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Abstract
Secure multiparty computation (MPC) allows a set of mutually distrustful parties to compute
a public function on their private inputs without revealing anything beyond the output of the
computation. This paper focuses on the specific case of actively secure three-party computation with
an honest majority. In particular, we are interested in solutions which allow to evaluate arithmetic
circuits over real-world CPU word sizes, like 32- and 64-bit words. Our starting point is the novel
compiler of Damgård et al. from CRYPTO 2018. First, we present an improved version of it which
reduces the online communication complexity by a factor of 2. Next, we replace their preprocessing
protocol (with arithmetic modulo a large prime) with a more efficient preprocessing which only
performs arithmetic modulo powers of two. Finally, we present a novel “postprocessing” check which
replaces the preprocessing phase. These protocols offer different efficiency tradeoffs and can therefore
outperform each other in different deployment settings. We demonstrate this with benchmarks
in a LAN and different WAN settings. Concretely, we achieve a throughput of 1 million 64-bit
multiplications per second with parties located in different continents and 3 million in one location.
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1 Introduction

Secure Multiparty Computation (MPC) is an umbrella term for a broad range of cryptographic
techniques and protocols that enable a set of parties P1, . . . ,Pn to compute some function f
of their private inputs x1, . . . , xn without revealing anything beyond the output f(x1, . . . , xn)
of the computation. Most importantly, an actively misbehaving participant should not
be able to bias the outcome of the computation (except by choosing their input) or learn
anything about the inputs of the honest parties (except for what is leaked by the output
itself). MPC started out as a purely theoretical research field in the 90ies, but has developed
into a science on the brink of practical deployment. The number of of real-world use cases,
MPC framework implementations, and startups is constantly increasing (see [4] for a survey).

The landscape of MPC protocols is broad and diverse, and protocols differ greatly in
many parameters such as the number of involved parties, the corruption threshold, the
adversarial model, and the network setting. We focus on a popular model of three-party
computation with an honest majority. This model has been used in different real-world
applications [15, 14, 10, 11, 2], often in the so-called client-server scenario where a possibly
large number of clients secret share their inputs to three computation servers who then
perform the computations [33] and return the result to the clients. A major advantage of the
honest majority setting is that one can obtain protocols which do not rely on computationally
expensive cryptographic operations (e.g. exponentiations, oblivious transfer), but typically
only use light-weight arithmetic operations and achieve information theoretic security.

Existing implementations of three-party computation protocols for the honest-majority
case fall into two broad categories. VIFF [24] and its successors [40] only support arithmetic
computations over prime order fields. Sharemind’s protocol suite [12, 13] can be used to
evaluate arithmetic circuits with arbitrary word sizes, but is only secure against passive
adversaries that follow the protocol faithfully. This means that one has to either settle for
rather weak security guarantees or to develop applications specifically tailored to rather
unnatural word sizes instead of using the common 32- and 64-bit word sizes that dominate
real-world system architectures. In particular, this means that a developer has to match the
needs of the MPC framework rather than the framework meeting the needs of the developer.

The main barrier to constructing actively secure protocols for evaluating arithmetic
circuits with arbitrary word sizes lies in the fact that known approaches to achieving active
security, like information checking techniques [39], require prime order fields. Up until
recently it has been an open question to design protocols for arithmetic circuits with active
security for arbitrary word sizes. In a recent work Damgård et al. [27] addressed this question
by presenting an information theoretically secure protocol compiler that transforms passively
secure protocols into actively secure ones that can tolerate up to O(

√
n) corruptions and

only have a constant overhead in storage and computational work.

Our Contributions. We consider the class of protocols produced by compiler of Damgård
et al. [27], and we improve such protocols in several ways. The main idea behind Damgård
et al.’s compiler is to let the real parties “emulate” virtual parties that execute the desired
computation on behalf of the real parties. The crucial point is that the virtual parties can
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execute2 a passively secure protocol in a way that prevents any real party from actively
misbehaving. Every time that a virtual party Pi is supposed to send a message to another
virtual party Pj in the passively secure protocol, every real party that is emulating Pi
computes the same message redundantly and sends it to every real party emulating Pj . Each
real party emulating Pj therefore receives a set of messages and aborts in case the received
messages are not all equal. Intuitively this approach ensures active security as long as there
is at least one honest real party in every virtual party, since any malicious party either
follows the protocol (in which case we effectively only have passive corruptions) or sends a
message that disagrees with the message that is sent by at least one honest party (in which
case the honest receiving party and consequently all other parties abort the protocol). This
approach heavily relies on the fact that all messages are sent redundantly, thus incurring a
multiplicative blow-up in the bandwidth overhead of the protocol.

We present an improved compiler that significantly reduces the number of redundant
messages that need to be sent during the execution. The idea is to elect one real party in
each virtual party to be the “brain”, which sends all messages on behalf of its virtual party
to all real parties in the receiving virtual party. The other real parties, the “pinkies”, still
receive messages from the brains and thus can locally follow the protocol execution. At the
end of the protocol, right before the output is released, we let all parties perform a single
check that guarantees that all messages sent by the brains during the protocol are consistent
with the messages all the pinkies would have sent. It is clear that if any of the brains cheated
during the protocol execution, then it must have sent a message that is inconsistent with the
view of at least one pinky, thus the protocol would abort during the checking phase. On the
downside our new compiler now imposes a stronger security requirement on the protocol it
starts with. Honest brains continue the protocol execution up to the checking phase even if
a malicious brain misbehaves, which means that we need a protocol that does not leak any
private information even if cheating during the computation phase occurs, e.g. protocol with
weak privacy [32]. Thankfully, most passively secure secret sharing based protocols provide
such security guarantees. More concretely, these protocols follow a compute-then-open
structure, where the output of the computation is only revealed in the last round and any
cheating during the preceding computation can only affect the correctness of the output,
but not the privacy of the inputs. Thus, performing the consistency check at the end of
the computation phase and before the output phase, ensures that no information is leaked.
We formally present our new compiler and prove its security in Section 3. For the specific
three-party case, our compiler produces a protocol, which is roughly twice as efficient as
the protocol produced by the compiler of Damgård et al., since in the three party case each
virtual party is emulated by one pinky and one brain.

Our second contribution is an improved preprocessing protocol for generating secret-
shared multiplication triples. Damgård et al. generate both triples modulo a prime and
triples modulo a power of 2, followed by a check-and-sacrifice step. We replace this by a
preprocessing phase which does not perform any arithmetic in the larger prime field and
solely uses computation modulo a slightly larger power of 2, thus improving on efficiency.
While the sacrifice step is not performed in a field anymore, security follows using similar
arguments as in the recent work on SPDZ over rings [21].

We show that it is possible to completely avoid the preprocessing phase if one wishes
to do so. Recall that our underlying protocols are assumed to preserve privacy until the
outputs are opened. We exploit this security property by running the multiplication protocols

2 Note that virtual parties do not physically exist. “Virtual parties execute a protocol” means that the
real parties simulate the virtual parties protocol execution.
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optimistically and then, prior to opening the outputs, perform a single combined check.
The protocols with preprocessing and with postprocessing therefore offer different efficiency
tradeoffs. The protocol with preprocessing has a leaner online phase, whereas the protocol
with postprocessing has a better overall performances. Descriptions of our protocols are
given in Sections 4, 5, 6. In Section 7, we provide extensive performance benchmarks of our
framework, both in the LAN as well as different WAN settings. Our protocols have been
integrated in two of the leading MPC frameworks, namely the Sharemind MPC protocol
suite and MP-SPDZ. As described in Section 7, we achieve the most efficient implementation
of a three-party computation protocol for arithmetic circuits modulo 264 with active security.

