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—— Abstract

Compact hash tables store a set S of n key-value pairs, where the keys are from the universe

U ={0,...,u— 1}, and the values are v-bit integers, in close to B(u,n) 4+ nv bits of space, where
B(u,n) = log, (Z) is the information-theoretic lower bound for representing the set of keys in S, and
support operations insert, delete and lookup on S.

Compact hash tables have received significant attention in recent years, and approaches dating
back to Cleary [IEEE T. Comput, 1984], as well as more recent ones have been implemented and used
in a number of applications. However, the wins on space usage of these approaches are outweighed
by their slowness relative to conventional hash tables. In this paper, we demonstrate that compact
hash tables based upon a simple idea of bucketing practically outperform existing compact hash
table implementations in terms of memory usage and construction time, and existing fast hash table
implementations in terms of memory usage (and sometimes also in terms of construction time).

A related notion is that of a compact Hash ID map, which stores a set Sofn keys from U, and
implicitly associates each key in S with a unique value (its ID), chosen by the data structure itself,
which is an integer of magnitude O(n), and supports inserts and lookups on 5’7 while using close to
B(u,n) bits. One of our approaches is suitable for use as a compact Hash ID map.
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1 Introduction

In this paper, we consider practical compact representations of dynamic dictionaries. A
dictionary is arguably the single most important abstract data type, formulated as follows.
We are given a dynamic set S of key-value pairs (z, y), where the key = comes from a universe
U = [u]* and the value y is from [2°]. Furthermore, all keys in S are distinct. A dictionary
supports the following operations:

lookup(z, S): Given = € U, if there is a pair (z,y) in S, return y, or a null value otherwise.
insert((x,y), S): Add the pair (z,y) to S if S does not have x as a key.

delete(x, S): Delete the pair (if any) of the form (z,y) from S.

Dictionaries can be implemented using a number of data structures such as hash tables and
balanced trees, and many standard libraries use these approaches. Our interest, however, is
in highly space-efficient approaches to the dictionary problem. In the worst case, a dictionary
cannot use less space than the information-theoretic lower bound needed to store S. If |S| = n,
the lower bound for storing the keys in S is B(u,n) =1g (Z) =nlgu—nlgn + O(n) bits (in
what follows we abbreviate B(u,n) by B). The lower bound on the space for the key-value
pairs in S is thus B + nv bits. Following standard terminology, we refer to dictionaries that
use O(B + nv) bits as compact and those that use B + nv + o(B + nv) bits as succinct. In
recent work [3, 15], a number of applications have been highlighted for compact dictionaries
including compact representations of graphs, tries and arrays containing variable-length
entries. In all these applications, the Q(n(lgu+ v))-bit space usage of a traditional dictionary
(even those with low wasted space such as [10, 12]) is prohibitively large.

Building on earlier work on succinct static dictionaries [4, 14], succinct dynamic dictionar-
ies were proposed by Raman and Rao [18] and Arbitman et al. [1]. In the transdichotomous
model with word size w = lgu bits, the above solutions use (B 4+ nv)(1 + o(1)) bits of
space, answer lookup queries in O(1) worst-case time, and perform updates in O(1) expected
amortized or worst-case time?. A slightly different data structure using O(B + nv) bits of
space was discussed in [8]. Finally, Blandford and Blelloch [3] generalized the notion of B
when keys are variable-length bit-strings of length at most w, and gave a dictionary with a
space usage of O(B + nv) bits. However, these data structures are complex, and although
Arbitman et al. [1] discussed ideas to make their data structure more practical, we are not
aware of any implementations along these lines.

We are concerned with practical approaches to compact dynamic dictionaries. A practical
solution by Blandford and Blelloch [2] uses O(B +nv) bits of space, but takes O(lgn) time to
perform (a much wider range of) operations. The only other practical compact dictionary we
are aware of is Cleary’s compact hash table (CHT) [6]. For any constant € > 0, Cleary’s CHT
uses (1+e)n(lg(u/n)+v)+0(n) = (1+€)(B+nv)+O(n) bits and supports lookup in O(1/€2)
expected time, and updates in O(1/e3) expected amortized time. Poyias et al. [16] proposed
a variant of the CHT, called the displacement CHT or dCHT, which supports lookup in
O(1/¢) expected time. However, it uses €2(n) bits more space than the CHT (a simplified
dCHT [16] in fact takes ©(n1g® n) bits? more space than the CHT), and particularly as e
approaches 0, the practical performance of these approaches deteriorates significantly.

