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Abstract
The shuffled (aka anonymous) model has recently generated significant interest as a candidate
distributed privacy framework with trust assumptions better than the central model but with
achievable error rates smaller than the local model. In this paper, we study pure differentially private
protocols in the shuffled model for summation, a very basic and widely used primitive. Specifically:

For the binary summation problem where each of n users holds a bit as an input, we give a pure
ε-differentially private protocol for estimating the number of ones held by the users up to an
absolute error of Oε(1), and where each user sends Oε(logn) one-bit messages. This is the first
pure protocol in the shuffled model with error o(

√
n) for constant values of ε.

Using our binary summation protocol as a building block, we give a pure ε-differentially private
protocol that performs summation of real numbers in [0, 1] up to an absolute error of Oε(1), and
where each user sends Oε(log3 n) messages each consisting of O(log logn) bits.
In contrast, we show that for any pure ε-differentially private protocol for binary summation
in the shuffled model having absolute error n0.5−Ω(1), the per user communication has to be at
least Ωε(

√
logn) bits. This implies (i) the first separation between the (bounded-communication)

multi-message shuffled model and the central model, and (ii) the first separation between pure
and approximate differentially private protocols in the shuffled model.

Interestingly, over the course of proving our lower bound, we have to consider (a generalization of)
the following question that might be of independent interest: given γ ∈ (0, 1), what is the smallest
positive integer m for which there exist two random variables X0 and X1 supported on {0, . . . ,m}
such that (i) the total variation distance between X0 and X1 is at least 1− γ, and (ii) the moment
generating functions of X0 and X1 are within a constant factor of each other everywhere? We show
that the answer to this question is m = Θ(

√
log(1/γ)).
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1 Introduction

Since its introduction by Dwork et al. [19, 18], differential privacy (DP) has become widely
popular as a rigorous mathematical definition of privacy. This has led to practical deployments
at companies such as Apple [28, 4], Google [22, 38], and Microsoft [17], and in government
agencies such as the United States Census Bureau [2]. The most widely studied setting with
DP is the so-called central model (denoted DPcentral) where an analyzer observes the crude
user data but is supposed to release a differentially private data structure. Many accurate
private algorithms have been discovered in the central model; however, the model is limited
when the analyst is not to be trusted with the user data. To remedy this, the more appealing
local model of DP (denoted DPlocal) [33] (also [41]) requires the messages sent by each user to
the analyst to be private. Nevertheless, the local model suffers from large estimation errors
that are known to be on the order of

√
n, where n is the number of users, for a variety of

problems including summation, the focus of this work [10, 14]. This has motivated the study
of the shuffled model of DP (denoted DPshuffled), which is intended as a middle-ground with
trust assumptions better than those of the central model and estimation accuracy better
than the local model.

While an analogous setup was first introduced in crytpography by Ishai et al. [31] in their
work on cryptography from anonymity, the shuffled model was first proposed for privacy-
preserving computations by Bittau et al. [11] in their Encode-Shuffle-Analyze architecture. In
this setup, each user sends (potentially several) messages to a trusted shuffler, who randomly
permutes all incoming messages before passing them to the analyst. We will treat the
shuffler as a black box in this work, though we point out that various efficient cryptographic
implementations of the shuffler have been considered, including onion routing, mixnets,
third-party servers, and secure hardware (see, e.g., the discussions in [31, 11]). The privacy
properties of DPshuffled were first studied, independently, by Erlingsson et al. [21] and Cheu
et al. [15]. Moreover, several recent works have sought to nail down the trade-offs between
accuracy, privacy, and communication [15, 8, 27, 6, 25, 26, 7, 5, 20, 9].

Pure- and Approximate-DP

The two most widely used notions of DP are pure-DP [19] and approximate-DP [18], which
we recall next. For any parameters ε ≥ 0 and δ ∈ [0, 1], a randomized algorithm P is (ε, δ)-DP
if for every pair datasets X,X ′ differing on a single user’s data, and for every subset S of
transcripts of P , it is the case that

Pr[P (X) ∈ S] ≤ eε · Pr[P (X ′) ∈ S] + δ, (1)
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where the probabilities are taken over the randomness in P . The notion of ε-DP is the special
case where δ is set to 0 in (1); we use the terms pure-DP when δ = 0 and approximate-DP
when δ > 0. While δ is intuitively an upper bound on the probability that an (ε, δ)-DP
algorithm fails to be ε-DP, this failure event can in principle be catastrophic, revealing all the
user inputs to the analyst. Pure-DP protocols are thus highly desirable as they guarantee
more stringent protections against the leakage of user data. In the central and local settings,
several prior works either obtained pure protocols in regimes where approximate protocols
were previously known, or proved separations between pure and approximate protocols (e.g.,
[30, 16, 37, 39, 13]).

Summation

A basic primitive in data analytics and machine learning is the summation (aka aggregation)
of inputs held by different users. Indeed, private summation is a critical building block in
the emerging area of federated learning [34], where a machine learning model, say a neural
network, is to be trained on data held by many users without having the users send their
data over to a central analyzer (see [32] for a recent extensive overview). To do so, private
variants of Stochastic Gradient Descent have been developed and their privacy/accuracy
trade-offs analyzed (e.g., [1]). The gist of these procedures is the private summation of users’
gradient updates. Private summation is also closely related to functions in the widely studied
class of counting queries (e.g., [40, 12, 30, 29, 37]).

Several recent work studied approximate-DPshuffled protocols for summation [15, 8, 27,
6, 26, 7, 5]. For binary summation, Cheu et al. [15] show that the standard randomized
response is an (ε, δ)-DPshuffled protocol for binary summation and that it incurs an absolute
error of only O(

√
logn) for ε constant and δ inverse polynomial in n. For real summation

in the single-message shuffled model (denoted DP1
shuffled), where each user sends a single

message to the shuffler, Balle et al. [8] show that the tight error for approximate protocols
is Θ(n1/6). For real summation in the multi-message shuffled model (denoted DP≥1

shuffled),
where a user can send more than one message, the state-of-the-art approximate protocol
was recently obtained in [26, 7]1 and it incurs error at most O(1/ε) with every user sending
O(1 + log(1/δ)

logn ) messages of O(logn) bits each.
The aforementioned protocols, along with several other results (including the work on

“privacy amplification by shuffling” of Erlingsson et al. [21] and Balle et al. [8]), demonstrate
the power of the shuffled model over the local model in terms of privacy, as any (ε, o(1/n))-
DPlocal summation protocol must incur an error of Ωε(

√
n) [14]. However, all of the protocols

proposed so far in the shuffled model only achieve an advantage over the local model when
allowed approximation. This leads us to the following basic and perplexing question that is
the focus of our work:

I Question 1. Are there pure-DPshuffled protocols that achieve better utility than any DPlocal
protocol?

1.1 Main Results
We positively answer the above question for the problem of summation. Namely, we give
the first pure-DPshuffled protocol for binary summation with error depending only on ε but
independent of n and with logarithmic communication per user.

1 See also [9] (merger of [7, 6]) together with a novel recursive protocol with poly(log logn) error where
each user sends O(log logn) messages.
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I Theorem 2 (Pure Binary Summation via Shuffling). For every positive real number
ε, there is a (non-interactive) ε-DPshuffled protocol for binary summation that has expected
error Oε(1) and where each user sends Oε(logn) messages each consisting of a single bit.

We use the protocol in Theorem 2 as a building block in order to also obtain a protocol
with constant error and polylogarithmic communication per user for the more general task
of real summation where each user input is a real number in [0, 1].

I Theorem 3 (Pure Real Summation via Shuffling). For every positive real number ε,
there is a (non-interactive) ε-DPshuffled protocol for real summation that has expected error
Oε(1) and where each user sends Oε(log3 n) messages each consisting of O(log logn) bits.

In light of Theorem 2, a natural question is if there is a (non-interactive) pure-DP protocol
for binary summation with logarithmic (or even constant) error and constant communication
per user, as in the approximate case. We show that no such protocol exists, even for very
large (polynomial) errors:

I Theorem 4 (Communication Lower Bound). In any non-interactive ε-DPshuffled
protocol for binary summation with expected error at most n0.5−Ω(1), the worst-case per user
communication must be Ωε(

√
logn) bits.

