Oblivious Parallel Tight Compaction
Gilad Asharov

Bar-TIlan University, Ramat-Gan, Israel
Gilad.Asharov@biu.ac.il

Ilan Komargodski
NTT Research, East Palo Alto, CA, USA
ilan.komargodski@ntt-research.com

Wei-Kai Lin
Cornell University, Ithaca, NY, USA
wklin@cs.cornell.edu

Enoch Peserico
Universita degli Studi di Padova, Italy
enoch@dei.unipd.it

Elaine Shi
Cornell University, Ithaca, NY, USA
runting@gmail.com

—— Abstract

In tight compaction one is given an array of balls some of which are marked 0 and the rest are

marked 1. The output of the procedure is an array that contains all of the original balls except that
now the 0-balls appear before the 1-balls. In other words, tight compaction is equivalent to sorting
the array according to 1-bit keys (not necessarily maintaining order within same-key balls). Tight
compaction is not only an important algorithmic task by itself, but its oblivious version has also
played a key role in recent constructions of oblivious RAM compilers.

We present an oblivious deterministic algorithm for tight compaction such that for input arrays
of n balls requires O(n) total work and O(logn) depth. Our algorithm is in the Exclusive-Read-
Exclusive-Write Parallel-RAM model (i.e., EREW PRAM, the most restrictive PRAM model), and
importantly we achieve asymptotical optimality in both total work and depth. To the best of our
knowledge no earlier work, even when allowing randomization, can achieve optimality in both total
work and depth.

2012 ACM Subject Classification Theory of computation — Cryptographic protocols
Keywords and phrases Oblivious tight compaction, parallel oblivious RAM, EREW PRAM
Digital Object Identifier 10.4230/LIPIcs.ITC.2020.11

Related Version The full version is available on Cryptology ePrint Archive, Report 2020/125 [4],
https://eprint.iacr.org/2020/125.

Funding Wei-Kai Lin: Wei-Kai Lin supported by NSF CNS-1453634, an ONR YIP award, a Packard
Fellowship, and a DARPA Brandeis grant.

Elaine Shi: Elaine Shi supported by NSF CNS-1453634, an ONR YIP award, a Packard Fellowship,
and a DARPA Brandeis grant.

Acknowledgements Wei-Kai thanks Jyun-Jie Liao for reminding the similarity between supercon-

centrators and oblivious tight compaction.

1 Introduction

Tight compaction aims to solve the following problem: given an array of elements each
marked with either the label 0 or 1, move all the O-elements to the front of the array and
all the 1-elements to the end. In other words, we would like to sort an array of elements
? Gilad Asharov, Ilap Komargodski,. ‘Wei-Kai Lin, Enoch Peserico, and Elaine Shi;

5v icensed under Creative Commons License CC-BY

1st Conference on Information-Theoretic Cryptography (ITC 2020).
Editors: Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs; Article No. 11; pp. 11:1-11:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:Gilad.Asharov@biu.ac.il
mailto:ilan.komargodski@ntt-research.com
mailto:wklin@cs.cornell.edu
mailto:enoch@dei.unipd.it
mailto:runting@gmail.com
https://doi.org/10.4230/LIPIcs.ITC.2020.11
https://eprint.iacr.org/2020/125
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2

Oblivious Parallel Tight Compaction

each tagged with a 1-bit key. Moreover, due to its relationship to the classical sorting
problem, tight compaction has been an abstraction of interest and has been studied in the
core algorithms literature for several decades and in various models of computation. Notably,
Pippenger’s elegant self-routing superconcentrator construction [27] implied a deterministic
tight compaction algorithm completing in O(n) total work and O(logn) depth (see Section 1.2
for other classical algorithmic results on this important abstraction).

In this paper, we care about solving the tight compaction problem on a parallel RAM, but
imposing an additional natural privacy requirement commonly referred to as obliviousness.
Specifically, we require that the memory access patterns of the RAM be independent of the
input array. In this way, an adversary (e.g., an untrusted cloud server) who observes the
RAM’s access patterns cannot gather any information about the secret input. Besides being
an interesting question on its own, an important application of oblivious tight compaction
is in the design of efficient Oblivious RAM (ORAM) algorithms, as shown repeatedly in a
sequence of recent works [10, 8, 3], including a very recent work of Asharov et al. [3] which
demonstrated an asymptotically optimal ORAM and closed a long-time open question in
this line of work [16, 15].

Clearly a naive method to solve oblivious tight compaction is to rely on a sorting circuit
such as AKS [2] to sort the entire input of n elements, consuming O(n - logn) work and
O(logn) depth. However, since general-purpose oblivious sorting must consume Q(n - logn)
work (under the indivisibility assumption [7, 23] or assuming a well-known network coding
conjecture [13]), a very natural question is whether we can accomplish oblivious tight
compaction with asymptotically better overheads.

Pippenger’s result [27], mentioned above, does not satisfy obliviousness. However, around
the same time, another independent work by Leighton et al. [22] showed that there is an
almost oblivious randomized algorithm that accomplishes tight compaction except with
negligible probability in n in O(n - loglogn) work and O(logn) depth — and the algorithm’s
access patterns leak only the total number of 0 elements in the input array, and nothing else.
Subsequent works by Mitchell and Zimmerman [25] and Lin, Shi, and Xie [23] improve upon
Leighton et al. [22] by showing how to achieve full obliviousness (i.e., also hiding the number
of 0s) while retaining the same asymptotical overheads as Leighton et al. Like Leighton et
al., Mitchell and Zimmerman and Lin et al’s algorithms are also randomized and have a
negligible probability of failure.

These results left open the question of devising a deterministic oblivious tight compaction
algorithm with linear total work. For a very long time there was no progress in either fronts
until the recent work by Asharov et al. [3] where they constructed a deterministic oblivious
tight compaction algorithm that consumes linear total work.! While optimal in total work,
Asharov et al’s algorithm is sequential and turning it into one with logarithmic depth seems
non-trivial.2 We ask whether one could have a clean and optimal result statement, that is,

Is it possible to construct a deterministic oblivious tight compaction algorithm that
consumes linear total work and logarithmic depth?

! The work of Asharov et al. [3] subsumes and contains the work of Peserico [26] so we neither mention
the latter explicitly nor compare to it.

More precisely, the algorithm of Asharov et al., as written, has linear depth. However, as we explain
in Section 2, there are a couple of standard (yet non-trivial) tricks one can apply in order to make it
consume O(logn - loglogn) depth. Modifying their scheme to consume only O(logn) depth seems to
require new non-trivial ideas.

2

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

Essentially we ask whether one can match the best known non-oblivious deterministic
result, i.e., Pippenger’s algorithm [27], but additionally achieving obliviousness. Note that
any tight compaction algorithm requires linear work and logarithmic depth on PRAMs with
exclusive writes (which is the model we work in), even without obliviousness. The former is
since any algorithms must at least read the input and the latter is due to an elegant and
classical lower bound by Cook et al. [12].

1.1 Qur Contributions

We close the gap in our understanding regarding this important algorithmic abstraction by
answering the above question affirmatively, showing an algorithm that is optimal in total
work as well as in depth.

» Theorem 1 (Informal). There exists a deterministic oblivious tight compaction algorithm
such that for an input array of n elements, the algorithm completes in O(n) total work
and O(logn) total depth (assuming that each element fits into a single memory word and a
memory word can hold at least logn bits).

Our result holds on an Exclusive-Read-Exclusive-Write (EREW) PRAM,? i.e., the most
restrictive PRAM model (which makes our result stronger). Furthermore, our algorithm
is in the “indivisible model”, i.e., while the algorithm can perform numeric computations
on the 1-bit keys, the elements themselves are “indivisible” and can only be moved around
in memory [7]. By asymptotically matching the best known non-oblivious algorithm [27],
our result shows that obliviousness of tight compaction can be obtained “for free” (other
examples of such tasks are sorting [2] and parallel merge sort [11]).

In a very high level, our algorithm combines ideas, in a non black-box way, from the
non-oblivious tight compaction algorithm of Pippenger [27] together with the oblivious yet
sequential algorithm of Asharov et al. [3]. See Section 2 for an overview of our technical
highlights.

Towards an optimal OPRAM. Since oblivious tight compaction is an important building
block in the optimal ORAM construction of [3], one may wonder if our result can be used
to obtain a depth-efficient version of their work, i.e., an oblivious PRAM (OPRAM) [6, 10].
Unfortunately, not immediately: their ORAM construction is based on several other building
blocks and algorithms which are sub-optimal in terms of depth (e.g., oblivious Cuckoo
hashing [17, 21]). While our result does take us one step closer towards an optimal OPRAM,
a full resolution is left for future work.

1.2 Related Work

As mentioned, the study of compaction algorithms is core to the classical algorithms literature
due to its close relations to sorting. We thus discuss additional related work.

