase of π/2k−|T |−1 to those components of a state
in which all of the qubits in T are in the state |1〉.

Circuits of parity-phase operations on n qubits which realise the identity, correspond in
the notation of Amy and Mosca [6] to operators UPa for a ∈ Cn ⊆ Z2n−1

8 , where

Pa(z) =
∑

x∈{0,1}n

x6=0

ax
(
x1z1 ⊕ x2z2 ⊕ · · · ⊕ xnzn

)
(8)

and where UPa |z〉 = exp
(
iπ
4 Pa(z)

)
|z〉, which is identically |z〉 for all z ∈ {0, 1}n when

a ∈ Cn. Let supp(a) =
{

x ∈ {0, 1}n : ax 6= 0
}
. In this notation, each element y ∈ supp(a)

corresponds to a single phase-parity operator acting on the qubits j for which yj = 1;
the relative phase induced by this operator is ayπ/4; and the polynomial Pa describes a
commuting product of such operations, for which Pa : {0, 1}n → Z8 is the all-zero function
when a ∈ Cn.

N. de Beaudrap, X. Bian, and Q. Wang 11:5

We remark that a θ-phase parity operation U (such as an operator DS,k) can be easily
represented as tensor networks, using ZX diagrams (see Appendix A for an introduction to
this notation),3 with structure such as the following:

... ±θ
(

or
... ±θ ,R if classically conditioned on

∑
R ≡ 1 (mod 2)

)
(9)

where horizontal wires represent qubits which are acted on by U , and S ⊆ [n] is the subset
of those qubits which have (light, green) degree-3 nodes on them. These are “phase gadgets”,
using the terminology of Kissinger and van de Wetering [26]. When the number of qubits
acted on is m, we may refer to it as an “m-gadget”. (If θ is an odd multiple of π/4, we may
refer to it as a “T -phase m-gadget”; for θ an integer multiple of π/2, we refer to it as a
“Clifford-phase m-gadget”. If m = 1, we may also mildly abuse this terminology to refer to a
simple green phase node as a “1-gadget”.)

Remark.

The role played by the ZX calculus in our work is not an essential one, nor is expertise in
the ZX calculus required to understand our results. However, in practice it did inform our
line of investigation, by allowing us to obtain our results more quickly by identifying the
objects of interest, and by making it easy to reason directly about the operators DS,k. As the
ZX calculus also provides a useful notation for visually representing the (non-local) unitary
gates DS,k in a readable way, as in Eqn. (9), we use this notation in the article below. Readers
should be able to understand our results by reading ZX diagrams simply as a straightforward
alternative notation for quantum circuits (see Appendix A), the transformations of which
are the subject of our work.

3 Phase gadget elimination tactics & spider nest identities

Reducing the T -count while preserving the meaning of a circuit, implicitly involves applying a
mathematical identity. These are often identities of diagonal unitary circuits [4, 6, 34], though
not always [21, 26].) In the special case of unitary circuits consisting solely of π/4-parity-phase
operations, such a mathematical identity may be described in terms of a commuting product
of operations which are proportional to the identity operator; and for any such identity, there
is the question of how to effectively apply it to realise a significant reduction of T -count, as
efficiently as possible.

In this section, we describe a broad framework for the reduction of T -count by means
of the application of mathematical identities of commuting Dn3 operations. We also present
some mathematical identities of this form — called “spider nest identities” — first presented
in Ref. [14], and describe new techniques to use these identities to reduce T -count.

In the following, we use the terms “identity of π/4-parity-phase operations” or “identity
of phase gadgets” (or simply “an identity”) to refer to a circuit J , whose T -count is at least
1 but which nevertheless realises the identity operation.

3 In this article, where they occur, ZX diagrams may be read essentially as circuit diagrams, and in
particular are read from left to right as with other circuit diagrams.

TQC 2020

11:6 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

3.1 PHAGE tactics
We consider a particular approach to the reduction of Dn3 circuits by an analysis of families
of non-trivial circuits which realise the identity transformation, which may be applied more
broadly than we do here (and which in principle can be used to describe some existing
techniques [6, 23]). For any family F of identities of π/4-parity-phase operations, there is an
associated “phase gadget elimination tactic” (or PHAGE tactic) to reduce the T -count in a
circuit C of such phase gadgets:

I Phage Tactic (F).
1. Determine whether there is an identity J ∈ F , such that C contains at least half of the

T -gadgets which occur in J (or their inverses).
2. For any such identity J , compute a circuit CJ as the product of C and J−1. This may

allow for simplifications (using the fact noted in Section 2 that D 2
S,k = DS,k−1), where

by T -gadgets accumulate to form Clifford gadgets or to cancel altogether. Determine the
resulting T -count.

3. Replace C with the circuit CJ with the smallest T -count, if this is less than the T -count
of C itself.

The behaviour of a PHAGE tactic is in a sense “greedy”, in that it selects some circuit
CJ which minimises the T count after a single application, ignoring the possibility of a more
complicated sequence of reductions. The main principle of a PHAGE tactic is in that it
selects a way to reduce the T -count, based on the comparison of a few different applicable
identities of phase gadgets from a specific family F . Such a tactic can then be applied again,
or followed by other such “tactics”.

In principle, the Tpar subroutine of Ref. [6], the TOOL and TODD subroutines of Ref. [23],
and the results of Zhang and Chen [34] may be interpreted as algorithms to deploy PHAGE
tactics, possibly more than once in sequence, and possibly with a random choice of family F
(and where F itself may on occasion be a singleton set). This approach to T -count reduction
can be distinguished from that of Kissinger and van de Wetering [26], in which phases may
be reduced in unitary circuits (or more general tensor networks) which are not diagonal.

The difficulty in reducing the T -count arises from the fact that there are a very large
number of identities of π/4-parity-phase operations, and a large number of subsets S ⊆ [n]
which one may consider. As Amy and Mosca observe [6], reducing the T -count is formally
equivalent to decoding a length 2n − 1 punctured Reed-Muller code, in that the smallest
T -count of a circuit amounts to the distance of a ciphertext to a valid codeword of such
a code. However, no polynomial-time algorithms are known for the decoding problem on
such codes. The difficulty is in formulating a successful strategy — a means of selecting an
appropriately-sized family F of identities to try on a particular circuit. The question is then
one of having a variety of tactics which one may efficiently explore and deploy to reduce the
T -count.

3.2 Spider nest identities
We consider PHAGE tactics arising from identities of π/4-parity-phase operations (i.e., of
T -phase gadgets) which can be composed from some specific circuits — introduced in Ref. [14],
and which we call “spider nest identities” — which realise the identity operator.

In qualitative terms, a “spider nest identity” consists of any circuit of phase-parity
operations which realises an operation on n qubits which is proportional to the identity, in
which only “very few” operations act on “many” qubits, and the vast majority act on “very

N. de Beaudrap, X. Bian, and Q. Wang 11:7

few” qubits. (In terms of the notation of Amy and Mosca [6], they would correspond to
a ∈ Z2n−1

8 for which only very few y ∈ supp(a) have Hamming weight larger than some low
threshold w > 0; in the case of Dn3 operations, we set w = 3.) We generate these circuits from
a minimal family of such circuits for n > 4, involving a single phase 4-gadget and various
phase k-gadgets with k 6 3:

n

 ...

...