1.2 Implications
Our results described above imply new separations between different types of DP protocols
(e.g., DPcentral, DPlocal, DP1

shuffled, and DP≥1
shuffled), and also give the first accurate pure-

DPshuffled protocol for histograms. We elaborate on these next.

Pure Local vs Shuffled Protocols

In DPlocal, the tight accuracy for binary summation is known to be Θ(
√
n) for approximate

protocols [41, 10, 14]. Our Theorems 2 and 3 give the first pure-DPshuffled protocols with
error o(

√
n) for binary and real summation respectively, and in fact they only incur constant

error for both of these problems. Furthermore, Bun et al. [13] gave a generic transformation
from any sequentially interactive approximate-DPlocal protocol to a pure-DPlocal protocol
with essentially the same accuracy and each user communicates only O(log logn) bits. In
contrast, our Theorem 4 implies that in any such transformation in the shuffled model (if
one exists), the per user communication has to be Ω(

√
logn).

Pure vs Approximate Shuffled Protocols

Cheu et al. [15] showed that the standard randomized response [41] is an approximate-DP
protocol for binary summation that incurs only logarithmic error (for ε constant and δ inverse
polynomial in n), and where each user sends a single bit. In contrast, our Theorem 4 implies
that the communication cost of any pure-DP protocol for binary summation with logarithmic
error (and in fact with error as large as n0.5−Ω(1)) is Ω(

√
logn) bits. Put together, these two

results imply the first separation between the communication complexity of pure-DPshuffled
and approximate-DPshuffled protocols.

Pure Single-Message vs Multi-Message Shuffled Protocols

As recently shown by [5], any pure-DP1
shuffled protocol implies a pure-DPlocal protocol with

the same accuracy. This implies that any pure-DP1
shuffled protocol for binary summation

must incur error Ωε(
√
n). Our Theorem 2 thus implies a huge separation of Θε(

√
n) between

the errors possible for pure-DP1
shuffled and pure-DP≥1

shuffled protocols.
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Multi-Message Shuffled vs Central Protocols

It is well-known that the tight error for binary summation in DPcentral is O(1/ε) [19].
Theorem 4 proves that any DPshuffled protocol with per user communication oε(

√
logn)

bits must incur error n0.5−Ω(1). It thereby gives the first separation between (bounded-
communication) DP≥1

shuffled and DPcentral protocols. Indeed, this is, to the best of our
knowledge, the first separation between the accuracy of (bounded-communication) DP≥1

shuffled
protocols and those of DPcentral protocols with the same privacy parameters; all previous
lower bounds for DPshuffled [15, 8, 25] only apply to single-message protocols.

Pure Protocol for Histograms

Our pure binary summation protocol (Theorem 2) implies as a black-box the first pure-
DP protocol with polylogarithmic error for computing histograms (aka point functions or
frequency estimation), albeit with very large communication (see Appendix A of the full
version [24] for more details). It remains a very interesting open question to obtain a
communication-efficient and accurate pure-DP protocol for histograms (see Section 5 for
more on this and other open questions).

1.3 Overview of Techniques
Binary Summation Protocol

We first explain why all existing summation protocols in the shuffled model with error o(
√
n)

are not O(1)-DP. First, note that as observed by [5], any pure-DP1
shuffled protocol implies

a pure-DPlocal protocol with the same accuracy and privacy. Combined with the fact that
any O(1)-DPlocal protocol for summation must have error Ω(

√
n), this implies the same

lower bound for any pure O(1)-DP1
shuffled protocol. In particular, this rules out the binary

randomized response [41] that was analyzed in the shuffled model by [15]. It also rules out the
protocol implied by shuffling RAPPOR [22], and more generally any protocol obtained by the
amplification via shuffling approach of [21, 8]. Moreover, in the multi-message shuffled setup,
the state-of-the-art real summation protocols of [26, 7], which rely on the Split-and-Mix
procedure [31], only give approximate-DP.

A different DP≥1
shuffled protocol for binary summation can be obtained by instantiating the

recent DP≥1
shuffled protocols for computing histograms [25], with a domain size of B = 2. On a

high-level, the two resulting protocols – one of which is based on the Count Min sketch and
the other on the Hadamard response – can be seen as special cases of the following common
template: each user (i) samples a number ρ of messages that depend on their input, (ii)
independently samples a number η of noise messages, and (iii) sends these ρ+ η messages to
the shuffler. Loosely, the analyzer then outputs the number of messages “consistent with” the
queried input. However, it can be seen that any protocol following this template will not be
pure-DP, as the supports of the distribution of the count observed at the analyzer can shift
by 1 when a single user input is changed. The crucial insight in our pure protocol for binary
summation will be to correlate the input-dependent messages and the noise messages sampled
by each user in steps (i) and (ii) above. By doing so, we not only aim to ensure that the
supports are identical but that the two densities are also within a small multiplicative factor
on any point. We implement this idea using binary messages by having each user send d bits
on both inputs 0 and 1. Specifically, the user will start by flipping a suitably biased coin. If it
lands as head, the user will send (d+ 1)/2 zeros and (d− 1)/2 ones when the input is 0, and
vice versa when the input is 1. If the coin lands as tail, the user will sample an integer z from

ITC 2020



15:6 Pure Differentially Private Summation from Anonymous Messages

Algorithm 1 Randomizer for binary summation.

1: procedure BinaryRandomizerε,n(x)
2: Let p, d, s be as in Lemma 9 (depending on ε, n)
3: a← Ber(p)
4: if a = 0 then
5: if x = 0 then
6: return the multiset with

(
d−1

2
)
ones and

(
d+1

2
)
zeros

7: else
8: return the multiset with

(
d+1

2
)
ones and

(
d−1

2
)
zeros

9: else
10: z ← DLapd(d/2, s)
11: return the multiset with z ones and (d− z) zeros

Algorithm 2 Analyzer for binary summation.

1: procedure BinaryAnalyzerε,n(R)
2: Let d be as in Lemma 9 (depending on ε, n)
3: return nd

2 +
∑
y∈R

(
y − 1

2
)

a truncated discrete Laplace distribution and send z zeros and d− z ones (see Algorithm 1
and Equation (2) for more details). The analyzer (Algorithm 2) then outputs the number of
received ones after debiasing. Note that the number of ones received by the analyzer is a
random variable taking values between 0 and dn inclusive. To prove that the algorithm is
private, we intuitively wish to argue that the noise distribution satisfies the property that its
density values on any two adjacent points are within a multiplicative eε factor. However, the
technical challenge stems from the fact that this noise distribution depends on the specific
input sequence (and as we discussed above this dependence is necessary!). Instead, we have
to analyze the n-fold convolution of the individual responses, and show that the density
values of the resulting distribution on any two adjacent points in {0, 1, . . . , dn} are within
a multiplicative factor of eε, for any input sequence. The crux of the proof is to relate the
tails of different convolutions of the truncated discrete Laplace distribution (Lemmas 10
and 11). We determine a setting of (i) the mixture probability coefficient (denoted by p in
Algorithm 1), (ii) the parameter d, and (iii) the “inverse scaling coefficient” of the truncated
discrete Laplace distribution (denoted by s in Algorithm 1), for which the privacy property
holds and for which the resulting expected absolute error is Oε(1).

We point out that the dependence of the error on ε that we obtain is Õ(1/ε3/2) for
ε ≤ O(1) (see Theorem 8). An interesting open question is whether this dependence can be
further reduced to O(1/ε), which is the tight error in the central model [19].

Real Summation Protocol

We use our pure private binary summation protocol outlined above as a building block in
order to obtain a pure private real summation protocol and prove Theorem 3. We note that
Cheu et al. [15] had given a transformation from binary summation to real summation, but
their reduction results in a protocol with a very large communication of Ω̃(

√
n) bits in order

to achieve logarithmic error. We instead give a (different) transformation that results in a
protocol with polylogarithmic communication. The high-level idea of our reduction is the
following: consider the binary representation of the inputs after rounding them to O(logn)
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Algorithm 3 Randomizer for real summation.

1: procedure RealRandomizer(εj)j∈N,n(x)
2: for j = 1 to 2 logn do
3: x[j]← jth most significant bit of x
4: Sj ←BinaryRandomizerεj ,n(x[j]) Sj is a multiset of zeros and ones.
5: Rj ← {j} × Sj Rj is a multiset of tuples (j, 0) and (j, 1).
6: return

⋃2 logn
j=1 Rj

Algorithm 4 Analyzer for real summation.