The tight compaction problem has been studied in the core algorithms literature under
various models of computation. For PRAMs with exclusive-writes, which is the model we
consider, a classical result by Cook et al. [12] shows that a logarithmic lower bound exists for
any algorithm even without the obliviousness or indivisibility requirements. On a concurrent-
read concurrent-write (CRCW) PRAM, there is a well-known §2(logn/loglogn)-depth lower

3 In the EREW model, every memory cell can be read or written to by only one processor at a time.

11:3

ITC 2020

11:4

Oblivious Parallel Tight Compaction

bound for any algorithm even without the obliviousness or indivisibility assumptions. More-
over, there is a matching non-oblivious upper bound that achieves O(logn/loglogn) depth
and linear total work [28].

Another related abstraction, called stable tight compaction, aims to achieve the same
task as tight compaction, but now additionally requiring stability, i.e., in the output array,
elements with the same key must appear in the same order as the input. For oblivious
algorithm subject to the indivisibility assumptions, there is a separation between stable tight
compaction and non-stable ones. Specifically, a recent lower bound by Lin et al. [23] shows
that any oblivious algorithm subject to the indivisibility assumption must incur Q(n - logn)
work to stably and tightly compact an arbitrary input array of n elements (while without
stability one can achieve it in O(n) work [3]). Therefore, in this paper, we allow our tight
compaction to not have to respect stability.

Due to the close relationship of tight compaction and sorting, a natural question is whether
one can design algorithms in the so-called comparison-based model where the algorithm is
only allowed to perform comparisons on keys and move elements around. However, due to the
well-known 0-1 principle for sorting, any comparison-based algorithm that can sort an array
with 1-bit keys must be able to sort any array with arbitrary keys. Thus we cannot constrain
ourselves to the comparison-based model since otherwise there would be an Q(n -logn) lower
bound [20].

A relaxed abstraction, called loose compaction, is also studied extensively in the algorithms
literature. Loose compaction solves the following problem: given an input array containing
n elements among which at most n/¢ are real and the rest are dummy (for some constant
¢ > 0), compress the input array to half of the original size while not losing any real element
in this process. Pippenger’s self-routing superconcentrator [27] implies a non-oblivious loose
compaction algorithm with O(n) total work and O(logn) depth. Asharov et al. [3], relying
on Pippenger’s work, showed how to obtain oblivious loose compaction without increasing
the asymptotical overhead. Loose compaction has also received a lot of attention in the
parallel (non-oblivious) algorithms literature. There is a separation between loose and tight
compaction on a CRCW PRAM. Specifically, Bast and Hagerup [5] showed the existence of
an O(n) work and O(log* n) depth parallel (non-oblivious) algorithm for performing loose
compaction, while as mentioned Q(logn/loglogn) depth is necessary for tight compaction.

We note that, in the current paper as well as in previous works (e.g., Asharov et al. [3]),
we use loose compaction as an intermediate abstraction. Here, however, we are unable to use
previous constructions directly. In fact, we introduce another relaxation of loose compaction
which allows to “lose” a small fraction of real elements. While this allows us to implement
this procedure very efficiently (in work and depth), it introduces a new challenge of correcting
the mistakes in parallel afterwards. See Section 2 for details.

2 Technical Overview

In this section we give an overview of our construction with an emphasis on the main ideas
used to get Theorem 1.

It has been known for a while that the tight compaction problem is very related to the
notion of self-routing super-concentrator [27, 3]. Recall that a superconcentrator is a graph
that consists of n source vertices and n target vertices such that for any k < n, any k-subset
of sources is connected to any k-subset of targets by k vertex-disjoint paths [27, 1, 29].
Intuitively, one can imagine associating the input balls with the source vertices and then
routing the 0 balls to the first target vertices and the 1 balls to the last target vertices.

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

However, this process (i.e., the way the superconcentrator decides how to route) is known to
be non-oblivious and the naive way to make it oblivious is by sending “dummy messages’
along unused edges — causing a logarithmic overhead in the total work. Actually, working
out the details of the algorithm, one can see that the logarithmic overhead is independent of
the size of the balls and so the actual total work is O(n -logn + [D/w] - n) [9], where D is
the bit-size of each ball and w is the word size.

9

The recent work of Asharov et al. [3] managed to get this overhead down to O([D/w] - n)
using two ideas: (1) reducing to loose compaction and (2) packing and decomposition. We
elaborate on these ideas next.

Reducing to loose compaction. In this step the task of tight compaction is reduced to
the task of loose compaction. In loose compaction, one is given an array where balls are
marked either real or dummy and it is guaranteed that there are at most 1/¢ fraction of reals.
Henceforth, we arbitrarily assume that ¢ = 128. The goal is to output an array of size n/2
which contains all the reals. First note that every real within the first n/2 locations is already
in the “right” place and it should not be moved and so we only need to deal with the reals
which are in the second half of the array. To this end, Asharov et al. imagine the elements
as associated with the left nodes of a good bipartite expander and every misplaced real is
swapped with a misplaced dummy (i.e. a real from the second half of the array with a dummy
from the first half) if and only if they are neighbors of distance 2 on the expander. Using
properties of the expander, one can show that this “handles” almost all of the misplaced
reals. Now, one can use loose compaction to compress the array (since it now contains much
fewer misplaced reals) and recurse on the the array of size n/2. The cost of this reduction is
linear — the bipartite graph has constant degree and each recursive step halves the array size.

Decomposition and packing. These two ideas are used to implement loose compaction.
The idea is to zoom-in on the input array in various resolutions. In the smallest instance case,
one can pack lots of information into a single word and larger instances are decomposed to
this smaller one. Concretely, Asharov et al. define three scenarios, depending on the relation
between n (the number of balls in the input) and w (the word size):

1. Small instances — If n < w/logw: In this case, one can basically “download” the input to
the client and solve loose compaction. More precisely, one can download 1 bit per input
element, saying whether it is real or not. This is enough to compute the disjoint routes
which can then be used to perform the actual routing.

2. Medium instances — If n < (w/logw)?: The idea is to “zoom out” and view each block
of /n < w/logw balls as one ball which is labeled dense if and only if it contains at
least \/n/4 real balls. Since the original array has at most 1/128 reals, the “zoomed out”
array has at most 1/n/32 denses. Notice that we can run our tight compaction procedure
on this “zoomed out” array, moving the dense blocks to the front, since it is a “small
instance”. Next, we run tight compaction for small instances again but now within the
non-dense blocks. This compresses 3/4 of the space for 3/4 of the blocks (which are
non-dense by assumption).

3. Large instances — If n > (w/logw)?: Now that we have tight compaction for small and
medium instances (by the above two items), and we get loose compaction for large instances
in a very similar way. We “zoom out” and view the input array as m = n/(w/logw)?
blocks each consisting of (w/logw)? elements. As before, we mark a block as dense if
it contains more than 1/4 or reals (as before, at most 1/32 fraction of the blocks can
be dense). To perform loose compaction on the “zoomed out” array we apply the naive

11:5

ITC 2020

11:6

Oblivious Parallel Tight Compaction

oblivious algorithm to compute routes. As mentioned, the naive algorithm has extra
logarithmic overhead but this is okay since we apply it on an array that contains m
elements (indeed, O(m -logm + [D/w] -m) < O([D/w] - n)). Once the dense blocks are
at the front, we can invoke tight compaction for medium instances and compact each
block in linear time. As before, this compresses 3/4 of the space for 3/4 of the blocks.

This completes the high-level description of the algorithm of Asharov et al. We continue
to explain what are the challenges & ideas used to make it in depth O(logn).

Challenge 1. The first component that is not optimal for depth is the reduction to loose
compaction. There, we perform swaps over the edges of a bipartite expander and naively
performing all of them in parallel does not work. Indeed, a single “misplaced” real node
could be the distance-2 neighbor of two (or more) dummys so we have to be able to resolve
these conflict somehow in low depth.

The solution for this is inspired by the solution for a similar problem from the supercon-
centrator and sorting networks literature. The idea is to use a particular property of the
expander graph: there is a natural partitioning of the entire edge-set into a constant number
of disjoint perfect matchings. Using this, we can perform the swaps in parallel between
different copies and it is guaranteed that there will be no “collisions”.

Challenge 2. Recall that the construction of Asharov et al. consists of first reducing tight
compaction to loose compaction and then solving loose compaction (for small, medium and
finally large instances). In terms of depth, naively the reduction from tight compaction to
loose compaction resumes for logn steps until the instance becomes of constant size. A simple
observation is that we can actually run the recursion only for O(loglogn) steps until the
instance size becomes O(n/logn) size in which case we can just invoke full-fledged oblivious
sort [2]. What about the depth of loose compaction? For small instances it is O(n), for
medium ones it is O(y/n), and for large ones it is O(logn) (the latter is the dominant one).
In total, the depth of Asharov et al’s construction (after solving challenge 1 and the above
observation about the depth of the recursion) is O(logn - loglogn). Getting rid of the extra
loglog n factor is the most challenging part of our work.

