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Abstract
We study multi-modal route planning in a network comprised of schedule-based public transportation,
unrestricted walking, and cycling with bikes available from bike sharing stations. So far this problem
has only been considered for scenarios with at most one bike sharing operator, for which MCR is the
best known algorithm [6]. However, for practical applications, algorithms should be able to distinguish
between bike sharing stations of multiple competing bike sharing operators. Furthermore, MCR
has recently been outperformed by ULTRA for multi-modal route planning scenarios without bike
sharing [3]. In this paper, we present two approaches for modeling multi-modal transportation
networks with multiple bike sharing operators: The operator-dependent model requires explicit
handling of bike sharing stations within the algorithm, which we demonstrate with an adapted
version of MCR. In the operator-expanded model, all relevant information is encoded within an
expanded network. This allows for applying any multi-modal public transit algorithm without
modification, which we show for ULTRA. We proceed by describing an additional preprocessing step
called operator pruning, which can be used to accelerate both approaches. We conclude our work
with an extensive experimental evaluation on the networks of London, Switzerland, and Germany.
Our experiments show that the new preprocessing technique accelerates both approaches significantly,
with the fastest algorithm (ULTRA-RAPTOR with operator pruning) being more than an order
of magnitude faster than the basic MCR approach. Moreover, the ULTRA preprocessing step also
benefits from operator pruning, as its running time is reduced by a factor of 14 to 20.
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1 Introduction

Research on efficient public transit route planning has seen remarkable advances in the past
decade [2]. However, in practice, public transit is most often used in combination with
other transportation modes, such as walking or cycling. This results in a multi-modal route
planning scenario, which is still a challenge to solve efficiently [22]. In this work we present
novel and efficient approaches for finding all Pareto-optimal journeys (regarding travel time
and number of used public transit vehicles) in a multi-modal network featuring public transit,
unrestricted walking, and bicycles available at bike sharing stations from multiple operators.
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Related Work. Several algorithms have been proposed for scenarios where only one of the
aforementioned modes of transportation is available. Walking (or cycling) on its own results
in a classical shortest path problem, which can be solved using Dijkstra’s algorithm [10].
The fastest known algorithms for this problem utilize an additional preprocessing phase to
achieve fast query times. One such approach is Contraction Hierarchies (CH) [11], where
the preprocessing computes shortcuts that allow the query to skip unimportant vertices. A
comprehensive overview of speedup techniques for the shortest path problem is given in [2].
For the special case of route planning for bicycles, an extended scenario where travel time
is optimized while constraining the altitude difference has been considered and accelerated
with CH [21].

Algorithms for public transit networks can be divided into two groups: graph-based
algorithms and algorithms operating directly on the timetable. Graph-based approaches can
be further subdivided into time-dependent and time-expanded techniques, which both enable
the usage of normal shortest path algorithms [20, 19]. These techniques have also been
adapted for additional optimization criteria, such as number of used vehicles or price [18].
However, accelerating these graph-based approaches is quite difficult [4]. Many efficient
algorithms therefore operate directly on the timetable and try to exploit its structure.
Examples for such approaches are Transfer Patterns [1], Trip-Based Routing [23], CSA [8],
and RAPTOR [7].

While route planning for walking, cycling, or public transit is quite well studied, the
combined multi-modal problem still holds many challenges. As before, one possible approach is
to model all aspects of the multi-modal network as a graph [13, 15]. In [16], a time-dependent
approach was combined with ALT [14] in order to improve query times. Accelerating a
graph-based search with CH yields even faster queries while also allowing for user-specific
transfer mode preferences [9]. Another approach is to heuristically reduce the search space
in order to obtain fast query times [5]. The only timetable-based technique that has been
adapted for multi-modal scenarios is RAPTOR, resulting in the MCR algorithm [6]. Most
recently, ULTRA (short for UnLimited Transfers) [3] has been presented, which uses a
preprocessing step to compute shortcuts for non-timetable-based modes of transportation.
These shortcuts can then be used to enable multi-modal queries for many timetable-based
algorithms.

Most of the multi-modal algorithms also consider bike sharing as one of the available
transportation modes. However, to the best of our knowledge, no algorithm so far has
considered the more realistic scenario of multiple competing bike sharing operators.

