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—— Abstract

Leakage-resilient secret sharing has mostly been studied in the compartmentalized models, where
a leakage oracle can arbitrarily leak bounded number of bits from all shares, provided that the
oracle only has access to a bounded number of shares when the leakage is taking place. We start a
systematic study of leakage-resilient secret sharing against global leakage, where the leakage oracle
can access the full set of shares simultaneously, but the access is restricted to a special class of
leakage functions. More concretely, the adversary can corrupt several players and obtain their
shares, as well as applying a leakage function from a specific class to the full share vector. We
explicitly construct such leakage-resilient secret sharing with respect to affine leakage functions and
low-degree multi-variate polynomial leakage functions, respectively. For affine leakage functions,
we obtain schemes with threshold access structure that are leakage-resilient as long as there is a
substantial difference between the total amount of information obtained by the adversary, through
corrupting individual players and leaking from the full share vector, and the amount that the
reconstruction algorithm requires for reconstructing the secret. Furthermore, if we assume the
adversary is non-adaptive, we can even make the secret length asymptotically equal to the difference,
as the share length grows. Specifically, we have a threshold scheme with parameters similar to
Shamir’s scheme and is leakage-resilient against affine leakage. For multi-variate polynomial leakage
functions with degree bigger than one, our constructions here only yield ramp schemes that are
leakage-resilient against such leakage. Finally, as a result of independent interest, we show that our
approach to leakage-resilient secret sharing also yields a competitive scheme compared with the
state-of-the-art construction in the compartmentalized models.
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1 Introduction

Secret sharing, introduced independently by Blakley [11] and Shamir [42], is a fundamental
cryptographic primitive with far-reaching applications; e.g., a major tool in secure multiparty
computation (cf. [19]). The goal in secret sharing is to encode a secret s into a number
of shares cy,...,c, that are distributed among a set [n] = {1,...,n} of players such that
the access to the secret through collaboration of players can be accurately controlled. An
authorized subset of players is a set A C [n] such that the shares with indices in A can be
pooled together to reconstruct the secret s. On the other hand, A is an unauthorized subset
if the knowledge of the shares with indices in A reveals no information about the secret. The
set of authorized and unauthorized sets define an access structure, where the most widely
used is the so-called threshold structure. A threshold secret sharing scheme is defined with
respect to a threshold t and satisfies the following property: Any set A C [n] with |A| <t is
an unauthorized set and any set A C [n] with |A| > t is an authorized set. Threshold secret
sharing with threshold t is also called t-out-of-n secret sharing. Any threshold secret sharing
scheme sharing m-bit secrets necessarily requires shares of length (in bits) at least m, and
Shamir’s scheme attains this lower bound [44]. The information ratio defined as the ratio of
the secret length to the maximum share length measures the storage efficiency of a secret
sharing scheme.

Leakage-resilience of secret sharing considers an adversary that has certain form of extra
information about the shares beyond the unauthorized sets of shares and studies how to keep
the secret remain private. Dziembowski and Pietrzak [23] developed an n-out-of-n intrusion-
resilient secret sharing scheme using methods from the bounded retrieval model. The shares
of such secret sharing schemes are made artificially large so that protocols with bounded
communication complexity can not retrieve them completely. The reconstruction procedure
is interactive requiring the players to exchange r short messages, while the adversary can
also attack in rounds but is restricted to at most » — 1 rounds. The idea is to exploit the
fact that there exist functions which can be efficiently computed interactively using low
communication complexity in 7, but not in » — 1 rounds. Davi, Dziembowski and Venturi
[20] constructed the first 2-out-of-2 secret sharing scheme that statistically hides the secret
even after an adaptive adversary executes an arbitrary leakage protocol on the two shares
with bounded communication. The relation of their scheme to a 2-out-of-2 intrusion-resilient
secret sharing is that the reconstruction of intrusion-resilient secret sharing needs to access
only small part of the share while their scheme does not have such restriction.
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Study of leakage-resilience of secret sharing has recently gained general attention. Ben-
hamouda, Degwekar, Ishai and Rabin [10] initiated a systematic investigation on the leakage-
resilience of secret sharing in the local leakage model. The adversary in the local leakage
model non-adaptively obtains a bounded number (less than t— 1) of full shares and leaks from
all the other shares individually, each share using an arbitrary leakage function bounded only
by its output length. The authors focus on investigating whether standard secret sharing
schemes, such as additive secret sharing and Shamir’s scheme are already leakage-resilient
with respect to such local leakage. They showed that these t-out-of-n secret sharing schemes,
if the base field is a large prime, are leakage-resilient for some limited parameter settings.
This is in sharp contrast to the results of Guruswami and Wootters [29] from an orthogonal
study of Reed-Solomon codes as self-repairable codes, which translated into the setting
of leakage-resilient secret sharing effectively shows that by leaking one bit using a linear
function from each share, the secret of Shamir’s scheme over finite field with characteristic 2
can be completely reconstructed. While starting with standard secret sharing schemes has
the advantage of inheriting the nice algebraic structure and optimality (information ratio 1)
from those schemes, the large prime field requirement for the choice of base field and the
limited available leakage parameters are limiting the applications of such leakage-resilient
secret sharing schemes. Concurrently and independently, Goyal and Kumar [27], motivated
by the task of constructing non-malleable secret sharing, a new primitive of tamper-resilient
secret sharing they put forward (see more details in Related works), constructed a 2-out-of-n
leakage-resilient secret sharing scheme in the local leakage model through building up from
a 2-out-of-2 leakage-resilient secret sharing scheme, which is in turn constructed from the
inner product function. The authors showed that the same 2-out-of-n leakage-resilient secret
sharing scheme is in fact leakage-resilient against a slightly stronger leakage adversary than
the one in the local leakage model, as they took their non-malleable secret sharing results to
general access structures and hence need the strengthened local leakage model [28]. Since
then leakage-resilient secret sharing in the local leakage model is widely studied mostly with
connection to non-malleable secret sharing [7, 43, 1]. Most of the known constructions of
leakage-resilient secret sharing take a compiler approach with various features to transform a
secret sharing scheme into a leakage-resilient one. Note that in this approach, local leakage-
resilience is enabled through pumping independent randomness into each share and hence the
obtained schemes do not have full reconstruction [38], which is a property that requires shares
that are enough to reconstruct the secret also uniquely reconstruct the full share vector.
The advantage of secret sharing without full reconstruction is that one can pump unlimited
independent randomness into each share and allow the adversary to leak unlimited amount
of information except some finite amount (hence it is possible for the scheme to tolerate
asymptotic leakage rate 1) [7, 43]. On the other hand, the extra independent randomness
eventually results in a bigger share size than necessary (small information ratio).

The local leakage adversary considered by Srinivasan and Vasudevan [43] is partially
adaptive in the sense that for t-out-of-n threshold schemes, the choice of each local leakage
function can be based on the value of the t — 2 shares. Kumar, Meka, and Sahai [31] proposed
an adaptive joint leakage model as opposed to the non-adaptive and partially adaptive local
leakage models. They defined a bounded collusion protocol as a communication complexity
problem that is tailored for secret sharing. A t — 1-bounded collusion protocol is one that
runs in multiple rounds, each round involves at most t — 1 players and the output of that
round can depend on the inputs of the involved players and all previous transcript. This
can be seen as a generalisation of the communication complexity problem for the 2-out-of-2
secret sharing of [20]. Faonio and Venturi[25] (under computational assumption) considered
a noisy leakage model that, instead of bounding the output length of the leakage functions,
bounds the min-entropy of the share conditioned on the output of the leakage function.
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All the leakage models mentioned are more or less based on a compartmentalized assump-
tion that assumes the adversary does not have access to the full share vector at one time,
while nevertheless allows the adversary to apply arbitrary leakage functions to the set of
shares that are accessed. In this work, we are mainly interested in leakage-resilience of secret
sharing against global type of leakage, where a leakage adversary can access the full set of
shares simultaneously, but is restricted in the type of access that is admissible. Bogdanov,
Ishai, Viola and Williamson [12] obtained several instances of leakage-resilient secret sharing
in such global leakage models (see more details in Related works). For example, it is shown
that Shamir’s scheme over finite fields of characteristic 2 is leakage-resilient against constant
depth polynomial size circuits (AC?) and sign polynomials of degree 2, unless the threshold
t is at most polylogarithmic in n. But as mentioned before, these schemes are not leakage
resilient against (local) linear leakage [29]). As far as we know, this is the only previous work
that studies global leakage-resilience of secret sharing.

