Enumerating All Subgraphs Under Given
Constraints Using Zero-Suppressed Sentential
Decision Diagrams

Yu Nakahata
Graduate School of Informatics, Kyoto University, Japan
nakahata.yu.27e@st.kyoto-u.ac.jp

Masaaki Nishino
NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan
masaaki.nishino.uh@hco.ntt.co.jp

Jun Kawahara

Graduate School of Informatics, Kyoto University, Japan
jkawahara@i.kyoto-u.ac.jp

Shin-ichi Minato

Graduate School of Informatics, Kyoto University, Japan
minato@i.kyoto-u.ac.jp

—— Abstract

Subgraph enumeration is a fundamental task in computer science. Since the number of subgraphs

can be large, some enumeration algorithms exploit compressed representations for efficiency. One
such representation is the Zero-suppressed Binary Decision Diagram (ZDD). ZDDs can represent
the set of subgraphs compactly and support several poly-time queries, such as counting and random
sampling. Researchers have proposed efficient algorithms to construct ZDDs representing the set
of subgraphs under several constraints, which yield fruitful results in many applications. Recently,
Zero-suppressed Sentential Decision Diagrams (ZSDDs) have been proposed as variants of ZDDs.
ZSDDs can be smaller than ZDDs when representing the same set of subgraphs. However, efficient
algorithms to construct ZSDDs are known only for specific types of subgraphs: matchings and paths.
We propose a novel framework to construct ZSDDs representing sets of subgraphs under given
constraints. Using our framework, we can construct ZSDDs representing several sets of subgraphs
such as matchings, paths, cycles, and spanning trees. We show the bound of sizes of constructed
ZSDDs by the branch-width of the input graph, which is smaller than that of ZDDs by the path-
width. Experiments show that our methods can construct ZSDDs faster than ZDDs and that the
constructed ZSDDs are smaller than ZDDs when representing the same set of subgraphs.

2012 ACM Subject Classification Mathematics of computing — Graph algorithms

Keywords and phrases Subgraph, Enumeration, Decision Diagram, Zero-suppressed Sentential
Decision Diagram (ZSDD), Top-down construction algorithm

Digital Object Identifier 10.4230/LIPIcs.SEA.2020.9

Funding This work was supported by JSPS KAKENHI Grant Number JP15H05711, JP18H04091,
JP18K04610, and JP19J21000.

1 Introduction

Enumerating subgraphs of a given graph under some constraint is a fundamental task in
computer science. There are enumeration algorithms for several types of subgraphs such as
cliques [5], paths [1], and spanning trees [21]. These algorithms list all subgraphs one by one
in a small amount of time per subgraph. However, such algorithms take at least linear time
and space to the number of subgraphs. Since the number of subgraphs can be exponentially

larger than the size of the input graph, it is trouble when applied to practical problems.
© Yu Nakahata, Masaaki Nishino, Jun Kawahara, and Shin-ichi Minato;
37 licensed under Creative Commons License CC-BY
18th International Symposium on Experimental Algorithms (SEA 2020).
Editors: Simone Faro and Domenico Cantone; Article No.9; pp. 9:1-9:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8947-0994
mailto:nakahata.yu.27e@st.kyoto-u.ac.jp
https://orcid.org/0000-0001-6489-5446
mailto:masaaki.nishino.uh@hco.ntt.co.jp
https://orcid.org/0000-0001-7208-044X
mailto:jkawahara@i.kyoto-u.ac.jp
https://orcid.org/0000-0002-1397-1020
mailto:minato@i.kyoto-u.ac.jp
https://doi.org/10.4230/LIPIcs.SEA.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

Instead of explicitly listing subgraphs, some algorithms exploit compressed representations
of sets of subgraphs. One such representation is the Zero-suppressed Binary Decision Diagram
(ZDD) [15]. ZDDs are compact representations of set families. By regarding a subgraph as
its edge set, we can express a set of subgraphs by a ZDD. ZDDs can not only represent set
families compactly but also support several poly-time queries such as counting and random
sampling [15]. In addition, given two ZDDs, we can efficiently construct a ZDD representing
the union or intersection of the set families represented by the input ZDDs in polynomial time
to the sizes of the input ZDDs. Such operations are called Apply operations [4]. Due to these
merits, ZDDs appear in several graph-related applications such as network optimization [10],
network reliability evaluation [7, 8], and balanced graph partitions [12, 16, 17].

A key to use ZDDs effectively for subgraph enumeration is a fast algorithm to construct
a ZDD representing the set of subgraphs. It is time-consuming to construct a ZDD by first
explicitly listing subgraphs and then combining ZDDs using Apply operations. In contrast,
some algorithms can construct ZDDs without explicitly listing subgraphs. Such algorithms
are called top-down construction algorithms, while algorithms using Apply operations are
called bottom-up. Researchers have proposed top-down construction algorithms for ZDDs
representing several sets of subgraphs [20, 7, 14]. Kawahara et al. [13] generalized the
algorithms to obtain a general framework of top-down construction algorithms for ZDDs.
Using the framework, we can construct ZDDs representing the sets of subgraphs under several
constraints, such as the number of edges, degrees of vertices, and connectivity of vertices. By
combining these fundamental constraints, we can specify several types of subgraphs, such as
matchings, paths, cycles, and spanning trees.