Contribution. In this work we present two distinct approaches for solving the journey
planning problem in multi-modal transportation networks with several bike sharing operators.
For the first approach, which we call the operator-dependent model, we show how the
well-known MCR algorithm can be adapted for our scenario. We then show that the query
time of every label-propagating algorithm (such as MCR) is proportional to the number of
bike sharing operators present in the network. This theoretical analysis is later confirmed by
experiments. The second approach encodes the bike sharing information into an enlarged
transfer graph and public transit schedule. Using this operator-expanded network eliminates
the need for specialized algorithms. In particular, this enables us to use ULTRA, the fastest
known multi-modal algorithm, for journey planning with bike sharing. For even faster queries
we propose an additional preprocessing technique called operator pruning, which can be used
with both models. This technique not only reduces the search space and running time of
the query algorithms significantly, but also reduces the preprocessing time of ULTRA by
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more than an order of magnitude. We conclude our work with an extensive experimental
evaluation of our algorithms. We show that the combination of ULTRA-RAPTOR and
operator pruning on the operator-expanded model yields the fastest algorithm on real-world
networks.

2 Preliminaries

This section introduces the basic notation used throughout this work, as well as the problem
statement and the algorithms on which our work is based.

Public Transit Network. A public transit network is a tuple N = (S, T ,R, G) consisting
of a set of stops S, a set of trips T , a set of routes R and a directed, weighted transfer
graph G = (V, E). A stop v ∈ S is a location in the network where passengers can enter or
exit a vehicle (e.g., a train, bus, ferry, etc.). Associated with each stop is a non-negative
departure buffer time τbuf(v), which is the minimum amount it takes for a passenger to board
a vehicle after arriving at the stop. A trip T = 〈v0, . . . , vk〉 ∈ T is a sequence of at least two
stops which are served consecutively by the same vehicle. For each stop v in the trip, we
denote the arrival time of the vehicle at v by τarr(T, v) and the departure time by τdep(T, v).
The trips are partitioned into routes r ∈ R, such that two trips are part of the same route
if their stop sequence is identical and they do not overtake each other. A trip Ta ∈ T
overtakes a trip Tb ∈ T if their stop sequence contains two stops u, v ∈ S such that Ta

arrives at or departs from u before Tb, but arrives at or departs from v after Tb. The transfer
graph G = (V, E) consists of a set of vertices V with S ⊆ V, and a set of edges E ⊆ V × V.
Associated with each edge e = (u, v) ∈ E is a walking time τwalk(e), which is the time required
to walk from u to v.

Bike Sharing. In addition to walking, we consider bicycle sharing as a second transfer mode.
For each edge e = (u, v) ∈ E , we define the biking time τbike(e) as the time required to travel
from u to v with a bicycle. Note that τwalk(e) or τbike(e) may be ∞ to signify that e is
not usable in the respective transfer mode. Some trips in the public transit network may
allow passengers to carry along a bicycle with them, while others may not. The bicycle
transport function bt: T → {true, false} maps to each trip T ∈ T a boolean value bt(T)
that indicates whether T allows bicycle transport or not.

Bikes can be rented from a number of different bike sharing operators. We denote
the number of bike sharing operators by o and associate each operator with a number
from {1, . . . , o}. For simplicity, we will use the number 0 to denote that a passenger is
currently not renting a bike. Each operator i operates a set BSi ⊆ V of bike sharing stations
where passengers can pick up or drop off a bike. Note that a vertex may act as a bike sharing
station for more than one operator. Each bike sharing station v has an associated pickup
time τpick(v) that is required to pick up a bike, and a dropoff time τdrop(v) that is required
to drop off a bike. A passenger may only carry one bike at a time.

Journey. A journey J defines the movement of a passenger through the public transit
network when traveling from a source vertex s ∈ V to a target vertex t ∈ V. It is an
alternating sequence of trip legs and transfers, where a trip leg is a subsequence of a trip
that represents the passenger using that portion of the trip, and a transfer is a path in the
transfer graph that connects the final stop of one trip leg (or s for the initial transfer) with
the first stop of the following trip leg (or t for the final transfer). Note that some or all of
the transfers may be empty.
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To define which parts of the journey use bike sharing, the journey is augmented with a
sequence ((u1, v1), . . . , (un, vn)) that contains one tuple of bike sharing stations for each bike
that is rented during the journey. For the i-th rented bike, ui is the station where the bike is
picked up and vi is the station where it is dropped off. It is required that there is a bike
sharing operator j for which ui, vi ∈ BSj holds. This ensures that multiple bikes are not
rented at the same time, and that the journey starts and ends with no bike rented.

The bike sharing stations must be visited by the transfers of the journey in the same
order in which they appear in the sequence. If ui and vi are visited during different transfers,
all trip legs that lie between these two transfers must allow bicycle transport. For every
transfer edge e ∈ E used between ui and vi, the travel time for using the edge is τbike(e). For
every edge e ∈ E that is traversed without a bike, the travel time is τwalk(e).

