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Abstract
We study the problem of finding “fair” stable matchings in the Stable Marriage problem with
Incomplete lists (smi). For an instance I of smi there may be many stable matchings, providing
significantly different outcomes for the sets of men and women. We introduce two new notions
of fairness in smi. Firstly, a regret-equal stable matching minimises the difference in ranks of a
worst-off man and a worst-off woman, among all stable matchings. Secondly, a min-regret sum
stable matching minimises the sum of ranks of a worst-off man and a worst-off woman, among
all stable matchings. We present two new efficient algorithms to find stable matchings of these
types. Firstly, the Regret-Equal Degree Iteration Algorithm finds a regret-equal stable matching in
O(d0nm) time, where d0 is the absolute difference in ranks between a worst-off man and a worst-off
woman in the man-optimal stable matching, n is the number of men or women, and m is the total
length of all preference lists. Secondly, the Min-Regret Sum Algorithm finds a min-regret sum stable
matching in O(dsm) time, where ds is the difference in the ranks between a worst-off man in each
of the woman-optimal and man-optimal stable matchings. Experiments to compare several types
of fair optimal stable matchings were conducted and show that the Regret-Equal Degree Iteration
Algorithm produces matchings that are competitive with respect to other fairness objectives. On
the other hand, existing types of “fair” stable matchings did not provide as close an approximation
to regret-equal stable matchings.
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1 Introduction

1.1 Background
The Stable Marriage problem (sm) was first introduced by Gale and Shapley [5] in their
seminal paper “College Admissions and the Stability of Marriage”, and comprises a set of
men and a set of women, where each man has a strict preference over all women and vice
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20:2 Algorithms for New Types of Fair Stable Matchings

versa. A matching in this setting is an assignment of men to women such that no man or
woman is multiply assigned. A stable matching is then a matching in which there is no
man-woman pair who would rather be assigned to each other than to their assigned partners.

In this paper we study an extension of sm, known as the Stable Marriage problem
with Incomplete lists (smi). An instance I of smi comprises two sets of agents, men
U = {m1,m2, ...,mn} and women W = {w1, w2, ..., wn}. Each man (woman) ranks a subset
of women (men) in strict preference order. Let m be the total length of all preference lists.
A man mi finds a woman wj acceptable if wj appears on mi’s preference list. Similarly, a
woman wj finds a man mi acceptable if mi appears on wj ’s preference list. A pair (mi, wj)
is acceptable if mi finds wj acceptable and wj finds mi acceptable. A matching M in this
context is an assignment of men to women comprising acceptable pairs such that no man
or woman is assigned to more than one person. Given a matching M , denote by M(mi)
the woman mi is assigned to in M (or if mi is unassigned then M(mi) is undefined); the
notation M(wj) is defined similarly for a woman wj . A pair (mi, wj) is a blocking pair if
1) (mi, wj) is an acceptable pair, 2) mi is unmatched or prefers wj to M(mi), and 3) wj is
unmatched or prefers mi to M(wj). Matching M is stable if it has no blocking pair.

In smi, a stable matching always exists, and may be found in linear time using the
Man-oriented Gale-Shapley Algorithm or the Woman-oriented Gale-Shapley Algorithm [5].
The Man-oriented Gale-Shapley Algorithm produces the man-optimal stable matching, that
is, the unique stable matching in which each man is assigned their most-preferred woman in
any stable matching. Unfortunately, the man-optimal stable matching is also woman-pessimal
i.e., each woman is assigned their least-preferred man in any stable matching. Similarly
the Woman-oriented Gale-Shapley Algorithm produces the woman-optimal (man-pessimal)
stable matching.

Let I be an instance of smi and n be the number of men or women in I. Let M be
the set of all stable matchings in I, which may be exponential in size [10]. We note that
by the “Rural Hospitals” Theorem [6], the same set of men and women are assigned in all
stable matchings ofM. Thus in order to simplify future descriptions, we are able to use the
Man-oriented Gale-Shapley Algorithm to find and remove all unassigned men and women
from I prior to any other operation. Without loss of generality, we assume that from this
point onwards, all men and women in I are assigned in any stable matching of I.