Recently, Zero-suppressed Sentential Decision Diagrams (ZSDDs) [18] have been proposed
as different representations of set families. Since ZSDDs are generalizations of ZDDs, ZSDDs
are at least as compact as ZDDs. In theory, there exist set families that have polynomial
ZSDD sizes but exponential ZDD sizes [3]. In addition, ZSDDs inherit some poly-time queries
of ZDDs: counting, random sampling, and Apply operations. Thus, a natural question is:
Can we design top-down construction algorithms for ZSDDs representing sets of subgraphs?
The question is partially answered in an affirmative way by Nishino et al. [19]. They proposed
top-down construction algorithms for ZSDDs representing sets of specific types of subgraphs:
matchings and paths. The sizes of constructed ZSDDs by their algorithms are bounded by the
branch-width of the input graph [19], while those of ZDDs are bounded by the path-width [11].
Since the branch-width of a graph never exceeds the path-width [2], ZSDDs have tighter
upper bounds than ZDDs. The efficiency of their algorithms was confirmed in experiments.
Despite such striking results, their algorithms are specific to matchings and paths.

In this paper, we propose a novel framework of top-down construction algorithms for
ZSDDs. To design a top-down construction algorithm using our framework, one only has to
prove a recursive formula for the desired set of subgraphs. Using the recursive formula, we can
theoretically show the correctness and the complexity of the algorithm, which was difficult
with the existing method. We apply our framework to the three fundamental constraints
used in ZDDs: the number of edges, degrees of vertices, and connectivity of vertices. We
show that the sizes of constructed ZSDDs are bounded by the branch-width of the input
graph, not only for matchings and paths. Experiments show that proposed methods can
construct ZSDDs faster than ZDDs and that the constructed ZSDDs are smaller than ZDDs
representing the same sets of subgraphs.

Y. Nakahata, M. Nishino, J. Kawahara, and S.-i. Minato

@ V3
Vs o z4 zs 3 <
®0 Alo] [€]o] Al
(a) A vtree. (b) A ZSDD.

Figure 1 A vtree and a ZSDD that respects the vtree.

2 Preliminaries

2.1 Graphs

Let G = (V, E) be an undirected graph where V' is the vertex set and E is the edge set. |V|
and |E| denote the number of vertices and edges, respectively. For edge subset S C F, the
induced subgraph G[S] is the subgraph (V[S],5), where V[S] C V is the set of vertices to
which an edge in S is incident. In the following, we identify S with G[S]. For S C F and
u € V, the degree deg(S,u) of w in S is the number of edges incident to u in S.

2.2 (X,Y)-partition and vtree

Let f and g be set families. We define three operations between set families. We define union U,
intersection N, and join Uas fUg={a|a € fora€g}, fNg={a|a€ fand a € g}, and
fUg={aUb|ae€ fandb € g}, respectively.

» Definition 1. Let f be a set family, and X,Y be a partition of the universe of f. Set
family f can be written as

h
f: U [piUSi], (1)
i=1
where p; and s; are the set families whose universes are X and Y, respectively. The equation
is an (X,Y)-decomposition. We call p1,...,pp primes and s1,...,sy subs. If the primes
are exclusive (p; Np; =0 for all i # j), the decomposition is an (X,Y)-partition. !

» Example 2. Let f; be the family of subsets of U; = {A, B,C, D} that contain exactly
two elements. It follows that f; = {{A,B},{A,C}.{4,D},{B,C},{B,D},{C,D}}. For
X1 ={B} and Y; = {4,C, D}, an (X1, Y)-partition of f; is

f=[{0}u £ JUI{BY U £], (2)
p\ri/n; ;,b/ prime :1,:

where f21 = {{Aa C}’{AaD}v{C7D}} and f22 - {{A}7{C}’{D}}

! In [18], an (X, Y)-decomposition is called an (X, Y)-partition if the primes are exclusive and consistent
(pi # 0 for all 7). For simplicity, we do not require consistency for (X, Y)-partitions. If we construct a
ZSDD without consistency, we can make their primes consistent in linear time to the ZSDD size [19].

9:3

SEA 2020

9:4

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

The universe of fi and fi is Uy = {A,C,D}. For Xy = {A,D} and Yy = {C}, an
(X3, Yo)-partition of fj is

f2 = [{{A, D} u {0} U [{{A} {D}} U {{C}}]. 3)
prime :1,1: prime sub

A ZSDD represents a set family by recursively applying (X, Y)-partitions to decompose
the family into sub-families, where the order of partitions is determined by a viree. A vtree
is a rooted, ordered, and full binary tree whose leaves correspond to elements of the universe.
Figure la shows an example. Symbols appearing in leaves represent corresponding elements,
and symbols beside nodes represent their names. Each internal node represents a partition of
the universe into two subsets: elements appearing in the left and right subtrees. We denote
the left and right children of node v by v and v", respectively. In the figure, root node
vy represents the (X, Yy)-partition of the universe U; = {A, B,C, D} where X; = {B}
and Y; = {4, C, D}. Similarly, node vs represents the (X3, Y2)-partition of the universe
Uy = {A,C,D} where Xy = {4, D} and Yo = {C}. To avoid confusion, we call vtree nodes
vnodes, ZSDD nodes znodes, and graph nodes vertices. We represent them as v;, z;, and u;.

2.3 Zero-suppressed Sentential Decision Diagrams

A ZSDD is recursively defined as follows. ZSDD « respects vnode v if the order of (X,Y)-
partitions in « follows the vtree whose root is v. (@) denotes the set family that « represents.

» Definition 3. « is a ZSDD that respects vnode v if and only if:
a=c¢ ora= 1. (Semantics: {e) = {0} and (L) =0.)
a=X ora==2X and v is a leaf with element X. (Semantics: (X) = {{X}} and
(+£X) = {{X},0}.)
a={(p1,81),---,(bn,sn)}, v is internal, p1,...,py are ZSDDs that respect a vnode in
the subtree whose root is v', s1,...,s, are ZSDDs that respect a vnode in the subtree
whose root is v", and (p1),...,{(pn) are exclusive. (Semantics: (o) = U?=1[<pi> U (si)].)