Our contributions. We start a systematic study of Leakage-Resilient Secret Sharing (LR-
SS) with respect to a class £ of global leakage functions. To stay compatible with the well
established local leakage models, we define a (L, 3,0, ¢)-leakage resilient t-out-of-n secret
sharing scheme. The parameter 3 is the bound on the total amount of leakage (measured
in bits) through leakage functions chosen from L. The parameter 6 is the bound on the
number of corrupted players. The parameter ¢ is the leakage-resilience error (measured in
statistical distance). We see that if we define a class Ljoca of functions that mimic a local
leakage adversary that leaks ¢ bits arbitrarily from each share, then we recover the local
leakage model as a (Liocal, £(n — ), 8, £)-leakage resilient t-out-of-n secret sharing scheme. We
focus on the case when the share is an element of a finite field I, of characteristic 2, which is
of greater practical importance. We also consider adaptive as well as non-adaptive adversary,
which distinguishes between the cases where the adversary can or can not base the subsequent
leakage on previously obtained transcript. The exposition is focused on t-out-of-n secret
sharing and all schemes constructed satisfy the full reconstruction property, in particular,
any t shares determine the value of the remaining n — t shares. We place a special emphasize
on achieving the best possible leakage tolerance as well as optimal information ratio, for
some cases.

We start with the class Lafine of affine leakage functions over Fy. This class of leakage
functions is interesting because of the following. In practice, the shares of a secret sharing
scheme are to be sent to the players in private. Suppose we send the shares over a network
and some of the packets sent by intermediate servers are leaked. If only routing is used, we
have the compartmentalized model where individual packets are observed by the adversary.
Suppose in a real-life application where the network is utilizing linear network coding [26],
then effectively we are going to have global affine leakage. Another example is the type of
leakage for Shamir’s scheme over finite field of characteristic 2 implied in the result of [29].
It is in effect a subset of the linear leakage functions, which is in turn subsumed by affine
leakage functions. Our results for affine type of leakage are summarized as follows.

» Theorem (informal summary of Theorem 14 and Theorem 17). Let Lafine be the class of
affine leakage functions over Fy. Let 0 < € <1 be any real number. There is a t-out-of-n
secret sharing scheme over F, that is simultaneously (Lafine, 5,0, €)-leakage resilient for all
0<B8<(t=¢&logq and 0 € {0,1,...,t—1} such that 0+ logq < t—¢&, where the share size q
is a large enough power of 2 and the secret length m = Q(log q). In particular, if the adversary

is non-adaptive, the result can be strengthened to have secret length m = £log q — o(log q).
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The leakage tolerance in the above construction is the best one can hope for in the
following sense. The amount of information given to the adversary is (t — &) log ¢ bits in total
(0 shares through corrupted players and /3 bits through global leakage) while with tlog ¢ bits
of information the secret (in fact the full share vector) can be completely reconstructed. Our
results show that as long as & > 0, we can construct a t-out-of-n secret sharing scheme with
constant information ratio that is universally leakage-resilient against affine leakage for all
combinations of 8 and 6 as long as the total amount satisfies 8logq + 5 < (t — £) logg.

The strengthened result in the case of non-adaptive adversary is furthermore optimal in
the sense that the asymptotic information ratio is exactly . For example, let £ = 1. We have
a t-out-of-n secret sharing scheme with asymptotic information ratio 1. As a plain secret
sharing scheme, this scheme is almost as good as the Shamir’s secret sharing scheme, except
that Shamir’s scheme has perfect privacy ¢ = 0 and information ratio exactly 1. On the
other hand, Shamir’s scheme over finite field of characteristic 2 is not leakage-resilient against
even leaking one bit from each share using a linear leakage function [29], while our scheme is
universally leakage-resilient against affine leakage for all combinations of 8 and € as long as
the total amount of information given to the adversary satisfies 6logg+ 58 < (t — 1) loggq.

We venture a little bit further and explore leakage-resilience of secret sharing against
stronger algebraic type of global leakage. These leakage models can occur in more soph-
isticated applications of secret sharing schemes such as the secure multiparty computation.
Private inputs from the participants are protected by secret sharing schemes and algebraic
computations on the private inputs are done through computations on the individual shares.
Leakage that occurs throughout the duration of the computation is a good example for global
multi-variate polynomial leakage model.

Let L4-poly denote the class of multi-variate polynomials with degree at most d over Fs.
The LR-SS with respect to L4-poly We construct is a slightly weaker form of t-out-of-n secret
sharing called ramp scheme. There is a second threshold called privacy threshold t — g and
the gap between the two thresholds is denoted by g. When g = 1, we recover the threshold
scheme. For ramp schemes, it is possible to share a secret longer than the share length.

» Theorem (informal summary of Theorem 20). Let Lypoy be the class of multi-variate
polynomials over Fy with degree at most d. Let g be an integer satisfying & > 1 — é, where
ca = O(d?4%) is a constant determined by d. There is a t-out-of-n secret sharing scheme over
F, with threshold gap g over the finite field Fy that is simultaneously (La-poly, 3,6, €)-leakage
resilient for all § = (logq)¢ and 0 <t — g satisfying 0 < ¢ <t — g — 0, where the share size

q is a large enough power of 2 and the secret length m = Q(logq).

The threshold gap g in the above result is mostly bigger than 1. We note that smaller
threshold gap can be achieved using our construction if a building block of better parameters
is constructed in the future.

Finally, as a result of independent interest, we consider an instantiation of our generic
construction for global leakage to obtain LR-SS in local leakage model with a partially
adaptive adversary (currently strongest local leakage model) [43]. It is known that the
number of full shares from corrupted players that a partially adaptive adversary has before
the leakage functions are chosen is at most t — 2 !. Our LR-SS allow the number 6 of

1 As argued in [43], based on t — 1 shares, the partially adaptive adversary can invoke the reconstruction
algorithm to define a leakage function that takes a new share (not among the t — 1 shares) as input,
pooling with the t — 1 shares to reconstruct the secret, and outputs one bit of the secret.

7:5
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=== MDS — MDS

Figure 1 Shamir’s scheme versus our generic construction.

corrupted players to be equal to t — 1. But due to the known impossibility result, when
0 =t — 1, the partially adaptive adversary is required to choose leakage functions base on at
most t — 2 out of the t — 1 corrupted players.

» Theorem (informal summary of Theorem 24). Let Liocal be the class of local leakage functions.
Let £ > 0 be a small real number. There is a t-out-of-n secret sharing scheme over F,
that is simultaneously (Liocal, B, 0, €)-leakage resilient against a partially adaptive adversary

that corrupts 6 players for 8 € {0,1,...,t — 2} and, based on the shares of the 0 players,
chooses n — @ arbitrary leakage functions each leaks £ = % bits for the remaining
n — 0 shares, where the share size q is a large enough power of 2 and the secret length

m= 15—55 logq — o(log q). When 6 =t — 1, the partially adaptive adversary can only choose

the n —t + 1 arbitrary leakage functions based on t — 2 shares

Our scheme achieves positive information ratio, which is an absolute constant, while the
scheme in [43] achieves information ratio 2(1/n), which depends on n. On the other hand,

when 6 =t — 1, our scheme achieves an asymptotic leakage rate of % = ﬁ7 while the

scheme in [43] achieves asymptotic leakage rate 1, which is only possible for LR-SS without
1

n—t41

is close to the optimal ﬁ, according to the bound developed for local leakage model LR-SS

full reconstruction. For LR-SS with full reconstruction, the asymptotic leakage rate of

that satisfy full reconstruction property [38].