1: procedure RealAnalyzer(εj)j∈N,n(R)
2: for j = 1 to 2 log2 n do
3: Rj ← {y1 | y ∈ R and y0 = j} Multiset of bit messages for the jth bit.
4: aj ←BinaryAnalyzerεj ,n(Rj)
5: return

∑2 logn
j=1 aj/2j

bits of precision, then approximate the sum for each bit position independently, and finally
combine the estimates into an approximation of the (real-valued) sum of the inputs. Since the
bit sum estimates have geometrically decreasing weights, we can afford to increase the error
on less significant bits. In terms of privacy, this means that for the jth most significant bit,
we run an εj-DP binary summation protocol where ε1, ε2, . . . is a decreasing sequence. The
protocol is illustrated in Algorithms 3 and 4. By carefully choosing the sequence ε1, ε2, . . . ,
we can ensure that the total pure privacy parameter

∑
j εj is small, while the total error is a

constant times the error for the sum of the most significant bits of the inputs. Intuitively,
choosing ε1, ε2, . . . to be a geometrically decreasing sequence (e.g., εj = 0.9j ·ε

10 ) should suffice
for our purposes. However since the communication complexity of our binary summation
protocol also depends on the privacy parameter ε, such a choice of the sequence would result
in poly(n) communication complexity. To overcome this, our actual sequence has a “cut-off”
so that the εj ’s do not go below Θ

(
ε

logn

)
. This completes the proof overview.

Lower Bound

We next outline the proof of Theorem 4. Without loss of generality, we consider an arbitrary
ε-DPshuffled protocol performing binary summation with error n0.5−Ω(1), and where every
user sends m messages each belonging to the domain {1, . . . , k}. We wish to lower bound
the number of bits of communication per user in this protocol, which is equal to m log k.
We denote by X0 and X1 the random multisets of messages sent by a user in this protocol
under inputs 0 and 1 respectively. Note that X0 and X1 are supported on the set ∆k,m :=
{(z1, . . . , zk) ∈ Zk≥0 | z1 + · · ·+ zk = m}. Here, zi captures the number of i messages sent
by the user for each i ∈ {1, . . . , k}.

Using the pure privacy of the protocol, we can argue that the ratio of the moment
generating functions (MGFs) of X0 and X1 cannot take a very large or a very small value.
Specifically, using the fact that the MGF of a sum of independent random variables is equal
to the product of the individual MGFs, we derive a simple yet powerful property that should
be satisfied by any ε-DP protocol in the shuffled model: the ratio of the MGFs of X0 and X1

should always lie in the interval [e−ε, eε]. We will refer to such random variables as having
an eε-bounded MGF ratio (see Section 4.1 for more details). We remark that while MGFs

ITC 2020
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have been used before in DP by Abadi et al. [1] and subsequent works on Renyi DP (starting
from [36]), these usages are in a completely different context compared to ours. In particular,
these prior works keep track of the moments in order to bound the privacy parameters under
composition of protocols. To the best of our knowledge, MGFs have neither been used in
lower bounds for DP nor in the shuffled model before.

Then, using the accuracy of the protocol, we can deduce that the total variation distance
between X0 and X1 has to be large. We do so by invoking a result from the literature [14, 25]
showing that for any binary summation protocol that incurs an absolute error of α, the total
variation distance between X0 and X1 must be at least 1−Θ(α/

√
n) (see Theorem 16 for

more details). Since α = n0.5−Ω(1) in our case, we get a lower bound of 1− n−Ω(1) on the
total variation distance between X0 and X1.

Equipped with these two ingredients, the task of lower bounding the per user communic-
ation cost of the protocol reduces to lower bounding the following quantity:

I Definition 5. Given parameters ε > 0 and γ ∈ [0, 1], we define Cε,γ as the minimum value
of m log k for which there exist two random variables supported on ∆k,m that are at total
variation distance is at least 1− γ but that have an eε-bounded MGF ratio.

Note that any lower bound on the value of Cε,γ can be used to infer a lower bound on
the per user communication cost. In order to prove Theorem 4, and given our setting of
γ = 1/nΩ(1), it is thus enough for us to show that Cε,γ ≥ Ωε(

√
log(1/γ)). To prove this

bound, it suffices to show that if two random variables X0,X1 have an eε-bounded MGF
ratio, then their total variation distance must be at least 1− exp(Oε(m2 log k)). For each
x ∈ ∆k,m, we view Pr[X0 = x] and Pr[X1 = x] as variables. The eε-bounded MGF ratio
constraints can then be written as infinitely many linear inequalities over these variables.
Moreover, the total variation distance between X0 and X1 can be written as a maximum of
linear combinations of these same variables. We therefore get a linear program with infinitely
many constraints, and we would like to show that any solution to it has “cost” (i.e., total
variation distance) at least 1− exp(Oε(m2 log k)). We do so by giving a dual solution with
cost at most 1− exp(Oε(m2 log k)), which by weak duality implies our desired bound (see
Section 4 for more details).

A natural question is if the lower bound Cε,γ ≥ Ωε(
√

log(1/γ)) outlined above can be
improved, as that would immediately lead to an improved communication complexity lower
bound. However, we show that the lower bound is tight, even in the special case where k = 2.
Namely, we give two random variables supported on ∆2,m with m = Θε(

√
log(1/γ)) that

are at total variation distance at least 1− γ but that have an eε-bounded MGF ratio. Our
construction is based on truncations of discrete Gaussian random variables (see Section 4.3
for more details). We note that this limitation only applies to the approach of lower bounding
the per user communication complexity via lower bounding Cε,γ . It remains possible that
other approaches might give better lower bounds. For instance, one might be able to proceed
by giving a necessary condition for the accuracy of binary summation protocols that is
stronger than the total variation distance bound that we used, or a necessary condition for
pure privacy that is better than our eε-bounded MGF ratio property.

1.4 Organization
We start with some notation and background in Section 2. Our protocol for binary summation
is presented and analyzed in Section 3. In Section 4, we prove our lower bound (Theorem 4).
Any deferred proofs from these sections appear in the full version of the paper [24]. We
conclude with some interesting open questions in Section 5. Our full proof for real summation
(Theorem 3) and our corollary for histograms are deferred to the full version [24].



B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, R. Pagh, and A. Velingker 15:9

2 Preliminaries

Shuffled Model of Privacy

Let n be the number of users and let X be the domain. For each i in [n] := {1, . . . , n}, we
denote by xi the input held by the ith user, and further assume that xi ∈ X . In the binary
summation case, we have that X = {0, 1} while in the real summation case, we let X be the
set [0, 1] of real numbers. A protocol P = (R,S,A) in the shuffled model consists of three
algorithms: (i) the local randomizer R(·) whose input is the data of one user and whose
output is a sequence of messages, (ii) the shuffler S(·) whose input is the concatenation of
the outputs of the local randomizers and whose output is a uniform random permutation of
its inputs, and (iii) the analyzer A(·) whose input is the output of the shuffler and whose
output is the output of the protocol. The privacy in the shuffled model is guaranteed with
respect to the input to the analyzer, i.e., the output of the shuffler.

IDefinition 6 (DP in the shuffled model, [21, 15]). A protocol P = (R,S,A) is (ε, δ)-DPshuffled
if, for any dataset X = (x1, . . . , xn), the algorithm S(R(x1), . . . , R(xn)) is (ε, δ)-DP. In the
special case where δ = 0, we say that the protocol P is ε-DPshuffled.

Note that the DPlocal model corresponds to the case where S is the identity function.

I Definition 7 (Non-Interactive Protocols). Let k and m be positive integers. In a non-
interactive (aka one-round) protocol, each of the n users (i.e., randomizers) receives an
input b and outputs at most m messages each consisting of log k bits, according to a certain
distribution (depending on b), and using private randomness. We say that such a protocol
has a communication complexity of m log k.

It is often convenient to view each message as a number in [k]. We use Xb ∈ Zk≥0 to denote
the random variable whose sth coordinate Xb

s denotes the number of s-messages output
by the randomizer on input b. Note that it is always the case that

∑
s∈[k]X

b
s = m, i.e.,

supp(Xb) ⊆ ∆k,m := {(z1, . . . , zk) ∈ Zk≥0 | z1 + · · ·+ zk = m}.