Related to a dynamic dictionary is the notion of a hash ID map, which stores a set S of
n keys (without user-provided values) from a universe U, and associates each key in S with
a unique integer, chosen by the data structure, from a range [p]. If x € S, lookup(z) returns

! For non-negative integers i, [i] = {0,1,...,5 — 1}.
2 These two results differ regarding the model of dynamic memory allocation used.
3 Throughout lg denotes the logarithm to base two with lg(l) n =lgn and lg(i) = lg(lg(i_l) n) for ¢ > 1.
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the integer associated with x. A requirement is that the integer associated with x does
not change during the lifetime of the data structure, although our solution, as well as the
previous solutions, require that the data structure is destroyed and rebuilt after ©(n) update
operations. In addition, we would like p to be not “much” more than n. Finally, the space
usage of a compact hash ID map should be close to B(u, n), which is the information-theoretic
lower bound for storing S. A compact hash ID map has many applications, including compact
representations of tries [16, 11] (and potentially other compact data structures), LRU cache
management [19], and naming in string processing [13]. Implicit in the work of Darragh et
al. [7] is a compact hash ID map whose space usage is (1 + €)B bits, has p = O(nlgn/lglgn)
with high probability, supports O(en) updates before requiring rebuilding, and performs
insert and lookup in O(1/€?) expected time. Implicit in the work of Poyias et al. [16] is a
compact hash ID map whose space usage is (1 + ¢€)B bits, has p = O(n), supports O(en)
updates before requiring rebuilding, and performs insert and lookup in O(1/¢€) expected time.
Here € > 0 is a user-specified constant.

In this paper we consider the use of bucketing to design practical CHTs and compact
hash ID maps, an approach that is distinguished by its simplicity, and is the basis of the
theoretical work of Raman and Rao [18], as well as earlier CHTs.

Our Contributions. We propose simple and practical CHTs with:
B+ nv + O(nlglgu) bits, performing insert and lookup in O(lgu) expected time. This
approach, despite being theoretically inferior, is extremely simple. It also yields a compact
hash ID map with p = O(n), B+ O(nlglgu) bits of space usage with support for Q(n)
updates before requiring rehashing, with the same operation complexities as above.
B + nv 4+ O(n) bits, performing insert in O(lgu) worst-case time and lookup in O(1)
expected time.
Despite their poor asymptotic complexities, these approaches are simple and designed for
practical performance, which we verified in the evaluation described in Section 4. In this
evaluation, we consider two distinct scenarios:
lg(u/n) and the value bit width v are both small (using only a few bits), motivated by the
CDRW-array [16], which compactly stores a dynamic array A, most of whose entries can
be stored in very few bits. For every integer v > 1, the CDRW-array takes all indices in A

containing v-bit values, and stores the key-value pair (i, A[{]) in a CHT for that integer v.

For small v, the set of indices containing v-bit values are often a large proportion of all

indices, so “lgu/n” is small as well. In this scenario, keeping space usage low is a priority.

lg(u/n) and the value bit width v are both relatively large. This models a number of

scenarios such as storing the adjacency matrix of a fairly sparse weighted or labeled graph.

In this scenario, we would be competing against other memory-efficient implementations
of conventional hash tables, and speed would also be an important criterion.

On the implementation side, we offer two novel contributions. Firstly, our hash table
needs to be periodically resized as elements are added. Rather than resizing based on the
overall number of keys, we resize based on the size of the maximum bucket. Secondly, we use
SIMD accelerated techniques [20] to accelerate searches in a bucket.