(n−2)(n−3)π8

(n−2)(n−3)π8

(n−2)(n−3)π8

−(n−3)π4

−(n−3)π4 −(n−3)π4
π
4 ...

...

−π4

∝ 1
⊗n. (10)

Here, the n-qubit circuit on the left-hand side of Eqn. (10) consists of a 1-gadget with phase
(n−2)(n−3)π8 on each line, a 2-gadget on each pair of lines with phase −(n−3)π4 , and a
3-gadget with phase π

4 on each set of three lines, and finally an n-gadget with phase angle −π4 .
(For a proof of this identity, see Appendix B of Ref. [14]; in the case n = 4 this corresponds
to R13 of Ref. [3].) The name “spider nest” here refers to the qualitative feature that it
involves a few “large spiders”, together with a large number of “small spiders”.

Let NS represent the circuit of phase gadgets on the left-hand side of Eqn. (10), acting
on a set S = {1, 2, . . . , n} of cardinality n. How easily one may use this identity as part of a
PHAGE tactic, to reduce T -count, is affected by the T -count of the circuit NS itself. For a
fixed value of n, and a T -phase gadget on 1 to 3 qubits, there is a question of whether or not
such a gadget is involved in NS , as a number of the phase gadgets involved are Clifford-phase
gadgets instead. In particular:

If n ≡ 1(mod 4) or n ≡ 3(mod 4), all of the 2-gadgets in Eqn. (10) are Clifford-phase
gadgets, which do not contribute to the T -count.
If n ≡ 2(mod 4) or n ≡ 3(mod 4), all of the 1-gadgets in Eqn. (10) are Clifford-phase
gadgets, which again do not contribute to the T -count.

Let Tn denote the T -count of NS : then

Tn =


1
6n(n2 + 6δn − 1), for n even;
1
6n(n2 − 3n+ 6δn + 2), for n odd,

(11)

where δn = 1 if n ≡ 0 or n ≡ 1 modulo 4, and δn = 0 if n ≡ 2 or n ≡ 3 modulo 4
(determining whether the 1-gadgets on each wire have T -count one or zero). In general, we
have Tn = 1

6n
3 −O(n2)±O(n).

The scaling of Tn above might suggest that these circuits have at best a limited role to
play in T -count reduction: for increasing sizes of wire-sets S, a somewhat large number of
operations on a given subset S of wires must be present for substitution of NS to yield a
reduction in T -count. However, by composing multiple such circuits NS for different subsets
S, we may obtain a “composite” spider nest identity which has a smaller T -count, and which
is thus more likely to be usable in practise for T -count reduction.

For instance, consider the specific circuit NS N−1
S′ where |S| > 5 and S′ = S \{r} for

some r ∈ S. As all of the operations in these circuits commute, it is possible to see that most
of the phase 3-gadgets of NS — the dominant contribution to Tn above — are cancelled
by corresponding phase 3-gadgets of N−1

S′ . (In many cases, most of the phase 1-gadgets of

TQC 2020

11:8 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

NS are similarly cancelled.) By collecting together the actions of the phase gadgets on each
subset, we may show that NS N−1

S′ simplifies to a circuit of the following form:

...

...

(n−3)π4

(n−3)π4

(n−3)π4

n−1



(n−2)(n−3)π8

−π4

−π4 −π4

−(n−3)π4

−(n−3)π4

−(n−3)π4

π
4

π
4

π
4

...

...

−π4
...

...
π
4
,(12)

If r = S \S′ represents the top qubit in the circuit above, note in particular that the dominant
contributions to the size of the circuit are the phase 2-gadgets on all size-2 subsets of S′, and
the phase 3-gadgets which involve r and some size-2 subset of S′. If T̃n denotes the T -count
of the circuit above, we then have

T̃n =

n2 − n+ 2 + δn for n even;

n2 − 3n+ 4 + δn for n odd,
(13)

where again δn = 1 if n ≡ 0 or n ≡ 1 modulo 4, and δn = 0 if n ≡ 2 or n ≡ 3 modulo 4. In
any case, we have T̃n = n2 −O(n).

3.3 Simple PHAGE tactics based on spider nest identities
Combining the two ideas above, we describe the PHAGE tactics which are used to achieve
the T -count reductions seen in our results.

The first tactic is the reduction of phase-parity circuits by merging together π/4-parity-
phase operations which act on sets of qubits in common, which may be described as the
PHAGE tactic associated to the circuits consisting of mutually inverse pairs of T -phase
gadgets on all possible sets of qubits. To do this to greatest effect (and also as simply as
possible), we first use a circuit transformation procedure along the lines of Heyfron and
Campbell [23], with modifications to improve performance. (In the context of reasoning
about T count in terms of π/4-parity-phase operations, this technique was introduced in
Ref. [14].) We describe this in more detail in the following Section, which describes our
T -count reduction procedure.

Our other PHAGE tactic (or tactics, as they are similar but technically numerous) are
novel, and are best described in terms of the following two sets of spider-nest identities on N
qubit circuits:

The family F (4)
N =

{
NS

∣∣ S ⊆ [N] and |S| = 4
}
, consisting of versions of the identity of

Eqn. (10) applied to all subsets of [N] of size 4
The family

F (5)
N =

N p0
S N

p1
S1
N p2
S2
N p3
S3
N p4
S4
N p5
S5

∣∣∣∣∣∣∣
S = {q1, q2, q3, q4, q5} for distinct qj ∈ [N],
Sj = S \ {qj} for 1 6 j 6 5, and
p0p1p2p3p4p5 ∈ {0, 1}6 \ {000000}

 , (14)
consisting of the 63 distinct identities for each set S ⊆ [N] with |S| = 5, consisting of
NSj

applied to some or all subsets Sj ⊆ S of size 4, and possibly also a copy of NS on
all the qubits of S, fusing together those phase-parity operations which act on common
subsets S′ ⊆ S.

N. de Beaudrap, X. Bian, and Q. Wang 11:9

These are the sets of all possible spider-nest identities on 4 or 5 qubits.4
For increasing values of N , the cardinalities of these families grow as 1

24n
4 +O(n3) and

1
120n

5 +O(n4) respectively — polynomial in size, but impractical to exhaustively iterate
through for values of N which occur in common benchmark tests. This raises the question of
how best to use them to realise T -count reductions. Our approach is to construct a list of
64 identities on four or five qubits, consisting of the elements of the sets F (4)

4 ∪ F (5)
5 , and

performing the following for each element J of this list:
1. Let s be the number of qubits on which J acts.
2. Repeat the following R times, for some fixed R > 0:

a. Select a subset S ⊆ [N] of size s uniformly at random.
b. Select (from F (4)

N if s = 4, or F (5)
N if s = 5) the identity K acting on S, which is

equivalent to J up to relabelling of the qubits.
c. Apply the tactic PHAGE({K}) associated with the singleton set {K}.

This technique implicitly provides opportunities for identities to be applied in proportion to
the number of isomorphic images of it exist in F (4)

4 ∪ F (5)
5 . (For instance, isomorphic copies

of the simplest identity N[4] occurs six times in this set, and the identity of Eqn. (12) occurs
five times.) As the probability that any one such identity will be useful when applied to a
particular set S ⊆ [N] of size 4 or 5 is small, it is important to choose a significantly large
value of R: for our results, we took R = 20 000.