3 Pure Binary Summation Protocol via Shuffling

In this section we prove Theorem 2, restated formally below.

I Theorem 8. For every sufficiently large n and O(1) ≥ ε > 1/n2/3, there is an ε-DPshuffled

protocol for summation for inputs x1, . . . , xn ∈ {0, 1} where each user sends O
(

logn
ε

)
one-bit

messages to the analyzer and has expected error at most O
(√

log 1/ε
ε3/2

)
.

We remark that the assumption ε > 1
n2/3 is made w.l.o.g., because, for ε ≤ 1

n2/3 , there is a
trivial algorithm that achieves square error of O(1/ε3/2): the analyzer just always outputs 0.

Throughout this section we assume that for some absolute constant C, ε ≤ C, and thus
in particular eε can be bounded above by an absolute constant. (The constant C can be
arbitrary.) It is well-known that any ε-DPcentral protocol for summation has error Ω(1/ε)
[40]. Thus the error in Theorem 8 is suboptimal by a factor of at most Õ(1/

√
ε).

The remainder of the section is organized as follows. In Section 3.1, we present the
protocol used to prove Theorem 8. In Section 3.2, we prove the accuracy and privacy
guarantees of Theorem 8, and in Section 3.3 we outline the proof of a technical lemma needed
in the privacy analysis.

ITC 2020



15:10 Pure Differentially Private Summation from Anonymous Messages

3.1 The Protocol
To described the protocol, we will use the truncated version of the discrete Laplace distribution,
for which we condition the support to be on [µ−w/2, µ+w/2] where w ≥ 1 is the “width” of
the support. We denote such a distribution by DLapw(µ, s). More specifically, its probability
mass function satisfies

Pr
Z∼DLapw(µ,s)

[Z = z] =
{

1
Cw(µ,s) · e

−|z−µ|/s if µ− w/2 ≤ z ≤ µ+ w/2 and z ∈ Z
0 otherwise.

(2)

Here Cw(µ, s) =
∑
z∈[µ−w/2,µ+w/2]∩Z e

−|z−µ|/s is simply the normalization factor.
Our randomizer and analyzer are presented in Algorithm 1 and Algorithm 2, respectively.

The protocol has 3 parameters: the number of messages d, the “inverse scaling exponent” s,
and the “noise probability” p. We always assume that d is a positive odd integer2. These
parameters will be chosen later (in Lemma 9).

3.2 Privacy Analysis
For b ∈ {0, 1}, we write Rb to denote the distribution3 on the number of ones output by the
randomizer on input b. (This distribution depends on d, s, p but we do not include them in
the notation to avoid being cumbersome.) Notice that we can decompose Rb as a mixture
p ·DLapd(d/2, s) + (1− p) · 1(d−1

2 + b), where we use 1(ϑ) to denote the distribution that is
ϑ with probability 1.

To prove the privacy guarantee of Theorem 8, we first note that we may focus only on
the neighboring datasets (0, . . . , 0, 0) and (0, . . . , 0, 1); this follows since we may assume (due
to symmetry) that more than half of the bits are zero and we can then condition out the
results from the 1 bits that they share. (See the proof of Theorem 8 for a formalization of
this.) For these datasets, Lemma 9 below bounds the ratio of the probabilities of ending up
with a particular union of outputs from these two datasets.

I Lemma 9. There is a sufficiently small constant c0 ∈ (0, 1) so that the following holds. For
any sufficiently large n ∈ N and any c0 ≥ ε > 1

n2/3 , let s = 10
ε , p = 100 e100ε log(1/(1−e−0.1ε))

n(1−e−0.1ε) ,

and d = 4
⌈

1000 e100ε

(1−e−0.1ε) · log
(

n
1−e−0.1ε

)⌉
+ 3. Then, for all t ∈ {0, . . . , dn}, we have

PrZ1,...,Zn∼R0 [Z1 + · · ·+ Zn = t]
PrZ1,...,Zn−1∼R0,Zn∼R1 [Z1 + · · ·+ Zn = t] ∈ [e−ε, eε]. (3)

This means that, for the above selection of parameters, the protocol is ε-DP. Using Lemma
9, we prove Theorem 8.

Proof of Theorem 8. We may assume without loss of generality that ε ≤ c0, as otherwise
we may set ε to min{ε, c0} instead.

We use the local randomizer BinaryRandomizerε,n of Algorithm 1 and the analyzer
BinaryAnalyzerε,n of Algorithm 2, with the parameters s, d, p given by the expressions
in Lemma 9, except with n replaced by d(n + 1)/2e. Explicitly, we have s = 10

ε , p =

2 We only assume that d is odd for convenience, so that
(
d−1

2

)
and

(
d+1

2

)
are integers. Using an even d

and replacing these two quantities with d/2− 1 and d/2 + 1 also works, provided that the proofs are
adjusted appropriately.

3 This is the distribution of Xb defined in Section 2.
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100 e100ε log(1/(1−e−0.1ε))
d(n+1)/2e(1−e−0.1ε) and d = 4

⌈
1000 e100ε

(1−e−0.1ε) · log
(
d(n+1)/2e
1−e−0.1ε

)⌉
+ 3. We prove the accuracy

guarantee first, which is a simple consequence of the choices of p, d made in Lemma 9, followed
by the privacy guarantee, which uses Lemma 9.

Proof of accuracy

Fix a dataset X = (x1, . . . , xn) ∈ {0, 1}n. Let Y ∈ R be the count released by the analyzer.
Moreover, for 1 ≤ i ≤ n, let Z1, . . . , Zn be i.i.d. random variables distributed according
to ν = DLapd(d/2, s). It is easy to check that Var[Zi] ≤ 2s2. Moreover, let M ∈ [n] be
the number of users for whom the Bernoulli random variable a is equal to 1. In particular,
M ∼ Binom(n, p). The expected absolute error is given by

E

[∣∣∣∣∣Y −
n∑
i=1

xi

∣∣∣∣∣
]
≤

n∑
m=0

Pr[M = m] ·
(
m

2 + E
[∣∣∣∣Z1 + · · ·+ Zm −

md

2

∣∣∣∣])

(by Jensen’s inequality) ≤ E[M/2] +
n∑

m=0
Pr[M = m] ·

√√√√E

[(
Z1 + · · ·+ Zm −

md

2

)2
]

≤ pn/2 +
n∑

m=0
Pr[M = m] ·

√
m ·
√

2s2

≤ pn/2 +
√

2s · √pn. (4)

Since p = 100 e100ε log(1/(1−e−0.1ε))
d(n+1)/2e(1−e−0.1ε) , we have pn/2 +

√
2pn · s = O

(√
log 1/ε
ε3/2

)
. Combined with

(4), this gives us the desired upper bound on the expected error of the protocol.

Proof of privacy

Let X = (x1, . . . , xn−1, xn) ∈ {0, 1}n and X ′ = (x1, . . . , xn−1, x
′
n) ∈ {0, 1}n be two neighbor-

ing datasets. By symmetry, without loss of generality, we may assume that xn = 0 and at
least n0 := dn− 1e/2 of the values of x1, . . . , xn−1 are also 0. By permuting the users, we
may also assume without loss of generality that x1 = x2 = · · · = xn0 = 0. For 1 ≤ i ≤ n,
let Yi ∈ [0, d] denote the (random) number of 1s output by user i when their input is xi.
Also let Y ′n ∈ [0, 1] denote the (random) number of 1’s output by user n when its input is x′n.
By [8, Lemma A.2], to show that Pr[Y1+···+Yn−1+Yn=t]

Pr[Y1+···+Yn−1+Y ′n=t] ∈ [e−ε, eε] for all t ∈ N, it suffices to
show that for all t0 ∈ N, Pr[Y1+···+Yn0 +Yn=t0]

Pr[Y1+···+Yn0 +Y ′n=t0] ∈ [e−ε, eε]. Now the validity of the latter is an
immediate consequence of Lemma 9 with the parameter n of Lemma 9 equal to n0 + 1. J

From now on, we will use ν and ωb as abbreviations for DLapd(d/2, s) and 1(d−1
2 + b)

respectively, where d, s are defined as in Lemma 9.
Let us denote by Pm,k the probability that m independent random variables from the

noise distribution ν sums up to k; more formally, Pm,k := PrZ1,...,Zm∼ν [Z1 + · · ·+ Zm = k].
For convenience, we define P0,0 = 1 and P0,k = 0 for all k 6= 0.