Other Related Work. The SPDZ family of protocols [8, 28, 25] efficiently implements MPC
with active security in the dishonest majority setting. These protocols are split up into
a slower, computationally secure offline phase in which correlated randomness (Beaver’s
triples) is generated and a faster, information-theoretically secure online phase in which
these triples are consumed to compute the desired functionality. Active security in the online
phase is achieved using information theoretic message authentication codes (MACs), which
until recently limited the SPDZ approach to computation over fields. In a recent work [21],
this limitation has been lifted, allowing to perform computation modulo 2k (by defining the
MACs modulo to be 2k+λ where λ is the security parameter, thus introducing an overhead
proportional to the security parameter). An implementation (and optimizations) of [21]
was presented in [23]. In addition, [18] follows up [21] with a two-party protocol that uses
homomorphic encryption and efficient zero-knowledge proofs in the precomputation phase.

Other recent works have considered active security in the three-party setting. [31] uses
correlated random number generation to achieve efficient preprocessing and replication to
achieve security. The protocol was originally presented only for Boolean circuits, but it was
then noticed that the approach generalizes to general rings [36]. They mention actively secure
protocols in this setting, but do not give detailed protocol descriptions and only implement
semi-honest versions of their protocols. For finite fields, [20] achieves active security by
running two copies of the computation, respectively with real and random inputs, and uses
the latter to verify correctness (this approach can be used for more than three parties). Boyle
et al. [16] recently presented a protocol that achieves no asymptotic communication overhead
over a semi-honest protocol in the same setting. However, their benchmarks suggest that
the computation of their protocol might be rather limiting in some network settings, see
Section 7.3 for more information. After the first version of our paper appeared online, a
very different protocol for the same three party honest majority setting was presented in [19].
They combine two linear secret sharing schemes, one between two and other between three
parties where the former is used to share a component of the latter sharing. This allows
them to create a circuit dependent precomputation phase where all the two party sharings of
random values are precomputed based on the circuit structure. The online phase focuses on
computing modifiers to turn the random precomputed sharings to real outputs. Moreover,
novel techniques for honest-majority MPC over rings have very recently been deployed in [1].
It is however still unclear whether this can lead to protocols which are efficient in practice.

2 Preliminaries

We write v ← X to denote the sampling of a uniformly random value v from set X .
Throughout the paper λ denotes the security parameter. Given n parties P1, . . . ,Pn, we
write Pi+1 to denote the party after Pi and we implicitly assume a wrap around of the party’s
index. That is Pn+1 = P1 and P0 = Pn.
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We define security using the UC framework [17]. In particular, we require the notion of
“Weak Privacy” against active adversaries introduced in [32, Definition 5.11]. We include
background definitions in Appendix A. Throughout the paper, we assume a synchronous
communication network, a rushing adversary, and secure point-to-point channels.

2.1 Auxiliary Ideal Functionalities
We will make use of the following basic auxiliary ideal functionalities in this paper: The
broadcast with individual abort functionality Fbcast (Figure 1) allows a sender S to send
a value v to a set of parties P. The functionality guarantees that either a party aborts or
it agrees on a consistent value with the other parties. Such a functionality is weaker than
detectable broadcast [30], which requires that either all players agree on the same value or
that all players unanimously abort. The functionality can easily be instantiated by letting
the sender S send v to all parties in P. Every party in P echoes the received value to all other
parties in P. Parties that receive consistent values output that value, parties that receive
inconsistent values abort.

Functionality Fbcast Functionality with sender S, who has input v, parties P1,
. . . , Pn, and adversary A.

1. S sends (v,P) to Fbcast, where v ∈ {0, 1}∗ and P ⊂ {P1 . . .Pn}.
2. If either S or a party from P is corrupt, then A receives v and can decide

which parties from P abort and which receive the output by sending a |P| long
bit-vector b to the ideal functionality. For Pi ∈ P:
a. If bi = 1, then Fbcast sends v to Pi.
b. If bi = 0, then Fbcast sends ⊥ to Pi.

Figure 1 Broadcast functionality.

The message checking functionality Fcheck (Figure 2) allows a receiver R, who holds a
vector of messages, to check whether all other parties P1, . . . ,Pn hold the same vector of
messages. The functionality can be instantiated by letting each party Pi send its input to R.
However, in this case the communication overhead is Θ(n`) messages, where ` is the number
of messages in a vector. Assuming the existence of collision-resistant hash functions, one
can obtain a more communication efficient solution by simply letting all parties hash their
message vectors into small digests before sending them to R. The communication overhead
of this is Θ(nλ) bits if we assume that the output length of the hash function is Θ(λ).

2.2 Additive Secret Sharing
We recall what additive secret sharing is and how to perform some basic operations on
it. We will use this type of secret sharing in our three-party protocol in Section 4 and
the modulus 2m defines the word size over which computations will be performed. For
example, for arithmetic computations over 64-bit integers, one can set m = 64. For the sake
of concreteness, we restrict our attention to the three-party case.

If party Pi wants to share a value a ∈ Z2m , it picks uniformly random a1, a2 ← Z2m , sets
a3 = a− a1− a2 mod 2m, and sends aj to Pj . We use [a]m to denote additive secret sharing
of a modulo 2m. For a prime p, we will abuse notation and use [a]p to denote a secret sharing
of a modulo p. To open a value [a]m, every party Pi sends its value ai to Pi−1 and Pi+1.

ITC 2020
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Functionality Fcheck The functionality runs with receiver R, parties P1, . . . , Pn,
and adversary A. Party Pi ∈ {P1, . . . ,Pn} has input

(
m(1,i), . . . ,m(`,i)

)
and

receiver R has (m1, . . . ,m`).

1. All parties send their inputs to the Fcheck.
2. A can decide to continue or to abort.

a. If A continues, then Fcheck checks whether all inputs are the identical. It
outputs same if this is the case, and different otherwise, to the receiver R (in
the latter case, the functionality gives the inputs of all honest parties to A).

b. If A aborts, then Fcheck sends ⊥ to all parties.

Figure 2 Message checking functionality.

To add constant c to [a]m, i.e., compute [b]m with b = c+a mod 2m, P1 locally computes
b1 = a1 + c mod 2m, while P2 and P3 just set bi = ai. To compute [c]m, where c = a+ b

mod 2m, every party Pi locally adds its shares, i.e., computes ci = ai + bi mod 2m.
Given a secret shared multiplication triple ([x]m, [y]m, [z]m) with z = x · y mod 2m and

two secret shared values [a]m and [b]m, we compute [c]m with c = a · b mod 2m as follows:
1. Open e = [x]m + [a]m and d = [y]m + [b]m
2. Compute [c]m = [z]m + e · [b]m + d · [a]m − ed

2.3 Additive Replicated Secret Sharing
We will use additive replicated secret sharing in our preprocessing protocol in Section 5
because it allows for efficient multiplication. Since our preprocessing protocol focuses on the
three-party case, we will also restrict our attention to this case here.

If party Pi wants to share a value a ∈ Z2m , it sets ai = 0 and samples ai+1, ai−1 ← Z2m

under the constraint that a = a1 + a2 + a3 mod 2m. It then sends aj−1 and aj+1 to Pj .3
We write JaKm to denote an additive replicated secret sharing of a modulo 2m. We will abuse
notation and write JaKp to denote the additive replicated secret sharing modulo a prime p.