Problem Statement. The criteria we use to evaluate a journey J are its arrival time at
the target vertex t and the number of used public transit vehicles, i.e., the number of trip
legs in J . A journey J dominates another journey J ′ if J arrives no later than J ′ and does
not use more trips than J ′. We call a journey J Pareto-optimal if it is not dominated by
any other journey. A Pareto set is a set containing a minimal number of journeys such that
every valid journey is dominated by a journey in the set. Naturally, all journeys in a Pareto
set are Pareto-optimal. Given source and target vertices s, t ∈ V and an earliest departure
time τdep, our objective is to find a Pareto set among all journeys from s to t that depart no
later than τdep.

Algorithms. The algorithms we present in this work are based on RAPTOR [7], which is
an algorithm designed to find journeys that optimize arrival time and number of trips on a
public transit network with a transitively closed transfer graph. It operates in rounds, where
round i finds journeys that use exactly i trips. To achieve this, each round extends journeys
found in the previous round by performing a single scan over all routes that are incident
to stops reached in the previous round. Transfers are explored between rounds by iterating
across the outgoing edges of each reached stop.

Several extensions of RAPTOR have been proposed: McRAPTOR is able to optimize
additional criteria by replacing the single label that RAPTOR stores per stop and round
with a bag of labels that do not dominate each other. rRAPTOR answers profile queries,
which ask for optimal journeys across an interval of possible departure times, rather than
just a single departure time. This is done by performing one iteration of the basic RAPTOR
algorithm for each possible departure time, in descending order. Journeys found in earlier
iterations can be used to prune non-optimal journeys in later iterations, a technique called
self-pruning. The MCR [6] algorithm extends (Mc)RAPTOR to work on unrestricted transfer
graphs that are not transitively closed. This is done by replacing the edge scans between
rounds with Dijkstra searches on a core graph created via a partial CH contraction of the
transfer graph.

A faster alternative to MCR is the ULTRA [3] preprocessing technique, which precomputes
a small number of transfer shortcuts that are provably sufficient for computing all Pareto-
optimal journeys. Any public transit algorithm that normally requires a transitively closed
transfer graph can then use these shortcuts to explore intermediate transfers of a journey.
Initial and final transfers are handled separately via Bucket-CH [17, 11, 12], a fast technique
for one-to-many queries on road networks. Overall, ULTRA extends public transit algorithms
such as RAPTOR to unlimited transfers without a significant performance loss.
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3 Algorithms

In this chapter we introduce new algorithms for solving the multi-modal route planning
problem with multiple bike sharing operators. We propose two approaches for modeling
bike sharing in a public transit network: First we show how MCR can be adapted to handle
renting and returning of bicycles explicitly within the algorithm. We call this approach
the operator-dependent model. We then introduce the operator-expanded model, where
all relevant information regarding bike sharing is encoded directly in the network. This
allows any existing multi-modal public transit algorithm to handle bike sharing without
modifications. We demonstrate this on the example of ULTRA. Finally, we introduce a
preprocessing technique called operator pruning to speed up queries in both models, and
describe how it can be incorporated into MCR and ULTRA.

3.1 Operator-Dependent Model/MCR
Most public transit algorithms, including MCR, work by propagating vertex labels through
the network. For the two criteria arrival time and number of trips, a label at a vertex v
can be represented as a tuple (τarr, k), where τarr is the arrival time at v, and k is the
number of trips used so far. Bike sharing can be incorporated by extending the labels
to triples (τarr, k, i), where i is the operator of the currently rented bike (or 0 if no bike
is rented). Since rented bikes have to be dropped off before the end of the journey, only
labels at the target vertex t with operator 0 represent complete journeys. Whenever a
label (τarr, k, 0) reaches a bike sharing station v, a new label (τarr + τpick(v), k, i) must be
created for each operator i with v ∈ BSi, to represent the passenger picking up a bike of
operator i. Similarly, when a label (τarr, k, i) with i 6= 0 reaches a bike sharing station v ∈ BSi,
a new label (τarr + τdrop(v), k, 0) must be created to represent the passenger dropping off the
bike. The time required to traverse an edge e ∈ E is τbike(e) for labels with a rented bike
and τwalk(e) otherwise. When propagating a label with operator i 6= 0 through a route, any
trip T that does not permit bicycle transport (i.e., bt(T) = false) must be ignored.

