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Abstract
The hardness of highly-structured computational problems gives rise to a variety of public-key
primitives. On one hand, the structure exhibited by such problems underlies the basic functionality
of public-key primitives, but on the other hand it may endanger public-key cryptography in its
entirety via potential algorithmic advances. This subtle interplay initiated a fundamental line of
research on whether structure is inherently necessary for cryptography, starting with Rudich’s early
work (PhD Thesis ’88) and recently leading to that of Bitansky, Degwekar and Vaikuntanathan
(CRYPTO ’17).

Identifying the structure of computational problems with their corresponding complexity classes,
Bitansky et al. proved that a variety of public-key primitives (e.g., public-key encryption, oblivious
transfer and even functional encryption) cannot be used in a black-box manner to construct either
any hard language that has NP-verifiers both for the language itself and for its complement, or
any hard language (and even promise problem) that has a statistical zero-knowledge proof system –
corresponding to hardness in the structured classes NP∩coNP or SZK, respectively, from a black-box
perspective.

In this work we prove that the same variety of public-key primitives do not inherently require
even very little structure in a black-box manner: We prove that they do not imply any hard language
that has multi-prover interactive proof systems both for the language and for its complement –
corresponding to hardness in the class MIP ∩ coMIP from a black-box perspective. Conceptually,
given that MIP = NEXP, our result rules out languages with very little structure.

Already the cases of languages that have IP or AM proof systems both for the language itself
and for its complement, which we rule out as immediate corollaries, lead to intriguing insights. For
the case of IP, where our result can be circumvented using non-black-box techniques, we reveal a
gap between black-box and non-black-box techniques. For the case of AM, where circumventing our
result via non-black-box techniques would be a major development, we both strengthen and unify
the proofs of Bitansky et al. for languages that have NP-verifiers both for the language itself and for
its complement and for languages that have a statistical zero-knowledge proof system.
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10:2 Hardness vs. (Very Little) Structure in Cryptography

1 Introduction

Starting with the revolutionary invention of public-key cryptography [18, 32, 23], the hardness
of highly-structured computational problems (e.g., factoring, discrete log, or various lattice-
based problems) has given rise to a variety of public-key primitives. On one hand, the
structure exhibited by such problems underlies the basic functionality of nearly all such
primitives, but on the other hand it may also danger their conjectured hardness. As noted
by Barak [5], this “makes public-key cryptography somewhat of an endangered species that
could wiped out by a surprising algorithmic advance”.

This subtle interplay has led to the long-studied question of whether structure is inherently
necessary for certain cryptographic primitives, and most notably for public-key primitives.
While there may be different approaches for measuring or quantifying “structure”, the main
approach taken by the cryptography community over the years relies on computational
complexity: Understanding which cryptographic primitives inherently require hardness in
“structured” complexity classes such as NP ∩ coNP, TFNP and SZK.

There are only a few known examples of cryptographic primitives that require hardness
in such classes. Most notably, one-way permutations imply hardness in NP ∩ coNP [15],
homomorphic encryption and non-interactive computational private-information retrieval
imply hardness in SZK [14, 28], and indistinguishability obfuscation implies hardness in
PPAD ⊆ TFNP unless NP ⊆ ioBPP [11, 21, 27].

Within the classic framework of black-box constructions, capturing “natural” crypto-
graphic constructions [26, 31], Rudich [33] showed (based on [13, 25]) that a one-way function
cannot be used in black-box manner to construct NP-verifiers for any hard language both for
the language itself and for its complement – corresponding to hardness in NP ∩ coNP from a
black-box perspective (we note that the known examples stated above all follow in such a
black-box manner).

For several decades no progress has been made in extending Rudich’s result to public-key
primitives or to other complexity classes. This situation has recently changed dramatically
with the work of Bitansky, Degwekar and Vaikuntanathan [10] (see also the refinements in the
more recent work of Bitansky and Degwekar [9]): They showed that even indistinguishability
obfuscation cannot be used in a black-box manner to construct any hard language that has
NP verifiers both for the language itself and for its complement, or any hard language (and
even a promise problem) that has a statistical zero-knowledge proof system – corresponding
to hardness in NP ∩ coNP or SZK, respectively, from a black-box perspective. Proving
their result within the framework of Asharov and Segev [2, 3] capturing indistinguishability
obfuscation for oracle-aided computations, Bitansky et al. in fact proved their result for all
primitives that can be based on indistinguishability obfuscation for circuits that access an
injective one-way function in a black-box manner. These include, in particular, a variety of
public-key primitives including public-key encryption, oblivious transfer and even functional
encryption.

Focusing on the classes NP∩coNP and SZK , Bitansky et al. showed that, from a black-box
perspective, public-key cryptography does not inherently require highly-structured hardness.
However, going back to Barak’s concern [5], even less stringent forms of structure may still
endanger public-key cryptography in its entirety. This leads to the following fundamental
question aiming at substantially refining our understanding of the interplay between hardness
and structure:

Does public-key cryptography inherently require hardness in complexity
classes that are “less structured” than NP ∩ coNP or SZK?
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1.1 Our Contributions
In this work we show that a wide variety of public-key primitives do not inherently require
even very little structure in a black-box manner. Specifically, we prove that such primitives
do not naturally imply hard languages that have multi-prover interactive proof systems (MIP)
[8] both for the language and for its complement.

Conceptually, given that MIP = NEXP [4], our result considers languages with very
little structure. Already the cases of languages that have IP or AM proof systems both
for the language itself and for its complement, which we obtain as immediate corollaries,
lead to intriguing insights. For the case of IP, where our result can be circumvented using
non-black-box techniques, we reveal a gap between black-box and non-black-box techniques
(as we discuss below). For the case of AM, where circumventing our result via non-black-box
techniques would be a major development, we both strengthen and unify the proofs of
Bitansky et al. for languages that have NP-verifiers both for the language itself and for its
complement and for languages that have a statistical zero-knowledge proof system (since
NP ⊆ AM by definition, and since SZK ⊆ AM ∩ coAM in a black-box manner [19, 1]).1

The following is an informal statement of our main result. We refer the reader to Section
1.2 for an overview of our result, and to Sections 3 and 4 for a formal definition of the class
of constructions to which our result applies and for a formal theorem statement, respectively.

I Theorem 1 (Informal). There is no fully black-box construction of a pair of multi-prover
interactive proof systems, Π and Π, corresponding to a worst-case hard language L and to its
complement L, respectively, from an injective one-way function f and an indistinguishability
obfuscator for the class of all oracle-aided circuits Cf .

Note that as our result rules out constructions of languages that are worst-case hard,
then it rules out in particular constructions of languages that are average-case hard.

Black-box vs. non-black-box constructions. Our result might seem too strong and some-
what contradicting to the fact that any one-way function implies a hard (even on average)
language in NP ⊆ IP in a black-box manner. Given that IP is closed under complement
[30, 36], then

NP ⊆ IP ∩ coIP ⊆ MIP ∩ coMIP.

In particular, any one-way function implies a hard language that has IP proof systems both for
the language itself and for its complement, which seemingly contradicts our result. However,
this sequence of containments cannot be established via relativizing reductions, and thus
there is in fact no contradiction (note that any black-box reduction relativizes [31]), but
rather a gap between black-box and non-black-box techniques. Specifically, Chang et al. [16]
showed that there exists an oracle Γ relative to which NPΓ * coIPΓ, and in particular IP is
not closed under complement with respect to relativizing reductions. Still, as mentioned
above, our impossibility result already applies to AM ∩ coAM, for which circumventing our
result via non-black-box techniques would be a major development. We discuss this in much
more detail in Section 1.2 in the context of black-box representations of complexity classes.

1 We note that the result of Bitansky et al. for SZK holds not only for languages but in fact also for
promise problems. This, however, cannot be covered by our result since already a hard promise problem
that has NP verifiers both for its “YES” instances and for its “NO” instances can be constructed based
on any one-way function in a black-box manner.

ITC 2020



10:4 Hardness vs. (Very Little) Structure in Cryptography

Implications to public-key cryptography. Similarly to Bitansky et al. [10] we prove our
result within the framework of Asharov and Segev [2, 3], capturing indistinguishability
obfuscation for oracle-aided circuits. Indistinguishability obfuscation for such circuits suffices
for realizing a variety of public-key primitives (e.g., public-key encryption, oblivious transfer
and even functional encryption) in a fully black-box manner [34, 37, 2], and therefore as a
corollary we obtain that there is no construction of the above form based on any of these
primitives.