We note that this particular strategy for T -count reduction is not particularly strongly
suggested by the framework of PHAGE tactics induced by spider nest identities. Both the
concept of a PHAGE tactic, and the range of possibilities for assembling spider nest identities,
are broad enough that there is potential for much more sophisticated strategies to deploy
them. Despite this, as we show in Section 5, in many cases we obtain the best known T -count
for a number of circuits. Our result may therefore be considered a further proof of principle
of the usefulness of spider nest identities, beyond the results of Ref. [14].

4 Reduction of T -count through simplification of parity-phase circuits

In this section, we describe how we applied the concept of T -count reduction via PHAGE
tactics as part of a complete procedure to transform unitary circuits provided as input.

Remark.

Our results do not make heavy (explicit) use of the re-write rules of the ZX calculus: a
reader who is content with circuits which involve intermediate measurements, and who is
comfortable with reading a parity-phase gadget such as that of Eqn. (9) as a unitary operator,
may interpret every diagram below as a circuit diagram. (See Appendix A for a guide to
reading ZX diagrams.)

We take unitary circuits with gate-set
{
X,CNOT,CCNOT, Z,CZ,CCZ,H, S, T,SWAP

}
as input. For the sake of simplicity, we suppose that any multiply-controlled NOT gates with
more than two controls are decomposed into CCNOT gates, for instance by computation
and uncomputation on auxiliary qubits initialised to |0〉, or some more advanced technique.5

4 The set F(5) in particular is motivated by the reduction in T -count of the spider-nest identity shown in
Eqn. (12), which is represented in five different ways in F(5): once for each subset Sj of size 4.

5 In our benchmarks, we consider the simple computation-uncomputation approach; other techniques
(see e.g. Refs. [25, 20, 29]) are advisable in serious production work for optimising T -count.

TQC 2020

11:10 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

Our procedure follows and extends the approach of Heyfron and Campbell [23], of
performing a transformation on circuits C → CF ◦ Cφ ◦ CI , where CF and CI consist
entirely of Clifford gates, stabiliser state preparations, and stabiliser state measurements, and
where Cφ can be realised using only CNOT and T gates. We express the circuit Cφ entirely
in terms of phase gadgets, and so we describe as a “homogeneous” circuit. The objective of
isolating such a circuit is that it provides us with the best opportunities to apply PHAGE
tactics to reduce the T -count.

4.1 Circuit translation techniques
Our procedure, which we describe more explicitly in the next section, makes use of the
following techniques.

H gate gadgetisation.

One of the techniques involved in isolating a DN3 circuit is to replace Hadamard gates with a
measurement-based gadget:

H ≡
|+〉

X

X
≡

−π/2

−π/2

π/2

π,{s}

π,{s}

≡

−π/2

π/2

π,{s}

−π/2 π,{s}

(15)

In the circuit second from the left, the two qubits are subject to a SWAP operation, followed
by a CZ = exp

(
iπ |11〉〈11|

)
operation. The bottom qubit is measured finally with an X

observable measurement (i.e., in the |+-〉 basis), and the top operation is acted on finally by
an X operation only if the outcome is |-〉. The two diagrams on the right are ZX diagrams
with additional annotations in the style of Ref. [18] (see also Appendix A). In particular,
measurement is represented as a projection with a random outcome s which is heralded and
may be used to control phase operations elsewhere. The leftmost ZX diagram describes
the decomposition of the controlled-Z operation, using CZh,j ∝ D{h,j},2D

−1
{h},2D

−1
{j},2 . The

final ZX diagram propogates the single-qubit D−1
{∗},2 operations towards the preparation and

measurement of the second qubit, so that the second qubit is prepared in the |-y〉 ∝ |0〉− i |1〉
state.

Extracting H gates from the circuit.

An obvious drawback of gadgetising H gates in this way is that it requires the use of auxiliary
qubits. More directly important to our results is that, as the number of wires in a circuit
increases, the more difficult it may be to successfully find opportunities to reduce the T
count. Therefore, we attempt to transform the circuit in such a way that reduces the number
of H gates from the part of the circuit with non-trivial T -count. This motivates us to define
a subroutine moveH (which we describe at a high level in Appendix B), which transforms
a circuit C over our gate-set, into a pair of circuits (CF ,C′), obtained by attempting to
commute as many Hadamard gates of C to the end of the circuit as possible.

We define (CF ,C′) = moveH(C) in such a way that CF ◦ C′ ∼= C realises the same
unitary, CF contains only Clifford gates, C′ contains no CCNOT gates, and where the
total number of Hadamard gates in (CF ◦C′) is at most the number of Hadamard gates
in C.

N. de Beaudrap, X. Bian, and Q. Wang 11:11

We may use moveH twice, to attempt to extract Hadamard gates either from the end of
the circuit C, and also the beginning of the circuit C. If we compute

(CF ,C′) = moveH(C); (C̃I , C̃M) = moveH
(
(C′)−1); (CI ,CM) =

(
C̃−1
I , C̃−1

M

)
, (16)

then (CF ◦CM ◦CI) ∼= C, the number of Hadamard gates in (CF ◦CM ◦CI) is at most
the number of Hadamard gates in C, and CI and CF only contain Clifford gates.

We call CI and CF the initial and final Clifford stages of the circuit, respectively, and CM

the main body of the circuit. We use this tripartite decomposition to allow us to condense
the part of the circuit with non-trivial T -count in the main body, and to remove Clifford
gates (H gates in particular) to the initial and final Clifford phases to the extent that this is
possible.

Phase-gadgetisation.

Through appropriate substitution of H gates by gadgets as in Eqn. (15), and substitution of
CCZ with π/4-parity-phase operations as in Eqn. (6), we may transform the main body of
the circuit so that it only contains SWAP gate, X gates, CNOT gates, CZ gates, and various
phase gadgets (including powers of the T gate). We wish to transform this into a circuit
consisting only of phase gadgets, by commuting everything apart from phase gadgets either
to the beginning of the main body (and then removing it to the initial Clifford phase) or to
the end of the main body (and then removing it to the final Clifford phase). In particular, we
commute all SWAP, measurement, and X operations to the end of the circuit; we commute
all preparation operations to the beginning of the circuit; and we commute each CNOT
operation either to the beginning or the end according to a simple heuristic (described
in Appendix B). This may transform various DS,t gates by Eqns. (3), changing the set S
involved and/or negating the phase, according to the following commutation relations:

... θ

π

−→

... −θ

π

;

... θ

π,{s}

−→

...
...θ −2θ,{s}

π,{s}

;

(17)

... θ −→
... θ ; (18)

... θ −→
... θ ;

... θ −→
... θ

. (19)

TQC 2020

11:12 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

Phase gadget fusion.

A final simplifying technique is to simply multiply together any phase gadgets acting on the
same set S of qubits:

...
...α β

−→
... α+β

. (20)

In some cases, this will reduce the T count by turning two gadgets with phases α = 1
4k1π

and β = 1
4k2π (for k1 and k2 odd) into a single gadget with phase α + β = 1

4 (k1 + k2)π,
where k1 + k2 is even.

4.2 Circuit translation procedure
Given a unitary circuit C over the gate-set{
X,CNOT,CCNOT, Z,CZ,CCZ,H, S, T,SWAP

}
, we transform C as follows:

1. We first replace CCNOT operations in C with (1⊗1⊗H) CCZ (1⊗1⊗H), yielding a
circuit C′.

2. Transform C′ → C′F ◦C′M ◦C′I , with an initial Clifford stage C′I , a final Clifford stage
C′F , and a main body C′M , using the procedure moveH to reduce the number of Hadamard
gates in C′M as much as possible.