Discussion. We briefly summarize how our approaches differ from other compact hash
tables. Hash tables are usually implemented either (a) as open addressing, whereby all
keys are stored in a single table, or (b) as closed addressing, where keys are mapped to
buckets. However, combining open addressing with compact hashing leads to difficulties,
as compact hashing does not store entire keys, but only quotient information [6], and the
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overhead of storing and maintaining additional information to recover the keys from the
quotients is quite high, since open addressing schemes need to have some mechanism for
resolving collisions, such as linear probing [6, 16]. The problem is exacerbated by the use
of quite high load factors to keep the space usage low. The use of high load factors can be
avoided by switching to a sparse hash table layout*. In contrast to standard open addressing
(storing elements in a single array), the sparse hash table layout uses a bit-string to mark
positions at which elements are stored, and represents the keys themselves in a collection of
small, variable-sized arrays. This allows low load factors with a moderate space overhead,
and works well with compact hashing [9, Outlook]. However, the overhead of decoding the
displacement information for restoring a key from its quotient remains a concern.

In contrast, closed addressing does not use collision resolution; all keys are simply
stored in their buckets. The usual representation of a bucket is via chaining, i.e., storing a
bucket as a linked list, as in the unordered_map of the C++ standard library libstdc+ [5,
Sect. 22.1.2.1.2]. The overhead of chaining can make hash tables using it space-consuming
and slow, and modern implementations of hash tables tend to focus on open addressing.

In a compact hash setting, the buckets contain quotients of keys. In contrast to hashing
via open addressing, we do not need to maintain any information to recover a key from its
quotient. However, buckets have obvious overheads such as pointers to them and auxiliary
information such as their sizes. The challenge is how to balance the overheads of the buckets
(which grow as the number of buckets increases) with the size of the quotients stored in the
buckets (which reduces as the numbers of buckets increase). Theoretical solutions (such
as [18]) to this problem are complex (e.g., recursing on the quotients in a bucket). We give
up on asymptotic worst-case performance in order to find solutions that work in practice.

Paper Overview. We begin with a theoretical description of our algorithms in Section 2.
In Section 3 we describe the implementations, which depart from theory in some ways.
Section 4 describes the experimental evaluation and Section 5 concludes and states directions
for further work.

2 Compact Hashing via Bucketing: a Theoretical View

In this section, we outline the approach that we take from a theoretical perspective. This
section assumes the transdichotomous model with word size w = lgu bits. For simplicity we
consider insertion-only hash tables. Let N be a parameter with N < n < 2N (we discuss
what happens when this is violated in Section 2.3), and b the number of buckets of our hash
table. We start with an invertible function f : [u] — [u], and use f to map key-value pairs to
the b buckets. We assume that b, the size of the universe u, and N are powers of two.

Now, given a key-value pair (z,y), we compute f(z), and assign (z,y) to the bucket
r = f(z) mod b. In the bucket r, the key x is represented by its quotient value ¢ = f(z) div b;
observe that the key = can be recovered as f~1(gb + r) and that the quotient value takes
lgu — lgb bits. We analyze the hash tables under the assumption of uniform and fully
independent hashing. The key design decisions are the representation of the buckets and the
choice of b, both of which we discuss in Section 2.3.

4 https://github.com/sparsehash/sparsehash
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2.1 Simple Compact Hashing

We start with the simple variant, which maintains b = O(N/lgu) buckets. The buckets are
represented by an array of b pointers, each pointing to an array of w-bit words that stores
the key-value pairs of the respective bucket. The overhead per bucket is O(w) bits; summed
over all buckets this overhead is O(n) bits. Since each key is represented by a quotient using
lgu —1gb =lg(u/N) + lglgu bits, the overall space bound is B+ nv + O(nlglgu) bits as
claimed, where v is the bit width of the values. To perform a lookup, an entire bucket is
scanned. To perform an insert operation, a new array of the appropriate size is allocated,
the existing bucket is copied over to the new array, and the new key is added to the end
of the new array. A standard argument [17] shows that the maximum bucket size byax is
bounded by O(lgu) with probability 1 —1/u®™®). The running times of insert and lookup are
therefore O(lgu) with high probability.

To use this as a compact hash ID map, we fix byax = clgu for a constant ¢ > 0 chosen

large enough such that the probability of every bucket exceeding buax is at most (1/u)? [17].