For an instance of smi, it is natural to wish to find a stable matching inM which is in some
sense fair for both sets of men and women. The rank of mi with respect toM is defined as the
location of M(mi) on mi’s preference list, and is denoted rank(mi,M(mi)). An analogous
definition of rank(wj ,M(wj)) holds for a woman wj . We define the man-degree dU (M) of
M as the largest rank of all men in M , that is, dU (M) = max{rank(mi,M(mi)) : mi ∈ U}.
Again an analogous definition of dW (M) holds for women. Define the degree pair of M ,
denoted d(M) = (a, b) as the tuple of man- and woman-degrees in M , where a = dU (M) and
b = dW (M). The man-cost cU (M) of matching M is defined as the sum of ranks of all men,
that is, cU (M) =

∑
mi∈U rank(mi,M(mi)). A similar definition of cW (M) holds for women.

Finally, the degree of a matching M is given by d(M) = max{dU (M), dW (M)} and the cost
of matching M is given by c(M) = cU (M) + cW (M).

We now define four notions of fairness in the smi context. Given a stable matching M ,
define its balanced score to be max{cU (M), cW (M)}. M is balanced [4] if it has minimum
balanced score over all stable matchings inM. Feder [4] showed that the problem of finding
a balanced stable matching in smi is NP-hard, although can be approximated within a
factor of 2. This approximation factor was improved to 2− 1

l , where l is the length of the
longest preference list, by Eric McDermid as noted in Manlove [14, pg. 110]. Gupta et al. [7]
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showed that a balanced stable matching can be found in O(f(n)8t) time when parameterised
by t = k −min{cU (M0), cW (Mz)}, where f(n) is a function polynomial in n and k is the
balanced score. The sex-equal score of M is defined to be |cU (M)− cW (M)|. M is sex-equal
[9] if it has minimum sex-equal score over all stable matchings inM. Finding a sex-equal
stable matching was shown to be NP-hard by Kato [12]. This result was later strengthened
by McDermid and Irving [15] who showed that, even in the case when preference lists have
length at most 3, the problem of deciding whether there is a stable matching with sex-equal
score 0 is NP-complete. Additionally, a polynomial-time algorithm to find a sex-equal stable
matching is described for instances in which men have preference lists of length at most 2
(women’s preference lists remaining unbounded) [15]. A stable matching M is egalitarian
[13] if c(M) is minimum over all stable matchings inM, and may be found in O(m1.5) time
[4]. Finally, a stable matching M is minimum regret [13] if d(M) is minimum among all
stable matchings inM. It is possible to find a minimum regret stable matching in O(m)
time [8]. These definitions of fairness are summarised in Table 1.

Table 1 Commonly used definitions of fair stable matchings in smi. Our contributions are labelled
with an *.

Cost Degree

Minimising the
maximum

min
M∈M

max{cU (M), cW (M)} min
M∈M

max{dU (M), dW (M)}

Balanced stable matching [4] Minimum regret stable matching [13]

Minimising the
absolute
difference

min
M∈M

|cU (M)− cW (M)| min
M∈M

|dU (M)− dW (M)|

Sex-equal stable matching [9] Regret-equal stable matching *

Minimising the
sum

min
M∈M

(cU (M) + cW (M)) min
M∈M

(dU (M) + dW (M))

Egalitarian stable matching [13] Min-regret sum stable matching *

In Table 1 there are two new natural definitions of fairness that can be studied.

We define the regret-equality score r(M) as |dU (M)−dW (M)| for a given stable matching
M . M is regret-equal if r(M) is minimum, taken over all stable matchings inM. Note
that in general we will prefer a regret-equal stable matchingM such that dU (M)+dW (M)
is minimised (e.g. d(M) = (3, 3) rather than d(M) = (10, 10)).
We define the regret sum as dU (M) + dW (M) for a given stable matching M . M is
min-regret sum if dU (M) + dW (M) is minimum taken over all stable matchings inM.