We strongly emphasize that our result is unconditional, and in particular does not depend
on whether or not indistinguishability obfuscation actually exists. Even if it does not exist in
the actual world, then within the framework of Asharov and Segev it does exist information
theoretically, and it implies the above variety of public-key primitives to which our result
applies (once again, in an unconditional manner).

1.2 Overview of Our Approach
In this section we provide a high-level overview of the framework in which we prove our
impossibility result, and then describe the main ideas and challenges underlying our proof.

Black-box constructions. Our goal is to prove a statement along the lines of “a crypto-
graphic primitive P does not naturally imply a hard language in a complexity class C”.
However, it is not clear how to prove such a statement in an unconditional manner, as it may
be the case that the class C (e.g., NP ∩ coNP as discussed by Bitansky et al. [10]) does not
contain hard languages. One possible approach is to prove a result that is conditioned on
a specific assumption, but then it may be the case that the assumption itself already rules
out the existence of hard languages in the class C. Obtaining substantial insight using such
an approach requires a deep understanding of the interplay between the primitive P, the
complexity class C and the additional assumption – which is somewhat rare when considering
cryptographic primitives and assumptions.

Faced with such difficulties, the cryptography community has relied over the years on the
framework of black-box constructions [26, 31] for proving impossibility results for “natural”
construction techniques. In our context, a fully black-box construction of a hard language
L ∈ C based on a cryptographic primitive P consists of two ingredients. The first ingredient
is a “construction” of a language LP that completely ignores the internal implementation of
P and only requires black-box access to any given implementation of P. Here, the notion
of a “construction” depends on the specific complexity class C. For example, in a natural
black-box interpretation of NP ∩ coNP, Rudich [33] and Bitansky et al. [10] considered as
a construction a pair of oracle-aided NP-verifiers, V and V , for the language itself and for
its complement, respectively, where the verifiers have black-box access to the primitive P.
That is, for any oracle realizing P, the two verifiers must be valid in the sense that for any
instance x ∈ {0, 1}∗ either there exists a “yes” witness for V P and there do not exist any
“no” witnesses for V P (i.e., x ∈ LP), or there exists a “no” witness for V P and there do not
exist any “yes” witnesses for V P (i.e., x /∈ LP) – but never both. The second ingredient, is a
black-box proof of hardness, showing that for any implementation of the primitive P, any
algorithm that decides the language LP can be efficiently used in a black-box manner for
breaking the security of the given implementation of P.

At this point we would like to already emphasize that a “black-box representation” of
a complexity class is in fact not unique, and that different representations are not always
equivalent from a black-box perspective. For example, a natural black-box representation
for the class IP ∩ coIP relative to a given primitive P is to consider all languages that have
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interactive proof systems both for the language itself and for its complement, where the two
proof systems access P in a black-box manner. However, since IP is closed under complement
[30, 36] then IP ∩ coIP = IP and therefore an additional representation is to consider all
languages that have interactive proof systems for the language itself (without considering
its complement) where the proof system accesses P in a black-box manner. As discussed in
Section 1.1, these two representations are not equivalent from a black-box perspective since
IP is not closed under complement with respect to relativizing reductions.

The structure of our proof. Following Bitansky et al. [10] we prove our result within
the framework of Asharov and Segev [2] for capturing black-box constructions based on
indistinguishability obfuscation, utilizing the latter as a “central hub” for deriving impossibility
results for a variety of public-key primitives. As observed by Asharov and Segev, although
constructions that are based on indistinguishability obfuscation are almost always non-black-
box, most of their non-black-box techniques have essentially the same flavor: The obfuscator
itself is used in a black-box manner and applied to circuits that can be constructed in a
fully black-box manner from a low-level primitive, such as a one-way function. Thus, even
though the obfuscator requires concrete implementations of such circuits, by introducing the
stronger primitive of an indistinguishability obfuscator for oracle-aided circuits (see Section
2), Asharov and Segev showed that such non-black-box techniques in fact directly translate
into black-box ones. These include, in particular, non-black-box techniques such as the
punctured programming approach of Sahai and Waters [34] and Waters [37] leading to the
construction of a variety of public-key primitive. Relying on the transitivity of black-box
reductions, this enables to rule out black-box constructions based on all of these primitives
by focusing only on indistinguishability obfuscation for oracle-aided circuits and one-way
functions.

In order to prove our impossibility result within this framework, we present a distribution
over oracles Γ relative to which we prove the following two properties:

Relative to a random instance of Γ there exist an injective one-way function f and an
indistinguishability obfuscator iO for the class of all oracle-aided circuits Cf .
Relative to any instance of Γ, we can efficiently decide in the worst case any language
that has multi-prover interactive proof systems, Πf,iO and Πf,iO, for the language itself
and for its complement, respectively.2

Our oracle Γ is a pair of the form (Ψ,DecideΨ), where Ψ is based on the oracle of Asharov
and Segev that realizes a one-way function and an indistinguishability obfuscator, and DecideΨ

is a generalization of the “decision oracle” introduced by Bitansky et al. for deciding languages
that rely on Ψ in a black-box manner (more specifically, whose black-box representation as
discussed above relies on Ψ). In the work of Bitansky et al. the decision oracle is defined in a
manner that allows to easily decide any language LΨ that has NP-verifiers, V Ψ and V Ψ, for
the language itself and for its complement, and the main technical challenge underlying their
work is proving that Ψ realizes a one-way function and an indistinguishability obfuscator
relative to the decision oracle.

Our decision oracle is a natural generalization that allows to easily decide any language
LΨ that has multi-prover proof systems, ΠΨ and ΠΨ, for the language itself and for its
complement. This decision oracle seems much more powerful than that of Bitansky et al.

2 In fact, as discussed below we allow the honest provers to depend on the one-way function and the
obfuscator in an arbitrary non-black-box manner, and only require that the verifiers are constructed in
a black-box manner (this makes our result stronger).

ITC 2020



10:6 Hardness vs. (Very Little) Structure in Cryptography

as it decides a significantly larger class of languages, and our technical effort is devoted
to proving that the oracle Ψ still realizes a one-way function and an indistinguishability
obfuscator even relative to our generalized decision oracle.

In what follows we describe the decision oracle of Bitansky et al. (to which we refer as
the BDV decision oracle) and discuss its key property that underlies their approach. Then,
we describe our generalized oracle, relative to which this key property no longer seems to
hold, and then describe our the main ideas underlying our proof.

The BDV decision oracle. For any oracle Ψ, taken from an appropriate family S of oracles,
the BDV decision oracle DecideΨ

S takes as input a triplet (V, V , x), where V and V are
oracle-aided circuits. The oracle first checks whether or not the pair (V, V ) indeed consists
of valid NP-verifiers for a language and for its complement in the standard black-box sense
discussed above. That is, checks whether or not for any Ψ′ ∈ S and x′ ∈ {0, 1}n exactly
one out of the following two cases holds: (1) There exists a “yes” witness w′ such that
V Ψ′(x′, w′) = 1 and there do not exist any “no” witnesses w′ such that V Ψ′(x′, w′) = 1; (2)
there exists a “no” witness w′ such that V Ψ′(x′, w′) = 1 and there do not exist any “yes”
witnesses w′ such that V Ψ(x′, w′) = 1 (note that the witnesses are allowed to depend on Ψ′).
If (V, V ) is not valid in this sense, then the oracle outputs ⊥. If (V, V ) is valid, then the
oracle outputs 1 if x ∈ LΨ and 0 otherwise, where LΨ is the language defined by (V Ψ, V

Ψ).
Then, any language that has oracle-aided NP-verifiers both for the language itself and for

its complement with respect to any Ψ ∈ S, can be easily decided in the worst case by an
algorithm that issues a single query to the BDV decision oracle. The main challenge in the
work of Bitansky et al. was in showing that a random instance of Ψ that is sampled from the
family S of oracles introduced by Asharov and Segev (or from any other appropriate family)
realizes a one-way function and an indistinguishability obfuscator even relative to DecideΨ

S.