3. Substitute the H gates in C′M with Hadamard gadgets as in Eqn. (15), using a fresh bit
label for each measurement outcome; and decompose CCZ operations in C using the
formula of Eqn. (6), and represent T gates (on some qubit j) by D{j},3. Call the resulting
circuit CM .

4. We gadgetize CM by commuting all gates which are not single-qubit phase gates or
phase gadgets to the beginning or the end, removing these to the initial or final Clifford
stages. This will generally add some number of measurements, and classically-conditioned
Clifford operations, to the final Clifford stage, and some qubit preparations to the initial
Clifford stage. This realises a transformation of circuits C′F ◦CM ◦C′I → CF ◦C′φ ◦CI .

5. As C′φ is now a homogeneous circuit of phase gadgets, we may commute them past one
another to fuse gadgets on common subsets, yielding a circuit Cφ.

6. Apply the randomised procedure for applying PHAGE tactics based on spider nest
identities described in Section 3.3.

Steps 1–5 realise a transformation C→ CF ◦Cφ ◦CI . If the original circuit C acted on n
qubits and had m Hadamard gates, then the number of Hadamard gates in C′M which are
replaced in Step 3 is some δn 6 m. Then the circuits CI , Cφ, and CF all act on N = n+ δn

qubits, and CF has internal structure

CF = C̃F Dδn · · · D2 D1 , (21)

where C̃F is some general Clifford circuit, and the circuits Dj (for 1 6 j 6 δn) consist of the
jth measurement in the |+-〉 basis with outcome sj (denoted in ZX notation by a light green
“π,{sj}” node), followed by DNk operations conditioned on the outcome sj .

In some instances, we find a significant reduction in the T -count simply from the fusion
of phase gadgets in Step 5 of this transformation. These improvements are similar to those
seen in Refs. [26, 34]. However, the purpose of this circuit transformation (as Ref. [23]) is to
isolate a circuit Cφ consisting entirely of DN3 operations for some N , on which we can apply
the PHAGE tactic of Step 6.

N. de Beaudrap, X. Bian, and Q. Wang 11:13

Note that δn, the number of additional “auxiliary” qubits involved in the circuit, is
bounded above by how many Hadamard gates are either involved in C or are introduced
from the decomposition of CCNOT gates. More precisely, it depends on how many of these
gates can be commuted from the “main body” of C to the initial or final Clifford stages. For
a circuit consisting of M gates, a bound for N = n+ δn which is substantially better than
N 6 n + M will be difficult to obtain, without some knowledge of the structure of C. In
several cases, we find that many or all of these Hadamard gates can be eliminated from the
main body of the circuit: so, N 6 n+M is likely a loose upper bound in a large number of
practical examples.

The largest contributions to the asymptotic run-time of the procedure above are the
complexity of moveH in Step 2; the cumulated complexity of computing the heuristic for
moving Clifford gates out of the main body of the circuit in Step 4; and the complexity of
performing a PHAGE tactics in Steps 5 and 6. For M the number of gates in the input
circuit, the procedure moveH and the procedure to commute CNOT gates out the main body
take time O(M2), essentially due to repeatedly commuting individual gates past O(M) other
gates (or computing the potential cost of doing so, in the case of the heuristic used for
determining the direction to move CNOT gates). We use a hash table to store homogeneous
circuits, allowing essentially O(1) time to look up the phase associated with a phase gadget
acting on a particular subset (which we set to 0 when no such phase gadget is present). In
Step 5, fusing together pairs of phase gadgets can be made a part of initialising this hash
table, and so takes time O(M). In Step 6, applying a PHAGE tactic associated with some
given identity K (which acts on at most 5 qubits) takes time O(1); performing this for each
of the 64 identities in F (4)

4 ∪ F (5)
5 on R uniformly random subsets takes time O(R) = O(1),

for R independent of M . Thus our procedure runs in time O(M2).

5 Results

We realised our techniques in Haskell code [7]. All but two of the circuits were obtained
from Ref. [30]: the circuits “GF(2256) Mult” and “GF(2512) Mult” were obtained instead
from Ref. [28]. With one exception, we ran our code for these benchmarks on a 2.5GHz
Intel Core i7 processor and 8GB of 1867MHz LPDDR3 memory, running Ubuntu Linux
18.04.4. The largest single benchmark circuit, “GF(2512) Mult”, was instead reduced on
Dalhousie University’s Mathstat Cluster [11]. The results are presented as Table 1, including
comparisons to the best known reductions for which recorded times are available.6

Our results do not include an account of the cost of the Clifford group operations. These
are also of interest in principle, though these will likely be significantly less expensive than T
gates in the error-corrected setting in which the T -count becomes a meaningful quantity to
reduce. We also do not describe the T -depth of our circuits, which may also be independently
optimised from the T -count itself [4].

The circuits which were obtained using our techniques may be found on GitHub [7]. As
our main aim was to consider reductions in T -count, our algorithm ignores the possibility
that the measurement outcomes on the auxiliary qubits could be anything but |+〉: in the
event of a |-〉 outcome, additional Clifford group operations would be required, which however
would not affect the T -count. We verified our circuits using feynver [2], which was recently
extended to accomodate circuits involving post-selection of |+〉 states on qubits which are
maximally entangled with a set of other qubits.

6 We do not present the best known T counts which do not have recorded times. We do note that for two
of our results (for the circuits Mod Red21 and RC Adder6) which improve on the known timed results,
there are recorded untimed results which are still better: these may be found in Ref. [14].

TQC 2020

11:14 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

Table 1 Comparison of our techniques to previously reported results. • In each case, “prev. opt.”
represents the best T -count with a time record (an asterisk indicates that the recorded time is
an upper bound). For some circuits, better reductions without times have been reported: those
indicated by (a) have a better reduction reported in Ref. [26], and those indicated by (b) have a
better reduction reported in Ref. [14]. Where it was feasible to verify the correctness of our reduction
with feynver, this is indicated; in all other cases the verification was too computationally expensive
to carry out. • In each case, we also compare the number δn of additional “auxiliary” qubits
required by our decomposition, to that of Ref. [23] (where results are available); in the case of (c),
we may only infer an upper bound on the number of auxiliary qubits used by Ref. [23]. • In our
results, those T -counts which are indicated in bold are those which reproduce or surpass the T -count
of the best previously known timed result. Those with an asterisk also match or surpass the best
previously known untimed result. • All results of Ref. [23] were obtained on the University of
Sheffield’s Iceberg HPC cluster. All results of Ref. [31] were obtained on a machine with a 2.9GHz
Intel Core i5 processor and 8GB of 1867MHz DDR3 memory, running OS X El Capitan. All of our
results were obtained on a machine with a 2.5GHz Intel Core i7 processor and 8GB of 1867MHz
LPDDR3 memory, running Ubuntu Linux 18.04.4 — except those indicated by (d), which were
obtained on Dalhousie University’s Mathstat Cluster [11].