Generating a random shared value is a subroutine which will be useful in later protocols.
If the parties want to generate shares of a random value they can do it in the following two
ways. For unconditionally secure randomness each party Pi picks a random si−1 ∈ Z2m

and sends it to Pi+1 while at the same time receiving si+1 from Pi−1. For computationally
secure randomness the parties run the unconditionally secure version, at the beginning of
the protocol, once and for all, and interpret their shares as PRF keys K1,K2,K3 such that
party Pi knows Ki−1 and Ki+1. When they want to generate the j-th random share, the
parties define their shares sji−1 = FKi−1(j) and sji+1 = FKi+1(j).

To reveal a secret shared value JaKm, each party Pi sends ai−1 to Pi−1 and ai+1 to Pi+1.
Each Pj receives aj from Pj−1 and Pj+1, checks consistency of the received values, and
outputs a = a1 + a2 + a3 mod 2m if the check passed. Computational Security: Opening

3 This is a small yet non-trivial optimization of the protocol of [27], where ai is also a random share and
the other two parties have to check consistency of this value. By setting ai = 0 we save communication
of 4 ring elements per input gate, and one additional round of communication. Note that this change
has no impact on security. If Pi is corrupt we need that the two other parties receive the same value of
ai, and this is trivially achieved by setting the value to 0. If one of the other two parties is corrupt,
they would learn ai anyway so whether it is random or a constant value has no security impact.
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several values a(1), . . . , a(n) can be optimized as follows: Each Pj only receives a(l)
j from Pj−1

and computes a(l) = a
(l)
1 + a

(l)
2 + a

(l)
3 mod 2m. In addition the parties broadcast hashes of

(a(1), . . . , a(n)) and abort in case of a mismatch.
To add a public constant c to a secret shared value JaKm, i.e., to compute JbKm, where

b = c+ a mod 2m, we set b1 = a1 + c, b2 = a2, and b3 = a3. To add JaKm and JbKm, i.e., to
compute JcKm, where c = a+b mod 2m every party Pi locally adds their shares. It computes
ci−1 = ai−1 +bi−1 mod m and ci+1 = ai+1 +bi+1 mod 2m. To multiply JaKm by constant c,
i.e., to obtain JbKm with b = c · a mod 2m, every party Pi computes bi−1 = c · ai−1 mod 2m
and bi+1 = c · ai+1 mod 2m.

Given JaKm and JbKm, we can compute JcKm, with c = a · b mod 2m, optimistically (i.e.
with potential error in case of cheating) as follows:
1. The parties generate a random value JsKm;
2. Each Pi computes ui+1 = ai+1bi+1 + ai+1bi−1 + ai−1bi+1 + si−1 and sends ui+1 to Pi−1;
3. Pi receives ui−1, thus defining JuKm;
4. The parties compute JcKm = JuKm − JsKm.

2.4 Additive Replicated Secret Sharing with Redundant Shares
In some of our protocols we use a different kind of replicated secret sharing, which we denote
as JxKm,λ. Those are sharing of values in Z2m but represented with shares in Z2m+λ , where λ
is a security parameter. Those shares work as the regular additive replicated secret sharings
described in the previous sections (e.g., all basic commands are unchanged), but employ
shares in a larger ring – this is useful for checking correctness of multiplication triples as we
shall see. We describe some basic protocols that can be run with this kind of shares:

To convert JxKm to JxKm,λ each party simply interprets their shares as elements of the
larger ring (in other words, the shares are padded with 0s in the λ most significant positions).
Note that in general

∑
i xi mod 2m+λ 6= x, that is the sum can be either equal to x or to

x+ 2m depending on the magnitude of the shares. However, since the semantic of our sharing
is that the shared value is

∑
i xi mod 2m the protocol is indeed correct (and this notation

allows us a simpler description of more advanced protocols).
To convert JxKm,λ down to JxKm each party Pi reduces their shares modulo 2m as

x′i+1 = xi+1 mod 2m and x′i−1 = xi−1 mod 2m. Both conversions preserve the shared value
because computing modulo 2m and modulo 2m+λ are commutative as 2m divides 2m+λ and
both operations trivially preserve the replication of shares.

2.5 Additive Replicated Secret Sharing over the Integers
Finally, we recall the replicated secret sharing over integers from [27]. The authors observed
that one can secret share a value a ∈ Z2m over the integers using shares with bit-length
m + λ. The λ extra bits ensure that the statistical distance between the distributions of
shares for any two values in Z2m is negligible in λ.

To share a value a ∈ Z2m , Pi picks a1, a2 ← {0, . . . , 2m+λ − 1} and sets a3 = a− a1 − a2.
The shares are distributed among the parties as above. We write JaKZ to denote an additive
replicated secret sharing of a over the integers.

Optimistic multiplication of JaKZ and JbKZ is similar to its counterpart modulo p. Let B
be a bound on the share amplitude. Optimistically compute JcKZ with c = a · b as follows:
1. The parties generate shares of a random value JsKZ as described above, but si are chosen

in {0, . . . , 22dlogBe+λ+2 − 1} (if the information-theoretic version is used, parties also
check that the received shares si are in this range);

ITC 2020
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2. Each Pi computes ui+1 as before but over Z;
3. Pi receives ui−1 and checks |ui−1| ≤ 22dlogBe+λ+3;
4. The parties compute JcKm = JuKm − JsKm.
Other operations are analogous to their counterparts modulo m. For a more details see [27].

3 Extension of the Compiler by Damgård et al.

The compiler COMPold by Damgård et al. [27] takes an n-party passively
(
t2 + t

)
-secure

protocol Π and transforms it into a protocol COMPold (Π) that is secure with abort against t
active corruptions4. For t = 1, the compiler transforms a passively two-secure three-party
protocol into a protocol that is secure against one active corruption. The high-level idea of
the compiler is to let virtual parties execute the passively secure protocol on behalf of the
real parties. Each virtual party Pi is simulated by t+ 1 real parties Pi, . . . , Pi+t in a way
that prevents an active adversary, who controls at most t real parties, from corrupting any
of the virtual parties. Meaning that corrupting t real parties allows the adversary to see the
view of at most

(
t2 + t

)
virtual parties running the passive protocol. In the following we will

write Pj ∈ Pi to denote that real party Pj is simulating virtual party Pi.
The workflow of their compiler can be split into two phases. In the first phase, for each

virtual party Pi, all real parties Pj ∈ Pi agree on a common input and randomness that will
be used by Pi during the execution of the passively secure protocol Π. Having the same
input and the same randomness, every Pj ∈ Pi will be able to redundantly compute the
exact same messages that Pi is supposed to send during the execution of Π. In the second
phase, the virtual parties run Π to compute the desired functionality from the inputs and
randomness that the virtual parties have agreed upon. Whenever Pi is supposed to send a
message to Pj according to Π, every real party simulating Pi will send a separate message to
every real party simulating Pj . Each real party verifies that it receives the same message
from all sending real parties and aborts if this is not the case.

Intuitively, the resulting protocol is secure against t active corruptions, since an adversary
cannot misbehave on behalf of a virtual party it is simulating, and at the same time be
consistent with at least one other honest real party in the same virtual party. From an
efficiency point of view, every message from one Pi to some other Pj is sent redundantly
from t+ 1 to t+ 1 real parties. That is, if the passively secure protocol Π sends ` messages
during a protocol execution, then COMPold (Π) will send roughly O

(
` · t2

)
messages.

3.1 A New Compiler for Protocols with Weak Privacy
We present a new compiler COMPnew, which makes slightly stronger assumptions about the
starting protocol Π, but compiles it into an actively secure protocol in a more communication
efficient manner. COMPnew takes as input a

(
t2 + t

)
-weakly private protocol Π and outputs

a compiled protocol COMPnew (Π) that is secure against t active corruptions. If Π sends `
messages in total, then our compiled protocol will only send O

(
` · t+ t2

)
messages.