The existence of small critical sets. The key property underlying the proof of Bitansky et
al. is the following observation on the existence of “small critical sets”. Fix an oracle Ψ ∈ S

and let (V, V , x) be a query to their decision oracle such that the pair (V, V ) is valid in the
above sense, and V and V issue at most q oracle queries. Then, there exists a “critical set”
of at most q queries, such that for any oracle Ψ′ ∈ S that agrees with Ψ on the outputs of
all queries from the critical set it holds that DecideΨ

S(V, V , x) = DecideΨ′
S (V, V , x).

The existence of such a small critical set follows from the NP∩ coNP structure of the pair
(V, V ). Specifically, assume without loss of generality that x ∈ LΨ, and let w be a witness
such that V Ψ(x,w) = 1. Define the set of critical queries as all Ψ-queries that are issued in
the computation V Ψ(x,w), and let Ψ′ by any oracle that agrees with Ψ on this set. Then
clearly V Ψ′(x,w) = V Ψ(x,w) = 1, and the validity of the pair (V, V ) guarantees that there
is no witness w̃ such that V Ψ′(x, w̃) = 1. Thus, DecideΨ

S(V, V , x) = DecideΨ′
S (V, V , x) = 1.

Relying on this key property, Bitansky et al. proved that Ψ realizes a one-way function
and an indistinguishability obfuscator relative to their decision oracle via an elegant sequence
of hybrids in each case. Specifically, in each sequence the first experiment is the actual
security experiment of the one-way function or the indistinguishability obfuscator, the last
experiment is one in which no algorithm can achieve any advantage, and the transition
between each consecutive pair of experiment is enabled by this key property (or via standard
arguments).

Representing MIP ∩ coMIP in a black-box manner. In order to describe our approach,
we first need to describe our black-box representation of languages in the complexity class
MIP∩coMIP. Naturally generalizing the approach of Rudich and Bitansky et al. for NP∩coNP,
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we consider pairs of polynomial-time oracle-aided MIP-verifiers, V and V , for the language
itself and for its complement, respectively, subject to a similar validity requirement of their
black-box flavor: For any oracle Ψ taken from an appropriate family S of oracles, there
should exist a language LΨ such that the following two conditions are satisfied3:

For every x ∈ LΨ there exist computationally-unbounded provers P1, . . . , PN such that4

Pr
r←{0,1}poly(|x|)

[〈
V Ψ(x; r), P1, . . . , PN

〉
= 1
]
≥ 2/3 ,

and for every computationally-unbounded provers P 1, . . . , PN it holds that

Pr
r←{0,1}poly(|x|)

[〈
V

Ψ(x; r), P 1, . . . , PN

〉
= 1
]
≤ 1/3 .

For every x /∈ LΓ there exist computationally-unbounded provers P 1, . . . , PN such that

Pr
r←{0,1}poly(|x|)

[〈
V

Ψ(x; r), P 1, . . . , PN

〉
= 1
]
≥ 2/3 ,

and for every computationally-unbounded provers P1, . . . , PN it holds that

Pr
r←{0,1}poly(|x|)

[〈
V Ψ(x; r), P1, . . . , PN

〉
= 1
]
≤ 1/3 .

Note that instead of considering oracle-aided MIP proof systems we consider oracle-aided
MIP verifiers, and allow the honest provers to depend on any given oracle in an arbitrary
non-black-box manner (thus our result rules out, in particular, oracle-aided proof systems).
We refer the reader to Section 3 where we formally describe the proof systems we consider
and the class of constructions to which our result applies.

Our generalized decision oracle. For any oracle Ψ ∈ S our generalized decision oracle
DecideΨ

S takes as input a triplet (V, V , x), where V and V are oracle-aided MIP-verifiers
and x ∈ {0, 1}n. The oracle first checks whether or not the pair (V, V ) indeed consists
of MIP-verifiers for a language and for its complement with respect to all oracles in S as
discussed above. If (V, V ) is not valid in this sense, then the oracle outputs ⊥. If (V, V ) is
valid, then the oracle outputs 1 if x ∈ LΨ and 0 otherwise, where LΨ is the language defined
by (V Ψ, V

Ψ).
At this point, we would ideally like to follow the approach of Bitansky et al. in proving that

Ψ realizes a one-way function and an indistinguishability obfuscator relative to our generalized
decision oracle. Recall that their proof consists of a sequence of hybrid experiments, where
the transition between each consecutive pair of experiments is enabled by the existence of a
small set of critical queries. Specifically, in each transition they modify Ψ on some set of
queries into an oracle Ψ′, and argue that unless these queries fall into the small critical set
then the decision oracle behaves exactly the same.

3 For an oracle Ψ, an instance x, a string r, a polynomial-time oracle-aided verifier V , and provers
P1, . . . , PN we denote by

〈
V Ψ(x; r), P1, . . . , PN

〉
the output of V with oracle access to Ψ on input x

and randomness r in the multi-prover execution with P1, . . . , PN . Note that whenever the provers are
computationally unbounded we can assume that they are deterministic.

4 It is usually assumed that the same provers are used for every x ∈ {0, 1}n, and that they obtain x as
input. However, since the provers are computationally unbounded, our definition is clearly equivalent
and easier to work with for our purposes.

ITC 2020



10:8 Hardness vs. (Very Little) Structure in Cryptography

Are there small and useful critical query sets? Fix an oracle Ψ ∈ S, and fix a query
(V, V , x) to our generalized decision oracle, where V and V are valid MIP-verifiers in the
above sense. Unlike the case of NP-verifiers, when considering MIP-verifiers then at a first
glance there does not seem to be a small set of queries that completely determines whether
or not x ∈ LΨ. Specifically, assuming for the current discussion that x ∈ LΨ, in the case
of NP-verifiers this is completely determined by the polynomial number of queries to the
oracle Ψ in the execution V Ψ(x,w) where w is any specific witness (say, the lexicographically
first such witness). However, in the case of MIP-verifiers, we are guaranteed that there exist
provers P1, . . . , PN that lead the MIP-verifier V Ψ(x; r) to accept with probability at least 2/3
over the randomness r ← {0, 1}poly(|x|) of the verifier – but this guarantee involves potentially
exponentially-many executions and thus exponentially-many queries to the oracle Ψ. It may
even be the case that any oracle Ψ′ that agrees with Ψ on all of these queries, is in fact
Ψ′ = Ψ, and this is not very useful for the purpose of transitioning between two hybrid
experiments.

Nevertheless, let us consider an oracle Ψ′ that differs from Ψ on a single query z, and
now suppose that suddenly x /∈ LΨ′ although we started with x ∈ LΨ. Thus, no provers
can now lead V Ψ′(x; r) to accept with probability larger than 1/3 over the randomness
r ← {0, 1}poly(|x|), and in particular this holds for the above provers P1, . . . , PN that led
V Ψ(x; r) to accept with probability at least 2/3. The only way that V Ψ′(x; r) can differ
from V Ψ(x; r) in an execution with the same P1, . . . , PN is by having V Ψ(x; r) query Ψ on z
– and we can deduce that with probability at least 1/3 over the choice of r ← {0, 1}poly(|x|) it
holds that V Ψ(x; r) queries Ψ on z when interacting with P1, . . . , PN .

Therefore, it is quite tempting to fix a distance parameter d ≥ 1, and then for an oracle
Ψ ∈ S and a query (V, V , x) such that x ∈ LΨ to define the following “d-influential set” of
queries: Let P1, . . . , PN be provers that lead V Ψ(x; r) to accept with probability at least
2/3, then the d-influential set consists of all queries that V Ψ(x; r) issues to Ψ in at least a
1/(3d)-fraction of these executions. Then, if V issues at most q queries in each execution,
then this set consists of at most 3qd queries. Moreover, for any oracle Ψ′ that differs from Ψ
on at most d queries, and these queries are not in the d-influential set, then it must hold that
x ∈ LΨ′ (the probability that V (x; r) accepts cannot drop from 2/3 to 1/3 when switching
from Ψ to Ψ′ since they differ on at most d queries and each of these queries cannot affect
more than a 1/(3d)-fraction of the executions).