We do not know how to get loose compaction in depth better than O(logn). Our main
idea is to circumvent this by weakening the requirement from loose compaction by allowing
it to err. Concretely, we consider a weak version of loose compaction that we call weak
compression which takes an array of size n that has say 1/128 fraction of reals and it outputs
an array of size n/2 that contains almost, say e-fraction of, all reals. The main observation
is that if € is set to be 1/polylog(n), then weak compression can actually be realized in
O(loglogn) depth (rather than O(logn) without errors). To see this, one has to recall the
details of how the superconcentrator chooses its routes. Roughly, this is a process that
proceeds in “rounds” over a bipartite graph, where at each round a constant fraction of nodes
become satisfied (i.e., routes are found). After O(logn) rounds, all nodes are satisfied, but
after O(loglogn) rounds all but 1/polylog(n) fraction of nodes are satisfied.

Combining the above weak compression procedure with the reduction from tight compres-
sion to (this variant of) loose compaction gives an abstraction we call a swapper and it costs
linear work and logarithmic depth. This abstraction can be viewed as (another) relaxation
of tight compaction where any 1-ball that appears before a 0-ball is swapped except for a
1/polylog(n) fraction of pairs which remain “in reverse order”. All we are left to do is to
correct these errors.

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

We correct the error by building (from scratch) a tight compaction procedure that works
for very sparse inputs (of density 1/polylog(n)) in linear work and logarithmic depth. Indeed,
using such a procedure we can easily swap the remaining misplaced elements. To get a tight
compaction procedure for sparse inputs, the idea is to first compress the array into one that
is of size O(n/logn). Then, we can run full-fledged oblivious sort which completes the task.*

The key technical contribution is the way we compress the sparse array to size O(n/logn)
with only O(logn) depth. Towards this end, we stack O(loglogn) many instances of loose
compaction, each compressing the size by factor 1/2. Indeed, since the input is only of density
1/polylog(n), O(loglogn) layers are sufficient in terms of functionality. But what about
complexity? We said that the depth of loose compaction is O(logn) so stacking O(loglogn)
many instances of them does not sound like a good idea. To see why this is okay, recall again
that loose compaction is basically implemented by using a fixed bipartite expander graph
and doing: (1) finding an appropriate matching (in rounds), and (2) performing the routing
over the matching.

The basic observation is that step (1) can be parallelized among all layers and then using
the computed matchings, the routing can be directly performed. Parallelizing step (1) is
not straight-forward as in layer 4 for ¢« > 1 we do not know who are the sources when the
matching from layer ¢ — 1 has not been determined yet. But since the input is very sparse,
we can compute all possibilities of sources in each layer i. Since the bipartite graph has
constant degree, the number of possibilities only grows by a constant factor in every level
and there are only O(loglogn) levels so choosing the parameters carefully, we can tolerate
the extra polylog(n) factor in the number of possibilities. Let us remark that a similar issue
came up in the non-oblivious self-routing superconcentrator of Pippenger [27] and the above
idea is inspired by Pippenger’s solution.

Simplified construction and reduced asymptotic constant. As a bonus, the fact that we
introduce weak versions of compaction that permit various types of errors, allows us to
simplify the construction of Asharov et al. Concretely, our new algorithm has only two cases
“large instances” and “small instances” (i.e., we got rid of the “medium instances”).

Recall that in Asharov et al. [3], for large instances (i.e., n > (w/logw)?) it takes
O(m - logm) work to compute the matching. Thus, they choose the large-medium cutoff to
be of size (w/logw)? so that in the large case m = n/(w/logw)? implies that O(m -logm) =
O(n). Medium instances (i.e., n < (w/logw)?) are still too large to be solved directly, so
they further divide each medium instance into \/n small instances. The latter can be solved
directly by packing. We, on the other hand, have work overhead for large instances of only
O(loglogm). This allows us to split large instances to m = n/logw blocks which implies
overhead O(m - loglogm) = O(n). This directly reduces us to the “small instance” case
without going through the medium size instances case. While we are not motivated by
optimizing asymptotic constants, compared to Asharov et al. (whose overhead is roughly
230) . our simplified construction directly yields a better constant (roughly 22°).

Sorting with more keys. Our tight compaction is an algorithm for sorting an array of n
balls where each ball is marked with a 1-bit key. Our algorithm can be extended to sort
n balls marked with K-bit keys where K is any constant. The idea is that our reduction
to loose compaction can be modified such that every element that is not “misplaced” will
remain in the same location throughout the execution of the algorithm. We elaborate on the

4 Actually, this gives a stable tight compaction procedure for sparse input arrays.

11:7

ITC 2020

11:8

Oblivious Parallel Tight Compaction

details of this modification in Remark 15. With this feature, we can first compact the array,
moving the elements tagged with the first key to the front, and then compact (recursively)
the rest of the array, keeping those elements at the front.

In more detail, to sort an array of balls marked with keys from [K], we first run the plain
tight compaction algorithm so that 1-balls (by k-balls we mean all balls marked with key
k € [K]) are moved to the front. Then, we apply the variant of tight compaction, mentioned
above, to compact 2-balls while keeping 1-balls unmoved. At the kth step for k € [K], to
move the k-balls to their correct locations, we apply the variant of tight compaction to
compact k-balls while keeping 1-balls through (k — 1)-balls in place. The procedure finishes
after K iteration. By inspection, this algorithm consumes O(K -n) total work and O(K -logn)
depth (which remain linear and logarithmic, respectively, as long as K is constant).

3 Preliminaries

3.1 Definitions

We use the standard exclusive-read and exclusive-write (EREW) parallel random-access
machine (PRAM) model, parameterized by N memory words, unlimited number of CPUs,
each word is w = ©(log N) bits, each CPU has an internal state that consists of a small
constant number of words. For any PRAM algorithm, we characterize the efficiency by work
and depth, where work is the total number of word-level operations performed by all CPUs,
and depth is the number of parallel steps consumed by the algorithm. As the input size
n < N, we always have w = Q(logn). The details are deferred to the full version.

In this work, we require algorithms being both oblivious and deterministic. Roughly
speaking, given a PRAM algorithm M, we require the existence of a simulator Sim such
that for all input I, given only the input size n = |I| (without knowing I), Sim outputs the
identical sequence of accessed memory addresses during the computation M (I). The formal
definitions are deferred to the full version.

3.2 Tools

We will use several (standard) tools on which we elaborate next.

Oblivious sorting. Ajtai et al. [2] shows that there is a comparator-based circuit with
O (n -logn) comparators and O(logn) depth that can sort any array of length n.

» Theorem 2 (Ajtai et al. [2]). There is a deterministic oblivious sorting algorithm in the
PRAM model with word size w that sorts n elements using O ([D/w] - n -logn) work and
O(logn) depth, where D denotes the length of each element in bits.

Expanders. Our construction relies on dense family (i.e., one per say every power of 2) of
constant degree bipartite expander graphs that have several appealing properties: (1) their
entire edge set can be computed in linear time in the number of nodes and (2) their entire
edge set can be partitioned into a constant number of disjoint perfect matchings. For this,
we use either of the well-known construction of expander graphs presented by Margulis [24],
Gabber and Galil [14], or Jimbo and Maruoka [19]. It is well-known that these graph satisfies
the above properties (e.g., it was used in the sorting network of Ajtai et al. [2] and the
self-routing superconcentrators of Pippenger [27]). Below, we provide a precise statement for
completeness. We note that more modern constructions of expanders, while giving better
constants due to higher spectral gap, do not fit our purpose since they usually result with
families which are neither dense enough nor satisfy property (1).

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

Let G = (L, R, E) be a d-regular bipartite graph such that |L| = |R|. Let Py,..., Py be a
partition of F into d disjoint perfect matchings. (Note that by Hall’s theorem [18], such a
partition always exists though it may not unique and may not be efficiently computable for
an arbitrary d-regular bipartite.) We say the vertex w is the r-th neighbor of v, denoted as
T, (v), if and only if (u,v) is an edge in P,. The proof is deferred to the full version.

» Theorem 3. For any constant A € (0,1), there exists a family of bipartite graphs {Gx » }nen
and a constant dx € N, such that for every n € N being a power of 2, Gy, = (L, R, E) has
|L| = |R| = n vertices on each side, it is dy-regular, and for every sets S C L,T C R, it
holds that

d
e(S,T)—;’\ S| T < A-dx - /18] - [T,

where e(S,T) is the number of edges (s,t) € E such that s € S and t € T. Additionally, in

the word-RAM model with word size w such that w > Q(logn),

1. there exists a (uniform) linear work algorithm that on input 1™ outputs the entire edge
set of Gxp.