If a ZSDD is either ¢, L, X, or £X, it is a terminal. Otherwise, it is a decomposition.
Figure 1b shows an example ZSDD that represents set family f; in Example 2 and respects the
vtree in Figure la. A circle node and its child rectangle nodes represent an (X, Y)-partition.
The symbol in a circle node indicates the vnode that the decomposition respects. A pair of
rectangle nodes represent a prime-sub pair in an (X, Y)-partition where the left and right are
prime p and sub s, respectively. Every p and s is either a terminal ZSDD or a pointer to a
decomposition ZSDD. Circle nodes are decomposition znodes, and rectangle nodes are element
znodes. For example, znodes z; and zo represent the (X, Y)-partitions in Equations (2)
and (3), respectively. The size of a ZSDD is the sum of the sizes of (X, Y)-partitions in the
ZSDD. The size of the ZSDD in Figure 1b is 9. 2

3 A novel framework of top-down ZSDD construction

We present a novel framework of top-down ZSDD construction. Our framework is partially
identical to that of Nishino et al’s [19], but we modify it so that we can design algorithms
easily for several constraints. Algorithm 1 shows the framework. The algorithm takes graph
G and the root vnode as its inputs and returns a ZSDD representing a set of subgraphs

2 The size of a ZDD is defined as the number of nodes. [15] This is because, every node of a ZDD has
exactly two children. In contrast, nodes of a ZSDD may have different number of children, and thus the
size of a ZSDD is defined as the number of arcs.

Y. Nakahata, M. Nishino, J. Kawahara, and S.-i. Minato

Algorithm 1 A top-down construction algorithm.

Input : A graph G = (V, F) and the root vtree node v
Output :A ZSDD representing a set of subgraphs of G
Z[v] < rootState()

construct(v, Z)

Z < reduce(Z)

return 7

W N

Algorithm 2 construct(v, Z).

1 for z € Z[v] do

2 elems + ()

3 for (m',m") € decomp(v, z) do

4 for o € {l,r} do

5 if v° is a leaf vnode then z° < terminal(v°®, m°)
6 L else z° < unique(v°,m°, Z)

7 elems < elems U {(zl, zr)}

8 Set elems as the child znodes of z

9 for o € {l,r} do
10 L if v° is an internal vnode then construct(v®, Z)

of G. Z[v] stores a set of decomposition znodes that respect vnode v. Since a ZSDD is
represented as a set of decomposition znodes, the set of Z[v]’s for all internal vnodes v can
be seen as a ZSDD. The algorithm first calls rootState(), which returns the root znode. The
procedure depends on the types of subgraphs. The algorithm next calls construct(v, Z), which
recursively construct child znodes of znodes respecting v. If we naively construct znodes,
the number of child znodes grows exponentially. We thus merge equivalent znodes during
the construction of a ZSDD. Here, two znodes are equivalent if they respect the same vnode
and represent the same family of sets. To detect equivalent znodes efficiently, we attach
a label to each znode. The labels must be defined depending on the types of subgraphs

so that two znodes are equivalent if they respect the same vnode and have the same label.

We explain how to design labels in Section 4. The constructed ZSDD may have redundant
znodes. Function reduce(Z) deletes such znodes.

Algorithm 2 shows function construct(v, Z). The function is called only for internal
vnodes. In [19], the procedure of construct(v, Z) was designed depending on whether v’ is a
leaf or not. Instead, we treat all internal vnodes in the same way, which makes it easy to
design algorithms for several constraints. For each znode z in Z[v], the function calculates
the prime-sub pairs corresponding to z. We first initialize the set of prime-sub pairs elems to
the empty set (Line 2). Function decomp(v, z) receives vnode v and znode z that respects v,
and returns the set of pairs of labels corresponding to the prime-sub pairs (Line 3). For each
o € {l,r}, if v° is a leaf vnode, we set znode z° to a terminal (Line 5). Function terminal(v, m)
receives leaf vnode v and label m, and returns an appropriate terminal depending on the
types of subgraphs. If v° is an internal vnode, we call unique(v, m, Z) (Line 6). The function
receives vnode v and label m, and checks whether Z[v] contains a znode with label m. If
such a znode exists, the function returns its address. Otherwise, the function creates a new
znode that respects v and has label m, stores it into Z[v], and returns its address. We add
the prime-sub pair (2!, 2") into elems (Line 7). After generating all the prime-sub pairs, we
set elems as the child znodes of z (Line 8). Finally, for each o € {l,r} such that v° is an
internal vnode, we call construct(v°®, Z) to recursively construct sub-ZSDDs (Lines 9-10).

9:5

SEA 2020

9:6

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

The functions reduce(Z) and unique(v,m,Z) can be designed regardless of the types
of subgraphs [19]. In contrast, the definition of labels and the procedures of rootState(),
terminal(v, m), and decomp(v, z) heavily depend on the types of subgraphs. To easily design
them for several constraints, we relate a recursive formula for the desired set of subgraphs to
top-down ZSDD construction. Intuitively, in our framework, internal vnodes correspond to
recursion steps, while leaf vnodes correspond to base cases. Therefore, we only have to prove
a recursive formula for the desired set of subgraphs. The recursive formula directly leads to
the definition of labels and the procedures of subroutines. We can also show the correctness
of the algorithm and the bound of the constructed ZSDD size from the recursive formula.

4 Subroutines for several constraints

We apply our framework to three fundamental constraints: the number of edges, degrees of
vertices, and connectivity of vertices. By combining these constraints, we can specify several
types of subgraphs. For each constraint, we show a recursive formula for the set of subgraphs
satisfying the constraint. Using the recursive formula, we derive subroutines and bound the
sizes of constructed ZSDDs. The proofs are omitted due to the space limitation.