Technical overview. All these results are obtained from a generic construction that can
be interpreted as follows. We preprocess the secret and the randomness of the sharing
algorithm of Shamir’s scheme over finite field of characteristic 2 before inputting them into
the sharing algorithm to enable leakage-resilience. As illustrated in Figure 1, Shamir’s
scheme can be seen as directly concatenating the secret (as a finite field element of Fom)
with t — 1 independent uniformly random finite field elements of Fom and multiply with a
t x n Maximum Distance Separable (MDS) matrix over the finite field Fam. Our construction
is to input the m bits secret as binary string and the m(t — 1) bits independent uniform
randomness into the inverter of an invertible randomness extractor to obtain an mt bits
output, which is then interpreted as a vector in F5,, and multiply with the t x n MDS matrix
over the finite field Faym.

A randomness extractor takes an entropy source as input and output a close to uniform
distribution over a smaller space. For structured entropy source, for example, the source
is a flat distribution over an affine subspace of the universal space {0,1}", there exists a
single function that turns any such source distribution with enough entropy into a close to
uniform distribution over {0,1}"™. Such extractors are called seedless extractors. On the
other hand, for arbitrary entropy source, we need a family of functions that are labeled by
seeds and uniformly choose one function among them to extract from such entropy source.
These extractors are called seeded extractors. A seeded extractor is strong if given a source
distribution, almost all functions in the family can extract close to uniform output from it. A
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seedless extractor is called invertible if there exists an efficient function (called inverter) that
takes a vector in {0,1}™ and some randomness as input and outputs a random pre-image in
{0,1}". A seeded extractor is invertible if all the functions in the family are invertible. The
inverter of a seeded extractor first samples a uniform seed and then use the inverter of the
function corresponding to the seed to invert the vector in {0,1}™.

The intuition of our generic construction illustrated in Figure 1 is that randomness
extractors can make the secret and output of the leakage functions independent, hence
provide privacy and leakage-resilience. Assume that the secret is uniform. Then the random
pre-image outputted by the inverter has uniform distribution. As long as this uniformly
distributed pre-image conditioned on the output of the leakage functions has enough entropy
(and with the right structure in the case when a seedless extractor is used), the secret remains
uniform.

Our results in this work are obtained by using different randomness extractors in the
generic construction.

Affine leakage, non-adaptive adversary.
We use a linear strong seeded extractor that extracts all the randomness. A seeded
extractor is linear if every function in the family is linear. The linearity of the extractor
function together with the fact that the source distributions induced by affine leakage
functions are flat over some affine subspaces allows us to claim that almost all functions
in the family output exactly uniform distribution. This observation plays an important
role in achieving optimal information ratio.
Affine leakage, adaptive adversary.
We use an invertible affine extractor that can extract from an arbitrary fraction of entropy
and output length is a constant fraction of the input length with exponentially small
extractor error. In fact, we additionally apply a series of sophisticated optimization
techniques to improve the parameters of the obtained scheme.
Low-degree multi-variate polynomial leakage.
There are a few challenges that have to be overcome when the degree of multi-variate
polynomials goes beyond 1. For an affine leakage function f, the number of solutions to
f(z) = a for any a that admits non-empty solutions is determined by f and independent
of the value a. This gives a natural bound on the min-entropy of a random z conditioned
on the value of f(x). When the degree is bigger than 1, we no longer have such nice
structure. We identify the average conditional min-entropy [21] as the “right” entropy
measure and use it to derive a lower bound with respect to the output length of the
leakage function. Average conditional min-entropy is usually used in combination with the
average-case strong seeded extractors. We then define a seedless analogue of average-case
strong seeded extractors and verify that the explicit seedless extractor we use in our
construction is in fact an average-case seedless extractor. We think these might have
independent interest in other application scenarios of seedless extractors. There is also
the challenge of explicitly constructing such extractors with parameters as good as affine
extractors, which we leave it as an interesting open question.

Local leakage, partially adaptive adversary.

We use an average-case strong seeded extractor with exponentially small error. Such

extractors necessarily requires a long seed. That is one of the reasons that we no longer

have optimal information ratio (in the instantiation for affine leakage non-adaptive
adversary, the seed length is negligible compared to the extractor input). There is one
more modification. The random seed chosen by the inverter of the seeded extractor is no

longer directly appended to the random pre-image to be encoded using the MDS code.
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We use a Shamir’s scheme to share this random seed into n shares. The final share of
our LR-SS consists of one MDS codeword component and one share of the random seed.
Through this modification, we are able to prove that the partially adaptive adversary is
not able to make the leakage depend on the seed, which then remains independent of the
source and leakage-resilience follows from the definition of the seeded extractor. The fact
that we are using a seeded extractor with seed length bigger than the output length may
seem counter-intuitive. But since the goal here is to provide leakage-resilience instead of
extracting randomness, we do not have to force the extractor seed to be shorter than the
extractor output.

Related works. The works most related to ours is the following. Bogdanov, Ishai, Viola
and Williamson [12] initiated the study of t-wise indistinguishability as a relaxation of the
well studied notion of t-wise independence and considered a pair of such distributions as a
statistical secret sharing scheme sharing one bit secret. Through discovering the fact that
t-wise indistinguishability implies leakage-resilience against a class of global leakage functions
with approzimate degree smaller than a quantity determined by ¢, they obtained the first
instance of LR-SS in the global leakage model. On one hand, the leakage-resilience is implied
by the privacy of the secret sharing shceme (leakage resilience for free). On the other hand,
the achieved leakage-resilience is restricted to very limited leakage functions.

As distant related works, we briefly discuss a large body of works (with many overlapping
references) on tamper-resilience of secret sharing. Goyal and Kumar [27] initiated the
systematic study of Non-Malleable Secret Sharing (NM-SS). A secret sharing is called a
NM-SS against certain type of tampering if a tampering either results in the original secret
or a random secret whose distribution depends only on the particular tampering function
that was applied and independent of the original secret. The recent interests in constructing
LR-SS is partially due to its role as an important building block in the constructions of
NM-SS. The basic tampering model for NM-SS is the independent tampering model where
each share is arbitrarily tampered independent of each other [27, 28, 43, 7, 1, 25]. The study
of NM-SS is in turn closely related to Non-Malleable Codes (NMC) proposed by Dziembowski,
Pietrzak and Wichs [24]. The independent tampering model of NM-SS is corresponding to
the split-state tampering models studied for NMC. In particular, according to [4], 2-split state
NMC’s are also 2-out-of-2 NM-SS’s [37, 22, 3, 4, 2, 15, 34, 35, 17]. Non-compartmentalized
models are well studied in the literature of NMC. Agrawal et.al [5, 6] initiated the study
of non-compartmentalized tampering models for NMC. They considered non-malleability
against permutation composed with bit-wise independent tampering, and showed that non-
malleable codes in such a tampering model transform non-malleable bit-commitments into a
non-malleable string-commitment. There have been other non-compartmentalized tampering
families studied for non-malleable codes: bounded fan-in circuits [14], affine functions [16],
small-depth circuits [8] and decision tree [9]. Our global affine leakage model can be seen as
a leakage-resilient analogue of the non-compartmentalized affine tampering model in NMC.
There is not yet a tamper-resilient analogue for our low-degree multi-variate polynomial
leakage model.