1.2 Motivation
Matching algorithms are widely used in the real world to solve allocation problems based on
smi and its variants. A famous example of this is the National Resident Matching Program
(NRMP). This scheme has been running in the US since 1952, and involves the allocation
of thousands of graduating medical students to hospitals [16]. Other matching schemes
involve the allocation of students to projects [1] and the allocation of kidney donors to kidney
patients [2].
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20:4 Algorithms for New Types of Fair Stable Matchings

Let mentees take the place of men and mentors take the place of women. Thus, mentees
(mentors) rank a subset of mentors (mentees) and may only be allocated one mentor (mentee)
in any matching. If we used the (renamed) Mentee-Oriented Gale-Shapley Algorithm [5] to
find a stable matching of mentees to mentors, then we would find a mentee-optimal stable
matching M . However, as previously discussed, this would also be a mentor-pessimal stable
matching. A similar but reversed situation happens using the (also renamed) Mentor-Oriented
Gale-Shapley Algorithm [5]. Therefore we may wish to find a stable matching that is in some
sense fair between mentees and mentors using some of the criteria described in the previous
section. All the types of fair stable matchings described in Table 1 are viable candidates.
However, as previously described, each of the problems of finding a balanced stable matching
or a sex-equal stable matching is NP-hard, and there are existing polynomial time algorithms
in the literature to find only two types of fair stable matchings, namely an egalitarian stable
matching (in O(m1.5) time) [4] and a minimum regret stable matching (in O(m) time) [8].
Therefore, additional definitions of new, fair stable matchings and polynomial-time algorithms
to calculate them provide additional choice for a matching scheme administrator.

Moreover, we may be interested in finding a measure that gives a worst-off mentee
a partner of rank as close as possible to that of a worst-off mentor. However, from our
experimental work in Section 5, we found that there was no other type of optimal stable
matching that closely approximates the regret-equality score of the regret-equal stable
matching. Indeed, results show that there exist regret-equal stable matchings with balanced
score, cost and degree that are close to that of a balanced stable matching, an egalitarian
stable matching and a minimum regret stable matching, respectively. This motivates the
search for efficient algorithms to produce a regret-equal stable matching that has “good”
measure relative to other types of fair stable matching.

Whilst the practical motivation for studying min-regret sum stable matchings may not
be as strong as in the regret-equality case, theoretical motivation comes from completing the
study of the algorithmic complexity of computing all types of fair stable matchings relative
to cost and degree, as shown in Table 1.

1.3 Contribution
In this paper, we present two efficient algorithms: one to find a regret-equal stable matching,
and one to find a min-regret sum stable matching, in an instance I of smi. Let M0 and
Mz be the man-optimal and woman-optimal stable matchings in I. First we present the
Regret-Equal Degree Iteration Algorithm (REDI), to find a regret-equal stable matching in
an instance I of smi, with time complexity O(d0nm), where d0 = |dU (M0)− dW (M0)|. This
is the main result of the paper. Second we present the Min-Regret Sum Algorithm (MRS), to
find a min-regret sum stable matching in an instance I of smi, with time complexity O(dsm),
where ds = dU (Mz) − dU (M0). In addition to this theoretical work, the REDI algorithm
was implemented and its performance was compared against an algorithm to enumerate all
stable matchings [8] (exponential in the worst case). Finally, experiments were conducted
to compare six different types of optimal stable matchings (balanced, sex-equal, egalitarian,
min-regret, regret-equal, min-regret sum), and output from Algorithm REDI, over a range
of measures (including balanced score, sex-equal score, cost, degree, regret-equality score,
regret sum). In addition to the observations already discussed in Section 1.2, we found a
large variation in sex-equal scores and regret-equality scores among the six different types of
optimal stable matching, and, a far smaller variation for the balanced score, cost, degree
and regret sum measures. This smaller variation also includes outputs of Algorithm REDI,
indicating that we are able to find a regret-equal stable matching in polynomial time with a
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likely good balanced score, cost and degree using this algorithm. Indeed, we find in practice
that Algorithm REDI approximates these types of optimal stable matchings at an average of
9.0%, 1.1% and 3.0% over their respective optimal values, for randomly-generated instances
with n = 1000.

1.4 Structure of the paper
Section 2 describes a rotation and related concepts in smi that will be used later in the
paper. Sections 3 and 4 describe Algorithm REDI and Algorithm MRS respectively, giving in
each case pseudocode, correctness proofs and time complexity calculations. An experimental
evaluation is given in Section 5. Finally, future work is presented in Section 6.

