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Preface

The Annual Symposium on Combinatorial Pattern Matching (CPM) is the international
research forum in the areas of combinatorial pattern matching, string algorithms and related
applications. The studied objects include strings as well as trees, regular expressions, graphs,
and point sets, and the goal is to design efficient algorithms and data structures based on their
properties, in order to design efficient algorithmic solutions for the addressed computational
problems. The problems this conference deals with include those in bioinformatics and
computational biology, coding and data compression, combinatorics on words, data mining,
information retrieval, natural language processing, pattern matching and discovery, string
algorithms, string processing in databases, symbolic computation, and text searching and
indexing.

This volume contains the papers presented at the 31st Annual Symposium on Combinat-
orial Pattern Matching (CPM 2020) held on June 17-19. The conference was planned to be
held in Copenhagen, but due to the Covid-19 pandemic the conference was instead held online
using Zoom. The conference program includes 28 contributed papers and three invited talks
by Barna Saha (University of California Berkeley), Karl Bringmann (Max-Planck-Institut
für Informatik), and Thore Husfeldt (IT University of Copenhagen and Lund University).
For the second time, CPM includes the “Highlights of CPM” special session, for presenting
the highlights of recent developments in combinatorial pattern matching. In this second
edition we have invited Shay Golan to present his SODA 2020 paper “Locally consistent
parsing for text indexing in small space”, Tomasz Kociumaka to present his STOC 2019
paper “String synchronizing sets: sublinear-time BWT construction and optimal LCE data
structure”, and Paweł Gawrychowski (University of Wrocław, Poland) to present his paper
“Computing quartet distance is equivalent to counting 4-Cycles”.

The contributed papers were selected out of 49 submissions, corresponding to an accept-
ance ratio of about 57%. Each submission received at least three reviews. We thank the
members of the Program Committee and all the additional external subreviewers that are
listed below for their hard, invaluable, and collaborative effort that resulted in an excellent
scientific program.

The Annual Symposium on Combinatorial Pattern Matching started in 1990, and has
since then taken place every year. Previous CPM meetings were held in Paris, London (UK),
Tucson, Padova, Asilomar, Helsinki, Laguna Beach, Aarhus, Piscataway, Warwick, Montreal,
Jerusalem, Fukuoka, Morelia, Istanbul, Jeju Island, Barcelona, London (Ontario, Canada),
Pisa, Lille, New York, Palermo, Helsinki, Bad Herrenalb, Moscow, Ischia, Tel Aviv, Warsaw,
Qingdao, and Pisa. From 1992 to the 2015 meeting, all proceedings were published in the
LNCS (Lecture Notes in Computer Science) series. Since 2016, the CPM proceedings appear
in the LIPIcs (Leibniz International Proceedings in Informatics) series, as volume 54 (CPM
2016), 78 (CPM 2017), 105 (CPM 2018), and 128 (CPM 2019). The entire submission and
review process was carried out using the EasyChair conference system. We thank the CPM
Steering Committee for their support and advice in this year’s unusual circumstances.
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Algebraic Algorithms for Finding Patterns in
Graphs
Thore Husfeldt
IT University of Copenhagen, Denmark
Lund University, Sweden
thore@itu.dk

Abstract
I will give a gentle introduction to algebraic graph algorithms by showing how to determine if a
given graph contains a simple path of length k. This is a famous problem admitting a beautiful
and widely-known algorithm, namely the colour-coding method of Alon, Yuster and Zwick (1995).
Starting from this entirely combinatorial approach, I will carefully develop an algebraic perspective
on the same problem. First, I will explain how the colour-coding algorithm can be understood as
the evaluation of a well-known expression (sometimes called the “walk-sum” of the graph) in a
commutative algebra called the zeon algebra. From there, I will introduce the exterior algebra and
present the algebraic framework recently developed with Brand and Dell (2018).

The presentation is aimed at a combinatorially-minded audience largely innocent of abstract
algebra.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Math-
ematics of computing → Paths and connectivity problems; Mathematics of computing → Graph
algorithms

Keywords and phrases paths, exterior algebra, wedge product, color-coding, parameterized com-
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Abstract
A k-anticover of a string x is a set of pairwise distinct factors of x of equal length k, such that
every symbol of x is contained into an occurrence of at least one of those factors. The existence of
a k-anticover can be seen as a notion of non-redundancy, which has application in computational
biology, where they are associated with various non-regulatory mechanisms. In this paper we address
the complexity of the problem of finding a k-anticover of a string x if it exists, showing that the
decision problem is NP-complete on general strings for k ≥ 3. We also show that the problem
admits a polynomial-time solution for k = 2. For unbounded k, we provide an exact exponential
algorithm to find a k-anticover of a string of length n (or determine that none exists), which runs in
O∗(min{3

n−k
3 , ( k(k+1)

2 )
n

k+1 }) time using polynomial space.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words

Keywords and phrases Anticover, String algorithms, Stringology, NP-complete
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1 Introduction

The notion of periodicity in strings is well studied in many fields like combinatorics on
words, pattern matching, data compression and automata theory (see [16], [17]), because it
is of paramount importance in several applications, not to talk about its theoretical aspects.
Algorithms and data structures for finding repeating patterns or regularities in strings (see
[9], [12]) are central to several fields of computer science including computational biology,
pattern matching, data compression, and randomness testing. The nature and extent of
periodicity in strings is also of immense combinatorial interest in its own right [17].

The notion of cover belongs to the area of quasiperiodicity, that is, a generalization of
periodicity in which the occurrences of the period may overlap [3]. We call a proper factor
u of a nonempty string y a cover of y, if every letter of y is within some occurrence of u

in y. A cover u of y needs to be a border (i.e. a prefix and a suffix) of y. A cover of a
string s is a string that covers all positions of s with its occurrences. Intuitively, s can be
generated by overlapping/concatenating copies of its cover u. Covers in strings were already
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2:2 Finding the Anticover of a String

extensively studied. A linear-time algorithm finding the shortest cover of a string was given
by Apostolico et al. [4] and later on improved into an on-line algorithm by Breslauer [20].
A linear-time algorithm computing all the covers of a string was proposed by Moore and
Smyth [19]. Afterwards an on-line algorithm for the all-covers problem was given by Li and
Smyth [15]. Similar combinatorial covering problems have been studied on graphs [8, 21], and
other types of quasiperiodicities include seeds [13], as well as variants including approximate
and partial covers and seeds.

A power of order k is defined by a concatenation of k identical blocks of symbols, where k

is at least 2: it is evident how a covers are generalizations of powers. Powers in various forms
later came to be important structures in computational biology, where they are associated
with various regulatory mechanisms and play an important role in genomic fingerprinting (for
further reading see, e.g., [14] and references therein). Antipowers are an orthogonal notion to
that of powers, that were introduced recently by Fici et al. in [6, 10]. In contrast to powers,
antipowers insist instead on the diversity of consecutive blocks: an antipower (antiperiod) of
order k is a concatenation of k pairwise distinct strings of equal length. A linear algorithm
for computing the antiperiods was given in [1], and online algorithms are given in [2].

We define an anticover as a generalization of the notion of antipower: an anticover of
a string x is a set of pairwise distinct factors of x of equal length, such that every symbol
of x is within some occurrence of one of those factors. Equivalently, x can be generated by
overlapping/concatenating a set of pairwise distinct strings of equal length. Some practical
motivation for this problem can be found in Mincu and Popa [18], that considers the similar
problem of partitioning a string into distinct factors: they show that this problem is motivated
by an application in the DNA compositions, a short DNA fragment can be obtained that
can be self-united into the desired DNA structure. They present that to produce the wanted
DNA structure, it is mandatory that no two fragments are equal.

In this paper we show that the computation of a 2-anticover of a string x of length n

over an alphabet Σ, if it exists, can be done in O(n|Σ|) time and space. For the general
case, given k ≥ 3, we show that checking whether a tring x has a k-anticover is NP-complete.
Moreover, we provide an exact exponential algorithm to find a k-anticover of x (or determine
that none exists), which runs in O∗(min{3 n−k

3 , ( k(k−1)
2 ) n

k+1 }) time using polynomial space.
In the literature Condon et al. [7] studied the complexity of partitioning problems for

strings. In particular, they introduced the Equality-Free String Partition problem, which
requires to partition a string x into factors f1f2 · · · f`, each factor fi of length at most k, so
that factors are pairwise different fi 6= fj for i 6= j. Among the results, they proved that this
problem is NP-complete for k = 2 and unbounded alphabet. We observe that our notion of
k-anticover requires the factors to be of length exactly k, and thus the problem of finding
an anticover is different from Equality-Free String Partition problem. First, checking if a
partition of factors of length k is equality-free can be trivially done in nearly linear time.
Second, there are strings that admit a solution for one of the two problems, but not the other
(e.g., ababa for k = 3 admits the equality-free partition ab · a · ba, but not an anticover).

2 Preliminaries

Let Σ be a finite ordered alphabet. A string is defined as a sequence of zero or more symbols
from Σ. An empty string is a string of length 0, denoted by ε. A string x of length n is
represented by the sequence x = x1x2 · · ·xn. We use the notation x[i . . . j] as a shorthand
for xixi+1 · · ·xj and call it a factor or substring of x with length j − i + 1. We also say that
a nonempty string s is a factor or substring of x with length k ≤ n if s = x[i . . . i + k− 1] for
an integer i ∈ [1, n− k + 1]; in that case, s occurs in x at position i. The factor x[1 . . . j] is a
prefix of x and the factor x[j . . . n] is a suffix of x.
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I Definition 1. Given an integer k ≥ 2 and a string x of length n ≥ k, let S = {i1, i2, . . . i`}
be an ordered set of positions in x chosen from {1, 2, . . . , n − k + 1}. We say that S is a
k-anticover of x if
(i) any two factors x[ij . . . ij + k − 1] and x[ih . . . ih + k − 1] are different, for j 6= h, and
(ii) any position in x is covered, namely, i1 = 1, i` = n − k + 1, and ij+1 − ij ≤ k for

1 ≤ j ≤ n− k.

I Example 2. For x = abbbaaaaabab and k = 3, the ordered set S = {1, 3, 5, 9, 11} denotes
a 3-anticover of x: abbbaaaaabab. We remark that the indices i1 = 1 and i` = n − k + 1
must be part of any k-anticover, as they represent the only ways of covering the first and
last symbol of x.

In this paper we consider the following problem.

k-AntiCover
Input: A string x = x1x2 . . . xn and an integer k ≥ 2, where n ≥ k.
Output: Does a k-anticover S of x exist?

It is obvious that any k-length substring that only occurs once in x can be included “for
free” in any k-anticover without risk of redundancy. We call free factors the corresponding
factors, and remark that we can consider trivially covered the symbols that they span.

In the following, we identify ij ∈ S with its factor x[ij . . . ij + k − 1], and sometimes we
say that x[ij . . . ij + k − 1] belongs to an anticover S, actually meaning that ij ∈ S.

3 Hardness of k-Anticover for k ≥ 3

In this section we show that solving k-AntiCover, namely, deciding whether a string x of
length n has a k-anticover, is NP-complete for k ≥ 3.

Firstly, observe that we can easily test in polynomial time whether S is a k-anticover,
by checking that each pair of corresponding factors is distinct and, for each position p ∈
{1, . . . , n}, that S contains a factor that covers x (i.e., some ij ∈ {p− k + 1, . . . , p}); thus
k-AntiCover ∈ NP.

We prove its completeness for k = 3 by a polynomial time reduction from 3-SAT to
3-AntiCover, i.e., given a 3-CNF boolean formula F , we build a string X (in polynomial
time) that admits a 3-anticover if and only if F is satisfiable. For k > 3, we remark that the
techniques utilized could be adapted to reduce a k-SAT instance to k-AntiCover, although
we omit this analysis for space reasons.

More in detail, we focus on a peculiar variant of 3-SAT, still NP-complete, where each
literal in F is restricted to appear at most 3 times. This variant has been addressed in [22,
Theorem 2.1], where it is shown that SAT “is NP-complete when restricted to instances with
2 or 3 variables per clause and at most 3 occurrences per variable”. Hence 3-SAT with at
most 3 occurrences per variable is NP-complete.1

In the following, let C1, . . . , Cl be the clauses of F , and v1, . . . , vm its variables. For a
variable vi, we refer to the 3 occurrences of its positive literal as v1

i , v2
i , and v3

i , and the ones
of its negative literal as ¬v1

i , ¬v2
i , and ¬v3

i , meaning that each vj
i (and each ¬vj

i ) appears at
most once in F .

1 For the sake of completeness, we observe that 3-SAT with exactly 3 occurrences per variable is always
satisfiable as consequence of [22, Theorem 2.4].
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3.1 Overview of the reduction
We here introduce the structure and components of the reduction, which we then explain in
detail.

The string X is divided in two parts:
The first one models the clauses of F , where literals correspond to specific factors, and
using a factor in the cover of X means using the corresponding literal in F . In essence,
each clause contains three factors corresponding to the occurrences of its literals (where
the three different occurrences of the same literal will correspond to different factors),
and in order to cover all elements of a clause gadget we will need to use at least one of
such factors.
The second one contains coherence gadgets, which in essence enforce us to use factors in
a way coherent with truth assignments (i.e., if factors i and j in the first part correspond
to vh and ¬vh, then i and j cannot be used at the same time in the cover). Say we want
to cover a clause using the factor corresponding to v2

1 : the coherence gadgets will force
us to use the strings corresponding to ¬v1

1 , ¬v2
1 , and ¬v3

1 to cover the second part of the
string, meaning they cannot be used anymore in the first one (or they would break the
non-redundancy constraint of the anticover).

We present X as a collection of smaller strings corresponding to gadgets, delimited by
what we call jolly characters: these allow us to essentially ignore the order in which the
pieces of the strings are re-combined and prevent any interaction between adjacent gadgets.

Jolly characters. To simplify the explanation, we use the jolly character “?”: in essence,
each single ? represents a unique character that does not appear anywhere else in the string,
i.e., we can imagine that at the end of the reduction each ? is then iteratively replaced with
a unique distinct character not appearing in the string.

Jolly characters give us 2 useful properties for k = 3:
All factors including ? are free factors, so the k− 1 symbols preceding and succeeding a ?

are trivially covered by free factors.
In the string A ? B, then the k-length factors of A and B that are not free do not overlap:
if ? occurs at X [i], the right-most factor of A and left-most of B that could be non-free
are, respectively, at positions i− k + 1 and i + 1.
As a corollary, A ? B and B ? A have the same answer to k-AntiCover. More in general,
if we have a collection of strings of the form ?A? (starting and ending in ?), and we want
to append them to create a single string (X ), the order we chose does not impact the
answer of k-AntiCover on the string.

3.2 The clauses part
We now detail the clause gadget of X . Firstly, let pi

j and ni
j be symbols in Σ representing,

respectively, the literals vj
i and ¬vj

i .
Let Ch be an arbitrary clause of F , say, (¬v3

1 ∨ v1
5 ∨ v1

7), corresponding to the third
occurrence of the negative literal of v1, and the first occurrences of the positive literals of v5
and v7. Then the corresponding gadget is

Ch = ?##hhn3
1 ? ##hhp1

5 ? ##hhp1
7?

where
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n3
1, p1

5, and p1
7 are the characters representing the corresponding occurrences of the literals,

as described above.
h is a character representing Ch (i.e., is different in every clause), whereas the character
# is the same across all clauses, and ? are jolly characters.

Now observe that the only characters we need to cover are the first h of each pair hh:
Indeed the 2 symbols following and preceding each ? can be trivially covered by free factors,
as shown in the example below:

?##hhn3
1?##hhp1

5?##hhp1
7?

As k = 3, we have 3 possible factors we can use to cover each of these h symbols; in
particular, the first with {##h, #hh, hhn3

1}, the second with {##h, #hh, hhp1
5}, and the

third with {##h, #hh, hhp1
7}.

As h is clause-specific, the two strings ##h and #hh in each set only appear here, and
no constraint is imposed on their usage. However, as the anticover can contain each string at
most once, it will have to include at least one string among hhn3

1, hhp1
5, and hhp1

7.
In essence, adding this occurrence of hhp1

7 to the anticover will correspond to assigning
“true” to v7.

The first part of X will thus correspond to the gadgets corresponding to all clauses
C1, . . . , Cl appended after each other in sequence (as discussed above, the order is irrelevant).

In the second part of X , we will then enforce coherence of assignments, i.e., using hhp1
7

to cover Ch must forbid us from using the factors corresponding to the literal ¬v7 in the rest
of the clause part.

3.3 Auxiliary gadgets
In order to explain the coherence part, we first detail the auxiliary gadgets that compose it.

Gadget forbid(abc). Suppose we want to make sure that some string of length 3, say, abc,
cannot be used to cover rest of the string. Then we can place the following gadget in X :

forbid(abc) = ?$abc$ ? $abc$ ? $abc$?

where again the ? are jolly characters, but $ is a gadget-specific character, i.e., each occurrence
of a forbidding gadget has a unique character in place of the $.

Similarly to above, we can observe that all characters are covered by free factors except
the b characters in the middle, which can be covered by the strings $ab, abc, bc$: as we need
to cover 3 characters, we must use all three of these strings. In turn, this means the string
abc can not be used anywhere else in X . We refer to this gadget as forbid(abc).

An important observation is that all factors used except for abc are either free factors, or
contain the character $, meaning those strings will not appear anywhere else and thus not
affect our choices while covering the rest of the string.

Gadget one-of(abc, def ). Suppose now we have two strings abc and def , and we want to
make sure that at most one of the two may be used in the cover of the rest of the string.
Then we can place the following gadget in X :

one-of(abc, def ) = forbid(c€d) ? bc€de ? abc€def ?

CPM 2020
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Here too, € is a gadget-specific character which is used only in this specific instance of this
gadget (same as the $ above, we differentiate so as to avoid confusion with the forbid(c€d)
gadget).

Let’s analyze it from left to right. Firstly, we forbid the string c€d so it cannot be used
in the rest of the string. Then, to cover the € in the central part ... ? bc€de ? ..., we must
use either bc€ or €de. Finally, in the right part ... ? abc€def ? we need to cover the three
symbols ...c€d...: if bc€ was used in the central part, we cannot use it now, and since we
cannot use c€d either, to cover the c symbol we must use abc (while we can use €de to cover
the remaining two symbols). Symmetrically, if we used €de in the central part of the gadget
instead, we must use def to cover the right part.

It follows that to cover one-of(abc, def ) we must use either abc or def , meaning we can
only use one of them in the rest of the string.

As above, all other factors used are either free or include €, so they do not impact the
rest of the string.

Gadget amplifier(abc, def ). Finally, the amplifier gadget is the core of our coherence
enforcement. It corresponds to the following string:

amplifier(abc, def ) = forbid(cde) ? abcdef ?

Differently from the gadgets above, this one does affect strings other than the input ones:
we call bcd the trigger of the amplifier. Specifically this is the word made from the last two
characters of the first string abc, and the first of the second string def . Furthermore, note
how the string cde made of the third character of the first string, and the first two of the
second, becomes forbidden.2

Focus now on the right part: in ... ? abcdef ? only the symbols ...cd... are not covered by
free factors. Since cde is forbidden, to cover them we have two ways:

use the trigger string bcd.
use both abc and def .

As the name suggests, this gadget amplifies the effects of using the trigger cde elsewhere
in X , as it will then force us to use both abc and def to cover amplifier(abc, def ). Note
that this gadget does create and affect factors that are not free and may occur somewhere
else, so we will analyze its usage carefully.

3.4 The coherence part
Let vi be a variable of F . In the clauses part, its literals can appear in up to six clauses. Let
w.l.o.g. the symbols 1 . . . 6 represent the identifiers of these clauses: the factors representing
the literals will thus be {11p1

i , 22p2
i , 33p3

i } for the positive ones, and {44n1
i , 55n2

i , 66n3
i } for

the negative.3
As explained above, say that the gadget of clause Ch contains an occurrence of the factor

22p2
i : we want to say that using this occurrence of the factor in the anticover means that

vi is set to true (thus Ch is satisfied by vi). In order to enforce coherence, and make the
anticover correspond to a satisfying assignment, we must then make it impossible to use a
factor corresponding to a negative value of vi anywhere in the clauses part.

2 Note that amplifier(def , abc) is a different gadget: it will forbid fab and its trigger will be efa.
3 If a literal, say pj

i , does not appear in a clause of F , let it be represented by ? ? pj
i .



M. Alzamel et al. 2:7

More formally, we want to create a gadget for a variable vi which, to be covered, forces
us to use either all of {11p1

i , 22p2
i , 33p3

i }, or all of {44n1
i , 55n2

i , 66n3
i } (this way, one set of

strings is fully “burned” to cover this gadget, and only elements from the other set may be
used in the rest of the string).

Gadget enforce(vi). We do so by using the one-of gadget and a nested use of the
amplifier gadget, with the following gadget made of 5 parts, which we call enforce(vi):
1. amplifier(11p1

i , 2p2
i 3)

2. amplifier(22p2
i , 33p3

i )
3. amplifier(44n1

i , 5n2
i 6)

4. amplifier(55n2
i , 66n3

i )
5. one-of(1p1

i 2, 4n1
i 5)

Now, key observations are that 2p2
i 3 in gadget 1 is the trigger of gadget 2, while 5n2

i 6 in
gadget 3 is the trigger of gadget 4, and finally, the arguments of gadget 5 are the triggers of
gadgets 1 and 3.

In order to cover one-of(1p1
i 2, 4n1

i 5) we must use (at least) one between 1p1
i 2 and 4n1

i 5.
If we choose 1p1

i 2 to cover gadget 5, this triggers gadget 1, so to cover gadget 1 we must use
both 11p1

i and 2p2
i 3; in turn, this triggers gadget 2, forcing us to use both 22p2

i and 33p3
i ; on

the other hand, gadgets 3 and 4 can be covered using their respective triggers, meaning that
all strings corresponding to positive literals {11p1

i , 22p2
i , 33p3

i } are used by the cover, but it
is not necessary to use any of the negative ones {44n1

i , 55n2
i , 66n3

i }, which can be used in the
clauses part. If, instead, we cover gadget 5 using 4n1

i 5, the situation is exactly symmetrical:
we burn all the negative literals {44n1

i , 55n2
i , 66n3

i } on gadgets 3 and 4, but we may cover
1 and 3 using the triggers, and using the positive literals {11p1

i , 22p2
i , 33p3

i } in the clauses
part.4 We have thus proven the following result.5

I Theorem 3. F is satisfiable if an only if X has a 3-anticover. As a consequence, problem
k-AntiCover is NP-complete for k ≥ 3.

4 Polynomial-Time Algorithm for k = 2

In this section, we show that that 2-AntiCover can be reduced to 2-SAT in O(n|Σ|) time
and space, obtaining the following result.

I Theorem 4. Problem 2-AntiCover can be solved in O(n|Σ|) time and space.

Proof. We run first a preliminary test to see if the input string x contains a factor of length 3
that occurs three or more times in it. A 2-anticover cannot exist a 2-AntiCover in this
case, and we answer no. Indeed, let abc be a a factor that occurs three or more times in x.
Since the position corresponding to b can be covered either by the factors of length 2, ab or
bc, when we find the third occurrence of abc, we cannot use ab or bc as it would be chosen
twice. Hence, there is no way to cover the position of b in the third occurrence of abc in any
2-AntiCover. Running this test can be easily done in O(n log |Σ|) time [12].

4 For completeness, we remark that it is crucial to use amplifier(11p1
i , 2p2

i 3) instead of
amplifier(2p2

i 3, 11p1
i ): the latter one forbids the string 311, which does not contain ? nor char-

acters representing the literal and might affect other coherence gadgets. Instead amplifier(11p1
i , 2p2

i 3)
forbids p1

i 2p2
i , which is safe as it may not appear in other coherence gadgets.

5 Again, we remark that all the gadgets in this reduction can be extended to any k rather than just 3,
although we omit this for space reasons.
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Instead, if this preliminary test is positive, we build a 2-SAT formula as follows. Let i be
any position in the string x, and pi the Boolean variable denoting whether or not the factor
x[i . . . i + 1] is chosen in the 2-AntiCover.

We have a first group of clauses Ci, for 1 ≤ i ≤ n, where Ci says that the first (i = 1) and
last (i = n) positions must be covered by the only possible factors x[1 . . . 2] and x[n− 1 . . . n],
respectively, and any other position must be covered by the factor(s) of length k = 2 starting
at position i− 1 or i:

C1 = (p1) (1)
Cn = (pn−1) (2)
Ci = (pi−1 ∨ pi) 2 ≤ i ≤ n− 1 (3)

Furthermore, when x[i . . . i + 1] = x[j . . . j + 1] for i 6= j, we should take at most one of
them, and so we cannot take both, giving the second group Bij of clauses:

Bij = (¬pi ∨ ¬pj) 1 ≤ i < j ≤ n such that x[i . . . i + 1] = x[j . . . j + 1] (4)

Let F be the 2-SAT formula obtained by putting the clauses Ci and Bij in logical ∧. We
observe that F contains n clauses Ci and O(n|Σ|) clauses Bij . Recall that each factor of
length 3 can occur at most twice in x. Thus, given any position i, we claim that there are
at most 2|Σ| + 1 positions j 6= i such that x[i . . . i + 1] = x[j . . . j + 1]. Indeed, any other
occurrence of s = x[i . . . i + 1] is followed by a third symbol, say, c (unless that occurrence is
a suffix of x). But s c is a factor of length 3, and can appear at most twice. Since we have at
most |Σ| choices for c plus the end of string case, this gives the desired upper bound. As
there are at most n positions i, and for each of them there are at most 2|Σ|+ 1 positions j

where the same factor of length 2 occurs, we conclude that there are O(n|Σ|) clauses Bij .
Summing up, F has O(n|Σ|) size and it can be built O(n|Σ|) time.

It is straightforward to see that F is satisfied if and only if there is a 2-AntiCover for
string x. Since 2-SAT can be solved in linear time in the size of the formula F [5], we obtain
the bounds stated in the theorem. J

5 Exact Exponential-Time algorithms for k ≥ 3

In this section we consider a better algorithm than a brute-force algorithm for solving
k-AntiCover. The task of k-AntiCover is finding a subset of positions satisfying the
given constraint. By trying all subsets of positions, we can solve k-AntiCover. Since
the number of subset of positions is O(2n−k), the brute-force algorithm runs in O∗(2n−k)
time, where the O∗(·) notation ignores poly(n) factors. Note that |Σ| and k is bounded by
n. Thus, O∗(·) notation ignores poly(|Σ|) and poly(k) factors. In this section, we give two
exponential time algorithms. The former algorithm breaks the trivial 2n−k-barrier for any
k ≥ 3. The latter algorithm is clearly better than the brute-force algorithm and, in addition,
it outperforms the former algorithm when k > 9.

5.1 Breaking the trivial barrier
Let x be a string with length n and k be an integer. We consider a set of positions of x

from 1 to n− k + 1. We partition this set as follows: Let S = {S1, . . . , S`} be a partition of
positions 1, 2, . . . , n− k + 1. For any two substring y, y′ with length k starting from position
j and j′ respectively, both j and j′ are in Si if and only if y = y′. That is, each partition
corresponds to some substring with length k in x. For example, given a string abcabca and
k = 3, S = {{1, 4} , {2, 5} , {3}}.
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We describe our proposed algorithm. Let S1 ∈ S be the set containing position 1. We
first pick position 1 to cover the 1-st character on x. Hence, after choosing 1, we need to
solve at most |S1| subproblems. Note that for each subproblem, the first k letters are already
covered, and thus, we have k options for covering the (k + 1)th letter in each subproblem.

Since we cannot pick positions which already are picked, the time complexity T (·) of this
algorithm satisfies the following inequality: T (n− k + 1) ≤ cT (n− k + 1− c), where c is the
size of partition from which we pick a substring. Since the sum of the size of the partitions
is n− k, the time complexity is O∗(c n−k+1

c ).
It is known that this formula takes its maximum when c = 3 [11]. Hence, the time

complexity of this algorithm is O∗(3 n−k+1
3 ) = O∗(3 n−k

3 ) time.

I Theorem 5. k-AntiCover can be solved in O∗(3 n−k
3 ) time and polynomial space.

5.2 A better upper bound for large k

In this subsection, we give a faster algorithm when k is large. Now we first introduce some
terminologies. A set S = {s1, . . . , s`} is a k-cover if

⋃
i=1,...,` {si, . . . , si + k} = {1, . . . , n}.

Hence, a trivial k-cover is {1, 1 + k, 1 + 2k, . . . }. Note that each si corresponds to a position
of x but a k-cover may have two positions which derives from the same substring. A k-cover
S is minimal if there is no subset of S which is a k-cover. We say that si is redundant in S

if S \ {si} is also a k-cover.

I Lemma 6. Let x be a string and k be an integer. Then, if x has a k-anticover, then there
is a minimal k-cover S such that S is also a k-anticover.

Proof. Let S = {s1, . . . , s`} be a k-anticover. Since S is a k-anticover, S \ {si} is also
k-anticover if S \ {si} is a k-cover of x. Hence, S becomes a minimal cover by removing
redundant elements one by one. Hence, the statement holds. J

From Lemma 6, we can determine whether x has a k-anticover by enumerating all minimal
k-covers. Hence, in the following, we propose an enumeration algorithm for all minimal
k-covers.

We firstly give an upper bound of the number of all minimal k-covers of substrings with
length k + 1 such that each minimal k-cover has no redundant positions. Assume that by
concatenating these dn/(k + 1)e substrings, we can reconstruct the input string. Let us
consider the following problem Cover(x, k): given a string x of length k + 1, the task is to
enumerate all minimal k-covers in it under the assumption, for 0 ≤ i ≤ k − 1, that we can
select the length of a first interval s1 between 1 to k and we can pick the last k− 1 characters.
For example, we consider an instance x = abcd and k = 3. The subproblem Cover(x, 3) has
the following six solutions: abcd, abcd, abcd, abcd, abcd, and abcd. The next lemma shows
the upper bound:

I Lemma 7. Problem Cover(x, k) has at most k(k+1)
2 minimal k-covers.

Proof. Let i be the length of a first interval. Since we cover all characters, we have to choose
a position 1. In addition, we pick the second position between 2 and i + 1. Since the length
of x is k + 1, then it is a minimal k-cover. Hence, we have i choices for each i. Therefore, we
have

∑
1≤i≤k i = k(k+1)

2 solutions and the statement holds. J

From the above lemma, the number of solutions in each subproblem is at most k(k+1)
2 .

In addition, the number of subproblems is n
k+1 + 1. Now, we can obtain all minimal k-covers

which have no redundant positions between c(k + 1) + 1 to (c + 1)(k + 1) for any non-negative
integer c by trying all the combinations of concatenating solutions of all the subproblems.
Because any k-anticover has no redundant positions, the following theorem holds.
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Table 1 The list of values of
(

k(k+1)
2

) 1
k+1 . We round the base of the exponent up to the fourth

digit after the decimal point. Note that 3 1
3 is approximately equal to 1.4423.

k 3 5 9 10 20 30(
k(k+1)

2

) 1
k+1 1.5651 1.5705 1.4633 1.4396 1.2900 1.2192

I Theorem 8. There is an algorithm solving k-AntiCover in O∗
((k(k+1)

2
) n

k+1
)
time and

polynomial space.

From Theorem 8 and Table 1, the latter algorithm is better than the former algorithm if k is
larger than 9. Combining two theorems, we obtain the following theorem.

I Theorem 9. Problem k-AntiCover can be solved in O∗
(
min

{
3 n−k

3 ,
(k(k+1)

2
) n

k+1
})

time,
using polynomial space.

6 Concluding remarks

In this paper we proposed the k-AntiCover problem, a natural combinatorial problem
on strings with applications to fields such as computational biology. We have shown that
finding whether a string of length n can be covered by (possibly overlapping) distinct factors
of length k is polynomial for k = 2, and NP-complete otherwise.

We have also shown how to design exact exponential algorithms for general k, which
improve upon a trivial brute-force approach and get progressively more efficient for larger
values of k.

A question that remains open is whether the proposed algorithms match the inherent
computational complexity of the problem or whether faster solutions exist. Another is
whether the problem remains NP-complete under natural restrictions, such as an alphabet of
constant size.
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3:2 Double String Tandem Repeats

1 Introduction

A tandem repeat, or square, is a string which consists of two consecutive identical occurrences
of a substring or root, e.g. abab. Finding all tandem repeats in a given string is a well-studied
problem with many applications in diverse areas such as biological sequence analysis and
data compression. A maximal run in a string S is a substring of S that is periodic and
cannot be extended at all to the right or left, e.g. ababa is a maximal run in the string
abaababac. A maximal run in a string represents contiguous tandem repeats, all with periods
conjugates of each other, and as such, maximal runs have been used to succinctly encode all
tandem repeats. For example, the maximal run ababa represents consecutive tandem repeats
with roots ab and ba.

In this paper, we consider the problem of finding tandem repeats in input that consists
of two parallel strings. We define a double string, and introduce the corresponding notions
of tandem repeat and run in a double string. Double strings are ubiquitous in nature,
as molecules such as DNA come in pairs.1 Hence, the problem considered is interesting
from both a theoretical and practical perspective. However, the strength of this paper’s
contribution lies in its applicability to unrelated variants of the tandem repeats problem. We
show how the solution to the double string tandem repeats problem can be used to solve two
different problems. The first is finding 2D corner-sharing tandems, and the second is finding
all scaled tandem repeats. We are confident that more applications of double string pattern
matching will be discovered in the future.

In Section 2 we present precise definitions and examples of tandem repeats and runs in
a double string, and then prove upper and lower bounds on the number of occurrences of
such runs. In Section 3 we present an O(n logn) time algorithm for locating all double string
tandem repeats. We then extend this algorithm to deal with double string tandem repeats
while allowing k mismatches. In Section 4 we provide a reduction of the 2-dimensional (2D)
corner-sharing tandem problem to the double string tandem repeats problem. We thus obtain
a more efficient algorithm for locating all corner-sharing tandems in a 2D text, both with
and without mismatches. Finally, in Section 5 we solve the scaled tandem repeats problem by
reducing it to a tandem repeats problem on double strings.

2 Definition and Characterization of Double String Tandem Repeats

We use S[i] to denote the ith character of a string S, and S[i . . . j] to denote the substring of
S from S[i] through S[j].

I Definition 1. A double string of length n consists of two parallel sequences over a given
alphabet, each of length n, indexed by 1 . . . n. We call the two strings S1 and S2.

I Example 1. A double string of length 5, with S1 = aabca and S2 = ccbba.

1 2 3 4 5
a a b c a
c c b b a

I Definition 2. A double string tandem repeat (2-str TR) is a substring of S1 and a
substring of S2 that are identical and consecutive. As in one string, we call the repeating

1 In DNA there are specific relationships between corresponding bases, while our definition of a double
string does not imply any such relationship.



A. Amir, A. Butman, G.M. Landau, S. Marcus, and D. Sokol 3:3

substring the root or period of the 2-str TR. Specifically, a 2-str TR with length 2p beginning
at location i in S1, implies that the substring S1[i . . . i+ p− 1] is identical to the substring
S2[i+ p . . . i+ 2p− 1]. A 2-str TR beginning at location j in S2 implies that S2[j . . . j+ p− 1]
is identical to the substring S1[j + p . . . j + 2p− 1].

I Example 2. A double string tandem repeat with root abc begins at location 2 in S1.

1 2 3 4 5 6 7 8
a a b c a a b b
c c b b a b c d

For the remainder of the paper, we assume that the 2-str TR begins in S1; all lemmas
and algorithms apply with minor modifications to indices for those beginning in S2.

I Definition 3. A 2-str run (i, j, p) in a double string (S1, S2) of length n, 1 ≤ i ≤ j ≤
n− 2p+ 1, 1 ≤ p ≤ n/2, is a sequence of one or more 2-str TR’s with period size p beginning
at each location i ≤ ` ≤ j in S1. The run is said to be maximal if it cannot be extended to
the left or right, i.e. both (i− 1, j, p) and (i, j + 1, p) are not 2-str runs.

I Example 3. A maximal run with period size 3 occurs at locations 1 . . . 8 in S1 and 4 . . . 11
in S2. It can be represented by the triple (1, 6, 3), since 1 is the start of the leftmost tandem,
6 is the start of the rightmost tandem, and 3 is the period size.

1 2 3 4 5 6 7 8 9 10 11
a b c a b x y z z z z
a a a a b c a b x y z

Although all of the consecutive 2-str TR’s in a 2-str run have the same period size, the
actual characters in the periods can be different for different tandems in the same run, as is
evident in Example 3. Thus, transitivity in equality of location i with location i − p and
i+ p, for period p, which holds trivially for a run in a string, does not hold for a 2-str run.
Nevertheless, 2-str runs can still be used as an efficient encoding of consecutive 2-str TR’s,
and as we show in the next subsection, there cannot be too many of them.

2.1 The number of maximal 2-str runs in a double string
I Lemma 4. Two distinct maximal 2-str runs in a double string, with the same period size,
cannot overlap within S1 or S2.

Proof. Let p be the period size of two distinct maximal 2-str runs in a given double string, and
let j be the rightmost location of the 2-str run that has the leftmost starting location. Due to
the maximality, there must be a mismatch following the first run, thus S1[j+1] 6= S2[j+p+1],
and location j + 1 cannot be included in any 2-str run with period p due to the mismatch.
Therefore, the second 2-str run must start to the right of location j + 1 in S1 and hence
cannot overlap. J

Note that in one string, two maximal runs with the same period size may overlap, as long
as the overlap is shorter than the period size, for e.g. abcabcxbcx.

I Lemma 5. There can be O(n logn) maximal 2-str runs in a double string of length n.

Proof. For a given period p there are no more than n/p maximal 2-str runs since they cannot
overlap by Lemma 4. Since p can be 1 . . . n/2, this yields Σn/2

p=1n/p, a harmonic series which
is bound by O(n logn). J
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I Lemma 6. There can be Ω(n) maximal 2-str runs in a double string of length n.

Proof. If we take any S1 that contains Θ(n) runs (e.g. Fibonacci string [9]), and then set
S1 = S2, we will get a double string with Θ(n) 2-str runs, since the first period of each run
in S1 will pair up with the second period in S2. J

Remark: We point out that the gap of logn between the upper and lower bound remains
an open problem.

2.2 Primitivity in 2-str TR’s and Runs
A string S is primitive if it cannot be expressed in the form s = uj , for some integer j > 1
and some prefix u of S. For example, ababa is primitive, but abab is non-primitive. The
notion of primitivity is very relevant to tandem repeats, since tandem repeats with primitive
roots are really the only interesting tandem repeats. In fact, in a string, a maximal run with
a primitive root encodes the information about all tandem repeats that span its substring, for
e.g. ababababababa encodes consecutive tandems with periods 2, 4, and 6. We can encode this
output as a triple (i, j, p), where i is the start location of the leftmost tandem, j is the start
of the rightmost tandem, and p is the smallest period (in the above example it is (1, 10, 2)).
This encoding is commonly used in algorithms that report all tandem repeats in a string.

On the other hand, the concept of primitivity in a 2-str TR is more subtle. We cannot
say that we are only interested in TR’s with primitive roots, as we will miss some TR’s in
the double string (see Example 4). Furthermore, a non-primitive TR may be a substring of
a longer run as in Example 5. This non-primitivity certainly should not disqualify the run.

I Example 4. The 2-str TR beginning at location 1, of length 8, has non-primitive root
abab. This is not implied by the 2-str TR at location 3 with primitive root ab.

1 2 3 4 5 6 7 8 9 10
a b a b c c c c c c
c c c c a b a b a b

I Example 5. The TR at location 1 has primitive root xbab, the TR’s at locations 2, 3, and
4 have non-primitive roots baba, abab. There is also a 2-str run of period 2 beginning at
location 4, which in a sense encodes the TR of period 4 beginning at location 4.

1 2 3 4 5 6 7 8 9 10 11
x b a b a b a b a b c
c c c c x b a b a b a

We conclude that since some non-primitive TR’s must be reported, an algorithm that
locates all 2-str TR’s must search for these TR’s. Hence, our algorithm finds and reports all
2-str TR’s, including those that have non-primitive roots. For example, when searching the
double string S1 = S2 = an, bn

2 c maximal 2-str runs will be found, one for each period size.
If necessary, those that are not interesting can be filtered out by finding all 1d runs in each
string, and merging this with the output of our algorithm, since every 2-str TR that has a
non-primitive root will be part of a run in each individual string of the double string.

3 The Algorithm

A common idea used in algorithms that find tandem repeats in a string, is to search for all
tandem repeats that cross a given point (see for e.g. [11, 15]). Instead of fixing the starting
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point of a tandem, and searching for xx, the algorithm fixes certain points that the set of
contiguous tandems must cross, and searches for all tandems that cross that point. We use
this idea, searching for each period size separately, and reporting consecutive tandem repeats
as a single run. We follow the framework of the Main-Lorentz algorithm [16] (see pseudocode
in Algorithm 1). Given an input double string (S1, S2) of length n, in the first iteration,
all runs that cross the center of the string are found. In the following iteration, (S1, S2) is
split into two halves, and each one is searched individually. (To simplify the presentation
we assume that n is a power of 2.) As implemented in Algorithm 1, this continues for logn
iterations.

The runs that cross the center are classified into two groups. A right run has more than
half of its characters to the right of the center of the string, and a left run has the majority
of its characters to the left of the center. Algorithm 2, together with Figure 1, describes the
procedure that finds all right runs; by symmetry, all left runs can be found.

The novel idea of Algorithm 2 is that computing the longest common extensions using
two different strings yields the desired results. The forward comparisons are done with a
substring of S1 against a substring S2, and the same for the reverse comparisons. These
extensions define which runs occur in the double string crossing the midpoint. The standard
KMP algorithm [10] is used to compute all of the forward and reverse extensions in linear
time, as done in [16]. The input pattern to KMP for the forward extensions is the string
S1[ n

2 . . . n] and the text is S2[ n
2 + 1 . . . n]. Conversely the reverses of S1[1 . . . n

2 − 1] and
S2[1 . . . n] are used as input to KMP for the reverse extensions. To ensure maximality, the
2-str runs that reach the end of the substring being processed can be discarded in every
iteration other than the top level, since they are non-maximal and will be found in a different
iteration. This will ensure in practice that each 2-str run will be found only once.

Algorithm 1 Find Runs in a Double String.

Input: double string (S1, S2) of length n
Output: all runs that occur in the double string

for i = log2 n downto 1 do . for logn iterations of ML framework
for ` = 0 to n/2i − 1 do . for each piece of the input of width 2i

FindRightRuns((S1, S2) , `2i + 1, (`+ 1)2i)
FindLeftRuns((S1, S2) , `2i + 1, (`+ 1)2i)

end for
end for

𝑛

2
 

𝑛 

𝑛

2
+  𝑝 

𝑆1 

𝑆2 

𝛿1 
𝛿2 

𝛿1 
𝛿2 

Figure 1 Computing right runs: The figure shows the first iteration, where beg = 1 and end = |S1|.
δ1 is the length of the forward extension that results from matching S1[ n

2 . . . n] to S2[ n
2 + p . . . n]. δ2

is the length of the reverse extension of S1[1 . . . n
2 − 1] and S2[1 . . . n

2 + p− 1]. If δ1 + δ2 ≥ p, then
there are tandem repeats with period size p beginning from location S1[ n

2 − δ2 . . .
n
2 + δ1 − 1]. These

are reported by the algorithm as a single run.
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Algorithm 2 FindRightRuns.

Input: double string (S1, S2), beg, end (beginning and end indexes of substring to search)
Output: all right runs that occur in the double string that cross the midpoint.
n = end− beg + 1
mid = (beg + end)/2
for p = 1 to n/2 do . find runs with period p

δ1 = length of longest common prefix of S1[mid . . . end] and S2[mid+ p . . . end]
. Forward Extension

δ2 = length of longest common suffix of S1[beg . . .mid− 1] and S2[beg . . .mid+ p− 1]
. Reverse Extension

if δ1 + δ2 ≥ p then . Check length
if δ1 < n/2 AND δ2 < n/2− 1 then . Check for maximality

report run (mid− δ2,mid+ δ1 − 1, p)
end if

end if
end for

I Lemma 7. Algorithm 1 finds all 2-str runs in a double string (S1, S2) in O(n logn) time.

Proof. Every run within (S1, S2) crosses the center of a substring of S1 at some point in the
algorithm. As proof of this, consider a run that does not cross the center of S1, and hence is
not found in the first iteration. The run will be divided among different substrings at some
point since in the final iteration the input strings are of length 1. In the step prior to its
division, a given run must cross the center since the center becomes the splitting point of the
following iteration. In each iteration, only one 2-str run of a given period can cross the center,
since no two runs of the same period size can overlap by Lemma 4. Since the algorithm
checks each possible period size, all 2-str runs will be found by the algorithm. Since there
are O(logn) iterations, and each iteration takes O(n) time, the total time complexity of
Algorithm 1 is O(n logn). J

3.1 Tandem Repeats in a Double String with k-mismatches
The Hamming distance between two strings of equal length is the number of positions at
which the corresponding characters are different. Allowing a Hamming distance up to k
between the two occurrences of the root results in a k-mismatch 2-str TR. (The concept
of a k-mismatch run applies as well, where a run includes consecutive k-mismatch tandem
repeats, i.e. each repeat in the run has at most k mismatches, and overall the number of
mismatches in the run is not relevant.) In this section we discuss a method for searching for
2-str TR’s with up to k mismatches.

I Example 6. A double string tandem repeat with k = 1 mismatch begins at location 2
in S1.

1 2 3 4 5 6 7 8
a a b c a a b b
c c b b b b c d

Just as we were able to directly extend the Main and Lorentz idea in the previous section,
we are able to extend the algorithm of [12] which solves the tandem repeats with k-mismatches
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problem in 1 string. First, instead of using KMP to find the longest common extenstions,
the algorithm uses the “kangaroo method” that relies on suffix trees and Lowest Common
Ancestor (LCA) queries to give the position of the first mismatch between strings [6].

Hence, suffix trees in both the forward and reverse direction must be constructed for each
S1 and S2, and preprocessed for LCA to allow constant time Longest Common Prefix (LCP)
queries [8, 14].

As in the previous algorithm, there are O(logn) iterations and in each iteration, the
repeats that cross the center are found by using the forward and reverse extensions. However,
in this case the comparisons are done allowing up to k errors in each direction. Specifically,
each possible period p is searched for separately. For a given p, each LCP query returns a
position of mismatch, and when the k + 1st mismatch is encountered, we stop. Finally, the
algorithm considers each pair, (k′, k − k′) for 0 ≤ k′ ≤ k. For each pair, we check whether a
2-str TR exists when allowing k′ mismatches in the reverse extension and k − k′ mismatches
in the forward extension.

Time Complexity: The number of iterations is slightly smaller than in the previous
algorithm, since for substrings with length ≤ k, our algorithm should not be run, but a
simple O(k) time method should be used. In each iteration, there are O(k) LCP queries
done for each possible period size. In addition, before reporting in a particular period, we
consider O(k) pairs, allowing a number of mismatches to the left and right. Hence, each
iteration takes O(nk) time, while the overall runtime is O(nk log(n/k)).

4 Application 1 - Corner Sharing Tandems

I Definition 8. A 2D corner-sharing tandem ( cs-tandem) in a 2D array, is a configuration
consisting of two occurrences of the same subarray that share one corner (see Figure 2).

In [2], Apostolico and Brimkov mention that all primitive corner-sharing tandems can
be found in O(n4) time using similar techniques to their algorithm that they presented for
side-sharing tandems. In this section, we reduce the problem of finding all corner-sharing
tandems in a 2D array to the problem of finding tandems in a double string. We thus obtain
an O(n3 logn) time algorithm for this problem. Although the actual output may be of size
O(n4) cs-tandems, we can reasonably represent the set of cs-tandems with the set of maximal
cs-runs, which has size at most O(n3 logn). For the special case of tandems that are square
(i.e. of size p × p), the algorithm acheives O(n2 logn). Finally, the algorithm that allows
mismatches in a 2-str TR is also extended to 2D cs-tandems with mismatches, as described
in Section 4.3.

Figure 2 The two configurations of a 2D cs-tandem.

I Definition 9. A 2D corner-sharing horizontal run (cs-run) is a sequence of one or more
corner sharing tandems with the same period size occurring consecutively.
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I Lemma 10. There can be O(n3 logn) and Ω(n3) maximal cs-runs in a 2D array of size n2.

Proof. The proof will be included in the full version of the paper. J

4.1 Reduction

The technique of naming in 1d is that of consistently replacing identical substrings with
an integer called the name. We use the following 2D naming technique to reduce the 2D
corner sharing tandem problem to the 2-str tandem problem. Given an input 2D text T ,
we construct n/2 2D texts by naming all subcolumns of T . We create a new text called Th

for each 1 ≤ h ≤ n/2, such that Th[r, c] is the name of the height h substring in column c
beginning at row r.

Each two rows, i and i+ h, in each text of names Th, 1 ≤ h ≤ n/2, is input as a double
string to the algorithm that finds tandem repeats in a double string. Since we have a text
of names for each height, every corner sharing tandem of height h′, will appear as a 2-str
tandem in the text of names for Th′ . See Figure 3 for an example.

The time complexity for the reduction is O(n3) since we construct O(n) texts, each in
time linear to the size of T , as the naming can be done during construction of a suffix tree of
all columns [17]. Algorithm 3 presents pseudocode for the corner-sharing tandem problem.
Algorithm 1 is called O(n) times for each of the O(n) texts, and each running of Algorithm 1
takes O(n logn) time. Overall, the 2D corner-sharing tandem problem is solved in O(n3 logn)
time.

Algorithm 3 Corner Sharing Tandems Algorithm in 2D Text.

Input: 2D text T of size n× n
Output: all corner-sharing tandems in T

Preprocessing: Construct n/2 texts of names, Th, 1 ≤ h ≤ n/2

Text Scanning:
for h = 1 to n/2 do . for each height h

for r = 1 to n− 2h+ 1 do . for each row r in Th

call Algorithm 1 with rows r and r + h in Th as S1, S2 respectively.
end for

end for

4.2 Corner-Sharing Square Tandems

If the problem of finding all corner-sharing tandems is limited to those tandems whose roots
are of size p × p, we can improve our algorithm to run in O(n2 logn) time. We will have
to show two things: 1: a transformation of the input 2D text into input to the double
string problem in less time. 2. The search phase of the algorithm can be improved. The
transformation can be done using the techniques of [7] for finding 2D palindromes, while the
search phase can be shown to be faster using a counting trick. Details are omitted due to
lack of space.
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a b c d e a x x x x

a b c d e a x x x x

c c c c c c x x x x

y y y y a b c d e a

y y y y a b c d e a

y y y y c c c c c c

1 2 3 4 5 1 6 6 6 6

7 7 7 7 1 2 3 4 5 1

Figure 3 Input text T is shown on the left, containing a run with period size 3× 4, beginning at
its upper left corner. The two corresponding rows in T3 can be viewed as a double string, and the
2-str run with period 4 found with substring “123451” in S1 directly corresponds to the cs-run in T .

4.3 Corner Sharing Tandems with k-mismatches
A 2D corner sharing tandem that allows up to k mismatches between copies is called a k-
mismatch cs-tandem. A k-mismatch cs-run can be defined analogously as a set of contiguous
k-mismatch cs-tandems, such that each individual cs-tandem contains at most k mismatches.
The algorithm described in Section 3.1 searches for tandem repeats in a double string allowing
k mismatches. The reduction of Section 4.1 can be used in a similar manner to reduce
the k-mismatch cs-tandem problem to the k-mismatch double string problem. However,
each mismatch between names in the 2D text may consist of one or more mismatches in
the column, and will therefore need further investigation. Hence, we will need to process
the mismatching columns when attempting to discover the actual tandems. Details will be
included in the full version of the paper.

5 Application 2 - Scaled Tandem Repeats

5.1 Definitions and Properties
Denote the string aa . . . a, where a repeated r times, by ar. Let S = ar1

1 a
r2
2 . . . a

rj

j be a string
for which ai 6= ai+1. Let e ∈ N , we say that S[e] is an e-scaling of S if S[e] = ar1·e

1 ar2·e
2 . . . a

rj ·e
j .

I Definition 11. A scaled tandem repeat is a string UU ′ where U ′ is an e-scaling of U for
some integer e, i.e. U ′ = U [e]. We call the period of a scaled tandem repeat the length of the
first copy, i.e. |U |.

We say that a scaled tandem repeat is sharp if the the last letter of U is not equal to the
first letter of U ′. Similarly, we say that scaled tandem repeat UU ′ occurring within text T is
a sharp occurrence, if the character in T prior to U differs from the first character of U , and
the following character in T differs from the last character of U ′. Using the techniques of [1]
it is possible to show that any solution to the problem of finding sharp occurrences of sharp
scaled tandem repeats yields a solution to the general scaled tandem problem with the same
complexity. Thus, we solve the following problem.

Problem Definition. Given a 1-dimensional text T = t1 . . . tn, find all sharp occurrencces
of sharp scaled tandem repeats (SSTR) that are substrings of T .
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We assume that the number of distinct characters in a sharp tandem repeat is at least
two, otherwise it would not be sharp. We also assume that the scaled tandem repeats we are
seeking are of scale e > 1, since for e = 1 this is the known case of regular tandem repeats.

Define T ′ as the run-length encoding (RLE) of the given text T , where each sequence of
characters is replaced with a character and exponent. T ′char is the string of characters of the
RLE of T , and T ′exp is the string of exponents of T ′. In a similar manner to [5] we define
the quotient array SQ[1..n− 1] of array of numbers S[1..n] as follows: SQ[i] = S[i+ 1]/S[i].

I Lemma 12. No more than O(n logn) SSTR can occur in a string T of length n.

Proof. Every SSTR in T must correspond to a tandem repeat in T ′char. By the Three
Squares Lemma [4], each location in T ′char can have at most O(logn) tandem repeats. We
conclude that there are O(n logn) SSTR’s in T . J

The naive algorithm for the problem would consider every substring of the input text T
and check whether it is an SSTR resulting in time O(n3). Known methods of using suffix
trees and LCA’s on the character and quotient arrays of the string (see e.g. [13]) , allow
checking in constant time, for every substring U of T , whether the subsequent substring of
T is a scaled copy of U . Thus the time complexity of straight-forward improvements for
finding all scaled tandem repeats would be O(n2).

In the next subsection we solve the SSTR problem in a more efficient way by reducing
the problem into a tandem problem on double strings. To this end, we first generalize the
definition of a run as a concatenated string of repeats, so that the problem can fit into the
framework described in Sections 2 and 3.

I Definition 13. Let T be a string, 1 ≤ i < j ≤ n. We say that there is a scaled run from
T [i] to T [j] if there are k, `; i < k ≤ ` < j, for which ∃e, T [k . . . j] = T [i . . . `][e]. e is called
the scale of the run. The period of the run is the period of the leftmost scaled tandem repeat
in the run. A scaled run with scale e is maximal if it cannot be extended by one character
either to the right or the left, i.e. there are no scaled runs from T [i] to T [j + 1], from T [i− 1]
to T [j], nor from T [i− 1] to T [j + 1] with scale e.

Figure 4 An example of a scaled run.

5.1.1 The Compact Region Idea for Scaling
In [3], Butman, Eres and Landau showed a linear-sized data structure of compact regions of
text T that enables efficient work on scaled matching problems. The idea is to construct n/2
collections of strings T1, ..., Tn/2, where the sum of the lengths of the substrings in all Ti’s is
O(n). We will then seek dual tandems of each such substring S in the Ti’s and a substring
of T whose length is O(|S|).

We provide below the definition of the compact regions data structure, which is based
upon the following observation.

I Observation 1. If a substring S scaled to e occurs sharply in σi
ji · · ·σk

jk then ji, . . . , jk

are multiples of e.
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Following the above observation, the compact regions structure computes for each scale e
a compact text Te in the following two steps:
Step 1: Locate all the regions in T where the symbols appear in scale e. Add the symbol $
as a separator between the regions.
Step 2: Expand these regions to include the symbols on their boundaries. In order to simplify
the computation of Stage 2, a symbol tjrj of T is replaced in Te by tj

b
rj
e c. Butman et

al. [3] showed that the total length of all regions is O(n), and that the compact regions data
structure can be constructed in linear time.

𝑇 = 𝑎2𝑏5𝑎8𝑐6𝑏4𝑎8𝑏9𝑎3𝑐7𝑏2𝑎4𝑐8𝑎9𝑏1𝑎3𝑏6𝑐9𝑏9

𝑇2 = 𝑎1𝑏2$𝑏2𝑎4𝑐3𝑏2𝑎4𝑏4$𝑏4𝑎1$𝑎1𝑐3$𝑐3𝑏1𝑎2𝑐4𝑎4$𝑎4$𝑎1$𝑎1𝑏3𝑐4$𝑐4𝑏4$𝑏4

𝑇3 = $𝑏1$𝑏1𝑎2$𝑎2𝑐3𝑏1$𝑏1𝑎2$𝑎2𝑏3𝑎1𝑐2$𝑐2$𝑎1$𝑎1𝑐2$𝑐2𝑎3$𝑎1𝑏2𝑐3𝑏3

𝑇4 = $𝑏1$𝑏1𝑎2𝑐1$𝑐1𝑏1𝑎2𝑏2$𝑏2$𝑐1$𝑐1$𝑎1𝑐2𝑎2$𝑎2$𝑏1$𝑏1𝑐2$𝑐2𝑏2$𝑏2

𝑇5 = $𝑏1𝑎1$𝑎1𝑐1$𝑐1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑏1$𝑏1𝑐1$𝑐1𝑏1$𝑏1

𝑇6 = $𝑎1$𝑎1𝑐1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑏1𝑐1$𝑐1𝑏1$𝑏1

𝑇7 = $𝑎1$𝑎1$𝑎1$𝑎1𝑏1$𝑏1$𝑐1$𝑐1$𝑐1𝑎1$𝑎1$𝑐1$𝑐1𝑏1$𝑏1

𝑇8 = $𝑎1$𝑎1𝑏1$𝑏1$𝑐1𝑎1$𝑎1$𝑐1$𝑐1𝑏1$𝑏1

𝑇9 = $𝑏1$𝑎1$𝑐1𝑏1

Figure 5 compact regions data structure example.

5.2 The Reduction

The reduction is based on the following lemma.

I Lemma 14. Let T be a text and assume that there is a scaled tandem to scale e > 1
starting in index i of T , where the length of the period is p. Then the scaled part of the
tandem is represented by a substring of a single compact region in Te. In fact, the substring
in Te is precisely the period.

Proof. Since the scale of the period is e, then e divides the exponent of every symbol in the
scaled part of the tandem. We write in Te the scales divided by e therefore what is written
in Te is precisely the period. J

Assume that a compact region C in Te starts at location i of the RLE T ′ of T . Lemma 14
assures us that any scaled tandem whose scaled repetition occurs in C cannot start in any
index smaller than i−|C| and cannot end in any index larger than i+ |C|. Let X be the string
composed of |C| occurrences of σ1, where σ is a symbol not in the alphabet. Let C ′ = XC.
Then every double string tandem between the strings T ′[i−|C|..i+ |C|] and C ′ is an e-scaled
tandem in T . The figure below illustrates this. Both abaabb and abaabbccaabbaaaabbbbcccc
are 2-scale tandems. They both appear as double string tandems between the appropriate
substring of T ′ and C ′.
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3:12 Double String Tandem Repeats

Figure 6 2-scale tandems as double tandems.

Time: The compact regions data structure is created in time O(n). For every region C
the double string tandem repeats are found in time O(|C| log |C|). Since

∑
∀C |C| = O(n)

the total time is O(n logn).
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Abstract
We study a document retrieval problem in the new framework where D text documents are organized
in a category tree with a pre-defined number h of categories. This situation occurs e.g. with
taxomonic trees in biology or subject classification systems for scientific literature. Given a string
pattern p and a category (level in the category tree), we wish to efficiently retrieve the t categorical
units containing this pattern and belonging to the category. We propose several efficient solutions
for this problem. One of them uses n(log σ(1 + o(1)) + logD + O(h)) + O(∆) bits of space and
O(|p|+ t) query time, where n is the total length of the documents, σ the size of the alphabet used
in the documents and ∆ is the total number of nodes in the category tree. Another solution uses
n(log σ(1 + o(1)) +O(logD)) +O(∆) +O(D logn) bits of space and O(|p|+ t logD) query time. We
finally propose other solutions which are more space-efficient at the expense of a slight increase in
query time.
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1 Introduction

Data is often structured using category hierarchies represented by trees. In many applications,
such hierarchies play a crucial guiding role: for example, the International Classification of
Diseases (ICD) provides a hierarchical classification of all human disesases and constitues a
common reference for diagnostics. In this paper, we are interested in sequence data, such as
biological sequences or text documents, that are linked to a given hierarchy. More precisely,
in our framework sequences are associated to leaves of a hierarchy, and tree nodes are mapped
to several fixed levels, also called ranks.

This situation is common and occurs in several important applications. One is biology
where species are classified according to the famous Linnaean taxonomy including eight
common taxonomic ranks: species, genus, family, order, class, phylum, kingdom, domain.
Then, given a set of sequences (DNA, RNA or protein) belonging to known species, one can
associate them to the corresponding leaves of the taxonomic tree. Such a structure is used,
for example, for phylogeny-based metagenomic classification where one considers the tree of
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known genomic sequences as a reference for classifying sequences of a metagenomic sample,
see e.g. [23]. A classification procedure may involve queries asking for the taxonomic units
(i.e. internal nodes of the tree) of a certain rank whose sequences contain a given pattern, or
similar type of queries.

Another example is provided by text documents such as scientific papers. The latter
are usually annotated by subjects belonging to a fixed hierarchical nomenclature, such as
ACM Computing Classification System (CCS) or Mathematics Subject Classification (MSC).
Those subject hierarchies have a predefined number of levels: four levels for CCS and three
for MSC. Given a corpus of scientific papers, one could ask about subject categories at a
certain level whose documents contain a given pattern. This is a natural information retrieval
scenario.

Here we study this problem from the stringology perspective (see e.g. [14, 8]). Assume
we are given a set of D documents of total length n over an alphabet of size σ, organized in
a tree of height h. The tree has D leaves, each associated with a distinct document, and the
leaves are all at level h of the tree. The total number of nodes in the tree is denoted by ∆.
The tree specifies a hierarchy of categories: each level of the tree corresponds to a category,
and each internal node corresponds to a categorical unit.

The basic type of query we study in this paper is the following.

Given a pattern p, and a tree level (rank) i ∈ [1..h], return all nodes (categorical
units) d1, · · · , dt at level i that have at least one leaf (document) in their subtree that
contains pattern p.

For example, given a large collection of genomic sequences organized in a taxonomic tree
(for example, all known animal genomes), one may ask which animal families have a given
sequence in the genomes of their members. Or, given a large hierarchy of documents (for
example, all Computer Science papers), one may wonder in which subfields of Computer
Science (corresponding to a certain level of the hierarchy) the term ’suffix tree’ is used. This
basic type of queries can be further extended in different ways. For example, one may impose
an additional requirement of the mimimum number of documents of the categorical unit
containing the given pattern. In this first study, we focus on the basic query type.

In this work, we propose several algorithms for this problem. Our first solution (Section 3)
is based on the approach of Muthukrishnan [16] to the document retrieval problem. By
combining several algorithmic tools - efficient text index, colored range reporting queries, and
level ancestor queries - we obtain a solution with n(log σ(1 + o(1)) + logD +O(h)) +O(∆)
bits of space and O(|p| + t) query time, where t is the output size, i.e. the number of
retrieved categorical units. To improve the space bound, in particular to get rid of the
O(nh) term which can be as big as O(nD), we then develop a solution based on a wavelet
tree built on top of the input category tree (Section 4). On this way, we first obtain a
solution taking n(log σ + logD) + O(D logn) bits and O(|p|+ t · h logD) query time. We
further improve it using the technique of heavy path decomposition, to obtain a solution
in n(log σ(1 + o(1)) + logD) + O(∆) bits of space and O(|p|+ t logD) query time. In the
final part of the paper (Section 5), we focus on solutions using succinct and compressed data
structures, on top of the input data. That is, our main goal here is to replace the n logD
bits by respectively n log σ or by nH0 + o(n log σ) in representing the document array. We
obtain memory-time trade-offs showing how this goal can be achieved at the price of a slight
increase of query time.



D. Belazzougui and G. Kucherov 4:3

We summarize our main results in the following table.

algorithm space (bits) query time
based on colored n(log σ(1 + o(1)) + logD +O(h)) O(|p|+ t)

range queries (Sect. 3) +O(∆)
based on wavelet n(log σ(1 + o(1)) +O(logD)) O(|p|+ t logD)
tree (Sect. 4) +O(∆) +O(D logn)

compact space (Sect. 5) O(n log σ) O(|p|+ (t+ 1) · logε n(1 + h
logσ ))

compressed space (Sect. 5) nHk + o(n log σ) +O(D logn) O(|p|+ t · h logn(log logn)2)

2 Preliminaries

We first briefly present main algorithmic tools used by our algorithms.

2.1 Level ancestor queries on trees
Consider a rooted tree. To each node in the tree we associate its level so that the level of the
root is 1, and the level of a child node is 1 more than the level of its parent. The height of a
tree is defined as the maximal level of any node in the tree. We denote by `α the level of a
node α.

We will use the implementation of level ancestor queries specified by the following lemma.

I Lemma 1 ([19]). There exists a data structure that represents a tree with n nodes within
space 2n+ o(n) and allows answering the following queries in constant time:
1. given a level ` and a node α at level at least `, return the ancestor node β of α at level `,
2. given an integer i, return the node α where α is the leaf number i in left-to-right order.

We denote by LAQ(α, i) the query which asks for the ancestor at level i of node α. We
denote by leafselect(i) the query which returns the i-th leaf of the tree in left to right
order.

2.2 rank/select queries and wavelet trees
rank and select queries on sequences constitute basic building blocks of many succinct data
structures [13]. Given a string S[1..n] on an alphabet Σ, a query rankc(S, i), with c ∈ Σ and
i ∈ [1..n], asks for the number of occurrences of c in S[1..i] and selectc(S, j) asks for the
unique position i such that S[i] = c and rankc(S, i) = j.

Consider first the important case of binary sequences (bitvectors). The following result is
well-known, see [18].

I Lemma 2. A bitvector B[1..n] can be represented using n + o(n) bits of space, so that
queries rank and select are answered in constant time.

In the case of non-binary alphabet, rank/select queries can be efficiently answered using
wavelet trees. The wavelet tree has been formally introduced in [9], but a similar structure
has been used earlier [3]. Suppose we are given a sequence S of length n over an alphabet Σ.

The (binary) wavelet tree is a binary tree representation of S that is defined recursively as
follows. Let Σ0 6= ∅ and Σ1 6= ∅ form a partition of Σ (that is, Σ = Σ0 ∪Σ1 and Σ0 ∩Σ1 = ∅).
Then the root of the binary wavelet tree will contain a binary vector B, such that B[i] = 0
iff S[i] ∈ Σ0. Let the sequence S0 (resp., S1) be formed by keeping only the elements of S
that belong to Σ0 (resp., Σ1), in the same order. Then, the left (resp., right) child is defined
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recursively using S0 (resp., S1) and a binary partition of Σ0 (resp., Σ1). The recursion stops
whenever we reach a leaf that corresponds to a singleton subset of Σ. Such nodes will form
the leaves of the wavelet tree. We refer the reader to the survey [17] for more details about
wavelet trees. We will make use of the following lemma:

I Lemma 3 ([9]). The wavelet tree over the alphabet [1..σ] can be represented using n(log σ+
o(1)) +O(σ logn) bits of space, supporting rank and select queries in O(log σ) time.

The definition of binary wavelet tree can be readily generalized to the non-binary case.
As in the binary case, to any node α labeled by an interval Σα is (implicitly) associated the
sequence Sα which is the subsequence of S[1..n] consisting of all characters belonging to Σα.
If a node α of a wavelet tree has d children, then the alphabet interval Σα ⊆ [1..σ] assigned
to α is partitioned into d disjoint subintervals instead of two, and α stores a sequence Cα
over alphabet [1..d] of length |Sα| such that Cα[i] = j iff Sα[j] ∈ Σαj .

2.3 Text indexes
We assume familiarity with main text indexing structures: suffix trees, suffix arrays and
BWT-indexes. Here we only recall some basic facts about them.

Given a text T over an alphabet Σ = [1..σ], a suffix tree [22] is a tree data structure that
stores in its leaves the suffixes of T$, where $ is a special character that does not appear in
T and is lexicographically smaller than any character of T . Each suffix is associated with its
starting position in T$. Suffix tree allows answering basic string pattern matching queries:
given a pattern p, return the set of starting positions of p in T .

The suffix array of T is a related but more space-efficient data structure defined as the
array SA[1..n+ 1] obtained by sorting all the suffixes of T$ in lexicographic order and setting
SA[i] = j if and only if the suffix T [j..n]$ has lexicographic rank i among all suffixes of T$.

A suffix tree occupies O(n logn) bits of space and a matching query needs access to the
original text T in addition to the suffix tree. The query time is O(|p| log σ). The suffix
array [15] is an alternative to the suffix tree which occupies the same O(n logn) bits of space,
but has lower constant factors in space and supports matching queries in O(|p|+ logn) time.

The BWT-index (FM-index) is a space-efficient alternative to suffix arrays and suffix trees
which uses O(n log σ) bits of space only. It was originally proposed in [4] and has seen many
improvements. We will use the following version of BWT-index with alphabet-independent
query time.

I Lemma 4 ([1]). Given a text T of length n over alphabet [1..σ], we can build a BWT-index
which occupies n log σ(1 + o(1)) bits of space and supports computing the range of suffixes
prefixed by a pattern p in time O(|p|).

Note that computing the range of suffixes answers also whether the pattern occurs in the
text at all, and if so, reports the number of its occurrences (the size of the lexicographic
order interval). For this reason, the query presented in the lemma above is usually refered to
as a count query. The BWT-index is usually augmented with position information so that
it becomes able to report the location of each occurrence of the pattern in addition to the
number of occurrences. This can be achieved using fo the example the compressed suffix
array representation:

I Lemma 5 ([10]). Given a text T of length n over alphabet [1..σ] and a constant ε > 0,
we can build a data structure which occupies O(n log σ) bits of space and that returns SA[i]
for any i ∈ [1..n] in time O(logε n).
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All the above-mentioned text indexes can trivially be extended to support the same
type of queries on a collection of documents instead of a single document. More precisely,
given a collection of texts T1, T2, . . . , TD over the same alphabet Σ, the same queries can be
supported by constructing an index of the string T1$T$ . . . TD$.

2.4 Colored range reporting and document retrieval
Muthukrishnan [16] was the first to study the problem of efficiently retrieving documents
containing a given string pattern. Through the use of a text index, he reduced the problem
to the one of color range reporting, i.e. reporting all distinct values (“colors”) occuring in
a given interval of an array. His data structure relies on the use of range minimum query
data structures – a data structure that can find in constant time the smallest element in an
sub-range of an array. His algorithm was subsequently improved in terms of space (Theorem
4 in [20]). We will use the following result on color range reporting, which can be obtained
by using the optimal range-minimum query data structure [5] in the method of [20]:

I Lemma 6. Given an array A[1..n] ∈ [1..σ]n, we can build a static data structure that
occupies 2n+ o(n) bits that allows reporting all d distinct values occurring in a query interval
A[i..j] in time O(d) (O(1) time per reported value). The query will make read-only access to
the data structure, read-only random access to elements of the array A and read-write access
to a bitvector B of size σ. The bitvector needs to be initalized to zero before the first query
and is reset to zero at the end of each query.

In combination with text indexing, colored range reporting allows supporting document
retrieval queries. More precisely, define the document array as follows: given a collection of
D documents T1, T2 . . . TD of total length n, lexicographically sort all the suffixes of the text
T ∗ = T1$T2$ . . . TD$, and set A[i] = j iff the suffix of T ∗ of lexicographic rank i starts inside
Tj (if the suffix starts with $, then set A[i] = 0). Document array A can be easily obtained
from a text index of T ∗ = T1$T2$ . . . TD$. For this, one can construct a bitmap of length |T ∗|
with 1’s at positions of $ in T ∗ and 0’s otherwise. Then A[i] = rank1(A, SA[i]) + 1 for i > D

and A[i] = 0 for i ≤ D. It is then immediate that using these data structures, Lemmas 4, 5,
and 6 lead to solving the document retrieval problem in time O(|p|+ d logε n), where d is the
number of resulting documents. For this, we can use the document alphabet-independent
BWT index to compute the range [i..j] of occurrences of p in O(|p|) time and then report
the d distinct documents that appear in the range A[i..j] in O(d logε n) time.

3 Solution based on Muthukrishnan’s data structure

Our first solution will be a combination of tools presented in the previous section. We first
build a text index for the concatenation of documents T1$T2 . . . TD$. More specifically, we
build an instance of the text index of Lemma 4 which occupies n log σ(1 + o(1)) bits and
allows to locate the interval of all suffixes of the documents that start with p in time O(|p|).
We also build the document array A[1..n], of size n logD, indexed by the document suffixes
sorted in lexicographic order and storing the documents each of the suffixes belongs to.

We further store h instances C1, . . . Ch of the data structure of Lemma 6, one instance
per level of the tree, defined as follows. Consider d (virtual) arrays Ai[1..n], one per level
i ∈ [1..h] of the tree, such that Ai[j] stores the ancestor at level i of document A[j]. Then,
each Ci is the data structure of Lemma 6 for supporting range reporting queries on array
Ai. Thus, Ci allows to return, for any interval [r..`], all distinct elements in Ai[r..`] in
constant time per element provided that a random-access to each element in Ai is supported
in constant time.
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Note that according to Lemma 6, a query will need to use D bits of working space2 since
it will need to use a temporary bitvector B of size Di ≤ D where Di is the number of nodes
at level i of the tree3. By Lemma 6, each Ci occupies only 2n+ o(n). Finally, in order to
simulate constant-time random access to entries of arrays Ai, 1 ≤ i ≤ h, we build a data
structure for constant-time level ancestor queries on the category tree (Lemma 1). Notice
that we can access cell Ai[j] using the formula Ai[j] = LAQ(leafselect(A[j]), i). The data
structure will occupy 2∆ + o(∆) bits of space, where ∆ is the total number of nodes in the
tree.

To answer a query consisting of a pattern p and level i, we proceed as follows. We first
compute, in time O(|p|), the interval [`..r] of suffixes using the BWT-index (Lemma 4).
The documents containing p are then those contained in A[`..r]. We then have to output
all distinct ancestors at level i of documents A[`..r], i.e. all distinct elements of Ai[`..r].
This is done in constant time per reported element using Ci, as follows from Lemma 6 and
constant-time access to elements of Ai using LAQ and leafselect queries.

The document array occupies n logD bits of space. The text index is built on top of the
n log σ(1 + o(1)) bits. Each of the h instances of the data structure of Lemma 6 will occupy
2n+ o(n) bits of space each for a total space of 2nh+ o(hn) bits of space. The data structure
built on top of the category tree occupies 2∆ + o(∆) bits of space.

We thus have proved the following theorem:

I Theorem 7. Given a collection of D documents of total length n over alphabet [1..σ] so that
the documents are organized in a hierarchy of documents represented by a tree of total size ∆
and of height h, we can build a data structure of size n(log σ(1 +o(1)) + logD+O(h)) +O(∆)
bits of space that, given a pattern p, can find all t categories of documents at a given level i
that have at least one document that contains the pattern in total time O(|p|+ t).

This data structure will be good enough whenever h is small, for example, when h = logD,
which holds for example when each internal node in the tree has at least two children.

4 Wavelet-tree-based solution

If each node of our tree is branching, i.e. has two or more children, then h = O(logD) and
the solution of Secton 3 takes O(n(log σ + logD)) bits of space. (Recall that all leaves of
our tree occur at level h) However, this may not be the case as the tree may have many
non-branching (unary) nodes. In the extreme case, we may have h = Ω(D) and the space of
Theorem 7 will become Ω(nD) which can be too large if D is large. In this section, we deal
with this issue and present solutions based on wavelet trees.

As in Secton 3, we assume that we first located an interval [`..r] in the document array
A that corresponds to the occurrences of the query pattern p. The goal is then to return all
internal nodes at level i containing documents from A[`..r] in their subtree. In Section 4.1,
we present the first ”warm-up” solution that we subsequently improve in Section 4.2.

2 We define the working space as a writable space that is only used during queries and is restored to its
initial state at the end of the query

3 We can use the same bitvector B (Lemma 6) of size D for all h levels: for a query on level i, the first
Di bits of B are initally set to zero and are reset to zero at the end of the query
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4.1 Basic wavelet-tree-based solution

We build our wavelet tree on top of the input tree representing the hierarchy of the documents.
Therefore, our initial wavelet tree is generally non-binary and non-balanced. As does the
input tree, our wavelet tree has height h and O(∆) nodes in total. To save space, we
will eliminate unary nodes from the wavelet tree (such a node α stores a trivial sequence
Cα = 1|Sα|, see Section 2.2) and only encode O(D) branching nodes. For each branching
node α we store its depth denoted δα. Besides the wavelet tree, we will need a data structure
for level ancestor queries (Lemma 1) for the input tree that occupies O(∆) bits of space and
answers queries in constant time.

Our alphabet Σ will be defined to be the set of documents [1..D]. The alphabet interval
Σα assigned to a node α will be the indices of documents occurring in the subtree rooted at
α. The string S for which the tree is built will be the document array A[1..n].

Our wavelet tree may have nodes with more than two children and we implement them
by local binarization. If a node has d children, we will encode it using a binary wavelet
tree of log d levels, called a local wavelet tree. In total, the wavelet tree occupies n(h logD)
bits, since the tree contains h levels and each of the n elements of the document array will
contribute at most logD bits to each level.

Consider now a query which is defined by a pattern p and a level i in the input tree.
Once we computed the document array interval corresponding to p, say A[`..r], we use our
wavelet tree to identify the desired nodes at level i. Starting from the root, we traverse the
tree top-down through all the nodes α whose assigned sub-alphabet Σα ⊆ [1..D] intersects
with elements of A[`..r]. This is done by recomputing the current interval for each traversed
node. An invariant of this computation is that querying a node α with an interval [i..j]
ensures that all elements of A[`..r] ∩ Σα are within Sα[i..j]. Interval computation is done
using rank queries on binary vectors Bα stored at nodes α of the wavelet tree, we refer to
[7] where this computation is described in detail. We stop the traversal at a node α as soon
as δα ≥ i and report its ancestor at level i using the level ancestor data structure.

The original tree has at most h levels and each node is replaced by a local wavelet tree
with at most logD levels, therefore a root-to-leaf path in the wavelet tree has at most h logD
nodes, and the total worst-case query time will be O(h logD) per reported node.

We now analyse the space usage of the data structure. Since the wavelet tree has D
leaves and all nodes are branching, the total number of nodes is O(D). Thus, the total space
used by the wavelet trees is n(h logD)(1 + o(1)) +O(D logn) bits (see Lemma 3). The space
used by the BWT-index is n log σ(1 + o(1)) (Lemma 4) and the space used by the document
array is n logD bits. The space used by the data structure for level-ancestor queries is O(∆)
bits (Lemma 1). We thus proved the following theorem.

I Theorem 8. Given a collection of D documents of total length n over alphabet [1..σ] and so
that the documents are organized in a hierarchy of documents represented by a tree of height
h, we can build a data structure of size n(log σ+ (h+ 1) logD)(1 + o(1)) +O(D logn) +O(∆)
bits of space that can, given a pattern p, find all t categories of documents at level i that have
at least one document that contains the pattern in total time O(|p|+ t · h logD).

4.2 Solutions based on heavy path decomposition

We now describe a more sophisticated solution based on the heavy path decomposition [21, 11]
of the wavelet tree from the previous section. Here we present a high-level description of our
algorithms, full details will be given in the extended version of the paper.

CPM 2020



4:8 Efficient Tree-Structured Categorical Retrieval

There are several variants of the definition of heavy path decomposition, with slight
differences between the variants. In what follows we will use the following variant. With
each node α of a given tree T , we associate a weight w(α) equal to the number of leaves in
the subtree rooted at α. The heavy child β of α is the child of α with the greatest weight,
with ties resolved arbitrarily. The other children of α are called light. The edge between α
and its heavy child is called a heavy edge, whereas all the other edges from α to its children
are called light edges.

The heavy path decomposition of a tree T is a decomposition of T into paths defined
recursively as follows. We first compute the heavy path (i.e. a path consisting of heavy edges)
from the root of T to a leaf, and then recursively apply the decomposition to all subtrees
rooted at all light children of the heavy path nodes. An interesting property of the heavy
path decomposition is that the number of light edges on any root-to-leaf path is at most
logD, where D is the number of leaves in the tree.

4.2.1 First solution based on heavy path decomposition
Our first solution will be neither space- nor time-optimal. For each heavy path starting at a
node α for which the number of light children of nodes of the path is `α, the alphabet will
be of size `α. We can order the nodes (light children) by increasing depths. The sequence Sα
that is associated with a heavy path α = α1, . . . αk, will be of length nα over alphabet [1..`α],
where nα is the total number of occurrences of leaves (documents) in the subtree rooted at α
in the document array A. That is, the sequence will be a subsequence of A[1..n], where only
the documents that belong to the leaves under α are kept, and the encoding of each element
in the subsequence will be the index of the (light) children of the heavy path nodes under
which the document appears. Let the depths of the nodes in the heavy path be denoted by
d1 < . . . < dk. We additionally store a bitvector Bα marking the node depths of the different
nodes. That is, we initialize the bitvector Bα by all zeros and then set Bα[di] = 1 for every
i ∈ [1..k].

A query for level i will now proceed as follows. We traverse the tree top-down. For each
heavy path, we do the following.
1. We first use the bitvector that marks the node depths to determine a subrange [1..r] of

the alphabet that will be used for the query (the light nodes included in the range will
have depths at most i, whereas the nodes in the range [r + 1..h] will have depth more
than i).

2. We traverse the wavelet tree of the current heavy path. Such a query will spend time
O(t log `α) for a heavy path with `α light children, in which t distinct light children
appear in the sequence.

It is easy to see that the total space will be O(n log2 D) bits, since the alphabet size is
O(log `α) for each node α with nα stored elements and each element of A will incur at most
logD elements in the wavelet trees stored in the heavy paths of the tree. The query time
can be bounded to be O(log2 D) per reported document by a similar argument (we traverse
logD heavy paths and each traversal costs logD time).

We thus obtain the following result.

I Theorem 9. Given a collection of D documents of total length n over alphabet [1..σ] so
that the documents are organized in a hierarchy of documents represented by a tree of total
size ∆, we can build a data structure of size O(n log2 D + ∆) bits of space that can, given
a pattern p, find all t categories of documents at level i that have at least one document
containing the pattern in total time O(|p|+ t log2 D).
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4.2.2 Second solution based on heavy path decomposition
Our second solution based on heavy path decomposition will rely on a more fine-grained
encoding. We will make use of Huffman-shaped wavelet tree [6] for each heavy path, such
that the wavelet tree node corresponding to a light node of relative weight w (the weight
light node divided by weight of the root of heavy path) will be encoded using log(1/w) +O(1)
bits and the correponding wavelet tree leaf will be at depth log(1/w) +O(1). It is now easy
to see that the encoding of each element of A will take O(logD) bits and, furthermore, the
cost of a query can be upper-bounded by just O(logD). Both bounds rely on a telescoping
argument. We have the following result.

I Theorem 10. Given a collection of D documents of total length n over alphabet [1..σ] and
so that the documents are organized in a hierarchy of documents represented by a tree of total
size ∆, we can build a data structure of size n(log σ(1+o(1))+O(logD))+O(∆)+O(D logn)
bits of space that can, given a pattern p, find all t categories of documents at a level i that
have at least one document that contains the pattern in total time O(|p|+ t logD).

5 Compact and compressed data structures for categorical data
queries

In this section we explore more space-effcient versions of the problem. More in detail, we are
interested in studying the problem under succinct and compressed-space constraints. Namely,
our aim is to use O(n log σ) bits for the succinct case and nH0 + o(n log σ) +O(D logn) bits
of space for the compressed case. To achieve this, we will improve the solution of Section 3.
More precisely, we avoid the storage of the document array and simulate direct access to
the document array using Lemma 5. As a consequence, we can achieve time O(logε n) to
get the given document index A[i] for any i ∈ [1..n]. This will reduce the space to represent
the document array from O(n logD) to O(n log σ) bits. Now the space used by the range
minimum query data structures will become the bottleneck. To reduce the space usage we will
make use of sparsification. More precisely, we will divide the document array into blocks and
sample just the values of the A array that are the smallest in each block. The space becomes
O(n/α) bits where α is the sparsification factor. For details on how the sparsification is
used to simulate the reporting of distinct documents that appear in interval A[i..j], we refer
the reader to [2, 12]. Here we just mention that the time per reported document becomes
O(α logε n) and entails O(α) accesses to the document array, each of which requires O(logε n)
time. We thus have the following result.

I Theorem 11. Given a parameter α ≥ 1 and a collection of D documents of total length
n over alphabet [1..σ] and so that the documents are organized in a hierarchy of documents
represented by a tree of height h, we can build a data structure of size O(n log σ) +O(nh/α)
bits of space that can, given a pattern p, find all t categories of documents at level i that have
at least one document that contains the pattern in total time O(|p|+ t · α logε n).

By setting α = d h
logσ e we get space O(n log σ) bits and query time O(|p|+ (t+ 1) logε n ·

(1 + h
logσ )). We thus have the following corollary.

I Corollary 12. Given a parameter α and collection of D documents of total length n

over alphabet [1..σ] and so that the documents are organized in a hierarchy of documents
represented by a tree of height h, we can build a data structure of size O(n log σ) bits of space
that can, given a pattern p, find all t categories of documents at level i that have at least one
document that contains the pattern in total time O(|p|+ (t+ 1) · logε n(1 + h

logσ )).
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Whenever h = logD (e.g. every internal node is branching), the query time simplifies to
O(|p|+ (t+ 1) · logσD · logε n) ∈ O(|p|+ (t+ 1) log1+ε n). We can also get compressed space.
Namely, we can use a compressed suffix array [9] with query time logn log logn and space
nHk + o(n) to represent the document array. We will combine the compressed suffix array
with the alphabet-independent variant of BWT-index presented in [1]. We then get an index
that uses space nHk + o(n log σ) with query time O(|p|) to find the suffix array interval of a
pattern and O(logn log logn) time to access an element of the suffix array. Notice that we
can translate access to a suffix array element to an access to a document array element using
O(D logn) bits of space. Summing up, we get the following theorem.

I Theorem 13. Given a parameter α and a collection of D documents of total length n
over alphabet [1..σ] and so that the documents are organized in a hierarchy of documents
represented by a tree of height h, we can build a data structure of size nHk + o(n log σ) +
O(D logn) + O(nh/α) bits of space that can, given a pattern p, find all t categories of
documents at level i that have at least one document that contains the pattern in total time
O(|p|+ t · α logn log logn).

By setting α = h · log logn, we get space nHk + o(n log σ) +O(D logn) bits and query time
O(|p|+ t · h logn(log logn)2). The latter becomes O(|p|+ t logD logn(log logn)2) whenever
h = O(logD).

6 Conclusions

In this paper, we proposed several solutions for the problem of categorical retrieval. Possible
extensions of our work include the case when the document hierarchy is a DAG rather than
a tree. This situation occurs, for example, with phylogenetic networks. The solution in
Section 3 could easily be extended to DAG structured categories if there was an efficient
support for level ancestor queries on DAGs. Other possible extensions includes top-k queries
in which categories are either ordered by a static order or by the total frequency of the
pattern in the documents that belong to the reported categories.
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Abstract
We consider the problem of finding, given two documents of total length n, a longest string occurring
as a substring of both documents. This problem, known as the Longest Common Substring
(LCS) problem, has a classic O(n)-time solution dating back to the discovery of suffix trees (Weiner,
1973) and their efficient construction for integer alphabets (Farach-Colton, 1997). However, these
solutions require Θ(n) space, which is prohibitive in many applications. To address this issue,
Starikovskaya and Vildhøj (CPM 2013) showed that for n2/3 ≤ s ≤ n, the LCS problem can be
solved in O(s) space and Õ( n2

s
) time.1 Kociumaka et al. (ESA 2014) generalized this tradeoff to

1 ≤ s ≤ n, thus providing a smooth time-space tradeoff from constant to linear space. In this paper,
we obtain a significant speed-up for instances where the length L of the sought LCS is large. For
1 ≤ s ≤ n, we show that the LCS problem can be solved in O(s) space and Õ( n2

L·s + n) time. The
result is based on techniques originating from the LCS with Mismatches problem (Flouri et al.,
2015; Charalampopoulos et al., CPM 2018), on space-efficient locally consistent parsing (Birenzwige
et al., SODA 2020), and on the structure of maximal repetitions (runs) in the input documents.
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1 Introduction

The Longest Common Substring (LCS) problem is a fundamental text processing problem
with numerous applications; see e.g. [1, 39, 22]. Given two strings (documents) S1, S2, the
LCS problem asks for a longest string occurring in S1 and S2. We denote the length of the
longest common substring by lcs(S1, S2).

The classic text-book solution to the LCS problem is to build the (generalized) suffix
tree of the documents and find the node that corresponds to an LCS [40, 26, 17]. While
this can be achieved in linear time, it comes at the cost of using Ω(n) words (of Θ(logn)

1 The Õ notation hides logO(1) n factors.
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bits each) to store the suffix tree. In applications with large amounts of data or strict space
constraints, this renders the classic solution impractical. To overcome the space challenge
of suffix trees, succinct and compressed data structures have been subject to extensive
research [25, 35]. Nevertheless, these data structures still use Ω(n) bits of space in the
worst-case. Starikovskaya and Vildhøj [36] showed that for n2/3 ≤ s ≤ n, the LCS problem
can be solved in O(n

2

s + s logn) time using O(s) space. Kociumaka et al. [31] subsequently
improved the running time to O(n

2

s ) and extended the parameter range to 1 ≤ s ≤ n.
These previous works also considered a generalized version of the LCS problem, where

the input consists of m documents S1, S2, . . . , Sm (still of total length n) and an integer
2 ≤ d ≤ m. The task there is to compute a longest string occurring as a substring of at
least d of the m input documents. In this setting, Starikovskaya and Vildhøj [36] achieve
O(n

2 log2 n
s (d log2 n + d2)) time and O(s) space for n2/3 ≤ s ≤ n, whereas Kociumaka et

al. [31] showed a solution which takes O(n
2

s ) time and O(s) space for 1 ≤ s ≤ n. The cost of
this algorithm matches both a classic Θ(n)-space algorithm [27] and the time-space tradeoff
for d = m = 2. Nevertheless, in this paper we focus on the LCS problem for two strings only.

Kociumaka et al. [31] additionally provided a lower bound which states that any determ-
inistic algorithm using s ≤ n

logn space must cost Ω(n
√

log(n/(s logn))/ log log(n/(s logn)))
time. This lower bound is actually derived for the problem of distinguishing whether
lcs(S1, S2) = 0, i.e., deciding if the two input strings have any character in common. This
state of affairs naturally leads to a question of whether distinguishing between lcs(S1, S2) < `

and lcs(S1, S2) ≥ ` gets easier as ` increases, or equivalently, whether L := lcs(S1, S2) can be
computed more efficiently when L is large. This case is relevant for applications since the
existence of short common substrings is less meaningful for measuring string similarity.

1.1 Our Results
We provide new sublinear-space algorithms for the LCS problem optimized for inputs with a
long common substring. The algorithms are designed for the word-RAM model with word
size w = Θ(logn), and they work for integer alphabets Σ = {1, 2, . . . , nO(1)}. Throughout the
paper, the input strings reside in a read-only memory and any space used by the algorithms
is a working space; furthermore, we represent the output by witness occurrences in the input
strings so that it fits in O(1) machine words. Our main result is as follows:

I Theorem 1. Given s with 1 ≤ s ≤ n, the LCS problem with L = lcs(S1, S2) can be solved
deterministically in O(s) space and O(n

2 logn log∗ n
s·L + n logn) time,2 and in O(s) space and

O(n
2 logn
s·L + n logn) time with high probability using a Las-Vegas randomized algorithm.

We remark that Theorem 1 improves upon the result of Kociumaka et al. [31] whenever
s < n

logn and L > logn log∗ n (or L > logn if randomization is allowed).
We also show that the log factors can be removed from the running times in Theorem 1

if s = Θ(1). In fact, this yields an improvement upon Theorem 1 as long as s < logn log∗ n.

I Theorem 2. The LCS problem can be solved deterministically in O(1) space and O(n
2

L )
time, where L = lcs(S1, S2).

As a step towards our main result, we solve the LCS` problem defined below.

2 The iterated logarithm function log∗ is formally defined with log∗ x = 0 for x ≤ 1 and log∗ x =
1 + log∗(log x) for x > 1. In other words log∗ n is the smallest integer k ≥ 0 such that log(k) x ≤ 1.
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Longest Common Substring with Threshold ` (LCS`)
Input: Two strings S1 and S2 (of length at most n), an integer threshold ` ∈ [n]
Output: A common substring G of S1 and S2 such that:
1. if ` ≤ lcs(S1, S2) < 2`, then |G| = lcs(S1, S2);
2. if lcs(S1, S2) ≥ 2`, then |G| ≥ 2`.

If lcs(S1, S2) < `, then LCS` allows for an arbitrary common substring in the output.
I Remark 3. Note the following equivalent characterization of the output G of LCS`: for
every common substring T with ` ≤ |T | ≤ 2`, the common substring G is of length |G| ≥ |T |.

I Theorem 4. The LCS` problem can be solved deterministically in O(n log∗ n
` ) space and

O(n logn) time, and in O(n` ) space and O(n logn) time with high probability using a Las-
Vegas randomized algorithm.

1.2 Related work
The LCS problem has been studied in many other settings. Babenko and Starikovskaya [6],
Flouri et al. [20], Thankachan et al. [38], and Kociumaka et al. [30] studied the LCS with k
mismatches problem, where the occurrences in S1 and S2 can be at Hamming distance up to
k. Charalampopoulos et al. [11] showed that this problem becomes easier when the strings
have a long common substring with k mismatches (similarly to what we obtain for LCS with
no mismatches). Thankachan et al. [37] and Ayad et al. [5] considered a related problem with
edit distance instead of the Hamming distance. Alzamel et al. [2] proposed an Õ(n)-time
algorithm for the Longest Common Circular Substring problem, where occurrences in S1 and
S2 can be cyclic rotations of each other.

Amir et al. [3] studied the problem of answering queries asking for the LCS after a
single edit in either of the two original input strings. Subsequently, Amir et al. [4] and
Charalampopoulos et al. [12] considered a fully dynamic version of the problem, in which
the edit operations are applied sequentially, ultimately achieving Õ(1) time per operation.

1.3 Algorithmic Overview
We first give an overview of the algorithm of Theorem 4. Then, we derive Theorem 1 in two
steps, with an O(s)-space solution to the LCS` problem as an intermediate result.

An Õ(n/`)-space algorithm for the LCS` problem. In Section 3, we define an anchored
variant of the Longest Common Substring problem (LCAS). In the LCAS problem, we
are given two strings S1, S2 and sets of positions A1 and A2, and we wish to find a longest
common substring which can be obtained by extending (to the left and to the right) S1[p1]
and S2[p2] for some (p1, p2) ∈ A1 × A2. We then reduce the LCAS problem to the Two
String Families LCP problem, introduced by Charalampopoulos et al. [11] in the context
of finding LCS with mismatches.

In Section 4, we show how to solve the LCS` problem by selecting positions in A1 and A2
so that every common substring T of S1 and S2 with |T | ≥ ` can be obtained by extending
S1[p1] and S2[p2] for some (p1, p2) ∈ A1 × A2. To make this selection, we use partitioning
sets by Birenzwige et al. [9], which consist of Õ(n` ) positions chosen in a locally consistent
manner. However, since partitioning sets do not select positions in long periodic regions,
our algorithms use maximal repetitions (runs) [32, 7] and their Lyndon roots [13] to add
O(n` ) extra positions. Overall, we get an Õ(n` )-space and Õ(n)-time algorithm for the LCS`
problem.
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An O(s) space algorithm for the LCS` problem. In Section 5, we give a time-space
tradeoff for the LCS` problem. The algorithm partitions the input strings into overlapping
substrings, executes the algorithm of Section 4 for each pair of substrings, and returns the
longest among the common substrings obtained from these calls. For a tradeoff parameter
1 ≤ s ≤ n, the algorithm takes O(s) space and Õ( n

2

s·` + n) time.

A solution to the LCS problem. In Section 6, we show how to search for LCS by repeatedly
solving the LCS` problem with different choices of `. We get an algorithm that takes O(s)
space and Õ( n

2

s·L + n) time, where L = lcs(S1, S2), as stated in Theorem 1.

2 Preliminaries

For 1 ≤ i < j ≤ n, denote the integer intervals [i . . j] = {i, i+1, . . . , j} and [k] = {1, 2, . . . , k}.
A string S of length n = |S| is a finite sequence of characters S[1]S[2] · · ·S[n] over an

alphabet Σ; in this paper, we consider polynomially-bounded integer alphabets Σ = [1 . . nO(1)].
The string Sr = S[n]S[n− 1] · · ·S[1] is called the reverse of the string S.

A string T is a substring of a string S if T = S[x]S[x+1] · · ·S[y] for some 1 ≤ x ≤ y ≤ |S|.
We then say that T occurs in S at position x, and we denote the occurrence by S[x . . y]. We
call S[x . . y] a fragment of S. A fragment S[x . . y] is a prefix of S if x = 1 and a suffix of S
if y = |S|. These special fragments are also denoted by S[. . y] and S[x . .], respectively. A
proper fragment of S is any fragment other than S[1 . . |S|]. A common prefix (suffix) of two
strings S1, S2 is a string that occurs as a prefix (resp. suffix) of both S1 and S2. The longest
common prefix of S1 and S2 is denoted by LCP(S1, S2), and the longest common suffix is
denoted by LCPr(S1, S2). Note that LCPr(S1, S2) = (LCP (Sr1 , Sr2))r.

An integer k ∈ [|S|], is a period of a string S if S[i] = S[i + k] for i ∈ [|S| − k]. The
shortest period of S is denoted by per(S). If per(S) ≤ 1

2 |S|, we say that S is periodic. A
periodic fragment S[i . . j] is called a run [32, 7] if it cannot be extended (to the left nor to the
right) without increasing the shortest period. For a pair of parameters d and ρ, we say that
a run S[i . . j] is a (d, ρ)-run if |S[i . . j]| ≥ d and per(S[i . . j]) ≤ ρ. Note that every periodic
fragment S[i′ . . j′] with |S[i′ . . j′]| ≥ d and per(S[i′ . . j′]) ≤ ρ can be uniquely extended to a
(d, ρ)-run S[i . . j] while preserving the shortest period per(S[i . . j]) = per(S[i′ . . j′]).

Tries and suffix trees. Given a set of strings F , the compact trie [34] of these strings is
the tree obtained by compressing each path of nodes of degree one in the trie [10, 21] of the
strings in F , which takes O(|F|) space. Each edge in the compact trie has a label represented
as a fragment of a string in F . The suffix tree [40] of a string S is the compact trie of all
the suffixes of S. The sparse suffix tree [29, 8, 28, 24] of a string S is the compact trie of
selected suffixes {S[i . .] : i ∈ B} specified by a set of positions B ⊆ [|S|].

3 Longest Common Anchored Substring problem

In this section, we consider an anchored variant of the Longest Common Substring
problem. Let A1 and A2 be sets of distinguished positions, called anchors, in strings S1
and S2, respectively. We say that a string T is a common anchored substring of S1 and
S2 with respect to A1 and A2 if it has occurrences S1[i1 . . j1] = T = S2[i2 . . j2] with a
synchronized pair of anchors, i.e., with some anchors p1 ∈ A1 and p2 ∈ A2 such that
p1 − i1 = p2 − i2 ∈ [0, |T |].3

3 Note that the anchors could be at positions p1 = j1 + 1 and p2 = j2 + 1 (if p1 − i1 = p2 − i2 = |T |).
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Longest Common Anchored Substring (LCAS)
Input: Two strings S1, S2 (of length at most n) and two sets of anchors A1 ⊆ [|S1|],
A2 ⊆ [|S2|].
Output: A longest common anchored substring of S1 and S2 with respect to A1, A2.

We utilize the following characterization of the longest common anchored substring.

I Fact 5. The length of a longest common anchored substring of two strings S1 and S2 (with
respect to anchors at A1 and A2) is

max{|LCP(S1[p1 . .], S2[p2 . .])|+ |LCPr(S1[. . p1 − 1], S2[. . p2 − 1])| : p1 ∈ A1, p2 ∈ A2}.

Moreover, for any (p1, p2) ∈ A1×A2 maximizing this expression, a longest common anchored
substring is the concatenation LCPr(S1[. . p1 − 1], S2[. . p2 − 1]) · LCP(S1[p1 . .], S2[p2 . .]).

The characterization of Fact 5 lets us use the following problem, originally defined in a
context of computing LCS with mismatches.

Two String Families LCP (Charalampopoulos et al. [11])
Input: A compact trie T (F) of a family of strings F and two sets P,Q ⊆ F2.
Output: The value maxPairLCP(P,Q), defined as

maxPairLCP(P,Q) = max{|LCP(P1, Q1)|+|LCP(P2, Q2)| : (P1, P2) ∈ P, (Q1, Q2) ∈ Q},

along with pairs (P1, P2) ∈ P and (Q1, Q2) ∈ Q for which the maximum is attained.

Charalampopoulos et al. [11] observed that the Two String Families LCP problem
can be solved using an approach by Crochemore et al. [14] and Flouri et al. [20].

I Lemma 6 ([11, Lemma 3]). The Two String Families LCP problem can be solved in
O(|F|+N logN) time using O(|F|+N) space4, where N = |P|+ |Q|.

By Fact 5, the LCAS problem reduces to the Two String Families LCP problem with:

F = {S1[p . .] : p ∈ A1} ∪ {(S1[. . p− 1])r : p ∈ A1}
∪ {S2[p . .] : p ∈ A2} ∪ {(S2[. . p− 1])r : p ∈ A2}, (1)

P = {(S1[p . .], (S1[. . p− 1])r) : p ∈ A1}, (2)
Q = {(S2[p . .], (S2[. . p− 1])r) : p ∈ A2}. (3)

The following theorem provides an efficient implementation of this reduction. The most
challenging step, to construct the compacted trie T (F), is delegated to the work of Birenzwige
et al. [9], who show that a sparse suffix tree of a length-n string S with B ⊆ [n] can be
constructed deterministically in O(n log n

|B| ) time and O(|B|+ logn) space.

I Theorem 7. The Longest Common Anchored Substring problem can be solved in
O(n logn) time using O(|A1|+ |A2|+ logn) space.

4 The original formulation of [11, Lemma 3] does not discuss the space complexity. However, an inspection
of the underlying algorithm, described in [14, 20], easily yields this additional claim.
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Proof. We implicitly create a string S = S1$Sr1$S2$Sr2 and construct a sparse suffix tree of
S containing the following suffixes: S1[p . .]$Sr1$S2$Sr2 and (S1[. . p− 1])r$S2$Sr2 for p ∈ A1,
as well as S2[p . .]$Sr2 and (S2[. . p− 1])r for p ∈ A2. We then trim this tree, cutting edges
immediately above any $ on their labels, which results in the compacted trie T (F) for the
family F defined in (1). We then build P and Q according to (2) and (3), respectively, and
solve an instance of the Two String Families LCP problem specified by T (F),P,Q. This
yields pairs in P and Q for which maxPairLCP(P,Q) is attained. We retrieve the underlying
indices p1 ∈ A1 and p2 ∈ A2 and derive a longest common anchored substring of S1 and S2
according to Fact 5: LCPr(S1[. . p1 − 1], S2[. . p2 − 1]) · LCP(S1[p1 . .], S2[p2 . .]).

With the sparse suffix tree construction of [9] and the algorithm of Lemma 6 that solves
the Two String Families LCP problem, the overall running time is O(n log n

N +N logN) =
O(n logn) and the space complexity is O(N + logn), where N = |A1|+ |A2|. J

4 Space-efficient Õ(n)-time algorithm for the LCS` problem

Our approach to solve the LCS` problem is via a reduction to the LCAS problem. For this,
we wish to select anchors A1 ⊆ [|S1|] and A2 ⊆ [|S2|] so that every common substring T of
length at least ` is a common anchored substring. In other words, we need to make sure that
T admits occurrences S1[i1 . . j1] = T = S2[i2 . . j2] with a synchronized pair of anchors.

As a warm-up, we describe a simple selection of O(n/
√
`) anchors based on difference

covers [33], which have already been used by Starikovskaya and Vildhøj [36] in a time-space
tradeoff for the LCS problem. For every two integers τ,m with 1 ≤ τ ≤ m, this technique
yields a set DCτ (m) ⊆ [m] of size O(m/

√
τ) such that for every two indices i1, i2 ∈ [m−τ+1],

there is a shift ∆ ∈ [0 . . τ − 1] such that i1 + ∆ and i2 + ∆ both belong to DCτ (m). Hence,
to make sure that every common substring of length at least ` is anchored, it suffices to select
all O(n/

√
`) positions in DC`(n) as anchors: A1 = [|S1|]∩DC`(n) and A2 = [|S2|]∩DC`(n).

We remark that such selection of anchors is non-adaptive: it does not depend on contents
of the strings S1 and S2, but only on the lengths of these strings (and the parameter `). In
fact, any non-adaptive construction needs Ω(n/

√
`) anchors in order to guarantee that every

common substring T of length at least ` is a common anchored substring. In the following,
we show how adaptivity allows us to achieve the same goal using only Õ(n/`) anchors.

4.1 Selection of Anchors: the non-periodic case
We first show how to accommodate common substrings T of length |T | ≥ ` that do not
contain a ( 3

5`,
1
5`)-run. The idea is to use partitioning sets by Birenzwige et al. [9].

I Definition 8 (Birenzwige et al. [9]). A set of positions P ⊆ [n] is called a (τ, δ)-partitioning
set of a length-n string S, for some parameters τ, δ ∈ [n], if it has the following properties:
Local Consistency: For every two indices i, j ∈ [1 + δ . . n− δ] such that S[i− δ . . i+ δ] =

S[j − δ . . j + δ], we have i ∈ P if and only if j ∈ P .
Compactness: If pi < pi+1 are two consecutive positions in P ∪ {1, n+ 1} such that pi+1 >

pi + τ , then u = S[pi . . pi+1 − 1] is periodic with period per(u) ≤ τ .

Note that any (τ, δ)-partitioning set is also a (τ ′, δ′)-partitioning set for any τ ′ ≥ τ and
δ′ ≥ δ. The selection of anchors is based on an arbitrary ( 1

5`,
1
5`)-partitioning set P of the

string S1S2: for every position p ∈ P , p is added to A1 (if p ≤ |S1|) or p− |S1| is added to
A2 (otherwise). Below, we show that this selection satisfies the advertised property.

I Lemma 9. Let T be a common substring of length |T | ≥ ` which does not contain a
( 3

5`,
1
5`)-run. Then, T is a common anchored substring with respect to A1, A2 defined above.
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Proof. Let S1[i1 . . j1] and S2[i2 . . j2] be arbitrary occurrences of T in S1 and S2, respectively.
If there is a position p1 ∈ A1 with p1 ∈ [i1 + δ . . j1 − δ], then the position p2 = i2 + (p1 − i1)
belongs to A2 by the local consistency property of the underlying partitioning set, due to
S1[p1 − δ . . p1 + δ] = S2[p2 − δ . . p2 + δ]. Hence, (p1, p2) is a synchronized pair of anchors
and T is a common anchored substring with respect to A1, A2.

If there is no such position p1 ∈ A1, then S1[i1 + δ . . j1 − δ] is contained within a block
between two consecutive positions of the partitioning set. The length of this block is at least
|T | − 2δ ≥ 3

5` > τ , so the block is periodic by the compactness property of the partitioning
set. Hence, per(T [1 + δ . . |T | − δ]) = per(S1[i1 + δ . . j1 − δ]) ≤ τ ≤ 1

5`. A ( 3
5`,

1
5`)-run in

T can thus be obtained by maximally extending T [1 + δ . . |T | − δ] without increasing the
shortest period. Such a run in T is a contradiction to the assumption. J

Birenzwige et al. [9] gave a deterministic algorithm that constructs a (τ, τ log∗ n)-
partitioning set of size O(nτ ) in O(n log τ) time using O(nτ + log τ) space. Setting appropriate
τ = Θ(`/ log∗ n), we get an ( 1

5`,
1
5`)-partitioning set of size O(n log∗ n

` ).
Furthermore, Birenzwige et al. [9] gave a Las-Vegas randomized algorithm that constructs

a (τ, τ)-partitioning set of size O(nτ ) in O(n + τ log2 n) time with high probability, using
O(nτ + logn) space. Setting τ = 1

5`, we get an ( 1
5`,

1
5`)-partitioning set of size O(n` ).

4.2 Selection of anchors: the periodic case
In this section, for any parameters d, ρ ∈ [n] satisfying d ≥ 3ρ − 1, we show how to
accommodate all common substrings containing a (d, ρ)-run by selecting O(nd ) anchors. This
method is then used for d = 3

5` and ρ = 1
5` to complement the selection in Section 4.1.

Let T be a common substring of S1 and S2 containing a (d, ρ)-run. We consider two cases
depending on whether the run is a proper fragment of T or the whole T . In the first case, it
suffices to select as anchors the first and the last position of every (d, ρ)-run.

I Lemma 10. Let A1 and A2 contain the boundary positions of every (d, ρ)-run in S1 and
S2, respectively. If T is a common substring of S1 and S2 with a (d, ρ)-run r as a proper
fragment, then T is a common anchored substring of S1 and S2 with respect to A1, A2.

Proof. In the proof, we assume that r = T [i . . j] with i 6= 1. The case of j 6= |T | is symmetric.
Suppose that an occurrence of T in S1 starts at position i1. The fragment matching r,

i.e, S1[i1 + i − 1 . . i1 + j − 1], is periodic, has length at least d and period at most ρ, so
it can be extended to a (d, ρ)-run in S1. This run in S1 starts at position i1 + i − 1 due
to T [i − 1] 6= T [i + per(r) − 1], so p1 := i1 + i − 1 ∈ A1. The same argument shows that
p2 := i2 + i− 1 ∈ A2 if T occurs in S2 at position i2. Hence, (p1, p2) is a synchronized pair
of anchors and T is a common anchored substring with respect to A1, A2. J

We are left with handling the case when the whole T is a (d, ρ)-run, i.e., when T is
periodic with |T | ≥ d and per(T ) ≤ ρ. In this case, we cannot guarantee that every pair of
occurrences of T in A1 and A2 has a synchronized pair of anchors. For example, if T = ad

and S1 = S2 = an with n ≥ 2d, this would require Ω(n/
√
d) anchors. (There are Ω(n2) pairs

of occurrences, and each pair of anchors can accommodate at most d+ 1 out of these pairs.)
Hence, we focus on the leftmost occurrences of T and observe that they start within the

first per(T ) positions of (d, ρ)-runs. To achieve synchronization in these regions, we utilize the
notion of the Lyndon root [13] lyn(X) of a periodic string X, defined as the lexicographically
smallest rotation of X[1 . .per(X)]. For each (d, ρ)-run x, we select as anchors the leftmost
two positions where lyn(x) occurs within x (they must exist due to d ≥ 3ρ− 1).
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I Lemma 11. Let A1 and A2 contain the first two positions where the Lyndon root occurs
within each (d, ρ)-run of S1 and S2, respectively. If T is a common substring of S1 and S2
such that the whole T is a (d, ρ)-run, then T is a common anchored substring of S1 and S2.

Proof. Let k be the leftmost position where lyn(T ) occurs in T and T = S1[i1 . . j1] be the
leftmost occurrence of T in S1. Since T is a (d, ρ)-run, S1[i1 . . j1] can be extended to a
(d, ρ)-run x in S1. Note that S1[i1 . . j1] starts within the first per(T ) positions of x; otherwise,
T would also occur at position i1−per(T ). Consequently, position i1 +k−1 is among the first
2per(T ) positions of x, and it is a starting position of lyn(x) = lyn(T ). As the subsequent
occurrences of lyn(x) within x start per(T ) positions apart, we conclude that i1 + k − 1 is
one of the first two positions where lyn(x) occurs within x. Thus, p1 := i1 + k − 1 ∈ A1.
Symmetrically, p2 := i2 + k − 1 is added to A2. Hence, (p1, p2) is a synchronized pair of
anchors and T is a common anchored substring with respect to A1, A2. J

It remains to prove that Lemmas 10 and 11 yield O(nd ) anchors and that this selection
can be implemented efficiently. We use the following procedure as a subroutine:

I Lemma 12 (Kociumaka et al. [19, Lemma 6]). Given a string S, one can decide in O(|S|)
time and O(1) space if S is periodic and, if so, compute per(S).

First, we bound the number of (d, ρ)-runs and explain how to generate them efficiently.

I Lemma 13. Consider a string S of length n and positive integers ρ, d with 3ρ− 1 ≤ d ≤ n.
The number of (d, ρ)-runs in S is O(nd ). Moreover, there is an O(1)-space O(n)-time
deterministic algorithm reporting them one by one along with their periods.

Proof. Consider all fragments uk = S[kρ . . (k+ 2)ρ− 1] with boundaries within [n]. Observe
that each (d, ρ)-run v contains at least one of the fragments uk: if v = S[i . . j], then uk with
k = di/ρe starts at kρ ≥ i and ends at (k+2)ρ−1 ≤ i+ρ−1+2ρ−1 = i+3ρ−2 ≤ i+d−1 ≤ j.
Moreover, if v contains uk, then uk is periodic with period per(uk) = per(v) ≤ ρ = 1

2 |uk|
(the first equality is due to |uk| = 2ρ ≥ 2per(v) and the periodicity lemma [18]), and v can
be obtained by maximally extending uk without increasing the shortest period.

This leads to a simple algorithm generating all (d, ρ)-runs, which processes subsequent
integers k as follows: First, apply Lemma 12 to test if uk is periodic and retrieve its period
ρk. If this test is successful, then maximally extend uk while preserving the period ρk, and
denote the resulting fragment by vk. If |vk| ≥ d, then report vk as a (d, ρ)-run. We also
introduce the following optimization: after processing k, skip all indices k′ > k for which uk′
is still contained in vk. (These indices k′ are irrelevant due to vk′ = vk and they form an
integer interval.)

The algorithm of Lemma 12 takes constant space and O(|uk|) time, which sums up to
O(n) across all indices k. The naive extension of uk to vk takes constant space and O(|vk|)
time. Due to the optimization, no two explicitly generated extensions vk contain the same
fragment uk′ . Hence, the total length of the fragments vk (across indices k which were not
skipped) is O(n). Thus, the overall running time is O(n) and the number of runs reported is
O(nd ). J

We conclude with a complete procedure generating anchors in the periodic case.

I Proposition 14. There exists an O(1)-space O(n)-time algorithm that, given two strings
S1, S2 of total length n, and parameters d, ρ ∈ [n] with d ≥ 3ρ− 1, outputs sets A1, A2 of size
O(nd ) satisfying the following property: If T is a common substring of S1 and S2 containing
a (d, ρ)-run, then T is a common anchored substring of S1 and S2 with respect to A1, A2.
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Proof. The algorithm first uses the procedure of Lemma 13 to retrieve all (d, ρ)-runs in S1
along with their periods. For each (d, ρ)-run S1[i . . j], Duval’s algorithm [16] is applied to
find the minimum cyclic rotation of S1[i . . i+ per(S1[i . . j])− 1] in order to determine the
Lyndon root lyn(S1[i . . j]) represented by its occurrence at position i+ ∆ of S1. Positions i,
i+ ∆, i+ 2∆, and j are reported as anchors in A1. The same procedure is repeated for S2
resulting in the elements of A2 being reported one by one.

The space complexity of this algorithm is O(1), and the running time is O(n) (for
Lemma 13) plus O(ρ) = O(d) per (d, ρ)-run (for Duval’s algorithm). This sums up to O(n)
as the number of (d, ρ)-runs is O(nd ). For the same reason, the number of anchors is O(nd ).

For each T , the anchors satisfy the required property due to Lemma 10 or Lemma 11,
depending on whether the (d, ρ) run contained in T is a proper fragment of T or not. J

4.3 Õ(n/`)-space algorithm for arbitrary `

The LCS` problem reduces to an instance of the LCAS problem with a combination of
anchors for the non-periodic case and the periodic case. This yields the following result:

I Theorem 15. The LCS` problem can be solved deterministically in O(n log∗ n
` + logn)

space and O(n logn) time, and in O(n` + logn) space and O(n logn+ ` log2 n) time with high
probability using a Las-Vegas randomized algorithm.

Proof. The algorithm first selects anchors A1 and A2 based on a ( 1
5`,

1
5`)-partitioning set,

as described in Section 4.1 (the partitioning set can be constructed using a deterministic or
a randomized procedure). Additional anchors A′1 and A′2 are selected using Proposition 14
with d = 3

5` and ρ = 1
5`. Finally, the algorithm runs the procedure of Theorem 7 with

anchors A1 ∪A′1 and A2 ∪A′2 and forwards the obtained result to the output.
With this selection of anchors, every common substring T of length |T | ≥ ` is a common

anchored substring. Depending on whether T contains a ( 3
5`,

1
5`)-run or not, this follows

from Proposition 14 and Lemma 9, respectively. Consequently, the solution to the LCAS
problem is a common substring of length at least |T |.

Proposition 14 yields O(n` ) anchors whereas a partitioning set yields O(n log∗ n
` ) or

O(n` ) anchors, depending on whether a deterministic or a randomized construction is used.
Consequently, the space and time complexity is as stated in the theorem, with the cost
dominated by both the partitioning set construction and the algorithm of Theorem 7. J

I Remark 16. Note that the algorithms of Theorem 15 return a longest common substring
as long as lcs(S1, S2) ≥ ` (and not just when ` ≤ lcs(S1, S2) ≤ 2` as LCS` requires).

4.4 O(1)-space algorithm for ` = Ω(n)
In Theorem 15, the space usage involves an O(logn) term, which becomes dominant for very
large `. In this section, we design an alternative O(1)-space algorithm for ` = Ω(n). Later,
in Theorem 19, we generalize this algorithm to arbitrary `, which lets us obtain an analog of
Theorem 15 with the O(logn) term removed from the space complexity.

Our main tool is a constant-space pattern matching algorithm.

I Lemma 17 (Galil-Seiferas [23], Crochemore-Perrin [15]). There exists an O(1)-space O(|P |+
|T |)-time algorithm that, given a read-only pattern P and a read-only text T , reports the
occurrences of P in T in the left-to-right order.

I Lemma 18. The LCS` problem can be solved deterministically in O(1) space and O(n)
time for ` = Ω(n).
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Proof. We show how to find O(1) anchors such that if T is a common substring of S1 and
S2 of length |T | ≥ `, then T is a common anchored substring of S1 and S2.

We first use Proposition 14 with d = 3
5` and ρ = 1

5` to generate anchors A′1 and A′2 for
the periodic case. The set of these anchors has a size of O(nd ) = O(1), and, if T contains a
( 3

5`,
1
5`)-run, then T is a common anchored substring of S1 and S2 with respect to A′1, A′2.
In order to accommodate the case where T does not contain any ( 3

5`,
1
5`)-run, we construct

sets A1 and A2 as follows. Consider all the fragments uk = S1[k `5 . . (k + 3) `5 − 1] with
boundaries within [n]. For each such fragment, add k `5 into A1. In addition, use Lemma 17
to find all occurrences of uk in S2, and add all the starting positions of the occurrences to A2,
unless the number of occurrences exceeds n

`/5 (then, per(uk) ≤ `
5 ). The number of fragments

uk is O( n
`/5 ) = O(1), so the sets A1 and A2 contain O(1) elements.

Let T = S1[i1 . . j1] = S2[i2 . . j2] be arbitrary occurrences of T in S1 and S2, respectively.
Then for k = d i1`/5e, the fragment uk is contained within S1[i1 . . j1]. If per(uk) ≤ 1

5`, then
the occurrence of uk in T can be extended to a ( 3

5`,
1
5`)-run in T (and that case has been

accommodated using A′1 and A′2). Otherwise, p1 := k `5 ∈ A1 and all the positions where uk
occurs in S2, including p2 := i2 + (k `5 − i1), are in A2. Therefore, (p1, p2) is a synchronized
pair of anchors and T is a common anchored substring with respect to A1, A2.

The number of pairs (p1, p2) ∈ (A1 ∪ A′1)× (A2 ∪ A′2) is O(1). For each such pair, the
algorithm computes |LCP(S1[p1 . .], S2[p2 . .])| + |LCPr(S1[. . p1 − 1], S2[. . p2 − 1])| naively,
and returns the common substring corresponding to a maximum among these values. The
computation for each pair takes O(n) time. By the argument above, the algorithm finds a
common substring of length at least |T | for every common substring T with |T | ≥ `. J

5 Time-space tradeoff for the LCS` problem

In this section, we show how to use the previous algorithms in order to solve the LCS`
problem in space O(s), where s is a tradeoff paramater specified on the input. Our approach
relies on the following algorithm which, given a paramter m ≥ `, reduces a single arbitrary
instance of LCS` to O(d nme

2) instances of LCS` with strings of length O(m).

Algorithm 1 Self-reduction of LCS` to many instances on strings of length O(m).