Circuit # qubits T count & optimisation
n δn δn init. #T final #T time final #T time Verified?

input [23] (ours) (prev. opt.) Ref. (s) (our results) (s) (feynver)
Adder8 24 71 41 399 212 (a) [23] 227.81 176 * 24.62 X
Barenco Tof3 5 3 3 28 14 (b) [23] 0.01* 13 * 0.07607 X
Barenco Tof4 7 7 7 56 24 [23] 0.45 25 1.884 X
Barenco Tof5 9 11 11 84 34 [23] 1.94 37 13.76 X
Barenco Tof10 19 31 31 224 84 [23] 460.33 97 24.49 X
CSLA MUX3 15 17 6 70 40 (b) [23] 3.73 44 18.01 X
CSUM MUX9 30 12 12 196 74 (a) [23] 36.57 84 23.98 X
GF(24) Mult 12 7 0 112 56 (b) [23] 0.55 53 * 0.8180 X
GF(25) Mult 15 9 0 175 90 (b) [23] 6.96 88 * 4.279 X
GF(26) Mult 18 11 0 252 132 (b) [23] 121.16 128 * 7.894 X
GF(27) Mult 21 13 0 343 185 (a) [23] 153.75 167 * 27.21 X
GF(28) Mult 24 15 0 448 216 (a) [23] 517.63 229 95.63 X
GF(29) Mult 27 17 0 567 295 [23] 3213.53 306 24.79 X
GF(210) Mult 30 19 0 700 351 [23] 23969.1 357 24.65 X
GF(216) Mult 48 31 0 1 792 922 [23] 76312.5 972 25.65 X (d)

GF(232) Mult 96 – 0 7 168 4 128 [31] 1.834 3 936 * 26.07 X (d)

GF(264) Mult 192 – 0 28 672 16 448 [31] 58.341 15 865 * 29.73 –
GF(2128) Mult 384 – 0 114 688 65 664 [31] 1744.746 64 461 * 48.78 –
GF(2131) Mult 393 – 0 120 127 69 037 [31] 1953.353 67 772 * 53.39 –
GF(2163) Mult 489 – 0 185 983 106 765 [31] 4955.927 105 182 * 66.27 –
GF(2256) Mult 768 – 0 458 752 – – – 260 539 * 137.1 –
GF(2512) Mult 1536 – 0 1 835 008 – – – 1 046 964 * 850.7 (d) –
Mod54 5 6 0 28 16 (b) [31] 0.001* 7 * 0.00899 X
Mod Adder1024 28 6 270 (c) 304 1 995 978 [23] 665.5 1 010 27.56 X (d)

Mod Mult55 9 10 3 49 28 (a) [23] 0.02 19 * 0.5775 X
Mod Red21 11 17 17 119 69 (b) [23] 0.59 65 27.68 X
QCLA Adder10 36 28 25 238 157 [23] 366.1 147 * 24.96 X
QCLA Com7 24 19 18 203 81 [23] 170.77 84 24.21 X
QCLA Mod7 26 58 58 413 221 (a) [23] 289.77 233 24.26 X (d)

RC Adder6 14 21 10 77 45 (b) [23] 0.97 38 30.70 X
NC Toff3 5 2 2 21 13 [23] 0.01* 13 * 0.04005 X
NC Toff4 7 4 4 35 19 [23] 0.06 19 * 0.5322 X
NC Toff5 9 11 6 49 25 [23] 0.4 26 2.910 X
NC Toff10 19 16 16 119 55 [23] 44.78 60 28.01 X
VBE Adder3 10 4 4 70 20 [23] 0.15 20 * 1.896 X

N. de Beaudrap, X. Bian, and Q. Wang 11:15

6 Discussion

Our results show that our techniques, simple as they are, are competitive with the best
known techniques for reducing T count. We expect that better results should be achievable
by a more refined approach to using these concepts, within the more general framework
which we have described of deploying PHAGE tactics. It is not clear which further ideas
may prove useful, however. For instance, in experiments for how we might choose subsets to
apply PHAGE tactics to, we found that it was not helpful to bias the sets of qubits towards
those qubits which were acted on by many T -phase gadgets. More work will be required to
find effective ways to bias or to narrow down the ways in which spider nest identities are
used to simplify homogeneous circuits.

It is remarkable that the run-times for our results in Table 1 are not more varied. Over
half of our results were obtained in an amount of time between 1 and 100 seconds, for
circuits over which other leading techniques [23, 31] had times which ranged over more
than six orders of magnitude. Indeed, in our tests on larger circuits (and in line with the
asymptotic analysis of Section 4.2), we found that the most computationally expensive part
of our procedure was the relatively mundane moveH and CNOT-commutation subroutines.
Refining these elementary steps may provide yet further gains. Expanding the complexity of
the subroutines to apply PHAGE tactics may also yield further gains without substantial
increases in run-time.

We note an optimisation problem of interest is motivated by gadgetizing Hadamard
gates as in Step 3. Simply put: given an n-qubit circuit with M gates over the gate-set
{X,Z, S,CNOT,CZ, T,CCZ}, to obtain an equivalent (unitary) circuit with the minimum
number of H gates in between the first and the last non-Clifford gate.7 Should this problem
be solvable in O(M2 poly log(M)) time, this may further contribute to the effectiveness of
our approach to T -count reduction.

Finally, we remark that while the benchmarks which we have tested have become a
commonplace standard for the evaluation of such techniques, they consist entirely of circuits
to realise permutation operations which would not in themselves be difficult to realise
classically. (Some of these, such as the “GF(2n) Mult” series, may be motivated on the
grounds of cryptography; albeit this motivation may become less important if standard
cryptographic practise incorporates post-quantum cryptography.) A larger range of circuits,
including ones are motivated by the more likely practical applications of fault-tolerant
quantum computation, should be of general interest for future benchmark tests.

References
1 S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A,

70:052328, 2004. arXiv:quant-ph/0406196.
2 Matthew Amy. Towards large-scale functional verification of universal quantum circuits. In

Proceedings of QPL 2018, pages 1–21, 2018. [arXiv:1901.09476]; see also [https://github.
com/meamy/feynman]. doi:10.4204/EPTCS.287.1.

3 Matthew Amy, Jianxin Chen, and Neil J. Ross. A finite presentation of cnot-dihedral operators.
Electronic Proceedings in Theoretical Computer Science, 266:84–97, 2018. [arXiv:1701.00140].
doi:10.1007/978-3-642-12821-9_4.

4 Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time T-depth optimization
of Clifford+T circuits via matroid partitioning. IEEE Transactions on Computer-Aided

7 It seems plausible that this problem would remain equally difficult without CCZ gates.

TQC 2020

http://arxiv.org/abs/quant-ph/0406196
https://github.com/meamy/feynman
https://github.com/meamy/feynman
https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1007/978-3-642-12821-9_4

11:16 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

Design of Integrated Circuits and Systems, 33(10):1476–1489, 2014. [arXiv:1303.2042]. doi:
10.1109/TCAD.2014.2341953.

5 Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-the-middle al-
gorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 32(6):818–830, 2013. [arXiv:1206.0758].
doi:10.1109/TCAD.2013.2244643.

6 Matthew Amy and Michele Mosca. T-count optimization and Reed-Muller codes. IEEE
Transactions on Information Theory, 65(8):4771–4784, 2019. [arXiv:1601.07363]. doi:10.
1109/TIT.2019.2906374.

7 Xiaoning Bian. “stomp-code” github. URL: https://github.com/onestruggler/stomp-code/
tree/8df4f46228c2f413e0cf5f8b6d25c20b6460fc0e.

8 Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard.
Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3:181,
September 2019. [arXiv:1808.00128]. doi:10.22331/q-2019-09-02-181.