2 Structure of stable matchings

For some stable matching M in an instance I of smi, let s(mi,M) denote the next woman on
mi’s preference list (starting from M(mi)) who prefers mi to M(s(mi,M)) (their partner in
M). A rotation ρ is then a sequence of man-woman pairs {(m1, w1), (m2, w2), ..., (mq, wq)}
in M , such that mi+1 = M(s(mi,M)) for 1 ≤ i ≤ q where addition is taken modulo q
[11]. We say rotation ρ is exposed on M if {(m1, w1), (m2, w2), ..., (mq, wq)} ⊆ M . If ρ is
exposed on M , we may eliminate ρ on M , that is, remove all pairs of ρ from M and add
pairs (mi, wi+1) for 1 ≤ i ≤ q, where addition is taken modulo q, in order to produce another
stable matching M ′ of I. The rotation poset Rp(I) of I indicates the order in which rotations
may be eliminated. Rotation ρ is said to precede rotation τ if τ is not exposed until ρ has
been eliminated. There is a one-to-one correspondence between the set of stable matchings
and the set of closed subsets of Rp(I) [11, Theorem 3.1]. Gusfield and Irving [9] describe a
graphical structure known as the rotation digraph Rd(I) of I which is based on Rp(I) and
allows for the enumeration of all stable matchings in O(m+ n|M|) time.

Let R be the set of rotations of I. Then Rj(M) is the set of rotations that contain
a women of rank j in M , that is, Rj(M) = {σ ∈ R : (m,w) ∈ σ ∧ rank(w,M(w)) = j)}.
Let Mz be the woman-optimal stable matching [5]. For any stable pair (mi, wj) /∈Mz, let
φ(mi, wj) denote the unique rotation containing pair (mi, wj). Finally, denote by c(ρ) the
closure of rotation ρ and similarly denote by c(R′) the closure of set of rotations R′. We say
that the closure of an undefined rotation or an empty set of rotations is the empty set.

3 Algorithm to find a regret-equal stable matching in SMI

3.1 Description of the Algorithm
Algorithm REDI, which finds a regret-equal stable matching in a given instance I of smi, is
presented as Algorithm 1. For an instance I of smi, Algorithm REDI begins with operations
to find the man-optimal and woman-optimal stable matchings, M0 and Mz, found using the
Man-oriented and Women-oriented Gale-Shapley Algorithm [5]. The set of rotations R is
also found using the Minimal Differences Algorithm [11].

Let d(M0) = (a0, b0). If a0 = b0 then we must have an optimal stable matching and so
we output M0 on Line 5. If a0 > b0 then any other matching M ′, where d(M ′) = (a′, b′),
must have a′ ≥ a0 and b′ ≤ b0 since any rotation (or combination of rotations) eliminated
on the man-optimal matching M0 will make men no better off and women no worse off.
Therefore M0 is optimal and so it is returned on Line 5. Now suppose a0 < b0. Throughout
the algorithm we save the best matching found so far to the variable Mopt starting with M0.

SEA 2020



20:6 Algorithms for New Types of Fair Stable Matchings

We know that a matching exists with d0 = b0 − a0 and so we try to improve on this, by
finding a matching M with r(M) < d0.

We create several “columns” of possible degree pairs of a regret-equal matching as follows.
The top-most pairs for columns k ≥ 1 are given by the sequence

(
(a0, b0), (a0 + 1, b0), (a0 + 2, b0), ..., (min{n, 2b0 − a0 − 1}, b0)

)
.

The sequence of pairs for column k (1 ≤ k ≤ min{2d0, n− a0 + 1}) from top to bottom
is given by

(
(a0 +k−1, b0), (a0 +k−1, b0−1), (a0 +k−1, b0−2), ..., (a0 +k−1,max{a0−d0 +k, 1})

)
.

At this point as long as the size n of the instance satisfies n ≥ 2b0−a0−1 and a0−d0+1 ≥ 1,
the possible degree pairs of a regret-equal matching are shown in Figure 3 of [3]. We know
this accounts for all possible degree pairs since, as above, if M ′ is any matching not equal to
M0, where d(M ′) = (a′, b′), it must be that a′ ≥ a0 and b′ ≤ b0. Setting b′ = b0, the largest
a′ could be is given by b0 added to the maximum possible improved difference d0 − 1, that is,
a′ = b0 + d0 − 1 = 2b0 − a0 − 1. If n < 2b0 − a0 − 1 then we only consider the first n− a0 + 1
columns in Figure 3 of [3]. The a0 − d0 + k value is obtained by noting that if x is the final
value of women’s degree for the column sequence above then a0 + k − 1− x = d0 − 1 and so
x = a0 + k − d0. Figure 4 of [3] shows an example of the possible regret-equal degree pairs
when d(M0) = (2, 6) and n ≥ 9.