1 foreach q1 ∈ [|S1|] s.t. q1 ≡ 1 (mod m) and q2 ∈ [|S2|] s.t. q2 ≡ 1 (mod m) do
2 Solve LCS` on S1[q1 . .min(q1 + 3m− 1, |S1|)] and S2[q2 . .min(q2 + 3m− 1, |S2|)];
3 return the longest among the common substrings reported;

Algorithm 1 clearly reports a common substring of S1 and S2. Moreover, if T is a common
substring of S1 and S2 satisfying ` ≤ |T | ≤ 2`, then T is contained in one of the considered
pieces S1[q1 . .min(q1 + 3m− 1, |S1|)] (the one with q1 = 1 +mb i1mc if T = S1[i1 . . j1]) and
T = S2[i2 . . j2] is contained in one of the considered pieces S2[q2 . .min(q2 + 3m− 1, |S2|)]
(the one with q2 = 1 +mb i1mc if T = S2[i2 . . j2]). Thus, the common substring reported by
Algorithm 1 satisfies the characterization of the LCS` problem given in Remark 3.

I Theorem 19. The LCS` problem can be solved deterministically in O(1) space and O(n
2

` )
time.

Proof. We apply the self-reduction of Algorithm 1 with m = ` to the algorithm of Lemma 18.
The running time is O(( nm )2m) = O(n

2

m ) = O(n
2

` ) and the space complexity is constant. J

This result allows for the aforementioned improvement upon the algorithms of Theorem 15.
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I Theorem 4. The LCS` problem can be solved deterministically in O(n log∗ n
` ) space and

O(n logn) time, and in O(n` ) space and O(n logn) time with high probability using a Las-
Vegas randomized algorithm.

Proof. If ` ≥ n
logn , we use the algorithm of Theorem 19, which costs O(n

2

` ) = O(n logn)
time. Otherwise, we use the algorithm of Theorem 15. The running time is O(n logn +
` log2 n) = O(n logn), and the space complexity is O(n log∗ n

` + logn) = O(n log∗ n
` ) or

O(n` + logn) = O(n` ), respectively. J

A time-space tradeoff is, in turn, obtained using Algorithm 1 on top of Theorem 4.

I Theorem 20. Given a parameter s ∈ [1, n], the LCS` problem can be solved determinist-
ically in O(s) space and O(n

2 logn log∗ n
`·s + n logn) time, and in O(s) space and O(n

2 logn
`·s +

n logn) time with high probability using a Las-Vegas randomized algorithm.

Proof. For a randomized algorithm, we apply the self-reduction of Algorithm 1 with m = ` ·s
to the algorithm of Theorem 4. The space complexity is O(m` ) = O(s), whereas the running
time is O(n logn) if m ≥ n and O(( nm )2 ·m logm) = O(n

2 logm
m ) = O(n

2 logn
`·s ) otherwise.

A deterministic version relies on the algorithm of Theorem 19 for s < log∗ n, which costs
O(n

2

` ) = O(n
2 log∗ n
`·s ) time. For s ≥ log∗ n, we apply the self-reduction of Algorithm 1 with

m = `·s
log∗ n to the algorithm of Theorem 4. The space complexity is O(m log∗ n

` ) = O(s),
whereas the running time is O(n logn) if m ≥ n and O(( nm )2 · m logm) = O(n

2 logm
m ) =

O(n
2 logn log∗ n

`·s ) otherwise. J

6 Time-space tradeoff for the LCS problem

In order to solve the LCS problem in time depending on lcs(S1, S2), we solve LCS` for
exponentially decreasing thresholds `.

Algorithm 2 A basic reduction from the LCS problem to the LCS` problem.

1 ` = n;
2 do
3 ` = `/2;
4 T = LCS`(S1, S2);
5 while |T | < `;
6 return T ;

In Algorithm 2, as long as ` > lcs(S1, S2), LCS` clearly returns a common substring shorter
than `. In the first iteration when this condition is not satisfied, we have ` ≤ lcs(S1, S2) < 2`,
so LCS` must return a longest common substring.

If the algorithm of Theorem 19 is used for LCS`, then the space complexity is O(1), and
the running time is O(

∑dlog n
L e

i=1
n2

n/2i ) = O(
∑dlog n

L e
i=1 n · 2i) = O(n

2

L ),where L = lcs(S1, S2).

I Theorem 2. The LCS problem can be solved deterministically in O(1) space and O(n
2

L )
time, where L = lcs(S1, S2).

The O(1)-space solution is still used if the input space restriction is s = O(logn).
Otherwise, we start with ` = Θ(ns ) (in the randomized version) or ` = Θ(n log∗ n

s ) (in the
deterministic version) and a single call to the algorithm of Theorem 15. This is correct due to
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5:12 Time-Space Tradeoffs for Finding a Long Common Substring

Remark 16, the space complexity is O(s), and the running time is O(n logn). In subsequent
iterations, the procedure of Theorem 20 is used, and its running time is dominated by the first
term: O(n

2 logn
`·s ) or O(n

2 logn log∗ n
`·s ), respectively. These values form a geometric progression

for exponentially decreasing `, dominated by the running time of the last iteration: O(n
2 logn
L·s )

and O(n
2 logn log∗ n

L·s ), respectively. This analysis yields our main result:

I Theorem 1. Given s with 1 ≤ s ≤ n, the LCS problem with L = lcs(S1, S2) can be solved
deterministically in O(s) space and O(n

2 logn log∗ n
s·L + n logn) time, and in O(s) space and

O(n
2 logn
s·L + n logn) time with high probability using a Las-Vegas randomized algorithm.
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Abstract
The last decade brought a significant increase in the amount of data and a variety of new inference
methods for reconstructing the detailed evolutionary history of various cancers. This brings the
need of designing efficient procedures for comparing rooted trees representing the evolution of
mutations in tumor phylogenies. Bernardini et al. [CPM 2019] recently introduced a notion of the
rearrangement distance for fully-labelled trees motivated by this necessity. This notion originates
from two operations: one that permutes the labels of the nodes, the other that affects the topology
of the tree. Each operation alone defines a distance that can be computed in polynomial time, while
the actual rearrangement distance, that combines the two, was proven to be NP-hard.

We answer two open question left unanswered by the previous work. First, what is the complexity
of computing the permutation distance? Second, is there a constant-factor approximation algorithm
for estimating the rearrangement distance between two arbitrary trees? We answer the first one by
showing, via a two-way reduction, that calculating the permutation distance between two trees on n

nodes is equivalent, up to polylogarithmic factors, to finding the largest cardinality matching in a
sparse bipartite graph. In particular, by plugging in the algorithm of Liu and Sidford [ArXiv 2020],
we obtain an Õ(n4/3+o(1) time algorithm for computing the permutation distance between two trees
on n nodes. Then we answer the second question positively, and design a linear-time constant-factor
approximation algorithm that does not need any assumption on the trees.
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1 Introduction

Phylogenetic trees represent a plausible evolutionary relationship between the most disparate
objects: natural languages in linguistics [22, 36, 44], ancient manuscripts in archaeology [12],
genes and species in biology [25, 26]. The leaves of such trees are labelled by the entities
they represent, while the internal nodes are unlabelled and stand for unknown or extinct
items. A great wealth of methods to infer phylogenies have been developed over the
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decades [19,42], together with various techniques to compare the output of different algorithms,
e.g., by building a consensus tree that captures the similarity between a set of conflicting
trees [11,20,27,28] or by defining a metric between two trees [10,16–18,39,40].

Fully-labelled trees, in opposition to classical phylogenies, may model an evolutionary
history where the internal nodes, just like the leaves, correspond to extant entities. An
important phenomenon that fits this model well is cancer progression [23, 37]. With the
increasing amount of data and algorithms becoming available for inferring cancer evolution [6,
7, 29, 34, 46], there is a pressing need of methods to provide a meaningful comparison among
the trees produced by different approaches. Besides the well-studied edit distance for
fully-labelled trees [35, 38, 43, 47], a few recent papers proposed ad-hoc metrics for tumor
phylogenies [13, 15, 21, 31]. Taking inspiration from the existing literature [4, 8, 14, 42] on
phylogeny rearrangement, the study of an operational notion of distance for rearranging a
fully-labelled tree is of great interest, and there are still many unexplored questions to be
answered.

Following this line of research, we revisit the two notions of operational distance between
fully-labelled trees recently introduced by Bernardini et al. [5]. We consider rooted trees on
n nodes labelled with distinct labels from [n] = {1, 2, . . . , n}, and identify nodes with their
labels. We recall the following two basic operations on such trees:

link-and-cut operation: given u, v and w such that v is a child of u and w is not a
descendant of v, the link-and-cut operation v |u→ w consists of two suboperations: cut
the edge (v, u) and add the edge (v, w), effectively switching the parent of v from u to w.
permutation operation: apply some permutation π : [n]→ [n] to the nodes. If a node
u was a child of v before the operation, then after the operation π(u) is a child of π(v).

The size |π| of a permutation is the number of elements x s.t. π(x) 6= x. Two trees T1 and
T2 are isomorphic if and only if one can reorder the children of every node so as to make the
trees identical after disregarding the labels. The permutation distance dπ(T1, T2) between
two isomorphic trees is the smallest size |π| of a permutation π that transforms T1 into T2.
Bernardini et al. [5] designed a cubic time algorithm for computing the permutation distance.

The size of a sequence of link-and-cut and permutation operations is the sum of the
number of link-and-cut operations and the total size of all permutations. The rearrangement
distance d(T1, T2) between two (not necessarily isomorphic) trees with identical roots is
the smallest size of any sequence of link-and-cut and permutation operations that, without
permuting the root, transform T1 into T2. Bernardini et al. [5] proved that computing the
rearrangement distance is NP-hard, but for binary trees there exists a polynomial time
4-approximation algorithm.

We consider two natural open questions. First, what is the complexity of computing
the permutation distance? Second, is there a constant-factor approximation algorithm for
estimating the rearrangement distance between two arbitrary trees? For computing the
permutation distance, in Section 3 we connect the complexity to that of calculating the
largest cardinality matching in a sparse bipartite graph. By designing two-way reductions
we show that these problems are equivalent, up to polylogarithmic factors. Due to the
recent progress in the area of fine-grained complexity we now know, for many problems
that can be solved in polynomial time, what is essentially the best possible exponent in
the running time, conditioned on some plausible but yet unproven hypothesis [45]. For
max-flow, and more specifically maximum matching, this is not the case yet, although we
do have some understanding of the complexity of the related problem of computing the
max-flow between all pairs of nodes [1,2,32]. So, even though our reductions don’t tell us
what is the best possible exponent in the running time, they do imply that it is the same
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as for maximum matching in a sparse bipartite graph. In particular, by plugging in the
asymptotically fastest known algorithm [33], we obtain an Õ(n4/3+o(1)) time algorithm for
computing the permutation distance between two trees on n nodes. The main technical
novelty in our reduction from permutation distance is that, even though the natural approach
would result in multiple instances of weighted maximum bipartite matching, we manage to
keep the graphs unweighted.

For the rearrangement distance, in Section 4 we design a linear-time constant-factor
approximation algorithm that does not assume that the trees are binary. The algorithm
consists of multiple phases, each of them introducing more and more structure into the
currently considered instance, while making sure that we don’t pay more than the optimal
distance times some constant. To connect the number of steps used in every phase with the
optimal distance, we introduce a new combinatorial object that can be used to lower bound
the latter inspired by the well-known algorithm for computing the majority [9].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. We consider rooted trees and forests on nodes labelled with distinct
labels from [n], and identify nodes with their labels. The parent of u in F is denoted pF (u),
and we use the convention that pF (u) = ⊥ when u is a root in F . F |u denotes the subtree
of F rooted at u, childrenF (u) stands for the set of children of a node u in F , and levelF (u)
is the level of u in F (with the roots being on level 0).

Two trees T1 and T2 are isomorphic, denoted T1 ≡ T2, if and only if there exists a
bijection µ between their nodes such that, for every u ∈ [n] with pT1(u) 6= ⊥, it holds
that µ(pT1(u)) = pT2(µ(u)), implying in particular that µ maps the root of T1 to the root
of T2. Let I(T1, T2) denote the set of all such bijections µ. Given two isomorphic trees
T1 and T2, we seek a permutation π with the smallest size that transforms T1 into T2.
This is equivalent to finding µ ∈ I(T1, T2) that maximises the number of conserved nodes
conserved(µ) = {u : u = µ(u)}, as these two values sum up to n.

When working on the rearrangement distance, for ease of presentation, instead of the
link-and-cut operation we will work with the cut operation defined as follows:

cut operation: let u, v be two nodes such that v is a child of u. The cut operation
(v † u) removes the edge (v, u), effectively making v a root.

The size of a sequence of cut and permutation operations is defined similarly as for a sequence
of link-and-cut and permutation operations. Since a permutation operation is essentially just
renaming the nodes, we can assume that all permutation operations precede all link-and-cut
(or cut) operations, or vice versa. Furthermore, multiple consecutive permutation operations
can be replaced by a single permutation operation without increasing the total size.

This leads to the notion of rearrangement distance between two forests F1 and F2. We
write F1 ∼ F2 to denote that, for every u ∈ [n], at least one of the following three conditions
holds: (i) pF1(u) = pF2(u), (ii) pF1(u) = ⊥, or (iii) pF2(u) = ⊥. The rearrangement
distance d̃(F1, F2) is the smallest size of any sequence of cut and permutation operations
that transforms F1 into F ′1 such that F ′1 ∼ F2. This is the same as the smallest size of any
sequence of cut and permutation operations that transforms F2 into F ′2 such that F1 ∼ F ′2,
as both sizes are equal to the minimum over all permutations π that fix the original root of
the following expression

|{u : π(u) 6= u}|+ |{u : pF1(u) 6= pF2(π(u)) ∧ pF1(u) 6= ⊥ ∧ pF2(π(u)) 6= ⊥}|.

Consequently, d̃ defines a metric. The original notion of rearrangement distance d between
two trees was similarly defined as the smallest size of any sequence of link-and-cut and
permutation operations that transforms T1 into T2, under the additional assumption that
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the roots of T1 and T2 are identical (so d(T1, T2) is well-defined) and cannot participate in
any permutation operation [5]. In Section 4 we connect d(T1, T2) and d̃(T1, T2), and then
work with the latter.

A matching in a bipartite graph is a subset of edges with no two edges meeting at the same
vertex. A maximum matching in an unweighted bipartite graph is a matching of maximum
cardinality, whereas a maximum weight matching in a weighted bipartite graph is a matching
in which the sum of weights is maximised. Given an unweighted bipartite graph with m
edges, the well-known algorithm by Hopcroft and Karp [24] finds a maximum matching in
O(m1.5) time. This has been recently improved by Liu and Sidford to Õ(m4/3+o(1)) [33].

A heavy path decomposition of a tree T is obtained by selecting, for every non-leaf node
u ∈ T , its heavy child v such that T |v is the largest: there will be some subtlety in how
to resolve a tie in this definition that will be explained in detail later. This procedure
decomposes the nodes of T into node-disjoint paths called heavy paths. Each heavy path p
starts at some node, called its head, and ends at a leaf: headT (u) denotes the head of the
heavy path containing a node u in T . An important property of such a decomposition is
that the number of distinct heavy paths above any leaf (that is, intersecting the path from a
leaf to the root) is only logarithmic in the size of T [41].

3 A Fast Algorithm for the Permutation Distance

Our aim is to find µ ∈ I(T1, T2) that maximises conserved(µ), that is γ(T1, T2) =
max{conserved(µ) : µ ∈ I(T1, T2)}. To make the notation less cluttered, we define
γ(x, y) = γ(T1|x, T2|y). Let us start by describing a simple polynomial time algorithm
which follows the construction of [5]. We will then show how to improve it to obtain a
faster algorithm that uses unweighted bipartite maximum matching. Finally, we will show
a reduction from bipartite maximum matching to computing the permutation distance,
establishing that these two problems are in fact equivalent, up to polylogarithmic factors.

3.1 Polynomial Time Algorithm
We first run the folklore linear-time algorithm of [3] for determining if two rooted trees
are isomorphic. Recall that this algorithm assigns a number from {1, 2, . . . , 2n} to every
node of T1 and T2 so that the subtrees rooted at two nodes are isomorphic if and only if
their numbers are equal. The high-level idea is then to consider a weighted bipartite graph
G(u, v) for each u, v ∈ [n] such that levelT1(u) = levelT2(v) and T1|u ≡ T2|v. The vertices of
G(u, v) are childrenT1(u) and childrenT2(v), and there is an edge of weight γ(u′, v′) between
u′ ∈ childrenT1(u) and v′ ∈ childrenT2(v) if and only if T1|u′ ≡ T2|v′ and γ(u′, v′) > 0. We
call such graphs the distance graphs for T1 and T2 and denote them collectively by G(T1, T2).

γ(u, v) is computed as follows, withM(G(u, v)) denoting the weight of a (not necessarily
perfect) maximum weight matching in G(u, v), Γ(u, v) = 1 if u = v and Γ(u, v) = 0 otherwise.

γ(u, v) =
{
M(G(u, v)) + Γ(u, v) if T1|u ≡ T2|v,
0 otherwise. (1)

The overall number of edges created in all graphs is O(n2). Indeed, for each u ∈ [n] such that
levelT1(u) = levelT2(u) and T1|u ≡ T2|u, and for each pair of ancestors z of u in T1 and w of
u in T2 such that levelT1(z) = levelT2(w) and T1|z ≡ T2|w, we possibly add an edge (z, w) to
the graph G(pT1(z), pT2(w)). Since there are up to n pairs of ancestors on the same level for
each label, and the labels are n, there are O(n2) edges overall.
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Figure 1 G(a, a) (type 1), G′(a, a), G′′(a, a) and G(b, c) (type 3) for T1 and T2 on the left. The
special edge in each graph is dashed.

We then start from the deepest level in both trees, and we move up level by level towards
the roots in both trees simultaneously. For each level k, we consider all pairs of isomorphic
subtrees rooted at level k, build the corresponding distance graphs, and use Equation
(1) to weigh the edges. After having reached the roots, we return the value of γ(T1, T2).
The correctness of the algorithm follows directly from Lemma 13 of [5], stating that the
permutation distance is equal to the minimum number of labels that are not conserved by
any isomorphic mapping, i.e., dπ(T1, T2) = n− γ(T1, T2). The running time is polynomial if
we plug in any polynomial-time maximum weight matching algorithm.

In the next subsection we show how to obtain a better running time by constructing a
different version of distance graphs, so that the total weight of their edges will be subquadratic,
and replacing maximum weight matching with maximum matching.

3.2 Reduction to Bipartite Maximum Matching
We start by finding a heavy path decomposition of T1 and T2, with some extra care in
resolving a tie if there are multiple children with subtrees of the same size, as follows. Recall
that we already know which subtrees of T1 and T2 are isomorphic, as the algorithm of [3]
assigns the same number from {1, 2, . . . , 2n} to nodes of T1 and T2 with isomorphic subtrees.
For every u, v ∈ [n] such that T1|u ≡ T2|v, we would like the heavy child u′ of u in T1 and v′
of v in T2 to be such that T1|u′ ≡ T2|v′. This can be implemented in linear time: it suffices
to group the nodes with isomorphic subtrees together, and then make the choice just once
for every such group.

Consider a graph G(u, v) for some u, v ∈ [n]: the edge corresponding to the heavy child
u′ of u in T1 and the heavy child v′ of v in T2 is called special (note that this edge might not
exist). The key observation is that the properties of heavy path decomposition allow us to
bound the total weight of non-special edges by O(n logn).

I Lemma 1. The total weight of all non-special edges in G(T1, T2) is O(n logn).

Proof. Consider any u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u. For each pair
of ancestors z of u in T1 and w of u in T2 such that levelT1(z) = levelT2(w), T1|z ≡ T2|w and
either headT1(z) = z or headT2(w) = w, u will contribute 1 to the weight of an edge (z, w) in
G(pT1(z), pT2(w)). Because there are at most logn heavy paths above any node of T1 or T2,
each label u ∈ [n] contributes 1 to the weight of at most 2 logn non-special edges, making
their total weight O(n logn) overall. J

We divide the graphs in G(T1, T2) into three types: see Figure 1 for an example.
Type 1: graphs G(u, v) with at least one non-special edge.
Type 2: graphs G(u, v) with no non-special edges, and Γ(u, v) = 1.
Type 3: graphs G(u, v) with no non-special edges, and Γ(u, v) = 0.
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We will construct only the graphs of type 1 and 2, and extract from them the information
that the graphs of type 3 would have captured. In what follows we show how to construct
the graphs of type 1 and 2 in O(n log2 n) time.

Constructing the Graphs of Type 1 and 2. The first step is to find all pairs of nodes that
correspond to graphs of type 1 or 2, and store them in a dictionary D implemented as a
balanced search tree with O(logn) access time. The second step is to find the non-special
edges of these graphs, and store them in a separate dictionary, also implemented as a balanced
search tree with O(logn) access time. Note that the weights will be found at a later stage of
the algorithm. We assume that both trees have been already decomposed into heavy paths,
and we already know which subtrees are isomorphic. This can be preprocessed in O(n) time.

I Lemma 2. All graphs of type 1 and 2 can be identified in O(n log2 n) time.

Proof. We consider every u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u in two
passes. In the first pass, we need to iterate over every ancestor z of u in T1 and w of u in T2
such that levelT1(z) = levelT2(w), T1|z ≡ T2|w and either headT1(z) = z or headT2(w) = w,
and if additionally T1|pT1(z) ≡ T2|pT2(w) then designate G(pT1(z), pT2(w)) to be a graph of
type 1 and insert it into D. As a non-special edge (z, w) of a graph G(pT1(z), pT2(w)) is such
that either z or w are not on the same heavy path as their parents, this correctly determines
all graphs of type 1.

To efficiently iterate over all such z and w given u, we assume that the nodes of every
heavy path of a tree T are stored in an array, so that, given any node u ∈ T , we are able to
access the node that belongs to the same heavy path as u and whose level is ` in constant
time, if it exists. We denote such operation accessT (u, `). Given two nodes u ∈ T1 and
v ∈ T2 on the same level, the procedure below shows how to iterate over every ancestor z of
u and w of v such that levelT1(z) = levelT2(w) and either headT1(z) = z or headT2(w) = w,
in O(logn) time, implying that all graphs of type 1 can be identified in O(n log2 n) time.

1 while u 6= ⊥ and v 6= ⊥ do
2 if levelT1(headT1(u)) < levelT2(headT2(v)) then
3 output accessT1(u, levelT2(headT2(v))) and headT2(v)
4 v ← pT2(headT2(v))
5 if levelT1(headT1(u)) > levelT2(headT2(v)) then
6 output headT1(u) and accessT2(v, levelT1(headT1(u)))
7 u← pT1(headT1(u))
8 else
9 output headT1(u) and headT2(v)

10 u← pT1(headT1(u))
11 v ← pT2(headT2(v))

In the second pass, for each u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u,
we designate G(u, u) to be a graph of type 2, unless it has been already designated to be a
graph of type 1. J

I Lemma 3. All graphs of type 1 and 2 can be populated with their edges in O(n log2 n)
time.

Proof. For each such graph G(u, v) such that none of u, v is a leaf, let u′ be the unique heavy
child of u, and v′ be the unique heavy child of v. We add the special edge (u′, v′) to G(u, v).
To find the non-special edges, we again consider every u ∈ [n] such that levelT1(u) = levelT2(u)
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and T1|u ≡ T2|u: we iterate over the ancestors z of u in T1 and w of u in T2 such that
levelT1(z) = levelT2(w), T1|z ≡ T2|w and either headT1(z) = z or headT2(w) = w, and if
additionally T1|pT1(z) ≡ T2|pT2(w) then add a non-special edge (z, w) to G(pT1(z), pT2(w)) .
This takes O(n log2 n) time overall. J

Processing the Graphs of Type 1 and 2. Having constructed the graphs of type 1 and 2
in O(n log2 n) time, we process them level by level. Consider G(u, v): for each of its edges
(u′, v′) corresponding to u′ ∈ childrenT1(u) and v′ ∈ childrenT2(v), we need to extract its
weight γ(u′, v′). If G(u′, v′) is of type 1 or 2, the graph can be extracted from the dictionary
in O(logn) time. Otherwise, G(u′, v′) is of type 3 and we need to make up for not having
processed such graphs.

To this aim, we associate a sorted list of levels with each pair of heavy paths of T1 and
T2. The lists are stored in a dictionary indexed by the heads of the heavy paths. For every
u, v ∈ [n] such that G(u, v) is of type 1 or 2, we append the levels of u and v to the lists
associated with the respective heavy paths. The lists can be constructed in O(n log2 n) time
by processing the graphs level by level, and allow us to efficiently use the following lemma.

I Lemma 4. Consider u, v ∈ [n] such that levelT1(u) = levelT2(v) and T1|u ≡ T2|v, but
G(u, v) is of type 3. Either both u and v are leaves and γ(u, v) = 0, or the heavy child of u
is u′, the heavy child of v is v′, and γ(u, v) = γ(u′, v′).

Proof. First observe that u 6= v, as otherwise G(u, v) would be of type 2. Becase T1|u ≡ T2|v,
either both u and v are leaves or none of them is a leaf. In the former case, G(u, v) is empty
and γ(u, v) = 0. By how we resolve ties in the heavy path decomposition, in the latter
case we have T1|u′ ≡ T2|v′, where u′ is the heavy child of u and v′ is the heavy child of
v. G(u, v) consists of the unique special edge corresponding to the heavy child u′ of u and
v′ of v, so M(G(u, v)) is equal to the cost of the special edge, and by (1) we obtain that
γ(u, v) = γ(u′, v′). J

Given u, v ∈ [n] such that levelT1(u) = levelT2(v) = ` and T1|u ≡ T2|v, we extract γ(u, v)
by accessing the sorted list associated with the heavy paths of u and v: we binary search for
the smallest level `′ ≥ ` such that the heavy paths of u and v respectively contain a node u′
and v′, both on level `′, with G(u′, v′) of type 1 or 2. Then Lemma 4, together with the fact
that in our heavy path decomposition the subtrees rooted at the heavy children of two nodes
with isomorphic subtrees are also isomorphic, implies that γ(u, v) = γ(u′, v′).

It remains to describe how to computeM(G(u, v)) for every graph G(u, v) of type 1 and
2. We could have used any maximum weight matching algorithm, but this would result in a
higher running time. Our goal is to plug in a maximum matching algorithm. This seems
problematic as G(u, v) is a weighted bipartite graph, but we will show that maximum weight
matching can be reduced to multiple instances of maximum matching. However, bounding
the overall running time will require bounding the total weight of all edges belonging to
graphs of type 1 and 2. By Lemma 1 we already know that the total weight of all non-special
edges is O(n logn), but such bound doesn’t hold for the special edges. Therefore, we proceed
as follows. Let u′ be the heavy child of u and v′ be the heavy child of v. We construct
G′(u, v) by removing the special edge from G(u, v). We also construct G′′(u, v) from G(u, v)
by removing all the edges incident to u′ and v′ (see Figure 1 for an example). Equation (1)
can then be rewritten as follows:

γ(u, v) = max{M(G′(u, v)),M(G′′(u, v)) + γ(u′, v′)}+ Γ(u, v). (2)
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This is because a maximum weight matching in G(u, v) either includes the special edge
(u′, v′), implying that no other edges incident to u′ and v′ can be part of the matching and
thus M(G(u, v)) = M(G′′(u, v)) + γ(u′, v′), or it does not include it, thus M(G(u, v)) =
M(G′(u, v)). Since the graphs G′(u, v) and G′′(u, v) contain only non-special edges, the
overall weight of all edges in the obtained instances of maximum weight matching is O(n logn).

We already know that constructing all the relevant graphs takes O(n log2 n) time. It
remains to analyze the time to calculate the maximum weight matching in every G′(u, v) and
G′′(u, v). We first present a preliminary lemma that connects the complexity of calculating
the maximum weight matching in a weighted bipartite graph to the complexity of calculating
the maximum matching in an unweighted bipartite graph.

I Lemma 5 ([30]). Let G be a weighted bipartite graph, and let N be the total weight of all
the edges of G. Calculating the maximum weight matching in G can be reduced in O(N) time
to multiple instances of calculating the maximum matching in an unweighted bipartite graph,
in such a way that the total number of edges in all such graphs is at most N .

Proof. Using the decomposition theorem of Kao, Lam, Sung, and Ting [30], we can reduce
computing the maximum weight matching in a weighted bipartite graph such that the total
weight of all edges is N to multiple instances of calculating the largest cardinality matching
in an unweighted bipartite graph. The total number of edges in all unweighted bipartite
graphs is

∑
imi = N and the reduction can be implemented in O(N) time by maintaining a

list of edges with weight w, for every w = 1, 2, . . . , N . J

I Theorem 6. Let f(m) be the complexity of calculating the maximum matching in an
unweighted bipartite graph on m edges, and let f(m)/m be nondecreasing. The permutation
distance can be computed in Õ(f(n)) time.

Proof. The total number of edges in all constructed graphs is O(n logn), and the total time
to construct the relevant graphs and extract the costs of their edges is O(n log2 n). Thus, the
total running time is O(n log2 n) plus the time to compute the maximum weight matching in
every graph of type 1 and type 2. Let Ni be the total weight of all non-special edges in the
i-th of these graphs. By Lemma 1,

∑
iNi = O(n logn). Additionally, Ni ≤ n. Let mi,j be

the number of edges in the j-th instance of unweighted bipartite matching for the i-th graph.
By Lemma 5, the overall time is hence

∑
i,j f(mi,j), where

∑
i,jmi,j ≤

∑
iNi = O(n logn)

and mi,j ≤ Ni ≤ n. We upper bound
∑
i,j f(mi,j) using the assumption that f(m)/m is

nondecreasing as follows:∑
i,j

f(mi,j) =
∑
i,j

mi,j · f(mi,j)/mi,j ≤
∑
i,j

mi,j · f(n)/n = O(f(n) logn). J

I Corollary 7. The permutation distance can be computed in Õ(n4/3+o(1)) time.

3.3 Reduction from Bipartite Maximum Matching
We complement the algorithm described in Subsection 3.2 with a reduction from bipartite
maximum matching to computing the permutation distance: see Figure 2 for an example.

I Theorem 8. Given an unweighted bipartite graph on m edges, we can construct in O(m)
time two trees with permutation distance equal to the cardinality of the maximum matching.

Proof. We first modify the graph so that the degree of every node is at most 3. This can
be ensured in O(m) time by repeating the following transformation: take a node u with
neighbours v1, v2, . . . , vk, k ≥ 4. Replace u with u′ and u′′ both connected to a new node v,
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Figure 2 The two trees built for the graph on the left, according to Theorem 8.

connect u′ to v1, v2, . . . , vk−2 and u′′ to vk−1, vk. It can be verified that the cardinality of
the maximum matching in the new graph is equal to that in the original graph increased by
1. By storing, for every node, the incident edges in a linked list, we can implement a single
step of this transformation in constant time, and there are at most m steps.

We will now first construct two unlabelled trees and then explicitly assign appropriate
labels to their nodes. Without loss of generality, let the nodes of the graph be u1, u2, . . . , um
and v1, v2, . . . , vm. In the first tree we createm nodes, labelled with u1, u2, . . . , um, connected
to a common unlabelled root. In the second tree we do the same with nodes v1, v2, . . . , vm.
Then, for every edge (ui, vj) of the graph, we attach a new leaf to ui in the first tree and to
vj in the second tree, and assign the same label to both of them. Finally, we attach enough
unlabelled leaves to every ui and vj to make their degrees all equal to 3. To make both trees
fully-labelled on the same set of labels, we further attach 1 +m+ 3m−m = 3m+ 1 extra
leaves to the roots of both trees. For every unlabelled leaf attached to u1, u2, . . . , um of the
first tree, we choose an unlabelled extra leaf of the second tree, and assign the same label to
both of them. We then assign the same label to the root of the first tree and an extra leaf of
the second tree, and label the last m extra leaves of the second tree with u1, u2, . . . , um. We
finally swap the trees and repeat the same procedure: see Figure 2 for an example.

The permutation distance between the two trees is equal to the cardinality of the maximum
matching. Indeed, the trees are clearly isomorphic; moreover, any isomorphism must match
extra leaves with extra leaves, and every ui to a vπ(j), for some permutation π on [m]. The
extra leaves do not contribute to the number of conserved nodes, while ui and vπ(j) contribute
1 if and only if (ui, vπ(j)) was an edge in the original graph. Thus, the distance is equal to
the maximum over all permutations π of the number of edges (ui, vπ(j)). This in turn is
equal to the cardinality of the maximum matching in the original graph. J

4 A Constant-Factor Approximation Algorithm for the
Rearrangement Distance

A linear-time algorithm that, given two trees T1 and T2, approximates d(T1, T2) within a
constant factor, was known for the case where at least one of the trees is binary [5]: here
we do not make any assumptions on the degrees. Throughout this section, we actually
consider d̃(F1, F2), and show how to approximate it within a constant factor. This allows us
to approximate d(T1, T2) within a constant factor using the following procedure. First, we
add n leaves n+ 1, n+ 2, . . . , n attached to the (identical) roots of T1 and T2 to obtain T ′1
and T ′2, respectively. We call the resulting trees anchored. Because T1 and T2 are assumed to
have the same root that cannot be permuted, we have d(T1, T2) = d(T ′1, T ′2). We claim that
d̃(T ′1, T ′2) = d(T ′1, T ′2). Intuitively, in one direction it suffices to replace every link-and-cut
operation v |u → w with a cut operation (v † u); for the other direction, we argue that it
does not make sense to permute the root, and every cut operation (v † u) can be replaced by
v |u → w, where w = pT2(v), and such link-and-cut operations are reordered so as not to
make w a descendant of v.
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6:10 On Two Measures of Distance Between Fully-Labelled Trees

I Lemma 9. For any two anchored trees T1 and T2, d̃(T1, T2) = d(T1, T2).

We can thus approximate d̃(T ′1, T ′2) within a constant factor to obtain a constant factor
approximation of d(T1, T2). In the remaining part of this section we design an approximation
algorithm for d̃(F1, F2), where F1 and F2 are two arbitrary forests.

We start with describing the notation. Consider two forests F1 and F2. For every i ∈ [n],
let a[i] ∈ [n] be the parent of a non-root node i in F1, and a[i] = 0 if i is a root in F1.
Formally, a[i] = pF1(i) when pF1(i) 6= ⊥ and a[i] = 0 otherwise; b[i] is defined similarly but
for F2. We think of a and b as vectors of length n.

The algorithm consists of four steps, with step j transforming forest F j−1
1 into F j1

by performing ALG(j) operations, starting from F 0
1 = F1. We will guarantee that

ALG(j) = O(d̃(F j−1
1 , F2)). Then, by triangle inequality and symmetry, d̃(F j1 , F2) ≤

d̃(F j−1
1 , F j1 ) + d̃(F j−1

1 , F2) ≤ ALG(j) + d̃(F j−1
1 , F2) = O(d̃(F j−1

1 , F2)), so by induction
d̃(F j1 , F2) = O(d̃(F1, F2)). Consequently, ALG(j) = O(d̃(F1, F2)), making the overall cost∑
j ALG(j) = O(d̃(F1, F2)) In the j-th step of the algorithm a[i] refers to the parent of i in

F j−1
1 . To analyse each step of the algorithm we will use the following two structures, the

first of which is a streamlined version of family partitions defined in the previous paper [5].

I Definition 10 (family partition). Given two forests F1 and F2, the family partition P (F1, F2)
is the set {(a[i], b[i]) : a[i], b[i] 6= 0 ∧ a[i] 6= b[i]}.

I Definition 11 (migrations graph). Given two forests F1 and F2, the migrations graph
MG(F1, F2) consists of edges {(i, j) : a[i], a[j], b[i], b[j] 6= 0 ∧ a[i] = a[j] ∧ b[i] 6= b[j]}.

For a multiset S, let |S| denote its cardinality, that is, the sum of multiplicities of all
distinct elements of S. The mode of S, denoted mode(S), is any element s ∈ S with the
largest multiplicity freqS(s). We will use the following combinatorial lemma.

I Lemma 12. Given any multiset S, let f = min{|S| − freqS(mode(S)), b|S|/2c}. All |S|
elements of S can be partitioned into f pairs (x1, y1), . . . , (xf , yf ), xi 6= yi, for every i ∈ [f ],
and the remaining |S| − 2f elements.

.	.	.	 �|�|−1�1 �|�|−2�2 �3 �|�|�⌊|�|/2⌋�� .	.	.	 .	.	.	 �|�|−� .	.	.	

=�� mode(S)

.	.	.	�1 �2 �3 �|�|�⌊|�|/2⌋ .	.	.	� (����(�))����
�

.	.	.	 �⌊|�|/2⌋+1 �⌊|�|/2⌋+2

mode(S)=��

Figure 3 Pairing in the case f = |S| − freqS(mode(S)) (left) and f = b|S|/2c (right).

Proof. Number the elements of S so that s1 = . . . = sfreqS(mode(S)) = mode(S) and all of
the others are sorted and numbered from freqS(mode(S)) + 1 to |S| accordingly. Then, if
f = |S| − freqS(mode(S)), pairs (si, s|S|−i+1), i ∈ [f ] are s.t. si 6= s|S|−i+1 (Figure 3, left); if
f = b|S|/2c, pairs (si, sb|S|/2c+i), i ∈ [b|S|/2c] are s.t. si 6= sb|S|/2c+i (Figure 3, right). J

4.1 Step 1
Roughly speaking, the aim of the first step is to ensure that all nodes that might be possibly
involved in a permutation, i.e., the nodes with different children in F1 and F2, are roots.
This is so that we do not need to worry about the relationship with their parents. For every
i ∈ [n] such that a[i] and b[i] are both defined and different, we cut the edges from a[i] and
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Figure 4 F1 and F2. The family partition is P = {(2, 3), (2, 7), (3, 7), (7, 3), (7, 2)}.

b[i] to their parents in F1, thus making both of them roots. In other words, for every i such
that a[i], b[i] 6= 0 and a[i] 6= b[i], we cut edges (a[i], a[a[i]]) and (b[i], a[b[i]]). The resulting
forest F 1

1 has the following property: for each i ∈ [n] such that the parents of i in F 1
1 and in

F2 are both defined and different, a[a[i]] = a[b[i]] = ⊥.
The number of cuts in this step is by definition at most twice the size of the family

partition P (F1, F2). Bernardini et al. [5] already showed that |P (T1, T2)| ≤ 2d(T1, T2) for
two trees T1 and T2. We show that this still holds for forests and d̃: for completeness, we
provide a self-contained proof (cf. Lemma 16 in [5]).

I Lemma 13. |P (F1, F2)| ≤ 2d̃(F1, F2), implying ALG(1) ≤ 4d̃(F1, F2).

Proof. It is enough to verify that applying a single cut operation might decrease the size
of the family partition by at most one, while applying a permutation operation π might
decrease the size of the family partition by at most 2s, where s = |{u : u 6= π(u)}|.

Consider a cut operation (v † u). The only change to a is that a[v] becomes 0, so indeed
the size of the family partition might decrease by at most one.

Now consider a permutation π. After applying π, an edge (i, a[i]) becomes (π(i), π(a[i])),
making π(a[π−1(i)]) the parent of i. This transforms the family partition P into

P ′ = {(π(a[i]), b[π(i)]) : a[i] 6= 0 ∧ b[π(i)] 6= 0 ∧ π(a[i]) 6= b[π(i)]}.

To lower bound the size of |P ′|, we first focus on the subset of P corresponding to the nodes
that are fixed by π. We therefore define

Pf = {(a[i], b[i]) : a[i] 6= 0 ∧ b[i] 6= 0 ∧ a[i] 6= b[i] ∧ π(i) = i}.

By definition, we can equivalently rewrite Pf as

Pf = {(a[i], b[π(i)]) : a[i] 6= 0 ∧ b[π(i)] 6= 0 ∧ a[i] 6= b[π(i)] ∧ π(i) = i}.

Now consider all pairs with the same second coordinate y in Pf : (x1, y), (x2, y), . . . , (xk, y),
where xi 6= y for every i ∈ [k]. P ′ contains all pairs (π(xi), y) such that π(xi) 6= y. If
π(y) = y then π(xi) = y cannot happen and P ′ contains all pairs with the second coordinate
y from Pf ; otherwise, P ′ contains all such pairs except possibly one. Overall, |P ′| ≥ |Pf | − s,
and |Pf | ≥ |P | − s so indeed |P ′| ≥ |P | − 2s. J

I Example 14. Consider F1 and F2 depicted in Figure 4. Step 1 consists of cut operations
(2 † 1) (because, e.g., a[4] 6= b[4] and a[4] = 2), (3 † 1) (because b[4] = 3) and (7 † 2) (because,
e.g., a[11] 6= b[11] and a[11] = 7). The resulting forest F 1

1 is shown in Figure 5a.
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(a) F 1
1 . (b) F 2

1 . (c) F 3
1 . (d) F 4

1 .

Figure 5 The forests obtained after Step 1 (5a), Step 2 (5b), Step 3 (5c) and Step 4 (5d).

4.2 Step 2
Consider u ∈ [n], and let childrenF 1

1
(u) = {v1, . . . , vk}. We define the multiset B(u) = {b[vi] :

b[vi] 6= 0} containing the parents in F2 of the children of u in F 1
1 . Recall that mode(B(u))

is the most frequent element of B(u) (ties are broken arbitrarily). We cut all edges (vi, u)
such that b[vi] 6= 0 and b[vi] 6= mode(B(u)), and define, for each u ∈ [n], its representative
rep(u) = mode(B(u)). Intuitively, rep(u) is the node that might be convenient to replace u
with using a permutation. Roughly speaking, in this step we get rid of all of the children of u
that would be misplaced after permuting u and rep(u), for each u ∈ [n]. The resulting forest
F 2

1 has the following property: for each u ∈ [n], for any child v of u in F 2
1 , either b[v] = 0 or

b[v] = rep(u), i.e., the children of each node u of F 2
1 have all the same parent rep(u) in F2.

To bound the number of cuts in this step we first need a technical lemma relating the
rearrangement distance of two forests and the size of any matching in their migrations graph.

I Lemma 15. Consider two forests F1 and F2 and their migrations graph MG(F1, F2). For
any matching M in MG(F1, F2) it holds that |M | ≤ d̃(F1, F2).

Proof. By definition, there is an edge between i and j inMG(F1, F2) if and only if a[i] = a[j],
but b[i] 6= b[j]. Let M be any matching in MG(F1, F2). If |M | > 0 then d̃(F1, F2) ≥ 1,
so it is enough to show that, for a single operation transforming F1 into F ′1, the graph
MG(F ′1, F2) contains a matching M ′ of size at least |M | − s, where s = 1 for a cut operation
and s = |{u : u 6= π(u)}| for a permutation operation π.

First, consider a cut operation (v † u). The only change in MG(F ′1, F2) is removing all
edges incident to v. M contains at most one edge incident to v, so we construct M ′ of size
at least |M | − 1 from M by possibly removing a single edge. Second, consider a permutation
operation π: we construct M ′ from M by removing every edge (v, w) such that v 6= π(v) or
w 6= π(w). Because there is at most one edge incident to every u such that u 6= π(u), M ′
contains at least |M | − s edges. M ′ is a matching in MG(F ′1, F2), as for every (v, w) ∈M ′
we have pF ′

1
(v) = pF1(v) and pF ′

1
(w) = pF1(w). J

I Lemma 16. ALG(2) ≤ 2d̃(F 1
1 , F2).

Proof. We consider each u ∈ [n] separately. Let m = freqBu
(mode(Bu)) and MGu be the

subgraph of MG(F 1
1 , F2) induced by Bu. We will first construct a matching of appropriate

size in every MGu. We cut every (vi, u) such that b[vi] 6= 0 and b[vi] 6= mode(Bu), making
|Bu|−m cuts. Let f = min(|Bu|−m, b|Bu|/2c). By Lemma 12, we can partition a subset of Bu
into f pairs (b[vi], b[vj ]) such that b[vi] 6= b[vj ]. We add every edge (vi, vj) to the constructed
matching. We claim that |Bu| −m ≤ 2f . This holds because |Bu| −m ≤ 2(|Bu| −m) and
|Bu| −m ≤ |Bu| − 1 ≤ 2b|Bu/2|c for nonempty Bu.

We take the union of all such matchings to obtain a single matching M . As argued
above, the total number of cuts is at most 2|M |. Together with Lemma 15, this implies that
ALG(2) ≤ 2|M | ≤ 2d̃(F 1

1 , F2). J
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I Example 17. Consider again F1 and F2 of Figure 4. B(7) = {3, 3, 3, 2, 7}, thus we cut
(14 †7) and (15 †7). B(2) = {3, 3, 7}, implying (6 †2). The resulting F 2

1 is shown in Figure 5b.

4.3 Step 3

If after Step 2 all of the children of a node u of F1 have the same parent rep(u) in F2, it still
may be the case where rep(u) = rep(v) with u 6= v, i.e., all of the children of two distinct
nodes of F1 have the same parent in F2. In this case, it is not clear how to choose whether
to replace u or v with rep(u) = rep(v) in a permutation. This step aims at resolving this
situation by cutting the ambiguous edges.

Consider thus u ∈ [n], and let childrenF2(u) = {v1, v2, . . . , vk}. We define the multiset
B′(u) = {a[vi] : a[vi] 6= 0} containing the parents in F 2

1 of the children of u in F2. We cut all
edges (vi, a[vi]) such that a[vi] 6= 0 and a[vi] 6= mode(B′(u)), breaking ties arbitrarily, and
define rep′(u) = mode(B′(u)). The resulting forest F 3

1 has the following property: for each
u ∈ [n], for any child v of u in F2, we have a[v]) = ⊥ or a[v] = rep′(u).

We observe that the number of cuts performed by the above procedure is the same as if
we had applied Step 2 on F2 and F 2

1 . Therefore, Lemma 16 implies the following.

I Lemma 18. ALG(3) ≤ 2d̃(F 2
1 , F2).

I Example 19. Consider again F1 and F2 of Figure 4. We have B′(3) = {2, 2, 7, 7, 7}, we
thus cut (4 † 2) and (5 † 2). The resulting forest F 3

1 is shown in Figure 5c.

4.4 Step 4

We summarize the properties of F 3
1 and F2:

1. For each u ∈ [n] such that a[u], b[u] 6= 0 and a[u] 6= b[u], a[u] and b[u] are roots in F 3
1 .

2. For each u ∈ [n] we can define rep(u) ∈ [n] in such a way that, for any child v of u in F 3
1 ,

we have b[v] = 0 or b[v] = rep(u).
3. For each u ∈ [n] we can define rep′(u) ∈ [n] in such a way that, for any child v of u in F2,

we have a[v] = 0 or a[v] = rep′(u).
To finish the description of the algorithm, we show how to find a permutation operation π of
size O(d̃(F 3

1 , F2)) that transforms F 3
1 into F 4

1 such that F 4
1 ∼ F2.

For every u such that a[u], b[u] 6= 0 and a[u] 6= b[u], we require that π(a[u]) = b[u]. Due
to Property 1, for every such u we have ensured that a[u] and b[u] are roots of F 3

1 . So, if
we can find a permutation π that satisfies all the requirements and does not perturb the
non-roots of F 3

1 , then it will transform F 3
1 into F 4

1 such that F 3
1 ∼ F2. Furthermore, if for

every x perturbed by π there exists u such that a[u], b[u] 6= 0 and a[u] 6= b[u] with x = a[u]
or x = b[u] then by Lemma 13 |π| ≤ 2|P (F 3

1 , F2)| ≤ 4d̃(F 3
1 , F2) as required.

To see that there indeed exists such π, observe that due to Property 2 there cannot be two
requirements π(x) = y and π(x) = y′ with y 6= y′. Similarly, due to Property 3 there cannot
be two requirements π(x) = y and π(x′) = y with x 6= x′. Thinking of the requirements as a
graph, the in- and out-degree of every node is hence at most 1, so we can add extra edges to
obtain a collection of cycles defining a permutation π that does not perturb the nodes not
participating in any requirement.

I Example 20. Consider F1 and F2 of Figure 4. π = (3 7) transforms F 3
1 into F 4

1 ∼ F2.
The final F 4

1 is shown in Figure 5d.
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Abstract
Let W be a string of length n over an alphabet Σ, k be a positive integer, and S be a set of
length-k substrings of W . The ETFS problem asks us to construct a string XED such that: (i) no
string of S occurs in XED; (ii) the order of all other length-k substrings over Σ is the same in W
and in XED; and (iii) XED has minimal edit distance to W . When W represents an individual’s
data and S represents a set of confidential substrings, algorithms solving ETFS can be applied for
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dynamic programming algorithm for computing the edit distance between two strings. Notably, we
also show that ETFS cannot be solved in O(n2−δ) time, for any δ > 0, unless the strong exponential
time hypothesis is false. To achieve this, we reduce the edit distance problem, which is known to
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1 Introduction

Strings are being used to represent individuals’ data arising from a large range of domains
e.g., transportation, web analytics, or molecular biology. For example, a string can represent:
an individual’s movement history, with each letter corresponding to a visited location [23, 20];
an individual’s purchasing history in a retailer, with each letter corresponding to a purchased
product [9]; or a fragment of the genome sequence of a patient, with each letter corresponding
to a DNA base [17]. Analyzing such strings is thus necessary in many different applications.
To support these applications, string data must often be disseminated beyond the party that
has collected them. For example, transportation organizations disseminate their collected data
to data analytics companies [14], retailers disseminate their data to marketing agencies [15],
and hospitals disseminate DNA sequencing data to research institutions [17].

However, individuals’ data dissemination has led to justified privacy concerns [22] due to
the exposure of confidential information [3, 1, 6, 5]. To ease these concerns and comply with
legislation such as HIPAA [8] in the US or GDPR [19] in the EU, it is essential to ensure
that confidential information does not occur in the disseminated data; this process is called
sanitization. At the same time, it is essential to preserve the utility of the original data, so
that data processing and analysis tasks can be accurately performed on the disseminated
data. For instance, a data analyst (resp. marketing researcher) should still be able to
discover actionable patterns of locations (resp. purchased products) from transportation
(resp. purchasing history) data [15, 14].

The Combinatorial String Dissemination (CSD) model was recently introduced in [3]
to provide privacy and utility guarantees. In CSD, we are given a string W and the aim
is to apply a sequence of edit operations to W , so that the resulting counterpart X of W
satisfies a set of privacy constraints and a set of utility properties. Specifically, in [3] the
authors considered the following CSD problem, referred to as TFS (Total order, Frequency,
Sanitization). Given W of length n over an alphabet Σ, a positive integer k, and a set
S of sensitive length-k substrings of W modeling confidential information, construct the
minimal-length string X such that: X does not contain any sensitive length-k substring
(C1); and the order (and thus the frequency) of all other length-k substrings over Σ in W
is the same as in X (P1). The constraint C1 ensures that no sensitive length-k substring
occurs in X. The property P1 ensures that X incurs minimal utility loss for tasks based on
the sequential nature of length-k non-sensitive substrings of W , as well as on their frequency.
The authors of [3] proposed an O(kn)-time algorithm to solve the TFS problem, and showed
that their algorithm is in fact worst-case optimal because the length of X is in Θ(kn).

The authors of [4] considered another CSD problem related to edit distance, that is, the
minimum number of insertions, deletions or substitutions of letters needed to transform one
string into another. The problem considered in [4] is referred to as ETFS (Edit distance,
Total order, Frequency, Sanitization). Given W of length n over an alphabet Σ, a positive
integer k, and a set S of sensitive length-k substrings of W , ETFS asks us to construct a
string XED that satisfies C1 and P1 while being at minimal edit distance from W . ETFS is
the main problem we consider in this paper. Strings constructed by means of solving ETFS
can be used, with minimal utility loss, in tasks that are based on edit distance as a similarity
measure. Examples of such tasks are frequent pattern mining [21], clustering [12], entity
extraction [24] and range query answering [16]. To solve ETFS, the authors of [4] proposed
an O(k|Σ|n2)-time algorithm. Their algorithm is based on solving a specific instance of
approximate regular expression matching, essentially applying the algorithm of Myers and
Miller [18] on an appropriate regular expression that models all strings satisfying C1 and
P1 to finally pick the one that is at minimal edit distance to W .
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Note that, to have a solution to TFS or ETFS, we may need to insert in W a letter
# /∈ Σ. Indeed, inserting (or replacing letters of W with) any letter of Σ could violate P1
and/or possibly create new occurrences of sensitive length-k substrings. We thus generally
have that both X (the solution of TFS) and XED (a solution of ETFS) are over Σ ∪ {#}.

I Example 1. LetW = babaaaaabbbab, Σ = {a, b}, k = 3, and the set of sensitive substrings
be {aba, baa, aaa, aab, bba}. Then X = babbb#bab and XED = bab#aa#abbb#bab. Note
that both X and XED satisfy C1 and P1. X is the shortest such string and XED is a string
closest to W in terms of edit distance.

In Section 3, we show the following theorem improving the result of [4] by a factor of |Σ|.

I Theorem 2. The ETFS problem can be solved in O(kn2) time.

Our algorithm is based on a non-trivial modification of the classic dynamic programming
algorithm for computing the edit distance between two given strings. In particular, the
modification is based on the fact that in ETFS we are given a single string W , and we are
asked to construct a string XED that satisfies C1 and P1 and that is closest to W . We
thus actually fill in the dynamic programming matrix that computes the minimum edit
distance between W and a regular expression that is a suitable abstraction of XED; our
algorithm encodes in its recurrence formulae the choices that specify the instance of the
regular expression that we eventually output.

In Section 4, we also show that ETFS cannot be solved in strongly subquadratic time
unless the Strong Exponential Time Hypothesis (SETH) [11, 10] is false. This is the most
technically involved part of the paper.

I Theorem 3. The ETFS problem cannot be solved in O(n2−δ) time, for any δ > 0, unless
SETH is false.

To arrive at this theorem, we reduce the weighted edit distance problem, which is known
to admit the same conditional lower bound [2, 7], to the ETFS problem. In particular, given
two strings P and Q of length Θ(n), we construct an instance of ETFS of length O(n) from
the output of which we can infer the insertions corresponding to some optimal alignment
of P and Q with respect to the weighted edit distance. Using another suitable instance of
ETFS, we can determine the corresponding deletions. That gives us an optimal alignment of
P and Q, from which we can compute the weighted edit distance of P and Q in O(n) time.

2 Definitions and Notation

Let T = T [0]T [1] . . . T [n− 1] be a string of length |T | = n over a finite alphabet Σ of size
|Σ| = σ. By Σ∗ we denote the set of all strings over Σ, and by Σk the set of all length-k
strings over Σ. For two indices 0 ≤ i ≤ j ≤ n− 1, T [i . . j] = T [i] . . . T [j] is the substring of
T that starts at position i and ends at position j of T . By ε we denote the empty string of
length 0. A prefix of T is a substring of the form T [0 . . j], and a suffix of T is a substring of
the form T [i . . n−1]. A prefix (resp. suffix) of a string is proper if it is not equal to the string
itself. The reverse T [n− 1]T [n− 2] . . . T [0] of T is denoted by TR. Given two strings U and
V we say that U has a suffix-prefix overlap of length ` > 0 with V if and only if the length-`
suffix of U is equal to the length-` prefix of V , i.e., U [|U | − ` . . |U | − 1] = V [0 . . `− 1].

We fix a string W of length n over an alphabet Σ and an integer 0 < k < n. We refer to
a length-k string or a pattern interchangeably. An occurrence of a pattern is uniquely defined
by its starting position. Let S be the set representing the sensitive patterns as positions

CPM 2020
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over {0, . . . , n − k} with the following closure property: for every i ∈ S, any j for which
W [j . . j + k − 1] = W [i . . i+ k − 1], must also belong to S. That is, if an occurrence of a
pattern is in S, then all its occurrences are in S. A substring W [i . . i+ k − 1] of W is called
sensitive if and only if i ∈ S; S is thus the complete set of occurrences of sensitive patterns.
The difference set I = {0, . . . , n− k} \ S is the set of occurrences of non-sensitive patterns.

For any string U , we denote by IU the set of occurrences in U of non-sensitive length-k
strings over Σ. (We have that IW = I.) We call an occurrence i the t-predecessor of another
occurrence j in IU if and only if i is the largest element in IU that is less than j. This
relation induces a strict total order on the occurrences in IU . We call a subset J of IU a
t-chain if for all elements in J except the minimum one, their t-predecessor is also in J . For
two strings U and V , chains JU and JV are equivalent, denoted by JU ≡ JV , if and only if
|JU | = |JV | and U [u . . u+ k − 1] = V [v . . v + k − 1], where u is the j-th smallest element of
JU and v is the j-th smallest of JV , for all j ≤ |JU |.

Given two strings U and V the edit distance dE(U, V ) is defined as the minimum number
of elementary edit operations (letter insertion, deletion, or substitution) that transform one
string into the other. Each edit operation can also be associated with a cost: a fixed positive
value. Given two strings U and V the weighted edit distance dWE(U, V ) is defined as the
minimal total cost of a sequence of edit operations to transform one string into the other.

We now formally define ETFS, the main problem considered in this paper.

I Problem 1 (ETFS). Given a string W of length n, an integer k > 1, and a set S (and
thus set I), construct a string XED which is at minimal (weighted) edit distance from W

and satisfies the following:
C1 XED does not contain any sensitive pattern.
P1 IW ≡ IXED , i.e., the t-chains IW and IXED are equivalent.

We also provide the following auxiliary definitions from [18]. The set of regular expressions
over Σ is defined recursively as follows: (i) a ∈ Σ ∪ {ε} is a regular expression. (ii) If E
and F are regular expressions, then so are EF , E|F , and E∗, where EF denotes the set of
strings obtained by concatenating a string in E and a string in F , E|F is the union of the
strings in E and F , and E∗ consists of all strings obtained by concatenating zero or more
strings from E. Parentheses are used to override the natural precedence of the operators,
which places the operator ∗ highest, the concatenation next, and the operator | last. We say
that a string T matches a regular expression E, if T is equal to one of the strings in E.

3 ETFS-DP: An O(kn2)-time Algorithm for ETFS

In this section we describe ETFS-DP, a dynamic programming algorithm that solves ETFS
faster than the algorithm proposed in [4]. We describe our algorithm for the unweighted
edit distance model for simplicity, but it should be clear that it can be extended to the
weighted edit distance model in a straightforward way and with no additional cost. Intuitively,
since we are looking for a string XED that contains all the non-sensitive patterns of W ,
and in the same order, for each pair (U, V ) of non-sensitive patterns of W such that U is
the t-predecessor of V , we can (i) merge U and V into U · V [k − 1] when U and V have a
suffix-prefix overlap of length k − 1; or (ii) interleave U and V constructing a string UY V ,
where Y is a carefully selected string over Σ ∪ {#}, where # /∈ Σ.

Let us start by defining a regular expression gadget ⊕, which encodes all candidate
strings that can be used to interleave two non-sensitive patterns while respecting C1, and
two similar gadgets 	 and ⊗. We will make use of the following regular expression:

Σ<k = ((a1|a2| . . . |a|Σ||ε) . . . (a1|a2| . . . |a|Σ||ε)︸ ︷︷ ︸
k − 1 times

),



G. Bernardini et al. 7:5

where Σ = {a1, a2, . . . , a|Σ|} is the alphabet of W . Given a letter # /∈ Σ, we define

⊕ = #(Σ<k#)∗, 	 = (Σ<k#)∗, ⊗ = (#Σ<k)∗.

Let N0, N1, . . . , N|I|−1 be the sequence of non-sensitive patterns as they occur in W
from left to right. In [3], XED was built by finding an optimal alignment between W and a
regular expression R constructed as follows. First, set R = 	N0 and then process pairs of
non-sensitive patterns Ni and Ni+1, for all i ∈ {1, . . . , |I| − 2}: in the i-th step, if Ni and
Ni+1 can be merged, append (Ni+1[k − 1] | ⊕Ni+1) to R. Otherwise, append ⊕Ni+1 to R.
After processing all pairs, conclude by appending ⊗ to R. The length of R is in O(k|Σ|n).

The general idea in Algorithm ETFS-DP is to simulate the alignment of W to R without
constructing R explicitly. Instead, we use a string T = �N0 �N1 · · ·�N|I|−1�, where �, �
and � are length-1 placeholders for 	, ⊕ and ⊗, respectively. The length of T is thus only
(k + 1)|I|+ 1 = O(kn), leading to an O(kn2)-time algorithm when aligned to W , |W | = n.

3.1 Dynamic Programming
In a preprocessing phase, we compute a binary array M of length |I| so that M [`] = 1 if the
`-th and the (`− 1)-th non-sensitive patterns (in the order given by their occurrences in W )
can be merged. We set M [0] = 0 for completeness. More formally, for all 0 < ` ≤ |I| − 1,
M [`] = 1 if N`−1[1 . . k − 1] = N`[0 . . k − 2], and M [`] = 0 otherwise.

We then solve ETFS in a dynamic programming fashion by filling in an (|I|(k + 1) +
1)× (|W |+ 1) matrix E. The rows of E correspond to string T , and the columns to string
W . We denote by E[i][·] and E[·][j] the i-th row and the j-th column of E, respectively.

Entry E[i][j], for all 0 ≤ i ≤ |I|(k+1) and 0 ≤ j ≤ |W |, contains the edit distance between
(the regular expression corresponding to) T [0 . . i] and W [0 . . j − 1]. Rows corresponding to
�, i.e., rows with index i = `(k + 1) for some ` ∈ [1, |I| − 1], implicitly represent a regular
expression gadget and must be filled in with ad hoc rules; we will refer to them as gadgets
rows. In turn, we will name possibly mergeable the rows with index i = `(k + 1) − 1 for
some ` ∈ [1, |I| − 1], as they must be filled in taking into account the option of merging the
corresponding pattern with the preceding one, should it be possible. All other rows of E
will be called ordinary. In what follows, I is a function such that I[T [i] 6= W [j − 1]] = 1 if
T [i] 6= W [j − 1], and 0 otherwise. We give below the recursive formulae that constitute the
core of our dynamic programming algorithm.
Initialization. Entry E[0][j] contains the edit distance between 	 and W [0 . . j − 1] for j ≥ 1,

while E[0][0] = 0. Because of the definition of 	, it is only possible to match up to k − 1
consecutive letters, after which a mismatch due to # occurs, and hence E[0][j] = dj/ke.
E[i][0] stores the edit distance between T [0 . . i] and the empty prefix ε ofW . This distance
is minimized by the shortest possible string in each regular expression prefix, obtained
by always merging when allowed, and picking the shortest possible string encoded by ⊕
when not. This leads to the following formula, where ` ∈ [0, |I| − 1].

E[i][0] =
{
E[i− k − 1][0] + 1, if i = (`+ 1)(k + 1)− 1 ∧M [`] = 1 (merge)
E[i− 1][0] + 1, otherwise (no merge)

(1)

Ordinary Rows: i 6≡ 0 mod (k + 1) and i 6≡ −1 mod (k + 1). The formula is the same
as in the standard algorithm for edit distance [13]: recall that E[·][j] correspond to
W [j − 1].

E[i][j] = min


E[i− 1][j] + 1, (insert)
E[i][j − 1] + 1, (delete)
E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)

(2)
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Possibly Mergeable Rows: i ≡ −1 mod (k + 1). These rows correspond to the last let-
ter of a non-sensitive pattern. The first three options of Equation 3 encode the case where
we do not merge, regardless of the value of M [`]. The last two options, instead, require
M [`] = 1, as a merge does take place. This means that the letters corresponding to the k
rows above will not appear in the output string XED, and thus play no role in the edit
distance computation. We thus read the values of row i− k − 1, corresponding to the
last letter of the previous non-sensitive pattern.

E[i][j] = min


E[i− 1][j] + 1, (insert)
E[i][j − 1] + 1, (delete)
E[i− 1][j − 1] + I[T [i] 6= W [j − 1]], (match or substitute)
E[i− k − 1][j] + 1, if M [`] = 1 (insert and merge)
E[i− k − 1][j − 1] + I[T [i] 6= W [j − 1]], if M [`] = 1 (match or sub. and merge)

(3)

Gadget Rows: i ≡ 0 mod (k + 1). A gadget row encodes the possibility of interleaving
two non-sensitive patterns with a string that preserves C1 and P1 and minimizes the
edit distance. Because of the form of the regular expression gadgets, a # can either be
inserted or substituted directly after a non-sensitive pattern, or be preceded by another #
no more than k positions earlier. This results in the following formula:

E[i][j] = min


E[i− 1][j] + 1, (insert)
E[i− 1][j − 1] + 1, (substitute)
E[i][j − 1] + 1, . . . , E[i][max{0, j − k}] + 1, (delete or extend gadget)

(4)

The following lemma states that the above formulae correctly compute the edit distance
between prefixes of T and prefixes of W .

I Lemma 4. E[i][j] = dE(T [0 . . i],W [0 . . j − 1]), for all 0≤ i< |I|(k + 1) and 0<j≤|W |,
and E[i][0] = dE(T [0 . . i], ε).

Proof. The correctness of the equations that describe how to fill in entries E[0][j] and E[i][0]
follows from the explanation in paragraph “Initialization”, and the correctness of Equation 2
follows from the standard dynamic programming algorithm for edit distance [13]. Let us
focus on the case of possibly mergeable rows (Equation 3): when merging is not possible, the
equation is the same as in the standard algorithm, and therefore it is correct. When merging
is possible, we must pick the minimum value among all possible edit operations when we
actually choose to merge and among all possible operations when we do not merge, even
if we could. The first three rows of Equation 3 correspond to the three possible operations
when we do not merge, and are again the same possibilities as the standard algorithm for
edit distance; the last two rows correspond to the case where we merge. When we merge, we
append the letter corresponding to the possibly mergeable row to the previous non-sensitive
pattern. If we were to run the standard algorithm for computing the edit distance between
such string andW , the row above, where we had to read the values for insertion and match or
substitution, would be the one corresponding to the last letter of the previous non-sensitive
pattern. These are precisely the values of the last two rows of Equation 3, that are therefore
correct.

Consider now the gadget rows. An entry E[i][j] on a gadget row should contain the value
of an optimal alignment between W [0 . . j − 1] and a prefix of XED that ends with a #: since
# /∈ Σ, it cannot match with any letter of W , therefore I[T [i] 6= W [j − 1]] = 1 always holds.
As previously observed, a # can either be inserted or substituted directly after a non-sensitive
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pattern, or be preceded by another # no more than k positions earlier. Moreover, it is easy
to see that, if an optimal alignment between W and the regular expression R involves a local
alignment between W [i . . j] and #S# with |S| = j − i − 1 < k, then S = W [i + 1 . . j − 1]:
this is because any alignment with S 6= W [i+ 1 . . j− 1] can be improved by replacing S with
W [i + 1 . . j − 1]. Equation 4 follows from the two observations above: the first two lines
compute the cost of appending a # directly after a non-sensitive pattern, that always entails
either an insertion or a substitution.

The third row of the equation considers the possibility of interleaving two non-sensitive
patterns with a whole string encoded by ⊕, or deleting #. J

Note that Lemma 4 refers to rows 0 ≤ i < |I|(k + 1). Let us now look at the last row:
even if it was filled in like any other gadget row, since it corresponds to ⊗ instead of ⊕, its
values need to be interpreted in a different way. Namely, the value stored in E[|I|(k + 1)][j],
for all 0 ≤ j ≤ |W |, is the cost of an optimal alignment between W [0 . . j + ej − 1] and a
string in R whose length-(ej + 1) suffix is #W [j . . j+ ej − 1], where ej = min{k− 1, |W | − j}.

Unlike in the standard edit distance algorithm [13], the edit distance between W and any
string matching the regular expression R is not necessarily found in its bottom-right entry
E[|I|(k+ 1)][|W |]. Instead, it is found among the rightmost k entries of the last row (in case
XED ends with a string in ⊗), and the rightmost entry of the second-last row (when XED
ends with the last letter of the last non-sensitive pattern). We thus obtain the following.

I Lemma 5. Let XED be a solution to ETFS. Then

dE(XED,W ) = min
{
E
[
|I|(k + 1)− 1

][
|W |

]
, E
[
|I|(k + 1)

][
|W |

]
,

E
[
|I|(k + 1)

][
|W | − 1

]
, . . . , E

[
|I|(k + 1)

][
|W | − k + 1

]}
.

(5)

3.2 Construction of XED

Once we have computed the edit distance d according to Lemma 5, we need to construct a
string XED that matches R and is at edit distance d from W . To do so, when computing
each entry E[i][j] of the matrix for i, j ≥ 1, we store, in an array A, a pointer 〈i′, j′〉 to
an entry from which the minimum value for E[i][j] was obtained. We then build XR

ED by
following any path from an entry E [̄ı][̄] where the global optimum is stored to E[0][0].

At any step of the construction, let E[i′][j′] be the endpoint of the pointer stored for
E[i][j] currently considered, i.e., A[i][j] = 〈i′, j′〉. If ı̄ = |I|(k + 1), i.e., if the minimum is
in the last row of E, we initialize XR

ED with W [̄ . . |W | − 1]R; otherwise, we just initialize it
with the empty string ε. We then enforce the following rules:
If i′ < i, we append T [i] to XR

ED when i is not a gadget row and # otherwise. Indeed, the
condition is fulfilled when the edge in the path is either diagonal (a match or a substitution
in the alignment) or vertical (an insertion in W ). Moreover, i′ can either be equal to i− 1
or to i− k − 1 (when we merge two non-sensitive patterns).

If i′ = i and i ≡ 0 mod (k + 1), we append # toXR
ED followed byW [j′ . . j−2]R. Because

this happens when we follow a horizontal edge on a gadget row, the solution must include
the corresponding substring, that is composed of # and j − j′ − 1 letters of W .

If none of the two cases above happens, we do not write anything, because a horizontal
edge in the path corresponds to a deletion in W . We denote the above procedure by
Algorithm XED-construct. Lemma 6 guarantees that this construction produces a string
that satisfies C1 and P1.

I Lemma 6. XED returned by Algorithm XED-construct satisfies C1 and P1.
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7:8 String Sanitization Under Edit Distance

Proof. Let us start by proving that Algorithm XED-construct satisfies C1. XR
ED (and thus

XED) is obtained by appending either consecutive letters of TR (case i′ < i for all but gadget
rows) or a letter # (all cases for gadget rows) or a number of consecutive letters of WR (case
i′ = i for gadget rows and initialization of XR

ED when the minimum is on the last row of E):
since T does not contain any sensitive patterns by construction and # /∈ Σ, we only need
to verify that no more than k − 1 consecutive letters read directly from WR can ever be
appended to XR

ED. Inspect case i′ = i for gadget rows: j − j′ − 1 is the number of entries
between entry E[i][j] and the endpoint of the corresponding horizontal pointer A[i][j]. The
last line of Equation 4 exhibits the only possibilities for a pointer to point a non-adjacent
entry on the same row, thus j′ ≥ j − k and consequently j − j′− 1 ≤ k− 1. Since both when
the path leaves a gadget row and when it goes on on a gadget row a # is appended to XR

ED,
no sensitive patterns can be created and therefore XED satisfies C1.

Let us now show that P1 is satisfied as well, i.e., N0, N1, . . .N|I|−1 occur in XED in the
same order as they appear in W , and no other length-k string over Σ is a substring of XED.
Consider a letter N`[h] = T [i]. If 0 ≤ h < k − 1, i is an ordinary row. Since any optimal
path goes from the entry of E where the minimum is stored to E[0][0], and by construction
to leave a row the pointers can only point to an entry in the row directly above the current
one (ordinary rows) or in the (k + 1)-th row above (merge case in the possibly mergeable
rows, see Equations 2 and 3), there are only two possibilities: either the path goes through
row i, i.e., there exists j such that A[i][j] = 〈i− 1, j′〉 is part of the optimal path, or row i is
skipped by the path, and thus there exists j such that A[i+ k − h− 1][j] = 〈i− h− 2, j′〉.
Let us observe that in the latter case, all of the rows from i − h − 1 to i + k − h − 2 are
skipped by the path, while in the first case A[i+ k − h− 1][j] = 〈i+ k − h− 2, j′〉 and no
rows are skipped up to i− h− 2. In the first case, Algorithm XED-construct will append
N`[h] to XR

ED after N`[h+ 1] for all 0 ≤ h ≤ k − 1, then a # right after N`[0], that prevents
the making of spurious length-k strings over Σ in XED. In the second case, N`[h] is not
explicitly appended to the string: instead, after appending N`[k − 1] to XR

ED, the algorithm
goes to row i− h− 2, corresponding to N`−1[k − 1]. Nevertheless, this only happens when
the merge condition is satisfied, i.e., when N`−1[1 . . k − 1] = N`[0 . . k − 2], implying that
N`[h] = N`−1[h+ 1] will be appended next to N`[h+ 1] = N`−1[h+ 2] after k − h− 1 steps.
The order in which N0, N1, . . .N|I|−1 appear in XED is by construction the same as they
appear in T , which in turn is the same as the order they appear in W . In no other parts of
the algorithm a length-k string over Σ is created in XED. It follows that P1 is preserved. J

3.3 Wrapping up

I Lemma 7. Algorithm ETFS-DP runs in O(kn2) time.

Proof. We first construct string T and array M in O(kn) time and initialize the first row
and the first column of matrix E in O(kn) time. There are O(kn) “ordinary”, O(n) “possibly
mergeable” and O(n) “gadget rows”, each of size O(n). Each entry (and its corresponding
pointer) on the “ordinary” and “possibly mergeable” rows takes constant time to compute,
while the entries (and pointers) on the gadget rows require O(k) time each. Thus, we can
compute all entries and pointers in O(kn2) time. Tracing back the pointers and constructing
string XED takes again O(kn) time. This results in a total time complexity of O(kn2). J

Lemmas 4-7 imply Theorem 2.
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4 A Conditional Lower Bound for ETFS

We prove that, assuming SETH introduced in [11] and [10], ETFS cannot be solved in
strongly subquadratic time. We do so by a reduction from the classical edit distance problem,
and using the following known conditional lower bound for it: for all δ > 0, the edit
distance dE between two strings of length Ω(n) cannot be computed in O(n2−δ) time without
violating SETH [2], and hence the well-known quadratic-time solution of [13] for computing
the edit distance between two strings of length O(n) is optimal up to subpolynomial factors.
Bringmann and Künnemann [7] proved that this is also true for weighted edit distance,
where each operation (insertion, deletion, substitution and match) has a corresponding fixed
non-negative cost (respectively ci, cd, cs, cm), and the following conditions, which we will call
the BK conditions, hold: (i) ci + cd > cm, (ii) ci + cd > cs, and (iii) cm 6= cs.

Let P and Q be two arbitrary strings over Σ, both of length Θ(n), and without loss of
generality 1 ≤ |P | ≤ |Q|. We would like to compute the weighted edit distance between P and
Q with the following associated costs: ci = 2.5, cd = 2.5, cs = 1, cm = 0. These costs satisfy
the BK conditions. Let c = (ci, cd, cs, cm) and dc be the weighted edit distance with associated
costs c. Assuming SETH is true, there is no algorithm for computing d(2.5,2.5,1,0)(P,Q) in
O(n2−δ) time, for any δ > 0 [7]. In order to prove that ETFS cannot be solved in strongly
subquadratic time either, we will compute d(2.5,2.5,1,0)(P,Q), by solving two instances of
ETFS on a string of length O(n) and using an additional O(n) number of operations. Thus
if ETFS is solvable in O(n2−δ) time, for any δ > 0, SETH is false.

Let us now show the first instance of the ETFS. We define a new alphabet
Σ′ = Σ t {a, b, c1, c2, c3, d, e, f, g} and a new string U(P,Q) = F1F2F3F4 over Σ′ as follows:

F1 = (aab)2x+1aae, F2 =
|P |−1∏
i=0

c1dP [i]c2c3, F3 = (aae)2x−1aa, F4 =
|Q|−1∏
i=0

c1fQ[i]c2c3

where x = 2|Q|, and the product denotes the concatenation operation on strings. We also
set k = 5 and define the set I of non-sensitive pattern occurrences over U as follows:

I = {0, 3, 6, 9, . . . , 6x} ∪ {6x+ 6, 6x+ 11, 6x+ 16, . . . , 6x+ 1 + 5|P |}.

In particular, U(P,Q) is the string input to the first instance of ETFS. The construction
above gives us the following sequence of non-sensitive patterns:

aabaa, aabaa, aabaa, . . . , aabaa (2x+ 1 occurrences)
c1dP [0]c2c3, c1dP [1]c2c3, c1dP [2]c2c3, . . . , c1dP [|P | − 1]c2c3 (|P | occurrences).

It is easy to verify that the set I of occurrences of non-sensitive patterns (and thus the
complementary set S) has the closure property requested by ETFS. The resulting regular
expression R is

R = 	 aabaa⊕aabaa⊕. . .⊕aabaa⊕c1dP [0]c2c3⊕c1dP [1]c2c3⊕. . .⊕c1dP [|P |−1]c2c3 ⊗.

We will prove that it is optimal to align the first x+ 1 patterns with F1, a gadget ⊕ with F2,
the next x patterns with F3 and the final |P | patterns with F4. Then, we will show that the
alignment of those last patterns with F4 corresponds to an alignment of P and Q.

We call the occurrences of aabaa and c1dP [i]c2c3 in the regular expression R, or in any
string in the regular language corresponding to R, AB-patterns and P-patterns, respectively.
Notice that these non-sensitive patterns are substrings of F1 and F2 and that we cannot
merge any two consecutive non-sensitive patterns.
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Recall that the output XED of ETFS is a string with minimal edit distance to U in that
language. One alignment of U and R, which we denote by AU/R and that we will later show
to be optimal under unit cost for insertion, deletion and substitution and zero cost for match,
is as follows:

We align F1 with the first x+ 1 AB-patterns interleaved by #’s as illustrated below. The
cost of this alignment is x+ 1 substitutions.

aabaabaabaabaabaabaabaab . . .aabaae
aabaa#aabaa#aabaa#aabaa#. . .aabaa#

We align F2 with a single gadget ⊕ suitably expanded as shown below. The cost of this
alignment is |P | substitutions. Recall that we have to use a # after every k− 1 = 4 letters,
so as not to introduce any new length-k substrings that would violate property P1.

c1dP [0]c2c3c1dP [1]c2c3c1dP [2]c2c3c1dP [3]c2c3...c1dP [|P | − 1]c2c3

c1dP [0]c2# c1dP [1]c2# c1dP [2]c2# c1dP [3]c2# ...c1dP [|P | − 1]c2#

We align F3 with the remaining x AB-patterns interleaved by #’s as illustrated below.
The cost of this alignment is 2x− 1 substitutions.

aaeaaeaaeaaeaaeaaeaaeaae . . .aaeaa
aabaa#aabaa#aabaa#aabaa#. . .aabaa

We align F4 with the final |P | P-pattern occurrences according to an optimal alignment
AP/Q of P and Q with respect to cost c. Let p and q denote placeholders for letters of
P and Q, respectively. For each edit operation in AP/Q (insertion of q, deletion of p,
substitution or match between p and q), we align in AU/R the corresponding fragment of
F4 and the P-pattern of R as follows.

Insertion Deletion Substitution or Match
c1f q c2c3 - - - - - - - c1f q c2c3

# f q c2c3 # c1d p c2c3 # c1d p c2c3

When inserting a letter of Q, rather than paying 5 consecutive gaps opposite to fragment
c1fqc2c3 of F4, we extend the gadget ⊕ of R with #fqc2c3, to pay only one (unavoidable)
substitution for #. Deleting a letter of P , instead, results in 6 gaps in AU/R. Finally,
substitutions and matches in AP/Q result in the same alignment in AU/R, with the cost
being, respectively, 3 and 2 according to whether q = p or not. Therefore, it turns out
that the cost of this last fragment of alignment AU/R equals d(1,6,3,2)(P,Q).

We next show that it is possible to express d(1,6,3,2)(P,Q) in terms of d(2.5,2.5,1,0)(P,Q),
because symmetry will greatly simplify things later on, when we swap P and Q.

I Lemma 8. Let c and c′ be two costs. We write c ∼ c′ if for any alphabet Σ and for all
P,Q ∈ Σ∗, the set of optimal alignments of P and Q with respect to cost c is equal to the set
of optimal alignments of P and Q with respect to cost c′. Then
1. c ∼ αc for all α ∈ R>0.
2. c ∼ (ci + α, cd, cs + α, cm + α) for all α ∈ R.
3. c ∼ (ci, cd + α, cs + α, cm + α) for all α ∈ R.

Proof. Let the number of insertions, deletions, substitutions and matches in some alignment
of P and Q be ni, nd, ns and nm respectively. We know that ni + ns + nm = |Q| and
nd + ns + nm = |P |. So the transformations 1, 2, and 3 of c given in the lemma statement
change the costs of alignments from d to αd, d+ α|Q| and d+ α|P | respectively. The costs
of alignments are all strictly increasing in d, so the optimal alignments are preserved. J
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By applying transformation 2 of Lemma 8 with α = 1.5 and then transformation 3 of
Lemma 8 with α = −3.5, we obtain

d(1,6,3,2)(P,Q) = d(2.5,2.5,1,0)(P,Q)− 1.5|Q|+ 3.5|P |. (6)

By summing up the costs of the alignment AU/R detailed above and using Equation 6, we get

dE(U,XED) ≤ 4.5(|P |+ |Q|) + d(2.5,2.5,1,0)(P,Q), (7)

which we can bound by 3|P | + 7|Q|, because d(2.5,2.5,1,0)(P,Q) ≤ 2.5(|Q| − |P |) + |P |,
corresponding to the cost of deleting the (|Q| − |P |) extra letters of Q (recall that |P | ≤ |Q|)
and substituting the remaining |P | letters. In Lemma 9 we prove that alignment AU/R is
indeed optimal and equality holds in Equation 7.

I Lemma 9. Alignment AU/R is optimal. Moreover, from any output XED of ETFS on U we
can obtain a supersequence P ′ of P in O(|Q|) time such that dc(P,Q) = |P ′|− |P |+dc(P ′, Q)
and there exists an optimal alignment of P ′ and Q, which does not use any insertions.

The reader can probably share the intuition that alignment AU/R is optimal, at least for
the part F1F2F3 of string U . We prove that indeed no AB-pattern is aligned to any part of
F4 and that no P -pattern is aligned to F1F2F3 (see Example 10). The proof of Lemma 9
consists of a case analysis combined with basic counting and bounding arguments, for which
we refer the reader to the full version of this paper.

I Example 10. Let P = KITTEN and Q = SITTING over Σ = {E, G, I, K, N, S, T}. We define a
new alphabet Σ′ = Σ t {a, b, c1, c2, c3, d, e, f, g} and a new string U(P,Q) = F1F2F3F4 over
Σ′ as follows (recall that x = 2|Q|, so 2x+ 2 = 4Q+ 2 = 30):

F1 = aabaabaabaabaabaabaabaab . . . aabaae

F2 = c1dKc2c3c1dIc2c3c1dTc2c3c1dTc2c3c1dEc2c3c1dNc2c3

F3 = aaeaaeaaeaaeaaeaaeaaeaae . . . aaeaa

F4 = c1fSc2c3c1fIc2c3c1fTc2c3c1fTc2c3c1fIc2c3c1fNc2c3c1fGc2c3

We also set k = 5 and define the set I of non-sensitive pattern occurrences over U as follows:

I = {0, 3, 6, 9, . . . , 6x} ∪ {6x+ 6, 6x+ 11, 6x+ 16, . . . , 6x+ 1 + 5|P |}.

We thus have the following sequence of occurrences of non-sensitive patterns:

aabaa, aabaa, aabaa, . . . , aabaa (29 occurrences)
c1dKc2c3, c1dIc2c3, c1dTc2c3c1dTc2c3, c1dEc2c3, c1dNc2c3 (6 occurrences).

Therefore, the corresponding regular expression R is

R = 	 aabaa⊕. . .⊕aabaa⊕c1dKc2c3⊕c1dIc2c3⊕c1dTc2c3c1dTc2c3⊕c1dEc2c3⊕c1dNc2c3 ⊗.

We now show the crucial fragment of alignment AU/R: how F4 is aligned with the P -patterns.

-c1fSc2c3-c1fIc2c3-c1fTc2c3-c1fTc2c3-c1fIc2c3-c1fNc2c3c1fGc2c3

#c1dKc2c3#c1dIc2c3#c1dTc2c3#c1dTc2c3#c1dEc2c3#c1dNc2c3# fGc2c3

Observe that the cost of the above alignment under unit cost equals to 15: the cost of 4
P -pattern matches (8), plus the cost of 2 P -pattern substitutions (6), plus the cost of 1
gadget insertion (1). It can be readily verified that d(1,6,3,2)(KITTEN, SITTING) = 15.
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Lemma 9 implies the following result.

I Corollary 11. dE(U,XED) = 4.5(|P |+ |Q|) + d(2.5,2.5,1,0)(P,Q).

Given that constructing U takes O(n) time, Corollary 11 tells us that, if we can compute
dE(U,XED) in strongly subquadratic time, then we can also compute dc between any two
strings in strongly subquadratic time contradicting SETH. In fact, to prove that the output
string of ETFS cannot be computed in strongly subquadratic time either, we show that
d(2.5,2.5,1,0) can be obtained by solving ETFS twice and O(n) additional operations.

By Lemma 9, from the outputXED of the ETFS algorithm, we can obtain a supersequence
P ′ of P in O(n) time such that dc(P,Q) = dc(P, P ′) + dc(P ′, Q) and no insertions are
required to optimally align P ′ and Q. There also exists a supersequence Q′ of Q such that
dc(P,Q) = dc(P, P ′)+dc(Q′, Q)+dc(P ′, Q′) and some optimal alignment of P ′ and Q′ which
aligns each P ′[i] with Q′[i] through either a match or a substitution. One such Q′ is the
string obtained by taking the alignment of P ′ and Q given by ETFS and inserting aligned
letters of P ′ into the gaps of Q. The edit distance of Q and P is

dc(P, P ′) + dc(Q,Q′) + d(P ′, Q′) = |P ′| − |P |+ |Q′| − |Q|+
|P ′|−1∑
i=0

I[P ′[i] 6= Q′[i]], (8)

which can be computed in O(n) time once we know P ′ and Q′.
Note that by using ETFS on U(Q,P ′), we could find a supersequence Q′′ of Q such that

dc(P,Q) = dc(P, P ′) + dc(Q,Q′′) + dc(P ′, Q′′) and no deletions are required to optimally
align P ′ and Q′′. It is not necessarily the case that we do not need any more insertions,
though, as optimal alignments are not unique. We now show that we can still compute an
appropriate Q′ by changing c.

Let Qc be the set of supersequences Q′′ of Q with minimal dc(Q′′, Q) +dc(P ′, Q′′) and no
deletions needed in the alignment of P ′ and Q′′. Note that there exists some Q′ ∈ Qc such
that |P ′| = |Q′|. Increasing the cost of deletion by ε, dc(Q′′, Q) + dc(P ′, Q′′) increases by at
least ε(|P ′| − |Q|) with equality if and only if |Q′′| = |P ′|. Since |Q′| = |P ′|, no deletions
implies no insertions. Therefore it suffices to find the insertions, when aligning P ′ and Q
with weights c′ = (2.5, 2.5 + ε, 1, 0) for some ε > 0. We find these insertions by running the
ETFS algorithm on U(G(Q), G(P ′)) with k = 5, where G(V ) =

∏|V |−1
i=0 (V [i]g) for any string

V ∈ (Σ t {a, b, c1, c2, c3, d, e, f})∗, and with the set of non-sensitive pattern occurrences

I = {0, 3, 6, 9, . . . , 6x′} ∪ {6x′ + 6, 6x′ + 11, 6x′ + 16, . . . , 6x′ + 1 + |Q|},

where x′ = 2|G(P ′)|. The solution to this new problem corresponds to an optimal alignment
of G(Q) and G(P ′) with c = (2.5, 2.5, 1, 0), which in its turn corresponds to an optimal
alignment of Q and P ′ with weights c′ = (5, 5, 1, 0) ∼ (2.5, 2.5 + 5, 1, 0) by Lemma 8. We
first carefully define what properties such a corresponding alignment should satisfy, and then
prove that all optimal alignments of G(Q) and G(P ′) are indeed of this form.

I Definition 12. The alignment of G(P ′) and G(Q) corresponding to an alignment AP ′/Q

of P ′ and Q is defined as follows:
If P ′[i] is aligned with Q[i] in AP ′/Q, then G(P ′)[2i] and G(P ′)[2i+ 1] are aligned with
G(Q)[2i] and G(Q)[2i+ 1], respectively.
If P ′[i] is deleted in AP ′/Q, then G(P ′)[2i] and G(P ′)[2i+ 1] are deleted.
If Q[i] is inserted in AP ′/Q, then G(Q)[2i] and G(Q)[2i+ 1] are inserted.

I Lemma 13. Let P ′, Q ∈ Σ∗ such that there exits an optimal alignment of P ′ and Q which
does not include any insertions. Each optimal alignment of G(P ′) and G(Q) with respect
to cost c = (2.5, 2.5, 1, 0) corresponds to an optimal alignment of P ′ and Q with weights
c′ = (5, 5, 1, 0).
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Proof. Let the number of insertions, deletions, substitutions and matches in some optimal
alignment AP ′/Q of P ′ and Q be w, x, y and z respectively. The cost of AP ′/Q with
respect to c′ is 5w + 5x + y. The corresponding alignment of G(P ′) and G(Q) has 2w
insertions, 2x deletions, y substitutions and 2z + y matches, and its cost with respect to c is
(2w) ·2.5+(2x) ·2.5+y ·1+(2z+y) ·0 = 5w+5x+y. Therefore dc(G(P ′), G(Q)) ≤ dc′(P ′, Q).
It remains to be shown that equality holds.

Consider an optimal alignment AG(P ′)/G(Q) of G(P ′) and G(Q). We will show that we
can transform AG(P ′)/G(Q) into one corresponding to an alignment of P ′ and Q without
increasing the edit distance. Consider the rightmost P ′[i] and Q[j] where the corresponding
alignment fails, and call them x and y. There are 13 possibilities for their alignment:

Blue letters are original letters of G(Q), red letters are deleted letters from G(P ′), dots are
arbitrary strings and dashes denote gaps. Note that configurations 1, 7 and 13 are already
properly aligned. Moreover, the cost can be reduced for configurations 2, 3, 4, 5, 6, 8, 9, 11
and 12 by deleting red letters and shifting blue ones. This only leaves configuration 10. Here
there are 3 subcases:

If x is aligned with an x, there must be a g between x and y. We can align this g with
G(P ′)[2i] and move to configuration 13 without increasing the cost nor changing letters.
If x is aligned with an x, we move an adjacent inserted letter to this place and reduce
the cost, which is a contradiction.
Otherwise, x is aligned with a different letter. In this case we can realign it with y without
increasing the cost or changing letters.

Since there is a corresponding alignment for the output string, equality holds. J

Therefore the output string is equal to G(Q′) for some Q′ ∈ Qc. We can infer Q′ in O(n)
time and compute dc(P,Q) using Equation 8. However, since dc(P,Q) could not be computed
in strongly subquadratic time given SETH, we conclude that ETFS cannot be computed in
strongly subquadratic time either, unless SETH is false, thus proving Theorem 3.

5 Final Remarks

The following questions remain unanswered. Can ETFS be solved in O(n2) time? Can
ETFS be solved in strongly subquadratic time when |S| = O(1)?
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1 Introduction

Internal Dictionary Matching was recently introduced in [5] as a generalization of Internal
Pattern Matching. In the classical Dictionary Matching problem, we are given a dictionary D
consisting of d patterns, and the goal is to preprocess D so that, presented with a text T , we
can efficiently compute the occurrences of the patterns from D in T . In Internal Dictionary
Matching, the text T is given in advance, the dictionary D is a set of fragments of T , and
the Dictionary Matching queries can be asked for any fragment of T .

The Internal Pattern Matching problem consists in preprocessing a text T of length n
so that we can efficiently compute the occurrences of a fragment of T in another fragment
of T . A data structure of nearly linear size that allows for sublogarithmic-time Internal
Pattern Matching queries was presented in [15], while a linear-size data structure allowing
for constant-time Internal Pattern Matching queries in the case that the ratio between the
lengths of the two factors is constant was presented in [18]. Other types of internal queries
have been also studied; we refer the interested reader to [17].

In [5], several types of Internal Dictionary Matching queries about fragments T [i . . j] in a
string T were considered: Exists(i, j), Report(i, j), ReportDistinct(i, j), Count(i, j),
CountDistinct(i, j). Data structures of size Õ(n+ d) and query time Õ(1 + output) were
shown for answering each of the first four queries, with Count queries requiring most
advanced techniques. For CountDistinct queries, only a data structure answering these
queries O(logn)-approximately was shown. In this work, we focus on more efficient data
structures for such queries. CountDistinct queries are formally defined as follows.

CountDistinct
Input: A text T of length n and a dictionary D consisting of d patterns, each given as a
fragment T [a . . b] of T (represented only by integers a, b).
Query: CountDistinct(i, j): Count all distinct patterns P ∈ D that occur in T [i . . j].

Observe that the input size is n+ d, while the total length of strings in D could be Θ(n · d).
We also consider a special case of this problem when the dictionary D is the set of all

squares (i.e., strings of the form UU) in T . The case that D is the set of palindromes in T
was considered by Rubinchik and Shur in [20].

I Example 1. Let us consider the following text:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
T a d a a a a b a a b b a a c

For the dictionary D = {aa, aaaa, abba, c}, we have:

CountDistinct(5, 12) = 2, CountDistinct(2, 6) = 2, CountDistinct(2, 12) = 3.

In particular, T [5 . . 12] contains two distinct patterns from D: aa (two occurrences) and
abba. When the dictionary D represents all squares in T , we have

CountDistinct(5, 12) = 3, CountDistinct(2, 6) = 2, CountDistinct(2, 12) = 4.

In particular, T [5 . . 12] contains three distinct squares: aa (two occurrences), bb and aabaab.

Let us note that one could answer CountDistinct(i, j) queries in time O(j − i) by
running T [i . . j] over the Aho–Corasick automaton of D [1] or in time Õ(d) by performing
Internal Pattern Matching [18] for each element of D individually. Neither of these approaches
is satisfactory as they can require Ω(n) time in the worst case.
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Our results and a roadmap. We start with preliminaries in Section 2 and an algorithmic
toolbox in Section 3. Our results for the case of a static dictionary are summarized in Table 1.
Our solutions exploit string periodicity using runs and use data structures for variants of the
(colored) orthogonal range counting problem and for auxiliary internal queries on strings.

Table 1 Our results for CountDistinct queries. Here, m is an arbitrary parameter.

Space Preprocessing time Query time Variant Section
Õ(n + d) Õ(n + d) Õ(1) 2-approximation 4

Õ(n2/m2 + d) Õ(n2/m + d) Õ(m) exact 5.1
Õ(nd/m + d) Õ(nd/m + d) Õ(m) exact 5.2
O(n log2 n) O(n log2 n) O(log n) D =squares, exact 6

For the case of a dynamic dictionary, where queries are interleaved with insertions and
deletions of patterns in the dictionary, it was shown in [5] that the product of the time to
process an update and the time to answer an Exists(i, j) query cannot be O(n1−ε) for any
constant ε > 0, unless the Online Boolean Matrix-Vector Multiplication conjecture [13] is
false. In the full version of this paper, we outline a general scheme that adapts our data
structures for the case of a dynamic dictionary. In particular, we show how to answer
CountDistinct(i, j) queries 2-approximately in Õ(m) time and process each update in
Õ(n/m) time, for any m.

2 Preliminaries

We begin with basic definitions and notation. Let T = T [1]T [2] · · ·T [n] be a string of length
|T | = n over a linearly sortable alphabet Σ. The elements of Σ are called letters. By ε we
denote an empty string. For two positions i and j on T , we denote by T [i . . j] = T [i] · · ·T [j]
the fragment of T that starts at position i and ends at position j (the fragment is empty
if j < i). A fragment is called proper if i > 1 or j < n. A fragment of T is represented
in O(1) space by specifying the indices i and j. A prefix of T is a fragment that starts at
position 1 and a suffix is a fragment that ends at position n. By UV and Uk we denote the
concatenation of strings U and V and k copies of the string U , respectively. A cyclic rotation
of a string U is any string V such that U = XY and V = Y X for some strings X and Y .

Let U be a string of length m with 0 < m ≤ n. We say that U is a factor of T if there
exists a fragment T [i . . i+m− 1], called an occurrence of U in T , that is matches U . We
then say that U occurs at the starting position i in T .

A positive integer p is called a period of T if T [i] = T [i+ p] for all i = 1, . . . , n− p. We
refer to the smallest period as the period of the string, and denote it by per(T ). A string is
called periodic if its period is no more than half of its length and aperiodic otherwise. The
weak version of the periodicity lemma [9] states that if p and q are periods of a string T and
satisfy p+ q ≤ |T |, then gcd(p, q) is also a period of T . A string T is called primitive if it
cannot be expressed as Uk for a string U and an integer k > 1.

The elements of the dictionary D are called patterns. Henceforth, we assume that ε 6∈ D,
i.e., that the length of each P ∈ D is at least 1. We also assume that each pattern of D
is given by the starting and ending positions of its occurrence in T . Thus, the size of the
dictionary d = |D| refers to the number of patterns in D and not their total length. A compact
trie of D is the trie of D in which all non-terminal nodes with exactly one child become
implicit. The path-label L(v) of a node v is defined as the path-ordered concatenation of the
string-labels of the edges in the root-to-v path. We refer to |L(v)| as the string-depth of v.
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3 Algorithmic Tools

3.1 Modified Suffix Trees
A D-modified suffix tree [5], denoted as TT,D, of a given text T of length n and a dictionary D
is obtained from the trie of D ∪ {T [i . . n] : 1 ≤ i ≤ n} by contracting, for each non-terminal
node u other than the root, the edge from u to the parent of u. As a result, all the nodes of
TT,D (except for the root) correspond to patterns in D or to suffixes of T . For 1 ≤ i ≤ n, the
node representing T [i . . n] is labelled with i; see Figure 1. For a dictionary D whose patterns
are given as fragments of a text T , we can construct TT,D in O(|D|+ |T |) time [5].

6 13 1 7 11 10 2

abba

9
14

c

aa

4 5 8 12

aaaa

3

Figure 1 Example of a D-modified suffix tree for text T = adaaaabaabbaac and dictionary
D = {aa, aaaa, abba, c} (figure from [5]).

Let us denote by Occ(D) the set of all occurrences of dictionary patterns in T , that is,
the set of all fragments of T that match a pattern in D. Using TT,D, the set Occ(D) can be
computed in time O(n+ d+ |Occ(D)|).

We say that a tree is a weighted tree if it is a rooted tree with an integer weight on each
node v, denoted by ω(v), such that the weight of the root is zero and ω(u) < ω(v) if u is the
parent of v. We say that a node v is a weighted ancestor at depth ` of a node u if v is the
top-most ancestor of u with weight of at least `.

I Theorem 2 ([2, Section 6.2.1]). After O(n)-time preprocessing, weighted ancestor queries
for nodes of a weighted tree T of size n can be answered in O(log logn) time per query.

The D-modified suffix tree TT,D is a weighted tree with the weight of each node defined
as the length of the corresponding string. We define the locus of a fragment T [i . . j] in TT,D
to be the weighted ancestor of the leaf i at string-depth j − i+ 1.

3.2 Auxiliary Internal Queries
In a Bounded LCP query, one is given two fragments U and V of T and needs to return
the longest prefix of U that occurs in V ; we denote such a query by BoundedLCP(U, V ).
Kociumaka et al. [18] presented several tradeoffs for this problem, including the following.

I Lemma 3 ([18],[17, Corollary 7.3.4]). Given a text T of length n, one can construct in
O(n
√

logn) time an O(n)-size data structure that answers Bounded LCP queries in O(logε n)
time, for any constant ε > 0.

Recall that Count(i, j) returns the number of all occurrences of all the patterns of D in
T [i . . j]. The following result was proved in [5].

I Lemma 4 ([5]). The Count(i, j) queries can be answered in O(log2 n/ log logn) time with
an O(n+ d logn)-size data structure, constructed in O(n logn/ log logn+ d log3/2 n) time.
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3.3 Geometric Toolbox
For a set of n points in 2D, a range counting query returns the number of points in a given
rectangle.

I Theorem 5 (Chan and Pătraşcu [4]). Range counting queries for n integer points in 2D
can be answered in time O(logn/ log logn) with a data structure of size O(n) that can be
constructed in time O(n

√
logn).

A quarterplane is a range of the form (−∞, x1]× (−∞, x2]. By reversing coordinates we
can also consider quarterplanes with some dimensions of the form [xi,∞). Let us state the
following result on orthant color range counting due to Kaplan et al. [14] in the special case
of two dimensions.

I Theorem 6 ([14, Theorem 2.3]). Given n colored integer points in 2D, we can construct
in O(n logn) time an O(n logn)-size data structure that, given any quarterplane Q, counts
the number of distinct colors with at least one point in Q in O(logn) time.

We show how to apply geometric methods to a special variant of the CountDistinct
problem, where we are interested in a small subset of occurrences of each pattern.

Let D = {P1, P2, . . . , Pd} and S be a family of sets S1, . . . , Sd such that Sk ⊆ Occ(Pk),
where Occ(Pk) is the set of positions of T where Pk occurs. Let ‖S‖ =

∑
k |Sk|. For each

pattern Pk, we call the positions in the set Sk the special positions of Pk. Counting distinct
patterns occurring at their special positions in T [i . . j] is called CountDistinctS(i, j).

I Lemma 7. The CountDistinctS(i, j) queries can be answered in O(logn) time with a
data structure of size O(n+ ‖S‖ logn) that can be constructed in O(n+ ‖S‖ logn) time.

Proof. We assign a different integer color ck to every pattern Pk ∈ D. Then, for each
fragment T [a . . b] = Pk such that a ∈ Sk, we add point (a, b) with color ck in an initially
empty 2D grid G. A CountDistinctS(i, j) query reduces to counting different colors in the
range [i,∞)× (−∞, j] of G. The complexities follow from Theorem 6. J

3.4 Runs
A run (also known as a maximal repetition) is a periodic fragment R = T [a . . b] which can be
extended neither to the left nor to the right without increasing the period p = per(R), i.e.,
T [a− 1] 6= T [a+ p− 1] and T [b− p+ 1] 6= T [b+ 1] provided that the respective positions
exist. If R is the set of all runs in a string T of length n, then |R| ≤ n [3] and R can be
computed in O(n) time [19]. The exponent exp(R) of a run R with period p is |R|/p. The
sum of exponents of runs in a string of length n is O(n) [3, 19].

The Lyndon root of a periodic string U is the lexicographically smallest rotation of
its per(U)-length prefix. If L is the Lyndon root of a periodic string U , then U may be
represented as (L, r, a, b); here U = L[|L| − a+ 1 . . |L|]LrL[1 . . b], and r is called the rank of
U . Note that the minimal rotation of a fragment of a text can be computed in O(1) time
after an O(n)-time preprocessing [16].

For a periodic fragment U , let run(U) be the run with the same period that contains U .

I Lemma 8 ([3, 7, 17]). For a periodic fragment U , run(U) and its Lyndon root are uniquely
determined and can be computed in constant time after linear-time preprocessing.

We use runs in 2-approximate CountDistinct(i, j) queries and in counting squares.

CPM 2020
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4 Answering CountDistinct 2-Approximately

4.1 CountDistinct for Extended or Contracted Fragments
For two positions ` and r, we define PrefD(`, r) as the longest prefix of T [` . . r] that matches
some pattern P ∈ D; the length of such prefix is at most r − ` + 1. Let us show how
to compute the locus of PrefD(`, r) in the D-modified suffix tree TT,D. To this end, we
preprocess TT,D for weighted ancestor queries and store at every node v of TT,D a pointer p(v)
to the nearest ancestor u (including v) of v such that L(u) ∈ D. To return PrefD(`, r), we
find the locus u of T [` . . r] in the D-modified suffix tree. We return p(u) if |L(u)| = |T [` . . r]|
and p(v), where v is the parent of u, otherwise.

Lemma 9 applies the D-modified suffix tree to the problem of maintaining the count of
distinct patterns occurring in a fragment subject to extending or shrinking the fragment.

I Lemma 9. For any constant ε > 0, given CountDistinct(i, j), one can compute
CountDistinct(i±1, j) and CountDistinct(i, j±1) in O(logε n) time with an O(n+d)-
size data structure that can be constructed in O(n

√
logn+ d) time.

Proof. We only present a data structure for CountDistinct(i ± 1, j) queries. Queries
CountDistinct(i, j ± 1) can be handled analogously by building the same data structure
for the reverses of all the strings in scope.

We show how to compute the number of patterns P ∈ D whose only occurrence in some
fragment T [` . . r] starts at position `. The computation of CountDistinct(i± 1, j) follows
directly by setting j = r and ` equal to i− 1 or i.

Data structure. We preprocess T for Bounded LCP queries (Lemma 3) and construct the
D-modified suffix tree TT,D of text T and dictionary D. In addition, we preprocess TT,D
for weighted ancestor queries and store at every node v of TT,D the number #(v) of the
ancestors u (including v) of v such that L(u) ∈ D.

T

` r

P0

P1

P2

P3

k

k

root

`

u = PrefD(`, `+ k − 1)

v = PrefD(`, r)

Figure 2 The setting of Lemma 9. Left: text T . Right: the path from the root of TT,D to the
leaf with path-label T [` . . n]. The nodes of the path whose path-labels match some patterns from D
are drawn in red. Here, P0 is the longest pattern that occurs at ` and also has an occurrence in
T [` + 1 . . r]; its locus in TT,D is u = PrefD(`, ` + k − 1). The patterns that occur in T [` . . r] only at
position ` are P1, P2 and P3. The locus of P3 is v = PrefD(`, r). Then, #(v)−#(u) = 5− 2 = 3.

Query. We want to count patterns longer than k = |BoundedLCP(T [` . . r], T [` + 1 . . r])|.
Let u = PrefD(`, `+ k − 1) and v = PrefD(`, r). The desired number of patterns is equal to
#(v)−#(u). See Figure 2 for a visualization. J
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4.2 Auxiliary Operation
Two fragments U = T [i1 . . j1] and V = T [i2 . . j2] are called consecutive if i2 = j1 + 1. We
denote the overlap T [max{i1, i2} . .min{j1, j2}] of U and V by U ∩ V .

3-Fragments-Counting
Input: A text T of length n and a dictionary D consisting of d patterns
Query: Given three consecutive fragments F1, F2, F3 in T such that |F1| = |F3| and
|F2| ≥ 8 · |F1|, count distinct patterns P from D that have an occurrence starting in F1
and ending in F3 and do not occur in either F1F2 or F2F3

Let us fix |F1| = |F3| = x and |F2| = y ≥ 8x. Additionally, let us call an occurrence of
P ∈ D that starts in fragment Fa and ends in fragment Fb an (Fa, Fb)-occurrence. We will
call an (F1, F3)-occurrence an essential occurrence.

We say that a string S is highly periodic if per(S) ≤ 1
4 |S|. We first consider the case that

all patterns in D are not highly periodic.

I Lemma 10. If each P ∈ D is not highly periodic, then

3-Fragments-Counting(F1, F2, F3) =
Count(F1F2F3)−Count(F1F2)−Count(F2F3) + Count(F2).

Proof. Let us start with the following claim.

B Claim 11. Any P ∈ D that has an essential occurrence occurs exactly once in F1F2F3.

Proof. We have |F1F2F3| = x + y + x = 2x + y. String P has an essential occurrence, so
|P | ≥ y. Therefore, if there are two occurrences of P in F1F2F3, then they overlap in

2|P | − (2x+ y) ≥ 2|P | − ( 1
4 |P |+ |P |) = 3

4 |P |

positions. This implies that P is highly periodic, which is a contradiction. C

Claim 11 shows that 3-Fragments-Counting(F1, F2, F3) is equal to the number of
essential occurrences. Let us prove that the stated formula does not count any (Fa, Fb)-
occurrences other than (F1, F3)-occurrences.

Each (F1, F2)-occurrence is registered when we add Count(F1F2F3) and unregistered
when we subtract Count(F1F2). Similarly for (F2, F3)-occurrences.
Each (F2, F2)-occurrence is registered when we add Count(F1F2F3), Count(F2) and
unregistered when we subtract Count(F1F2), Count(F2F3).
Each (F1, F1)-occurrence is registered when we add Count(F1F2F3) and unregistered
when we subtract Count(F1F2). Similarly for (F3, F3)-occurrences. J

We now proceed with answering 3-Fragments-Counting queries for the dictionary of
highly periodic patterns.

I Lemma 12. If F2 is aperiodic, then there are no essential occurrences of highly periodic
patterns. Otherwise, all essential occurrences of highly periodic patterns are generated by the
same run, that is, run(F2).
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Proof. The first claim follows from the fact that such an occurrence of a pattern P ∈ D has
an overlap of length at least 2per(P ) with F2 and hence per(P ) ≤ 1

2 |F2| is a period of F2.
As for the second claim, it suffices to show that, for any pattern P ∈ D that has an essential

occurrence, we have per(P ) = per(F2). The inequalities |F2| ≥ 2per(F2) and |F2| ≥ 2per(P )
imply |F2| ≥ per(F2) + per(P ). Hence, by the periodicity lemma, q = gcd(per(P ), per(F2)) is
a period of F2. As q ≤ per(F2), we conclude that q = per(F2). Thus, per(F2) divides per(P ),
and therefore per(P ) = per(F2). This concludes the proof. J

For a periodic factor U of T , let Periodic(U) denote the set of distinct patterns from D
that occur in U and have the same shortest period. Let us make the following observation.

I Observation 13. If all P ∈ D are highly periodic, F2 is periodic, and R = run(F2), then

3-Fragments-Counting(F1, F2, F3) =
|Periodic(F1F2F3 ∩R)| − |Periodic(F1F2 ∩R) ∪ Periodic(F2F3 ∩R)|.

Next we now show how to efficiently evaluate the right-hand side of the formula in the
observation above, using Theorem 5 for efficiently answering range counting queries in 2D.

We group all highly periodic patterns by Lyndon root and rank; for a Lyndon root L
and a rank r, we denote by DpL,r the corresponding set of patterns. Then, we build the data
structure of Theorem 5 for the set of points obtained by adding the point (a, b) for each
(L, r, a, b) ∈ DpL,r. We refer to the 2D grid underlying this data structure as GL,r. Note that
the total number of points in the data structures over all Lyndon roots and ranks is O(d).

Each occurrence of a pattern (L, r, a, b) lies within some run in R with Lyndon root L.
Let us state a simple fact.

I Fact 14. A periodic string (L, r, a, b) occurs in a periodic string (L, r′, a′, b′) if and only if
at least one of the following conditions is met:
(1) r = r′, a ≤ a′, and b ≤ b′;
(2) r = r′ − 1 and a ≤ a′;
(3) r = r′ − 1 and b ≤ b′;
(4) r ≤ r′ − 2.

I Lemma 15. One can compute |Periodic(U)| for any periodic fragment U in time
O(logn/ log logn) using a data structure of size O(n + d) that can be constructed in time
O(n+ d

√
logn).

Proof. For U = (L, r, a, b), we count points contained in at least one of the rectangles
(1) (−∞, a]× (−∞, b] in GL,r,
(2) (−∞, a]× (−∞, |L|] in GL,r−1,
(3) (−∞, |L|]× (−∞, b] in GL,r−1,
and we add to the count the number of patterns of the form (L, r′, a, b) with r′ < r − 1. For
the latter term, it suffices to store an array XL[1 . . t] such that XL[r] =

∑r
i=1 |D

p
L,i|, where

t is the maximum rank of a pattern with Lyndon root L. The total size of these arrays is
O(n) by the linearity of the sum of exponents of runs in a string [3, 19]. J

I Remark 16. In particular, in the proof of the above lemma, we count points that are
contained within at least one out of a constant number of rectangles. Therefore, not only we
can easily compute |Periodic(U)|, but similarly we are able to compute |Periodic(U1) ∪
Periodic(U2)| for some periodic factors U1, U2 of T .

We are now ready to prove the main result of this subsection.
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I Lemma 17. The 3-Fragments-Counting(F1, F2, F3) queries can be answered in time
O(log2 n/ log logn) with a data structure of size O(n + d logn) that can be constructed in
O(n logn/ log logn+ d log3/2 n) time.

Proof. By Lemma 10, in order to count the patterns that are not highly periodic, it suffices
to perform three Count queries. To this end, we employ the data structure of Lemma 4
which answers Count queries in O(log2 n/ log logn) time, occupies space O(n + d logn),
and can be constructed in time O(n logn/ log logn+ d log3/2 n).

We now proceed to counting highly periodic patterns. First, we check whether F2 is
periodic; this can be done in O(1) time after an O(n)-time preprocessing of T [18, 17]. If F2
is not periodic, then by Lemma 12 no highly periodic pattern has an essential occurrence, and
we are thus done. If F2 is periodic, three |Periodic(U)| queries suffice to obtain the answer
due to Observation 13. They can be efficiently answered due to Lemma 15 and Remark 16; the
complexities are dominated by those for building the data structure for Count queries. J

4.3 Approximation Algorithm
Let us fix δ = 1

9 . A fragment of length b(1 + δ)pc for any positive integer p will be called a
p-basic fragment. Our data structure stores CountDistinct(i, j) for every basic fragment
T [i . . j]. Using Lemma 9, these values can be computed in O(n log1+ε n + d) time with a
sliding window approach. The space requirement is O(n logn+ d).

i j′ i′ j

F1 F2 F3

Figure 3 A 2-approximation of CountDistinct(i, j) is achieved using precomputed counts for
basic factors T [i . . i′] and T [j′ . . j].

In order to answer an arbitrary CountDistinct(i, j) query, let T [i . . i′] and T [j′ . . j]
be the longest prefix and suffix of T [i . . j] being a basic factor; see Figure 3. We sum
up CountDistinct(i, i′) and CountDistinct(j′, j) and the result of a 3-Fragments-
Counting query for F1 = T [i . . j′ − 1], F2 = T [j′ . . i′], F3 = T [i′ + 1 . . j]. (Note that
(|F1|+ |F2|) · (1 + δ) > |F1|+ |F2|+ |F3| implies δ(|F1|+ |F2|) > |F3|, and since |F1| = |F3|,
we have that |F1| = |F3| ≤ 1

8 |F2|.) Now, a pattern P ∈ D is counted at least once if and
only if it occurs in T [i . . j]. Also, a pattern P ∈ D is counted at most twice (exactly twice if
and only if it occurs in both F1F2 and F2F3). The above discussion and Lemma 17 yield the
following result.

I Theorem 18. The CountDistinct(i, j) queries can be answered 2-approximately in time
O(log2 n/ log logn) with a data structure of size O((n+ d) logn) that can be constructed in
time O(n log1+ε n+ d log3/2 n) for any constant ε > 0.

5 Time-Space Tradeoffs for Exact Counting

5.1 Tradeoff for Large Dictionaries
The following result is yet another application of Lemma 9.
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I Theorem 19. For any m ∈ [1, n] and any constant ε > 0, the CountDistinct(i, j)
queries can be answered in O(m logε n) time using an O(n2/m2 + n+ d)-size data structure
that can be constructed in O((n2 logε n)/m+ n

√
logn+ d) time.

Proof. A fragment of the form T [c1m+1 . . c2m] for integers c1 and c2 will be called a canonical
fragment. Our data structure stores CountDistinct(i′, j′) for every canonical fragment
T [i′ . . j′] and the data structure of Lemma 9. Hence the space complexity O(n2/m2 + n+ d).

We can compute in O(n logε n) time CountDistinct(i′, j) for a given i′ and all j using
Lemma 9. There are O(n/m) starting positions of canonical fragments and hence the
counts for all canonical fragments can be computed in O((n2 logε n)/m) time. Additional
preprocessing time O(n

√
logn+ d) originates from Lemma 9.

i ji′ j′

canonical fragmentextend extend

Figure 4 An illustration of the setting in the query algorithm underlying Theorem 19.

We can answer a CountDistinct(i, j) query in O(m logε n) time as follows. Let T [i′ . . j′]
be the maximal canonical fragment contained in T [i . . j]. We retrieve CountDistinct(i′, j′)
for T [i′ . . j′]. Then, we apply Lemma 9 O(m) times; each time we extend the fragment for
which we count, until we obtain CountDistinct(i, j). See Figure 4. J

5.2 Tradeoff for Small Dictionaries
We call a set of strings H a path-set if all elements of H are prefixes of its longest element.
We now show how to efficiently handle dictionaries that do not contain large path-sets.

I Lemma 20. If D does not contain any path-set of size greater than k, then we can construct
in O(kn logn) time an O(kn logn)-size data structure that answers CountDistinct(i, j)
queries in O(logn) time.

Proof. Let D = {P1, . . . , Pd} and S = {Occ(P1), . . . ,Occ(Pd)}. Every position of T contains
at most k occurrences of patterns from D. This implies that ‖S‖ ≤ kn. We can obviously
treat a CountDistinct(i, j) query as a CountDistinctS(i, j) query. The complexities
follow from Lemma 7. J

A proof of the following lemma is rather standard and is included in the full version of
the paper.

I Lemma 21. For any k ∈ [1, n], we can compute a maximal family F of pairwise-disjoint
path-sets in D, each consisting of at least k elements, in O(n+ d) time.

We now combine Lemmas 3, 20 and 21 to get the main result of this section.

I Theorem 22. For any m ∈ [1, n] and any constant ε > 0, the CountDistinct(i, j)
queries can be answered in O(m logε n+ logn) time using an O((nd logn)/m+ d)-size data
structure that can be constructed in O((nd logn)/m+ d) time.

Proof. We first apply Lemma 21 for k = dd/me. We then have a decomposition of D
to a family F of at most m path-sets and a set D′ with no path-set of size greater than
bd/mc. We directly apply Lemma 20 for D′. In order to handle path-sets, we build the data
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structure of Lemma 3. Then, upon a CountDistinct(i, j) query, for each path-set H ∈ F ,
we compute the longest pattern in H that occurs in T [i . . j] using a Bounded LCP query
followed by a predecessor query [24] in a structure that stores the lengths of the elements
of H, with the lexicographic rank in H stored as satellite information. The data structure
of [24] is randomized, but it can be combined with deterministic dictionaries [21] using a
simple two-level approach (see [23]), resulting in a deterministic static data structure. J

I Remark 23. Let us fix the query time to be O(m logε n) form = Ω(logn). Then, Theorem 22
outperforms Theorem 19 in terms of the required space for d = o(n/(m logn)). For example,
for m = d = n1/4, the data structure of Theorem 22 requires space Õ(n) while the one
of Theorem 19 requires space Õ(n

√
n).

6 Internal Counting of Distinct Squares

The number of occurrences of squares could be quadratic, but we can construct a much
smaller O(n logn)-size subset of these occurrences (called boundary occurrences) that, from
the point of view of CountDistinct queries, gives almost the same answers. This is the
main trick in this section. Distinct squares with a boundary occurrence in a given fragment
can be counted in O(logn) time due to Lemma 7. The remaining squares can be counted
based on their structure: we show that they are all generated by the same run.

Now, the dictionary D is the set of all squares in T . By the following fact, d = O(n) and
D can be computed in O(n) time.

I Fact 24 ([7, 8, 10, 12]). A string T of length n contains O(n) distinct square factors and
they can all be computed in O(n) time.

We say that an occurrence of a square U2 is induced by a run R if it is contained in R
and the shortest periods of U and R are the same. Every occurrence of a square is induced
by exactly one run.

We need the following fact (note that it is false for the set of all runs; see [11]).

I Fact 25. The sum of the lengths of all highly periodic runs is O(n logn).

Proof. We will prove that each position in T is contained in O(logn) highly periodic runs. Let
us consider all highly periodic runs R containing some position i, such that m ≤ per(R) < 3

2m

for some even integer m. Suppose for the sake of contradiction that there are at least 5 such
runs. Note that each such run fully contains one of the fragments T [i− 3m+ 1 + t . . i+ t]
for t ∈ {0,m, 2m, 3m}. By the pigeonhole principle, one of these four fragments is contained
in at least two runs, say R1 and R2. In particular, the overlap of these runs is at least
3m ≥ per(R1) + per(R2), which is a contradiction by the periodicity lemma. J

We define a family of occurrences B = B1, . . . , Bd such that, for each square U2
i , the set

Bi contains the leftmost and the rightmost occurrence of U2
i in every run. We call these

boundary occurrences. Boundary occurrences of squares have the following property.

I Lemma 26. ‖B‖ = O(n logn) and the set family B can be computed in O(n logn) time.

Proof. Let us define the root of a square U2 to be U . A square is primitively rooted if its
root is a primitive string. Let p-squares be primitively rooted squares, np-squares be the
remaining ones. The number of occurrences of p-squares in a string of length n is O(n logn)
and they can all be computed in O(n logn) time; see [6, 22].
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We now proceed to np-squares. Note that for any highly periodic run R, the leftmost
occurrence of each np-square induced by R starts in one of the first per(R) positions of R; a
symmetric property holds for rightmost occurrences and last per(R) positions. In addition,
it can be readily verified that such a position is the starting (resp. ending) position of at
most exp(R) squares induced by R. It thus suffices to bound the sum of exp(R) · per(R) over
all highly periodic runs R. The fact that exp(R) · per(R) = |R| concludes the proof of the
combinatorial part by Fact 25.

For the algorithmic part, it suffices to iterate over the O(n) runs of T . J

I Lemma 27. If T [i . . j] is non-periodic, CountDistinct(i, j) = CountDistinctB(i, j).

Proof. Let us consider an occurrence of a square U2 inside T [i . . j]. Let R be the run that
induces this occurrence. By the assumption of the lemma, R does not contain T [i . . j]. Then
at least one of the boundary occurrences of U2 in R is contained in T [i . . j]. J

For a periodic fragment F of T , by RunSquares(F ) we denote the number of distinct
squares that are induced by F (being a run if interpreted as a standalone string). The value
RunSquares(F ) can be computed in O(1) time, as it was shown in e.g. [7].

Let F1 be a prefix and F2 be a suffix of a periodic fragment F , such that each of F1 and
F2 is of length at most per(F ) – and hence they are disjoint. By BSq(F, F1, F2) (“bounded
squares”) we denote the number of distinct squares induced by F which have an occurrence
starting in F1 or ending in F2.