Paper organisation. The rest of the paper is organised as follows. Section 2 contains the
definitions of various randomness extractors that appear in this work. Section 3 starts with
a general definition of LR-SS that extends the local LR-SS to include the global leakage
models. It is followed by a detailed description of our generic construction. In Section 4, we
study the affine leakage models and obtain two sets of results for adaptive adversary and
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non-adaptive adversary, respectively. Section 5 is devoted to the low-degree multi-variate
polynomial leakage model. In Section 6, we extend our results to give a LR-SS in local
leakage model. We conclude our results in Section 7.

2 Preliminaries

The statistical distance of two random variables (their corresponding distributions) is defined
as follows. For X,Y + Q,

SD(X;Y) = % 37 [Pr(X = w) — Pr(Y = w)].
we

We say X and Y are e-close (denoted X ~ Y) if SD(X,Y) < e.

We use various types of randomness extractors in our constructions. Randomness
extractors extract close to uniform bits from input sequences that are not uniform but
have some guaranteed entropy. See [39] and references there in for more information about
randomness extractors.

A randomness source is a random variable with lower bound on its min-entropy, which
is defined by Hoo (X) = —log max,{Pr[X = x]}. We say a random variable X < {0,1}" is a
(n, k)-source, if Hyo (X) > k.

For well structured sources, there exist deterministic functions that can extract close to
uniform bits. An affine (n, k)-source is a random variable that is uniformly distributed on
an affine translation of some k-dimensional sub-space of {0,1}". Let U,, denote the random

variable uniformly distributed over {0,1}™.

» Definition 1. A function aExt: {0,1}"™ — {0,1}™ is an affine (k,e)-extractor if for any
affine (n, k)-source X, we have

SD(aExt(X); U,,) <e.

We will use Bourgain’s affine extractor (or the alternative [33] due to Li) in our construc-
tions.

» Lemma 2 ([13]). For every constant 0 < u < 1, there is an explicit affine extractor

aExt: {0,1}™ — {0,1}™ for affine (n,nu)-sources with output length m = Q(n) and error at

most 27N

An algebraic set is a set of common zeros of one or more multivariate polynomials defined
over a finite field. An algebraic source is a random variable distributed uniformly over an
algebraic set. Algebraic sources are a natural generalization of affine sources that have been
widely studied.

» Definition 3. A function aExt: {0,1}" — {0,1}™ is an algebraic (k,d, €)-extractor if for
any degree-d algebraic source Uy, with algebraic set V C {0,1}" and |V| > 2%, we have

SD(aExt(Uy); U,,) < e.
We will use Li and Zuckerman’s [32] recent algebraic extractors in our constructions.

» Lemma 4 ([32]). For any positive integer d, there is an efficient ((1 — é)n7 d, 279(%))_
extractor aExt: {0,1}" — {0,1}™, where cq = O(d?*4%) and m = Q).
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More generally, recognizable sources are flat distributions over sets of the form {x|f(x) =
v} € {0, 1} for functions f coming from some specified class C. The distribution Uy f(x)=v}
is called the f-recognizable source. A C-recognizable source is the set of f-recognizable
sources for each f € C.

For general (n, k)-sources, there does not exist a deterministic function that can extract
close to uniform bits from all of them simultaneously. A family of deterministic functions are
needed.

» Definition 5. A function Ext: {0,1}¢x {0,1}" — {0,1}™ is a strong seeded (k, €)-extractor
if for any (n, k)-source X, we have

SD(S, Ext(S,X);S, Un) < &,

where S is chosen uniformly from {0,1}¢. A seeded extractor Ext(-,-) is called linear if for
any fized seed S ='s, the function Ext(s,-) is a linear function.

There are linear seeded extractors that extract all the randomness, for example, the
Trevisan’s extractor [45]. In particular, we use the following improvement of this extractor
due to Raz, Reingold and Vadhan [40].

» Lemma 6 ([40]). There is an explicit linear strong (k, )-extractor Ext: {0,1}4 x {0,1}"* —
{0,1}™ with d = O(log®(n/e)) and m = k — O(d).

We will need another explicit strong seeded extractor from universal hash family for our
constructions.

» Lemma 7 ([30]). There is an explicit linear strong (3m,2~™)-eztractor Ext: {0,1}% x
{0,1}" — {0,1}™ with d = 5m.

In the applications of randomness extractors, the source does not necessarily come in the
form of one single random variable, but as a pair of random variables and we want to extract
from one of them conditioned on the other one. In this general setting, we usually need the
average min-entropy to measure the amount of available entropy for extraction.

» Definition 8 ([21]). The average conditional min-entropy Hoo (UV) of two random variables
U+ U and V <V is defined as

Hoo (U|V) = —log (Z Pr[V =] Il?e%/)l({Pr[U =ulV= v]}) .
vey

The average conditional min-entropy satisfies the following property.

» Lemma 9 ([21]). Let V < V. Then the average conditional min-entropy Hao (U|V) is lower
bounded as follows.

Hoo (UIV) > Hoo (U) — log [V].

We need an average-case strong seeded extractor to extract the average conditional
min-entropy from such a pair of random variables.

» Definition 10 ([21]). A function Ext: {0,1}¢ x {0,1}* — {0,1}™ is an average-case
strong seeded (k,e)-extractor if for any random variables X < {0,1}™ and V <V satisfying
Hoo (X|V) > k, we have

SD(S, V, Ext(S,X);S,V,U,,) < e,

where S is chosen uniformly from {0,1}4.
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Explicit constructions of randomness extractors have efficient forward direction of ex-
traction. In some applications, we usually need to efficiently invert the process: Given an
extractor output, sample a random pre-image. This is not necessarily efficient if the extractor
is not a linear function, in which case we need to explicitly construct an invertible extractor.
If the extractor is linear, sampling a random pre-image can be done in polynomial time.

» Definition 11 ([18]). Let f be a mapping from {0,1}™ to {0,1}™. For p > 0, a function
Inv: {0,1}™ x {0,1}" — {0,1}" is called a p-inverter for f if the following conditions hold:
(Inversion) Given 'y € {0,1}™ such that its pre-image f~'(y) is nonempty, for every
r € {0,1}" we have f(Inv(y,r)) =y.
(Uniformity) Inv(U,,, U,.) is p-close to U,,.
A p-inverter is called efficient if there is a randomized algorithm that runs in worst-case
polynomial time and, given'y € {0,1}™ and r as a random seed, computes Inv(y,r). We call a
mapping p-invertible if it has an efficient p-inverter, and drop the prefiz u from the notation
when it is zero. We abuse the notation and denote the inverter of f by f~1.

Finally, we need the following simple lemma whose proof can be found in the full version.

» Lemma 12. Let V,V’' be two random variables distributed over the set V and W, W’ over
W satisfying SD(V,W; V' W') < e. Let £ C W be an event. Then we have the following.

P 2e
: <
SD(VIW € &; VW' e &) < PrW' € ]

3 Leakage Resilient Secret Sharing

In this section, we define a general leakage model for secret sharing, which can be viewed as
an extension of the local leakage model proposed in [10, 27] to include non-compartmentalised
leakage models.

» Definition 13. Let t and n satisfying 2 <t < n be two integers. Let F, be the finite field
of q elements for q a power of 2. Let L be a set of Boolean functions of nlogq bits input.
Let 8 be an integer denoting the bound on the total number of bits leaked. Let 6 <t be an
integer and £ be a small positive real. A (L, f,0,¢)-leakage resilient t-out-of-n secret sharing
scheme over the finite field F, is defined by a pair of polynomial-time algorithms (Share, Rec),
where Share is a randomized mapping of an input s € {0,1}™, for m < logq, to a share
vector Sh = (Shy,...,Shy,) and the reconstruction algorithm Rec is a deterministic function
mapping a set A C [n] and the corresponding shares Sha = (Sh;);ca to a secret in {0,1}™,
such that the following properties hold:

Correctness: Rec(A,Shy) outputs the secret s for all sets A C [n] where |A| > t.
Privacy and leakage resiliency:

Non-adaptive adversary: for any pair s°,s' € {0,1}™ of secrets with share vectors Sh’
and Sh*, any A C [n] of size |A| < 0, any B functions fi € L,i=1,...,5,

SD (Leak 5(Sh”),Sh%; Leak4 5(Sh'),Sh}) <e, (1)

where LeakAﬁ(Shb) denotes the output of the Boolean functions fi,..., fg on input
Sh® forb e {0,1}. In the case when L is defined such that the input of these Boolean
functions fi,..., fa are restricted to one share and otherwise not restricted, we recover
the local leakage model.