The column operation (Algorithm 2) works as follows. Let local variable M hold the
current matching for this column, and let local variable Q be the set of rotations corresponding
to M . Iteratively we first test if r(M) < r(Mopt) setting Mopt to M if so. We now check
whether dU (M) ≥ dW (M). If it is, then any further rotation for this column will only make
r(M) larger, and so we stop iterating for this column, returning Mopt. Next, we find the
set of rotations Q′ in the closure of Rb(M) ⊆ R that are not already eliminated to reach
M . If eliminating these rotations would either increase the men’s degree or not decrease the
women’s degree, then we return Mopt. Otherwise, set M to be the matching found when
eliminating these rotations.

If after the column operation, dU (Mopt) = dW (Mopt), then we have a regret-equal
matching and it is immediately returned on Lines 10 or 24 of Algorithm 1.

The column operation described above is called first from the man-optimal stable matching
M0 on Line 8, to iterate down the first column. Then for each man mi we do the following.
Let M be set to M0. Iteratively we eliminate (mi,M(mi)) from M by eliminating rotation
ρ and its predecessors (not already eliminated to reach M) such that (mi,M(mi)) ∈ ρ. We
continue doing this until both the men’s degree increases and rank(mi,M(mi)) = dU (M) (in
the same operation). This has the effect of jumping our focus from some column of possible
degree pairs, to another column further to the right with mi being one of the lowest ranked
men in M . Once we have moved to a new column we perform the column operation described
above. If either mi has the same partner in M as in Mz (hence there are no rotations left
that move mi) or dU (M) > dW (M) (further rotations will only increase the regret-equality
score), then we stop iterating for mi. In this case we restart this process for the next man,
or return Mopt if we have completed this process for all men. Note that since at the end of a
while loop iteration, if r(M) = 0 then Mopt is returned, it is not possible for the condition
dU (M) = dW (M) to ever be satisfied in the while loop clause.



F. Cooper and D. Manlove 20:7

Algorithm 1 REDI(I), returns a regret-equal stable matching for an instance I of smi.

Require: An instance I of smi.
Ensure: Return a regret-equal stable matching Mopt.
1: M0 ← MGS(I) . M0 is the man-optimal stable matching found using the Man-oriented

Gale-Shapley Algorithm (MGS) [5].
2: Mz ← WGS(I) . Mz is the woman-optimal stable matching found using the

Woman-oriented Gale-Shapley Algorithm (WGS) [5].
3: R← MIN-DIFF(I) . R is the set of rotations found using the Minimal Differences

Algorithm (MIN-DIFF) [11].
4: if dU (M0) ≥ dW (M0) then
5: return M0
6: end if
7: Mopt ←M0 . Mopt is the best stable matching found so far.
8: Mopt ←REDI-COL(I,M0, ∅,Mopt) . Find the best matching for the first column.
9: if r(Mopt) = 0 then
10: return Mopt

11: end if
12: for each mi ∈ U do . For each man.
13: M ←M0 . M is the matching we start from for mi at the beginning of each column.
14: Q← ∅ . Q is the set of rotations corresponding to M .
15: while (mi,M(mi)) /∈Mz and dU (M) < dW (M) do
16: ρ = φ(mi,M(mi))
17: a← dU (M)
18: Q′ ← c(ρ)\Q
19: M ←M/Q′ . Rotations in Q′ are eliminated in order defined by the rotation

poset of I.
20: Q← Q ∪Q′

21: if dU (M) > a and rank(mi,M(mi)) = dU (M) then . The men’s degree has
increased and mi is a worst ranked man in M .

22: Mopt ←REDI-COL(I,M,Q,Mopt) . Find the best matching for this column.
23: if r(Mopt) = 0 then
24: return Mopt

25: end if
26: end if
27: end while
28: end for
29: return Mopt

3.2 Correctness proof and time complexity
In this section we state the correctness and time complexity results for Algorithm REDI.
The proofs of these theorems may be found in [3, Appendix A.2].

I Theorem 1. Let I be an instance of smi. Any matching produced by Algorithm REDI is a
regret-equal stable matching of I.