9 Sergey Bravyi and David Gosset. Improved classical simulation of quantum circuits dominated
by Clifford gates. Physical Review Letters, 116:250501, 2016. [arXiv:1601.07601]. doi:
10.1103/PhysRevLett.116.250501.

10 Earl T. Campbell and Mark Howard. A unified framework for magic state distillation and
multi-qubit gate-synthesis with reduced resource cost. Physical Review A, 95:022316, 2017.
[arXiv:1606.01904]. doi:10.1103/PhysRevA.86.022316.

11 Dalhousie University Mathstat Cluster. URL: https://www.mathstat.dal.ca/cluster/doku.
php.

12 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13:043016, 2011. [arXiv:0906.4725]. doi:10.1088/
1367-2630/13/4/043016.

13 Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/
9781316219317.

14 Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Techniques to reduce π/4 -parity
phase circuits, motivated by the zx calculus. In to appear in Proceedings of QPL 2019, 2019.
[arXiv:1911.09039].

15 Niel de Beaudrap, Ross Duncan, Dominic Horsman, and Simon Perdrix. Pauli fusion: a
computational model to realise quantum transformations from zx terms. In Proceedings of
QPL 2019, page to appear, 2019. [arXiv:1904.12817].

16 Niel de Beaudrap and Dominic Horsman. The zx calculus is a language for surface code lattice
surgery. Quantum, 4:218, 2020. [arXiv:1704.08670]. doi:10.22331/q-2020-01-09-218.

17 Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-theoretic
simplification of quantum circuits with the zx-calculus. [arXiv:1902.03178], 2019.

18 Ross Duncan and Simon Perdrix. Rewriting measurement-based quantum computations with
generalised flow. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, pages 285–
296, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/s10472-009-9141-x.

19 Simon Perdrix Emmanuel Jeandel and Renaud Vilmart. Completeness of the zx-calculus.
[arXiv:1903.06035], 2019.

20 Craig Gidney. Halving the cost of quantum addition. Quantum, 2:74, 2018. [arXiv:1709.06648].
doi:10.1007/s11128-011-0297-z.

21 David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm for the
t-count. Quantum Info. Comput., 14(15–16):1261–1276, November 2014. [arXiv:1308.4134].

22 D. Gottesman. Stabilizer codes and quantum error correction. 1997. Ph.D thesis. arXiv:
quant-ph/9705052.

https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TIT.2019.2906374
https://doi.org/10.1109/TIT.2019.2906374
https://github.com/onestruggler/stomp-code/tree/8df4f46228c2f413e0cf5f8b6d25c20b6460fc0e
https://github.com/onestruggler/stomp-code/tree/8df4f46228c2f413e0cf5f8b6d25c20b6460fc0e
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevA.86.022316
https://www.mathstat.dal.ca/cluster/doku.php
https://www.mathstat.dal.ca/cluster/doku.php
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.22331/q-2020-01-09-218
https://doi.org/10.1007/s10472-009-9141-x
https://doi.org/10.1007/s11128-011-0297-z
http://arxiv.org/abs/quant-ph/9705052
http://arxiv.org/abs/quant-ph/9705052

N. de Beaudrap, X. Bian, and Q. Wang 11:17

23 Luke E. Heyfron and Earl T. Campbell. An efficient quantum compiler that reduces t count.
Quantum Science and Technology, 4(1):015004, 2018. [arXiv:1712.01557]. doi:10.1038/
srep01939.

24 C. Horsman, A. G Fowler, S. Devitt, and R. Van Meter. Surface code quantum computing by
lattice surgery. New Journal of Physics, 14(12):123011, 2012. [arXiv:1111.4022].

25 Cody Jones. Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev. A,
87:022328, February 2013. [arXiv:1212.5069]. doi:10.1103/PhysRevA.87.022328.

26 Aleks Kissinger and John van de Wetering. Reducing t-count with the zx-calculus.
[arXiv:1903.10477], 2019.

27 Daniel Litinski. A Game of Surface Codes: Large-scale quantum computing with lattice
surgery. Quantum, 3:128, 2019. [arXiv:1808.02892]. doi:10.1103/PhysRevB.96.205413.

28 Dmitri Maslov. Reversible Logic Synthesis Benchmarks page. Accessed February 2020. URL:
http://webhome.cs.uvic.ca/~dmaslov.

29 Giulia Meuli, Mathias Soeken, Earl Campbell, Martin Roetteler, and Giovanni De Micheli. The
role of multiplicative complexity in compiling low T-count oracle circuits. [arXiv:1908.01609],
2019.

30 Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. “optimiser”
github. https://github.com/njross/optimizer.

31 Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. Automated
optimization of large quantum circuits with continuous parameters. npj Quantum Information,
4(1):23, 2018. [arXiv:1710.07345]. doi:10.1038/s41534-018-0072-4.

32 Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information.
Cambridge University Press, Cambridge UK, 2000.

33 Renaud Vilmart. A Near-Optimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum
Mechanics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, pages
1–10, 2019. [arXiv:1812.09114]. doi:10.1109/LICS.2019.8785765.

34 Fang Zhang and Jianxin Chen. Optimizing t gates in clifford+t circuit as π/4 rotations around
paulis. [arXiv:1903.12456], 2019.

A ZX diagram reference

The ZX calculus — first developed by Coecke and Duncan [12] (see also Refs. [13, 33, 19] for
updated treatments, and Refs. [17, 16, 15, 26] for applications to quantum technology) — is
a relatively recently developed notation for quantum operations, equipped with rules (the
“calculus” part) to compute with this notation. This article does not make explicit use of
the “calculus” part of the ZX calculus: while it does make statements about equivalences
of diagrams which could be shown using the calculus, these can and should be understood
in the same way that other papers make statements of equivalences of conventional circuit
diagrams.

We use ZX notation at various points to describe quantum circuits, including circuits with
classically controlled operations and non-local unitaries such as π/4-parity-phase operations.
The ZX diagrams in this article can be read merely as a slightly unusual (but convenient)
circuit notation. In this Appendix, we provide a reference for this notation, serving also as
a glossary of sorts for various operations as they are represented in ZX diagrams, to allow
readers to understand our results as well as conventional circuit diagrams would.

A.1 General statements
For the purposes of this article (and essentially all other practical purposes), ZX diagrams are
representations of tensor networks. To represent quantum circuits, it is common to choose a
direction in which to read the diagrams from “input” to “output”. (In our paper, we draw

TQC 2020

https://doi.org/10.1038/srep01939
https://doi.org/10.1038/srep01939
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevB.96.205413
http://webhome.cs.uvic.ca/~dmaslov
https://github.com/njross/optimizer
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1109/LICS.2019.8785765

11:18 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

these diagrams with input on the left and output on the right, as with the usual circuit
notation.) The ZX diagrams of our work are composed of three different kinds of tensor
nodes:

“Green” nodes (which are lighter coloured in our article), which may have any number
of indices, and as a tensor represents a sort of GHZ state over the standard basis. If a
phase parameter θ is provided, the tensor also involves a relative phase of eiθ between
the two terms; otherwise θ = 0 is assumed (and there is no relative phase).

θ ...

}
n = |0〉⊗n + eiθ |1〉⊗n (22)

In principle, we also permit the border case of n = 0, in which case this represents the
“tensor” |0〉⊗0 + eiθ|1〉⊗0 = (1 + cos(θ)) + i sin(θ); though we don’t make use of such nodes
in our results.
“Red” nodes (which are darker coloured in our article), which may have any number of
indices, and are similar to green nodes except that they are expressed in terms of the
{|+〉 , |-〉} basis.