2. there exists a (uniform) constant work algorithm that on input r € [dx],v € LU R,
computes I'y(v), where I'y(v) is defined with respect to a fized partition of Gy p.

4 Qur Abstractions

We will realize tight compaction in Section 5 in linear work and logarithmic depth. On our
path towards this goal, we implement a few abstractions that we define next. They will not
only help us present the construction in a modular way, but we believe that some of them
might be of independent interest. All the following abstractions take as input an array of
balls and are parameterized by functions «(x), 5(x), e(x), or (%), where « is a placeholder
for the number of balls in the input array.

4.1 Tight Compaction

In the tight compaction problem one is given an input array containing n balls each of which
marked with a 1-bit label that is either 0 or 1. The output is a permutation of the input
array such that all the 1-balls are moved to the front of the array.

» Definition 4 (Tight compaction). Let I be an array of n balls such that each ball is labeled
with 0 or 1. On input I, tight compaction outputs an array O which is a permutation of the
balls in I such that all the 0-balls appear before the 1-balls.

4.2 Swapper and Imbalanced Swapper

An e-swapper is parametrized by a function e: N — [0, 1]. This procedure gets as input an
array I of n balls where each ball is marked with a color from {red, blue, L}. It is guaranteed
that the number of red balls is equal to the number of blue balls. The output of the procedure
is an array O of size n in which all but at most € - n red-blue ball pairs are swapped, where
the swapped balls are marked as | but the non-swapped balls keep the input colors. Looking
forward, the output colors will be utilized to further swap balls later in Algorithm 1.

» Definition 5 (e-swapper). Let I be an array of n balls such that each ball is marked either
red, blue, or L and the number of red balls equals to the number of blue balls. On input I,
e-swapper outputs an array O of size n which is a permutation of I, the number of red balls

11:9

ITC 2020

11:10

Oblivious Parallel Tight Compaction

equals to the number of blue balls in O, the total number of red and blue balls in O is at
most € - n, and for every i € [n]:
1. If Ili] is L, then Oli] = I[i] and it is marked L.
2. If I7] is red (resp. blue), then either
a. O[i] = I[i] and it is marked red (resp. blue), or
b. Oli] = I[j] and marked L for some blue Ij] (resp. red 1Ij]).?

An e-imb-swapper (stands for émbalanced swapper) generalizes an e-swapper. It also takes
as input an array I of n balls, where each ball is marked with a color from {red, blue, L}, but
the difference is that the number of red balls does not have to be equal to the number of blue
balls. Let ¢(I) = |nred — Nbiue|, Where n,, for ¢ € {red, blue} is the number of balls with color
@ in I, be the number of “extra” balls in I from either color. On input I, an e-imb-swapper
outputs an array O that satisfies the same requirement as O in Definition 5 except that the
total number of balls in O that are either red or blue is at most € - n + ¢(I).

We provide realizations for both primitives. We call the first realization Swapper and the
second one ImWeakSwapper, where the difference is not only the imbalance of red and blue
balls but also the value of €. Specifically, for an input array with n balls, Swapper makes all
necessary swaps except for (1/polylogn)-fraction in O(logn) depth, whereas Im\WeakSwapper
makes all the necessary swaps except for a constant fraction but in constant depth.

The following lemmas are proven in Sections 6.3 and 6.4, respectively:

» Lemma 6 (Swapper). For all constants ¢ € N, letting e(x) = 1/log®*, there exists a
deterministic oblivious procedure Swapper that implements e-swapper in the PRAM model.
Letting w be the word size, n be the number of balls in the input array, and D be the size of
each ball in bits, Swapper consumes O([D/w] - n) work and O(logn) depth.

» Lemma 7 (Imbalanced weak swapper). For every constant £ € N, there exists a deterministic
oblivious procedure ImWeakSwapper that implements an (1/¢)-imb-swapper in the PRAM
model. Letting w be the word size, n be the number of balls in the input array, and D be the
size of each ball in bits, ImWeakSwapper consumes O([D/w] - n) work and O(1) depth.

4.3 Compression

The next abstraction is called (a, §)-compression and it is parametrized by a, 8: N — [0, 1]
such that Vx € N: a(x) < f(x). It gets as input an array I of n balls where each ball is
either real or dummy. It is guaranteed that the number of real balls in I is at most « - n. The
output of the procedure is an array O of size - n that contains all the real balls from I. The
output may consist of “filler” balls that are not in the input (and note that even with fillers,
we can still “reverse route” the real output balls back to the input).

» Definition 8 ((«, 8)-compression). Let I be an array of n balls such that each balls is marked
real or dummy, where the number of real balls is at most a-n. On input I, (o, 3)-compression
outputs an array O of size B -n that consists of all the real balls in I, where the real balls are
still marked real, and the other balls are arbitrary and marked dummy.

The following lemmas are proven in Sections 6.2 and 6.7, respectively.

5 As the word “swap” hints, our algorithm will indeed swap a blue I[i] with a red I[j] and then output
exactly (O[¢], O[j]) = (I[5],I[¢]) for the pair (i, 7); the abstraction is relaxed (as no pairing required) yet
sufficient later.

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

» Lemma 9 (Compression). For all large enough constants ¢ € N, letting a(*) = 1/log® * and
B(x) = 1/logx, there exists a deterministic oblivious procedure Compression that implements
an («, B)-compression in the PRAM model. Letting w be the word size, n be the number
of balls in the input array, and D be the size of each ball in bits, Compression consumes
O([D/w] - n) work and O(logn) depth.

» Lemma 10 (Fast compression for short inputs). There exists a constant o € (0,1/2) for
which there exists a deterministic oblivious procedure FastCompression that implements an
(a, 1/2)-compression in the PRAM model. Letting w be the word size, n < w/logw be the
number of balls in the input array, and D be the size of each ball in bits, FastCompression
consumes O([D/w] - n)-work and O(n) depth.

4.4 Weak Compression

Lastly, we define y-approx-(«, 8)-compression for a, 8,v: N — [0, 1] such that Vx € N: (%) <
a(x) < B(*). This algorithm is the same as («, 3)-compression except that there the is a
“mistake” on « - n inputs which are not in the output array O. Those balls appear in another
array E and they are in the same positions as in I. That is, intuitively, the algorithm moves
some real balls from I into the output array O, while other real balls are not moved and
still reside in I. We call that array E. Note that 0-approx-(«, 8)-compression is equivalent to
(c, B)-compression, as E will consist of only dummy balls.

» Definition 11 (y-approx-(a, 3)-compression). Let I be an array of n balls such that each
ball is marked real or dummy, where the number of real balls is at most a-n. On input I,
~v-approx-(a, 3)-compression is an algorithm that outputs two arrays O and E, such that
O is an array of B -n balls that consists of all real balls in I except v fraction, where the
real balls are still marked real, and the other balls are arbitrary and marked dummy.
E is obtained by removing from I all the real balls that reside in O and replacing them
with dummys.

The following lemmas are proven in Sections 6.5 and 6.6, respectively.

» Lemma 12 (Weak compression). There exists a constant oo € (0,1/2), such that for all
constants ¢ € N, letting v(x) = 1/log® *, there exists a deterministic oblivious procedure
WeakCompression that implements a ~y-approx-(«, 1/2)-compression in the PRAM model.
Letting w be the word size, n be the number of balls in the input array, and D be the
size of each ball in bits, WeakCompression consumes O([D/w] - n) work and O(loglogn)
depth.

» Lemma 13 (Slow weak compression). There ezists a constant o € (0,1/2) such that for
all constants ¢ € N, letting v(x) = 1/ log® , there exists a deterministic oblivious procedure
SlowWeakCompression that implements a y-approx-(c, 1/2)-compression in the PRAM model.
Letting w be the word size, n be the number of balls in the input array, and D be the size
of each ball in bits, SlowWeakCompression consumes O(n -loglogn + [D/w] - n)-work and
O(loglogn) depth.

We summarize our lemmas and their complexities in Figure 1, where we let n denote
the number of balls in each input array. Figure 1 also depicts how our implementations
correspond to each other and provides an overview of the roadmap towards our tight
compaction algorithm.

11:11

ITC 2020

11:12

Oblivious Parallel Tight Compaction

Name ‘ Reference ‘ Abstraction ‘ ‘Work* ‘ Depth
TightCompaction Theorem 1 (85) Tight Compaction O(n) O(logn)
Swapper Lemma 6 (§6.3) 1/polylog-swapper O(n) O(logn)
ImWeakSwapper Lemma 7 (§6.4) O(1)-imb-swapper O(n) 0(1)
Compression Lemma 9 (§6.2) (1/polylog, 1/ log)-compression O(n) O(logn)
FastCompression” Lemma 10 (§6.7) (0O(1),1/2)-compression O(n) O(n)
WeakCompression Lemma 12 (§6.5) | 1/polylog-approx-(O(1),1/2)-compression O(n) O(loglogn)
SlowWeakCompression | Lemma 13 (§6.6) | 1/polylog-approx-(O(1),1/2)-compression | O(n -loglogn) | O(loglogn)

® In this table, we assume that D, each ball size in bits, is O(w).
b Assuming n < w/log w.