Without bike sharing, a label (τarr, k) may dominate another label (τ ′
arr, k

′) if τarr ≤ τ ′
arr

and k ≤ k′ hold. The same dominance rule still applies to labels with the same bike sharing
operator: A label (τarr, k, i) dominates a label (τ ′

arr, k
′, i) if τarr ≤ τ ′

arr and k ≤ k′ hold.
However, as the following lemma shows, it is not possible to establish dominance rules for
labels with different operators:

I Lemma 1. Let A = (τarr, k, i) and B = (τ ′
arr, k

′, j) be two labels at some vertex v

with τarr ≤ τ ′
arr, k ≤ k′, and i 6= j. Then A may not dominate B.

Proof. If i = 0, label B has access to a bike and A does not. Using the bike may allow the
journey represented by B to overtake the journey represented by A and reach the target
faster. If i 6= 0, then the passenger represented by A is carrying a bike, which must be
returned before reaching the target. This may require a detour that may not be required
for B, possibly allowing the journey represented by B to overtake and reach the target
faster. J

Thus, bike sharing can be incorporated into the Pareto optimization by treating the bike
sharing operator as a third criterion whose values are all incomparable with each other.

In MCR, the number of trips is not stored directly in the labels but unrolled into the
round data structure. For the MR-∞ variant of MCR, which only optimizes arrival time and
number of trips, it is sufficient to store a single arrival time per vertex and round. Variants
with additional criteria replace the single arrival time with a bag of non-dominated labels.
When a new label is added, it must be compared to all other labels in the bag to eliminate
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Figure 1 A public transit network (left) and the corresponding operator-expanded network (right).
The network features two public transit routes, with the trips of the green route allowing bicycle
transport and the trips of the blue route disallowing it. Bikes can be rented and returned at the
three bike-sharing stations of operator 1 (yellow) or at the two stations of operator 2 (red).

dominated labels. A naive approach to incorporating bike sharing would be to store bags of
labels with two criteria: arrival time and bike sharing operator. However, like the number of
transfers, the operator criterion is discrete and only permits a few possible values. Thus, it is
more efficient to unroll it into the data structure as well: For each vertex and round, we store
an array (τ0

arr, . . . , τ
o
arr), where τ i

arr is the best arrival time achieved so far with operator i.
As shown by Lemma 1, a new label with operator i only needs to be compared with τ i

arr,
since it is incomparable to the other entries. Thus, we can handle all operators independently
of each other and do not need bags at all. In each round, we perform o + 1 independent
route scanning phases, where phase i only considers labels with operator i. The resulting
algorithm is a variant of MR-∞ whose worst-case running time is proportional to that of the
original MR-∞ and o+ 1.

3.2 Operator-Expanded Network/ULTRA
One drawback of the operator-dependent model is that it requires algorithms to be explicitly
adapted for bike sharing. An alternative is to unroll the bike sharing information into an
enlarged public transit network. Any existing multi-modal public transit algorithm can then
handle bike sharing without modification by operating on this operator-expanded network.

Given an original public transit network N , the operator-expanded network N e consists
of o+ 1 copies N0, . . . , No of N . The idea is that N i is used by passengers who are currently
renting a bike from operator i, with N0 representing walking. Accordingly, the weight of an
edge e ∈ E is τwalk(e) if it is part of N0 and τbike(e) otherwise. In all copies N i with i 6= 0,
trips that do not allow bicycle transport are removed. The network copies are connected
as follows: For a vertex v ∈ V in the original network, we denote its copy in network N i

by vi. For each operator i and each bike sharing station v ∈ BSi, the expanded network
includes the edges (v0, vi) with weight τpick(v) and (vi, v0) with weight τdrop(v). These edges
represent picking up and dropping off a bike, respectively.

Let OP = {0, 1, . . . , o} be the set of bike sharing operators. We then define the operator-
expanded network formally as N e = (Se, T e,Re, Ge = (Ve, Ee)), with

Se = {vi | i ∈ OP ∧ v ∈ S},
T e = {Ti = 〈vi

0, . . . , v
i
k〉 | i ∈ OP ∧ T = 〈v0, . . . vk〉 ∈ T ∧ (bt(T) ∨ i = 0)},

Re = {{Ti | T ∈ r ∧ (bt(T) ∨ i = 0)} | i ∈ OP ∧ r ∈ R},
Ve = {vi | i ∈ OP ∧ v ∈ V},
Ee = {(vi, wi) | i ∈ OP ∧ (v, w) ∈ E} ∪ {(v0, vi), (vi, v0) | i ∈ OP \ {0} ∧ v ∈ BSi}.