4.1 Cardinality

Given graph G = (V, E), vtree T whose leaves are labeled by the elements of E, and non-
negative integer k*, we construct a ZSDD that represents the family of sets with exactly k*
elements. We can also construct a ZSDD that represents the family of sets with at most
or at least k* elements (details are omitted). In the following, we focus on the “exactly k*”
constraint. For vnode v, let E(v) C FE be the set of graph edges that correspond to the leaf
vnodes of the sub-vtree whose root is v. For vnode v and non-negative integer k, let f(v, k)
be the family of subsets of E(v) with k elements, that is, f(v,k) = {S| S C E(v), |S| = k}.
The desired family is f(v™°°% k*), where v™°! is the root vnode of T'. For leaf vnode v, £(v)

denotes the element corresponding to v. We show a recursive formula for f(v, k).

» Lemma 4. Let v be a vnode, and k be a non-negative integer. If v is a leaf vnode, then
the following hold:

{0} (k=0)
flok) = {{ew)}} (k=1) (4)

0 (otherwise)

If v is internal, the following is an (E(v'), E(v"))-partition:

k
flok)=J [0 u s k—i). ()
i=0
Using the recursive formula, we can design the subroutines of the framework. We use non-
negative integers as znode labels. For znode z that respects vnode v, the label of z indicates
the number of elements that should be adopted from E(v). Function rootState() returns
the root znode with label k*, since the desired family is f(v*°°, k*). Algorithm 3 shows the
subroutines terminal(v, k) and decomp(v, z). terminal(v, k) is obtained from Equation (4). If
k =0, it returns € since (¢) = {@} (Line 1). If k = 1, it returns £(v) since (£(v)) = {{f(v)}}
(Line 2). Otherwise, it returns L since (L) = @ (Line 3). Similarly, decomp(v, z) is obtained
from Equation (5). The function initializes elems to the empty set (Line 4). Let k be the

Y. Nakahata, M. Nishino, J. Kawahara, and S.-i. Minato

Algorithm 3 Subroutines for the cardinality constraint.

Function :terminal(v, k)
1 if £ =0 then return ¢
2 else if kK =1 then return £(v)
3 else return |

Function :decomp(v, z)

elems <+

Let k be the label of z

for i € [0,k] do

7 L elems < elems U {(4,k — 1)}

(=B B

8 return elems

2

/@\ B[]

Z Z

[]¢] B[] () ()"

|

Ok [sle] [eIC] [sle] [slC]

v v
G0 ghgeshge e ¢
O O o [AD] [elD] Ale] [e]e]

(a) After construct(vi, Z). (b) After construct(ve, Z (c) After construct(vs, Z).

Figure 2 Intermediate ZSDDs for the cardinality constraint.

label of z (Line 5). If the prime has label 0 < ¢ < k, then the sub has label k¥ — . Thus,
we add the pair (i,k — i) to elems (Lines 6-7). Finally, we return elems (Line 8). The
correctness of the algorithm directly follows from the correctness of Lemma 4.

» Example 5. Let us construct a ZSDD that represents the family of subsets of {A, B,C, D}
with exactly two elements. We use the vtree in Figure la. First, rootState() creates root
znode z; with label 2 and stores it into Z[v1]. The function then calls construct(vy, Z). Z[v1]

contains only one znode z;. Since z; has label 2, decomp(v1, 1) returns {(0, 2), (1,1), (2,0)}.

The function first processes label pair (0,2). Since v} = vy is a leaf vnode, the function

calls terminal(vy, 0), which returns €. Since v] = vq is not a leaf vnode, the function calls
unique(ve, 2, Z). It creates new decomposition znode zy that respects vy and has label 2,
stores it into Z[vy], and returns its address. Similarly, for label pair (1,1), the corresponding
prime-sub pair is calculated as (B, z3), where z3 is a new decomposition znode that respects
vg and has label 1. As for label pair (2,0), since the universe of the prime contains only one
element, we discard this pair. As a result, the function set the prime-sub pairs (g, z2) and
(B, z3) as child znodes of z;. Figure 2a shows the current intermediate ZSDD. Since vll =1
is a leaf vnode and v} = v is an internal vnode, the function calls only construct(vs, Z).

We go on to construct(ve, Z). Z[vs] contains two znodes zo and z3. The function processes
zo first. Since z5 has label 2, decomp(vs, 22) returns {(2,0), (1,1),(0,2)}. However, (0,2)
is discarded because the universe of the sub only contains one element. As a result, the
prime-sub pairs are calculated as {(z4,¢), (25, C)}, where z4 and z5 are new decomposition
znodes that respect vz. The labels of z4 and z5 are 2 and 1, respectively. The function
processes z3 next. decomp(vs, z3) returns {(1,0), (0,1)}. Here, znode z5 with label 1 already
exists in Z[vs), and thus unique(vs, 1, Z) returns z5. As a result, the set of prime-sub pairs is
{(#s5,€), (26, C)}, where zg is a new znode that respects vs and has label 0. Figure 2b shows
the current intermediate ZSDD. Finally, construct(vs, Z) is called and Figure 2¢ shows the
resulting ZSDD. By calling reduce(Z), the ZSDD can be trimmed as Figure 1b.

9:7

SEA 2020

9:8

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

Uy Uy Uy
A D A D
ula<I>- uy ul,/CI/u4 ul’\CI\'u4
B E E B
us u3 U3
(a) A graph. (b) Subgraphs.

Figure 3 A graph and its subgraphs satisfying a degree constraint.

Using Lemma 4, we can also bound the size of the constructed ZSDD.

» Theorem 6. If o is the ZSDD obtained by Algorithm 3, the size of o is O(|E|k?).