As we will see in the proof of Lemma 9 below, expansions of the numerator and de-
nominator of the left hand side of (3) result in similar terms involving Pm,k, except oc-
casionally with (i) k differing by one or (ii) m differing by 1 and k differing by

(
d−1

2
)
or(

d−3
2
)
. Hence, to bound the ratio between the two, we have to find some relation between

Pm,k, Pm,k−1, Pm+1,k+( d−1
2 ), and Pm+1,k+( d−3

2 ). The exact inequality we will use here is
stated below and its proof overview is given in Section 3.3.
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I Lemma 10. For any sufficiently large n ∈ N, let ε, d and s be as in Lemma 9. Then the
following hold: For any integers 10 log(1/(1−e−0.1ε))

1−e−0.1ε ≤ m ≤ n− 1, and `1, `2 ∈
{
d−1

2 , d−3
2
}
, if

p ≥ 100 e100ε

n(1−e−0.1ε) , then we have

e−εp(1− e−ε/2) ·
(
Pm+1,k+`1 + (n−m− 1)

m+ 1 · Pm+1,k+`2

)
+ e0.2ε · Pm,k−1 ≥ Pm,k.

We also need the following lemma, which can be interpreted as an anti-concentration result.
Recall that Pi,j = PrZ1,...,Zi∼ν [Z1 + · · ·+Zi = j]. For any a ∈ N, if also Z ′1, . . . , Z ′a ∼ ν, then
as E[Z ′1 + · · ·+ Z ′a] = da/2 and the distribution of Z ′1 + · · ·+ Z ′a has sufficient mass at its
expectation, one expects that Pi+a,j+a = Pr[Z1 + · · ·+Zi +Z ′1 + · · ·+Z ′a = j + da/2] is not
too much smaller than Pi,j . Lemma 11 says that in fact Pr[Z1 + · · ·+ Zi + Z ′1 + · · ·+ Z ′a =
j+ da/2− d/2] is not too much smaller than Pi,j . Its proof is deferred to the full version [24].

I Lemma 11. For any i, j, a ∈ N0 such that a ≤ s2/1000, we have Pi+a,j+a( d−1
2 ) ≥

√
a

40s3 ·Pi,j .

With Lemmas 10 and 11 ready, we can now prove Lemma 9 as follows.

Proof of Lemma 9. Let c0 ∈ (0, 1) be some sufficiently small positive constant, to be
specified later. We would like to show that, for all t ∈ {0, . . . , dn}, the following hold:

Pr
Z1,...,Zn∼R0

[Z1 + · · ·+ Zn = t] ≤ eε · Pr
Z1,...,Zn−1∼R0,Zn∼R1

[Z1 + · · ·+ Zn = t], (5)

and

Pr
Z1,...,Zn−1∼R0,Zn∼R1

[Z1 + · · ·+ Zn = t] ≤ eε · Pr
Z1,...,Zn∼R0

[Z1 + · · ·+ Zn = t]. (6)

Due to space constraints, we will only prove (5) here; (6) can be proved in a similar
manner. To prove (5), let us first decompose the probability on the left and the right hand
sides based on whether Zn is sampled from the noise distribution ν. This gives

Pr
Z1,...,Zn∼R0

[Z1 + · · ·+ Zn = t]

= p · Pr
Z1,...,Zn−1∼R0,Zn∼ν

[Z1 + · · ·+ Zn = t]

+ (1− p) · Pr
Z1,...,Zn−1∼R0

[
Z1 + · · ·+ Zn−1 = t−

(
d− 1

2

)]
,

and

Pr
Z1,...,Zn−1∼R0,Zn∼R1

[Z1 + · · ·+ Zn = t]

= p · Pr
Z1,...,Zn−1∼R0,Zn∼ν

[Z1 + · · ·+ Zn = t]

+ (1− p) · Pr
Z1,...,Zn−1∼R0

[
Z1 + · · ·+ Zn−1 = t−

(
d+ 1

2

)]
.

Moreover, observe that, by expanding based on the number of variables among Z1, . . . , Zn−1
that uses the noise distribution (i.e., i below), we have

Pr
Z1,...,Zn−1∼R0,Zn∼ν

[Z1 + · · ·+ Zn = t]
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=
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · Pi+1,t−(n−1−i)( d−1

2 ),

and

Pr
Z1,...,Zn−1∼R0

[
Z1 + · · ·+ Zn−1 = t−

(
d− 1

2

)]
=
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · Pi,t−(n−i)( d−1

2 ).

Finally, we have

Pr
Z1,...,Zn−1∼R0

[
Z1 + · · ·+ Zn−1 = t−

(
d+ 1

2

)]
=
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · Pi,t−(n−i)( d−1

2 )−1.

= 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · eε/2 · Pi,t−(n−i)( d−1

2 )−1

+ 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · (eε − eε/2)Pi,t−(n−i)( d−1

2 )−1

≥ 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · eε/2 · Pi,t−(n−i)( d−1

2 )−1

+ 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · (eε/2 − 1)Pi,t−(n−i)( d−1

2 )−1

≥ 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · eε/2 · Pi,t−(n−i)( d−1

2 )−1

+ 1
eε
·
n−1∑
i=0

(
n− 1
i+ 1

)
pi+1(1− p)n−2−i · (eε/2 − 1)Pi+1,t−(n−i−1)( d−1

2 )−1

≥ 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−ieε/2 · Pi,t−(n−i)( d−1

2 )−1

+ 1
eε
·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · p(n− 1− i)

i+ 1 · (eε/2 − 1)Pi+1,t−(n−i−1)( d−1
2 )−1.

Using the above expressions, we may write the difference between the right hand side
and the left hand side of (5) as

eε · Pr
Z1,...,Zn−1∼R0,Zn∼R1

[Z1 + · · ·+ Zn = t]− Pr
Z1,...,Zn∼R0

[Z1 + · · ·+ Zn = t]

≥ (eε − 1) · p ·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · Pi+1,t−(n−1−i)( d−1

2 )

+ (1− p) ·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−ieε/2 · Pi,t−(n−i)( d−1

2 )−1

+ (1− p) ·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · p(n− 1− i)

i+ 1 · (eε/2 − 1)Pi+1,t−(n−i−1)( d−1
2 )−1
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− (1− p) ·
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i · Pi,t−(n−i)( d−1

2 )

≥ (1− p)
n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i∆i, (7)

where

∆i := p(1− e−ε/2) ·
(
Pi+1,t−(n−1−i)( d−1

2 ) + n− 1− i
i+ 1 · Pi+1,t−(n−i−1)( d−1

2 )−1

)
+ eε/2 · Pi,t−(n−i)( d−1

2 )−1 − Pi,t−(n−i)( d−1
2 ),

and we have used that eε − 1 ≥ eε/2 − 1 ≥ 1− e−ε/2 for ε ≥ 0.
By Lemma 10 with m = i, k = t− (n− i)

(
d−1

2
)
, `1 =

(
d−1

2
)
, `2 =

(
d−3

2
)
, we have

∆i ≥ (e0.3ε − 1)Pi,t−(n−i)( d−1
2 ) ≥ 0, (8)

for all i such that 10 log(1/(1−e−0.1ε))
1−e−0.1ε ≤ i ≤ n− 1. Let i0 := 10 log(1/(1−e−0.1ε))

1−e−0.1ε . It remains to
lower bound the terms in (7) for 0 ≤ i < i0. To do so, we will “borrow” the additional mass
of (e0.3ε − 1)Pi,t−(n−i)( d−1

2 ) from the terms with i ≥ i0. To show that this borrowing gives
sufficient positive mass from the terms Pi,t−(n−i)( d−1

2 ) with i ≥ i0, we will use Lemma 11.
Next, let imax ∈ {0, 1, . . . , i0− 1} and imin ∈ {i0, i0 + 1, . . . , 2p(n− 1)} be defined so that:

Pimax,t−(n−imax)( d−1
2 ) ≥ Pi,t−(n−i)( d−1

2 ) ∀i ∈ {0, 1, . . . , i0 − 1}

Pimin,t−(n−imin)( d−1
2 ) ≤ Pi,t−(n−i)( d−1

2 ) ∀i ∈ {i0, i0 + 1, . . . , 2p(n− 1)}.