I Lemma 28. Given per(F ), the BSq(F, F1, F2) queries can be answered in O(1) time.

Proof. We are to count distinct squares induced by F that start in F1 or end in F2.
We introduce an easier version of BSq queries. Let BSq′(F, F1) = BSq(F, F1, ε) be the

number of squares induced by F which start in its prefix F1 of length at most p := per(F ).

Reduction of BSq to BSq′. First, observe that the set of squares induced by F starting
at some position q ∈ [1, p] and the set of squares induced by F ending at some position
q′ ∈ [|F | − p+ 1, |F |] are equal if q ≡ q′ + 1 (mod p) and disjoint otherwise. Also note that
F2 = UV for some prefix V and some suffix U of F [p]F [1 . . p− 1]; we consider this rotation
of F [1 . . p] to offset the +1 factor in the above modular equation. Let |U | = a and |V | = b.

Then, by the aforementioned observation, we are to count distinct squares that start in
some position in the set [1, |F1|] ∪ [1, b] ∪ [p− a+ 1, p]; see Figure 5.

F

b a a b

|F2|

per(R)

Figure 5 Reduction of BSq to BSq′; the case that |F1| ≤ b.

Hence the computation of BSq(F, F1, F2) is reduced to at most two instances of the
special case when F2 is the empty string.
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Computation of BSq′(F, F1). The number of squares induced by F starting at F [i] is
b(|F | − i+ 1)/(2p)c. Consequently, BSq′(F, F1) =

∑|F1|
i=1b(|F | − i+ 1)/(2p)c = |F1| · t −

max{0, |F1| − k − 1}, where t = b|F |/(2p)c and k = |F | mod (2p). J

I Lemma 29. Assume that F = T [i . . j] is periodic and R = T [a . . b] = run(T [i . . j]). Let
F1 = T [i . . a+ p− 1] and F2 = T [b− p+ 1 . . j], where per(R) = p. Then:

CountDistinct(i, j) = CountDistinctB(i, j) + RunSquares(F )−BSq(F, F1, F2). (1)

Proof. In the sum CountDistinctB(i, j) + RunSquares(F ), all squares are counted once
except for squares whose boundary occurrences are induced by R, which are counted twice.
They are exactly counted in the term BSq(F, F1, F2); see Figure 6. J

T

i

F1

j

F2

F

R
a b

per(R) per(R)

Figure 6 The setting in Lemma 29. Note that F1 is empty if i ≥ a + per(R); similarly for F2.

I Theorem 30. If D is the set of all square factors of T , then CountDistinct(i, j) queries
can be answered in O(logn) time using a data structure of size O(n log2 n) that can be
constructed in O(n log2 n) time.

Proof. We precompute the set B in O(n logn) time using Lemma 26 and perform O(n log2 n)
time and space preprocessing for CountDistinctB(i, j) queries.

In order to answer a CountDistinct(i, j) query, first we ask a run(T [i . . j]) query of
Lemma 8 to check if T [i . . j] is periodic.

We compute CountDistinctB(i, j) which takes O(logn) time due to Lemma 7. If
T [i . . j] is non-periodic, then it is the final result due to Lemma 27.

Otherwise T [i . . j] is periodic. Let F, F1, F2 be as in Lemma 29. We answer RunSquares(F )
and BSq(F, F1, F2) queries in O(1) time using the algorithm from [7] and Lemma 28,
respectively. Finally, CountDistinct(i, j) is computed using (1). J

7 Final Remarks

The general framework for dynamic dictionaries, presented in the full version of this paper,
essentially consists in rebuilding a static data structure after every k updates. We return
correct answers by performing individual queries for the patterns inserted or deleted from the
dictionary since the data structure was built. In particular, we show that an application of
this framework – with some tweaks – to the data structure of Section 4 yields the following.

I Theorem 31. For any k ∈ [1, n], we can construct a data structure in Õ(n+d) time, which
processes each update to the dictionary in Õ(n/k) time and answers CountDistinct(i, j)
queries 2-approximately in Õ(k) time.

We leave open the problem of whether an Õ(n + d)-size data structure answering
CountDistinct(i, j) queries exactly in time Õ(1) exists.
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Abstract
We consider the problem of dynamically maintaining an optimal alignment of two strings, each of
length at most n, as they undergo insertions, deletions, and substitutions of letters. The string
alignment problem generalizes the longest common subsequence (LCS) problem and the edit distance
problem (also with non-unit costs, as long as insertions and deletions cost the same). The conditional
lower bound of Backurs and Indyk [J. Comput. 2018] for computing the LCS in the static case
implies that strongly sublinear update time for the dynamic string alignment problem would refute
the Strong Exponential Time Hypothesis. We essentially match this lower bound when the alignment
weights are constants, by showing how to process each update in Õ(n) time.1 When the weights
are integers bounded in absolute value by some w = nO(1), we can maintain the alignment in
Õ(n ·min{

√
n, w}) time per update. For the Õ(nw)-time algorithm, we heavily rely on Tiskin’s

work on semi-local LCS, and in particular, in an implicit way, on his algorithm for computing the
(min, +)-product of two simple unit-Monge matrices [Algorithmica 2015]. As for the Õ(n

√
n)-time

algorithm, we employ efficient data structures for computing distances in planar graphs.
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1 Introduction

The problems of computing an optimal string alignment, a longest common subsequence
(LCS), or the edit distance of two strings have been studied for more than 50 years. In
the string alignment problem, we are given weights wmatch for aligning a pair of matching
letters, wmis for aligning a pair of mismatching letters, and wgap for letters that are not
aligned, and the goal to compute an alignment with maximum weight. The edit distance
dE(S, T ) of two strings S and T is the minimum cost of transforming string S to string T
using insertions, deletions, and substitutions of letters, under specified costs cins, cdel, and

1 The Õ(·) notation suppresses logO(1) n factors.

© Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 9; pp. 9:1–9:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6024-1557
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0001-9262-1821
mailto:smozes@idc.ac.il
https://doi.org/10.4230/LIPIcs.CPM.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Dynamic String Alignment

csub, respectively. When all costs are 1, this is also known as the Levenshtein distance of S
and T [24]. Note that if cins = cdel, the edit distance problem is a special case of the string
alignment problem, with wmatch = 0, wmis = −csub, and wgap = −cins = −cdel. In turn, the
LCS problem can be seen as a special case of the edit distance problem: Let the length of
an LCS of S and T be denoted by LCS(S, T ). Then, for cins = cdel = 1 and csub = 2, we
have dE(S, T ) = |S|+ |T | − 2 · LCS(S, T ). In this work, we consider the dynamic version of
the string alignment problem, in which the strings S and T , each of length at most n, are
maintained subject to insertions, deletions, and substitutions of letters, and we are to report
an optimal alignment after each such update.

The textbook dynamic programming (DP) O(n2)-time algorithm for the (static) LCS
and edit distance problems has been rediscovered several times, e.g. in [38, 28, 29, 30, 39].
When the desired output is just the edit distance or the length of an LCS, the space required
by the DP algorithm is trivially O(n) as one needs to store just two rows or columns of the
DP matrix. Hirschberg showed how to actually retrieve an LCS within O(n2) time using only
O(n) space [17]. A line of works has improved the complexity of the classic DP algorithm by
factors polylogarithmic with respect to n (see [25, 40, 11, 5, 15]).

While we are the first to consider the dynamic string alignment problem in the general
variant where edits are allowed in any position of either of the strings, already the DP
algorithm is inherently “dynamic” in the sense that it supports appending a letter and
deleting the last letter in either of the strings in linear time. A series of works examined
variants of incremental and decremental LCS and edit distance problems [23, 21, 18]. The
most general of these variants was considered by Tiskin in [32], where he presented a
linear-time algorithm for maintaining an LCS in the case that both strings are subject to
the following updates: prepending or appending a letter, and deleting the first or the last
letter. Tiskin’s solution not only maintains the LCS, but implicitly also the semi-local LCS
information: the LCS lengths between all prefixes of S (resp. T ) and all suffixes of T (resp. S),
as well as the LCS between S (resp. T ) and all fragments (substrings) of T (resp. S).

One of the main technical contributions of Tiskin in this area is an efficient algorithm for
computing the (min,+) product (also known as distance product) of two simple unit-Monge
matrices [37].2 The algorithm itself and the ideas behind it have found numerous applications
to variants of the LCS and string alignment problems. We refer the reader to Tiskin’s
monograph [32] as well as [33, 34, 35, 31, 36].

On the lower-bound side, Backurs and Indyk showed that an O(n2−ε)-time algorithm
for computing the edit distance of two strings of length at most n would refute the Strong
Exponential Time Hypothesis (SETH) [4]. Bringmann and Künnemann generalized this
conditional lower bound by showing that it holds even for binary strings under any non-trivial
assignment of weights cins, cdel, and csub [7] – an assignment of weights is trivial if it allows
one to infer the edit distance in constant time. Further consequences of subquadratic-
time algorithms for the edit distance or LCS problems where shown by Abboud et al. [1];
interestingly, they proved that even shaving arbitrarily large polylogarithmic factors from n2

would have major consequences. In light of the above results, an O(n1−ε)-time algorithm
maintaining an optimal string alignment of two strings of length O(n) subject to edit
operations seems highly unlikely, as it would directly imply an O(n2−ε)-time algorithm for
the static version of the problem.

2 A matrix M is a Monge matrix if M [i, j] + M [i′, j′] ≤ M [i′, j] + M [i, j′] for all i < i′ and j < j′ [26].
An n × n Monge matrix is a simple unit-Monge matrix if its leftmost column and bottommost row
consist of zeroes, while its rightmost column and topmost row consist of subsequent integers from 0 to
n− 1 [37].
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Our results and approach. We heavily rely on Tiskin’s work on efficient distance multiplic-
ation of simple unit-Monge matrices and its applications to the string alignment problem.
Specifically for the LCS problem, Tiskin showed that the semi-local LCS information of two
strings of length at most n can be retrieved from an Õ(n)-size representation as a permutation
matrix PS,T . Based on his efficient algorithm for computing the (min,+)-product of two
simple unit-Monge matrices, he showed that given permutation matrices PS,T and PS,T ′ , one
can efficiently compute PS,TT ′ . We formalize this in the preliminaries (Section 2).

In Section 3, we first describe our algorithm for maintaining an LCS of two strings S and
T in Õ(n) time per edit operation, and then we extend it to maintaining a string alignment
under integer weights. Our algorithm maintains a hierarchical partition of strings S and T
to fragments of length roughly 2s for each scale s, 0 ≤ s ≤ logn, and permutation matrices
PSi,Tj for all pairs of fragments (Si, Tj) at each scale. Then, upon an update to S or T , we
need to update Θ(n/2s) permutation matrices at each scale s. This is in contrast with the
sequential approach of combining the permutation matrices in Tiskin’s work.

In Section 4, we show that efficient data structures for computing distances in planar
graphs outperform the approach outlined above when the alignment weights cannot be
expressed as small integers.

2 Preliminaries

Let T = T [0]T [1] · · ·T [n− 1] be a string of length |T | = n over an alphabet Σ. The elements
of Σ are called letters. For two positions i and j in T , we denote by T [i . . j] the fragment
of T that starts at position i and ends at position j (the fragment is empty if i < j). The
fragment T [i . . j] is an occurrence of the underlying substring T [i] · · ·T [j]. A fragment of
T is represented in O(1) space by specifying the indices i and j. We sometimes denote
the fragment T [i . . j] as T [i . . j + 1). A prefix of T is a fragment that starts at position 0
(T [0 . . j]) and a suffix is a fragment that ends at position n− 1 (T [i . . n− 1] or T [i . . n)).

A longest common subsequence (LCS) of two strings S and T is a longest string that is a
subsequence of both S and T . We denote the length of an LCS of S and T by LCS(S, T ).

I Example 1. An LCS of S = acbcddaaea and T = abbbccdec is abcde; LCS(S, T ) = 5.

For strings S and T , of length m and n respectively, the alignment graph GS,T of S and T
is a directed acyclic graph with vertex set {vi,j : 0 ≤ i ≤ m, 0 ≤ j ≤ n}. For every 0 ≤ i ≤ m
and 0 ≤ j ≤ n, the graph GS,T has the following edges (defined only if both endpoints exist):

vi,jvi+1,j and vi,jvi,j+1 of length 0,
vi,jvi+1,j+1 of length 1, present if and only if S[i] = T [j].

Intuitively, GS,T is an (m+ 1)× (n+ 1) grid graph (with length-0 edges) augmented with
length-1 diagonal edges corresponding to matching letters of S and T . We think of the vertex
v0,0 as the top left vertex of the grid and the vertex vm,n as the bottom right vertex of the
grid. We shall refer to the rows and columns of GS,T in a natural way. It is easy to see that
LCS(S, T ) equals the length of the highest scoring path between v0,0 and vm,n in GS,T .

We index matrices from 0. Let us define some matrices of interest.

I Definition 2. The distribution matrix σ(M) of an m×n matrix M is the (m+ 1)× (n+ 1)
matrix satisfying σ(M)[i, j] =

∑
r≥i,c<jM [r, c].

I Definition 3. An n×n binary matrix is a permutation matrix if it has exactly one 1 entry
in each row and each column. Such a matrix can be represented in O(n) space.
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By constructing a 2D orthogonal range counting data structure over the non-zero entries
of a permutation matrix, one obtains the following lemma.

I Lemma 4 ([32, Theorem 2.15]; [9]). An n× n permutation matrix P can be preprocessed
O(n
√

logn) time so that any entry of σ(P ) can be retrieved in time O(logn/ log logn).

Let � be a wildcard letter, i.e., a letter that matches all letters. Tiskin [32] defines an
(m+ n+ 1)× (m+ n+ 1) distance matrix HS,T over GS,�mT�m so that HS,T [i, j] equals the
hightest weight of a path from v0,i to vm,m+j in GS,�mT�m . Note that if j = i −m, then
HS,T [i, j] = 0. By convention, if j < i−m, then HS,T [i, j] = j − (i−m) < 0. The matrix
HS,T captures so-called semi-local LCS values as follows; see Figure 1 for an illustration.

HS,T [i, j] =



LCS(S[m− i . .m), T [0 . . j)) +m− i if i ≤ m and j ≤ n,
LCS(S[0 . .m+ n− j), T [i−m. . n)) + j − n if i ≥ m and j ≥ n,
LCS(S[m− i . .m+ n− j), T ) +m− i+ j − n if i ≤ m and n+ i ≥ j ≥ n,
m if n+ i ≤ j,
LCS(S, T [i−m. . j)) if i ≥ m and i−m ≤ j ≤ n,
j +m− i if j ≤ i−m.

v0,0

vm,2m+n

� � � � � � � �a b c a b

c
a
b
a v1,4

v3,9

Figure 1 The figure illustrates how HS,T captures semi-local LCS information for S = abac and
T = abcab. We have m = 4 and n = 5. The value HS,T (i, j) captures the length of the highest
scoring path from the i-th blue node to the j-th red node in the above figure (in the left-to-right
order). The underlying idea is that when there are wildcards � involved, one may always choose to
use the diagonal edges corresponding to them and then fill in the rest of the path. Let us analyze
one of the cases thoroughly, the analysis of the other cases is analogous.

The highest weight of a path from v0,3 to v4,4+6 is 4, which corresponds to HS,T (3, 6) = 4 =
LCS(S[4− 3, 9− 6), T ) + 4− 3 + 6− 5 = LCS(S[1, 2], T ) + 2 (case 3 of the equation above). The
highest scoring path (in black), after trimming diagonal edges corresponding to wildcards, yields
a highest scoring path from v1,4 to v3,4+5. Its weight indeed corresponds to LCS(S[1 . . 2], T ) = 2.
The v0,2-to-v4,4+3 highest scoring path (in green) illustrates case 1 of the equation above:
HS,T (2, 3) = 4 = LCS(S[4− 2 . . 4), T [0 . . 3)) + 4− 2 = LCS(S[2 . . 3], T [0 . . 2]) + 2.
The v0,8-to-v4,4+8 highest scoring path (in orange) illustrates case 2 of the equation above:
HS,T (8, 8) = 3 = LCS(S[0 . . 9− 8), T [8− 4 . . 5)) + 8− 5 = LCS(S[0], T [4]) + 3.
The v0,6-to-v4,4+4 highest scoring path (in magenta) illustrates case 5 of the equation above:
HS,T (6, 4) = 1 = LCS(S, T [6− 4 . . 4)) = LCS(S, T [2 . . 3]).

.
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I Remark 5. Let us try to provide some extra intuition by considering the indel distance, for
which we get a more uniform formula. The indel distance of two strings, denoted δ(S, T ), is
the minimum number of insertions and deletions that are needed to transform S to T . In
other words, δ(S, T ) = |S|+ |T | − 2LCS(S, T ). Then 2m+ j − i− 2HS,T [i, j], which can be
interpreted as the number of length-0 edges on the highest scoring path from v0,i to vm,m+j
in GS,�mT�m , admits a more uniform formula:

2m+j−i−2HS,T [i, j] =



δ(S[m− i . .m), T [0 . . j)) if i ≤ m and j ≤ n,
δ(S[0 . .m+ n− j), T [i−m. . n)) if i ≥ m and j ≥ n,
δ(S[m− i . .m+ n− j), T ) if i ≤ m and n+ i ≥ j ≥ n,
j − i if n+ i ≤ j,
δ(S, T [i−m. . j)) if i ≥ m and i−m ≤ j ≤ n,
i− j if j ≤ i−m.

We now return to the LCS problem. Tiskin shows that the (n+m)× (n+m) matrix
PS,T defined as

PS,T [i, j] = HS,T [i, j] +HS,T [i+ 1, j + 1]−HS,T [i+ 1, j]−HS,T [i, j + 1], (1)

is a permutation matrix and satisfies HS,T [i, j] = j + m − i − σ(PS,T )[i, j]. Note that for
constant-length strings S and T , the matrix PS,T can be computed naively in constant time
from HS,T . Conversely, each entry of HS,T can be retrieved in time O(log(n+m)/ log log(n+
m)) after an O((n+m)

√
log(n+m))-time preprocessing of PS,T by Lemma 4. Crucially for

our approach, Tiskin shows the following result.

I Theorem 6 ([32, Theorem 4.21]).
(a) Given PS,T and PS,T ′ for three strings S, T, T ′, each of length at most n, one can compute

PS,TT ′ in O(n logn) time.
(b) Given PT,S and PT ′,S for three strings S, T, T ′, each of length at most n, one can compute

PTT ′,S in O(n logn) time.

Actually, only part (a) of the above theorem is stated explicitly in [32]. Part (b) can be
derived by symmetry as follows. One can check using the characterization of HS,T in terms
of the semi-local LCS values that HS,T [i, j] = HT,S [n+m− i, n+m− j] +m− i+ j − n;
see [32, Lemma 4.14]. In particular, this means that HS,T can be obtained from HT,S by first
performing a 180-degree rotation and then off-setting the values in every row i by m− i and
the values in every column j by j − n. This, in turn, means that PT,S can be obtained from
PS,T just through a 180-degree rotation, as the offsets are cancelled out in the computation
of PS,T [i, j] from HT,S ; see (1). Thus, we can rotate PT,S and PT ′,S to obtain PS,T and
PS,T ′ , compute PS,TT ′ using Theorem 6(a), and then rotate PS,TT ′ to obtain PTT ′,S .

3 Main Algorithm

We show how to maintain the permutation matrix PS,T in O((m+ n) log(m+ n)) time per
update when the strings S and T undergo substitutions, insertions, and deletions of single
letters. Within the stated update time we can recompute the orthogonal range counting
data structure that allows us to report, in O(log(m+ n)/ log log(m+ n)) time, any element
of the matrix HS,T .
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The high-level idea is to maintain the permutation matrices PA,B for fragments A of S
and B of T , at exponentially growing scales. Local changes to S and T , such as substitutions,
insertions, and deletions, only affect a single fragment at each scale. We can therefore
use Theorem 6 to recompute the affected matrices efficiently in a bottom-up fashion.

We first describe the maintenance of a data structure that can only support substitutions
in order to demonstrate the general approach. We will then describe how to also support
insertions and deletions.

3.1 Supporting Only Substitutions
We can assume that both S and T are of length n and that n is a power of two; otherwise,
we pad S with $ characters and T with # characters such that $ 6= # and neither $ nor # is
in the alphabet. We define logn+ 1 scales, where at scale s, each of S and T is partitioned
into non-overlapping fragments of length 2s. At every scale, and for every pair of fragments
Si and Tj of S and T , respectively, we store the permutation matrix PSi,Tj

corresponding to
HSi,Ti

. At scale s, there are (n/2s)2 matrices, each stored in O(2s) space. Thus, the overall
space required by the data structure is O(n2). Building the data structure in a bottom-up
manner requires time

∑logn
s=0 (n/2s)2 · 2s · s = O(n2) by Theorem 6.

Suppose, without loss of generality, that a letter of S is substituted (the other case is
symmetric). We work in order of increasing scales s = 0, 1, . . . logn. Let Si be the unique
fragment of S in scale s that contains the substituted letter. We recompute the matrices
PSi,Tj

for each one of the n/2s fragments Tj of T at scale s. At scale s = 0, both Si and Tj
consist of single letters, and we recompute the constant-size permutation matrices PSi,Tj

from
scratch in total O(n) time. (In fact, there are only two types of matrices, one corresponding to
the case that the letter Si matches the letter Tj , and the other corresponding to a mismatch.)
To recompute a matrix PSi,Tj at scale s > 0, let S′i, S′′i be the two fragments of S at scale
s− 1 such that Si = S′iS

′′
i . Similarly, let T ′j , T ′′j be the two fragments of T at scale s− 1 such

that Tj = T ′jT
′′
j . We repeatedly apply Theorem 6 to PS′

i
,T ′

j
, PS′

i
,T ′′

j
, PS′′

i
,T ′

j
, PS′′

i
,T ′′

j
to obtain

PSi,Tj
in O(s · 2s) time. Thus, the total time to update all affected permutation matrices at

all scales (and, in particular, to obtain the matrix PS,T ) is
∑logn
s=0

n
2s · s · 2s = O(n log2 n).

3.2 Supporting Insertions and Deletions
To support insertions and deletions we use the same approach. However, as each update
increases or decreases the length of the string it is applied to, we can no longer use fixed-
length fragments at each scale. At each scale s, we maintain a partition of each string into
consecutive fragments, each of length between 1

4 · 2
s and 2 · 2s, such that the partition at

scale s is a refinement of the partition at scale s + 1. Let us denote by Rs (resp. Cs) the
partition of S (resp. T ) at level s. We only describe the process for S; the string T is handled
analogously. The refinement property for Rs can be stated formally as follows. For any s′ > s,
for each fragment S[a . . b] ∈ Rs there exists a fragment S[a′ . . b′] ∈ Rs′ with a′ ≤ a ≤ b ≤ b′.
We maintain each Rs as a linked list of the fragments, which are represented by their start
and end indices, sorted by the start indices in increasing order. Upon an update in S, we
update the partitions in a bottom-up manner.

Let us first describe how to insert a letter in S after the letter at position k. We first
scan Rs for all s and increment by 1 all the start indices that are greater than k and all the
end indices that are at least k. This way, the newly inserted letter is assigned to a unique
fragment in each partition. Then, we process the scales in increasing order, starting from
scale 0. If the fragment U0 ∈ R0 that contains the newly inserted letter has just become of
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length greater than 2 · 20 = 2, then we split U0 into two fragments of length at most 2. Note
that this potential split does not violate the refinement property. Then, we proceed to the
next scale. Generally, at scale s, if the length of the fragment Us ∈ Rs that contains the
newly inserted letter does not exceed 2 · 2s, we just proceed to the next scale. Otherwise,
we need to make adjustments, ensuring that the refinement property is not violated. Note
that, if |Us| = 2 · 2s + 1, then, since fragments at scale s− 1 have been already processed and
respect the length constraint, the refinement property implies that Us is the concatenation
of at least three (and at most nine) fragments V1, V2, . . . , Vt at scale s− 1. Let the middle
letter of Us belong to Vi. Then, either

∑
g<i |Vg| ≥ 2s/4 or

∑
g>i |Vg| ≥ 2s/4; let us assume

without loss of generality that we are in the first case. We replace U at scale s by V1 · · ·Vi−1
and Vi · · ·Vt. If such a replacement happens at the highest scale s (with Us = S), then we
create a new level s + 1 with Rs+1 = {Us} = {S}. Note that the refinement property is
maintained and the whole procedure requires O(m) time.

We now treat the complementary case of deleting S[k]. Again, we first scan Rs for all
scales s and decrement by 1 all the start/end indices that are at least k – ensuring that
none of them becomes negative. If some fragment becomes of length 0, then we remove
it. We again process levels in increasing order. Suppose that the fragment Us ∈ Rs that
contained the deleted letter has just become shorter than 1

4 · 2
s. If Rs is the top level of

the decomposition, then we simply remove this level. Otherwise, consider the fragment
Us+1 ∈ Rs+1 that contains Us. Note that, 1 ≤ |Us| = 1

4 · 2
s − 1 implies that the length

|Us|+ 1 of the fragment corresponding to Us prior to the deletion is smaller than 1
4 · 2

s+1,
and hence |Us+1| > |Us|. Thus, there exists a fragment V at scale s that is adjacent to
Us and is also a subfragment of Us+1. Let us assume without loss of generality that V
lies to the right of Us – the other case is symmetric. If |V | < 7

4 · 2
s, then we can just

replace Us and V in Rs by their concatenation, UsV . Otherwise, let the first element of
the decomposition of V at scale s − 1 be X. In this case, we can replace Us and V in Rs
by UsX and Y = V [|X| . . |V | − 1], since 1

4 · 2
s ≤ |UsX| < 1

4 · 2
s + 2 · 2s−1 < 2 · 2s and

1
4 · 2

s < 7
4 · 2

s − 2 · 2s−1 ≤ |V | − |X| = |Y | < |V | ≤ 2 · 2s. The refinement property is
maintained and the whole procedure requires O(m) time.

We maintain PA,B for each pair of fragments (A,B) ∈ Rs × Cs at scale s. In the case
that Rs simply consists of S at scale s, while T is still fragmented, we consider Rj for any
j > s to simply consist of S. (Symmetrically for the opposite case.) The number of pairs of
fragments that are affected at scale s is O((n+m)/2s). We compute PA,B, for each such
pair (A,B), using a constant number of applications of Theorem 6 in O(s · 2s) time. Thus,
the total time to handle scale s is O((n + m)s) and the total time to handle all scales is
O((m+ n) log2(m+ n)).

I Remark 7. Deletions of fragments of either of the strings can also be processed within the
same time complexity with a straightforward generalisation of the above process.

Obtaining the longest common subsequence. We now describe how one can obtain the
longest common subsequence, and not just its length, within Õ(n+m) time. Let us consider
the following auxiliary problem: given some pair of fragments Si, Tj at scale s > 0, compute
the longest common subsequence of either some prefix of Si (resp. Tj) and some suffix of Tj
(resp. Si), or some fragment of Si (resp. Tj) and Tj (resp. Si). Consider the refinement, at
scale s− 1, of Si to U1, . . . , Uk and of Tj to V1, . . . , V`. Let GS,T (S[i1 . . i2], T [j1 . . j2]) be the
subgraph of GS,T induced by the set of vertices {vi′,j′ : i1 ≤ i′ ≤ i2 + 1, j1 ≤ j′ ≤ j2 + 1}.
Our aim is to decompose the highest scoring path in scope (say va,b-to-vc,d) into subpaths,
each lying entirely on some GS,T (Ur, Vt). We can then apply this procedure recursively.
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9:8 Dynamic String Alignment

PSi,Tj was obtained from the k × ` matrices PUt,Vr through some order of applications
of Theorem 6. We can store such intermediate matrices, preprocessed as in Lemma 4, without
any extra asymptotic cost in the complexities. We refine the path by considering the reverse
order. For clarity of presentation, let us assume that k = ` = 2 and the intermediate matrices
were PU1U2,V1 and PU1U2,V2 . We can decompose the path to at most two subpaths, one lying
entirely on J1 = GS,T (U1U2, V1) and one lying entirely on J2 = GS,T (U1U2, V2). The case
that both va,b and vc,d lie on one of J1 or J2 is trivial. In the other case, we wish to find
a node that lies on both J1 and J2 and is on the path. To this end, we query PU1U2,V1

(resp. PU1U2,V2) for the length of the highest scoring va,b-to-u (resp. u-to-vc,d) path for all
nodes u that belong to both J1 and J2. Using Lemma 4, this can be done in O(2s · s/ log s)
time (for s > 0). Any u for which the sum of these values equals the length of the highest
scoring va,b-to-vc,d path is a valid vertex to decompose the path. We then recurse, further
refining the path. Note that the va,b-to-vc,d path gets decomposed into O((n+m)/2s) pieces
at scale s, for all s. Hence, by summing over all scales, the total time required for applying
this procedure is O((n+m) log2(n+m)).

Fragment-to-fragment LCS queries. Our data structure also enables us to answer queries
of the type LCS(S[i1 . . i2], T [j1 . . j2]) in time Õ(n+m) (in fact, in time Õ(1+i2−i1 +j2−j1)).
Note that GS,T (S[i1 . . i2], T [j1 . . j2]) can be decomposed in Õ(n+m) time to multiple pieces
GS,T (U, V ), overlapping at their boundaries, such that U and V are of the same scale and
there are O((n + m)/2s) pairs (U, V ) of scale s. This can be done, intuitively, using a
greedy approach, that each time uses a piece from the largest possible scale. One can also
think of this as extending a rectangle using a constant number of layers consisting of pieces
corresponding to pairs of strings at scale s, in order of decreasing s. Finally, a repeated
application of Theorem 6 yields the claimed result.

3.3 Extension to String Alignment Under Integer Weights

Let us now consider the problem of computing an alignment of two strings S and T , under
integer weights wmatch, wmis and wgap – one may assume that 2wmatch > 2wmis ≥ wgap [32].
In this problem, the goal is to compute a highest scoring path from v0,0 to vm,n in the following
modification ĜS,T of GS,T . Edges of the form vi,jvi+1,j and vi,jvi,j+1 have weight wgap,
while edges of the form vi,jvi+1,j+1 have weight wmatch if T [i] = S[i] and wmis otherwise.

Tiskin shows in Section 6.1 of his monograph [32] that the alignment problem between
strings S and T , can be reduced to the LCS problem between strings S′ and T ′, obtained as
follows. First, replace every letter a in S or in T by the string $µaν−µ, where $ 6∈ Σ and

µ

ν
= wmis − 2wgap
wmatch − 2wgap

.

Then, if one defines matrix ĤS,T over ĜS,T analogously to the definition of HS,T over GS,T ,
we have that ĤS,T (i, j) = 1

ν ·HS′,T ′(νi, νj).
We maintain the same information as in the previous subsections, making sure that each

fragment of each partition is a multiple of ν. At scale 0, we have only two options about how
PA,B can look like, despite it being a ν × ν matrix; its structure only depends on whether
A = B or not. We precompute such possible PA,B ’s. This way, upon an update on S or T ,
updating scale 0 requires O(nν) time. At every other scale, the total length of the involved
strings has just blown up by a ν multiplicative factor and hence the total update time is
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O(nν log2(nν)). The same reasoning shows that the preprocessing time is

O

(logn∑
s=0

( nw
2sw

)2
· 2sw · log(2sw)

)
= O(n2w logn logw).

We summarize the results of this section in the following theorem.

I Theorem 8. Given two strings S and T and integer weights wmatch, wmis and wgap,
bounded by w, the alignment score of S and T as they undergo insertions, deletions and
substitutions of letters can be maintained in O(nw log2(nw)) time per operation after
an O(n2w logn logw)-time preprocessing. The actual alignment can be retrieved in time
O(nw log2(nw)). In addition, the following queries are supported:

the score of any semi-local string alignment can be computed in O(log(nw)/ log log(nw))
time,
the score of any fragment-to-fragment alignment can be computed in Õ(nw) time.

4 Handling Large Weights

In this section, we describe an algorithm for string alignment that only relies on the planarity
of ĜS,T . This algorithm outperforms the one from Theorem 8 when the alignment weights
cannot be transformed to integers bounded by (roughly)

√
n.

Instead of computing a highest scoring path, we can reduce the problem to computing a
shortest path in the alignment DAG. Given wmatch, wmis and wgap, we define w′match = 0,
w′mis = wmatch − wmis and w′gap = 1

2wmatch − wgap. Then, a shortest path with respect to
the new weights (of length W ), corresponds to a highest scoring path with respect to the
original weights (of score 1

2 (m+ n)wmatch −W ).

4.1 Data Structures for Planar Graphs
Let us first introduce some data structures for shortest paths in planar graphs.

MSSP. The multiple-source shortest paths (MSSP) data structure of Klein [22] represents
all shortest path trees rooted at the vertices of a single face f in a planar graph G of size n
using a persistent dynamic tree. It can be constructed in O(n logn) time, requires O(n logn)
space, and can report the distance between any vertex of f and any other vertex in G in
O(logn) time. The actual shortest path p can be retrieved in time O(ρ log logn), where ρ is
the number of edges of p.

FR-Dijkstra. Let us consider a subgraph P of a planar graph G, and a face f of P . The
dense distance graph of P with respect to f , denoted DDGP,f is a complete directed graph on
the set of vertices F that lie on f . Each edge (u, v) has weight dP (u, v), equal to the length
of the shortest u-to-v path in P . DDGP,f can be computed in time O((|F |2 + |P |) log |P |)
using MSSP. In their seminal paper, Fakcharoenphol and Rao [12] designed an efficient
implementation of Dijkstra’s algorithm on any union of DDGs – it is nicknamed FR-Dijkstra.
The algorithm exploits the fact that, due to planarity, certain submatrices of the adjacency
matrix of DDGP,f satisfy the Monge property. We next give a – convenient for our purposes
– interface for FR-Dijkstra, which was essentially proved in [12], with some additional
components and details from [20, 27].
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I Theorem 9 ([12, 20, 27]). Given a set of DDGs with O(M) vertices in total (with
multiplicities), each having at most m vertices, we can (independently) preprocess each DDG
with k vertices in time and extra space O(k log k), so that, after this preprocessing, Dijkstra’s
algorithm can be run on the union of any subset of these DDGs with O(N) vertices in total
(with multiplicities) in time O(N logN logm).

I Remark 10. For an improvement in the logarithmic factors of Theorem 9 see [13].

4.2 Direct Application to String Alignment
Our approach is essentially the same as the one for dynamic distance oracles in planar graphs
due to Klein [22], with extensions in [19, 20, 10]. We want to maintain a data structure that
enables us to compute the length of the shortest v0,0-to-vm,n path. However, instead of a
single update to the graph, we have a batch of O(m+ n) updates for each update to one of
the strings. We rely on the fact that the updates to the graphs are clustered in a constant
number of rows/columns of ĜS,T in order to process them more efficiently compared to
simply using dynamic distance oracles for planar graphs in a black-box manner.

Let us consider a partition of ĜS,T into O((n/r)2) pieces of size Θ(r)×Θ(r) each. We
consider the vertices that lie on the infinite face of each piece as its boundary nodes. Then, as
each piece has O(r) boundary vertices, the total number of boundary vertices is O(n2/r). We
compute the MSSP data structure and the DDG for each piece with respect to its outer face.
Note that the shortest path from v0,0 to vm,n can be decomposed to subpaths p1, . . . , pk such
that each pi lies entirely within some piece Pi and pi’s endpoints are boundary nodes of Pi.
Thus, we can compute the length of the shortest v0,0-to-vm,n path by running FR-Dijkstra
from v0,0 in the union of all DDGs in Õ(n2/r) time. In order to retrieve the actual shortest
path, we can refine the DDG edges of the shortest v0,0-to-vm,n path to the actual underlying
edges using the MSSP data structures for the respective pieces.

Each update to one of the strings affects a constant number of rows or of columns of
the original matrix and these are covered by O(n/r) pieces. The MSSP data structures and
DDGs for these pieces can be recomputed using MSSP and preprocessed for efficient shortest
path computations in Õ(nr · r

2) = Õ(nr) time. The balance is at n2/r = nr, which yields
r =
√
n, so the time per operation is Õ(n3/2). If a piece grows (resp. shrinks) too much, we

break it into two pieces (resp. merge it with an adjacent piece and split in the middle) and
recompute and preprocess the DDGs for the affected pieces. We obtain the following result.

I Theorem 11. Given two strings S and T and alignment weights wmatch, wmis, and wgap,
the optimal alignment of S and T as they undergo insertions, deletions, and substitutions of
letters can be maintained in Õ(n3/2) time per operation after an Õ(n2)-time preprocessing.

5 Final Remarks

There has been a recent series of breakthrough papers on approximating the edit distance
and length of the LCS, see e.g. [3, 2, 8, 16, 14, 6]. It is natural to ask about the maintenance
of an approximation of the edit distance or LCS in the setting of dynamic strings.
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10:2 Unary Words Have the Smallest Levenshtein k-Neighbourhoods

1 Introduction

BLAST (Basic Local Alignment Search Tool) is a widely-used tool for comparing biological
sequences such as the amino-acid sequences of proteins or the nucleotides of DNA or RNA
sequences. A BLAST search enables to compare a subject sequence, called a query, against a
database of sequences to identify the ones that resemble the query sequence above a certain
threshold. The paper describing BLAST [1] is one of the most highly cited papers in science.

According to Myers [8], the most important algorithmic idea underlying BLAST is that of
searching for exact matches to words in the neighbourhood of fixed-length fragments selected
from the query sequence. We call these fragments words. Let δ be a sequence comparison
measure that given two words v and w returns a numeric measure δ(v, w) of the degree to
which the two words differ. Given a word w, the k-neighbourhood of w with respect to δ
is the set of all words whose best alignment with w under measure δ is no more than k.
The most widely-used case is where δ is the edit distance (a.k.a. the Levenshtein distance),
which is the minimum number of insertions, deletions or substitutions of letters needed
to transform one word into another [6]. When δ is the Levenshtein distance, we call this
neighbourhood the Levenshtein k-neighbourhood of w and we denote it by Nk,Σ(w), where Σ
is the considered alphabet. We provide an example below.
I Example 1 (Levenshtein k-neighbourhood). Let w = baab, k = 1 and Σ = {a, b}. Then
N1,Σ(baab) is:

{bbab, bbaab, babb, bab, babab, baab, baabb, baaba, baa, baaa, baaab, abaab, aab, aaab}.

From an algorithmic point of view, the most natural question is how we can generate the
Levenshtein k-neighbourhood in time that is proportional to the size of the neighbourhood.
In fact, this is the core computational task underlying BLAST. Myers described an algorithm
for generating a condensed version of this neighbourhood efficiently (see [8] for more details).
Another natural question is how we can compute the size of the Levenshtein k-neighbourhood.
Touzet gave an algorithm for computing |Nk,Σ(w)| for a word w of length n over an alphabet
Σ that works in time linear in n but exponential in k [11]. This algorithm is based on a
variant of the so-called Universal Levenshtein Automaton [7], which in turn is based on the
Levenshtein automaton of w: the non-deterministic finite automaton recognising all words
which are at Levenshtein distance at most k from w. For other related works, see [2, 3, 9, 10].

From a combinatorial point of view, the most natural question asks for upper and lower
bounds on the size of the Levenshtein k-neighbourhood. Myers provided recurrences for
counting the number of distinct sequences of k edit operations that one could perform on a
given word and notes that “such bounds would give a tighter characterisation of the running
time of the algorithm” behind BLAST [8]. A word is called unary if it consists of a single
element of Σ. The main result of this work can be formally stated as follows.
I Theorem 2. Let a ∈ Σ be an arbitrary element of alphabet Σ. For any positive integers n
and k, we have |Nk,Σ(an)| < |Nk,Σ(w)|, for any non-unary word w of length n.

The course of our proof is to construct, for every word u ∈ Nk,Σ(an), a distinct word
u′ ∈ Nk,Σ(w) that can be obtained by a similar sequence of edit operations. In particular,
we show that, for any n, k, and Σ,

|Nk,Σ(an)| =
k∑

i=0

k∑
j=i−k

(
n+ j

i

)
(σ − 1)i

is the size of the smallest Levenshtein k-neighbourhood of a word of length n, where a ∈ Σ
and σ = |Σ|. We remark that our main result was posed as a conjecture by Dufresne in [5].
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Organisation of the Paper. The basic definitions and notation used throughout are in-
troduced in Section 2. In Section 3, we present the main result of this work for binary
alphabets – apart from the strictness of the inequality. We then generalise this result to
arbitrary alphabets in Section 4 and prove the strictness of the inequality directly in this
more general case. We conclude this paper in Section 5 with some final remarks.

2 Preliminaries

An alphabet Σ is a finite non-empty set of size σ = |Σ| whose elements are called letters. A
word over Σ is a sequence of letters from Σ. We call a word w unary if it consists of a single
letter of Σ and non-unary if it consists of at least two letters of Σ. Σn denotes the set of
words of length n over Σ and Σ∗ denotes the set of finite words over Σ. For a word w, by |w|
we denote its length, and by w[i], for i = 1, . . . , |w|, we denote its subsequent letters. The
word of length 0 is the empty word, which we denote by ε.

We consider the following elementary edit operations: insertion, deletion, and substitution.
For two words x and y, we define the edit distance (a.k.a. the Levenshtein distance) as the
minimum number of edit operations that transform x to y, and we denote it by Lev(x, y).
The function Lev is then a metric on Σ∗ [4].

Given a word w, an alphabet Σ, and a positive integer k, we define Nk,Σ(w) as the set of
all words in Σ∗ that are at Levenshtein distance at most k from w. Formally, we have that

Nk,Σ(w) = {v ∈ Σ∗ : Lev(v, w) ≤ k}.

We call Nk,Σ(w) the Levenshtein (k,Σ)-neighbourhood of w.
For any binary alphabet Σ, we define the complement of a word w over Σ as the word

obtained by substituting w[i] for letter a 6= w[i], with a ∈ Σ, for all i = 1, . . . , |w|. We denote
the complement of w by w and we call a single such substitution operation a flip.

3 Main Result for Binary Alphabets

In this section we consider Σ = {a, b}, write Nk(w) and refer to Levenshtein k-neighbourhood
for simplicity. We present the main result but do not show the strictness of the inequality.
We generalise this result to an arbitrary alphabet Σ and show the strictness in Section 4.

Let N j
k(w) = {u ∈ Nk(w) : |u| = j}. Further let #a(u) denote the number of a’s in word

u. We illustrate the main ideas of our approach on a simple case and first consider the words
of the neighbourhood that are of length at most n.

I Observation 3. Any u ∈ Nk(an) with |u| ≤ n can be obtained from an by the following
sequence of at most k edit operations: n− |u| deletions of a’s in the beginning of an followed
by a sequence of |u| −#a(u) flips.

I Example 4. Let w = aaaa and k = 2. Then u = aba ∈ N2(aaaa) can be obtained from
aaaa by deleting n− |u| = 1 letter a to obtain aaa and then by |u| −#a(u) = 1 flip to obtain
aba.

Intuitively, the size of the set N j
k(an) is equal to the number of subsets of {1, . . . , j} of

size at most k− (n− j); n− j is the number of deletions and k− (n− j) the number of flips.

I Lemma 5. If j ≤ n, then |N j
k(an)| ≤ |N j

k(w)| for all w ∈ Σn.

CPM 2020
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Proof. We use the characterisation of Observation 3. Let us argue why |N j
k(w)|, for any

word w of length n, is at least as big as |N j
k(an)|. Consider the following procedure applied

on word w: the deletion of the first n − j letters of w followed by the flipping of at most
k− (n− j) letters. Clearly all words obtained by this procedure are distinct. This procedure
thus gives us a subset of N j

k(w) that is of size equal to |N j
k(an)|. J

Let us now consider the case of the words of the neighbourhood that have length greater
than n. In particular, we denote the neighbourhood

⋃
j>n

N j
k(w) of these words by N>n

k (w)

and thus N≤n
k (w) = Nk(w) \N>n

k (w). For a word u ∈ N>n
k (an), we distinguish between two

cases depending on the number of a’s in u:

Case 1: #a(u) ≥ n,
Case 2: #a(u) < n.

The following observation states that in each case the word u ∈ N>n
k (an) can be obtained

by a restricted sequence of edit operations.

I Observation 6.
(1) Any u ∈ N>n

k (an) with #a(u) ≥ n can be obtained from an by the following sequence of
at most k edit operations: #a(u)− n insertions of a’s in the beginning of an followed by
a sequence of |u| −#a(u) insertions of b’s.

(2) Any u ∈ N>n
k (an) with #a(u) < n can be obtained from an by the following sequence of

at most k edit operations: n−#a(u) flips followed by a sequence of |u| − n insertions of
b’s. The insertions can be restricted to the part of the word after the rightmost flip.

I Example 7. Let w = aaaa and k = 2. For Case 1, u = aaaaba ∈ N>n
2 (aaaa) with

#a(u) = 5 ≥ n = 4 can be obtained by #a(u)−n = 1 insertion of a in the beginning of aaaa
to obtain aaaaa and then by |u| −#a(u) = 1 insertion of b to obtain aaaaba. For Case 2,
u = aabab ∈ N>n

2 (aaaa) with #a(u) = 3 < n = 4 can be obtained by n−#a(u) = 1 flip to
obtain aaba and then by |u| − n = 1 insertion of b to the right of the flip to obtain aabab.

Intuitively, in Case 1, we insert the relevant number of a’s to reach #a(u) because we
have fewer a’s than needed, and then insert the relevant number of b’s. In Case 2, we flip the
relevant number of a’s to go down to #a(u) because we have more a’s than what is needed,
and then insert the remaining b’s to the right of the rightmost flip.

Proof Strategy. Let u be an arbitrary element of Nk(an), for some positive integers n and
k. We define a function fu : Σn → Σ∗, such that:
1. fu(w) ∈ Nk(w), for all w ∈ Σn; and
2. Given w and fu(w) we can retrieve u.
Such an fu directly yields the desired bound (apart from the strictness) since it implies that
for any word w we cannot have fu(w) = fu′(w) for u, u′ ∈ Nk(an), u 6= u′. In particular, we
have that |Nk(an)| ≤ |Nk(w)| for any w ∈ Σn; see Table 1 for a complete example.

Note that for |u| ≤ n we already used the same idea to lower bound |N≤n
k (w)| by

|N≤n
k (an)|. Indeed, we implicitly defined fu(w) for u ∈ N≤n

k (an) that consists in removing
the first n − |u| letters of w, resulting in a word w′, and then flipping the letters of w′ at
positions j where u[j] = b (see Lemma 5).
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Table 1 Let n = 3, w = aab and k = 2. The table presents an assignment fu from every word in
N2(a3) to a different word in N2(aab) that is used in the proof of the main result. Note, however,
that as per Theorem 2 there is at least one more word in N2(aab), namely, the word a.

(a) fu for u ∈ N≤3
2 (a3).

u ∈ N≤3
2 (a3) fu(aab)

a b

aa ab

ab aa

ba bb

aaa aab

aab aaa

aba abb

abb aba

baa bab

bab baa

bba bbb

(b) fu for #a(u) < 3 (Case 2).

u ∈ N>3
2 (a3) fu(aab)

aabb aaaa

abab abba

abba abbb

baab baba

baba babb

bbaa bbab

(c) fu for #a(u) ≥ 3 (Case 1).

u ∈ N>3
2 (a3) fu(aab)

aaaa aaab

aaab aaba

aaba aabb

abaa abab

baaa baab

aaaaa aaaab

aaaab aaaba

aaaba aaabb

aaabb aabaa

aabaa aabab

aabab aabba

aabba aabbb

abaaa abaab

abaab ababa

ababa ababb

abbaa abbab

baaaa baaab

baaab baaba

baaba baabb

babaa babab

bbaaa bbaab

Definition of fu. Let us start by introducing the following edit operation on a non-empty
word w. It takes as input parameters an integer j ∈ [1, |w|] and a positive integer t.

ins-diff(w, j, t) : inserts a block of length t of letters equal to w[j] after the letter w[j] (1)

See Figure 1 for an illustration of operation ins-diff(w, j, t).

b b b a a b b

a a a b b a a

Figure 1 For every position j of w = aaabbaa (bottom), the letter (top) of which a block inserted
by ins-diff(w, j, 1) after position j would comprise.

In what follows, we assume that all insertions are with respect to the original indices of
w. This can be achieved, for example, by performing insertions in a right-to-left manner
when they are given as an ordered batch. Before providing the definition of fu, we define
two auxiliary operators gx and hx, for a word x.

Let us start with gx. For any word x starting with a, we define an operator gx that can be
applied to any word y such that |y| = #a(x). Intuitively, to construct word gx(y), the letters

CPM 2020
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of y get in gx(y) the positions that letters a possess in x, and for every maximal block of b’s
in between in x, i.e. a block consisting of only b’s that is neither preceded nor succeeded by
a b, we apply an ins-diff operation on y. Specifically, we define gx(y) = v as follows: starting
with v = y, for each maximal block x[r . . r + t− 1] of b’s in x, with #a(x[1 . . r − 1]) = m,
perform ins-diff(v,m, t). Note that |gx(y)| = |x|; see Example 8.

I Example 8. Let x = aababbababaab and y = aaabbaa; note that #a(x) = 7 = |y|. We
have gx(y) = v = aababbbabaaab; see also the figure below and recall that we perform this
procedure from right to left. Starting from v = y, for the first maximal block x[r . . r+ t−1] =
x[13 . . 13] = b with #a(x[1 . . r − 1]) = #a(x[1 . . 12]) = m = 7, we perform ins-diff(v, 7, 1),
which constructs aaabbaab. For the next maximal block x[r . . r + t − 1] = x[10 . . 10] = b

with #a(x[1 . . r − 1]) = #a(x[1 . . 9]) = m = 5, we perform ins-diff(v, 5, 1), which constructs
aaabbaaab. For the next maximal block x[r . . r+ t−1] = x[8 . . 8] = b with #a(x[1 . . r−1]) =
#a(x[1 . . 7]) = m = 4, we perform ins-diff(v, 4, 1), which constructs aaababaaab, and so on.

x : a a b a b b a b a b a a b

y : a a a b b a a

gx(y) : a a b a b b b a b a a a b

For any word x, we also define an operator hx that takes as input a word y of length |x|
and flips its letters on positions in which x has b’s.

We are now in a position to define fu(w), for all w ∈ Σn. Recall that u ∈ N>n
k (an). We

have the following two cases for fu.
Case 1: #a(u) ≥ n. Let us split u in its shortest suffix s that contains n a’s and the

remaining (possibly empty) prefix p. We then define fu(w) for words u and w in this case as
follows (see Example 9):

fu(w) = p · gs(w). (2)

I Example 9. Let w = aaabbaa and k = 4; note that n = 7. If u = abaaaaaabaa, then
#a(u) = 9 ≥ n, so we are in Case 1. We have p = aba and s = aaaaabaa is the shortest suffix
that contains n = 7 occurrences of the letter a. Then fu(w) is constructed by concatenating
p with the word gs(w) as shown in the figure below.

u : a b a a a a a a b a a

w : a a a b b a a

fu(w) : a b a a a a b b a a a

Case 2: #a(u) < n. In this case we split u in its shortest suffix s′ that contains |u| − n
b’s and the remaining prefix p′. Note that p′ is always non-empty. We then define fu(w) for
words u and w in this case as follows (see Example 10):

fu(w) = hp′(w′) · gx(w)[|p′|+ 1 . . |u|], where x = a|p
′|s′ and w′ = w[1 . . |p′|]. (3)

In particular, #a(x) = |x| −#b(x) = |u| − (|u| − n) = n, and so applying gx is well-defined.

I Example 10. Let w = aaabbaa and k = 4; note that n = 7. If u = aababbaab, then
#a(u) = 5 < n, so we are in Case 2. We have p′ = aabab and s′ = baab is the shortest suffix
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that contains |u| −n = 2 occurrences of letter b. Then fu(w) is constructed by concatenating
two words: the first one is hp′(w′), where w′ = w[1 . . |p′|]; and the second one is composed
of the final |s′| letters of gx(w), where x is the word obtained from u by changing the first
n−#a(u) = 2 occurrences of b to a as shown in the figure below.

u : a a b a b b a a b

x : a a a a a b a a b

w : a a a b b a a

gx(w) : a a a ba a a b b

hp′(w′) : a a b b a

fu(w) : a a b b a a a a b

In Table 1 we provide a complete example of applying fu, for each u ∈ Nk(a3), to w = aab.
Let us now show the following fact.

I Fact 11. |fu(w)| = |u| and Lev(w, fu(w)) ≤ Lev(an, u).

Proof. The first part can be readily verified. As for the second part, one can obtain fu(w)
from w by the same sequence of edit operations (types and positions) that yield u from an,
according to Observation 6. J

We next prove the main lemma on which our main result relies. A pseudocode imple-
menting the algorithm used in the proof of this lemma can be found as Algorithm 1. Note
that by considering a’s as 0’s and b’s as 1’s, we have that hx(y)⊗ y = x, where ⊗ denotes
the XOR operation. Consider, for instance, x = aabab, y = aaabb and hx(y) = aabba.

Algorithm 1 Retrieve(w, fu(w)) for Σ = {a, b}.
Input: Two words w and fu(w).
Output: A word u.
1: u← ε

2: k1 ← |w|
3: k2 ← |fu(w)|
4: while k2 > k1 and k1 > 0 do
5: if w[k1] = fu(w)[k2] then
6: k1 ← k1 − 1
7: prepend(a, u)
8: else
9: prepend(b, u)

10: k2 ← k2 − 1
11: if k1 = 0 then \\ k2 > 0; Case 1 with p 6= ε

12: prepend(fu(w)[1 . . k2], u)
13: else \\ k1 = k2; Case 2 (or Case 1 with p = ε)
14: prepend(w[1 . . k1]⊗ fu(w)[1 . . k2], u)
15: return u

I Lemma 12. Let u be an arbitrary element of N>n
k (an), for some positive integers n and

k. Given w and fu(w), for any w ∈ Σn, we can retrieve u.
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Proof. Let us note that, as we only had insertions and flips of letters, conceptually for each
position in w there is a corresponding position in fu(w). The correspondence is given by
ignoring the letters of fu(w) that were inserted by operation ins-diff. Our aim is to find all
such pairs of corresponding positions in order to retrieve u.

To this end, we will swipe both w and fu(w) from right to left and prepend letters to an
initially empty word u, which in the end will be equal to u ∈ N>n

k (an). We will maintain a
position in each of the words, k1 initiated as |w| and k2 initiated as |fu(w)|.

Intuitively, we are first processing the part of fu(w) that comes from an application of
operator g to w or to a suffix of w, depending on which case we are in. While processing this
part, we maintain the invariant that the letter of fu(w) corresponding to w[k1] is the rightmost
occurrence of w[k1] in fu(w)[1 . . k2], relying on the definition of g. Then we can apply the
following procedure repeatedly; see Lines 4-10 in Algorithm 1. We compute the rightmost
occurrence of w[k1] in fu(w)[1 . . k2]; let it be at position j. We have that u[j . . k2] = abk2−j .
We prepend abk2−j to u, decrement k1 and set k2 to j − 1; see Example 13.

Let us now focus on the stopping condition of this procedure, i.e. the point where the
remaining prefix of fu(w) does not originate from an application of g. If we are in Case 1,
while k1 > 0 we must have that k2 ≥ k1 + |p|. If we are in Case 2, while k2 > k1 we must
have that k1 ≥ |p′|. Overall, while 0 < k1 < k2, we must have that k2 > |p| if we are in Case
1 or k2 > |p′| if we are in Case 2.

If at some point k1 reaches 0, i.e. we have consumed all of w, then we are in Case 1. Thus,
fu(w)[1 . . k2] = p and we prepend this prefix to u; see Lines 11-12 in Algorithm 1.

Else, if at some point k1 = k2, i.e. we are left with equal-length prefixes of w and
fu(w), then we are either in Case 2 or in Case 1 with p = ε. By using the XOR operation
w[1 . . k1]⊗ fu(w)[1 . . k2] in the former case we retrieve p′ and in the latter case we get ak1

which is the missing prefix of s. In either case we prepend the result to u; see Lines 13-14
in Algorithm 1. J

I Example 13. Let u = abba ∈ N2(a3), w = aab, and fu(w) = abbb. We have k1 = 3 and
k2 = 4. At the first iteration of the while loop in Algorithm 1 we have w[3] = fu(w)[4] = b and
so we set k1 = 2, u = a and k2 = 3. At the second iteration we have w[2] = a 6= fu(w)[3] = b

and so we get u = ba and k2 = 2. At this point we exit the while loop (because k1 = k2),
and since we are at Case 2 we prepend w[1 . . 2] ⊗ fu(w)[1 . . 2] = aa ⊗ ab = ab to u = ba,
which gives us u = abba. At this point we have retrieved u = abba ∈ N2(a3).

By combining Lemmas 5 and 12 and Fact 11 we get |N j
k(an)| ≤ |N j

k(w)| for every j. This
implies our main result for binary alphabets, apart from the strictness of the inequality. We
leave the latter for the next section.

4 Generalisation to Arbitrary Alphabets and Strictness

For an arbitrary alphabet Σ = {0, . . . , σ− 1} we only need to make minor adjustments in the
definition of function fu and in the algorithm for retrieving u from w and fu(w). Specifically,
we replace the XOR operation by addition/subtraction modulo σ. Intuitively, one can think
of 0’s as a’s in the binary case, and of non-0’s as b’s in the binary case.

Definition of fu. Let u and v be two words of equal length. Let us denote by u⊕ v the
position-wise sum of words u and v modulo σ, e.g. for σ = 4 we have 1312⊕ 1112 = 2020.
We analogously denote by u	 v the position-wise subtraction of words u and v modulo σ.
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We adapt operation ins-diff as follows, with z being a word containing only positive letters:

ins-diff(w, j, z) = insert word z ⊕ (w[j])|z| after the letter at position j in word w. (4)

Operator gx can now be applied to any word y such that |y| = #0(x). gx considers
maximal blocks of letters in x not containing 0’s instead of maximal blocks of b’s (in the
binary case). For such a block z, it performs an ins-diff(y, j, z) operation on a word y.

The definition of fu becomes as follows.
Case 1: #0(u) ≥ n. We split the word u into p and s exactly as in the binary case and

define fu(w) = p · gs(w); see Example 14.

I Example 14. Let Σ = {0, 1, 2}, w = 201120 and k = 7; note that n = 6. If u =
0210001200210, then #0(u) = 7 ≥ n, so we are in Case 1. We have p = 021 and s =
0001200210 is the shortest suffix that contains n = 6 occurrences of the letter 0. Then fu(w)
is constructed by concatenating p with the word gs(w) as shown in the figure below.

u : 0 2 1 0 0 0 1 2 0 0 2 1 0
w : 2 0 1 1 2 0

fu(w) : 0 2 1 2 0 1 2 0 1 2 1 0 0

Case 2: #0(u) < n. The split of u into p′ and s′ is the same as in the binary case,
but instead of s′ containing n − #a(u) b’s it now contains n − #0(u) non-0’s. fu(w) =
(p′ ⊕ w[1 . . |p′|]) · gx(w)[|p′|+ 1 . . |u|], where x = 0|p′|s′; see Example 15.

I Example 15. Let Σ = {0, 1, 2}, w = 201120 and k = 5; note that n = 6. If u = 21021020,
then #0(u) = 3 < n, so we are in Case 2. We have p′ = 2102 and s′ = 1020 is the shortest
suffix that contains |u| − n = 2 occurrences of letters different than 0. Then fu(w) is
constructed by concatenating two words: the first one is hp′(w′), where w′ = w[1 . . |p′|]; and
the second one is composed of the final |s′| letters of gx(w), where x is the word obtained
from u by changing the first n−#0(u) = 3 occurrences of non-0 letters to 0 as shown in the
figure below.

u : 2 1 0 2 1 0 2 0
x : 0 0 0 0 1 0 2 0
w : 2 0 1 1 2 0

gx(w) : 2 2 1 02 0 1 1
hp′(w′) : 1 1 1 0
fu(w) : 1 1 1 0 2 2 1 0

Algorithm 2 is an adaptation of Algorithm 1 for Σ = {0, . . . , σ − 1}. Note that the two
constructions are identical for |Σ| = 2, a = 0 and b = 1.

The proof of Lemma 5 that considers words of length at most n in Nk(w) can be directly
generalised for arbitrary alphabets, by allowing substitutions of letters instead of flips. This
concludes the description of the generalisation.

The following theorem summarises all the results and introduces strictness in the inequality.

I Theorem 2. Let a ∈ Σ be an arbitrary element of alphabet Σ. For any positive integers n
and k, we have |Nk,Σ(an)| < |Nk,Σ(w)|, for any non-unary word w of length n.
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Algorithm 2 Retrieve(w, fu(w)) for Σ = {0, . . . , σ − 1}.
Input: Two words w and fu(w).
Output: A word u.
1: u← ε

2: k1 ← |w|
3: k2 ← |fu(w)|
4: while k2 > k1 and k1 ≥ 1 do
5: prepend(fu(w)[k2]	 w[k1], u)
6: if w[k1] = fu(w)[k2] then
7: k1 ← k1 − 1
8: k2 ← k2 − 1
9: if k1 = 0 then \\ k2 > 0; Case 1 with p 6= ε

10: prepend(fu(w)[1 . . k2], u)
11: else \\ k1 = k2; Case 2 (or Case 1 with p = ε)
12: prepend(fu(w)[1 . . k2]	 w[1 . . k1], u)
13: return u

Proof. We have |N j
k,Σ(an)| ≤ |N j

k,Σ(w)| for every j by combining the counterparts of Lem-
mas 5 and 12 and Fact 11 for an arbitrary alphabet. It thus suffices to find some value of j
for which this inequality is strict.

Let us first consider the case that k < n, in which we claim that

|Nn−k
k,Σ (w)| > |Nn−k

k,Σ (an)| = 1.

Note that in this case words of length n− k can be obtained only by performing k deletions,
i.e. no insertions or substitutions are allowed. Hence |Nn−k

k,Σ (an)| = 1. For a non-unary w,
we can, for instance, delete letters in lexicographic or reverse lexicographic order, breaking
ties arbitrarily, obtaining words with different multiplicities for some letter.

Let us now proceed to the complementary case that k ≥ n.
Then, each word u ∈ Nk+1

k,Σ (an) can be obtained by exactly k+1−n insertions and at most
n− 1 substitutions. Let us restrict ourselves to determining the size of N ′(w) ⊆ Nk+1

k,Σ (w),
defined as the set of elements of Nk+1

k,Σ (w) that can be obtained from w using exactly k+1−n
insertions and at most n−1 substitutions. In particular, one letter from w remains unchanged
and gets shifted to the right by at most k + 1 − n positions – possibly not shifted at all.
Thus, each word u ∈ N ′(w) can be obtained as follows. We first choose the position i in
u where the shifted letter has landed. For such a position i, it is a letter c occurring in
w[max(1, i− (k + 1− n)) . .min(i, n)] – any of those letters can be chosen by picking a right
layout of insertions. We then put c at position i and fill the remaining k positions arbitrarily;
see Example 16.

Let us do the above process once for each position i, with a fixed letter λ(i), arbitrarily
chosen from the possible ones. In total, we obtain all words from Σk+1 apart from the
ones which differ from λ(i) on every position i. In particular, the total number of words
that we get for this specific choice of λ(i)’s is σk+1 − (σ − 1)k+1 and this is equal to
|N ′(an)| = |Nk+1

k,Σ (an)|. Then, at some position j, since w is non-unary we can actually
choose a letter c 6= λ(j) instead; for instance any position j such that w[j − 1] 6= w[j] will
work. Let us now pick this letter c and fill each other position i with a letter different from
λ(i). This way we obtain a word that was not obtained with the previous choice of λ(i)’s
and hence |Nk+1

k,Σ (w)| ≥ |N ′(w)| > |Nk+1
k,Σ (an)|. J
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I Example 16. Let us consider word w = abc and k = 5. Every word u ∈ N ′(w) is obtained
by 3 insertions and up to 2 substitutions. If the letter a from w is not substituted for, it can
land at any of the positions from 1 to 4 in u; similarly, b and c can land at positions from 2
to 5 and from 3 to 6, respectively. This is shown schematically in the following table.

position in u 1 2 3 4 5 6
landing positions of a a a a a

landing positions of b b b b b

landing positions of c c c c c

Then the i–th column specifies the possible choices for λ(i), e.g., λ(2) ∈ {a, b}. Note that
if w was unary, then all those sets would be singletons.

One possible choice of λ(1), . . . , λ(6) is a, a, c, a, b, c. For it, we generate all the words
but the 26 words that have no positions in common with aacabc. For a different choice of
λ(i)’s, say, a, b, c, a, b, c, we obtain a word that was not generated before, e.g., bbabca that
has exactly one position in common with abcabc.

Let us now complete the picture by showing a closed formula for obtaining the tight lower
bound implied by Theorem 2 and thus an efficient way to compute this bound.

I Fact 17.

|Nk,Σ(an)| =
k∑

i=0

k∑
j=i−k

(
n+ j

i

)
(σ − 1)i.

Proof. We first choose the number i of letters that are different from a in some u ∈ Nk,Σ(an)
and then the length n+ j of the word. Note that j ≥ i− k since we can have at most k − i
deletions as we need at least i insertions or substitutions to have i letters different from a.
We then have

(
n+j

i

)
options to choose the positions where the letter is not a and (σ − 1)

letters to choose from for each such position. J

I Remark 18. |Nk,Σ(an)| can be computed with O(k2) arithmetic operations.

5 Final Remarks

We showed a tight lower bound on the size of the Levenshtein k-neighbourhood. In particular,
we defined a function fu for each word u ∈ Nk,Σ(an), such that, for any given w ∈ Σn, we
have that fu(w) ∈ Nk,Σ(w) and fu(w) 6= fu′(w) for u 6= u′. Our construction is not the only
one possible. For example, in Case 1 of our construction, one could take fu(w) = q · gs(w),
where q = p⊕ 1|p| (for the binary case, this corresponds to the negation of p). However, our
construction has a neat property that fu(an) = u, for any u ∈ Nk,Σ(an).

The following two questions remain unanswered:

1. Can a similar approach be employed for showing a tight upper bound on |Nk,Σ(w)|?
2. Touzet gave an algorithm for computing |Nk,Σ(w)| for a word w of length n over an

alphabet Σ that works in time linear in n but exponential in k [11]. Can this computation
be done in polynomial time or is this problem #P -hard?

CPM 2020
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1 Introduction

In a range of computational settings, we are given a collection of strings and asked to
construct some kind of parsimonious representation of the given set. The task becomes more
interesting if the strings result from a generative process, especially if new strings arise from
a mechanism involving both replication and mutation of old strings. Now the parsimonious
representation might be a tree describing the generative history of this population, with
nodes corresponding to the strings and the branching structure representing the evolutionary
events that produced that population. At this level of description, a host of applications
fall under this rubric: reconstructing a phylogeny from a set of genes, tracing the spread
of a textual meme in a social network, inferring the version history of a document from
its many copies. These domains differ in the way that replication and mutation occur –
sometimes randomly (“by nature”) and sometimes intentionally by humans embedded in a
social structure – and, perhaps, whether some kind of selective pressure affects which strings
survive or replicate.

Here, we consider a specific – and surprisingly rich – social setting in which a population
of strings is generated: chain letters. Chain letters often feature an outlandish claim (“send
a copy of this letter to ten friends, or you will have bad luck forever!”), but, more crucially,
recipients are instructed to add their names to the document’s end, make a copy, and send
those copies to multiple friends. Importantly, every subsequent recipient may modify any
part of the document, or copy it imprecisely; thus each document contains a list of signatures,
representing an ordered (if noisy) trace of its particular path through the social network.
In the present work, we study the problem of accurately reconstructing the underlying
propagation tree from a set of signature lists. If the lists of signatures contained no errors, the
problem would be trivial, but errors abound, including both point mutations and structural
variants. (In real email-based chain-letter data, some signatories retyped names, often
incorrectly, and both block deletions and duplications appear [29]. Worse, some copies of the
emails are only available as low-quality scanned images, introducing further errors.)

The propagation of chain letters. There are three crucial properties in chain-letter–like
contexts that, together, make this data intriguingly different from other settings:

(i) chain letters grow (at one end). A document has an “active end,” and a document
typically changes via the deposition of additional text (another name) at its active end.

(ii) chain letters diverge. A document can split to create multiple “children” documents,
which share a prefix up to the split but have differing suffixes below. The split is at the
active end; two documents that diverge grow independently after the branching point.

(iii) chain letters mutate. Actors introduce noise: an individual sending a chain letter to
a friend makes a (potentially imperfect) copy of that document, possibly introducing
errors – and those errors are “inherited” by subsequent copies of the letter.

Given a collection of many copies of “the same” chain letter, each with its own sequence of
names, one can seek to reconstruct the underlying true record of the propagation – both
the structure of the propagation tree and the strings representing the true names of the
signatories. Together, the above properties make this chain-letter reconstruction problem a
tantalizing domain for parsimonious reconstruction: as the rate of noise in document copying
increases, naturally the reconstruction problem becomes difficult, but there is a great deal of
repetition in the input data, particularly near the root of the propagation tree.
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The present work. We formally introduce the Diverging String Sequence Summarization
Problem (DSSSP): given a collection X of sequences of strings (strings correspond to names,
and each sequence is a noisy list of names in an instantiation of a chain letter), we seek a tree
T that optimally summarizes X. (Rather than using the language of chain letters, we will
abstract away the particular application and discuss diverging string sequences in general.)1
What counts as an “optimal” summary depends on a tradeoff between two competing goods:
the accuracy of T in representing the strings in the given sequences, and the efficiency of T in
representing the given string sequences without too much redundancy. Our formal definition
of the problem is parameterized to reflect the tradeoff between these two competing goods.

Our main theoretical results on DSSSP are (1) an efficient optimal algorithm for the case
ofm = 2 sequences, based on an approach we call edit distance with give-up (Theorem 4.1); (2)
a proof of hardness for large m (Theorem 5.1); and (3) an exact polynomial-time algorithm for
any fixed value of m (Theorem 5.2). We also give a much more efficient heuristic algorithm
for large m – using a combination of divergence-aware pairwise alignment and iterative
merging, inspired by progressive alignment algorithms [13] – and show empirically that it
does a good job of reconstructing synthetically generated trees.

2 Related Work

Chain-letter data. In joint work with Jon Kleinberg, the second author studied the propaga-
tion of a widespread email-based anti-war petition [29]. This work focused on the topological
structure of the underlying propagation tree; subsequent research sought to explain the shape
of the tree through stochastic branching processes [17] or the rarity of sampled email copies [8].
The present work differs in that here we study the problem of accurately reconstructing the
propagation tree from signature lists, rather than seeking to understand the structure of that
tree. Still, examining the structure of the propagation tree presupposes a reconstructed tree,
which in [29] was done using a hard edit distance cutoff to decide whether two signatures
belong to the same signatory. (See Section 7.2.) This specific aspect of our problem – do
multiple signatures belong to the same signatory? – has been considered in other forms in
the past, including error-tolerant recognition of strings with various error models [4,34], error
correction of strings of regular languages [41], and block edit models for approximate string
matching [30], all of which use various versions of edit distance.

Chain letters in paper form have also been investigated in the context of constructing
a phylogeny based on variations in the text of the document itself (rather than a list of
signatories) [3], or the propagation of stories as a network [21].

Other forms of propagation. In rare cases, a situation matching all three key features of
chain letters has been studied – including a (controversial) model of the origin of life, based on
layered clay accreting over time and even diverging and mutating [5,6]. More common settings
share two of the three features. For example, absent any errors, our reconstruction task is
solved by a trie [10,15] summarizing a set of diverging strings. Online conversations [24] (e.g.,
comment threads or especially email threads) have an active end at which new contributions
appear, and threads can diverge, but there is no obvious notion of mutation.

1 There is another layer of complication, literally: rather than viewing a document as a sequence of
characters, we instead view it as a sequence of signatures (each of which is a string that consists of a
sequence of characters). Thus there is a “two-level” view of edits, in which either an individual character
can be corrupted (a single character-level edit within a particular signature) or an individual signature
can be corrupted (an entire signature is deleted, inserted, or replaced by a different signature).
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There are also applications in which the objects of interest are strings that grow at one
end, with noise but without meaningful divergence. In dendrochronology (the science of
dating wood), approaches based on edit distance can be used to study sequences of growth
rings in trees, which accumulate on one end, adjacent to the bark [44].

By far, though, the best-studied settings that match two of our three features have strings
that mutate and replicate, but have no “active end” at which growth occurs. This is the
classical setting of phylogenetic reconstruction, but it also appears in many other contexts.
Most prominent is the spread of news, memes, and rumors that evolve as versions are created
and shared (e.g., [1, 16, 20, 25, 39]). Mutations in these cases differ from ours, though, in
that the content of the information being spread can affect the type of mutations that occur,
thereby affecting the likelihood of further propagation (and therefore the structure of the
tree). Much of this work seeks to understand various types of dissemination and what
factors may impact the propagation structure – different from the goal of reconstructing
the underlying tree. Reconstruction of the evolutionary history of a collection of divergent
objects is also well studied in a bafflingly wide variety of contexts, from version histories of
code snippets in Stack Overflow [2], to variations of the story “Little Red Riding Hood” [40],
to diverging cultural histories using textile data [31].

Reconstruction algorithms. In addition to the algorithmic approaches to these various
other forms of data, there is a voluminous literature on string alignment in the computational
biology literature. The multiple sequence alignment problem is closely related to DSSSP,
and many algorithms target a variety of challenges related to it (see [7, 22, 27, 36, 37, 42],
among many others). There is also work involving the alignment of amino acid sequences to
reconstruct the history of proteins, including mutations and divergence events [12].

3 Summarizing Diverging String Sequences

Before we formally define our abstract problem, we begin with some intuition, with terminol-
ogy drawn from chain letters. Informally, a name is a string over a finite alphabet, and a
petition is a sequence of names. We are given a set of petitions X = {x1, . . . , xm}, and we
seek the tree T that best summarizes the set X. But the “best” tree depends on a tradeoff
between two competing goods: (i) the efficiency of T (its number of nodes), and (ii) the
accuracy of T in representing the petitions in X.

Consider petitions x1 = Aaa Bbb Ccc Ddd Eee and x2 = Aaa Bbx Ccc Dxx Fff, with
spaces separating names, as an example. Depending on the relative importance of efficiency
and accuracy, there are four distinct “best” trees (see Figure 1): a trivial tree that never
diverges (if efficiency matters much more than accuracy); a tree that diverges upon any
textual discrepancy (if accuracy matters much more); or two intermediate trees that diverge
after the Cccs or the D??s (depending on the cost–benefit of adding one node vs. paying for
two textual errors).

Aaa Bb? Ccc D?? ???
Aaa Bb? Ccc D?? Eee

Fff

Aaa Bb? Ccc Ddd Eee
Dxx Fff

Aaa Bbb Ccc Ddd Eee
Bbx Ccc Dxx Fff

Figure 1 Four “best” trees for x1 = Aaa Bbb Ccc Ddd Eee and x2 = Aaa Bbx Ccc Dxx Fff.
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3.1 Distance between a Summary Tree and a String Sequence
To begin, we need to quantify how accurately a set X of string sequences is represented by a
summary structure – and, more fundamentally, what it means to summarize X.

I Definition 3.1 (Labeled Summary Tree). Let X be a set of string sequences. A labeled
summary tree of X is a pair 〈T, f〉, where T is a tree with each node labeled with a string,
and f is a function mapping each x ∈ X to a node vx in T .

Let labelseqT (vx) denote the sequence of node labels on the path from the root of T to vx.

That is, a summary of X consists of a labeled tree T , with a node of T designated to
correspond to each sequence in X. To assess how accurately a string sequence x ∈ X is
represented, we will compare x with labelseqT (vx). Our metric will be a variation on the
classical Levenshtein edit distance [26], with two adjustments:
1. Edit distance is usually defined between two strings, but we wish to compare two sequences

of strings. We cannot simply concatenate the strings within each sequence and then use
standard edit distance, as the edits would no longer respect string boundaries. As such,
we need to define an edit distance with two levels of granularity.

2. We insist that every string in each sequence x ∈ X be represented (perhaps with some
error) in the tree. Thus, when we align x to its path in the tree, we do not allow deletion
of strings in the sequence. (We forbid deletions from x ∈ X to preserve the intuition
that the optimal summary tree for a singleton sequence X = {x} is a nonbranching path
successively labeled by the strings in x even when the cost of nodes is very high.)

Let x be a string sequence, and let y = labelseqT (vx). Our metric, then, is an asymmetric
two-level variant of the edit distance between x and y, allowing deletions from y but not x:

IDefinition 3.2 (Asymmetric Edit Distance). Let x and y be string sequences. The asymmetric
edit distance of x with respect to y, denoted AED(x, y), is the cost of the cheapest sequence
of operations transforming x into y, where the allowable operations are inserting a string
into x and substituting a string. (No string can be deleted from x.)

These operations’ costs are given by (classical) edit distance ED: substituting w′ for w
costs ED(w,w′); inserting a string w into x costs ED(w, ε), where ε is the empty string.
(Unless otherwise specified, all ED edits have unit cost, but we allow arbitrary cost matrices.)

We compute AED(x, y) with a variation on the classical dynamic program for edit distance,
forbidding deletions and using ED to compute the cost of inserting or substituting a string.

The distance between a string sequence x and summary tree 〈T, f〉, then, is given by
AED(x, labelseqT (f(x))) – i.e., the asymmetric edit distance between x and the label sequence
on the path from root to the node corresponding to x in T .

3.2 The Problem: Summary Trees for a Set of String Sequences
We can now formally define our problem, where our objective function is – in the style of
regularization in machine learning [18] – a weighted sum of the accuracy of the summary tree
(as measured by AED) and the simplicity of the tree (as measured by its number of nodes):

I Definition 3.3 (Diverging String Sequence Summarization Problem [DSSSP]).
Input: A set X = {x1, x2, ..., xm} of string sequences and a nonnegative node cost λ.
Output: A labeled summary tree 〈T, f〉 (i.e., a tree T and a function f mapping each xi to

a node vi in T ) minimizing the following, where |T | denotes the number of nodes in T :

errλ(T ) :=
[ ∑m

i=1
AED(xi, labelseqT (vi))

]
+ λ · |T |. (1)
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x1 x2 x3

Alice
Bot
Carol
Eve

Alice
Bob
Carl
Frank

Alyce
Bob
Dan

(a) Three
string
sequences to
summarize.

•
Alice

Bob

Carl

Even

v3

v1, v2

(b) An optimal
tree for λ ≥ 5.

•
Alice

Bob

Carl

Eve Frank

v3

v1 v2

(c) The optimal
tree for 3 < λ < 5.

•
Alice

Bob

Carol Dan

Eve Frank
v1

v2

v3

(d) An optimal tree
for 1 ≤ λ ≤ 3.

•
Alice

Bot

Carol

Eve

Alice

Bob

Carl

Frank

Alyce

Bob

Dan

v2

v3

v1

(e) An optimal tree for
λ = 0.

Figure 2 A set of string sequences and their optimal summary trees, for different ranges of λ.
The • root node denotes the sentinel string starting every sequence; nodes marked by {v1, v2, v3}
correspond to the sequences {x1, x2, x3}. The choice about whether to split Eve and Frank into two
nodes (Figure 2b vs. 2c) is a function of their edit distance, ED(Eve, Frank) = 5. When λ > 5, then
it is cheaper to accept the cost of aligning both to a single label than to pay for an extra node.

To ensure that T is a tree with a single root, we place sentinel values at the start of
each sequence xi. (Denote by |T | the number of non-sentinel nodes in T .) Note that
AED(xi, labelseqT (vi)) is defined only if |xi| ≤ |labelseqT (vi)| – that is, the depth of the
node vi in T is at least the number of strings in the sequence xi – as it would otherwise be
impossible to convert xi into labelseqT (vi) without deleting strings.

The parameter λ controls the tradeoff between trees that represent the input sequences
accurately and trees that provide more concise summaries of the input set. When λ = 0, a
trivial branch-immediately tree T is optimal; when λ =∞, a trivial never-branching tree of
depth maxi |xi| is. Intermediate values of λ give more interesting structures. See Figure 2.

4 Solving DSSSP for Two Sequences: Edit Distance with Give-up

Consider first the case of just two input sequences, m = |X| = 2. (Even with m = 2, the
problem has interesting subtleties.) We can compute an optimal tree through an alignment
algorithm we call edit distance with give-up. The resulting tree has exactly one leaf or two
leaves; in the latter case, we call the tree a bifurcation.

As with AED, the idea is similar to the classical dynamic program for edit distance, but
with one additional operation permitted: give up entirely on aligning the remaining portions
of the sequences, and declare a split at this point. We also modify the costs in the edit
distance dynamic program to reflect the λ per-node cost of each operation, corresponding to
the node-cost term in errλ(T ). Writing EDG(i, j, λ) to denote the cost of the best alignment
of xi,...,|x| and yj,...,|y| under node cost λ, and writing EDG(x, y, λ) = EDG(1, 1, λ), we have

EDG(|x|+ 1, |y|+ 1, λ) = 0 (2)
EDG(i, |y|+ 1, λ) = λ(|x| − i+ 1) for any 0 ≤ i ≤ |x|
EDG(|x|+ 1, j, λ) = λ(|y| − j + 1) for any 0 ≤ j ≤ |y|

and, for any 0 ≤ i ≤ |x| and any 0 ≤ j ≤ |y|,

EDG(i, j, λ) = min


EDG(i+ 1, j + 1, λ) + λ+ ED(xi, yj) (substitution)
EDG(i, j + 1, λ) + λ+ ED(ε, yj) (insertion)
EDG(i+ 1, j, λ) + λ+ ED(xi, ε) (deletion)
λ(|x| − i+ 1) + λ(|y| − j + 1) (give up)
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x = ε or y1 is inserted y = ε or x1 is inserted substitute x1 for y1 give up (= diverge)

y1

BB(x1...|x|, y2...|y|, λ)

x1

BB(x2...|x|, y1...|y|, λ)

x1 or y1

BB(x2...|x|, y2...|y|, λ)

x1

x2

.

.

.
x|x|

y1

y2

.

.

.
y|y|

Figure 3 Constructing the tree in BuildBifurcation(x, y, λ). Whenever a node corresponding
to x|x| or y|y| is placed, we map the corresponding input sequence to that node of the bifurcation.
We write “BB” to abbreviate BuildBifurcation, and we output an empty tree when x = y = ε.

For example, consider the insertion case of the minimum. Here we match the string yj with
no corresponding entry in x, and recursively align yj+1,...,|y| with xi,...,|x|, with a total cost of

EDG(i, j + 1, λ)︸ ︷︷ ︸
cost of alignment of remaining strings

+ λ︸︷︷︸
cost of creating the root node

+ ED(ε, yj).︸ ︷︷ ︸
cost of inserting yj into labelseqT (x)

The cost of “giving up” – i.e., declaring a split in the alignment – is large, requiring (|x|−i+1)
nodes on the x branch and (|y| − j + 1) on the y branch, each of which incurs cost λ.

Denote by BuildBifurcation the natural dynamic programming algorithm that com-
putes EDG using (2). (We abuse notation: BuildBifurcation(x, y, λ) denotes either the
resulting bifurcation or its cost. We can construct this bifurcation simultaneously with the
construction of the alignment; see Figure 3.)

BuildBifurcation optimally solves DSSSP for m = 2 sequences – i.e., the tree T built
by BuildBifurcation(x, y, λ) minimizes errλ(T ). (Due to space constraints, the proof is
omitted here, but is available in the full version of the paper linked on the title page.)

I Theorem 4.1. The tree T ∗ := BuildBifurcation(x, y, λ) is an optimal summary tree
for the string sequences {x, y} with node cost λ. Specifically, errλ(T ∗) = EDG(x, y, λ).

Writing n = max(|x|, |y|) to denote the length of the longer of the two sequences, and
k = max(maxi |xi|,maxj |yj |) to denote the length of the longest string in either sequence,
then the running time of BuildBifurcation(x, y, λ) is O(n2k2).

5 Optimal Summaries of Larger Sets of String Sequences

BuildBifurcation efficiently finds the optimal summary tree for m = 2 sequences, but
DSSSP with large m is computationally intractable.

I Theorem 5.1. DSSSP (for an arbitrary number m of string sequences) is NP-hard.

Proof (idea). For large λ, hardness follows from a reduction from String Median, which we
will encounter shortly.

While the reduction from Median String is simpler, we can also give an alternative
reduction from Shortest Common Supersequence (SCS) [35], which applies for smaller λ as
well. (Note that SCS is hard in general, but for a small number of strings it is efficiently
solvable [14].) The details of the latter proof are available in the full version. J

On the other hand, if we are willing to tolerate running times that are exponential in m (but
polynomial in the other measures of input size), we can solve DSSSP in polynomial time:
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Alice
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T X1 X2 X3
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Bob 
Dan 

x1 x2 x3 All pairwise  
EDG(x, y, 2) 
alignments

Alice  
Bob 
Carl 
Frank

Alice  
Bob 
Carol 
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= 
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= 

Alyce  
Bob 
Dan 

Alice  
Bot 
Carol 
Eve

= 
= 

Alyce  
Bob 
Dan 

Alice  
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= 
= 

x1, x2 x1, x3 x2, x3
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of x1, x2

[Alice, Alice] 
[Bot, Bob] 
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Bob 
Dan

{x1, x2} x3
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Bob 
Dan 

[Alice, Alice]  
[Bot, Bob] 
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= 
= 

{x1, x2}, x3

Alice

Bob

DanCarol

FrankEve

Use alignments 
to build tree

All pairwise 
EDG(x, y, 2) 
alignments

Figure 4 An example run of BuildTree(X,λ) for λ = 2 and the sequences from Figure 2.

I Theorem 5.2. Let X be a set of string sequences, where m = |X| is the number of
sequences, n = maxi |xi| is the length of the longest sequence, and k = maxj maxi |xi,j | is
the length of the longest string in any of the sequences. Then there is an algorithm solving
DSSSP on X (for any λ) that runs in time O(nm2 · 2m · km · poly(k,m, n)).

Proof. The approach is brute force: we look at every possible tree topology τ , which specifies,
for any x, x′ ∈ X, the indices i and i′ into x and x′ at which they diverge. Every τ defines
a set of nonbranching segments between divergences; the summary tree problem is then a
collection of summary “path” problems, one per segment.

The path problem can be seen as multiple sequence alignment (MSA) [37], solvable via
dynamic programming [7] (see also [22,36,42]). To implement the MSA dynamic program,
we must compute the cost of assigning a set of strings S = {s1, s2, . . . , s`} to a single node u.
If we label u with the string z, then the alignment cost of this node is λ+

∑
i ED(si, z); thus

the best label is the string median of S – that is, the string z minimizing the summed edit
distance to the strings in S. While string median is NP-hard [11], a dynamic programming
algorithm solves string median for a fixed number of strings [37] (see also [23,33,38]).

There are O(nm·(m−1)) tree topologies. Each defines a tree with ≤m leaves and thus
≤ 2m nonbranching segments. Each segment contains ≤m subsequences, each of length ≤n;
thus each multiple sequence alignment requires O(nm) time [7]. Whenever we compute the
string median of a candidate node, we have ≤m strings each of length ≤ k; computing these
medians takes O((2k)m) time [37]. Finally, it takes poly(k,m, n) time to compute errλ(T )
for each tree. Thus the overall running time is O(nm·(m−1) · nm · (2k)m · poly(n,m, k)). J

6 An Efficient Heuristic for Larger Sets of Sequences

Given DSSSP’s hardness (Theorem 5.1) and the abominable running time of our exact
algorithm (Theorem 5.2), we turn here to an efficient heuristic for DSSSP with larger m.
Our algorithm is greedy, and seeks to repeatedly identify the pair of sequences in X with
the longest shared prefix, and then merge that shared prefix into a single sequence (as in
BuildBifurcation). See Figure 4. There are several issues that we must resolve:

Measuring and merging the shared prefix of xi and xj . To calculate how well xi and xj
match, we compute the EDG(xi, xj , λ) alignment. Define the number of substitutions
(ignoring insertions and deletions) in the pre-divergence section pi,j of this alignment as
their overlap. Then, for the pair {xi, xj} with the largest overlap, replace {xi, xj} with
pi,j in X. Note that pi,j is a sequence of lists of strings, not a sequence of strings; thus
we need to generalize EDG to sequences of lists of strings, not just individual strings.
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Reconciling labels in the final resulting tree. Repeating this merging process will define a
tree, except that each node is labeled by a list of strings, not just one. To produce the
final labels, we use the medoid string. For a list of strings A, the medoid of A is the
string in A whose sum of edit distances to strings in A is minimized.2

Generalizing EDG to lists of strings. Define the edit distance between a string x and a set of
strings X as ED(x,X) := ED(x,medoid(X)) – using the medoid of X as its representative
string. Then, letting C(A,B) denote the cost of merging lists A and B, we define

C(A,B) :=
∑

x∈A∪B
ED(x,A ∪B)−

∑
x∈A

ED(x,A)−
∑
y∈B

ED(y,B). (3)

This cost quantifies the amount of additional disagreement incurred by merging the lists,
relative to leaving them separate. Insertion and deletion costs are found using (3) with a
list of empty strings of appropriate length in place of xi or yj . We thus define the EDG
recurrence (cf. Equation (2)) for sequences of lists of strings x and y as follows:

EDG(i, j, λ) = min


EDG(i+ 1, j + 1, λ) + λ+ C(xi, yj) (substitution)
EDG(i, j + 1, λ) + λ+ C({|xi| copies of ε}, yj) (insertion)
EDG(i+ 1, j, λ) + λ+ C(xi, {|yj | copies of ε}) (deletion)
λ(|x| − i+ 1) + λ(|y| − j + 1) (give up)

Define BuildTree(X,λ) as the greedy iterative algorithm suggested above: until there
is only one sequence left in X, find the pair of sequences xi, xj ∈ X with the largest number
of substitutions in EDG(xi, xj , λ), and replace {xi, xj} by their merged prefix pi,j . (Save the
post-divergence branches of the bifurcation; we will reattach those branches at the bottom of
pi,j in the final tree.) When there is only one sequence left, reattach all of the saved branches,
and replace each node’s list-of-strings label by the medoid of that label list. (See Figure 4.)

7 Evaluation and Parameter Selection

BuildTree is suboptimal both because greedy merging can yield a poor topology and
because medoids can be poor node labels; see Examples 7.1 and 7.2. Still, we will show that
it nonetheless performs well on simulated data, suggesting that it is a good heuristic.

I Example 7.1 (A bad example for greedy merging). Consider the instance

x1 = a b c x2 = a b d x3 = a e d x4 = a e f

with 0.5 < λ < 1. The optimal tree T ∗ is shown below, with errλ(T ∗) = 7λ. However,
BuildTree will choose to merge sequences with the most closely aligned pair of sequences
according to the EDG alignment. In this case, it would choose to merge x2 and x3 first. The
tree T returned by BuildTree has errλ(T ) = 5λ+ 2, making it suboptimal.

a

b

c d

e

d f

T ∗ a

b

c d f

T

2 When we say “the” medoid of A, we mean the lexicographically first medoid of A. (Which medoid
we choose never affects the sum of the distances at hand – e.g., in the sums in (3) – but we need to
identify one in particular for the summands to be well-defined.) Note that the medoid, unlike the
median, must be an element of A; we use it because it is efficiently computable (unlike median) and is a
(2− o(1))-approximation to the median (an implication of the triangle inequality).
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I Example 7.2 (A bad example for medoids). Consider the set S = {XABC, AXBC, ABXC, ABCX},
where each string sequence contains just one string. For large λ, the optimal tree is just a
single node. Here the optimal label is the median ABC, which has total edit distance 4 to the
set S; the medoid label ABCX has total edit distance 6 to S.

7.1 Generating Synthetic Data
We will generate synthetic data based on several parameters: the numberm of string sequences,
the string length k, a string substitution probability σs, a string deletion probability δs, a
character substitution probability σc, and a character deletion probability δc.

We generate trees using branching processes (i.e., Galton–Watson trees [43]): each node
chooses to have exactly i children with probability pi; we fix p0 = 0.03, p1 = 0.94, and
p2 = 0.03 to approximate real email petition data [17,29]. We generate a Galton–Watson tree
T until it has m leaves, restarting if the branching process terminates early. We label each
node u ∈ T with a random alphabetic string `(u) of length k. Let xi denote labelseqT (ui)
for the ith leaf ui. Call T the true tree, ` the true labels, and xi the true sequences.

Now, we simulate noisy propagation. To mirror petition data derived from low-quality
scans of printed emails, we introduce string- and character-level errors in separate phases:
(1) string-level errors (which are inherited). Each node u inherits from its parent p the noisy

history hp of its ancestral labels. (The root “inherits” an empty sequence.) The node
u (further) corrupts hp: for each string in hp, substitute it with a random alphabetic
string of length k with probability σs, and delete it with probability δs. Finally, node u
appends its true label `(u) to hp; call the resulting sequence hu. Now each leaf u stores
hu, a noisy version of labelseqT (u). Let X ′ = {x′1, . . . , x′m} be the set of histories at the
leaves.

(2) character-level errors (which appear independently). For each x′i ∈ X ′, substitute each
character in each string in x′i with a random character with probability σc, and delete
the character with probability δc. Let X ′′ = {x′′1 , . . . , x′′m} be the resulting sequences.

Our experiments use string length k = 25, string error rates σs = δs = 0.001, character error
rates σc = δc = 0.1, and m ∈ {15, 100}. Because string-level errors compound, 0.001 is a
nontrivial error rate (roughly comparable to the 10% character-level error rate).

7.2 Comparing Reconstruction to Synthetic Ground Truth
We generate a true tree T , with true sequences X = {x1, . . . , xm} and corrupted sequences
X ′′ = {x′′1 , . . . , x′′m}. We then use our heuristic algorithm to build a reconstructed tree T ′ =
BuildTree(X ′′, α), for some choice of a node-cost parameter α to use in the reconstruction
algorithm. (See Section 7.3 regarding how to choose α.) Note the distinction between the
reconstruction parameter α and the evaluation parameter λ: BuildTree seeks to optimize
errα(T ′) for some value of α, but we can assess the quality of T ′ using errλ(T ′) whether or
not α = λ, to evaluate sensitivity to α.

We will compare the quality of BuildTree to the threshold-based reconstruction algo-
rithm from [29], which we briefly describe here. (1) Construct a weighted directed graph G
with nodes labeled by all strings in all x ∈ X, and with an a→ b edge if string a immediately
precedes string b in any sequence x ∈ X. The weight of this edge is the number of sequences
x ∈ X containing a and b successively. (2) To handle minor signature errors, treat two
signatures as equivalent if they follow equivalent signatories and have an edit distance below
a fixed threshold β. (3) Compute the tree as a max-weight spanning arborescence of G, with
extraneous nodes pruned away. (Note that β is on the same scale as α; it defines a cutoff of
ED(a, a′) indicating when a and a′ should be assigned to two nodes versus one.)
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(b) Error under err10(T ) with |X| = 15, averaged
across 500 trials. Smaller X makes the error smaller
than in (a), but the trend is similar.
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(c) Error under ordered tree edit distance (TED)
on a |X| = 15 dataset. The dash-dotted line shows
TED between T̃ and the real tree.

Figure 5 Comparing BuildTree(X,α) to the algorithm from [29] with edit-distance threshold β.
Shaded regions in (a) and (b) show standard deviations across the stated number of trials. Observe
the flat-bottomed basin shape of the error curve for BuildTree(X,α) as α varies: high error rates
when α < 5 and when α > 20, and roughly constant low error for all α in between.

Measures of performance. We assess the quality of our reconstructed trees T ′ in two ways.
First, we use the errλ(T ′) measure from (1), the sum of λ · |T ′| and all label distances.

Second, we use tree edit distance (TED) to compare the structure of T ′ to the true tree T .
Edit distance between unordered trees is NP-hard [46], so we estimate the distance by
ordering our trees and computing ordered TED using Zhang–Shasha [45], as implemented by
Henderson [19]. (Specifically, we recursively order sibling nodes in T ′ to minimize the number
of leaf order inversions with respect to T . As the number of siblings is typically small, this
order is not expensive to compute.) To better interpret our results, we also compute TED
to a tree with the correct structure but with label corruptions, denoted T̃ ; this represents
the best reconstruction we could hope for (without computing medians). We construct T̃
by labeling the ancestors of each leaf ui using the noisy history hui (picking the medoid for
nodes assigned multiple labels), deleting nodes with empty labels.

Evaluation results. We generated a tree T withm = 100 sequences, and corrupted sequences
X ′′ (with 8 independent trials generating different X ′′ from T ). Figure 5a compares errλ(·) of
our reconstruction with the method from [29], showing that BuildTree performs significantly
better over a range of λ values. These trees were too big to compute tree edit distance, which
is computationally prohibitive.

In addition, we generated a tree with m = 15 sequences and introduced error in 500 trials.
Figure 5 shows both err10(T ) (Figure 5b) and TED (Figure 5c) between the reconstructed
tree T̂ and the true tree T . For many values of α, BuildTree(X ′′, α) produces significantly
better solutions than the method from [29], as shown by the err10(T ) measure. It is also
competitive at α = 20 according to (ordered) tree edit distance, a metric BuildTree was
not designed to optimize.
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7.3 How Should the Node Cost be Selected?
To reconstruct a tree from real sequence data, we must select a value for the reconstruction
parameter α. If α is too low, nodes are too cheap and trees diverge too early; if α is too
high, nodes are too costly and trees branch too rarely. But what value should we choose?

Intuitively, we wish to map two (corrupted) strings to the same node if they are (corrup-
tions of) the same true string. Imagine two strings u and v 6= u, and let u′, u′′, and v′ be the
result of independently introducing errors to u, u, and v, respectively. We desire a value of α
so that u′ and u′′ would probably be mapped to the same node, but u′ and v′ probably diverge.
That is, the cost of creating a new node should be greater than the cost of aligning two
corrupted versions of the same string, but the cost of diverging should be less than the cost
of deleting/inserting all remaining strings. Thus we want E[ED(u′, u′′)] < α < E[ED(u′, v′)].

E[ED(u′, u′′)] depends on the error rate of the corruption process and must be estimated
from data. But estimates of E[ED(u′, v′)] appear in the literature if the true strings u and
v are uniformly random and have equal length. If the cost of substitution is twice that of
insertion/deletion, then we can calculate E[ED(u′, v′)] using Chvátal–Sankoff numbers [9]
(the expected longest common subsequence length for two equal-length random strings); for
unit edit costs, it is conjectured that E[ED(u′, v′)] ≈ |u′|(1− 1

|Σ| ) for random equal-length
strings over Σ [32]. If strings are not uniformly random or have different lengths, then we
can estimate E[ED(u′, v′)] from data and subsequently select an α between the upper and
lower bounds. (In fact, there is some evidence that many values of α in this range perform
well; see the flat-bottomed basin shape of Figure 5b.)

8 Discussion and Future Work

We described an efficient, practical heuristic to reconstruct a propagation tree from a noisy
set of diverging string sequences – and in Section 7 we showed that BuildTree performs well
on synthetic data. But, after all, the motivation for introducing this particular theoretical
problem was for its application to real data, particularly chain-letter petitions. Rigorously
testing BuildTree on real data, then, is perhaps the most natural direction for future
work. (Testing on more realistic synthetic data is also an interesting future direction. Our
data-generation process in Section 7.1 is unrealistic in a number of ways, perhaps most
strikingly in its assumption that a name is a length-k alphabetic string chosen uniformly at
random. More realistic randomized name-generation processes would make the synthetic
task more similar to the real one.)

That said, there are several potentially interesting theoretical avenues for further explo-
ration of DSSSP, too. The problem is (at least theoretically) tractable for any fixed number
m of string sequences – but the dependence on m in our brute-force algorithm is brutal. Is
there a more efficient algorithm for small m? Or are there efficient algorithms with provable
approximation guarantees for general m? We can approximate the best labels for a fixed tree
topology using medoids or, even better, using a PTAS for the string median problem [28].
Identifying the best tree topology seems more challenging, but perhaps this topological source
of error in BuildTree (or some other heuristic) can be bounded.

There is another set of interesting open questions related to efficient algorithms for DSSSP
when λ is small. (At the other extreme, the problem remains intractable when λ is very large:
even if the optimal tree’s topology is the trivial non-branching one, as in Figure 2b, choosing
the labels requires repeatedly solving instances of the NP-hard string median problem.)
DSSSP is trivial when λ = 0; the diverge-at-the-root tree (as in Figure 2e) is optimal, with
total cost 0. Even for strictly positive but small values of λ, there is an easy solution: if
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λ ≤ 1
nm , it optimal to diverge upon encountering even a one-character difference between

strings (i.e., the optimal summary tree is precisely the trie representation of the set X). Do
related approaches make the problem tractable for bigger values of λ – e.g., if λ is small
enough that we can only afford a bounded budget of edits in node labels? For how large a
value of λ are there exact polynomial-time algorithms?
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Abstract

The equidistant subsequence pattern matching problem is considered. Given a pattern string P and
a text string T , we say that P is an equidistant subsequence of T if P is a subsequence of the text such
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1 Introduction

Pattern matching on strings is a very important topic in string processing. Usually, strings
are regarded and stored as one dimensional sequences and many pattern matching algorithms
have been proposed to efficiently find particular substrings occurring in them [9, 2, 4, 8, 6, 3].
However, when one is to view the string/text data on paper or on a screen, it is usually
shown in two dimensions: the single dimensional sequence is displayed in several lines folded
by some length. It is known that the two dimensional arrangement can be used to embed
hidden messages, and/or cause occurrences of unexpected or unintentional messages in the
text. A common form for such an embedding is to consider the occurrence of a pattern in a
linear layout: vertically or possibly diagonally along the two dimensional display.

For example, there was a (rather controversial) paper [12] on the so called Bible Code,
claiming that the Bible contains statistically significant occurrences of various related words,
occurring vertically and/or diagonally, in close proximity. Furthermore, there was an incident
with a veto letter by the California State Governor [11]; Although it was considered a “weird
coincidence”, the first character on each line of the letter could be connected and interpreted
as a very provocative message. In Japanese internet forums, there was a culture of actively
using these techniques, referred to as “tate-yomi”(vertical reading) and “naname-yomi”
(diagonal reading), where the author of a message purposely embeds a hidden message in
his/her post. Most commonly, the author will write a message that praises some object or
opinion in question, but embed a message with a completely opposite meaning bearing the
author’s true intention. The hidden message can be recovered by reading the text message
vertically or diagonally from some position, and is used as form of sarcasm, as well as a
clever method to mock those who were unable to get it.

Assuming that the text is folded into lines of equal length, vertical or diagonal occurrences
of the pattern in two dimensions can be regarded as a subsequence of the original text,
where the distance between each character is equal. We call the problem of detecting such
occurrences of the pattern as the equidistant subsequence matching problem. To the best of
the authors’ knowledge, there exist only publications concerning the statistical properties of
the occurrence of equidistant subsequence patterns, mainly with the so called Bible Code.

Recently, a notion of regularities in strings called (sub)-cadences, defined by equidistant
occurrences of the same character, was considered by Amir et al. [1]. A k-sub-cadence of
a string can be viewed as an occurrence of an equidistant subsequence of length k that
consists of the same character. A k-sub-cadence is a k-cadence, if the starting position is
less than or equal to d and the ending position is greater than n− d, where d is the distance
between each consecutive character occurrence and n is the length of the string. To date,
algorithms for detecting anchored cadences (cadences whose starting position is equal to
d), 3-(sub-)cadences, and (π1, π2, π3)-partial-3-cadences (an occurrence of an equidistant
subsequence that can become a cadence by changing a character at most all but three
positions i + π1d, i + π2d, and i + π3d, where i is the starting position of the equidistant
subsequence.) have been proposed [1, 5]. However, no efficient algorithm for detecting
k-(sub)-cadences for arbitrary k (1 ≤ k ≤ n) is known so far.

In this paper, we present counting algorithms for k-sub-cadences, k-cadences, equidistant
subsequence patterns of length m and length 3, and equidistant Abelian subsequence patterns
of length 3. Table 1 shows a summary of the results. All algorithms run in O(n) space.
Furthermore, we present locating algorithms for k-sub-cadences, k-cadences, and equidistant
subsequence patterns of length m. The time complexities of these algorithms can be obtained
by adding occ to the second term inside the minimum function of each time complexity of
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the counting algorithm. To the best of the authors’ knowledge, these are the first o(n2)
time algorithms for k-(sub)-cadences and equidistant subsequence patterns. In this paper,
we assume a word RAM model with word size Θ(logn). Also, unless otherwise noted, we
assume that strings over a general ordered alphabet.

Table 1 Summary of results. Note that an equidistant Abelian subsequence pattern is an
equidistant subsequence of any permutation of a given pattern.

Counting time For a constant size alphabet For a general ordered alphabet

k-sub-cadences O
(

min
{

n2

k
, n2

log n

})
O
(

min
{

n2

k
, n2√k√

log n

})
k-cadences O

(
n2

k2 log n

)
O
(

min
{

n2

k2 , n2
√

k
√

log n

})
Counting time For a general ordered alphabet

Equidistant subsequence pattern O
(

min
{

n2

m
, n2

log n

})
Equidistant subsequence pattern of length three O(n log2 n)

Equidistant Abelian subsequence pattern of length three O(n log n)

2 Preliminaries

Let Σ be the alphabet. An element of Σ∗ is called a string. The length of a string T is denoted
by |T |. String s ∈ Σ∗ is said to be a subsequence of string T ∈ Σ∗ if s can be obtained by
removing zero or more characters from T .

For a string T and an integer 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T . For two
integers 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins at position i and ends
at position j. For convenience, let T [i..j] = ε when i > j.

2.1 k-(Sub-)Cadences
The term “cadence” has been used in slightly different ways in the literature (e.g., see [7, 10, 1]).
In this paper, we use the definitions of cadences and sub-cadences which are used in [1]
and [5].

For integers i and d, the pair (i, d) is called a k-sub-cadence of T ∈ Σn if T [i] = T [i+d] =
T [i + 2d] = · · · = T [i + (k − 1)d], where 1 ≤ i ≤ n and 1 ≤ d ≤ b n−ik−1c. The set of
k-sub-cadences of T can be defined as follows:

I Definition 1. For T ∈ Σn, n ∈ N , and k ∈ [1..n],

KSC (T, k) =
{

(i, d)
∣∣∣∣ T [i] = T [i+ d] = T [i+ 2d] = · · · = T [i+ (k − 1)d]

1 ≤ i ≤ n, 1 ≤ d ≤ b n−ik−1c

}
.

For integers i and d, the pair (i, d) is called a k-cadence of T ∈ Σn if (i, d) is a k-sub-
cadence and satisfies the inequalities i− d ≤ 0 and n < i+ kd. The set of k-cadences of T
can be defined as follows:

I Definition 2. For T ∈ Σn, n ∈ N , and k ∈ [1..n],

KC (T, k) =
{

(i, d)
∣∣∣∣ T [i] = T [i+ d] = T [i+ 2d] = · · · = T [i+ (k − 1)d]

1 ≤ i ≤ d, n−ik < d ≤ b n−ik−1c

}
.
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2.2 Equidistant Subsequence Occurrences
For integers i and d, we say that pair (i, d) is an equidistant subsequence occurrence of
P ∈ Σm in T ∈ Σn if P = T [i] · T [i+ d] · T [i+ 2d] · · ·T [i+ (m− 1)d], where 1 ≤ i ≤ n and
1 ≤ d ≤ b n−im−1c. The set of equidistant subsequence occurrences of P in T can be defined as
follows:

I Definition 3. For T ∈ Σn, P ∈ Σm and n,m ∈ N ,

ESP(T, P ) =
{

(i, d)
∣∣∣∣ P = T [i] · T [i+ d] · T [i+ 2d] · · ·T [i+ (m− 1)d]

1 ≤ i ≤ n, 1 ≤ d ≤ b n−im−1c

}
.

2.3 Equidistant Abelian Subsequence Occurrences
Two strings S1 and S2 are said to be Abelian equivalent if S1 is a permutation of S2, or vice
versa. Now for integers i and d, we say that pair (i, d) is an equidistant Abelian subsequence
occurrence of P ∈ Σm in T ∈ Σn if T [i] · T [i + d] · T [i + 2d] · · ·T [i + (m − 1)d] and P are
Abelian equivalent, where 1 ≤ i ≤ n and 1 ≤ d ≤ b n−im−1c. The set of equidistant Abelian
subsequence occurrences of P in T can be defined as follows:

I Definition 4. For T ∈ Σn, P ∈ Σm and n,m ∈ N ,

EASP(T, P ) =
{

(i, d)
∣∣∣∣ T [i] · T [i + d] · · ·T [i + (m− 1)d] and P are Abelian equivalent

1 ≤ i ≤ n, 1 ≤ d ≤ b n−i
m−1c

}
.

When it is clear from the context, we denote KSC (T, k) as KSC , KC (T, k) as KC , and
ESP(T, P ) as ESP.

3 Detecting k-Sub-Cadences

In this section, we consider algorithms for detecting k-sub-cadences.

3.1 Algorithm 1
One of the simplest methods is as follows: For each distance d with 1 ≤ d ≤ bn−1

k−1 c, we
construct text STd = T [1] · T [1 + d] · · ·T [1 + dbn−1

d c] · $ · T [2] · T [2 + d] · · ·T [2 + dbn−2
d c] ·

$ · · ·T [d] · T [2d] · · ·T [dbnd c] of length db
n
d c+ d− 1. Then, the strings T [1] · T [1 + d] · · ·T [1 +

dbn−1
d c], T [2] · T [2 + d] · · ·T [2 + dbn−2

d c], ..., T [d] · T [2d] · · ·T [dbnd c] are called d-skip-strings,
and the STd is called d-split text. If we would like to find k-sub-cadences with distance d in
text T , we find concatenations of the same character of length k as substrings in STd.

! " c a a a c a a b a a b a a b c a b c

! " c a a a a a $ a c b b b b $ a a a a c c
3-skip 

strings

! " c a a a a a $ a c b b b b $ a a a a c c
3-split

text #!$

text !

Figure 1 Preprocessing for Algorithm 1.

Fig. 1 is an example of the 3-split text ST3. In STd, we use a symbol $ /∈ Σ in order to
prevent detecting false occurrences of concatenation of same character of the length k across
the ends of d-skip strings as a k-sub-cadence. The text obtained by concatenating all STd for
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all 1 ≤ d ≤ bn−1
k−1 c and $ is called the split text. If we prepare the split text, we can compute

KSC simply by checking that the same character is repeated k times.
The length of STd is at most n+ d including $. The maximum value of d is bn−1

k−1 c, and
therefore, the number of STd is at most bn−1

k−1 c. Hence, the length of the split text of T is
O(n

2

k ). We can check that the same character is repeated k times in the split text in O(n
2

k )
time. Although we have presented the split text to ease the description, it does not have to
be constructed explicitly.

From the above, we can get the following result.

I Theorem 5. There is an algorithm for locating all k-sub-cadences for given k (1 ≤ k ≤ n)
which uses O

(
n2

k

)
time and O(n) space.

As can be seen from the example of T = an, |KSC | can be Ω(n
2

k ). Therefore, when we
locate all (i, d) ∈ KSC , this algorithm is optimal in the worst case. In the next subsection,
we show a counting algorithm that is efficient when the value of k is small. Moreover, we
show a locating algorithm that is efficient when both the value of k and |KSC | is small.

3.2 Algorithm 2
In this subsection, we will show the following result:

I Theorem 6. For a constant size alphabet, there is an O
(

n2

logn

)
time algorithm for counting

all k-sub-cadences for given k. We can also locate these occurrences in O
(

n2

logn + occ
)

time, where occ is the number of the outputs. For a general ordered alphabet, there is an

O

(
n2√k√

logn

)
time algorithm for counting all k-sub-cadences for given k. We can also locate

these occurrences in O

(
n2√k√

logn
+ occ

)
time. These algorithms run in O(n) space.

Note that for counting all k-sub-cadences, for a constant size alphabet (resp. for a general
ordered alphabet), this algorithm is faster than Algorithm 1 if k is o(logn) (resp. o

(
3
√

logn
)
).

For locating all k-sub-cadences, for a constant size alphabet (resp. for a general ordered
alphabet), if |KSC | is o(n

2

k ) and k is o(logn) (resp. o
(

3
√

logn
)
), then this algorithm is faster.

Now we will show how to count all k-sub-cadences of character c ∈ Σ. Let δc[1..n] be a
binary sequence given by the indicator function for the character c:

δc[i] :=
{
1 if T [i] = c,

0 if T [i] 6= c.

If (i, d) is a k-sub-cadence with character c, δc[i] = δc[i+ d] = · · · = δc[i+ (k − 1)d] = 1.
Therefore, we can check whether (i, d) is a k-sub-cadence or not by computing δc[i] · δc[i+
d] · · · δc[i+ (k − 1)d]. To compute this, we use bit-parallelism, i.e, the bit-wise operations
AND and SHIFT_LEFT, denoted by & and «, respectively, as in the C language. For each
d with 1 ≤ d ≤ bn−1

k−1 c, let Qd = δc & (δc « d) & (δc « 2d) & · · · & (δc « (k − 1)d). If
Qd[i] = 1, then (i, d) is a k-sub-cadence. See Figure 2 for a concrete example.

If we want to count all k-sub-cadences with d, we only have to count the number of 1’s in
Qd. If we want to locate all k-sub-cadences with d, we have to locate all 1’s in Qd.

In the word RAM model, SHIFT_LEFT and AND operations can be done in constant
time per operation on bit sequences of length O(logn). Since δc is a binary sequence of
length n, one SHIFT_LEFT or AND operation can be done in O( n

logn ) time. Therefore, Qd

CPM 2020
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! " c a a a c a a b a a b a a b c a b c

#$ " 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

#$ " 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

% &#$ ' () " 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0

% &#$ ' *) " 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0

% &#$ ' +) " 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

,( " 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Figure 2 Let T = caaacaabaabaabcabc. (3, 3), (4, 3), and (7, 3) are 4-sub-cadences of character
‘a’ with d = 3.

can be obtained in O(k n
logn ) time. Since it is known that the number of 1’s in a bit sequence

of length O(logn) can be obtained in O(1) time by using the “popcnt” operation which is a
standard operation on the word RAM model, the number of 1’s in Qd can be counted in
O( n

logn ) time. Hence, for all 1 ≤ d ≤ bn−1
k−1 c, we can count all k-sub-cadences of character

c in O
(
k n

lognb
n−1
k−1 c+ n

lognb
n−1
k−1 c

)
⊆ O( n2

logn ) time. Also, it is known that the position of
the rightmost 1 (the least significant set bit) in a bit sequence of length O(logn) can be
answered in constant time by using bit-wise operations. We split Qd into O( n

logn ) blocks of
length O(logn). For each block, the least significant set bit can be found in O(1) time if the
block contains at least one 1. After finding the least significant set bit, we mask this bit to 0
and do the above operation again. Bit mask operation can be done in O(1) time. Hence, we
can answer all the positions of 1’s in Qd in O( n

logn + occ) time. Therefore, we can locate all
k-sub-cadences of character c in O( n2

logn + occ) time.
We showed how to detect all k-sub-cadences of character c, so we can detect all k-

sub-cadences by doing the above operations for each character in Σ. For a constant size
alphabet, since we only do the above operations a constant number of times, we can count
all k-sub-cadences in O( n2

logn ) time. We can also locate these occurrences in O( n2

logn + occ)
time. However, for a general ordered alphabet, we have to do the above operations |Σ| times.

For a general ordered alphabet, if the number of occurrences of the character is small, we
use another algorithm that generalizes Amir et al.’s algorithm [1] for detecting 3-cadences
to k-sub-cadences: Let Nc be the set of positions which are occurrences of a character
c. If we pick two positions in Nc and regard the smaller one as the starting position i of
k-sub-cadences and the larger one as the second position i+ d of a k-sub-cadence, then the
distance d is uniquely determined. We can check whether the pair (i, d) is a k-sub-cadence
or not in O(k) time. Since the number of pairs is at most |Nc|2, we can count or locate
k-sub-cadences of character c in O(k|Nc|2) time.

Thus, for a general ordered alphabet, all k-sub-cadences can be counted in
O(
∑
c∈Σ min{k|Nc|2, n2

logn}) time. Since O(
∑
c∈Σ min{k|Nc|2, n2

logn}) is maximized when
k|Nc|2 = n2

logn , then O(
∑
c∈Σ min{k|Nc|2, n2

logn}) ⊆ O((
∑
c∈Σ |Nc|)

n
√
k√

logn
) ⊆ O( n2√k√

logn
).

Therefore we can count in O( n2√k√
logn

) time by using Algorithm 2 and the above algorithm
that generalizes Amir et al.’s algorithm. Also, all k-sub-cadences can be located in
O(
∑
c∈Σ min{k|Nc|2, n2

logn + occc}) time where occc is the number of k-sub-cadences of char-
acter c. Since O(

∑
c∈Σ min{k|Nc|2, n2

logn + occc}) ⊆ O((
∑
c∈Σ min{k|Nc|2, n2

logn}) + occ) ⊆
O( n2√k√

logn
+ occ), we can locate all k-sub-cadences in O( n2√k√

logn
+ occ) time.
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From the above, we obtain the following result:

I Theorem 7. For a constant size alphabet (resp. for a general ordered alphabet), all k-sub-
cadences with given k can be counted in O

(
min

{
n2

k ,
n2

logn

})
time

(resp. O
(

min
{
n2

k ,
n2√k√

logn

})
time) and O(n) space, and can be located in

O
(

min
{
n2

k ,
n2

logn + occ
})

time (resp. O
(

min
{
n2

k ,
n2√k√

logn
+ occ

})
time) and O(n) space.

4 Detecting k-Cadences

In this section, we consider algorithms for detecting k-cadences.

4.1 Algorithm 3
Again, each (i, d) has to satisfy the following formulas: 1 ≤ i ≤ d and n−i

k < d ≤ b n−ik−1c.
Then, each distance d satisfies n

k+1 < d < n
k−1 . We use same techniques of Algorithm 1 for

each d with n
k+1 < d < n

k−1 . Since the number of possible values for d is O( nk2 ), we can check
that the same character is repeated k times in the split text in O(n

2

k2 ) time. Therefore, we
can obtain the following result:

I Theorem 8. There is an algorithm for locating all k-cadences for given k which uses
O
(
n2

k2

)
time and O(n) space.

4.2 Algorithm 4
Now, we will show the following result:

I Theorem 9. For a constant size alphabet, there is an O
(

n2

k2 logn

)
time algorithm for

counting all k-cadences for given k. We can also locate these occurrences in O
(

n2

k2 logn + occ
)

time. For a general ordered alphabet, there is an

O

(
n2

√
k
√

logn

)
time algorithm for counting all k-sub-cadences for given k. We can also locate

these occurrences in O

(
n2

√
k
√

logn
+ occ

)
time. These algorithms run in O(n) space.

Note that when we count all k-sub-cadences, for a constant size alphabet, this algorithm
is faster than Algorithm 3. Also, for a general ordered alphabet, this algorithm is faster if k
is o( 3
√

logn). (This is because if n2
√
k
√

logn
is less than n2

k2 , then k
√
k ≤
√

logn.) When we
locate all k-sub-cadences, for a constant size alphabet (resp. for a general ordered alphabet),
if |KC | is o(n

2

k2 ) (resp. |KC | is o(n
2

k2 ) and k is o( 3
√

logn)) then this algorithm is faster.
Now we will show how to count all k-cadences of character c ∈ Σ. If (i, d) is a k-cadence

with character c, then δc[i] = δc[i+ d] = · · · = δc[i+ (k− 1)d] = 1, 1 ≤ i ≤ d, and n−i
k < d ≤

b n−ik−1c. Therefore, to calculate k-cadences, we need only the range [1..d] of i for d with n−i
k <

d ≤ b n−ik−1c. For each d with n−i
k < d ≤ b n−ik−1c, let Q

′
d = δc[1..d] & δc[d + 1..2d] & δc[3d +

1..4d] & · · · & δc[(k − 1)d+ 1..kd]. If Q′d[i] = 1, (i, d) is a k-cadence. Q′d can be obtained
by the following operation: Q′d = δc[1..d] & (δc « d)[1..d] & (δc « 2d)[1..d] & · · · & (δc «
(k − 1)d)[1..d]. By using the same techniques of Algorithm 2, we can compute Q′d in
O(k d

logn ) time. Hence, for all n
k+1 < d < n

k−1 , we can count all k-cadences of a character in
O(k d

logn
n
k2 ) ⊆ O(lognn

2

k2 ) time.
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For a locating algorithm and for a general ordered alphabet, we can use same techniques
of the above section. Then we can locate all k-cadences of a character in O( n2

k2 logn + occ)
time. For a general ordered alphabet, all k-cadences can be counted in
O(
∑
c∈Σ min{k|Nc|2, n2

k2 logn}) time. Since O(
∑
c∈Σ min{k|Nc|2, n2

k2 logn}) is maximized when
k|Nc|2 = n2

k2 logn , then O(
∑
c∈Σ min{k|Nc|2, n2

k2 logn}) ⊆ O((
∑
c∈Σ |Nc|)

n√
k
√

logn
)

⊆ O( n2
√
k
√

logn
). Therefore we can count in O( n2

√
k
√

logn
) time. Also, all k-sub-cadences can

be located in O( n2
√
k
√

logn
+ occ) time. From the above, we obtain the following result:

I Theorem 10. For a constant size alphabet (resp. for a general ordered alphabet), all
k-cadences with given k can be counted in O

(
n2

k2 logn

)
time

(resp. O
(

min
{
n2

k2 ,
n2

√
k
√

logn

})
time) and O(n) space, and can be located in

O
(

n2

k2 logn + occ
)

time (resp. O
(

min
{
n2

k2 ,
n2

√
k
√

logn
+ occ

})
time) and O(n) space.