7:11

ITC 2020



7:12

Leakage-Resilient Secret Sharing in Non-Compartmentalized Models

Adaptive adversary: for any pair s°, st € {0,1}™ of secrets with share vectors Sh® and
Sh!,

SD (LEAK(Sh, £, 3,0); LEAK(Sh', £, 3,0)) <, (2)

where LEAK(Shb,,(:,B7 0) denotes the transcript of the following interactive protocol
between the adversary A and an oracle O holding Sh®. Fori=1,....8 andj=1,...,0,

A chooses f; € L and n; € [n] based on all previous communication, and O answers
with f;(Sh®) and Shﬁj, respectively.

When 8 =0 and 0 =t — 1 is achieved, we recover the statistical privacy of a threshold
scheme. When 8 =0 and only 8 <t —1 is achieved, the scheme is a ramp scheme with
statistical privacy for privacy threshold 6.

Generic Construction

Share(-) = ECCenc(EXT1(+));
{ Rec(-) = EXT(ECCdec(-)).

The ECC is an erasure correcting code with encoder/decoder pair (ECCenc, ECCdec) and
EXT is an invertible randomness extractor with inverter EXT !,

In most of the instantiations, EXT is a seedless extractor. All the efficient extractors
mentioned in the preliminary section (if not already invertible) can be transformed into one
that is invertible, at the cost of increasing the input length, using the following method.
Let EXTy: {0,1}" — {0,1}™ be an (ng, k)-extractor with error . Let n = ng +m. Then
EXT : {0,1}™F™ — {0,1}™ defined as follows is a e-invertible (n, k + m)-extractor with
error €.

EXT(x|ly) = EXTo(x) +,
where “||” denotes concatenation. The inverter of EXT is
EXT_l(S) = (UTLOHEXTO(UHO) + S),

where the two copies of U,, denote the same random variable. In the case when EXT is a
seeded extractor, its inverter EXT ™! uniformly chooses a seed and invert according to the
function labeled by the seed. More concretely, let Ext: {0,1}¢ x {0,1}™ — {0,1}" be an
invertible seeded extractor. We use the short hand Ext,(-) = Ext(z,-) and EXT(-) = Exty,(-).
Then the inverter EXT™': {0,1}™ — {0,1}" is defined as follows.

EXT(s) = EXTg(s), Ua & {0,137

Though not explicitly reflected in the notations above, the uniform seed chosen in the process
of inverting is also recorded so that the reconstruction algorithm can correctly recover the
secret. For example, in the construction for global affine leakage (Theorem 14), the seed is
directly appended to the n-bit pre-image.

In all the instantiations, ECC is a linear Maximum Distance Separable (MDS) code over
a large enough finite field I, of characteristic 2. For example, we require the share size ¢
satisfy ¢ > n if we use a [n,t,n —t + 1], Reed-Solomon code and the input length n = tlogg
of the invertible extractor EXT should be big enough to achieve the error €.



F. Lin, M. Cheraghchi, V. Guruswami, R. Safavi-Naini, and H. Wang

4 Affine Leakage Models

In this section, we study LR-SS with respect to the class Lgrine of affine functions over Fy. We
have two instantiations of the generic construction for non-adaptive and adaptive adversary,
respectively.

4.1 Affine Leakage Non-Adaptive Adversary

We begin with an instantiation that gives optimal parameters in terms of both leakage
tolerance and information ratio, though we can only prove security against a non-adaptive
adversary.

» Theorem 14. Let Lafine be the class of affine functions over Fy. Let 0 < £ < 1 be any
real number. There is a family of t-out-of-n secret sharing schemes over F, (labeled by logq)
that is simultaneously (Laffine, 5,0, €)-leakage resilient against a non-adaptive adversary for
0<B8<(t—¢) logq and 6 € {0,1,...,t —1} such that 6 + B_ <t — ¢, where the share size

logg —
q (determined by € and satisfies ¢ > n) is a large enough power of 2 and the secret length

m = §log q — o(log q).

Proof. We instantiate the generic construction using a linear strong seeded extractor
Ext: {0,1}¢ x {0,1}" — {0,1}™ and a linear MDS code.

EXT : {0,1}™ — {0,1}™ is instantiated as follows.
EXT(x) = Ext(Ug, x),

where Ext is the linear strong seeded extractor from Lemma 6 with parameters (kg,cg).
The uniform seed sampled during inverting is directly appended to the n-bit pre-image
EXT!(s).
According to Lemma 6, there is an explicit linear strong (kg, € g)-extractor Ext: {0, 1}¢ x
{0,1}™ — {0,1}™ with d = O(log®(n/eg)) and m = kx — O(d).
ECC is a linear MDS code with parameter [n,t,n —t+ 1] over F,, where logq = dt—" The
output of ECCenc: {0,1}4T" — F? is the share vector.
Reconstruction from any t shares follows from the functionality of ECC and the invertibility
guarantee of the EXT, which insures that any correctly recovered pre-image is mapped back
to the original secret.
We next prove privacy and leakage resiliency, which will follow naturally from Lemma 15.
We first recall this general property of a linear strong extractor, which is proved in [36].

» Lemma 15 ([36]). Let Ext: {0,1}¢ x {0,1}" — {0,1}™ be a linear strong (k,e)-extractor,
{0,134+ — {0,1}* be an affine function with output length a < n — k. For any m,m’ €
{0,1}™, let (Z,X) = (Ug, Up)| (Ext(Ug, Uyp,) = m) and (Z',X") = (Ug, Up)| (Ext(Ug, U,) = m’).
We have

SD(f(Z,X); f(Z',X)) < 8e. (3)

The inverter EXT ! takes a secret, which is a particular extractor output s € {0,1}™,
and uniformly samples a seed z € {0,1}¢ of Ext before uniformly finds an x € {0,1}" such
that Ext(z,x) =s. This process of obtaining (z,x) is the same as sampling uniformly and

independently (Ug, U,,) & {0,1}9*™ and then restricting to Ext(Ug, U,,) = s. We define the
random variable pair

(Z,X) := (Ug, Uy)| (Ext(Ug, U,) =) (4)

and refer to it as the pre-image of s.
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Let IT4 : Fy — Fg be the projection function that maps a share vector to the 6 shares
with index set A C [n] and |A| = € chosen by the non-adaptive adversary. Observe that the
combination (TT4 0ECCenc) : {0,1}%+" — {0,1}(°89)9 ig an affine function. Moreover, for any
affine leakage function [ : {0,1}(1°89)" — 10 1}#, the composition (I o ECCenc) : {0,1}%+" —
{0,1}7 is also an affine function. So the view of the adversary is simply the output of the
affine function f = (II4 o ECCenc||l o ECCenc), where “||” denotes concatenation, applied to
the random variable tuple (Z, X) defined in (4).

We want to prove that the statistical distance of the views of the adversary for a pair of
secrets s and s’ can be made arbitrarily small. The views of the adversary are the outputs of
the affine function f with inputs (2%, X%) and (Z!,X) for the secret s and s!, respectively.
Let kg = n — (logq)d — 8. According to Lemma 15, we then have that the privacy and
leakage resiliency error is 8¢ .