Suppose that a key® is stored at the j-th position of the i-th bucket and j < byax. Then the
ID associated with this key is just ¢ - byyax + 7. We discuss the length of the “lifetime” of this
data structure below.

2.2 Space-Efficient Compact Hashing

Our space-efficient variant maintains b = N sub-buckets. Each sub-bucket is not represented
individually, but lg u sub-buckets are grouped together in a bucket, which we call group-bucket
in the following to avoid confusion. A group-bucket, with a total of s key-value pairs in it, is
represented as an array of size s. In this array, all keys hashed to the same sub-bucket are
stored in a consecutive range, and a bit-string of length lg v + s demarcates the sub-bucket

boundaries by concatenating the sizes of the sub-buckets, written in unary, for example.

The overheads of this approach (including the bit-string) are at most O(n) bits. However,

the quotients stored in each sub-bucket now only take lgu —lg N = lg(u/n) + O(1) bits.

Thus, the overall space usage is B + nv + O(n) bits. We now consider the time for an
operation. Using the same argument as in the previous section (Section 2.1), we can see that
the size s of each group-bucket is at most O(lgw) with high probability, and the bit-string is
therefore of length O(lgw) bits with high probability as well, which means that the range
in the group-bucket corresponding to a sub-bucket can be located with a broadword select
operation in O(1) time with high probability. Since the expected sub-bucket size is O(1),
search within a sub-bucket takes O(1) expected time, and lookup is consequently supported
in O(1) expected time. insert is done by rewriting the entire group-bucket each time, and
takes O(lgu) time with high probability as a result. (Since each insert causes a group-bucket
to be re-written, this approach is not suitable for use as a hash ID map.)

2.3 Rebuilding

Insertions will cause the invariant N < n < 2N to be violated. A standard approach would
double N and rehash. From a coding perspective, however, it can speed up search if it is
known that all buckets have a fixed maximum size by, that stays unchanged throughout
the execution of the algorithm — for example, a loop that searches through a bucket can be
unrolled. Asymptotically, by.x cannot be a constant. Even if we use N buckets, it is well
known that some bucket will have ©(logn/loglogn) keys [17, Thm. 1].

5 More precisely, the quotient of this key.

7:5

SEA 2020



7:6

Fast and Simple Compact Hashing via Bucketing

Despite this, we set bnax to be a fixed parameter, and let b be the current number
of buckets. As soon as any bucket exceeds by.x in size we rebuild the data structure by
doubling b. When we do this, the keys in the old bucket ¢ are distributed at random into
new buckets 2¢ and 2i + 1 (details in the next section). Once the rebuilding is complete, the
insertions can resume. We say that a value of by, is stable for a particular range of n, if the
space between rebuildings is roughly ©(n).

The stability can be improved through the use of overflow tables: when a new key is
inserted and is hashed to a bucket of size by.x, we put the key-value pair into a single global
hash table, the overflow table (obviously, when searching, we may need to search the overflow
table as well). The benefits of using an overflow table are as follows.

If we throw nlnn balls into n buckets randomly, the expected maximum bucket size is
approximately elnn [17]. Heuristically, this would suggest bmax should be set to be three
times the average bucket size to ensure stability. However, the probability that a bucket
exceeds Inn + O(y/Ign) balls is 1/(logn)®™M). Thus, we can set byay to much closer to the
average bucket size. By doing so, the number of keys that go to the overflow table would only
be n/(logn)°M, and the overflow table would therefore not be a major drag on either the
time or the space performance of the hash table. This also suggests that with the appropriate
parameter settings, a given constant by, will continue to be stable for a much larger value
of n (possibly quadratically bigger).

In addition, an overflow table can reduce p for compact hash ID maps. Keys inserted into
the overflow table are given consecutive IDs beginning at b - by,.x and stored together with
their IDs in an overflow table. If we reduce by.x by a constant factor for a given n, while
placing a few keys into the overflow table, p will also be reduced by a constant factor.

3 Implementation

We implemented the simple approach and the space-efficient approach described in Sec-
tions 2.1 and 2.2, and call the implementations cht and grp, respectively. Each of the two
implementations maintains b buckets, where b is a power of two. Following the discussion
of different invertible functions given in [9, Sect. 3.2], we select a fixed multiplicative func-
tion f : [u] — [u] for the experiments. We use the last 1gb bits of its return value for the
index of the assigned bucket and the other bits for the quotient.