Compression

{ ImWeakSwapper TightCompaction

{ SlowWeakCompression Swapper
{ WeakCompression
{ FastCompression

Figure 1 The diagram depicted the relationship between the implementations of our ab-
stractions. TightCompaction is implemented using Compression and Swapper, where the latter

is implemented using ImWeakSwapper and WeakCompression, and the latter is implemented using
SlowWeakCompression and FastCompression.

5 Parallel Tight Compaction

In this section we present our tight compaction algorithm.

» Theorem 14 (Restatement of Theorem 1). There exists a deterministic oblivious algorithm
TightCompaction that implements tight compaction in the PRAM model. Letting w be the
word size, n be the number of balls in the input array, and D be the size of each ball in bits,
TightCompaction consumes O(]D/w] - n) work and O(logn) depth.

We use the Swapper and Compression algorithms from Lemmas 6 and 9. Specifically, we
log%*, lo;*)—compression for some constant ¢ (see Lemma 9)
)-swapper (for the same constant c).

use Compression to implement (

1
log® *

and let Swapper implement (
Proof of Theorem 14. See the full version for detailed analysis. |

» Remark 15 (Compacting with more keys). In TightCompaction, the balls marked as L in
Step 1 are never moved throughout the execution and remain in the same place in the output
array O. Hence, whenever we want the first ¢ balls to remain in the same location throughout
the algorithm while compacting the last n — ¢ balls for some ¢ < n, it suffices to modify
TightCompaction as follows. First, we let TightCompaction get ¢ as an extra input. Then,
we modify Step 1 to always mark the first ¢ balls as L, while counting 0-balls and marking
blue and red on the remaining n — ¢ balls. This modification achieves the abstraction we
mentioned in the end of Section 2 in the context of compacting balls tagged with more than
1-bit keys: compacting an array while keeping some elements in place.

6 Realizing the Abstractions

In this section we provide proofs of our abstractions, i.e., proofs for Lemmas 6, 7, 9, 10,
12, and 13. We start with a common procedure for obliviously finding a matching with a
particular structure in a bipartite graph. We use this procedure to implement Compression
(Lemma 9) and SlowWeakCompression (Lemma 13). As each of the building block (including

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

Algorithm 1 TightCompaction(I).

Input: an array I of n balls, each ball is labeled by a single bit 0 or 1.
Procedure:
1. Color the misplaced 1-balls by blue and the misplaced 0-balls by red (notice
that there is the same amount of each).
a. Count the number of 0-balls in I, let d be this number.
b. Fori=1,2,...,n, in parallel, do the following:
i. IfI[i] is a 1-ball and i < d, mark I[7] as blue.
ii. If I[¢] is a O-ball and ¢ > d, mark I[i] as red.
iii. Otherwise, mark I[i] as L.
2. Swap red and blue balls guaranteeing that only n/polylogn misplaced balls
remain.

a. Run Swapper(I) and let I’ be the resulting array.

3. Mark and compress the remaining misplaced balls into an array of size
n/logn.

a. For each ball in I, in parallel, mark it as real if it is red or blue, and mark as dummy
if L.

b. Run Compression(I'). Let C be the resulting array, and let Aux; be the array
recording every move of balls during the compression.

4. Swap reds and blues in the compressed array by sorting the array (moving
reds to the front and blues to the end).

a. Using an oblivious sort (e.g. AKS; see Theorem 2), permute the array C so that red
balls are at the front and blue balls are at the back. Let Auxs be the array recording
every move of balls during the sorting.

b. For each i € [|n/2]], in parallel, swap C[i] and Cn — i+ 1] if and only if C[i] is red
and C[n — i + 1] is blue. Let C” be the result.

5. Reverse route the swapped balls in the compressed array back into the
original one.

a. Using Auxs from Step 4a, perform the inversed permutation on C’. Then, using
Aux; from Step 3b, perform the inversed compression on C’ back to I'. Let the
result be O.

Output: The array O.

bipartite expander graphs, counting, and oblivious sorting) are both deterministic and
oblivious, a straightforward syntactic checking proves obliviousness and determinism for each
above lemma, and hence we will focus only on proving the correctness and efficiency.

6.1 Find Matching

Let G = (L, R, E) be a d-regular bipartite graph. For r € [d] and vertex u in G ,, let I').(u)
denote the r-th neighbor of in G ,,. For a subset of edges M C E, and any node u € LUR,
let T'pr(u) = {v € LUR | (u,v) € M} be the set of neighboring vertices of v in M. We define
an (a,b)-matching for a subset of nodes S C L on the left, as a subset of edges for which
every vertex from S is connected to at least a vertices on the right and that each vertex on
the right is connected to at most b vertices from S.°

5 The term “matching” follows previous works [3], and it is also known as “assignment” or “compactor” [9,
27).

11:13

ITC 2020

11:14

Oblivious Parallel Tight Compaction

» Definition 16 ((a,b)-matching). We say that M C E is an (a,b)-matching of SC L in G
iff (1) for allu € S, |Tpr(u)| > a, and (2) for allv € R, |T'pr(v)] < b.

We relax Definition 16 to allow for an error. Namely, we define vy-approx-(a, b)-matching
as an (a, b)-matching except that condition (1) holds for all but a fraction of vertices from
S. That is, there is a subset S’ C S such that |S’| > (1 —) - |S| and for every u € 5’,
Tar(w)| > a.

» Definition 17 (y-approx-(a, b)-matching). We say that M C E is a y-approx-(a, b)-matching
of S in G iff condition (1) holds for all but v faction of nodes in S, and condition (2) still
holds.

Let Ga = (L, R, E) with X := 1/64 be the d-regular expander from Theorem 3. Let
B := |dx/2]. In the rest of this subsection, we prove the following two claims.

> Claim 18 (SlowMatch). For any input I C [n] such that |I| < n/32, the procedure
SlowMatch (see Algorithm 2) outputs a (B, B/4)-matching of I in G . It consumes O(n -
logn) work and O(logn) depth.

> Claim 19 (WeakSlowMatch). Let constant ¢ > 0, and v(n) = 1/log®(n). For any input
I C [n] such that |I| < n/32, the procedure WeakSlowMatch (see Algorithm 3) outputs a
~-approx-(B, B/4)-matching of I in G} ,,. It consumes O(n - loglogn) work and O(loglogn)
depth.

We also use the following claim from [3].

> Claim 20 (FastMatch, [3, Claim 5.16]). For any input I C [n] such that |I| < n/32 and
n < w/logw, there exists a procedure FastMatch outputs a (B, B/4)-matching of I in G .
It consumes O(n) work and O(n) depth.

Overview. We start with a high-level overview of the non-oblivious matching algorithm,
inspired by Pippenger [27], Chan et al. [9], and Asharov et al. [3]. Claims 18, 19, and 20 are
all based on this algorithm with minor variations, as we explain below. Given a bipartite
graph with vertices L, R and a set S C L of m marked vertices, we first mark all vertices in
S as “unsatisfied”. Then, in each round:
Each unsatisfied vertex u € S: Send a request to each one of the neighbors of u.
Each vertex v € R: If v received more than B/4 requests in each round, it replies with
“negative” to all requests it received in this round. Otherwise, it replies with “positive”
to all requests it received. (If v did not receive any request, it replies no positive nor
negative.)
Each unsatisfied vertex u € S: If u received more than B positive replies then take
these edges to the matching and change the status to “satisfied”.
The output is all the edges in the matching. Note that in each round there are O(|S]) = O(m)
transmitted messages, where each message is just a single bit. Using the expansion of the
graph and the fact that | S| is small enough, in each iteration the number of unsatisfied vertices
is decreased by a factor 1/2. This implies that within O(logm) iterations all unsatisfied
vertices will become satisfied. Claim 18 is obtained by running this algorithm while always
simulating dummy access to hide which node is transmitting messages and which is not.
This causes a logarithmic blow-up in the total work. Claim 19 is obtained by observing that
if the above process is executed for only O(loglogn) iterations, then all but 1/polylog(n)
fraction of vertices become satisfied. Lastly, Claim 20 is obtained by observing that if n is

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

small enough, the whole graph can fit into O(1) words and so it can be read within O(1)
queries and so we can run the above algorithm without the logarithmic overhead incurred by
simulating dummy accesses.