5 Detecting Equidistant Subsequence Pattern

In this section, we consider algorithms for detecting equidistant subsequence pattern.

5.1 Algorithm 5
We use similar techniques as of Algorithm 1. For each distance d with 1 ≤ d ≤ b n−1

m−1c,
we construct text STd. After preparing the split text, we can compute ESP using existing
substring pattern matching algorithms. Since Knuth-Morris-Pratt algorithm [9] runs in O(n)
time for a text of length n, we obtain the following result:

I Theorem 11. There is an algorithm for locating all equidistant subsequence occurrences
for given pattern P of length m which uses O

(
n2

m

)
time and O(n) space.

Like KSC , for text T = an and pattern P = am, |ESP| can be Ω(n
2

m ). Therefore, when
we locate all (i, d) ∈ ESP, this algorithm is optimal in the worst case. In the next subsection,
we show a counting algorithm that is efficient when the value of m is small. And we show a
locating algorithm that is efficient when the value of m and |ESP| is small.

5.2 Algorithm 6
Now we will show the following results:

I Theorem 12. There is an algorithm for counting all equidistant subsequence occurrences
which uses O

(
n2

logn

)
time and O

(
|ΣP |n
logn

)
space, where ΣP is the set of distinct characters

in the given pattern P . We can also locate these occurrences in O
(

n2

logn + occ
)

time and

O
(
|ΣP |n
logn

)
space.

First, we construct δc for all c ∈ ΣP . For each d with 1 ≤ d ≤ b n−1
m−1c, let Q′′

d =
δP [1] & (δP [2] « d) & (δP [3] « 2d) & · · · & (δP [m] « (m − 1)d). If Q′′

d [i] = 1, (i, d) is an
occurrence of equidistant subsequence pattern P . See Figure 3 for a concrete example.

All of the elements of ESP can be counted / located by using a method similar to
Algorithm 2 for Q′′

d . After constructing δc for all c ∈ Σ, all occurrences of equidistant
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! " a a c c

#$ " 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

#$ " 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

% &#$ ' () " 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0

% &#* ' +) " 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

% &#* ' ,) " 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

-..( " 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

#* " 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1

/ " c a a a c a a b a a b a a b c a b c

Figure 3 Let T = caaacaabaabaabcabc and P = aacc. (9, 3) is an occurrence of equidistant
subsequence pattern with d = 3.

subsequence pattern can be counted in O( n2

logn ) time and O(n) space and can be located in
O( n2

logn + occ) time and O(n) space. Constructing δc for all c ∈ ΣP needs O( |ΣP |n
logn ) time and

space. Since |ΣP |n
logn is at most O( n2

logn ), we get Theorem 12.
If m is o(logn), Algorithm 6 is faster than Algorithm 5 and O( |ΣP |n

logn ) ⊆ O(n). From the
above, we obtain the following result:

I Theorem 13. All occurrences of equidistant subsequence pattern can be counted in
O
(

min
{
n2

m ,
n2

logn

})
time and O(n) space and can be located in

O
(

min
{
n2

m ,
n2

logn + occ
})

time and O(n) space.

6 Detecting Equidistant Subsequence Pattern of Length Three

In this section, we show more efficient algorithms that count all occurrences of an equidistant
subsequence pattern for the case where the length of the pattern is three. In addition, we
show an algorithm for counting all occurrences of equidistant Abelian subsequence patterns of
length three. Since we heavily use the techniques of [5] for 3-sub-cadences, we first show their
algorithm for 3-sub-cadences and then generalize it for solving the equidistant subsequence
pattern matching problem.

6.1 Counting 3-sub-cadences [5]
Let a[0..n] and b[0..n] be two sequences. The sequence h[1..2n] can be computed by the
discrete acyclic convolution h[z] =

∑
x+y=z

(x,y)∈[0,1,2,...,n]2
a[x]b[y]. The discrete acyclic convolution

can be computed in O(n logn) time by using the fast Fourier transform. This convolution can
be interpreted geometrically as follows: h[z] =

∑
x+y=z

(x,y)∈G∩Z2
a[x]b[y], where G is the square

given by {(x, y) : 0 ≤ x, y ≤ n}.
Funakoshi and Pape-Lange [5] showed that 3-sub-cadences can be counted by using the

discrete acyclic convolution. If (i, d) is a 3-sub-cadence with a character c, then δc[i]·δc[i+2d] =
1 and T [i + d] = c. Let h[2z] =

∑
x+y=2z

(x,y)∈[0,1,2,...,n]2
δc[x]δc[y], then h[2z] counts how many

pairs x and y there are that satisfies x+ y = 2z and T [x] = T [y] = c for the index z. Since
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z + z = 2z and δc[z] · δc[z] = 1 if T [z] = 1, then h[2z] counts one false positive. In addition,
x + y = 2z and δc[x] · δc[y] = 1 if x 6= y, then h[2z] counts twice for same x and y. Let
f [z] be the number of all 3-sub-cadences with a character c such that the middle index of
3-sub-cadences is z. f [z] can be computed in O(n logn) time as follows:

f [z] :=
{
h[2z]−1

2 if T [z] = c,

0 if T [z] 6= c.

Furthermore, they extended the geometric interpretation of convolution and showed that
if G is a triangle with perimeter p, the sequence c can be computed in O(p log2 p) time.

6.2 Counting Equidistant Subsequence Patterns of Length Three
Now we show an algorithm for counting all occurrences of equidistant subsequence patterns
whose length is three. Let g[z] be the number of all occurrences of the equidistant subsequence
pattern such that the middle index of P is z. If P = ααα, this problem is equal to the
counting all 3-sub-cadences problem. Therefore, g[z] can be computed in O(n logn) time as
follows:

g[z] :=
{
h[2z]−1

2 if T [z] = α

0 if T [z] 6= α

where h[2z] =
∑

x+y=2z
(x,y)∈[0,1,2,...,n]2

δα[x]δα[y].

If P = αβα, since the pattern is symmetrical, g[z] can be computed in O(n logn) time as
follows, by using almost the same technique as above:

g[z] :=
{
h[2z]

2 if T [z] = β

0 if T [z] 6= β

where h[2z] =
∑

x+y=2z
(x,y)∈[0,1,2,...,n]2

δα[x]δα[y].

However, if P = αβγ, then h[2z] =
∑

x+y=2z
(x,y)∈[0,1,2,...,n]2

δα[x]δγ [y] would also include

occurrences of the equidistant subsequence pattern γβα. Thus, in order to compute g[z], we
further add the condition x < y. By using triangle convolution of [5], g[z] can be computed
in O(n log2 n) time as follows:

g[z] :=
{
h[2z] if T [z] = β

0 if T [z] 6= β

where h[2z] =
∑

x+y=2z
(x,y)∈G∩Z2

δα[x]δγ [y], where G is the triangle as in the following Figure 4.

If P = ααγ or P = αγγ, we can compute g[z] by using the same technique as for the
case of P = αβγ. Therefore, we get the following result:

I Theorem 14. All occurrences of equidistant subsequence pattern of length three can be
counted in O(n log2 n) time and O(n) space.

6.3 Counting Equidistant Abelian Subsequence Patterns of Length
Three

Now we show the algorithm for counting all occurrences of equidistant Abelian subsequence
pattern whose length is three. In this subsection we consider the case where all of the three
characters are distinct, namely, P = αβγ. The other cases can be computed similarly.
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Figure 4 The triangle G.

In the previous subsection, we showed that if P = αβγ, then
h[2z] =

∑
x+y=2z

(x,y)∈[0,1,2,...,n]2
δα[x]δγ [y] includes the occurrences of equidistant subsequence

pattern γβα. Therefore, we can compute all occurrences of equidistant subsequence pattern
αβγ, γβα, βγα, αγβ, γαβ, and βαγ by using discrete acyclic convolution for P = αβγ,
P = βγα, and P = γαβ. Hence, we can get following result:

I Theorem 15. All occurrences of equidistant Abelian subsequence pattern of length three
can be counted in O(n logn) time and O(n) space.
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Abstract

Given a text T [1, n] over an alphabet Σ of size σ, the suffix array of T stores the lexicographic order
of the suffixes of T . The suffix array needs Θ(n logn) bits of space compared to the n log σ bits
needed to store T itself. A major breakthrough [FM–Index, FOCS’00] in the last two decades has
been encoding the suffix array in near-optimal number of bits (≈ log σ bits per character). One can
decode a suffix array value using the FM-Index in logO(1) n time.

We study an extension of the problem in which we have to also decode the suffix array values of
the reverse text. This problem has numerous applications such as in approximate pattern matching
[Lam et al., BIBM’ 09]. Known approaches maintain the FM–Index of both the forward and the
reverse text which drives up the space occupancy to 2n log σ bits (plus lower order terms). This
brings in the natural question of whether we can decode the suffix array values of both the forward
and the reverse text, but by using n log σ bits (plus lower order terms). We answer this question
positively, and show that given the FM–Index of the forward text, we can decode the suffix array
value of the reverse text in near logarithmic average time. Additionally, our experimental results
are competitive when compared to the standard approach of maintaining the FM–Index for both
the forward and the reverse text. We believe that applications that require both the forward and
reverse text will benefit from our approach.
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13:2 FM-Index Reveals the Reverse Suffix Array

1 Introduction

The suffix tree is arguably the central data structure in Stringology. Briefly speaking, the
suffix tree (ST) of a text T [1, n] over an alphabet

∑
= [σ] ∪ {$} is a compact trie over all

suffixes, where $ is the unique terminal symbol. Its linear time construction [10, 25, 32, 33]
and efficient tree-navigational features make it a versatile tool in the design of various string
matching algorithms. As a practical alternative, suffix arrays were introduced later. Probably
the greatest beneficiary of these data structures is bioinformatics; in fact, it is safe to say
that the field would not have been the same without them [1, 31]. We refer to Gusfield’s
book [18] for an exhaustive list of algorithms aided by suffix trees and suffix arrays.

In the era of data deluge, a negative aspect of suffix trees and suffix arrays is their
memory footprint of Θ(n) words or Θ(n logn) bits. In comparison, the text can be encoded
in just n log σ bits, or even lower space using compression techniques. To put this into
perspective, the suffix tree takes around 15 bytes per character and the suffix array takes
around 4 bytes per character for human genome, where σ is 4. Bridging the complexity gap
between data-space and index-space has been a challenging task. The advent of succinct
data structures [19] and compressed text indexing, where the goal is to have a data structure
in space close to the information theoretical minimum, presented us with new indexes like
the FM–Index by Ferragina and Manzini [12] and the Compressed Suffix Array (CSA)
by Grossi and Vitter [17]; these indexes encapsulate the functionalities of suffix array in
near-optimal number of bits (w.r.t. statistical entropy). While the CSA achieved this goal
via the structural properties of suffix trees/arrays, FM-Index relied on the Burrows-Wheeler
Transformation (BWT) of the text [7]. Moreover, the FM-index is a self-index, i.e., any
portion of the original text can be extracted from the index. These remarkable breakthroughs
saved orders of magnitude of space in practice and eventually became the foundations of
more advanced indexes [6, 11, 26, 27, 29, 30]. They are the backbone of many widely used
bioinformatics tools like the BWA [22], SOAP2 [24], Bowtie [21], etc.

Motivated by the fact that two human genomes differ in hardly 0.1% of their positions,
Belazzougui et al. [5] introduced the concept of Relative Compressed Indexes or Reusable-
Indexes, where the objective is to leverage the fact that a full text index (say an FM-index)
of a string T is already available, while indexing a “closely similar” string T ′. They showed
that the FM-index of T ′ can be encoded in O(δ) extra space (in words), assuming that the
FM-index of T is accessible. Here, δ denotes the edit distance between the ’s of T and T ′.
We study a special, but useful instance of this problem, in which T ′ is the reverse of T .

1.1 Relative Compression of the Reverse Suffix Array
Let T [1, n] = t1t2 . . . tn−1$ be a string over the alphabet Σ = [σ] ∪ {$}, where the character
$ appears exactly once. The reverse of T is the string

←−
T = tn−1tn−2 . . . t1$. We use the

following lexicographic order: $ < 1 < 2 < · · · < σ. We use T [i, j] (resp.,
←−
T [i, j]) to denote

the substring of T (resp.,
←−
T ) from position i to j.

The suffix array SA[1, n] stores the starting positions of the lexicographically arranged
suffixes, i.e., SA[i] = j if the ith lexicographically smallest suffix is T [j, n]. The inverse suffix
array ISA[1, n] is defined as: ISA[j] = i if and only if SA[i] = j. Thus, the suffix array and
its inverse can be stored in Θ(n) words, i.e., Θ(n logn) bits. The BWT of T is an array
BWT[1, n] such that BWT[i] = T [SA[i]− 1], where T [0] = T [n]. An FM–Index is essentially
a combination of the BWT (with rank-select functionality support via a wavelet tree [16])
and a sampled (inverse) suffix array. Likewise, we can define the suffix array and the inverse
suffix array for the reverse text

←−
T , denoted by

←−
SA[1, n] and

←−
ISA[1, n], respectively.
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I Problem 1. Can we decode
←−
SA[·] and

←−
ISA[·] values efficiently using the FM-index of T?

1.2 Motivation and Related Work
We observe that when the application mandates performing search both in forward and
reverse directions and we already have an index on the forward text, it is possible to calculate
the SA (or ISA) values of the reversed text on the fly efficiently by using the forward index,
which eliminates the overhead of reverse suffix array. Some text processing applications,
particularly in computational biology, are a good example of this case. For instance, the read
mapping problem [23] in bioinformatics aims to match a given read onto a reference genome.
Due to the DNA sequencing technology used, a read may originate from a forward strand as
well as the reverse strand of the DNA helix, and the direction is unknown at the time of
mapping. Thus, while the read can be aligned to the reference in its original form, its reverse
complement should also be considered as it could be sampled from the reverse strand. One
way to cope with this problem is to create two indexes [22], one for the forward and the other
for the reverse strand mapping, which obviously doubles the space. However, if the forward
index can be used to search in the reverse text, the space can be reduced significantly.

The practical applicability of our study addresses this case by showing that we can
compute the

←−
SA[i] and

←−
ISA[i] elements of the reverse text for any possible i, by solely using

the FM-Index constructed over the forward text. In a wider sense, any bioinformatics
application that makes use of a FM-Index while performing a pattern search on a target
sequence, can benefit from our solution to search on the reverse strand of the target without
any need of extra space. For example, Lam et al. [20] use both the forward and backward
BWT to find matches with k-mismatches allowed; our results eliminate the requirement of
the latter, thereby roughly halving the space. It is noteworthy that other relevant elements of
the reverse text, such as computing the longest common prefix of two suffixes and

←−−−
BWT-entry

can be generated from the
←−
SA[i] and

←−
ISA[i], becomes efficiently computable on the fly.

From a theoretical perspective, one can argue that pattern matching on the reverse text
is equivalent to matching the reverse of the pattern in the forward text. However, there
are applications, where one needs to find the range of suffixes in the suffix tree/array of
the reverse text that are prefixed by a pattern. A typical example is the classic solution
for approximate pattern matching with one error, which uses the suffix tree/array of the
text as well as that of the reverse of the text, along with an orthogonal range searching data
structure [2]. A similar approach is followed in most of the compressed indexes based on
LZ-compression, although the forward/reverse suffixes arrays/trees are sparse [3]. Another
use is in the (relative) compressed indexing of a collection of sequences that are highly
similar. Here, two full text indexes corresponding to the reference sequence and its reverse
are maintained. Other sequences are indexed in relative LZ compressed space w.r.t. the
reference sequence [9]. On a related note, Ohlebusch et al. [28] provided a procedure to
compute the BWT of the reverse text considering the strong correlation between T and

←−
T .

They compute the reverse BWT from the forward BWT, but in their process to compute the
kth entry of the BWT, one has to decode all entries from 1 to k − 1. Their technique can
also partially fill the reverse suffix array during this computation, where additional effort
is required to calculate the missing elements of

←−
SA. Our approach on the other hand can

directly compute any BWT entry for the reverse text. In another work, Belazzougui et al. [4]
showed how to represent the bi-directional BWT (i.e., forward and reverse BWT) so that one
can perform efficient navigation of the suffix tree in the forward and backward direction;
however, to search in the forward direction, their representation again needs space roughly
twice that of the FM–Index.

CPM 2020
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1.3 Our Results
The following is our main contribution in this paper.

I Theorem 2. Assuming the availability of the FM–Index of T [1, n] (where BWT is stored
in the form of a wavelet tree), we can compute the suffix array value r =

←−
SA[i] for any

given i (resp. inverse suffix array i =
←−
ISA[r] for any given r) of the reversed text ←−T in time

O(h · tWT + tSA). Here,
h is the length of the shortest unique substring that starts at position r in

←−
T ,

tWT is the time to support standard wavelet tree operations on the BWT, and
tSA is the time to decode a suffix array (or inverse suffix array) value using FM–Index.

In the most common implementations of the FM–Index, tWT = O(log σ) and tSA =
O(log1+ε n), where ε > 0 is arbitrarily small. On average h can be expected to be O(logσ n)
when the text is assumed to be independently and identically distributed over the alphabet
Σ [8]. Thus, we get the following corollary.

I Corollary 3. Given the FM–Index of T (where BWT is stored in the form of a wavelet
tree), we can decode a suffix array value or inverse suffix array value of the reversed text in
O(log1+ε n) expected time, where ε > 0 is arbitrarily small.

We complement the above results with experiments. Since Corollary 3 may not hold on
sequences with skewed symbol distributions such as natural language texts, we also include
such cases in the experiments to analyze the performance. The experiments show that
our results are competitive when compared to the standard approach of maintaining the
FM–Index for both the forward text and the reverse text.

2 Burrows-Wheeler Transform and FM–Index

Given an array A[1,m] over an alphabet Σ of size σ, by using the wavelet tree data structure
of size m log σ+o(m) bits, the following queries can be answered in O(log σ) time [12, 14, 16]:

A[i],
rankA(i, j, x) = the number of occurrences of x in A[i, j],
selectA(i, j, k, x) = the kth occurrence of x in A[i, j],
quantileA(i, j, k) = the kth smallest character in A[i, j],
rangeCountA(i, j, x, y) = the number of positions k ∈ [i, j] satisfying x ≤ A[k] ≤ y

Burrows and Wheeler [7] introduced a reversible transformation of the text, known as the
Burrows-Wheeler Transform (BWT). Let Tx be the circular suffix starting at position x,
i.e., T1 = T and Tx = T [x, n] ◦ T [1, x − 1], where x > 1 and ◦ denotes concatenation.
Then, the BWT of T is obtained as follows: first create a conceptual matrix M , such that
each row of M corresponds to a unique circular suffix, and then lexicographically sort all
rows. Thus the ith row in M is given by TSA[i]. The BWT is the last column L of M , i.e.,
BWT[i] = TSA[i][n] = T [SA[i] − 1], where T [0] = T [n] = $. The main component of the
FM–Index is the last-to-first column mapping (in short, LF mapping). For any i ∈ [1, n],
LF(i) is the row j in the matrix M where BWT[i] appears as the first character in TSA[j].
Specifically, LF(i) = ISA[SA[i]− 1], where SA[0] = SA[n].

To compute LF(i), we store a wavelet tree over BWT[1, n] in n log σ + o(n log σ) bits.
Let the number of occurrences of symbol i ∈ Σ \ {$} in T be fi. We store another array
C[1, σ] such that C[i] is the number of characters in T that are lexicographically smaller than
i. Specifically, C[1] = 1, and C[i] = 1 +

∑
j<i fj when i > 1. As a convention, we denote
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C[$] = 0 and C[σ + 1] = n. Using these, we can compute LF(i) mapping in O(log σ) time as
LF(i) = C[BWT[i]] + rank(1, i,BWT[i]). We can decode SA[i] in O(log1+ε n) time by using
LF mapping and by maintaining a sampled-suffix array, which occupies o(n log σ) bits in
total. The idea is to explicitly store (i,SA[i]) pairs for all SA[i] ∈ {1, 1 + ∆, 1 + 2∆, . . . },
where ∆ = dlogσ n logε ne. The space needed is O( n∆ logn) = o(n log σ) bits. Then, SA[i] can
be obtained directly if the value has been explicitly stored; otherwise, it can be computed
via at most ∆ number of LF mapping operations in time O(∆ · log σ) = O(log1+ε n). We
can also decode ISA[·] using the sampled array in O(log1+ε n) time.

3 The Method

A substring T [a, b] of T is unique if a is the only occurrence of T [a, b] in T . Note that the
unique substring starting at a position a is always defined (since T ends in $). Moreover the
reverse of T [a, b] is also unique in

←−
T , and it ends at the position (n− a+ 1) in

←−
T .

3.1 Decoding
←−
SA[i] for a given i

Our algorithm hinges on the following main lemma.

I Lemma 4. Given the FM–Index of T (where the BWT is equipped with a wavelet tree),
we can compute the shortest unique substring

←−−
SUS in

←−
T starting at

←−
SA[i] in O(h · tWT) time,

where h = |
←−−
SUS|. We can then compute r =

←−
SA[i] in O(tSA) time.

Proof of Lemma 4. Our task is to compute r =
←−
SA[i] for some i, where h is the length of

the shortest unique substring
←−−
SUS =

←−
T [r] ◦

←−
T [r + 1] ◦ · · · ◦

←−
T [r + h − 1] of

←−
T starting at

position r. Let the range [αk, βk] be such that for any j ∈ [αk, βk] the suffix T [SA[j], n]
starts with the string

←−
T [r + k − 1] ◦

←−
T [r + k − 2] ◦ · · · ◦

←−
T [r]. Moreover, let qk be such that

←−
T [r + k] is the qkth smallest character in BWT[αk, βk].

Our idea is to successively compute the ranges [α1, β1], [α2, β2], . . . and q1, q2, . . . until
we get a range [αh, βh] that contains exactly one suffix, i.e., αh = βh. At each step,
we are going to decode the characters

←−
T [r],

←−
T [r + 1], . . . ,

←−
T [r + h − 1]. Clearly,

←−−
SUS =

←−
T [r]◦

←−
T [r+1]◦ · · ·◦

←−
T [r+h−1], and the starting position of SUS in T is SA[αh]. Therefore,

r = n− (SA[αh] + h− 1) = n− SA[αh]− h+ 1

We now present the details, starting with the following simple observation. The ith
lexicographic suffix of

←−
T starts with the same character as the ith lexicographic suffix of

T . Therefore,
←−
T [r] = T [SA[i]], which is essentially the ith smallest character in BWT[1, n],

and is given by quantile(1, n, i). Now, we find the range [α1, β1] in constant time using the
array C and

←−
T [r]. The next step is to decode the character

←−
T [r + 1], and compute the

range [α2, β2]. Note that
←−
T [r, n] is the (i− αr + 1)th lexicographically smallest suffix that

starts with
←−
T [r]. In other words,

←−
T [r + 1] is exactly the (i− αr + 1)th smallest character in

BWT[α1, β1]. Therefore q1 = (i− αr + 1).
The next steps are to decode the character

←−
T [r + 1] and compute [α2, β2], then decode

←−
T [r + 2] and compute [α3, β3], and so on. To do so, we rely on the following recursions.
From the definition,

←−
T [r + k] = quantile(αk, βk, qk) for any k ≥ 1. We now show how to

compute [αk+1, βk+1]. Let a be the smallest index ≥ αk and let b be the largest index ≤ βk,
such that BWT[a] = BWT[b] =

←−
T [r + k].

αk+1 = LF(a) = C[
←−
T [r + k]] + rank(1, αk − 1,

←−
T [r + k]) + 1

βk+1 = LF(b) = C[
←−
T [r + k]] + rank(1, βk,

←−
T [r + k])

CPM 2020
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Figure 1 Computing
←−
SA[5] = 7 via Lemma 4. Here

←−−
SUS = ATC, the suffix range [α1, β1] of A is

[2, 5], the suffix range [α2, β2] of TA is [8, 9], and the suffix range [α3, β3] of CTA is [6, 6].

Finally, qk+1 = (qk − d), where d is the number of characters in BWT[αk, βk] that are
lexicographically smaller than

←−
T [r + k], which can be computed via a rangeCount query.

We repeat this process until we reach [αh, βh], where αh = βh. This takes O(h · tWT) time.
Then r is decoded in additional O(tSA) time. This completes the proof of Lemma 4. J

Algorithm 1 for computing
←−
SA[i].

1: procedure Compute
←−
SA[i]

2: if (i = 1) then return n

3: α← 1, β ← n, q ← i, h← 0
4: while (α < β) do
5: c← quantile(α, β, q)
6: if (q 6= $) then q ← q − rangeCount(α, β, 1, c− 1)
7: if (α > 1) then α← C[c] + rank(α− 1, c) + 1
8: else α← C[c] + 1
9: β ← C[c] + rank(β, c)

10: h← h+ 1
11: return n− SA[α]− h+ 1

3.2 Decoding
←−
ISA[r] for a given r

To compute
←−
ISA[r] for some position r, the main intuition is as follows. Let γ1 be the number

of entries in BWT[1, n] that are lexicographically smaller than
←−
T [r]. Then,

←−
ISA[r] ≥ γ1 =

C[
←−
T [r]]. Now consider the range [α1, β1] such that for any j ∈ [α1, β1], the suffix T [SA[j], n]

starts with
←−
T [r]. Let γ2 be the number of entries in BWT[α1, β1] that are lexicographically

smaller than
←−
T [r+ 1]. Then,

←−
ISA[r] ≥ γ1 + γ2. Now, consider the range [α2, β2] such that for
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any j ∈ [α2, β2], the suffix T [SA[j], n] starts with
←−
T [r + 1] ◦

←−
T [r]. Compute γ3. We repeat

the process until we reach the range [αh, βh] such that αh = βh. Clearly, the unique suffix
T [SA[αh], n] starts with SUS =

←−
T [r+h−1]◦

←−
T [r+h−2] · · · ◦

←−
T [r]. Since SUS is the smallest

unique prefix of
←−
T [r, n],

∑
s≤h γs is the number of suffixes in

←−
T that are lexicographically

smaller than
←−
T [r, n]. Thus,

←−
ISA[r] = 1 +

∑
s≤h γs. To compute the γ1, γ2, . . . , γh, we use

rangeCount operation. Computing the range [αk, βk] from [αk−1, βk−1] is achieved using the
array C and rank operation, as in proof of Lemma 4.

The algorithm has h = |SUS| rounds. Each round comprises of a constant number of
wavelet tree operations, and accesses to the C array. Additionally, in the kth round, we
have to decode the character

←−
T [r + k − 1]. To do this we use the following technique.

If r = n, then
←−
T [r] = $; so, assume otherwise. Note that

←−
T [r] = T [n − r + 1]; thus,

←−
T [r] = BWT[ISA[n− r + 2]] is found in O(tSA + tWT) time. Now,

←−
T [r + 1],

←−
T [r + 2], . . . are

given by BWT[LF(ISA[n− r+ 2])], BWT[LF(LF(ISA[n− r+ 2]))], . . . , in O(tWT) time for each
k. Hence, the time taken to compute

←−
ISA[r] is O(tSA + h · tWT). We have the following lemma.

I Lemma 5. Given the FM–Index of T (where the BWT is equipped with a wavelet tree), we
can compute i =

←−
ISA[r] in O(tSA + h · tWT) time, where h is the length of the shortest unique

substring of
←−
T that starts at r.

From Lemma 4 and Lemma 5, Theorem 2 is immediate. We outline Lemmas 4 and 5
formally in Algorithms 1 and 2 respectively. J

Algorithm 2 for computing
←−
ISA[r].

1: procedure Compute
←−
ISA[r]

2: if (r = n) then return 1
3: i← ISA[n− r + 2], c← BWT[i]
4: α← 1, β ← n, γ ← C[c]
5: while (α < β) do
6: if (α > 1) then α← C[c] + rank(α− 1, c) + 1
7: else α← C[c] + 1
8: β ← C[c] + rank(β, c)
9: i← LF(i), c← BWT[i]
10: if (c 6= $) then
11: γ ← γ + rangeCount(α, β, 1, c− 1)
12: return (1 + γ)

4 Experimental Results

The proposed algorithms eliminate the necessity to separately maintain the SA and ISA of the
reverse text

←−
T by computing

←−
SA[i] and

←−
ISA[i] directly from the FM-index of T. The natural

question is how the performance of the introduced method is compared with the regular
access via the FM-index that could be built on

←−
T . We have implemented the proposed

CPM 2020
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algorithms1 by using the sdsl-lite framework2 [15] and performed some tests on 50MB dna,
english, proteins, sources, and dblp.xml files from Pizza&Chili3 corpus to analyze the
practical performance of the introduced methods.

For each file, we have created the FM-index and measured the elapsed time of our
algorithm to retrieve

←−
SA[i] /

←−
ISA[i] for 100K randomly selected distinct i positions. We

benchmark that elapsed time against a regular SA /
←−
ISA access on the FM-index created over

←−
T , assuming that both forward and reverse FM-indices apply the same sampling strategy
with the same sampling frequency,

All operations in Algorithms 1 and 2, namely the quantile, rangeCount, rank queries,
backwards_search, and LF−mappings, are achieved in logarithmic time. The execution
times of the introduced algorithms are directly proportional to the number of times they
are repeated, which is determined by the length of the matching SUS. Hence, on positions
where the SUS is extremely long, the execution time will increase. It makes sense to define a
threshold such that the proposed methods stay compatible in practice. Therefore, for those
positions that have a SUS longer than this threshold, it may be preferred to pre–compute
and maintain their

←−
SA/
←−
ISA values offline. We suggest to set this threshold to the SA/ISA

sampling frequency used in the FM-index construction. While selecting the random positions
in the experiments, those with SUS lengths longer than the threshold are excluded. Table 1
lists the average SUS length of the 100K randomly selected positions with this restriction on
each file for each SA sampling frequency. The percentage of all positions that has a shorter
SUS than the corresponding sampling frequencies, are also presented.

Table 1 The average SUS lengths of the selected positions on each file per each sampling frequency,
and the percentage of all positions in that file, which has SUS length less than or equal to that
sampling frequency.

Average SUS Length Positions with SUS length ≤ Sampling Frequency
Sampling Frequency: 32 64 128 32 64 128

dblp.xml 19.04 29.34 41.37 58.57% 81.18% 96.81%
dna 15.22 16.46 17.11 96.91% 99.45% 99.89%

english 12.89 14.17 17.48 97.81% 99.05% 99.64%
protein 8.48 11.04 17.23 84.58% 87.80% 91.11%
sources 16.13 21.63 28.10 86.11% 93.36% 96.37%

The experiments were run on an iMac using MacOS 10.13.16 and equipped with 16GB
memory and 3.23 GHz Intel Core i5 processor. The software was compiled with the clang
LLVM compiler with full optimization (-O3). During the experiments, we considered the
sampling factors of 32, 64 and 128, along with both text-ordered and suffix-ordered
sampling strategies [13].

The shape of the wavelet tree (WT) representing the BWT may also be an important
factor in practical performance to achieve the queries we use in our algorithms. The
lex_ordered(i,j,c) function of the sdsl-lite platform, which returns the number of symbols
lexicographically smaller/greater than c in the (i,j) interval of a wavelet tree WT, is used in

1 The implementation is available online at https://github.com/oguzhankulekci/reverseSA.
2 The sdsl-lite framework is available online at https://github.com/simongog/sdsl-lite.
3 http://pizzachili.dcc.uchile.cl/index.html.

https://github.com/oguzhankulekci/reverseSA
https://github.com/simongog/sdsl-lite
http://pizzachili.dcc.uchile.cl/index.html
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the implementation. This function requires the WT to support lexicographical ordering4, where
Hu-Tucker and balanced WTs are the only options, and thus, included in the experiments.
The Huffman–shaped WT is not used as it does not support the lexicographical ordering.

Figure 2 represents the comparison of the average elapsed time to retrieve the
←−
SA[i] with

Algorithm 1 versus the regular access via FM-index of
←−
T on english, dna, and protein

files5, whose alphabet sizes are respectively 239, 16, and 27. Total time to retrieve the
←−
SA[i]

via the Algorithm 1 is equal to the sum of the SUS extraction and SA access on forward
FM-index. It is observed that Hu-Tucker shaped WT provides better running time than the
balanced shaped and, text-order based sampling is superior to the suffix–order based.
The average SA access time on both forward and reverse directions are approximately equal.
Therefore, the expected latency in the proposed technique depends on the SUS-detection
phase. As shown in Table 1, due to the limitation applied in the selection process, the
average SUS length is increasing as the sampling frequency gets larger. This reflects on the
SUS extraction cost in Figure 2, where the SUS extraction time expands proportionally by
the increment of the average SUS length in each data type.

Table 2 The ratios representing the overall execution time of the Algorithms 1 and 2 divided by
the regular SA and ISA access on different sampling ratios and strategies.

←−
SA Benchmark (Algorithm 1)

←−
ISA Benchmark (Algorithm 2)

Sampling Strategy: Text-ordered Suffix-ordered Text-ordered Suffix-ordered
Sampling Frequency: 32 64 128 32 64 128 32 64 128 32 64 128

dblp.xml 7.0 5.2 3.5 5.0 3.4 2.5 9.5 6.2 3.9 9.4 6.0 3.8
dna 4.2 2.7 1.9 2.7 2.0 1.5 5.1 3.5 2.1 5.5 3.2 2.2

english 4.3 3.0 2.0 2.7 2.0 1.6 5.3 3.3 2.4 5.3 3.2 2.4
protein 2.7 2.1 1.7 1.9 1.6 1.4 3.4 2.5 2.0 3.4 2.5 2.1
sources 4.8 3.4 2.5 3.2 2.4 1.8 6.0 4.1 2.9 6.0 4.1 2.9

With the aim of having a better understanding about the running time of Algorithms 1
and 2, the elapsed time to access a random

←−
SA[i] (and

←−
ISA[i]), is divided by the time required

to achieve these queries with a regular FM-index constructed over
←−
T . Table 2 lists these ratios.

Since the proposed methods can retrieve the
←−
SA[i] and

←−
ISA[i] values without the FM-index on

←−
T , a slow-down is actually expected in the general paradigm of time-memory trade-off. On
dna sequences, Algorithm 1 is only 2.7, 2.0, and 1.5 times slower for corresponding sampling
frequencies, while using Suffix-ordered method. On protein sequences, the ratios are even
better to be 1.9, 1.6, and 1.4 respectively. We observed the worst results on dblp.xml file,
which is highly repetitive, and thus, the SUS extraction times have been observed to be
significantly longer. It’s reasonable to particularly underline the performance of our proposed
algorithm on biological sequences. Since, text operations on reverse direction are expected to
be a more common demand in terms of computational biology applications. The proposed
solution, especially the

←−
SA calculation, competes better in suffix-based SA sampling strategy.

This favours the practical applicability of our theoretical results since suffix-based approach
is the default choice in practice due to its space conservation. The

←−
ISA computations with

Algorithm 2 are generally observed to be ≈ 1.5 times worse than the
←−
SA computations, which

is due to the fact that retrieving ISA is nearly two times faster than accessing SA on an
FM-index with equal SA and ISA sampling ratios6.

4 Indicated as lex_ordered in http://simongog.github.io/assets/data/sdsl-cheatsheet.pdf
5 The sources and dblp results are not shown in Figure 2 to save space.
6 As also considered in sdsl-lite framework by setting the default ISA sampling frequency to two times
of the SA sampling frequency.
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Figure 2 Experimental analysis to compare the speed of the proposed method and the regular
SA access on the FM-index constructed over the reversed text. Y-axis represents the elapsed time in
microseconds and X-axis indicate the sampling frequencies. For the representation of the BWT, both
“balanced” and “Hu-Tucker” shaped wavelet trees that supports lexicographical ordering (which is
required by the methods we use in the algorithms), are considered.

The practical performance of the Algorithms 1 and 2 depends heavily on the length of
the corresponding SUS. Short SUSs are expected to be more common, where the method
will execute fast. On the other hand, even much less frequently observed longer SUS cases
degrade the overall average timings. Thus, for a deeper investigation, the diffraction in
Table 3 lists the percentages of the positions on which the elapsed time with the proposed
algorithm is ”X” times of the regular access on the FM–index constructed over

←−
T .
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Table 3 Percentage of the positions on which the elapsed time with the proposed algorithms are
”X” times of the regular suffix array access on the FM–index constructed over

←−
T . For instance, on

protein sequence, Algorithm 1 answered faster than the regular FM-index over
←−
T on 21.88% of the

queries when the sampling factor is 32 with a suffix-ordered strategy. On 40.76% of the cases, the
speed is slower than the regular access, but not more than two times. Similarly, the speed is between
two and three times of the SA access with FM-index constructed over

←−
T on 21.17% of cases.

dna english protein
32 64 128 32 64 128 32 64 128

<1x 0.00 0.03 13.93 0.00 0.30 13.75 0.06 12.92 23.89
1x-2x 0.02 24.69 41.86 0.50 19.42 40.97 25.23 36.87 40.36
2x-3x 12.30 38.71 36.84 10.52 34.57 34.24 35.94 38.83 27.69
3x-4x 31.36 30.13 5.59 27.27 32.14 6.66 30.81 7.04 4.50
>4x 56.32 6.43 1.77 61.70 13.56 4.38 7.96 4.33 3.55

←−
SA results with text-ordered sampling strategy

<1x 0.03 20.03 41.50 1.37 19.28 38.31 21.88 37.95 45.77
1x-2x 36.46 42.96 34.16 35.97 41.83 33.26 40.76 34.19 31.24
2x-3x 33.49 20.70 14.27 31.76 21.04 15.83 21.17 16.29 14.00
3x-4x 16.22 9.13 5.84 16.10 9.87 7.22 9.28 6.90 5.46
>4x 13.81 7.18 4.24 14.80 7.98 5.38 6.91 4.67 3.53

←−
SA results with suffix-ordered sampling strategy

<1x 0.00 0.00 5.95 0.00 0.03 5.59 0.00 0.96 10.93
1x-2x 0.00 3.03 42.67 0.02 10.90 36.45 2.14 20.43 36.48
2x-3x 0.11 31.02 41.83 1.57 33.41 38.12 17.93 34.89 36.45
3x-4x 12.10 36.81 6.80 12.63 33.14 12.71 28.05 27.85 9.40
>4x 87.78 29.14 2.75 85.79 22.53 7.14 51.88 15.86 6.75

←−
ISA results with text-ordered sampling strategy

<1x 0.00 0.00 3.23 0.00 0.03 5.39 0.00 2.26 17.35
1x-2x 0.00 6.99 38.88 0.03 9.46 35.95 4.42 33.26 37.49
2x-3x 0.10 36.14 42.38 2.28 32.59 38.52 32.67 37.99 33.09
3x-4x 10.87 38.00 12.69 14.63 35.07 12.46 36.96 18.20 5.12
>4x 89.03 18.88 2.81 83.06 22.86 7.67 25.95 8.30 6.96

←−
ISA results with suffix-ordered sampling strategy

Actually, Algorithm 1 already includes a regular SA access in itself (line 11). So, it’s
quite surprising to observe that there are cases where Algorithm 1 executes faster than
the regular access. Such cases appear since the access time to suffix arrays on FM-indices
differs in forward and reverse directions. Figure 3, depicts this by sketching the number
of accessed symbols with Algorithm 1 and with a regular SA access on reverse FM-index.
Algorithm 1 starts with extracting the SUS which ends at k in forward direction (or starts
at k in reverse direction). Once X symbols long SUS is extracted, the algorithm calls the
regular SA access on the FM-index of T, which tells the location of this SUS on T . This
access requires backwards traversal of Y symbols on T via the FM-index, where Y is the
distance to the closest sampled point on the left of the SUS. The result of this access is then
used to compute the exact value of k on

←−
T . On the other hand, when an FM-index of

←−
T

CPM 2020
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(reverse FM-index) is available, Z symbols are subject to backwards traversal (as backwards
on
←−
T means left-to-right movement on the Figure 3). When the summation of “SA call

on forward FM-index” and the “SUS extraction cost” is smaller than the SA access on the
reverse FM-index (cost(X) + cost(Y ) < cost(Z)), such interesting cases may occur.

Figure 3 Sketching the number of backwards traversal steps with Algorithm 1 (X + Y ) versus
FM-index of

←−
T (Z). Dark circles represent the sampled positions in both directions.

5 Conclusion

We have presented two algorithms to compute the
←−
SA[i] and

←−
ISA[i] values by using the

FM-index of the forward text T . Experiencing slowdown in such space preserving approaches
is expected, and hence, we conducted experiments to observe this effect in practice. The
benchmark results stated in Table 2 reveals that the

←−
SA and

←−
ISA calculations are respectively 2-

3 times and 3-4 times slower on the average when compared to a regular FM-index constructed
over

←−
T with suffix-ordered sampling strategy. Particularly on biological sequences, such as

the dna and protein files, the ratios even improve better supporting their usage in practice.
Although the execution time of the introduced algorithms increase on sections of long repeats
of the input data (as the SUS extraction is the key of the proposed methods), the methods
respond quite fast in most cases as shown in Table 3 since the majority of the SUS lengths
are centric around shorter lengths. Another interesting application of the proposed methods
might be in fully-parallel constructing the BWT of the reverse text from the forward BWT,
which has been mentioned in the previous study of Ohlebusch et al. [28] with a solution
by computing

←−−−
BWT[k] under assumption that

←−−−
BWT[1],

←−−−
BWT[2], . . . ,

←−−−
BWT[k − 1] are already

available, and k iterates from 1 to n. They observed that some positions are independent
of the previous ones, which provide an opportunity in parallelizing the execution. However,
the level of parallelization here is bounded by the number of such independent start points.
Contrary to that, our solution in computing

←−
SA[i] does not introduce any prerequisites for

any i, and thus, is fully parallelizable that is scalable up to n processors.
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Abstract
Given two indeterminate equal-length strings p and t with a set of characters per position in both
strings, we obtain a determinate string pw from p and a determinate string tw from t by choosing
one character per position. Then, we say that p and t match when pw and tw match for some choice
of the characters. While the most standard notion of a match for determinate strings is that they
are simply identical, in certain applications it is more appropriate to use other definitions, with
the prime examples being parameterized matching, order-preserving matching, and the recently
introduced Cartesian tree matching. We provide a systematic study of the complexity of string
matching for indeterminate equal-length strings, for different notions of matching. We use n to
denote the length of both strings, and r to be an upper-bound on the number of uncertain characters
per position. First, we provide the first polynomial time algorithm for the Cartesian tree version
that runs in deterministic O(n log2 n) and expected O(n log n log log n) time using O(n log n) space,
for constant r. Second, we establish NP-hardness of the order-preserving version for r = 2, thus
solving a question explicitly stated by Henriques et al. [CPM 2018], who showed hardness for r = 3.
Third, we establish NP-hardness of the parameterized version for r = 2. As both parameterized and
order-preserving indeterminate matching reduce to the standard determinate matching for r = 1,
this provides a complete classification for these three variants.
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1 Introduction

String matching, in the sense of comparing two equal-length strings, is one of the fundamental
problems in computer science with multiple practical applications. While exact matching is
trivial to solve in optimal linear time by comparing the strings character-by-character, for
many of the applications it seems more appropriate to work with some kind of approximate
matching. Prime examples include string matching with swaps [2], parameterized string
matching [6], string matching with gaps [9], jumbled string matching [10], string matching
with don’t cares [29], and edit distance [32]. In all of such problems, one needs to first
precisely define when do two strings match.

Parameterized matching is a classical notion motivated by finding identical sections of
code [3, 4, 5, 6, 19, 34]. Formally, two strings p and t of length n are a parameterized match
when for every i, j ∈ {1, . . . , n}, p[i] = p[j] iff t[i] = t[j]. This is denoted by p ∼= t.
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Order-preserving matching is a more recent but already well-studied notion motivated by
stock price analysis and musical melody matching [11, 16, 17, 25, 26]. Formally, two strings
p and t of length n are a order-preserving match when for every i, j ∈ {1, . . . , n}, p[i] ≤ p[j]
iff t[i] ≤ t[j]. This is denoted by p ∼≤ t.

Very recently, a different notion called Cartesian tree matching has been proposed [28].
The Cartesian tree of a given string p (CT (p)), first defined in [31], is constructed according
to the following rules:

If p is an empty string, CT (p) is an empty tree.
If p[1...n] is not empty and p[i] is the leftmost minimum value in p, CT (p) is the tree
with p[i] being the root, CT (p[1...i− 1]) the left subtree, and CT (p[i+ 1...n]) the right
subtree.

Even though the most well-known applications of Cartesian trees are probably in designing
space-efficient structures for finding the minimum in a range, they can be also used to compare
strings. Similarly to order-preserving matching, this notion is motivated by applications
concerned with time-series data such as stock price analysis, and has gained considerable
attention during the last year [7, 18, 30]. Formally, two strings p and t of equal length n
are a Cartesian tree match when their Cartesian trees CT (p) and CT (t) are identical, i.e.
CT (P ) and CT (t) have the same shape while the labels on the nodes may differ. This is
denoted by p ∼C t.

We consider the complexity of string matching for indeterminate strings defined as follows.

I Definition 1. An indeterminate string is a sequence of sets of characters p[1]p[2]...p[n],
where p[i] ⊆ N. Each position is specified by writing p[i] = a1|...|ar, such that a` ∈ N, which
means that we can choose p[i] to be any a`.

Indeterminate strings were studied earlier, among others, covering problems for indeterm-
inate strings [1, 14] and indeterminate strings in graph theory [20, 12, 27]. Indeterminate
string matching was investigated lately from different angles [8, 13, 15, 23, 22, 24]. It
provides a convenient formalism for compactly capturing situations in which there are some
uncertainties concerning characters at some positions. Indeed, an indeterminate string p of
length n describes rn determinate strings. We write p̃ to denote the set of all such strings,
and pw when referring to a single determinate string described by p.

First, we consider the complexity of Cartesian tree matching for indeterminate strings
defined as follows.

Problem: Cartesian Tree Matching of Indeterminate Strings (CTMIS)
Input: Two indeterminate strings p and t of length n with up to r of uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw Cartesian tree
matches tw?

A naive solution to the CTMIS would be to apply the solution of [28] to each tw ∈ t̃ and
pw ∈ p̃ in O(n2rn) time. In Section 2 we provide the first polynomial algorithm for this
problem that works in O(n log2 n) time and O(n logn) space, assuming that r is constant.
Additionally, in the Word RAM model of computation we further improve the time complexity
to expected O(n logn log logn).
I Example 2. Consider the following indeterminate strings:

p = (2|4|7, 2|5|6, 1|4|8, 4|7|8, 3|10|16)
t = (2|7|10, 5|20|31, 10|17|25, 0|9|11, 1|8|18).
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Figure 1 The Cartesian trees of pw = (7, 2, 8, 4, 16) and tw = (10, 5, 17, 9, 18).

pw = (7, 2, 8, 4, 16) and tw = (10, 5, 17, 9, 18) define the same Cartesian tree, see Figure 1.
Therefore, we say that p ∼C t. Note that p and t define other matching or non-matching
Cartesian trees.

Second, we consider the complexity of order-preserving matching for indeterminate strings
defined as follows.

Problem: Order-Preserving Matching of Indeterminate Strings (OPMIS)
Input: Two indeterminate strings p and t of length n with up to r uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw order-preserving
matches tw?

Henriques et al. [21] proved that OPMIS is NP-hard for r = 3. As for r = 1 there is a simple
linear-time algorithm, this left r = 2 as the only open case (CPM version of the paper [21]
claims a polynomial time algorithm for this case, but this has been clarified in the arXiv
version [13]). In Section 4 we provide a different reduction that establishes NP-hardness of
OPMIS already for r = 2, thus fully resolving the complexity of this problem and answering
an open question explicitly stated by Costa et al [13]. In contrast with the previous work,
our reduction exploits the order between elements instead of just their equality, and is more
involved.

Third, we consider the complexity of parameterized matching for indeterminate strings
defined as follows.

Problem: Parameterized Matching of Indeterminate Strings (PMIS)
Input: Two indeterminate strings p and t of length n with up to r uncertain characters
per position.
Output: Are there determinate strings pw ∈ p̃ and tw ∈ t̃ such that pw parameterized
matches tw?

NP-hardness proof by Henriques et al. [21] implicitly shows hardness of PMIS for r = 3.
This, again, leaves r = 2 as the only open case. In Section 5 we provide a reduction that
establishes NP-hardness of PMIS for r = 2.

2 CTMIS in O(n3) Time and O(n2) Space

In this section, we describe a warm-up solution for the CTMIS problem. The input is two
equal-length indeterminate strings p and t with two uncertain characters per position, and
the output is whether p ∼C t or not. The solution can be generalized to any constant value
of r in a straightforward manner. We will assume that both p and t consists of distinct
values, which can be always ensured by an appropriate perturbation.
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First, note that for each index i, we have p[i] = ai|a′i and t[i] = bi|b′i, hence each i

defines a set consisting 4 pairs {(ai, bi), (ai, b
′
i), (a′i, bi), (a′i, b′i)} (called thresholds) denoted

by Thresholds(i). The main idea of the algorithm is to determine for each index i and a
threshold (xi, yi) ∈ Thresholds(i):
1. for which indices k we have p[k, i] ∼C t[k, i] with the roots xi and yi, respectively.
2. for which indices j we have p[i, j] ∼C t[i, j] with the roots xi and yi, respectively.
Consider an interval [k, i], the reasoning for an interval [i, j] is similar. We have p[k, i]∼C t[k, i]
with the roots xi and yi iff there exists an index ` and a threshold (x`, y`) ∈ Thresholds(`)
where k ≤ ` ≤ i−1, xi < x` and yi < y` such that p[k, `] ∼C t[k, `] and p[`, i−1] ∼C t[`, i−1].

We process all possible intervals [k, i] and [i, j] in an increasing order of their lengths
using dynamic programming. For each index i and a threshold (xi, yi) ∈ Thresholds(i) we
compute the answer for all left intervals [k, i− 1] and all right intervals [i+ 1, j], see Figure 2.
We define two types of states and associate a boolean value with each of them as follows:
Left states Lk,i(xi, yi) = true iff p[k, i] ∼C t[k, i] with the roots xi and yi, respectively.
Right states Ri,j(xi, yi) = true iff p[i, j] ∼C t[i, j] with the roots xi and yi, respectively.

 
  

𝑝 =  (𝑎1|𝑎
′
1, … , 𝑎𝑘|𝑎

′
𝑘, … , 𝑎𝑖−1|𝑎

′
𝑖−1, 𝑎𝑖|𝑎

′
𝑖 , 𝑎𝑖+1|𝑎

′
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′
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′
𝑛) 
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′
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′
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′
𝑖−1, 𝑏𝑖|𝑏

′
𝑖 , 𝑏𝑖+1|𝑏

′
𝑖+1, … , 𝑏𝑗|𝑏
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𝑗 , … , 𝑏𝑛|𝑏

′
𝑛) 

  

right Cartesian subtree 

left Cartesian subtree 𝐶𝑇(𝑡[𝑖 + 1, 𝑗]) 

𝐶𝑇(𝑝[𝑖 + 1, 𝑗]) 

𝐶𝑇(𝑡[𝑘, 𝑖 − 1]) 

𝐶𝑇(𝑝[𝑘, 𝑖 − 1]) left Cartesian subtree 

right Cartesian subtree 

Figure 2 An interval [k, j] of the strings p and t with the root at index i, defining left and right
Cartesian subtrees.

I Example 3. Let p = (4|7, 2|6, 1|8, 3|20, 10|16) and t = (2|10, 20|31, 10|17, 0|11, 8|18). Con-
sidering index 3 as a possible root for the Cartesian tree in both strings, the thresholds defined
by index 3 are (x3, y3) ∈ {(1, 10), (8, 10), (1, 17), (8, 17)}. The right states are R3,4(x3, y3) and
R3,5(x3, y3). The left states are L2,3(x3, y3) and L1,3(x3, y3). Some of their corresponding
boolean values are as follows:
1. R3,4(1, 10) = true for p[3, 4] = (1, 3) and t[3, 4] = (10, 11).
2. R3,4(8, 10) = true for p[3, 4] = (8, 20) and t[3, 4] = (10, 11).
3. L2,3(1, 10) = true for p[2, 3] = (6, 1) and t[2, 3] = (31, 10).
4. L1,3(1, 10) = true for p[1, 3] = (4, 6, 1) and t[2, 3] = (2, 31, 10).

From the definition of a Cartesian tree we directly obtain the following proposition
illustrated in Figure 3.

I Proposition 4.
(a) Ri,j(xi, yi) = true iff ∃` ∈ [i+ 1, j] such that R`,j(x`, y`) = true and Li+1,`(x`, y`) =

true where x` > xi and y` > yi.
(b) Lk,i(xi, yi) = true iff ∃`′ ∈ [k, i− 1] such that R`′,i−1(x`′ ,y`′) = true and Lk,`′(x`′ , y`′) =

true where x`′ > xi and y`′ > yi.
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xi

x`

CT (p[`+ 1, j])CT (p[i+ 1, `+ 1])

x`′

CT (p[`′ + 1, i− 1])CT (p[k, `′ − 1])

Figure 3 The Cartesian tree CT (p[k, j]) with the root at index i. Note that, the Cartesian tree
CT (t[k, j]) is identical to the Cartesian tree above with the proper values yi, y`′ and y` on the
nodes, and with the proper subtrees CT (t[k, `′ − 1]), CT (t[`′ + 1, i − 1]), CT (t[i + 1, ` + 1]) and
CT (t[` + 1, j]). Moreover, in both Cartesian trees, the left Cartesian subtrees correspond to the left
state Lk,i(xi, yi), while the right Cartesian subtrees correspond to the right state Ri,j(xi, yi).

Recall that we apply dynamic programming in an increasing order of the lengths of
the intervals. Therefore, the states R`,j(x`, y`) and Li+1,`(x`, y`) from Proposition 4(a) are
computed before the state Ri,j(xi, yi). Similarly, the states R`′,i−1(x`′ , y`′) and Lk,`′(x`′ , y`′)
are computed before the state Lk,i(xi, yi). Therefore, for every interval we can simply consider
all relevant ` and `′, access their corresponding states, and update the answer. Finally, after
having processed all the intervals, we conclude that p ∼C t iff there exists an index i and a
threshold (xi, yi) ∈ Thresholds(i) such that L1,i(xi, yi) = true and Ri,n(xi, yi) = true.

I Example 5. Let p = (4|7, 2|6, 1|8, 3|20, 10|16) and t = (2|10, 20|31, 10|17, 0|11, 8|18) as
in the previous example above. We have L1,3(1, 10) = true for p[1, 3] = (4, 6, 1) and
t[2, 3] = (2, 31, 10), and R3,5(1, 10) = true for p[3, 5] = (1, 3, 16) and t[3, 5] = (10, 11, 18).
Hence, p ∼C t with the roots 1 and 10 respectively.

Time complexity. For each state Lk,i(xi, yi) and Ri,j(xi, yi) we consider O(n) relevant
indices ` and `′, respectively. Each such index is processed in constant time, thus the overall
time complexity is O(n3). The space complexity is bounded by the number of states processed
in the dynamic programming, which is O(n2).

3 CTMIS in O(n log2 n) Time and O(n log n) Space

In this section we present an efficient solution for the CTMIS problem that builds on the
slower algorithm presented in the previous section.

The input is two equal-length indeterminate strings p and t with 2 uncertain characters
per position, and the output is whether p ∼C t, or not. The solution can be generalized
to any constant value of r in a straightforward manner. The main idea of the algorithm
is to find, for each index i and a threshold (xi, yi) ∈ Thresholds(i), the largest matching
Cartesian trees with the root in both trees being xi and yi at index i, respectively. As in
the previous algorithm, we consider each index i and a threshold (xi, yi) ∈ Thresholds(i)
separately. However, now instead of computing the answer for all intervals [k, i] and [i, j] we
use the following definition.

I Definition 6. For an index i and a threshold (xi, yi) ∈ Thresholds(i):
minL(i,xi,yi) denotes the smallest index such that p[minL(i,xi,yi), i] ∼C t[minL(i,xi,yi), i],
maxR(i,xi,yi) denotes the largest index such that p[i,maxR(i,xi,yi)] ∼C t[i,maxR(i,xi,yi)],

with the root in both trees being xi and yi at index i, respectively.
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(I)

xi

CT (p[i+ 1,maxR(i, xi, yi)])CT (p[minL(i, xi, yi), i− 1])
(II)

ah

xi

CT (p[i+ 1,maxR(i, xi, yi)])CT (p[h+ 1, i− 1])

CT (p[minL(i, xi, yi), h− 1])

Figure 4 Consider the strings:

p = (a1|a′
1, ..., aminL(i,xi,yi)|a

′
minL(i,xi,yi), ..., ah|a′

h, ..., ai|a′
i, ..., amaxR(i,xi,yi)|a

′
maxR(i,xi,yi), ..., an|a′

n)
t = (b1|b′

1, ..., bminL(i,xi,yi)|b
′
minL(i,xi,yi), ..., bh|b′

h, ..., bi|b′
i, ..., bmaxR(i,xi,yi)|b

′
maxR(i,xi,yi), ..., bn|b′

n)

assuming ah < xi < a′
h, the figure illustrates (I) the Cartesian tree of the substring

p[minL(i, xi, yi), maxR(i, xi, yi)] with xi as a root when choosing a′
h at index h, and (II) the Cartesian

tree of the substring p[minL(i, xi, yi), maxR(i, xi, yi)] with ah as the root after changing a′
h to ah at

index h. Note that, assuming bh < yi < b′
h, the Cartesian trees of t[minL(i, xi, yi), maxR(i, xi, yi)]

are identical to the Cartesian trees in (I) and (II) above with the proper roots and the proper
Cartesian subtrees.

Computing minL(i, xi, yi) and maxR(i, xi, yi) fully describes the situation, as the above
definition together with the definition of a Cartesian tree matching directly imply the
following:

p[`, i] ∼C t[`, i] iff minL(i, xi, yi) ≤ ` ≤ i.
p[i, r] ∼C t[i, r] iff i ≤ r ≤ maxR(i, xi, yi).

We also note that p[minL(i, xi, yi),maxR(i, xi, yi)] ∼C t[minL(i, xi, yi),maxR(i, xi, yi)] due
to a Cartesian tree with the root in both trees being xi and yi at index i, respectively.
Consequently, p ∼C t iff there exists an index i and a threshold (xi, yi) ∈ Thresholds(i)
such that minL(i, xi, yi) = 1 and maxR(i, xi, yi) = n. Thus, in the remaining part of this
section we focus on efficiently computing the values of minL and maxR.

Our algorithm is based on the following observation. Consider an index i and a threshold
(xi, yi) ∈ Thresholds(i), and assume that minL(i, xi, yi) and maxR(i, xi, yi) have been
already computed. Then, the following holds:
1. for any index h ∈ [minL(i, xi, yi) − 1,maxR(i, xi, yi)] and a threshold (xh, yh) ∈

Thresholds(h) such that xh < xi and yh < yi, the index maxR(i, xi, yi) is a potential
candidate for maxR(h, xh, yh).

2. for any index h ∈ [minL(i, xi, yi),maxR(i, xi, yi) + 1] and a threshold (xh, yh) ∈
Thresholds(h) such that xh < xi and yh < yi, the index minL(i, xi, yi) is a potential
candidate for minL(h, xh, yh).

Each index h and a threshold (xh, yh) ∈ Thresholds(h) might be considered for several
indices i and thresholds (xi, yi) ∈ Thresholds(i) in the above statement, hence we might
have several potential candidates for minL(h, xh, yh) and maxR(h, xh, yh). By the definition
of a Cartesian tree, one of these potential candidates corresponds to the sought minL(h, xh, yh)
and maxR(h, xh, yh) as defined above if they are not equal to h. See Figure 4.
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The high-level description of the algorithm is as follows. Please see Algorithm 1 for
the pseudocode. We iterate over all indices i and thresholds (xi, yi) ∈ Thresholds(i)
in a specific order that will be precisely defined later. For each index i and a threshold
(xi, yi) ∈ Thresholds(i) we aim to:
Step 1 Compute efficiently the indices minL(i, xi, yi) and maxR(i, xi, yi) (See Definition 6

above).
Step 2 Add for all indices h ∈ [minL(i, xi, yi)− 1,maxR(i, xi, yi)] and a threshold (xh, yh) ∈

Thresholds(h) such that xh < xi and yh < yi, the index maxR(i, xi, yi) as a potential
candidate maxR(h, xh, yh). Add for all indices h ∈ [minL(i, xi, yi),maxR(i, xi, yi) + 1]
and a threshold (xh, yh) ∈ Thresholds(h) such that xh < xi and yh < yi, the index
minL(i, xi, yi) as a potential candidate minL(h, xh, yh).

We need to ensure that, for any index i and a threshold (xi, yi) ∈ Thresholds(i), and
any index h and a threshold (xh, yh) ∈ Thresholds(h) such that xh < xi and yh < yi,
minL(i, xi, yi) and maxR(i, xi, yi) are already computed when we are considering threshold
(xh, yh) ∈ Thresholds(h). This will be guaranteed by the algorithm as explained below.

The algorithm considers all indices i and thresholds (xi, yi) ∈ Thresholds(i) in the
reverse lexicographical order, that is, the decreasing order of xi and, if there is a tie, the
decreasing order of yi. Before we explain how to implement Step 1 and Step 2 efficiently,
we define the necessary data structures. We maintain a balanced binary search tree Ty on
the values of yi, and identify yi with its corresponding node of Ty. In each node u of Ty we
have its associated secondary trees Tmin(u) and Tmax(u). Each Tmin(u) and Tmax(u) stores a
collection of intervals [`, r]. The update adds a new interval [`, r] to the collection. The query
in Tmin(u) for i finds the smallest ` such that [`, r] containing i belongs to the collection,
while the query in Tmax(u) finds the largest r. By symmetry, it is enough to explain how to
implement Tmin(u). We maintain the following invariant: there are no two intervals [`, r]
and [`′, r′] such that [`, r] ⊆ [`′, r′]. Clearly, such [`, r] is not an answer to any query. Note
that this implies that if we sort all the remaining intervals [`1, r1], [`2, r2], . . . , [`s, rs] so that
`1 < `2 < . . . < `s then we also have r1 < r2 < . . . < rs. This gives us a linear order on the
intervals, and so we can maintain them in any balanced binary search tree. After adding the
new interval [`, r] to the collection, we can check if it is not contained in any of the already
existing intervals, and if so find the already existing intervals that should be removed, with
standard operations on the balanced binary search tree.

Now we explain how to implement Step 1 and Step 2 efficiently using Ty and the
secondary structures associated with its nodes. Let i and (xi, yi) ∈ Thresholds(i) be the
index and the threshold we are currently considering. We begin our discussion with Step
2 and therefore assume that we already computed minL(i, xi, yi) and maxR(i, xi, yi) for
this threshold. Note that all thresholds (xh, yh) ∈ Thresholds(h) such that xi < xh and
yi < yh have been already processed. Moreover, all thresholds (xc, yc) ∈ Thresholds(c)
such that xi < xc have been already processed and will not be considered in the future, so
we don’t need to be concerned with updating their answer. Hence, in Step 2 we update all
thresholds (xh, yh) ∈ Thresholds(h) such that yh < yi, regardless of the value of xh. To
this end, we consider every ancestor yh of yi such that yh < yi, plus the node yi itself, and
add the interval [minL(i, xi, yi)− 1,maxR(i, xi, yi)] or [minL(i, xi, yi),maxR(i, xi, yi) + 1] to
their corresponding Tmax and Tmin, respectively. To implement Step 1, we consider every
ancestor yc of yi such that yc > yi, plus the node yi itself, and we query their corresponding
Tmin and Tmax. It can be readily verified that by the choice of which ancestors are updated,
this is enough to implicitly consider every yh > yi, as such yh must have updated one of the
ancestors yc.
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Algorithm 1 CTMIS in O(n log2 n) time and O(n log n) space.

Data: indeterminate length-n strings p and t with 2 uncertain characters per
position.

Output: Does p ∼C t hold?
1 Thresholds← {(xi, yi) |xi ∈ p[i] and yi ∈ t[i] for some i = 1, 2, . . . , n}
2 Build a balanced binary search tree Ty on the values of yi

3 foreach node u ∈ Ty do
4 Create secondary balanced search trees Tmin(u) and Tmax(u) of intervals [`, r]

. Tmin(u) is ordered by ` while Tmax(u) is ordered by r

5 foreach (xi, yi) ∈ Thresholds by decreasing order of xi do
6 Let u ∈ Ty be the node satisfying Value(u) = yi

. Value(u) returns the corresponding yi of a node u ∈ Ty.
7 minL(i, xi, yi)← i

8 maxR(i, xi, yi)← i

. Step 1: Query the potential candidates structures.
9 foreach v an ancestor of u in Ty do . including u itself

10 if Value(v) > yi then
11 if min{` | [`, r] ∈ Tmin(v) and i ∈ [`, r]} < minL(i, xi, yi) then
12 minL(i, xi, yi)← min{` | [`, r] ∈ Tmin(v) and i ∈ [`, r]}
13 if max{r | [`, r] ∈ Tmax(v) and i ∈ [`, r]} > maxR(i, xi, yi) then
14 maxR(i, xi, yi)← max{r | [`, r] ∈ Tmax(v) and i ∈ [`, r]}

15 if minL(i, xi, yi) = 1 and maxR(i, xi, yi) = n then
16 return true

. Step 2: Update the potential candidates structures.
17 foreach v an ancestor of u in Ty do . including u itself
18 if Value(v) < yi then
19 if [minL(i, xi, yi),maxR(i, xi, yi) + 1] * [`, r] for all [`, r] ∈ Tmin(v) then
20 Add [minL(i, xi, yi),maxR(i, xi, yi) + 1] to Tmin(v)
21 Remove from Tmin(v) every [`′, r′] ⊆ [minL(i, xi, yi),maxR(i, xi, yi) + 1]
22 if [minL(i, xi, yi)− 1,maxR(i, xi, yi)] * [`, r] for all [`, r] ∈ Tmax(v) then
23 Add [minL(i, xi, yi)− 1,maxR(i, xi, yi)] to Tmax(v)
24 Remove from Tmax(v) every

[`′, r′] ⊆ [minL(i, xi, yi)− 1,maxR(i, xi, yi)]

25 return false

Time complexity. The time complexity of the algorithm is O(n log2 n). First, we need to
sort the 4n thresholds in O(n logn) time. Each of these thresholds is processed by considering
O(logn) nodes of Ty. At each of these nodes u we spend O(logn) amortized time to update
and query Tmin(u) and Tmax(u). Furthermore, the space complexity is O(n logn), because
each interval appears in O(logn) secondary structures. Instead of using balanced binary
search trees with O(logn) query and update time for the secondary structures, we can plug
in any predecessor structure that stores a collection of s integers from {1, 2, . . . , n} in O(s)
space with expected O(log logn) query and update time [33].
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4 Order-Preserving Matching of Indeterminate Strings

Given two indeterminate strings p and t of equal-length n with at most 2 uncertain characters
per position, we want to check if there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼≤ tw. The
goal of this section is to prove that this is NP-hard by reducing checking satisfiability of a
3-CNF formula.

We start with rephrasing the question in a graph-theoretical language. Let Σp and Σt be
the sets of characters that occur in p and t, respectively. We consider a complete undirected
bipartite graph G with Σp corresponding to the nodes on the one side and Σt corresponding
to the nodes on the other side. We claim that there exist pw ∈ p̃ and tw ∈ t̃ such that
pw ∼≤ tw iff there exists a non-crossing matching M in G, where non-crossing means that
we cannot have two edges (x, y), (x′, y′) such that x < x′ but y′ < y, such that the following
holds for every position i = 1, 2, . . . , n:
p[i] = x and t[i] = y : (x, y) ∈M ,
p[i] = x1|x2 and t[i] = y : (x1, y) ∈M or (x2, y) ∈M
p[i] = x and t[i] = y1|y2 : (x, y1) ∈M or (x, y2) ∈M ,
p[i] = x1|x2 and t[i] = y1|y2 : (x1, y1) ∈ M or (x1, y2) ∈ M or (x2, y1) ∈ M or

(x2, y2) ∈M .
The proof is straightforward.

We consider a 3-CNF formula φ on n variables 1, 2, . . . , n and m clauses. We reduce
checking satisfiability of φ to finding a non-crossing matching M with some additional
constraints in a complete undirected bipartite graph G. Each constraint is of the form
M ∩X × Y 6= ∅, for some subsets of the nodes X and Y such that |X|, |Y | ≤ 2, or X × Y
for short. As long as the size of G and the number of constraints is polynomial, this will
establish NP-hardness of our problem, as we can create two strings p and t and encode each
constraint by setting up some p[i] and t[i] appropriately.

We start with creating nodes 1, 2, . . . , n on the left side and 1, 2, 3, 4, . . . , 2n on the right
side of G. We add a constraint {i}×{2i−1, 2i}, for every i = 1, 2, . . . , n. We add a constraint
{2n+ 1}×{2n+ 1}. For every k = 1, 2, . . . ,m, we consider the k-th clause (`k,1 ∨ `k,2 ∨ `k,3),
where `k,1, `k,2, `k,3 are literals. Let s = 2n+ 2 + 5(k − 1). We add the following constraints:
{s} × {s, s + 1}, {s + 2, s + 3} × {s + 3}, {s, s + 2} × {s + 1, s + 3}. This is illustrated in
Figure 5. Then we add a constraint for every literal:
1. If `k,1 = x then we add {x, s}×{2x, s}, and if `k,1 = ¬x then we add {x, s}×{2x− 1, s}.
2. If `k,2 = y then we add {y, s+ 1}× {2y, s+ 2}, and if `k,2 = ¬y then we add {x, s+ 1}×
{2y − 1, s+ 2}.

3. If `k,3 = z then we add {z, s+ 3} × {2z, s+ 3}, and if `k,3 = ¬z then we add {z, s+ 3} ×
{2z − 1, s+ 3}.

Due to the constraint {2n+ 1}×{2n+ 1}, a variable constraint {v, a}×{2v− 1, b} translates
into (v, 2v − 1) ∈M or (a, b) ∈M . Similarly, {v, a} × {2v, b} translates into (v, 2v) ∈M or
(a, b) ∈M .

We need to prove that φ is satisfiable iff there exists a non-crossing matching M in G
that respects all the constraints.

First, assume that φ is satisfiable and fix a satisfying valuation of all the variables. We
obtain M by first adding (v, 2v − 1) or (v, 2v) to M depending on whether v is set to false
or true, respectively. We also add (2n+ 1, 2n+ 1) to M . Then, we proceed as follows for
the k-th clause. For concreteness assume that the clause is (x ∨ y ∨ z), the argument is
symmetric for the other cases. If x is set to false then we add (s, s) to M . If y is set to false
then we add (s+ 1, s+ 2) to M . Finally, if z is set to false then we add (s+ 3, s+ 3) to M .
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Because at least one of x, y, z is set to true, at least one of these three edges is not in M . If
(s+ 1, s+ 2) /∈M then we add (s+ 2, s+ 1) to M . If (s, s) /∈M then we add (s, s+ 1) to M .
Finally, if (s+ 3, s+ 3) /∈M then we add (s+ 2, s+ 3) to M . In all cases, the constraints
corresponding to the k-clause are fulfilled. Due to how we compose the gadgets, M being
a non-crossing matching in every gadget implies that M is a non-crossing matching in the
whole G.

Second, assume that we have a non-crossing matching M in G. For every v = 1, 2, . . . , n,
M contains exactly one of the edges (v, 2v − 1), (v, 2v). We set v to false if (v, 2v − 1) ∈M
and to true if (v, 2v) ∈M . We must have (2n+ 1, 2n+ 1) ∈M . We need to verify that every
clause is satisfied by the obtain valuation of the variables. Again, for concreteness assume
that the clause is (x ∨ y ∨ z). We cannot have all edges (s, s), (s+ 1, s+ 2), (s+ 3, s+ 3) in
M , as in such case the constraint {s, s+ 2} × {s+ 1, s+ 3} cannot be fulfilled. If (s, s) /∈M
then due to the constraint {x, s} × {2x, s} we must have (x, 2x) ∈ M , so x is set to true.
If (s + 1, s + 2) /∈ M then due to the constraint {y, s + 1} × {2y, s + 2} we must have
(y, 2y) ∈ M , so y is set to true. Finally, if (s + 3, s + 3) /∈ M then due to the constraint
{z, s+ 3} × {2z, s+ 3} we must have (z, 2z) ∈M , so y is set to true. So, one of the variable
x, y, z is set to true, making the clause satisfied.

x y z

2x− 1 2x 2y − 1 2y 2z − 1 2z

2n+ 1

2n+ 1

s s+ 1 s+ 2 s+ 3

s s+ 1 s+ 2 s+ 3

Figure 5 Gadget created for the k-th clause concerning variables x, y, z.

5 Parameterized Matching of Indeterminate Strings

Given two indeterminate strings p and t of equal-length n with at most 2 uncertain characters
per position, we want to check if there exist pw ∈ p̃ and tw ∈ t̃ such that pw ∼= tw. The goal
of this section is to prove that this is NP-hard by reducing checking if a given undirected
graph has a vertex cover consisting of at most k vertices.

As in the previous section, we start with rephrasing the question in a graph-theoretical
language. Let Σp and Σt be the sets of characters that occur in p and t, respectively. We
consider a complete undirected bipartite graph G with Σp corresponding to the nodes on
the one side and Σt corresponding to the nodes on the other side. We claim that there exist
pw ∈ p̃ and tw ∈ t̃ such that pw ∼= tw iff there exists a matching M in G, such that the
following holds for every position i = 1, 2, . . . , n:
p[i] = x and t[i] = y : (x, y) ∈M ,
p[i] = x1|x2 and t[i] = y : (x1, y) ∈M or (x2, y) ∈M
p[i] = x and t[i] = y1|y2 : (x, y1) ∈M or (x, y2) ∈M ,
p[i] = x1|x2 and t[i] = y1|y2 : (x1, y1) ∈ M or (x1, y2) ∈ M or (x2, y1) ∈ M or

(x2, y2) ∈M .
The proof is straightforward.

We consider an undirected graph H on n vertices V = {1, 2, . . . , n} and m edges E
together with a parameter k ≤ n. We reduce checking if there is a subset S of k vertices
of H such that for every edge (u, v) ∈ E we have u ∈ S or v ∈ S to finding a matching M
in a complete undirected bipartite graph G that respects a number of constraints of the
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form M ∩X × Y 6= ∅, for |X|, |Y | ≤ 2, or X × Y for short. As long as the size of G and the
number of constraints is polynomial, this will establish NP-hardness of our problem, as we
can create two strings p and t and encode each constraint by setting up some p[i] and t[i]
appropriately.

We start with creating nodes 1, 2, . . . , n on the left side and 1, 2, . . . , n on the right side
of G. We add a constraint {u, v} × {u, v} for every (u, v) ∈ E. For every i = 1, 2, . . . , n,
(i, j) ∈ M for some j ∈ {1, 2, . . . , n} corresponds to including i in the sought vertex cover.
The remaining part of H is constructed as to guarantee that there are at least k nodes
i ∈ {1, 2, . . . , n} such that (i, j) ∈ M for some j 6= {1, 2, . . . , n}. To this end, we design a
gadget G2s with the following property:
1. there are distinguished 2s nodes v1, v2, . . . , v2s on the left side, each vi is incident to a

unique edge ei,
2. there are also some additional internal nodes on the left and on the right and some

constraints that concern both the internal and the distinguished nodes,
3. if none of the edges ei belongs to M then it is not possible to satisfy the constraints of

G2s,
4. for any nonempty subset S of distinguished nodes, it is possible to select some of the

edges with both endpoints being internal nodes in such a way that, together with the
edges ei for i ∈ S, they satisfy all constraints of G2s.

We will first show that G4 exists, and then explain how to obtain G2(s+1) from G2s.

I Lemma 7. G4 with the sought properties exists.

Proof. G4 consists of nodes v1, v2, v3, v4 and internal nodes v′1, v′2, v′3, v′4 and x, y, z. We
set ei = (vi, v

′
i) for i = 1, 2, 3, 4 and create the following constraints: {v1, x} × {v′1, y},

{v2, x} × {v′2, y}, {v3, z} × {v′3, y}, {v4, z} × {v′4, y} and {y} × {x, z}. See Figure 6.
Assume that none of the edges ei belongs to M . By symmetry, we can assume that

(x, y) ∈M . But then we must have (v′3, z), (v′4, z) ∈M , which is impossible.
Let S be a nonempty set of distinguished nodes. By symmetry, we can assume that

v1 ∈ S. Then, we include (y, z) ∈M and if e2 /∈ S we also include (v′2, x) ∈M . J

I Lemma 8. G2(s+1) with the sought properties can be obtained in polynomial time from
G2s with the sought properties.

Proof. We take a copy of G2s, let its distinguished nodes and their corresponding edges
be v1, v2, . . . , v2s and e1, e2, . . . , e2s. We also take a copy of G4, let its distinguished nodes
and their corresponding edges be u1, u2, u3, u4 and f1, f2, f3, f4. To obtain G2(s+1) we
identify v2s with u1 and add a constraint that enforces including e2s or f1. in M . The
distinguished nodes and their corresponding edges of G2(s+1) are v1, v2, . . . , v2s−1, u2, u3, u4
and e1, e2, . . . , e2s−1, f2, f3, f4.

Assume that none of the edges e1, e2, . . . , e2s−1, f2, f3, f4 belongs to M . Either e2s /∈M
and we obtain that none of the edges e1, e2, . . . , e2s belongs to M , or f1 /∈M and none of the
edges f1, f2, f3, f4 belongs to M . In either case we obtain a contradiction by the construction
of G2s or G4.

Let S be a nonempty set of distinguished nodes and assume that v1 ∈ S (other cases are
essentially the same). We set S′ = S ∩ {v1, v2, . . . , v2s−1} and S′′ = (S ∩ {u2, u3, u4})∪ {u1}.
Then S′, S′′ 6= ∅, and by assumption we can select some of the edges with both endpoints
being internal nodes of G2s or G4 in such a way that, together with the edges ei for i ∈ S′
and fj for j ∈ S′′, they satisfy all constraints of G2s and G4. Additionally, the constraint
that enforces including e2s or f1 is satisfied by taking f1. So, by selecting the edges with
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both endpoints being internal nodes of G2s or G4 together with f1 we obtain a set of edges
with both endpoints being internal nodes of G2(s+1) that, together with the edges associated
with the nodes in S, satisfy all constraints of G2(s+1) as required. J

v1 v2

v3 v4

e1 e2

e3 e4

v′1

v′3 v′4

v′2

x

y

z

v1

v3 v4

e1

e3 e4

v2

v5 v6

e2

e5 e6

Figure 6 Gadgets G4 (left) and G8 (right).

With the gadget G2s in hand, we are ready to complete the reduction. By duplicating
the graph H we can assume that n = 2s. We add n− k copies of the gadget G2s to G. Let
v1, v2, . . . , v2s be the distinguished nodes of one such copy. We identify vi with the node i
on the left side of G. This guarantees that for each gadget we must have a unique node i
such that (i, 1), (i, 2), . . . , (i, n) /∈M . We claim that the resulting graph G has a matching
that satisfies all the constrains if and only if H admits a vertex cover of cardinality at most
k. In one direction, consider the set C consisting of all nodes i ∈ {1, 2, . . . , n} such that
(i, 1), (i, 2), . . . , (i, n) /∈M . By the properties of G2s, |C| ≤ k. We need to argue that C is a
vertex cover. Consider any (u, v) ∈ E. Due to the constraint {u, v}×{u, v}, one of the edges
(u, u), (u, v), (v, u), (v, v) must belong to M . But then either u or v cannot be matched to
any node not belonging to {1, 2, . . . , n}, so u ∈ C or v ∈ C as required. In other direction,
let C be a vertex cover of H of cardinality at most k. For every i ∈ C, we include the edge
(i, i) in M . This clearly satisfies every constraint {u, v} × {u, v} by C being a vertex cover.
Then, for every copy of G2s we choose a unique node i /∈ C (that is not matched to any other
node yet) and use the properties of G2s to add its internal edges to M in such a way that,
together with the edge associated to i, they satisfy all the constraints.
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Abstract
We revisit the k-mismatch problem in the streaming model on a pattern of length m and a streaming
text of length n, both over a size-σ alphabet. The current state-of-the-art algorithm for the streaming
k-mismatch problem, by Clifford et al. [SODA 2019], uses Õ(k) space and Õ

(√
k
)
worst-case time

per character. The space complexity is known to be (unconditionally) optimal, and the worst-case
time per character matches a conditional lower bound. However, there is a gap between the total
time cost of the algorithm, which is Õ(n

√
k), and the fastest known offline algorithm, which costs

Õ
(
n + min

(
nk√
m
, σn
))

time. Moreover, it is not known whether improvements over the Õ(n
√
k)

total time are possible when using more than O(k) space.
We address these gaps by designing a randomized streaming algorithm for the k-mismatch problem

that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space and costs Õ
(
n+ min

(
nk2

m
, nk√

s
, σnm

s

))
total time. For s = m, the total runtime becomes Õ

(
n+ min

(
nk√
m
, σn
))
, which matches the time

cost of the fastest offline algorithm. Moreover, the worst-case time cost per character is still Õ
(√

k
)
.
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1 Introduction

In the fundamental Hamming distance problem, given two same-length strings X and Y ,
the goal is to compute Ham(X,Y ), which is the number of aligned mismatches between
X and Y . In the pattern matching version of the Hamming distance problem, the input
is a pattern P of length m and a text T of length n, both over a size-σ alphabet, and
the goal is to compute the Hamming distance between P and every length-m substring
of T . In this paper, we focus on a well studied generalization known as the k-mismatch
problem [1, 2, 4, 7, 10, 11, 12, 15, 18, 19, 22], which is the “fixed-threshold” version of the
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pattern matching Hamming distance problem: for a given parameter k, for each length-m
substring S of T , if Ham(P, S) ≤ k, then compute Ham(P, S), and otherwise, report that
Ham(P, S) > k. Currently, the state-of-the-art (offline) algorithms for the k-mismatch
problem are: (1) the algorithm of Fischer and Paterson [11], whose runtime is Õ(σn), and (2)
the algorithm of Gawrychowski and Uznański [15], whose runtime is Õ

(
n+ nk√

m

)
; see also [4].

The online and streaming models. The growing size of strings to be processed, often
exceeding the available memory limits, motivated the study of pattern matching in the
streaming model, where the characters of T arrive in a stream one at a time, and every
occurrence of P needs to be identified as soon as the last character of the occurrence
arrives [3, 4, 6, 7, 8, 13, 16, 17, 21, 20, 23]. In the streaming k-mismatch problem, the goal is
to compute the Hamming distance between P and the current length-m suffix of T after each
new character arrives, unless the Hamming distance is larger than k (which the algorithm
reports in this case). Algorithms in the streaming model are typically required to use space
of size sublinear in m. A closely related model is the online model, where the space usage of
the algorithm is no longer explicitly limited.

Porat and Porat [20] introduced the first streaming k-mismatch algorithm using Õ(k2)
time per character and Õ(k3) space. Subsequent improvements [7, 16] culminated in an
algorithm by Clifford et al. [8], which solves the streaming k-mismatch problem in Õ

(√
k
)

time per character using Õ(k) space. The total time cost of Õ
(
n
√
k
)
matches the time

cost of the offline algorithm of Amir et al. [2], and the worst-case per-character running
time matches a recent lower bound (valid for σ = Ω

(√
k
)
even with unlimited space usage)

by Gawrychowski and Uznański [14], conditioned on the combinatorial Boolean matrix
multiplication conjecture. However, the Õ

(
n+ nk√

m

)
total time cost of the offline algorithm

of Gawrychowski and Uznański [15] is smaller, and the Õ(σn) total time cost of the offline
algorithm of Fischer and Paterson [11] is smaller for small σ.

In the online model, where O(m) space usage is allowed, the fastest algorithms follow
from a generic reduction by Clifford et al. [5], which shows that if the offline k-mismatch
problem can be solved in O(n · t(m, k)) time, then the online k-mismatch problem can be
solved in O(n

∑dlogme
i=0 t(2i, k)) time. In particular, this yields online algorithms with a

total runtime of Õ
(
n
√
k
)
and Õ(nσ). Nevertheless, this approach cannot benefit from the

state-of-the-art the offline algorithm of Gawrychowski and Uznański [15] since the running
time of this algorithm degrades as m decreases. Thus, a natural question arises:

I Question 1. Is there an online/streaming algorithm for the k-mismatch problem whose
total time cost is Õ

(
n+ min

(
nk√
m
, σn

))
?

Space usage. It is straightforward to show that any streaming algorithm for the k-mismatch
problem must use Ω(k) space [8]. Thus, the space usage of the algorithm of Clifford et al. [8]
is optimal. Remarkably, we are unaware of any other tradeoffs between (sublinear) space
usage and runtime for the k-mismatch problem. This leads to the following natural question.

I Question 2. Is there a time-space tradeoff algorithm for the k-mismatch problem, using
s ≥ Ω(k) space?

Our results. We address both Question 1 and Question 2 by proving the following theorem.



S. Golan, T. Kociumaka, T. Kopelowitz, and E. Porat 15:3

I Theorem 3. There exists a randomized streaming algorithm for the k-mismatch problem
that, given an integer parameter k ≤ s ≤ m, costs Õ

(
n+ min

(
nk2

m , nk√
s
, σnms

))
total time and

uses Õ(s) space. Moreover, the worst-case time cost per character is Õ(
√
k). The algorithm

is correct with high probability1.

Theorem 3 answers Question 2 directly. However, for Question 1, Theorem 3 only addresses
the online setting, where s = m can be set: since k <

√
m yields n > nk√

m
> nk2

m , the total
time cost is Õ

(
n + min

(
nk2

m , nk√
m
, σnmm

))
= Õ

(
n + min

(
nk√
m
, σn

))
. However, Question 1

remains open for the streaming model.
Another natural research direction is to extend Theorem 3 so that the pattern P could

also be processed in a streaming fashion using Õ(s) space, Õ(
√
k) time per character, and

Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
time in total. To the best of our knowledge, among the existing

streaming k-mismatch algorithms, only that of Clifford et al. [8] is accompanied with an
efficient streaming procedure for preprocessing the pattern.

2 Algorithmic Overview and Organization

A string S of length |S| = n is a sequence of characters S[0]S[1] · · ·S[n− 1] over an alphabet
Σ. A substring of S is denoted by S[i . . j] = S[i]S[i+ 1] · · ·S[j] for 0 ≤ i ≤ j < n. If i = 0,
the substring is called a prefix of S, and if j = n− 1, the substring is called a suffix of S.
For two strings S and S′ of the same length |S| = n = |S′|, we denote by Ham(S, S′) the
Hamming distance of S and S′, that is, Ham(S, S′) = |{0 ≤ i ≤ n − 1 : S[i] 6= S′[i]}|. An
integer ρ is a d-period of a string S if Ham(S[0 . . n− ρ− 1], S[ρ . . n− 1]) ≤ d.

2.1 Overview
To prove Theorem 3, we consider two cases, depending on whether or not there exists an
integer ρ ≤ k that is a d-period of P for some d = O(k). If such a ρ exists, then we say that
P is periodic2, and otherwise P is said to be aperiodic.

Tail partitioning. In both cases of whether P is periodic or not, our algorithms use the
well-known tail partitioning technique [6, 7, 8, 9, 17], which decomposes P into two substrings:
a suffix Ptail and the complementary prefix Phead of length m − |Ptail|. Accordingly, the
algorithm has two components. The first component computes the Hamming distance of
Phead and every length-|Phead| substring of T with some delay: the reporting of Ham(Phead,
T [i − |P | + 1 . . i − |Ptail|]) is required to be completed before the arrival of T [i]. The
second component computes the Hamming distance of Ptail and carefully selected length-
|Ptail| substrings of T . The decision mechanism for selecting substrings for the second
component is required to guarantee that whenever Ham(Phead, T [i−|P |+ 1 . . i−|Ptail|]) ≤ k:
if Ham(Ptail, T [i − |Ptail| + 1 . . i]) ≤ k then the second component computes Ham(Ptail,
T [i−|Ptail|+1 . . i]); otherwise, the second component reports Ham(Ptail, T [i−|Ptail|+1 . . i]) >
k. The second component has no delay.

1 An event E happens with high probability if Pr[E ] ≥ 1− n−c for a constant parameter c ≥ 1.
2 The classic notion of periodicity is usually much simpler than the one we define here. However, since in

this paper we do not use the classic notion of periodicity, we slightly abuse the terminology.
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Notice that if either Ham(Phead, T [i − |P | . . i − |Ptail|]) > k, which is detected by the
first component, or Ham(Ptail, T [i − |Ptail| + 1 . . i]) > k, which is detected by the second
component, then it must be that Ham(P, T [i−|P | . . i]) > k. Otherwise, Ham(P, T [i−|P | . . i])
is computed by summing Ham(Phead, T [i−|P | . . i−|Ptail|]) and Ham(Ptail, T [i−|Ptail|+1 . . i]).
In either case, the information is available for the algorithm right after T [i] arrives.

Thus, our algorithm has four main components, depending on whether P is periodic or
not, and depending on the head or tail case of the tail partitioning technique.

The aperiodic case. The algorithms for the aperiodic case are a combination of straight-
forward modifications of previous work together with the naïve algorithm; the details are
given in Section 7. Nevertheless, we provide an overview below. In this case, |Ptail| = 2k.

The algorithm for Phead in the aperiodic case is a slight modification of an algorithm
designed by Golan et al. [16], which reduces the streaming k-mismatch problem to the
problem of finding occurrences of multiple patterns in multiple text-streams.

The algorithm for Ptail in the aperiodic case is the naïve algorithm of comparing all
aligned pairs of characters. While in general the naïve algorithm could cost O(|Ptail|) time
per character, in our setting the algorithm uses the output of the algorithm on Phead as
a filter, and so the algorithm computes Ham(Ptail, T [i− |Ptail|+ 1 . . i]) only if Ham(Phead,
T [i− |P |+ 1 . . i− |Ptail|]) ≤ k. Since P is aperiodic, we are able to show that occurrences of
Phead are distant enough so that the naïve algorithm for Ptail costs Õ(1) worst-case time per
character. In order for the filter to be effective, instead of guaranteeing that the algorithm for
computing Ham(Phead, T [i−|P |+1 . . i−|Ptail|]) is completed before T [i] arrives, we refine the
tail partitioning technique so that the computation of Ham(Phead, T [i− |P |+ 1 . . i− |Ptail|])
completes before T [i− 1

2 |Ptail|] arrives, and if the naïve algorithm should be used, the execution
takes place through the arrivals of the subsequent 1

2 |Ptail| characters T [i− 1
2 |Ptail|+ 1 . . i].

The effects of this refinement on the runtime is only by constant multiplicative factors.

The periodic case. We begin by first assuming that P and T have a common O(k)-period
ρ ≤ k, and that n ≤ 3

2m. In this case, we represent the strings as characteristic functions
(one function for each character in Σ). Since both P and T are assumed to be periodic, each
characteristic function, when treated as a string, is also periodic. Next, we use the notion
of backward differences: for any function f : Z→ Z, the backward difference of f due to ρ
is ∆ρ[f ](i) = f(i)− f(i− ρ). Clifford et al. [8] showed that the Hamming distance of two
strings can be derived from a summation of convolutions of backward differences due to ρ of
characteristic functions; see Section 3.

In the case of Phead, a delay of up to 2s characters is allowed. To solve this case, we define
the problem of computing the convolutions of the backward differences in batches; the details
for this case are given in Section 4. Our solution uses an offline algorithm for computing the
convolutions described in Section 3.1. In the case of Ptail, we use a solution for the online
version of computing the convolutions of the backward differences, which is adapted from
Clifford et al. [5]; the details are given in Section 5. In both cases, since we assume that P
and T are periodic, our algorithms leverage the fact that the backward differences of the
characteristic functions have a small number of non-zero entries. This lets the algorithms
compute the Hamming distance of Ptail and every substring of T which has length |Ptail|.

In Section 6, we remove the periodicity assumption on T by applying a technique by
Clifford et al. [7] which identifies at most one periodic region of T that contains all the
k-mismatch occurrences of P . Moreover, we drop the n ≤ 3

2m assumption using a standard
trick of partitioning T into overlapping fragments of length 3

2m.
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3 Hamming Distance and the Convolution Summation Problem

Recall that the support of a function f is supp(f) := {x | f(x) 6= 0}. Let |f | = |supp(f)|.
Throughout, we only consider functions with finite support mapping Z to Z. The convolution
of two functions f, g : Z→ Z is a function f ∗ g : Z→ Z such that

[f ∗ g](i) =
∑
j∈Z

f(j) · g(i− j).

For a string X and a character c ∈ Σ, the characteristic function of X and c is Xc : Z→
{0, 1} such that Xc(i) = 1 if and only if X[i] = c. For a string X, let XR be X reversed.
The cross-correlation of strings X and Y over Σ is a function X ⊗ Y : Z→ Z such that

X ⊗ Y =
∑
c∈Σ

Xc ∗ Y Rc .

I Lemma 4 ([8, Fact 7.1]). Let P, T be strings. For |P | − 1 ≤ i < |T |, we have [T ⊗ P ](i) =
|P | − Ham(P, T [i− |P |+ 1 . . i]). For i < 0 and for i ≥ |P |+ |T |, we have [T ⊗ P ](i) = 0.

By Lemma 4, in order to compute Ham(P, T [i−|P |+ 1 . . i]), it suffices to compute [T ⊗P ](i).
The backward difference of a function f : Z→ Z due to ρ is ∆ρ[f ](i) = f(i)− f(i− ρ).

IObservation 5 ([8, Obs. 7.2]). If a string X has a d-period ρ, then
∑
c∈Σ |∆ρ[Xc]| ≤ 2(d+ρ).

Our computation of T ⊗ P in a streaming fashion is based on the following lemma:

I Lemma 6 (Based on [8, Fact 7.4 and Corollary 7.5]). For every i ∈ Z and ρ ∈ Z+, we have
[T ⊗ P ](i) =

[∑
c∈Σ ∆ρ[Tc] ∗∆ρ[PRc ]

]
(i)− [T ⊗ P ](i− 2ρ) + 2[T ⊗ P ](i− ρ).

When computing [T ⊗ P ](i), if the algorithm maintains a buffer of the last 2ρ values of
T ⊗P , then the algorithm already has the values of [T ⊗P ](i− ρ) and [T ⊗P ](i− 2ρ). Thus,
in order to construct T ⊗ P , the focus is on constructing

∑
c∈Σ ∆ρ[Tc] ∗∆ρ[PRc ].

3.1 Convolution Summation Problem
We express the task of constructing

∑
c∈Σ ∆ρ[Tc] ∗ ∆ρ[PRc ] in terms of a more abstract

convolution summation problem stated as follows. The input is two sequences of functions
F = (f1, f2, . . . , ft) and G = (g1, g2, . . . gt) such that for every 1 ≤ i ≤ t we have fi : Z→ Z
and gi : Z→ Z, and the goal is to construct the function F ⊗ G =

∑t
j=1(fj ∗ gj).

Let H be a sequence of functions. We define the support ofH as supp(H) =
⋃
h∈H supp(h).

The total number of non-zero entries in all of the functions ofH is denoted by ‖H‖ =
∑
h∈H |h|.

The diameter of a function f is diam(f) = max(supp(f))−min(supp(f)) + 1 if supp(f) 6= ∅,
and diam(f) = 0 otherwise. We define the diameter of a sequence of functions H as
diam(H) = max {diam(h) | h ∈ H}.

In our setting, the input for the convolution summation problem is two sequences of
sparse functions, which are functions that have a small support. Thus, we assume that
the input functions are given in an efficient sparse representation, e.g., a linked list (of the
non-zero functions) of linked lists (of non-zero entries).

Algorithm for the offline convolution summation problem. The following lemma, proved
in the full version of the paper, provides an algorithm that efficiently computes F ⊗ G for
two sequences of functions F and G which are given in a sparse representation. Notice that
the output of the algorithm is also restricted to the non-zero values of F ⊗ G only.
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I Lemma 7 (Based on [4, Lemma 7.5]). Let F = (f1, . . . , ft) and G = (g1, . . . , gt) be two
sequences of functions, such that diam(F), diam(G) ∈ [1 . . n], and also diam(F ⊗ G) = O(n).
Then there exists an (offline) algorithm that computes the non-zero entries of F ⊗ G using
O(n) space, whose time cost is

Ψ(F ,G) = Õ

(
‖F‖+‖G‖+

t∑
j=1

min(|fj ||gj |, n)
)

= Õ
(
min

(
tn, ‖F‖ · ‖G‖, (‖F‖+ ‖G‖)

√
n
))
.

4 Periodic Pattern and Text – with Delay

Our approach is based on the reduction to the convolution summation problem of Section 3.
The text arrives online, so we consider a similar setting for convolution summation.

4.1 The Incremental Batched Convolution Summation Problem
In the incremental batched version of the convolution summation problem, the algorithm
is given two sequences of t functions F and G, where both supp(F), supp(G) ⊆ [0 . . n− 1].
The sparse representation of G is available for preprocessing, whereas F is revealed online in
batches of diameter s: the ith batch consists of all of the non-zero entries of the functions of
F in the range [(i− 1) · s . . i · s), also in a sparse representation. After each update, the goal
is to compute the values of F ⊗ G in the same range as the input, [(i− 1) · s . . i · s). In the
rest of this section, we prove the following lemma.

I Lemma 8. There exists a deterministic algorithm that solves the incremental batched
convolution summation problem for s = Ω(‖F‖+ ‖G‖), using O(s) space, Õ((‖F‖+ ‖G‖)

√
s)

time per batch arrival and Õ
(
n+ min

(
‖F‖ · ‖G‖, n(‖F‖+‖G‖)√

s
, tn

2

s

))
total time.

A natural approach for proving Lemma 8 is to utilize the algorithm of Lemma 7, whose
runtime depends on the diameters of a pair of sequences of functions. Thus, in order to use
this approach, we design a mechanism for reducing the diameters of F and G while still being
able to properly compute the values of F ⊗ G.

Reducing the diameter. For a function h : Z→ Z and a domain D ⊆ Z, let h|D : Z→ Z be
a function where h|D(i) = h(i) for i ∈ D and h|D(i) = 0 for i /∈ D. For a sequence of functions
H = (h1, h2, . . . , ht), denote the sequence of functions restricted to domain D as H|D =
(h1|D, h2|D, . . . , ht|D). For a, b ∈ Z, let us define integer intervals Γa = [s · (a−1) . . s · (a+ 1))
and Φb = [s · (b− 1) . . s · b)3.

I Observation 9. Each integer is in exactly one range Φb and in exactly two ranges Γa.

Notice that the ith batch consists of F|Φi . In response to the ith batch, the algorithm
needs to compute [F ⊗ G]|Φi . For this, we express Fi = F|[0. .si) = F|Φ1∪Φ2∪···∪Φi (which is
the aggregate of all the batches received so far) and G in terms of two sequences of functions
F∗i and G∗, so that [F ⊗ G]|Φi = [F∗i ⊗ G∗]|Φi . The motivation for using F∗i and G∗ is to
reduce the diameter, which comes at the price of increasing the number of functions.

Let q =
⌈
n
s

⌉
, and define

F∗i =
(
f1|Φi−0 , . . . , ft|Φi−0 , f1|Φi−1 , . . . , ft|Φi−1 , . . . . . . . . . , f1|Φi−(q−1) , . . . , ft|Φi−(q−1)

)
,

G∗ =
(
g1|Γ0 , . . . , gt|Γ0 , g1|Γ1 , . . . , gt|Γ1 , . . . . . . . . . , g1|Γq−1 , . . . , gt|Γq−1

)
.

3 Note that the Γ intervals are used for partitioning G while Φ intervals are used for partitioning F .
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I Lemma 10. For any i ∈ [1 . . q] we have [F ⊗ G]|Φi = [F∗i ⊗ G∗]|Φi .

Proof. For two sets X,Y ⊆ Z, we denote X − Y = {x− y | x ∈ X and y ∈ Y }. For any pair
of functions f, g : Z→ Z and any j ∈ Φi, since the ranges Φb for b ∈ Z form a partition of Z,
we have that (f ∗ g)(j) =

∑
a∈Z(f |Φi−a ∗ g)(j). Moreover, by the definition of the convolution

operator and since Φi − Φi−a ⊆ Γa, we have
∑
a∈Z(f |Φi−a ∗ g)(j) =

∑
a∈Z(f |Φi−a ∗ g|Γa)(j).

Hence, [F⊗G]|Φi =
∑
a∈Z[F|Φi−a⊗G|Γa ]|Φi . However, since supp(F) ⊆ [0 . . qs), we have that

for every b ≤ 0 and every f ∈ F , it must be that f |Φb = 0. Similarly, since supp(G) ⊆ [0 . . qs),
we have that for every a < 0 and every g ∈ G, it must be that g|Γa = 0. Thus, for a /∈ [0 . . q−1],
we have that F|Φi−a ⊗ G|Γa = 0, and so [F ⊗ G]|Φi =

∑q−1
a=0[F|Φi−a ⊗ G|Γa ]|Φi . Finally, since

F∗i is the concatenation of F|Φi−a for a ∈ [0 . . q − 1], and G∗ is the concatenation of G|Γa for
a ∈ [0 . . q − 1], the lemma follows. J

The following is a consequence of the definitions of F∗ and G∗, and Observation 9. Recall
that the diameter of a sequence of functions H is diam(H) = max {diam(h) | h ∈ H}.

I Observation 11. The sequences F∗i and G∗ consist of t · q functions each. Moreover,
diam(F∗i ) ≤ s, diam(G∗) ≤ 2s, ‖F∗i ‖ ≤ ‖F‖, and ‖G∗‖ ≤ 2 · ‖G‖.

The algorithm. During the preprocessing phase, the algorithm transforms G into G∗, and
constructs F∗0 , which is an empty linked list.

Upon receiving the ith batch, which is F|Φi , the algorithm computes F∗i as follows:
First, the algorithm concatenates F|Φi with F∗i−1 and truncates the last t functions from the
resulting sequence of (q + 1)t functions. It is easy to implement the concatenation (including
updating indices in the sparse representation) with a time cost which is linear in the number
of non-zero functions in F|Φi and F∗i−1, and is at most O(‖F‖). The implementation of the
truncation is void since only the first (i− 1) · t ≤ (q − 1) · t functions of F∗i−1 are non-zero4.

Next, the algorithm applies the procedure of Lemma 7 in order to compute F∗i ⊗ G∗.
Finally, the algorithm returns [F∗i ⊗ G∗]|Φi which, by Lemma 10, is [F ⊗ G]|Φi .

Complexities. The preprocessing phase is done in O(‖G‖) time using O(s) space.
For the ith batch, the computation of F∗i costs O(‖F‖) time, which is O(q‖F‖) =

O(ns ‖F‖) = O(n) time in total because s = Ω(‖F‖ + ‖G‖). Then, the computation of
F∗i ⊗ G∗ with the procedure of Lemma 7 costs O(Ψ(F∗i ,G∗)) = Õ((‖F∗i ‖ + ‖G∗‖)

√
s) =

Õ((‖F‖+‖G‖)
√
s) time. In the following, we derive several upper bounds on

∑q
i=1 Ψ(F∗i ,G∗),

which together upper bound the total time cost.

Total time Õ
(

n(‖F‖+‖G‖)√
s

)
. Recall that q = O(ns ), and, by Observation 11, for any

i ∈ [1 . . q] we have ‖F∗i ‖ ≤ ‖F‖ and ‖G∗‖ ≤ 2‖G‖. Thus,

q∑
i=1

Ψ(F∗i ,G∗) =
q∑
i=1

Õ
(
(‖F∗i ‖+ ‖G∗‖)

√
s
)

= Õ

(
q∑
i=1

(‖F‖+ ‖G‖)
√
s

)
=

Õ
(
q · (‖F‖+ ‖G‖)

√
s
)

= Õ(ns · (‖F‖+ ‖G‖)
√
s) = Õ

(
n(‖F‖+‖G‖)√

s

)
.

4 The reason for mentioning the truncation, even though it is void, is in order to guarantee that F∗i
matches the mathematical definition introduced above.
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Total time Õ
(

tn2

s

)
. Recall that for any i ∈ [1 . . q] the sequences G∗ and F∗i consist of q · t

functions of diameter O(s), and q = O(ns ). Thus,

q∑
i=1

Ψ(F∗i ,G∗) =
q∑
i=1

Õ (q · t · s) = Õ
(
q2 · t · s

)
= Õ

(
n2

s2 · t · s
)

= Õ
(
tn2

s

)

Total time Õ(n + ‖F‖ · ‖G‖). Let X = {x1, x2, . . . , xτ} and Y = {y1, y2, . . . , yτ} be two
sequences of τ functions from Z to Z, and let ν = max(diam(X ), diam(Y)). Recall that

Ψ(X ,Y) = Õ

‖X‖+ ‖Y‖+
τ∑
j=1

min(|xj ||yj |, ν)

 = Õ

‖X‖+ ‖Y‖+
τ∑
j=1
|xj ||yj |

 .

In our case, the run time is
∑q
i=1 Ψ(F∗i ,G∗). Recall that the functions in F∗i are fj |Φi−a ,

and the functions in G∗ are gj |Γa , both for a ∈ [0 . . q) and j ∈ [1 . . t]. Thus,

q∑
i=1

Ψ(F∗i ,G∗) =
q∑
i=1

Õ

‖F∗i ‖+ ‖G∗‖+
q−1∑
a=0

t∑
j=1

∣∣∣fj |Φi−a ∣∣∣∣∣∣gj |Γa ∣∣∣


=
q∑
i=1

Õ (‖F‖+ ‖G‖) + Õ

 t∑
j=1

q−1∑
a=0

∣∣∣gj |Γa ∣∣∣ q∑
i=1

∣∣∣fj |Φi−a ∣∣∣
 . by Obs. 11

= Õ(ns s) + Õ

 t∑
j=1

q−1∑
a=0

∣∣∣gj |Γa ∣∣∣∣∣∣fj∣∣∣
 . by Obs. 9

= Õ(n) + Õ

 t∑
j=1

∣∣∣gj∣∣∣∣∣∣fj∣∣∣
 . by Obs. 9

= Õ(n) + Õ

‖G‖ t∑
j=1

∣∣∣fj∣∣∣
 = Õ(n) + Õ (‖G‖ · ‖F‖) = Õ(n+ ‖F‖ · ‖G‖)

This completes the proof of Lemma 8. J

4.2 Reduction from Hamming Distance to Incremental Batch Sparse
Convolution Summation Problem

Now we show how to compute the Hamming distance between P and substrings of T with
delay of 2s, based on the algorithm of Lemma 8. Our result is stated in the following lemma.

I Lemma 12. Suppose that there exists ρ ≤ k which is a d-period of both P and T for
some d = O(k). Then, there exists a deterministic streaming algorithm for the k-mismatch
problem with n = 3

2m that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space and costs
Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
total time. Moreover, the worst-case time cost per character is

Õ(
√
k). The algorithm has delay of 2s characters.

Proof. The algorithm receives the characters of T one by one and splits them into blocks of
length s so that the indices in the bth block form Φb, as defined in Section 4.1. The last O(s)
characters of T and the last O(s) values of T ⊗ P are buffered in O(s) space.
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For Σ = {c1, c2, . . . , cσ}, define sequences of functions G = (∆ρ[PRc1
],∆ρ[PRc2

], . . . ,∆ρ[PRcσ ])
and F = (∆ρ[Tc1 ],∆ρ[Tc2 ], . . . ,∆ρ[Tcσ ]). The algorithm initializes an instance of the proce-
dure of Lemma 8 with G during the arrival of the first block. During the arrival of the bth block,
the algorithm creates the batch F|Φb as follows: after the arrival of T [i], if T [i] 6= T [i− ρ],
then the algorithm sets ∆ρ[TT [i]](i) to be 1 and ∆ρ[TT [i−ρ]](i) to be −1. During the arrival of
the (b+1)th block, the batch F|Φb is processed using Lemma 8 in order to compute [F⊗G]|Φb .
Finally, for all i ∈ Φb, the algorithm uses the buffer of T ⊗ P together with the values of
[F⊗G]|Φb in order to report the values [T⊗P ](i) = [F⊗G](i)−[T⊗P ](i−2ρ)+2[T⊗P ](i−ρ)
(see Lemma 6).

Complexities. For each incoming character of T , updating the text buffer and the functions
∆ρ[Tc] for all c ∈ Σ costs O(1) time since changes are needed in ∆ρ[Tc] for at most two
characters c. Since ρ ≤ k is a d-period of both P and T , Observation 5 yields ‖G‖ ≤
2(k + d) = O(k) and ‖F‖ ≤ 2(k + d) = O(k). Thus, the initialization of the procedure
of Lemma 8 costs O(‖G‖) = O(k) time, and executing the procedure of Lemma 8 on the
bth batch F|Φb costs Õ((‖F‖ + ‖G‖)

√
s) = Õ(k

√
s) time. Hence, applying the algorithm

of Lemma 8 during the arrival of any block costs Õ(k + k
√
s) = Õ(k

√
s) time, which, by a

standard de-amortization, is Õ
( 1
s · k
√
s
)

= Õ
(
k√
s

)
= Õ(

√
k) time per character.

Note that supp(G) ⊆ [0 . .m+ ρ] = [0 . . O(m)] and supp(F) ⊆ [0 . . 3
2m+ ρ] = [0 . . O(m)].

Moreover, both F and G are sequences of σ functions. Hence, the total time cost of applying
the algorithm of Lemma 8, updating the buffers, and computing the functions ∆ρ[Tc] is
Õ
(
m+ min

(
‖F‖ · ‖G‖, m(‖F‖+‖G‖)√

s
, σm

2

s

))
= Õ

(
m+ min

(
k2, mk√

s
, σm

2

s

))
.

Delay. For any index i ∈ Φb, after the arrival of T [i], at most s character arrivals take
place until the call to the procedure of Lemma 8 involving F|Φb . Moreover, due to the
de-amortization, the computation of all the results [T ⊗ P ]|Φb takes place during the arrivals
of another s characters. Hence, the delay of the algorithm is at most 2s character arrivals. J

5 Periodic Pattern and Text – without Delay

In this section, we show how to compute the distances between P and substrings of T without
any delay, assuming that ρ ≤ k is a d-period of both P and T for some d = O(k). Our approach
is to use the tail partition technique, described in Section 2. To do so, we set |Ptail| = 2s
and use the algorithm of Lemma 12 on Phead (notice that ρ is a d-period of both Phead and
Ptail). The remaining task is to describe how to compute Ham(Ptail, T [i− 2s+ 1 . . i]).

In the online version of the convolution summation problem, the algorithm is given two
sequences of functions F and G, where supp(F) ⊆ [0 . . n)] and supp(G) ⊆ [0 . .m). The
sparse representation of G is available for preprocessing, whereas F is revealed online index
by index: At the ith update, the algorithm receives F|{i}, i.e., all the non-zero entries f(i)
for f ∈ F , and the task is to compute [F ⊗ G](i). The procedure we use for this problem is
based on the algorithm of Clifford et al. [5]. Nevertheless, since we state the procedure in
terms of the convolution summation problem, whereas [5] states the algorithm in terms of
pattern matching problems, we describe the details in the full version.

I Lemma 13 (Based on [5, Theorem 1]). Let F and G be two sequences of t functions each
such that supp(F) ⊆ [0 . . n), supp(G) ⊆ [0 . .m), and δ = max(maxi ‖F|{i}‖,maxi ‖G|{i}‖) is
the maximum number of non-zero entries at a single index. There exists an online algorithm
that upon receiving F|{i} for subsequent indices i computes [F ⊗ G](i) using O(δm) space in
Õ
(√

δ(‖F‖+ ‖G‖)
)
time per index. Moreover, the total running time of the algorithm is

Õ(min(nδ + (‖F‖+ ‖G‖)
√
n, nt)).
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Using the algorithm of Lemma 13 and the reduction from computing Hamming distance
to the convolution summation problem defined in Section 3, we achieve the following lemma.

I Lemma 14. Suppose that there exists ρ ≤ k which is a d-period of both P and T for some
d = O(k). Then, there exists a deterministic online algorithm for the k-mismatch problem
that uses Õ(m) space and costs Õ (n+ min (k

√
n, nσ)) total time. Moreover, the worst-case

time cost per character is Õ(
√
k).

Proof. The algorithm maintains a buffer of the last 2ρ values of T ⊗ P and a buffer of the
last ρ characters of T . Define sequences of functions G = (∆ρ[PRc1

],∆ρ[PRc2
], . . . ,∆ρ[PRcσ ]) and

F = (∆ρ[Tc1 ],∆ρ[Tc2 ], . . . ,∆ρ[Tcσ ]), where Σ = {c1, c2, . . . , cσ}. The algorithm initializes an
instance of the procedure of Lemma 13. After the arrival of T [i], if T [i] 6= T [i− ρ], then the
algorithm sets ∆ρ[TT [i]](i) to be 1 and ∆ρ[TT [i−ρ]](i) to be −1. The algorithm transfers these
values to the procedure of Lemma 13, which responds with the value of [F ⊗ G](i). Then,
the algorithm reports [T ⊗ P ](i), which equals [F ⊗ G](i)− [T ⊗ P ](i− 2ρ) + 2[T ⊗ P ](i− ρ)
by Lemma 6. In this expression, the first term is returned by the procedure of Lemma 13
and the other two terms are retrieved from the buffer.

The update of the text buffer and ∆ρ[Tc] for at most two characters c after the arrival
of any text character costs O(1) time per character and O(n) time in total. Note that by
Observation 5, since ρ ≤ k is a d-period of both P and T , we have that ‖G‖ ≤ 2(d+ k) =
O(k) and ‖F‖ ≤ 2(d + k) = O(k). Moreover, δ = max(maxi ‖F|{i}‖,maxi ‖G|{i}‖) ≤ 2.
Consequently, the algorithm of Lemma 13 uses Õ(m) space and costs Õ(

√
k) time per

character and Õ(min(n+ k
√
n, nσ)) time in total. All the other parts of the algorithm cost

O(1) time per character and O(n) time in total. J

Thus, by combining Lemma 12 and Lemma 14, we obtain an algorithm that, given ρ
which is is a d-period of both P and T , computes the Hamming distances up to k for every
substring of the text without delay.

I Lemma 15. Suppose that there exists ρ ≤ k which is a d-period of both P and T for
some d = O(k). Then, there exists a deterministic streaming algorithm for the k-mismatch
problem with n = 3

2m that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space, and costs
Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
total time and Õ(

√
k) time per character in the worst case.

Proof. Let Ptail be the suffix of P of length 2s, and let Phead be the complementary
prefix of P . Note that ρ is a d-period of both Phead and Ptail. We run the algorithm
of Lemma 12 with Phead as a pattern. The results of the algorithm of Lemma 12 are
added into a buffer of length 2s. Thus, right after the arrival of T [i], it is guaranteed that
Ham(Phead, T [i− |P |+ 1 . . i− |Ptail|]) is already computed and available for the algorithm.
In addition, the algorithm of Lemma 14 is executed with Ptail as pattern, and this algorithm
computes Ham(Ptail, T [i − |Ptail| + 1 . . i]) right after the arrival of T [i], if this value is
at most k. After the arrival of T [i], the algorithm reports Ham(P, T [i − |P | + 1 . . i]) =
Ham(Phead, T [i− |P |+ 1 . . i− |Ptail|]) + Ham(Ptail, T [i− |Ptail|+ 1 . . i]).

The time per character of both the algorithm of Lemma 12 and the algorithm of Lemma 14
is Õ(

√
k). The total time cost of the algorithm of Lemma 12 is Õ

(
m+ min

(
k2, mk√

s
, σm

2

s

))
.

Furthermore, the total time cost of the algorithm of Lemma 14 is Õ (min (m+ k
√
m,mσ)) =

Õ
(
m+ min

(
k2, km√

s
, σm

2

s

))
due to k ≤ s ≤ m and m + k

√
m = O(m + k2). Hence, the

lemma follows. J
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6 Periodic Pattern and Arbitrary Text – without Delay

In this section, we generalize Lemma 15 to the case where ρ is not necessarily a d-period
of T , but ρ is still a d-period of P and n = 3

2m. We use ideas building upon Clifford et
al. [7, Lemma 6.2] to show that there exists a substring of T , denoted T ∗, such that ρ is a
(2d + 4k + ρ)-period of T ∗, and T ∗ contains all of the k-mismatch occurrences of P in T .
Our construction, specified below, exploits the following property of approximate periods.

I Observation 16. Let X and Y be two equal length strings. If ρ is a d-period of X and
Ham(X,Y ) ≤ x then ρ is a (d+ 2x)-period of Y .

Let TL be the longest suffix of T [0 . . 1
2m− 1] such that ρ is a (d+ 2k)-period of TL, and

let TR be the longest prefix of T [ 1
2m. . n− 1] such that ρ is a (d+ 2k)-period of TR. Finally,

let T ∗ be the concatenation T ∗ = TL · TR.

I Lemma 17. All the k-mismatch occurrences of P in T are contained within T ∗. Moreover,
ρ is a (2d+ 4k + ρ)-period of T ∗.

Proof. The second claim follows directly from the fact that T ∗ = TL · TR is a concatenation
of two strings with (d+ 2k)-period ρ (the extra ρ mismatches might occur at the boundary
between TL and TR). Henceforth, we focus on the first claim.

We assume that P has at least one k-mismatch occurrence in T ; otherwise, the claim
holds trivially. Let T [` . . r] be the smallest fragment of T containing all the k-mismatch
occurrences of P in T (so that the leftmost and the rightmost occurrences starts at positions
` and r −m+ 1, respectively). Our goal is to prove that T [` . . r] is contained within T ∗.

By Observation 16, since T [` . . ` + m − 1] is a k-mismatch occurrence of P and ρ is a
d-period of P , it must be that ρ is a (d + 2k)-period of T [` . . ` + m − 1]. In particular,
since ` + m ≥ 1

2m, we have that ρ is a (d + 2k)-period of T [` . . 1
2m − 1]. Hence, by its

maximality, TL must start at position ` or to the left of `. Similarly, by Observation 16,
since T [r−m+ 1 . . r] is a k-mismatch occurrence of P and ρ is an d-period of P , it must be
that ρ is a (d+ 2k)-period of T [r−m+ 1 . . r]. In particular, since r−m+ 1 ≤ n−m ≤ 1

2m,
we have that ρ is a (d+ 2k)-period of T [ 1

2m. . r]. Hence, by its maximality, TR must end at
position r or to the right of r. J

The algorithm works in two high-level phases. In the first phase, the algorithm receives
T [0 . . 1

2m− 1], and the goal is to compute TL. In the second phase, the algorithm receives
T [ 1

2m. . n − 1] and transfers T ∗ = TL · TR to the subroutine of Lemma 12. The transfer
starts with a delay of |TL| characters and a standard de-amortization speedup is applied to
reduce the delay to 0 by the time 2|TL| ≤ m characters are transferred, which is before the
subroutine of Lemma 12 may start producing output. The algorithm terminates as soon as it
reaches the end of TR, i.e., when it encounters more than d+ 2k mismatches in T [ 1

2m. . n−1].
The following periodic representation (similar to one by Clifford et al. [8]) is used for

storing substrings of T .

I Fact 18. For every positive integer ρ, there exists an algorithm that maintains a represen-
tation of T [` . . r] and supports the following operations in O(1) time each:
(a) Change the representation to represent T [`+ 1 . . r] and return T [`].
(b) Given T [r + 1] and T [r + 1− ρ], change the representation to represent T [` . . r + 1].
(c) Given `′ ≥ ` such that T [i] = T [i + ρ] for ` ≤ i < `′, change the representation to

represent T [`′ . . r].
If ρ is a d-period of T [` . . r] then the space usage is O(d+ ρ).
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Proof. T [` . . r] is represented by a string S of length ρ such that T [i] = S[i mod ρ] for
` ≤ i ≤ min(` + ρ − 1, r), and a list L = {(i, T [i]) : ` + ρ ≤ i ≤ r, T [i − ρ] 6= T [i]}. Notice
that if ρ is a d-period of T [` . . r], then this representation uses O(d+ ρ) space.

To implement operation (a), the algorithm first retrieves T [`] = S[` mod ρ]. The algorithm
then checks if the leading element of L is (`+ρ, T [`+ρ]). If so, the algorithm removes this pair
from L and sets S[` mod ρ] = T [`+ ρ]. To implement operation (b), the algorithm compares
T [r + 1] with T [r + 1− ρ]. If these values are different, then (r + 1, T [r + 1]) is appended to
L. The implementation of operation (c) is trivial (neither S nor L is changed). J

I Lemma 19. Suppose that there exists ρ ≤ k which is a d-period of P for some d =
O(k). Then, there exists a deterministic streaming algorithm for the k-mismatch problem
with n = 3

2m that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space, and costs
Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
total time and Õ(

√
k) time per character in the worst case.

Proof. Based on the pattern P and the period ρ, the algorithm initializes an instance ALG of
the algorithm of Lemma 12. Then, the algorithm processes T in two phases, while maintaining
a buffer of ρ text characters and the representation of Fact 18 of a suffix T ′ of the already
processed prefix of T .

First Phase. During the first phase, when the algorithm receives T [0 . . 1
2m− 1], the suffix

T ′ is defined as the longest suffix for which ρ is a (d+ 2k)-period. Suppose T ′ is T [` . . i− 1]
after processing T [0 . . i− 1]. The algorithm first appends T [i] to T ′, extending it to T [` . . i]
using Fact 18(b). If ρ is still a (d + 2k)-period of T ′, i.e., the list L has at most d + 2k
elements, then the algorithm proceeds to the next character. Otherwise, T ′ is first trimmed
to T [`′ . . i], where (`′ + ρ, T [`′ + ρ]) is the first element of L, using Fact 18(c), and then to
T [`′ + 1 . . i] using Fact 18(a). The latter operation decrements the size of L to d+ 2k.