I Theorem 2. Let I be an instance of smi. Algorithm REDI always terminates within
O(d0nm) time, where d0 = |dU (M0)− dW (M0)|, n is the number of men or women in I, m
is the total length of all preference lists and M0 is the man-optimal stable matching.
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20:8 Algorithms for New Types of Fair Stable Matchings

Algorithm 2 REDI-COL(I, M, Q, Mopt), subroutine for Algorithm 1. Column operation for the
current column dU (M). Returns Mopt, the best stable matching found so far (according to the
regret-equality score).

Require: An instance I of smi, stable matching M , the closure of M , Q and Mopt the best
stable matching found so far (according to the regret-equality score).

Ensure: Finds the best stable matching (according to the regret-equality score) found when
incrementally eliminating women of worst rank from the current matching, without
increasing the men’s degree. If an improvement is made then Mopt is updated. Mopt is
returned. All variables used within Algorithm 2 are understood to be local.

1: a← dU (M)
2: while true do
3: if r(M) < r(Mopt) then
4: Mopt ←M

5: end if
6: if dU (M) ≥ dW (M) then . Further rotations for this column would only increase

the difference in degree of men and women.
7: return Mopt

8: end if
9: b← dW (M)
10: Q′ ← c(Rb(M))\Q
11: if dU (M/Q′) > a ∨ dW (M/Q′) = b then
12: return Mopt

13: else
14: M ←M/Q′ . Rotations in Q′ are eliminated in order defined by the rotation

poset of I.
15: Q← Q ∪Q′

16: end if
17: end while

3.3 Regret-equal stable matchings with minimum cost

We may seek a regret-equal stable matching with minimum cost over all regret-equal stable
matchings. This may be achieved in O(nm2.5) time using the following process.

We define the deletion of pair (mi, wj) as the removal of wj from mi’s preference list
and the removal of mi from wj ’s preference list. Truncating men’s preference lists at t,
where 1 ≤ t ≤ n, is then the process of deleting pair (mi, wj) for each (mi, wj) such that
rank(mi, wj) > t. An analogous definition holds for women. For a given SMI instance I, first
find the regret-equality score r of the regret-equal stable matching using Algorithm REDI
in O(d0nm) time. Then, iterate over all possible man-woman degree pairs (a, b) such that
|a− b| = r (there are O(n) such pairs). For each such degree pair (a, b), truncate men at a
and women at b, creating instance I ′. Then, for each of the O(m) man-woman pairs (mi, wj)
in I ′, fix mi with his ath-choice partner and wj with her bth-choice partner (where ranks are
taken with respect to instance I), if possible. If this is not possible then continue to the next
degree pair. Assume that w′

j is mi’s ath-choice partner, and m′
i is wj ’s bth-choice partner.

In I ′, we now delete pairs (m′′
i , w

′′
j ) for any w′′

j such that mi prefers w′′
j to w′

j and w′′
j prefers

mi to m′′
i . Also delete the pair (m′′

i , w
′′
j ) for any m′′

i such that wj prefers m′′
i to m′

i and m′′
i

prefers wj to w′′
j . Next we delete all remaining preference list elements of mi except w′

j and
all remaining preference list elements of wj except m′

i. The Gale-Shapley Algorithm is run to
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check that a stable matching of size n exists in I ′. If no such stable matching exists then we
move on to the next degree pair. Feder’s Algorithm may then be used to find an egalitarian
stable matching in the reduced smi instance I ′ in O(m1.5) time (using the original ranks in
I as costs). This makes a total of O(nm2.5) time to find a regret-equal stable matching with
minimum cost.

4 Algorithm to find a min-regret sum stable matching in SMI

Algorithm MRS, which finds a min-regret sum stable matching, given an instance of smi, is
presented as Algorithm 3. First, the man-optimal and woman-optimal stable matchings, M0
and Mz, are found using the Man-oriented and Women-oriented Gale-Shapley Algorithms
[5]. The best matching found so far, denoted Mopt is initialised to M0. We then iterate over
each possible man degree a between dU (M0) and dU (Mz) inclusive, where an improvement
of Mopt, according to the regret sum, is still possible. As an example, suppose Mopt has a
regret sum of 5 with dU (Mopt) = 2 and dW (Mopt) = 3. Then, it is not worth iterating over
any man degree greater than 3 since it will not be possible to improve on the regret sum of 5
by doing so. For each iteration of the while loop, we truncate the men’s preference lists at a,
and find the woman-optimal stable matching MT

z for this truncated instance. If the regret
sum of MT

z is smaller than that of Mopt, we update Mopt to MT
z . After all iterations over

possible men’s degrees are completed, Mopt is returned.