Finally, since 6 4 log,'q <t—¢&, we have t — 6 — log,'q > £. Let d+n be a multiple of t. We
then have a family of schemes labeled by log ¢. The privacy and leakage resiliency error 8cg
is negligible in n, and hence is obviously negligible in log g. The secret length can be chosen
as follows.

m=n— (logg)0— f— O(d) = (loga)(t — 0 — %) ~o(logq) = £log g — oflog q),

where the seed length is d = O(log®(2n/¢)) and d 4+ n = (log q)t. <

» Remark 16. Let £ = 1 and consider § = t — 1 and 8 = 0. In this case, we recover a
t-out-of-n secret sharing scheme with information ratio & ~ 1, for large enough ¢. This
is almost as good as the Shamir’s secret sharing scheme, except that Shamir’s scheme has
perfect privacy and information ratio exactly 1 while we only have statistical privacy with a
negligible privacy error and information ratio close to 1. On the other hand, as demonstrated
n [29], Shamir’s scheme over finite field of characteristic 2 is completely vulnerable in the
face of a non-standard leakage adversary, in particular, even leaking one bit from each share
allows reconstruction of the complete secret. The t-out-of-n secret sharing scheme in Theorem
14, when we set m = log ¢ — o(log q), is leakage-resilient against a non-adaptive adversary
who obtains any § <t — 1 shares and leak up to 8 = (logq)¢ bits forany 0 < p<t—1-—16
through applying affine leakage functions.

4.2 Affine Leakage Adaptive Adversary

The instantiation for adaptive adversary does not have optimal information ratio. We manage
to maintain optimal leakage tolerance.

» Theorem 17. Let Lagine be the class of affine functions over Fy. Let 0 < £ < 1 be any
real number. There is a family of t-out-of-n secret sharing schemes over Fy (labeled by
log q) that is simultaneously (Latine, 8,0, €)-leakage resilient against an adaptive adversary
for0< g < (t—¢&)logq and 6 € {0,1,...,t — 1} such that 0 + logq <t —¢&, where the share
size q (determined by € and satisfies ¢ > n) is a large enough power of 2 and the secret length

m = Qloggq).

We use an invertible seedless extractors that can extract from affine recognizable sources
with any constant fraction of entropy with output length also a constant fraction of the
input and with exponentially small error. There are known constructions [13, 33] of affine
extractors that can extract from any constant fraction of entropy and output a constant
fraction of random bits with exponentially small error. We can directly instantiate our
generic construction with these extractors by transforming them into invertible extractors as
described in the generic construction.
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Here we exploit a classical approach to building affine extractors through composing with
a seeded extractor and use the trick in [18] to make it invertible at a lower cost than the
above method. But the obtained affine extractor does not have exponentially small error
and we can not directly use it in the generic construction intuition due to the exponential
grow of error when transforming from extractor-based security to secret sharing security. We
then use a more delicate analysis of the error terms that circumvents the problem.

We first recall the classical framework of constructing seedless extractors from composing
with seeded extractors. Seeded extractors are known to explicitly extract all the entropy and
are not restricted by source structures. Moreover, there are known constructions of linear
seeded extractors perform almost as well as the best seeded extractors. The elegant idea of
this framework is to use a seedless extractor to extract a short output from the structured
source, which then serves as the seed for a seeded extractor to extract all the entropy from
the same source. For this idea to work, the dependence of the extracted seed on the source
has to be carefully analyzed (and removed).

» Lemma 18 ([41]). Let D be a class of distributions over {0,1}". Let E: {0,1}" — {0,1}¢
be a seedless extractor for D with error e. Let F: {0,1}¢ x {0,1}™ — {0,1}™. Let X be a
distribution in D and assume that for every z € {0,1}¢ and y € {0,1}™, the distribution
(X|F(z,X) =y) belongs to D. Then

SD(E(X), F(E(X), X); Ug, F(Ug, X)) < 2943,

An example of such a class of distributions is the affine source, in which case we can
use an affine extractor F = aExt and a linear seeded extractor E = Ext. An affine source X
conditioned on Ext(z,X) =y, which amounts to a set of linear equations, is still an affine
source for aExt. With appropriate choice of parameters, we obtain a better (than aExt) affine
extractor aBExt’'(X): = Ext(aBxt(X),X). With an increase of d bits (instead of m bits as
described below generic construction) in the input, we have the following invertible affine
extractor.

EXT(Sd||X): = Ext(aExt(X) + Sd, X),
whose inverter is EXT!(s): = (aExt(Extz_l(s)) + Z||Ext21(s)) , where Z & {0,1}¢.

Proof of Theorem 17. We instantiate the generic construction using an affine extractor
aBExt: {0,1}" — {0,1}4, a linear strong seeded extractor Ext: {0,1}¢ x {0,1}" — {0,1}™
and a linear MDS code.

EXT : {0,1}4+™ — {0,1}™ is instantiated as follows.
EXT(z||x) = Ext(aExt(x) + z,x),

where Ext is the linear strong seeded extractor from Lemma 6 with parameters (kg,eg)
and eg < %; aExt is the seedless extractor from Lemma 2 with parameters (ka,£4). The
inverter

EXT!(s): = (aBxt(Ext; '(s)) + Z||Ext;'(s)),

where Z & {0,134

According to Lemma 6, there is an explicit linear strong (kg, ep)-extractor Ext: {0,1}% x
{0,1}" — {0,1}™ with d = O(log®(n/eg)) and m = kg — O(d).

According to Lemma 2, for every constant 0 < p < 1, there is an explicit affine extractor
aExt: {0,1}" — {0,1}¢ for affine (n,ka)-sources, where k4 = nu, with output length
d = Q(n) and error €4 at most 27,
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ECC is a linear MDS code with parameter [n,t,n —t+ 1] over F,, where log ¢ = d"‘T” The
output of ECCenc: {0,1}4T" — F? is the share vector.

Reconstruction from any t shares follows from the functionality of ECC and the invertibility
guarantee of the EXT, which insures that any correctly recovered pre-image is mapped back
to the original secret.

We next prove privacy and leakage resiliency. Consider a uniform secret U,,. By the
uniformity guarantee of the inverter, we have Share(U,,) = ECCenc(Sd||U,,). Our analysis is
done for any fixed Sd = sd. This captures a stronger adversary who on top of adaptively
reading t shares, also has access to Sd through an oracle. It is easy to see that the fixing
of Sd = sd does not alter the distribution of the source U,,, which remains uniform over
{0,1}™. Let V: = LEAK(ECCenc(sd||U,), Laffine, B,0) denote the view of the adversary on
the encoding of a uniform source for the fixed Sd = sd. Let Z: = aExt(U,,) + sd denote the
seed of the strong linear extractor Ext. Finally, let S: = Ext(Z,U,,). We study the random
variable tuple (V,Z,S) to complete the proof.

The pair (Z,S)|V = v for any fixed V = v is by definition (aExt(U,,) + sd, Ext(aExt(U,) +
sd,U,,))|V = v. The distribution (U, |V = v) is an affine source with at least n — (logq)0 — 8
entropy. Let k4 =n — 0logq — 5 —m. According to Lemma 18, we have

2d+3€A
(Z,S)|V = v 2~ (Ug, Ext(Ug, Up))|V = v.