At the end of the first phase, T ′ is by definition equal to TL. The running time of the
algorithm in the first phase is O(1) per character, and the space complexity is O(d+k) = O(k).

Second Phase. At the second phase, the algorithm receives T [m2 . . n− 1], while counting
the number of mismatches with respect to ρ. As soon as this number exceeds d+ 2k, which
happens immediately after receiving the entire string TR, the algorithm stops. As long as
T ′ is non-empty, each input character is appended to T ′ using Fact 18(b), and the two
leading characters of T ′ are popped using Fact 18(a) and transferred to ALG. Once T ′
becomes empty (which is after ALG receives 2|TL| ≤ m characters), the input characters
are transferred directly to ALG. This process guarantees that the input to ALG is T ∗ and
that ALG is executed with no delay by the time the first m characters of T ∗ are passed. By
Lemma 17, all k-mismatch occurrences of P in T are contained in T ∗, so all these occurrences
are reported in a timely manner.

Since ρ is a (2d+ 4k+ ρ)-period of T ∗ (by Lemma 17) and T ′ is contained in T , then ρ is
also a (2d+ 4k + ρ)-period of T ′ at all times. Consequently, the space complexity is O(k) on
top of the space usage of ALG, which is Õ(s). Thus, in total, the algorithm uses Õ(s) space.

The per-character running time is dominated by the time cost of ALG, which is Õ(
√
k).

The total running time of the algorithm is also dominated by the total running time of ALG,
which, by Lemma 12, is Õ

(
m+ min

(
k2, mk√

s
, σm

2

s

))
. J

The following corollary is obtained from Lemma 19 by the standard trick of splitting the
text into O( nm ) substrings of length 3

2m with overlaps of length m.
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I Corollary 20. Suppose that there exists ρ ≤ k which is a d-period of P . Then, there
exists a deterministic streaming algorithm for the k-mismatch problem that, given an integer
parameter k ≤ s ≤ m, uses Õ(s) space and costs Õ

(
n + min

(
nk2

m , nk√
s
, σnms

))
total time.

Moreover, the worst-case time cost per character is Õ(
√
k).

7 Aperiodic Pattern and Arbitrary Text

The following lemma, proved in the full version, appears in [16] with small modifications.

I Lemma 21 (Based on [16, Theorem 5]). Suppose that the smallest 4k-period of the pattern
P is Ω(k). Then, there exists a randomized streaming algorithm for the k-mismatch problem
that uses Õ(k) space and costs Õ(1) time per character. The algorithm has delay of k
characters and is correct with high probability.

In order to improve the algorithm to report results without any delay, we use ideas similar
to those introduced in Section 5. The following fact appeared in [7].

I Fact 22 (Based on [7, Fact 3.1]). If ρ is the smallest d-period of a pattern P , then the
1
2d-mismatch occurrences of P in any text T start at least ρ positions apart.

I Lemma 23. Suppose that the smallest 6k-period of the pattern P is Ω(k). Then, there
exists a randomized streaming algorithm for the k-mismatch problem that uses Õ(k) space
and costs Õ(1) time per character. The algorithm is correct with high probability.

Proof. Let Ptail be the suffix of P of length 2k and let Phead be the complementary prefix
of P . Since the smallest 6k-period of P is Ω(k), |Ptail| = 2k, and 6k − 2k = 4k, the smallest
4k-period of Phead is also Ω(k). Thus, we execute the procedure of Lemma 21 with Phead.
Then, whenever the procedure reports Ham(Phead, T [i− |P |+ 1 . . i− 2k]) to be at most k,
the algorithm starts a process that computes Ham(Ptail, T [i− 2k + 1 . . i]). The procedure of
Lemma 21 reports Ham(Phead, T [i−|P |+ 1 . . i−2k]) before T [i−k+ 1] arrives. Hence, there
are still at least k character arrivals until Ham(P, T [i−|P |+1 . . i]) has to be reported. During
these character arrivals, the computation of Ham(Ptail, T [i− 2k + 1 . . i]) is done simply by
comparing pairs of characters. The total time of this computation is O(k), and by standard
de-amortization, this is O(1) time per character during the arrival of the k characters.

Since the smallest 4k-period of P is Ω(k), Fact 22 implies that any two k-mismatch
occurrences of P in T are at distance Ω(k). Therefore, the maximum number of processes
computing distances to Ptail at any time is O(1). Thus, the time cost per character of the
algorithm is dominated by the procedure of Lemma 21. J

8 Proof of Main Theorem

We conclude the paper with a proof of Theorem 3, which is our main result. In the
preprocessing, the shortest 6k-period ρ of the pattern P is determined. If ρ ≤ k, then the
text is processed using Corollary 20. This procedure uses Õ(s) space and costs Õ(

√
k) time

per character and Õ
(
n+min

(
nk2

m , nk√
s
, σnms

))
time in total. Otherwise, the text is processed

based on the Lemma 23. The space complexity in this case is Õ(k) = Õ(s), whereas the
running time is Õ(1) = Õ(

√
k) per character and Õ(n) in total.
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Abstract
In the problem of the longest common substring with k mismatches we are given two strings X,Y
and must find the maximal length ` such that there is a length-` substring of X and a length-`
substring of Y that differ in at most k positions. The length ` can be used as a robust measure of
similarity between X,Y . In this work, we develop new approximation algorithms for computing `
that are significantly more efficient that previously known solutions from the theoretical point of
view. Our approach is simple and practical, which we confirm via an experimental evaluation, and
is probably close to optimal as we demonstrate via a conditional lower bound.
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1 Introduction

For decades, the edit distance and its variants remained the most relevant measure of
similarity between biological sequences. However, there is strong evidence that the edit
distance cannot be computed in strongly subquadratic time [7]. One possible approach
to overcoming the quadratic time barrier is computing the edit distance approximately,
and last year in the breakthrough paper Chakraborty et al. [8] showed a constant-factor
approximation algorithm that computes the edit distance between two strings of length n
in time Õ(n2−2/7). Nevertheless, the algorithm is highly non-trivial and because of that is
likely to be impractical.

© Garance Gourdel, Tomasz Kociumaka, Jakub Radoszewski, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:garance.gourdel@ens-paris-saclay.fr
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:jrad@mimuw.edu.pl
mailto:tat.starikovskaya@gmail.com
https://doi.org/10.4230/LIPIcs.CPM.2020.16
https://arxiv.org/abs/2004.13389
https://github.com/fnareoh/LCS_Approx_k_mis
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Approximating Longest Common Substring with k Mismatches

A different approach is to consider alignment-free measures of similarities. Ideally, we
want the measure to be robust and simple enough so that we could compute it efficiently.
One candidate for such a measure is the length of the longest common substring with k

mismatches. Formally, given two strings X,Y of lengths at most n and an integer k, we want
to find the maximal length LCSk(X,Y ) of a substring of X that occurs in Y with at most k
mismatches. Computing this value constitutes the LCS with k Mismatches problem.

The LCS with k Mismatches problem was first considered for k = 1 [6, 13], with current
best algorithm taking O(n logn) time and O(n) space. The first algorithm for the general
value of k was shown by Flouri et al. [13]. Their simple approach used quadratic time and
linear space. Grabowski [15] focused on a data-dependent approach, namely, he showed
two linear-space algorithms with running times O(n((k + 1)(LCS + 1))k) and O(n2k/LCSk),
where LCS is the length of the longest common substring of X and Y and LCSk, similarly
to above, is the length of the longest common substring with k mismatches of X and Y .
Abboud et al. [1] showed a k1.5n2/2Ω(

√
(logn)/k)-time randomised solution to the problem via

the polynomial method. Thankachan et al. [24] presented an O(n logk n)-time, O(n)-space
solution for constant k. This approach was recently extended by Charalampopoulos et al. [10]
to develop an O(n)-time and O(n)-space algorithm for the case of LCSk = Ω(log2k+2 n).

On the other hand, Kociumaka, Radoszewski, and Starikovskaya [19] showed that there
is k = Θ(logn) such that the LCS with k Mismatches problem cannot be solved in strongly
subquadratic time, even for the binary alphabet, unless the Strong Exponential Time Hypo-
thesis (SETH) of Impagliazzo, Paturi, and Zane [16] is false. This conditional lower bound
implies that there is little hope to improve existing solutions to LCS with k Mismatches. To
overcome this barrier, they introduced an approximation approach to LCS with k Mismatches,
inspired by the work of Andoni and Indyk [4].

I Problem 1 (LCS with Approximately k Mismatches). Two strings X,Y of length at most n,
an integer k, and a constant ε > 0 are given. Return a substring of X of length at least
LCSk(X,Y ) that occurs in Y with at most (1 + ε) · k mismatches.

Kociumaka, Radoszewski, and Starikovskaya [19] also showed that for any ε ∈ (0, 2) the
LCS with Approximately k Mismatches problem can be solved in O(n1+1/(1+ε) log2 n) time and
O(n1+1/(1+ε)) space. Besides for superlinear space, their solution uses a very complex class
of hash functions which requires n4/3+o(1)-time preprocessing, and that is the underlying
reason for the bounds on ε. In this work, we significantly improve the complexity of the LCS
with Approximately k Mismatches problem and show the following results.

I Theorem 2. Let ε > 0 be an arbitrary constant. The LCS with Approximately k Mismatches
problem can be solved correctly with high probability:
1) In O(n1+1/(1+2ε)+o(1)) time and O(n1+1/(1+2ε)+o(1)) space assuming a constant-size al-

phabet;
2) In O(n1+1/(1+ε) log3 n) time and O(n) space for alphabets of arbitrary size.

Our first solution uses the Approximate Nearest Neighbour data structure [5] as a black
box. The definition of this data structure is extremely involved, and we view this result as
more of a theoretical interest. On the other hand, our second solution is simple and practical,
which we confirm by experimental evaluation (see Section 4 for details).

As a final remark, we note that a construction similar to the one used to show a
lower bound for the LCS with k Mismatches problem [19] gives a lower bound for LCS with
Approximately k Mismatches. A proof of the following fact can be found in Section 5.
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I Fact 3. Assuming SETH, for every constant δ > 0, there exists a constant ε = ε(δ)1 such
that any randomised algorithm that solves the LCS with Approximately k Mismatches problem
for given X and Y of length at most n correctly with constant probability uses Ω(n2−δ) time.

Related work. In 2014, Leimester and Morgenstern [20] introduced a related similarity
measure, the k-macs distance. Let LCPk(Xi, Yj) = max{` : dH(X[i, i+`−1], Y [j, j+`−1]) ≤
k}, where dH stands for Hamming distance, i.e. the number of mismatches between two
strings. We have LCSk = maxi,j LCPk(Xi, Yj). The k-macs distance, on the other hand, is
defined as a normalised average of these values. Leimeister and Morgenstern [20] showed a
heuristic algorithm for computing the k-macs distance, with no theoretical guarantees for
the precision of the approximation; other heuristic approaches for computing the k-macs
distance include [25, 26]. The only algorithm with provable theoretical guarantees is [24]
and it computes the k-macs distance in O(n logk n) time and O(n) space.

2 Preliminaries

We assume that the alphabet of the strings X,Y is Σ = {1, . . . , σ}, where σ = nO(1).

Karp–Rabin fingerprints. The Karp–Rabin fingerprint [18] of a string S = s1s2 . . . s` is
defined as

ϕ(S) =
(∑̀
i=1

ri−1si

)
mod q,

where q = Ω(max{n5, σ}) is a prime number, and r ∈ Fq is chosen uniformly at random.
Obviously, if S1 = S2, then ϕ(S1) = ϕ(S2). Furthermore, for any ` ≤ n, if the fingerprints of
two `-length strings S1, S2 are equal, then S1, S2 are equal with probability at least 1− 1/n4

(for a proof, see e.g. [21]).

Dimension reduction. We will exploit a computationally efficient variant of the Johnson–
Lindenstrauss lemma [17] which describes a low-distortion embedding from a high-dimensional
Euclidean space into a low-dimensional one. Let ‖·‖ be the Euclidean (L2) norm of a vector.
We will exploit the following claim which follows immediately from [2, Theorem 1.1]:

I Lemma 4. Let P be a set of n vectors in R`, where ` ≤ n. Given α = α(n) > 0 and a
constant β > 0, there is d = Θ(α−2 logn) and a scalar c > 0 such that the following holds. Let
M be a d× ` matrix filled with i.u.d. ±1 random variables. For all U ∈ P , define skα(U) =
c ·MU . Then for all U, V ∈ P there is ‖U − V ‖2 ≤ ‖skα(U)− skα(V )‖2 ≤ (1 +α)‖U − V ‖2
with probability at least 1− n−β.

Since the Hamming distance between binary strings U, V is equal to ‖U − V ‖2, the
matrix M defines a low-distortion embedding from an `-dimensional into a d-dimensional
Hamming space as well. For non-binary strings, an extra step is required. Let the alphabet
be Σ = {1, 2, . . . , σ} and consider a morphism µ : Σ → {0, 1}σ, where µ(a) = 0a−110σ−a
for all a ∈ Σ. We extend µ to strings in a natural way. Note that for two strings U, V over
the alphabet Σ the Hamming distance between µ(U), µ(V ) is exactly twice the Hamming
distance between U, V . We therefore obtain:

1 Here δ is a function of ε for which the explicit form is not known (a condition inherited from [22]).
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I Corollary 5. Let P be a set of n strings in Σ`, where ` ≤ n. Given α = α(n) > 0 and a
constant β > 0, there is d = Θ(α−2 logn) and a scalar c > 0 such that the following holds.
Let M be a d× (σ · `) matrix filled with i.u.d. ±1 random variables. For all U ∈ P , define
skα(U) = c ·Mµ(U). Then for all U, V ∈ P there is dH(U, V ) ≤ ‖skα(U) − skα(V )‖2 ≤
(1 + α)dH(U, V ) with probability at least 1− n−β.

We will use the corollary for dimension reduction, and also to design a simple test that
checks whether the Hamming distance between two strings is at most k.

I Corollary 6. Let P be a set of n strings in Σ`, where ` ≤ n. With probability at least
1− n−β, for all U, V ∈ P :
1) if ‖skα(U)− skα(V )‖2 ≤ (1 + α)k, then dH(U, V ) ≤ (1 + α) · k;
2) if ‖skα(U)− skα(V )‖2 > (1 + α)k, then dH(U, V ) ≥ k.

2.1 The Twenty Questions game
Consider the following version of the classic game “Twenty Questions”. There are two players:
Paul and Carole; Carole thinks of two numbers A,B between 0 and N , and Paul must return
some number in [A,B]. He is allowed to ask questions of form “Is x ≤ A?”, for any x ∈ [0, N ].
If x ≤ A, Carole must return YES; If A < x ≤ B, she can return anything; and if B < x,
she must return NO. Paul must return the answer after having asked at most Q questions
where Carole can tell at most dρQe lies, and only in the case when x ≤ A.

We show that Paul has a winning strategy for Q = Θ(logn) and any ρ < 1/3 by a
black-box reduction to the result of Dhagat, Gács, and Winkler [11] who showed a winning
strategy for A = B.

I Theorem 7 ([11]). For A = B, Paul has a winning strategy for all ρ < 1
3 asking

Q = d 8 logN
(1−3ρ)2 e questions.

This result is obtained by maintaining a stack of trusted intervals. Once Paul knows that
A is between ` and r, where ` ≤ r, he checks whether A is in the left or the right half of the
interval [`, r]. If no inconsistencies appear (like A < ` or r < A), he pushes the new interval
to the stack, else he removes the interval [`, r] from the stack of trusted intervals. After Q
rounds, Paul returns the only number in the top interval in the stack, which is guaranteed to
have length 1 and to contain A. We give the pseudocode of Paul’s strategy in Algorithm 1.
By Carole(x), we denote the answer of Carole for a question “Is x ≤ A?”.

Algorithm 1 The Twenty Questions game.

1: Q← d 8 logN
(1−3ρ)2 e

2: S ← {[0, N ]}
3: for i = 1, 2, . . . , Q/2 do
4: I = [`, r]← S.top()
5: mid ← d `+r2 e
6: if Carole(mid) then
7: if Carole(r) then S.pop() . The answer is inconsistent with I; remove I.
8: else S.push([mid, r])
9: else

10: if Carole(`) then S.push([`,mid − 1])
11: else S.pop() . The answer is inconsistent with I; remove I.

We now a show a winning strategy for our variant of the game.
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I Corollary 8. For A ≤ B, Paul has a winning strategy for all ρ < 1
3 asking Q = 8 logN

(1−3ρ)2

questions.

Proof. We introduce just one change to Algorithm 1, namely, we return the argument of the
largest YES obtained in the course of the algorithm. From the problem statement it follows
that the answer is at most B. We shall now prove that the answer is at least A. If Carole
ever returned YES for A < x ≤ B, then it is obviously the case. Otherwise, Carole actually
behaved as if she had A = B in mind: apart from the small fraction of erroneous answers,
she returned YES for x ≤ A, and NO for x > A. Thus, the strategy of Dhagat, Gács, and
Winkler ends up with A as the answer (and this must be due to a YES for x = A). J

3 LCS with Approximately k Mismatches

In this section, we prove Theorem 2. Let us first introduce a decision variant of the LCS with
Approximately k Mismatches problem.

I Problem 9. Two strings X,Y of length at most n, integers k, `, and a constant ε > 0 are
given. We must return:
1. YES if ` ≤ LCSk(X,Y );
2. Anything if LCSk(X,Y ) < ` ≤ LCS(1+ε)k(X,Y );
3. NO if LCS(1+ε)k(X,Y ) < `.
If we return YES, we must also give a witness pair of length-` substrings S1 and S2 of X
and Y , respectively, such that dH(S1, S2) ≤ (1 + ε)k.

The decision variant of the LCS with Approximately k Mismatches problem can be reduced
to the following (c, r)-Approximate Near Neighbour problem.

I Problem 10. In the (c, r)-Approximate Near Neighbour problem with failure probability f ,
the aim is, given a set P of n points in Rd, to construct a data structure supporting the
following queries: given any point q ∈ Rd, if there exists p ∈ P such that ‖p− q‖ ≤ r, then
return some point p′ ∈ P such that ‖p′ − q‖ ≤ cr with probability at least 1− f .

Using the reduction, we will show our first solution to the LCS with Approximately k
Mismatches decision problem based on the result of Andoni and Razenshteyn [5], who showed
that for any constant f , there is a data structure for the (c, r)-Approximate Near Neighbour
problem that has O(n1+ρ+o(1) + d · n) size, O(d · nρ+o(1)) query time, and O(d · n1+ρ+o(1))
preprocessing time, where ρ = 1/(2c2 − 1).

I Lemma 11. Assume an alphabet of constant size σ. The decision variant of the LCS with
Approximately k Mismatches problem can be solved in space O(n1+1/(1+2ε)+o(1)) and time
O(n1+1/(1+2ε)+o(1)). The answer is correct with constant probability.

Proof. Let P be the set of all length-` substrings of X and Q be the set of all length-`
substrings of Y , all encoded in binary using the morphism µ (see Section 2). We start
by applying the dimension reduction procedure of Corollary 5 to P and Q with α =
1/(log logn)Θ(1) and β = 2 to obtain sets P ′ and Q′. We can implement the procedure in
O(σn log2 n(log logn)Θ(1)) = O(n log2+o(1) n) time by encoding X,Y using µ and running
the FFT algorithm [12] for each of the O(log1+o(1) n) rows of the matrix and µ(X), µ(Y ).

To solve the decision variant of LCS with Approximately k Mismatches, we build the data
structure of Andoni and Razenshteyn [5] for (

√
(1 + ε)(1− α),

√
(1 + α)k)-Approximate Near

Neighbour over Q′. We make a query for each string in P ′. If, queried for skα(S1) ∈ P ′,
where S1 is a length-` substring of X, the data structure outputs skα(S2) ∈ Q′, where S2 is
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16:6 Approximating Longest Common Substring with k Mismatches

a length-` substring of Y , then we compute ‖skα(S1)− skα(S2)‖2. If it is at most (1 + ε)k,
we output YES and the witness pair (S1, S2) of substrings. As the length of vectors in P ′,
Q′ is d = O(log1+o(1) n), we obtain the desired complexity.

To show that the algorithm is correct, suppose that there are length-` substrings S1 and
S2 of X and Y , respectively, with dH(S1, S2) ≤ k. By Corollary 5, ‖skα(S1), skα(S2)‖ ≤√

(1 + α)k holds with probability at least 1− 1/n. Then, when querying for skα(S1), with
constant probability the data structure will output a string skα(S′2) such that ‖skα(S1)−
skα(S′2)‖2 ≤ (1 + ε)(1− α2)k ≤ (1 + ε)k. Then, our algorithm will return YES.

On the other hand, if we output YES with a witness pair (S1, S2), then ‖skα(S1) −
skα(S2)‖2 ≤ (1 + ε)k implies dH(S1, S2) ≤ (1 + ε)k with high probability by Corollary 5. J

While this solution is very fast, it uses quite a lot of space. Furthermore, the data
structure of [5] that we use as a black box applies highly non-trivial techniques. To overcome
these two disadvantages, we will show a different solution based on a careful implementation
of ideas first introduced in [4] that showed a data structure for approximate text indexing
with mismatches. In [19], the authors developed these ideas further to show an algorithm
that solves the LCS with Approximately k Mismatches problem in O(n1+1/(1+ε)) space and
O(n1+1/(1+ε) log2 n) time for ε ∈ (0, 2) with constant error probability. In this work, we
significantly improve and simplify the approach to show the following result:

I Theorem 12. Assume an alphabet of arbitrary size σ = nO(1). The decision variant of
LCS with Approximately k Mismatches can be solved in O(n1+1/(1+ε) log2 n) time and O(n)
space. The answer is correct with constant probability.

Let us defer the proof of the theorem until Section 3.1 and start by explaining how we
use Lemma 11 and Theorem 12 and the Twenty Questions game to show Theorem 2.

Proof of Theorem 2. We will rely on the modified version of the Twenty Questions game
that we described in Section 2.1. In our case, A = LCSk(X,Y ) and B = LCS(1+ε)k(X,Y ).
For Carole, we use either the algorithm of Lemma 11, or the algorithm of Theorem 12, with
an additional procedure verifying the witness pair (S1, S2) character by character to check
that it indeed satisfies dH(S1, S2) ≤ (1 + ε)k. We output the longest pair of (honest) witness
substrings found across all iterations. We will return a correct answer assuming that the
fraction of errors is ρ < 1

3 . Recall that the algorithm solves the decision variant of the
LCS with Approximately k Mismatches problem incorrectly with probability not exceeding a
constant δ, and we can ensure δ < 1

3 by repeating it a constant number of times. It means
that Carole can answer an individual question erroneously with probability less than 1

3 .
Therefore, for a sufficiently large constant in the number of queries Q = Θ(logn), the fraction
of erroneous answers is ρ < 1

3 with high probability by Chernoff–Hoeffding bounds. The
claim of the theorem follows immediately from Lemma 11 and Theorem 12. J

3.1 Proof of Theorem 12
We first give an algorithm for the decision version of the LCS with Approximately k Mismatches
problem that uses O(n logn) space and O(n1+1/(1+ε) logn + σn log2 n) time, and then we
improve the space and time complexity.

We assume to have fixed a Karp–Rabin fingerprinting function ϕ for a prime q =
Ω(max{n5, σ}) and an integer r ∈ Zq. With error probability inverse polynomial in n, we
can find such q in O(logO(1) n) time; see [23, 3].
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Let Π be the set of all projections of strings of length ` onto a single position, i.e., the
value πi(S) of the i-th projection on a string S of length ` is simply its i-th character S[i].
More generally, for a length-` string S and a function h = (πa1 , . . . , πam

) ∈ Πm, we define
h(S) as S[a1]S[a2] · · ·S[am].

Let p1 = 1 − k/` and p2 = 1 − (1 + ε)k/`. We assume that (1 + ε)k < ` in order to
guarantee p1 > p2 > 0; the problem is trivial if (1 + ε)k ≥ `. Further, let m = dlogp2

1
ne.

We choose a set H of L = Θ(n1/(1+ε)) hash functions in Πm uniformly at random. Let CH`
be the mutliset of all collisions of length-` substrings of X and Y under the functions from H,
i.e. CH` = {(X[i, i+ `− 1], Y [j, j+ `− 1], h) : ϕ(h(X[i, i+ `− 1])) = ϕ(h(Y [j, j+ `− 1])), 1 ≤
i ≤ |X| − `, 1 ≤ j ≤ |Y | − `}.

We will perform two tests. The first test chooses an arbitrary subset C ′ ⊆ CH` of size
|C ′| = min{4nL, |CH` |} and, for each collision (S1, S2, h) ∈ C ′, computes ‖skε(S1)−skε(S2)‖2.
If this value is at most (1 + ε)k, then the algorithm returns YES and the pair (S1, S2) as
a witness. The second test chooses a collision (S1, S2, h) ∈ CH` uniformly at random and
computes the Hamming distance between S1 and S2 character by character in O(`) = O(n)
time. If the Hamming distance is at most (1 + ε)k, the algorithm returns YES and the
witness pair (S1, S2). Otherwise, the algorithm returns NO. See Algorithm 2.

Algorithm 2 LCS with Approximately k Mismatches (decision variant).

1: Choose a set H of L functions from Πm uniformly at random
2: CH` ={(S1, S2, h) : S1, S2 – length-` substrings of X,Y resp. and ϕ(h(S1)) = ϕ(h(S2))}
3: Choose an arbitrary subset C ′ ⊆ CH` of size min{4nL, |CH` |}
4: Compute skε(·) sketches for all length-` substrings of X,Y
5: for (S1, S2, h) ∈ C ′ do
6: if ‖skε(S1)− skε(S2)‖2 ≤ (1 + ε)k then return (YES, (S1, S2))
7: Draw a collision (S1, S2, h) ∈ CH` uniformly at random
8: if dH(S1, S2) ≤ (1 + ε)k then return (YES, (S1, S2))
9: return NO

We must explain how we compute CH` and choose the collisions that we test. We consider
each hash function h ∈ H in turn. Let h = (πa1 , . . . , πam

). Recall that for a string S of length `
we define h(S) as S[a1]S[a2] · · ·S[am]. Consequently, ϕ(h(S)) = (

∑m
i=1 r

i−1S[ai]) mod q.
We create a vector U of length ` where each entry is initialised with 0. For each i, we add
ri−1 mod q to the ai-th entry of U . Finally, we run the FFT algorithm [12] for U and X,Y
in the field Zq, and sort the resulting values. We obtain a list of sorted values that we can
use to generate the collisions. Namely, consider some fixed value z. Assume that there are x
substrings of X and y substrings of Y of length ` such that the fingerprint of their projection
is equal to z. The value z then gives xy collisions, and we can generate each one of them in
constant time. This explains how to choose the subset C ′ in O(nL logn) time.

To draw a collision from CH` uniformly at random, we could simply compute the total
number of collisions across all functions h ∈ H, draw a number in [1, |CH` |], and generate the
corresponding collision. However, this would require to generate the collisions twice. Instead,
we use the weighted reservoir sampling algorithm [9]. We divide all collisions into subsets
according to the values of fingerprints. We assume that the weighted reservoir sampling
algorithm receives the fingerprint values one-by-one, as well as the number of corresponding
collisions. At all times, the algorithm maintains a “reservoir” containing one fingerprint value
and a random collision corresponding to this value. When a new value z with xy collisions
arrives, the algorithm replaces the value in the reservoir with z and a random collision with
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some probability. Note that to select a random collision it suffices to choose a pair from
[1, x]× [1, y] uniformly at random. It is guaranteed that if for a value z we have xy collisions,
the algorithm will select z with probability xy/|CH` |. Consequently, after processing all
values, the reservoir will contain a collision chosen from CH` uniformly at random.

I Lemma 13. Algorithm 2 uses O(n1+1/(1+ε) logn+ σn log2 n) time and O(n logn) space.

Proof. Computing the sketches (Line 4) takes O(σn log2 n) time and O(n logn) space.
Computing the collisions and choosing the collisions to test takes O(n1+1/(1+ε) logn) time
and O(n) space in total. Testing min{4nL, |CH` |} collisions (Line 5) takes O(n1+1/(1+ε) logn)
time and constant space. Computing the Hamming distance for a random collision (Line 8)
takes O(`) = O(n) time and constant space. J

I Lemma 14. Let S1 and S2 be two length-` substrings of X and Y , respectively, with
dH(S1, S2) ≤ k. If L = Θ(n1/(1+ε)) is large enough, then, with probability at least 3/4, there
exists a function h ∈ H such that h(S1) = h(S2).

Proof. Consider a function h = (πa1 , . . . , πam
) drawn from Πm uniformly at random. The

probability of h(S1) = h(S2) is at least pm1 . Due to p1 ≤ 1, we have

pm1 = p
dlogp2

1
n e

1 ≥ p1+logp2
1
n

1 = p1 · n−
log p1
log p2 .

Moreover, p1 = 1− k
` and (1+ε)k < ` yield p1 > 1− 1

1+ε = ε
1+ε , whereas Bernoulli’s inequality

implies p2 = 1− (1 + ε)k` ≤ (1− k
` )1+ε = p1+ε

1 , i.e., log p2 ≤ (1 + ε) log p1. Therefore,

pm1 ≥ p1 · n−
log p1
log p2 ≥ ε

1+ε · n
− 1

1+ε .

Hence, we can choose the constant in L = |H| so that the claim of the lemma holds. J

I Lemma 15. If |CH` | > 4nL and (S1, S2, h) is a uniformly random element of CH` , then
Pr[dH(S1, S2) ≥ (1 + ε)k] ≤ 1

2 .

Proof. Consider length-` substrings S1, S2 of X,Y , respectively, such that dH(S1, S2) ≥
(1 + ε)k, and a hash function h. Let us bound the probability of (S1, S2, h) ∈ CH` . There
two possible cases: either h(S1) 6= h(S2) but ϕ(h(S1)) = ϕ(h(S2)), or h(S1) = h(S2).
The probability of the first event is bounded by the collision probability of Karp–Rabin
fingerprints, which is at most 1/n. Let us now bound the probability of the second event.
Since dH(S1, S2) ≥ (1+ε)k, we have Pr[h(S1) = h(S2)] ≤ pm2 ≤ 1/n, where the last inequality
follows from the definition of m. Therefore, the probability that for some function h ∈ H we
have ϕ(h(S1)) = ϕ(h(S2)) is at most 2/n.

In total, we have n2|H| possible triples (S1, S2, h) so by linearity of expectation, we
conclude that the expected number of such triples is at most 2

nn
2L = 2nL. Therefore the

probability to hit a triple (S1, S2, h) such that dH(S1, S2) ≥ (1 + ε)k when drawing from CH`
uniformly at random is at most 2nL/|CH` | ≤ 2nL/4nL = 1/2. J

Below, we combine the previous results to prove that, with constant probability, Al-
gorithm 2 correctly solves the decision variant of the LCS with Approximately k Mismatches
problem. Note that we can reduce the error probability to an arbitrarily small constant
δ > 0: it suffices to repeat the algorithm a constant number of times.

I Corollary 16. With non-zero constant probability, Algorithm 2 solves the decision variant
of LCS with Approximately k Mismatches correctly.
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Proof. Suppose first that ` ≤ LCSk(X,Y ), which means that there are two length-` substrings
S1, S2 of X,Y such that dH(S1, S2) ≤ k. By Lemma 14, with probability at least 3/4, there
exists a function h ∈ H such that h(S1) = h(S2). In other words, (S1, S2, h) ∈ CH` with
probability at least 3

4 . If |C
H
` | < 4nL, we will find this triple and it will pass the test with

probability at least 1 − n−6. If |CH` | ≥ 4nL, then by Lemma 15 the Hamming distance
between S1, S2, where (S1, S2, h) was drawn from CH` uniformly at random, is at most
(1 + ε)k with probability ≥ 1/2, and therefore this pair will pass the test with probability
≥ 1/2. It follows that in this case the algorithm outputs YES with constant probability.

Suppose now that ` > LCS(1+ε)k(X,Y ). In this case, the Hamming distance between any
pair of length-` substrings of X and Y is at least (1 + ε)k, so none of them will ever pass the
second test and none of them will pass the first test with constant probability. J

We now improve the space of the algorithm to linear. Note that the only reason why
we needed O(n logn) space is that we precompute and store the sketches for the Hamming
distance. Below we explain how to overcome this technicality.

First, we do not precompute the sketches. Second, we process the collisions in C ′ in
batches of size n. Consider one of the batches, B. For each collision (S1, S2, h) ∈ B we must
compute ‖skε(S1)− skε(S2)‖2. We initialize a counter for every collision, setting it to zero
initially. The number of rounds in the algorithm will be equal to the length of the sketches,
and, in round i, the counter for a collision (S1, S2, h) ∈ B will contain the squared L2 distance
between the length-i prefixes of skε(S1) and skε(S2). In more detail, let S be the set of all
substrings of X,Y that participate in the collisions in B. Recall that all these substrings
have length `. At round i, we compute the i-th coordinate of the sketches of the substrings
in S. By definition, the i-th coordinate is the dot product of the i-th row of c ·M , where
c and M are as in Corollary 5, and a substring encoded using µ. Hence, we can compute
the coordinate using the FFT algorithm [12] in O(σn logn) time and O(n) space. When we
have the coordinate i computed, we update the counters for the collisions and repeat.

At any time, the algorithm uses O(n) space. Compared to the time consumption proven in
Lemma 13, the algorithm spends an additional O(σn1+1/(1+ε) log2 n) time for computing the
coordinates of the sketches. Therefore, in total the algorithm uses O(σn1+1/(1+ε) log2 n) =
O(n1+1/(1+ε) log2 n) time and O(n) space. For constant-size alphabets, this completes the
proof of Theorem 12. For alphabets of arbitrary size, we replace the sketches from Section 2
with the sketches defined in [19] to achieve the desired complexity. We note that we could
use the sketches [19] for small-size alphabets as well, but their lengths hide a large constant.

4 Experiments

We now present results of experimental evaluation of the second solution of Theorem 2.

Methodology and test environment. The baselines and our solution are written in C++11
and compiled with optimizations using gcc 7.4.0. The experimental results were generated
on an Intel Xeon E5-2630 CPU using 128 GiB RAM. To ensure the reproducibility of
our results, our complete experimental setup, including data files, is available at https:
//github.com/fnareoh/LCS_Approx_k_mis.

Baseline. The only other solution to the LCS with Approximately k Mismatches problem was
presented in [19]. However, it has a worse complexity and is likely to be unpractical because
it uses a very complex class of hash functions. We therefore chose to compare our algorithm
against algorithms for the LCS with k Mismatches problem. To the best of our knowledge,
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none of the existing algorithms has been implemented. We implemented the solution to LCS
with k Mismatches by Flouri et al., which we refer to as FGKU [13]. (The other algorithms
seem too complex to be efficient in practice.) The main idea of the algorithm of Flouri et al.
is that if we know that the longest common substring with k mismatches is obtained by a
substring of X that starts at a position p and a substring of Y that starts at a position p+ i,
then we can find it by scanning X and Y [i, |Y |] in linear time.

Details of implementation. We made several adjustments to the theoretical algorithm
we described. First, we use the fact that A = LCS(X,Y ) + k ≤ LCSk(X,Y ) ≤ B =
(k + 1) · LCS(X,Y ) + k to bound the interval in the Twenty Questions game. We also treated
the number of questions in the Twenty Questions game and L, the size of the set of hash
functions H, as parameters that trade time for accuracy, and put the number of questions to
2 log(B −A) in the Twenty Questions game and L = n1/(1+ε)/16. In Line 6 of Algorithm 2,
we used sketches to estimate the Hamming distance. In practice, we computed the Hamming
distance via character-by-character comparison when ` is small compared to k and via
kangaroo jumps [14] otherwise. Also, when ` ≤ 2 logn in Algorithm 2, we computed the hash
values of the length-` substrings of S1 and S2 naively, instead of using the FFT algorithm [12].

Data sets and results. We considered k ∈ {10, 25, 50} and ε ∈ {1.0, 1.25, 1.5, 1.75, 2.0}. We
tested the algorithms on pairs of random strings (each character is selected independently
and uniformly from a four-character alphabet {A, T,G,C}) and on pairs of strings extracted
at random from the E. coli genome. The lengths of the strings in each pair are equal and
vary from 0 to 60000 with a step of 5000. All timings reported are averaged over ten runs.
Figures 1–3 show the results for k = 10, 25, 50. We note that for ε = 1 and k = 10, 25,
the standard deviation of the running time on the E. coli data set is quite large, which is
probably caused by our choice of the method to compute the Hamming distance between
substrings, but for all other parameter combinations it is within the standard range. We can
see that the time decreases when ε grows, which is coherent with the theoretical complexity.

As for the accuracy, note that our algorithm cannot return a pair of strings at Hamming
distance more than (1 + ε)k, and so the only risk is returning strings which are too short.
Consequently, we measured the accuracy of our implementation by the ratio of the length

(a) Random, k = 10. (b) E. coli, k = 10.

Figure 1 Comparison of the FGKU algorithm versus our algorithm for k = 10 and different
values of ε. Large standard deviation for length 60000 is caused by an outlier with very long longest
common substring with k mismatches.
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(a) Random, k = 25. (b) E. coli, k = 25.

Figure 2 Comparison of the FGKU algorithm versus our algorithm for k = 25 and different
values of ε.

(a) Random, k = 50. (b) E. coli, k = 50.

Figure 3 Comparison of the FGKU algorithm versus our algorithm for k = 50 and different
values of ε.

Table 1 Accuracy of the LCS with Approximately k Mismatches algorithm. For each k and ε, we
show rmin(ε, k), rmax(ε, k), as well as the error rate.

Random E. coli
k = 10 k = 25 k = 50 k = 10 k = 25 k = 50

ε = 1.0 0.95 1.41 1.12 1.46 1.27 1.54 0.89 1.34 0.94 1.48 0.97 1.59
error = 3% error = 0% error = 0% error = 33% error = 13% error = 3%

ε = 1.25 0.97 1.47 1.15 1.63 1.44 1.78 0.88 1.48 0.98 1.56 0.99 1.73
error = 1% error = 0% error = 0% error = 28% error = 5% error = 3%

ε = 1.5 1.05 1.57 1.37 1.76 1.55 1.91 0.88 1.45 0.96 1.67 0.99 1.89
error = 0% error = 0% error = 0% error = 17% error = 3% error = 3%

ε = 1.75 1.02 1.69 1.46 1.86 1.72 2.12 0.88 1.58 0.95 1.84 1.02 2.15
error = 0% error = 0% error = 0% error = 17% error = 2% error = 0%

ε = 2.0 1.10 1.72 1.59 2.00 1.89 2.24 0.91 1.77 1.01 2.10 1.00 2.19
error = 0% error = 0% error = 0% error = 9% error = 0% error = 1%
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LCSk̃(X,Y ) returned by our algorithm divided by LCSk(X,Y ) computed by the dynamic
programming. We estimate rmin(ε, k) = minX,Y (LCSk̃(X,Y )/LCSk(X,Y )) and rmax(ε, k) =
maxX,Y (LCSk̃(X,Y )/LCSk(X,Y )) by computing LCSk̃(X,Y ) and LCSk(X,Y ) for 10 pairs
of strings for each length from 5000 to 60000 with step of 5000, as well as the error rate,
i.e., the percentage of experiments where LCSk̃(X,Y ) < LCSk(X,Y ) (see Table 1). Not
surprisingly, rmin and rmax grow as k and ε grow, while the error rate drops. Even though
there is no theoretical upper bound on rmax, the latter is at most 2.24 at all times. We also
note that even in the cases when the error rate is non-negligible, LCSk̃ ≥ 0.86 · LCSk; in
other words, our algorithm returns a reasonable approximation of LCSk.

5 Proof of Fact 3

We now show the lower bound of Fact 3 by a reduction from the (1 + γ)-approximate
Bichromatic Closest Pair problem.

I Problem 17 ((1 + γ)-approximate Bichromatic Closest Pair). Given a constant γ > 0 and
two sets of binary strings (Ui)i∈[1,N ] and (Vj)j∈[1,N ], each of length d = O(logN), if the
smallest Hamming distance between a pair (Ui, Vj)i,j∈[1,N ] is h, we must output (possibly
another) pair of binary strings (Ui, Vj) with Hamming distance in [h, (1 + γ)h].

Rubinstein [22] proved that for every constant δ > 0, there exists γ = γ(δ) such that any
randomised algorithm that solves (1 + γ)-approximate Bichromatic Closest Pair correctly with
constant probability requires O(N2−δ) time assuming SETH:

I Hypothesis 18 (SETH). For every δ > 0, there exists an integer q such that SAT on
q-CNF formulas with m clauses and n variables cannot be solved in mO(1)2(1−δ)n time even
by a Monte-Carlo randomised algorithm (with error probability bounded by a small constant)2.

We show the lower bound by reducing a single instance of (1 +γ)-approximate Bichromatic
Closest Pair to a polylogarithmic number of instances of LCS with Approximately k Mismatches.
We assume that Ui, Vj are over the alphabet {0, 1}. Let us introduce a string H = (adb)d+1

and construct X = HU1HU2H . . .HUNH and Y = HV1HV2H . . .HVNH.

I Observation 19. For every integer k ≥ 0, if there exist i, j ∈ [1, N ] such that dH(Ui, Vj) ≤
k, then LCSk(X,Y ) ≥ 2(d+ 1)2 + d.

Proof. If dH(Ui, Vj) ≤ k for some i, j, then dH(HUiH,HVjH) ≤ k and LCSk(X,Y ) ≥
|HUiH| = 2(d+ 1)2 + d. J

I Lemma 20. For every integer 0 ≤ k ≤ d, if LCSk(X,Y ) ≥ 2(d+ 1)2 + d, then there exist
i, j ∈ [1, N ] such that dH(Ui, Vj) ≤ k.

Proof. By the assumption of the lemma, there exist substrings S1 and S2 of X and Y ,
respectively, with |S1| = |S2| ≥ 2(d+ 1)2 + d and dH(S1, S2) ≤ k. The substring S2 contains
either HVj or VjH for some j. Without loss of generality, we can assume that S2 contains a
copy of H followed by Vj for some j. Let us consider the substring S of X aligned with the
copy of H in S2. Below we will prove that S = H, and since S is followed by Ui for some i,
this will imply that dH(HUiH,HVjH) ≤ k.

2 Impagliazzo, Paturi, and Zane [16] stated the hypothesis for deterministic algorithms only, but nowadays
it is common to extend SETH to allow randomisation. If we condition on the classic version of the
hypothesis, we will obtain a lower bound for deterministic algorithms. See [27] for more discussion.
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X . . . . . .H Ui−1 H Ui H

Y . . . . . .Vj−1 H Vj H

S1

S2

S
s

Figure 4 Substrings S1 and S2 of X and Y , respectively, substring S aligned with a copy of H
in S2, and the shift s.

Suppose that S 6= H, and let 0 < s < (d+ 1)2 + d be the distance between the starting
positions of S and the nearest copy of H from the left. If s < d + 1 or (d + 1)2 < s, then
each occurrence of b in H creates a mismatch. There are d+ 1 > k of them, a contradiction.
If d+ 1 ≤ s ≤ (d+ 1)2, then S contains Ui, creating d mismatches with H. Since |Ui| = d

and |H| = (d+ 1)2, we will have at least one more mismatch from the alignment of the copy
of H in Y and the copies of H in X that surround Ui. Therefore, in total there are at least
d+ 1 > k mismatches, a contradiction. To conclude, both cases are impossible, and hence
s = 0. The lemma follows as explained above. J

With this lemma, we can now proceed to prove Fact 3. Define ε = γ/3 and consider all
k = 1, (1 + ε), (1 + ε)2, (1 + ε)3, . . . until d/(1 + ε). For each k, we run log logn independent
instances of an algorithm for LCS with Approximately k Mismatches. Let k0 be the smallest
k such that the identified longest common substring with approximately k mismatches has
length at least 2(d+ 1)2 + d.

By the definition of k0, Observation 19 and Lemma 20, there do not exist i, j ∈ [1, N ] such
that dH(Ui, Vj) ≤ k0/(1 + ε), but there exist i, j ∈ [1, N ] such that dH(Ui, Vj) ≤ k0(1 + ε).
In the (1 + γ)-approximate Bichromatic Closest Pair problem, this translates to k0/(1 + ε) <
h ≤ k0(1 + ε), where h is the minimal distance between all pairs Ui, Vj . This is equivalent to

h ≤ k0(1 + ε) < h(1 + ε)2 = h(1 + 2
3γ + 1

9γ
2) ≤ h(1 + γ),

which means that the pair (Ui, Vj) found by the algorithm for k0 is a valid solution for
(1 + γ)-approximate Bichromatic Closest Pair. It follows that, for some k, the algorithm for
LCS with Approximately k Mismatches must spend Ω(N2−δ/ log1+ε logN) time. We have
n = |X| = |Y | = O(d2N) = O(N log2N), which implies N = Ω(n/ log2 n). Fact 3 follows.
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Abstract
In the NP-hard Equality-Free String Factorization problem, we are given a string S and ask
whether S can be partitioned into k factors that are pairwise distinct. We describe a randomized
algorithm for Equality-Free String Factorization with running time 2k ·kO(1) +O(n) improving
over previous algorithms with running time kO(k) + O(n) [Schmid, TCS 2016; Mincu and Popa,
Proc. SOFSEM 2020]. Our algorithm works for the generalization of Equality-Free String Fac-
torization where equality can be replaced by an arbitrary polynomial-time computable equivalence
relation on strings. We also consider two factorization problems to which this algorithm does not
apply, namely Prefix-Free String Factorization where we ask for a factorization of size k such
that no factor is a prefix of another factor and Substring-Free String Factorization where we
ask for a factorization of size k such that no factor is a substring of another factor. We show that
these two problems are NP-hard as well. Then, we show that Prefix-Free String Factorization
with the prefix-free relation is fixed-parameter tractable with respect to k by providing a polynomial
problem kernel. Finally, we show a generic ILP formulation for R-Free String Factorization
where R is an arbitrary relation on strings. This formulation improves over a previous one for
Equality-Free String Factorization in terms of the number of variables.
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1 Introduction

In collision-aware string partitioning problems we are given a string S and want to compute
a factorization of S, that is, a partition of S into substrings, called factors, such that no
two factors of the factorization collide. Herein, two strings collide if they are too similar,
for example if they are equal or if one is a prefix of the other [8]. These problems have
applications in synthetic biology, where one important task is to assemble a DNA string S
from some of its factors. To allow for an assembly of S, the factors from which S is built need
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17:2 String Factorizations Under Various Collision Constraints

to be sufficiently different from each other, as otherwise the assembly process will produce
some unwanted string S′ 6= S. The demand for pairwise inequality or pairwise prefix-freeness
of the factors is an abstraction of the demand of sufficiently large differences [8]. Such
demands are always fulfilled by the trivial factorization which consists of the single factor S
but in the application described above, we aim to find small factors. Thus, the task is to
find a factorization with the desired property such that each factor has bounded length [7,8].
Another closely related variant of collision-aware string partitioning arises in the context of
pattern matching with variables [11]. Here, the additional restriction is not on the length of
the factors but instead on their number.

Equality-Free String Factorization
Input: A string S of length n and an integer k.
Question: Is there a factorization of S into k pairwise different factors?

Equality-Free String Factorization is NP-hard [11]. Motivated by this result,
Schmid [16] initiated a parameterized complexity analysis with respect to parameters such as
the alphabet size of S or the factorization size k. For the latter parameter, an algorithm with
running time O((k

2+k
2 − 1)k + n) was proposed [16]. This algorithm relies on a combination

of the brute-force algorithm with running time O(nk) with the observation that instances
with n ≥ k2+k

2 −1 are yes-instances. The running time was later improved to O(kk/2 +n) [15].
We continue the study of Equality-Free String Factorization with respect to the nat-
ural parameter k. Moreover, we consider several extensions and variants of Equality-Free
String Factorization and study their classical and parameterized complexity.

Our Results. We present an improved randomized fixed-parameter algorithm for Equality-
Free String Factorization with a running time of 2k · nO(1). This algorithm relies on
a reduction to the problem of finding a path with k different colors in a directed graph G
and on an algebraic algorithm for finding such a path. This is one of the few applications
of algebraic algorithms to NP-hard string problems, another application was provided for
Maximum Duo String Partitioning [13]. Curiously, in both applications the first step is
a reduction to a path-finding problem in an auxiliary graph. Unlike previous approaches
which are tailored to Equality-Free String Factorization since they use the fact that
strings with different length are unequal, our algorithm works for an arbitrary equivalence
relation R over strings and thus for further notions of collision. To formulate our result
precisely, we introduce the following generic problem.

R-Free String Factorization
Input: A string S of length n and an integer k.
Question: Is there a factorization (w1, w2, . . . , wk) of S such that wi 6R wj for
all i 6= j?

I Theorem 1.1. Let R be a polynomial-time computable equivalence relation over the set of
all strings. Then, R-Free String Factorization can be solved by a randomized algorithm
with one-sided error and running time 2k · nO(1).

Two natural examples for such an equivalence relation are to consider two strings as similar
when they use the same set of letters, we denote this relation by =Σ, and to consider
two strings w and w′ as similar when they have the same Parikh vector, we denote this
relation by =Σ,#. The Parikh vector of a string w over alphabet Σ = {a1, . . . , aσ} is the
length-σ vector pw where pw[i] is the number of occurrences of ai in w. This notion of
equivalence is used in Jumbled Pattern Matching [6]. Since =Σ and =Σ,# are equivalence
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relations, Theorem 1.1 directly implies an FPT algorithm for them. It is a priori not clear,
however, whether R-Free String Factorization is even NP-hard for these particular
special cases of R. To show NP-hardness of these two special cases, we revisit the NP-hardness
proof for Equality-Free String Factorization [11].

Motivated by the different notions of string collision that have been formulated previ-
ously [7, 8] we then consider three cases of R that are not equivalence relations: In the prefix
relation 4p we have w 4p w′ if w is a prefix of w′, in the suffix relation 4s we have w 4s w′

if w is a suffix of w′, and in the substring relation 4 we have w 4 w′ if w is a substring
of w′. By slightly adapting the known hardness reduction for Equality-Free String
Factorization [11], we obtain the following.

I Theorem 1.2. For each R ∈ {=Σ,=Σ,#,4p,4s,4}, R-Free String Factorization is
NP-complete and cannot be solved in time 2o(n) unless the ETH fails.

Our second main technical result is a problem kernel for Prefix-Free String Factor-
ization, that is, for the special case where R is the prefix relation 4p. This kernel proves
that Prefix-Free String Factorization is fixed-parameter tractable for the parameter k
despite the fact that Theorem 1.1 does not apply. The main idea of the kernelization is to
shrink highly repetitive regions of the string S. Moreover, this result also implies that Suffix-
Free String Factorization, which is the special case of R-Free String Factorization
where R =4s, is fixed-parameter tractable for the parameter k. Finally, as a side result we
obtain an ILP formulation with O(n) variables for R-Free String Factorization for all
relations R that can be computed in polynomial time. This improves, in terms of the number
of variables, upon a previous formulation for Equality-Free String Factorization [15].

Related Work. Fernau et al. [11] introduced the problem of maximizing the number of
factors and showed that it is NP-hard. The NP-hardness reduction also implies that, assuming
the ETH, Equality-Free String Factorization cannot be solved in 2o(n) time (this uses
the fact that 3D Matching cannot be solved in 2o(q) time, where q is the instance size [12]).
Mincu and Popa [15] introduced a version of Equality-Free String Factorization in
which one allows gaps between the factors. That is, the aim is to find k disjoint factors of S
such that no two are equal. A further related NP-hard factorization problem is Diverse
Palindromic Factorization, where we ask whether a given string has an equality-free
factorization in which each factor is a palindrome [1].

Preliminaries. For i ∈ N, we let [i] denote the set {1, . . . , i}. For i ∈ N and j ∈ N,
where i ≤ j, we let [i, j] denote the set {i, . . . , j}.

The length of a string S is denoted by |S|. For a string S, we let S[i], 1 ≤ i ≤ |S|, denote
the character at position i and S[i, j], 1 ≤ i ≤ j ≤ |S|, denote the substring starting at
position i and ending at position j. Given a string S = S[1]S[2] . . . S[|S|], we define S1 := S

and Si := Si−1S for i > n. Moreover, we let←−S := S[|S|]S[|S|−1] . . . S[1] denote the reversed
string of S. A period of S is an integer p such that S[i] = S[i+ p] for all i ∈ [|S| − p]. The
string S[1, p] is also called period in this case. If a string S can be written as w′wiw′′ for
some i ≥ 1 and has period |w|, then we call w an internal period of S. A border of a string S
is a suffix of S that is also a prefix of S. If a string has a border of length b, then it has a
period of length |S| − b [9]. Two substrings S[i, j] and S[i′, j′] overlap if [i, j] ∩ [i′, j′] 6= ∅,
otherwise they are disjoint. A set P of substrings of a string S is a packing if all substrings
in P are disjoint. A set S of strings is prefix-free if no string in S is a prefix of another
string in S. To avoid confusion, we will use the term factor only in combination with a
factorization and not as a synonym of substring.
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We consider directed graphs D = (V,A) where V is a set of vertices and A ⊆ V × V is
a set of directed edges called arcs. A walk of length k in a directed graph D = (V,A) is a
k-tuple (v1, . . . , vk) such that vi ∈ V for each i ∈ [k] and (vi, vi+1) ∈ A for each i ∈ [k − 1].
A walk (v1, . . . , vk) is a (simple) path if vi 6= vj for all i 6= j. A walk (v1, . . . , vk) is a cycle
whenever v1 = vk.

For more details on parameterized algorithms and the Exponential Time Hypothesis
(ETH), we refer the reader to the standard monographs. For an overview of the parameterized
complexity of string problems, refer to the survey of Bulteau et al. [5]. For an introduction
to algebraic algorithms including evaluation of polynomials over finite fields, refer to the
monograph of Cygan et al. [10].

Due to lack of space, several proofs are deferred to the long version of this paper.

Lower-Bounding the Factorization Size. In the definition of R-Free String Factoriz-
ation we ask for a factorization into exactly k factors. An equally natural question would
be to ask for a factorization into at least k factors. It is known that for Equality-Free
String Factorization these two questions are equivalent: by merging a largest factor with
a neighboring factor, any equality-free factorization of size k′ can be transformed into one of
size k′ − 1. Such a property is also possible for the relations R under consideration in this
work: For =Σ, merge a factor with a maximal set of characters with one of its neighboring
factors. For =Σ,#, merge the factor with the lexicographically largest Parikh vector with one
of its neighboring factors. For 4p, we make use of the following observation which will also
be useful in the kernelization algorithm.

I Lemma 1.3. Let S be a prefix-free set of strings over an alphabet Σ and let u ∈ S be any
string of S and let v ∈ Σ∗. Then the set S \ {u} ∪ {uv} is prefix-free.

Proof. The string uv is not a prefix of any other string in S since the string u is not a prefix
of any other string in S. Moreover, no other string w is a prefix of uv: Otherwise, if |w| ≤ |u|,
then w is a prefix of u and if |w| > u, then u is a prefix of w. In both cases, we have a
contradiction to the fact that S is prefix-free. J

Lemma 1.3 can now be used to argue that asking for a prefix-factorization of size k is
equivalent to asking for one of size at least k: Given a prefix-free factorization (f1, . . . , fk′)
where k′ > 1, merge f1 and f2 into one factor. By Lemma 1.3 the factorization (f1f2, . . . , fk′)
is prefix-free and has size size k′ − 1.

2 An Improved Parameterized Algorithm

A Reduction to a Rainbow Path Problem. The first step in the improved algorithm is to
reduce R-Free String Factorization to the following path problem.

Rainbow-(s, t)-Path
Input: A directed graph D = (V,A), two vertices s ∈ V and t ∈ V , and a vertex-
coloring c : V → {1, . . . , |V |}.
Question: Does G contain a rainbow (s, t)-path of length k, that is, a path on k

vertices from s to t such that all vertices on this path have pairwise different colors?

I Lemma 2.1. There is a parameterized polynomial-time reduction from R-Free String
Factorization parameterized by k to Rainbow-(s, t)-Path parameterized by k. Instances
with parameter value k are mapped to instances with parameter value k + 2 and the graph
produced by the reduction is a DAG.
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Proof. For each substring S[i, j], create a vertex vi,j . For each vertex vi,j add an arc to each
vertex vj+1,q, j + 1 ≤ q ≤ n. In other words, arcs are added between vertices that represent
neighboring substrings. For each equivalence class C of R that has at least one representative
in the set of substrings of S, we introduce one color cC . Each vertex vi,j is colored with the
color of its equivalence class c[vi,j ]. Finally, we add one vertex s with a unique color cs and a
vertex t with a unique color ct and the arcs (s, v1,j), 1 ≤ j ≤ n, and (vp,n, t), 1 ≤ p ≤ n.

The correctness of the reduction can be seen as follows. If S has a size-k factorization F
such that for all factors w and w′ of F we have w 6R w′, then D has a rainbow (s, t)-path of
length k+2: The vertices corresponding to the factors of F form a path of length k and s has
an arc to the first vertex of the path and the last vertex of the path has an arc to t. Moreover,
the vertices on the path have pairwise different colors since each color corresponds to an
equivalence class of R. Conversely, any (s, t)-path in D corresponds to a factorization of S.
Moreover, if the vertices of the factorization have a different color, then the corresponding
factors are in different equivalence classes and thus not in relation with respect to R. If the
length of the path is k + 2, then the number of factors in the factorization is k. J

Observe that one approach to obtain a parameterized algorithm for Rainbow-(s, t)-Path
parameterized by k is via color coding: randomly map the O(n2) colors in D to a set
of k labels and then find an (s, t)-path with k different labels, if it exists, via dynamic
programming. Using standard derandomization techniques [10], this algorithm can be
derandomized with a slight running time overhead, resulting in a deterministic algorithm
with running time (2e)k · kO(log k) · nO(1), improving over the previous fastest algorithm of
Mincu and Popa [15]. We omit the description of this algorithm in favor of a substantially
faster randomized algorithm.

Detecting Rainbow (s, t)-Paths. To solve Rainbow-(s, t)-Path, we reduce it to the
problem of testing whether a polynomial can be evaluated to zero in some finite field. This
technique has led to the currently fastest randomized algorithms for several longest path
problems parameterized by the path length [2, 3]. We adapt the technique to handle the
constraint that the path should be rainbow. Observe that there is a previous algorithm
for Rainbow-(s, t)-Path on undirected graphs [14] which uses the number of colors as
parameter. Since in our application the number of colors can be superlinear in n, we may
not use this algorithm to obtain a fixed-parameter algorithm for Equality-Free String
Factorization.

The algorithm to detect rainbow (s, t)-paths is a slight adaption of the algorithm for
Longest Path in directed graphs [10]: Associate a set of monomials (that is, a polynomial
with only one summand) with every walk of length k of the graph and then consider the
walk polynomial which is the sum of the walk monomials. More precisely, we will introduce
one monomial MW,` for each walk W = (v1, . . . , vk) and each bijective labeling ` : [k]→ [k].
The labeling ` will assign a label `(i) to the ith color occurring in the walk and is the main
trick to establish the canceling property for walks that are not rainbow. If we ensure that
nonsimple walks cancel out, then the polynomial will not be identically zero if and only if
there is at least one rainbow path of length k.

For each edge (u, v) we introduce a variable xu,v which represents that the edge (u, v)
is traversed in a walk. For each color c of G, we introduce k variables yc,i, i ∈ [k], each
representing that a vertex with color c receives the label i. The monomial associated with
the pair (W, `) is now

MW,`(x,y) :=
k−1∏
i=1

xvi,vi+1

k∏
i=1

yc(vi),`(i).

CPM 2020



17:6 String Factorizations Under Various Collision Constraints

To ensure that the path starts with s and ends in t, we consider only walks that start
in s and end in t. Accordingly, the polynomial is defined as

P (x,y) :=
∑

walk W=(s=v1,...,vk=t)

∑
bijective `:[k]→[k]

MW,`(x,y).

As mentioned above, the idea of the construction is that the monomials for walks which have
some label twice will cancel out. To enable this, the polynomial is evaluated over a field of
characteristic 2, that is, addition of some value to itself will give 0. Thus, the walks that
are not paths will cancel out if their monomials can be partitioned into pairs such that each
pair will have the same variables. Observe that the polynomial will never be constructed
explicitly but instead evaluated via dynamic programming.

I Lemma 2.2. P (x,y) is not identically zero in a finite field with characteristic 2 if and
only if there is a rainbow (s, t)-path of length k in G.

Proof. Consider an (s, t)-walk W = (s = v1, . . . , vk = t) that is not rainbow and any
monomial MW,`. Since W is not rainbow, there are two vertices vi and vj such that c(vi) =
c(vj). Take the lexicographically smallest pair of indices i and j for which this is true. Consider
the labeling `i↔j defined as follows: `i↔j(i) := `(j), `i↔j(j) := `(i), and `i↔j(q) := `(q) for
all q ∈ [k] \ {i, j}. In other words, `i↔j is obtained by swapping the ith and jth elements
in the permutation corresponding to `. The monomial MW,`i↔j

is the same as MW,` and,
hence,MW,`+MW,`i↔j is identically zero. Moreover, since (`i↔j)i↔j = `, we have a partition
of all monomials corresponding to walks that are not rainbow paths into pairs {`, `i↔j} such
that for each pair, the variables of the monomial are the same. Thus, these monomials cancel
out and P can be written as the sum over all walks that are in fact rainbow paths.

It remains to show that the monomials that correspond to rainbow (s, t)-paths do not
cancel out, by showing that they have pairwise different variable sets. This is obvious for
two monomials that correspond to different walks. Thus, consider a rainbow (s, t)-path W
and two monomials MW,` and MW,`′ where ` and `′ are two different labelings. Moreover,
choose i ∈ [k] such that `(i) 6= `′(i). Then, MW,` and MW,`′ differ in at least two variables:
the variable yc(vi),`(i) occurs inMW,`′ and not inMW,`′ : First, yc(vi),`′(i) is a different variable
since `(i) 6= `′(i) and each other y-variable in MW,`′ is of the form yc′,q for some c′ 6= c(vi)
since W is rainbow. J

The polynomial P (x,y) can be efficiently evaluated via dynamic programming.

I Lemma 2.3. The polynomial P (x,y) can be evaluated in 2k · kO(1) · |A| time over the
field GF(2dlog 4ke).

Proof. We follow the exposition of Cygan et al. [10] and present the details only for the
sake of completeness. Fix a walk W , then the sum of the monomials MW,` over all bijective
labelings ` can be written as∑

surjective `:[k]→[k]

MW,` =
∑

`∈
⋂

i∈[k]
Ai

MW,`(x,y)

where Ai is the set of labelings such that `(j) = i for some j ∈ [k]. Now, let U denote the
set of all mappings ` : [k]→ [k]. Using the inclusion–exclusion principle, the latter term can
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be rewritten as.∑
`∈
⋂

i∈[k]
Ai

MW,`(x,y) =
∑
X⊆[k]

(−1)|X| ·
∑

`∈
⋂

i∈X
U\Ai

MW,`(x,y)

=
∑
X⊆[k]

∑
`∈
⋂

i∈X
U\Ai

MW,`(x,y)

=
∑
X⊆[k]

∑
`:[k]→[k]\X

MW,`(x,y)

=
∑
X⊆[k]

∑
`:[k]→X

MW,`(x,y).

The equalities follow from the inclusion–exclusion principle, the fact that the field has
characteristic 2, the fact that

⋂
i∈X U \Ai is the set of all labelings ` : [k]→ [k] that do not

map to any element in X, and a replacement of X by its complement U \X in the sum,
respectively.

Thus, we have

P (x,y) =
∑

walk W=(s=v1,...,vk=t)

∑
bijective `:[k]→[k]

MW,`(x,y)

=
∑

walk W=(s=v1,...,vk=t)

∑
X⊆[k]

∑
`:[k]→X

MW,`(x,y)

=
∑
X⊆[k]

∑
walk W=(s=v1,...,vk=t)

∑
`:[k]→X

MW,`(x,y)

It is thus sufficient to show that
∑
`:[k]→X MW,`(x,y) can be computed in kO(1)·|A| time.

This can be done by dynamic programming, building up the domain of the labeling ` from [1]
to [k]. More precisely, one may fill a table with entries of the type TX [v, d] where v is a
vertex of D and d ∈ [k] such that

TX [v, d] :=
∑

walk W=(v=v1,...,vd=t)

∑
`:[d]→X

MW,`(x,y)

as follows. For each the vertex t, T [t, 1] = yc(t),i as the walk (t) does not contain any edges,
and we may consider all possible labels for yc(t),`. For d > 1, we have

TX [v, d] =
∑
i∈X

yc(v),i
∑

(v,w)∈A

xv,w · T [w, d− 1]

since this sum considers all possibilities for the label of c(v), all outgoing edges from v,
and multiplies each with the number of possibilities to continue the walk. Here, we exploit
that T [w, d] is not just the sum over all walks and all labelings ` : [d] → X but due to
symmetry, the sum over all walks and all labelings ` : X ′ → X for every X ′ ⊆ X such
that |X ′| = d.

CPM 2020
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The value of P (x,y) can thus be computed using O(2k · k|A|) field operations since

P (x,y) =
∑
X⊆[k]

∑
walk W=(s=v1,...,vk=t)

∑
`:[k]→X

MW,`(x,y) (1)

=
∑
X⊆[k]

TX [s, k]. (2)

Since the order of the field is 2dlog 4ke ≤ 8k, each field operation can be performed in
kO(1) time. J

Now we obtain a randomized algorithm for deciding whether D contains a rainbow
(s, t)-path by evaluating P at a random vector (x,y) of elements of the field GF(2dlog 4ke).
If P (x,y) = 0, then the algorithm returns that D has no rainbow (s, t)-path of length k,
otherwise it returns that D contains such a path. If the graph contains no rainbow (s, t)-path
of length k, then P is identically zero and the algorithm answers correctly. Otherwise, if the
graph contains a rainbow (s, t)-path of length k, then P is not identically zero. Since the
maximum degree of P is at most 2k − 1 and since the field has order at least 4k, the
Schwartz-Zippel Lemma now implies that (x,y) is a root with probability at most 1/2. Thus,
the error probability is at most 1/2. By repeating this procedure log(1/ε) times, we may
achieve an error probability of at most ε for any ε > 0.

This algorithm in combination with the reduction from R-Free String Factorization
to Rainbow-(s, t)-Path gives Theorem 1.1. Observe that Theorem 1.1 only refers to
the decision version of the problem but in the applications we may want to output the
factorization if it exists. This can be done via applying the framework of Björklund et al. [4]
which only relies on two facts: The witness which we wish to extract has size k and the
decision algorithm has one-sided error; the running time overhead is a factor of O(k logn).

As a final remark, in our framework of solving R-Free String Factorization via
reduction to Rainbow-(s, t)-Path, we may put any further polynomial-time computable
restriction on the factors: the only additional step is to add only those vertices that fulfill
this restriction to the graph D. For example, we may demand that every factor has length
at least q and at most r for some integers q and r, or we may demand that it contains
every letter of the alphabet. Thus, we may apply the algorithm also when we search for
length-bounded factorizations [8] when the parameter is the factorization size k. We can
also use this framework to solve Diverse Palindromic Factorization where each factor
should be a palindrome [1].

I Corollary 2.4. There is a randomized algorithm with one-sided error that decides in
time 2k · nO(1) whether a string has a palindromic factorization with exactly k factors.

3 Further String Relations

Hardness Results. First, we prove Theorem 1.2 . That is, we show that for each R ∈ {=Σ
,=Σ,#,4p,4s,4}, R-Free String Factorization is NP-complete and cannot be solved
in time 2o(n) unless the ETH fails.

First, we show this result for R ∈ {4p,4}.

I Lemma 3.1. For each R ∈ {4p,4}, R-Free String Factorization is NP-complete
and cannot be solved in time 2o(n) unless the ETH fails.
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Observe that the hardness result for R =4p also implies hardness for R =4s by the
following simple reduction: Let (S, k) be an instance of R-Free String Factorization
for R =4p. Then, the instance (←−S , k) is an equivalent instance for R =4s. The equivalence
can be seen as follows: (f1, f2, . . . , fk) is a prefix-free string factorization of S if and only
if (
←−
fk, . . . ,

←−
f2,
←−
f1) is a suffix-free string factorization of ←−S . Hence, the following holds.

I Lemma 3.2. If R =4s, then R-Free String Factorization is NP-complete and cannot
be solved in time 2o(n) unless the ETH fails.

Next, we show NP-hardness for each R ∈ {=Σ,=Σ,#}; altogether this shows Theorem 1.2.

I Lemma 3.3. For each R ∈ {=Σ,=Σ,#}, R-Free String Factorization is NP-complete
and cannot be solved in time 2o(n) unless the ETH fails.

Prefix-Free String Factorization. In this paragraph we provide a problem kernel for Prefix-
Free String Factorization parameterized by the number k of factors. Recall that Prefix-
Free String Factorization is the special case of R-Free String Factorization,
where R =4p. For Equality-Free String Factorization, it is very easy to obtain a
problem kernel: since factors with different length are trivially unequal, one may simply
choose strings of increasing length starting with length 1. This implies that instances
with n ≥ k2+k

2 are yes-instances and thus we have a quadratic kernel for Equality-Free
String Factorization. For Prefix-Free String Factorization, this argument does
not hold. Consider for example the string an. The maximum prefix-free factorization has
size one because of the periodicity of an.

To describe the kernelization we first need to establish some notation. Let (S, k) be an
instance of Prefix-Free String Factorization. For any string w, a substring S[i, j]
of S is called w-periodic if S[i, j] = wt for some integer t ≥ 0 and if |w| is the shortest period
of S[i, j]. Moreover, S[i, j] is called maximal w-periodic if there is no substring S[i′, j′] = wt

′

with [i, j] ( [i′, j′]. We define R(w) := {t | wt is a maximal w-periodic substring of S}. The
central rule of this kernelization reduces the length of maximal w-periodic substrings of S.
For fixed w, the maximal w-periodic substrings of S are uniquely defined since each begins
with w and |w| is the shortest period. Hence, for each w we can find all maximal w-periodic
substrings in linear time. We first show that we may assume that for every w the size of R(w)
is bounded, which we need to give a bound for the kernel size.

I Lemma 3.4. Let (S, k) be an instance of Prefix-Free String Factorization. If there
exists a string w such that |R(w)| ≥ 2k + 3, then (S, k) is a yes-instance.

Proof. Let w be a substring of S such that |R(w)| ≥ 2k + 3. Then, there are dis-
tinct t1, t2, . . . , t2k+2 ∈ R(w) such that ti ≥ 2 for each i ∈ [2k + 1]. We show that we
can use maximal w-periodic occurrences of the wti to find at least k prefix free-factors. To
this end, let X = {(p1, q1), . . . , (p2k+2, q2k+2)} be a set containing the start positions pi and
the end positions qi of one maximal w-periodic occurrence of wti for each i ∈ {1, . . . , 2k+ 2}.
By the definition of maximal w-periodic substrings no element S[pi, qi] includes another
element S[pj , qj ] in S. Hence, pi 6= pj if i 6= j. Without loss of generality we assume
that p1 < p2 < · · · < p2k+2.

Note that in S two strings S[pi, qi] and S[pj , qj ] with i 6= j overlap with less than |w| char-
acters, since otherwise this contradicts the fact that these strings are maximal w-periodic.
To obtain the prefix-free factors from X, we first show the following.
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B Claim 3.5. In S, every string S[pi, qi] overlaps with at most two other strings S[pj , qj ],
and S[pt, qt].

Proof. Let S[pi, qi] overlap with S[pj , qj ], and S[pt, qt]. To prove the claim we show that this
implies that S[pj , qj ] and S[pt, qt] do not overlap in S.

Without loss of generality assume pj < pi < pt. Since S[pi, qi] overlaps with S[pj , qj ]
and S[pt, qt], and do not overlap in at least |w| characters as discussed above, we have 0 ≤
qj − pi < |w| − 1 and 0 ≤ qi − pt < |w| − 1. Since t2 ≥ 2 by the definition of X it also
holds that qi − pi ≥ 2|w| − 1 and therefore qi − pi > qj − pi + qi − pt. Consequently it holds
that qj < pt and therefore S[pj , qj ] and S[pt, qt] do not overlap in S. C

We next use Claim 3.5 to define the factors. We define k + 1 disjoint substrings of S at
follows: f0 := S[1, p2 − 1], fi := S[p2i+1, p2i+3 − 1] for all i ∈ [k − 1], and fk := S[p2k+1, |S|].
Claim 3.5 guarantees that wt2i+1 is a prefix of fi if i ≥ 1. Then, for every distinct f, f ′ ∈
{f1, . . . , fk}, the substring f is not a prefix of f ′ since f and f ′ start with substrings of
period |w| that have distinct lengths. Next, consider the following cases for f0.

Case 1: There exists no fi with i ≥ 1 such that f0 is a prefix of fi or vice versa. Then,
(f0, . . . , fk) is a prefix-free string factorization of size k + 1 and nothing more needs to be
shown.

Case 2: There exists some fi with i ≥ 1 such that f0 is a prefix of fi or vice versa.
Then, f0 starts with a maximal w-periodic substring wt2i+1 . Hence, for every j 6= i it holds
that f0 is not a prefix of fj and vice versa. We then discard fi−1 and fi and instead consider
their concatenation fi−1fi. We end up with a prefix-free factorization of S containing at
least k factors. Hence, (S, k) is a yes-instance. J

For the rest of this section, we assume that, given an instance (S, k), we have |R(w)| ≤
2k + 3 for each substring w of S since otherwise (S, k) is a trivial yes-instance due to
Lemma 3.4. The main idea of the kernelization is thus to reduce the number of maximum
repetitions of every substring of the input string S.

I Rule 3.1. Let w be a substring in S such that S has
1. at least one maximal w-periodic substring S[q, r] = wd with d ≥ 2k2 + 2 and
2. for each ψ ∈ [k2] no maximal w-periodic substring S[q′, r′] = wd−ψ.
Then, for each p ≥ d, replace each maximal w-periodic substring S[q, r] = wp by wp−1.

The rule can be applied in polynomial time by checking for each substring w of S whether it
fulfills the conditions of the rule. The correctness proof of the rule is quite technical and due
to lack of space deferred to the long version. The proof idea is as follows. When the rule
shortens a maximal w-periodic substring wp, one of the k factors that overlaps with this factor
must be shortened by one occurrence of w. This may, however, lead to a factorization that is
not prefix-free. To reestablish prefix-freeness, we may need to remove w from another factor f
that overlaps some other maximal w-periodic substring wp′ . Since wp′ is not necessarily
shortened by the rule, we must add w to some other factor f ′ that overlaps wp′ in order
to reestablish that we have a factorization. Due to Lemma 1.3, we may add w safely to
the factor f ′ that starts before wp′ and ends either right before the first position of wp′ or
overlaps with wp′ .

Let w be a substring of S. According to Lemma 3.4, there are at most 2k + 2 different
repetition numbers in R(w). Let d ≥ 2k2+1 be a repetition number of w such that for each ψ ∈
[k2] we have d−ψ /∈ R(w). Then Reduction Rule 3.1 reduces each repetition number p ≥ d by
1. Hence, the largest repetition number of w is at most (2k2 +1)+k2 · (2k+2) = 2k3 +4k2 +1
if Reduction Rule 3.1 has been applied exhaustively.
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I Corollary 3.6. Let S be an instance to which Reduction Rule 3.1 has been applied ex-
haustively and let w be a substring of S. Then the maximal repetition number of w in S

is 2k3 + 4k2 + 1.

We now show that bounding the number of repetition numbers and their size for all substrings
of S results in an instance that is a yes-instance if |S| is too big. This implies the problem
kernel.

I Theorem 3.7. Prefix-Free String Factorization has a problem kernel of size O(k10).

Proof. Let (S, k) be an instance of Prefix-Free String Factorization that is reduced
exhaustively with respect to Rule 3.1. We show that if |S| > 12k(k + 1)(2k4 + 4k3 + 2k)2,
then (S, k) is a yes-instance.

Let (S, k) be a no-instance. Let d(w) be the maximum size of disjoint occurrences of
a substring w in S. To show |S| ≤ 12k(k + 1)(2k4 + 4k3 + 2k)2 we prove that for every
substring with length 2k4 + 4k3 + 2k we have d(w) ≤ 2k. Afterwards, we use this upper
bound on the number of occurrences to give an upper bound for the size of S.

Let w be a substring of S such that |w| = 2k4 + 4k3 + 2k. Moreover, let P :=
{S[p1, q1], S[p2, q2], . . . , S[p|P|, q|P|]} with p1 < q1 < p2 < · · · < p|P| < q|P| be a maximum
packing of occurrences of w in S. Without loss of generality, we also assume that S[p1, q1] is
the first occurrence of w in S, since otherwise, we can replace p1 and q1 by the start and
endpoint of the first occurrence. Assume towards a contradiction that |P| ≥ 2k + 1. We
define the subpacking

P ′ := {S[p2i+1, q2i+1] | i ∈ [0, k]} ⊆ P

containing k+1 elements from P . For every i ∈ {1, . . . , k−1} we define the substring V2i+1 :=
S[p2i+1 − k, p2i+1 − 1] which contains the last k characters before p2i+1. Since |w| =
2k4 + 4k3 + 2k and P ′ contains every second element of P it holds that no V2i+1 overlaps
with S[p2i−1, q2i−1] ∈ P ′.

We first show that no occurrence of w starts in some V2i+1. Assume towards a contradiction
that there is one such occurrence starting in some V2i+1. Then, since |w| = 2k4 + 4k3 + 2k
and |V2i+1| = k, the string w has a border of size at least 2k4 + 4k3 + k. Hence, w has
a period of length at most k [9] and therefore there exists some z such that there is a
maximum z-periodic substring zp with p ≥ 2k3 + 4k2 + 2 of S. Together with Corollary 3.6,
this contradicts the fact that (S, k) is reduced exhaustively regarding Rule 3.1. Hence, we
can assume that no occurrence of w starts in some V2i+1. In the following case distinction
we consider the possible values of p1 and show that in each case we can define a prefix-free
string factorization of size at least k for S, which then contradicts the fact that (S, k) is a
no-instance.

Case 1: p1 ≥ k + 1. We define the factors fstart := S[1, p3 − 2], fi := S[p2i+1 − i, p2i+3 −
(i + 2)] for all i ∈ [k − 1], and fend := S[p2k+1 − k, |S|]. Note that these k + 1 factors
cover all of S and w is a substring of each such factor. We next show that none of these
factors is the prefix of another factor. To this end, we consider the first occurrence of w
in all factors.
Since p1 ≥ k+1 and we assumed that S[p1, q1] is the first occurrence of w in S we conclude
that in fstart there is no occurrence of w starting in the first k positions of fstart. Next,
the fact that no occurrence of w starts in some V2i+1 implies that the first occurrence
of w starts at position i+ 1 of each fi, i ∈ [k − 1]. Moreover, in fend, the first occurrence
of w starts at position k + 1 by the same argument. Since the first occurrence of w starts
at distinct positions in each of the factors, no factor is a prefix of one of the other factors.
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Hence, S has a prefix-free factorization with k+1 factors contradicting the fact that (S, k)
is a no-instance.

Case 2: p1 ∈ {1, 2}. We define the factors fstart := S[1, p5 − 3], fi := S[p2i+1 − i, p2i+3 −
(i+ 2)] for all i ∈ [2, k − 1], and fend := S[p2k+1 − k, |S|]. Intuitively, these are the k + 1
factors we defined in Case 1, but we concatenated the first two factors. We obtain k

factors that cover all of S and w is a substring of each of the factors. Again we prove
prefix-freeness by showing that in each pair of factor the first occurrence of w starts at
different positions.
In fstart, the first occurrence of w starts at position 1 or 2 since p1 ∈ {1, 2}. Since no
occurrence of w starts in some V2i+1, the first occurrence of w starts at position i + 1
in each fi and at position k + 1 in fend. Observe that since i ∈ [2, . . . , k − 2] it holds
that i+ 1 ≥ 3. Again, this contradicts the fact that (S, k) is a no-instance.

Case 3: p1 ∈ [3, k − 1]. We define the factors fstart := S[1, p3−2], fi := S[p2i+1−i, p2i+3−
(i+ 2)] for all i ∈ [k− 1] \ {p1− 2, p1− 1}, fmerge := S[p2p1−3− (p1− 2), p2p1+1− (p1 + 1)],
and fend := S[p2k+1 − k, |S|]. Again, these are k factors covering S containing w as
substring. It remains to check for each factor, when the first occurrence of w starts.
In fstart, the first occurrence of w starts at p1. In each fi the first occurrence of i starts
at position i + 1. Note that i + 1 6∈ {p1, p1 − 1}. In fmerge, the first occurrence of w
starts at position p1− 1. Finally, in fend, the first occurrence of w starts at position k+ 1.
Again, this contradicts the fact that (S, k) is a no-instance.

Case 4: p1 = k. We define fstart := S[1, p3 − 2], fi := S[p2i+1 − i, p2i+3 − (i + 2)] for
all i ∈ [k−3], fi := S[p2(k−2)+1−(k−2), p2(k−2)+3−(k−1)], and fend := S[p2k−1−k, |S|].
Again, these are k factors covering S containing w as substring. It remains to check for
each factor, when the first occurrence of w starts.
The first occurrence of w in fstart starts in position k. The first occurrence of w in each fi
starts in position i+ 1 and the first occurrence of w in fend starts at position k+ 1. Again,
this contradicts the fact that (S, k) is a no-instance.

Since all cases are contradictory we know that every substring of size 2k4 + 4k3 + 2k in S
has at most 2k disjoint occurrences in S. We next use this fact to prove |S| ≤ 12k(k+1)(2k4 +
4k3 + 2k)2. To this end, let X := {w | w is a substring of S and |w| = 2k4 + 4k3 + 2k}.
We first show that |X| ≤ 2(k + 1)(2k4 + 4k3 + 2k). Assume towards a contradiction
that |X| > 2(k + 1)(2k4 + 4k3 + 2k). Let w ∈ X. Observe that, since |w| = 2k4 + 4k3 + 2k,
every occurrence of w in S overlaps with at most 2(2k4 + 4k3 + 2k − 1) occurrences of
other strings in X. Then, since |X| > 2(k + 1)(2k4 + 4k3 + 2k), there exists a packing
of k + 1 elements of X. Let X := {w1, . . . , wk+1} be such packing and for each i ∈ [k + 1],
let pi be the position in S where wi starts. We then define k + 1 disjoint substrings of S
as follows: f1 := S[1, p2 − 1], fi := S[pi, pi+1 − 1] for i = 2, . . . , k, and fk+1 := S[pk, |S|].
Clearly, for every distinct f, f ′ ∈ {f2, f3, . . . fk, fk+1}, the substring f is not a prefix of f ′
since f and f ′ start with distinct words of length 2k4 + 4k3 + 2k. Consider f1 and fi
for i > 1. If f1 is a prefix of fi or vice versa, we discard fi−1 and fi and instead consider their
concatenation fi−1fi. Since |f1| ≥ 2k4 + 4k3 + 2k we end up with a prefix-free factorization
of S containing at least k factors which contradicts the fact that (S, k) is a no-instance.
Hence, |X| ≤ 2(k + 1)(2k4 + 4k3 + 2k).

We can now give a bound for |S|. Recall that d(w) is the maximum size of disjoint
occurrences of w in S and that d(w) ∈ [2k] for every w ∈ X. Given a fixed w ∈ X, for
each of the d(w) disjoint occurrences S[j, j + |w| − 1] of w in S there can be occurrences
of w in S[j − |w|, j + 2|w|] that overlap with S[j, j + |w| − 1]. Hence, for every w ∈ X,
the number of symbols of S in occurrences of w is at most 3|w| · d(w). It then holds
that |S| ≤

∑
w∈X 3|w| · d(w) ≤ 12k(k + 1)(2k4 + 4k3 + 2k)2 ∈ O(k10). J
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The above problem kernelization for Prefix-Free String Factorization also implies
a problem kernelization for Suffix-Free String Factorization. To compute a problem
kernel for an instance (S, k), we first apply the problem kernelization for Prefix-Free
String Factorization on (←−S , k). Reversing the string of the resulting instance once more
gives an instance of the original problem of size O(k10).

I Corollary 3.8. Suffix-Free String Factorization has a problem kernel of size O(k10).

4 An ILP formulation with O(n) variables

As a side result, we provide an ILP formulation which is better than a previous one in
terms of the number of variables. Mincu and Popa [15] described a 0/1-ILP with O(n

√
n)

variables based on the following idea: Introduce a binary variable xi,j for each candidate
factor S[i, j] of S such that xi,j = 1 precisely if the factor S[i, j] is one of the factors of the
factorization. The goal is to maximize

∑
1≤i≤j≤n xi,j . The constraints of the ILP ensure that

no two equal factors are chosen, no two overlapping factors are chosen, and that if we choose
some factor xi,j where j < n, then a factor xj+1,` must be chosen as well. The number of
variables is O(n

√
n) since, due to an observation of Mincu and Popa [15], there is an optimal

equality-free string factorization with factors of length O(
√
n). The latter observation does

not hold for other equivalence relations. For example, if we consider =Σ on binary strings,
then we may have at most three factors and thus some factor must have length Ω(n).

We provide an alternative 0/1-ILP that has O(n) variables and works for all string
relations. For each i ∈ {1, . . . , n+ 1}, we introduce one variable xi. This variable will have
the value 1 if some factor starts at S[i], that is, the factorization cuts between positions i− 1
and i. The variable x1 will correspond to the start of the first factor and the variable xn+1
will correspond to the end of the last factor, these variables will be set to 1 and we just
introduce them to make the formulation more concise. The whole ILP reads as follows.

max.
∑

i∈[n+1]

xi subject to (3)

− xi − xj+1 − xp − xq+1 +
∑

`∈[i+1,j]∪[p+1,q]

x` > −4 ∀i < j < p < q where
(
S[i, j] R S[p, q]

)
(4)

xi ∈ {0, 1} ∀i ∈ [2, n] (5)
xi = 1 ∀i ∈ {1, n+ 1} (6)

Every assignment to the variables directly corresponds to the factorization of the input string
where xi = 1 means that some factor starts at position i. The number of factors is one less
than the objective function value. It remains to show that no two factors of the factorization
are in relation. This is ensured by Constraint 4. Let S[i, j] and S[p, q] be nonoverlapping
equivalent candidate factors. Then Constraint 4 for this index set is fulfilled when either one
of xi, xj+1, xp, and xq+1 has value 0, or when one of the variables in the sum has value 1.
In the first, case one of the two strings S[i, j] and S[p, q] is not a factor of the factorization,
since one of the four factor endpoints is not selected by the solution. In the second case, one
of the two candidate factors is not part of the solution since some factor starts after i and
before j or after p and before q. Thus, the factorization produced by the ILP is equality-free.
Conversely, any equality-free factorization corresponds to a feasible solution of the ILP.
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Abstract
Quasiperiodicity in strings was introduced almost 30 years ago as an extension of string periodicity.
The basic notions of quasiperiodicity are cover and seed. A cover of a text T is a string whose
occurrences in T cover all positions of T . A seed of text T is a cover of a superstring of T . In various
applications exact quasiperiodicity is still not sufficient due to the presence of errors. We consider
approximate notions of quasiperiodicity, for which we allow approximate occurrences in T with a
small Hamming, Levenshtein or weighted edit distance.

In previous work Sip et al. (2002) and Christodoulakis et al. (2005) showed that computing
approximate covers and seeds, respectively, under weighted edit distance is NP-hard. They, therefore,
considered restricted approximate covers and seeds which need to be factors of the original string T

and presented polynomial-time algorithms for computing them. Further algorithms, considering
approximate occurrences with Hamming distance bounded by k, were given in several contributions
by Guth et al. They also studied relaxed approximate quasiperiods that do not need to cover all
positions of T .

In case of large data the exponents in polynomial time complexity play a crucial role. We present
more efficient algorithms for computing restricted approximate covers and seeds. In particular,
we improve upon the complexities of many of the aforementioned algorithms, also for relaxed
quasiperiods. Our solutions are especially efficient if the number (or total cost) of allowed errors is
bounded. We also show NP-hardness of computing non-restricted approximate covers and seeds
under Hamming distance.

Approximate covers were studied in three recent contributions at CPM over the last three years.
However, these works consider a different definition of an approximate cover of T , that is, the
shortest exact cover of a string T ′ with the smallest Hamming distance from T .
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1 Introduction

Quasiperiodicity was introduced as an extension of periodicity [6]. Its aim is to capture
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of T . Covers and seeds were first considered in [7] and [21], respectively, and linear-time
algorithms computing them are known; see [9, 21, 29, 30, 31] and [24].

A cover is necessarily a border, that is, a prefix and a suffix of the string. A seed C of T
covers all positions of T by its occurrences or by left- or right-overhangs, that is, by suffixes
of C being prefixes of T and prefixes of C being suffixes of T . In order to avoid extreme
cases one usually assumes that covers C of T need to satisfy |C| < |T | and seeds C need to
satisfy 2|C| ≤ |T | (so a seed needs to be a factor of T ). Seeds, unlike covers, preserve an
important property of periods that if T has a period or a seed, then every (sufficiently long)
factor of T has the same period or seed, respectively.

The classic notions of quasiperiodicity may not capture repetitive structure of strings
in practical settings; it was also confirmed by a recent experimental study [12]. In order to
tackle this problem, further types of quasiperiodicity were studied that require that only a
certain number of positions in a string are covered. This way notions of enhanced cover,
partial cover and partial seed were introduced. A partial cover and partial seed are required
to cover a given number of positions of a string, where for the partial seed overhangs are
allowed, and an enhanced cover is a partial cover with an additional requirement of being a
border of the string. O(n logn)-time algorithms for computing shortest partial covers and
seeds were shown in [26] and [25], respectively, whereas a linear-time algorithm for computing
a proper enhanced cover that covers the maximum number of positions in T was presented
(among other variations of the problem) in [14].

Further study has lead to approximate quasiperiodicity in which approximate occurrences
of a quasiperiod are allowed. In particular, Hamming, Levenshtein and weighted edit distance
were considered. A k-approximate cover of string T is a string C whose approximate
occurrences with distance at most k cover T . Similarly one can define a k-approximate seed,
allowing overhangs. These notions were introduced by Sip et al. [33] and Christodoulakis
et al. [10], respectively, who showed that the problem of checking if a string T has a k-
approximate cover and k-approximate seed, respectively, for a given k is NP-complete under
weighted edit distance. (Their proof used arbitrary integer weights and a constant-sized – 12
letters in the case of approximate seeds – alphabet.) Therefore, they considered a restricted
version of the problem in which the approximate cover or seed is required to be a factor
of T . Formally, the problem is to compute, for every factor of T , the smallest k for which
it is a k-approximate cover or seed of T . For this version of the problem, they presented
an O(n3)-time algorithm for the Hamming distance and an O(n4)-time algorithm for the
edit distance1. The same problems under Hamming distance were considered by Guth et
al. [19] and Guth and Melichar [18]. They studied a k-restricted version of the problems,
in which we are only interested in factors of T being `-approximate covers or seeds for
` ≤ k, and developed O(n3(|Σ|+ k))-time and O(n3|Σ|k)-time automata-based algorithms
for k-restricted approximate covers and seeds, respectively. Experimental evaluation of these
algorithms was performed by Guth [16].

Recently, Guth [17] extended this study to k-approximate restricted enhanced covers
under Hamming distance. In this problem, we search for a border of T whose k-approximate
occurrences cover the maximum number of text positions. In another variant of the problem,
which one could see as approximate partial cover problem, we only require the approximate

1 In fact, they consider relative Hamming and Levenshtein distances which are inversely proportional to
the length of the candidate factor and seek for an approximate cover/seed that minimizes such distance.
However, their algorithms actually compute the minimum distance k for every factor of T under the
standard distance definitions.
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enhanced cover to be a k-approximate border of T , but still to be a factor of T . Guth [17]
proposed O(n2)-time and O(n3(|Σ|+ k))-time algorithms for the two respective variants.

We improve upon previous results on restricted approximate quasiperiodicity. We in-
troduce a general notion of k-coverage of a string S in a string T , defined as the number
of positions in T that are covered by k-approximate occurrences of S. Efficient algorithms
computing the k-coverage for factors of T are presented. We also show NP-hardness for
non-restricted approximate covers and seeds under the Hamming distance. A detailed list of
our results is as follows.

1. The Hamming k-coverage for every prefix and for every factor of a string of length n can
be computed in O(nk2/3 log1/3 n log k) time (for a string over an integer alphabet) and
O(n2) time, respectively. (See Section 3.)
With this result we obtain algorithms with the same time complexities for the two
versions of k-approximate restricted enhanced covers that were proposed by Guth [17]
and an O(n2k)-time algorithm computing k-restricted approximate covers and seeds. Our
algorithm for prefixes actually works in linear time assuming that a k-mismatch version
of the PREF table [11] is given. Thus, as a by-product, for k = 0, we obtain an alternative
linear-time algorithm for computing all (exact) enhanced covers of a string. (A different
linear-time algorithm for this problem was given in [14]).
The complexities come from using tools of Kaplan et al. [22] and Flouri et al. [13],
respectively.

2. The k-coverage under Levenshtein distance and weighted edit distance for every factor of
a string of length n can be computed in O(n3) time and O(n3√n logn) time, respectively.
(See Section 4.)
We also show in Section 4 how our approach can be used to compute restricted approximate
covers and seeds under weighted edit distance in O(n3√n logn) time, thus improving
upon the previous O(n4)-time algorithms of Sip et al. [33] and Christodoulakis et al. [10].
Our algorithm for Levenshtein distance uses incremental string comparison [27].

3. Under Hamming distance, it is NP-hard to check if a given string of length n has a
k-approximate cover or a k-approximate seed of a given length c. This statement holds
even for strings over a binary alphabet. (See Section 5.)
This result extends the previous proofs of Sip et al. [33] and Christodoulakis et al. [10]
which worked for the weighted edit distance.

A different notion of approximate cover, which we do not consider in this work, was
recently studied in [1, 2, 3, 4, 5]. This work assumed that the string T may not have a cover,
but it is at a small Hamming distance from a string T ′ that has a proper cover. They defined
an approximate cover of T as the shortest cover of a string T ′ that is closest to T under
Hamming distance. Interestingly, this problem was also shown to be NP-hard [2] and an
O(n4)-time algorithm was developed for it in the restricted case that the approximate cover
is a factor of the string T [4]. Our work can be viewed as complementary to this study as
“the natural definition of an approximate repetition is not clear” [4].

2 Preliminaries

We consider strings over an alphabet Σ. The empty string is denoted by ε. For a string T ,
by |T | we denote its length and by T [0], . . . , T [|T | − 1] its subsequent letters. By T [i, j] we
denote the string T [i] . . . T [j] which we call a factor of T . If i = 0, it is a prefix of T , and
if j = |T | − 1, it is a suffix of T . A string that is both a prefix and a suffix of T is called
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a border of T . For a string T = XY such that |X| = b, by rotb(T ) we denote Y X, called a
cyclic shift of T .

For equal-length strings U and V , by Ham(U, V ) we denote their Hamming distance, that
is, the number of positions where they do not match. For strings U and V , by ed(U, V ) we
denote their edit distance, that is, the minimum cost of edit operations (insertions, deletions,
substitutions) that allow to transform U to V . Here the cost of an edit operation can vary
depending both on the type of the operation and on the letters that take part in it. In case
that all edit operations have unit cost, the edit distance is also called Levenshtein distance
and denoted here as Lev(U, V ).

For two strings S and T and metric d, we denote by

Occdk(S, T ) = {[i, j] : d(S, T [i, j]) ≤ k}

the set of approximate occurrences of S in T , represented as intervals, under the metric d.
We then denote by

Covereddk(S, T ) = |
⋃

Occdk(S, T )|

the k-coverage of S in T . In case of Hamming or Levenshtein distances, k ≤ n, but for the
weighted edit distance k can be arbitrarily large. Moreover, by StartOccdk(S, T ) we denote
the set of left endpoints of the intervals in Occdk(S, T ).

I Definition 1. Let d be a metric and T be a string. We say that string C, |C| < |T |, is a
k-approximate cover of T under metric d if Covereddk(C, T ) = |T |.

We say that string C, 2|C| ≤ |T |, is a k-approximate seed of T if it is a k-approximate
cover of some string T ′ whose factor is T . Let ♦ be a wildcard symbol that matches every
other symbol of the alphabet. Strings over Σ ∪ {♦} are also called partial words. In order to
compute k-approximate seeds, it suffices to consider k-approximate covers of ♦|T |T♦|T |.

The main problems in scope can now be stated as follows.

General k-Approximate Cover/Seed
Input: String T of length n, metric d, integer c ∈ {1, . . . , n− 1} and number k
Output: A string C of length c that is a k-approximate cover/seed of T under d

Prefix/Factor k-Coverage
Input: String T of length n, metric d and number k
Output: For every prefix/factor of T , compute its k-coverage under d

Restricted Approximate Covers/Seeds
Input: String T of length n and metric d
Output: Compute, for every factor C of T , the smallest k such that C is a k-approximate
cover/seed of T under d

2.1 Algorithmic Toolbox for Hamming Distance
For a string T of length n, by lcpk(i, j) we denote the length of the longest common prefix
with at most k mismatches of the suffixes T [i, n−1] and T [j, n−1]. Flouri et al. [13] proposed
an O(n2)-time algorithm to compute the longest common factor of two strings T1, T2 with at
most k mismatches. Their algorithm actually computes the lengths of the longest common
prefixes with at most k mismatches of every two suffixes T1[i, |T1| − 1] and T2[j, |T2| − 1] and
returns the maximum among them. Applied for T1 = T2, it gives the following result.
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I Lemma 2 ([13]). For a string of length n, values lcpk(i, j) for all i, j = 0, . . . , n− 1 can
be computed in O(n2) time.

We also use a table PREFk such that PREFk[i] = lcpk(0, i). LCP-queries with mismatches
can be answered in O(k) time after linear-time preprocessing using the kangaroo method [28].
In particular, this allows to compute the PREFk table in O(nk) time. Kaplan et al. [22]
presented an algorithm that, given a pattern P of length m, a text T of length n over an
integer alphabet Σ ⊆ {1, . . . , nO(1)}, and an integer k, finds in O(nk2/3 log1/3 m log k) time
for all positions j of T , the index of the k-th mismatch of P with the suffix T [j, n − 1].
Applied for P = T , it gives the following result.

I Lemma 3 ([22]). The PREFk table of a string of length n over an integer alphabet can be
computed in O(nk2/3 log1/3 n log k) time.

We say that strings U and V have a k-mismatch prefix-suffix of length p if U has a prefix
U ′ of length p and V has a suffix V ′ of length p such that Ham(U ′, V ′) ≤ k.

2.2 Algorithmic Toolbox for Edit Distance
For x, y ∈ Σ, let c(x, y), c(ε, x) and c(x, ε) be the costs of substituting letter x by letter y
(equal to 0 if x = y), inserting letter x and deleting letter x, respectively. They are usually
specified by a penalty matrix c; it implies a metric if certain conditions are satisfied (identity
of indiscernibles, symmetry, triangle inequality).

The classic dynamic programming solution to the edit distance problem (see [34]) for
strings T1 and T2 uses the so-called D-table such that D[i, j] is the edit distance between
prefixes T1[0, i] and T2[0, j]. Initially D[−1,−1] = 0, D[i,−1] = D[i− 1,−1] + c(T1[i], ε) for
i ≥ 0 and D[−1, j] = D[−1, j−1]+ c(ε, T2[j]) for j ≥ 0. For i, j ≥ 0, D[i, j] can be computed
as follows:

D[i, j] = min(D[i−1, j−1]+c(T1[i], T2[j]), D[i, j−1]+c(ε, T2[j]), D[i−1, j]+c(T1[i], ε)).

Given a threshold h on the Levenshtein distance, Landau et al. [27] show how to compute
the Levenshtein distance between T1 and bT2, for any b ∈ Σ, in O(h) time using previously
computed solution for T1 and T2 (another solution was given later by Kim and Park [23]).
They define an h-wave that contains indices of the last value h in diagonals of the D-table.
Let Lh(d) = max{i : D[i, i+ d] = h}. Formally an h-wave is:

Lh = [Lh(−h), Lh(−h+ 1), . . . , Lh(h− 1), Lh(h)].

Landau et al. [27] show how to update the h-wave when string T2 is prepended by a single
letter in O(h) time. This method was introduced to approximate periodicity in [32].

3 Computing k-Coverage under Hamming Distance

Let T be a string of length n and assume that its PREFk table is given. We will show a
linear-time algorithm for computing the k-coverage of every prefix of T under the Hamming
distance.

In the algorithm we consider all prefix lengths ` = 1, . . . , n. At each step of the algorithm,
a linked list L is stored that contains all positions i such that PREFk[i] ≥ ` and a sentinel
value n, in an increasing order. The list is stored together with a table A(L)[0..n− 1] such
that A(L)[i] is a link to the occurrence of i in L or nil if i 6∈ L. It can be used to access and
remove a given element of L in O(1) time. Before the start of the algorithm, L contains all
numbers 0, . . . , n.
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If i ∈ L and j is the successor of i in L, then the approximate occurrence of T [0, `− 1]
at position i accounts for min(`, j − i) positions that are covered in T . A pair of adjacent
elements i < j in L is called overlapping if j − i < ` and non-overlapping otherwise. Hence,
each non-overlapping adjacent pair adds the same amount to the number of covered positions.

All pairs of adjacent elements of L are partitioned in two data structures, Do and Dno,
that store overlapping and non-overlapping pairs, respectively. Data structure Dno stores
non-overlapping pairs (i, j) in buckets that correspond to j − i, in a table B(Dno) indexed
from 1 to n. It also stores a table A(Dno) indexed 0 through n − 1 such that A(Dno)[i]
points to the location of (i, j) in its bucket, provided that such a pair exists for some j, or
nil otherwise. Finally, it remembers the number num(Dno) of stored adjacent pairs. Do
does not store the overlapping adjacent pairs (i, j) explicitly, just the sum of values j − i, as
sum(Do). Then

CoveredHam
k (T [0, `− 1], T ) = sum(Do) + num(Dno) · `. (1)

Now we need to describe how the data structures are updated when ` is incremented.
In the algorithm we store a table Q[0..n] of buckets containing pairs (PREFk[i], i) grouped

by the first component. When ` changes to `+ 1, the second components of all pairs from
Q[`] are removed, one by one, from the list L (using the table A(L)).

Let us describe what happens when element q is removed from L. Let q1 and q2 be its
predecessor and successor in L. (They exist because 0 and n are never removed from L.)
Then each of the pairs (q1, q) and (q, q2) is removed from the respective data structure Do
or Dno, depending on the difference of elements. Removal of a pair (i, j) from Do simply
consists in decreasing sum(Do) by j − i, whereas to remove (i, j) from Dno one needs to
remove it from the right bucket (using the table A(Dno)) and decrement num(Do). In the
end, the pair (q1, q2) is inserted to Do or to Dno depending on q2 − q1. Insertion to Do and
to Dno is symmetric to deletion.

When ` is incremented, non-overlapping pairs (i, j) with j − i = ` become overlapping.
Thus, all pairs from the bucket B(Dno)[`] are removed from Dno and inserted to Do.

This concludes the description of operations on the data structures. Correctness of the
resulting algorithm follows from (1). We analyze its complexity in the following theorem.

I Theorem 4. Let T be a string of length n. Assuming that the PREFk table for string T is
given, the k-coverage of every prefix of T under the Hamming distance can be computed in
O(n) time.

Proof. There are up to n removals from L. Initially L contains n adjacent pairs. Every
removal from L introduces one new adjacent pair, so the total number of adjacent pairs that
are considered in the algorithm is 2n− 1. Each adjacent pair is inserted to Do or to Dno,
then it may be moved from Dno to Do, and finally it is removed from its data structure. In
total, O(n) insertions and deletions are performed on the two data structures, in O(1) time
each. This yields the desired time complexity of the algorithm. J

Let us note that in order to compute the k-coverage of all factors of T that start at
a given position i, it suffices to use a table [lcpk(i, 0), . . . , lcpk(i, n − 1)] instead of PREFk.
Together with Lemma 2 this gives the following result.

I Corollary 5. Let T be a string of length n. The k-coverage of every factor of T under the
Hamming distance can be computed in O(n2) time.
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4 Computing k-Coverage under Edit Distance

Let us state an abstract problem that, to some extent, is a generalization of the k-mismatch
lcp-queries to the edit distance.

Longest Approximate Prefix Problem
Input: A string T of length n, a metric d and a number k
Output: A table P dk such that P dk [a, b, a′] is the maximum b′ ≥ a′ − 1 such that
d(T [a, b], T [a′, b′]) ≤ k or −1 if no such b′ exists.

Having the table P dk , one can easily compute the k-coverage of a factor T [a, b] under
metric d as:

Covereddk(T [a, b], T ) =

∣∣∣∣∣
n−1⋃
a′=0

[a′, P dk [a, b, a′]]

∣∣∣∣∣ , (2)

where an interval of the form [a′, b′] for b′ < a′ is considered to be empty. The size of the
union of n intervals can be computed in O(n) time, which gives O(n3) time over all factors.

In Section 4.1 and 4.2 we show how to compute the tables PLev
k and P ed

k for a given
threshold k in O(n3) and O(n3√n logn) time, respectively. Then in Section 4.3 we apply the
techniques of Section 4.2 to obtain an O(n3√n logn)-time algorithm for computing restricted
approximate covers and seeds under the edit distance.

4.1 Longest Approximate Prefix under Levenshtein Distance
Let Hi,j be the h-wave for strings T [i, n−1] and T [j, n−1] and h = k. Then we can compute
PLev
k with Algorithm 1. The algorithm basically takes the rightmost diagonal of D-table in

which the value in row b− a+ 1 is less than or equal to k.

Algorithm 1 Computing P Lev
k table.

1 for a′ := n− 1 down to 0 do
2 Compute Hn−1,a′ ;
3 for a := n− 1 down to 0 do
4 if a < n then
5 Compute Ha,a′ from Ha+1,a′ ;
6 d := k;
7 for b := a to n− 1 do
8 i := b− a+ 1;
9 while d ≥ −k and Ha,a′(d) < i do

10 d := d− 1;
11 if d < −k then PLev

k [a, b, a′] := −1;
12 else PLev

k [a, b, a′] := a′ + i+ d;

The while-loop can run up to 2k times for given a and a′. Computing Hn−1,a′ takes
O(k2) time and updating Ha,a′ takes O(k) time. It makes the algorithm run in O(n3) time.
Together with Equation (2) this yields the following result.

I Proposition 6. Let T be a string of length n. The k-coverage of every factor of T under
the Levenshtein distance can be computed in O(n3) time.

A similar method could be used in case of constant edit operation costs, by applying the
work of [20]. In the following section we develop a solution for arbitrary costs.
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4.2 Longest Approximate Prefix under Edit Distance
For indices a, a′ ∈ [0, n] we define a table Da,a′ such that Da,a′ [b, b′] is the edit distance
between T [a, b] and T [a′, b′], for b ∈ [a− 1, n− 1] and b′ ∈ [a′ − 1, n− 1]. For other indices
we set Da,a′ [b, b′] = ∞. The Da,a′ table corresponds to the D-table for T [a, n − 1] and
T [a′, n− 1] and so it can be computed in O(n2) time.

We say that pair (d, b) (Pareto-)dominates pair (d′, b′) if (d, b) 6= (d′, b′), d ≤ d′ and b ≥ b′.
Let us introduce a data structure La,a′ [b] being a table of all among pairs (Da,a′ [b, b′], b′)
that are maximal in this sense (i.e., are not dominated by other pairs), sorted by increasing
first component. Using a folklore stack-based algorithm (Algorithm 2), this data structure
can be computed from Da,a′ [b, a′ − 1], . . . , Da,a′ [b, n− 1] in linear time.

Algorithm 2 Computing La,a′ [b] from Da,a′ [b, ·].

1 Q := empty stack;
2 for b′ := a′ − 1 to n− 1 do
3 d := Da,a′ [b, b′];
4 while Q not empty do
5 (d′, x) := top(Q);
6 if d′ ≥ d then pop(Q);
7 else break;
8 push(Q, (d, b′));
9 La,a′ [b] := Q;

Every multiple of M = b
√
n/ lognc will be called a special point. In our algorithm we

first compute the following data structures:
(a) all La,a′ [b] lists where a or a′ is a special point, for a, a′ ∈ [0, n− 1] and b ∈ [a− 1, n− 1]

(if a ≥ n or a′ ≥ n, the list is empty); and
(b) all cells Da,a′ [b, b′] of all Da,a′ tables for a, a′ ∈ [0, n] and −1 ≤ b− a, b′ − a′ < M − 1.
Computing part (a) takesO(n4/M) = O(n3√n logn) time, whereas part (b) can be computed
in O(n4/M2) = O(n3 logn) time. The intuition behind this data structure is shown in the
following lemma.

I Lemma 7. Assume that b− a ≥ M − 1 or b′ − a′ ≥ M − 1. Then there exists a pair of
positions c, c′ such that the following conditions hold:

a ≤ c ≤ b+ 1 and a′ ≤ c′ ≤ b′ + 1, and
c− a, c′ − a′ < M , and
ed(T [a, b], T [a′, b′]) = ed(T [a, c− 1], T [a′, c′ − 1]) + ed(T [c, b], T [c′, b′]), and
at least one of c, c′ is a special point.

Moreover, if c (c′) is the special point, then c ≤ b (c′ ≤ b′, respectively).

Proof. By the assumption, at least one of the intervals [a, b] and [a′, b′] contains a special
point. Let p ∈ [a, b] and p′ ∈ [a′, b′] be the smallest among them; we have p− a, p′ − a′ < M

provided that p or p′ exists, respectively (otherwise p or p′ is set to ∞). Let us consider the
table Da,a′ and how its cell Da,a′ [b, b′] is computed. We can trace the path of parents in the
dynamic programming from Da,a′ [b, b′] to the origin (Da,a′ [a− 1, a′ − 1]). Let us traverse
this path in the reverse direction until the first dimension of the table reaches p or the second
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dimension reaches p′. Say that just before this step we are at Da,a′ [q, q′]. If q + 1 = p and
q′ < p′, then we set c = q + 1 and c′ = q′ + 1. Indeed c = p is a special point,

ed(T [a, b], T [a′, b′]) = ed(T [a, c− 1], T [a′, c′ − 1]) + ed(T [c, b], T [c′, b′])

and c− a, c′ − a′ < M . Moreover, q′ ∈ [a′ − 1, b′], so c′ ∈ [a′, b′ + 1]. The opposite case (that
q′ + 1 = p′) is symmetric. J

If P ed
k [a, b, a′] − a′ < M − 1, then it can be computed using one the M ×M prefix

fragments of the Da,a′ tables. Otherwise, according to the statement of the lemma, one of the
Lc,c′ [b] lists can be used, where c− a, c′ − a′ < M , as shown in Algorithm 3. The algorithm
uses a predecessor operation Pred(x, L) which for a number x and a list L = Lc,c′ [b] returns
the maximal pair whose first component does not exceed x, or (∞,∞) if no such pair exists.
This operation can be implemented in O(logn) time via binary search.

Algorithm 3 Computing P ed
k [a, b, a′].

1 res := −1;
2 if b− a < M − 1 then
3 for b′ := a′ − 1 to a′ +M − 2 do
4 if Da,a′ [b, b′] ≤ k then
5 res := b′;
6 s := a+ ((−a) mod M); s′ := a′ + ((−a′) mod M); // closest special pts
7 foreach (c, c′) in ({s} × [a′, a′ +M − 1]) ∪ ([a, a+M − 1]× {s′}) do
8 (d′, b′) := Pred(k −Da,a′ [c− 1, c′ − 1], Lc,c′ [b]);
9 if d′ 6=∞ then

10 res := max(res, b′);
11 P ed

k [a, b, a′] := res;

I Theorem 8. Let T be a string of length n. The k-coverage of every factor of T under the
edit distance can be computed in O(n3√n logn) time.

Proof. We want to show that Algorithm 3 correctly computes P ed
k [a, b, a′]. Let us first check

that the result b′ = res of Algorithm 3 satisfies Da,a′ [b, b′] ≤ k. It is clear if the algorithm
computes b′ in line 5. Otherwise, it is computed in line 10. This means that Lc,c′ [b] contains
a pair (Dc,c′ [b, b′], b′) such that

k ≥ Dc,c′ [b, b′] +Da,a′ [c− 1, c′ − 1] ≥ Da,a′ [b, b′].

Now we show that the returned value res is at least x = P ed
k [a, b, a′]. If b−a < M −1 and

x− a′ < M − 1, then the condition in line 4 holds for b′ = x, so indeed res ≥ x. Otherwise,
the condition of Lemma 7 is satisfied. The lemma implies two positions c, c′ such that at
least one of them is special and that satisfy additional constraints.

If c is special, then the constraints a ≤ c and c− a < M imply that c = s, as defined in
line 6. Additionally, a′ ≤ c′ ≤ a′ +M − 1, so (c, c′) will be considered in the loop from line 7.
By the lemma and the definition of x, we have

Dc,c′ [b, x] = Da,a′ [b, x]−Da,a′ [c− 1, c′ − 1] ≤ k −Da,a′ [c− 1, c′ − 1]. (3)
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The list Lc,c′ [b] either contains the pair (Dc,c′ [b, x], x), or a pair (Dc,c′ [b, x′], x′) such that
Dc,c′ [b, x′] ≤ Dc,c′ [b, x] and x′ > x. In the latter case by (3) we would have

k ≥ Da,a′ [c− 1, c′ − 1] +Dc,c′ [b, x] ≥ Da,a′ [c− 1, c′ − 1] +Dc,c′ [b, x′] ≥ Da,a′ [b, x′]

and x′ > x. In both cases the predecessor computed in line 8 returns a value res such that
res ≥ x and res 6=∞. The case that c′ is special admits an analogous argument.

Combining Algorithm 3 with Equation (2), we obtain correctness of the computation.
As for complexity, Algorithm 3 computes P ed

k [a, b, a′] in O(M logn) = O(
√
n logn) time

and the pre-computations take O(n3√n logn) total time. J

4.3 Restricted Approximate Covers and Seeds under Edit Distance
The techniques that were developed in Section 4.2 can be used to improve upon the O(n4)
time complexity of the algorithms for computing the restricted approximate covers and seeds
under the edit distance [10, 33]. We describe our solution only for restricted approximate
covers; the solution for restricted approximate seeds follows by considering the text ♦|T |T♦|T |.

Let us first note that the techniques from the previous subsection can be used as a black
box to solve the problem in scope in O(n3√n logn log(nw)) time, where w is the maximum
cost of an edit operation. Indeed, for every factor T [a, b] we binary search for the smallest
k for which T [a, b] is a k-approximate cover of T . A given value k is tested by computing
the tables P ed

k [a, b, a′] for all a′ = 0, . . . , n− 1 and checking if Covereddk(T [a, b], T ) = n using
Equation (2).

Now we proceed to a more efficient solution. Same as in the algorithms from [10, 33] we
compute, for every factor T [a, b], a table Qa,b[0..n] such that Qa,b[i] is the minimum edit
distance threshold k for which T [a, b] is a k-approximate cover of T [i, n− 1]. In the end, all
factors T [a, b] for which Qa,b[0] is minimal need to be reported as restricted approximate
covers of T . We will show how, given the data structures (a) and (b) of the previous section,
we can compute this table in O(nM logn) time.

A dynamic programming algorithm for computing the Qa,b table, similar to the one
in [10], is shown in Algorithm 4. Computing Qa,b takes O(n2) time provided that all Da,b

arrays, of total size O(n4), are available. The algorithm considers all possibilities for the
approximate occurrence T [i, j] of T [a, b].

Algorithm 4 Computing Qa,b in quadratic time.

1 Qa,b[n] := 0;
2 for i := n− 1 down to 0 do
3 Qa,b[i] :=∞;
4 minQ :=∞;
5 for j := i to n− 1 do
6 minQ := min(minQ, Qa,b[j + 1]); // minQ = minQa,b[i+ 1..j + 1]
7 Qa,b[i] := min(Qa,b[i], max(Da,i[b, j],minQ));

During the computation of Qa,b, we will compute a data structure for on-line range-
minimum queries over the table. We can use the following simple data structure with
O(n logn) total construction time and O(1)-time queries. For every position i and power of
two 2p, we store as RM [i, p] the minimal value in the table Qa,b on the interval [i, i+ 2p − 1].
When a new value Qa,b[i] is computed, we compute RM [i, 0] = Qa,b[i] and RM [i, p] for all
0 < p ≤ log2(n − i) using the formula RM [i, p] = min(RM [i, p − 1],RM [i + 2p−1, p − 1]).
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Then a range-minimum query over an interval [i, j] of Qa,b can be answered by inspecting
up to two cells of the RM table for p such that 2p ≤ j − i+ 1 < 2p+1.

Let us note that the variable minQ, which denotes the minimum of a growing segment in
the Qa,b table, can only decrease. We would like to make the second argument of max in
line 7 non-decreasing for increasing j. The values ed(T [a, b], T [i, j]) = Da,i[b, j] may increase
or decrease as j grows. However, it is sufficient to consider only those values of j for which
(Da,i[b, j], j) is not (Pareto-)dominated (as in Section 4.2), i.e., the elements of the list La,i[b].
For these values, Da,i[b, j] is indeed increasing for increasing j. The next observation follows
from this monotonicity and the monotonicity of minQa,b[i+ 1..j + 1].

I Observation 9. Let (Da,i[b, j′], j′) be the first element on the list La,i[b] such that

minQa,b[i+ 1..j′ + 1] ≤ Da,i[b, j′].

If j′ does not exist, we simply take the last element of La,i[b]. Further let (Da,i[b, j′′], j′′)
be the predecessor of (Da,i[b, j′], j′) in La,i[b] (if it exists). Then j ∈ {j′, j′′} minimizes the
value of the expression max(minQa,b[i+ 1..j + 1], Da,i[b, j]).

If we had access to the list La,i[b], we could use binary search to locate the index j′
defined in the observation. However, we only store the lists La,i[b] for a and i such that at
least one of them is a special point. We can cope with this issue by separately considering all
j such that j < i+M − 1 and then performing binary search on every of O(M) lists Lc,c′ [b]
where a ≤ c < a+M , i ≤ c′ < i+M and at least one of c, c′ is a special point, just as in
Algorithm 3. A pseudocode of the resulting algorithm is given as Algorithm 5.

Algorithm 5 Computing Qa,b in O(n
√

n log n) time using pre-computed data structures.

1 Qa,b[n] := 0;
2 for i := n− 1 down to 0 do
3 Qa,b[i] :=∞;
4 minQ :=∞;
5 if b− a < M − 1 then
6 for j := i to i+M − 2 do
7 minQ := min(minQ, Qa,b[j + 1]);
8 Qa,b[i] := min(Qa,b[i], max(Da,i[b, j],minQ));
9 s := a+ ((−a) mod M); s′ := i+ ((−i) mod M);

10 foreach (c, c′) in ({s} × [i, i+M − 1]) ∪ ([a, a+M − 1]× {s′}) do
11 if Lc,c′ [b] is empty then continue;

/* Binary search */
12 (dj′ , j′) := the first pair in Lc,c′ [b] such that

minQa,b[i+ 1..j′ + 1] ≤ Da,i[c− 1, c′ − 1] + dj′ or the last pair;
13 (dj′′ , j′′) :=predecessor of (dj′ , j′) in Lc,c′ [b] or (dj′ , j′) if there is none;
14 foreach j in {j′, j′′} do
15 Qa,b[i] := min(Qa,b[i], max(Da,i[c− 1, c′ − 1] + dj ,minQa,b[i+ 1..j + 1]));

Let us summarize the complexity of the algorithm. Pre-computation of auxiliary data
structures requires O(n3√n logn) time. Then for every factor T [a, b] we compute the table
Qa,b. The data structure for constant-time range-minimum queries over the table costs only
additional O(n logn) space and computation time. When computing Qa,b[i] using dynamic
programming, we may separately consider first M − 1 indices j, and then we perform a
binary search in O(M) lists Lc,c′ [b]. In total, the time to compute Qa,b[i] given a, b, i is
O(M logn) = O(

√
n logn).
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I Theorem 10. Let T be a string of length n. All restricted approximate covers and seeds
of T under the edit distance can be computed in O(n3√n logn) time.

The work of [10, 33] on approximate covers and seeds originates from a study of ap-
proximate periods [32]. Interestingly, while our algorithm improves upon the algorithms for
computing approximate covers and seeds, it does not work for approximate periods.

5 NP-hardness of General Hamming k-Approximate Cover and Seed

We make a reduction from the following problem.

Hamming String Consensus
Input: Strings S1, . . . , Sm, each of length `, and an integer k < `

Output: A string S, called consensus string, such that Ham(S, Si) ≤ k for all i =
1, . . . ,m

The following fact is known.

I Fact 11 ([15]). Hamming String Consensus is NP-complete even for the binary alphabet.

Let strings S1, . . . , Sm of length ` over the alphabet Σ = {0, 1} and integer k be an
instance of Hamming String Consensus. We introduce a morphism φ such that

φ(0) = 02k+4 1010 02k+4, φ(1) = 02k+4 1011 02k+4.

We will exploit the following simple property of this morphism.

I Observation 12. For every string S, every length-(2k+ 4) factor of φ(S) contains at most
three ones.

We set γi = 12k+4φ(Si) and T = γ1 . . . γm. Further let ψ(U) be an operation that
reverses this encoding, i.e., ψ(γi) = Si. Formally, it takes as input a string U and outputs
U [4k + 12− 1]U [2 · (4k + 12)− 1] . . . U [(`− 1)(4k + 12)− 1].

I Lemma 13. Strings γi and γj , for any i, j ∈ {1, . . . ,m}, have no 2k-mismatch prefix-suffix
of length p ∈ {2k + 4, . . . , |γi| − 1}.