4.2 Degree

We denote a given degree constraint by function §*: V' — N, where N is the set of non-
negative integers. For subgraph S C F, we say that S satisfies 0* if deg(S,u) = §*(u) holds
for all w € V. For example, for the graph shown in Figure 3a and degree constraint ¢* such
that 0*(u1) = §*(ug) = 1 and 6*(u2) = §*(u3) = 2, there are two subgraphs satisfying 0* as
shown in Figure 3b. Given G, T, and §*, we construct a ZSDD representing the set of all
subgraphs satisfying 6*. When a subgraph satisfies 6*, for every vertex u, the degree of u in
a subgraph must be “exactly” §*(u). Although we mainly discuss this “exact” constraint, we
can easily modify the algorithm to deal with “at most” or “at least” constraints.

Similarly to Lemma 4, we show a recursive formula for the set of subgraphs satisfying the
degree constraint. For vnode v, V' (v) denotes the set of vertices to which an edge in E(v) is
incident. Let us consider a degree constraint whose domain is limited to V' (v) as function
§: V(v) — N. We define f(v,d) as the family of subsets of E(v) such that, for all u € V(v)
and S € f(v,9), degree deg(S, u) equals 6(u). We show a recursive formula for f(v,d).

» Lemma 7. Let v be a vnode, and § be a function from V(v) to N. If v is a leaf vnode, let
uy and ug be the endpoints of graph edge £(v). Then, the following hold:

{0} (0(ur) = 6(uz)
f0,0) = ¢ {ew)}} (0(ua) = 0(ug)

0 (otherwise)

0)
1) (6)

If v is internal, the following is an (E(v'), E(v"))-partition:

fwo = |J LU fE,), (7)

(8%,67)€P(v,6)

where P(v,d) is the set of pairs of functions 6': V(v') — N and §": V(v") — N such that

Yue Vo nV("), &'(u)+ 6 (u) =6(u), (8)
Yu e V(o) \ V"), &' (u)=0d(u), (9)
Vu e V(") \ V@), 6 (u)=6(u). (10)

For vnode v, the frontier of v is F(v) = V(v') N V(v"). Let us consider the graph
shown in Figure 3a and the degree constraint §*, which we defined above. For vnode v, let
E@') = {A,B,C} and E(v") = {D, E}. It follows that F(v) is {ug,u3}. Figure 4a shows
the current situation. The set of red (solid) and blue (dashed) edges are E(v!) and E(v"),

Y. Nakahata, M. Nishino, J. Kawahara, and S.-i. Minato

2 0 2 1 1 2 0
‘e ..b ..' ..'
1 <I‘;- 1 1 <I .1 1 <I 1 1 q e
2 2 .
2 0 2 0 2 0 2
(a) A graph. (b) Prime-sub pairs.

Figure 4 A graph and corresponding prime-sub pairs.

respectively. The set of vertices in the shaded area is F'(v). We can interpret Equations (7)
to (10) as follows. For vertex u € V(v!) \ V(v"), §(u) edges in E(v') must be incident to u,
and thus 6'(u) = §(u) (Equation (9)). A similar statement holds for vertices in V(v") \ V (v')
(Equation (10)). The remaining vertices are in F(v). For vertex u € F(v), both edges in
E(v') and E(v") are incident to u. Here, we guess how many edges in E(v!) are incident to
u. This results in generating nine prime-sub pairs, as shown in Figure 4b. We can construct
the ZSDD by recursively applying Lemma 7. Here we use ¢ as a label of a znode.

Let us analyze the sizes of ZSDDs constructed by our algorithm. The width of a vtree is
max,ein(r) V (v') NV (v7), where in(T) is the set of internal vnodes.

» Theorem 8. If o is the ZSDD representing f(v™°°%, §%) obtained by our algorithm, the size
of a is O(|E|d*W'), where d = maxyey 6*(u) + 1 and W is the width of the input vtree.

There exists a vtree whose width equals the branch-width of the graph [19]. Given such a
vtree, the ZSDD size is O(|E|d?"W()), where bw(G) is the branch-width of G.

4.3 Spanning tree

We construct a ZSDD representing the set of all spanning trees of G. With a few modifications,
we can also construct a ZSDD representing the set of all connected subgraphs. We introduce
some notation. If vertices u,u’ are connected in subgraph S C E, we write u L. Note
that 2 is an equivalence relation on V; an equivalence class (a set of vertices) is a connected
component of S. Two vertex subsets C,C' C V are connected if there exist u € C and v’ € C’
with u 2 /; we write this as C' 2 €. We also write u 2 C” if C 2 €’ for C = {u}.

For vnode v, let C be a partition of vertex set F(v), that is, C = {C1,...,Cy} where
C; C F(v) is a vertex set satisfying C; N C; = 0 for i # j and J/_, C; = F(v). Let
R ={Ry,...,R,} be a disjoint set family defined over vertex sets in C, that is, R; C C and
R,NR; =0 foralli# j. Let U(R) ={C | 3i: C € R;}. Function Same(R,C,C") returns
true if there exists R; € R such that C,C’" € R;, otherwise false. To represent the set
of all spanning trees, we define f(v,C, R) as the set of subgraphs S C E(v) satisfying the
following:

for every C1,Cy € U(R), C4 L C5 holds if and only if Same(R, Cy,Cy) = true,

for every C € C\ U(R), there exists a unique C’' € U(R) such that C Lo Similarly,

for every u € V(v) \ F(v), there exists a unique C’ € U(R) such that u £ ¢, and

S does not contain a cycle.
Intuitively, C represents the sets of equivalent vertices. That is, vertices in the same vertex
group C' € C are regarded to be connected. R represents the connectivity constraints over
such equivalent sets of vertices. The first condition above requires that two vertex subsets
C and C’ must be connected in S if and only if they appear in the same R € R. The
second condition requires that, every equivalent vertex subset appearing in V(v) but does
not appear in R must be connected to a vertex subset C’ appearing in R. The third

9:9

SEA 2020

9:10

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

Algorithm 4 Subroutines for spanning trees.