From influential queries to influential labels. Unfortunately, this observation is still insuf-
ficient for our purposes. In the proof of Bitansky et al. the number of differences between
Ψ and Ψ′ is irrelevant as long as these differences are not in the critical set. However, in
our case more than d differences outside of the d-influential set may still cause the verifier’s
acceptance probability to drop from 2/3 to below 1/3.

Although our proof considers oracles Ψ and Ψ′ that may differ on an exponential number
of queries, we tailor the specific structure of our obfuscator in a way that enables us to
“group together” related queries: We introduce labeling functions (depending on the specific
structure of our oracles) that assign a label to each query to the oracle Ψ, where different
queries may share the same label. We show that it now suffices to focus on the small number
d ≤ 3 of labels that result from the potentially-exponential number of differences between
the oracles Ψ and Ψ′.

Specifically, we prove that for any Ψ and for any query (V, V , x) to our generalized
decision oracle there exists a small set I of “d-influential labels” such that any changes to
Ψ involving at most d labels outside of I do not change the answer to the query. That is,
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let Ψ′ ∈ S be any oracle for which there exists a set D ⊆ X \ I of at most d labels such
that if Ψ′(α) 6= Ψ(α) then lab(α) ∈ D, where X is the set of all possible labels and lab
is a labeling function. Then, it holds that DecideΨ′

S (V, V , x) = DecideΨ
S(V, V , x). This is a

simplified description of the key property on which we rely in order to prove that a random
instance of Ψ realizes a one-way function and an indistinguishability obfuscator relative to
our generalized decision oracle, and we refer the reader to Section 4 for the proof of our
impossibility result.

1.3 Paper Organization
The remainder of this paper is organized as follows. In Section 2 we introduce some standard
notation as well as the cryptographic primitives under consideration in this paper. In Section
3 we define the class of constructions to which our impossibility result applies, and in Section
4 we formally state and prove Theorem 1.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work.
For a distribution X we denote by x ← X the process of sampling a value x from the
distribution X. Similarly, for a set X we denote by x← X the process of sampling a value
x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the set
{1, . . . , n}. For every n ∈ N and m ≥ n we denote by InjFuncm

n the set of all injective
functions f : {0, 1}n → {0, 1}m.

Oracle-aided languages and complexity classes. For a language L ⊆ {0, 1}∗, we let χL :
{0, 1}∗ → {0, 1} denote the characteristic function of L, that is, χL(x) = 1 if and only if
x ∈ L. A deterministic algorithm A decides a language L if for every x ∈ {0, 1}∗ it holds
that A(x) = χL(x).

We consider the standard notions of languages and complexity classes when naturally
generalized to oracle-aided computations. In particular, an oracle-aided language L defines a
set LΓ ⊆ {0, 1}∗ for any possible oracle Γ : {0, 1}∗ → {0, 1}∗. Our definitions throughout
the paper follow the standard approach that was introduced in the classic complexity-theory
literature for proving separations between complexity classes by considering type-2 languages
and complexity classes (see, for example, [7, 17] and the references therein).

Indistinguishability obfuscation for oracle-aided circuits. We consider the standard notion
of indistinguishability obfuscation [6, 20] when naturally generalized to oracle-aided circuits
(i.e., circuits that may contain oracle gates in addition to standard gates) [2, 3]. We first
define the notion of functional equivalence relative to a specific function (provided as an
oracle), and then we define the notion of an indistinguishability obfuscation for a class of
oracle-aided circuits. In what follows, when considering a class C = {Cn}n∈N of oracle-aided
circuits, we assume that each Cn consists of circuits of size at most n.

I Definition 2. Let C0 and C1 be two oracle-aided circuits, and let f be a function. We say
that C0 and C1 are functionally equivalent relative to f , denoted Cf

0 ≡ C
f
1 , if for any input

x it holds that Cf
0 (x) = Cf

1 (x).

I Definition 3. A probabilistic polynomial-time oracle-aided algorithm iO is an indistin-
guishability obfuscator relative to an oracle Γ for a class C = {Cn}n∈N of oracle-aided circuits
if the following conditions are satisfied:
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Functionality. For all n ∈ N and for all C ∈ Cn it holds that

Pr
[
CΓ ≡ ĈΓ : Ĉ ← iOΓ(1n, C)

]
= 1.

Indistinguishability. For any probabilistic polynomial-time oracle-aided distinguisher
A = (A1,A2) there exists a negligible function ν(·) such that

AdviO
Γ,iO,A,C(n) def=

∣∣∣∣Pr
[
ExpiO

Γ,iO,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ ν(n)

for all sufficiently large n ∈ N, where the random variable ExpiO
Γ,iO,A,C(n) is defined via

the following experiment:
1. b← {0, 1}.
2. (C0, C1, state)← AΓ

1 (1n) where C0, C1 ∈ Cn and CΓ
0 ≡ CΓ

1 .
3. Ĉ ← iOΓ(1n, Cb).
4. b′ ← AΓ

2 (state, Ĉ).
5. If b′ = b then output 1, and otherwise output 0.

For simplicity, note that whenever the algorithm A1 is deterministic there is in fact no
need for A1 to transfer any state information state to A2 as the state can be reconstructed
if needed by invoking A1. Looking ahead, in this paper we consider computationally-
unbounded algorithms (i.e., we limit their query complexity but we do not limit their
internal computation), and such algorithms can be assumed without loss of generality to be
deterministic.

3 The Class of Constructions

The proof systems we consider in this paper can be formalized in a variety of seemingly
equivalent manners, and here we choose a specific definition that we find to simplify the
proof of our impossibility result:

I Definition 4. For functions V, P : {0, 1}∗ → {0, 1}∗, an integer k ≥ 0 and a string
s ∈ {0, 1}∗, we denote by 〈V (s), P 〉k the output of the following computation:

Let m0 = P (V (s, 0)).
For 1 ≤ i < k, let mi = P (V (s, i,m0, . . . ,mi−1)).
Output V (s, k,m0, . . . ,mk−1) ∈ {0, 1}.

That is, we consider a sequential process that is executed by two parties, a verifier V that
is given as input a string s, and a prover P that is not given any input. The process consists
of k rounds, where in each round the verifier sends the prover a message that is computed as
a function of its input s, the index i of the current round, and the prover’s previous responses
m0, . . . ,mi−1. In turn, the prover replies with a response mi, and following these k steps
the verifier outputs a bit indicating acceptance or rejection.

A crucial property to notice is that the prover’s response, mi, in each step is a function
of the verifier’s ith message only, and not of the entire transcript which includes all of
the verifier’s previous messages as well (i.e., the prover is “memoryless”). A verifier may
potentially include the entire transcript in each message, and then the definition would
collapse to the class IP of languages that have an interactive proof system [24].

In general, however, a verifier need not send the entire transcript in each message, and this
enables us to capture the class MIP of languages that have a multi-prover interactive proof
system [8]. Specifically, any such proof system 〈V, P1, . . . , PN 〉 in which each prover sends at
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most v messages can be transformed in a black-box manner into a proof system 〈V, P 〉k of
the above form with k = v ·N . This can be done, for example, by defining P (i, ·) = Pi(·) for
every i ∈ [T ] (with P maintaining the local state of each prover if needed), and having the
verifier include in each message the index of the prover to which this message is sent together
with the entire transcript that this specific prover has seen so far. Although we have not
yet defined the completeness and soundness properties for the above proof systems (these
are defined as part of the following definition), we already note that this transformation
naturally preserves them.

As discussed in Section 1.2, instead of considering oracle-aided MIP proof systems we
consider oracle-aided MIP verifiers, and allow the honest provers to depend on any given
oracle in an arbitrary (i.e., non-black-box) manner (thus our result rules out, in particular,
oracle-aided proof systems). This is captured via the following definition:

I Definition 5. A pair
(
V, V

)
of oracle-aided polynomial-time algorithms, together with

polynomials `r(·) and k(·), define a (MIP, coMIP) protocol pair relative to an oracle Ψ :
{0, 1}∗ → {0, 1}∗ if there exists a language LΨ ⊆ {0, 1}∗ and such that:

For every x ∈ LΨ there exists a function P : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r(|x|)

[〈
V Ψ(x, r), P

〉
k(|x|) = 1

]
≥ 2/3 ,

and for every function P : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r(|x|)

[〈
V

Ψ(x, r), P
〉

k(|x|)
= 1
]
≤ 1/3 .