3.1 Maximum Bucket Size and Rehashing

In both cases we choose by.x = 255. Our simulations suggest that b,y = 63 is almost
adequate for n up to 10°. Intuitively, for stability byax should be logarithmically dependent

039, even without

on n, so it would appear that by,.x = 255 should ensure stability for n up to 1
the use of overflow tables. The larger choice of byax also helps to reduce the per-bucket
overhead (at least 17 bytes, see Section 3.2).

When we try to insert an element into a bucket of size by.x, we create a new hash table
with twice the number of buckets and move the elements from the old table to the new one,
bucket by bucket. After a bucket of the old table becomes empty, we can free up its memory,
thus significantly reducing the peak memory during resizing. Note that the rebuilding is
particularly efficient since the contents of bucket ¢ in the old data structure is distributed
between buckets 2i and 2¢ 4 1 in the new data structure (the last 1+ 1gb bits of a hash value

now determine the bucket).

The main additional parameter in grp versus cht is the number of sub-buckets in a group-
bucket. We also deviate from theory with respect to the number of sub-buckets assigned
to a group-bucket, which we call m: Given that the average number of total elements in a
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group-bucket is s, a bit-string demarcating the sub-bucket boundaries in a group-bucket costs
us m+ s bits on average, and therefore a group-bucket costs us m+ s+ sv+ sq bits on average,
where ¢ = lgu — lgb is the quotient bit width. By doubling the number of sub-buckets
per group-bucket (but keeping the total number of group-buckets), the quotient bit width
decreases by one such that the average space of a group-bucket becomes 2m + s+ sv+s(qg—1)

bits, which is smaller than the original size if m < s. However, changing m has an effect on s.

In our experiments, determining m by counting s in the old hash table during a rehashing
resulted in an overestimation of s. Therefore, we stuck with the empirically evaluated
constant m = 64.

3.2 Buckets

We represent a bucket (resp. group-bucket for grp) as a quotient and a value bucket. The

quotient bucket stores the quotients bit-compact in a byte array by using bit operations.

Consequently, the number of bits used by a quotient bucket is quantized at eight bits (the

last byte of the array might not be full). We resize a bucket with the C function realloc.
Whether we need to resize a bucket on inserting an element depends on the policy we follow.

With the incremental policy, we increase the size of the bucket to be exactly one element
longer, just enough for a new element to fit in. This policy saves memory as only the
minimum required amount of memory is allocated. Because buckets store at most by ax
elements, the resize takes O(byax) time. In practice, much of the time for resizing depends
on the speed of the memory allocator. Our second resize policy, half increase, increases the
bucket size by 50%, taking the burden off the allocator at the expense of having some unused
memory.%

4 Experiments

We implemented the approaches described in Section 2.1 and Section 2.2 in C4++17, and refer
to them cht and grp, respectively. We subscript cht with ‘++’ or ‘50’ to indicate whether

the hash table resizes a bucket by, respectively, one element or by 50% (cf. Section 3.2).

Implementations are available at https://github.com/koeppl/separate_chaining.

Evaluation Setting. Our experiments were run on an Ubuntu Linux 18.04 machine equipped
with 32 GiB of RAM and an Intel Xeon CPU E3-1271 v3 clocked at 3.60GHz, having,
respectively, 32KB, 256KB, and 8192KB of L1, L2, and L3 cache. We measured memory
usage by instrumenting calls to malloc, realloc, and free. The compiler was g++-7.5.0
with flags ~03 -DNDEBUG -march=native. Our benchmarks for the operations insert, lookup,
and delete are available at https://github.com/koeppl/hashbench.