Proof. We will show that the prefix U of γi of length p and the suffix V of γj of length p
have at least 2k + 1 mismatches. Let us note that U starts with 12k+4. The proof depends
on the value d = |γi| − p; we have 1 ≤ d ≤ |γi| − 2k − 4. Let us start with the following
observation that can be readily verified.

I Observation 14. For A,B ∈ {1010, 1011}, the strings A04 and 04B have no 1-mismatch
prefix-suffix of length in {5, . . . , 8}.

If 1 ≤ d ≤ 4, then U and V have a mismatch at position 2k + 4 since V starts with
12k+4−d0. Moreover, they have at least 2` mismatches by the observation (applied for the
prefix-suffix length d+ 4). In total, Ham(U, V ) ≥ 2`+ 1 ≥ 2k + 1.

If 4 < d < 2k + 4, then every block 1010 or 1011 in γi and in γj is matched against a
block of zeroes in the other string, which gives at least 4` mismatches. Hence, Ham(U, V ) ≥
4` ≥ 2k + 1.

Finally, if 2k + 4 ≤ d ≤ |γi| − 2k − 4, then U starts with 12k+4 and every factor of V of
length 2k + 4 has at most three ones (see Observation 12). Hence, Ham(U, V ) ≥ 2k + 1. J
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The following lemma gives the reduction.

I Lemma 15. If Hamming String Consensus for S1, . . . , Sm has a positive answer, then
the General k-Approximate Cover under Hamming distance for T , k, and c = |γi|
returns a k-approximate cover C such that S = ψ(C) is a Hamming consensus string for
S1, . . . , Sm.

Proof. By Lemma 13, if C is a k-approximate cover of T of length c, then every position
a ∈ StartOccHk (C, T ) satisfies c | a. Hence, StartOccHk (C, T ) = {0, c, 2c, . . . , (m− 1)c}.

If Hamming String Consensus for S1, . . . , Sm has a positive answer S, then 12k+4φ(S)
is a k-approximate cover of T of length c. Moreover, if T has a k-approximate cover C of
length c, then for S = ψ(C) and for each i = 1, . . . ,m, we have that

Ham(C, T [(i− 1)c, ic− 1]) ≥ Ham(S, Si),

so S is a consensus string for S1, . . . , Sm. This completes the proof. J

Lemma 15 and Fact 11 imply that computing k-approximate covers is NP-hard. Obviously,
it is in NP.

I Theorem 16. General k-Approximate Cover under the Hamming distance is NP-
complete even over a binary alphabet.

A lemma that is similar to Lemma 15 can be shown for approximate seeds. We leave its
technical proof for the full version of the paper. Let T ′ = γ1γ1 . . . γm12k+4γm12k+4.

I Lemma 17. If Hamming String Consensus for S1, . . . , Sm has a positive answer, then
the General k-Approximate Seed under Hamming distance for T ′, k, and c = |γ1|+2k+4
returns a k-approximate seed C such that S = ψ(C ′) is a Hamming consensus string for
S1, . . . , Sm for some cyclic shift C ′ of C.

I Theorem 18. General k-Approximate Seed under the Hamming distance is NP-
complete even over a binary alphabet.

6 Conclusions

We have presented several polynomial-time algorithms for computing restricted approximate
covers and seeds and k-coverage under Hamming, Levenshtein and weighted edit distances
and shown NP-hardness of non-restricted variants of these problems under the Hamming
distance. It is not clear if any of the algorithms are optimal. The only known related
conditional lower bound shows hardness of computing the Levenshtein distance of two strings
in strongly subquadratic time [8]; however, our algorithms for approximate covers under edit
distance work in Ω(n3) time. An interesting open problem is if restricted approximate covers
or seeds under Hamming distance, as defined in [10, 33], can be computed in O(n3−ε) time,
for any ε > 0. Here we have shown an efficient solution for k-restricted versions of these
problems.
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Abstract
We consider the general problem of the Longest Common Subsequence (LCS) on weighted sequences.
Weighted sequences are an extension of classical strings, where in each position every letter of the
alphabet may occur with some probability. Previous results presented a P T AS and noticed that
no F P T AS is possible unless P = NP . In this paper we essentially close the gap between upper
and lower bounds by improving both. First of all, we provide an EP T AS for bounded alphabets
(which is the most natural case), and prove that there does not exist any EP T AS for unbounded
alphabets unless F P T = W [1]. Furthermore, under the Exponential Time Hypothesis, we provide a
lower bound which shows that no significantly better P T AS can exist for unbounded alphabets. As
a side note, we prove that it is sufficient to work with only one threshold in the general variant of
the problem.
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1 Introduction

1.1 General concepts
We consider the problem of determining the LCS (Longest Common Subsequence) on
weighted sequences. Weighted sequences, also known as p-weighted sequences or Position
Weighted Matrices (PWM) [3, 36] are probabilistic sequences which extend the notion of
strings, in the sense that in each position there is some probability for each letter of an
alphabet Σ to occur there.

Weighted sequences were introduced as a tool for motif discovery and local alignment
and are extensively used in molecular biology [23]. They have been studied both in the
context of short sequences (binding sites, sequences resulting from multiple alignment, etc.)
and on large sequences, such as complete chromosome sequences that have been obtained
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using a whole-genome shotgun strategy [32, 37]. Weighted sequences are able to keep all
the information produced by such strategies, while classical strings impose restrictions that
oversimplify the original data.

Basic concepts concerning the combinatorics of weighted sequences (like pattern matching,
repeats discovery and cover computation) were studied using weighted suffix trees [26],
Crochemore’s partitioning [9, 11, 18], the Karp-Miller-Rabin algorithm [18], and other
approaches [43, 30]. Other interesting results include approximate and gapped pattern
matching [6, 41, 34], online pattern matching [16], weighted indexing [2, 10], swapped
matching [40], the all-covers and all-seeds problem [39, 42], extracting motifs [28], and the
weighted shortest common supersequence problem [4, 17]. There are also some more practical
results on mapping short weighted sequences to a reference genome [7] (also studied in the
parallel setting [27]), as well as on the reporting version of the problem which we also consider
in this paper [11].

The Longest Common Subsequence (LCS) problem is a well-known measure of similarity
between two strings. Given two strings, the output should be the length of the longest
subsequence common to both strings. Dynamic programming solutions [25, 38] for this
problem are classical textbook algorithms in Computer Science. LCS has been applied in
computational biology for measuring the commonality of DNA molecules or proteins which
may yield similar functionality. A very interesting survey on algorithms for the LCS can
be found in [13]. The current LCS algorithms are considered optimal, since matching lower
bounds (under the Strong Exponential Time Hypothesis) were proven [1, 14].

Extensions of this problem on more general structures have also been investigated (trees
and matrices [5], run-length encoded strings [8], and more). One interesting variant of the
LCS is the Heaviest Common Subsequence (HCS) where the matching between different
letters is assigned a different weight, and the goal is to maximize the weight of the common
subsequence, rather than its length.

1.2 Weighted LCS
The problem studied in this paper is the weighted LCS (WLCS) problem. It was introduced
by Amir et al. [3] as an extension of the classical LCS problem on weighted sequences. Given
two weighted sequences, the goal is to find a longest string which has a high probability of
appearing in both sequences. Amir et al. initially solved an easier version of this problem
in polynomial time, but unfortunately its applications are limited. As far as the general
problem is concerned, they hinted its NP-Hardness by giving an NP-Hardness result on a
closely related problem, which they call the log-probability version of WLCS. In short, the
problem is the same, but all products in its definition are replaced with sums. Their proof is
based on a Turing reduction and only works for unbounded alphabets. Finally, Amir et al.
provide an 1

|Σ| -approximation algorithm for the WLCS problem.
Cygan et al. [19] strengthened the evidence that WLCS is NP-Hard by providing an NP-

Completeness result on the decision log-probability version of WLCS (informally introduced
in the previous paragraph), already for alphabets of size 2, using a Karp reduction; for
alphabets of size 1 the solution is trivial since there is no uncertainty. They also gave
an 1

2 -approximation algorithm and a PTAS, while also noticing that an FPTAS cannot
exist, assuming WLCS is indeed NP-Hard, as hinted by their evidence, and that P 6= NP.
Finally, they proved that every instance of the problem can be reduced to a more restricted
class of instances. However, for this to be achieved their algorithm needs to perform exact
computations of roots and logarithms that may make the algorithm to err.
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Finally, it is worth noting that Charalampopoulos et al. [17], proved that unless P=NP,
WLCS cannot be solved in O(nf(a)) time, for any function f(a), where a is the cut-off
probability. We note that this result concerns exact computations rather than approximations.

1.3 Our results
In this paper we essentially close the gap between upper and lower bounds for WLCS by
improving both; we prove that the problem is indeed NP-Hard even for alphabets of size 2.
Furthermore, we provide an EPTAS for bounded alphabets. These two results, along with
the FPTAS observation by Cygan et al. completely characterize the complexity of WLCS
for bounded alphabets. For unbounded alphabets, a PTAS was already known by Cygan et
al. [19]. We show matching lower bounds, both by ruling out the possibility of an EPTAS,
and by showing that, under the Exponential Time Hypothesis, no significantly better PTAS
can exist. We also prove that every instance of WLCS can be reduced to a restricted class
of instances without using roots and logarithms, thus being able to actually achieve exact
computations without rounding errors that can make the algorithm err.

As noted in the previous paragraph, apart from essentially closing the gap between
hardness results and faster algorithms we also circumvent the need to work with roots and
logarithms as the previous results did. In short, by taking advantage of the property that
(ab)c = acbc and setting c to be an appropriate logarithm, previous results transformed any
instance to a more manageable form. However, this transformation introduces an error that
may make the algorithm err as noted in the full version of the paper [29]. Table 1 summarizes
the above discussion. Table 2 summarizes our results depending on the alphabet-size.

A short discussion is in order with respect to what new insights on weighted LCS enabled
us to achieve progress. Our most crucial observation is the fact that the problem behaves
differently in the natural case of a bounded alphabet, and in the case of an unbounded
alphabet. Without this distinction, closing the gap between upper and lower bounds was
unlikely. That’s because, on the one hand, no EPTAS for the general case could be found,
as none existed. On the other hand, proving that no EPTAS exists requires reductions that
work only on unbounded alphabets. The aforementioned distinction is what enabled us to
understand that modifying the existing reductions, which work for alphabets of size 2, would
be futile in proving W [1]-Hardness.

Furthermore, it was crucial to identify that working with products is the core difficulty
in proving NP-Hardness of weighted LCS. The introduction of the log-probability version of
the weighted LCS reflects the assumption that the difference between working with sums
and working with products is just a technicality. After [3] and [19] successfully proved
NP-Hardness for the log-probability version, it was natural to attempt reducing from it
for proving NP-Hardness of the weighted LCS problem. Despite the apparent similarities
between the two problems, their difference did not allow us to craft such a reduction. For
the same reason, Cygan et al. used a model that assumed infinite precision computations
with reals, while we are able to avoid such a strong assumption.

1.4 Organization of the paper
The rest of the paper is organized as follows. In Section 2, we provide necessary definitions
and discuss the model of computation. In Section 3, we show that WLCS is NP-Complete
while in Section 4, we provide the EPTAS algorithm for bounded alphabets, which is also
an improved PTAS for unbounded alphabets. In Section 5, we show that there can be
no EPTAS for unbounded alphabets by showing that this problem is W [1]-hard and in
Section 6, we describe the matching conditional lower bound. We conclude in Section 7.

CPM 2020
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Due to space constraints, some proofs and technical discussions are only available on the
full version of the paper [29]. More specifically, in the full version we present an algorithm
that transforms any instance of our problem to an equivalent, but easier to handle, instance.
We also show that the rounding errors introduced by working with reals (logarithms and
roots) may cause a similar algorithm by Cygan et al. [19] to err if standard rounding is used.

Table 1 Results on WLCS.

Amir et al. Cygan et al. Our results

NP-Hardness of WLCS

Hinted, by NP-Hardness of
Log-probability version
(Turing reduction -
only for unbounded alphabets)

Hinted, by NP-Hardness of
Log-probability version
(Karp reduction -
already from alphabets size 2)

Proved
(Karp Reduction -
already from alphabets of size 2)

Approximation Algorithms 1
Σ -Approximation P T AS

EP T AS for bounded
alphabets,
Improved P T AS for
unbounded

Proof that no EP T AS exists
for unbounded alphabets No No Yes

Lower bound on any P T AS No No
Matching the
upper bound,
under ET H

Reduction to a restricted
class of instances No Yes, by assuming exact

computations of logarithms
Yes, without any
extra assumptions

Table 2 Results depending on the Alphabet Size.

Alphabet Size Previous Results Our results
1 Trivial Trivial
Constant Size No F P T AS possible Achieved EP T AS

Depending on the input Achieved P T AS

No EP T AS possible,
Improved P T AS,
Matching Lower Bound

2 Preliminaries

2.1 Basic Definitions
Let Σ = {σ1, σ2, . . . , σK} be a finite alphabet. We deal both with bounded (K = O(1)) and
unbounded alphabets. Σd denotes the set of all words of length d over Σ. Σ∗ denotes the set
of all words over Σ.

I Definition 1 (Weighted Sequence). A weighted sequence X is a sequence of functions
p

(X)
1 , . . . , p

(X)
|X| , where each function assigns a probability to each letter from Σ. We thus have∑K

j=1 p
(X)
i (σj) = 1 for all i, and p(X)

i (σj) ≥ 0 for all i, j.

By WS(Σ) we denote the set of all weighted sequences over Σ. Let X ∈ WS(Σ). Let
Seq

|X|
d be the set of all increasing sequences of d positions in X. For a string s ∈ Σd and

π ∈ Seq|X|d , define PX(π, s) as the probability that the subsequence on positions corresponding
to π in X equals s. More formally, if π = (i1, i2, . . . , id) and sk denotes the k-th letter of s,
then

PX(π, s) =
d∏
k=1

p
(X)
ik

(sk)
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Denote

SUBS(X, a) = {s ∈ Σ∗|∃π ∈ Seq|X||s| such that PX(π, s) ≥ a}

That is, SUBS(X, a) is the set of deterministic strings which match a subsequence of X
with probability at least a. Every s ∈ SUBS(X, a) is called an a-subsequence of X.

Let us give a clarifying example. If Σ = {σ1, σ2} and X is a long weighted sequence,
where in each position the probability for each letter to appear is 0.5, then SUBS(X, 0.3)
does not contain s = σ1σ1, as, for any increasing subsequence of 2 positions, the probability
of s appearing is 0.25 < 0.3.

The decision problem we consider is the following:

I Definition 2 ((a1, a2)-WLCS decision problem). Given two weighted sequences X,Y , two cut-
off probabilities a1, a2 and a number k, find if the longest string s contained in SUBS(X, a1)∩
SUBS(Y, a2) has length at least k.

Naturally, the respective optimization problem is the following:

IDefinition 3 ((a1, a2)-WLCS optimization problem). Given two weighted sequences X,Y , and
two cut-off probabilities a1, a2, find the length of the longest string contained in SUBS(X, a1)∩
SUBS(Y, a2).

Both in the decision and the optimization version, the WLCS problem is the (a1, a2)-
WLCS problem, where a1 = a2. We denote these (equal) probabilities by a (a = a1 = a2) for
concreteness.

Let us note that the problem is only interesting if |Σ| ≥ 2. For |Σ| = 1 the problem is
trivial since there is no uncertainty at all. The same letter appears in every position in both
strings with probability 1, and thus the answer is simply the length of the shorter weighted
sequence.

Finally, let us also state that the Log-Probability version of the WLCS, studied in
previous papers, is the same as the original WLCS if we replace PX(π, s) =

∏d
k=1 p

(X)
ik

(sk)
by PX(π, s) =

∑d
k=1 p

(X)
ik

(sk).

2.2 Model of Computation

Our model of computation is the standard word RAM , introduced by Fredman and Willard
[20] to simulate programming languages like C. The word size is w = Ω(log I), where I is the
input size in bits, so as to allow random access indexing of the whole input. Thus, arithmetic
operations between words take constant time. However, due to the nature of our problem,
it is necessary to compute products of many numbers. This can produce numbers that are
much larger than the word size. We even allow numbers in the input to be larger than 2w
(these numbers just need to use more than one word to be represented). We generally assume
that each number in the input is represented by at most B bits, but we do not pose any
constraint on B other than the trivial one that B < I. Of course, in cases where we deal
with numbers that occupy many words, we no longer have unit-cost arithmetic operations;
we guarantee, however, that our results only use linear or near-linear time operations (like
comparisons and multiplications) on numbers polynomial in the input size. Thus, although
we do not enjoy the unit-cost assumption for arbitrary numbers, we always stay within the
polynomial-time regime.

CPM 2020
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2.3 Basic Operations
In this subsection we discuss the multiplication of two B-bit input numbers in (poly-
nomial) Mulw(B) time, where w is the word-size. For example, for integers there ex-
ists a multiplication algorithm by Harvey and van der Hoeven [24] with time complexity
Mulw(B) = O (B logB) (generally the running time can also depend on w, although in this
case it does not). Let us notice that although the result is unpublished yet, we use it due to
its easy to read time complexity; it is trivial to use other algorithms instead, like the one
from Fürer [21], or the more practical one by Schönhage and Strassen [35]. We establish the
complexity of multiplying x B-bit numbers. Our divide and conquer algorithm splits the
numbers into two (equal sized) groups, recursively multiplies each, and multiplies the results
in Mulw

(
xB
2
)
time. By a direct application of the Master Theorem by Bentley et al. [12]

we prove the following lemma.

I Lemma 4. Multiplying x B-bit numbers costs
O(Mulw(xB) log(xB)) time if Mulw(xB) = Θ(xB logk(xB)) for some constant k,
O((xB)c) else if Mulw(xB) = O((xB)c) for some constant c ≥ 1,

assuming that Mulw(N) is a polynomial time algorithm that multiplies two N -bit numbers.

Proof. The algorithm simply splits the numbers in two equal-sized groups, recursively
multiplies each, and then multiplies the results. Let N = xB. We have that the running time
for multiplying x B-bit numbers is T (N) = 2T (N2 ) + Mulw(N). Since ccrit = log2 2 = 1,
and Mulw(N) = Ω(N), the Master Theorem [12] gives two cases. Either Mulw(N) =
Θ(N logk(N)) for some constant k, in which case T (N) = O(Mulw(N) logN), or else
Mulw(N) = O(N c) for some constant c ≥ 1 (such a constant exists since we assume
polynomial time multiplications). In this case, since it holds that 2Mulw(N2 ) ≤ 2Mulw(N),
we get that T (N) = Mulw(N) if c > ccrit = 1. Notice that we handled all cases, since
Mulw(N) = N is handled by the first case with k = 0, and whatever does not fit in the first
case, definitely fits in the second, since we assumed that Mulw(N) is polynomial in N . J

I Corollary 5. Multiplying x B-bit numbers costs polynomial time by using any polynomial
time algorithm for multiplying two B-bit numbers as a black box. Especially if we use Harvey
and Van Der Hoeven’s algorithm, the time cost is O

(
xB log2 (xB)

)
.

Let us also notice that the way to divide two B-bit numbers is simply storing both the
numerator and the denominator. Comparing two numbers x1 = num1

den1
and x2 = num2

den2
can

be done by comparing num1 × den2 and num2 × den1. The only other operation we need
when working with such fractions is subtracting a B-bit number x = num

den from 1. This is
simply den−num

den .

3 NP-Completeness

An NP-Completeness proof for the integer log-probability version of the WLCS problem
has been given in [19]. This is a closely related problem, with the main difference being
that products are replaced with sums. We do not know of any way to reduce from this
log-probability version to WLCS other than exponentiating. As stated in the explanation
of our model of computation in Section 2, there is no limit on the number of bits needed
to represent a single number (it just occupies a lot of words). This means that, if the
input consisted of I bits, and there was a number (probability) represented with I

100 bits,
exponentiating would result in a number with 2 I

100 bits, meaning the reduction would not
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be a polynomial-time one. For this reason, we believe that although it is easier to prove
NP-Completeness for the integer log-probability version of the problem, there is no easy way
to use it for proving NP-Completeness for the general version. We, thus, give a reduction
from the NP-Complete problem Subset Product [22] which proves NP-Completeness directly
for the general problem.

Notice that for alphabets consisting of one letter, the problem is trivial since there is
no uncertainty at all. In the following, we prove that even for alphabets consisting of two
letters, the problem is NP-Complete.

I Definition 6 (Subset Product). Given a set L of n integers and an integer P , find if there
exists a subset of the numbers in L with product P .

I Lemma 7. WLCS is NP-Complete, even for alphabets of size 2.

Proof. Obviously WLCS ∈ NP since the increasing subsequences π1, π2 and the string s
for which PX(π1, s) ≥ a, PY (π2, s) ≥ a are a certificate which, along with the input, can be
used to verify in polynomial time that the problem has a solution.

Let (L,P ) be an instance of Subset Product and let n = |L|. By Li we denote the
i-th number of the set L, assuming any fixed ordering of the n numbers of L. We give a
polynomial-time reduction to a (X,Y, a, k) instance of WLCS, with alphabet size 2 (we call
the letters ′A′ and ′B′).

The core idea is the following: The weighted sequences have n positions (plus 2 more
for technical reasons related to the threshold a). The number k is equal to the length of
the sequences, meaning that we pick every position, and the only question is whether we
picked letter ′A′ or letter ′B′. Letter ′A′ in position i corresponds to picking the i-th number
in the original Subset Product, while letter ′B′ corresponds to not picking it. Finally, the
letters ′A′ picked in X form an inequality of the form: “some product is ≥ P”, while the
same letters in Y form the inequality: “the same product is ≤ P”. For these two to hold
simultaneously, it must be the case that we found some product equal to P , which is the
goal of the original Subset Product.

More formally, the weighted sequences have size n+ 2. Let ci = 1
1+Li and di = 1

1+ 1
Li

.

p
(X)
i (′A′) = ciLi, 1 ≤ i ≤ n p

(Y )
i (′A′) = di

Li
, 1 ≤ i ≤ n

p
(X)
n+1(′A′) = 1 p

(Y )
n+1(′A′) =

n∏
j=1

1
Li

=
∏n
j=1 ci∏n
j=1 di

p
(X)
n+2(′A′) = 1

P 2 p
(Y )
n+2(′A′) = 1

where p(X)
i (′B′) = 1 − p(X)

i (′A′) for all i, and similarly for Y . Notice that, in particular,
p

(X)
i (′B′) = ci, 1 ≤ i ≤ n and p

(Y )
i (′B′) = di, 1 ≤ i ≤ n. Finally, we set k = n + 2 and

a =
∏n

j=1
ci

P .
First of all, notice that since we must find a string of length n + 2, we must choose a

letter from every position. Thus, a choice of letter at some position on X corresponds to the
same choice of letter at that position on Y . The choice of letter on positions n+ 1 and n+ 2
is ′A′ in both cases since

p
(X)
n+1(′B′) = p

(Y )
n+2(′B′) = 0

CPM 2020
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Suppose that the numbers at positions {i1, . . . , i`} give product P :

∏̀
j=1

Lij = P

Then, we form the string s by picking ′A′ at positions {i1, . . . , i`, n+ 1, n+ 2} and ′B′ at all
other positions. Thus

PX({1, 2, . . . , n+ 2}, s) =
∏`
j=1 Lij

∏n
j=1 ci

P 2 =
∏n
j=1 ci

P
= a

PY ({1, 2, . . . , n+ 2}, s) =
∏n
j=1 di

∏n
j=1 ci∏`

j=1 Lij
∏n
j=1 di

=
∏n
j=1 ci

P
= a

Conversely, suppose a solution for the WLCS problem, where the string s is formed by
picking ′A′ at positions {i1, . . . , i`, n+ 1, n+ 2} and ′B′ at all other positions. It holds that:

PX({1, 2, . . . , n+ 2}, s) =
∏`
j=1 Lij

∏n
j=1 ci

P 2 ≥ a =⇒
∏̀
j=1

Lij ≥ P

PY ({1, 2, . . . , n+ 2}, s) =
∏n
j=1 di

∏n
j=1 ci∏`

j=1 Lij
∏n
j=1 di

≥ a =⇒
∏̀
j=1

Lij ≤ P

The above imply that
∏`
j=1 Lij = P . Finally, notice that all computations are done in

polynomial time, due to Corollary 5. J

4 EPTAS for Bounded Alphabets, Improved PTAS for Unbounded
Alphabets

We now give an Efficient Polynomial Time Approximation Scheme (EPTAS) for the case
where our alphabet size is bounded (|Σ| = O(1)). Let us notice that this is the case when
working with DNA sequences (|Σ| = 4), the most usual application of weighted sequences.
The same algorithm is an improved (when compared to [19]) PTAS in the case of unbounded
alphabets. This means that the WLCS problem is Fixed-Parameter Tractable for constant
size alphabets and thus belongs to the corresponding complexity class FPT as shown in
Corollary 11.

The authors in [19] first noted that there is no FPTAS unless P = NP , and so we can
only hope for an EPTAS. Our result relies on their following result:

I Lemma 8 (Lemma 4.6 of [19]). It is possible to find, in polynomial time, a solution of size
d to the WLCS optimization problem such that the optimal value OPT is guaranteed to be
either d or d+ 1 (however we do not know which one holds).

Their PTAS uses the above result and in case the approximation is guaranteed to be
good enough (d > (1 − ε)(d + 1), which implies that d > (1 − ε)OPT ), it stops. Else, it
holds that 1

ε ≥ d+ 1 ≥ OPT , and the PTAS exhaustively searches all subsequences of X,
all subsequences of Y , and all possible strings of length d+ 1, for a total complexity of

O

(
Mulw

(
B

ε

)
log
(
B

ε

)
|Σ| 1ε

(
n
1
ε

)2
)
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Mulw(Bε ) log(Bε ) is the time needed to multiply d + 1 numbers with at most B-bits each,
by Lemma 4, and is insignificant compared to the other terms. Our EPTAS improves the
exhaustive search part to

O
(
Mulw

(
B

ε

)
n

ε
|Σ| 1ε

)
which is polynomial in the input size, in case of bounded alphabets. The following lemma is
needed.

I Lemma 9. Given a weighted sequence X of length n, and a string s of length d, it is
possible to find the maximum number a such that there exists an increasing subsequence π
of length d for which PX(π, s) = a. The running time of the algorithm is O(Mulw(dB)nd),
where B is the maximum number of bits needed to represent each probability in X.

Proof. We use dynamic programming. Let sj be the string formed by the first j letters of
s, cj be the j-th letter of s and optX(i, j) be the maximum number such that there exists
an increasing subsequence π′ of length j whose last term π′j is at most i and for which
PX(π′, sj) = optX(i, j). Since we choose whether cj is picked from the i-th position of X, it
holds that:

optX(i, j) = max{optX(i− 1, j), optX(i− 1, j − 1)p(X)
i (cj)}

For the base cases, optX(i, 0) = 1 for all i (we can always form the empty string with certainty,
by not picking anything), and optX(0, j) = 0 for j > 0 (not picking anything never gives us a
non-empty string). We are interested in the value optX(|X|, |s|). J

Now we are ready to give our EPTAS.

I Theorem 10. For any value ε ∈ (0, 1] there exists an (1− ε)-approximation algorithm for
the WLCS problem which runs in O

(
poly(I) + n

εMulw
(
B
ε

)
|Σ| 1ε

)
time and uses O (poly(I))

space, where I is the input size, n = |X|+ |Y | and B is the maximum number of bits needed
to represent a probability in X and Y . Consequently, the WLCS problem admits an EPTAS
for bounded alphabets.

Proof. We begin by using Lemma 8 to find an a-subsequence of length d, such that the
optimal solution is at most d+ 1. If d+ 1 ≥ 1

ε , we are done, since in that case we have a
d
d+1 = 1− 1

d+1 ≥ (1− ε) approximation. Otherwise, we try all possible strings s ∈ |Σ|d+1,
and use Lemma 9 to check if any one of them can appear in both weighted sequences with
probability at least a. J

I Corollary 11. WLCS ∈ FPT for bounded alphabets, parameterized by the solution length.

Proof. Follows directly from [31], Proposition 2. J

5 No EPTAS for Unbounded Alphabets

We have already seen that there is no FPTAS for WLCS, even for alphabets of size 2,
unless P = NP . We have also shown an EPTAS for bounded alphabets and a PTAS for
unbounded alphabets. The natural question that arises is: Is it possible to give an EPTAS
for unbounded alphabets?

We answer this question negatively, by proving that WLCS is W [1]-hard, meaning
that it does not admit an EPTAS (and is in fact not even in FPT ) unless FPT = W [1]
([31], Corollary 1). To show this, we give a 2-step FPT -reduction from Perfect Code, which
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was shown to be W [1]-Complete in [15], to k-sized Subset Product and then to WLCS. The
k-sized Subset Product problem is the Subset Product problem with the additional constraint
that the target subset must be of size k.

I Definition 12 (Perfect Code). A perfect code is a set of vertices V ′ ⊆ V with the property
that for each vertex u ∈ V there is precisely one vertex in NG(u) ∩ V ′, where NG(u) is the
set of adjacent nodes of u in G.

In the perfect code problem, we are given an undirected graph G and a positive integer k,
and we need to decide whether G has a k-element perfect code. Notice that the definition
of a perfect code implies that there is a perfect code iff there is a set V ′ ⊆ V for which⋃
u∈V ′ NG(u) = V and NG(u) ∩ NG(v) = ∅ for all u, v ∈ V ′, u 6= v. First we show that

k-sized Subset Product is W [1]-hard.

I Lemma 13. k-sized Subset Product is W [1]-hard.

Proof. Let (G = (V,E), k) be an instance of Perfect Code. Suppose that the vertices
are V = {1, . . . , n}. First of all, we compute the first n prime numbers using the Sieve
of Eratosthenes. We denote the i-th prime number as pi. The set of positive integers
L = {L1, L2, . . . , Ln} as well as the positive integer P are defined as follows:

Lv =
∏

u∈NG(v)

pu, P =
n∏
v=1

pv

Notice that due to the unique prime factorization theorem, a subset of k numbers from the
set L have product P iff G has a k-element Perfect Code.

The size of our primes is O(n logn) due to the prime number theorem. Thus, they
require O(logn) bits to be represented. Each integer in L, as well as in P , is computed using
Corollary 5 in O(n log3 n) time, for an overall O(n2 log3 n) complexity for our reduction.
Since the new parameter k is the same as the old one (no dependence on n), our reduction is
in fact an FPT -reduction. J

Our result for this section is the following.

I Theorem 14. WLCS, parameterized by the length of the solution, is W [1]-hard.

Proof. To prove the theorem we create diagonal weighted sequences. That is, we require
each letter to appear only in one position and vice-versa. In this way, the subsequences
picked for X and Y are the same. The above rule is broken by the addition of two auxiliary
letters that are there to make the probabilities add up to 1 in each position. This creates
no problem because we make sure that these letters are never picked. Finally, we force the
product to be equal to our target, by forcing it to be at most our target and at least our
target at the same time.

More formally, let (L = {L1, L2, . . . , Ln}, k, P ) be an instance of the k-sized Subset
Product problem and let M = mk+1, where m is the maximum number in set L. Notice
that if mk ≤ P then we only need to check the product of the highest k numbers of L, which
means the problem is solvable in polynomial time. Thus we can assume that M ≥ mk > P .
The alphabet of X,Y is Σ = {1, 2, . . . , n, n+ 1, n+ 2, n+ 3} and we set a = 1

PMk .

p
(X)
i (i) = Li

M
, 1 ≤ i ≤ n p

(Y )
i (i) = 1

MLi
, 1 ≤ i ≤ n

p
(X)
n+1(n+ 1) = 1

P 2 p
(Y )
n+1(n+ 1) = 1

p
(X)
i (n+ 2) = 1− p(X)

i (i), 1 ≤ i ≤ n+ 1 p
(Y )
i (n+ 3) = 1− p(Y )

i (i), 1 ≤ i ≤ n+ 1
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All non-specified probabilities are equal to 0. Notice that symbols n+ 2 and n+ 3 are used
to guarantee that probabilities sum up to 1.

We show that the instance (X,Y, a, k + 1) has a solution iff (L, k, P ) has a solution.
Suppose there exists a solution to (L, k, P ). Then, there exists an increasing subsequence
π = (i1, . . . , ik) such that

∏k
j=1 Lij = P . Let π′ be π extended by the number ik+1 = n+ 1

and s be the string i1i2 . . . ik+1. It holds that PX(π′, s) = PY (π′, s) = a.
Conversely, suppose there exists a solution to (X,Y, a, k+ 1). Then there exist increasing

subsequences π = (i1, . . . , ik+1), π′ = (j1, . . . , jk+1) and a string s such that PX(π, s) ≥
a, PY (π′, s) ≥ a. First of all, notice that, due to p(X)

i (n+ 3) = p
(Y )
i (n+ 2) = 0 for all i, s

does not contain letters n + 2 and n + 3, which leaves only one choice for every position.
Also each letter appears only once in each sequence, and in the same position. Thus, π = π′,
and due to our construction the i-th letter of s is the i-th member of π. Finally, not picking
position n+ 1 would result in PY (π, s) < a due to the fact that P < M . Thus, the last letter
of s is n+ 1. It holds that:

PX({i1, . . . , ik+1}, s) ≥ a =⇒
∏k
i=1 Lπi
P 2Mk

≥ 1
PMk

=⇒
k∏
i=1

Lπi ≥ P

PY ({i1, . . . , ik+1}, s) ≥ a =⇒ 1
Mk

∏k
i=1 Lπi

≥ 1
PMk

=⇒
k∏
i=1

Lπi ≤ P

The above two inequalities imply a k-sized subset of L with product equal to P .
The reduction is a polynomial-time one, due to Corollary 5. More than that, it is an

FPT -reduction since the new parameter k is equal to the old parameter incremented by one,
and thus has no dependence on n. J

6 Matching Conditional Lower Bound on any PTAS

In the d-SUM problem, we are given N numbers and need to decide whether there exists a
d-tuple that sums to zero. Patrascu and Williams [33] proved that any algorithm for solving
the d-SUM problem requires nΩ(d) time, unless the Exponential Time Hypothesis (ETH)
fails. To show this, they first proved a hardness result for a variant of 3-SAT, the sparse
1-in-3 SAT.

I Definition 15 (Sparse 1-in-3 SAT). Given a boolean formula with n variables and O(n)
clauses in 3 CNF form, where each variable appears in a constant number of clauses, determine
whether there exists an assignment of the variables such that each clause is satisfied by exactly
one variable.

They first prove the following hardness result under ETH.

I Proposition 16. Under ETH, there is an (unknown) constant s3 such that there exists
no algorithm to solve sparse 1-in-3 SAT in O(2δn) time for δ < s3.

By assuming an nO(d) time algorithm for d-SUM they disproved the above fact, which
cannot happen under ETH. We use the same technique for proving an nΩ(k) lower bound
for k-sized Subset Product.

I Lemma 17. Assuming the ETH, the problem of k-sized Subset Product cannot be solved
in O(n

s3k
101 ) time on instances satisfying k < n0.99 and each number in the input set L has

O (logn(log k + log logn)) bits, where n is the size of L, and P is the target which can be
arbitrarily big.
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Proof. Let f be a sparse 1-in-3 SAT instance with N variables and M = O(N) clauses, and
k > 1

s3
. Conceptually, we split the variables of f into k blocks of equal size - apart from

the last block that may have smaller size. Each block contains at most dNk e variables, and
thus there are at most 2dNk e different assignments of values to the group-of-variables within
a block. For each block and for each one of these assignments we generate a number which
serves as an identifier of the corresponding block and assignment. Thus, there are n = k2dNk e
different identifiers.

Let pi be the i-th prime number. In order to compute an identifier, we initialize it to
pb, where b is the index of the identifier’s corresponding block. Then, we run through all
of the M = O(N) clauses and do the following: suppose we process the i-th clause and let
0 ≤ j ≤ 3 be the number of variables of the identifier’s corresponding assignment that satisfy
the clause. We update the identifier by multiplying it with pjk+i.

Since each variable appears only in a constant number of clauses, each identifier is a
product of O(Nk ) numbers. The prime number theorem guarantees O(logN) bits to represent
each factor, which means the identifiers have O(Nk logN) bits. Using the fact that n = k2dNk e,
each identifier is represented by O (logn(log k + log logn)) bits.

These n identifiers, along with the target P =
∏k+M
i=1 pi (recall that pi is the i-th prime

number), form a k-sized Subset Product instance. This preprocessing step costs O(2Nk ) time,
ignoring polynomial terms, which is more efficient than O(2s3N ).

Due to the unique prime factorization, a solution to the k-sized Subset Product corresponds
to a solution in f and vice-versa. If the running time of the k-sized Subset Product was
O(n

s3k
101 ) then we could solve the above instance in O((k2Nk )

s3k
101 ) time.

Since k = n

2dN
k

e
and k < n0.99, it follows that n

2dN
k

e
< n0.99 =⇒ n0.99 < 299dNk e. But

k < n0.99, which means k < 299dNk e.
Thus the previous running time becomes O(2 100

101 s3N ). Both the preprocessing step and
the solution of the k-sized Subset Product can be achieved in time O(2δN ), where δ < s3.
However, this would violate Proposition 16. J

Using the above, we are ready to prove our (matching) lower bound, conditional on ETH .

I Theorem 18. Under ETH, there is no PTAS for WLCS with running time |I|O( 1
ε ), where

|I| is the input size in bits.

Proof. Suppose that such an algorithm A(I, ε) existed. Let R() be the polynomial time
reduction from k-sized Subset Product to WLCS given in the proof of Theorem 14. Then,
there is a solution to k-sized Subset Product iff there is a solution to WLCS of size k + 1, or,
equivalently, iff the optimal solution to WLCS is at least k + 1.

Using the hypothetical A(I, ε) with an appropriate value of ε, we solve k-sized Subset
Product more efficiently than possible, thus reaching a contradiction.

Consider the following algorithm for k-sized Subset Product, where there are |L| numbers
in the input, each having O (log |L|(log k + log log |L|)) bits and k < |L|0.99. Given an
instance (L, k, P ), we define the instance for the WLCS to be I = R(L, k, P ). We run
A(I, 1

2(k+1) ) and if the output is at least k + 1 we return that (L, k, P ) is satisfied, otherwise
we return that it cannot be satisfied.

Note that if k-sized Subset Product is solvable, then OPT (I) ≥ k + 1, and the value
output by A is at least (1− 1

2(k+1) )(k+1) = k+ 1
2 > k. Thus, the value output by A is at least

k + 1. On the other hand, if k-sized Subset Product is not solvable, then OPT (I) < k + 1,
and obviously the value output by A is at most k.
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Thus we found an algorithm for k-sized Subset Product whose running time is |I|O(k).
Since I is obtained by a polynomial time reduction, its size is bounded by a polynomial in
|(L, k, P )|. Therefore, the above running time becomes |(L, k, P )|O(k). Under our assumptions,
this becomes |L|O(k), which is not feasible under ETH, due to Lemma 17. J

7 Conclusion

In this paper we prove NP-Completeness for the WLCS decision problem, and give a PTAS
along with a matching conditional lower bound for the optimization problem. In the most
usual setting, where the alphabet size is constant, the above PTAS is in fact an EPTAS,
and it is known that no FPTAS can exist unless P = NP . In the full version of the paper
[29], we give a transformation such that algorithms for the WLCS problem can be applied
for the (a1, a2)-WLCS problem.

In proving that WLCS does not admit any EPTAS, we proved that it is W [1]− hard.
It may be interesting to determine the exact complexity of WLCS in the W − hierarchy.
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Abstract
Considering matrices with missing entries, we study NP-hard matrix completion problems where the
resulting completed matrix should have limited (local) radius. In the pure radius version, this means
that the goal is to fill in the entries such that there exists a “center string” which has Hamming
distance to all matrix rows as small as possible. In stringology, this problem is also known as
Closest String with Wildcards. In the local radius version, the requested center string must be
one of the rows of the completed matrix.

Hermelin and Rozenberg [CPM 2014, TCS 2016] performed a parameterized complexity analysis
for Closest String with Wildcards. We answer one of their open questions, fix a bug concerning
a fixed-parameter tractability result in their work, and improve some running time upper bounds.
For the local radius case, we reveal a computational complexity dichotomy. In general, our results
indicate that, although being NP-hard as well, this variant often allows for faster (fixed-parameter)
algorithms.
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1 Introduction

In many applications data can only be partially measured, which leads to incomplete data
records with missing entries. A common problem in data mining, machine learning, and
computational biology is to infer these missing entries. In this context, matrix completion
problems play a central role. Here the goal is to fill in the unknown entries of an incomplete
data matrix such that certain measures regarding the completed matrix are optimized. Ganian
et al. [9] recently studied parameterized algorithms for two variants of matrix completion
problems; their goal was to minimize either the rank or the number of distinct rows in the
completed matrix. In this work, we focus our study on another variant, namely, minimizing
the “radius” of the completed matrix. Indeed, this is closely related to the topic of consensus
(string) problems, which received a lot of attention in stringology and particularly with
respect to parameterized complexity studies [16, 15, 3]. Indeed, radius minimization for
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Figure 1 An example of MinRMC and MinLRMC. The incomplete input matrix is depicted
in the left (a ∗ denotes a missing entry). Optimal solutions for MinRMC (d = 2) and MinLRMC
(d = 3) are shown in the middle and right. Entries differing from the solution vector are marked
gray.

incomplete matrices is known in the stringology community under the name Closest String
with Wildcards [12], a generalization of the frequently studied Closest String problem.
Herein, an incomplete matrix shall be completed such that there exists a vector that is not
too far from each row vector of the completed matrix in terms of the Hamming distance (that
is, the completed matrix has small radius). We consider this radius minimization problem
and also a local variant where all row vectors of the completed matrix must be close to a row
vector in the matrix.

Given the close relation to Closest String, which is NP-hard already for binary
strings [8], all problems we study in this work are NP-hard in general. However, we provide
several positive algorithmic results, namely fixed-parameter tractability with respect to
natural parameters or even polynomial-time solvability for special cases. Formally, we study
the following problems (see Figure 1 for illustrative examples):

Minimum Radius Matrix Completion (MinRMC)
Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d ∈ N.
Question: Is there a “completion” T ∈ Σn×` of S such that δ(v,T) ≤ d for some

vector v ∈ Σ`?

Minimum Local Radius Matrix Completion (MinLRMC)
Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d ∈ N.
Question: Is there a “completion” T ∈ Σn×` of S such that δ(v,T) ≤ d for some

vector v ∈ T?

Here, missing entries are denoted by ∗. A completion of an incomplete matrix S ∈ Σ∪{∗}
is a matrix obtained by replacing each missing entry with some symbol from Σ. We denote
the Hamming distance by δ. The Hamming distance between a vector v and a matrix T
is the maximum Hamming distance between v and a vector in T. In fact, our results for
MinRMC also hold for the following more general problem:

Constraint Radius Matrix Completion (ConRMC)
Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Question: Is there a “completion” T ∈ Σn×` of S such that for some vector v ∈ Σ`,

δ(v,T[i]) ≤ di for each i ∈ [n]?

Related work

Our most important reference point is the work of Hermelin and Rozenberg [12] who
analyzed the parameterized complexity of MinRMC (under the name Closest String
with Wildcards) with respect to several problem-specific parameters (also see Table 1). In
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Table 1 Overview of known results and our new results for MinRMC and MinLRMC. Notation:
n – number of rows, ` – number of columns, |Σ| – alphabet size, d – distance bound, k – maximum
number of missing entries in any row vector. Note that all our results for MinRMC also hold for
ConRMC.

Parameter MinRMC Reference MinLRMC Reference

n O∗(22O(n log n)
) [12] O∗(2O(n2 log n)) Corollary 3

O∗(2O(n2 log n)) [13]

` O∗(2`2/2) [12] O∗(``) Corollary 7
O∗(``) Corollary 6

d = 1 O(n`2) for |Σ| = 2 [12] O(n2`) Corollary 2
O(n`) Theorem 1

d = 2 NP-hard for |Σ| = 2 [12] NP-hard for |Σ| = 2 [12]

k NP-hard for k = 0 [8] O∗(kk) Corollary 7
d+ k O∗((d+ 1)d+k) Theorem 9
d+ k + |Σ| O∗(|Σ|k · dd) [12] O∗(|Σ|k) trivial

O∗(24d+k · |Σ|d+k) Theorem 12

particular, they provided fixed-parameter tractability results for the parameters number n
of rows, number ` of columns, and radius d combined with maximum number k of missing
entries per row. However, we will show that their fixed-parameter tractability result for the
combined parameter d + k is flawed. Moreover, they showed a computational complexity
dichotomy for binary inputs between radius 1 (polynomial time) and radius 2 (NP-hard) (see
Table 1 for a complete overview).

As mentioned before, Ganian et al. [9] started research on the parameterized complexity
of two related matrix completion problems (minimizing rank and minimizing number of
distinct rows). Very recently, Eiben et al. [7] studied generalizations of our problems
which demand that the completed matrix be clustered into several submatrices of small
(local) radius – basically, our work studies the case of a single cluster. They proved fixed-
parameter tractability (problem kernels of superexponential size) with respect to the combined
parameter (c, d, r). Here, c is the number of clusters and r is the minimum number of rows
and columns covering all missing entries. On the negative side, they proved that dropping any
of c, d, or r results in parameterized intractability even for binary alphabet. Amir et al. [1]
showed that the clustering version of MinLRMC on complete matrices with unbounded
alphabet size is NP-hard when restricted to only two columns. Note that fixed-parameter
tractability for the clustering variant implies fixed-parameter tractability for MinRMC and
MinLRMC with respect to d + r. Indeed, to reach for (more) practical algorithms, we
consider an alternative parameterization by the maximum number k of missing entries in any
row vector (which can be much smaller than r). Finally, let us also mention our companion
work [14], in which we studied a matrix completion problem with diametrical constraints –
all pairwise row distances must be within a specified range in the completion.

Our contributions

We survey our and previous results in Table 1. Notably, all of our results for MinRMC
indeed also hold for the more general ConRMC when setting d := max{d1, d2, . . . , dn}.

Let us highlight a few of our new results in comparison with previous work. For MinRMC,
we give a linear-time algorithm for the case radius d = 1 and arbitrary alphabet. This answers
an open question of Hermelin and Rozenberg [12]. We also show fixed-parameter tractability
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with respect to the combined parameter d+ k, which was already claimed by Hermelin and
Rozenberg [12] but was flawed, as we will point out by providing a counter-example to their
algorithm. Lastly, inspired by known results for Closest String, we give a more efficient
algorithm for small alphabet size.

Regarding MinLRMC, we show that it can be solved in polynomial time when d = 1.
This yields a computational complexity dichotomy since MinLRMC is NP-hard for d = 2.
Moreover, we show that MinLRMC is fixed-parameter tractable with respect to the maximum
number k of missing entries per row. Remarkably, this stands in sharp contrast to MinRMC,
which is NP-hard even for k = 0.

2 Preliminaries

For m ≤ n ∈ N, let [m,n] := {m, . . . , n} and [n] := [1, n].
Let T ∈ Σn×` be an (n× `)-matrix over a finite alphabet Σ. Let i ∈ [n] and j ∈ [`]. We

use T[i, j] to denote the character in the i-th row and j-th column of T. We use T[i, :] (or
T[i] in short) to denote the row vector (T[i, 1], . . . ,T[i, `]) and T[:, j] to denote the column
vector (T[1, j], . . . ,T[n, j])T . For any subsets I ⊆ [n] and J ⊆ [`], we write T[I, J ] to denote
the submatrix obtained by omitting rows in [n] \ I and columns in [`] \ J from T. We
abbreviate T[I, [`]] and T[[n], J ] as T[I, :] (or T[I] for short) and T[:, J ], respectively. We
use the special character ∗ for a missing entry. A matrix S ∈ (Σ ∪ {∗})n×` that contains a
missing entry is called incomplete. We say that T ∈ Σn×` is a completion of S ∈ (Σ∪{∗})n×`
if either S[i, j] = ∗ or S[i, j] = T[i, j] holds for all i ∈ [n] and j ∈ [`].

Let v, v′ ∈ (Σ ∪ {∗})` be row vectors and let σ ∈ Σ ∪ {∗}. We write Pσ(v) to denote the
set {j ∈ [`] | v[j] = σ} of column indices where the corresponding entries of v are σ. We
write Q(v, v′) to denote the set {j ∈ [`] | v[j] 6= v′[j] ∧ v[j] 6= ∗ ∧ v′[j] 6= ∗} of column indices
where v and v′ disagree (not considering positions with missing entries). The Hamming
distance between v and v′ is δ(v, v′) := |Q(v, v′)|. For S ∈ (Σ ∪ {∗})n×` and v ∈ (Σ ∪ {∗})`,
let δ(v,S) := maxi∈[n] δ(v,S[i]). The binary operation v ⊕ v′ replaces the missing entries
of v with the character in v′ in the corresponding position, given that v′ contains no missing
entry. We sometimes use string notation σ1σ2σ3 to represent the row vector (σ1, σ2, σ3).

Parameterized Complexity

We sometimes use the O∗-notation which suppresses polynomial factors in the input size. A
parameterized problem Π is a set of instances (I, k) ∈ Σ∗×N, where k is called the parameter
of the instance. A parameterized problem is fixed-parameter tractable if (I, k) ∈ Π can be
determined in f(k) · |I|O(1) time for an arbitrary computable function f . An algorithm with
such a running time is called a fixed-parameter algorithm.

3 Linear-time algorithm for radius d = 1

Hermelin and Rozenberg [12, Theorem 6] gave a reduction from MinRMC to 2-SAT for the
case |Σ| = 2 and d = 1, resulting in an O(n`2)-time algorithm. We provide a more efficient
reduction to 2-SAT, exploiting the compact encoding C≤1 of the “at-most-one” constraint
by Sinz [20]. Let L = {l1, . . . , lm} be a set of m literals. The encoding uses m− 1 additional
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variables r1, . . . , rm−1 and it is defined as follows:

C≤1(L) = (¬l1 ∨ r1) ∧ (¬lm ∨ ¬rm−1)

∧
∧

2≤j≤m−1
((¬lj ∨ ¬rj−1) ∧ (¬lj ∨ rj) ∧ (¬rj−1 ∨ rj)) .

Note that if lj is true for some j ∈ [m], then rj , . . . , rm−1 are all true and r1, . . . , rj−1 are
all false. Hence, at most one literal in L can be true.

Actually, our algorithm solves ConRMC, the generalization of MinRMC where the
distance bound can be specified for each row vector individually.

I Theorem 1. If maxi∈[n] di = 1, then ConRMC can be solved in O(n`) time.

Proof. We reduce ConRMC to 2-SAT. Let Id := {i ∈ [n] | di = d} be the row indices for
which the distance bound is d for d ∈ {0, 1}. We define a variable xj,σ for each j ∈ [`] and
σ ∈ Σ. The intuition behind our reduction is that the j-th entry of the solution vector v
becomes σ when xj,σ is true. We give the construction of a 2-CNF formula φ in three parts
φ1, φ2, φ3 (that is, φ = φ1 ∧ φ2 ∧ φ3).

Let Xj = {xj,σ | σ ∈ Σ} for each j ∈ [`]. The first subformula will ensure that at most
one character is assigned to each entry of the solution vector v:

φ1 =
∧
j∈[`]

C≤1(Xj).

Subformula φ2 handles distance-0 constraints:

φ2 =
∧
i∈I0

∧
j∈[`]

S[i,j] 6=∗

(xj,S[i,j]).

Finally, subformula φ3 guarantees that the solution vector v deviates from each row vector
of S[I1] in at most one position.

φ3 =
∧
i∈I1

C≤1({¬xj,S[i,j] | j ∈ [`],S[i, j] 6= ∗}).

Note that our construction uses O(|Σ| · `) variables and O((n+ |Σ|) · `) = O(n`) clauses. We
prove the correctness of the reduction.

(⇒) Suppose that there exists a vector v ∈ Σ` such that δ(v,S[i]) ≤ di holds for each
i ∈ [n]. For each j ∈ [`] and σ ∈ Σ, we set xj,σ to true if v[j] = σ, and false otherwise. It is
easy to see that this truth assignment satisfies φ.

(⇐) Suppose that there exists a satisfying truth assignment ϕ. Let J∗ denote the column
indices j ∈ [`] such that ϕ(xj,σ) = 0 for all σ ∈ Σ. Note that at most one variable in Xj is
set to true in ϕ for each j ∈ [`]. It follows that, for each j ∈ [`] \ J∗, there exists exactly one
character σj ∈ Σ satisfying ϕ(xj,σj

) = 1 and we assign v[j] = σj . For each j ∈ J∗, we set
v[j] = σ∗ for some arbitrary character σ∗ ∈ Σ. The formula φ2 ensures that δ(v,S[i]) = 0
holds for each i ∈ I0. Moreover, φ3 ensures that there is at most one column index j ∈ [`]
such that S[i, j] 6= ∗ and S[i, j] 6= v[j] for each i ∈ I1. J

Note that MinRMC (and thus ConRMC) is NP-hard for |Σ| = 2 and d = 2 [12]. Thus,
our result implies a complete complexity dichotomy regarding d. We remark that this
dichotomy also holds for MinLRMC since there is a simple reduction from MinLRMC to
ConRMC. To solve an instance (S, d) of MinLRMC, we solve n instances of ConRMC: For
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Algorithm 1 Improved algorithm for ConRMC (based on Hermelin and Rozenberg [12]).

Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,S[i]) ≤ di for all i ∈ [n].
1: if di < 0 for some i ∈ [n] then return No.
2: if `− |P∗(S[i])| ≤ di for all i ∈ [n] then return Yes.

. |P∗(S[i])| is the number of missing entries in S[i]
3: Choose any i ∈ [n] such that `− |P∗(S[i])| > di.
4: Choose any R ⊆ [`] \ P∗(S[i]) with |R| = di + 1.
5: for all j ∈ R do
6: Let S′ = S[:, [`] \ {j}] and d′i′ = di − δ(S[i, j],S[i′, j]) for each i′ ∈ [n].
7: if recursion on (S′, d′1, . . . , d′n) returns Yes then return Yes.
8: return No.

each i ∈ [n], we solve the instance (S, d1, . . . , dn) where di′ = d for each i′ ∈ [n] \ {i} and
di = 0. Clearly, (S, d) is a Yes-instance if and only if at least one ConRMC-instance is a
Yes-instance. This yields the following.

I Corollary 2. MinLRMC can be solved in O(n2`) time when d = 1.

Since ConRMC is solvable in O∗(2O(n2 logn)) time [13], we also obtain the following
result, where the running time bound only depends on the number n of rows.

I Corollary 3. MinLRMC can be solved in O∗(2O(n2 logn)) time.

Finally, we remark that ConRMC can be solved in linear time for binary alphabet
Σ = {0, 1} if di ≥ `−1 for all i ∈ [n] (the problem remains NP-hard in the case of unbounded
alphabet size [17] even if di ≥ `− 1 for all i ∈ [n]): First, we remove each row vector with
distance bound `. We also remove every row vector with at least one missing entry since it
has distance at most `− 1 from any vector of length `. We then remove every duplicate row
vector. This can be achieved in linear time: We sort the row vectors lexicographically using
radix sort and we compare each row vector to the adjacent row vectors in the sorted order.
We return Yes if and only if there are at most 2` − 1 row vectors, because each distinct row
vector u ∈ {0, 1}` excludes exactly one row vector u ∈ {0, 1}` where u[j] = 1− u[j] for each
j ∈ [`]. Summarizing, we arrive at the following.

I Proposition 4. If Σ = {0, 1} and di ≥ `− 1 for all i ∈ [n], then ConRMC can be solved
in linear time.

4 Parameter number ` of columns

Hermelin and Rozenberg [12, Theorem 3] showed that one can solve MinRMC in O(2`2/2 ·n`)
time using a search tree algorithm. We use a more refined recursive step to obtain a better
running time (see Algorithm 1). In particular we employ a trick used by Gramm et al. [11]
in order to reduce the search space to d + 1 subcases. Note that for nontrivial instances
clearly d < `.

I Theorem 5. For d := maxi∈[n] di, ConRMC can be solved in O((d+ 1)` · n`) time.

Proof. We prove that Algorithm 1 is correct by induction on `. More specifically, we show
that it returns Yes if there exists a vector v ∈ Σ` that satisfies δ(S[i], v) ≤ di for all i ∈ [n].
It is easy to see that the algorithm is correct for the base case ` = 0, because it returns
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Yes if di is nonnegative for all i ∈ [n] and No otherwise (Lines 1 and 2). Consider the
case ` > 0. The terminating conditions in Lines 1 and 2 are clearly correct. We show that
branching on R is correct in Lines 4 and 5. If v[j] 6= S[i, j] holds for all j ∈ R, then we have
a contradiction δ(v,S[i]) ≥ |R| > di. Thus the branching on R leads to a correct output.
Now the induction hypothesis ensures that the recursion on S[:, [`] \ {j}] (notice that it has
exactly one column less) returns a desired output. This implies that our algorithm is correct.

As regards the time complexity, note that each node in the search tree has at most d+ 1
children. Moreover, the depth of the search tree is at most ` because the number of columns
decreases for each recursion. Since each recursion step only requires linear (that is, O(n`))
time, the overall running time is in O((d+ 1)` · n`). J

Since d < ` for nontrivial input instances, Theorem 5 yields “linear-time fixed-parameter
tractability” with respect to `, meaning an exponential speedup over the previous result due
to Hermelin and Rozenberg [12].

I Corollary 6. ConRMC can be solved in O(n``+1) time.

Proof. For each i ∈ [n], we construct an ConRMC-instance, where the input matrix is
Si = S[:, P∗(S[i])] and di,i′ = d − δ(S[i],S[i′]) for each i′ ∈ [n]. We return Yes if and
only if there is a Yes-instance (Si, di,1, . . . , di,n) of ConRMC. Each ConRMC-instance
requires O(n`) time to construct, and O(nkk+1) time to solve, because Si contains at most k
columns. J

We remark that this algorithm cannot be significantly improved assuming the ETH.1 It
is known that there is no `o(`) · nO(1)-time algorithm for the special case Closest String
unless the ETH fails [17]. The running time of our algorithm matches this lower bound (up
to a constant in the exponent) and therefore there is presumably no substantially faster
algorithm with respect to `.

As a consequence of Corollary 6, we obtain a fixed-parameter algorithm for MinLRMC
with respect to the maximum number k of missing entries per row in the input matrix.

I Corollary 7. MinLRMC can be solved in time O(n2`+ n2kk+1).

5 Combined parameter d + k

In this section we generalize two algorithms (one by Gramm et al. [11] and one by Ma and
Sun [18]) for the special case of MinRMC in which the input matrix is complete (known as
the Closest String problem) to the case of incomplete matrices. We will describe both
algorithms briefly. In fact, both algorithms solve the special case of ConRMC, referred to as
Neighboring String (generalizing Closest String by allowing row-individual distances),
where the input matrix is complete.

Neighboring String
Input: A matrix T ∈ Σn×` and d1, . . . , dn ∈ N
Question: Is there a row vector v ∈ Σ` such that δ(v,T[i]) ≤ di for each i ∈ [n]?

The algorithm of Gramm et al. [11] is given in Algorithm 2. First, it determines whether
the first row vector T[1] is a solution. If not, then it finds another row vector T[i] that differs
from T[1] on more than di positions and branches on the column positions Q(T[1],T[i])
where T[1] and T[i] disagree.

1 The Exponential Time Hypothesis asserts that 3-SAT cannot be solved in O∗(2o(n+m)) time for a
3-CNF formula with n variables and m clauses.
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Algorithm 2 Algorithm for Neighboring String by Gramm et al. [11].

Input: A matrix T ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,T[i]) ≤ di for all i ∈ [n].
1: if di < 0 for some i ∈ [n] then return No.
2: if δ(T[1],T[i]) ≤ di for all i ∈ [n] then return Yes.
3: Choose any i ∈ [n] such that δ(T[1],T[i]) > di.
4: Choose any Q′ ⊆ Q(T[1],T[i]) with |Q′| = di + 1.
5: for all j ∈ Q′ do
6: Let T′ = T[:, [`] \ {j}] and d′i′ = di − δ(T[i, j],T[i′, j]) for each i′ ∈ [n].
7: if recursion on (T′, d′1, . . . , d′n) returns Yes then return Yes.
8: return No.

Using a search variant of Algorithm 2, Hermelin and Rozenberg [12, Theorem 4] claimed
that MinRMC is fixed-parameter tractable with respect to d+ k. Here, we reveal that their
algorithm is in fact not correct. The algorithm chooses an arbitrary row vector S[i] and
calls the algorithm by Gramm et al. [11] with input matrix S′ = S[:, [`] \ P∗(S[i])]. This
results in a set of row vectors v satisfying δ(v,S′) ≤ d. Then, the algorithm constructs
an instance of ConRMC where the input matrix is S[P∗(S[i])] and the distance bound
is given by di′ = d − δ(v,S′[i′]) for each i′ ∈ [n]. The correctness proof was based on
the erroneous assumption that the algorithm of Gramm et al. [11] finds all row vectors v
satisfying δ(v,S′) ≤ d in time O((d+ 1)d · n`). Although Gramm et al. [11] noted that this
is indeed the case when d is optimal, it is not always true. In fact, it is generally impossible
to enumerate all solutions in time O((d + 1)d · n`) because there can be Ω(`d) solutions.
We use the following simple matrix to illustrate the error in the algorithm of Hermelin and
Rozenberg [12]:

S =

 0 1 1
1 1 1
∗ 0 0

 .
We show that the algorithm may output an incorrect answer for d = 2. If the algorithm
chooses i = 3, then the algorithm by Gramm et al. [11] returns only one row vector 00. Then
the algorithm of Hermelin and Rozenberg [12] constructs an instance of ConRMC with
S′ =

[
0 1

]T and d1 = d2 = 0, resulting in No. However, the row vector v = 001 satisfies
δ(v,S) = 2 and thus the correct output is Yes. To remedy this, we give a fixed-parameter
algorithm for MinRMC, adapting the algorithm by Gramm et al. [11].

Before presenting our algorithm, let us give an observation noted by Gramm et al. [11]
for the case of no missing entries. Suppose that the input matrix S ∈ (Σ ∪ {∗})n×` contains
more than nd dirty columns (a column is said to be dirty if it contains at least two distinct
symbols from the alphabet). Clearly, we can assume that every column is dirty. For any
vector v ∈ Σ`, there exists i ∈ [n] with δ(v,S[i]) ≥ d by the pigeon hole principle and hence
we can immediately conclude that it is a No-instance. It is easy to see that this argument
also holds for MinRMC and thus ConRMC.

I Lemma 8. Let (S, d1, . . . , dn) be a ConRMC instance, where S ∈ (Σ ∪ {∗})n×` and
d1, . . . , dn ∈ N. If S contains more than nd dirty columns for d = maxi∈[n] di, then there is
no row vector v ∈ Σ` with δ(v,S[i]) ≤ di for all i ∈ [n].

Our algorithm is given in Algorithm 3. It generalizes Algorithm 2 and finds the solution
vector even if the input matrix is incomplete. In contrast to Neighboring String, the
output cannot be immediately determined even if d1 = 0. We use Algorithm 1 to overcome
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Algorithm 3 Algorithm for ConRMC (generalizing Algorithm 2).

Input: An incomplete matrix S ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,S[i]) ≤ di for all i ∈ [n].
1: if d1 = 0 then
2: Let S′ = S[[2, n], P∗(S[1])] and d′i = di − δ(S[1],S[i]) for each i ∈ [2, n].
3: return the output of Algorithm 1 on (S′, d′2, . . . , d′n).
4: Let Ri = (P∗(S[1]) \ P∗(S[i])) ∪Q(S[1],S[i]) for each i ∈ [2, n].
5: if |Ri| ≤ di for all i ∈ [2, n] then return Yes.
6: Choose any i ∈ [n] with |Ri| > di.
7: Choose any R ⊆ Ri with |R| = di + 1.
8: for all j ∈ R do
9: Let S′ = S[:, [`] \ {j}] and d′i′ = di − δ(S[i, j],S[i′, j]) for each i′ ∈ [n].
10: if recursion on (S′, d′1, . . . , d′n) returns Yes then return Yes.
11: return No.

this issue (Line 3). Algorithm 3 also considers the columns where the first row vector
has missing entries (recall that P∗(S[1]) denotes column indices j with S[1, j] = ∗) in the
branching step (Line 8), and not only the columns where S[1] and S[i] disagree. Again, we
restrict the branching to di + 1 subcases (Line 7). This reduces the size of the search tree
significantly. We show the correctness of Algorithm 3 and analyze its running time in the
proof of the following theorem.

I Theorem 9. For d = maxi∈[n] di, ConRMC can be solved in O(n`+ (d+ 1)d+k+1n) time.

Proof. First, we prove that Algorithm 3 is correct by induction on d1 + |P∗(S[1])|. More
specifically, we show that the algorithm returns Yes if and only if a vector v ∈ Σ` satisfying
δ(S[i], v) ≤ di for all i ∈ [n] exists.

Consider the base case d1 + |P∗(S[1])| = 0. Since d1 = 0, the algorithm terminates in
Line 3. When d1 = 0, any solution vector must agree with S[1] on each entry unless the
entry is missing in S[1]. Hence, the output in Line 3 is correct by Theorem 5. Consider the
case d1 + |P∗(S[1])| > 0. Let Ri = (P∗(S[1]) \ P∗(S[i])) ∪Q(S[1],S[i]) for each i ∈ [2, n]. If
|Ri| ≤ di holds for all i ∈ [2, n], then the vector S[1]⊕ σ` (the vector obtained by filling each
missing entry in S[1] with σ) is a solution for an arbitrary character σ ∈ Σ. Hence, Line 5 is
correct. Suppose that there exists a solution vector v ∈ Σ` with δ(v,S[i]) ≤ di for all i ∈ [n].
We show that the branching in Line 8 is correct. Let R be as specified in Line 7. We claim
that there exists a j ∈ R with v[j] = S[i, j] for every choice of R. Otherwise, v[j] 6= S[i, j]
and S[i, j] 6= ∗ holds for all j ∈ R and we have δ(v,S[i]) > di (a contradiction). Note that
S[:, [`] \ {j}] has exactly one less missing entry if j ∈ P∗(S[1]) and that d′1 = d1 − 1 in case
of j ∈ Q(S[1],S[i]). It follows that d1 + |P∗(S[1])| is strictly smaller in the recursive call
(Line 10). Hence, the induction hypothesis ensures that the algorithm returns Yes when
v[j] = S[i, j] holds. On the contrary, it is not hard to see that the algorithm returns No if
there is no solution vector. Thus, Algorithm 3 is correct.

We examine the time complexity. Assume without loss of generality that k = |P∗(S[1])|
and d = d1 hold initially. Consider the search tree where each node corresponds to a call
on either Algorithm 1 or Algorithm 3. If d1 > 0, then d1 + P∗(S[1]) decreases by 1 in each
recursion and there are at most d+ 1 recursive calls. Let u be some node in the search tree
that invokes Algorithm 1 for the first time. We have seen in the proof of Theorem 5 that the
subtree rooted at u is a tree of depth at most |P∗(S[1])|, in which each node has at most
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Algorithm 4 Algorithm for Neighboring String by Ma and Sun [18].

Input: A matrix T ∈ (Σ ∪ {∗})n×` and d1, . . . , dn ∈ N.
Task: Decide whether there exists a row vector v ∈ Σ` with d(v,T[i]) ≤ di for all i ∈ [n].
1: if δ(T[1],T[i]) ≤ di for all i ∈ [n] then return Yes .
2: Choose any i ∈ [n] such that δ(T[1],T[i]) > di.
3: Let Q = Q(T[1],T[i]).
4: for all v ∈ Σ|Q| such that δ(v,T[1]) ≤ d1 and δ(v,T[i]) ≤ di do
5: Let T′ = T[:, [`] \Q] and d′1 = min{d1 − δ(v,T[1, Q]), dd1/2e − 1}.
6: Let d′i′ = di′ − d(v,T[i′, Q]) for each i′ ∈ [2, n].
7: if recursion on (T, d′1, . . . , d′n) returns Yes then return Yes.
8: return No.

di − δ(S[1],S[i]) + 1 ≤ d+ 1 children. Note also that u lies at depth d+ k− |P∗(S[1])|. Thus,
the depth of the search tree is at most d+ k and the search tree has size O((d+ 1)d+k). We
can assume that ` ≤ nd by Lemma 8 and hence each node requires O(nd) time. This results
in the overall running time of O(n`+ (d+ 1)d+k+1n). J

Now, we provide a more efficient fixed-parameter algorithm when the alphabet size is
small, based on an algorithm by Ma and Sun [18] (see Algorithm 4). Whereas Algorithm 2
considers each position of (a subset of) Q(T[1],T[i]) one by one, their algorithm considers
all vectors on Q(T[1],T[i]) in a single recursion. The following lemma justifies that d1
can actually be halved in each iteration (the vectors u and w correspond to T[1] and T[i],
respectively).

I Lemma 10. [18, Lemma 3.1] Let u, v, w ∈ Σ` be row vectors satisfying δ(u,w) > δ(v, w).
Then, it holds that δ(u[Q′], v[Q′]) < δ(u, v)/2 for Q′ = [`] \Q(u,w).

Proof. Assume that δ(u[Q′], v[Q′]) ≥ δ(u, v)/2. We can rewrite the value of δ(u, v) + δ(v, w)
as follows:

δ(u, v) + δ(v, w) = δ(u[Q′], v[Q′]) + δ(v[Q′], w[Q′]) + δ(u[Q], v[Q]) + δ(v[Q], w[Q]),

where Q is a shorthand for Q = Q(v, w). It follows from the definition of Q′ that u[Q′] = w[Q′]
and hence

δ(u[Q′], v[Q′]) = δ(v[Q′], w[Q′]). (1)

We also note that δ(u[Q] + v[Q]) + δ(v[Q] +w[Q]) ≥ |Q| = δ(v, w) because it must hold that
u[j] 6= v[j] or v[j] 6= w[j] for each j ∈ Q. Now, we obtain the following contradiction:

δ(u, v) + δ(v, w) ≥ 2δ(u[Q′], v[Q′]) + δ(u,w) > δ(u, v) + δ(v, w),

concluding the proof. J

Lemma 10 plays a crucial role in obtaining the running time O(n`+ (16|Σ|)dnd) of Ma
and Sun [18]. However, Lemma 10 may not hold in the presence of missing entries. To work
around this issue, let us introduce a new variant of Closest String which will be useful
to derive a fixed-parameter algorithm for ConRMC (Theorem 12). We will use a special
character “�” to denote a “dummy” character.

Neighboring String with Dummies (NSD)
Input: A matrix T ∈ (Σ ∪ {�})n×` and d1, . . . , dn ∈ N.
Question: Is there a row vector v ∈ Σ` such that δ(v,T[i]) ≤ di for each i ∈ [n]?
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Note that the definition of NSD forbids dummy characters in the solution vector v.
Observe that Lemma 10 holds even if row vectors u and w contain dummy characters. We
show (based on Lemma 10) that NSD can be solved using the algorithm of Ma and Sun [18]
as a subroutine.

I Lemma 11. NSD can be solved in O(n` + |Σ|k · nk + 24d−3k · |Σ|d · nd)) time, where
d := maxi∈[n] di and k is the minimum number of dummy characters in any row vector of T.

Proof. With Lemma 10, assuming d = d1 one can prove by induction on d1 that Algorithm 4
solves the NSD problem if the first row vector T[1] contains no dummy characters by
induction on d1. Refer to [18, Theorem 3.2] for details. We describe how we use Algorithm 4
of Ma and Sun [18] to solve NSD. Let I = (T, d1, . . . , dn) be an instance of NSD. We assume
that |P�(T[1])| = k. For each row vector u of Σk, we invoke Algorithm 4 with the input matrix
T′ = T[[`] \ P�(T[1])] and the distance bounds d1 − k, d2 − δ(u,T[2, P�(T[1])]), . . . , dn −
δ(u,T[n, P�(T[1])]). Note that T′[1] contains no dummy character and thus the output of
Algorithm 4 is correct. We return Yes if and only if Algorithm 4 returns Yes at least once.
Let us prove that this solves NSD. If I is a Yes-instance with solution vector v ∈ Σ`, then
it is easy to verify that Algorithm 4 returns Yes when u = v[P�(T[1])]. On the contrary,
the distance bounds in the above procedure ensure that I is a Yes-instance if Algorithm 4
returns Yes.

Now we show that this procedure runs in the claimed time. Ma and Sun [18] proved that
Algorithm 4 runs in

O

(
n`+

(
dmax + dmin

dmin

)
· (4|Σ|)dmin · ndmax

)
time, where dmax = maxi∈[n] di and dmin = mini∈[n] di. In fact, they showed that each node
in the search tree requires O(ndmax) time by remembering previous distances, as it only
concerns O(dmax) columns. In the same spirit, one can compute distances from the first row
vector for each NSD-instance under consideration in O(nk) time, given the corresponding
distances in the input matrix. Since we have dmax ≤ d and dmin ≤ d − k for each call of
Algorithm 4, it remains to show that

(2d−k
d

)
∈ O(22d−k). Using Stirling’s approximation√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n which holds for all positive integers n, we obtain(
2d− k
d

)
= (2d− k)!
d! · (d− k)! ≤ c ·

(2d− k)2d−k

dd · (d− k)d−k

for some constant c. We claim that the last term is upper-bounded by c · 22d−k. We
use the fact that the function x 7→ x log x is convex over its domain x > 0 (note that
the second derivative is given by x 7→ 1/x). Since a convex function f : D → R satisfies
(f(x) + f(y))/2 ≥ f((x+ y)/2) for any x, y ∈ D, we obtain

d log d+ (d− k) log(d− k) ≥ 2
(

2d− k
2

)
· log

(
2d− k

2

)
.

It follows that dd · (d − k)d−k = 2d log d+(d−k) log(d−k) ≥ 2(2d−k) log(d−k/2) = (d − k/2)2d−k.
This shows that

(2d−k
d

)
∈ O(22d−k). J

Finally, to show our second main result in this section, we provide a polynomial-time
reduction from ConRMC to NSD.

I Theorem 12. ConRMC can be solved in O(n`+ 24d+k · |Σ|d+k · n(d+ k)) time.
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S =

 0 0 0
1 1 ∗
∗ ∗ 2

 T =

 0 0 0 � �
1 1 � σ �
� � 2 σ σ


Figure 2 An illustration of the reduction in Theorem 12. Given the matrix S with k = 2 (left),

our reduction constructs the matrix T with k additional columns (right). Note that every row vector
in T contains exactly two dummy characters. The MinRMC instance (S, d = 1) is a Yes-instance
with a solution vector v = 100. The corresponding NSD-instance (T, d+k = 3) is also a Yes-instance
with a solution vector v′ = 100σσ.

Proof. Let I = (S, d1, . . . , dn) be an instance of ConRMC. We construct an instance
I ′ = (T, d1 + k, . . . , dn + k) of NSD where T ∈ (Σ ∪ {�})n×(`+k) and each row vector of T
contains exactly k dummy characters. Note that such a construction yields an algorithm
running in O(n(`+k) + |Σ|k ·nk+ 24d+k · |Σ|d+k ·n(d+k)) = O(n`+ 24d+k · |Σ|d+k ·n(d+k))
time using Lemma 11. Let σ ∈ Σ be an arbitrary character. We define the row vector T[i]
for each i ∈ [n] as follows: Let T[i, [`]] = S[i]⊕ �` (in other words, the row vector T[i, [`]] is
obtained from S[i] by replacing ∗ by �) for the leading ` entries. For the remainder, let

T[i, `+ j] =
{
σ if j ≤ |P∗(S[i])|,
� otherwise,

for each j ∈ [k] (Figure 2 shows an illustration). We claim that I is a Yes instance if and
only if I ′ is a Yes instance.

(⇒) Let v ∈ Σ` be a solution of I. We claim that the vector v′ ∈ Σ`+k with v′[[`]] = v

and v[[`+ 1, `+ k]] = σk is a solution of I ′. For each i ∈ [n], we have

δ(v′,T[i]) = δ(v′[[`]],T[i, [`]]) + δ(σk,T[i, [`+ 1, `+ k]]).

It is easy to see that the first term is at most di + |P∗(S[i])| and that the second term equals
k − |P∗(S[i])|. Thus we have δ(v′,T) ≤ di + k.

(⇐) Let v′ ∈ Σ` be a solution of I ′. Since the row vector T[i, [` + 1, ` + k]] contains
k − |P∗(S[i])| dummy characters, we have δ(v′[[`]],T[i, [`]]) ≤ (di + k)− (k − |P∗(S[i])|) =
di + |P∗(S[i])| for each i ∈ [n]. It follows that δ(v′[[`]],S[i]) ≤ di holds for each i ∈ [n]. J

Note that the algorithm of Theorem 12 is faster than the algorithm of Theorem 9 for
|Σ| < d/16 and faster than the O∗(|Σ|k · dd)-time algorithm by Hermelin and Rozenberg [12]
for |Σ| < d/24+d/k.

6 Conclusion

We studied problems appearing both in stringology and in the context of matrix completion.
The goal in both settings is to find a consensus string (matrix row) that is close to all
given input strings (rows). The special feature here now is the existence of wildcard letters
(missing entries) appearing in the strings (rows). Thus, these problems naturally generalize
the well-studied Closest String and related string problems. Although with applications
in the context of data mining, machine learning, and computational biology at least as well
motivated as Closest String, so far there is comparatively little work on these “wildcard
problems”. This work is also meant to initiate further research in this direction.
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We conclude with a list of challenges for future research:
Can the running time of Theorem 12 be improved? Since Ma and Sun [18] proved that
Closest String can be solved in O((16|Σ|)d · n`) time, a plethora of efforts have been
made to reduce the base in the exponential dependence in the running time [6, 19, 4, 5, 22].
A natural question is whether these results can be translated to MinRMC and ConRMC
as well.
Another direction would be to consider the generalization of MinRMC with outliers.
The task is to determine whether there is a set I ⊆ [n] of row indices and a vector v ∈ Σ`
such that |I| ≤ t and δ(v,S[[n] \ I]) ≤ d. For complete input matrices, this problem
is known as Closest String with Outliers and fixed-parameter tractability with
respect to d+ t is known [2]. Hence, it is interesting to study whether the outlier variant
of MinRMC (or ConRMC) is fixed-parameter tractable with respect to d+ k + t.
Finally, let us mention a maximization variant MaxRMC where the goal is to have a
radius at least d. The case of complete input matrices is referred to as Farthest String
[21] and fixed-tractability with respect to |Σ|+ d is known [10, 21]. Is MaxRMC also
fixed-parameter tractable with respect to |Σ|+ d?
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Abstract
One of the most well-known variants of the Burrows-Wheeler transform (BWT) [Burrows and
Wheeler, 1994] is the bijective BWT (BBWT) [Gil and Scott, arXiv 2012], which applies the
extended BWT (EBWT) [Mantaci et al., TCS 2007] to the multiset of Lyndon factors of a given
text. Since the EBWT is invertible, the BBWT is a bijective transform in the sense that the inverse
image of the EBWT restores this multiset of Lyndon factors such that the original text can be
obtained by sorting these factors in non-increasing order.

In this paper, we present algorithms constructing or inverting the BBWT in-place using quadratic
time. We also present conversions from the BBWT to the BWT, or vice versa, either (a) in-place
using quadratic time, or (b) in the run-length compressed setting using O(n lg r/ lg lg r) time with
O(r lgn) bits of words, where r is the sum of character runs in the BWT and the BBWT.
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compressed by run-length compression, i.e., representing a substring of ` a’s by the tuple
(a, `). On the other hand, self-indexing data structures like the FM-index [11] enhance the
BWT to a full-text self-index. A combined approach of both compression and indexing is
the run-length compressed FM-index [21], representing a BWT with rBWT character runs,
i.e., maximal repetitions of a character, run-length compressed in O(rBWT lgn) bits. This
representation can be computed directly in run-length compressed space thanks to Policriti
and Prezza [30]. The BWT and its run-length compressed representation have been intensively
studied during the past decades (e.g., [12, 1, 14] and the references therein). Contrary to that,
a variant, called the bijective BWT (BBWT) [16], is far from being well-studied despite its
mathematically appealing characteristics1. As a matter of fact, we are only aware of one index
data structure based on the BBWT [3] and of two non-trivial construction algorithms [5, 2]
of the (uncompressed) BBWT, both with the need of additional data structures.

In this article, we shed more light on the connection between the BWT and the BBWT
by quadratic time in-place conversion algorithms in Sect. 5 constructing the BWT from the
BBWT, or vice versa. We can also perform these conversions in the run-length compressed
setting in O(n lg r/ lg lg r) time with space linear to the number of the character runs
(cf. Sect. 4 and Thm. 3), where r is the sum of character runs in the BWT and the BBWT.

2 Related Work

Given a text T of length n, the BWT of T is the string obtained by assigning BWT[i] to
the character preceding the i-th lexicographically smallest suffix of T (or the last character
of T if this suffix is the text itself). By this definition, we can construct the BWT with
any suffix array [22] construction algorithm. However, storing the suffix array inherently
needs n lgn bits of space. Crochemore et al. [9] tackled this space problem with an in-place
algorithm constructing the BWT in O(n2) online on the reversed text by simulating queries
on a dynamic wavelet tree [17] that would be built on the (growing) BWT. They also gave
an algorithm for restoring the text in-place in O(n2+ε) time.

In the run-length compressed setting, Policriti and Prezza [30] can compute the run-length
compressed BWT having rBWT character runs in O(n lg rBWT) time while using O(rBWT lgn)
bits of space. They additionally presented an adaption of the wavelet tree on run-length
compressed texts, yielding a representation using O(rBWT lgn) bits of space with O(lg rBWT)
query and update time. Finally, practical improvements of the run-length compressed BWT
construction were considered by Ohno et al. [29].

The BBWT is the string obtained by assigning BBWT[i] to the last character of the i-th
smallest string in the list of all conjugates of the factors of the Lyndon factorization sorted
with respect to the ≺ω order [23, Def. 4]. Bannai et al. [2] recently revealed a connection
between the bijective BWT and suffix sorting by presenting an O(n) time BBWT construction
algorithm based on SAIS [28]. With dynamic data structures like a dynamic wavelet tree [27],
Bonomo et al. [5] could devise an algorithm computing the BBWT in O(n lgn/ lg lgn) time.
With nearly the same techniques, Mantaci et al. [24] presented an algorithm computing the
BWT (and simultaneously the suffix array if needed) from the Lyndon factorization. All
these construction algorithms need however data structures taking O(n lgn) bits of space.
However, the latter two (i.e., [5] and [24]) can work in-place by simulating the LF mapping
(cf. Sects. 3.4 and 3.5), which we focus on in Sect. 5.1.

1 The BBWT is a bijection between strings without the need of an artificial delimiter needed, e.g., to
invert the BWT.
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3 Preliminaries

Our computational model is the word RAM model with word size Ω(lgn). Accessing a word
costs O(1) time. An algorithm is called in-place if it uses, besides a rewriteable input, only
O(lgn) bits of working space. We write [b(I) . . e(I)] = I for an interval I of natural numbers.

3.1 Strings
Let Σ denote an integer alphabet of size σ with σ = nO(1). We call an element T ∈ Σ∗
a string. Its length is denoted by |T |. Given an integer j ∈ [1 . . |T |], we access the j-th
character of T with T [j]. Concatenating a string T ∈ Σ∗ k times is abbreviated by T k. A
string T is called primitive if there is no string S ∈ Σ+ with T = Sk for an integer k with
k ≥ 2.

When T is represented by the concatenation of X,Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y
and Z are called a prefix, substring and suffix of T , respectively; the prefix X, substring Y ,
or suffix Z is called proper if X 6= T , Y 6= T , or Z 6= T , respectively. For two integers i, j
with 1 ≤ i ≤ j ≤ |T |, let T [i . . j] denote the substring of T that begins at position i and ends
at position j in T . If i > j, then T [i . . j] is the empty string. In particular, the suffix starting
at position j of T is called the j-th suffix of T , and denoted with T [j . . ]. An occurrence of a
substring S in T is treated as a sub-interval of [1 . . |T |] such that S = T [b(S) . . e(S)]. The
longest common prefix (LCP) of two strings S and T is the longest string that is a prefix of
both S and T .

Orders on Strings. We denote the lexicographic order with ≺lex . Given two strings S
and T , S ≺lex T if S is a prefix of T or there exists an integer ` with 1 ≤ ` ≤ min(|S|, |T |)
such that S[1 . . `− 1] = T [1 . . `− 1] and S[`] < T [`]. Next we define the ≺ω order of strings,
which is based on the lexicographic order of infinite strings: We write S ≺ω T if the infinite
concatenation Sω := SSS · · · is lexicographically smaller than Tω := TTT · · · . For instance,
ab ≺lex aba but aba ≺ω ab.

Rank and Select Queries. Given a string T ∈ Σ∗, a character c ∈ Σ, and an integer j, the
rank query T.rankc(j) counts the occurrences of c in T [1 . . j], and the select query T.selectc(j)
gives the position of the j-th c in T . We stipulate that rankc(0) = selectc(0) = 0. A wavelet
tree is a data structure supporting rank and select queries.

3.2 Lyndon Words
Given a string T = T [1 . . n], its i-th conjugate conji(T ) is defined as T [i+ 1 . . n]T [1 . . i] for an
integer i ∈ [0 . . n− 1]. We say that T and all of its conjugates belong to the conjugate class
conj(T ) := {conj0(T ), . . . , conjn−1(T )}. If a conjugate class contains exactly one conjugate
that is lexicographically smaller than all other conjugates, then this conjugate is called a
Lyndon word [20]. Equivalently, a string T is said to be a Lyndon word if and only if T ≺lex S

for every proper suffix S of T [10, Prop. 1.2].
The Lyndon factorization [8] of T ∈ Σ+ is the factorization of T into a sequence of

lexicographically non-increasing Lyndon words T1 · · ·Tt, where (a) each Tx ∈ Σ+ is a Lyndon
word for x ∈ [1 . . t], and (b) Tx �lex Tx+1 for each x ∈ [1 . . t). Each Lyndon word Tx is
called a Lyndon factor.
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Figure 1 All three BWT variants studied in this paper applied on our running example T =
bacabbabb. Left: BBWT built on the last characters of the conjugates of all Lyndon words sorted in
the ≺ω order. Middle and Right: BWT◦ and BWT built on the lexicographically sorted conjugates
of T and of T$, respectively. To ease understanding, each character is marked with its position
in T in subscript. Reading these positions in F of BBWT and in F of BWT gives a circular suffix
array (there are multiple possibilities with T3 = T4 = abb) and the suffix array (the position of $ is
uniquely defined as |T$| = 10).

I Lemma 1 ([10, Algo. 2.1]). Given a string T of length n, there is an algorithm that outputs
the Lyndon factors T1, . . . , Tt one by one in increasing order in O(n) total time while keeping
only a constant number of pointers to positions in T that (a) can move one position forward
at one time or (b) can be set to the position of another pointer.

For what follows, we fix a string T [1 . . n] over an alphabet Σ with size σ. We use the
string T := bacabbabb as our running example. Its Lyndon factors are T1 = b, T2 = ac,
T3 = abb, and T4 = abb.

3.3 Burrows-Wheeler Transforms
We denote the bijective BWT of T by BBWT, where BBWT[i] is the last character of the
i-th string in the list storing the conjugates of all Lyndon factors T1, . . . , Tt of T sorted with
respect to the ≺ω order. A property of BBWT used in this paper as a starting point for an
inversion algorithm is the following:

I Lemma 2 ([5, Lemma 15]). BBWT[1] = T [n].

Proof. There is no conjugate of a Lyndon factor that is smaller than the smallest Lyndon
factor Tt since Tt �lex Tx ≺lex Tx[j . . ] for every j ∈ [2 . . |Tx|] and every x ∈ [1 . . t]. Therefore,
Tt is the smallest string among all conjugates of all Lyndon factors. Hence, BBWT[1] is the
last character of Tt, which is T [n]. J

The BWT of T , called in the following BWT, is the BBWT of $T for a delimiter $ 6∈ Σ
smaller than all other characters in T (cf. [15, Lemma 12] since $T is a Lyndon word).
Originally, the BWT is defined by reading the last characters of all cyclic rotations of T
(without $) sorted lexicographically [6]. Here, we call the resulting string BWT◦. BWT◦ is
equivalent to BWT if T contains the aforementioned unique delimiter $. We further write
BWTP (and analogously BBWTP or BWT◦P ) to denote the BWT of P for a string P .

Since BWT (and analogously BBWT or BWT◦) is a permutation of T , it is natural to
identify each entry of BWT with a text position: By construction BWT[i] = T [j], where
T [j+1 . . ] is the i-th lexicographically smallest suffix, i.e., SA[i] = j+1, where SA is the suffix
array of T . A similar relation is given between BBWT and the circular suffix array [19, 2],
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which is uniquely defined up to positions of equal Lyndon factors. Figure 1 gives an example
for all three variants. In what follows, we review means to simulate a linear traversal of the
text in forward or backward manner by BWT, and then translate this result to BBWT.

3.4 Backward and Forward Steps
Having the location of T [i] in BWT, we can compute T [i+ 1] (i.e., T [1] for i = 1) and T [i−1]
(i.e., T [n] for i = 0) by rank and select queries. To move from T [i] to T [i+ 1], which we call
a forward step, we can use the FL mapping:

FL[i] := BWT.selectF[i](F.rankF[i](i)), (1)

where F[i] is the i-th lexicographically smallest character in BWT. To move from T [i] to
T [i− 1], we can use the backward step of the FM-index [11], which is also called LF mapping,
and is defined as follows:

LF[i] := F.selectBWT[i](BWT.rankBWT[i](i)) = C[BWT[i]] + BWT.rankBWT[i](i), (2)

where C[c] is the number of occurrences of those characters in BWT that are smaller than c
(for each character c ∈ [1 . . σ]). We observe from the second equation of (2) that there is no
need for F when having C. This is important, as we can compute C[i] in O(n) time only
having BWT available. Hence, we can compute LF[i] in O(n) time in-place. However, the
same trick does not work with FL[i] = BWT.selectF[i](i−C[F[i]]). To lookup F[i], we can use
the selection algorithm of Chan et al. [7] using BWT and O(lgn) bits as working space (the
algorithm restores BWT after execution) to compute an entry of F in O(n) time.

In summary, we can compute both FL[i] and LF[i] in-place in O(n) time. The algorithm
of Crochemore et al. [9, Thm. 2] inverting BWT in-place in O(n2+ε) time uses the result of
Munro and Raman [26] computing F[i] in O(n1+ε) time for a constant ε > 0 in the comparison
model. As noted by Chan et al. [7, Sect. 1], the time bound for the inversion can be improved
to O(n2) time in the RAM model under the assumption that BWT is rewritable.

If we allow more space, it is still advantageous to favor storing C instead of F if σ = o(n)
because storing F and C in their plain forms take n lg σ bits and σ lgn bits, respectively. To
compute FL[i], we can also compute FL without F by endowing C with a predecessor data
structure (which we do in Sect. 4.3).

Finally, we also need LF and FL on BBWT for our conversion algorithms. We can define
LF and FL similarly for BBWT with the following peculiarity:

3.5 Steps in the Bijective BWT
The major difference to the BWT is that the LF mapping of the BBWT can contain multiple
cycles, meaning that LF (or FL) recursively applied to a BBWT position would result in
searching circular (more precisely, the search stays within the same Lyndon factor). This is
because BBWT is the extended BWT [23, Thm. 20 and Remark 12] applied to the multiset
of Lyndon factors {T1, . . . , Tt}. This fact was exploited for circular pattern matching [19],
but is not of interest here.

Instead, we follow the analysis of the so-called rewindings [3, Sect. 3]: Remembering
that we store the last character of all conjugates of all Lyndon factors in BBWT, we observe
that the entries in BBWT representing the Lyndon factors (i.e., the last characters of the
Lyndon factors) are in sorted order (starting with Tt[|Tt|] and ending with T1[|T1|]). That
is because the lexicographic order and the ≺ω order are the same for Lyndon words [5,
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Thm. 8]. Applying the backward step at such an entry results in a rewinding, i.e., we can
move from the beginning of a Lyndon factor Tx (represented by Tx[|Tx|] in BBWT) to the
end of Tx (represented by Tx[1] in BBWT) with one backward step. We use this property
with Lemma 2 in the following sections to read the Lyndon factors from T individually in
the order Tt, . . . , T1.

4 Run-Length Compressed Conversions

We now consider BWT and BBWT represented as run-length compressed strings taking
O(rBWT lgn) and O(rBBWT lgn) bits of space, where rBWT and rBBWT are the number of
character runs in BWT and BBWT, respectively. For r := max(rBWT, rBBWT), the goal of
this section is the following:

I Theorem 3. We can convert RLBBWT to RLBWT in O(n lg r/ lg lg r) time using O(r lgn)
bits as working space, or vice versa.

To prove this theorem, we need a data structure that works in the run-length compressed
space while supporting rank and select queries as well as updates more efficiently than the
O(n) time in-place approach described in Sects. 3.4 and 3.5:

4.1 Run-length Compressed Wavelet Trees
Given a run-length compressed string S of uncompressed length n with r character runs,
there is an O(r lgn) bits representation of S that supports access, rank, select, insertions, and
deletions in O(lg r) time [30, Lemma 1]. It consists of (1) a dynamic wavelet tree maintaining
the starting characters of each character run and (2) a dynamic Fenwick tree maintaining
the lengths of the runs. It can be accelerated to O(lg r/ lg lg r) time by using the following
representations:
1. The dynamic wavelet tree of Navarro and Nekrich [27] on a text of length r uses O(r lg r)

bits, and supports both updates and queries in O(lg r/ lg lg r) time.
2. The dynamic Fenwick tree of Bille et al [4, Thm. 2] on r (lgn)-bit numbers uses O(r lgn)

bits, and supports both updates and queries in constant time if updates are restricted to
be in-/decremental.

The obtained time complexity of this data structure directly improves the construction of
RLBWT:

I Corollary 4 ([30, Thm. 2]). We can construct the RLBWT in O(rBWT lgn) bits of space
online on the reversed text in O(n lg rBWT/ lg lg rBWT) time.

In the run-length compressed wavelet tree representation, RLBWT and RLBBWT support
an update operation and a backward step in O(lg r/ lg lg r) time with r := max(rBWT, rBBWT).
This helps us to devise the following two conversions:

4.2 From RLBBWT to RLBWT
We aim for directly outputting the characters of T in reversed order since we can then use
the algorithm of Cor. 4 building RLBWT online on the reversed text. We start with the
first entry of BBWT (corresponding to the last Lyndon factor Tt, i.e., storing Tt[|Tt|] = T [n]
according to Lemma 2) and do a backward step until we come back at this first entry (i.e.,
we have visited all characters of Tt). During that search, we copy the read characters to
RLBWT and mark in an array R of length rBBWT at entry i how often we visited the i-th
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character run of RLBBWT. Finally, we remove the read cycle of RLBBWT by decreasing the
run lengths of RLBBWT by the numbers stored in R. By doing so, we remove the last Lyndon
factor Tt from RLBBWT and consequently know that the currently first entry of BBWT must
correspond to Tt−1. This means that we can apply the algorithm recursively on the remaining
RLBBWT to extract and delete the Lyndon factors in reversed order while building RLBWT
in the meantime. By removing Tt, BBWT is still a valid BBWT since BBWT becomes the
BBWT of T ′ := T1 · · ·Tt−1 whose Lyndon factors are the same as of T (but without Tt).
Note that it is also possible to build RLBWT in forward order, i.e., computing RLBWTT1···Tx

for increasing x by applying the algorithm of Mantaci et al. [24, Fig. 1] while omitting the
suffix array construction.

4.3 From RLBWT to RLBBWT
To build BBWT, we need to be aware of the Lyndon factors of T , which we compute with
Lemma 1 by simulating a forward scan on T with FL on BWT. To this end, we store the
entries of the C array in a Fusion tree [13] using O(σ lgn) bits and supporting predecessor
search in O(lg σ/ lg lg σ) = O(lg r/ lg lg r) time.2 This time complexity also covers a forward
step in RLBWT by simulating F with the Fusion tree on C. Hence, this fusion tree allows us to
apply Lemma 1 computing the Lyndon factorization of T with a multiplicative O(lg r/ lg lg r)
time penalty since this algorithm only needs to perform forward traversals. The starting
point of such a traversal is the position i with BWT[i] = $ because FL[i] returns the first
character of T . Whenever we detect a Lyndon factor Tx (starting with x = 1), we copy this
factor to our dynamic RLBBWT. For that, we always maintain the first and the last position
of Tx in memory. Having the last position of Tx, we perform backward steps on RLBWT
until returning at the first position of Tx to read the characters of Tx in reversed order. Then
we continue with the algorithm of Lemma 1 at the position after Tx (for recursing on Tx+1).
Inserting a Lyndon factor into RLBBWT works exactly as sketched by Bonomo et al. [5,
Thm. 17] (we review this algorithm in detail in Sect. 5.1).

5 In-Place Conversions

We finally present our in-place conversions that work in quadratic time by computing LF
or FL in O(n) time having only stored either BWT, BBWT, or BWT◦. We note that the
constructions from the text also work in the comparison model, while inverting a transform
or converting two different transforms have a multiplicative O(nε) time penalty as the fastest
option to access F in the comparison model uses O(n1+ε) time for a constant ε > 0 [26]. We
start with the construction and inversion of BWT◦ (Sects. 5.1 and 5.2), where we show (a)
that we can construct BWT◦ from the text in the same manner as Bonomo et al. [5] construct
BBWT, and (b) that the latter construction works also in-place. Next, we show in Sect. 5.3
how to invert BBWT with the BWT inversion algorithm of Crochemore et al. [9, Fig. 3],
which allows us to also convert BBWT to BWT with the BWT construction algorithm of the
same paper [9, Fig. 2]. Finally, we show a conversion from BWT to BBWT in Sect. 5.4. An
overview is given in Table 1.

2 We assume that the alphabet Σ is effective, i.e., that each character of Σ appears at least once in T .
Otherwise, assume that T uses σ′ characters. Then we build the static dictionary of Hagerup [18] in
O(σ′ lg σ′) time, supporting access to a character in O(lg lg σ′) = O(lg lg r) time, assigning each of the
σ′ characters an integer from [1 . . σ′]. We further map RLBWT to the alphabet [1 . . σ′], which can be
done in O(r) time by using O(r lgn) space for a linear-time integer sorting algorithm.
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Table 1 Overview of in-place conversions in focus of Sect. 5 working in quadratic time.

To
From

T BWT BBWT BWT◦

T \ [9, Fig. 3] Sect. 5.3 Sect. 5.2
BWT [9, Fig. 2] \ Sect. 5.3

BBWT Sect. 5.1 Sect. 5.4 \
BWT◦ Sect. 5.1 \

5.1 Constructing BWT◦ and BBWT
We can compute BWT◦ and BBWT from T with the algorithm of Bonomo et al. [5] computing
the extended BWT [23]. The extended BWT is the BWT defined on a set of primitive strings.
As stated in Sect. 3.5, the extended BWT coincides with BBWT if this set of primitive strings
is the set of Lyndon factors of T [5, Thm. 14]. We briefly describe the algorithm of Bonomo
et al. [5] for computing the BBWT (cf. Fig. 2): For each Lyndon factor Tx (starting with
x = 1), prepend Tx[|Tx|] to BBWT. To insert the remaining characters of the factor Tx, let
p← 1 be the position of the currently inserted character. Then perform, for each j = |Tx|− 1
down to 1, a backward step p ← LF[p] + 1, and insert Tx[j] at BBWT[p]. To understand
why this computes BBWT, we observe that the last character of the most recently inserted
Lyndon factor Tx is always the first character in BBWTT1···Tx

according to Lemma 2. By
recursively inserting the preceding character at the place returned by a backward step, we
precisely insert this character at the position where we would expect it (another backward
step from the same position p would then return the inserted character). Using only n

backward steps and n insertions, this algorithm works in-place in O(n2) time by simulating
LF as described in Sect. 3.4.

Consequently, we can build BWT◦ if T is a Lyndon word since in this case BWT◦ and
BBWT coincide [15, Lemma 12]. That is because sorting the suffixes of T is equivalent to
sorting the conjugates of T (if T is a Lyndon word, then its Lyndon factorization consists
only of T itself).

It is easy to generalize this to work for a general string T . First, if T is primitive, then
we compute its so-called Lyndon conjugate, i.e., a conjugate of T that is a Lyndon word.
(The Lyndon conjugate of T is uniquely defined if T is primitive.) We can find the Lyndon
conjugate of T in O(n) time with the following two lemmata:

I Lemma 5 ( [10, Prop. 1.3] ). Given two Lyndon words S and T , ST is a Lyndon word if
S ≺lex T .

I Lemma 6. Given a primitive string T , we can find its Lyndon conjugate in O(n) time
with O(lgn) bits of space.

Proof. We use Lemma 1 to detect the last Lyndon factor Tt of the Lyndon factoriza-
tion T1 · · ·Tt of T with O(lgn) bits of working space. According to Lemma 5, TtT1 is a
Lyndon word since Tt ≺lex T1, and so is TtT1 · · ·Tt−1 a Lyndon word by a recursive argument.
Hence, we have found T ’s Lyndon conjugate. J

Let conjj(T ) be the Lyndon conjugate of T for j ∈ [0 . . n− 1]. Since BWT◦ is identical
to BBWTconjj(T ), we are done by running the algorithm of Bonomo et al. [5] on conjj(T ).
Finally, if T is not primitive, then there is a primitive string P such that T = P k for an
integer k ≥ 2. We can compute BWT◦P with the above considerations. For obtaining BWT◦,
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Figure 2 Computing BBWT from our running example T = bacabbabb in four steps (visualized
by four columns separated by three arrows ), cf. Sect. 5.1. In each column, the characters from the
top to the solid horizontal line ( ) form the currently built BBWT. The characters below that up
to the dashed horizontal line ( ) are under consideration of being merged into BBWT. This dashed
line is always before the beginning of the next yet unread Lyndon factor. First column: We have
already computed the BBWT of T1T2 = bac, which is cba. In the following we want to add the next
Lyndon factor T3 = abb to it. For that, we prepend its last character to the currently constructed
BBWT. Second column: We move the last character above the dashed line to the position LF[p] + 1
with p = 1, and update p ← LF[p] + 1. We recurse in the third column, and have produced the
BBWT of T1T2T3 = bacabb in the forth column.

according to [25, Prop. 2], we only need to make each character in BWT◦P to a character run
of length k, i.e., if BWT◦P [i] = c, we append ck to BWT◦ for increasing i ∈ [1 . . |P |] (cf. [15,
Thm. 13]). Checking whether T is primitive can be done in O(n2) time by checking for each
pair of positions their longest common prefix.

5.2 Inverting BWT◦

To invert BWT◦, we use the techniques of Crochemore et al. [9, Fig. 3] inverting BWT in-place
in O(n2) time. An invariant is that the BWT entry, whose FL mapping corresponds to the
next character to output, is marked with a unique delimiter $. Given that BWT[i] = $, the
algorithm outputs BWT[FL[i]], sets BWT[FL[i]]← $, removes BWT[i], and recurses until $ is
the last character remaining in BWT. By doing so, it restores the text in text order.

To adapt this algorithm for inverting BWT◦, we additionally need a pointer p storing
the first symbol of the text (since there is no unique delimiter such as $ in general). Given
that p points to BWT◦[i], we set i← FL[i] and subsequently output BWT◦[i]. From now on,
the algorithm works exactly as [9, Fig. 3] if we set BWT◦[i]← $ after outputting BWT◦[i].
More involving is inverting BBWT or converting BBWT to BWT, which we tackle next.

5.3 Inverting BBWT
Similarly to Sect. 4.2, we read the Lyndon factors from BBWT in the order Tt, . . . , T1, and
move each read Lyndon factor directly to a text buffer such that while reading the last
Lyndon factor Tx for an x ∈ [1 . . t] from BBWTT1···Tx

, we move the characters of Tx to
Tx+1 · · ·Tt, producing BBWTT1···Tx−1 and Tx · · ·Tt. This allows us to recurse by reading
always the last Lyndon factor Tx stored in BBWTT1···Tx

.
Here, we want to apply the inversion algorithm for BWT◦ described in Sect. 5.3. For

adapting this algorithm to work with BBWT, it suffices to insert $ at BBWT[2] (cf. Fig. 3).
By doing so, we add $ to the cycle of the currently last Lyndon factor Tx stored in BBWT,
i.e., we enlarge the Lyndon factor Tx to $Tx. That is because (a) BBWT[1] corresponds to
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Figure 3 Inverting BBWT of our running example T = bacabbabb (cf. Sect. 5.3). First Column:
We prepend the $ delimiter to the last Lyndon factor Tt by inserting $ at BBWT[2]. A forward step
symbolized by the dashed arrow ( ) leads us from $ to the first character of Tt. Second Column:
We output BBWT[6] = Tt[1] = T [7], remove $ and update BBWT[6]← $. The output is appended
to the string shown below the dashed horizontal line ( ). We continue with a forward step to
access BBWT[4] = Tt[2] = T [8], and recurse in the third column. Forth Column: Since a forward
step returns $, we know that we have successfully extracted Tt = abb.

the last character Tx[|Tx|] of Tx (cf. Lemma 2), and after inserting $, F[1] = $,F[2] = Tx[1],
hence FL[1] = 2 (a forward step on the last character of Tx gives $) and FL[2] gives the
position in BBWT corresponding to Tx[1]. Moreover, inserting $ makes BBWT the BBWT of
T ′ := T1 · · ·Tx1$Tx, where $Tx is the last Lyndon factor of T ′. We now use the property that
$Tx[i . . |Tx|] is a Lyndon word for each i ∈ [1 . . |Tx|], allowing us to perform the inversion
steps of Crochemore et al. [9, Fig. 3] on BBWT. By doing so, we can remove the entry of
BBWT corresponding to conjj(Tx) for increasing j ∈ [0 . . |Tx| − 1] and prepend the extracted
characters to the text buffer storing Tx+1 · · ·Tt within our working space while keeping
BBWT a valid BBWT.

Instead of inverting BBWT, we can convert BBWT to BWT in-place by running the
in-place BWT construction algorithm of Crochemore et al. [9, Fig. 2] on the text buffer
after the extraction of each Lyndon factor. Unfortunately, this works not character-wise,
but needs a Lyndon factor to be fully extracted before inserting its characters into BWT.
Interestingly, for the other direction (from BWT to BBWT), we can propose a different kind
of conversion that works directly on BWT without decoding it.

5.4 From BWT to BBWT on the Fly
Like in Sect. 4.3, we process the Lyndon factors of T individually to compute BBWT by
scanning BWT in text order to simulate Lemma 1. Suppose that we have built BWT on
T$ 6= $ with $ being the (t+ 1)-th Lyndon factor of T$, and suppose that we have detected
the first Lyndon factor T1. Let f denote the last character of T1. Further let if and i$ be
the position of the last character of T1 and the last character of T , respectively, such that
BWT[if] = f and BWT[i$] = $. Let p := LF[if] such that F[p] = f and BWT[p] = T1[|T1| − 1]
if |T1| > 1 or BWT[p] = $ otherwise. Since T1 and T2 are Lyndon factors, T1 �lex T2.
Consequently, the suffix T [b(T2) . . ] (the context of BWT[if]) is lexicographically smaller
than the suffix T [b(T1) . . ] (the context of BWT[i$]), i.e., if < i$. Figure 4 gives an overview
of the introduced setting.

Our aim is to change BWT such that a forward or backward step within the characters
belonging to T1 always results in a cycle. Informally, we want to cut T1 out of BWT, which
additionally allows us to recursively continue with the FL mapping to find the end of the
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Figure 4 Setting of Sect. 5.4 with focus on forming a cycle for a Lyndon factor ending with f in
BWT. Left: We exchange BWT[if] with BWT[i$] with the aim to form a cycle. Right: To obtain
this cycle we additionally need to swap BWT[p] with the elements of the dashed rectangle ( )
corresponding to the interval I having the same height as the dotted rectangle ( ) covering BWT[if +
1 . . i$ − 1].

next Lyndon factor T2. For that, we exchange BWT[i$] with BWT[if] (cf. Fig. 5). Then the
character T [e(T1) + 1] (i.e., the first character of T2) becomes the next character of $ in terms
of the forward step (BWT[FL[if]] = T [b(T2)]), while a backwards search on the first character
of T1 yields T1’s last character (LF returns i$, but now BWT[i$] = T1[|T1|] = f). This is
sufficient as long as BWT[i] 6= f for every i ∈ (if . . i$]. Otherwise, it can happen that we
change the mapping from the i-th f of F to the i-th f of BWT (or vice versa) unintentionally.
In such a case, we swap some entries in BWT within the f interval of F. In detail, we conduct
the exchange (BWT[i$] with BWT[if]), but continue with swapping BWT[i] and BWT[i+ 1]
unless BWT[FL[i]] becomes that f that corresponds to T1[|T1|] for increasing i starting with
i = p until F[i] 6= f or LF[i] 6∈ [if . . i$]. This may not be sufficient if the characters we swap
are identical (cf. Fig. 6). In such a case, we recurse on the T1[|T1| − 1] interval of F.

Instead of checking whether we have created a cycle after each swap, we want to compute
the exact number of swaps needed for this task. For that we note that exchanging BWT[i$]
with BWT[if] decrements the values of BWT.rankf(j) for every j ∈ [if . . i$] by one. In
particular, BWT.selectf changes for those f’s in BWT that are between if and i$. Hence, the
number of swaps m is the number of positions k ∈ [if + 1 . . i$ − 1] with BWT[k] = f. The
swaps are performed within the range I starting with p+ 1 and covering all positions i with
LF[i] ∈ [ii . . i$] and F[i] = f since I covers all entries whose mapping has changed. However,
if BWT[p . . ] starts with a character run of T [e(T1)− 1] (or of T [b(T1)] if |T1| = 1)3, swapping
the identical characters does not change BWT, and therefore has no effect of changing LF.
Instead, we search the end of this run within I to swap the first entry i below this run with
the first entry of this run, and recurse on swapping entry i with entries below of it.

Correctness. To see why the swaps restore the LF mapping for T1 and the remaining part
of the text T2 · · ·Tt, we examine those substrings of T that we might no longer find with the
LF mapping after exchanging BWT[i$] with BWT[if].

In detail, we examine each substring Sj := xjyjf ∈ Σ3 with j ∈ [1 . .m] that is represented
in BWT (before changing it) with BWT[p+ j] = yj ,BWT[LF[p+ j]] = xj ,BWT[FL[p+ j]] = f,
and ij := FL[p+j] ∈ [if+1. .i$−1]. Due to the LF-mapping, BWT.selectf(BWT.rankf(if)+j) =

3 For |T1| = 1, p = i$, and hence, BWT[p] was $ but now is f = T1[|T1|] = T1[1].
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Figure 5 Computing BBWT from BWT (cf. Sect. 5.4) of our running example T = bacabbabb$.
In the left column, we find the first Lyndon factor T1 = b of T by forward steps with FL. Since
|T1| = 1, p = i$. We obtain the middle column by exchanging BWT[4] with BWT[7] = $. Since there
are two b’s between b at BWT[4] and $ in the left column, we need to swap BWT[p] with the two
elements below of it in the middle column. This gives a cycle in the right column. We can recurse
since the FL mapping of $ now yields the second character of T .

ij , meaning that BWT[ij ] is the j-th f in BBWT[if + 1 . . i$ − 1], which stores m f’s. After
exchanging BWT[i$] with BWT[if], FL[p+ j] becomes ij+1 for j ∈ [0 . . m] with im+1 := i$.
However, for all i > p+m, FL[i] did not change. Hence, we only have to focus on the range
I = [p+ 1 . . p+m].

First, suppose that y1 = BWT[p + 1] 6= BWT[p]. If we swap BWT[p] with BWT[p + 1],
then LF[p] is still i1, but BWT[LF[p]] becomes x1 such that we have fixed the substring x1y1f.
This also works in a more general setting: If yj = BWT[p+ j] 6= BWT[p] for every j ∈ [1 . .m],
we can perform m swaps like above for all m entries in BWT[I] to fix all substrings Sj .

Now suppose that yj = BWT[p + j] = BWT[p] for j ∈ [1 . . `] with the largest possible
` ∈ [2 . . m]. Let k > p + ` be the first entry with BWT[k] 6= BWT[p]. First, suppose that
k ∈ I. Then F[k] = f, and swapping BWT[k] with BWT[p] restores the LF mapping for the
substrings Sj with j ∈ [1 . . `] since this swap decrements BWT.rankyj [p+ j] by one for every
j ∈ [1 . . `]. We recurse on swapping BWT[k] with the following BBWT entries in I until all
m substrings got restored. Finally, if k ≥ p+m, then all yi are equal such that we can find
the xi in BWT consecutively stored at positions with an F value of yi. Thus, we can apply
the swaps there recursively.

Time Complexity. Fixing a Lyndon factor Tx, we spend O(|I|) time for the swaps in
BWT[I], and perform the swaps recursively at most |Tx| times, where we need additionally
O(n) time per recursion step for computing LF[p], summing up to O(|Tx|(|I|+n)) = O(n|Tx|)
time. Since

∑t
x=1 |Tx| = n, we yield O(n2) total time.

6 Open Problems

Our algorithm of Sect. 5.3 converts BBWT to BWT, Lyndon factor by Lyndon factor.
It would be interesting to find another conversion that works character-wise. Here, our
inversion algorithm extracts a Lyndon factor in text order from BBWT, while the used BWT
construction algorithm parses the text in reverse text order.
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Figure 6 Special case for computing BWT from BBWT (cf. Sect. 5.4) with the different example
string T$ := cedabedad$ having T1 = ced as its first Lyndon factor. Left column: We find the first
Lyndon factor T1 = ced of T by forward steps with FL. Its last character is stored at BWT[2]. By
exchanging $ with the last character of T1 in BWT, we obtain the middle column. Middle column:
The LF mapping for the third d in F becomes invalid. However, there is only a character run of
T1[|T1| − 1] = e in BWT of the T1[|T1|] = d interval [7 . . 8] in F starting with p = 7. So we recurse
on LF[p] to find characters different from T1[|T1| − 2] = c to swap in the respective T1[|T1| − 1] = e
interval [9 . . 10]. Right Column: We have created a cycle with the characters of the first Lyndon
factor. A forward step at $ gives the first character of the next Lyndon factor.

Crochemore et al. [9, Sect. 4] proposed a space and time trade-off algorithm based on
their in-place techniques computing or inverting BWT. We are positive that it should be
possible to adapt their techniques for computing or inverting BBWT or BWT◦ with a trade-off
parameter.

From the combinatorial perspective, we question whether the number of distinct Lyndon
words of T is bounded by the runs in BBWT. If we can affirm this question, it would be
possible to adapt the BBWT based index data structure [3] for RLBBWT using O(rBBWT lgn)
bits of space because this solution needs a bit vector with rank and select support marking
the positions in BBWT corresponding to the distinct Lyndon factors. If this number is at
most the number of runs rBBWT, then we can store this bit vector entropy-compressed in
O(r lgn) bits when rBBWT = o(n) since nH0(r) = n lg(n/(n− r)) + r lg((n− r)/r) ≤ n lg r ⇔
r lg((n− r)/r) ≤ n lg(r(n− r)/n) for r = rBBWT.

Speaking of RLBBWT, we wonder whether we can construct RLBBWT online in run-
length compressed space similar to Cor. 4. With the run-length compressed wavelet tree,
the algorithm of Bonomo et al. [5, Thm. 17] works in O(n lg rBBWT/ lg lg rBBWT) time with
maxx∈[1. .t] |Tx| + O(rBBWT lgn) bits of space by reading each Lyndon factor of the text
individually.
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Abstract
Recently, due to the genomic sequence analysis in several types of cancer, genomic data based
on copy number profiles (CNP for short) are getting more and more popular. A CNP is a vector
where each component is a non-negative integer representing the number of copies of a specific
segment of interest. The motivation is that in the late stage of certain types of cancer, the genomes
are progressing rapidly by segmental duplications and deletions, and hence obtaining the exact
sequences becomes difficult. Instead, the number of copies of important segments can be predicted
from expression analysis and carries important biological information. Therefore, significant research
has recently been devoted to the analysis of genomic data represented as CNP’s.

In this paper, we present two streams of results. The first is the negative results on two
open problems regarding the computational complexity of the Minimum Copy Number Generation
(MCNG) problem posed by Qingge et al. in 2018. The Minimum Copy Number Generation (MCNG)
is defined as follows: given a string S in which each character represents a gene or segment, and
a CNP C, compute a string T from S, with the minimum number of segmental duplications and
deletions, such that cnp(T ) = C. It was shown by Qingge et al. that the problem is NP-hard if the
duplications are tandem and they left the open question of whether the problem remains NP-hard
if arbitrary duplications and/or deletions are used. We answer this question affirmatively in this
paper; in fact, we prove that it is NP-hard to even obtain a constant factor approximation. This is
achieved through a general-purpose lemma on set-cover reductions that require an exact cover in
one direction, but not the other, which might be of independent interest. We also prove that the
corresponding parameterized version is W[1]-hard, answering another open question by Qingge et al.

The other result is positive and is based on a new (and more general) problem regarding CNP’s.
The Copy Number Profile Conforming (CNPC) problem is formally defined as follows: given two
CNP’s C1 and C2, compute two strings S1 and S2 with cnp(S1) = C1 and cnp(S2) = C2 such
that the distance between S1 and S2, d(S1, S2), is minimized. Here, d(S1, S2) is a very general
term, which means it could be any genome rearrangement distance (like reversal, transposition, and
tandem duplication, etc). We make the first step by showing that if d(S1, S2) is measured by the
breakpoint distance then the problem is polynomially solvable. We expect that this will trigger
some related research along the line in the near future.
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1 Introduction

In cancer genomics research, intra-tumor genetic heterogeneity is one of the central problems
[15, 16, 21]. Understanding the origins of cancer cell diversity could help cancer prognostics
[4, 14] and also help explain drug resistance [3, 6]. It is known for some types of cancers, such
as high-grade serous ovarian cancer (HGSOC), that heterogeneity is mainly acquired through
genome rearrangements and endoreduplications, the replication of the genome without the
usual mitosis reproduction cycle. These result in aberrant copy number profiles (CNPs) –
nonnegative integer vectors representing the numbers of genes occurring in a genome [17].
To understand how the cancer progresses, an evolutionary tree is certainly desirable, and
inferring such a tree based on these genomic data becomes a new problem. In [20], Schwarz
et al. proposed a way to construct a phylogenetic tree directly from integer copy number
profiles, the underlying problem being to convert CNPs into one another using the minimum
number of duplications/deletions [22]. This was recently followed with several other distances
measures between CNPs that can be used to reconstruct cancer phylogenies [26, 9, 5, 19, 25].

In [8], a more complex distance computation was used as a subroutine to compute an
ancestor profile given a set of k profiles. The problem was shown to be NP-hard, though an
ILP formulation was given. In fact, Chowdhury et al. considered copy number changes at
different levels, from single gene, single chromosome to whole genome, to enhance the tumor
phylogeny reconstruction [2]. In [18], another fundamental problem was proposed. The
motivation is that in the early stages of cancer, when large numbers of endoreduplications
are still rare, genome sequencing is still possible. However, in the later stage we might only
be able to obtain genomic data in the form of CNPs. This leads to the problem of comparing
a sequenced genome with a genome with only copy-number information.

Given a genome G represented as a string and a copy number profile ~c, the Minimum
Copy Number Generation (MCNG) problem asks for the minimum number of deletions and
duplications needed to transform G into any genome in which each character occurs as
many times as specified by ~c. Qingge et al. proved that the problem is NP-hard when the
duplications are restricted to be tandem and posed several open questions: (1) Is the problem
NP-hard when the duplications are arbitrary and/or deletions are allowed? (2) Does the
problem admit a decent approximation? (3) Is the problem fixed-parameter tractable (FPT)?
In this paper, we answer all these three open questions. We show that MCNG is NP-hard
to approximate within any constant factor, and that it is W[1]-hard when parameterized
by the solution size. The inapproximability follows from a new general-purpose lemma on
set-cover reductions that require an exact cover in one direction, but not the other. The
W[1]-hardness uses a new set-cover variant in which every optimal solution is an exact cover.
These set-cover extensions can make reductions easier, and may be of independent interest.

We also consider a new fundamental problem called Copy Number Profile Conforming
(CNPC), which is defined as follows. Given two CNP’s ~c1 and ~c2, compute two strings/genomes
S1 and S2 with cnp(S1) = ~c1 and cnp(S2) = ~c2 such that the distance between S1 and S2,
d(S1, S2), is minimized. The distance d(S1, S2) could be general, which means it could be
any genome rearrangement distance (such as reversal, transposition, and tandem duplication,
etc). We make the first step by showing that if d(S1, S2) is measured by the breakpoint
distance then the problem is polynomially solvable.

2 Preliminaries

A genome G is a string, i.e. a sequence of characters, all of which belong to some alphabet Σ
(the characters of G can be interpreted as genes or segments – in this paper we assume the
latter, i.e., Σ is a set of segments). We use genome and string interchangeably in this paper,
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when the context is clear. A substring of G is a sequence of contiguous characters that occur
in G, and a subsequence is a string that can be obtained from G by deleting some characters.
We write G[p] to denote the character at position p of G (the first position being 1), and we
write G[i..j] for the substring of G from positions i to j, inclusively. For s ∈ Σ, we write
G− s to denote the subsequence of G obtained by removing all occurrences of s.

We represent an alphabet as an ordered list Σ = (s1, s2, . . . , sm) of distinct characters.
Slightly abusing notation, we may write s ∈ Σ if s is a member of this list. We write ns(G)
to denote the number of occurrences of s ∈ Σ in a genome G. A Copy-Number Profile (or
CNP) on Σ is a vector ~c = 〈c1, . . . , c|Σ|〉 that associates each character si of the alphabet
with a non-negative integer ci ∈ N 1; formally,

cnp(G) = 〈ns1(G), ns2(G), . . . , nsm
(G)〉.