As p = 100 e100ε log(1/(1−e−0.1ε))
n(1−e−0.1ε) and ε < c0 ≤ 1, we have that as long as c0 is sufficiently small,

2p(n− 1) ≤ 100e100 log(5/ε)
0.1ε ≤ 1

4ε2 = s2/1000.

It follows from Lemma 11 with a = imin − imax ≤ 2p(n− 1) that

Pimin,t−(n−imin)( d−1
2 ) ≥

1
40s3Pimax,t−(n−imax)( d−1

2 ).

Let M ∼ Binom(n − 1, p) be a binomial random variable. Then, as (8) holds for
n− 1 ≥ i ≥ i0, we have

n−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i∆i

≥ −
i0−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−iPi,t−(n−i)( d−1

2 )

+
2p(n−1)∑
i=i0

(
n− 1
i

)
pi(1− p)n−1−i(e0.3ε − 1) · Pi,t−(n−i)( d−1

2 )

≥ −Pimax,t−(n−imax)( d−1
2 )

i0−1∑
i=0

(
n− 1
i

)
pi(1− p)n−1−i (9)

+ 0.3ε · Pimin,t−(n−imin)( d−1
2 )

2p(n−1)∑
i=i0

(
n− 1
i

)
pi(1− p)n−1−i
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≥ Pimax,t−(n−imax)( d−1
2 ) ·

(
0.3ε
40s3 · Pr[i0 ≤M ≤ 2p(n− 1)]− Pr[M < i0]

)
. (10)

By the Chernoff bound, for sufficiently large n and since pn = n · 100 e100ε log(1/(1−e−0.1ε))
n(1−e−0.1ε) ≥

100, we have

Pr[M > 2p(n− 1)] ≤ exp(−p(n− 1)/3) ≤ exp(−pn/4) < 1/2.

Moreover, since i0 = 10 log(1/(1−e−0.1ε))
1−e−0.1ε ≤ pn/3 ≤ p(n− 1)/2 and ε ≤ 1 in the current case,

Pr[M < i0] ≤ exp(−p(n− 1)/8) ≤ exp(−pn/10) ≤ exp
(

10
1− e−0.1ε

)
< 1/4.

Hence, recalling s = 10
ε , d = 4

⌈
1000 e100ε

(1−e−0.1ε) · log
(

n
1−e−0.1ε

)⌉
+ 3, p = 100 e100ε log(1/(1−e−0.1ε))

n(1−e−0.1ε) ,
as well as the assumption ε > 1/n2/3,

0.3ε
40s3 · Pr[i0 ≤M ≤ 2p(n− 1)]− Pr[M < i0]

≥ 0.3ε
160s3 − exp(−1/(2ε))

≥ cε4 − exp(−1/(2ε)),

for some sufficiently small positive absolute constant c. The above quantity is positive as
long as exp(1/(2ε)) ≥ 1

cε4 , i.e., as long as ε ≤ c′ for some absolute constant c′ > 0 (which
holds as long as we select c0 ≤ c′). From this and (7), we can conclude that (5) holds. J

3.3 Proof Overview of Lemma 10
In this subsection, we give an overview of the proof of Lemma 10; we defer the full proof to
the full version [24]. Throughout this section, we will use the several additional notation:

First, we will overload the notation and use ν(z) to denote the probability mass function
of ν at z, i.e., ν(z) := PrZ∼ν [Z = z].
We often represent a sequence of integers a1, . . . , am as a vector a = (a1, . . . , am). For
such a vector, we use ν(a) as a shorthand for the product ν(a1) · · · ν(am), and zero(a) as
a shorthand for the number of zero coordinates, i.e., zero(a) := |{i ∈ [m] | ai = 0}|.
We use Sm,k,d to denote the set of all sequences of integers a1, . . . , am between 0 and d
(inclusive) whose sum is k; more formally, Sm,k,d := ∆m,k ∩ [0, d]m. Since d will be fixed
throughout, we omit d and simply write Sm,k.
Next, for any i ∈ R, we use Szero<i

m,k (resp. Szero≥i
m,k ) to denote the sets of sequences in

Sm,k whose number of zero-coordinates is less than (resp., at least) i. More formally,
Szero<i
m,k := {a ∈ Sm,k | zero(a) < i} and Szero≥i

m,k := {a ∈ Sm,k | zero(a) ≥ i}.

To prove Lemma 10, let us observe that we may expand Pm,k as

Pm,k =
∑

a∈Sm,k

ν(a) =
∑

a∈Szero<i
m,k

ν(a) +
∑

a∈Szero≥i
m,k

ν(a),

where i will be chosen later in the proof.
We will bound the two terms on the right separately. More specifically, we will show that∑
a∈Szero<i

m,k

ν(a) ≤ e0.5ε · Pm,k−1, (11)
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and that for `1, `2 ∈ {d−1
2 , d−3

2 },∑
a∈Szero≥i

m,k

ν(a) ≤ p(1− e−0.5ε) ·
(
Pm+1,k+`1 + (n−m+ 1)

m+ 1 · Pm+1,k+`2

)
. (12)

Once we have these two inequalities, Lemma 10 immediately follows. The intuition behind
the two inequalities is quite simple. For (11), since each sequence a ∈ Szero<i

m,k contains few
zeros, we should be able to pick a non-zero ai and decrease it by one and end up with a
sequence in Sm,k−1 instead; since the discrete Laplace distribution’s mass (i.e., ν) on ai and
on ai − 1 differs (multiplicatively) by a factor of at most e1/s, the mass of the modified
sequence also differs from the original sequence by a factor of e1/s.

For (12), the intuition is pretty similar. We start with a sequence a ∈ Szero≥i
m,k and we

will modify it to end up with a sequence in Sm+1,k+` where ` is either
(
d−1

2
)
or
(
d−3

2
)
. The

intuition here is that since a contains many zero coordinates, there are many ways for us
to divide ` among these zero coordinates and an additional coordinate, which would result
naturally in a sequence in Pm+1,k+`.

To turn the intuition into a formal proof, we need to be careful about “double counting”
a modified sequence. As an example, for (11), suppose we would like to modify a sequence in
Szero<i
m,k to one in Sm,k−1 by decreasing any non-zero coordinate. Then, it is possible that two

sequences (1, 0, a3, . . . , an) and (0, 1, a3, . . . , an) results in the same sequence (0, 0, a3, . . . , an).
In order to avoid such “double counting”, we divide our proofs into two parts. First,

we show that we may replace Szero<i
m,k (resp. Szero≥i

m,k ) with the set of sequences whose first
coordinate is non-zero (resp., whose first few coordinates are zeros).

4 Lower Bound for Binary Summation

We next prove our lower bound on the communication complexity of any non-interactive
pure-DPshuffled protocol that can perform bit addition with small error (Theorem 4). To
prove our lower bound, first recall the following notion from probability theory.

I Definition 12 (Moment Generating Function). Let Y be a Rk-valued random variable for
some k ∈ N. Its moment generating function (MGF) is defined as MY(t) = E[e〈t,Y〉].

Throughout this section, we will be dealing with pairs of random variables whose MGFs are
within a certain factor of each other. The following definition will be particularly handy.

I Definition 13 (Bounded MGF ratio). We say that two Rk-valued random variables Y,Y′
have eε-bounded MGF ratio if and only if, for all t ∈ Rk we have that MY(t)

MY′ (t) ∈ [e−ε, eε].

Furthermore, let SD(Y,Y′) denote the total variation distance between them.
Our proofs follow the outline from Section 1.3. Specifically, in Section 4.1, we prove that

a pure-DPshuffled protocol implies bounded MGF ratio. Then, in Section 4.2, we give a lower
bound on Cε,γ from Definition 5, which then implies Theorem 4. Finally, in Section 4.3, we
provide an example which shows that our lower bound for the question is tight.