Algorithm 2 SlowMatch: (B, B/4)-matching.

Input: An array I of n indicators representing a subset I C [n] such that |I| < 35 and
n > w/logw.
The procedure:
1. Let M be a (d) x n)-array of indicators initialized to all 0s, where M|r,] indicates if
the r-th edge of the i-th left vertex is in the (B, B/4)-matching.
2. Let I’ =1. Repeat the following for [logn| iterations.

a. Initialize two arrays Request and Positive, both containing n Os.

b. For each vertex u € I', send a “request” to all neighbors of u: For each r € [d,],
perform the following sequentially.

For all vertex u € L in parallel, if u € I’, increment Request[l',(u)]. (If w & I’,
perform fake accesses)

c. For each vertex v € R, if v received from 1 to B/2 requests, then reply “positive” to
all neighbors of v: For each r € [d,], perform the following sequentially.

For all vertex v € R in parallel, if 1 < Requestfv] < B/2, then increment
Positive[l'(v)]. (Otherwise, perform fake accesses)

d. For each vertex u € I', if u received at least B positive replies, then u adds the edge
(u,z) to M such that x replied positively: For each r € [d,], perform the following
sequentially:

For all vertex u € L in parallel, if u € I’ and Positive[u] > B and Request[l',(u)] <
B/2, then set M|r,u] := 1. (Otherwise, perform fake accesses)

e. For each vertex w € I', if u received at least B positive replies, then u removes itself

from I': For all vertex u € L in parallel, if Positive[u] > B, set I'[u] := 0.
Output: The array M.

Algorithm 3 WeakSlowMatch: 1/log®(x)-approx-(B, B/4)-matching.

Input: An array I of n indicators representing a subset I C [n] such that [I| < 5.
The procedure:
1. Do everything exactly the same as in Algorithm 3, except that in step 2, perform
only c-loglogn iterations.
Output: The array M.

Proof of Claim 18. See the full version for detailed analysis. <

Proof of Claim 19. See the full version for detailed analysis. <

6.2 Compression (Lemma 9)

» Lemma 9 (Compression). For all large enough constants ¢ € N, letting a(*) = 1/log® * and
B(*) = 1/log*, there exists a deterministic oblivious procedure Compression that implements
an («, §)-compression in the PRAM model. Letting w be the word size, n be the number
of balls in the input array, and D be the size of each ball in bits, Compression consumes
O([D/w] - n) work and O(logn) depth.

11:15

ITC 2020

11:16

Oblivious Parallel Tight Compaction

1 1

To implement (5zz5, 55)-compression for large enough constant ¢ € N, the input is an
g %7 log %

array of n balls, where at most logncn balls are real, and we want to compress the input
down to n/logn balls. Previously, it is known how to implement (o', 1/2)-compression for

small enough constant fraction o’ using (B, B/4)-matching in a bipartite expander [27, 3, 9]:

Very roughly, every p balls are interpreted as a block, and every B blocks are put on a
left vertex of the bipartite expander, where i and B are some parameters (which we will
formalize later); Then, the (B, B/4)-matching is capable of routing all real blocks (i.e., a
block contains any real ball) from left to right vertices while guaranteeing that every right
vertex has at most B/4 real blocks; Hence, merging the real blocks on every two right vertices
into one vertex yields an array of a half number of balls. A straw-man implementation
of (log%*, @)—compression is applying SlowMatch for ¢ := loglog n rounds, but given that
SlowMatch takes O(logn) depth (Claim 18) to compute (B, B/4)-matching, the straw man
takes more than logarithmic depth.

To reduce the total depth, we separate every instance of (B, B/4)-matching into two
phases. Notice that in the straw-man implementation, there is a bipartite expander in each
round, and every real block is routed through ¢ layers of bipartite expanders. Thus, we
connect ¢t expanders into a directed graph H, where each directed edge (u,v) represents a
potential move of a real or dummy block from w to v. In the first phase, given the input array,
our compression marks every vertex in the first-layer expander such that is associated with
any real block, and then it marks all vertices on H that is reachable by the first-layer marked
vertices (i.e., mark a vertex if there exists a path from the first-layer marked vertices). In
the second phase, we compute all ¢ instances of (B, B/4)-matching in parallel as the marked
vertices are the only input to SlowMatch, which takes O(logn) depth as desired.

To ensure SlowMatch outputs correct (B, B/4)-matchings in the second phase, it suffices
to ensure that the fraction of marked vertices is at most 1/32 as required in Claim 18. Given
that the expanders are dy-regular, after t = loglog n layers, the number of marked vertices
grows by df times, which is logc/ n for some constant ¢’; Choosing a sufficiently large constant
¢ > ¢ in the input satisfies the requirement. Finally, as the marked vertices consists of all
the vertices that any real block will be routed through, the resulting matchings are capable
of routing all real blocks. The algorithm is formalize in Algorithm 4.

Proof of Lemma 9. See the full version for detailed analysis. <

6.3 Swapper (Lemma 6)

» Lemma 6 (Swapper). For all constants ¢ € N, letting e(x) = 1/log®, there exists a
deterministic oblivious procedure Swapper that implements e-swapper in the PRAM model.
Letting w be the word size, n be the number of balls in the input array, and D be the size of
each ball in bits, Swapper consumes O([D/w] - n) work and O(logn) depth.

Let ¢ € N be the constant for which we wish to implement (1/log® x)-swapper. We use
ImWeakSwapper (from Lemma 7) and WeakCompression (from Lemma 12). Particularly,
we use WeakCompression which implements (1/log® x)-approx-(a, 1/2)-compression for some
constant « € (0,1/2) (as in Lemma 12) and ¢; := max{2c+2,4—log a}, and ImWeakSwapper
which implements («/2)-imb-swapper.

In a high-level, we start by applying ImWeakSwapper to the input array. This swaps a
constant fraction of balls in constant depth. Then, we compress (most of) the remaining
balls into an array of size n/2 using WeakCompression. Then, we recursively on this smaller
array. The end of the recursion is when the remaining array has size O(n/logn) (namely
after O(loglogn) recursive steps), in which case we can afford to run a full oblivious sorting

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

1

1 .
Toac s Tog)-COMPression.

Algorithm 4 Compression: (

Input: an array I of n balls such that at most 1og+n are marked as real and all others
are marked as dummy.
Procedure:
1. Let p:= |logn| and ¢ := [loglogn]. Let A := 1/64 and let G, be the family of
dy-regular expander graphs from Theorem 3. Let B := |d)/2].
2. Interpret every p balls as one block: Interpret I as an array Ag of n/u blocks so that
each block Ag[i] consists of p balls. For each block Agl[i], in parallel, mark Ag[i] real if
Apli] consists of at least one real ball (and mark dummy otherwise).

Initialize the routing graph H: Let m := n/(B - u). For each j € {0,...,t — 1}, let

Gymy2i = (Lj, Rj, E;) be the expander defined in Theorem 3 so that L; = R; = [m/27].

Then, for each j € {0,...,t — 2}, connect every two vertices from R; to each vertex in

L;41; That is, for each i € [m/2771], add two edges from 2i — 1,2i € R; to i € Lj41.

Let H be the resulting graph.
Initialize an indicator bit to 0 for all vertices: For each j =0,...,t — 1, initialize M;
and M as two arrays each consists of m /27 0-bits.

3. Mark each vertex on H if the vertex is reachable by any real block:

For each ¢ € [m], if any block in Ag[(i —1)- B+1,...,i- B] is real, then set Myli] := 1.

For j from 0 to t — 2 sequentially, compute the array M, indicators as follows:
a. For each r € [d,], perform the following sequentially:
For all v € [m/27] in parallel, set M[['.(v)] := 1 if M;[v] = 1, where I'.(v) denotes

the r-th neighbor of the vertex v in the expander Gy ,, /2 as defined in Theorem 3.

b. For all i € [m/27%1] in parallel, set M, 1[i] := 1 if and only if M;[2i — 1] = 1 or
M ;[2i] = 1.

4. Compute the (B, B/4)-matching: For all j from 0 to ¢t — 1, in parallel, run S; <«
SlowMatch(M;) (from Claim 18).

5. Route all real blocks via the computed (B, B/4)-matchings: For each j from 1 to ¢, let
Aj be an array of —%- blocks initialized with dummy. Then, for each j from 0 to ¢t —1
sequentially, route all real blocks from A; to A;4, using the matching S; as follows:

For each r € [d,], perform the following sequentially:
a. For all v € [m/27] in parallel, do the following:
i. If S;[r,v] = 1, proceed the following; Otherwise, perform fake accesses.

ii. Sequentially find a real block in A;[(v —1)-B+1,...,v- B], and move the
real block to a scratch space b[v].

iii. Let u = I',(v) be the vertex in the expander G ,,/2;. Sequentially find an
empty block in A;1[(u—1)- 2 +1,...,u- £] and then overwrite this empty
block with bv].