For every x /∈ LΨ there exists a function P : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r(|x|)

[〈
V

Ψ(x, r), P
〉

k(|x|)
= 1
]
≥ 2/3 ,

and for every function P : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r(|x|)

[〈
V Ψ(x, r), P

〉
k(|x|) = 1

]
≤ 1/3 .

Note that the above definition considers provers that output only a single bit in each step.
This is just for syntactical reasons, making sure that the verifier runs in polynomial-time
with respect to the length of the input x. For example, if the prover was allowed to be a
length-doubling function, then after |x| rounds this would allow a polynomial-time verifier
to run in time that is exponential in the length of |x|. There are naturally various ways in
which this technical issue can be handled (e.g., providing the verifier with oracle access to
the prover instead of direct communication), clearly without having any effect on our result.

The following definition is based on those of [2, 3, 10] (which, in turn, are motivated
by [29, 22, 31]), and captures the class of construction that we consider in this paper. We
remind the reader that two oracle-aided circuits, C0 and C1, are functionally equivalent
relative to a function f , denoted Cf

0 ≡ C
f
1 , if for any input x it holds that Cf

0 (x) = Cf
1 (x)

(see Definition 2).

I Definition 6. A fully black-box construction of a worst-case hard (MIP, coMIP) protocol
pair from an injective one-way function f and an indistinguishability obfuscator for the
class C of all oracle-aided circuits Cf , consists of a pair of oracle-aided polynomial-time
algorithms (V, V ), polynomials `r(·) and k(·), an oracle-aided polynomial-time algorithm M ,
and “security loss” functions εM,1(·) and εM,2(·), such that the following conditions hold:
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Correctness: For every ensemble f = {fn : {0, 1}n → {0, 1}n+1}n∈N of injective
functions, and for any function iO such that iO(C; r)f ≡ Cf for any circuit C and
r ∈ {0, 1}∗, the pair (V, V ), together with the polynomials `r(·) and k(·), define an
(MIP, coMIP) protocol pair (with a corresponding language Lf,iO) relative to the oracle
(f, iO).
Black-box proof of hardness: For every ensemble f = {fn : {0, 1}n → {0, 1}n+1}n∈N
of injective functions, for any function iO such that iO(C; r)f ≡ Cf for any circuit
C and r ∈ {0, 1}∗, and for any oracle-aided algorithm A that runs in time TA(·), if
Af,iO(x) = χLf,iO (x) for every x ∈ {0, 1}∗ then either

Pr
[
Mf,iO,A (f(x)) = x

]
≥ εM,1 (TA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the choice of
x← {0, 1}n and over the internal randomness of M , or∣∣∣∣Pr

[
ExpiO

(f,iO),iO,MA,C(n) = 1
]
− 1

2

∣∣∣∣ ≥ εM,1 (TA(n)) · εM,2(n)

for infinitely many values of n ∈ N.

Intuitively, a black-box proof of hardness for Lf,iO means that any algorithm that decides
Lf,iO can be used to construct an adversary that breaks either the one-wayness of f or the
indistinguishability property of iO in a black-box way.

Note that restricting A to be deterministic and to decide the language in the worst case
(i.e., on all inputs) only makes our result stronger. Also note that, following Asharov and
Segev [2, 3], we split the security loss in the above definition to an adversary-dependent
security loss (the function εM,1(·)) and an adversary-independent security loss (the function
εM,2(·)), as this allows us to also rule out constructions in which one of these losses is
super-polynomial while the other is polynomial.

4 Our Impossibility Result

Equipped with a formal definition of the class of constructions that we consider in this paper
(recall Definition 6), in this section we prove the following theorem:

I Theorem 7. Let ((V, V ), `r, k,M, TM , εM,1, εM,2) be a fully black-box construction of a
worst-case hard (MIP, coMIP) protocol pair from an injective one-way function f and an
indistinguishability obfuscator for all oracle-aided circuits Cf . Then, it holds that

εM,1 (n) · εM,2(n) ≤ 2−Ω(n).

That is, at least one out of the adversary-dependent security loss εM,1(·) and the adversary-
independent security loss εM,2(·) is exponential.

Theorem 7 rules out, in particular, standard “polynomial-time polynomial-loss” reductions.
More generally, the theorem implies that if the adversary-dependent security loss εM,1(·)
is polynomial (as is typically the case in cryptographic reductions), then the adversary-
independent security loss εM,2(·) must be exponential. Thus, this also rules out constructions
that are based on indistinguishability obfuscation with sub-exponential security (e.g., [11, 12]).

In what follows we first introduce our generalized decision oracle, and capture its main
property on which we rely in our proof, as discussed in Section 1.2. Then, in Section 4.2 we
introduce the additional oracles on which we rely, and in Sections 4.3 and 4.4 we prove that
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relative to these oracles and to our decision oracle there exist an injective one-way function
and an indistinguishability obfuscator, respectively. Finally, in Section 4.5 we derive the
proof of Theorem 7.

4.1 Our Generalized Decision Oracle
For a family of oracles S and for any specific oracle Ψ ∈ S, we define the oracle DecideΨ

S as
the following function: Given as input tuple (C0, C1, 1`r , 1k), where C0 and C1 are oracle-
aided circuits, and `r and k are non-negative integers, for every Φ ∈ S the oracle checks if
exactly one of the following two cases holds:

There exists a function P1 : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1
〉

k
= 1
]
≥ 2/3 ,

and for every function P0 : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r

[〈
CΦ

0 (r), P0
〉

k
= 1
]
≤ 1/3 .

In this case, we say that (CΦ
0 , C

Φ
1 , 1`r , 1k) is a yes-instance.

There exists a function P0 : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r

[〈
CΦ

0 (r), P0
〉

k
= 1
]
≥ 2/3 ,

and for every function P1 : {0, 1}∗ → {0, 1} it holds that

Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1
〉

k
= 1
]
≤ 1/3 .

In this case, we say that (CΦ
0 , C

Φ
1 , 1`r , 1k) is a no-instance.

If there exists an oracle Φ ∈ S such that not exactly one of the above cases hold, then we say
that the input (C0, C1, 1`r , 1k) is invalid and set DecideΨ

S to output ⊥. Otherwise, DecideΨ
S

outputs 1 or 0 according to whether (CΨ
0 , C

Ψ
1 , 1`r , 1k) is a yes-instance or a no-instance.5

The following simple lemma shows that the oracle DecideΨ
S can be easily used in order to

decide any language that is defined via a (MIP, coMIP) protocol pair:

I Lemma 8. Let S be a family of oracles, and let (V, V ) be a pair of oracle-aided polynomial-
time algorithms that is an (MIP, coMIP) protocol pair, with respect to polynomials `r(·) and
k(·), relative to every oracle Ψ ∈ S. Then, there exists a polynomial-time single-query
algorithm A such that for every Ψ ∈ S, given oracle access to DecideΨ

S the algorithm A
decides the language LΨ ⊆ {0, 1}∗ defined by (V, V , `r, k) relative to Ψ. That is, for every
Ψ ∈ S and x ∈ {0, 1}∗ the algorithm ADecideΨ

S(x) outputs 1 if and only if x ∈ LΨ.

Proof. Since V and V are polynomial time, there exists a polynomial p(n) such that on
input of size n their output is of size at most p(n). Given x ∈ {0, 1}∗ as input and oracle
access to DecideΨ

S, the algorithm A queries DecideΨ
S on (C0, C1, 1`r(|x|), 1k(|x|)), where C0

and C1 are the hardwired oracle-aided circuits V (x, ·) and V (x, ·) respectively, the input size
of both circuits is dlog(k(|x|) + 1)e+ k(|x|) (where dlog(k(|x|) + 1)e bits are for the index of
the communication round and k(|x|) bits are for the messages of the prover) and the output
size is p(|x|+ dlog(k(|x|) + 1)e+ k(|x|)). Finally, the algorithm A outputs 1 if and only if
the oracle’s response to the query is 1. J

5 Note that for an input (C0, C1, 1`r , 1k), either it is invalid and then DecideΨ
S outputs ⊥ for every Ψ ∈ S,

or it is valid and then DecideΨ
S outputs 0 or 1 depending on Ψ.
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The following lemma captures the key property of our oracle, as discussed in Section 1.2:

I Lemma 9. Let S be a family of oracles, let Q be the set of all possible queries for every
oracle in the family, let lab : Q → X be a “labeling” of the possible queries, and let d ∈ N be
a parameter.