Our new compiler follows the approach of COMPold. However, instead of verifying the
validity of every single message between virtual parties as soon as it is sent, we will let the
real parties simulate the virtual parties in a more optimistic and communication efficient
fashion, where the correctness of all communicated messages is only verified once at the
end of the computation phase, right before the opening phase of Π. Pushing the whole

4 The authors also show how to achieve active security with guaranteed output delivery, but we focus on
security with abort.
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P1

P2 P3

P2

P3
store m

P1
send m

P3

P1 P2

m

m

Figure 3 Simulation strategy for three parties with one active corruption. Dashed ellipses
represent virtual parties and solid circles represent the real parties simulating it (brains are gray).
Virtual party P2 is sending a message to virtual party P3. The arrows indicate that P1, the brain of
P2, sends one message to P2 and one to P1, which is omitted in reality, since it is sending a message
to itself. P3 stores this message in its transcript.

verification to the end of the computation phase allows us to reduce the total number or
redundant messages that are sent. This new simulation strategy crucially relies on the weak
active privacy of Π, since we are now allowing the adversary to misbehave up to the opening
phase without aborting the protocol execution.

The first phase of COMPnew, where all parties agree on their inputs and random tapes,
is identical to that of COMPold and is thus equally efficient. In the second phase, our new
simulation approach works by selecting one arbitrary real party Pi in each virtual party
Pj to be the brain Bj := Pi of that virtual party. The brains will act on behalf of their
corresponding virtual parties in an optimistic fashion and execute the computation phase of
Π up to the opening phase. All other real parties, the pinkies, will receive the messages that
their corresponding virtual parties should receive, which enables them to follow the protocol
locally. However, the pinkies will not send any messages during the computation phase. They
will only become actively involved in the opening phase to ensure that all brains behaved
honestly during the computation phase. Once correctness is ensured, all parties will jointly
perform the opening phase of Π. During the computation phase of Π, whenever virtual party
Pi is supposed to send a message to virtual party Pj , we let Bi send one message to each
real party in Pj . The receiving real parties do not perform any checks at this moment and
just store the message. Bj will optimistically continue the protocol execution on behalf of Pj
according to Π and the received message. This simulation strategy is illustrated in Figure 3.

At the end of the computation phase, all real parties jointly make sure that for each pair
(Pi,Pj), the sending virtual party Pi always behaved honestly towards the receiving virtual
party Pj . This is accomplished by using a message checking protocol (that implements
Fcheck). If any of these checks output different, then the protocol execution is aborted.

In the opening phase, after passing the previous check, every virtual party is supposed
to send its last opening message to all other virtual parties. For each pair (Pi,Pj), all real
parties in Pi send the last message to all real parties in Pj . Every receiving party checks
that all t+ 1 received messages are consistent and aborts if this is not the case.

In our formal description, let f (x1, . . . , xn) be the n-party functionality that we want to
compute. For the sake of simplicity and without loss of generality, we assume that all parties
learn the output of the computation. Let Pi be the virtual party that is simulated by real
parties Pi, . . . ,Pi+t. Let Vi be the set of virtual parties in whose simulation Pi participates.

Let f ′ be a related n-party functionality that takes as input
(
xi1, . . . , x

i
n

)
from every Pi

and outputs f(
∑n
i=1 x

i
1, . . . ,

∑n
i=1 x

i
n). That is, every party inputs one secret share of every

original input. The functionality f ′ reconstructs the original inputs for f from the secret
shares and then evaluates f on those inputs. Let Πf ′ be a passively

(
t2 + t

)
-secure protocol

with weak privacy that securely implements Ff ′ . The formal description of our compiler
is given in Figure 4. Throughout our description we assume that honest parties consider
message that they do not receive as malicious and act accordingly.
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COMPnew (Πf ′)

Inputs: Each party Pi has input xi.

1. Input sharing:
a. Each Pi secret shares its input xi = x1

i + · · ·+ xin.
b. For 1 ≤ j ≤ n, each Pi sends

(
xji ,Pj

)
to the broadcast functionality Fbcast.

c. Each Pi receives zj :=
(
xj1, . . . , x

j
n

)
for each Pj ∈ Vi from the broadcast

functionality and aborts if any of the shares equals ⊥.
2. Randomness: Each brain Bi chooses a uniformly random string ri and sends

(ri,Pi) to Fbcast. The receiving real parties abort if they receive ⊥.
3. Computation phase: All virtual parties jointly execute the computation phase

of Πf ′ , where each Pi uses input zj and random tape ri, as follows:
Whenever Pi is supposed to send message m to Pj , the brain Bi sends m to
all Pk ∈ Pj .
Whenever Pj receives message m, all parties store the message but only Bj
continues sending messages according to Πf ′ . The pinkies locally follow the
protocol and compute the message that they would send.

4. Check: At the end of the computation phase, all parties, brains and pinkies,
jointly check that the current transcript is valid. For each pair (Pi,Pj), for each
party Pk ∈ Pj , we invoke Fcheck, where Pk acts as the receiver and Pi act as the
remaining parties. The input of Pk is the list of messages it received from Pi
and the input of all parties from Pi is the list of messages that they would have
sent. If any invocation outputs different, then the protocol execution is aborted.

5. Opening phase:
a. For each pair (Pi,Pj), all real parties in Pi send the last message of Πf ′ to

all real parties in Pj .
b. Every real party in Pj checks that all received messages are equal. If they

are it obtains the output of the computation and otherwise it aborts.

Figure 4 Formal description of our compiler.

I Theorem 1. Let n ≥ 3. Assume Πf ′ implements n-party functionality Ff ′ with
(
t2 + t

)
-

weak privacy. Then, COMPnew (Πf ′) implements functionality Ff with active security under
individual abort against t corruptions. If Πf ′ has a total bandwidth cost of ` messages, then
COMPnew (Πf ′) has a total bandwidth cost of O

(
` · t+ t2

)
messages.

Proof. Our proof closely follows the proof of [27] for the COMPold compiler. Let P∗ be the
set of corrupted real parties and let V∗ be the set of virtual parties that are simulated by at
least one corrupt real party. Let Sf ′ be the simulator of the (t2 + t)-weakly private protocol
Πf ′ . We will use this simulator to construct a simulator S for the overall actively secure
protocol COMPnew(Πf ′). The simulator S works as follows:
1. For each party Pi ∈ P∗ and j ∈ [n], the adversary Z sends (xji ,Pj) to the ideal functionality
Fbcast, which is emulated by the simulator S. For any invocation that involves a corrupted
party, the environment decides which outputs are ⊥ and which get delivered. For each
Pj ∈ V∗ and each corrupt real party in Pj , we send back (xj1, . . . , xjn), where xji is either
the share that was sent by Z if Pi is corrupt or otherwise a uniformly random share.
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2. For each corrupted party Pi ∈ P∗, we reconstruct its input as xi =
∑n
j=1 x

j
i .

3. S sends the inputs of the corrupted parties to Ff and receives back the output of the
computation z = f(x1, . . . , xn).

4. For each Pi ∈ V∗ we consider two cases. If the brain Bi is corrupted, then it chooses a
random tape ri and sends it to Fbcast, which again is simulated by S. If Bi is honest,
then the simulator picks a uniformly random ri and sends it back to Z on behalf of Fbcast.
Again, the environment can decide that some of the outputs in this step will be ⊥, which
will then be handled accordingly by our simulator.