Output: Interpret the array A; as balls and output the interpreted array of balls.

algorithm (e.g., Theorem 2 which consumes O(n) work and has O(logn) depth). The formal
description is given next. For simplicity of notation in the recursive algorithm, we assume
that n is a global fixed parameter.

Proof of Lemma 6. See the full version for detailed analysis. <

11:17

ITC 2020

11:18

Oblivious Parallel Tight Compaction

Algorithm 5 Swapper : e-swapper for e(x) = 1/log® .

Input: An array I of size < n in which all balls are marked red, blue or 1. In the
outermost recursion (i.e., |I| = n), it is guaranteed that the number of red balls equals
the number of blue balls.

The algorithm:

1. Base case: array is short enough to run oblivious sort.

a. If [I| < n/logn: run oblivious sort (e.g., AKS; see Theorem 2) so that blue balls
are in the front and red balls are in the back, swap (blue, red) balls which reside in
symmetric locations (from the front and back), and reverse the previous oblivious
sort (i.e., identical to Step 4 of Algorithm 1). Output the resulting array.

2. Swap all but an O(1) fraction of balls.

a. Run I' + ImWeakSwapper(I).

3. Compress the array.

a. Consider all balls that are not marked red or blue in I' as dummies. Consider all
the remaining red or blue balls as reals.

b. Run WeakCompression(I'), and let I” and E be the results. Note that I” is of size
|I/| /2 and it contains all the reals from I’ except for a y-fraction, and E is of size

|I'| and it contains the v = w fraction of reals that are not in I” (in the same
positions). Record all ball movements during this step in Aux.
4. Continue recursively.
a. Run this algorithm Swapper recursively on I”. Let O’ be the result.
5. Reverse route.

a. Reverse route all real balls from O’ and E back into I’ using Aux, and let O be the

resulting array (note that |O] = |IJ).
Output: The array O.

6.4 Imbalanced Weak Swapper (Lemma 7)

» Lemma 7 (Imbalanced weak swapper). For every constant £ € N, there exists a deterministic
oblivious procedure ImWeakSwapper that implements an (1/€)-imb-swapper in the PRAM
model. Letting w be the word size, n be the number of balls in the input array, and D be the
size of each ball in bits, ImWeakSwapper consumes O([D/w] - n) work and O(1) depth.

A procedure implementing (1/¢)-swapper for all £ € N with total linear work was developed
in Asharov et al. [3, Claim 5.7], and it actually implements (1/¢)-imb-swapper for the same ¢
(we will prove this claim later in this subsection). However, the depth of their procedure is
also linear. While this is insufficient for our purposes, we still use their ideas as a starting
point. Let us recall the high-level details of their construction.

The procedure instantiates a d-regular bipartite expander (with sufficient expansion
depending on ¢) for d € O(1) that consists of n vertices on both sides. Every ball is
associated with a vertex on the left, and for every two vertices that share the same neighbor,
the two balls are swapped if and only if the labels are (red, blue). By the vertex expansion
of the bipartite expander, only a 1/¢ fraction of misplaced balls may remain not swapped.
The algorithm clearly requires linear work as the graph contains a linear number of edges,
however parallelizing it is challenging. Concretely, every vertex on the bipartite expander
has d neighbors, and so using a naive parallelization a node could be swapped with several
other nodes simultaneously, and it is not clear how to resolve conflicts in low depth.

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

To get over this we use Property 2 in the expander of Theorem 3. Namely, we partition the
edge set (of the bipartite expander) into disjoint perfect matchings (which can be computed
efficiently), and then perform the swaps in within the matchings in parallel as below.

Given the disjoint perfect matchings My, ..., My from Theorem 3, for every pair ¢,j € [d],
we want to swap each pair of red and blue balls that are the 2-edge neighbors on the subgraph
M; U M;. As the perfect matchings are parallel-friendly, one straw-man solution is to route
all n balls via both M; and M; from left to right (so there are two copies for each ball), swap
every pair of red and blue for every vertex on the right side, and then route balls backward
via M; and M;, where the routing and swapping are performed in parallel. However, the
straw-man solution doesn’t work as every vertex has two neighbors on M; U M;, and a red
ball may be swapped with both two blue balls in parallel, which still incurs a conflict. To
this end, our second observation is that it suffices to copy only reds via M;, copy only blues
via M, and then swap the pairs if needed; Given a ball is either red or blue exclusively, every
ball has at most one copy now. We formally describe the algorithm in the following.

Algorithm 6 ImWeakSwapper: e-imb-swapper(I) for e(x) = 1/¢

Input: An array I of n balls, each ball is labeled as red, blue or L.
Parameters: A parameter £ € N.
The algorithm°

1. Let A := \/, and let dy be the vertex degree given by Theorem 3.

2. For each (i1, i) € [dy]?, perform the following sequentially.

a. Let M, (resp. M;,) be the i1-th (resp. io-th) perfect matching given in Theorem 3.

b. For all edges (k1,j) € M;, and (k2,j) € M,,, do the following: If (I[k1],1I[k2])

are labeled as (red,blue), then swap between I[k;] and I[ks]. Label both as L.

Otherwise, perform dummy swap. That is realized as below, where all loops are

performed in parallel.
i. Initialize two arrays R;, Rs, each consists of n empty balls labeled as L, For all
Jj € [n], let k1 := I‘“() and ko :=T';,(j) (so that (k1,7) is an edge in M;, and
(ko,7) is an edge in M;, for each j by property 2 of Theorem 3).
ii. For each edge (k1,7) in Mll, let Ry[j] :=I[kq] if I[k4] is red.
For each edge (ko,) in M;,, let Ra[j] := I[ko] if I[k2] is blue.

iii. For each j € [n], if the pair (R1[j], Rz[j]) is labeled (red, blue), then swap between
R;1[j] and Rsl[j]), label both as L. Otherwise, perform dummy swap.

iv. For each edge (k1,j) in M;,, let I[k1] := Ry[j] if I[k1] is red.
For each edge (k2,7) in M;,, let I[ks] := Ralj] if I[ko] is blue.

Output: The array I.

Proof of Lemma 7. See the full version for detailed analysis. <

6.5 Weak Compression (Lemma 12)

» Lemma 12 (Weak compression). There exists a constant o € (0,1/2), such that for all
constants ¢ € N, letting y(x) = 1/log®«, there exists a deterministic oblivious procedure

WeakCompression that implements a ~y-approx-(«, 1/2)-compression in the PRAM model.

Letting w be the word size, n be the number of balls in the input array, and D be the
size of each ball in bits, WeakCompression consumes O([D/w] - n) work and O(loglogn)
depth.

11:19

ITC 2020

11:20

Oblivious Parallel Tight Compaction

Let ¢ € N be the constant for which we wish to implement (1/log®*)-approx-(a,1/2)-
compression for some a € (0,1/2) to be determined shortly. We implement this proce-
dure using FastCompression (from Lemma 10) and SlowWeakCompression (from Lemma 13).
Particularly, we use SlowWeakCompression which implements (1/log® %)-approx-(as,1/2)-
compression, for ¢; = 2¢ 4+ 2 and some «; € (0,1/2), using super linear work but doubly
logarithmic depth, and FastCompression which implements (a2, 1/2)-compression for some
as € (0,1/2) using linear work and depth. We let o = a1 - o /4.

Algorithm 7 WeakCompression: 1/log® x-approx-(a, 1/2)-compression.

Public parameters: Size of input array n,

Input: An array I with n balls each of size D bits, where at most « - n balls are real and
the rest are dummy.

The procedure:
1. Let u := min(logw,loglogn).
2. Compress the array, keeping most of the dense blocks.

a. Represent I as another array A that consists of m := n/u blocks each of size - D bits:
for each i € [m], let A[i] be the block consists of all balls I[(¢ — 1) - p+1],...,I[i - pl.

. For each i € [m], label A[i] as dense if A[i] consists of more than x - aa/2 real balls.

c. Run (01,E;) + SlowWeakCompression(A4), where |O1| = n/2 and |E;| = n (in
number of balls). Record all moves in array Aux;.

d. Repeat the above process, this time on the array O;: interpret it as m/2
blocks each of size p - D, mark dense blocks as before, and let (O2,E3) <«
SlowWeakCompression(O1), where |Oz| = n/4, |E2| = n/2 (in number of balls).
Record all moves in array Auxs.

e. Using Auxy, reverse route the real balls in E5 back into Oy, and then using Auxs,
reverse route and merge real balls from E; and O back into an error array E of
size n (recall that Es is in fact O; where some elements were excluded into Os;
reversing E; and O to A is also possible using Auxy).