We may write ~c(s) to denote the number associated with s ∈ Σ in ~c. We write ~c − s to
denote the CNP obtained from ~c by setting ~c(s) = 0. An an example, if Σ = (a, b, c) and
G = abbcbbcca, then cnp(G) = 〈2, 4, 3〉 and ~c(a) = 2.

Deletions and duplications on strings

We now describe the two string events of deletion and duplication. Both are illustrated in
Figure 1.

Sequence Operations

G1 = abbc · cab · cab del(5, 7)
G2 = a · bbcc · ab dup(2, 5, 6)

G3 = abbcca · bbcc · b

Figure 1 Three strings (or toy genomes), G1, G2 and G3. From G1 to G2, a deletion is applied to
G1[5..7]. From G2 to G3, a duplication is applied to G2[2..5], with the copy inserted after position 6.

Given a genome G, a deletion on G takes a substring of G and removes it. Deletions are
denoted by a pair (i, j) of the positions of the substring to remove. Applying deletion (i, j)
to G transforms G into G[1..i− 1]G[j + 1..n].

A duplication on G takes a substring of G, copies it and inserts the copy anywhere in G,
except inside the copied substring. A duplication is defined by a triple (i, j, p) where G[i..j]
is the string to duplicate and p ∈ {0, 1, . . . , i− 1, j, . . . n} is the position after which we insert
(inserting after 0 prepends the copied substring to G). Applying duplication (i, j, p) to G
transforms G into G[1..p]G[i..j]G[p+ 1..n].

An event is either a deletion or a duplication. If G is a genome and e is an event , we write
G〈e〉 to denote the genome obtained by applying e on G. Given a sequence E = (e1, . . . , ek) of
events, we define G〈E〉 = G〈e1〉〈e2〉 . . . 〈ek〉 as the genome obtained by successively applying
the events of E to G. We may also write G〈e1, . . . , ek〉 instead of G〈(e1, . . . , ek)〉.

The most natural application of the above events is to compare genomes.

I Definition 1. Let G and G′ be two strings over alphabet Σ. The Genome-to-Genome
distance between G and G′, denoted dGG(G,G′), is the size of the smallest sequence of events
E satisfying G〈E〉 = G′.

1 Note that in the theory of formal languages, the CNP of a string is called the Parikh vector.
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Note that dGG has recently been considered in [11, 13], the latter in the case of tandem
duplications only. We also define a distance between a genome G and a CNP ~c, which is the
minimum number of events to apply to G to obtain a genome with CNP ~c.

I Definition 2. Let G be a genome and ~c be a CNP, both over alphabet Σ. The Genome-to-
CNP distance between G and ~c, denoted dGCNP (G,~c), is the size of the smallest sequence of
events E satisfying cnp(G〈E〉) = ~c.

The above definition leads to the following problem, which was first studied in [18].
The Minimum Copy Number Generation (MCNG) problem:
Instance: a genome G and a CNP ~c over alphabet Σ.
Task: compute dGCNP (G,~c).

Qingge et al. proved that the MCNG problem is NP-hard when all the duplications are
restricted to be tandem [18]. In the next section, we prove that this problem is not only
NP-hard, but also NP-hard to approximate within any constant factor.

3 Hardness of Approximation for MCNG

In this section, we show that the dGCNP distance is hard to approximate within any constant
factor. This result actually holds if only deletions on G are allowed. This restriction makes
the proof significantly simpler, so we first analyze the deletions-only case. We then extend
this result to deletions and duplications.

Both proofs rely on a reduction from SET-COVER. Recall that in SET-COVER, we are
given a collection of sets S = {S1, S2, . . . , Sn} over universe U = {u1, u2, . . . , um} =

⋃
Si∈S Si,

and we are asked to find a set cover of S having minimum cardinality (a set cover of S is a
subset S∗ ⊆ S such that

⋃
S∈S∗ S = U). If S ′ is a set cover in which no two sets intersect,

then S ′ is called an exact cover.
There is one interesting feature (or constraint) of our reduction g, which transforms a

SET-COVER instance S into a MCNG instance g(S). A set cover S∗ only works on g(S) if
S∗ is actually an exact cover, and a solution for g(S) can be turned into a set cover for S∗
that is not necessarily exact. Thus we are unable to reduce directly from either SET-COVER
nor its exact version. We provide a general-purpose lemma for such situations, and our
reductions serve as an example of its usefulness.

The proof relies on a result on t-SET-COVER, the special case of SET-COVER in which
every given set contains at most t elements. It is known that for any constant t ≥ 3, the
t-SET-COVER problem is hard to approximate within a factor ln t−c ln ln t for some constant
c not depending on t [23].

I Lemma 3. Let B be a minimization problem, and let g be a function that transforms any
SET-COVER instance S into an instance g(S) of B in polynomial time. Assume that both
the following statements hold:

any exact cover S∗ of S of cardinality at most k can be transformed in polynomial time
into a solution of value at most k for g(S);
any solution of value at most k for g(S) can be transformed in polynomial time into a set
cover of S of cardinality at most k.

Then unless P = NP, there is no constant factor approximation algorithm for B.

Proof. Suppose for contradiction that B admits a factor b approximation for some constant b.
Choose any constant t such that t-SET-COVER is hard to approximate within factor
ln t − c ln ln t, and such that b < ln t − c ln ln t. Note that t might be exponentially larger
than b, but is still a constant.
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Now, let S be an instance of t-SET-COVER over the universe U = {u1, . . . , um}. Consider
the intermediate reduction g′ that transforms S into another t-SET-COVER instance g′(S) =
{S′ ⊆ S : S ∈ S}. Since t is a constant, g(S) has O(|S|) sets and this can be carried out in
polynomial time.

Now define S ′ = g′(S) and consider the instance B = g(S ′) = g(g′(S)). By the
assumptions of the lemma, a solution for B of value k yields a set cover S∗ for S ′. Clearly,
S∗ can be transformed into a set cover for instance S: for each S′ ∈ S∗, there exists S ∈ S
such that S′ ⊆ S, so we get a set cover for S by adding this corresponding superset for each
S ∈ S∗. Thus B yields a set cover of S with at most k sets.

In the other direction, consider a set cover S∗ = {S1, . . . , Sk} of S with k sets. This
easily translates into an exact cover of S ′ with k sets by taking the collection

{S1, S2 \ S1, S3 \ (S1 ∪ S2), . . . , Sk \
k−1⋃
i=1

Si}}.

By the assumptions of the lemma, this exact cover can then be transformed into a solution
of value at most k for instance B.

Therefore, S has a set cover of cardinality at most k if and only if B has a solution of
value at most k. By this correspondence, a factor b approximation for B would provide a
factor b < ln t− c ln ln t approximation for t-SET-COVER. J

3.1 Constructing genomes and CNPs from SET-COVER instances
All of our hardness results rely on Lemma 3. We need to provide a reduction from SET-
COVER to MCNG and prove that both assumptions of the lemma are satisfied.

This reduction is the same for deletions-only and deletions-and-duplications. Given S and
U , we construct a genome G and a CNP ~c as follows (an example is illustrated in Figure 2).
The alphabet is Σ = ΣS∪ΣU , where ΣS := {〈βSi〉 : Si ∈ S} and ΣU := {αui : ui ∈ U}. Thus,
there is one character for each set of S and each element of U . Here, each 〈βSi

〉 is a character
that will serve as a separator between characters to delete. For a set Si ∈ S, define the string
q(Si) as any string that contains each character of {αu : u ∈ Si} exactly once (in any fixed
order, say by their indices). We put

G = 〈βS1〉q(S1)〈βS2〉q(S2) . . . 〈βSn
〉q(Sn),

i.e. G is the concatenation of the strings 〈βSi
〉q(Si). As for the CNP ~c, put

~c(〈βSi〉) = 1 for each Si ∈ S;
~c(αu) = f(u)− 1 for each u ∈ U , where f(u) = |{Si ∈ S : u ∈ Si}| is the number of sets
from S that contain u.

Notice that in G, each 〈βS〉 already has the correct copy-number, whereas each αu needs
exactly one less copy. Our goal is thus to reduce the number of each αu by 1. This concludes
the construction of MCNG instances from SET-COVER instances. We now focus on the
hardness of the deletions-only case.

S1 = {1, 2, 3} S2 = {1, 3, 4} S3 = {2, 3, 5}

G = 〈βS1〉α1α2α3〈βS2〉α1α3α4〈βS3〉α2α3α5

~c(α1) = ~c(α2) = 1 ~c(α3) = 2 ~c(α4) = ~c(α5) = 0

Figure 2 An example of our construction, with S = {S1, S2, S3} and U = {1, 2, 3, 4, 5}.
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3.2 Warmup: the deletions-only case
Suppose that we are given a set cover instance S and U , and let G and ~c be the genome and
CNP, respectively, as constructed above.

I Lemma 4. Given an exact cover S∗ for S of cardinality k, one can obtain a sequence of k
deletions transforming G into a genome with CNP ~c.

Proof. Denote S∗ = {Si1 , . . . , Sik
}. Consider the sequence of k deletions that deletes the

substrings q(Si1), . . . , q(Sik
) (i.e. the sequence first deletes the substring q(Si1), then deletes

q(Si2), and so on until q(Sik
) is deleted). Since Si1 , . . . , Sik

is an exact cover, this sequence
removes exactly one copy of each αu ∈ ΣU and does not affect the 〈βS〉 characters. Thus the
k deletions transform G into a genome with the desired CNP ~c. J

I Lemma 5. Given a sequence of k deletions transforming G into a genome with CNP ~c,
one can obtain a set cover for S of cardinality at most k.

Proof. Suppose that the deletion events E = (e1, . . . , ek) transform G into a genome G∗
with CNP ~c. Note that no ei deletion is allowed to delete a set-character 〈βSi

〉 ∈ ΣS , as
there is only one occurrence of 〈βSi〉 in G and ~c(〈βSi〉) = 1. Thus all deletions remove only
αu characters. In other words, each ej in E either deletes a substring of G between some
〈βSi〉 and 〈βSi+1〉 with 1 ≤ i < n, or ej deletes a substring after 〈βSn〉. Moreover, exactly
one of each αu occurrences gets deleted from G.

Call 〈βSi
〉 ∈ ΣS affected if there is some event of E that deletes at least one character

between 〈βSi〉 and 〈βSi+1〉 with 1 ≤ i < n, and call 〈βSn〉 affected if some event of E deletes
characters after 〈βSn

〉. Let S∗ := {Si ∈ S : 〈βSi
〉 is affected}. Then |S∗| ≤ k, since each

deletion affects at most one 〈βSi〉 and there are k deletion events. Moreover, S∗ must be a
set cover, because each αu ∈ ΣU has at least one occurrence that gets deleted and thus at
least one set containing u that is included in S∗. This concludes the proof. J

We have shown that all the assumptions required by Lemma 3 are satisfied. The
inapproximability follows.

I Theorem 6. Assuming P 6= NP , there is no polynomial-time constant factor approximation
algorithm for MCNG when only deletions are allowed.

We mention without proof that the reduction can be adaptable to the duplication-only
case, by putting ~c(αu) = f(u) + 1 for each u ∈ U .

The real deal: deletions and duplications
We now consider both deletions and duplications. The reduction uses the same construction
as in Section 3.1. Thus we assume that we have a SET-COVER instance S over U , and
a corresponding instance of MCNG with genome G and CNP ~c. In that case, we observe
that Lemma 4 still holds whether we allow deletion only, or both deletions and duplications.
Thus we only need to show that the second assumption of Lemma 3 holds.

Unfortunately, this is not as simple as in the deletions-only case. The problem is that
some duplications may copy some αu and 〈βSi

〉 occurrences, and we lose control over what
gets deleted, and over what 〈βSi

〉 each αu corresponds to (in particular, some 〈βSi
〉 might

now get deleted, which did not occur in the deletions-only case).
Nevertheless, the analogous result can be shown. That is, using the above reduction, our

goal is to show that, given a sequence of k events (deletions and duplications) transforming
G into a genome with CNP ~c, one can obtain a set cover for S of cardinality at most k.



M. Lafond, B. Zhu, and P. Zou 22:7

We need some new notation and intermediate results beforehand. Let E = (e1, . . . , ek)
be a sequence of events transforming genome G into another genome G′. We would like to
distinguish each position of G in order to know which specific character of G is at the origin
of a character of G′.

We augment each individual character of G with a unique identifier, which is its position
in G. That is, let G = g1g2 . . . gn, define a new alphabet Σ̂ = (g1

1 , g
2
2 , . . . , g

n
n) and define the

genome Ĝ = g1
1g

2
2 . . . g

n
n . Here, two characters gi and gj may be identical, but gi

i and gj
j are

two distinct characters. We call Σ̂ the augmented alphabet and Ĝ the augmented genome of G.
For instance if G = aabcb and Σ = (a, b, c), then Σ̂ = (a1, a2, b3, c4, b5) and Ĝ = a1a2b3c4b5.

Since G and Ĝ have the same length, we may apply the sequence E on Ĝ, resulting in
a genome Ĝ′ := Ĝ〈E〉 on alphabet Σ̂. Now Ĝ′ may contain some characters of Σ̂ multiple
times owing to duplications, but if we remove the superscript identifier from the characters
of Ĝ′, we obtain G′. The idea is that the identifiers on the characters of Ĝ′ tell us precisely
where each character of Ĝ′ “comes from” in Ĝ (and thus G).

I Definition 7. Let G and G′ be genomes and let E an event sequence such that G′ = G〈E〉.
Let Ĝ be the augmented genome of G and let Ĝ[i] = gi be the character at position i.

If there is at least one occurrence of gi in Ĝ〈E〉, then position i is called important with
respect to E. Otherwise, position i is called unimportant with respect to E.

Roughly speaking, position i is unimportant if it eventually gets deleted, and any character
that was copied from position i from a duplication also gets deleted, as well as a copy of this
copy, and so on – in other words, position i has no “descendant” in G′ when applying E.

First, we prove some general properties that will be useful. Recall that G− s removes all
occurrences of s from G, and ~c− s puts ~c(s) = 0.

I Proposition 8. Let G be a genome over alphabet Σ, let ~c be a CNP and let s ∈ Σ. Then
dGCNP (G− s,~c− s) ≤ dGCNP (G,~c).

The next technical lemma states that if a genome alternates between positions to keep
and positions to delete n times, then we need n events to remove the unimportant ones.

I Lemma 9. Let Σ = X∪Y be an alphabet defined by two disjoint sets X = {x1, . . . , xn} and
Y . Let G = Y0x1Y1x2Y2 . . . xnYn be a genome on Σ, where for all i ∈ [n], Yi is a non-empty
string over alphabet Y and Y0 is a possibly empty string on alphabet Y . Moreover let ~c be a
CNP such that ~c(xi) = 1 for all xi ∈ X and ~c(y) = 0 for all y ∈ Y . Then dGCNP (G,~c) ≥ n,
with equality when Y0 is empty.

The proof is surprisingly technical and can be found in the full version. We may now
prove the second assumption of Lemma 3.

I Lemma 10. Let S be a SET-COVER instance, and let G and ~c be the correspond-
ing MCNG instance. Given a sequence of k events (deletions and duplications) transforming
G into a genome with CNP ~c, one can obtain a set cover for S of cardinality at most k.

Proof. Suppose that the events E = (e1, . . . , ek) transform G into a genome G∗ with CNP ~c.
We construct a set cover for S of cardinality k. For a position p with G[p] = αu ∈ ΣU , define
pred(p) as the first ΣS character to the left of position p. To be precise, if p′ is the largest
integer satisfying G[p′] ∈ ΣS and p′ < p, then pred(p) = G[p′]. Note that since G[1] = 〈βS1〉,
pred(p) is well-defined. Notice that by construction, if G[p] = αu and 〈βS〉 = pred(p), then
u ∈ S. The set of pred(p) of unimportant positions p will correspond to our set cover, which
we now prove by separate claims.
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B Claim 11. For each u ∈ U , there is at least one position p of G such that G[p] = αu and
such that p is unimportant w.r.t. E.

Proof. If we assume this is not the case, then each of the f(u) positions p of G having
G[p] = αu has a descendant in G∗, implying that G∗ has at least f(u) copies of αu and
thereby contradicting that G∗ complies with ~c(αu) = f(u)− 1. C

Recall that U = {ui, . . . , um}. Given that the claim holds, let P = {p1, . . . , pm} be any
set of positions of G such that for each i ∈ [m], G[pi] = αui

and pi is unimportant w.r.t. E
(choosing arbitrarily if there are multiple choices for pi). Define ΣP = {pred(pi) : pi ∈ P}
and S∗ = {Si ∈ S : 〈βSi

〉 ∈ ΣP }.

B Claim 12. S∗ is a set cover.

Proof. For each ui ∈ U , there is an unimportant position pi ∈ P such that G[pi] = αui .
Moreover, pred(pi) is some character 〈βS〉 such that 〈βS〉 ∈ ΣP and such that ui ∈ S. Since
S ∈ S∗, it follows that each ui is covered. C

It remains to show that S∗ has at most k sets. Denote P ′ = P ∪ {p : G[p] ∈ ΣP }. Let G̃
be the subsequence of G obtained by keeping only positions in P ′ (i.e. if we denote P ′ =
{p′1, . . . , p′l} with p′1 < p′2 < . . . < p′l, then G̃ = G[p′1]G[p′2] . . . G[p′l]). Furthermore, define the
CNP ~c0 such that ~c0(〈βSi

〉) = 1 for all 〈βSi
〉 ∈ ΣP , ~c0(〈βSi

〉) = 0 for all 〈βSi
〉 ∈ ΣS \ ΣP ,

and ~c0(αu) = 0 for all αu ∈ ΣU . Note that G̃ has the form 〈βSi1
〉D1〈βSi2

〉D2 . . . 〈βSir
〉Dr

for some r, where the Di’s are substrings over alphabet ΣU . This is form of Lemma 9.

B Claim 13. dGCNP (G̃,~c0) ≤ k.

Proof. Let G′ be the genome obtained by replacing every position p of G by some dummy
character λ, except for the positions of P ′ (thus if we remove all the λ occurrences we obtain
G̃). Since G and G′ have the same length, we can apply the E events on G′. Let G′′ := G′〈E〉,
and let l be the number of occurrences of λ in G′′. Recall that P ′ contains only positions p
such that G[p] ∈ ΣP , or such that p is unimportant w.r.t E and G[p] ∈ ΣU . It follows that if
a position q is important w.r.t. E, then G′[q] ∈ ΣP ∪ {λ}. Moreover, for any 〈βS〉 ∈ ΣP , G′′
has as many occurrences of 〈βS〉 as in G〈E〉. In other words, G′′ has one occurrence of each
〈βS〉 ∈ ΣP and the rest is filled with λ.

Let ~c1 be the CNP satisfying ~c1(λ) = l, ~c1(〈βSi〉) = ~c0(〈βSi〉) = 1 for every 〈βSi〉 ∈
ΣP , and ~c1(x) = 0 for any other character x. Then clearly, ~c1 = cnp(G′′), which im-
plies dGCNP (G′,~c1) ≤ k since E transforms G′ into G′′. Moreover by Proposition 8,
dGCNP (G′ − λ,~c1 − λ) ≤ dGCNP (G′,~c1) ≤ k. The claim follows from the observation that
G̃ = G′ − λ and ~c0 = ~c1 − λ. C

Observe that G̃ and ~c0 have the required form for Lemma 9 (with |ΣP | important positions),
and so dGCNP (G̃,~c0) ≥ |ΣP |. It follows from Claim 13 that k ≥ dGCNP (G̃,~c0) ≥ |ΣP | = |S∗|.
We thus have a set cover S∗ for S of cardinality at most k, completing the proof. J

We arrive to our main inapproximability result, which again follows from Lemma 3.

I Theorem 14. Assuming P 6= NP, there is no polynomial-time constant factor approximation
algorithm for MCNG.

In the next section, we prove that the MCNG problem, parameterized by the solution
size, is W[1]-hard. This answers another open question in [18]. We refer readers for more
details on FPT and W[1]-hardness to the book by Downey and Fellows [7].
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4 W[1]-hardness for MCNG

Since SET-COVER is W[2]-hard, naturally we would like to use the above reduction to prove
the W[2]-hardness of MCNG. However, the fact that we use t-SET-COVER with constant t
in the proof of Lemma 3 is crucial, and t-SET-COVER is in FPT. On the other hand, the
property that is really needed in the instance of this proof, and in our MCNG reduction, is
that we can transform any set cover instance into an exact cover. We capture this intuition
and show that SET-COVER instances that have this property are W[1]-hard to solve.

An instance of SET-COVER-with-EXACT-COVER, or SET-COVER-EC for short, is a
pair I = (S, k) where k is an integer and S is a collection of sets forming a universe U . In
this problem, we require that S satisfies the property that any set cover for S of size at most
k is also an exact cover. We are asked whether there exists a set cover for S of size at most
k (in which case this set cover is also an exact cover).

I Lemma 15. The SET-COVER-EC problem is W[1]-hard for parameter k.

Proof. We show W[1]-hardness using the techniques introduced by Fellows et al. which is
coined as MULTICOLORED-CLIQUE [10]. In the MULTICOLORED-CLIQUE problem, we
are given a graph G, an integer k and a coloring c : V (G)→ [k] such that no two vertices of
the same color share an edge. We are asked whether G contains a clique of k vertices (noting
that such a clique must have a vertex of each color). This problem is W[1]-hard w.r.t. k.

Given an instance (G, k, c) of MULTICOLORED-CLIQUE, we construct an instance I =
(S, k′) of SET-COVER-EC. We put k′ = k +

(
k
2
)
. For i ∈ [k], let Vi = {v ∈ V (G) : c(v) = i}

and for each pair i < j ∈ [k], let Eij = {uv ∈ E(G) : u ∈ Vi, v ∈ Vj}. The universe U of the
SET-COVER-EC instance has one element for each color i, one element for each pair {i, j}
of distinct colors, and two elements for each edge, one for each direction of the edge. That is,

U = [k] ∪
(

[k]
2

)
∪ {(u, v) ∈ V (G)× V (G) : uv ∈ E(G)}

Thus |U | = k +
(

k
2
)

+ 2|E(G)|. For two colors i < j ∈ [k], we will denote Uij =
{(u, v), (v, u) : u ∈ Vi, v ∈ Vj , uv ∈ Eij}, i.e. we include in Uij both elements corresponding
to each uv ∈ Eij . Now, for each color class i ∈ [k] and each vertex u ∈ Vi, add to S the set

Su = {i} ∪ {(u, v) : v ∈ N(u)}

where N(u) is the set of neighbors of u in G. Then for each i < j ∈ [k], and for each edge
uv ∈ Eij , add to S the set

Suv = {{i, j}} ∪ {(x, y) ∈ Uij : x /∈ {u, v}}

The idea is that Suv can cover every element of Uij , except those ordered pairs whose
first element is u or v. Then if we do decide to include Suv in a set cover, it turns out that
we will need to include Su and Sv to cover these missing ordered pairs. See Figure 3 for an
example. For instance if we include Su2,v3 in a cover, the uncovered (u2, v3) and (v3, u2) can
be covered with Su2 and Sv3 . We show that G has a multicolored clique of size k if and only
if S admits a set cover of size k′. Note that we have not shown yet that (S, k′) is an instance
of SET-COVER-EC, i.e. that any set cover of size at most k′ is also an exact cover. This
will be a later part of the proof.

First suppose that G has a multi-colored clique C = {v1, . . . , vk}, where vi ∈ Vi for each
i ∈ [k]. Consider the collection

S∗ = {Sv1 , . . . , Svk
} ∪ {Svivj

: vi, vj ∈ C, 1 ≤ i < j ≤ k},
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(u1, v1) (v1, u1)

(u1, v2) (v2, u1)

(u2, v3) (v3, u2)
Su1,v1

Su1,v2

Su2,v3

Su1

Su2

Sv1

Sv2

Sv3

i j

{i, j}

Figure 3 A graphical example of the constructed sets for the Uij elements of a graph (not
shown) with Eij = {u1v1, u1v2, u2v3}, where the ul’s are in Vi and the vl’s in Vj (sets have a gray
background, edges represent containment, the {i, j} lines are dotted only for better visualization).

the cardinality of S∗ is k +
(

k
2
)

= k′. Each element i ∈ U ∩ [k] is covered since we include a
set Svi

for each color. Each element {i, j} ∈ U ∩
([k]

2
)
is covered since we include a set Svivj

for each color pair i, j with i < j. Consider an element (xi, yj) ∈ U ∩ (V (G)× V (G)), where
xi ∈ Vi and yi ∈ Vj . Note that either i < j or j < i is possible, and that vivj ∈ E(G). If
xi /∈ {vi, vj}, then Svivj

covers (xi, yj). If xi = vi, then Svi
covers (xi, vj) and if xi = vj ,

then Svj covers (xi, vj). Thus S∗ is a set cover, and is of size at most k′.
For the converse direction, suppose that S∗ is a set cover for S of size at most k′ = k+

(
k
2
)
.

Note that to cover the elements of U ∩ [k], S∗ must have at least one set Su such that u ∈ Vi

for each color class i ∈ [k]. Moreover, to cover the elements of U ∩
([k]

2
)
, S∗ must have at

least one set Suv such that u ∈ Vi, v ∈ Vj for each i, j ∈ [k] pair. We deduce that S∗ has
exactly k +

(
k
2
)
sets. Hence for color i ∈ [k], there is exactly one set Su in S∗ for which

u ∈ Vi, and for each {i, j} pair, there is exactly one Suv set in S∗ for which u ∈ Vi, v ∈ Vj .
We claim that C = {u : Su ∈ S∗} is a multi-colored clique. We already know that C

contains one vertex of each color. Now, suppose that some u, v ∈ C do not share an edge,
where u ∈ Vi, v ∈ Vj and i < j. Let Sxy be the set of S∗ that covers {i, j}, with x ∈ Vi, y ∈ Vj .
Since uv is not an edge but xy is, we know that u 6= x or v 6= y (or both). Moreover, Sxy

does not cover the (x, y) and (y, x) elements of Uij , and we know that at least one of these
is not covered by Su nor Sv (if u 6= x, then none covers (x, y), if v 6= y, then none covers
(y, x)). But (x, y) ∈ Uij , and Su, Sv and Sxy are the only sets of S∗ that have elements of
Uij , contradicting that S∗ is a set cover. This shows that C is a multi-colored clique.

It remains to show that S∗ is an exact cover. Observe that no two distinct Su and Sv

sets in S∗ can intersect because u and v must be of a different color, and no two distinct Suv

and Sxy sets in S∗ can intersect because {u, v} and {x, y} must be from two different color
pairs. Suppose that Su, Sxy ∈ S∗ do intersect, and say that x ∈ Vi, y ∈ Vj and i < j. Then
all elements in Su ∩ Sxy are of the form (u, v) for some v. Choose any such (u, v). If u is of
color i, then u 6= x since otherwise by construction Sxy could not contain (u, v). But when
u 6= x, no set of S∗ covers the element (x, y) (it is not Su nor Sxy, the only two possibilities).
If u is of color j, then u 6= y since again Sxy could not contain (u, v). In this case, no set of
S∗ covers (y, x). We reach a contradiction and deduce that S∗ is an exact cover. J

It is now almost immediate that MCNG is W[1]-hard with respect to the natural parameter,
namely the number of events to transform a genome G into a genome with a given profile ~c
(the detailed proof can be found in the full version).

I Theorem 16. The MCNG problem is W[1]-hard.

We do not know whether SET-COVER-EC or MCNG are also in W[1], i.e. whether
they are W[1]-complete. We have finished presenting the negative results on MCNG. An



M. Lafond, B. Zhu, and P. Zou 22:11

immediate question is whether we could obtain some positive result on a related problem. In
the next section, we present some positive result for an interesting variation of MCNG.

5 The Copy Number Profile Conforming Problem

We define the more general Copy Number Profile Conforming (CNPC) problem as follows:

I Definition 17. Given two CNP’s ~c1 = 〈u1, u2, ..., un〉 and ~c2 = 〈v1, v2, ..., vn〉, with ui, vi ≥
0 and ui, vi ∈ N, the CNPC problem asks to compute two strings S1 and S2 with cnp(S1) = ~c1
and cnp(S2) = ~c2 such that the distance between S1 and S2, d(S1, S2), is minimized.

Let
∑

i ui = m1,
∑

i vi = m2, we assume that m1 and m2 are bounded by a polynomial of
n. (This assumption is needed as the solution of our algorithm could be of size max{m1, n2}.)
We simply say ~c1,~c2 are polynomially bounded. Note that d(S1, S2) is a very general distance
measure, i.e., it could be any genome rearrangement distance (like reversal, transposition,
and tandem duplication, etc, or their combinations, e.g. tandem duplication + deletion). In
this paper, we use the breakpoint distance and the adjacency number. Our definitions of
these notions are adapted from Angibaud et al. [1] and Jiang et al. [12], which generalize
the corresponding concepts on permutations [24].

Given two sequences A=a1a2 · · · an and B=b1b2 · · · bm, if {ai, ai+1} = {bj , bj+1} we say
that aiai+1 and bjbj+1 are matched to each other (in the graph theory terminology, they
share an edge). Consider a maximum cardinality matching between length 2 substrings of A
and B. A matched pair is called an adjacency, and an unmatched pair is called a breakpoint
in A and B respectively. Then, the multiset of 2-substrings of A (resp. B) that belong
to a breakpoint is denoted as bA(A,B) (resp. dB(A,B)) and the corresponding number
is db(A,B) (resp. db(B,A)), and the number of common adjacencies between A and B is
denoted as a(A,B). Note that db(A,B), db(B,A) and a(A,B) do not depend on a particular
choice of maximum matching. We illustrate the above definitions in Fig. 4.

sequence A = 〈a c b d c b 〉
sequence B = 〈a b c d a b c d 〉

matched pairs : (cb↔ bc), (dc↔ cd), (cb↔ bc)
a(A,B) = {bc, bc, cd}
bA(A,B) = {ac, bd}
bB(A,B) = {ab, da, ab, cd}

Figure 4 Example for adjacency and breakpoint definitions, with db(A, B) = 2 and db(B, A) = 4.

Coming back to our problem, we define d(S1, S2) = db(S1, S2) + db(S2, S1). From the
definitions, we have

db(S1, S2) + db(S2, S1) + 2 · a(S1, S2) = (m1 − 1) + (m2 − 1),

or,

db(S1, S2) + db(S2, S1) = m1 +m2 − 2 · a(S1, S2)− 2.

Hence, the problem is really to maximize a(S1, S2).
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I Definition 18. Given n-dimensional vectors ~u = 〈u1, u2, ..., un〉 and ~w = 〈w1, w2, ..., wn〉,
with ui, wi ≥ 0, and ui, wi ∈ N, we say ~w is a sub-vector of ~u if wi ≤ ui for i = 1, ..., n, also
denote this relation as ~w ≤ ~u.

Henceforth, we simply call ~u, ~w integer vectors, with the understanding that no item in a
vector is negative.

I Definition 19. Given two n-dimensional integer vectors ~u = 〈u1, u2, ..., un〉 and ~v =
〈v1, v2, ..., vn〉, we say ~w is a common sub-vector of ~u and ~v if ~w is a sub-vector of ~u and
~w is also a sub-vector of ~v (i.e., ~w ≤ ~u and ~w ≤ ~v). Finally, ~w is the maximum common
sub-vector of ~u and ~v if there is no common sub-vector ~w′ 6= ~w of ~u and ~v which satisfies
~w ≤ ~w′ ≤ ~u or ~w ≤ ~w′ ≤ ~v.

An example is illustrated as follows. We have ~u = 〈3, 2, 1, 0, 5〉, ~v = 〈2, 1, 3, 1, 4〉,
w′ = 〈2, 1, 0, 0, 3〉 and ~w = 〈2, 1, 1, 0, 4〉. Both ~w and ~w′ are common sub-vectors for ~u and ~v,
~w′ is not the maximum common sub-vector of ~u and ~v (since ~w′ ≤ ~w) while ~w is.

Given a CNP ~u = 〈u1, u2, ..., un〉 and alphabet Σ = (x1, x2, ..., xn), for i ∈ {1, 2, ..., n},
we use S(~u) to denote the multiset of letters (genes) corresponding to ~u; more precisely, ui

denotes the number of xi’s in S(~u). Similarly, given a multiset of letters Z, we use s(Z) to
denote a string where all the letters in Z appear exactly once (counting multiplicity; i.e,
|Z| = |s(Z)|). s(Z) is similarly defined when Z is a CNP. We present Algorithm 1:.
1. Compute the maximum common sub-vector ~v of ~c1 and ~c2.
2. Given the gene alphabet Σ, compute S(~v), S(~c1) and S(~c2). Let X = S(~c1)− S(~v) and

Y = S(~c2)− S(~v).
3. If S(~v) = ∅, then return two arbitrary strings s(~c1) and s(~c2) as S1 and S2, exit; otherwise,

continue.
4. Find {x, y}, x, y ∈ Σ and x 6= y, such that x ∈ S(~v) and y ∈ S(~v), and exactly one of

x, y is in X (say x ∈ X), and the other is in Y (say y ∈ Y ). If such an {x, y} cannot be
found then return two strings S1 and S2 by concatenating letters in X and Y arbitrarily
at the ends of s(~v) respectively, exit; otherwise, continue.

5. Compute an arbitrary sequence s(~v) with the constraint that the first letter is x and the
last letter is y. Then obtain s1 = s(~v) ◦ x and s2 = y ◦ s(~v) (◦ denotes concatenation).

6. Finally, insert all the elements in X − {x} arbitrarily at the two ends of s1 to obtain S1,
and insert all the elements in Y − {y} arbitrarily at the two ends of s2 to obtain S2.

7. Return S1 and S2.

Let Σ = {a, b, c, d, e}. Also let ~c1 = 〈2, 2, 2, 4, 1〉 and ~c2 = 〈4, 4, 1, 1, 1〉. We walk through
the algorithm using this input as follows.

1. The maximum common sub-vector ~v of ~c1 and ~c2 is ~v = 〈2, 2, 1, 1, 1〉.
2. Compute S(~v) = {a, a, b, b, c, d, e}, S(~c1) = {a, a, b, b, c, c, d, d, d, d, e} and

S(~c2) = {a, a, a, a, b, b, b, b, c, d, e}. Compute X = {c, d, d, d} and Y = {a, a, b, b}.
3. Identify d and a such that d ∈ S(~v) and a ∈ S(~v), and d ∈ X while a ∈ Y .
4. Compute s(~v) = dabbcea, s1 = dabbcea · d and s2 = a · dabbcea.
5. Insert elements in X − {d} = {c, d, d} arbitrarily at the right end of s1 to obtain S1, and

insert all the elements in Y − {a} = {a, b, b} at the right end of s2 to obtain S2.
6. Return S1 = dabbcea · d · cdd and S2 = a · dabbcea · abb.

I Theorem 20. Let ~c1,~c2 be polynomially bounded. The number of common adjacencies
generated by Algorithm 1 is optimal with a value either n∗ or n∗ − 1, where n∗ =

∑n
i=1 vi

with the maximum common sub-vector of ~c1 and ~c2 being ~v = 〈v1, v2, ..., vn〉.
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Proof. First, note that if ~v is a 0-vector (or S(~v) = ∅) then there will not be any adjacency
in S1 and S2. Henceforth we discuss S(~v) 6= ∅.

Notice that a common adjacency between S1 and S2 must come from two letters which
are both in S(~v). That naturally gives us n∗ − 1 adjacencies, where n∗ = |S(~v)|, which can
be done by using the letters in S(~v) to form two arbitrary strings S1 and S2 (for which s(~v)
is a common substring). If {x, y} can be found such that x, y ∈ S(~v) and x 6= y, and one
of them is in X (say x ∈ X), and the other is in Y (say y ∈ Y ), then, obviously we could
obtain s1 = s(~v) ◦ x and s2 = y ◦ s(~v) which are substrings of S1 and S2 respectively. Clearly,
there are n∗ = |S(~v)| adjacencies between s1 and s2 (and also S1 and S2).

To see that this is optimal, first suppose that no {x, y} pair as above can be found. This
can only occur when there are no two components i < j in ~c1 = 〈c1,1, ..., c1,i, ..., c1,j ,..., c1,n〉,
~c2 = 〈c2,1, ..., c2,i, ..., c2,j ,..., c2,n〉, and in the maximum common sub-vector ~v = 〈v1, ..., vi,...,
vj , ..., vn〉 of ~c1 and ~c2 which satisfy that min{c1,i, c2,i} = vi 6= 0 and max{c1,i, c2,i} 6= vi,
and min{c1,j , c2,j} = vj 6= 0 and max{c1,j , c2,j} 6= vj . If this condition holds, then all the
components i in s(~c1 −~v) and s(~c2 −~v), i.e., c1,i − vi and c2,i − vi, have the property that at
least one of the two is zero and vi = 0. Therefore, except for the letters corresponding to ~v,
no other adjacency can be formed. As any string with CNP ~v has n∗ characters, at most
n∗ − 1 adjacencies can be formed. If an {x, y} pair can be found, let b ∈ Σ, and let vb be
the minimum copy-number of b in ~c1 or ~c2, i.e., vb = min{c1,b, c2,b}. Assume this minimum
occurs in ~c1, w.l.o.g. There can be at most 2vb adjacencies involving b in ~c1, and thus at most
2vb adjacencies in common involving vb. Summing over every b ∈ Σ, the sum of common
adjacencies, counted for each character individually, is at most

∑
b∈Σ 2vb = 2n∗. Since each

adjacency is counted twice in this sum, the number of common adjacencies is at most n∗. J

Note that if we only want the breakpoint distance between S1 and S2, then the polynomial
boundness condition of ~c1 and ~c2 can be withdrawn as we can decide whether {x, y} exists
by searching directly in the CNPs (vectors).

6 Concluding Remarks

In this paper, we answered two recent open questions regarding the computational complexity
of the Minimum Copy Number Generation problem. Our technique could be used for other
optimization problems where the solution involves Set Cover whose solution must also be
an exact cover. We also present a polynomial time algorithm for the Copy Number Profile
Conforming (CNPC) problem when the distance is the classical breakpoint distance. The
breakpoint distance is static, and we leave open the question for solving or approximating
CNPC with dynamic rearrangement distance such as reversal, duplication+deletion, etc.
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Abstract
We propose a space-efficient data structure for orthogonal range search on suffix arrays. For general
two-dimensional orthogonal range search problem on a set of n points, there exists an n logn(1+o(1))-
bit data structure supporting O(logn)-time counting queries [Mäkinen, Navarro 2007]. The space
matches the information-theoretic lower bound. However, if we focus on a point set representing a
suffix array, there is a chance to obtain a space efficient data structure. We answer this question
affirmatively. Namely, we propose a data structure for orthogonal range search on suffix arrays
which uses O( 1

ε
n(H0 + 1)) bits where H0 is the order-0 entropy of the string and answers a counting

query in O(nε) time for any constant ε > 0. As an application, we give an O( 1
ε
n(H0 + 1))-bit data

structure for the range LCP problem.
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1 Introduction

In this paper we consider the problem of orthogonal range search on suffix arrays (ORS on
SA). The problem is defined as follows. We are given the suffix array SA[1, n] of a string T
of length n, which is a data structure for string matching [12]. Then we construct a two-
dimensional point set P = {pi = (i,SA[i]) | i = 1, . . . , n}. We consider two types of queries
on P : a reporting query and a counting query. Given a query region Q = [x1, x2]× [y1, y2],
the reporting query must output Q ∩ P , and the counting query |Q ∩ P |.

The problem is a special case of the general two-dimensional range search problem for
which there exists O(logn) time solutions for the counting query using O(n logn)-bit space [4]
or n logn(1 + o(1))-bit1 space [11]. However there are no data structures using the fact that
the point set represents a suffix array to reduce the data structure size.

1 Throughout the paper logn denotes log2 n.
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23:2 Compressed Orthogonal Search on Suffix Arrays

The orthogonal range search problem on suffix arrays has many applications in string
algorithms. A direct application is the position-restricted substring search problem [11].
Given a pattern P [1,m] and two integers 1 ≤ ` ≤ r ≤ n, count all the occurrences of P
in T [l, r] or locate them. This corresponds to the counting and reporting problems on the
point set P for the suffix array. Other problems are the interval LCP problem introduced by
Cormode and Muthukrishnan [5] and the range LCP problem introduced by Amir et al. [2].
For a string T [1, n], let lcp(i, j) denote the length of the longest common prefix between
T [i, n] and T [j, n]. An interval LCP query ilcp(i, α, β) takes three integers i, α, β ∈ [1, n]
and must return maxj∈[α,β] lcp(i, j). A range LCP query rlcp(α, β) receives two integers
α, β ∈ [1, n] and must return maxi,j∈[α,β] lcp(i, j).

Although the orthogonal range search problem on suffix arrays plays an important role
in string algorithms, a bottleneck is its space usage. For a string of length n on an alphabet
of size σ, its suffix array uses n logn bits [12]. A data structure for orthogonal range search
uses n logn+ o(n logn) bits, which can be used solely without the standard representation
of the suffix array. If σ < n, this can be much more than the n log σ bits of space required to
store the string itself.

It seems n logn bits are necessary for storing suffix arrays or ORS data structures because
it can represent a permutation of {1, 2, . . . , n} which requires Ω(n logn) bits to represent.
For suffix arrays, however, there are data structures for storing them in O(n log σ) bits [8] or
O(n(H0(T ) + 1)) bits [18] where H0(T ) is the order-0 entropy of T . This is not surprising, if
we do not consider query time, because the suffix arrays is computed from the string that
can be compressed in O(n(H0(T ) + 1)) bits. This should hold also for ORS data structures
on suffix arrays. However there are no such data structures for ORS which have o(n) query
time.

In this paper, we propose a space-efficient data structure for orthogonal range search on
suffix arrays. The main result is as follows.

I Theorem 1. For a string T of length n, consider orthogonal range search on the suffix
array of T . For any constant ε > 0, there exists a data structure using O( 1

ε · n(H0(T ) + 1))
bits which supports a counting query in O(nε) time and a reporting query in O((occ + 1) · nε)
time.

This is the first data structure to achieve linear (O(n log σ)-bit) space and sub-linear query
time.

As an application, we give space-efficient solutions for the interval LCP and the range
LCP problems. For the interval LCP problem, [5, 9] introduced two different data structures
that use O(n logn) bits of space and have query time O(log1+ε n), where ε > 0 is an arbitrary
constant (in fact, both works show a series of data structures with different space-time
trade-offs, we only give the data structures with lowest space requirements here). In this
work, we show a data structure that requires O( 1

εn(H0(T ) + 1)) bits of space and maintains
interval LCP queries in O(nε) time.

As for the range LCP queries, Amir et al. [2] gave two data structures; one uses
O(n log2+ε n) bits with query time O(log logn) and the other uses O(n logn) bits with
query time O(δ log logn), where δ = β−α+ 1 is the length of the range. Patil et al. [15] gave
a data structure of O(n logn) bits with query time O(

√
δ logε δ). Abedin et al. [1] gave a

data structure of O(n logn) bits with query time O(log1+ε n). In addition, Amir, Lewenstein,
and Thankanchan [3] considered range LCP queries with a bounded number of mismatches.

In this work, we develop a new data structure for range LCP queries that requires
O( 1

εn(H0(T ) + 1)) bits of space and achieves O(nε) query time.
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2 Preliminaries

2.1 Succinct data structures
A succinct data structure is a data structure whose size asymptotically achieves the
information-theoretic lower bound for representing the data. In this paper, we use succinct
data structures for bit-vectors. A bit-vector is a string B[1, n] on the binary alphabet {0, 1}.
Its information-theoretic lower bound is n bits, and there exists a succinct data structure
using n+ o(n) bits supporting the following operations in constant time [16]:

rankc(B, i): returns the number of c’s in B[1, i] (c = 0, 1),
selectc(B, j): returns the position of the j-th c from the beginning in B (c = 0, 1).

2.2 Suffix arrays
Consider a string T [1, n] of length n on an alphabet A of size σ. We add the unique terminator
$ at the end of the string, that is, T [n+ 1] = $. We assume the terminator is alphabetically
smaller than any letter in A. The suffix array of T stores lexicographic order of suffixes of T .
Let SA[0, n] be the suffix array of T . Then SA[i] = j means that the lexicographically i-th
smallest suffix of T is the suffix T [j, n+ 1] starting at position j of T . It holds SA[0] = n+ 1
and for i = 1, . . . , n, 1 ≤ SA[i] ≤ n and the values are a permutation of {1, 2, . . . , n}. A
pattern search for pattern length m can be done in O(m logn) using the string T and its
suffix array SA. The required space is n log σ bits for T and n logn bits for SA [12].

2.3 Compressed suffix arrays
Compressed suffix arrays [8] are data structures for compressing suffix arrays from n logn
bits to O(n log σ) bits. This is further compressed into O(n(H0(T ) + 1)) bits [18]. There are
several variants of the compressed suffix arrays and the most basic one takes O(logn) time
to compute an entry SA[i] of the suffix array.

Instead of SA, compressed suffix arrays stores the Ψ function defined as follows:

Ψ[i] =
{

SA−1[SA[i] + 1], if SA[i] ≤ n;
SA−1[1], otherwise.

Figure 1 shows an example of the suffix array and the compressed suffix array. An important
property of the Ψ function is that it is piece-wise monotone.

I Lemma 2 (Prop. 4.1 in [18]). For a string of length n on an alphabet of size σ, consider its
suffix array SA and Ψ. For any 1 ≤ i < j ≤ n, if T [SA[i]] = T [SA[j]], it holds Ψ[i] < Ψ[j].

Proof. For any 1 ≤ i ≤ n, Ψ[i] = SA−1[SA[i] + 1] is the lexicographic order of the suffix
T [SA[i]+1, n+1], which is obtained by removing the first character of the suffix T [SA[i], n+1].
For any 1 ≤ i < j ≤ n, if T [SA[i]] = T [SA[j]], the suffixes T [SA[i], n+ 1] and T [SA[j], n+ 1]
have the same first character and their relative order is determined by the suffixes made by
removing the first characters. This means Ψ[i] = SA−1[SA[i]+1] < SA−1[SA[j]+1] = Ψ[j]. J

From this property, the Ψ function consists of at most σ increasing sequences and it can be
compressed into O(n(H0(T ) + 1)) bits, and an entry of the suffix array can be computed
from Ψ in O(logn) time. An entry of the inverse suffix array ISA[j] = SA−1[j] can be also
computed in O(logn) time. For more details, see [18].
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Figure 1 An example of the suffix array and its sub-array.

2.4 Suffix trees and compressed suffix trees
Suffix tree [21] is a data structure for storing all the suffixes of a string T by a tree structure.
Leaves of the suffix tree have one-to-one correspondence with all the suffixes. An internal
node v of the suffix tree corresponds to a substring s of T so that the suffixes corresponding
to the leaves in the subtree rooted at v share the same prefix s. The string depth of v is
defined as the length of s.

Compressed suffix tree [19] reduces the space of the suffix tree from O(n logn) bits to
6n + o(n) + SIZESA(n, σ) bits where SIZESA(n, σ) is the size of a data structure for the
suffix array. Let TIMESA(n, σ) denote the time to compute an entry of the suffix array or
the inverse suffix array using a compressed suffix array. Then the string depth of a node
is computed in O(TIMESA(n, σ)) time. Also, given two positions i, j in the string, lcp(i, j)
is computed in O(TIMESA(n, σ)) time. Note that there is a data structure [18] satisfying
SIZESA(n, σ) = O(n(H0(T ) + 1)) bits and TIMESA(n, σ) = O(logn).

By augmenting the compressed suffix tree with a constant time level ancestor query data
structure [13], we can answer weighted level ancestor queries in O(TIMESA(n, σ) logn) time.
A weighted level ancestor query WLA(u, d) on a suffix tree is to find the nearest ancestor
of a node u in the suffix tree with string depth at most d. This is solved by simply binary
searching nodes on the path from u to the root using string depths of nodes as keys.

2.5 Wavelet trees and orthogonal range search
Wavelet tree [7] is a data structure for computing rank and select on strings efficiently
for large alphabets. The wavelet tree of a string T of length n on an alphabet of size σ
occupies (n + o(n)) log σ bits of space and allows computing rankc(T, i) and selectc(T, j)
for any character c in the alphabet in O(log σ) time. Wavelet trees can be used to answer
two-dimensional orthogonal range searches in O(log σ) time [11]: Given a two-dimensional
rectangle query Q = [x1, x2] × [y1, y2], the orthogonal range reporting query must output
Q ∩ P , and the orthogonal range counting query |Q ∩ P |.

Because in this paper we consider wavelet trees only for strings consisting of suffix array
entries, we explain the data structure of the wavelet tree using suffix arrays.
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Figure 2 An example of a point set for the suffix array of Figure 1 (left), and its wavelet tree
representation (right).

The wavelet tree W of the suffix array SA of length n is defined recursively. In the root
node of W , we store a bit-vector B[1, n], where B[i] is the first bit of the binary encoding
of SA[i] for i = 1, . . . , n. We construct two arrays, SA0 and SA1, where SA0 stores all the
entries of SA whose first bit is 0 in the same order as in SA, and SA1 stores the rest (all
the entries of SA whose first bit is 1) in the same order as in SA. We consider that the
first bits of entries of SA0 and SA1 are removed. The left and the right children of the
root node of W store the wavelet trees for SA0 and SA1, respectively. We say that the
root node is in level 0 and its children are in level 1, and so on. Let B0 and B1 denote
the bit-vectors in the left child and the right child, respectively. Then the length of B0 is
rank0(B,n) and if B[i] = 0, SA[i] corresponds to SA0[rank0(B, i)]. Similarly, the length of
B1 is rank1(B,n) = n− rank0(B,n) and if B[i] = 1, SA[i] corresponds to SA1[rank1(B, i)].
We add the auxiliary data structures for computing rank and select on the bit-vectors.

3 Compressed Orthogonal Range Search on Suffix Arrays

In this section, we prove Theorem 1 and give an O(n(H0(T ) + 1))-bit space implementation
of the orthogonal range search queries on the point set P = {pi = (i,SA[i]) | i = 1, . . . , n}.
The wavelet tree [11] on SA occupies n logn + o(n logn) bits of space and maintains the
orthogonal range queries in O(logn) time. We will show that for this special case of P one
can achieve O(n(H0(T ) + 1)) space complexity (at an expense of higher query time).

If we store the bit-vectors of the nodes of the wavelet tree explicitly, we need O(n logn)
bits. However, each bit in the bit-vectors is some bit of an entry of the suffix array, and the
suffix array can be represented in O(n(H0(T ) + 1)) bits. We will use this fact to develop a
data structure for orthogonal range queries by imitating the wavelet tree and decoding the
required information on the fly from the compressed suffix array of the string.

3.1 Orthogonal range search
In the orthogonal range search algorithm using wavelet trees, we need to compute rank(Bv, i)
on the bit-vector Bv of node v of the wavelet tree. To compute it using the compressed suffix
array, we need the relation between bits of the bit-vector and entries of the suffix array.
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We divide B into blocks of length ∆, where ∆ is a parameter to be determined later. Let
Bj = B[j∆ + 1, (j + 1)∆] be the j-th block (j = 0, 1, . . . , n/∆). For each block j, we store
Bj .rank0: the number of 0’s in the blocks to the left of Bj .

Similarly, for the bit-vector Bv of node v, we create d n∆e many blocks Bjv. The block
Bjv contains the entries corresponding to the entries of SA such that they belong to Bj and
their binary representation starts with v. For the j-th block Bjv, we store

Bjv.rank0: the number of 0’s in the blocks to the left of Bjv,
Bjv.blocknum: the total number of bits in the blocks to the left of Bjv.

To compute rank0(Bv, i), we first find the block j of the bit-vector in the root node that
contains the i-th bit of Bv, extract the entries of the compressed suffix array for the block of
length ∆, compute the number of 0’s in the block up to position i, and add it to the number
of 0’s before the block in Bv, which is stored in Bjv.rank0.

However, this approach requires even more space than the wavelet tree: at depth logn,
there are n nodes and therefore d n∆e · n blocks. To overcome this, we stop the recursion for
blocks at every k = dε logne steps, and restart the data structure construction. Details are
as follows.

Consider the nodes of the wavelet tree at depth dk (d = 0, 1, . . . , 1
ε − 1). There are 2dk

such nodes, and for each such node v′, we divide the bit-vector Bv′ into d n
∆·2dk e many blocks

Bjv′ (j = 0, . . . , b n
∆·2dk c) of length ∆ each. Similarly to the above data structure, we store,

for each j, Bjv′ .rank0: the number of 0’s in the blocks to the left of block Bjv′ .
Then, each bit-vector Bv′′ of a node v′′ at depth dk+ 1 to (d+ 1)k is divided into d n

∆·2dk e
many blocks Bjv′′ , corresponding to the blocks of a bit-vector in a node at depth dk which is
the ancestor of v′′ with that level. For the j-th block Bjv′′ , we store

Bjv′′ .rank0: the number of 0’s in the blocks to the left of Bjv′′ ,
Bjv′′ .blocknum: the total number of bits in the blocks to the left of Bjv′′ .

The number of blocks between depths dk+1 and (d+1)k is d n
∆·2dk e·2k ·2dk = 2k ·d n∆e = nε·d n∆e.

Therefore, the total space is O( 1
ε · n

ε n
∆ logn) bits.

At depth dk of the wavelet tree, there are 2dk many bit-vectors B00...00, B00...01, . . .,
B11...11. Each bit-vector corresponds to a sub-array SAv of SA such that the first dk bits
of the binary encodings of the suffix array entries are equal to v. That is, the bit-vector
B00...00 corresponds to the sub-array SA00...00 containing entries in the range [1, n

2dk ], B00...01
to SA00...01 containing entries in [ n

2dk + 1, 2n
2dk ], and B11...11 to SA11...11 containing entries in

[ (2dk−1)n
2dk + 1, n].

I Lemma 3. The sub-array SAv, which consists of the entries SA[`(v − 1) + 1, `v] where
` = n

2dk , contains positions in the substring Tv = T [`(v− 1) + 1, `v], and it can be compressed
in O(`(H0(Tv) + 1)) bits. Each entry of SAv can be computed in O(log `) time.

Proof. SAv stores positions of suffixes between `(v − 1) + 1 and `v. From the construction
of the wavelet tree, SAv stores positions of Tv. We insert one entry `v + 1 to the sub-array,
whose position in the sub-array is determined by the lexicographic order of the corresponding
suffixes in the entire string. Let p be this position. We subtract `(v − 1) + 1 from each entry
in SAv so that they become integers from 0 to ` to obtain an array SA′v. (See Figure 1 for
an example.) For any 0 ≤ i ≤ v + 1 except for p, we define Ψ′v[i] = SA′v

−1[SA′v[i] + 1]. By
Lemma 2, Ψ′v consists of at most σ increasing sequences and the values are in [0, `]. Then
we can compress Ψ′v in O(`(H0(Tv) + 1)) bits, and each entry of SA′v[i] can be computed in
O(log `) time (Theorem 4.1 in [18]). J
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Algorithm 1 calcblock(v, level, k): Given a node v with depth level, find the node v′ that is the
nearest ancestor of v whose depth is a multiple of k.

1: v′ = v

2: for i = 1, . . . , level − k do
3: v′ = b v

′−1
2 c

4: return v′

Algorithm 2 calcblockrank(v, level, j, c, k): returns the rank0 value at Bv[c] in the bit-vector Bv

by extracting ∆ entries of the compressed suffix array in the block that contains Bv[c].

1: blockvalue = c−Bjv.blocknum
2: v′ = calcblock(v, level, k)
3: rank = 0
4: i = 1
5: cnt = 0
6: while cnt < blockvalue do
7: if the highest (level − k · b levelk c) bits of SAv′ [j ·∆ + i] are equal to those of v then
8: cnt = cnt+ 1
9: if the (level − k · b levelk c+ 1)-st bit of SAv′ [j ·∆ + i] is 0 then
10: rank = rank + 1
11: i = i+ 1
12: return rank

For each node v of depth dk of the wavelet tree, we represent SAv as in Lemma 3.
Therefore, the total space for depth dk is

∑
v O(`(H0(Tv) + 1)) bits. From concavity of

logarithm, this is upper bounded by O(n(H0(T ) + 1)) bits. Then the total for all levels
which are multiple of k is O( 1

ε · n(H0(T ) + 1)) bits. Levels that are not multiples of k require
O( 1

ε · n
ε n

∆ logn) bits of space.
Using this data structure for orthogonal range search, the counting query is solved by

Algorithms 1–3. The rank operations take O(∆ · logn) time for nodes of depths which
are multiples of k, and O(∆) time for other nodes. Therefore, the total query time is
O(∆ · logn · 1

ε + ∆ · logn) = O(∆ · logn). The reporting query is solved analogously, and for
output of size occ takes O(occ ·∆ · logn) time. By letting ∆ = nε logn, we obtain a data
structure of O( 1

ε · n(H0(T ) + 1)) bits and O(nε log2 n) query time. To improve the query
time to O(nε), we use another parameter ε′ < ε such that nε′ log2 n = O(nε) and 1

ε′ = O( 1
ε ).

Then we obtain Theorem 1.

3.2 Range successor/predecessor
As a simple extension, we consider 2-dimensional range successor and predecessor queries [14]
defined as follows.

I Definition 4. Let P be a set of n points on the [1, n]× [1, n] grid. The two-dimensional
range successor and predecessor queries are defined as:

ORSxSucc([x,+∞], [y, y′]) = argmini{(i, j) ∈ P ∩ [x,+∞]× [y, y′]},
ORSxPred([−∞, x′], [y, y′]) = argmaxi{(i, j) ∈ P ∩ [−∞, x′]× [y, y′]},
ORSySucc([x, x′], [y,+∞]) = argminj{(i, j) ∈ P ∩ [x, x′]× [y,+∞]},
ORSyPred([x, x′], [−∞, y′]) = argmaxj{(i, j) ∈ P ∩ [x, x′]× [−∞, y′]}.
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Algorithm 3 ORS_SA([x1, x2], [y1, y2]): For the point set pi = (i,SA[i]) (i = 1, . . . , n) where
SA is the suffix array of a string of length n, return the number of points pi ∈ Q = [x1, x2]× [y1, y2].

1: return count([x1, x2], [y1, y2], ε, 0, [0, 0], [1, n], k)
2:
3: function count([x1, x2], [y1, y2], v, level, j1, j2, [a, b], k)
4: #leftchild(v): returns the bit-vector of the left child of v, i.e., the bit-vector of v to

which 0 is appended at the end.
5: #rightchild(v): returns the bit-vector of the right child of v, i.e., the bit-vector of v to

which 1 is appended at the end.
6: if x1 > x2 then
7: return 0
8: if [a, b] ∩ [y1, y2] = ∅ then
9: return 0

10: if [a, b] ⊂ [y1, y2] then
11: return x2 − x1 + 1
12: k = dε logne
13: if level % k = 0 then
14: j1 = bx1−1

∆ c
15: j2 = bx2

∆ c
16: xl1 = calcblockrank(v, level, j1, x1 − 1, k) +Bj1v .rank0 + 1
17: xl2 = calcblockrank(v, level, j2, x2, k) +Bj1v .rank0
18: xr1 = x1 − xl1 + 1
19: xr2 = x2 − xl2
20: m = ba+b

2 c
21: return count([xl1, xl2], [y1, y2], leftchild(v), level + 1, j1, j2, [a,m], k)+

count([xr1, xr2], [y1, y2], rightchild(v), level + 1, j1, j2, [m+ 1, b], k)

We focus on range successor and predecessor queries on suffix arrays. In addition to the
data structure in Section 3.1, we store the following.

Bjv.xSucc: the index i such that SA[i] attains the minimum value in blocks Bjv to Bb
n
∆ c

v .
Bjv.xPred: the index i such that SA[i] attains the maximum value in blocks B0

v to Bjv.
Bjv.ySucc: min{SA[x] | x ∈ [ n∆ ·j,

n
∆ ·(j+1)−1] and SA[x] ∈ [`, n]} where ` is the leftmost

index corresponding to node v
Bjv.yPred: max{SA[x] | x ∈ [ n∆ · j,

n
∆ · (j + 1) − 1] and SA[x] ∈ [0, r]} where r is the

rightmost index corresponding to node v

Using these data structures, we can answer ORSxSucc([x,+∞], [y, y′]) (ORSxPred([−∞,
x′], [y, y′])) as follows. First, we extract SA[x, (b x∆c + 1) ·∆ − 1] (SA[bx

′

∆ c ·∆, x
′]), and if

there is a value in [y, y′], the one with the smallest (largest) index is the answer. This is done
in O(∆ · logn) time. Otherwise, we perform an ORS query. During the search every time
we compute rank(Bv, c), if Bv[c] belongs to Bjv and the range of characters [s, t] for node
v satisfies [s, t] ⊂ [y, y′], we store Bj−1

v .xSucc (Bj−1
v .xPred) as a candidate of the answer

and compare it with the minimum (maximum) index of the extracted suffix array values in
[y, y′] If ∆ = nε logn, the time complexity is O(∆ · logn+ ∆ · logn) = O(nε log2 n). This can
be easily reduced to O(nε) time. ORSySucc([x, x′], [y,+∞]) (ORSyPred([x, x′], [−∞, y′])) is
solved similarly.

We obtain the following.
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I Theorem 5. For a string T of length n, there exists an O( 1
ε · n(H0(T ) + 1))-bit data

structure supporting two-dimensional range successor/predecessor queries in O(nε) time.

Keller et al. [10] showed the following.

I Lemma 6 (cf. [10]). The interval LCP queries can be reduced to two-dimensional range
successor/predecessor queries.

Proof. We reduce an interval LCP query ilcp(p, α, β) to the two-dimensional range suc-
cessor/predecessor queries on a set P = {(i,SA[i]) | i ∈ [1, n]} for the string. Let q =
SA−1[p]. We compute the largest lexicographic order x < q such that SA[x] ∈ [α, β]
and the smallest lexicographic order y > q such that SA[y] ∈ [α, β]. This is done by
x = ORSxPred([−∞, p − 1], [α, β]) and y = ORSxSucc([p + 1,+∞], [α, β]). Then it holds
ilcp(p, α, β) = max{lcp(p, x), lcp(p, y)}. J

From Theorem 5 and Lemma 6, we obtain:

I Corollary 7. For a string T of length n, there exists an O( 1
ε · n(H0(T ) + 1))-bit data

structure supporting interval LCP queries in O(nε) time.

4 Range LCP queries

In this section, we will show a data structure that occupies O( 1
εn(H0(T ) + 1)) bits of space

and supports rlcp queries in O(nε) time. We follow the outline of the data structure presented
in [1], but improve the space complexity of the key components of the data structure.

I Definition 8 (Bridges). Let i and j be two distinct positions in the string T with i < j and
let h = lcp(i, j) and h > 0. Then, we call the tuple (i, j, h) a bridge. Moreover, we call h its
height, i its left leg and j its right leg, and lcp(T [i, n], T [j, n]) its label.

The set of all bridges is denoted by Ball. Next, we will define the set of special bridges
Bspe via the heavy-path decomposition of the suffix tree ST of the string T .

I Definition 9 (Heavy Path Decomposition [20]). Let τ be a tree. The nodes in τ are
categorised into light and heavy ones. The root node is light. Furthermore, for each node
of τ , exactly one of its children is heavy and the others are light. The heavy child has the
largest number of leaves in its subtree among the children (ties are broken arbitrarily). When
all edges incoming to light nodes are deleted, τ is decomposed into (heavy) paths.

Recall that there is one-to-one correspondence between the suffixes of T and the leaves
of ST. By `i we denote the leaf corresponding to T [ISA[i], n].

I Definition 10 (Special Bridges). Let ui, uj in ST be the children of the lowest common
ancestor of `i and `j on the path to `i, `j , respectively. A bridge (i, j, h) ∈ Ball is special if it
satisfies at least one of two following conditions.
1. ui is a light node and j = min{x | (i, x, h) ∈ Ball}
2. uj is a light node and i = max{x | (x, j, h) ∈ Ball}

The reason to introduce this definition is that we can express range LCP queries via the
special bridges.

I Lemma 11 (cf. [1]). Let Bspe be the set of all special bridges. Then |Bspe| = O(n logn)
and for any α, β we have rlcp(α, β) = max{h : (i, j, h) ∈ Bspe and i, j ∈ [α, β]}.
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I Definition 12 (cf. [1]). For i, j ∈ N and h ∈ N, we define

crightLeg(i, h) =
{

min{x | (i, x, h) ∈ Bspe} if there exists a bridge (i, ·, h) ∈ Bspe;
+∞, otherwise.

cleftLeg(j, h) =
{

max{x | (x, j, h) ∈ Bspe} if there exists a bridge (·, j, h) ∈ Bspe;
−∞, otherwise.

I Lemma 13. By maintaining a data structure of space O( 1
εn(H0(T ) + 1)) bits, we can

answer crightLeg(k, h) and cleftLeg(k, h) queries in O(nε) time.

Proof. By [1], we can reduce computing crightLeg(k, h) and cleftLeg(k, h) to four range
successor/predecessor queries on the suffix array of T and standard operations on ST. The
claim follows by Theorem 1. J

I Lemma 14 (cf. [1]). Suppose that (i, j, h) ∈ Bspe. Then, ∀k ∈ [1, h − 1], there exists
at least one (i + k, ·, h − k) ∈ Bspe such that crightLeg(i + k, h − k) ∈ (i + k, j + k] and
(·, h+ k, h− k) ∈ Bspe such that crightLeg(i+ k, h− k) ∈ (i+ k, j + k].

Let S be a set of m weighted points in a [1, n] × [1, n] grid. A 2D-RMQ with input
(a, b, a′, b′) asks to return the highest weighted point in S within the orthogonal region
corresponding to [a, b]×[a′, b′]. There is a data structure for this problem that uses O(m logn)
bits of space and O(log1+γm) query time [4]. Let ∆ = log2 n and Bx (mod ∆)

spe be the set
of special bridges of heights congruent to x modulo ∆. For some π ∈ [0,∆ − 1] we have
|Bπ (mod ∆)
spe | = O(n/ logn) as a corollary of Lemma 11 and the Pigeonhole principle. We

map each special bridge (i, j, h) ∈ Bπspe into a 2D point (i, j) with weight h and maintain the
2D-RMQ data structure over these points.

Let (α∗, β∗, h∗) be the tallest special bridge, such that both α∗, β∗ ∈ [α, β]. We query the
2D-RMQ structure and find the tallest bridge (i′, j′, h′) ∈ Bπ (mod ∆)

spe , such that i′, j′ ∈ [α, β].

B Claim 15. If h∗ ≥ π, then (i′, j′, h′) is well-defined. Furthermore, we have τ ≤ rlcp(α, β) ≤
τ + ∆, where τ = max{ilcp(p, α, β)|p ∈ (β −∆, β]} ∪ {h′}.

Proof. If β∗ ∈ (α, β − ∆], then there is h∗ ∈ [h′, h′ + ∆) by Lemma 14. Else, there is
h∗ = max{ilcp(p, α, β) : p ∈ (β −∆, β]}. J

Below, we consider two possible cases: h∗ < π and π ≥ h∗. In the second case, by
Claim 15, we can find τ such that τ ≤ rlcp(α, β) ≤ τ + ∆ in O(logγ n + ∆ · nε) = O(nε′)
time for some ε′ > ε. We will now explain how to find the true value of h∗.

4.1 Case 1: π ≤ h∗

By Claim 15, in this case we know the interval [π + ∆ · k, π + ∆ · (k + 1)) that contains all
possible values for h∗. Therefore, to find the true value of h∗ in this case it suffices to check,
for each h ∈ [π+ ∆ · k, π+ ∆ · (k+ 1)] if there is a special bridge (i, j, h) with legs i, j ∈ [α, β].

Recall that Bhspe is the set of all special bridges with height h. For each h ∈ [1, n], we
maintain a separate structure that can answer whether there is a bridge of height h with
legs in [α, β]. For k = 1, 2, . . . , |Bhspe|, let Lh[k] (resp., Rh[k]) denote the left leg (resp., right
leg) of k-th bridge among all bridges in Bhspe in the ascending order of the left (resp., right)
legs. Based on whether h ≡ π (mod ∆) or not, we have two subcases.
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4.1.1 Subcase 1a: h ≡ π (mod ∆)
Let RLh[k] = crightLeg(Lh[k], h) for all k = 1, 2, . . . , |Bhspe|. We maintain the y-fast trie [22]
over Lh and a succinct range minimum query data structure [6, 17] over RLh. The total
space is O(|Bπ (mod ∆)

spe | logn) = O(n) bits. We can then decide if there is a bridge (i, j, h)
such that i, j ∈ [α, β] via the following steps:

Find the smallest k such that Lh[k] ≥ α using the y-fast trie;
Find the index k corresponding to the smallest element in RLh[k, |Bhspe|] using a range
minimum query;
Find crightLeg(Lh[k], h) and report YES if it is ≤ β, and report NO otherwise.

The time complexity is O(log logn+ nε) = O(nε) by Lemma 13.

4.1.2 Subcase 1b: h 6≡ π (mod ∆)
Let q be the largest integer smaller than h that is congruent to π (mod ∆) and z =
(h − q). Note that for each special bridge (i, j, h), there exists at least one special bridge
(i+ z, j′, h− z) = (i+ z, j′, q) and (i′, j + z, h− z) = (i′, j + z, q) (see Lemma 14).

Now, define arrays RLh and LRh of length |Bqspe|, such that for any k = 1, 2, . . . ,Bspe,
RLh[k] = crightLeg(Lq[k]− z, h) and LRh[k] = cleftLeg(Rq[k]− z, h). To handle Subcase 1b,
we maintain y-fast tries over Lq and Rq, and a range minimum query data structure over
RLh and a range maximum query data structure over LRh for each h 6= π (mod ∆).

I Lemma 16. The range minimum query data structures over RLh and the range maximum
query data structures over LRh, for all h 6= π (mod ∆), can be implemented in O(1/ε ·
n(H0(T ) + 1)) bits of space with query time O(nε).

Proof. We show how to implement the data structures for the arrays RLh, for the arrays
LRh they can be implemented analogously.

First, we store the data structure of Lemma 13. Second, for each h, we divide the
array RLh into non-overlapping blocks of length logn. For each block, we compute the
minimum value in it to obtain an array RL′h of length |Bqspe|/ logn. On top of RL′h, we
maintain a succinct range minimum query data structure. In total, the data structures
occupy O(1/ε · n(H0(T ) + 1) + ∆ · |Bπ (mod ∆)

spe | logn) = O(1/ε · n(H0(T ) + 1)) bits of space.
To answer a range minimum query on RL′h, we first find the index of a block that contains

the minimum, and then compute the value of each entry in the block using the data structure
of Lemma 13. J

We can now decide if there is a bridge (i, j, h) such that i, j ∈ [α, β] via the following
steps:

Find the smallest k such that Lq[k]− z ≥ α using the y-fast trie over Lq.
Find the index k′ corresponding to the smallest element in RLh[k, |Bqspe|] using a range
minimum query.
Return YES if crightLeg(Lq[k′]− z, h) ≤ β, otherwise continue to the next step.
Find the largest l such that Rq[l]− z ≤ β. We use the y-fast trie for Rq for this.
Find the index l′ corresponding to the largest element in LRh[1, l] using a range maximum
query.
Return YES if cleftLeg(Rq[l′]− z, h) ≥ α, and return NO otherwise.

The time complexity is O(nε polylogn), and the space complexity is O( 1
εn(H0(T ) + 1))

bits.
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4.2 Case 2: h∗ < π

In this case, we must check, for every 0 < h < π, if there is a special bridge (i, j, h), where
i, j ∈ [α, β]. We will use the same reduction as in Case 2 with q = 1.

Note that Bqspe can be of size Θ(n), so we cannot store the y-fast trie for Lq and Rq, it
could take Θ(n logn) bits of space. Recall, however, that we only use the y-fast tries to
answer predecessor (resp., successor) queries: given an integer x, find the smallest (resp., the
largest) index k such that Lq[k] (resp., Rq[k]) is larger or equal (resp., smaller or equal) to x.

I Lemma 17. The predecessor (resp., successor) queries on Lq (resp., Rq) can be answered
in O(n) bits of space and O(1) query time.

Proof. We show a data structure for Lq, a data structure for Rq can be defined analogously.
Let L′q be the sequence obtained by encoding the number of special bridges (i, j, q) with
i = k for all k(1 ≤ k ≤ n) in unary code and concatenating them in order. |L′q| ≤ 3n because
there are at most 2n special bridges with height q by the definition. Therefore, to answer
a predecessor query for an integer x it suffices to answer rank and select queries on L′q: we
return rank1(L′q, select0(L′q, x)) + 1. Both rank and select queries can be answered in O(n)
bits of space and O(1) time. J

By using the data structures above, we can use our solution for Case 1 to obtain similar
complexities.
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Abstract
We introduce the first index that can be built in o(n) time for a text of length n, and can also be
queried in o(q) time for a pattern of length q. On an alphabet of size σ, our index uses O(n log σ)
bits, is built in O(n log σ/
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1 Introduction

We address the problem of indexing a text T [0..n− 1], over alphabet [0..σ − 1], in sublinear
time on a RAM machine of w = Θ(logn) bits. This is not possible when we build a classical
index (e.g., a suffix tree [42] or a suffix array [26]) that requires Θ(n logn) bits, since just
writing the output takes time Θ(n). It is also impossible when log σ = Θ(logn) and thus just
reading the n log σ bits of the input text takes time Θ(n). On smaller alphabets (which arise
frequently in practice, for example on DNA, protein, and letter sequences), sublinear-time
indexing becomes possible when the text comes packed in words of logσ n characters and
we build a compressed index that uses o(n logn) bits. For example, there exist various
indexes that use O(n log σ) bits [35] (which is asymptotically the best worst-case size we
can expect for an index on T ) and could be built, in principle, in time O(n/ logσ n). Still,
only linear-time indexing in compressed space had been achieved [3, 6, 30, 32] until the very
recent result of Kempa and Kociumaka [24].

When the alphabet is small, one may also aim at RAM-optimal pattern search, that is,
count the number of occurrences of a (packed) string Q[0..q − 1] in T in time O(q/ logσ n).
There exist some classical indexes using O(n logn) bits and counting in time O(q/ logσ n+
polylog(n)) [36, 11], as well as compressed ones [32].

In this paper we introduce the first index that can be built and queried in sublinear time.
Our index, as explained, is compressed. It uses O(n log σ) bits and can be constructed in
deterministic time O(n log σ/

√
logn). Thus the construction time is O(n/

√
logn) when the
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Table 1 Previous and our results for index construction on a text of length n and a search
pattern of length q, over an alphabet of size σ, on a RAM machine of w bits, for any constant ε > 0.
Grayed rows are superseded by a more recent result in all aspects we consider. Note that O(n)-time
randomized construction can be replaced by O(n(log logn)2) deterministic constructions [39].

Source Construction time Space (bits) Query time (counting)
Classical [42, 27, 41, 19] O(n) O(n logn) O(q log σ)
Cole et al. [17] O(n) O(n logn) O(q + log σ)
Fischer & Gawrychowski [21] O(n) O(n logn) O(q + log log σ)
Bille et al. [11] O(n) O(n logn) O(q/ logσ n+ log q + log log σ)
Classical + perfect hashing O(n) randomized O(n logn) O(q)
Navarro & Nekrich [36] O(n) randomized O(n logn) O(q/ logσ n+ logεσ n)
Barbay et al. [3] O(n) O(n log σ) O(q log log σ)
Belazzougui & Navarro [6] O(n) O(n log σ) O(q(1 + logw σ))
Munro et al. [30, 29] O(n) O(n log σ) O(q + log log σ)
Munro et al. [32] O(n) O(n log σ) O(q + log logw σ)
Munro et al. [32] O(n) O(n log σ) O(q/ logσ n+ logεσ n)
Belazzougui & Navarro [6] O(n) randomized O(n log σ) O(q(1 + log logw σ))
Belazzougui & Navarro [5] O(n) randomized O(n log σ) O(q)
Kempa and Kociumaka [24] O(n log σ/

√
logn) O(n log σ) O(q(1 + logw σ))

Ours O(n log σ/
√

logn) O(n log σ) O(q/ logσ n+ logn · logσ n)

alphabet size is a constant. Our index also supports counting queries in o(q) time: it counts
in optimal time plus an additive poly-logarithmic penalty, O(q/ logσ n+ logn logσ n). After
counting the occurrences of Q, any such occurrence can be reported in O(logn) time.

A slightly larger and slower-to-build variant of our index usesO(n(
√

logn log σ+log σ logεn))
bits for any constant 0 < ε < 1/2 and is built in time O(n log3/2 σ/ log1/2−ε n). This index
can report the occ pattern occurrences in time O(q/ logσ n+

√
logσ n log logn+ occ).

As a comparison (see Table 1), the other indexes that count in time O(q/ logσ n +
polylog(n)) use either more space (O(n logn) bits) and/or construction time (O(n)) [11, 36,
32]. The indexes using less space, on the other hand, use as little as O(n log σ) bits but are
slower to build and/or to query [30, 29, 32, 3, 5, 6, 24]. A recent construction [24] is the
only one able to build in sublinear time (O(n log σ/

√
logn)) and to use compressed space

(O(n log σ) bits), just like ours, but it is still unable to search in o(q) time.
Those compressed indexes can then deliver each occurrence in O(logε n) time, or even

in O(1) time if a structure of O(n log1−ε σ logε n) further bits is added, though there is no
sublinear-time construction for those extra structures either [38, 22].

Our technique is reminiscent to the Geometric BWT [15], where a text is sampled
regularly, so that the sampled positions can be indexed with a suffix tree in sublinear space.
In exchange, all the possible alignments of the pattern and the samples have to be checked
in a two-dimensional range search data structure. To speed up the search, we use a data
structure for LCE queries. An LCE data structure enables us to compute in constant time
the longest common prefix of any two text positions. Using this information we can efficiently
find the locus of each alignment from the previous one.

2 Preliminaries and LCE Queries

We denote by |S| the number of symbols in a sequence S or the number of elements in a
set S. For two strings X and Y , LCP (X,Y ) denotes the longest common prefix of X and
Y . For a string X and a set of strings S, LCP (X,S) = maxY ∈S LCP (X,Y ), where we
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compare lengths to take the maximum. We assume that the concepts associated with suffix
trees [42] are known. The longest common extension (LCE) query on S asks for the length
of the longest common prefix of suffixes S[i..] and S[j..], LCE(i, j) = |LCP (S[i..], S[j..])|.
LCE queries were introduced by Landau and Vishkin [25]. Several recent publications
demonstrate that LCE data structures can use o(n) space and/or can be constructed in o(n)
time [40, 31, 24, 12]. The following result will play an important role in our construction.

I Lemma 1. [24] Given a text T of length n over an alphabet of size σ, we can build an
LCE data structure using O(n log σ) bits of space in O(n/ logσ n) time. This data structure
supports LCE queries on T in O(1) time.

3 The General Approach

We divide the text T [0..n−1], over alphabet [0..σ−1], into blocks of r = O(logσ n) consecutive
symbols (to avoid tedious details, we assume that both r and logσ n are integers and that
n is divisible by both). The set S ′ consists of all the suffixes starting at positions ir, for
i = 0, 1, . . ., n/r − 1; these are called selected positions. Our data structure consists of the
following three components.

1. The suffix tree T ′ for the suffixes starting at the selected positions, using O((n/r) logn)
bits. Thus T ′ is a compacted trie for the suffixes in S ′. Suffixes are represented as
strings of meta-symbols where every meta-symbol corresponds to a substring of logσ n
consecutive symbols. Deterministic dictionaries are used at the nodes to descend by the
meta-symbols in constant time. Predecessor structures are also used at the nodes, to
descend when less than a metasymbol of the pattern is left. Given a pattern Q, we can
identify all selected suffixes starting with Q in O(|Q|/ logσ n) time, plus an O(log logn)
additive term coming from the predecessor operations at the deepest node.

2. A data structure on a set Q of points. Each point of Q corresponds to a pair (indi, revi)
for i = 1, . . . , (n/r) − 1 where indi is the index of the i-th selected suffix of T in the
lexicographically sorted set S ′ and revi is an integer that corresponds to the reverse block
preceding that i-th selected suffix in T . Our data structure supports two-dimensional
range counting and reporting queries on Q.

3. A data structure for suffix jump queries on T ′. Given a string Q[0..q − 1], its locus node
u, and a positive integer i ≤ r − 1, a (suffix) i-jump query returns the locus node of
Q[i..q − 1], or it says that Q[i..q − 1] does not prefix any string in S ′. The suffix jump
structure has essentially the same functionality as the suffix links, but we do not store
suffix links explicitly in order to save space and improve the construction time.

As described, T ′ is a compact trie over an alphabet of meta-symbols corresponding to
strings of length logσ n. Therefore, whenever we speak of a node u ∈ T ′, we refer indistinctly
to an explicit or an implicit node (i.e., in the middle of an edge, coming from compacting a
unary path). Further, we cannot then properly speak of the “locus node” of a string Q, even
if we identify meta-symbols with their forming strings, because |Q| might not be a multiple
of logσ n. Rather, the locus of Q will be denoted u[l..s], where u ∈ T ′, called its locus node,
is the deepest node whose string label is a prefix of Q and [l..s] is the maximal interval such
that the string labels of the children ul, . . . , us of u are prefixed by Q.

Using our structure, we can find all the occurrences in T of a pattern Q[0..q−1] whenever
q > r. Occurrences of Q are classified according to their positions relative to selected symbols.
An occurrence T [f..f + q − 1] of Q is an i-occurrence if T [f + i] (corresponding to the i-th
symbol of Q) is the leftmost selected symbol in T [f..f + q − 1].
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First, we identify all 0-occurrences by looking for Q in T ′: We traverse the path corres-
ponding to Q in T ′ to find Q0 = LCP (Q,S ′), the longest prefix of Q that is in T ′, with
locus u0[l0..s0]. Let q0 = |Q0|; if q0 = q, then u0[l0..s0] is the locus of Q and we count or
report all its 0-occurrences as the positions of suffixes in the subtrees of u0[l0..s0].1 If q0 < q,
there are no 0-occurrences of Q.

Next, we compute a 1-jump from u0 to find the locus of Q0[1..] = Q[1..q0 − 1] in T ′.
If the locus does not exist, then there are no 1-occurrences of Q. If it exists, we traverse
the path in T ′ for Q1 starting from that locus, not redoing the path from the root. Let
Q1 = Q[1..q1 − 1] = LCP (Q[1..q − 1],S ′) be the longest prefix of Q[1..q − 1] found in T ′,
with locus u1[l1..s1]. If q1 < q, then again there are no 1-occurrences of Q. If q1 = q, then
u1[l1..s1] is the locus of Q[1..q − 1]. In this case, every 1-occurrence of Q corresponds to
an occurrence of Q1 in T that is preceded by Q[0]. We can identify them by answering
a two-dimensional range query [ind1, ind2]× [rev1, rev2] where ind1 (ind2) is the leftmost
(rightmost) leaf in the subtrees of u1[l1..s1] and rev1 (rev2) is the smallest (largest) integer
value of any reverse block that starts with Q[0].

We proceed and consider i-occurrences for i = 2, . . . , r−1 using the same method. Suppose
that we have already considered the possible j-occurrences of Q for j = 0, . . . , i− 1, so we
have computed all the loci uj [lj ..sj ] of Qj = Q[j..qj − 1] = LCP (Q[j..q − 1],S ′). Further,
let q′j ≤ qj be j plus the string depth of uj , measured in symbols. This is the maximum
number of symbols we can read from Qj so that we reach a node of T ′. Let t be such that
q′t = max(q′0, . . . , q′i−1). We then compute the (i − t)-jump from ut. If Q[i..q′t − 1] is not
found in T ′, then it is enough for us to know that qi < q′t without actually finding the locus
of Qi. If Q[i..q′t − 1] is found with locus node u, we traverse from u downwards to complete
the path for Q[i..q− 1]. We then find the locus ui[li..si] of Q[i..qi− 1] = LCP (Q[i..q− 1],S ′).
If qi = q, then Q[i..q − 1] is found, so we count or report all i-occurrences by answering a
two-dimensional query as described above.

Analysis. The total query time is O(q/ logσ n+ r(log logn+ tq + ts)), where tq and ts are
the times to answer a range query and to compute a suffix jump, respectively.

All the downward steps in the suffix tree amortize to O(q/ logσ n+ r): we advance q′t by
logσ n units in each downward step, but q′t can be (logσ n)− 1 units less than the maximum
position qt we have reached up to now on Q (i.e., we take the suffix jump from ut, whereas
the actual locus with string depth qt is ut[lt..st]). In addition we perform a predecessor step
to find the ranges [lj ..sj ] of the locus of each Qj , which adds O(r log logn) time. As said,
the suffix tree (point 1) uses O((n/r) logn) bits.

The data structure of point 2 is a wavelet tree [14, 23, 34] built on t = O(n/r) points.
Its height is the logarithm of the y-coordinate range, h = log(σr) = O(r log σ), and it uses
O(t · h) = O(n log σ) ⊆ O((n/r) logn) bits. Such structure answers range counting queries in
time tq = O(h) = O(r log σ), thus r · tq = O(r2 log σ), and reports each point in the range in
time O(h) = O(r log σ).

In Sections 4 and 5 we show how to implement all the r suffix jumps (point 3) in time
r · ts = O(q/ logσ n+ r log logn), with a structure that uses O((n/r) logn) further bits.

Section 6 shows that the deterministic construction time of the structures of point 1 is
O(n(log logn)2/r) and of point 3 is O(n/r). The wavelet tree of point 2 can be built in time
O(t · h/

√
log t) = O(n log σ/

√
logn) [33, 2].

1 For fast counting, each node may also store the cumulative sum of its preceding siblings.
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Finally, since a pattern shorter than r may not cross a block boundary and thus we
could miss occurrences, Section 7 describes a special index for small patterns. Its space and
construction time is within those of point 3 for r ≤ (1/4) logσ n. This yields our first result.

I Theorem 2. Let 0 < r < (1/4) logσ n be a parameter. Given a text T of length n over
an alphabet of size σ, we can build an index using O((n/r) logn) bits in deterministic time
O(n((log logn)2/r + log σ/

√
logn)), so that it can count the number of occurrences of a

pattern of length q in time O(q/ logσ n + r2 log σ + r log logn), and then report each such
occurrence in time O(r log σ).

If we set r = Θ(logσ n), we obtain a data structure with optimal asymptotic space usage.

I Corollary 3. Given a text T of length n over an alphabet of size σ, we can build an index
using O(n log σ) bits in deterministic time O(n log σ/

√
logn), so that it can count the number

of occurrences of a pattern of length q in time O(q/ logσ n + logn logσ n), and then report
each such occurrence in time O(logn).

We can improve the time of reporting occurrences by slightly increasing the construction
time. Appendix A shows how to construct a range reporting data structure (point 2) that,
after tq = O(log logn) time, can report each occurrence in constant time. The space of this
structure is O(n log σ logε n) bits and its construction time is O((n · r · log2 σ)/ log1−ε n), for
any constant 0 < ε < 1/2. If we plug in this range reporting data structure into our index
(i.e., replacing point 2 above), we obtain our second result.

I Theorem 4. Let 0 < r < (1/4) logσ n be a parameter. Given a text T of length n over
an alphabet of size σ, we can build an index using O((n/r) logn + n log σ logε n) bits in
deterministic time O(n((log logn)2/r + (r log2 σ)/ log1−ε n)), for any constant 0 < ε < 1/2,
so that it can count the occurrences of a pattern of length q in time O(q/ logσ n+ r log logn),
and then report each in O(1) time.

One interesting trade-off is when r=
√

logσ n. In this case the index uses O(n(
√

logn log σ+
log σ logε n)) bits, can be constructed in O((n log3/2 σ)/ log1/2−ε n) time, and reports the occ
occurrences of a pattern of length q in time O(q/ logσ n+

√
logσ n log logn+ occ).

4 Suffix Jumps

Now we show how suffix jumps can be implemented. The solution described in this section
takes O(logn) time per jump O((n/r) logn) extra bits of space; it is used when |Q| ≥ log3 n.
This already provides us with an optimal solution because, in this case, the time of the r
suffix jumps, O(logn logσ n), is subsumed by the time O(q/ logσ n) to traverse the pattern.
In the next section we describe an appropriate method for short patterns.

Given a substring Qt[0..qt − 1] of the original query Q, with known locus ut[lt..st], we
find the locus v[l..s] of Qt[i..] or determine that it does not exist.

We compute the locus of Qt[i..] by applying Lemma 1 O(logn) times; note that we
know the text position f1 of an occurrence of Qt because we know its locus ut[lt..st] in T ′;
therefore Qt[i..] = T [f1 + i..]. By binary search among the sampled suffixes (i.e., leaves of
T ′), we identify in O(logn) time the suffix Sm that maximizes |LCP (Qt[i..], Sm)|, because
this measure decreases monotonically in both directions from Sm. At each step of the binary
search we compute ` = |LCP (Qt[i..], S)| for some suffix S ∈ S ′ using Lemma 1 and compare
their (`+ 1)th symbols to decide the direction of the binary search. Once Sm is obtained
we find, again with binary search, the smallest and largest suffixes S1, S2 ∈ S ′ such that
|LCP (S1, Sm)| = |LCP (S2, Sm)| = |LCP (Qt[i..], Sm)|; note S1 ≤ Sm ≤ S2.
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Finally let v be the lowest common ancestor of the leaves that hold S1 and S2 in T ′. It then
holds that LCP (Qt[i..],S ′) = LCP (Qt[i..], Sm), and v is its locus node. Further, the locus is
v[l..s], where S1 and S2 descend by the lth and sth children of v, respectively (we can find l
and s in O(1) time with level ancestor queries on T ′). If |LCP (Sm, Qt[i..])| = qt−i = |Qt[i..]|,
then v[l..s] is also the locus of Qt[i..]; otherwise Qt[i..] prefixes no string in S ′.

I Lemma 5. Suppose that we know Qt[0..qt − 1] and its locus in T ′. We can then compute
LCP (Qt[i..qt − 1],S ′) and its locus in T ′ in O(logn) time, for any 0 ≤ i ≤ r − 1.

5 Suffix Jumps for Short Patterns

In this section we show how r suffix jumps can be computed in O(|Q|/ logσ n+ r log logn)
time when |Q| ≤ log3 n. Our basic idea is to construct a set X0 of selected substrings with
length up to log3 n. These are sampled at polylogarithmic-sized intervals from the sorted set
S ′. We also create a superset X ⊃ X0 that contains all the substrings that could be obtained
by trimming the first i ≤ r − 1 symbols from strings in X0. Using lexicographic naming
and special dictionaries on X , we pre-compute answers to all suffix jump queries for strings
from X0. We start by reading the query string Q and trying to match Q, Q[1..], Q[2..] in
X0. That is, for every Q[i..q− 1] we find LCP (Q[i..q− 1],X0) and its locus in T ′. With this
information we can finish the computation of a suffix jump in O(log logn) time, because the
information on LCP s in X0 will narrow down the search in T ′ to a polylogarithmic sized
interval, on which we can use the binary search of Section 4.

Data Structure. Let S ′′ be the set obtained by sorting suffixes in S ′ and selecting every
(log10 n)th suffix. We denote by X the set of all substrings T [i + f1..i + f2] such that the
suffix T [i..] is in the set S ′′ and 0 ≤ f1 ≤ f2 ≤ log3 n. We denote by X0 the set of substrings
T [i..i+ f ] such that the suffix T [i..] is in the set S ′′ and 0 ≤ f ≤ log3 n. Thus X0 contains all
prefixes of length up to log3 n for all suffixes from S ′′ and X contains all strings that could
be obtained by suffix jumps from strings in X0.

We assign unique integer names to all substrings in X : we sort X and then traverse the
sorted list assigning a unique integer num(S) to each substring S ∈ X . Our goal is to store
pre-computed solutions to suffix jump queries. To this end, we keep three dictionaries:

Dictionary D0 contains the names num(S) for all S ∈ X0, as well as their loci in T ′.
Dictionary D contains the names num(S) for all substrings S ∈ X . For every entry x ∈ D,
with x = num(S), we store (1) the length `(S) of the string S, (2) the length `(S′) and
the name num(S′) where S′ is the longest prefix of S satisfying S′ ∈ X0, (3) for each j,
1 ≤ j ≤ r− 1, the name num(S[j..]) of the string obtained by trimming the first j leading
symbols of S if S[j..] is in X .
Dictionary Dp contains num(Sα) for all pairs (x, α), where x is an integer and α is a
string, such that the length of α is at most logσ n, x = num(S) for some S ∈ X , and the
concatenation Sα is also in X . Dp can be viewed as a (non-compressed) trie on X .

Using Dp, we can navigate among the strings in X : if we know num(S) for some S ∈ X ,
we can look up the concatenation Sα in X for any string α of length at most logσ n. The
dictionary D enables us to compute suffix jumps between strings in X : if we know num(S[0..])
for some S ∈ X , we can look up num(S[i..]) in O(1) time.

The set S ′′ contains O( n
r log10 n

) suffixes. The set X contains O(log6 n) substrings for
every suffix in S ′′. The space usage of dictionary D is O(n/ log4 n) words, dominated by
item (3). The space of Dp is O(n logσ n/(r log4 n)) words, given by the number of strings in
X times logσ n. This dominates the total space of our data structure, O(n/ log3 n) bits.
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Suffix Jumps. Using the dictionary D, we can compute suffix jumps within X0.

I Lemma 6. For any string Q with r ≤ |Q| ≤ log3 n, we can find the strings Pi =
LCP (Q[i..],X0), their lengths pi and their loci in T ′, for all 1 ≤ i ≤ r − 1, in time
O(|Q|/ logσ n+ r log logσ n).

Proof. We find P0 = LCP (Q[0..q− 1],X0) in O(|P0|/ logσ n+ log logσ n) time: suppose that
Q[0..x] occurs in X0. We can check whether Q[0..x + logσ n] also occurs in X0 using the
dictionaries Dp and D0. If this is the case, we increment x by logσ n. Otherwise we find
with binary search, in O(log logσ n) time, the largest f ≤ logσ n such that Q[0..x+ f ] occurs
in X0. Then P0 = Q[0..x+ f ] ∈ X0, and its locus in T ′ is found in D0.

When P0, of length p0 = |P0|, and its name num(P0) are known, we find P1 =
LCP (Q[1..],X0): first we look up v = num(P0[1..]) in component (3) of D, then we look up
in component (2) of D the longest prefix of the string with name v that is in X0. This is the
1-jump of P0 in X0; now we descend as much as possible from there using Dp and D0, as
done to find P0 from the root. We finally obtain num(P1); its length p1 and locus in T ′ are
found in D (component (1)) and D0, respectively.

We proceed in the same way as in Section 3 and find LCP (Q[i..],X0) for i = 2, . . ., r− 1.
The traversals in Dp amortize analogously to O(|Q|/ logσ n+ r), and we have O(r log logσ n)
further time to complete the r traversals. J

With all LCP (Q[i..],X0) and their loci in T ′, we can compute suffix jumps in S ′.

I Lemma 7. Suppose that we know Pi = LCP (Q[i..q − 1],X0) and its locus in T ′ for all
0 ≤ i ≤ r − 1. Assume we also know that Qt[0..qt − 1] = Q[t..t+ qt − 1] prefixes a string in
S ′ and its locus node ut ∈ T ′. Then, given j ≤ r − 1, we can compute LCP (Qt[j..],S ′) and
its locus in T ′, in O(log logn) time.

Proof. Let v′[l′..s′] be the locus of LCP (Qt[j..],X0) = LCP (Q[t + j..],X0) in T ′ and let
` = |LCP (Qt[j..],X0)|. If ` = qt − j, then v′[l′..s′] is the locus of Qt[j..] in T ′. Otherwise
let v+ denote the child of v′ in T ′ that descends by Q[t+ j + `..t+ j + `+ logσ n− 1]. If
v+ does not exist, then v′ is the locus node v of LCP (Qt[j..],S ′). We only have to find its
children interval [l..s] (which could expand [l′..s′]) by a predecessor search on its children.

If v+ exists, then the locus of LCP (Qt[j..],S ′) is in the subtree Tv+ of T ′ rooted at v+.
By definition, Tv+ does not contain suffixes from X0. Hence Tv+ has O(log10 n) leaves. We
then find LCP (Qt[j..],S ′) among suffixes in Tv+ using the binary search method described
in Section 4: we find S1, Sm, and S2 in time O(log log10 n) = O(log logn). The locus v[l..s]
of LCP (Qt[j..],S ′) is then the lowest common ancestor of the leaves that hold S1 and S2; l
and s are the children S1 and S2 descend from. J

I Lemma 8. Suppose that |Q| ≤ log3 n. Then we can find all the existing loci of Q[i..] in
T ′, for 0 ≤ i ≤ r − 1, in time O(|Q|/ logσ n+ r log logn), using O(n/ log3 n) bits of space.

6 Construction

Sampled suffix tree. We can view T as a string T of length n/r over an alphabet of size σr.
Since T consists of O(n/r) meta-symbols and each meta-symbol fits in a Θ(logn)-bit word,
we can sort all meta-symbols in O(n/r) time using RadixSort [18]. Thus we can generate T
and construct its suffix tree T ′ in O(n/r) time [19]. Further, we need O((n/r)(log logn)2)
time to build the deterministic dictionaries and the predecessor data structures storing the
children of each node [39, 4].

CPM 2020



24:8 Text Indexing and Searching in Sublinear Time

Suffix jumps. The lowest common ancestor and level ancestor structures [10, 8], which are
needed in Section 4, are built in time O(|T ′|) = O(n/r).

The sets of substrings and dictionaries D, D0, and Dp described in Section 5 can be
constructed as follows. Let m = O(n/r) be the number of selected suffixes in S ′. The
number of suffixes in S ′′ is O(m/ log10 n). The number of substrings associated with each
suffix in S ′′ is O(log6 n) and their total length is O(log9 n). The total number of strings in
X0 is O(m/ log7 n) and their total length is O( m

log10 n
· log6 n) = O(m/ log4 n). The number

of strings in X is k = O((m/ log10 n) · log6 n) = O(m/ log4 n) and their total length is
t = O((m/ log10 n) · log9 n) = O(m/ logn). We can then collect all the strings S ∈ X from
T [i+ f1..i+ f2] for every sampled leaf of T ′ pointing to T [i], sort them in O(t) = o(m) time
with RadixSort (the metasymbols fit in O(logn) bits [18]), remove repetitions, and finally
assign them lexicographic names num(S). We keep a pointer to S in T for each S ∈ X .

Next, we construct the dictionary D0 that contains the names num(S) of those S ∈
X0. For every x = num(S) in D0 we compute its locus v[l..s] in T ′. The locus can be
found in O(|S|/ logσ n + log logn) time by traversing T ′ from the root. This adds up to
O(|X0| log3 n) = o(m) time. Finally, D0 is a deterministic dictionary on the keys num(S), so
it can be constructed in O(|X0|(log logn)2) = o(m) deterministic time [39].

Similarly, D is a deterministic dictionary on k keys, which can be built inO(k(log logn)2) =
o(m) time [39]. Since X is prefix-closed, we can use the pointers to the strings S and the
dictionary D0 to determine the longest prefix S′ ∈ X0 of S by binary search on `(S′), in
O(k log logn) total time. When we generate strings of X , we also record the information
about suffix jumps (e.g., we store a pointer from each S to S[1..] before sorting them, so
later we can obtain num(S[1..]) from S, then num(S[2..]) from S[1..], and so on). We can
then easily traverse those suffixes to compute all relevant suffix jumps for each string S ∈ X ,
in total time O(kr) = o(m). We then have items (1)–(3) for all the elements of D.

Finally, we construct the dictionary Dp by inserting all strings in X into a trie data
structure; at every node of this trie we store the name num(S) of the corresponding string S.
Once X is sorted, the trie is easily built in O(k) total time. Later, along a depth-first trie
traversal we collect, for each node representing name y, its ancestors x up to distance logσ n
and the strings α separating x from y. All the pairs (x, α)→ y are then stored in Dp. Since
X is prefix-closed, the trie contains O(k) nodes, and we include O(k logσ n) pairs in Dp. Since
Dp is also a deterministic dictionary, it can be built in time O(k logσ n(log logn)2) = o(m).

The total time to build the data structures for suffix jumps is then O(n/r+m) = O(n/r).

Range searches. As said, the wavelet tree can be built in time O(n log σ/
√

logn) [33, 2].
Appendix A shows that the time to build the data structure for faster reporting is O(n · r ·
log2 σ/ log1−ε n), for any constant 0 < ε < 1/2.

7 Index for Small Patterns

The data structure for small query strings consists of two tables. Assume r ≤ (1/4) logσ n. We
regard the text as an array A[0..n/r] of length-2r (overlapping) strings, A[i] = T [ir..ir+2r−1].
We build a table Tbl whose entries correspond to all strings of length 2r: Tbl[α] lists all
the positions i where A[i] = α. Further, we build tables Tblj , for 1 ≤ j ≤ r, containing all
the possible length-j strings. Each entry Tblj [β], with |β| = j, contains the list of length-2r
strings α such that Tbl[α] is not empty and β is a substring of α beginning within its first r
positions (i.e., β = α[i..i+ j − 1] for some 0 ≤ i < r).
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Table Tbl has σ2r = O(
√
n) entries, and overall contains n/r pointers to A, thus its

total space is O((n/r) logn) bits. Tables Tblj add up to O(σr) = O(n1/4) cells. Since
each distinct string α of length 2r produces O(r2) distinct substrings, there can be only
O(σ2rr2) = O(

√
n log2

σ n) pointers in all the tables Tblj , for a total space of o(n/r) bits.
To report the occurrences of Q[0..q−1], we examine Tblq[Q]. For each string α in Tblq[Q],

we visit the entry Tbl[α] and report all the positions of Tbl[α] in A (with their offset).
To build Tbl, we can traverse A and add each i to the list of Tbl[A[i]], all in O(n/r) time.

We then visit the slots of Tbl. For every α such that Tbl[α] is not empty, we consider all
the sub-strings β of α starting within its first half and add α to Tbl|β|[β], recording also the
corresponding offset of β in α (we may add the same α several times with different offsets).
The time of this step is, as seen for the space, O(σ2rr2) = O(

√
n log2

σ n) = o(n/r).
To support counting, Tblq[Q] also stores the number of occurrences in T of each string Q.

I Lemma 9. There exists a data structure that uses O((n/r) logn) bits and reports all occ
occurrences of a query string Q in O(occ) time if |Q| ≤ r, with r ≤ (1/4) logσ n. The data
structure also computes occ in O(1) time and can be built in time O(n/r).

8 Conclusion

We have described the first text index that can be built and queried in sublinear time.
On a text of length n and alphabet of size σ, the index is built in O(n log σ/

√
logn) time,

on a RAM machine of Θ(logn) bits. This is sublinear for log σ = o(
√

logn). An index
that is built in sublinear time must naturally use o(n logn) bits, hence our index is also
compressed: our data structure has the asymptotically optimal space usage, O(n log σ)
bits. Indeed, our index is the first one that simultaneously achieves three goals: sublinear
construction time, asymptotically optimal space usage, and substring counting in nearly
optimal time O(q/ logσ n+ logn logσ n) where q is the substring length. Previously described
data structures with optimal (or even O(n logn)) space usage either require Ω(n) construction
time or Ω(q) time to count the occurrences of a substring.

We know no lower bound that prevents us from aiming at an index using the least possible
space, O(n log σ) bits, the least possible construction time for this space in the RAM model,
O(n/ logσ n), and the least possible counting time, O(q/ logσ n). Our index is the first one
in breaking the Θ(n) construction time and Θ(q) query time barriers simultaneously, but it
is open how close we can get to the optimal space and construction time.
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A Range Reporting

In this section we prove a result on two-dimensional orthogonal range reporting queries.
Our method builds upon previous work on wavelet tree construction [33, 2], applications of
wavelet trees to range predecessor queries [7], and compact range reporting [14, 13].

I Theorem 10. For a set of t = O(n/r) points on a t× σO(r) grid, where r ≤ (1/4) logσ n,
and for any constant 0 < ε < 1/2, there is an O(n log σ logε n)-bit data structure that can
be built in O(n · r · log2 σ/ log1−ε n) time and supports orthogonal range reporting queries in
time O(log log t+ pocc) where pocc is the number of reported points.

A.1 Base data structure
We are given a set Q of t = O(n/r) points in [0..t− 1]× [0..σO(r)]. First we sort the points
by x-coordinates (this is easily done by scanning the leaves of T ′, which are already sorted
lexicographically by the selected suffixes), and keep the y-coordinates of every point in a
sequence Y . Each element of Y can be regarded as a string of length O(r) over an alphabet
of size σ, or equivalently, an h-bit number where h = O(r log σ). Next we construct the
range tree for Y using a method similar to the wavelet tree [23] construction algorithm.
Let Y (uo) = Y for the root node uo. We classify the elements of Y (uo) according to
their highest bit and generate the corresponding subsequences of Y (uo), Y (ul) (highest bit
zero) and Y (ur) (highest bit one), that must be stored in the left and right children of
u, ul and ur, respectively. Then nodes ul and ur are recursively processed in the same
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manner. When we generate the sequence for a node u of depth d, we assign elements to
Y (ul) and Y (ur) according to their d-th highest bit. We can exploit bit parallelism and
pack (logn)/h y-coordinates into one word; therefore we can produce Y (ul) and Y (ur) from
Y (u) in O(|Y (u)| · h/ logn) time. The total time needed to generate all sequences Y (u) is
O(t · h · (h/ logn)) = O((n · r · log2 σ)/ logn).

For every sequence Y (u) we also construct an auxiliary data structure that supports
three-sided queries. If u is a right child, we create a data structure that returns all elements
in a range [x1, x2]× [0, h] stored in Y (u). To this end, we divide Y (u) into groups Gi(u) of
g = (1/2) logn consecutive elements (the last group may contain up to 2g elements). Let
mini(u) denote the smallest element in every group and let Y ′(u) denote the sequence of
all mini(u). We construct a data structure that supports three-sided queries on Y ′(u); it
uses O(|Y ′(u)| logn) = O((|Y (u)|/g) logn) = O(|Y (u)|) bits and reports the k output points
in O(log logn+ k) time; we can use any range minimum data structure for this purpose [9].
We can traverse Y (u) and identify the smallest element in each group in O(|Y (u)|h/ logn)
time, by using small precomputed tables that process (logn)/2 bits in constant time. This
adds up to O(t · h2/ logn) = O(n · r · log2 σ/ logn) time.

Since the number of points in Y ′(u) is O(|Y (u)|/g), the data structure for Y ′(u) can be
created in O(|Y (u)|/g) time and uses O((|Y (u)|/g) logn) = O(|Y (u)|) bits, which adds up
to O((n log σ)/ logn) construction time and O(n log σ) bits of space.

In order to save space, we do not store the y-coordinates of points in a group. The
y-coordinate of each point in G = Gi(u) is replaced with its rank, that is, with the number of
points in G that have smaller y-coordinates. Each group G is divided into (log σ)/(2 log logn)
subgroups, so that each subgroup contains 2r log logn consecutive points from G. We keep
the rank of the smallest point from each subgroup of G in a sequence Gt. Since the ranks of
points in a group are bounded by g and thus can be encoded with log g ≤ log logn bits, each
subgroup can be encoded with less than 2r(log logn)2 bits. Hence we can store precomputed
answers to all possible range minimum queries on all possible subgroups in a universal table
of size O(22r(log logn)2 log2 g) = o(n) bits. We can also store pre-computed answers for range
minima queries on Gt using another small universal table: Gt is of length (log σ)/(2 log logn)
and the rank of each minimum is at most g, so Gt can be encoded in at most (log σ)/2 bits.
This second universal table is then of size O(2(logσ)/2 log2 g) = o(n) bits.

A three-sided query [x1, x2]× [0, y] on a group G can then be answered as follows. We
identify the point of smallest rank in [x1, x2]. This can be achieved with O(1) table look-ups
because a query on G can be reduced to one query on Gt plus a constant number of queries
on sub-groups. Let x′ denote the position of this smallest-rank point in Y (u). We obtain
the real y-coordinate of Y (u)[x′] using the translation method that will be described below.
If the real y-coordinate of Y (u)[x′] does not exceed y, we report it and recursively answer
three-sided queries [x1, x

′ − 1]× [0, y] and [x′ + 1, x2]× [0, y]. The procedure continues until
all points in [x1, x2]× [0, y] are reported.

If u is a left child, we use the same method to construct the data structure that returns
all elements in a range [x1, x2]× [y,+∞) from Y (u).

An orthogonal range reporting query [x1, x2]× [y1, y2] is then answered by finding the
lowest common ancestor v of the leaves that hold y1 and y2. Then we visit the right child
vr of v, identify the range [x′1, x′2] and report all points in Y (vr)[x′1..x′2] with y-coordinates
that do not exceed y2; here x′1 is the index of the smallest x-coordinate in Y (vr) that is
≥ x1 and x′2 is the index of the largest x-coordinate of Y (vr) that is ≤ x2. We also visit the
left child vl of v, and answer the symmetric three-sided query. Finding x′1 and x′2 requires
predecessor and successor queries on x-coordinates of any Y (vr); the needed data structures
are described in Section A.3.
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In total, the basic part of the data structure requires O(n log σ) bits of space and is built
in time O((n · r log2 σ)/ logn).

A.2 Translating the answers
An answer to our three-sided query returns positions in Y (vl) (resp. in Y (vr)). We need an
additional data structure to translate such local positions into the points to be reported.
While our wavelet tree can be used for this purpose, the cost of decoding every point would
be O(h). A faster decoding method [14, 37, 13] enables us to decode each point in O(1) time.
Below we describe how this decoding structure can be built within the desired time bounds.

Let us choose a constant 0 < ε < 1/2 and, to simplify the description, assume that logεσ n
and log σ are integers. We will say that a node u is an x-node if the height of u is divisible
by x. For an integer x the x-ancestor of a node v is the lowest ancestor w of v, such that
w is an x-node. Let dk = hkε for k = 0, 1, . . . , d1/εe. We construct sequences UP(u) in
all nodes u. UP(u) enables us to move from a dk-node to its dk+1-ancestor: Let k be the
largest integer such that u is a dk-node and let v be the dk+1-ancestor of u. We say that
Y (u)[i] corresponds to Y (v)[j] if Y (u)[i] and Y (v)[j] represent the y-coordinates of the same
point. Suppose that a three-sided query has returned position i in Y (u). Using auxiliary
structures, we find the corresponding position i1 in the d1-ancestor u1 of u. Then we find i2
that corresponds to i1 in the d2-ancestor u2 of u1. We continue in the same manner, at the
k-th step moving from a dk-node to its dk+1-ancestor. After O(1/ε) steps we reach the root
node of the range tree.

It remains to describe the auxiliary data structures. To navigate from a node v to its
ancestor u, v stores for every i in Y (v) the corresponding position i′ in Y (u) (i.e., Y (v)[i]
and Y (u)[i′] are y-coordinates of the same point). In order to speed up the construction
time, we store this information in two sequences. The sequence Y (u) is divided into chunks;
if u is a dk-node, then the size of the chunk is Θ(2dk ). For every element in Y (v) we store
information about the chunk of its corresponding position in Y (u) using the binary sequence
C(v): C(v) contains a 1 for every element Y (v)[i] and a 0 for every chunk in Y (u) (0 indicates
the end of a chunk). We store in UP(v)[i] the relative value of its corresponding position
in Y (u). That is, if the element of Y (u) that corresponds to Y (v)[i] is in the jth chunk of
Y (u), then it is at Y (u)[j · 2dk + UP(v)[i]]. In order to move from Y (v)[i] in a node v to the
corresponding position Y (u)[ik] in its dk-ancestor u, we compute the target chunk in Y (u),
j = select1(C(v), i)− i, and set ik = j · 2dk + UP(v)[i]. Here select1 finds the ith 1 in C(v),
and can be computed in constant time using o(|C(v)|) bits on top of C(v) [16, 28].

Since the tree contains h/dk−1 levels of t dk−1-nodes, and the UP (v) sequences of
dk−1-nodes v store numbers up to 2dk , the total space used by all UP (v) sequences for all
dk−1-nodes v is O(t · (h/dk−1) · dk) = O(t · h1+ε) bits, because dk/dk−1 = hε. For any such
node v, with dk-ancestor u, the total number of bits in C(v) is |Y (v)|+ |Y (u)|/2dk . There
are at most 2dk nodes v with the same dk-ancestor u. Hence, summing over all dk−1-nodes
v, all C(v)s use t(h/dk−1) + t(h/dk) = O(t(h/dk−1)) bits. These structures are stored for all
values k − 1 ∈ {0, . . . , d1/εe − 1}. Summing up, all sequences C(v) use O(t · h) bits. The
total space needed by auxiliary structures is then O(t · h1+ε) = O(n log1+ε/2 σ logε/2 n) bits,
dominated by the sequences UP (v). This can be written as O(n log σ logε n) bits.

To produce the auxiliary structures, we need essentially that each dk-node u distributes
its positions in the corresponding C(v) and UP (v) structures in each of the next hε− 1 levels
of dk−1-nodes below u. Precisely, there are 2l·dk−1 dk−1-nodes v at distance l · dk−1 from u,
and we use l · dk−1 bits from the coordinates in Y (u)[i] to choose the appropriate node v
where Y (u)[i] belongs. Doing this in sublinear time, however, requires some care.
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Let us first consider the root u, the only dk-node for k = d1/εe. We consider all the
dk−1-nodes v (thus, u is their only dk-ancestor). These are nodes of height l · dk−1 for
l = 1, 2, . . . , hε − 1. In order to construct sequences UP(v) in all nodes v on level l · dk−1 for
a fixed l, we proceed as follows. The sequence Y [u] is divided into chunks, so that each chunk
contains 2h consecutive elements. The elements Y (u)[i] within each chunk are sorted with
key pairs (bits((hε − l) · dk−1, Y (u)[i]),pos(i, u)) where pos(i, u) = i mod 2h is the relative
position of Y (u)[i] in its chunk and bits(`, x) is the number that consists of the highest `
bits of x. We sort integer pairs in the chunk using a modification of the algorithm of Albers
and Hagerup [1, Thm. 1] that runs in O(2h h2

logn ) time. Our modified algorithm works in the
same way as the second phase of their algorithm, but we merge words in O(1) time. Merging
can be implemented using a universal look-up table that uses O(

√
n) words of space and can

be initialized in O(
√
n log3 n) time.

We then traverse the chunks and generate the sequences UP(v) and C(v) for all the nodes
v on level l · dk−1. For each bit string of length l · dk−1, we say that v is the q-descendant
of u if the path from u to v is labeled with q. The sorted list of pairs for each chunk of u
is processed as follows. All the pairs (q,pos(i, u)) (i.e., q = bits((hε − l)dk−1, Y (u)[i])) are
consecutive after sorting, so we scan the list identifying the group for each value of q; let n(q)
be its number of pairs. Precisely, the points with value q must be stored at the q-descendant
v of u (the consecutive values of q correspond, left-to-right, to the nodes v on level l · dk−1).
For each group q, then, we identify the q-descendant v of u and append n(q) 1-bits and one
0-bit to C(v). We also append n(q) entries to UP(v) with the contents pos(i, u), in the same
order as they appear in the chunk of u.

We need time O(2h · h/ logn) to generate the pairs (bits(·),pos(·)) for the 2h coordinates
of each chunk, and to store the pairs in compact form, that is, O(log(n)/h) pairs per
word. We can then sort the chunks in time O(2h · h2/ logn). We can generate the parts of
sequences C(v) and UP(v) that correspond to a chunk for all nodes v on level l · dk−1 in
O(2h + 2h · h/ logn) = O(2h). Thus the total time needed to generate UP(v) and C(v) for
all nodes v on level l · dk−1 and some fixed l is O(t log σ), where we remind that t is the total
number of elements in the root node. The total time needed to construct UP(v) and C(v)
for all dk−1-nodes v is then O(th2+ε/ logn).

Now let u be an arbitrary dk-node. Using almost the same method as above, we can
produce sequences UP(v) and C(v) for all (dk−1)-nodes v, such that u is a dk-ancestor of v.
There are only two differences with the method above. First, we divide the sequence Y (u)
into chunks of size 2dk . Second, the sorting of elements in a chunk is not based on the highest
bits, but on a less significant chunk of bits: the pairs are now (bitval(Y (u)[i]),pos(i, u)). If
the bit representation of Y (u)[i] is b1b2 . . . bd, then bitval(Y (u)[i]) is the integer with bit
representation bf+1bf+2 . . . bf+dk

where f is the depth of the node u in the range tree. The
total time needed to produce C(v) and UP(v) is O(|Y (u)|dk/ logn + |Y (u)|d2

k/ logn), the
first term to create the pairs and the second to sort the chunks and produce C(v) and
UP(v). The number of different elements in all dk-nodes is O(t · h/dk), and each produces
the sequences of hε levels of dk−1-nodes. Hence the time needed to produce the sequences
for all dk−1-nodes is O((t · h)/dk · hε · d2

k/ logn) = O(t · h1+ε · dk/ logn) = O(t(h2/ logn)hε).
The complexity stays the same after adding up the 1/ε values of k: O(t · h2+ε/ logn) =
O((n/r)r2 log2 σ logε n/ logn) = O((n · r · log2 σ/ log1−ε n).

The data structure supporting select queries on C(v) can be built in O(|C(v)|/ logn)
time [33, Thm. 5]. This amounts to O(th/ logn) = O(n/ logσ n) further time.



J. I. Munro, G. Navarro, and Y. Nekrich 24:15

A.3 Predecessors and successors of x-coordinates
Now we describe how predecessor and successor queries on x-coordinates of points in Y (u)
can be answered for any node u in time O(log logn).

We divide the sequence Y (u) into blocks, so that each block contains logn points. We
keep the minimum x-coordinate from every block in a predecessor data structure Y b(u). In
order to find the predecessor of x in Y (u), we first find its predecessor x′′ in Y b(u); then we
search the block of x′′ for the predecessor of x in Y (u).

The predecessor data structure finds x′′ in O(log logn) time. We compute the x-coordinate
of any point in Y (u) in O(1) time as shown above. Hence the predecessor of x in a block is
found in O(log logn) time too, using binary search. We find the successor analogously.

The sampled predecessor/successor data structures store O((n/r)(r log σ)/ logn) =
O(n/ logσ n) elements over all the levels. An appropriate construction [20, Thm. 4.1] builds
them in linear time (O(n/ logσ n)) and space (O(n log σ) bits), once they are sorted.
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Abstract
Chaining algorithms aim to form a semi-global alignment of two sequences based on a set of anchoring
local alignments as input. Depending on the optimization criteria and the exact definition of a chain,
there are several O(n log n) time algorithms to solve this problem optimally, where n is the number
of input anchors.

In this paper, we focus on a formulation allowing the anchors to overlap in a chain. This
formulation was studied by Shibuya and Kurochkin (WABI 2003), but their algorithm comes with
no proof of correctness. We revisit and modify their algorithm to consider a strict definition of
precedence relation on anchors, adding the required derivation to convince on the correctness of
the resulting algorithm that runs in O(n log2 n) time on anchors formed by exact matches. With
the more relaxed definition of precedence relation considered by Shibuya and Kurochkin or when
anchors are non-nested such as matches of uniform length (k-mers), the algorithm takes O(n log n)
time.

We also establish a connection between chaining with overlaps and the widely studied longest
common subsequence problem.
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1 Introduction

As optimal alignment of two strings takes quadratic time (which has recently been shown
to be conditionally hard to improve [3]), there have been several attempts to avoid this
bottleneck. One such technique is sparse dynamic programming [5], where a sparse set of
cells of the dynamic programming matrix is identified whose computation is sufficient in
computing the optimal alignment. This does not avoid the quadratic dependency in the
worst case, so a slightly more heuristic chaining approach has been introduced in the context
of computational genomics: Given a precomputed set of plausible anchoring local matches,
extract a chain of matches that forms a good (semi-global) alignment.

© Veli Mäkinen and Kristoffer Sahlin;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4454-1493
mailto:veli.makinen@helsinki.fi
https://orcid.org/0000-0001-7378-2320
mailto:ksahlin@math.su.se
https://doi.org/10.4230/LIPIcs.CPM.2020.25
https://arxiv.org/abs/2001.06864
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Chaining with Overlaps

In this paper, we investigate a chaining formulation that takes properly the overlaps
between anchors into account. Namely, if anchors are not allowed to overlap in the solution,
there are already several O(n log n) time solutions for various formulations of the chaining
problem [11, 6, 1, 2], where n is the number of anchors. Some of the solutions and extensions
focus on asymmetric measures, where overlaps are allowed in one of the strings [9, 10], or add
other features that make the problem even harder [13]. While these formulations are useful
in different contexts, this is an undesirable consequence in, e.g., string alignment, where the
solution may be different depending on which string is used to traverse the ordered anchors,
and specifically the solution may overcount the amount of aligned characters.

The fully symmetric chaining variant allows arbitrary overlaps, guarantees not to overcount
the amount of aligned characters, and in addition, is particularly important for its connections
to the Longest Common Subsequence problem (LCS): An optimal chain in this formulation
corresponds to a LCS of the input strings, restricted to the matches included in the anchors.
As far as we know, except for trivial O(n2) time solutions, only Shibuya and Kurochkin [12]
have proposed a solution aiming to solve the fully symmetric case of allowing overlaps of
anchors in both strings simultaneously.

We revisit the algorithm by Shibuya and Kurochkin [12] and propose a modification that
takes into account a strict order for the anchors. This modified algorithm runs in O(n log2 n)
time on exact matches as input. When relaxing the precedence order or when the input
consist of non-nested anchors such as k-mer matches, the algorithm can be simplified to take
O(n log n) time. The resulting algorithms are slightly simpler than the original [12], requiring
only a general data structure for semi-dynamic range maximum queries, while the original
uses in addition a tailored structure. We also provide detailed derivation of the algorithms,
while the original [12] comes with no proof of correctness. Finally, we show that the relaxed
chaining problem also solves a restricted version of the LCS problem.