For any Ψ ∈ S and for any DecideΨ
S-query (C0, C1, 1`r , 1k) such that each of the circuits C0

and C1 contains at most q oracle gates, there exists a set of labels I = I(S,Ψ,C0,C1,`r,k,lab,d)
⊆ X , which we call the influential labels, satisfying the following two properties:
1. The set is small: |I| ≤ 3 · q · k · d.
2. Any changes to Ψ involving at most d labels outside of I do not change the answer of the

query: Let Φ ∈ S be another oracle, such that there exists a set D ⊆ X \ I of labels with
cardinality at most d such that if Φ(q) 6= Ψ(q) then lab(q) ∈ D. Then, it holds that

DecideΦ
S(C0, C1, 1`r , 1k) = DecideΨ

S(C0, C1, 1`r , 1k) .

Proof. If DecideΨ
S(C0, C1, 1`r , 1k) = ⊥ this means that the input (C0, C1, 1`r , 1k) is invalid,

and then DecideΦ
S(C0, C1, 1`r , 1k) = ⊥ holds for every Φ ∈ S and the claim follows for

I = ∅. Otherwise, suppose without loss of generality that DecideΨ
S(C0, C1, 1`r , 1k) = 1 and

let P1 : {0, 1}∗ → {0, 1} such that

Pr
r←{0,1}`r

[〈
CΨ

1 (r), P1
〉

k
= 1
]
≥ 2/3 .

Roughly speaking, we define I ⊆ X to be the set of all labels for which a query with that
label is performed during the execution of the protocol

〈
CΨ

1 (·), P1
〉

k
with high probability

over the choice of r. More formally, we define

I =
{

label ∈ X
∣∣∣∣ Pr
r←{0,1}`r

[
A query q ∈ Q such that lab(q) = label is performed

during the execution of
〈
CΨ

1 (r), P1
〉

k

]
≥ 1

3 · d

}
.

First, for every r ∈ {0, 1}`r at most q · k queries are performed during the execution of〈
CΨ

1 (r), P1
〉

k
. Therefore, for any 0 < ε ≤ 1 there are at most q · k/ε labels such that

Pr
r←{0,1}`r

[
A query q ∈ Q such that lab(q) = label is performed

during the execution of
〈
CΨ

1 (r), P1
〉

k

]
≥ ε .

In our case, this means that I ≤ q · k · 3 · d as claimed.
Next, let Φ ∈ S such that there exists a set D ⊆ X \ I of labels with cardinality at most

d such that if Φ(q) 6= Ψ(q) then lab(q) ∈ D. By a union bound it holds that

Pr
r←{0,1}`r

[
A query q ∈ Q such that lab(q) ∈ D is performed

during the execution of
〈
CΨ

1 (r), P1
〉

k

]
<
|D|
3 · d ≤

1
3 .

If the above event does not occur then
〈
CΦ

1 (r), P1
〉

k
=
〈
CΨ

1 (r), P1
〉

k
. Hence,

Pr
r←{0,1}`r

[〈
CΦ

1 (r), P1
〉

k
= 1
]

≥ Pr
r←{0,1}`r

[〈
CΨ

1 (r), P1
〉

k
= 1
]
− Pr

r←{0,1}`r

[〈
CΦ

1 (r), P1
〉

k
6=
〈
CΨ

1 (r), P1
〉

k

]
>

2
3 −

1
3 = 1

3 ,

so (CΦ
0 , C

Φ
1 , 1`r , 1k) is not a no-instance. Since DecideΨ

S(C0, C1, 1`r , 1k) 6= ⊥, (CΦ
0 , C

Φ
1 , 1`r , 1k)

must be a yes-instance and therefore DecideΦ
S(C0, C1, 1`r , 1k) = 1 = DecideΨ

S(C0, C1, 1`r , 1k)
as claimed. J
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4.2 Our Indistinguishability Obfuscation Oracle
In what follows we define the family S of oracles that realize injective functions and strongly-
unambiguous obfuscations relative to our decision oracle, and define a distribution D(S) over
that family. The family S consists of all triplets (f,O, E) = ({fn}n∈N, {On}n∈N, {En}n∈N),
satisfying the following three conditions for every n ∈ N:
1. The function fn : {0, 1}n → {0, 1}n+1 is injective. Looking ahead, f will serve as an

injective one-way function.
2. The function On : {0, 1}2n → {0, 1}10n is injective. Looking ahead, for an oracle-aided

circuit C ∈ {0, 1}n with f -gates and randomness r ∈ {0, 1}n, the output On(C, r) will
serve as an obfuscation of C, and the restriction that On is injective means that the
obfuscation is strongly-unambiguous in the sense that any obfuscation Ĉ ∈ Image(On)
only comes from a single circuit with a single randomness string.

3. The function En : {0, 1}11n → {0, 1}n satisfies the following condition: For every oracle-
aided circuit C ∈ {0, 1}n with f -gates, every randomness r ∈ {0, 1}n and every input
α ∈ {0, 1}n, it holds that En(On(C, r), α) = Cf (x). Namely, given an obfuscation
Ĉ = On(C, r) and an input α, the function En evaluates C on input α with respect to
the oracle f .
We emphasize that for any Ĉ ∈ {0, 1}10n \ Image(On), there is no restriction on En(Ĉ, ·),
so there is no clear way to verify whether some Ĉ ∈ {0, 1}10n is a valid obfuscation. As
noted by Bitansky et al. [10], it is necessary for the obfuscation to not be verifiable since
an unambiguous and verifiable indistinguishability obfuscator does imply hardness in
NP ∩ coNP.

Now, we define a distribution D(S) over S, relative to which we prove that an oracle
Ψ← D(S) realizes an injective one-way function and an indistinguishability obfuscator. The
distribution D(S) is obtained by sampling a triplet (f,O,Evalf,O) from S as follows:
1. For every n ∈ N the function fn is uniformly chosen from the set InjFuncn+1

n of all injective
functions fn : {0, 1}n → {0, 1}n+1.

2. For every n ∈ N the function On : {0, 1}2n → {0, 1}10n is sampled as follows: A function
h is uniformly chosen from the set InjFunc5n

n , and for every r ∈ {0, 1}n a function gr is
uniformly chosen from the set InjFunc5n

n . Then, for every input (C, r) ∈ {0, 1}n × {0, 1}n

we define On(C, r) = (h(r), gr(C)). Note that On is injective as required, and that this
distribution of the function O differs from that of Asharov and Segev [2] and Bitansky et
al. [10], where On was a uniformly chosen injective function.

3. For every n ∈ N, the function Evalf,O on input (Ĉ, α) ∈ {0, 1}10n × {0, 1}n is defined as
follows: If there exists a pair (C, r) ∈ {0, 1}n × {0, 1}n such that Ĉ = On(C, r) then it
outputs Cf (α), and otherwise it outputs ⊥. Note that Evalf,O satisfies the above third
condition for membership in S.

4.3 The Existence of an Injective One-Way Function
In this section we prove that the injective function f is one way relative to (Ψ,DecideΨ

S),
where Ψ = (f,O,Evalf,O) is sampled from the distribution D(S) over S (see Section 4.2
for the description of this distribution). Our proof follows the structure of that of Bitansky,
Degwekar and Vaikuntanathan [10], while strengthened to deal with our generalized decision
oracle as explained in Section 1.2.

In what follows we call an oracle-aided algorithm A a q-query algorithm, for a function
q = q(n), if when given any input x ∈ {0, 1}n it issues at most q(n) queries to the oracle

ITC 2020



10:16 Hardness vs. (Very Little) Structure in Cryptography

Γ, each of its queries to Eval and Decide consists of circuits with at most q(n) oracle gates,
and the number of communication rounds in the proof systems corresponding to each of its
queries to Decide is at most q(n).

I Theorem 10. For any oracle-aided 2n/12-query algorithm A it holds that

Pr
Ψ←D(S)

x←{0,1}n

[
AΨ,DecideΨ

S(f(x)) = x
]
≤ O(2−n/2)

for all sufficiently large n ∈ N.