Function :terminal(v, (C,R))
Let u1 and u2 be the endpoints of the graph edge £(v)
if Same(C, u1,u2) = true then

Let C € C be the set containing u; and us

if C € U(R) then return ¢ else return L

AW N H

else

Let C1,C5 € C be the sets containing u; and usg, respectively

if neither C1 nor C2 is in U(R) then return L

else if ezactly one of C1 or Cs is in U(R) then return £(v)
else

10 L if Same(R,C1,C2) = true then return ¢(v) else return ¢

© N o «

Function :decomp(v, z)
11 elems + ()
12 Let (C,R) be the label of z
13 C' {C’ﬂF(vl) ’ CeC,CNF@Y %@}U{{u} ’ u € F(Ul)\F(U)}
14 for R! € enumPartition(C') do
15 if isCompatible(C, R, R') = true then
16 L C",R" < calcSubState(C, R, R")

17 elems < elems U {((Cl7Rl), (CT,’RT))}

condition is for acyclicity. The set of all spanning trees of G is f(v™°" C* R*), where
C* = {{u} | u € F(v™°")} and R* = {{C}} for an arbitrary C' € C* since initially there are
no equivalent vertices and all vertices must be connected to form a spanning tree.

Unfortunately, it is quite complicated to show a recursive formula for f(v,C,R) and prove
it theoretically. Thus, we show pseudo-code of subroutines and explain the behavior using an
example. We use (C,R) as a znode label. rootState() returns the root znode label (C*,R*).
Algorithm 4 shows functions terminal(v, (C, R)) and decomp(v, z). terminal(v, (C, R)) returns
an appropriate terminal with respect to the label of z. Let u; and us be the endpoints of
edge £(v). We first consider the case that u; and wus are contained in the same vertex group
C € C (Lines 2-4). If C € U(R), C must be connected to some C’ € U(R). However, now
we have C = {C}, and thus there is no such C’. Therefore, we return L. If C € U(R), to
avoid generating a cycle, we must not adopt edge £(v). Thus we return €. We next consider
the case that u; and usy are contained in different sets C7,Cy € C (Lines 5-10). If neither C;
nor Cy appear in constraints R, they must be connected to some C’ € U(R), but there are
no such C’. Thus we return L (Line 7). If either of Cy or Cs appears in R, the unconstrained
one must be connected with the other one, which has a constraint in R. Thus we return £(v)
(Line 8). If both C; and C5 appear in R, we return the corresponding terminal depending on
whether they appear in the same R; € R or not. If so, edge ¢(v) must be adopted, and thus
we return £(v). Otherwise, the edge must not be adopted, and thus we return £ (Lines 9-10).

We go on to decomp(v, z). We first enumerate all possible set of constraints R! of the
prime. Since R! is a partition of vertex groups C, function enumPartition(C') enumerates
all partitions of C!. There may be partitions of C' that are not compatible with (C,R); If
C1 € R; and Cy € R; for R;, R; € R where ¢ # j, they must not appear in the same
R € R'. In addition, for every constraint R € R!, a vertex in F(v') must appear in some
C € R in order to obtain a spanning tree. If both conditions are satisfied, R! is compatible
with (C,R). Function isCompatible(C, R, R') returns true if R’ is compatible with (C,R),

Y. Nakahata, M. Nishino, J. Kawahara, and S.-i. Minato

_________ I | | |

! I \ 1 \ | \ 1 h I
! Ui o U o U e 1 X Ureof: U e 1
' Cy ! e Lo G e L G
I U e, ! el !'lhe I ! e ! i e |
! i fem——= Y e __ e
R 71 T Th e 1 el T T el '.el
: Uz e : : Uz e | |4z e | | 30) Uz e '
|C 1 .C | ! C 1 1 | | I
)) M 2 u , u 2, 2 u | u 1
| Us@| ., | 4@, : 4 @ | | 4@, : 4 @ C4|
| 1 ————==== | | 1 I
| 1 r oy 1 ! | 1 1 ! 1
G [l G [use]) [Uuse] Cy 1Cy[Uuse]t use|

(a) A state. (b) Prime-sub pairs.

Figure 5 Label of the connectivity constraint and corresponding prime-sub pairs.

otherwise false. calcSubState(C, R, R!) calculates C" and R" from its arguments. Intuitively,
C" and R" are obtained by updating equivalent vertex groups in C by assuming constraints
in R! are satisfied. Let us give an example. Figure 5a shows a label and Figure 5b shows
the corresponding prime-sub pairs. Five vertices uq, ..., us are on the frontier. We assume
F(v') = F(v") = F(v) in this example. In Figure 5a, the vertices are partitioned into three
equivalency groups C = {C1, Cs,Cs3}, where Cy = {uy,us}, Co = {us,us}, and C5 = {us}.
C is further partitioned into R = {{C1},{C2,C3}}. C and R are depicted by solid and
dashed rectangles, respectively. There are only two R!’s that are compatible with (C,R):
R = {{C1},{Cs},{C3}} and R, = {{C1},{C3,C3}}. calcSubState(C,R,R}) returns
(CT,RY), where CT = {Cy,C,C3} and Ry = {{C1},{Cs,C3}}. calcSubState(C, R, R})
returns (C5, R5), where C5 = {C1,Cy}, RE = {{C1},{C4s}}, and Cy = CoUC5 = {ug, uq, us}.
Finally, the following theorem states the bound of constructed ZSDD size.

» Theorem 9. If a is a ZSDD representing the set of all spanning trees constructed by our
top-down algorithm, the size of o is O(|E|W3W), where W is the width of the vtree.

As discussed in Section 4.2, there exists a vtree whose width equals the branch-width of
the graph. Given such a vtree, the size of a constructed ZSDD is O(|E|bw(G)3PW(&)).