3. Compress the sparse blocks.

a. Replace all dense blocks in A with dummy blocks. For every i € [n/u], in parallel,
run O3, < FastCompression(A[i]), where A[i] is interpreted as p balls, and then
again O ; < FastCompression(Os ;). Note that [A[i]| = p and |0} ;| = /4.

4. Set O = 09/04,]...[0%,,/, (which is of total size n/2, as [Oy] = n/4 and
S (05| = /4.
5. Output: O and E.

Proof of Lemma 12. See the full version for detailed analysis. <

6.6 Slow Weak Compression (Lemma 13)

» Lemma 13 (Slow weak compression). There exists a constant o € (0,1/2) such that for
all constants ¢ € N, letting v(x) = 1/log® %, there exists a deterministic oblivious procedure
SlowWeakCompression that implements a v-approx-(c, 1/2)-compression in the PRAM model.
Letting w be the word size, n be the number of balls in the input array, and D be the size
of each ball in bits, SlowWeakCompression consumes O(n -loglogn + [D/w] - n)-work and
O(loglogn) depth.

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

In our implementation, & = 1/128. Let ¢ € N be the constant for which we wish
to implement 1/log®x-approx-(c, 1/2)-compression. The algorithm SlowWeakCompression
uses a sub-procedure WeakSlowMatch from Claim 19 (see Algorithm 3). Particularly, we
use WeakSlowMatch that implements (logc/2 x)-approx-(B, B/4)-matching on the graph G,
(from Theorem 3) with A = 1/64, regularity dy, and B = d) /2.

Algorithm 8 SlowWeakCompression: 1/log® x-approx-(a, 1/2)-compression.

Input: An array I of n balls, in which at most « - n are real.
The Procedure:

1. Interpret the array I as m := n/B bins, where each bin consists of B balls. Mark all
bins in I as dense or sparse, where a bin is dense if it consists of more than B/4 real
balls. Let S be an array of m indicators representing the set of indexes of the dense
bins. Let I’ be an array of m empty bins, where the capacity of a bin is B balls.

2. Let Gx,m = (L, R, E) be the dy-regular bipartite graph guaranteed by Theorem 3,
where |L| = |R| = m.

3. Compute M < WeakSlowMatch(S).

4. Distribute: For each edge (u,v) € F (where v € L,v € R), if (u,v) € M, move
a real ball from bin I[u] to bin I'[v] and then mark bin I[u] as sparse. This step is
achieved in the following parallel way. Recall that WeakSlowMatch outputs M as a
(dx x m)-array of indicators such that M[r,u] = 1 iff the r-th edge of vertex u € L is
in the (B, B/4)-matching. For each r € [d,], perform the following sequentially:

a. For all u € [m], in parallel, do the following:

i. If M[r,u] =1, proceed with the following (otherwise, perform fake accesses):

ii. Sequentially read every ball in bin I[u] and fetch the first encountered real ball,
then sequentially read every slot in bin I'[I',.(u)] and write the fetched real ball
to the first encountered empty slot.

iii. Mark bin I[u] as sparse.

5. Fold: Let O be an array of size m/2 empty bins, each of capacity of B balls. For
all ¢ € [m/2], in parallel, move all real balls from the bins marked sparse in the four
bins I[i],I[m/2 + i), I'[i],I'[m/2B + i into bin O[i], and pad O[i] with dummy balls if
there are less than B real balls.

Output: The array O, as well as the input array I.

Proof of Lemma 13. See the full version for detailed analysis. <

6.7 Fast Compression (Lemma 10)

» Lemma 10 (Fast compression for short inputs). There exists a constant « € (0,1/2) for
which there exists a deterministic oblivious procedure FastCompression that implements an
(v, 1/2)-compression in the PRAM model. Letting w be the word size, n < w/logw be the
number of balls in the input array, and D be the size of each ball in bits, FastCompression
consumes O([D/w] - n)-work and O(n) depth.

The algorithm is the same as Algorithm 8, while using FastMatch from Claim 20 instead of
WeakSlowMatch at Step 3. Because FastMatch implements (B, B/4)-matching, the resulting
matching M is capable of distributing all real balls in every dense bins at Step 4, correctness
follows directly (so there is no need to calculate the number of real balls remains in I). The
work and depth follows also immediately from Claim 20.

11:21

ITC 2020

11:22

Oblivious Parallel Tight Compaction

—— References

1

10

11

12

13

14

15

16

17

18

19

20

21

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1974.

Miklés Ajtai, Janos Komlés, and Endre Szemerédi. An O(nlogn) sorting network. In
Proceedings of the 15th Annual ACM Symposium on Theory of Computing, STOC, pages 1-9,
1983.

Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine
Shi. OptORAMa: optimal oblivious RAM. In Advances in Cryptology - EUROCRYPT, 2020.
Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi. Oblivious
parallel tight compaction. Cryptology ePrint Archive, Report 2020/125, 2020. URL: https:
//eprint.iacr.org/2020/125.

Hannah Bast and Torben Hagerup. Fast parallel space allocation, estimation, and integer
sorting. Inf. Comput., 123(1):72-110, November 1995.

Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel RAM and applications. In
Theory of Cryptography - 13th International Conference, TCC, pages 175-204, 2016.

Elette Boyle and Moni Naor. Is there an oblivious RAM lower bound? In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, ITCS, pages 357-368,
2016.

Hubert Chan, Kai-Min Chung, and Elaine Shi. On the depth of oblivious parallel oram. In
Asiacrypt, 2017.

T.-H. Hubert Chan, Kartik Nayak, and Elaine Shi. Perfectly secure oblivious parallel RAM.
In Theory of Cryptography - 16th International Conference, TCC 2018, pages 636-668, 2018.
T.-H. Hubert Chan and Elaine Shi. Circuit OPRAM: unifying statistically and computationally
secure orams and oprams. In Theory of Cryptography - 15th International Conference, TCC,
pages 72-107, 2017.

Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770-785, 1988.

S. Cook, C. Dwork, and R. Reischuk. Upper and Lower Time Bounds for Parallel Random
Access Machines without Simultaneous Writes. SIAM Journal on Computing, 15(1):87-97,
February 1986.

Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi. Lower
bounds for external memory integer sorting via network coding. In STOC, 2019.

Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators. J.
Comput. Syst. Sci., 22(3):407-420, 1981.

Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC, pages
182-194, 1987.

Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 1996.

Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of outsourced data
via oblivious RAM simulation. In Automata, Languages and Programming - 38th International
Collogquium, ICALP, pages 576-587, 2011.

P. Hall. On Representatives of Subsets. Journal of the London Mathematical Society, sl1-
10(1):26-30, 1935.

Shuji Jimbo and Akira Maruoka. Expanders obtained from affine transformations. Combina-
torica, 7(4):343-355, 1987.

Donald E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., 1998.

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 143-156, 2012.

https://eprint.iacr.org/2020/125
https://eprint.iacr.org/2020/125

G. Asharov, |I. Komargodski, W.-K. Lin, E. Peserico, and E. Shi

22

23

24

25

26

27

28

29

Tom Leighton, Yuan Ma, and Torsten Suel. On probabilistic networks for selection, merging,
and sorting. In Proceedings of the Seventh Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA '95, pages 106-118. ACM, 1995.

Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we overcome the nlogn barrier for oblivious
sorting? In SODA, 2019.

Grigorii Aleksandrovich Margulis. Explicit constructions of concentrators. Problemy Peredachi
Informatsii, 9(4):71-80, 1973.

John C. Mitchell and Joe Zimmerman. Data-oblivious data structures. In 31st International
Symposium on Theoretical Aspects of Computer Science STACS, pages 554-565, 2014.

Enoch Peserico. Deterministic oblivious distribution (and tight compaction) in linear time.

CoRR, abs/1807.06719, 2018. URL: http://arxiv.org/abs/1807.06719.

Nicholas Pippenger. Self-routing superconcentrators. J. Comput. Syst. Sci., 52(1):53—-60, 1996.

P. Ragde. The parallel simplicity of compaction and chaining. In Proceedings of the Seventeenth
International Colloquium on Automata, Languages and Programming, pages 744-751, Berlin,
Heidelberg, 1990. Springer-Verlag.

Leslie G. Valiant. Graph-theoretic properties in computational complexity. J. Comput. Syst.
Sci., 13(3):278-285, December 1976.

11:23

ITC 2020

http://arxiv.org/abs/1807.06719

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Preliminaries
	Definitions
	Tools

	Our Abstractions
	Tight Compaction
	Swapper and Imbalanced Swapper
	Compression
	Weak Compression

	Parallel Tight Compaction
	Realizing the Abstractions
	Find Matching
	Compression (Lemma 9)
	Swapper (Lemma 6)
	Imbalanced Weak Swapper (Lemma 7)
	Weak Compression (Lemma 12)
	Slow Weak Compression (Lemma 13)
	Fast Compression (Lemma 10)