In what follows, we let F denote the family of ensembles f = {fn}n∈N where fn ∈
InjFuncn+1

n for all n ∈ N. As our first step, we prove that f ← F is one way relative to the
oracle (f,Decidef

F).

I Lemma 11. For any oracle-aided 2n/6-query algorithm A it holds that

Pr
f←F

x←{0,1}n

[
Af,Decidef

F(f(x)) = x
]
≤ O(2−n/2) .

Proof. We prove that the lemma holds when even fixing the oracles f−n = {fk}k 6=n and
only sampling fn. We introduce a sequence of three hybrid experiments such that the first
hybrid experiment H1 is the real one-wayness experiment and the last hybrid experiment H3
is an experiment in which the probability of the adversary is of winning is 1/2n. Then, by
upper bounding the difference in the winning probability between each pair of consecutive
hybrid experiments we deduce our claim.

The hybrid H1. This is the real experiment in which we sample x← {0, 1}n, give fn(x) ∈
{0, 1}n+1 to A as input, and give A oracle access to Γ = (f,Decidef

F).
The hybrid H2. In this experiment, we sample y ← {0, 1}n+1 \ Image(fn), give y to A as

input, and give A oracle access to Γ′ = (fx 7→y,Decidefx 7→y

F ), where fx 7→y is defined as

fx 7→y(z) =
{
y if z = x

f(z) otherwise
.

That is, we “plant” y as the challenge and as the image of x.
The hybrid H3. This experiment is obtained from H2 by giving A oracle access to the

original oracle Γ instead of the oracle Γ′ with the planted y, while still giving A the
planted y as input.

The following table summarizes our hybrid experiments:

Hybrid H1 H2 H3

Randomness
Challenger

x← {0, 1}n

Function
Injective

fn ← InjFuncn+1
n

Challenge fn(x) y ← {0, 1}n+1 \ Image(fn)

Oracle Γ = (f, Decidef
F) Γ′ = (fx 7→y, Decidefx 7→y

F ) Γ = (f, Decidef
F)

Condition
Winning A outputs x
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B Claim 12. Pr[A wins in H1] = Pr[A wins in H2].

Proof. We couple the experiments H1 and H2 as follows.6 First, we sample the same
x← {0, 1}n for both experiments. Then, we a uniformly sample a random injective function
f̂ : {0, 1}n \ {x} → {0, 1}n+1. Next, we sample two distinct y, y′ ← {0, 1} \ Image(f̂). Now,
in H1 we let the injective function be

fn(z) =
{
y if z = x

f̂(z) otherwise
,

whereas in H2 we let the injective function be

f ′n(z) =
{
y′ if z = x

f̂(z) otherwise
,

and let y be the planted challenge. It is easy to see that the marginal distribution in both
experiments is correct, and that both experiments are identical. That is, A gets the same
challenge as input and gets access to the same oracle, thus the claim follows. C

B Claim 13. |Pr[A wins in H2]− Pr[A wins in H3]| ≤ 3 · q3/2n.

Proof. We observe that the view of A in H3 is independent of the choice of x. Therefore, if a
query to fn is made, then the probability of it to be x is at most 1/2n. In any other case, the
answer to this query is the same in H2 and H3, and both executions proceed the same way.

Now, if a query (C0, C1, 1`r , 1k) to Decidef
F is made, then we apply Lemma 9. We take the

label function lab : Q → X to be the identity function. The set I = I(F, f, C0, C1, `r, k, lab, 1)
⊆ X of influential labels is independent of the choice of x. Therefore, the probably that I
contains x is at most |I|/2n ≤ 3q2/2n. In any other case, the oracle fx 7→y of H2 is obtained
from f of H3 by changes involving one label outside of I, and therefore by Lemma 9 it holds
that

Decidefx7→y

F (C0, C1, 1`k , 1k) = Decidef
F(C0, C1, 1`k , 1k) ,

and both executions proceed the same way. Applying a union bound we deduce that

|Pr[A wins in H2]− Pr[A wins in H3]|

≤ Pr
[
A query was answered differently in AΓ(y) and AΓ′(y)

]
≤ 3q3

2n
,

and the claim follows. C

B Claim 14. Pr[A wins in H3] = 1/2n.

Proof. In this experiment the view of A is independent of x. C

6 To couple two probability distributions means to define a joint distribution whose marginals are exactly
those two distributions.
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Now we turn back to proving Lemma 11. It holds that

Pr[A wins in H1] ≤ |Pr[A wins in H1]− Pr[A wins in H2]|
+ |Pr[A wins in H2]− Pr[A wins in H3]|+ Pr[A wins in H3]

≤ 0 + 3q3

2n
+ 1

2n
= O

(
q3

2n

)
,

and by plugging q = 2n/6 we obtain Lemma 11. J

In the full version of this paper [35], we show how to deduce Theorem 10 from Lemma 11.

4.4 The Existence of an Indistinguishability Obfuscator
In this section we prove that relative to the oracle Γ = (Ψ,DecideΨ

S), where Ψ = (f,O,Evalf,O)
is sampled from the distribution D(S) defined in Section 4.2, there exists an indistinguishab-
ility obfuscator iO for all circuits with f -gates.

Our obfuscator is based on those of Asharov and Segev [2] and Bitansky et al. [10] but has
a somewhat different structure. Similarly to their obfuscator, for every n ∈ N, given an oracle-
aided circuit C ∈ {0, 1}n, the obfuscator iO samples r ← {0, 1}n and outputs the obfuscated
circuit Ĉ = On(C, r) ∈ {0, 1}10n. In turn, the oracle Evalf,O can be used for evaluating such
an obfuscated circuit at any given point α: If there exists a pair (C, r) ∈ {0, 1}n × {0, 1}n

such that Ĉ = On(C, r) then Evalf,O outputs Cf (α) and otherwise it outputs ⊥.
However, unlike their obfuscator of Asharov and Segev [2] and Bitansky et al. [10], which

was sampled uniformly at random among all injective functions (of the appropriate input and
output lengths), recall that according to our definition of the distribution D(S) it holds that
On(C, r) = (h(r), gr(C)), where the function h is uniformly-chosen from the set InjFunc5n

n ,
and for every r ∈ {0, 1}n a function gr is uniformly-chosen from the set InjFunc5n

n .
Recall that we call an oracle-aided algorithm A a q-query algorithm, for a function

q = q(n), if when given any input x ∈ {0, 1}n it issues at most q(n) queries to the oracle
Γ, each of its queries to Eval and Decide consists of circuits with at most q(n) oracle gates,
and the number of communication rounds in the proof systems corresponding to each of its
queries to Decide is at most q(n). Letting C denote the class of all oracle-aided circuit with
f -gates, we prove the following theorem:

I Theorem 15. For any oracle-aided 2n/6-query algorithm A it holds that

E
Γ

∣∣∣∣Pr
[
ExpiO

Γ,iO,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ O(2−n/4)

where the expectation is taken over the choice of Γ = (Ψ,DecideΨ
S) where Ψ← D(S), and

the inner probability is taken over the randomness of the experiment ExpiO
Γ,iO,A,C(n).

Toward proving Theorem 15, we first prove the following lemma.

I Lemma 16. For any oracle-aided 4 · 2n/6-query algorithm A it holds that∣∣∣∣Pr
[
ExpiO

Γ,iO,A,C(n) = 1
]
− 1

2

∣∣∣∣ ≤ O(2−n/2)

where the probability is taken both over the choice of Γ = (Ψ,DecideΨ
S) where Ψ ← D(S),

and over the randomness of the experiment ExpiO
Γ,iO,A,C(n).
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Proof. We prove that the lemma holds when even fixing the oracle f and O−n = {Ok}k 6=n,
and only sampling On. We introduce a sequence of 5 hybrid experiments such that the first
hybrid experiment H1 is the real indistinguishability-obfuscation experiment ExpiO

Γ,iO,A,C(n)
and the last hybrid experiment H5 is an experiment in which the advantage of the adversary is
0. Then, by upper bounding the difference in the advantage between each pair of consecutive
hybrid experiments we deduce our lemma.

In what follows we first describe the hybrid experiments (see also the table below for
a summary – where we omit the function f since it has been fixed), and then present a
sequence of claims for bounding the differences in the advantages.