An example of how the operator-expanded network is constructed is shown in Figure 1.
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An s-t-query on the original network can be solved with an s0-t0-query on the operator-
expanded network, using an unmodified multi-modal public transit algorithm (such as MCR)
that no longer needs to handle bike sharing explicitly. For ULTRA, both the preprocessing
and the query algorithm can be run on the operator-expanded network. The preprocessing,
which normally performs profile searches between all vertices, only needs to perform profile
searches between the vertices in N0. As with MCR, ULTRA contracts the transfer graph
before the preprocessing is performed. A naive approach would be to create the operator-
expanded network first and then contract the expanded transfer graph. However, since the
transfer graphs of all networks N i with i 6= 0 are identical, this would lead to redundant work.
Instead, it is more efficient to contract two copies of the original transfer graph: one with
walking weights and one with biking weights. Bike sharing stations are left uncontracted at
this point. These contracted copies can then be inserted into the operator-expanded network
in place of the original graph. If desired, an additional contraction can then be performed on
the resulting transfer graph of the operator-expanded network.

The ULTRA query consists of two phases: The Bucket-CH search for the initial and final
transfers is done on the transfer graph of the operator-expanded network, taking care of
bike renting automatically. The main public transit algorithm (e.g., RAPTOR) uses the
operator-expanded network with the shortcuts computed by the preprocessing phase. A
shortcut (ui, vj) corresponds to a shortcut (u, v) in the original network that requires a bike
from operator i to access and ends with the passenger having rented a bike from operator j.

3.3 Operator Pruning
A crucial observation that can be used to speed up bike sharing queries is that bike sharing
operators typically only serve a limited region (e.g., a single city). Taking a rented bike
far outside that region is typically not useful, since the passenger would eventually need to
travel back in order to return the bike. Consider a journey that involves taking a train from
region A served by operator i to region B served by operator j. If the passenger has rented a
bike from operator i, it is usually preferable to return it before taking the train, and then
rent a bike from operator j in region B if necessary. However, because labels with different
operators may not dominate each other, MCR will also continue exploring the option where
the passenger takes the bike from operator i into region B, even though it cannot be returned
there. Without additional information, the algorithm will not be aware that the only way to
turn this into a valid journey is to travel back to region A, return the bike and then come
back to region B, creating an unnecessary detour. To prevent this, we compute an operator
hull for each operator i, which is a region of the network outside of which it is never useful
to travel with a bike from operator i. This allows algorithms to prune journeys once they
leave the hull for operator i while carrying a bike from operator i.

Preprocessing. For the hull computation, we define the cycling network asN c=(S, T c,Rc, G)
with T c = {T ∈ T | bt(T) = true}, Rc = {r ∈ R | ∃T ∈ r : bt(T) = true}, and τbike(e)
as the weight for each edge e ∈ E . This is the network as it appears to a passenger who
is using a bike for the entirety of the journey. The operator hull Hi = (Vi, T i) for an
operator i consists of a set of vertices Vi ⊆ V and a set of trips T i ⊆ T such that every
journey in N c between bike sharing stations s, t ∈ BSi is dominated by a journey in N c that
only uses vertices in Vi and trips in T i. It can be computed by running a profile variant
of MCR (without bike sharing) on N c from each station s ∈ BSi and unpacking all found
journeys ending at another station t ∈ BSi. The individual profile searches can be sped up
with a simple pruning rule: A profile search from a source station s starts by exploring the
initial transfers, computing for each vertex v ∈ V the biking time τbike(s, v) from s to v.
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From this we can compute τmax
bike := maxt∈BSi τbike(s, t), which is the maximum biking time

to any other bike sharing station of the same operator. Since no optimal journey in N c that
ends at a station in BSi may be longer than this, the profile search can prune labels whose
travel time exceeds τmax

bike .
Note that the operator hull is an overapproximation of the region outside of which it is

never useful to travel with a bike: Journeys that are optimal in N c and therefore contribute
to the operator hull may be dominated by journeys that require switching between different
bike operators or dropping off a bike to take a trip without bicycle transport. These journeys
could be excluded from the hull by using MCR with bike sharing for the hull computation.
While this might lead to smaller hulls, it would require significantly higher computation times.
Moreover, because the hull computation for one operator would no longer be independent of
the other operators, any change in the set of bike sharing stations for one operator would
necessitate recomputing all hulls, rather than just the one for the changed operator.

Combination with MCR. Incorporating operator pruning into MCR is straightforward:
During the Dijkstra searches, labels with operator i are not propagated to vertices that are
not in Vi. Similarly, during the route scanning phase for operator i, routes with no trips
in T i are ignored and arrival times at stops not in Vi are not updated. While it would
be possible to skip trips that are not in T i during the individual route scans, this has no
performance benefit since RAPTOR always scans routes until the last stop. Thus, if a trip is
skipped, the route scan will simply continue with the next reachable trip.