4.1 Bonsai Tables

We compare our implementations cht and grp with practical implementations of compact
hash tables implemented in the tudocomp project’. The first is called cleary, which is an
implementation of Cleary’s CHT [6] using linear probing. The second, called layered, is
based on the dCHTs of Poyias et al. [16]: layered stores the displacement information in

Since grp is the more memory-efficient variant, there is no grps,. Moreover, since a group-bucket of
grp must support insertions at all ending positions of its sub-buckets, such an insertion is much more
involving than merely appending an element to a bucket of cht. We are unsure whether a different
resize policy pays off.

https://github.com/tudocomp/compact_sparse_hash

17
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two associative array data structures. The first is an array storing 4-bit integers, and the
second is an unordered_map (the C++ STL hash table implementation) for displacements
larger than 4 bits. All tables apply linear probing and support a sparse table layout. We
refer to these methods collectively as Bonsai tables, and append in subscript ‘P’ or ‘S’ if the
respective variant is in its plain or sparse form, respectively. We used a maximum load factor
of 0.95 for all Bonsai table implementations.

4.1.1 Insertions and Lookups

Our first and main experiment measures the time and space requirements when (a) filling the
hash tables with data (insert) and (b) querying the data afterwards (lookup). We filled the
hash tables with 32-bit keys and 1-bit values, with keys generated via std: :rand. Figure 1
shows the measured time and peak memory usage when inserting an increasing number of
elements into the hash tables (construction in the plots) and also times for lookup queries.

Time. Considering construction time, layeredp and chtsg are the fastest options, while
the sparse Bonsai tables layeredq and clearyg are the slowest options. Between them are
cht,+, clearyp and grp. Considering the query time for large instances, the difference to the
construction time is that cht and grp are here slower than all variants of cleary and layered,
where again layeredp is the fastest option.

Unsuccessful Search. Figure 2 shows times for unsuccessful searches (i.e., when the query
is for a key not present in the table). layeredp is again generally the fastest (though with
somewhat less consistent performance). grp is faster than cht for unsuccessful searches. While
grp spends additional time for finding the queried sub-bucket in a group-bucket, this pays off
since the sub-buckets in grp are far smaller than the buckets in cht.

Space. grp, followed by cht,+ and then by chtsg, has the lowest peak memory requirements
during the construction. The main reason is that, unlike the other approaches, we do not
need to store displacement information. The size of a group-bucket in grp approaches by ax
much better than a bucket in cht, which helped grp to delay rehashings. clearyg beats on
some instances cht,+ (but not grp) while having significantly slower construction times than
cht or grp. However, the relatively large memory reallocation during a rehashing prevents
the memory requirement of clearyq to stay below cht,+ for a longer time.

4.1.2 Spikes in Time and Memory

The Bonsai tables have clear spikes in their time and space-usage plots, which our hash tables
do not have. To understand this phenomena, recall that the Bonsai tables use linear probing
with a maximum load factor of 0.95. As the Bonsai tables approach fullness, insertion and
query times deteriorate, which is the case just before a peak in the space usage plot (Figure 1,
bottom left). The peak itself is the consequence of rehashing having been performed. Peaks
are more pronounced for the non-sparse variants, which keep all buckets of both the old and
new hash tables in memory during rehashing.

We observe that, while the query times for cleary degrade dramatically before rehashing,
query times improve considerably immediately afterwards. This reflects the way in which
cleary and layered deal with displacement information. Due to the highly set maximum
load factor (0.95), with high probability elements with the same hash value become mixed,
resulting long lists of consecutive elements. Given that we consult an element at the i-th
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Figure 1 Top Left: Time for inserting 2'° - (3/2)™ randomly generated 1-bit values and 32-bit
keys into a compact hash table, for n > 0 (cf. Section 4.1). Top Right: Time for querying all inserted
elements. Bottom Left: Peak memory needed during construction. Bottom Right: Memory and time

stored element.
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Unsuccessful Search: Time
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Figure 2 Time for looking up 2'° random keys that are not present in the hash tables.

position in the hash table at which such a long list of elements is stored, layered and cleary
have to consult the displacement information of i. While layered stores this information in
two separate data structures, cleary may have to scan all consecutive elements to the left of 4.
When inserting an element at the i-th position, linear probing scans to the right end of this
list, requiring Bonsai tables to lookup displacements of all visited elements. Our new hash
tables cht and grp have smoother performance because of the way they handle rehashing:
the contents of the i-th bucket is moved to the 2i-th and (2¢ + 1)-th bucket after which the
original bucket is freed.