The hybrid H1. This is the real experiment in which we sample On by sampling
h ← InjFunc5n

n , sampling gr ← InjFunc5n
n for every r ∈ {0, 1}n, and setting On(C, r) =

(h(r), gr(C)).
The hybrid H2. In this experiment, instead of giving the pre-challenge adversary A0 access

to the oracle Γ = (Ψ,DecideΨ
S) where Ψ = (f,O,EvalO), we sample a string ĥ ←

{0, 1}5n \ Image(h) and a function ĝ ← InjFunc5n
n , then we give A0 access to the oracle

Γ′ = (Ψ′,DecideΨ′
S ) where Ψ′ = (f,O(·,r∗)→(̂h,̂g(·)),EvalO) and for every C, r ∈ {0, 1}n we

define

O(·,r∗)→(̂h,̂g(·))(C, r) =
{

(ĥ, ĝ(C)) if r = r∗

O(C, r) otherwise
.

That is, for the challenge randomness r∗, instead of obfuscating using h(r∗) and gr∗(·) we
use our “planted obfuscation” ĥ and ĝ(·). The rest of the experiment proceeds as before.

The hybrid H3. In this experiment, we return to giving the pre-challenge adversary A0
access to the real oracle Γ. However, we now give the post-challenge adversary A1 a
“planted challenge” (ĥ, ĝ(Cb)), and we give A1 access to the oracle Γ′ = (Ψ′,DecideΨ′

S )
where Ψ′ = (f,O(·,r∗)→(̂h,̂g(·)),EvalO).

The hybrid H4. For an obfuscator function of the form O(C, r) = (h(r), gr(C)), ĥ ∈
{0, 1}5n\Image(h) and ĝ ∈ InjFunc5n

n , we define the planted evaluation function PEvalO
(̂h,̂g)

as

PEvalO
(̂h,̂g)

(C̃, α) =
{
Cf (α) if C̃ = (ĥ, ĝ(C)) for a circuit C ∈ {0, 1}n

EvalO(C̃, α) otherwise
.

Note that since ĥ /∈ Image(h), it holds that PEvalO
(̂h,̂g)

is a valid evaluation function
and therefore (f,O,PEvalO

(̂h,̂g)
) ∈ S. Now, the experiment H4 is obtained from H3

by replacing the post-challenge oracle Γ′ with the oracle Γ′′ = (Ψ′′,DecideΨ′′
S ) where

Ψ′′ = (f,O,PEvalO
(̂h,̂g)

). Note that in this experiment, the randomness r∗ has no role.
The hybrid H5. This experiment is obtained from H4 by replacing the challenge obfuscation

(ĥ, ĝ(Cb)) with (ĥ, ĝ(C0)). Note that in this experiment, the bit b has no role except for
the winning condition, namely, A wins if A1 outputs b.
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Hybrid H1 H2 H3 H4 H5

Randomness
Challenger

b← {0, 1}, r∗ ← {0, 1}n b← {0, 1}

Fuction
Obfuscator On(C, r) = (h(r), gr(C)), where h← InjFunc5n

n and gr ← InjFunc5n
n for every r ∈ {0, 1}n

Obfuscation
Planted N/A ĥ← {0, 1}5n \ Image(h), ĝ ← InjFunc5n

n

Oracle
Pre-challenge Ψ = (O, EvalO)

DecideΨ
S

Ψ′ = (O′ = O(·,r∗)→(̂h,̂g(·)),

EvalO
′
), DecideΨ′

S

Ψ = (O, EvalO)
DecideΨ

S

Obfuscation
Challenge O(Cb, r∗) = (h(r∗), gr∗(Cb)) (ĥ, ĝ(Cb)) (ĥ, ĝ(C0))

Oracle
Post-challenge Ψ = (O, EvalO)

DecideΨ
S

Ψ′ = (O′ = O(·,r∗)→(̂h,̂g(·)),

EvalO
′
), DecideΨ′

S

Ψ′′ = (O, PEvalO
(̂h,̂g)

)

DecideΨ′′
S

Condition
Winning A1 outputs b

In the full version of this paper [35], we prove the following claims.

B Claim 17. |Pr[A wins in H1]− Pr[A wins in H2]| ≤ 27q3/2n.

B Claim 18. Pr[A wins in H2] = Pr[A wins in H3].

B Claim 19. |Pr[A wins in H3]− Pr[A wins in H4]| ≤ 12q3/2n.

B Claim 20. Pr[A wins in H4] = Pr[A wins in H5].

B Claim 21. Pr[A wins in H5] = 1/2.

Using the above claims, we can prove Lemma 16. It holds that∣∣Pr[A wins in H1]− 1
2
∣∣ = |Pr[A wins in H1]− Pr[A wins in H5]|

≤
4∑

i=1
|Pr[A wins in Hi]− Pr[A wins in Hi+1]| ≤ 40q3

2n
,

and by plugging q = 4 · 2n/6 we obtain Lemma 16. J

In the full version of this paper [35], we show how to deduce Theorem 15 from Lemma 16.

4.5 Putting it All Together
Given Theorems 10 and 15 we can now derive Theorem 7.

Proof. Let ((V, V ), `r, k,M, TM , εM,1, εM,2) be a fully black-box construction of a worst-case
hard (MIP, coMIP) protocol pair from an injective one-way function f and an indistinguishab-
ility obfuscator for all oracle-aided circuits Cf . Lemma 8 guarantees the existence of a
polynomial-time single-query algorithm A such that for every Ψ = (f,O,Evalf,O) in the
support of the distribution D(S), the algorithm A with oracle access to Γ = (Ψ,DecideΨ

S)
decides the language LΨ ⊆ {0, 1}∗ defined by (V, V , `r, k) relative to Ψ. That is, for every
x ∈ {0, 1}∗ it holds that AΓ(x) = χLΨ(x). For every n ∈ N, denote by TA(n) the polynomial
running time of A on inputs of length n.

Definition 6 then states that there are two possible cases to consider: A can be used
either for inverting the injective one-way function f , or for breaking the security of the
indistinguishability obfuscator iO. Specifically, in the first case we obtain from Definition 6
that for every Ψ = (f,O,Evalf,O) in the support of the distribution D(S) it holds that

Pr
[
MΓ,A (f(x)) = x

]
≥ εM,1 (TA(n)) · εM,2(n)
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for infinitely many values of n ∈ N, where Γ = (Ψ,DecideΨ
S) and the probability is taken

over the choice of x← {0, 1}n and over the internal randomness of M . The algorithm M

may invoke A on various input lengths (i.e., in general M is not restricted to invoking A
only on input length n), and we denote by `(n) the maximal input length on which M

invokes A (when M itself is invoked on input f(x) for x ∈ {0, 1}n). Thus, viewing MA
as a single oracle-aided algorithm that has access to Γ, its running time TMA(n) satisfies
TMA(n) ≤ TM (n) · TA(`(n)) (this follows since M may invoke A at most TM (n) times, and
the running time of A on each such invocation is at most TA(`(n))). In particular, viewing
M ′ = MA as a single oracle-aided algorithm that has oracle access to Γ, implies that M ′
is a q-query algorithm where q(n) = TMA(n). This holds for any Ψ in the support of the
distribution D(S), and given that q(n) is polynomial in n then Theorem 10 guarantees that
εM,1 (TA(n)) · εM,2(n) ≤ O(2−n/2).

In the second case we obtain from Definition 6 that for every Ψ = (f,O,Evalf,O) in the
support of the distribution D(S) it holds that∣∣∣∣Pr

[
ExpiO

Γ,iO,MA,C(n) = 1
]
− 1

2

∣∣∣∣ ≥ εM,1 (TA(n)) · εM,2(n)

for infinitely many values of n ∈ N, where the probability is taken over the randomness of
the experiment ExpiO

Γ,iO,MA,C(n). The same reasoning applied to the first case, together with
Theorem 15 guarantee that εM,1 (TA(n)) · εM,2(n) ≤ O(2−n/4).

We conclude the proof noting that the algorithm A provided by Lemma 8 runs in fact
in linear time. That is, TA(n) = O(n), and thus from the above two cases we obtain
εM,1 (n) · εM,2(n) ≤ 2−Ω(n). J
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