Our concern is the relation between S and V, and therefore would like to further condition
on values of Z. Let kg =n — (logq)f — 8 — d and consider the linear strong extractor Ext.
In this step, we crucially use the linearity of Ext and the underlying linear space structure
of the affine source U, |V = v to claim that there is a subset G C {0, 1} of good seeds such
that Pr[Ug € G] > 1 — 4eg and for any z € G, the distribution of Ext(z,U,,)|V = v is exactly
uniform. This is true because Ext(z, U,)|V = v is an affine source. If its entropy is m, then it
is exactly uniform. If its entropy is less than m, its statistical distance €% from uniform is at
least % Using an averaging argument we have that at least 1 — 4eg fraction of the seeds
should satisfy €7, < i, and hence €%, = 0. We then use Lemma 12 with respect to the event
Z € G to claim that

2d’+45A
T—4ep

S|(V=v,2€G)) ~" (Ext(Ug, X)|(V=v,Uy € G)),

where the right hand side is exactly U,,. Note that the subset G is determined by the choice
of the 6 shares and by the leakage adversary, hence remains the same for any value of V = v.
We then have

2d+4.

T—deg

((V,S)[zeg) ~7 (V,Upn).

Another application of Lemma 12 with respect to the event S = s gives

2(mED+(d+4)
T-4ep

(V[(Ze€ G,S=5)) ~ V.
We finally bound the privacy and leakage resiliency error as follows.

SD((VIS =s0); (VIS = s1))

< 25D((V[S = ) V)

=2Pr[Z € G]-SD((V|(Z€ G,S=5));V)+2Pr[Z ¢ G] - SD((V|(Z ¢ G,S =5s)); V)
<2 1~%+(45E+5A)~1)

< 20n+1)+(d+4}+25A + 8cp.
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Note that in the error bound above, the exponential term 2(m+D+(@+4)+2 only appears as
the multiplier of 4, the error of aExt. In order to cancel out the exponential multiplier
2(mA1)+(d+)+2  we require aExt to have an exponentially small error 4 = M%,
which can be trivially done by setting k4 = Q(n). If we want to have secret length
m = Q(logq) = Q(4™), we also need to set kg =m + O(d) = Q(n). Both are achieved by

requiring
n— (logq)d — f—d=Q(n),
which in turn, given that d = O(log®(n/eg)), can be achieved by requiring

0 5. 6 B
n(1—¥—ﬁ)—Q(n)or1—¥—“qu

This shows that for any 6 + & < t, privacy and leakage resiliency error € can be achieved
through a large enough ¢ and the secret length is m = Q(log ¢). This concludes the proof. <

» Remark 19. Directly using the affine extractor aExt and transform it using the method in
the generic construction will result in an invertible affine extractor EXT: {0,1}™" — {0,1}™
with exponentially small error. Instantiating the generic construction using this extractor
also gives a secret sharing scheme that is simultaneously (Laffine, 5, 0, €)-leakage resilient for

any 6 + % < t. But the information ratio of this instantiation is (mj_’;) 7o while in Theorem
17, the information ratio is 777 Recall that d = O(log®(n/eg)) and m = Q(n). We then

m

have G5 & ok > G

5 Low-degree Multi-variate Polynomial Leakage

We next consider the class Lg-poly 0f global leakage functions that are multi-variate polynomials
in binary variables 1, ..., Tn10gq With degree at most d, as natural extension of the affine
(degree 1) leakage functions Laffine. From now on, we assume the degree of the algebraic
leakage functions are bigger than 1 (for d = 1, our constructions in previous section give
better parameters).

We have seen in Theorem 14 that as long as the adversary is non-adaptive and restricted
to affine leakage, we can instantiate the generic construction with any seeded extractor to
obtain a LR-SS against global affine leakage. Unfortunately, we can already give an example
of seeded extractor that is not sufficient for providing privacy and leakage resiliency against
a non-adaptive adversary who globally leaks through degree 2 multi-variate polynomials. It
is well known that the inner product function {0,1}"™ x {0,1}" — {0, 1} gives a good seeded
extractor. This function can be described by a degree 2 polynomial in 2n variables. Assuming
our generic construction is instantiated using the inner product seeded extractor and a
non-adaptive adversary chooses exactly the corresponding degree 2 multi-variate polynomial
to leak, the single bit leakage is the secret itself and the scheme is not leakage-resilient. Note
that this example does not rule out the possibility of obtaining non-adaptive LR-SS against
algebraic leakage of degree d > 1 using a specially chosen seeded extractor, for example, not
computable by degree d polynomials. In the standard applications of seeded extractors, we
only require the extractor function to be efficient. Here we need extractor functions to at
least have degree more than d. For simplicity, in this work, we only use seedless extractors
(for algebraically recognizable sources), which by definition already takes the structure of the
leakage functions into account. Instantiating with a seedless extractor has an advantage of
providing security against both a non-adaptive adversary and an adaptive adversary.
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» Theorem 20. Let L4-poy be the class of multi-variate polynomials over Fo with degree
at most d. Let g be an integer satisfying ¢ > 1 — c%? where cqg = ©(d*4%) is a constant
determined by d. There is a family of t-out-of-n secret sharing scheme with threshold gap g
over the finite field Fy (labeled by log q) that is simultaneously (Lq-poly, 5,0, €)-leakage resilient
for all B = (logq)é and 0 <t — g satisfying 0 < ¢ <t—g— 0. The share size q (determined
by € and satisfying ¢ > n) is a large enough power of 2 and the secret length m = Q(logq).

Before we prove Theorem 20 through instantiating our generic construction, we need
to find a suitable measure on the amount of remaining entropy conditioned on the leaked
information. The average min-entropy is usually used in combination with the so-called
average-case extractors, which are strong seeded extractors that have the extractor guarantee
averaging over an extra random variable that is related to the source. As far as we know,
average-case extractors have not been defined in the seedless case. We then include a brief
discussion here that might be of independent interest.

» Definition 21. A (k,e)-seedless extractor Ext : {0,1}" — {0,1}™ for C-recognizable sources
is called average-case, if for all pair of random variables (X,V), where X is a C-recognizable
source and V is a random wvariable arbitrarily related to X satisfying that X|V = v is a
C-recognizable source for any V =v and Hoo (X|V) > k, we have

SD(V, Ext(X); V, U,,) < e.

While any strong seeded extractor can be trivially converted into an average-case extractor
at the cost of an increase in the extractor error and a proportional strengthening on the min-
entropy requirement, there are extractor constructions that directly provide an average-case
extractor [21]. This is also the case for seedless extractors.

» Lemma 22 (modified from [21]). For any § > 0, if Ext is a (k—log1/d,e)-seedless extractor
for C-recognizable sources, then Ext is also an average-case (k,e + 0)-seedless extractor for
C-recognizable sources.

Sometimes the strengthening on entropy requirement can be quite costly (log1/d can be a
large value if the extractor error € + § has to be exponentially small). Luckily, by examining
the construction of the extractor in Lemma 4, we assert that it is already an average-case
seedless extractor.

» Lemma 23. For any integer d > 0, there is an efficient average-case ((17 %

extractor aBxt: {0,1}" — {0,1}™, where cq = O(d*4%) and m = Q).

n.d, 2_9(%)) -

We now instantiate our generic construction with the average case seedless extractor for
low-degree multi-variate polynomials in Lemma 23 to give a proof for Theorem 20.

Proof for Theorem 20. We instantiate the generic construction with the average case seed-
less extractor for sources recognizable by low-degree multi-variate polynomial functions in
Lemma 23.

EXT: {0,1}" x {0,1}™ — {0,1}™ is instantiated as follows.
EXT(x|ly) = aExt(x) +,

where aExt: {0,1}" — {0,1}™ is a seedless extractor for degree d multi-variate polynomi-
als that can extract from ¢ — ¢ fraction of entropy, for an integer 1 < g <t—1and a
small real £ > 0, with extractor error € 4. The inverter of EXT is

EXT!(s) = (U,||aExt(U,,) +s).
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m+n

ECC is a linear MDS code with parameter [n,t,n —t + 1] over F,, where logq = ™

The output of ECCenc: {0,1}™*" — F} is the share vector.