Combination with Operator-Expanded Network/ULTRA. Given an operator hull Hi =
(Vi, T i), we define the hull network N i

H = (Si, T i,Ri, Gi) with Si = S ∩ Vi, Ri ⊆ R the
set of routes for which at least one trip is contained in T i, and Gi the subgraph of G that
is induced by Vi. In order to incorporate operator pruning into the operator-expanded
network, we first compute operator hulls on the original, non-expanded network. For each
operator i 6= 0, we then replace the network copy N i with the hull network N i

H . The network
copy N0 that represents walking is left unchanged. In the resulting network, leaving the
operator hull for the currently rented bike is no longer possible because the corresponding
parts of the network have been deleted. Accordingly, any algorithm that runs on this network
(including ULTRA) will automatically benefit from operator pruning.

3.4 Extended Scenarios
Free-Floating Bike Sharing. Some bike sharing operators use a free-floating (or dockless)
sharing system without fixed stations, where bikes can be picked up or dropped off at any
location within the served region. This can be handled by considering every vertex in the
region as a bike sharing station. Unlike with fixed bike sharing stations, this scenario is
inherently dynamic: Bikes are not available at every vertex in the region, and it is not
known in advance where bikes will be located. Therefore, precomputation techniques such as
ULTRA are not applicable. MCR can handle this by checking explicitly whether a bike is
available when arriving at a vertex. Operator pruning can also be adapted by running the
profile variant of MCR from each boundary vertex of the region, in addition to including all
vertices and trips within the region in the hull.

Fixed Pickup Stations with Free-Floating Dropoff. We also consider a hybrid system
where pickup is restricted to fixed stations but dropoff is allowed at any location. As with the
fully station-based system, we assume that a bike is always available at every station. This
makes ULTRA feasible again. Under the reasonable assumption that τbike(e) ≤ τwalk(e) holds
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Table 1 Sizes of the used public transit networks and their bike sharing systems.

Network Stops Routes Trips Vertices Edges Stations Operators

London 20 595 2 107 125 436 183 025 579 888 823 4
Switzerland 25 426 13 934 369 534 604 167 1 847 140 534 11
Germany 244 055 231 089 2 387 297 6 872 105 21 372 360 2 682 22

for every edge e ∈ E , it only makes sense to drop off a bike at specific vertices: A bike from
operator i may be dropped off at a stop (in order to enter a trip without bicycle transport),
a pickup station from a different operator j (in order to switch operators), a boundary vertex
of the served region (when leaving the region), or the target vertex. Dropping off the bike
at any other vertex would incur unnecessary walking costs. For each such vertex v, the
edge (vi, v0) is added to the operator-expanded network. Since the target vertex t changes
with each query, the edge (ti, t0) is only inserted temporarily at query time.

Biking as Additional Trip. In the original MCR publication [6], which considered bike
sharing with only one operator, each bike that was used in a journey was counted as an
additional trip. Incorporating this into our adapted version of MCR is straightforward. The
operator pruning technique can be applied without changes, since its preprocessing only
considers journeys that use a single bike for the entire journey. Adapting ULTRA, however,
would require fundamental changes because it is based on enumerating all journeys with
exactly two trips. If bike usage is counted as an additional trip, two trips are no longer
sufficient for finding all relevant transfers.

4 Experiments

All algorithms were implemented in C++17 compiled with GCC version 8.2.1 and optimization
flag -O3. All experiments were conducted on a machine with two 8-core Intel Xeon Skylake
SP Gold 6144 CPUs clocked at 3.5GHz, with a turbo frequency of 4.2GHz, 192GiB
of DDR4-2666 RAM, and 24.75MiB of L3 cache.

Benchmark Data. We evaluated our algorithms on the transportation network of London,
which was also used to evaluate the MCR algorithm [6], as well as the networks of Switzerland
and Germany as introduced in [22]. For all three instances, we combined the public transit
networks with transfer graphs representing walking and cycling that were extracted from
OpenStreetMap1. In order to obtain travel times, we assumed an average walking speed
of 4.5 km/h and an average cycling speed of 20 km/h. However, the cycling speed was reduced
to the speed limit for streets where the speed limit is below 20 km/h. The locations of bike
sharing stations were also extracted from OpenStreetMap. We assigned each bike sharing
station to an operator based on the information available (e.g., identifying different spellings
of the same company). For stations that were not annotated with any information, we chose
an operator of other nearby stations at random. Operators with only one bike sharing station
were dropped from the dataset, as they are irrelevant for routing. For reproducibility we
make the resulting cleaned bike sharing station dataset available2. For our experiments we
assume a pickup time of 20 seconds and a dropoff time of 10 seconds for all bike sharing
stations. An overview of the networks is given in Table 1.