5. At this point, we know the inputs and the random tapes of all virtual parties Pi ∈ V∗.
We can therefore compute the exact messages that we would expect from an honest party
following the protocol. We initialize the simulator Sf ′ with parties P1 . . .Pn and the set
of corrupted players V∗.

6. When Sf ′ queries Ff ′ for the inputs of the corrupted parties, we give it (xi1, . . . , xin) for
each Pi ∈ V∗.

7. We now describe how to simulate the computation phase of the protocol.
S queries Sf ′ for the messages that the honest brains send to the corrupted virtual
parties. For each message m to some Pi ∈ V∗, we send m to each corrupted real party
in Pi (unless the sender received ⊥ in one of step 1 or 4 of this simulator in which case
it sends nothing).
Z outputs the messages that the corrupt parties send to the honest ones. Since we
know the input and random tape of each corrupted party, we can see which messages
are honestly generated and which are not. Forward the message of the sending brain
to Sf ′ as the message of Pi.

8. At the end of the computation phase, we simulate the check protocol as follows. For
each pair (Pi,Pj), for each real party R ∈ Pj , we have one invocation of the functionality
Fcheck. The simulator S needs to simulate the ideal functionality towards the corrupted
parties in each invocation that involves a corrupted party. Note that the inputs of all
honest parties to each check are known from the previous part of the simulation. We,
at this point, also know whether any of the corrupted brains cheated or not and if so
which check invocation should fail. Furthermore, whenever a corrupted party sends a
value to the check functionality, we know whether it’s the correct one or not. Using
the above observations it follows that the simulator always knows how to simulate each
invocation of Fcheck and when to return different, when to return same, and when to abort
the computation.

9. If all checks passed, meaning that the adversary did not misbehave at any point in time,
then we continue the simulation. The simulator S knows all the last messages of each
corrupted party and it knows the output of the functionality z. Since the opening phase is
a linear reconstruction of the last messages, the simulator picks a uniformly last message
for each honest party under the condition that the linear combination of all last messages
results in z. The simulator faithfully executes the last step of the protocol compiler
with the corrupted parties. For any simulated honest real party that receives incorrect
messages from Z, we will instruct Ff to make this party abort. For any honest real party
that receives the correct last round messages, we instruct Ff to deliver the output of the
computation.

The simulation of the first protocol phase (steps 1-4) is perfect. The adversary sees uniformly
random shares, random tapes, or the things it sent itself just like in a real execution. The
simulation of Fbcast is identical to a real execution. The indistinguishability of the simulation
in step 6 directly follows from the security guarantees of Sf ′ . As in the real execution, we do

ITC 2020



5:12 Use Your Brain!

not send anything from real honest parties that may have aborted during the first phase.
Otherwise, in both the real and the ideal world, the protocol does not abort during the
computation phase. During the computation phase S has access to the random tapes and
inputs of the corrupted parties, thus always knows when and where cheating occurred. This
enables to correctly determine when and where the protocol would abort and simulate the
outcome of the check phase in step 8 correctly. J

Similar to [27], we proved our result for the case of active security with individual abort,
where some honest parties may terminate, while some may not. As in their work, our result
easily extends to unanimous abort with one additional round of secure broadcast.

4 Efficient Three-Party Computation

All of our protocols are fundamentally based on the seminal work of Beaver [5], who presented
a conceptually simple and clean approach for passively secure circuit evaluation. We present
two flavors of protocols. One with preprocessing and two different instantiations of the
preprocessing phase and one without preprocessing, but some light postprocessing. The
protocols that involve preprocessing have a larger total runtime, but a leaner online phase,
whereas the postprocessing protocol has a smaller overall runtime. Our protocol with
preprocessing is presented in this section and the two different preprocessing protocols are
presented in Section 5. Protocol with postprocessing is presented in Section 6.

4.1 Beaver’s Circuit Evaluation Approach
The circuit evaluation approach by Beaver [5] enables, in our case, three parties to evaluate
an arithmetic circuit f over arbitrary rings Z2m with security against two passive corruptions.
The protocol is split into a preprocessing and an online phase. During the preprocessing
phase the parties jointly generate some function-independent correlated randomness in the
form of additively secret shared multiplication triples [ai]m, [bi]m, [ci]m, where ci = ai · bi
mod 2m. In the online phase these triples are then consumed to securely evaluate some
desired function f . Beaver’s online phase works in three steps. First, all parties additively
secret share their input among the other parties. Then, all parties jointly evaluate the
circuit in a gate-by-gate fashion on the secret shared values. Additions are performed locally,
and multiplications require interaction as well as correlated randomness as explained in
Section 2.2. In the last step, the parties jointly reconstruct the secret shared values of the
output wires of the circuit. Note that the reconstruction phase is just a linear function of
the messages received during the opening phase.

I Proposition 2. Let f be an arithmetic circuit with N multiplication gates. Given N

preprocessed multiplication triples, the three-party protocol Beaverf , implements functionality
Ff with 2-weak privacy and has linear reconstruction.

4.2 Our Protocol with Preprocessing
We focus on the popular setting with three parties and one active corruption and obtain
our protocol by applying Theorem 1 to Beaver’s circuit evaluation approach. Let f be
the three-party functionality that shall be computed, where each party Pi has an input
xi ∈ Z2m . As before, let f ′ be the related three-party functionality that first recomputes
the original inputs from the additive secret shares and then evaluates f . Let N be the
number of multiplication gates in f and assume for the moment that all real parties have



H. Eerikson, M. Keller, C. Orlandi, P. Pullonen, J. Puura, and M. Simkin 5:13

COMPnew (Beaverf ′)

Inputs: Each party Pi has input xi ∈ Z2m and they all share preprocessed triples
JajKm, JbjKm, JcjKm for j ∈ {1, . . . , N}.

1. Input sharing:
a. Each Pi picks x1

i , x
2
i ← Z2m and sets x3

i = xi − x1
i − x2

i mod 2m.
b. For 1 ≤ j ≤ 3, each Pi sends

(
xji ,Pj

)
to the broadcast functionality Fbcast.

c. Each Pi receives zi−1 :=
(
xi−1

1 , xi−1
2 , xi−1

3
)
and zi+1 :=

(
xi+1

1 , xi+1
2 , xi+1

3
)
via

Fbcast and aborts if any of the shares equals ⊥.
2. Randomness: Each brain Bi chooses a uniformly random string ri and sends

(ri,Pi) to Fbcast. The receiving real parties abort if they receive ⊥.
3. Computation phase: All virtual parties now evaluate Beaverf ′ in a gate-by-

gate fashion, where each Pi uses input zi as follows:
Multiplication gates are evaluated using correlated randomness.
Other gates are executed locally.

4. Check: For each pair (Pi,Pj), we use Fcheck to verify the correctness of the
messages sent from Pi to Pj .

5. Opening phase:
a. For each output wire w, for each pair (Pi,Pj), all real parties in Pi send their

secret share of w to all real parties in Pj .
b. For all Pj , all Pk ∈ Pj check that all received are equal. If not, abort.
c. If all received shares are consistent, then reconstruct the output and terminate.

Figure 5 Three-party arithmetic circuit evaluation in Z2m with active security with abort against
one active corruption.

already shared this many replicated secret shares of multiplication triples JaiKm, JbiKm, JciKm
in a preprocessing phase5. Our concrete preprocessing protocol will be described in detail
in Section 5. Since for 1 ≤ i ≤ 3, virtual party Pi will be simulated by Pi−1 and Pi+1,
it holds that real parties holding replicated shares is equivalent to virtual parties holding
additive secret shares. This way, one can think of those replicated shares as parts of the
real parties’ inputs that have already been shared correctly among the virtual parties during
preprocessing. We state the compiled protocol COMPnew (Beaverf ′) in Figure 5.