The composition of ECCenc and the leakage function f € L4-poly remains a multi-variate
polynomials over Fy with degree at most d. Since our analysis will be focusing on the
extractor aExt, we derive the entropy bound on the first n bits of EXTil(Um). According to
Lemma 9, the average (conditional) min-entropy of the random variable U,, conditioned on
the view V = LEAK(EXT " (U,), La-poly; 5, 0) of an adaptive adversary corresponding to a
leakage strategy (La-poly, 8, 0) is bounded as follows.

Hoo (Un|V) > n — (logq)d — 5.

Under the condition that 6 +

1o§;q <t—g, we have

(m+n)(t=g)

t
_ m(t—g)
t Y

Hoo(Un|V) >n — (logq)(t — g)

which is bigger than a % — £ fraction of n for large enough n.
It then follows from the average case extractor property of aExt that

(V,aExt(U,)) 2 (V,U,,).

From an application of Lemma 12, we obtain for a secret s,

(V[aExt(U,) =s) <" V.

We then conclude that the scheme is a (La-poly, B, 0, 2™ 2 4)-LR-SS.

According to Lemma 23, for any positive integer d, there is an efficient average case ex-
tractor aExt: {0,1}" — {0, 1}™ for algebraic sources with parameters ((1 - é)m d, 279(%)),
where ¢q = O(d?4%) and m = Q(;%). We then require the threshold gap g to satisfy
9>1- i In particular, once cq > 2, we must have g > t — é > £ > 1 and do not have a
threshold scheme. On the other hand, if we are satisfied with obtaining a leakage resilient
ramp scheme, then privacy and leakage resiliency are guaranteed for all 6 and 3 satisfying
0+ 10@ s St—g< é The scheme shares a secret of m = Q(%) bits and each share contains
logq = mf*'” bits. So the information ratio is positive (a constant determined by ¢4 and t).
Moreover, the leakage-resilience error € = 2™*2¢ 4 can be made arbitrarily small. <

6 Local Leakage with Full Reconstruction

Srinivasan and Vasudevan considered a partial adaptive local leakage model that they called
strong local leakage model and constructed such schemes for applications in leakage resilient
secure multiparty computation. This model is the strongest local leakage model. We show
an instantiation of our generic construction that yields competitive schemes in this model to
illustrate the applicability of our generic construction to local leakage models.

» Theorem 24. Let Ly be the class of local functions. There is a family of t-out-of-n
secret sharing schemes over Fy (labeled by log q) that is simultaneously (Liocal, £(n — 0),0,¢)-
leakage resilient against a partially adaptive adversary that fully corrupts 6 players for
6 €{0,1,...,t— 2} and, based on the shares of the 6 players, chooses n — 0 arbitrary leakage
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(t—0—8¢&) log q
(n—0)(1+5¢)
small real number, the share size q (determined by € and q > n) is a large enough power

of 2 and the secret length m = 1_5—55 logq — o(log q). When 6 =t — 1, the partially adaptive
adversary can only choose the n —t + 1 arbitrary leakage functions based on t — 2 shares

functions each leaks { = bits for the remaining n — 0 shares, where & > 0 is a

Proof. We instantiate the generic construction using a linear strong seeded extractor
Ext: {0,1}¢ x {0,1}" — {0,1}™ and a linear MDS code. We also use a t-out-of-n Shamir’s
secret sharing to protect the seed such that the leakage at an individual share is independent
of the seed.

EXT : {0,1}™ — {0,1}™ is instantiated as follows.
EXT(x) = Ext(Ug, x),

where Ext is the linear strong seeded extractor from 7 with parameters entropy requirement
3m, extractor error 2~ "¢ and seed length d = 5m. The uniform seed sampled during
inverting is shared using t-out-of-n Shamir’s secret sharing into (SdShy,...,SdSh,) € Fj;,,..
ECC is a linear MDS code with parameter [n,t,n —t + 1] over F, , where log g = d'%".
The output of ECCenc: {0,1}%+" — F7 is (SorShy, ..., SorSh,). The final share vector is

((SdShy[[SorShy), ..., (SdShn||SorShy,)) € Fj, where ¢ = 25™qq.

The leakage is independent of the seed. The seed is referring to the 5m-bit uniform and
independent seed sampled when inverting the extractor EXT. The seed is shared using the
t-out-of-n Shamir’s secret sharing and the shares are appended to the payload shares. The
partially adaptive adversary corrupts arbitrary choice of 6 players and obtains 6 full shares.
Since 6 < t — 2, the adversary not only obtains no information about the seed from the 6
shares of the Shamir’s scheme, but also can not obtain any information about the seed even
if one more share is given. It then follows that the choice of individual leakage functions
for the remaining n — @ shares are independent of the seed. Note that the output of these
individual leakage functions can depend on the seed, since Shamir’s scheme over finite field
of characteristic 2 is known to be not leakage resilient to (even non-adaptive) local leakage.
We only need the fact that the choice (made after obtaining 6 shares and before receiving
information about the rest of the n — 6 shares) of these functions is independent of the seed
for our security proof. This is because we use a strong seeded extractor to provide privacy
and leakage resiliency for the payload scheme and by definition the security of a strong
seeded extractor holds even if the seed is revealed, as long as the source is independent of
the seed. Here the source is the uniform n-bit string conditioned on the information about it
contained in the corrupted 6 shares and the outputs of the individual leakage functions.

Achievable parameters.
U, = EXT H(U,).
Let V be the adversary’s view. We have
Hoo (Un|V) > n — 0log qo — (n — 6)L.
The total entropy in the uniform n-bit string U,, is

n =tloggo — d = tloggo — 5m.
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The amount of information about U,, contained in the # shares is #log qy. The amount of
information about U, contained in the outputs of the leakage functions is
(t—0—88)logq

(n—=0)t=(n —G)W = (t— 60— 8¢)logqo.

The remaining average conditional min-entropy is
tloggo — 5m — flog gy — (t — 6 — 8¢) log g0 = 8¢ log go — 5m,

where m = £logqo — o(logqp). This asserts that the remaining entropy is at least 3m,
sufficient for the average case extractor Ext. <

» Remark 25. When we set § =t — 1, our scheme is comparable with the scheme constructed
in [43]. Both schemes allow the partial adaptive adversary to choose the individual leakage
functions according to t — 2 shares and fully leak t — 1 shares. Our scheme achieves
positive information ratio, which is an absolute constant, while the scheme in [43] achieves
information ratio €(1/n). On the other hand, our scheme achieves an asymptotic leakage
rate of ﬁ:g = ﬁ, while the scheme in [43] achieves asymptotic leakage rate 1. Note
that our scheme belong to the sub-class of t-out-of-n secret sharing schemes that have full
reconstruction property [38], since any t shares uniquely determine the rest of the shares. It

is shown in [38], for such schemes, it is required that

(n—t)
t

logq >
0842 ——p

, for any ¢ > 1.

The above inequality implies an upper bound on the asymptotic leakage rate.

14 t—0
< .
logg ~ n—t

When 6 =t — 1, we have

4 1
< ,
logg ~ n—t

which holds even for non-adaptive adversary. This indicates that our scheme is already close
to optimal with respect to leakage rate.

7 Conclusion

We started a systematic study of leakage-resilient secret sharing against global leakage,
where the leakage oracle can access the full set of shares simultaneously, but the access is
restricted to a special class of leakage functions. We studied such leakage-resilient secret
sharing with respect to affine leakage functions and low-degree multi-variate polynomial
leakage functions. We explicitly constructed threshold schemes with best leakage tolerance
against affine functions. If the adversary is non-adaptive, our scheme is optimal both in
terms of leakage tolerance and information ratio. For multi-variate polynomial leakage
functions with degree bigger than one, our construction only yielded ramp schemes. As
a result of independent interest, we showed that our approach to leakage-resilient secret
sharing also yielded a competitive scheme compared with the state-of-the-art construction in
the compartmentalized models.
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