4.1 Pure-DP Implies Bounded MGF Ratio
We start by proving a necessary (but not sufficient) condition on ε-DP protocols in terms of
the MGFs of X0,X1. A straightforward observation we will use is the following:

I Observation 14. Let Y,Y′ be two random variables with the same support supp(Y) =
supp(Y′) ⊆ Rk such that Pr[Y=v]

Pr[Y′=v] ∈ [e−ε, eε]. Then, Y,Y′ satisfies eε-bounded MGF ratio.
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Furthermore, recall a (well-known) multiplicative property of MGF that, if Y,Y′ ∈ Rk
are two independent random variables, then MY+Y′(t) = MY(t) ·MY′(t) for all t ∈ Rk.
With this in mind, we can now prove the desired result:

I Lemma 15. For any ε-DP protocol, X0,X1 must satisfy eε-bounded MGF ratio.

Proof. Consider two input vectors 0 . . . 00 and 0 . . . 01. Let Y0,Y1 ∈ Zk denote the views
of the shuffled output on the corresponding input vectors, where Y0

j denote the number of
j’s received by the analyzer for the input vector 0 . . . 00 and Y1

j denote the number of j’s
received by the analyzer for the input vector 0 . . . 01. Notice that Y0 is a sum of n i.i.d.
copies of X0 and Y1 is a sum of (n− 1) i.i.d. copies of X0 and a copy of X1. Observe also
that ε-DP implies that Y0,Y1 satisfy the condition in Observation 14. From this, we have

[e−ε, eε] 3 MY0(t)
MY1(t) = (MX0(t))n

(MX0(t))n−1 ·MX1(t) = MX0(t)
MX1(t) . J

4.2 From Bounded MGF Ratio to Communication Lower Bound
We will now use the bounded MGF ratio property to bound the communication complexity
of any non-interactive protocol for summation that incurs small error. To do so, let us recall
below a known result that any protocol that can perform binary summation to within a
small error must have large statistical distance between X0 and X1:

I Theorem 16 ([14]). Any non-interactive protocol that can perform binary summation to
within an expected absolute error of α must satisfy SD(X0,X1) ≥ 1−O

(
α√
n

)
.

Thanks to Lemma 15 and Theorem 16, to prove our lower bound (Theorem 4), it now
suffices to show that, for any Y,Y′ whose supports lie in ∆k,m that satisfy eε-bounded MGF
ratio and SD(Y,Y′) is large, then m log k must be large. The main lemma of this subsection,
which is a quantitative version of the aforementioned statement, is stated formally below.

I Lemma 17. Let Y,Y′ be two random variables supported on ∆k,m with eε-bounded MGF
ratio. Then, SD(Y,Y′) ≤ 1− 2−Oε(m2 log k).

It is straightforward to see that Lemma 17, Lemma 15, and Theorem 16 together implies
Theorem 4. We devote the rest of this subsection to the proof of Lemma 17.

Dual Approach and Proof of Lemma 17

For notational convenience, we use py and p′y to denote Pr[Y = y] and Pr[Y′ = y] respectively.
Before we formalize the proof below, let us first present an informal overview. Recall that

1− SD(Y,Y′) is equal to
∑

y∈∆k,m
min{py, p

′
y} = minS⊆∆k,m

{∑
y∈S py +

∑
y∈∆k,m\S p

′
y

}
.

Hence, it suffices for us to show that, for every S ⊆ ∆k,m, we have∑
y∈S

py +
∑

y∈∆k,m\S

p′y ≥ 2−Oε(m
2 log k). (13)

We will give a “dual certificate” for this statement. Notice that since the total probability of
each of Y,Y′ must be one, we have

∑
y∈∆k,m

py = 1 and
∑

y∈∆k,m
p′y = 1. We also have the

non-negativity constraints: py, p
′
y ≥ 0 for all y ∈ ∆k,m. Finally, the eε-bounded MGF ratio

property between Y and Y′ translates to the following linear inequalities for all t ∈ Rk:∑
y∈∆k,m

e〈t,y〉 · p′y −
∑

y∈∆k,m

e〈t,y〉−ε · py ≥ 0,
∑

y∈∆k,m

e〈t,y〉 · py −
∑

y∈∆k,m

e〈t,y〉−ε · p′y ≥ 0.

(14)
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Hence, we have a system of linear inequalities and we would like to certify a linear
inequality (13). We may do so by writing (13) as a linear combination of the constraints.

As a wishful thinking, if we could somehow “extract” only the py and p′y terms from (14),
we would be done because we would simply have eε · py ≥ p′y ≥ e−ε · py which can easily be
combined with the total probability and non-negativity constraints to get a good bound on∑

y∈S py +
∑

y∈∆k,m\S p
′
y. Of course, such extraction is not possible since, for any value t

we plug into (14), we always get non-zero coefficients for all vectors in ∆k,m, not just y.
With this in mind, our relaxed goal is to select t = τ(y) for each y in such a way that the

coefficient of y from its own inequality (i.e., t = τ(y)) “dominates” the coefficients of y from
other inequalities (i.e., t = τ(y′) for y′ 6= y). A formal version of the statement is proved
below. Note that eβ(y) should be thought of as the “scaling factor” for the inequality for y.

I Lemma 18. For any ε > 0, there exist mappings τ : ∆k,m → Rk and β : ∆k,m → R such
that the following hold for all y ∈ ∆k,m:

0 ≥ 〈τ(y),y〉+ β(y) ≥ ζ := −Oε(m2 log k), (15)

and

e〈τ(y),y〉+β(y) ≥ 2eε ·
∑

y′∈∆k,m\{y}

e〈τ(y′),y〉+β(y′). (16)

Proof. Let ρ = ε+ 10 ln(k+ 1) + 10. We pick τ(y) = ρ · 2y and β(y) = ρ ·
(
−‖y‖22 −m2). It

is obvious to see that (15) holds. To prove (16), let us first observe the following identity:

〈τ(y′),y〉+ β(y′) = 〈τ(y),y〉+ β(y)− ρ · ‖y− y′‖22. (17)

Thus, we may rewrite the right hand side of (16) as∑
y′∈∆k,m\{y}

e〈τ(y′),y〉+β(y′)

(17)= e〈τ(y),y〉+β(y) ·

2m2∑
i=1

e−ρi · |{y′ ∈ ∆k,m | ‖y− y′‖22 = i}|

 . (18)

Furthermore, we have |{y′ ∈ ∆k,m | ‖y− y′‖22 = i}| ≤ |{z ∈ Zk | ‖z‖22 = i}| ≤ 2i ·
(
k+i−1
i

)
≤

(2e(k + 1))i. Plugging this back into (18), we have

∑
y′∈∆k,m\{y}

e〈τ(y′),y〉+β(y′) ≤ e〈τ(y),y〉+β(y) ·

2m2∑
i=1

(
e−ρ · 2e(k + 1)

)i
(From our choice of ρ) ≤ e〈τ(y),y〉+β(y) · 1

2eε . J

With Lemma 18 ready, we can now prove Lemma 17.

Proof of Lemma 17. Let τ, β be as in Lemma 18. Consider any set S ⊆ ∆k,m.
For every y′ ∈ S, MY(τ(y′)) ≥ e−ε ·MY′(τ(y′)) is equivalent to∑
y∈∆k,m

e〈τ(y′),y〉−β(y′) · py −
∑

y∈∆k,m

e〈τ(y′),y〉−β(y′)−ε · p′y ≥ 0. (19)
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Similarly, for every y′ ∈ ∆k,m \ S, MY′(τ(y′)) ≥ e−ε ·MY(τ(y′)) can be rearranged as∑
y∈∆k,m

e〈τ(y′),y〉−β(y′) · p′y −
∑

y∈∆k,m

e〈τ(y′),y〉−β(y′)−ε · py ≥ 0. (20)

By adding (19) for all y′ ∈ S with (20) for all y′ ∈ ∆k,m \ S, we have

∑
y∈∆k,m

∑
y′∈S

e〈τ(y′),y〉−β(y′) −
∑

y′∈∆k,m\S

e〈τ(y′),y〉−β(y′)−ε

 py

+
∑

y∈∆k,m

 ∑
y′∈∆k,m\S

e〈τ(y′),y〉−β(y′) −
∑
y′∈S

e〈τ(y′),y〉−β(y′)−ε

 p′y ≥ 0. (21)

Now, for all y ∈ S, we can upper bound the coefficient of p′y in (21) by∑
y′∈∆k,m\S

e〈τ(y′),y〉−β(y′) −
∑
y′∈S

e〈τ(y′),y〉−β(y′)−ε

≤
∑

y′∈∆k,m\{y}

e〈τ(y′),y〉−β(y′) − e〈τ(y),y〉−β(y)−ε
(16)
≤ −0.5e〈τ(y),y〉−β(y)−ε

(15)
≤ −eζ−1−ε.