We explicitly state the concrete communication complexity of the protocol. Addition
gates require no communication. Evaluating a multiplication gate requires sending 6 words
of m bit each. The opening phase, including the checking protocol, requires sending 5 hash
values (we choose 256 as the output of the hash) as well as the output shares giving a total
of 1280 + 4m · |out| bits for out output gates.

5 Preprocessing

During the preprocessing phase we generate replicated secret sharings of multiplication
triples c = a · b mod 2m. We describe two versions of this phase. The first is obtained
combining the preprocessing of Damgård et al. [27] with the batch verification technique of

5 The functionalities f and f ′ have equally many multiplication gates, since reconstructing the inputs
from additive secret shares does not require any multiplications.
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SingleVerify

Inputs: Shared triples JaKZ, JbKZ, JcKZ and JxKp, JyKp, JzKp with prime p > c

Interpret JaKZ, JbKZ, JcKZ as a triple in Zp.
1. Parties generate a random JrKp and open r.
2. Parties compute JeKp = rJxKp + JaKp.
3. Parties compute JdKp = JyKp + JbKp.
4. Open e, d and compute JtKp = de− rdJxKp − eJyKp + rJzKp − JcKp
5. Open JtKp and output success if t = 0 and fail otherwise.

Figure 6 Verification of triple (JaKZ, JbKZ, JcKZ) sacrificing one triple to check the other.

Ben-Sasson et al. [7]. The generation of multiplication triples is split in three steps. First,
based on Damgård et al., we optimistically generate secret shared multiplication triples over
the integers. Next, we interpret them as triples in a field Zp, for some sufficiently large prime
p, and perform the batch verification protocol of Ben-Sasson et al. to ensure that all triples
are correct. Lastly, we reduce all integer shares modulo 2m to obtain shares of multiplication
triples in our desired ring Z2m

6.
The second version is inspired by Cramer et al. [21], where MACs modulo some prime

are replaced with MACs modulo 2m+λ with 2m being the “plaintext space” and λ being
a statistical security parameter. Hence, we replace the computation modulo prime in the
correctness check with a check performed over 2m+λ, which still guarantees security. This is
efficient because we avoid the computational complexity of computing modulo primes.

5.1 [27]-style Preprocessing
Optimistic generation of a multiplication triple over the integers is straightforward. First each
party Pi uses replicated secret sharing over the integers to share random values ai, bi ∈ Z2m .
All parties jointly compute JaKZ =

∑3
i=1JaiKZ and JbKZ =

∑3
i=1JbiKZ and then use the

optimistic multiplication of replicated secret shares from Section 2.5 to compute JcKZ.
Given an optimistically generated triple JaKZ, JbKZ, JcKZ, the verification of [27] proceeds

as follows. First, optimistically generate another multiplication triple in Zp, where p is a
prime such that p > c. Then parties interpret the multiplication triple over the integers as
a triple in Zp and employ the standard technique of “sacrificing” one triple to check the
other [26]. Concretely, the authors sacrifice the triple in Zp to check JaKZ, JbKZ, JcKZ. The
check, SingleVerify, is detailed in Figure 6. The rationale behind this approach is that if the
multiplicative relation a · b = c holds over the integers, then it also holds in Zp and vice versa
since p > c and thus no wrap-around due to the modulo operation happens.

Given N optimistically generated multiplication triples JaiKZ, JbiKZ, JciKZ over the integers,
we would like to efficiently check that, for all i ∈ {1, . . . N}, the multiplicative relationship
ai ·bi = ci holds. Checking every multiplication triple separately, would require us to generate
N additional multiplication triples in Zp and perform N invocations of SingleVerify.

Instead, we use a clever verification idea of Ben-Sasson et al. [7] to verify N triples with
N additional optimistic multiplications and a single invocation of SingleVerify. The idea is to
encode all multiplication triples (a1, b1, c1) , . . . , (aN , bN , cN ) as three polynomials (f, g, h),

6 Valid multiplication triples over integers are valid modulo 2m.
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where the relation f · g = h will hold iff all multiplication triples are correct. Then we will
verify that the polynomial relation f(x) · g(x) ≡ h(x) holds.

More concretely, let f and g be degree N -1 polynomials over Zp uniquely defined as
f(i) = ai and g(i) = bi. Since, we expect h to be f · g and thus of degree 2N − 2, we
require 2N − 1 points to uniquely define it. For i ∈ {1, . . . N}, we set h(i) = ci. For
i ∈ {N + 1, . . . 2N − 1}, we set h(i) = f(i) · g(i), where the multiplication is performed
optimistically. If all multiplication triples and optimistic multiplications are correct, then
f · g = h holds and an evaluation at a random point z will always fulfill f(z) · g(z) ≡ h(z)
mod p. If, however, some multiplication triple is not valid, then f · g 6= h and the two
polynomials f · g and h can agree on at most 2N − 2 many points. This means that for a
uniformly random point z ∈ Zp, we have Pr[f(z) · g(z) = h(z) | f · g 6= h] ≤ 2N−2

|Zp| .
This algorithm relies on the fact that we can interpolate and evaluate additively secret

shared polynomials. Given shares of points JaiKp for i ∈ {1, . . . , N} of polynomial f , we
would like to evaluate f(z). Define an extension of Kronecker delta δNi (x) as

δNi (x) :=
N∏

j=1,j 6=i

x− j
i− j

=
{

1 x = i

0 x 6= i, x ≤ N
giving Jf(z)Kp =

N∑
i=1

(
δNi (z) · JaiKp

)
where f(x) is evaluated locally. Batch verification protocol is formalized in Figure 7. Its
security directly follows from the security of the preprocessing of Damgård et al. and the
batch verification protocol of Ben-Sasson et al. Let ΠTriple be the resulting preprocessing
protocol that first optimistically generates N triples over the integers, then executes the
batch verification, and finally reduces all shares modulo 2m.

5.2 [21]-style Preprocessing
As in the previous subsection, optimistic generation of a multiplication triple is straightforward.
This time, the parties (using replicated secret sharing), generate random sharings JxKm,λ,
JyKm,λ and then use the optimistic multiplication protocol to compute JzKm,λ.

We present a verified multiplication protocol in Z2m where, in order to mitigate zero
divisors, most of the computation is executed in Z2m+λ for a statistical parameter λ. The
techniques used in this approach are inspired by the protocol SPDZ2k [21]. However, here
they are used in a very different context, since SPDZ2k is a protocol for the dishonest majority
case (and therefore their preprocessing phase requires expensive public-key operations), while
our honest majority protocol can be instantiated using only cheap arithmetic operations.

Figure 8 presents the core of our protocol with replicated sharing with redundant shares.
The protocol uses the sacrifice step of the MASCOT protocol [34]. Note that generating
the share of a and the value r can be done non-interactively using PRSS. We now evaluate
the properties of our protocol. The correctness follows from the correctness of optimistic
multiplication and that the fact that rz + c− ey = rxy + ay − (rx+ a) · y = 0 mod 2m+λ.