1 https://download.geofabrik.de/
2 https://i11www.iti.kit.edu/PublicTransitData/BikeSharing/
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Table 2 Overview of all preprocessing steps. We report the sizes of the precomputed data
structures as well as the required computation time. Columns labeled with OE contain results
for the full operator-expanded network; columns labeled with OE-OP represent the operator-
expanded network with operator pruning. The Total row corresponds to the preprocessing time
of ULTRA-OE(-OP). Entries marked with ? are not reported as their computation would take
several weeks. We report single core running times with the exception of two rows marked with (16),
where 16 cores were used.

London Switzerland Germany
Measured value OE OE-OP OE OE-OP OE OE-OP

R
es
ul
ts

Cycling core vertices – 26 742 – 37 779 – 435 751
Operator hull vertices – 13 735 – 19 018 – 351 224
Expanded stops 102 975 31 216 301 500 36 892 5 613 265 411 980
Expanded vertices 290 791 197 558 1 019 779 623 228 16 461 221 7 225 923
Expanded edges 2 081 218 748 938 7 673 596 2 002 615 155 594 242 24 236 935
ULTRA shortcuts 1 831 779 521 882 3 389 309 435 514 ? 7 873 379

R
un

ni
ng

tim
e
[h
:m

:s] Walking Core-CH – 0:06 – 0:28 – 6:36
Cycling Core-CH 0:06 0:06 0:28 0:28 6:43 6:43
Operator hulls – 3:01:21 – 50:20 – 83:38:15
Operator hulls (16) – 15:34 – 4:15 – 8:45:22
Expanded Core-CH 0:08 0:07 0:34 0:29 8:38 7:07
ULTRA shortcuts (16) 14:14:51 43:31 9:59:43 21:50 ? 30:50:13
Expanded Bucket-CH 0:14 0:09 1:09 0:33 ? 17:47
Total 14:15:19 59:33 10:01:54 28:03 ? 40:13:48

4.1 Preprocessing

All algorithms discussed in this work require some form of preprocessing. The most elaborate
preprocessing steps are the operator hull computation as well as the ULTRA shortcut
computation. In addition to these two steps, several CH computations are required. An
overview of the preprocessing steps and their results is given in Table 2.

Regarding the operator hull computation, we observe that the number of vertices contained
in the union of all hulls is significantly smaller than the size of the corresponding core graph.
This means that some parts of the network will never be visited with a rented bike. The small
hulls also have a direct impact on the expanded networks, as their size is also significantly
reduced when operator hulls are applied. Using 16 cores, hulls for the small networks can be
computed in a few minutes, while Germany requires less than 9 hours. For the networks of
London and Switzerland, this corresponds to a speedup factor of 12 compared to a sequential
computation. For the Germany network, we only achieve a speedup of 9.5. In order to
explain this effect, we measured the average number of instructions executed per CPU cycle.
For the sequential hull computation on the Germany network, we recorded a value of 1.1,
while it was only 0.9 for the parallel computation. These numbers suggest that the reduced
speedup observed for the Germany network is due to an overloaded memory system.

The impact of the operator hulls on the ULTRA shortcuts is also quite strong. On the
London and Switzerland networks, operator hulls reduce the preprocessing time by a factor
of 14 and 20, and the number of shortcuts by a factor of about 4 and 8, respectively. For
the Germany network, ULTRA is only viable with operator hulls. Without operator hulls,
only 4.7% of the shortcut computation was finished after one week. We therefore estimate
that the complete shortcut computation would take about 21weeks.



J. Sauer, D. Wagner, and T. Zündorf 16:11

Table 3 Performance overview of all approaches described in this work. All algorithms are
evaluated with and without the use of operator pruning (OP). The MR-∞ algorithm is evaluated
for both the operator-dependent (OD) and the operator-expanded (OE) model, while ULTRA can
only be used with the operator-expanded model. The query results are averages over 10 000 random
queries. The Vertices (Routes) column reports the average number of vertices (routes) settled
(scanned) by the algorithm.