In summary, layeredp is consistently the fastest compact hash table in our experiments for
both insert and lookup queries and is also the most space consuming. clearyp, layeredg, clearyg
offer different trade-offs, being either faster at insertions, lookups, or using less space. cht
and grp have the lowest space requirements, but relatively high query times. The maximum
bucket size byax gives us a dial for trading speed for space-usage with cht and grp.

4.2 Non-Compact Hash Tables

Figure 3 and Figure 4 show an additional comparison with 8-bit values and two highly-
optimized non-compact hash tables, namely:® Google’s sparse hash table* google and Tessil’s
sparse map” tsl. Both google and tsl are sparse, resolve collisions with quadratic probing, use
the SplitMix hash function [21], and had maximum load factor set to 0.95.

4.2.1 Insertions and Lookups

In Figure 3, we conducted the same experiment as in Section 4.1.1 on the non-compact hash
tables. While our implementations are slower for queries (grp is sometimes almost three
times slower than tsl), they consistently use half of the memory, sometimes even less. chtsg
also shades google during construction.

8 Unfortunately, we could not evaluate other hash tables mentioned in the introduction. The implemen-
tation of [10] lacks resize capabilities (http://algo2.iti.kit.edu/sanders/programs/cuckoo/), and
the implementation of [12] has a bug (https://github.com/TooBiased/DySECT/issues/2).

9 https://github.com/Tessil/sparse-map
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Figure 3 Top Left: Time for inserting 2'° - (3/2)™ randomly generated 8-bit values and 32-bit
keys into a not-necessarily compact hash table, for n > 0 (cf. Section 4.2). Top Right: Time for
querying all inserted elements. Bottom Left: Peak memory needed during construction. Bottom

Right: Memory and time per stored element.
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Deletion: Time Unsuccessful Search: Time
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Figure 4 Left: Time for erasing 2'° random keys that are present in the hash tables. Right:
Time for looking up 2'° random keys that are not present in the hash tables. In both figures, the
number of elements (x-axis) is the number of elements a hash table contains (cf. Section 4.2.2).

4.2.2 Removing Elements

210 random elements. We used the hash tables

Figure 4 left shows the time to remove
created during the construction benchmark (Figure 3) with 8-bit values. Bonsai tables are
not included because their current implementations do not support element removal. Our
hash tables are again consistently slower than tsl, while times for google fluctuate above and
below ours. grp becomes slower than cht on large instances. Experiments for unsuccessful

searches (Figure 4 right) show a similar pattern.

5 Conclusions and Future Work

We have suggested a simple approach for implementing compact hash tables, and our
implementations show positive results. The experiments reveal our hash tables grp and cht
use the least space of all tested approaches. Moreover, their time and space requirements
scale smoothly with the problem size, unlike the other compact (i.e., Bonsai) tables tested,
whose performance is periodically adversely affected by rehashing. The new tables are also
faster to construct than other hash tables with similar memory requirements — only hash
tables with much higher memory requirements have faster construction times.

The main weakness of grp and cht is the slower lookup time, both for successful and
unsuccessful searches. This is the price we pay for low space usage, which is achieved by
keeping all buckets of cht and grp as close to byax as possible, resulting in long scan times.

There are numerous avenues for future work. An analytical treatment of the space usage
of the implemented hash table (whose rebuilding is triggered by the parameter byax), and
the expected frequency of rehashes, as well as a better understanding of the use of overflow
hash tables, would be welcome. In the experiments, the measured memory is the number of
allocated bytes. The resident set sizes of our hash tables differ significantly to this quantity,
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as we allocate many tiny fragments of space. A dedicated memory manager can reduce
this space overhead and may also reduce the memory requirement of the bucket pointers by
allocating a large contiguous array, pointers into which may require 32 bits, or less.

The AVX2 SIMD instruction set provides a major performance boost over earlier instruc-
tion sets like SSE — with benchmarks for comparing strings'® indicating a speed boost of
more than 50% for long strings. We wonder whether we can gain an even steeper acceleration
in our hash tables when working with the newer AVX256 instruction set.
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