Assuming that all openings are verified using Fcheck (which ensures that a corrupt party
cannot send different shares to different parties), the corrupt party can only deviate by adding
an additive error in the optimistic products. We define the (potential) errors as z = xy + εz
and c = ay+εc. If the input tuple JxKm,λ, JyKm,λ, JzKm,λ is incorrect then we have that εz 6= 0
mod 2m. Inserting into the check equation, we get rxy+ rεz + ay+ εc − (rx+ a)y = rεz + εc
mod 2m+λ. Here rεz mod 2m+λ is uniform in a set of at least size 2λ as r is a uniformly
random λ-bit number. Since the εc is chosen by the adversary before r is sampled, the
adversary will be able to make the protocol accept an incorrect tuple with probability at
most 2−λ. This argument corresponds to the proof of Claim 6 of [21].
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BatchVerify

Inputs: N preprocessed triples JaiKZ, JbiKZ, JciKZ for i ∈ {1, . . . , N} over the integers.
And a uniformly random triple JxKp, JyKp, JzKp in Zp.

InterpretJaiKZ, JbiKZ, JciKZ as a triple in the field Zp for a sufficiently large prime p.
1. For i ∈ {1, . . . , N}, define Jf(i)Kp := JaiKp and Jg(i)Kp := JbiKp.
2. For i ∈ {N + 1, . . . , 2N − 1}, evaluate

Jf(i)Kp :=
N∑
j=1

(
δNj (i) · JajKp

)
, and Jg(i)Kp :=

N∑
j=1

(
δNj (i) · JbjKp

)
3. For i ∈ {1, . . . , N}, define Jh(i)Kp := JciKp.
4. For i ∈ {N + 1, . . . , 2N − 1}, compute Jh(i)Kp = Jf(i)Kp · Jg(i)Kp optimistically.
5. Parties generate a random JzKp and open z.
6. Parties evaluate the polynomials at z:

JαKp = Jf(z)Kp :=
N∑
j=1

(
δNj (z) · Jf(j)Kp

)
, JβKp = Jg(z)Kp :=

N∑
j=1

(
δNj (z) · Jg(j)Kp

)
JγKp = Jh(z)Kp :=

2N−1∑
j=1

(
δ2N−1
j (z) · Jh(j)Kp

)
7. Test SingleVerify (JαKp, JβKp, JγKp, JxKp, JyKp, JzKp).

Figure 7 Batch verification of multiplication triples.

SPDZ2k -like check for correct multiplication

Inputs: Shared triple JxKm,λ, JyKm,λ, JzKm,λ

1. Parties generate a random JaKm,λ and execute an optimistic multiplication with
(JaKm,λ, JyKm,λ) to get JcKm,λ.

2. Parties jointly generate a random r ∈ Z2λ .
3. Parties reveal JeKm,λ = rJxKm,λ + JaKm,λ.
4. Parties output the result of the equality check rJzKm,λ + JcKm,λ − eJyKm,λ

?= 0

Figure 8 Verification of a triple using redundant J·Km,λ sharing.

Similarly to other uses of this style verification, the check can be batched for an arbitrary
number of triples. Batching makes the cost for generating the random number r negligible.
Furthermore, the communication for the final step can be reduced: the parties hold {Jx(j)Km}
and would like to check if x(j) = 0 for all j, every party Pi computes x(j)

i = 0−x(j)
i−1−x

(j)
i+1. All

parties then hash {x(j)
0 , x

(j)
1 , x

(j)
2 }∀j and broadcast their result. If there is a mismatch, they

abort. With these two optimizations, the asymptotic communication per triple is determined
by the two optimistic multiplications and the opening of e. All involve sending one m+ λ-bit
value to one other party, so we arrive at 3(m+ λ) bits per party and multiplication. If the
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Protocol with Postprocessing

Input Each party Pi has input xi.

1. Each party Pi secret shares its input xi using the secret sharing with redundant
shares as described in Section 2.4 to obtain JxiKm,λ.

2. All parties jointly evaluate the circuit, where multiplications are performed
optimistically as described in Section 2.3. Let {(JxiKm,λ, JyiKm,λ, JziKm,λ)}i∈[N ]
be the set of all the performed multiplications, where xi, yi are the left and right
inputs and zi is the output of the i-th multiplication.

3. For i ∈ [N ], compute a random JaiKm,λ and optimistically compute JciKm,λ =
Jyi · aiKm,λ.

4. All parties generate a random value r ∈ Z2λ .
5. Parties open JeiKm,λ = rJxiKm,λ + JaiKm,λ
6. For each i ∈ [N ] the parties check rJziKm,λ + JciKm,λ − eiJyiKm,λ

?= 0
and abort if any of these checks fails.

7. If all checks passed, then the parties jointly open the outputs of the circuit.

Figure 9 Protocol for secure circuit evaluation that does not require a preprocessing phase.

protocol is used for preprocessing there are another m bits sent per party and multiplication
during the online phase, otherwise 3(m + λ) is the total cost per multiplication. For the
common choice of m = 64 and λ = 40, this gives a total of 312 bits.

6 Protocol with Postprocessing

Our postprocessing protocol is similar in spirit to our [21]-style preprocessing protocol in
Section 5.2. We use similar building blocks, but in a different order, which allows us to reduce
the total computation time at the cost of a slightly more expensive online phase. We describe
our protocol in Figure 9 for the three party setting. For the sake of simplicity we describe
the protocol with separate checks for each multiplication gate, but optimizations like the
batch verification described in Section 5.2 can be applied equally well to this protocol. The
security proof for the protocol is completely analogous to the security proof in Section 5.2.

7 Implementation and Evaluation

To help adoption and accessibility of our protocols, we implemented them using Sharemind [9]
and the MP-SPDZ framework [29]. We provide extensive benchmarks in both LAN and
WAN settings for both implementations as well as a theoretical analysis of the asymptotic
communication. Throughout this section, we use a statistical security parameter λ = 40.

Sharemind already supported semi-honest computation in Z232 and Z264 . We added
[27]-style preprocessing with BatchVerify from Section 5.1 and postprocessing from Section 6.

MP-SPDZ already supported replicated secret sharing in Z264 and Zp as well as the
protocol for Zp by Lindell and Nof [35]. Its use of C++ templating easily allows to add
new protocols reusing existing components, and it provides an efficient implementation of
Z2k arithmetic for any k. It also uses Montgomery representation for arithmetic modulo
a prime. We have added the following protocols: [27]-style preprocessing with SingleVerify
from Section 5.1, cut-and-choose preprocessing of triples similar to Araki et al. [3] (simple
version), and [21]-style preprocessing as well as postprocessing from Section 5.2.
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Table 1 Communication bits per party for Z264 multiplication.

Offline Online Total

DOS18 preprocessing (single) 992 128 1120
DOS18 preprocessing (batch) 464 128 592
ABF+17 preprocessing (simple) 448 128 576
CDE+18 preprocessing 312 128 440
Postprocessing - 312 312
Semi-honest - 64 64

Malicious ASTRA [19] 448 85 553

7.1 Communication
Table 1 shows the communication complexity per multiplication in Z264 with the various
protocols for λ = 40. While the numbers are obtained from running the protocols in batches
of at least one million with rounding, they match the asymptotic cost one would expect
from a manual analysis. For comparison, we have added the figures reported in a recent
concurrent work by Chaudhari et al. [19] (averaged over the parties because their protocol is
asymmetric) that also considers honest majority three party case.

One optimistic multiplication in Z2m requires sending m bits, and using Beaver multi-
plication in the data-dependent phase requires opening two masked values, thus sending 2m
bits. A CDE+18-style sacrifice [21] requires two optimistic multplications and one opening
in Z2m+λ , while simple ABF+17 [3] asymptotically requires three optimistic multiplications
and two classic sacrifices that require two openings each.7 This comes down to 7m bits.8
Finally, DOS18 preprocessing [27] with SingleVerify requires two optimistic multiplications in
Zp and two openings in Zp as well as sending two (m+ λ)-bit values for sharing over the
integers, totalling in 2(m+ λ) + 3 log p bits. It roughly holds that log p > 7 + 2m+ 3λ, so for
our choice of parameters log p > 255.9 The slight difference to the figure in the table comes
from rounding up to multiples of eight. Using BatchVerify in Figure 7 allows to avoid the
openings in Zp, bringing the complexity to slightly more than ABF+17 preprocessing.