Algorithm 3 MRS(I), returns a min-regret sum stable matching for an instance I of smi.

Require: An instance I of smi.
Ensure: Return a min-regret sum stable matching Mopt.
1: M0 ← MGS(I) . M0 is the man-optimal stable matching found using the Man-oriented

Gale-Shapley Algorithm (MGS) [5].
2: Mz ← WGS(I) . Mz is the woman-optimal stable matching found using the

Woman-oriented Gale-Shapley Algorithm (WGS) [5].
3: Mopt ←M0
4: a← dU (M0)
5: while a ≤ dU (Mz) and a+ 1 < dU (Mopt) + dW (Mopt) do
6: IT ←instance I where men’s preference lists are truncated at rank a.
7: MT

z ← WGS(IT )
8: if dU (MT

z ) + dW (MT
z ) < dU (Mopt) + dW (Mopt) then

9: Mopt ←MT
z

10: end if
11: a← a+ 1
12: end while
13: return Mopt

Let ds denote the difference between the degree of men in the woman-optimal stable
matching Mz, and in the man-optimal stable matching M0, that is ds = dU (Mz)− dU (M0).
Theorem 3 as follows states that Algorithm MRS produces a min-regret sum stable matching
in O(dsm) time. See [3, Appendix B] for the proof of this Theorem.

I Theorem 3. Let I be an instance of smi. Algorithm MRS produces a min-regret sum
stable matching in O(dsm) time, where ds = dU (Mz)− dU (M0), m is the total length of all
preference lists, and M0 and Mz are the man-optimal and woman-optimal stable matchings
respectively.
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5 Experiments

5.1 Methodology

An Enumeration Algorithm (ENUM) exists to find the set of all stable matchings of an
instance I of smi in O(m + n|M|) time [8]. Within this time complexity, it is possible to
output a regret-equal stable matching from this set of stable matchings, by keeping track of
the best stable matching found so far (according to the regret-equality score) as they are
created. We randomly generated instances of sm, in order to compare the performance of
Algorithms REDI and ENUM. Using output from Algorithm ENUM, we also investigated the
effect of varying instance sizes, for six different types of optimal stable matchings (balanced,
sex-equal, egalitarian, min-regret, regret-equal, min-regret sum), and also output from
Algorithm REDI, over a range of measures (including balanced score, sex-equal score, cost,
degree, regret-equality score, regret sum). Tests were run over 19 different instance types with
varying instance size (n ∈ {10, 20, ..., 100, 200, ..., 1000}). All instances tested were complete
with uniform distributions on preference lists. Experiments were run over 500 instances of
each instance type.

Each instance was run over the two algorithms described above with a timeout time
of 1 hour for each algorithm. No instances timed out for these experiments. Experiments
were conducted on a machine running Ubuntu version 18.04 with 32 cores, 8×64GB RAM
and Dual Intel® Xeon® CPU E5-2697A v4 processors. Instance generation, correctness and
statistics summarisation programs, and plot and LATEX table generation were all written in
Python and run on Python version 3.6.1. All other code was written in Java and compiled
using Java version 1.8.0. Each instance was run on a single thread with 16 instances run in
parallel using GNU Parallel [17]. Serial Java garbage collection was used with a maximum
heap size of 2GB distributed to each thread. Code and data repositories for these experiments
can be found at zenodo.org/record/3630383 and zenodo.org/record/3630349 respectively.
Comprehensive correctness testing was conducted, a description of which may be seen in [3,
Appendix C.1].

5.2 Experimental results summary

Figure 1 shows a comparison of the time taken to execute the two algorithms over increasing
values of n. Precise data for this plot can be seen in Table 2 of [3, Appendix C.2] which
gives the mean, median, 5th percentile and 95th percentile durations for Algorithms REDI
and ENUM. In Figure 1, the median values of time taken for each algorithm are plotted
and a 90% confidence interval is displayed using the 5th and 95th percentile measurements.
Additional experiments and evaluations not discussed here may also be found in [3, Appendix
C.3].