θ ...

}
n = |+〉⊗n + eiθ |-〉⊗n (23)

“Hadamard” boxes, which represent the usual 2× 2 unitary Hadamard matrix.

H = |+〉〈0| + |-〉〈1| (24)

To represent operations taking some qubits as input, we change of some of the “kets” in the
tensor nodes to “bras” — but as |0〉, |1〉, |+〉 and |-〉 are real vectors, this change does not
affect any of the tensor coefficients. This allows us to be flexible with our diagrams, and
avoid committing to the indices of each node as being explicitly an “input” or an “output”,
unless it is a free index of the whole diagram. (In particular, this allows us to draw some
closed indices by vertical wires, without confusion.)

In the rest of this appendix, we describe some simple examples (and simple extensions)
of this notation, which the interested reader should find themselves able to verify by routine
calculation.

A.2 Single-node diagrams
With (light) green or (dark) red nodes of degree 1, we may easily represent states of the
{|0〉 , |1〉} basis or {|+〉 , |-〉} basis, albeit supernormalised by a factor of

√
2.

= |+〉⊗1 + |-〉⊗1 =
√

2 |0〉 ; π = |+〉⊗1 − |-〉⊗1 =
√

2 |1〉 ; (25)

= |0〉⊗1 + |1〉⊗1 =
√

2 |+〉 ; π = |0〉⊗1 − |1〉⊗1 =
√

2 |-〉 . (26)

More generally, green degree-1 nodes may be used to represent newly prepared qubits in
the XY plane of the Bloch sphere, and red degree-1 nodes may be used to represent newly
prepared qubits in the YZ plane of the Bloch sphere, up to the same supernormalisation of√

2. This additional factor of
√

2 does not affect our results: the additional factor may be
accounted for any time we represent the preparation of a qubit in one of these states.

N. de Beaudrap, X. Bian, and Q. Wang 11:19

We may also represent single-qubit measurements by degree-1 nodes oriented in the
opposite direction. As re-orienting edges from the right of a node to the left corresponds to
turning |0〉 to 〈0|, turning |1〉 to 〈1|, and so forth, we then have

=
√

2 〈0| ; π =
√

2 〈1| ; (27)

=
√

2 〈+| ; π =
√

2 〈-| . (28)

Again, the additional factor of
√

2 may be accounted for any time we represent a projection
of a qubit in one of these states. To represent a measurement which may yield either |0〉
or |1〉, or either |+〉 or |-〉, we may introduce a variable s ∈ {0, 1} representing whether a
relative phase of π is absent in the result (s = 0, for the states |0〉 or |+〉) or present in the
result (s = 1, for the states |1〉 or |-〉). We then represent measurement in the {|0〉 , |1〉}
basis and the {|+〉 , |-〉} basis respectively as

π,{s} = 〈+| + eisπ 〈-| ∈
{√

2 〈0| ,
√

2 〈1|
}

; (29)

π,{s} = 〈0| + eisπ 〈1| ∈
{√

2 〈+| ,
√

2 〈-|
}
. (30)

The bit s is in effect a random variable representing the measurement outcome.
In other ZX diagrams (including on nodes of degree 2 or higher), we may use a set

S = {s1, s2, . . .} in place of the set {s}. This indicates a node in which the presence or
absense of the phase of π depends on the parity (s1 ⊕ s2 ⊕ · · ·) of the entire set S, rather
than on the single bit s. For example, we may represent Z rotations and X rotations each
by a single node of degree 2:

θ
= |0〉〈0| + eiθ |1〉〈1| = Rz(θ),

θ
= |+〉〈+| + eiθ |-〉〈-| = Rx(θ); (31)

Then, the following diagrams represent the same operations, conditioned on the parity
s =

⊕
j sj of a set of bits S = {s1, s2, . . .}:

θ,S
= Rz(sθ) = Rz(θ)s,

θ,S
= Rx(sθ) = Rx(θ)s. (32)

This feature of the ZX calculus does not play a prominent role in our work, but is present
in our treatment of the Hadamard gadget (Eqn. (15) on page 10) and in principle useful to
represent the circuits which we would obtain by representing conditionally-controlled Clifford
operations in the ZX calculus.

A.3 Two-node diagrams
Diagrams of more than one node can be easily constructed simply by composing nodes on
their edges. In many cases, this has the same meaning as in conventional quantum circuit
diagrams (with the same “feature” that the algebra is read right-to-left, even though the
diagram is read left-to-right): for example,

θ
H = HRz(θ) = Rx(θ)H =

θ
H (33)

θ π
= XRz(θ) = Rz(−θ)X =

−θπ
(34)

TQC 2020

11:20 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

As with circuit diagrams, we may also represent the tensor product of operations by repres-
enting operations happening on different wires in parallel — for example:

θ

ϕ

= Rz(θ)⊗Rx(ϕ). (35)

Not all “compositions” of nodes take these forms, however: in general we may compose any
two nodes simply by connecting their edges (corresponding to contracting the shared indices
of the tensor nodes). An especially important case in point is the way that CNOT operators
are represented as ZX terms. As with single-qubit states, the usual representation of CNOT
by ZX diagrams is not precisely normalised:

= |0〉〈0| ⊗ 〈0 |+〉 ⊗ |+〉〈+| + |0〉〈0| ⊗ 〈0 |-〉 ⊗ |-〉〈-|

+ |1〉〈1| ⊗ 〈1 |+〉 ⊗ |+〉〈+| + |1〉〈1| ⊗ 〈1 |-〉 ⊗ |-〉〈-|

= 1√
2 |0〉〈0| ⊗ 1 + 1√

2 |1〉〈1| ⊗X = 1√
2 CNOT. (36)

(Again, the subnormalisation of this diagram does not affect our analysis, and can in principle
be accounted for in the ZX representation of any circuit involving CNOT gates.) Note that
the shared wire between the red and green dot does not have a specific interpretation as an
“input” or an “output” of either — nor is this necessary to provide the interpretation of the
diagram as an operator.

A.4 Multi-node diagrams
Composing the diagrams above, in series or in parallel (and with appropriate accounting for
normalisation), suffices to represent an arbitrary unitary operation by the (slightly redundant)
gate set consisting of arbitrary X and Z rotations, Hadamard gates, and CNOT operations.
We may also more directly represent somewhat more “exotic” operators using ZX diagrams,
and π/4-parity-phase operations are in this case the most relevant example: for instance,

θ
=
(
〈0|d + eiθ 〈1|d

)(
|+〉d〈+++|abc + |-〉d〈–-|abc

)
×
(
|0〉〈0|1 ⊗ |0〉a + |1〉〈1|1 ⊗ |1〉a

)(
|0〉〈0|3 ⊗ |0〉b + |1〉〈1|3 ⊗ |1〉b

)
×
(
|0〉〈0|5 ⊗ |0〉c + |1〉〈1|5 ⊗ |1〉c

)
= 1

2
√

2

∑
a,b,c∈{0,1}

(
〈0|d + eiθ 〈1|d

)(
|+〉d + (−1)a+b+c |-〉d

)
⊗ |a, b, c〉〈a, b, c|1,3,5

= 1
4

∑
a,b,c∈{0,1}

(
1 + eiθ + (−1)a+b+c − (−1)a+b+ceiθ

)
|a, b, c〉〈a, b, c|1,3,5

= 1
2

∑
a,b,c∈{0,1}
a⊕b⊕c=0

|a, b, c〉〈a, b, c|1,3,5 + 1
2

∑
a,b,c∈{0,1}
a⊕b⊕c=1

eiθ |a, b, c〉〈a, b, c|1,3,5

= 1
2 eiθ/2 exp

(1
2 iθ(Z ⊗ 1⊗ Z ⊗ 1⊗ Z)

)
. (37)

N. de Beaudrap, X. Bian, and Q. Wang 11:21

Again, the subnormalisation by a factor of 1
2 does not affect our analysis, which is in principle

about products of DS,3 operators — merely denoted in our work by these phase gadgets, for
convenience — which are proportional to the identity by a global phase.