7.2 Benchmarks
We have run our implementations in SIMD fashion, that is, combining the communication of
a varying number of multiplications in as few network messages as possible. All benchmarks
in this section are averages over ten executions. Unsurprisingly up to a certain number the
throughput increases. Figure 10a shows our benchmarks for various numbers of parallel
multiplications in a LAN (AWS c5.9xlarge instances in the same region). We have 36
virtual CPUs, 72 GiB of RAM, and 10 Gbit/s network network connection. The figure for
cut-and-choose is limited to 1048576 because the analysis by Araki et al. [3] mandates batches
of at least this size. The plot shows that all malicious protocols perform similarly except the
[27] protocol, and that the postprocessing protocol is slightly ahead as we expected.

7 Because of cut-and-choose we cannot use the trick used for DOS18-style sacrificing.
8 The more sophisticated preprocessing of Araki et al. [3] would cost 5m, which is still slightly more than
a CDE+18-style sacrifice.

9 According to Damgård et al. [27], p > 100 · 22m+2λ, but a quick recalculation of 24 · B22λ with
B = 2m+λ+1 shows that it should be 3λ instead of 2λ in the inequality for p.
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Figure 10 Comparison of 64-bit multiplication throughput (multiplications/s).

Figure 10b shows our benchmarks for various numbers of parallel multplications in a
continental WAN, that is one AWS c5.9xlarge instance in each of Frankfurt, London, and
Paris. The results mirror the results in the LAN setting except for the fact that 220 parallel
multiplications perform better than 215 for all protocols. This is most likely because of the
increased network delay of up to 12 ms. Finally, Figure 10c shows benchmarks for a global
WAN, that is one AWS c5.9xlarge instance in each of Frankfurt, Northern California, and
Tokyo. The largest network latency we observed is 236 ms in this setting.

We generally found that our protocols do not use all bandwidth that is available. Fig-
ure 10d supports this by showing that increasing from a single thread to 128 increases the
output while keeping same the number of parallel multiplications.

7.3 Comparison with Other Implementations
We provide a comparison with the most relevant previous implementations. The concurrent
work of Choudhary et al. [19] does not provide throughput of multiplications for their offline
phase, only for more complex computation such as AES evaluation. It is therefore hard to
compare their implementation to ours. Furthermore, AES evaluation does not lend itself to
computation in Z2k for k > 1, which makes a rather odd benchmark in this setting.

Three party honest majority actively secure multiplication with 61-bit Mersenne field
is implemented in [20] where they measure that a circuit with 106 multiplication gates and
depth 20 can be evaluated in 0.3 seconds in a single AWS region (presumably 10 Gbit/s
networks). This amounts to a throughput of 3.3 million multiplications per second, while our
postprocessing protocol with Sharemind in a LAN achieved 2.9 million for a slightly smaller
batch size that 106/20. This shows that our protocol is competitive despite the extra effort
needed for rings as compared to fields.
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For a 31-bit prime, [16] report a throughput of 1.7 million multiplications per second for
the computation of their verification protocol on a single core of an AWS c5.9xlarge instance
(s = 128 in Table 3 ibidem). In comparison, we achieve 2.9 million in a LAN setting including
communicatio). In the WAN settings we benchmark below 1 million (continentally) or 0.2
million (globally). Also, note that their verification protocol for Z264 requires computation
in the ring (Z264)[X]/f(X) with f being a polynomial of degree 47 while the benchmarked
protocol for fields does not require an extension field. It is therefore likely that the throughput
of their protocol for Z264 is significantly lower.

The batchwise multiplication verification is optimized in [37]. The authors estimate that
their computation optimizations achieves up to 107 two-party verifications per second using
multithreading for 64-bit primes and up to 5 · 106 with 128-bit prime. Their estimations are
based on their implementation of the computations, they do not benchmark the protocol with
communication. From a conceptual point of view, [37] uses similar verification as our batch
verification, hence their work indicates that our implementation might also benefit from more
optimized field arithmetic. However, we still need to use larger fields to accommodate the
integer secret sharing meaning we need more communication to achieve triples modulo 2k of
the same length as their modulo prime triples.
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A Security Definitions

We define security using the UC framework of Canetti [17]. Protocols proven secure in
this framework retain security even when composed arbitrarily and executed concurrently.
Concretely, we use a flavour of the classical UC framework, proposed in [22]. We provide a
short summary of the security framework here and refer the reader to [22] for more details.
Security is defined by comparing a real and an ideal interaction. In the ideal interaction, we
have a trusted party, called the ideal functionality F , that receives inputs from all parties,
computes the desired function, and returns the result to the parties. In the real interaction,
the parties do not have F , but rather interact with each other according to some protocol
description Π. The protocol Π may make use of some other auxiliary ideal functionality
G. In both interactions, the environment Z chooses the inputs of all parties and acts as an
adversary that may corrupt some subset of the parties passively or actively. We say that
Π securely realizes F if an adversary in the real world can not do “more harm” than an
adversary in the ideal world. Concretely, we require the existence of a simulator S, aka.
ideal world adversary, that simulates Z’s view of a real interaction. S simulates the views
of the corrupted players, the interaction with auxiliary functionality G, and it may interact
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with F . At the end of a protocol execution Z outputs a single bit. Let IDEALλ[Z, S,F ]
and REALλ[Z,Π,G] be the random variables that represent Z’s output bit in the ideal and
real execution, respectively. We say that Π securely realizes functionality F , if Z cannot
distinguish real interaction from communicating with the simulator S.

I Definition 3. Π securely implements functionality F with respect to a class of environments
Env in the G-hybrid model, if there exists a simulator S such that for all Z ∈ Env we have

|Pr[REALλ[Z,Π,G] = 1]− Pr[IDEALλ[Z, S,F ] = 1]| ≤ negl(λ) .

We capture different security notions by specifying the environments. For passive security
the environment Z can corrupt up to t parties. Z gets full read-only access to the corrupted
parties internal tapes. All parties follow the protocol honestly. The simulator S is allowed
to ask the ideal functionality F for the inputs of the corrupted parties. For active security
the environment Z is allowed to corrupt up to t parties. Z gets full control of the corrupted
parties. Once the ideal functionality F received inputs from all parties, it computes the
output and sends it to Z. The environment sends back a bit indicating whether the parties
should obtain the output or ⊥. A slightly weaker notion known as active security with
individual abort allows the adversary to specify which honest parties abort and which do not.

We use the definition of weak privacy against active adversaries [32, Definition 5.11] (a
slight variant of the same property was defined under the name “active privacy” in [38]),
which captures the security properties offered by many existing protocols [6, 5] that follow
the compute-then-open paradigm. These protocols are split into a computation and opening
phase. The computation phase consists of multiple rounds of interaction, whereas the opening
phase requires a single round of communication. Intuitively, weak privacy says that an active
adversary cannot learn anything until the opening phase, and this is captured saying that
there exists a simulator that can simulate the truncated view of the protocol up to the
opening phase without having access to the inputs or outputs of any honest parties. Finally,
these protocols are “linear”, meaning that the output of the parties in the protocol is a linear
function of the messages sent in the opening phase.
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