5 Experiments

We conduct experiments to evaluate the performance of the proposed top-down construction
algorithms for ZSDDs in the same way as an existing paper [19]. The vtrees for ZSDDs are
obtained by a practical algorithm to find a branch decomposition with a small width [6]. To
implement the top-down algorithm for ZDDs, we use the top-down algorithm for ZSDDs
with a limitation that vtrees must be right-linear. Here, a vtree is right-linear if, for every
internal vnode, its left child is a leaf. Since there is a one-to-one correspondence between
ZDDs with ZSDDs using right-linear vtrees, by inputting right-linear vtrees, we can simulate
ZDD construction. We use two element orders for ZDDs. The first one uses the order
obtained by a breadth-first traversal of input graphs, as is used in graphillion [9], a library
that implements a top-down construction algorithm for ZDDs. The other one uses the order
induced from the vtrees used in the proposed method. Here we say an order is induced if a
left-right traversal of a vtree gives the visiting order of variables [22]. We use the benchmark
graphs of [19]: TSPLIB and RomeGraph. We constructed ZSDDs representing two types of
subgraphs: 1) maximum degree at most two and 2) spanning trees. All code was written in
C++ and compiled by g++-5.4.0 with -O3 option. All experiments were conducted on a
machine with Intel Xeon W-2133 3.60 GHz CPU and 256 GB RAM.

9:11

SEA 2020

9:12

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

Table 1 Results of constructing ZSDDs and ZDDs representing the set of all subgraphs whose
maximum degrees are at most 2.

Time (ms) Size
instance V| |E| TD Z(b) Z(v) TD Z(b) Z(v)
att48 48 130 381 6801 2291 194786 1065745 507169
berlin52 52 145 1021 - 36354 807660 - 5229861
eil51 51 142 1012 247736 46524 774280 27277682 5974875
grafol0106 | 100 119 5 2617 16 2658 15461 7529
grafo10124 | 100 139 9237 - 40842 | 3060950 - 3283397
grafol0153 | 100 136 3784 - 4658 832943 - 561283
grafol0183 | 100 132 132 - 157837 80127 - 4088915
grafol0184 | 100 140 4981 - 119366 1006210 - 2002968
grafo10204 | 100 148 | 156529 - 303366 | 15712819 - 19847326
grafo10223 | 100 135 863 - 5956 330554 - 826121

Table 2 Results of constructing ZSDDs and ZDDs representing the set of all spanning trees.

Time (ms) Size
instance V| |E| TD Z(b) Z(v) TD Z(b) Z(v)
att48 48 130 3494 103871 3005 279613 5098205 387715
berlin52 52 145 | 11826 - 62706 937746 - 3194017
eil51 51 142 | 25828 - 94272 838254 - 7178190
ulysses22 22 56 39 3391 65 3036 520035 16762
grafo10106 | 100 119 28 221161 53 1756 836212 4057
grafol0183 | 100 132 2866 - 538878 224373 - 16414697
grafo10223 | 100 135 | 48563 - 128097 | 1009299 - 7313087
grafo10248 | 100 126 301 195249 672 16524 1617024 47605

Tables 1 and 2 show the results. In the tables, TD means the proposed method. Z(b)
and Z(v) indicate top-down methods for ZDDs that employ breadth-first ordering and vtree
traversing ordering, respectively. The empty fields indicate failure to complete within 600
seconds. We omit the instances for which all the methods finished within a second and at
most one method finished within 600 seconds. In almost all cases, TD ran fastest and the
sizes of ZSDDs are smaller than those of ZDDs. For example, for spanning trees (Table 2),
the time of TD is up to 7898 times faster than Z(b), and 188 times faster than Z(v). The
size of TD is up to 476 times smaller than Z(b) and 73 times smaller than Z(v). These
results show the efficiency of our method. Using constructed ZDDs and ZSDDs, we can also
enumerate subgraphs explicitly in polynomial time per subgraph [15, 18].

6 Concluding remarks

We have proposed a novel framework of algorithms for top-down ZSDD construction. We
have shown the solid subroutines for three fundamental constraints: the number of edges,
degree of vertices, and connectivity of vertices. We have shown the sizes of constructed
ZSDDs can be bounded by the branch-width of the input graph. Experiments confirmed
the efficiency of our method. Using Apply operations, we can combine several constraints.
For example, we can extract connected subgraphs from ZSDD « by constructing ZSDD g
representing the set of all connected subgraphs and computing a N 3. We believe that our
framework can be used to solve various real-world problems.

Y. Nakahata, M. Nishino, J. Kawahara, and S.-i. Minato

—— References

1

10

11

12

13

14

15

Etienne Birmelé, Rui A. Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti, Romeo
Rizzi, and Gustavo Sacomoto. Optimal listing of cycles and st-paths in undirected graphs. In
Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1884-1896. SIAM, 2013. doi:10.1137/1.9781611973105.134.

Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput.
Sci., 209(1-2):1-45, 1998. doi:10.1016/80304-3975(97)00228-4.

Simone Bova. Sdds are exponentially more succinct than obdds. In Dale Schuurmans and
Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, February 12-17, 2016, Phoeniz, Arizona, USA, pages 929-935. AAAT Press, 2016.
URL: http://wuw.aaai.org/ocs/index.php/AAAT/AAAT16/paper/view/12270.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers, 35(8):677-691, 1986. doi:10.1109/TC.1986.1676819.

Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. Sublinear-space bounded-
delay enumeration for massive network analytics: Maximal cliques. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 148:1-148:15. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.148.

William J. Cook and Paul D. Seymour. Tour merging via branch-decomposition. INFORMS
J. Comput., 15(3):233-248, 2003. doi:10.1287/ijoc.15.3.233.16078.