Similarly, for all y ∈ ∆k,m \ S, the coefficient of py in (21) is at most −eζ−1−ε.
Moreover, for all y ∈ S, we can upper bound the coefficient in (21) of py by∑
y′∈S

e〈τ(y′),y〉−β(y′) −
∑

y′∈∆k,m\S

e〈τ(y′),y〉−β(y′)−ε

≤
∑

y′∈∆k,m

e〈τ(y′),y〉−β(y′)
(16)
≤
(

1 + 1
2eε

)
e〈τ(y),y〉−β(y)

(15)
≤ 2.

Similarly, for all y ∈ S, the coefficient of p′y in (21) is at most 2.
Plugging these back into (21), we have

0 ≤ 2

∑
y∈S

py +
∑

y∈∆k,m\S

p′y

− eζ−1−ε

∑
y∈S

p′y +
∑

y∈∆k,m\S

py

 .

Using the fact that
∑

y∈∆k,m
py =

∑
y∈∆k,m

p′y = 1, we can simplify the RHS above to

2eζ−1−ε ≤ (2 + eζ−1−ε)

∑
y∈S

py +
∑

y∈∆k,m\S

p′y

 .

This means that∑
y∈S

py +
∑

y∈∆k,m\S

p′y

 ≥ 2eζ−1−ε

2 + eζ−1−ε

(15)
≥ 2−Oε(m

2 log k).

This establishes (13) and hence we have SD(Y,Y′) ≤ 1− 2−Oε(m2 log k) as desired. J
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4.3 Limitations of the Lower Bound Approach
In this subsection, we argue that the bound we achieve in Lemma 17 is essentially tight, even
for k = 2. In other words, our approach of using only bounded MGF ratio property and the
total variation distance bound from Theorem 16 cannot give any lower bound better than
Oε(
√

logn). Specifically, the main lemma of this section is stated below.

I Lemma 19. For every ε > 0 and γ ∈ (0, 0.5), there exist two random variables Y,Y′
supported on (subsets of) ∆2,m for some m = Oε(

√
log(1/γ)) such that SD(Y,Y′) ≥ 1− γ

and that Y,Y′ satisfy the eε-bounded MGF ratio property.

Similar to when we analyze our binary summation protocol in Section 3, it suffices to
prove the following one-dimensional version of the above statement, where the two random
variables are from {0, 1, . . . ,m} rather than ∆2,m.

I Lemma 20. For every ε > 0 and γ ∈ (0, 0.5), there exist two random variables Y 0 and Y 1

supported on {0, . . . ,m} for some m = Oε(
√

log(1/γ)) such that SD(Y 0, Y 1) ≥ 1 − γ and
that Y 0, Y 1 satisfy eε-bounded MGF ratio property.

4.3.1 Discrete Gaussian Distributions
Our construction for Lemma 20 is based on the discrete Gaussian distribution, which can
be defined as follows. Let the (one-dimensional) Gaussian function centered at c with
parameter s as ρs,c(x) := exp

(
−π(x−c)2

s2

)
for all x ∈ R. For any countable A ⊆ R, let

ρs,c(A) :=
∑
x∈A ρs,c(x). When ρs,c(A) is finite, the discrete Gaussian distribution over A

centered at c with parameter s, denoted by DA,s,c, has DA,s,c(x) = ρs,c(x)
ρs,c(A) for all x ∈ A.

We will use a special case of a well-known property of lattices (cf. [35, 23, 3]). Recall that
a one-dimensional lattice is aZ := {at | t ∈ Z} for some a ∈ R+. Informally, the property
states that, if for sufficiently large s , “shifting” the discrete Gaussian distribution by c does
not change its normalization factor too much. This is formalized below.

I Lemma 21 (e.g. [23, Lemma 2.6]). For any constants a, δ ∈ R+, there exists a sufficiently
large constant s∗ = s∗(a, δ) such that, for any c ∈ R, we have ρs∗,c(aZ)

ρs∗,0(aZ) ∈ [e−δ, 1].

We will also use the following (rather straightforward) observation that, similar to the
(continuous) Gaussian distribution, we may choose a sufficiently large truncation point `∗a
for which the total mass of all points x with |X − c| > `∗a is arbitrarily small.

I Observation 22. For any constants a, δ ∈ R+, let s∗ = s∗(a, δ) be as in Lemma 21. Then,
for any λ > 0, there exists a sufficiently large positive integer `∗ = `∗(a, δ, λ) such that, for
any c ∈ R, we have PrX∼DaZ,s∗,c [|X − c| > `∗a] ≤ λ.

4.3.2 Proof Overview of Lemma 20
Distributions of both Y 0, Y 1 will place γ

2 probability masses at each of 0 andm, and these two
points shared by the supports of Y 0 and Y 1. (This ensures that the total variation distance
of Y 0 and Y 1 are at least 1−γ.) In the middle, we then place discrete Gaussian distributions
centered at c = m/2 for Y 0 and Y 1, with that of Y 0 only supported on even numbers whereas
that of Y 1 supported on odd numbers. These discrete Gaussian distributions are truncated
so that the supports are within the range of [c− w, c+ w] for some parameter w.

The intuition behind the construction is as follows. First, when |t| ≥ Oε(
√

log(1/γ)), it is
not hard to see that the MGFs at t are dominated by the terms corresponding to the points



B. Ghazi, N. Golowich, R. Kumar, P. Manurangsi, R. Pagh, and A. Velingker 15:21

0 or m. Our parameters are selected in such a way that, when this is not the case, it must be
that |t| � w. In this case, we observe that the MGFs of discrete Guassian distributions are
simply proportional to normalization terms of other discrete Gaussian distributions, shifted
by O(t) (and truncated appropriately). Since |t| � w, we can then apply Lemma 21 and
Observation 22 to get a good bound on these terms. This concludes the main ideas in the
proof; due to space constraints, the full proof is deferred to the full version [24].

5 Conclusions and Open Questions

We gave the first pure-DPshuffled protocols for binary and real summation with constant error.
We further prove a communication lower bound for any non-interactive protocols for binary
summation. While these have advanced our understanding of pure-DPshuffled protocols, many
questions remain open after this work. Specifically, the immediate open questions are:

Can we improve the error guarantee in the (binary and real) summation protocols to
achieve the asymptotically optimal error 1/ε, which can be achieved in DPcentral [19]?
What is the optimal per user communication complexity of non-interactive DPshuffled
protocols for binary and real summation? As we have shown, the communication
complexity for binary summation lies between Oε(logn) and Ωε(

√
logn). On the other

hand, for real summation, the only lower bound is the trivial Ω(logn) bound (which holds
even without privacy concerns) whereas our upper bound is Oε(log3 n).
In Appendix A of the full version [24], we show that our binary summation protocol also
yields a pure-DP protocol for histograms with error Oε(logB logn) but with Oε(B logn)
per user communication complexity. The latter is in contrast to the approximate-DP
multi-message protocol of [25], which has a per user communication complexity of only
Oε(poly(logn, logB)) and incurs a similar error. It is thus an interesting open question to
come up with (or rule out) a pure-DP protocol with a smaller communication complexity.
Can we exploit interactivity to break our Ωε(

√
logn) communication lower bound?

Alternately, can we prove any non-trivial lower bound that holds also with interaction?

On a high-level, it would also be interesting to develop tools to help prove guarantees for
pure-DPshuffled protocols. In the case of approximate-DP, there are amplification theorems [21,
8] that can yield an approximate-DPshuffled protocol from a DPlocal protocol. Although this
may not be optimal in some cases (as shown by the multi-message protocols in [25, 7, 26]),
such theorems can be conveniently applied to a large class of protocols and yield good
approximate-DP guarantees. On the other hand, our proofs in this work are specific to our
carefully designed protocols. It would be much more convenient if one can give a unifying
theorem that proves pure privacy guarantees for any protocol with easily verifiable conditions.
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