The existence of rules for transforming ZX diagrams allows us to reason (i.e., to compute)
effectively about these diagrams without the need to expand their meaning algebraically
as we have been doing in this Appendix. This has particularly motivated our use of the
ZX calculus in our work, as a convenient notational tool and also as a means by which we
performed our analysis.

For more information about the ZX calculus, and in particular for resources to learn
about these diagrammatic computational methods, the interested reader is invited to visit
[zxcalculus.com].

B Details of the moveH subroutine and CNOT-commutation heuristic

In this Appendix, we describe our procedures for H gate extraction and CNOT gate
extraction (used in Steps 2 and 4 of the procedure described in Section 4.2) on a high
level. For more details, the interested reader may view our source code on Github [https:
//github.com/onestruggler/fast-stomp].

B.1 The moveH subroutine

Our procedure for extracting H gates from a circuit are built on a subroutine moveH, which
attempts to move each H gate as far to the right (the end of the circuit) as possible.

Representing the circuit as a list of gates in a particular order (without parallelisation),
this procedure looks for the first H gate, and attempts to move it to the right. In doing so,
it makes use of several simple commutation relations or opportunities for cancellation, for
example:

H H → ; H X → Z H ; H Z → X H ;

H
→

H
;

H
→

H
; H → H .

(38)

If the procedure moves the H gate to a point that it precedes a second H gate, it proceeds
recursively to attempt to move the second H gate before continuing with the first. When
the procedure is finished attempting (successfully or otherwise) to move the second H gate,
it returns to the task of moving the first — moving this gate past the other H gate, if the
attempt to move it ended in failure. This process continues until the procedure has stopped
trying to move what originally was the first H gate.

In attempting to move H gates, moveH may encounter situations in which no progress is
possible, without trying to move or cancel other kinds of gates. For instance: in a circuit
consisting only of an H gate followed by four T gates on a single wire, it is possible to move
the H gate to the end, but only after “pushing” the T gate which follows it to the right,
accumulating the other phase gates to form a Z gate. In general, if moveH encounters a gate
G for which there is no commutation rule provided, it attempts instead to push G forward,
to commute with, accumulate with, or cancel against gates further to its right. In doing so,
moveH may encounter yet another gate F for which G has no provided commutation relation,
in which case moveH will attempt to move F further to the right, and so on.

TQC 2020

zxcalculus.com
https://github.com/onestruggler/fast-stomp
https://github.com/onestruggler/fast-stomp

11:22 Fast and Effective Techniques for T-Count Reduction via Spider Nest Identities

In some cases, there are fruitful opportunities for multi-gate substitutions which either
reduce the number of H gates, or allows an H gate to be moved further to the right. For
instance:

If in moving an H gate to the right we encounter an S gate followed by an H gate, moveH
first tries to move the second H gate. If this fails, we may apply the transformation

H S H → S Z H S Z . (39)

This reduces the number of H gates by 1. We then move the S and Z gates further to
the right, then continue by moving the new H gate to the right.
If in moving an H gate to the right we encounter the control qubit of a CNOT gate,
followed by an H gate on either the control or target, we again first try to move the H
gate. If this fails, we may apply one of the transformations

H H
→

H H
;

H

H
→

H

H
. (40)

This doesn’t directly reduce the number of H gates, but may make it possible to move the
later H gate and the CNOT gate to the right before continuing further, thereby providing
an alternative for at least one of the two H gates to be moved further to the right.

The details of all commutation relations which we define for all of the gates are not
important, except that it is important to define these rules in such a way that the procedure
terminates (rather than repeatedly commute two gates such as T and CCZ past one another,
in an attempt to cancel them so that an H gate can be moved to the right of both). Different
techniques will lead to different performances in the ability of moveH to reduce the number
of H gates which precede any non-Clifford gate.

B.2 CNOT movement heuristic
In Step 4, we move all operations which are not single-qubit phase operations or phase-parity
operations out of the main body of the circuit. The way that CNOT gates are treated aims,
roughly, to avoid generating phase-parity operations on very large subsystems, but does so
in a way that attempts to avoid performing too much computation.

The heuristic used to determine which direction to move a CNOT operation is as follows.
For each CNOT gate, from the first in the circuit to the last, we compute the following:
1. Compute the set PL of all phase-parity gadgets to the left which act on the target but

not the control of the CNOT, and the set ML of phase-parity gadgets to the left which
act on its target and control both.

2. Similarly, compute the set PR of phase-parity gadgets to the right which act on the target
but not the control of the CNOT, and the set MR of phase-parity gadgets to the left
which act on its target and control both.

3. If PL −ML < PR −MR, we prefer to move the CNOT to the left; otherwise we prefer to
move it to the right.

If no other CNOT gate acted on any qubits in common with this left-most CNOT gate,
the quantity PL (respectively, ML) would correctly indicate how many phase-parity gadgets
would act on one more qubit (respectively, one fewer) if we commuted that CNOT to the
left. The difference PL −ML then indicates the net change in the cumulative number of
qubits acted on by the phase-gadgets to the left of the CNOT. Similar remarks apply for
PR −MR, albeit with the important caveat that this figure may be inaccurate if there are
further CNOT gates to the right whose targets coincide with the control of the CNOT under
consideration.

N. de Beaudrap, X. Bian, and Q. Wang 11:23

The approach taken to produce our results is as follows. For the left-most CNOT
in the circuit, compute PL, ML, PR, and MR. Commute the CNOT gate to the left if
PL −ML < PR −MR, and otherwise to commute it to the right. If in commuting it to the
right we encounter another CNOT gate with which it does not commute, we also commute
that CNOT gate to the right (and any CNOT gates with which those do not commute, etc.)
Having done this, we compute compute PL, ML, PR, and MR for the leftmost remaining
CNOT gate in the circuit, where these may depend on the commutations which occurred for
the previous CNOT gate. We proceed in this way, recursively from left to right, until no
more CNOT gates are in the main body of the circuit.

TQC 2020

	Introduction
	Preliminaries
	Phase gadget elimination tactics & spider nest identities
	PHAGE tactics
	Spider nest identities
	Simple PHAGE tactics based on spider nest identities

	Reduction of T-count through simplification of parity-phase circuits
	Circuit translation techniques
	Circuit translation procedure

	Results
	Discussion
	ZX diagram reference
	General statements
	Single-node diagrams
	Two-node diagrams
	Multi-node diagrams

	Details of the moveH subroutine and CNOT-commutation heuristic
	The moveH subroutine
	CNOT movement heuristic