Gary Hardy, Corinne Lucet, and Nikolaos Limnios. K-terminal network reliability measures
with binary decision diagrams. IEEE Trans. Reliability, 56(3):506-515, 2007. doi:10.1109/
TR.2007.898572.

Hiroshi Imai, Kyoko Sekine, and Keiko Imai. Computational investigations of all-terminal
network reliability via BDDs. IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences, E82-A:714-721, 1999.

Takeru Inoue, Hiroaki Iwashita, Jun Kawahara, and Shin-ichi Minato. Graphillion: software
library for very large sets of labeled graphs. Int. J. Softw. Tools Technol. Transf., 18(1):57—66,
2016. doi:10.1007/s10009-014-0352-z.

Takeru Inoue, Keiji Takano, Takayuki Watanabe, Jun Kawahara, Ryo Yoshinaka, Akihiro
Kishimoto, Koji Tsuda, Shin-ichi Minato, and Yasuhiro Hayashi. Distribution loss minimization
with guaranteed error bound. IEEE Trans. Smart Grid, 5(1):102-111, 2014. doi:10.1109/
TSG.2013.2288976.

Yuma Inoue and Shin-ichi Minato. Acceleration of ZDD construction for subgraph enumeration
via path-width optimization. TCS-TR-A-16-80. Hokkaido University, 2016.

Jun Kawahara, Takashi Horiyama, Keisuke Hotta, and Shin-ichi Minato. Generating all
patterns of graph partitions within a disparity bound. In Sheung-Hung Poon, Md. Saidur
Rahman, and Hsu-Chun Yen, editors, WALCOM: Algorithms and Computation, 11th Inter-
national Conference and Workshops, WALCOM 2017, Hsinchu, Taiwan, March 29-31, 2017,
Proceedings, volume 10167 of Lecture Notes in Computer Science, pages 119-131. Springer,
2017. doi:10.1007/978-3-319-53925-6_10.

Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-based search for
enumerating all constrained subgraphs with compressed representation. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E100-A(9):1773-1784,
2017.

Donald E. Knuth. The art of computer programming, Vol. 4A, Combinatorial algorithms, Part
1. Addison-Wesley Professional, 1st edition, 2011.

Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Alfred E. Dunlop, editor, Proceedings of the 30th Design Automation Conference. Dallas, Texas,
USA, June 14-18, 1993, pages 272-277. ACM Press, 1993. doi:10.1145/157485.164890.

9:13

SEA 2020

https://doi.org/10.1137/1.9781611973105.134
https://doi.org/10.1016/S0304-3975(97)00228-4
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12270
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.4230/LIPIcs.ICALP.2016.148
https://doi.org/10.1287/ijoc.15.3.233.16078
https://doi.org/10.1109/TR.2007.898572
https://doi.org/10.1109/TR.2007.898572
https://doi.org/10.1007/s10009-014-0352-z
https://doi.org/10.1109/TSG.2013.2288976
https://doi.org/10.1109/TSG.2013.2288976
https://doi.org/10.1007/978-3-319-53925-6_10
https://doi.org/10.1145/157485.164890

9:14

Enumerating All Subgraphs Under Given Constraints Using ZSDDs

16

17

18

19

20

21

22

Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shoji Kasahara. Enumerating all
spanning shortest path forests with distance and capacity constraints. IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, E101-A(9):1363-1374,
2018.

Yu Nakahata, Jun Kawahara, and Shoji Kasahara. Enumerating graph partitions without
too small connected components using zero-suppressed binary and ternary decision diagrams.
In Gianlorenzo D’Angelo, editor, 17th International Symposium on Experimental Algorithms,
SEA 2018, June 27-29, 2018, L’Aquila, Italy, volume 103 of LIPIcs, pages 21:1-21:13. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPIcs.SEA.2018.21.
Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Zero-suppressed
sentential decision diagrams. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoeniz,
Arizona, USA, pages 1058-1066. AAAI Press, 2016. URL: http://www.aaai.org/ocs/index.
php/AAAT/AAAT16/paper/view/12434.

Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Compiling graph
substructures into sentential decision diagrams. In Satinder P. Singh and Shaul Markovitch,
editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages 1213-1221. AAAI Press, 2017. URL:
http://aaai.org/ocs/index.php/AAAT/AAAT17 /paper/view/14919.

Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the tutte polynomial of a graph
of moderate size. In John Staples, Peter Eades, Naoki Katoh, and Alistair Moffat, editors,
Algorithms and Computation, 6th International Symposium, ISAAC ’95, Cairns, Australia,
December 4-6, 1995, Proceedings, volume 1004 of Lecture Notes in Computer Science, pages
224-233. Springer, 1995. doi:10.1007/BFb0015427.

Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal algorithm for scanning
all spanning trees of undirected graphs. SIAM J. Comput., 26(3):678-692, 1997. doi:
10.1137/S0097539794270881.

Yexiang Xue, Arthur Choi, and Adnan Darwiche. Basing decisions on sentences in decision
diagrams. In Jorg Hoffmann and Bart Selman, editors, Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. AAAI
Press, 2012. URL: http://www.aaai.org/ocs/index.php/AAAT/AAAT12/paper/view/4977.

https://doi.org/10.4230/LIPIcs.SEA.2018.21
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12434
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12434
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14919
https://doi.org/10.1007/BFb0015427
https://doi.org/10.1137/S0097539794270881
https://doi.org/10.1137/S0097539794270881
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4977

	Introduction
	Preliminaries
	Graphs
	(X, Y)-partition and vtree
	Zero-suppressed Sentential Decision Diagrams

	A novel framework of top-down ZSDD construction
	Subroutines for several constraints
	Cardinality
	Degree
	Spanning tree

	Experiments
	Concluding remarks