Figure 2 shows comparisons of six different types of optimal stable matchings (balanced,
sex-equal, egalitarian, min-regret, regret-equal, min-regret sum), and output from Algorithm
REDI, over a range of measures (including balanced score, sex-equal score, cost, degree,
regret-equality score, regret sum), as n increases. Optimal stable matching statistics involving
a measure determined by cost (respectively degree) are given a green (respectively blue)
colour. For a particular fairness objective A and a particular fairness measure B, there may
be a set of several stable matchings that are optimal with respect to A. In this case we choose
a matching from this set that has best possible measure with respect to B. For example,
if we are looking at the regret-equality score, for a particular instance, we find a sex-equal
stable matching that has smallest regret-equality score (over the set of all sex-equal stable

https://zenodo.org/record/3630383
https://zenodo.org/record/3630349
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matchings) and use this value to plot the regret-equality score for this type of optimal stable
matching. This process is replicated for the other types of optimal stable matching. In each
case the mean measure value is plotted for the given type of optimal stable matching. Data
for these plots may be found in Tables 3, 4, 5, 6, 7 and 8 of [3, Appendix C.2].
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Figure 1 A log plot of the time taken to execute Algorithms REDI and ENUM. A second order
polynomial model has been assumed for best-fit lines.

The main results of these experiments are:
Time taken: It is clear from Figure 1 in that Algorithm REDI is the faster algorithm in
practice, taking approximately 2s to solve an instance of size n = 1000 with very little
variation. In contrast, Algorithm ENUM takes around 8s for an instance of size n = 1000
with a far larger variation.
Sex-equal score: A wide variation in sex-equal score over the six optimal matchings can
be seen in Figure 2b (and Table 4 in [3]). Sex-equal and balanced stable matchings are
extremely closely aligned giving a mean sex-equal score of 265.0 and 284.0 respectively
for the instance type with n = 1000. Min-sum regret stable matchings, on the other hand,
performed the least well with a mean sex-equal score of 12400.0 for the same instance
type.
Regret-equality score: Similar to the previous point we see a wide variation in regret-
equality score over the six optimal stable matchings in Figure 2e (and Table 7 in [3]). For
the instance type with n = 1000, this ranges from a mean regret-equality score of 14.2
for the regret-equal stable matching to 84.6 for the minimum regret stable matching. It
is interesting to note that the type of optimal stable matching (out of the six optimal
stable matchings tested) whose regret-equality score tends to be furthest away from that
of a regret-equal stable matching is the min-regret sum stable matching. This may be
due to the fact that minimising the sum of two measures does not necessarily force the
two measures to be close together.
Output from Algorithm REDI: Due to the wide variation of regret-equality scores among
different types of optimal stable matchings (as described above) it is clear that no other
optimal stable matching is able to closely approximate a regret-equal stable matching,
which highlights the importance of Algorithm REDI that is designed specifically for
optimising this measure. Interestingly, Algorithm REDI is also competitive in terms of
balanced score, cost and degree. Indeed, we can see from Tables 3, 5 and 6 in [3], that
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Algorithm REDI approximates these types of optimal stable matchings at an average of
9.0%, 1.1% and 3.0% over their respective optimal values, for instances with n = 1000.
Over all instance sizes, these values are within ranges [4.0%, 10.9%], [1.1%, 3.4%] and
[1.3%, 3.7%], respectively. This gives a good indication of the high-quality of output from
this algorithm even on seemingly unrelated measures.
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(a) Plot of balanced score.
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(b) Plot of sex-equal score.
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(c) Plot of cost.
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(d) Plot of degree.
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(e) Plot of regret-equality score.
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(f) Plot of regret sum.

Figure 2 Plots of experiments to compare six different optimal stable matchings (balanced,
sex-equal, egalitarian, min-regret, regret-equal, min-regret sum), and output from Algorithm REDI,
over a range of measures (including balanced score, sex-equal score, cost, degree, regret-equality
score, regret sum). A second order polynomial model has been assumed for all best-fit lines.
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6 Future work

We introduced two new notions of fair stable matchings for smi, namely, the regret-equal
stable matching and the min-regret sum stable matching. We presented algorithms that
are able to compute matchings of these types in polynomial time: O(d0nm) time for the
regret-equal stable matching, where d0 = |dU (M0) − dW (M0)|; and O(dsm) time for the
min-regret sum stable matching, where ds = dU (Mz) − dU (M0). It remains open as to
whether these time complexities can be improved.
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