Net-
work Algorithm Preprocessing Query

Time [h:m:s] Rounds Vertices Routes Time [ms]

Lo
nd

on

MR-∞-OD 0:12 9.59 342 361 25 037 112.2
MR-∞-OD-OP 15:46 8.90 135 765 10 884 51.1
MR-∞-OE 0:14 9.59 320 286 25 045 119.1
MR-∞-OE-OP 15:53 8.64 117 188 9 152 34.2
ULTRA-OE 14:15:19 9.70 78 486 25 922 52.8
ULTRA-OE-OP 59:33 8.75 23 534 9 532 17.1

Sw
itz

er
la
nd

MR-∞-OD 0:56 9.55 840 396 171 361 286.8
MR-∞-OD-OP 5:11 8.49 176 364 54 173 85.0
MR-∞-OE 1:02 9.55 782 572 171 410 345.0
MR-∞-OE-OP 5:40 8.35 144 522 43 980 52.8
ULTRA-OE 10:01:54 9.70 107 627 180 064 117.2
ULTRA-OE-OP 28:03 8.48 29 394 44 970 21.0

G
er
m
an

y

MR-∞-OD 13:19 11.99 17 421 659 2 888 893 9 830.1
MR-∞-OD-OP 8:58:41 10.62 2 689 029 706 307 2 183.9
MR-∞-OE 15:21 11.99 16 120 342 2 889 313 10 599.3
MR-∞-OE-OP 9:05:48 10.24 2 091 814 679 898 1 322.7
ULTRA-OE-OP 40:13:48 10.38 301 832 688 525 649.3

4.2 Queries

To evaluate the impact of operator pruning and the differences between the operator-
dependent and operator-expanded models, we evaluated all algorithms presented in this work
on 10 000 random queries. An overview of the results is given in Table 3.

We use MCR, or more specifically its MR-∞ variant, to compare the operator-dependent
and operator-expanded model, as MR-∞ can be used with both models. Without operator
pruning, both models perform similarly. This is to be expected, as the operator-dependent
algorithm more or less simulates what the standard algorithm does on the operator-expanded
model. The number of rounds is exactly the same for both approaches, and the small
deviations in the number of settled vertices and scanned rounds can be explained by differences
in the respective core graphs and a slightly better target pruning in the dependent model.
Still, the operator-dependent model is slightly faster, as it has less memory usage.

Operator pruning improves query times significantly, with the speedup ranging from 2.2 on
the operator-dependent London network to 8.0 on the operator-expanded Germany network.
Naturally, the speedup is greater on larger networks with more bike sharing operators.
Approximately one fewer round is performed on average as a result of reducing the search
space. Moreover, the operator-expanded model benefits more strongly from operator pruning
than the operator-dependent model, being faster by a factor of 1.5 to 1.7. This is because
vertices and trips that are not part of the operator hull are removed entirely from the network
instead of being skipped at query time.
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Figure 2 Running time of all query algorithms with operator pruning depending on the number of
bike sharing operators available. We used the Germany network without bike sharing and gradually
added the bike sharing operators in sets of two (in order to compensate for differences in the number
of stations). We evaluated the same 1 000 random queries for each number of bike sharing operators.

Combining ULTRA-RAPTOR with the operator-expanded model reduces query times
even further. Compared to the base approach of using MR-∞ on the operator-dependent
network, we achieve speedup factors of 6.6, 13.7, and 15.1 for the networks of London, Switzer-
land, and Germany, respectively. Furthermore, ULTRA-RAPTOR is the first algorithm that
enables query times below a second for all networks.

Impact of Additional Bike Sharing Operators. We evaluated how the number of available
bike sharing operators influences the query time of the algorithms. For this we used the
Germany network, as it is the largest network and has the most bike sharing operators. We
started without any bike sharing operators and created partial instances by successively
adding operators. To compensate for differences in the number of bike sharing stations,
we added operators in pairs of two, pairing large operators with smaller ones. Finally, we
evaluated the same set of randomly picked long-range queries for all networks. The results are
depicted in Figure 2. We observe that for all algorithms the number of operators is correlated
linearly to the query time. The impact on the query time is the strongest for MR-∞-OD-OP,
further confirming that the operator-expanded model benefits more from operator pruning
than the operator-dependent model.

5 Conclusion

We presented two novel approaches for modeling multi-modal transportation networks with
various competing bike sharing operators: the operator-dependent and operator-expanded
model. We showed that both models result in similar query performance, with the operator-
dependent model being more memory-efficient and the operator-expanded model being
compatible with existing query algorithms without modifications. Given its compatibility, we
were able to combine the operator-expanded model with ULTRA, a known speedup technique
for multi-modal networks, in order to reduce query times. Additionally, we developed a
fast preprocessing step called operator pruning, which can be used to accelerate queries in
both models. Our experimental evaluation shows that combining operator pruning with
ULTRA-RAPTOR enables queries that are more than an order of magnitude faster than the
operator-dependent variant of MCR. Beyond that, we showed that using operator pruning
also reduces the preprocessing time of ULTRA by more than an order of magnitude.
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