2 Chaining problems

Let T be a long text string and P short pattern string. An anchor interval pair ([a..b], [c..d])
denotes a match between T [a..b] and P [c..d]. For now, we assume these matches are
precomputed, and they could be either full identities or close similarities. We often abstract
out the original source of the anchors referring [a..b] as an interval in the first dimension and
[c..d] as an interval in the second dimension. We denote the endpoints of the intervals in
anchor I as I.x for x ∈ {a, b, c, d}. We assume the endpoints to be positive integers.

Given two anchors I ′ and I we define two relations: precedence and overlap. The former
is denoted I ′ ≺ I and this relation holds whenever I ′.a < I.a, I ′.b < I.b, I ′.c < I.c, and
I ′.d < I.d. The latter is denoted I ′ ∩ I and holds whenever [I ′.a..I ′.b] ∩ [I.a..I.b] 6= ∅ or
[I ′.c..I ′.d] ∩ [I.c..I.d] 6= ∅. The complement of the overlap relation is denoted ¬I ′ ∩ I (an
empty intersection is interpreted as truth value False). We use the overlap relation only for
I ′ ≺ I. Figure 1 illustrates these concepts.

I Problem 1 (Chaining with overlaps). Let A[1..N ] be an array of anchor interval pairs
([a..b], [c..d]). For each i, 1 ≤ i ≤ N , compute the symmetric ordered coverage score
maxchains Si coverage(Si), where

Si[1..n] is an ordered subset ( chain) of pairs from A,

Si[j − 1] ≺ Si[j], for all 1 < j ≤ n,
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T

P

(a) No overlaps.

T

P

(b) One-sided overlaps.

T

P

(c) Larger overlap in the first dimension.

T

P

(d) Larger overlap in the second dimension.

Figure 1 Different scenarios illustrating precedence and overlap of anchors. Dotted and solid
rectangles denote anchors I ′ and I, respectively. In all these cases it holds I ′ ≺ I. The separation
into different cases based on the overlaps is determined by the properties of the chaining algorithms
we study in the sequel. In (a) and (b) no overlaps are allowed in the first dimension, while in (c)
and (d) anchors are assumed to overlap in the first dimension.

Si[n] = A[i], and

coverage(Si) =
(

n−1∑
j=1

min
(

min(Si[j + 1].a, Si[j].b + 1)− Si[j].a,

min(Si[j + 1].c, Si[j].d + 1)− Si[j].c
))

+

min
(

Si[n].b− Si[n].a + 1, Si[n].d− Si[n].c + 1
)

.

Notice that for chains containing no overlaps, that is, Si[j].b < Si[j + 1].a and Si[j].d <

Si[j + 1].c, the measure coverage(Si) is just the sum of lengths of the anchors in it,
where length is defined as the minimum of the interval lengths. For overlapping cases,
only the segment before the overlap is added to the score. For example, let a chain S be
([1..5], [2..6]), ([3..8], [5..10]). Then coverage(S) = min(8− 3 + 1, 10− 5 + 1) + min(min(3, 5 +
1)− 1, min(5, 6 + 1)− 2) = 6 + 2 = 8. That is, while the total length of the anchors in S is 10,
their union covers only 8 units in the first dimension. The measure is clearly symmetric, but
the term ordered coverage requires more insight: Notice that it is not sufficient to measure
the size of the union of anchors in a chain independently and take their minimum. Instead,
the proposed measure adds to the score, one anchor at the time, the minimum size of the
newly covered region. Interpreted through the original source of anchors from string T and P ,
an optimal chain S under this measure induces an alignment between T and P with exactly
coverage(S) matching characters. Asymmetric formulations studied earlier can overestimate
this amount. This proposed symmetric ordered coverage measure is thus important especially
in various computational genomics applications, where optimal alignments are too expensive
to be computed. We establish this alignment connection through the widely studied longest
common subsequence problem: see Sect. 4.
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We develop an O(N log2 N) time algorithm to solve this chaining with overlaps problem
assuming one additional property of the input:

Equal Match Length property: For each anchor I it holds I.b− I.a = I.d− I.c.
If the set of anchors is computed e.g. by Maximal Exact Matches (MEMs) [7], the input
automatically satisfies the Equal Match Length property.

Our algorithm is based on techniques by Shibuya and Kurochkin [12], who solved a
version of the problem with the definition of precedence relaxed to consider only start points
of intervals: I ′ weakly precedes I if I ′.a < I.a and I ′.c < I.c. Let us denote this relation
I ′ ≺w I.

I Problem 2 (Chaining with overlaps and weak precedence). Let A[1..N ] be an array of anchor
interval pairs ([a..b], [c..d]). For each i, 1 ≤ i ≤ N , compute the symmetric weakly ordered
coverage score maxweak chains Si coverage(Si), defined as in Problem 1, with the precedence
condition relaxed to

Si[j − 1] ≺w Si[j], for all 1 < j ≤ n.

To see the connection of the problems, consider a chain S for which S[j − 1] ≺w S[j]
holds but not S[j−1] ≺ S[j] for some j. That is, at least one of the intervals of S[j] is nested
inside (i.e. is subset of) the corresponding interval of S[j− 1]. Say [S[j].a..S[j].b] is nested in
[S[j−1].a..S[j−1].b] with S[j−1].b−S[j].b ≥ S[j−1].d−S[j].d (the other case is symmetric).
Consider modifying S[j − 1] into S[j − 1]′, where S[j − 1]′.a = S[j − 1].a, S[j − 1]′.b =
S[j].b − 1, S[j − 1]′.c = S[j − 1].c, and S[j − 1]′.d = S[j − 1].d − (S[j − 1].b − S[j].b) − 1.
Assuming Equal Match Length property such adjustment is possible and causes S[j−1]′ ≺ S[j]
without affecting the score. One can thus adjust any chain S for which the weak precedence
relation holds into another chain S′, where the (strict) precedence relation holds, so that
coverage(S) = coverage(S′).

As can be seen from the above construction, the two problems are identical when the
input anchors are non-nested. This happens e.g. when anchors are matches of uniform length
(k-mer matches). Even more importantly, if one is only interested in the overall maximum
scoring chain, the two problems produce the same result.

I Lemma 1. Assuming Equal Match Length property, the maximum of the solutions from
Problem 1 and Problem 2 are the same, that is,

max
1≤i≤N

max
chains Si

coverage(Si) = max
1≤i≤N

max
weak chains Si

coverage(Si).

Proof. Consider an optimal chain Si[1..n] for Problem 2. If Si[n − 1] ≺ Si[n] does not
hold, then one of the intervals of Si[n] is nested inside the corresponding interval of
Si[n− 1]. This means that for Si[n− 1] = A[i′] it holds maxweak chains Si′ coverage(Si′) ≥
maxweak chains Si coverage(Si). Continuing this induction, one observes that there is an
overall maximum scoring chain, say S, that ends with strict precedence and moreover for all
anchors I in this chain holds I ≺ S[n].

Consider now the construction given before this lemma that converts S into S′. Adjust
the construction so that instead of modifying S[j− 1] into S[j− 1]′, just remove S[j]. Repeat
this from right to left until strict precedence holds in the whole modified chain S′. Such S′

is an optimal solution to both problems, as its score remains unchanged during the process.
To see this, consider the same case as earlier with [S[j].a..S[j].b] being nested in [S[j −

1].a..S[j− 1].b] with S[j− 1].b−S[j].b ≥ S[j− 1].d−S[j].d. By induction from the base case
of S[n− 1] ≺ S[n], we know that S[j] ≺ S[j + 1] and S[j − 1] ≺ S[j + 1] if S[j − 1] ≺w S[j]
is the first nested case from the right.
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To see that dropping S[j] is safe, we need to consider cases a) ¬S[j] ∩ S[j + 1] and
¬S[j−1]∩S[j+1] b) S[j]∩S[j+1] and ¬S[j−1]∩S[j+1], c) ¬S[j]∩S[j+1] and S[j−1]∩S[j+1],
and d) S[j]∩S[j+1] and S[j−1]∩S[j+1]. We cover here only case d), as all the other cases use
similar or easier reasoning. We consider score induced by sub-chains S[j−1], S[j], S[j +1] and
S[j−1], S[j +1], respectively, assuming that the chains continue, so that the coverage induced
by S[j + 1] will not yet be added to the total score. In case d) the score induced by the sub-
chain S[j−1], S[j], S[j +1] is S[j].a−S[j−1].a+min(S[j +1].a−S[j].a, S[j +1].c−S[j].c) =
min(S[j + 1].a− S[j − 1].a, S[j].a− S[j − 1].a + S[j + 1].c− S[j].c). The score induced by
the sub-chain S[j − 1], S[j + 1] is min(S[j + 1].a− S[j − 1].a, S[j + 1].c− S[j − 1].c). Since
S[j].a− S[j − 1].a ≤ S[j].c− S[j − 1].c, the score induced by the sub-chain S[j − 1], S[j + 1]
is at least as high as the score induced by the sub-chain S[j − 1], S[j], S[j + 1]. J

Shibuya and Kurochkin [12] gave an O(N log N) time algorithm for Problem 2, but their
algorithm comes with no proof of correctness. Our goal in this paper is to complement the
original proposal with the required derivation steps to see that one can indeed solve the
problem correctly in O(N log N) time. Instead of proving directly the correctness of the
original proposal, we derive a simplified version of the algorithm, whose correctness is easier
to verify.

We derive this algorithm in three steps: First we consider one-sided overlaps of anchors.
Then we modify this algorithm to handle two-sided overlaps of anchors, solving Problem 1.
Finally, we show that the use of strict precedence relation I ′ ≺ I can be relaxed to I ′ ≺w I

in order to solve Problem 2.

3 Chaining algorithms

Our goal is here to study the variations of chaining algorithms under the symmetric ordered
coverage. We will give chaining algorithms under the symmetric ordered coverage and
equal-match property taking O(n log n) time. In order to do this we will structure the
recurrence relations that solve Problems 1 and 2 such that one can factor out dependencies
between anchors into different cases that are handled by evaluation order of the recurrences,
range search, and special features of the scoring function. Assume now that the anchor
interval pairs are stored in an array A[1..N ] in arbitrary order. We fill a table C[1..N ] so
that C[j] gives the maximum symmetric ordered coverage of using any subset of pairs that
precede A[j], before the effect of the pair A[j] is added to the score: Hence, maxj C+[j],
where C+[j] = min(A[j].b−A[j].a + 1, A[j].d−A[j].c + 1) + C[j], gives the total maximum
symmetric ordered coverage.

After considering separately non-overlapping and overlapping cases (see Fig. 1), one
observes that C[j] can be computed by max(0, D[j], O[j]), where

D[j] =
max
j′ :

A[j′] ≺ A[j],
¬A[j′] ∩A[j]

C[j′] + min
{

A[j′].b−A[j′].a + 1,

A[j′].d−A[j′].c + 1
and

O[j] = max
j′ :

A[j′] ≺ A[j],
A[j′] ∩A[j]

C[j′] + min
{

min(A[j].a, A[j′].b + 1)−A[j′].a,

min(A[j].c, A[j′].d + 1)−A[j′].c .
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25:6 Chaining with Overlaps

These recurrences can be computed in O(N2) time: Sort A by values A[i].b to handle
one dimension of the precedence relation. Then compute each C[j] in this order by scanning
previously computed values C[j′] and check precedence in the other dimension. Add the
coverage values (+ min part) depending on the overlap relation. Select the maximum among
the options of C[j′] added with the coverage value.

By assuming Equal Match Length property, we can simplify the recurrence of C[j] =
max(0, D[j], O[j]) with

D[j] = max
j′ :

A[j′] ≺ A[j],
¬A[j′] ∩A[j]

C[j′] + A[j′].b−A[j′].a + 1 and

O[j] = max
j′ :

A[j′] ≺ A[j],
A[j′] ∩A[j]

C[j′] + min
{

A[j].a−A[j′].a,

A[j].c−A[j′].c .

3.1 One-sided overlaps
We will now present an algorithm that works for one-sided overlaps (see Fig. 1): We restrict
the chains so that no two anchors in the solution overlap in the first dimension (that is, in
T ). This lets us modify the recurrence of O[j] into the form

O[j] = A[j].c + max
j′ :

A[j′] ≺ A[j], A[j′].b < A[j].a,

A[j′] ∩A[j]

C[j′]−A[j′].c .

That is, we added the constraint on overlaps, removed the then obsolete min() and took
out the value not affected by max(). Now it is easy to see that the evaluation of the values
can be done when visiting the starting points of the anchors in the first dimension, and the
maximizations over range of values can be done using search trees, specified in the next
lemma. We also specify a two-dimensional version of this structure, as we need it later.

I Lemma 2. The following three operations can be supported with a one-dimensional range
search tree T in time O(log n), where n is the number of search keys inserted to the tree.

Update(k, val): Update value associated with key = k into val.
Upgrade(k, val): Update value associated with key = k into max(val, value).
RMaxQ(c, d): Return maximum value, where c ≤ key ≤ d (Range Maximum Query).

Moreover, the search tree can be built in O(n) time, given the n pairs (key, value) sorted by
component key.

I Lemma 3. The following two operations can be supported with a two-dimensional range
search tree T in time O(log2 n), where n is the number of search keys inserted to the tree.

Update(p, s, val): Update value associated with primary key = p and secondary key =
s into val.
Upgrade(p, s, val): Update value associated with primary key = p and secondary key =
s into max(val, value).
RMaxQ(a, b, c, d): Return maximum value, where a ≤ primary key ≤ b and
c ≤ secondary key ≤ d (2D Range Maximum Query).

Moreover, the search tree can be built in O(n log n) time, given the n triplets (primary key,

secondary key, value) sorted first by primary key and then by secondary key.
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These lemmas follow directly by maintaining maxima of values in each subtree for the
corresponding standard range search structures [4] that support listing all the (key, value)
pairs in a range. Such constructions are often used in sparse dynamic programming [5, 12, 8].

Algorithm 1 Chaining allowing one-sided overlaps.

Input: A set of interval pairs A[1..N ] with all interval endpoints being distinct
positive integers.

Output: Array C+[1..N ] containing the symmetric ordered coverage values.
Initialize one-dimensional search trees T a and T b with keys A[j].d, 1 ≤ j ≤ N , and
with key 0, all keys associated with values −∞;
T a.Upgrade(0, 0);
E = {(A[j].a, j) | 1 ≤ j ≤ N} ∪ {(A[j].b, j) | 1 ≤ j ≤ N};
E.sort();
for i← 1 to 2N do

j = E[i][2];
I = A[j];
if I.a == E[i][1] then

Ca[j] = T a.RMaxQ(0, I.c− 1);
Cb[j] = I.c + T b.RMaxQ(I.c, I.d);
C[j] = max(Ca[j], Cb[j]);
C+[j] = C[j] + I.b− I.a + 1;

end
else
T a.Upgrade(I.d, C+[j]);
T b.Upgrade(I.d, C[j]− I.c);

end
end
return C+[1..N ];

We obtain Algorithm 1 to handle the one-sided overlaps case, where we have replaced
arrays D and O with Ca and Cb, respectively, to reflect the cases shown in Fig. 1.

The pseudocode of Algorithm 1 assumes interval endpoints to be distinct. This assumption
is only used for the ease of presentation. It can be relaxed by the standard method used
in computational geometry: Replace each endpoint x by a pair (x, j) = E[i] where A[j]
identifies the anchor in question. These pairs E[i] = (x, j) are distinct, and can be used as
the keys of the search trees (in place of just x). Range queries can be implemented to ignore
the secondary key j.

I Lemma 4. Problem 1 on N input pairs restricted to solutions that contain only one-sided
overlaps can be solved in O(N log N) time, assuming the input satisfies Equal Match Length
property.

Proof. The evaluation order of Algorithm 1 guarantees that when computing the values
Ca[j] and Cb[j], the data structures contain only anchors that precede the current anchor
and do not overlap it in the first dimension. The range query on T a guarantees that we also
consider only those anchors that precede and do not overlap in the second dimension for the
computation of Ca[j]. The range query on T b guarantees that we also consider only those
anchors that overlap in the second dimension for the computation of Cb[j], but this is not
enough to guarantee predecessor-relation to hold. That is, there can be an anchor I ′ stored in
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25:8 Chaining with Overlaps

T b with I ′.b < I.a and I.c ≤ I ′.c ≤ I ′.d < I.d and thus the evaluation order and range query
fail to guarantee I ′.c < I.c to make I ′ ≺ I (recall the definition). We need to show that if
such I ′ is in an optimal chain to I, there is always another optimal chain to I not including
I ′. Consider the last anchor A[j′′] = I ′′ in an optimal chain to A[j′] = I ′ that overlaps and
precedes I. Then we know that C[j] ≥ C[j′′] + I.c− I ′′.c and C[j′] ≤ C[j′′] + I ′.c− I ′′.c, so
a chain where I ′′ directly precedes I does not decrease the score. If such I ′′ does not exist
but an optimal chain to I includes I ′, we have that max(Ca[j], Cb[j]) = Ca[j], as all anchors
in an optimal chain to I ′, excluding I ′, are stored in T a, and including I ′ can only decrease
the score as I.c− I ′.c ≤ 0. J

3.2 Two-sided overlaps
The trick by Shibuya and Kurochkin [12] to handle two-sided overlaps is to separate them to
two cases (see Fig. 1): (c) overlaps in the first dimension are at least as long as in the second
dimension and (d) overlaps are longer in the second dimension. Since our algorithm so far
considers all anchors that do not overlap in the first dimension, it will be enough to consider
how to enhance the algorithm to handle anchors that do overlap in the first dimension.

Consider case (c). That is, for any two pairs of anchors I ′, I, I ′ ≺ I, it holds I ′.a < I.a ≤
I ′.b < I.b, I ′.c < I.c, I ′.d < I.d and I ′.d − I.c ≤ I ′.b − I.a. The latter inequality can be
written as I.c− I.a ≥ I ′.c− I ′.a (due to Equal Match Length property). Also, if I ′ precedes
I in an optimal chain to I, the score calculated up to I ′ will increase by inclusion of I by
min(I.a− I ′.a, I.c− I ′.c) = I.a− I ′.a (due to Equal Match Length property). This means
that once we first stop at anchor I = A[j] in our algorithm, if we have inserted to a search
tree T c all anchors A[j′] that overlap I in the first dimension, using keys A[j′].c−A[j′].a and
values C[j′]−A[j′].a, we can query T c.RMaxQ(−∞, A[j].c−A[j].a) and add A[j].a to obtain
the correct score for this case. However, in the order we evaluate the anchors we can only
guarantee A[j′].a < A[j].a ≤ A[j′].b and thus A[j′].c < A[j].c (property of case (c)), but not
A[j′].b < A[j].b or A[j′].d < A[j].d. To solve this, we add another dimension to the search
tree, so we can add constraint A[j′].b < A[j].b to the query, which also covers the remaining
constraint A[j′].d < A[j].d (property of case (c)).

Case (d) is almost symmetric to case (c): For any two pairs of anchors I ′, I, I ′ ≺ I, it holds
I ′.a < I.a ≤ I ′.b < I.b, I ′.c < I.c, I ′.d < I.d and I ′.d−I.c > I ′.b−I.a. The latter inequality
can be written as I ′.c− I ′.a > I.c− I.a. Also, if I ′ precedes I in an optimal chain to I, the
score calculated up to I ′ will increase by inclusion of I by min(I.a−I ′.a, I.c−I ′.c) = I.c−I ′.c

(due to Equal Match Length property). This means that once we first stop at anchor I = A[j]
in our algorithm, if we have inserted to a search tree T d all anchors A[j′] that overlap
I in the first dimension, using keys A[j′].c − A[j′].a and values C[j′] − A[j′].c, we can
query T c.RMaxQ(A[j].c− A[j].a + 1,∞) and add A[j].c to obtain the correct score for this
case. As before, we need to add another dimension to the search tree to handle constraint
A[j′].d < A[j].d, which also covers constraint A[j′].b < A[j].b (property of case (d)). We
are left with constraints A[j′].a < A[j].a ≤ A[j′].b and A[j′].c < A[j].c, where the first ones
follow from the evaluation order, but now the latter is not automatically guaranteed to hold:
Using arguments analogous to the proof of Lemma 4, we show that such nested case cannot
change the optimal solution.

The resulting enhancement to handle two-sided overlaps is given as Algorithm 2.
The pseudocode of Algorithm 2 assumes interval endpoints to be distinct, but this can

be relaxed as in the proof of Lemma 4. Using the data structure from Lemmas 2 and 3 we
obtain the following result.



V. Mäkinen and K. Sahlin 25:9

Algorithm 2 Chaining with two-sided overlaps.

Input: A set of interval pairs A[1..N ] with all interval endpoints being distinct
positive integers.

Output: Array C+[1..N ] containing the symmetric ordered coverage values.
Initialize one-dimensional search trees T a and T b with keys A[j].d, 1 ≤ j ≤ N , and
with key 0, all keys associated with values −∞;
Initialize two-dimensional search trees T c and T d with keys (A[j].c−A[j].a, A[j].b)
and (A[j].c−A[j].a, A[j].d), respectively, for 1 ≤ j ≤ N , associated with values −∞;
T a.Upgrade(0, 0);
E = {(A[j].a, j) | 1 ≤ j ≤ N} ∪ {(A[j].b, j) | 1 ≤ j ≤ N};
E.sort();
for i← 1 to 2N do

j = E[i][2];
I = A[j];
if I.a == E[i][1] then

Ca[j] = T a.RMaxQ(0, I.c− 1);
Cb[j] = I.c + T b.RMaxQ(I.c, I.d);
Cc[j] = I.a + T c.RMaxQ(−∞, I.c− I.a, 0, I.b);
Cd[j] = I.c + T d.RMaxQ(I.c− I.a + 1,∞, 0, I.d);
C[j] = max(Ca, Cb, Cc, Cd);
C+[j] = C[j] + I.b− I.a + 1;
T c.Upgrade(I.c− I.a, I.b, C[j]− I.a);
T d.Upgrade(I.c− I.a, I.b, C[j]− I.c);

end
else
T a.Upgrade(I.d, C+[j]);
T b.Upgrade(I.d, C[j]− I.c);
T c.Update(I.c− I.a, I.b,−∞);
T d.Update(I.c− I.a, I.b,−∞);

end
end
return C+[1..N ];

I Theorem 5. Problem 1 on N input pairs can be solved in O(N log2 N) time (by Al-
gorithm 2), assuming the input satisfies Equal Match Length property.

Proof. As discussed earlier, it is sufficient to consider anchors A[j′] and A[j] that satisfy the
precedence and overlap relations except for A[j′].c < A[j].c not holding, as all other constraints
are properly covered by the combination of evaluation order and the queries. Such invalid
anchors A[j′] can affect the query results from data structures T b and T d when computing
the score for A[j]. Consider that an optimal chain to A[j] has A[j′] as the previous anchor and
thus C[j] = C[j′]+A[j].c−A[j′].c. Consider the last anchor A[j′′] in an optimal chain to A[j′]
that precedes and overlaps A[j]. Assume the overlap is larger in the first dimension (the other
case is considered already in the proof of Lemma 4). Then C[j′] = C[j′′] + A[j].a−A[j′′].a as
A[j′] must overlap A[j] in the first dimension, A[j′′] must directly precede A[j′] for it being
the last with this property, and the overlap between A[j′′] and A[j′] is larger in the first
dimension due to transitivity. As A[j].a−A[j′].a ≥ A[j].c−A[j′].c, the direct use of A[j′′]
before A[j] gives C[j] ≥ C[j′′]+A[j].a−A[j′′].a = C[j′′]+A[j].a−A[j′].a+A[j′].a−A[j′′].a ≥
C[j′] + A[j].c−A[j′].c. That is, A[j′] can be omitted from the optimal path. J
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3.3 Overlaps with weak precedence
Let us now proceed to improve the running time of Algorithm 2 to O(N log N) by considering
chains under the weak precedence relation (Problem 2). For this, we drop the second
dimension of the data structures T c and T d, that were added to guarantee strict precedence.
However, this is not sufficient for proving correctness as we used these constraints to indirectly
guarantee precedence of start positions of anchors as well. Case (c) causes no problems, as
the evaluation order guarantees that T c contains anchors A[j′] with A[j′].a < A[j].a and the
query restricts to cases A[j′].c < A[j].c. However, in case (d) the solution returned can have
A[j].c ≤ A[j′].c. We will consider this in the proof of the next theorem.

I Theorem 6. Problem 2 on N input pairs can be solved in O(N log N) time (by Algorithm 2
with the operations on the second dimension of search trees T c and T d omitted), assuming
the input satisfies Equal Match Length property.

Proof. As discussed, it is sufficient to show that queries from T d correspond to proper
solutions. For contradiction, assume that C[j] = Cd[j], Cd[j] > max(Ca[j], Cb[j], Cc[j]), and
C[j] = C[j′] + A[j].c−A[j′].c only for A[j′]s for which A[j].c ≤ A[j′].c. Such solution is not
proper (weak precedence not holding), so we need to show that there is an equivalently good
proper solution.

First, if it also holds A[j′].d ≤ A[j].d, we have the nested case handled already in the proof
of Theorem 5. We continue with the case case where A[j].c ≤ A[j′].c and A[j].d < A[j′].d
hold. This setting is illustrated in Fig. 2.

Consider an anchor A[j′′] in an optimal chain to A[j′] that overlaps position A[j].c in the
second dimension. It holds C[j′] ≤ C[j′′] + A[j′].c−A[j′′].c, since any chain from A[j′′] to
A[j′] can cover at most A[j′].c − A[j′′].c positions. But then there is an optimal chain to
A[j] avoiding A[j′] with score C[j] ≥ C[j′′] + A[j].c−A[j′′].c = C[j′].c−A[j′].c + A[j′′].c +
A[j].c−A[j′′].c = C[j′] + A[j].c−A[j′].c, which is a contradiction.

We are left with the case that there is no such A[j′′] in the optimal chain to A[j′] that
overlaps position A[j].c in the second dimension. Let then A[j′′] be the last anchor in an
optimal chain to A[j′] that does not overlap A[j].c. We have three cases to consider: a)
¬A[j′′] ∩A[j′], b) A[j′′] ∩A[j′], and c) no such A[j′′] exist.

In case a) C[j′] < C+[j′′] + A[j′].c−A[j].c, assuming that only A[j].c is left uncovered
between anchors A[j′′] and A[j′]. Using this we can write C[j] = C[j′] + A[j].c−A[j′].c <

C+[j′′] + A[j′].c − A[j].c + A[j].c − A[j′].c = C+[j′′]. Since it holds A[j′′] ≺w A[j] and
¬A[j′′] ∩ A[j] we have that C[j] ≥ C+[j′′] using directly A[j′′] avoiding A[j′]. This is
contradiction.

In case b) A[j′′] can only overlap A[j′] in the first dimension. Then C[j′] = C[j′′] +
A[j′].a−A[j′′].a. If A[j′′] also overlaps A[j], it can do so only in the first dimension. Then
C[j] ≥ C[j′′] + A[j].a − A[j′′].a ≥ C[j′′] + A[j′].a − A[j′].a. That is, A[j′] can be avoided
in an optimal chain to A[j] by using A[j′′] instead. On the other hand, if A[j′′] does not
overlap A[j], we have C[j] ≥ C+[j′′] ≥ C[j′′] + A[j′].a− A[j′′].a = C[j′], in which case we
also get a contradiction.

In case c) C[j′] = 0 and thus C[j] = C[j′] + A[j].c− A[j′].c ≤ 0, which contradicts our
assumption Cd[j] > Ca[j] = 0. J

4 Connection to LCS

String C is a Longest Common Subsequence (LCS) of strings T and P if it is a longest
string that can be obtained by deleting 0 or more characters from both T and from P . Such
C[1..`] can be written as T ′ := T [i1]T [i2] · · ·T [i`] and as P ′ := P [j1]P [j2] · · ·P [j`], where
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T

P

Figure 2 Dotted and solid rectangles denote A[j′] and A[j], respectively. Here the (weak)
precedence is not holding as the interval of A[j′] in the second dimension succeeds the corresponding
interval of A[j]. The thick line segment represents maximum coverage a chain ending at A[j′] (not
including A[j′]) can achieve after starting from A[j]. The algorithm subtracts this thick line segment
length from the score, so that there is at least as good chain to A[j] that avoids using A[j′].

1 ≤ i1 < i2 < · · · < i` ≤ |T | and 1 ≤ j1 < j2 < · · · < j` ≤ |P |. Consider the set of anchors
A being exact matches between T and P . We say that C is an anchor-restricted LCS if it
can be written as T ′ and as P ′ defined above such that for each (ik, jk) there is an anchor
([a..b], [c..d]) in A with a+x = ik and c+x = jk for some x, 0 ≤ x ≤ b−a = d−c. Informally,
such C is a longest string with all characters appearing in increasing order in T and P where
each such occurrence of a character is supported by at least one anchor. We show that an
anchor-restricted LCS can be found by solving the problem of chaining under the weak
precedence:

I Theorem 7. Assume the anchors A are exact matches between input strings T and P . The
score of a chain S such that coverage(S) = max1≤i≤N coverage(Si) of Problem 2 equals
the length of an anchor-restricted LCS of T and P .

Proof. Due to Lemma 1, we can assume S is a chain under the strict precedence order.
Each anchor in S contributes to the score by the minimum length of its intervals after the
overlaps with the previous anchor intervals have been cut out. This minimum length equals
the number of characters that can be included to the common subsequence. That is, we
can extract an anchor-restricted subsequence of T and P of length coverage(S) from the
solution. We need to show that such subsequence is the longest among anchor-restricted
subsequences. Assume, for contradiction, that there is an anchor-restricted LCS C[1..`]
longer than coverage(S). Consider the chain of ` anchors formed by taking for each C[k]
an anchor containing match T [ik] = P [jk]. Assign a score 1 to each anchor included in the
chain. Let us modify this chain into a chain where weak precedence holds such that the total
score (number of matches induced by the solution) remains the same. First, we merge from
left to right all runs of identical anchors; score of an anchor is then the length of the run
in the original chain. Then we consider anchors from left to right. Consider the first pair
of anchors I ′, I in the current chain for which I.a ≤ I ′.a (case I.c ≤ I ′.c is symmetric). Let
the score of I ′ be x. By construction, we know that the left-most position possible for the
first match of I included in C is I ′.a + x. Therefore, we can remove I ′ from the chain and
include x matches from I. The total score does no decrease by this change. This process can
be repeated until the weak precedence relation holds up to I, and then continued similarly
to the end of the chain, yielding a contradiction. J

5 Discussion

We studied symmetric chaining formulations starting from the motivation to avoid over-
counting the matches of local anchors. This overcounting can also be avoided using the
asymmetric formulation studied in Sect. 3.1, and this formulation is actually a special case
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of the chaining between a sequence and a DAG [10]; it appears hard to extend the fully
symmetric chaining formulations we studied here to work with DAGs. We are currently
working on a practical alternative that uses a multiple alignment in place of a DAG, so that
we can use our new methods for long read sequence alignment in transcript prediction.
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Abstract
Two strings x and y over Σ∪Π of equal length are said to parameterized match (p-match) if there is a
renaming bijection f : Σ∪Π → Σ∪Π that is identity on Σ and transforms x to y (or vice versa). The
p-matching problem is to look for substrings in a text that p-match a given pattern. In this paper,
we propose parameterized suffix automata (p-suffix automata) and parameterized directed acyclic
word graphs (PDAWGs) which are the p-matching versions of suffix automata and DAWGs. While
suffix automata and DAWGs are equivalent for standard strings, we show that p-suffix automata
can have Θ(n2) nodes and edges but PDAWGs have only O(n) nodes and edges, where n is the
length of an input string. We also give O(n|Π| log(|Π| + |Σ|))-time O(n)-space algorithm that builds
the PDAWG in a left-to-right online manner. As a byproduct, it is shown that the parameterized
suffix tree for the reversed string can also be built in the same time and space, in a right-to-left
online manner.
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1 Introduction

The parameterized matching problem (p-matching problem) [2] is a class of pattern matching
where the task is to locate substrings of a text that have “the same structure” as a given
pattern. More formally, we consider a parameterized string (p-string) over a union of two
disjoint alphabets Σ and Π for static characters and for parameter characters, respectively.
Two equal length p-strings x and y are said to parameterized match (p-match) if x can be
transformed to y (and vice versa) by a bijection which renames the parameter characters.
The p-matching problem is, given a text p-string T and pattern p-string P , to report the
occurrences of substrings of T that p-match P . P-matching is well-motivated by plagiarism
detection, software maintenance, RNA structural pattern matching, and so on [2, 18, 15, 16].

The parameterized suffix tree (p-suffix tree) [1] is the fundamental indexing structure for
p-matching, which supports p-matching queries in O(m log(|Π|+ |Σ|) + pocc) time, where
m is the length of pattern P , and pocc is the number of occurrences to report. It is known
that the p-suffix tree of a text w of length n can be built in O(n log(|Π|+ |Σ|)) time with
O(n) space in an offline manner [13] and in a left-to-right online manner [18]. A randomized
O(n)-time left-to-right online construction algorithm for p-suffix trees is also known [14].
Indexing p-strings has recently attracted much attention, and the p-matching versions of
other indexing structures, such as parameterized suffix arrays [6, 12, 3, 9], parameterized
BWTs [11], and parameterized position heaps [7, 8, 10], have also been proposed.

This paper fills in the missing pieces of indexing structures for p-matching, by proposing
the parameterized version of the directed acyclic word graphs (DAWGs) [4, 5], which we call
the parameterized directed acyclic word graphs (PDAWGs).

For any standard string T , the three following data structures are known to be equivalent:
(1) The suffix automaton of T , which is the minimum DFA that is obtained by merging

isomorphic subtrees of the suffix trie of T .
(2) The DAWG, which is the edge-labeled DAG of which each node corresponds to a

equivalence class of substrings of T defined by the set of ending positions in T .
(3) The Weiner-link graph, which is the DAG consisting of the nodes of the suffix tree of the

reversal T of T and the reversed suffix links (a.k.a. soft and hard Weiner links).
The equality of (2) and (3) in turn implies symmetry of suffix trees and DAWGs, namely:
(a) The suffix links of the DAWG for T form the suffix tree for T .
(b) Left-to-right online construction of the DAWG for T is equivalent to right-to-left online

construction of the suffix tree for T .

Firstly, we present (somewhat surprising) combinatorial results on the p-matching versions
of data structures (1) and (2). We show that the parameterized suffix automaton (p-suffix
automaton), which is obtained by merging isomorphic subtrees of the parameterized suffix
trie of a p-string T of length n, can have Θ(n2) nodes and edges in the worst case, while the
PDAWG for any p-string has O(n) nodes and edges. On the other hand, the p-matching
versions of data structures (2) and (3) are equivalent: The parameterized Weiner-link graph
of the p-suffix tree for T is equivalent to the PDAWG for T . As a corollary to this, symmetry
(a) also holds: The suffix links of the PDAWG for T form the p-suffix tree for T .
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Secondly, we present algorithmic results on PDAWG construction. We first propose
left-to-right online construction of PDAWGs that works in O(n|Π| log(|Π|+ |Σ|)) time with
O(n) space. In addition, as a byproduct of this algorithm, we obtain a right-to-left online
construction of the p-suffix tree in O(n|Π| log(|Π|+ |Σ|)) time with O(n) space. This can be
seen as the p-matching version of symmetry (b). We suspect that it is difficult to shave the
n|Π| term in the left-to-right online construction of PDAWGs, as well as in the right-to-left
construction of p-suffix trees.

A full version of this work can be found in [17].

2 Preliminaries

We denote the set of all non-negative integers by N . A linear order ≺ over N is identical to
the ordinary linear order < on integers except that 0 is always bigger than any other positive
integers: a ≺ b if and only if 0 < a < b or a 6= b = 0. For a nonempty finite subset S of N ,
max≺ S and min≺ S denote the maximum and minimum elements of S with respect to the
order ≺, respectively.

We denote the set of strings over an alphabet A by A∗. For a string w = xyz ∈ A∗, x, y,
and z are called prefix, factor, and suffix of w, respectively. The sets of the prefixes, factors,
and suffixes of a string w are denoted by Prefix(w), Factor(w), and Suffix(w), respectively.
The length of w is denoted by |w| and the i-th symbol of w is denoted by w[i] for 1 ≤ i ≤ |w|.
The factor of w that begins at position i and ends at position j is w[i : j] for 1 ≤ i ≤ j ≤ |w|.
For convenience, we abbreviate w[1 : i] to w[: i] and w[i : |w|] to w[i :] for 1 ≤ i ≤ |w|. The
empty string is denoted by ε, that is |ε| = 0. Moreover, let w[i : j] = ε if i > j. The reverse
w of w ∈ A∗ is inductively defined by ε = ε and xa = ax for a ∈ A and x ∈ A∗.

Throughout this paper, we fix two alphabets Σ and Π. We call elements of Σ static
symbols and those of Π parameter symbols. Elements of Σ∗ and (Σ ∪Π)∗ are called static
strings and parameterized strings (or p-strings for short), respectively.

Given two p-strings S1 and S2 of length n, S1 and S2 are a parameterized match (p-match),
denoted by S1 ≈ S2, if there is a bijection f on Σ ∪Π such that f(a) = a for any a ∈ Σ and
f(S1[i]) = S2[i] for all 1 ≤ i ≤ n [2]. The prev-encoding prev(S) of a p-string S is the string
over Σ ∪N of length |S| defined by

prev(S)[i] =


S[i] if S[i] ∈ Σ,
0 if S[i] ∈ Π and S[i] 6= S[j] for 1 ≤ j < i,

i− j if S[i] = S[j] ∈ Π, j < i and S[i] 6= S[k] for any j < k < i

for i ∈ {1, . . . , |S|}. We call a string x ∈ (Σ∪N )∗ a pv-string if x = prev(S) for some p-string
S. For any p-strings S1 and S2, S1 ≈ S2 if and only if prev(S1) = prev(S2) [2]. For example,
given Σ = {a, b} and Π = {u, v, x, y}, S1 = uvvauvb and S2 = xyyaxyb are a p-match
by f such that f(u) = x and f(v) = y, where prev(S1) = prev(S2) = 001a43b. For a p-string T ,
let PFactor(T ) = { prev(S) | S ∈ Factor(T ) } and PSuffix(T ) = { prev(S) | S ∈ Suffix(T ) } be
the sets of prev-encoded factors and suffixes of T , respectively. For a factor x ∈ (Σ∪N )∗ of a
pv-string, the re-encoding 〈x〉 of x is the pv-string of length |x| defined by 〈x〉[i] = Z(x[i], i−1)
for i ∈ {1, . . . , |x|} where

Z(a, j) =
{

0 if a ∈ N and a > j,
a otherwise.

We then have 〈prev(T )[i : j]〉 = prev(T [i : j]) for any i, j. We apply PFactor etc. to pv-strings
w so that PFactor(w) = { 〈x〉 | x ∈ Factor(w) }.
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Figure 1 (a) The parameterized suffix trie PSTrie(T ), (b) the parameterized suffix automaton
PSAuto(T ) and (c) the PDAWG PDAWG(T ) for T = xaxay over Σ = {a} and Π = {x, y}, for which
prev(T ) = 0a2a0. Solid and broken arrows represent the edges and suffix links, respectively. Some
nodes of PDAWG(T ) cannot be reached by following the edges from the source node.

Let w, x, y ∈ (Σ ∪ N )∗. A symbol a ∈ Σ ∪ N is said to be a right extension of x w.r.t.
w if xa ∈ PFactor(w). The set of the right extensions of x is denoted by RExw(x). The
set of the end positions of x in a pv-string w is defined by RPosw(x) = { i ∈ {0, . . . , |w|} |
x = 〈w[i − |x| + 1 : i]〉 }. Note that 0 ∈ RPosw(x) iff x = ε. It is easy to see that
RPosw(x) ⊆ RPosw(y) if and only if y ∈ PSuffix(x) or RPosw(x) = RPosw(y). We write
x ≡R

w y iff RPosw(x) = RPosw(y), and the equivalence class of pv-strings w.r.t. ≡R
w as

[x]Rw. Note that for any x /∈ PFactor(w), [x]Rw is the infinite set of all the pv-strings outside
PFactor(w). For a finite nonempty set X of strings which has no distinct elements of equal
length, the shortest and longest elements of X are denoted by minX and maxX, respectively.

A basic indexing structure of a p-strings is a parameterized suffix trie. The parameterized
suffix trie PSTrie(T ) is the trie for PSuffix(T ). That is, PSTrie(T ) is a tree (V,E) whose node
set is V = PSuffix(T ) and edge set is E = { (x, a, xa) ∈ V × (Σ ∪N )× V }. An example can
be found in Figure 1 (a). Like the standard suffix tries for static strings, the size of PSTrie(T )
can be Θ(|T |2). Obviously we can check whether T has a substring that p-matches P of
length m in O(m log(|Σ| + |Π|)) time using PSTrie(T ), assuming that finding the edge to
traverse for a given character takes O(log(|Σ|+ |Π|)) time by, e.g., using balanced trees. We
use the same assumption on other indexing structures considered in this paper.

3 Parameterized DAWG

3.1 Parameterized suffix automata
One natural idea to define the parameterized counterpart of DAWGs for p-strings, which
we actually do not take, is to merge isomorphic subtrees of parameterized suffix tries. In
other words, the parameterized suffix automaton of T , denoted by PSAuto(T ), is the minimal
deterministic finite automaton that accepts PSuffix(T ). Figure 1 (b) shows an example of a
parameterized suffix automaton. However, the size of PSAuto(T ) can be Θ(|T |2), as witnessed
by a p-string Tk = x1a1 . . . xkakx1a1 . . . xkak over Σ = {a1, . . . , ak} and Π = {x1, . . . , xk}.

3.2 Parameterized directed acyclic word graphs
In this section, we present a new indexing structure for parameterized strings, which we
call parameterized directed acyclic word graphs (PDAWGs). A PDAWG can be obtained
from a parameterized suffix trie by merging nodes whose ending positions are the same.
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In the example of Figure 1 (a), the subtrees rooted at a and 0a have different shapes but
RPosw(a) = RPosw(0a) = {2, 4}. Particularly, the 0-edges of those two nodes point at nodes
a0 and 0a0 with different ending position sets, which shall not be merged. Our solution to
this obvious conflict is to use only the edges of the “representative” node among ones with
the same ending position sets. In the example, we take out-going edges of 0a and do not care
those of a. The resultant PDAWG by our solution is shown in Figure 1 (c). This might first
appear nonsense: by reading a0, whose ending positions are 3 and 5, one will reach to the
sink node, whose ending position is 5, and consequently one will reach no node by reading
a0a ∈ PFactor(T ). We will argue in the next subsection that still we can correctly perform
parameterized matching using our PDAWG by presenting a p-matching algorithm.

I Definition 1 (Parameterized directed acyclic word graphs). Let w = prev(T ) for a para-
meterized text T ∈ (Σ ∪ Π)∗. The parameterized directed acyclic word graph (PDAWG)
PDAWG(T ) = PDAWG(w) of T is the directed acyclic graph (Vw, Ew) where

Vw = { [x]Rw | x ∈ PFactor(w) } ,
Ew = { ([x]Rw, c, [y]Rw) ∈ V × (Σ ∪N )× V | y = max[x]Rw · c }

together with suffix links

SLw([x]Rw) = [〈y[2 : |y|]〉]Rw where y = min[x]Rw.

The nodes [ε]Rw and [w]Rw are called the source and the sink, respectively. Suffix links are
defined on non-source nodes.

PDAWGs have the same size bound as DAWGs, shown by Blumer et al. [4].

I Theorem 2. PDAWG(T ) has at most 2n − 1 nodes and 3n − 4 edges when n = |T | ≥ 3.
Those bounds are tight.

By definition, a node u has an out-going edge labeled with a if and only if a ∈ RExw(max u).
For a ∈ RExw(max u), by childw(u, a) we denote the unique element v such that (u, a, v) ∈ Ew.
For a /∈ RExw(max u), we define childw(u, a) = Null. For any u ∈ Vw, RPosw(SLw(u)) is
the least proper superset of RPosw(u). The reversed suffix links form a tree with root [ε]Rw.
Actually, the tree is isomorphic to the parameterized suffix tree [2] for T . We discuss the
duality between PDAWGs and parameterized suffix tree in more detail in Subsection 3.5.

3.3 Parameterized pattern matching with PDAWGs
This subsection discusses how we can perform p-matching using our PDAWGs: We must
reach a node [x]Rw ∈ Vw by reading x ∈ PFactor(w) and reach no node if x /∈ PFactor(w).
In DAWGs for static strings, by following the a-edge of [x]Rw, we will arrive in [xa]Rw,
which is guaranteed by the fact that x ≡R

w y implies xa ≡R
w ya. However, this does not

hold for pv-strings. For instance, for w = prev(xaxay) = 0a2a0 (a ∈ Σ and x, y ∈ Π),
we see RPosw(a) = RPosw(0a) = {2, 4} but 3 ∈ RPosw(a0) \ RPosw(0a0). Consequently
a0a ∈ PFactor(w) but 0a0a /∈ PFactor(w). By definition, if we reach a node u by reading
max u, we can simply follow the a-edge by reading a symbol a, similarly to matching using a
DAWG. We may behave differently after we have reached u by reading some other string in
u. The following lemma suggests how we can perform p-matching using PDAWG(T ).
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Algorithm 1 Parameterized pattern matching algorithm based on PDAWG(T ).

1 p← prev(P );
2 Let u← [ε]Rw;
3 for i = 1 to |P | do
4 Let u← Trans(u, i− 1, p[i]);
5 if u = Null then return False;
6 return True;

Algorithm 2 Function Trans(u, i, a).

1 if a 6= 0 then return child(u, a);
2 else if there is no b ∈ rex(u) such that b � i then return Null;
3 else if there is only one b ∈ rex(u) such that b � i then return child(u, b);
4 else return SL(child(u, b)) for the smallest (w.r.t. ≺) b ∈ rex(u) such that b � i;

I Lemma 3. Suppose x ∈ PFactor(w) and a ∈ Σ ∪N . Then, for y = max[x]Rw,

[xa]Rw =


[ya]Rw if a 6= 0 or W = ∅,
[yk]Rw if a = 0 and |W | = 1,
SLw([yk]Rw) if a = 0 and |W | ≥ 2,

where W = { j ∈ N | yj ∈ PFactor(w) and j � |x| } and k = min≺W .

Proof. We first show for x ∈ PFactor(w), a ∈ Σ ∪N and y = max[x]Rw,

RPosw(xa) =
{⋃

k∈W RPosw(yk) if a = 0,
RPosw(ya) otherwise.

(1)

where W = { k ∈ N | yk ∈ PFactor(w) and k � |x| }.
For a ∈ Σ, i ∈ RPosw(xa) iff both i − 1 ∈ RPosw(x) = RPosw(y) and T [i] = a hold iff

i ∈ RPosw(ya). For a ∈ N \ {0}, noting that 0 < a ≤ |x|, we have i ∈ RPosw(xa) iff

i− 1 ∈ RPosw(x) = RPosw(y), T [i] = T [i− a] ∈ Π and T [i− b] 6= T [i] for all 0 < b < a

iff i ∈ RPosw(ya). For a = 0, i ∈ RPosw(xa) iff

i− 1 ∈ RPosw(x) = RPosw(y), T [i] ∈ Π, and T [i] 6= T [j] for all i− |x| < j < i

iff i ∈ RPosw(yk) for some k � |x|. This proves Eq. (1).
If a 6= 0 or |W | ≤ 1, we obtain the lemma immediately from Eq (1). Suppose a = 0

and |W | ≥ 2 and let k = min≺W . By Eq. (1), we see that RPosw(yk) ( RPosw(x0),
where k � |x|. It is enough to show that for any z, RPosw(yk) ⊆ RPosw(z) implies
either RPosw(yk) = RPosw(z) or RPosw(x0) ⊆ RPosw(z). Since RPosw(yk) ⊆ RPosw(z),
z ∈ PSuffix(yk). If z = z′k, by |x| < k < |z′| ≤ |y|, z ∈ [yk]Rw. Then, Eq. (1) implies
RPosw(z′k) = RPosw(yk). Suppose z = z′0 for some z′. If |z| ≤ |x0|, RPosw(x0) ⊆ RPosw(z).
Otherwise, |x0| < |z| < |yk| implies z′ ∈ [y]Rw. By Eq. (1), |z′| < k implies RPosw(x0) ⊆
RPosw(z) by the choice of k. J

The function Trans of Algorithm 2 is a straightforward realization of Lemma 3. By rex(u)
we denote the set of labels of the out-going edges of u, i.e., rex(u) = RExw(max u). It takes
a node u ∈ V , a natural number i ∈ N , and a symbol a ∈ Σ ∪ N , and returns the node
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where we should go by reading a from u assuming that we have read i symbols so far. That
is, Trans([x]Rw, |x|, a) = [xa]Rw for every xa ∈ PFactor(w). Using Trans, Algorithm 1 performs
p-matching. We can locate the node v of the PDAWG in O(m log(|Σ| + |Π|)) for a given
pattern P of length m if it has a p-matching occurrence, or can determine that P does not
have such an occurrence. In case P has a p-matching occurrence, we can actually report all
of its occurrences by traversing the subtree of the (reversed) suffix links that is rooted at
the node v, since the reversed suffix link tree of PDAWG(T ) forms the p-suffix tree of T (see
Subsection 3.5). Thus we obtain the following:

I Theorem 4. Using PDAWG(T ) enhanced with the suffix links, we can find all substrings of
T that p-match a given pattern P in O(m log(|Σ|+ |Π|) + pocc) time, where m is the length
of pattern P and pocc is the number of occurrences to report.

3.4 Online algorithm for constructing PDAWGs
This subsection proposes an algorithm constructing the PDAWG online. Our algorithm is
based on the one by Blumer et al. [4] for constructing DAWGs of static strings. We consider
updating PDAWG(w) to PDAWG(wa) for a pv-string wa where a ∈ Σ ∪N .

We first observe properties similar to the DAWG construction.

I Definition 5. The longest repeated suffix (LRS) of a nonempty pv-string wa ∈ (Σ∪N )+ is
defined to be LRS(wa) = max(PSuffix(wa)∩PFactor(w)). If LRS(wa) 6= ε, the string obtained
from LRS(wa) by removing the last symbol is called the pre-LRS w.r.t. wa and denoted as
preLRS(wa) = LRS(wa)[: |LRS(wa)| − 1].

Note that the pre-LRS w.r.t. wa is a suffix of w and is defined only when LRS(wa) 6= ε. We
have LRS(wa) = ε if and only if a is new in the sense that wa ∈ Σ∗{0} ∪ (Σ ∪N \ {a})∗Σ.

The following lemma for node splits on PDAWGs is an analogue to that for DAWGs.

I Lemma 6 (Node update). For x = LRS(wa) and y = max[x]Rw,

Vwa = Vw \ {[x]Rw} ∪ {[x]Rwa, [y]Rwa, [wa]Rwa} .

If x = y, then [x]Rw = [x]Rwa = [y]Rwa, i.e., Vwa = Vw∪{[wa]Rwa}. Otherwise, [x]Rw = [x]Rwa∪[y]Rwa

and [x]Rwa 6= [y]Rwa.

Proof. First remark that RPoswa(z) = RPosw(z) ∪ {|wa|} for all z ∈ PSuffix(wa) and
RPoswa(z) = RPosw(z) for all z /∈ PSuffix(wa). For those z ∈ PSuffix(wa) \ PFactor(w),
we have RPoswa(z) = {|wa|} and [wa]Rwa = PSuffix(wa) \ PFactor(w) ∈ Vwa \ Vw. For z ∈
PFactor(w), if [z]Rw 6= [z]Rwa, some elements of [z]Rw are in PSuffix(wa) and some are not. That
is, [z]Rw is partitioned into two non-empty equivalence classes { z′ ∈ [z]Rw | z′ ∈ PSuffix(wa) }
and { z′ ∈ [z]Rw | z′ /∈ PSuffix(wa) }. By definition, the longest of the former is x = LRS(wa)
and the longest of the latter is y = max[x]Rw. Otherwise, [z]Rw = [z]Rwa ∈ Vw ∩ Vwa. J

I Example 7. Let w = 0a2a and a = 0. Then LRS(wa) = 〈w[2 : 3]〉 = 〈wa[4 : 5]〉 = a0.
We have LRS(wa) 6= max[LRS(wa)]Rw = 0a2, where RPosw(a0) = RPosw(0a2) = {3}. On the
other hand, RPoswa(a0) = {3, 5} 6= RPoswa(0a2) = {3}. Therefore, PDAWG(wa) has two
more nodes than PDAWG(w).

When updating PDAWG(w) to PDAWG(wa), all edges that do not involve the node
[LRS(wa)]Rw are kept by definition. What we have to do is to manipulate in-coming edges
for the new sink node [wa]Rwa, and, if necessary, to split the LRS node [LRS(wa)]Rw into two
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and to manipulate in-coming and out-going edges of them. Therefore, it is very important
to identify the LRS node [LRS(wa)]Rw and to decide whether LRS(wa) = max[LRS(wa)]Rw.
The special case where LRS(wa) = ε is easy to handle, since the LRS node will never be
split by [ε]Rw = {ε}. Hereafter we assume that LRS(wa) 6= ε and preLRS(wa) is defined. The
LRS node can be reached from the pre-LRS node [preLRS(wa)]Rw, which can be found by
following suffix links from the sink node [w]Rw of PDAWG(w). This appears quite similar to
online construction of DAWGs for static strings, but there are nontrivial differences. Main
differences from the DAWG construction are in the following points:

Our PDAWG construction uses Transw(u, i,Z(a, i)) with an appropriate i, when the
original DAWG construction refers to childw(u, a),
While preLRS(wa) is the longest of its equivalence class for static strings in DAWG(w),
it is not necessarily the case for p-strings (like the one in Figure 1), which affects the
procedure to find the node of LRS(wa),
When a node of PDAWG(w) is split into two in PDAWG(wa), the out-going edges of the
two nodes are identical in the DAWG construction, while it is not necessarily the case
any more in our PDAWG construction. Moreover, we do not always have an edge from
the node of preLRS(wa) to that of LRS(wa) in PDAWG(wa).

In DAWGs, the pre-LRS node is the first node with an a-edge that can be found by
recursively following the suffix links from the old sink [w]Rw. However, it is not necessarily
the case for PDAWGs. The following lemma suggests how to find [LSR(wa)]Rw and |LSR(wa)|
and how to decide whether the node shall be split.

I Lemma 8. Let x′ = preLRS(wa), a′ = Z(a, |x′|), i.e., x′a′ = LRS(wa), and ui = SLi
w(w)

for i ≥ 0.
1. We have x′ ∈ ui for the least i such that Transw(ui, |min ui|,Z(a, |min ui|)) 6= Null,

2. |x′a′| =
{
|max[x′]Rw|+ 1 if a ∈ RExw(max[x′]Rw),
min≺{a, max(REx(max[x′]Rw) ∩N )} otherwise,

3. [x′a′]Rw = Transw(ui, |x′|, a′),
4. [x′a′]Rw 6= [x′a′]Rwa if and only if |x′a′| 6= |max[x′a′]Rw|.
Proof. Suppose x′ ∈ ui.

(1) Every string z ∈ uj with j < i is properly longer than x′, so z · Z(a, |z|) /∈ PFactor(w)
by definition. On the other hand, for z = min ui, the fact z · Z(a, |z|) ∈ PFactor(x′a′) implies
Transw(ui, |z|,Z(a, |z|)) 6= Null.

(2) If a ∈ RExw(y′) for y′ = max[x′]Rw, we have y′a ∈ PFactor(w) and thus y′a = x′a′.
Suppose a /∈ RExw(y′). In this case, [x′]Rw is not a singleton and thus not the source node,
i.e., |x′| 6= 0. We have Transw(ui, |x′|, a′) 6= Transw(ui, |x′|+ 1,Z(a, |x′|+ 1)) = Null and thus
a ∈ N . Let W = RExw(max ui) ∩ N and Wj = { k ∈ W | k � j }. Lemma 3 implies that
a′ = 0 and W|x′| 6= ∅ by Transw(ui, |x′|, a′) 6= Null. If W|x′|+1 6= ∅, then Z(a, |x′| + 1) =
a 6= 0 = Z(a, |x′|), i.e., |x′| = a − 1. By W|x′| 6= ∅, |x′| = a − 1 ≺ max≺W|x′|. Therefore,
|x′| = min≺{a, max≺W} − 1. If W|x′|+1 = ∅ 6= W|x′|, then 0 /∈ W and max≺W = |x′|+ 1.
By Z(a, |x′|) = 0, |x′| ≺ a. Therefore, |x′| = min≺{a, max≺W} − 1.

(3) By Lemma 3. (4) By Lemma 6. J

Edges are created or replaced in accordance with the definition of a PDAWG. The in-coming
edges for the new sink node [wa]Rwa of PDAWG(wa) are given as follows.

I Lemma 9 (In-coming edges of the new sink). If LRS(wa) 6= ε, the in-coming edges for
the new sink [wa]Rwa are exactly those (u,Z(a, |max u|), [wa]Rwa) such that u = SLi

w([w]Rw) for
some i ≥ 0 and child(u,Z(a, |max u|)) = Null, i.e., |max u| > |preLRS(wa)|. If LRS(wa) = ε,
the in-coming edges for [wa]Rwa are exactly those (SLi

w([w]Rw), a, [wa]Rwa) for all i ≥ 0.
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for w = 0a2a, a = 0. LRS(wa) = x =
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max[x]Rw = 0a2.
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Figure 3 Parts of PDAWG(w) and PDAWG(wa) for w =
00a30a20a0, a = a. [0a]Rwa does not inherit the out-going
edges of [0a]Rw labeled with 3 and 0. Instead, the 3-edge
and 0-edge are bundled into a single 0-edge which points
at Transw([0a]Rw, 2, 0) = SL([00a3]Rw) = [0a0]Rw.

This is not much different from DAWG update, except that the pre-LRS node has an
edge towards the new sink when the pre-LRS is not the longest in the pre-LRS node (see
Figure 2, where the pre-LRS node [x′]Rwa has got a 0-edge towards the sink). If the LRS node
[LRS(wa)]Rwa is not split, we have nothing more to do on edges.

Hereafter, we suppose that the LRS node must be split. That is, x 6= y for x = LRS(wa)
and y = max[LRS(wa)]Rw. By definition, all edges of PDAWG(w) that do not involve the LRS
node [LRS(wa)]Rw will be inherited to PDAWG(wa). The nodes [x]Rwa and [y]Rwa in PDAWG(wa)
will have the following in-coming and out-going edges.

I Lemma 10 (In-coming edges of the LRS node). We have
(u, b, [y]Rwa) ∈ Ewa if and only if (u, b, [y]Rw) ∈ Ew and |max u|+ 1 > |x|,
(u, b, [x]Rwa) ∈ Ewa if and only if b = Z(a, |max u|), (u, b, [y]Rw) ∈ Ew and |max u|+1 ≤ |x|.

Lemma 10 is no more than a direct implication of the definition of edges of PDAWGs. An
important fact is that (u, b, [y]Rw) ∈ Ew only if u = SLi

w([x′]Rw) with x′ = preLRS(wa) for some
i ≥ 0, which is essentially no difference from the DAWG case. Therefore, one can find all
in-coming edges that may need to manipulate by following suffix links from the pre-LRS node.
Note that in the on-line construction of a DAWG, the edge from the pre-LRS node [x′]Rw
to the LRS node [y]Rw in the old DAWG will be inherited to the new node [x]Rwa in the new
DAWG. However, it is not necessarily the case in the PDAWG construction, as demonstrated
in Figure 2, where the 2-edge from [x′]Rw to [y]Rw in PDAWG(w) is kept as the 2-edge from
[x′]Rwa to [y]Rwa in PDAWG(wa) and, as a result, the new node [x]Rwa has no in-coming edges.

I Lemma 11 (Out-going edges of the LRS node). We have
([y]Rwa, b, u) ∈ Ewa if and only if ([y]Rw, b, u) ∈ Ew,
([x]Rwa, b, u) ∈ Ewa if and only if Trans([y]Rw, |x|, b) = u if and only if either ([y]Rw, b, u) ∈
Ew and Z(b, |x|) 6= 0 or Trans([y]Rw, |x|, 0) = u and Z(b, |x|) = 0.

Lemma 11 is also an immediate consequence of the definition of PDAWG edges. In the
DAWG construction, those two nodes [x]Rwa and [y]Rwa simply inherit the out-going edges of
the LRS node [x]Rw = [y]Rw. However, in the PDAWG construction, due to the prev-encoding
rule on variable symbols, the node [x]Rwa will lose edges whose labels are integers greater
than |x|, as demonstrated in Figure 3. Those edges are “bundled” into a single 0-edge which
points at Trans([y]Rw, 0, |x|).

Updates of suffix links simply follow the definition.
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Algorithm 3 Constructing PDAWG(T ).

1 Let V ← {>, ρ }, E ← { (>, a, ρ) | a ∈ Σ ∪ {0} }, SL(ρ) = >, len(>) = −1, len(ρ) = 0,
sink ← ρ, and t← prev(T );

2 for i← 1 to |t| do
3 Let a← t[i] and u← sink;
4 Create a new node and let sink be that node with len(sink) = i;
5 while Trans(u, len(SL(u)) + 1,Z(a, len(SL(u)) + 1)) = Null do
6 Let child(u,Z(a, len(u)))← sink and u← SL(u);

// u corresponds to [preLRS(t[: i])]Rt[:i−1]
7 if Z(a, len(u)) ∈ rex(u) then // preLRS(t[: i]) = max[preLRS(t[: i])]Rt[:i−1]
8 Let k ← len(u) + 1 and v ← child(u,Z(a, len(u)))
9 else // preLRS(t[: i]) 6= max[preLRS(t[: i])]Rt[:i−1]

10 Let k ← min≺{a, max(rex(u) ∩N )}, v ← Trans(u, k − 1, 0),
child(u,Z(a, len(u))← sink, and u← SL(u);

// v corresponds to [LRS(t[: i])]Rt[:i−1] and k = |LRS(t[: i])|
11 if len(v) = k then Let SL(sink)← v; // No node split
12 else // Node split
13 Create a new node v′; // v′ corresponds to [LRS(t[: i])]Rt[:i]
14 Let len(v′)← k;

// In-coming edges of the new node
15 while child(u,Z(a, len(u))) = v do
16 Let child(u,Z(a, len(u)))← v′ and u← SL(u);

// Out-going edges of the new node
17 for each b ∈ { b ∈ rex(v) | Z(b, k) 6= 0 } do
18 Let child(v′, b)← child(v, b);
19 if Trans(v, k, 0) 6= Null then Let child(v′, 0)← Trans(v, k, 0);

// Suffix links
20 Let SL(v′)← SL(v), SL(v)← v′ and SL(sink)← v′;
21 return (V,E,SL);

I Lemma 12 (Suffix link update). Suppose Vwa = Vw ∪ {[wa]Rwa}. Then, for each u ∈ Vwa,

SLwa(u) =
{

[LRS(wa)]Rwa if u = [wa]Rwa,
SLw(u) otherwise.

Suppose [x]Rw 6= [x]Rwa for x = LRS(wa), i.e., Vwa = Vw \ {[y]Rw} ∪ {[wa]Rwa, [x]Rwa, [y]Rwa},
where y = max[x]Rw. Then, for each u ∈ Vwa,

SLwa(u) =


[x]Rwa if u ∈ {[wa]Rwa, [y]Rwa},
SLw([y]Rw) if u = [x]Rwa,
SLw(u) otherwise.

Algorithm 3 constructs PDAWGs based on the above lemmas. An example of online
construction of a PDAWG can be found in Figure 4. For technical convenience, like the
standard DAWG construction algorithm, we add a dummy node > to the PDAWG that
has edges to the source node, denoted as ρ in Algorithm 3, labeled with all elements of
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construction algorithm, we add a dummy node € to the PDAWG that has edges to the342

source node fl labeled with all elements of � fi {0}. This trick allows us to uniformly treat343

the special case where the LRS node is fl, in which case the pre-LRS node is defined to be €.344

In addition, we let SL(fl) = €. Each node u does not remember the elements of u but we345

remember len(u) = |max u|. Note that |min u| = |len(SL(u))|+1. Hereafter we use functions346

SL, child, Trans, etc. without a subscript specifying a text, to refer to the data structure347

that the algorithm is manipulating, rather than the mathematical notion relative to the text.348

Of course, we design our algorithm so that those functions coincide with the corresponding349

mathematical notions.350
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Figure 4 A snapshot of left-to-right online construction of PDAWG(T ) with T = xaxaya by
Algorithm 3. Each figure shows PDAWG(wa) for a prefix wa of prev(T ) = 0a2a0a. Double arrows
show primary edges. The new nodes, edges and suffix links are colored red. The purple, red and
blue diamonds represent [x′]Rwa, [x]Rwa and [y]Rwa, respectively, where x′ = preLRS(wa), x = LRS(wa)
and y = max[x]Rw. When x = ε, the purple diamond is put on the dummy node >.

Σ ∪ {0}. This trick allows us to uniformly treat the special case where the LRS node is ρ,
in which case the pre-LRS node is defined to be >. In addition, we let SL(ρ) = >. Each
node u does not remember the elements of u but we remember len(u) = |max u|. Note
that |min u| = |len(SL(u))|+ 1. Hereafter we use functions SL, child, Trans, etc. without a
subscript specifying a text, to refer to the data structure that the algorithm is manipulating,
rather than the mathematical notion relative to the text. Of course, we design our algorithm
so that those functions coincide with the corresponding mathematical notions.

Suppose we have constructed PDAWG(w) and want to obtain PDAWG(wa). The sink
node of PDAWG(w), denoted as oldsink, corresponds to [w]Rw. We first make a new sink
node newsink = [wa]Rwa. Then we visit ui = SLi(oldsink) for i = 1, 2, . . . , j, until we find the
pre-LRS node uj = [preLRS(wa)]Rw. By Lemma 8, we can identify uj and k′ = |preLRS(wa)|.
For each node ui with i < j, we make an edge labeled with Z(a, len(ui)) pointing at newsink
and, moreover, uj also has an edge pointing at newsink if k′ < len(uj) by Lemma 9. We
then reach the LRS node v = [LRS(wa)]Rw = Trans(uj , k

′,Z(a, k′)). We compare k = k′ + 1 =
|LRS(wa)| and len(v) to decide whether the LRS node shall be split based on Lemma 6. If
|LRS(wa)| = len(v), the node v will not be split, in which case we obtain PDAWG(wa) by
making SL(newsink) = v (Lemma 12).

Suppose k < len(v). In this case, the LRS node v must be split. We reuse the old node v,
which used to correspond to [LRS(wa)]Rw, as a new node corresponding to [max[LRS(wa)]Rw]Rwa,
and create another new node v′ for [LRS(wa)]Rwa with len(v′) = k. Edges are determined
in accordance with Lemmas 10 and 11. All in-coming edges from SLi([preLRS(wa)]Rw) to v
in PDAWG(w) are redirected to v′, except when preLRS(wa) 6= max[preLRS(wa)]Rw for i = 0.
The out-going edges from v will be kept. We create out-going edges of v′ referring to the
corresponding transitions from v. If (v, b, u) ∈ E with Z(b, k) 6= 0, then we add (v′, b, u) to E.
In addition, we add (v′, 0,Transw(v, 0, k)) to E if Trans(v, 0, k) 6= Null. At last, suffix links
among newsink, v, v′ are determined in accordance with Lemma 12.

We conclude the subsection with the complexity of Algorithm 3. Let us call an edge
(u, a, v) primary if max v = max u · a, and secondary otherwise. The following lemma is an
adaptation of the corresponding one for DAWGs by Blumer et al. [4].
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I Lemma 13. Let SCw(u) = { SLi
w(u) | i ≥ 0 } for a node u. If PDAWG(w) has a primary

edge from u to v, then the total number of secondary edges from nodes in SCw(u) to nodes in
SCw(v) is bounded by |SCw(u)| − |SCw(v)|+ |Π|+ 1.

Proof. Let us count the number of edges from nodes in SCw(u) to SCw(v). Baker [2,
Lemma 1] showed that in a parameterized suffix tree, each path from the root to a leaf has
at most |Π| nodes with bad suffix links. Through the duality of PDAWGs and parameterized
suffix trees stated in Lemma 16, this means that SCw(v) contains at most |Π| + 1 nodes
which has no in-coming primary edges, where the additional one node is the root of the
PDAWG. Since each node has at most one in-coming primary edge, the number of primary
edges in concern is at least |SCw(v)| − |Π| − 1 in total. Since each node in SCw(u) has just
one out-going edge to SCw(v), we obtain the lemma. J

I Theorem 14. Given a string T of length n, Algorithm 3 constructs PDAWG(T ) in
O(n|Π| log(|Σ|+ |Π|)) time and O(n) space online, by reading T from left to right.

Proof. Since the size of a PDAWG is bounded by O(n) (Theorem 2) and nodes are monoton-
ically added, it is enough to bound the number of edges and suffix links that are deleted. In
each iteration of the for loop, at most one suffix link is deleted. So at most n suffix links are
deleted in total. We count the number of edges whose target is altered from v = [LSR(wa)]Rw
to v′ = [LSR(wa)]Rwa on Line 15 when updating PDAWG(w) to PDAWG(wa). Let ki be the
number of such edges at the i-th iteration of the for loop. Note that those are all secondary
edges from a node in SCw(u0) for the pre-LRS node u0. By Lemma 13,∑n

i=1 ki ≤
∑n

i=1
(
|SCwa(w)| − |SCwa(wa)|+ |Π|+ 1

)
≤∑n

i=1
(
|SCw(w)| − |SCwa(wa)|+ |Π|+ 1

)
= |SCε(ε)| − |SCt(t)|+ (|Π|+ 1)n ∈ O(|Π|n) . J

Since the suffix links of PDAWG(T ) forms the p-suffix tree of T (see Subsection 3.5), the
following corollary is immediate from Theorem 14.

I Corollary 15. The p-suffix tree of a string S of length n can be constructed in O(n|Π| log(|Σ|+
|Π|)) time and O(n) space online, by reading S from right to left.

Differently from the online DAWG construction algorithm [4], we have the factor |Π| in
our algorithm complexity analysis. Actually our algorithm takes time proportional to the
difference of the old and new PDAWGs modulo logarithmic factors, as long as the difference is
defined so that the split node [LRS(wa)]Rw automatically becomes [max[LRS(wa)]Rw]Rwa rather
than [LRS(wa)]Rwa. In this sense, our algorithm is optimal. It is open whether we could
improve the analysis.

3.5 Duality of PDAWGs and p-suffix trees
This subsection establishes the duality between parameterized suffix trees and PDAWGs.
An example can be found in Figure 5. For this sake, we introduce the reverse of a pv-string
and Weiner links (reversed suffix links) for parameterized suffix trees.

The “reverse” x̃ of a pv-string x must satisfy that x̃ = prev(S) iff x = prev(S) for any
p-string S ∈ (Σ ∪Π)∗. For the empty string ε̃ = ε. For x ∈ (Σ ∪N )∗ and a ∈ Σ ∪N ,

x̃a =
{
ax̃ if a ∈ Σ ∪ {0},
0y otherwise,
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Figure 5 (a) The parameterized suffix tree PSTree(S) for S = baxayay over Σ = {a, b} and
Π = {x, y}, augmented with the Weiner links (dashed red arcs). (b) The DAG consisting of the
p-suffix tree nodes and the Weiner-links. (c) The PDAWG PDAWG(T ) for T = S = yayaxab. The
graphs (b) and (c) are isomorphic.

where y is obtained from x̃ by replacing the a-th element by a, i.e., y = x̃[: a−1] ·a · x̃[a+ 1 :].
This is well-defined if xa is a pv-string. For example, for T = xaxy with a ∈ Σ and x, y ∈ Π,
we have ˜prev(T ) = 0̃a20 = 00a2 = prev(yxax) = prev(T ).

The parameterized suffix tree PSTree(T ) of a p-string T is the path-compacted (or
Patricia) tree for PSuffix(T ). For any z ∈ (Σ ∪ N )∗, For PSTree(T ), the Weiner links are
defined as follows. Let v be a node in PSTree(T ) such that v = prev(S) for some substring S
of T , and a ∈ Σ ∪N . Let α(a, v) be the pv-string such that

α(a, v) =


av if av ∈ PFactor(T ) and a ∈ Σ ∪ {0},
prev(S[a] · S) if prev(S[a] · x) ∈ PFactor(T ) and a ∈ N \ {0},
undefined otherwise.

Then a Weiner link is a triple (v, a, u) such that u = α(a, v)y, where y ∈ (Σ ∪ N )∗ is the
shortest string such that α(a, v)y is a node of PSTree(T ). The Weiner link (v, a, u) is said to
be explicit if u = α(a, v), and implicit otherwise1.

To establish the correspondence between PDAWG(T ) and PSTree(T ) easily, here we
rename the nodes [x]Rw of PDAWG(T ) to be max[x]Rw where w = prev(T ).

I Theorem 16. The following correspondence between PDAWG(T ) = (VD, ED) and
PSTree(T ) = (VT, ET) holds.
(1) PDAWG(T ) has a node x ∈ VD iff PSTree(T ) has a node x̃ ∈ VT.
(2) PDAWG(T ) has a primary edge (x, a, y) ∈ ED iff PSTree(T ) has an explicit Weiner link

(x̃, a, ỹ).
(3) PDAWG(T ) has a secondary edge (x, a, y) ∈ ED iff PSTree(T ) has an implicit Weiner

link (x̃, a, ỹ).
(4) PDAWG(T ) has a suffix link from x̃y to x̃ iff PSTree(T ) has an edge (x, y, xy) ∈ ET.

1 Explicit Weiner links are essentially the same as the reversed suffix links used for right-to-left online
construction of parameterized position heaps [8].
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Abstract
This paper provides upper bounds for several subsets of maximal repeats and maximal pairs in
compressed strings and also presents a formerly unknown relationship between maximal pairs and
the run-length Burrows-Wheeler transform.

This relationship is used to obtain a different proof for the Burrows-Wheeler conjecture which has
recently been proven by Kempa and Kociumaka in “Resolution of the Burrows-Wheeler Transform
Conjecture”.

More formally, this paper proves that the run-length Burrows-Wheeler transform of a string S

with zS LZ77-factors has at most 73(log2 |S|)(zS + 2)2 runs, and if S does not contain q-th powers,
the number of arcs in the compacted directed acyclic word graph of S is bounded from above by
18q(1 + logq |S|)(zS + 2)2.
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1 Introduction

A maximal repeat P of a string is a substring such that there are two occurrences of P in
the string which are preceded by different characters and succeeded by different characters.
Such a pair of occurrences is called a maximal pair.

Raffinot proves in [10] that there is a natural bijection from the internal nodes in a
Compacted Directed Acyclic Word Graph (CDAWG) to the maximal repeats, which is given
by the labels of the paths. Also, Furuya et al. present in [7] a relation between maximal
repeats and the grammar compression algorithm RePair, and they use this relation to design
MR-RePair, an improved variant of RePair.

Sometimes, maximal repeats are not sufficient, since they do not contain any information
about the surrounding string. Therefore, in [1], Belazzougui et al. introduce the number of
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prove that the number of arcs in the CDAWG is equal to the number of right extensions of
maximal repeats and that the number of runs in the run-length Burrows-Wheeler transform
(RLBWT) is bounded from above by the number of right extensions of maximal repeats.

In earlier work, I proved in [9] that the number of maximal repeats in a string S with zS
(self-referential) LZ77-factors and without q-th powers is bounded from above by 3q(zS+1)3−2
and that this upper bound is tight up to a constant factor. This result implies that for a
string S over an alphabet Σ, the number of arcs in the CDAWG, and thereby the number rS
of runs in the RLBWT, is bounded from above by 3|Σ|q(zS + 1)3.

We should expect that of all the O
(
q(zS)3) maximal repeats some provide less information

than others. For example in the string

ba10ba20b$ = baaaaaaaaaabaaaaaaaaaaaaaaaaaaaab$,

we can derive all maximal pairs of the maximal repeats of ai from the maximal pairs of a9

and a19. In this way, highly-periodic maximal repeats with exponent close to the exponent
of the corresponding runs are more important than other maximal repeats which are powers
of the same base.

Blumer et al. have already shown in 1987 in [2] that the CDAWG cannot compress high
powers and that the CDAWG of an$ has size Θ (n). Contrary to the CDAWG, the RLBWT
does not suffer from high powers and we should expect that there are many right extensions
of maximal repeats which do not increase the number of runs. And in fact, if the string is
very structured, we expect that the output consists of few runs of single characters. For
example Christodoulakis et al. show in [4] that the Burrows-Wheeler transform of the n-th
Fibonacci string Fn is given by bfn−2afn−1 .

Yet, until recently, it remained an open question whether there is an upper bound for
the number of runs in the RLBWT which is polynomial in the number of LZ77-factors
and the logarithm of the length of the string only. This Burrows-Wheeler transform con-
jecture was resolved in October 2019 by Kempa and Kociumaka who prove in the first
version of their arXiv-article [8] that rS ∈ O

(
zS(logn)2) holds and promised that they

will show rS ∈ O
(
δS log δS max

(
1, log n

δS log δS

))
for a complexity measure δS ≤ zS in

an extended version. In April 2020 they uploaded the extended second version to their
arXiv-article [8]. In this extended version they do not only prove this tighter upper bound
rS ∈ O

(
δS log δS max

(
1, log n

δS log δS

))
, but they also prove that this upper bound is asymp-

totically tight for all values of n and δS .
This paper provides a different approach to the Burrows-Wheeler transform conjecture

and shows by using maximal repeats and their extensions that rS ≤ 73(log2 |S|)(zS + 2)2

holds.
On the way, this paper also shows that the number of arcs in the CDAWG is bounded from

above by 18q(1 + logq |S|)(zS + 2)2 and gives new insights into the combinatorial properties
of extensions of maximal repeats which are either non-highly-periodic or cannot be extended
by more than a period length.

2 Definitions

Let Σ be an alphabet. A string with length denoted by |S| is the concatenation of characters
S[1]S[2] · · ·S[|S|] of Σ. Since it will be useful to have a predecessor and a successor for every
character of the string, we also define S[0] = $ and S[|S|+ 1] = $ with $ /∈ Σ. The substring



J. Pape-Lange 27:3

S[i..j] with 0 ≤ i ≤ j ≤ |S| + 1 is the concatenation S[i]S[i + 1] · · ·S[j]. For i > j the
substring S[i..j] is defined to be the empty string with length 0. A prefix is a substring of
the form S[1..j] and a suffix is a substring of the form S[i..|S|].

In this paper, we are not only interested in the substrings themselves but we are also
interested in their relationship to the underlying string. We therefore use positioned substrings.
Formally, a positioned substring is a pair (l, r) of indices and the content of the positioned
substring is the substring S[l..r]. In order to use positioned substrings as substrings, we
slightly abuse the notation in this paper and denote the positioned substrings like normal
substrings with S[l..r]. Therefore, the term “positioned” only indicates that we are not
allowed to forget the underlying indices.

An occurrence of a substring P is a positioned substring S[l..r] such that S[l..r] = P

holds for the underlying substrings.
For example in the string S = ababab, the positioned substrings S[1..3] = aba and

S[2..4] = bab overlap on the positioned substring S[2..3] = ba, but the positioned substrings
S[1..3] = aba and S[4..6] = bab don’t have a non-empty overlap. Also, in this string S, the
substring P = S[2..4] = bab has exactly two occurrences given by the positioned substrings
S[2..4] = bab = P and S[4..6] = bab = P .

The string S is lexicographically strictly smaller/larger than the string S′ if S is lexico-
graphically smaller/larger than S′ and there is a mismatch S[m] 6= S′[m].

A maximal pair of S is a triple (n,m, l) ∈ N3 with l ≥ 1 such that S[n..n+ l− 1] is equal
to S[m..m+ l − 1] and this property can not be extended to any side. More formally:
∀i ∈ N with 0 ≤ i < l : S[n+ i] = S[m+ i] but
S[n− 1] 6= S[m− 1] and
S[n+ l] 6= S[m+ l].

With this notation, the string S[n..n+ l− 1] = S[m..m+ l− 1] is the corresponding maximal
repeat.

Since for a maximal pair (n,m, l) the inequality S[n− 1] 6= S[m− 1] holds, the indices
n and m cannot be equal. Also, by construction, S[n..n + l − 1] and S[m..m + l − 1] are
contained in S and S[n..n+ l] and S[m..m+ l] are contained in S$.

For a positioned maximal repeat S[n..n + l − 1], the right-extension of this maximal
repeat is the substring S[n..n+ l] which is obtained by extending the maximal repeat by its
successor. Similarly, the double-sided extension is S[n− 1..n+ l].

Since maximal pairs are easier to handle than maximal repeats and their extensions, this
paper introduces the notion of “substantially different maximal pairs” which allows to give
an upper bound for the number of double-sided extensions:

Two maximal pairs (n,m, l) and (n′,m′, l′) are copies of each other if the two strings
S[n − 1..n + l] and S[m − 1..m + l] are equal to the two strings S[n′ − 1..n′ + l′] and
S[m′ − 1..m′ + l′]. In particular, the two maximal pairs (n,m, l) and (m,n, l) are always
copies of each other. However, it is not sufficient for two maximal pairs to have identical
corresponding maximal repeats in order to be copies of each other.

If two maximal pairs are not copies of each other, they are substantially different.
For each of the substantially different maximal pairs there can be at most two double-sided

extensions of the corresponding maximal repeat. Therefore, the number of double-sided
repeats is at most twice the number of substantially different maximal pairs.

A string S which is not of the form P q for an integer q ∈ N≥2 is primitive, and a square
S2 with a primitive root S is a primitively rooted square.

A period of a string S is an integer p such that all characters in S with distance p are
equal. A string with period length p is called p-periodic.
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x a b a b y a b a b a b z

Figure 1 The string S = xababyabababz with two maximal periodic extensions of the substring ab

and nine extendable maximal substrings, all of them with root ab. The maximal periodic extensions
are the two green substrings and each extendable substring is represented by a line indicating the
underlying positions.

A string S is 1
≥q -highly-periodic, if it has a period with length 1

q |S| or smaller. A maximal
pair is 1

≥q -highly-periodic if the corresponding maximal repeat is 1
≥q -highly-periodic.

For example, the strings aaaa = a4, aaaaa = a5 and ababababa = (ab)4a = (ab)4.5 are
1
≥4 -highly-periodic, but aaaac = a4c and abababa = (ab)3.5 are not 1

≥4 -highly-periodic.
Let S[l..r] be a positioned p-periodic substring with |S[l..r]| ≥ p. The maximal p-periodic

extension of this occurrence is the positioned substring S[l′, r′] such that
l′ ≤ l ≤ r ≤ r′,
S[l′..r′] is p-periodic,
S[l′ − 1..r′] is not p-periodic and
S[l′..r′ + 1] is not p-periodic.

With this notation, the pair S[l′ − 1, r′ + 1] is the padded maximal p-periodic extension.
If p is the minimal period length of S[l..r], we will omit the p and simply write maximal

periodic extension and padded maximal periodic extension.
Similar to maximal pairs, two padded maximal periodic extensions S[l − 1, r + 1] and

S[l′ − 1, r′ + 1] are copies of each other if the corresponding strings are equal. If the two
padded maximal periodic extensions are not copies of each other, they are substantially
different.

A positioned substring S[l..r] with minimal period length p is extendable if the maximal
p-periodic extension is at least p + 1 characters longer than S[l..r]. A maximal pair is
extendable, if both occurrences of the corresponding maximal repeat are extendable.

For example, in Figure 1, we have the string S = xababyabababz. The positioned
substrings S[2..3] = ab, S[3..4] = ba and S[8..11] = baba, each with minimal period length
2, are not extendable, since their maximal periodic extensions S[2..5] = abab (for both
S[2..3] and S[3..4]) and S[7..12] = ababab (for S[8..11]) are only p characters longer. The
positioned substring S[8..8] = b has minimal period length 1 and therefore its maximal
periodic extension is S[8..8]. On the other hand, the positioned substring S[9..10] = ab with
minimal period length 2 has the maximal periodic extension S[7..12] = ababab which is 4
characters longer. Hence, the positioned substring S[9..10] is extendable.

Checking all substrings, one can see that the extendable substrings of S are exactly the 9
2-periodic positioned substrings of the positioned substring S[7..12] with length less than 4.
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Also, the maximal pair (7, 11, 2) is extendable even though both maximal periodic
extensions are the same positioned substring. Also, this is the only extendable maximal pair
of this string.

The (self-referential) LZ77-decomposition of a string S is a factorization S = F1F2 . . . FzS

in LZ77-factors, such that for all i ∈ {1, 2, . . . , zS} either
Fi is a character which does not occur in F1F2 . . . Fi−1 or
Fi is a the longest possible prefix of S[|F1F2 . . . Fi−1|+ 1..|S|] which occurs at least twice
in F1F2 . . . Fi.

Let πi ∈ {0, 1, 2, . . . , |S|} be given by the lexicographic order of the cyclic permutations
S[πi + 1..|S|+ 1]S[1..πi] of S$. The Burrows-Wheeler transform defined in [3] is given by
the last characters of those strings, and, since S[0] = $ = S[|S|+ 1] hold by definition, these
characters are given by S[πi].

3 Non-Highly-Periodic Maximal Pairs

The main goal of this section is to prove that in a string S the number of substantially different
non- 1

≥6 -highly-periodic maximal pairs is bounded from above by 41(log2 |S|)(zS + 1)(zS + 2).
Along the way, this section will also prove that if S does not contain q-th powers, its

CDAWG has at most 18q(1 + logq |S|)(zS + 2)2 arcs.
In Theorem 8 of [9], I counted the number of maximal pairs around the boundaries of

LZ77-factors which neither begin nor end with a power of a given exponent:

I Theorem 1 (Theorem 8 of [9]). Let S be a string. Let F1F2 . . . FzFz+1 = S$ be the
LZ77-decomposition of S$. Let s1, s2, . . . , sz, sz+1 be the starting indices of the LZ77-factors
in S$. Let q ∈ N≥2 and i, j ∈ {1, 2, . . . , z, z + 1} be natural numbers.
Then the number of different maximal pairs (nk,mk, lk) such that for all k

the substring S[nk..si − 1] is not a fractional power with exponent greater than or equal
to q,
the substring S[si..nk + lk − 1] is not a fractional power with exponent greater than or
equal to q,
the starting index si is contained in the interval [nk, nk + lk],
the starting index si+1 is not contained in the interval [nk, nk + lk] and
the starting index sj is contained in the interval [mk,mk + lk]

is bounded from above by 18q · dlogq(|F1F2 . . . Fi|)e.

This can be slightly simplified by ignoring the underlying LZ77-structure which is not
used in the proof:

I Corollary 2. Let S be a string. Let q ∈ N≥2 be a natural number and i, j be indices of two
characters in S$.

Then there are at most 18q · dlogq(|S$|)e different maximal pairs (nk,mk, lk) such that
for all k

neither the substring S[nk..i− 1] nor the substring S[i..nk + lk − 1] is 1
≥q -highly-periodic

and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

Following the proof of Theorem 8 in [9], the substring S[i..nk + lk − 1] naturally splits
into S[nk..i− 1] and S[i..nk + lk − 1] and we can even require that the longer part(s) is/are
not a high power(s). In order to have a unique longer part, we define the string S[nk..i− 1]
to be longer than S[i..nk + lk − 1], if both of these substrings have the same length.
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I Lemma 3. Let S be a string. Let q ∈ N≥2 be a natural number and i, j be indices of two
characters in S$.

Then there are at most 18q(1 + logq |S|) different maximal pairs (nk,mk, lk) such that
for all k

the longer string of the substrings S[nk..i−1] and S[i..nk+lk−1] is not 1
≥q -highly-periodic

and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

As proven in Lemma 4 of [9], each maximal pair has a copy such that both double-sided
extensions of the corresponding maximal repeats cross LZ77-boundaries. Also, each maximal
pair introduces at most two new right extensions of maximal repeats. Therefore, we can
deduce a bound similar to Theorem 1 of [9] for the right extensions of maximal repeats and
the arcs of the CDAWG:

I Theorem 4. Let S be a string. Let q be further a natural number such that S does not
contain q-th powers.

Then the number of right extensions of maximal repeats in S is bounded from above by
18q(1+logq |S|)(zS+2)2−(zS+1). Also, the CDAWG of S has at most 18q(1+logq |S|)(zS+2)2

arcs.

Proof. Summing up over the first indices i ≤ j of the zS + 1 LZ77-factors of S$ yields that
there are at most
zS+1∑
i=1

zS+1∑
j=i

18q(1+logq |S|) = 9q(1+logq |S|)(zS+1)(zS+2) ≤ 9q(1+logq |S|)(zS+2)2−(zS+1)

substantially different maximal pairs. And since each new substantially different maximal
pair introduces at most two new right extensions of maximal repeats, there are at most
18q(1 + logq |S|)(zS + 2)2 − (zS + 1) different right extensions of maximal repeats.

Since the number of right extensions of (non-empty) maximal repeats is equal to the
number of arcs in the CDAWG which start at internal nodes and since there are exactly
|Σ ∪ {$}| ≤ zS + 1 arcs starting at the root, there are at most 18q(1 + logq |S|)(zS + 2)2 arcs
in the CDAWG. J

Additionally, there might be maximal pairs, in which the longer part(s) is/are high
power(s) but the corresponding periodicity does not extend to the whole maximal repeat. In
order to find a good upper bound for those maximal pairs, we need an additional lemma to
limit the number of possible period lengths of prefixes and suffixes with high powers.

I Lemma 5. Let S be a string. Let further P1, P2 be two substrings of S such that
P1 and P2 are both either prefixes or suffixes of S,
the length of P2 fulfills the inequality |P1| ≤ |P2| ≤ 2|P1| and
both P1 and P2 are 1

≥3 -highly-periodic.
Then P1 and P2 have the same minimal period length.

Proof. Without loss of generality assume that P1 and P2 are both prefixes of S. Let p1 and
p2 be the minimal period lengths of P1 and P2, respectively.

Since the inequalities p1 ≤ 1
3 |P1| and p2 ≤ 1

3 |P2| ≤ 2
3 |P1| hold, the periodicity lemma

from [6] of Fine and Wilf proves, that P1 is gcd(p1, p2)-periodic. Since p1 is the minimal
period length of P1, this implies that p2 is a multiple of p1.

However, since P1 ⊂ P2 and p2 ≤ 2
3 |P1| hold, a p2-periodic base of P2 is also p1-periodic.

Therefore p1 = p2 holds. J
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I Theorem 6. Let S be a string. Let i, j be indices of two characters in S$.
Then there are at most 12 log2 |S| different maximal pairs (nk,mk, lk) such that for all k
the longer string of the substrings S[nk..i− 1] and S[i..nk + lk − 1] is 1

≥3 -highly-periodic
with period length p, but
the substring S[nk..nk + lk − 1] is not p-periodic and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

Proof. By contradiction:
It is sufficient to prove that there are at most 6 log2 |S| different maximal pairs with the

restrictions given by the prerequisites which fulfill |S[nk..i − 1]| ≥ |S[i..nk + lk − 1]|. By
symmetry, the maximal pairs which fulfill the inequality |S[nk..i− 1]| < |S[i..nk + lk − 1]|
can be bounded with an identical argument.

Assume there are at least b6 log2(|S|)c + 1 different maximal pairs (nk,mk, lk) with
|S[nk..i− 1]| ≥ |S[i..nk + lk − 1]| and the restrictions given by the prerequisites.

Since for all maximal pairs 1 ≤ nk holds, the inequality i− nk ≤ |S$| − 1 holds as well.
On the other hand, since S[nk..i− 1] is 1

≥3 -highly-periodic, this substring has to contain at
least three characters. Therefore, the inequality 3 ≤ i− nk holds.

Taking the logarithm yields

1 < log2(3) ≤ log2(i− nk) ≤ log2(|S$| − 1) ≤ dlog2(|S|)e.

For each maximal pair, the number log2(i − nk) lies in at least one of the dlog2(|S|)e − 1
intervals [h, h+ 1] with 1 ≤ h < dlog2(|S|)e.

Using dlog2(|S|)e − 1 ≤ blog2(|S|)c, the pigeonhole principle now yields that there has to
be a natural number L′ such that⌈

b6 log2(|S|)c+ 1
blog2(|S|)c

⌉
= 7

of these maximal pairs have a starting index with L′ ≤ log2(i− nk) ≤ 1 + L′.
Therefore, for L = 2L′ this gives a natural number L such that L ≤ i− nk ≤ 2L holds

for each of these 7 maximal pairs.
Since the index i is contained in the interval [nk, nk+lk] and |S[nk..i−1]| ≥ |S[i..nk+lk−1]|

holds, the index i is also contained in the interval [nk + lk
2 , nk + lk]. Hence, the inequalities

nk + lk
2 ≤ i and thereby lk

2 ≤ i− nk ≤ 2L hold. Therefore, the length lk is at most 4L.
Since the index j is contained in the interval [mk,mk+ lk], this implies that the inequality

mk ≥ j − lk ≥ j − 4L holds. On the other hand mk ≤ j so the mk are in an interval of
length 4L.

Using the pigeonhole principle again, there are⌈
7
6

⌉
= 2

of these maximal pairs (na,ma, la), (nb,mb, lb) such that the distance |ma−mb| is at most 2
3L.

According to Lemma 5, both S[na..i− 1] and S[nb..i− 1] have the same minimal period
length. Hence, the corresponding maximal repeats are of the form paP

3sara and pbP 3sbrb
where paP 3 and pbP

3 are the |P |-periodic parts left of i, the substrings sa and sb are
the maximal |P |-periodic extensions of paP 3 and pbP 3 to the right and ra and rb are the
remaining characters of the maximal repeats.

Since the two |P |-periodic strings paP 3sa and pbP 3sb starting at na and nb overlap at
least by 3|P | and since sa and sb are the maximal |P |-periodic extensions of paP 3 and pbP 3,
respectively, this implies that sa = sb. Therefore, the maximal repeats are of the form
paP

3sra and pbP 3srb.
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Since |ma −mb| ≤ 2
3L holds, we can show that the |P |-periodic strings paP 3s and pbP 3s

starting at the indices ma and mb have at least an overlap of length |P |:
The strings paP 3s and pbP 3s have at least the length 3|P |. Therefore, if P ≥ L

3 holds,
the overlap is at least 3|P | − 2

3L ≥ |P |.
The strings paP 3s and pbP 3s also have at least the length L. Therefore, if P ≤ L

3 holds,
the overlap is at least L− 2

3L = L
3 ≥ |P |.

In either case, the overlap is at least as long as P .
Therefore, the union of the occurrences of paP 3s and pbP 3s starting at ma and mb is

|P |-periodic. This implies that these two occurrences end with the same character.
If the lengths of paP 3s and pbP 3s are different, this implies that both occurrences of the

smaller string starting at the indices na and ma or at the indices nb and mb are preceded by
the same character which is given by the |P |-periodic extension to the left. This, however,
implies that either (na,ma, la) or (nb,mb, lb) is not a maximal pair.

If, on the other hand, the lengths of paP 3s and pbP 3s are equal, the starting indices na
and nb are equal and the starting indices ma and mb are equal as well. This, however, is
only possible if either (na,ma, la) or (nb,mb, lb) is not a maximal pair or if both maximal
pairs are identical.

Since both cases contradict the assumption, the assumption is wrong and the theorem is
therefore true. J

I Corollary 7. Let S be a string. Let q ∈ N≥3 be a natural number and i, j be indices of two
characters in S$.

Then there are at most 12
(

1 + 3 q
log2 q

)
log2 |S| different maximal pairs (nk,mk, lk) such

that for all k
the corresponding maximal repeat S[nk..nk + lk − 1] is not 1

≥2q -highly-periodic and
the indices i and j are contained in the intervals [nk, nk+lk] and [mk,mk+lk], respectively.

Also, there are at most 12
(

1 + 3 q
log2 q

)
(log2 |S|)(zS + 1)(zS + 2) different double-sided

extensions of non- 1
≥2q -highly-periodic maximal repeats.

Proof. Without loss of generality, the inequality q ≤ |S| holds.
If a maximal repeat S[nk..nk + lk] is not 1

≥2q -highly-periodic, then either the longer of
the parts S[nk..i− 1] and S[i..nk + lk − 1] is

not 1
≥q -highly-periodic or

1
≥q -highly-periodic but the corresponding periodicity does not extend to the whole
maximal repeat S[nk..nk + lk].

Therefore, the number of different maximal pairs which fulfill the prerequisites can be
bound by Lemma 3 and Theorem 6 and there are at most

18q(1 + logq |S|) + 12(log2 |S|) ≤ 36q(logq |S|) + 12(log2 |S|) = 12
(

1 + 3 q

log2 q

)
log2 |S|

of those maximal pairs.
Summing up over the first indices i ≤ j of the zS + 1 LZ77-factors of S$ yields that there

are at most
zS+1∑
i=1

zS+1∑
j=i

12
(

1 + 3 q

log2 q

)
log2 |S| = 6

(
1 + 3 q

log2 q

)
log2 |S|(zS + 1)(zS + 2)

substantially different non- 1
≥2q -highly-periodic maximal pairs.

Hence, there are at most 12
(

1 + 3 q
log2 q

)
(log2 |S|)(zS + 1)(zS + 2) different double-sided

extensions of maximal repeats that are not 1
≥2q -highly-periodic. J



J. Pape-Lange 27:9

For q = 3 this proves that the number of substantially different non- 1
≥6 -highly-periodic

maximal pairs is bounded from above by 41(log2 |S|)(zS + 1)(zS + 2).

4 Highly-Periodic Maximal Pairs

The goal of this section is to prove that in a string S the number of substantially different non-
extendable 1

≥4 -highly-periodic maximal pairs bounded from above by 32(log2 |S|)(zS + 1)2.
Both occurrences of those maximal pairs, including the corresponding maximal repeat

as well as the preceding and succeeding characters, are inside of the two padded maximal
periodic extensions of the corresponding positioned maximal repeats.

Therefore, we will first count the number of substantially different padded maximal
periodic extensions of fourth powers and the number of substantially different padded
maximal periodic extensions of a given fourth power. Afterwards, we will show that each
pair of padded maximal periodic extensions gives rise to at most 4 substantially different
non-extendable 1

≥4 -highly-periodic maximal pairs.
We will need the “Three Squares Lemma” of Crochemore and Rytter presented in [5].

I Lemma 8. Let u, v and w be primitive and let u2, v2 and w2 be prefixes/suffixes of S
with |u| < |v| < |w|.

Then |w| > |u|+ |v| holds.

I Lemma 9. Let S be a string and i be an index of a character in S$.
Then there are at most 4 blog2 |S|c substantially different padded maximal periodic exten-

sions S[l − 1..r + 1] of fourth powers such that l − 1 < i ≤ r + 1.

Proof. In this proof we will only count the number of padded maximal periodic extensions
S[l − 1..r + 1] of fourth powers such that at least half of the interval [l, r] is smaller than i,
i.e. l + r−l+1

2 ≤ i. The other case l + r−l+1
2 ≥ i is symmetrical.

Since S[l..r] is at least a fourth power, the string S[l..i− 1] is at least a square. Therefore,
two maximal periodic extensions S[l, r] and S[l′, r′] of fourth powers have an overlap of least
twice the smaller minimal period length. Therefore, if their minimal period lengths are equal,
the padded maximal periodic extensions S[l− 1, r + 1] and S[l′ − 1, r′ + 1] are copies of each
other. Conversely, if S[l − 1, r + 1] and S[l′ − 1, r′ + 1] are substantially different, then they
have different minimal period lengths as well.

This implies that the number of substantially different padded maximal periodic extensions
S[l − 1, r + 1] of fourth powers such that at least half of the interval [l, r] is smaller than i is
bounded from above by the number of different primitively rooted squares that are suffixes
of S[1..i− 1].

The three squares lemma implies that for three primitively rooted squares which are
suffixes of each other, the largest square is more than twice as long as the smallest square.

Since the smallest square has at least two characters and the largest square has at most
|S| characters, there are at most 2 blog2 |S|c primitively rooted squares which are suffixes of
S[1..i− 1].

Therefore, there are at most 2 blog2 |S|c padded maximal periodic extensions S[l−1, r+1]
of fourth powers such that at least half of the interval [l, r] is smaller than i, i.e. l+ r−l+1

2 ≤ i.
This implies that the number of padded maximal periodic extensions of fourth powers

S[l − 1, r + 1] such that l − 1 < i ≤ r + 1 is bounded from above by 4 blog2 |S|c. J

The proof also allows another useful conclusion.
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x a b a b a b a b y a b a b a b a z

Figure 2 The string S = xababababyabababaz with two maximal periodic extensions of the
substring ab and the three non-extendable maximal pairs with the root ab. The maximal periodic
extensions are the two green substrings and each maximal pair is represented by the two occurrences
of its maximal repeat.

I Corollary 10. Let S be a string and i be an index of a character in S$. Furthermore, let
P be a 1

≥4 -highly-periodic substring of S.
Then there are at most 2 substantially different padded maximal periodic extensions

S[l − 1, r + 1] of cyclic permutations of P such that l − 1 < i ≤ r + 1.

Combining the previous corollary with the lemma before gives rise to an upper bound of
the pairs of corresponding maximal periodic extensions.

I Lemma 11. Each pair of padded maximal periodic extensions of fourth powers which are
up to cyclic rotation identical gives rise to at most 4 substantially different non-extendable

1
≥4 -highly-periodic maximal pairs.

Proof. Each maximal pair has to be a prefix of the one padded maximal periodic extension
and a suffix of the other padded maximal periodic extension, otherwise both corresponding
positioned maximal repeats would be preceded or succeeded by the same character. There
are two choices of which padded maximal periodic extension the corresponding positioned
maximal repeat is a prefix.

For a fixed choice, the length of the maximal repeat is fixed, up to a multiple of the
period length. Therefore there are only two possible lengths such that at least one of the
positioned maximal repeat is not extendable.

Figure 2 shows a string with two maximal periodic extension of the substring ab and the
3 different non-extendable maximal pairs which arise from these extensions. J

Multiplying these upper bounds leads to the wanted upper bound:

I Corollary 12. Let S be a string.
Then there are at most 8(log2 |S|)(zS +1)2 substantially different pairs of padded maximal

periodic extensions of fourth powers which are up to cyclic rotation identical.
Also, there are at most 32(log2 |S|)(zS + 1)2 substantially different non-extendable 1

≥4 -
highly-periodic maximal pairs.

5 RLBWT and Maximal Pairs

The goal of this section is to prove that the runs of the RLBWT of a string S correspond to
a subset of the maximal pairs, whose size can be bound from above by 73(log2 |S|)(zS + 2)2.

Since we are interested in the number of runs, it is useful to observe the indices i where a
new run starts. These are exactly the index 1 and the indices i with S[πi−1] 6= S[πi].

Since $ occurs exactly once in S$, the strings S[πi−1 + 1..|S|+ 1] and S[πi + 1..|S|+ 1]
have a mismatch. Also, since S[πi−1 + 1..|S|+ 1]S[1..πi−1] is lexicographically smaller than
S[πi + 1..|S|+ 1]S[1..πi], the string S[πi−1 + 1..|S|+ 1] is lexicographically strictly smaller
than S[πi + 1..|S|+ 1].
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Let m be the index of the first mismatch of these two strings. With this notation, the
strings S[πi−1 + 1..πi−1 +m− 1] and S[πi + 1..πi +m− 1] are equal and their predecessors
as well as their successors are different. Therefore, if m > 0, they form a maximal pair. If
m = 0, then S[πi−1 + 1] < S[πi + 1]. This, however can only occur |Σ| times.

On the other hand, since S[πi−1 + 1..πi−1 +m] is smaller than S[πi + 1..|S|+ 1]S[1..πi]
and S[πi + 1..πi +m] is larger than S[πi−1 + 1..|S|+ 1]S[1..πi−1], this maximal pair can only
correspond to this pair (πi−1, πi) of lexicographically neighbored cyclic permutations and
the maximal pairs corresponding to different pairs (πj−1, πj) of lexicographically neighbored
cyclic permutations are substantially different.
I Remark 13. Belazzougui et al. show in Theorem 1 of [1] that the number of runs in the
Burrows-Wheeler transform is even bounded in the number of right extensions of the maximal
repeats. However, maximal pairs are easier to handle then right extensions of maximal
repeats and we only lose a factor Σ in the worst-case by not using the right extensions.

However, while the number of maximal repeats and thereby the number of nodes in the
CDAWG can be Θ(qz3) for a suitable set of strings, the Burrows-Wheeler transform does
not suffer from high powers as the CDAWG does:

I Lemma 14. Let S be a string and let i be an index at which a new run in the Burrows-
Wheeler transform starts.

Then the maximal pair corresponding to the pair (πi−1, πi) of lexicographically neighbored
cyclic permutations is not extendable.

Proof. Since a maximal pair is not extendable if at least one of its corresponding positioned
maximal repeats is not extendable, we have to prove that at least one of the positioned
maximal repeats S[πi−1 + 1..πi−1 +m− 1] and S[πi + 1..πi +m− 1] is not extendable. Let
p be the minimal period length of this maximal repeat.

Assume that the maximal p-periodic extensions of both occurrences S[πi−1+1..πi−1+m−1]
and S[πi+1..πi+m−1] contain at least p+1 additional characters. In this proof, we will show
that under this assumption that there is a cyclic permutation S[w + 1..|S|+ 1]S[1..w] of S$
which is lexicographically between S[πi−1 + 1..|S|+ 1]S[1..πi−1] and S[πi + 1..|S|+ 1]S[1..πi].

If the maximal p-periodic extension of S[πi−1 + 1..πi−1 +m− 1] extends this occurrence
to the left, the equation S[πi−1] = S[πi−1 + p] and thereby

S[πi] 6= S[πi−1] = S[πi−1 + p] = S[πi + p]

holds. Therefore, the maximal p-periodic extension of S[πi + 1..πi +m− 1] does not extends
this string to the left. This implies that at most one of the two maximal p-periodic extensions
of the occurrences S[πi−1 + 1..πi−1 + m − 1] and S[πi + 1..πi + m − 1] does extend the
occurrence to the left.

Similarly, at most one of those occurrences is extended to the right by the maximal
p-periodic extension.

Since, by assumption, both occurrences are p-periodically extendable, exactly one oc-
currence has to be p-periodically extendable to the left and exactly one occurrence has to
be p-periodically extendable to the right. By symmetry we can assume without loss of
generality that S[πi−1 + 1..πi−1 + m − 1] is p-periodically extendable to the left and that
S[πi + 1..πi +m− 1] is p-periodically extendable to the right.

Hence, S[πi−1 − p..πi−1 + m − 1] and S[πi + 1..πi + m + p] are p-periodic. Also, by
definition of the Burrows-Wheeler transform, the inequality S[πi−1 +m] < S[πi +m] holds.

Combining the periodicity with this inequality yields

S[πi−1 + 1..πi−1 +m− 1] = S[πi−1 + 1− p..πi−1 +m− 1− p]
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and

S[πi−1 +m] < S[πi +m] = S[πi +m− p] = S[πi−1 +m− p]

which imply

S[πi−1 + 1..|S|+ 1]S[1..πi−1] < S[πi−1 + 1− p..|S|+ 1]S[1..πi−1 − p].

Similarly, we get

S[πi−1 + 1− p..πi−1 +m− 1] = S[πi + 1..πi +m− 1 + p]

and

S[πi−1 +m] < S[πi +m] = S[πi +m+ p]

which imply

S[πi−1 + 1− p..|S|+ 1]S[1..πi−1 − p] < S[πi + 1..|S|+ 1]S[1..πi].

Since S[πi−1 + 1−p..|S|+ 1]S[1..πi−1−p] is lexicographically between the cyclic permuta-
tions S[πi−1 + 1..|S|+ 1]S[1..πi−1] and S[πi + 1..|S|+ 1]S[1..πi], these two strings are not
neighbors with regard to the Burrows-Wheeler transform. This contradicts the assumption
and thereby concludes the proof. J

Therefore, the positioned maximal repeats of the associated maximal pairs corresponding
to the RLBWT are either not highly-periodic or, if they are highly-periodic, the period
cannot be extended by more than a period length. This implies the following corollary and
thereby leads to another proof of the Burrows-Wheeler conjecture:

I Corollary 15. Let S be a string.
Then, there are at most 73(log2 |S|)(zS + 2)2 runs in the RLBWT.

Proof. We count the number of index-pairs (πi−1, πi) where a new run starts.
Either (πi−1, πi) corresponds to
the empty maximal pair (there are at most |Σ| of such (πi−1, πi)),
a non- 1

≥6 -highly-periodic maximal pair (there are at most 41(log2 |S|)(zS + 1)(zS + 2) of
such (πi−1, πi)) or
a 1
≥4 -highly-periodic non-extendable maximal pair (there are at most 32(log2 |S|)(zS +1)2

of such (πi−1, πi)).
We also have to count one additional run for i = 0.

Summing up shows that there are at most 73(log2 |S|)(zS + 2)2 runs in the RLBWT. J

6 Conclusion

This paper proved that of the potentially O(qz3) substantially different maximal pairs in a
string, it is sufficient to understand a subset containing at most 73(log2 |S|)(zS +2)2 maximal
pairs.

It seems therefore likely that it is possible to merge the nodes of the CDAWG which
correspond maximal repeats of the same base and get a new data structure which is almost
as universal and intuitive as the CDAWG but only contains O((log |S|)(zS)2) arcs.
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Also, the proofs presented in this paper do not use the underlying structure of the string.
If the substrings of S and the reversed string Srev are also highly compressible and have less
than z′ LZ77-factors each, it should be possible to prove that the number of runs in the
RLBWT is bounded from above by O(z′(zS)2).

Thereby, it might be possible to derive an upper bound for the runs in the RLBWT
which is only dependent on the number of LZ77-factors. Since the strings used to prove the
asymptotic tightness for the upper bound rS ∈ O

(
δS log δS max

(
1, log n

δS log δS

))
in [8] have

zS ∈ Ω
(
δS log2

n
δS

)
LZ77-factors, such a result does not violate the asymptotic tightness.
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Abstract
Many consensus string problems are based on Hamming distance. We replace Hamming distance
by the more flexible (e.g., easily coping with different input string lengths) dynamic time warping
distance, best known from applications in time series mining. Doing so, we study the problem of
finding a mean string that minimizes the sum of (squared) dynamic time warping distances to a
given set of input strings. While this problem is known to be NP-hard (even for strings over a
three-element alphabet), we address the binary alphabet case which is known to be polynomial-time
solvable. We significantly improve on a previously known algorithm in terms of worst-case running
time. Moreover, we also show the practical usefulness of one of our algorithms in experiments with
real-world and synthetic data. Finally, we identify special cases solvable in linear time (e.g., finding a
mean of only two binary input strings) and report some empirical findings concerning combinatorial
properties of optimal means.
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1 Introduction

Consensus problems are an integral part of stringology. For instance, in the frequently studied
Closest String problem one is given k strings of equal length and the task is to find a
center string that minimizes the maximum Hamming distance to all k input strings. Closest
String is NP-hard even for binary alphabet [11] and has been extensively studied in context
of approximation and parameterized algorithmics [6, 9, 7, 8, 13, 15, 17, 20]. Notably, when
one wants to minimize the sum of distances instead of the maximum distance, the problem is
easily solvable in linear time by taking at each position a letter that appears most frequently
in the input strings.

Hamming distance, however, is quite limited in many application contexts; for instance,
how to define a center string in case of input strings that do not all have the same length?
In context of analyzing time series (basically strings where the alphabet consists of rational
numbers), the “more flexible” dynamic time warping distance [18] enjoys high popularity and

© Nathan Schaar, Vincent Froese, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.schaar@campus.tu-berlin.de
mailto:vincent.froese@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
https://doi.org/10.4230/LIPIcs.CPM.2020.28
https://www.akt.tu-berlin.de/menue/software/
https://www.akt.tu-berlin.de/menue/software/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


28:2 Fast Binary DTW-Mean

can be computed for two input strings in subquadratic time [12, 14], essentially matching
corresponding conditional lower bounds [1, 3]. Roughly speaking (see Section 2 for formal
definitions and an example), measuring the dynamic time warping distance (dtw for short)
can be seen as a two-step process: First, one aligns one time series with the other (by
stretching them via duplication of elements) such that both time series end up with the
same length. Second, one then calculates the Euclidean distance of the aligned time series
(recall that here the alphabet consists of numbers). Importantly, restricting to the binary
case, the dtw distance of two time series can be computed in O(n1.87) time [1], where n is
the maximum time series length (a result that will also be relevant for our work).

With the dtw distance at hand, the most fundamental consensus problem in this (time
series) context is, given k input “strings” (over rational numbers), compute a mean string that
minimizes the sum of (squared) dtw distances to all input strings. This problem is known as
DTW-Mean in the literature and only recently has been shown to be NP-hard [4, 5]. For
the most basic case, namely binary alphabet (that is, input and output are binary), however,
the problem is known to be solvable in O(kn3) time [2]. By way of contrast, if one allows
the mean to contain any rational numbers, then the problem is NP-hard even for binary
inputs [5]. Moreover, the problem is also NP-hard for ternary input and output [4].

Formally, in this work we study the following problem:

Binary DTW-Mean (BDTW-Mean)
Input: Binary strings s1, . . . , sk of length at most n and c ∈ Q.
Question: Is there a binary string z such that F (z) :=

∑k
i=1 dtw(si, z)2 ≤ c?

Herein, the dtw function is formally defined in Section 2. The study of the special case of
binary data may occur when one deals with binary states (e.g., switching between the active
and the inactive mode of a sensor); binary data were recently studied in the dynamic time
warping context [16, 19]. Clearly, binary data can always be generated from more general
data by “thresholding”.

Our main theoretical result is to show that BDTW-Mean can be solved in O(kn1.87)
and O(k(n+m(m− µ))) time, respectively, where m is the maximum and µ is the median
condensation length of the input strings (the condensation of a string is obtained by repeatedly
removing one of two identical consecutive elements). While the first algorithm, relies on an
intricate “blackbox-algorithm” for a certain number problem from the literature (which so far
was never implemented), the second algorithm (which we implemented) is more directly based
on combinatorial arguments. Anyway, our new bounds improve on the standard O(kn3)-time
bound [2]. Moreover, we also experimentally tested our second algorithm and compared it to
the standard one, clearly outperforming it (typically by orders of magnitude) on real-world
and on synthetic instances. Further theoretical results comprise linear-time algorithms for
special cases (two input strings or three input strings with some additional constraints).
Further empirical results relate to the typical shape of a mean.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We consider binary strings x = x[1]x[2] . . . x[n] ∈ {0, 1}n.
We denote the length of x by |x| and we also denote the last symbol x[n] of x by x[−1].
For 1 ≤ i ≤ j ≤ |x|, we define the substring x[i, j] := x[i] . . . x[j]. A maximal substring of
consecutive 1’s (0’s) in x is called a 1-block (0-block). The i-th block of x (from left to right)
is denoted x(i). A string x is called condensed if no two consecutive elements are equal,
that is, every block is of size 1. The condensation of x is denoted x̃ and is defined as the
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Figure 1 An optimal warping path for the strings x = 00101100101 (vertical axis) and y =
0001100111 (horizontal axis). Black cells have local cost 1. The string x consists of eight blocks
with sizes 2,1,1,2,2,1,1,1 and y consists of four blocks with sizes 3,2,2,3. An optimal warping path
has to pass through (8− 4)/2 = 2 non-neighboring blocks of the six inner blocks of x.

condensed string obtained by removing one of two equal consecutive elements of x until the
remaining series is condensed. Note that the condensation length |x̃| equals the number of
blocks in x.

The dynamic time warping distance measures the similarity of two strings using non-linear
alignments defined via so-called warping paths.

I Definition 1. A warping path of order m× n is a sequence p = (p1, . . . , pL), L ∈ N, of
index pairs p` = (i`, j`) ∈ [m]× [n], 1 ≤ ` ≤ L, such that
(i) p1 = (1, 1),
(ii) pL = (m,n), and
(iii) (i`+1 − i`, j`+1 − j`) ∈ {(1, 0), (0, 1), (1, 1)} for each ` ∈ [L− 1].

A warping path can be visualized within an m× n “warping matrix” (see Figure 1). The
set of all warping paths of order m×n is denoted by Pm,n. A warping path p ∈ Pm,n defines
an alignment between two strings x ∈ Qm and y ∈ Qn in the following way: A pair (i, j) ∈ p
aligns element xi with yj with a local cost of (xi − yj)2. The dtw distance between two
strings x and y is defined as

dtw(x, y) := min
p∈Pm,n

√ ∑
(i,j)∈p

(xi − yj)2.

It is computable via standard dynamic programming in O(mn) time1 [18], with recent
theoretical improvements to subquadratic time [12, 14].

3 DTW on Binary Strings

We briefly discuss some known results about the dtw distance between binary strings since
these will be crucial for our algorithms for BDTW-Mean.

1 Throughout this work, we assume that all arithmetic operations can be carried out in constant time.
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Abboud et al. [1, Section 5] showed that the dtw distance of two binary strings of length
at most n can be computed in O(n1.87) time. They obtained this result by reducing the
dtw distance computation to the following integer problem.

Min 1-Separated Sum (MSS)
Input: A sequence (b1, . . . , bm) of m positive integers and an integer r ≥ 0.
Task: Select r integers bi1 , . . . , bir with 1 ≤ i1 < i2 < · · · < ir ≤ m and ij < ij+1 − 1

for all 1 ≤ j < r such that
∑r
j=1 bij is minimized.

The integers of the MSS instance correspond to the block sizes of the input string which
contains more blocks.

I Theorem 2 ([1, Theorem 8]). Let x ∈ {0, 1}m and y ∈ {0, 1}n be two binary strings such
that x[1] = y[1], x[m] = y[n], and |x̃| ≥ |ỹ|. Then, dtw(x, y)2 equals the sum of a solution
for the MSS instance

(
(|x(2)|, . . . , |x(|x̃|−1)|), (|x̃| − |ỹ|)/2

)
.

The idea behind Theorem 2 is that exactly (|x̃| − |ỹ|)/2 non-neighboring blocks of x are
misaligned in any warping path (note that |x̃| − |ỹ| is even since x and y start and end with
the same symbol). An optimal warping path can thus be obtained from minimizing the
sum of block sizes of these misaligned blocks. For example, in Figure 1 the dtw distance
corresponds to a solution of the MSS instance ((1, 1, 2, 2, 1, 1), 2).

Abboud et al. [1, Theorem 10] showed how to solve MSS in O(n1.87) time, where n =∑m
i=1 bi. They gave a recursive algorithm that, on input ((b1, . . . , bm), r), outputs four

lists C00, C0∗, C∗0, and C∗∗, where, for t ∈ {0, . . . , r},
C∗∗[t] is the sum of a solution for the MSS instance ((b1, . . . , bm), t),
C0∗[t] is the sum of a solution for the MSS instance ((b2, . . . , bm), t),
C∗0[t] is the sum of a solution for the MSS instance ((b1, . . . , bm−1), t), and
C00[t] is the sum of a solution for the MSS instance ((b2, . . . , bm−2), t).

Note that C∗∗[r] yields the solution. We will make use of their algorithm when solving
BDTW-Mean. We will also use the following simple dynamic programming algorithm for
MSS which is faster for large input integers.

I Lemma 3. Min 1-Separated Sum is solvable in O(mr) time.

Proof. Let ((b1, . . . , bm), r) be an MSS instance. We define a dynamic programming tableM
as follows: For each i ∈ [m] and each j ∈ {0, . . . ,min(r, di/2e)}, M [i, j] is the sum of a
solution of the subinstance ((b1, . . . , bi), j). Clearly, it holds M [i, 0] = 0 and M [i, 1] =
min{b1, . . . , bi} for all i. Further, it holds M [3, 2] = b1 + b3. For all i ∈ {4, . . . ,m}
and j ∈ {2, . . . ,min(r, di/2e)}, the following recursion holds

M [i, j] = min(bi +M [i− 2, j − 1],M [i− 1, j]).

Hence, the table M can be computed in O(mr) time. J

Note that the above algorithms only compute the dtw distance between binary strings with
equal starting and ending symbol. However, it is an easy observation that the dtw distance
of arbitrary binary strings can recursively be obtained from this via case distinction on which
first and/or which last block to misalign.

I Observation 4 ([1, Claim 6]). Let x ∈ {0, 1}m, y ∈ {0, 1}n with m′ := |x̃| ≥ n′ := |ỹ|.
Further, let a := |x(1)|, a′ := |x(m′)|, b := |y(1)|, and b′ := |y(n′)|. The following holds:
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If x[1] 6= y[1], then

dtw(x, y)2 =


max(a, b), m′ = n′ = 1
a+ dtw(x[a+ 1,m], y)2, m′ > n′ = 1
min

(
a+ dtw(x[a+ 1,m], y)2, b+ dtw(x, y[b+ 1, n])2) , n′ > 1

.

If x[1] = y[1] and x[m] 6= y[n], then

dtw(x, y)2 =
{
a′ + dtw(x[1,m− a′], y)2, n′ = 1
min

(
a′ + dtw(x[1,m− a′], y)2, b′ + dtw(x, y[1, n− b′])2) , n′ > 1

.

For condensed strings, Brill et al. [2] derived the following useful closed form for the
dtw distance (which basically follows from Observation 4 and Theorem 2).

I Lemma 5 ([2, Lemma 1 and 2]). For a condensed binary string x and a binary string y
with |ỹ| ≤ |x|, it holds that

dtw(x, y)2 =


d(|x| − |ỹ|)/2e, x1 = y1

2, x1 6= y1 ∧ |x| = |ỹ|
1 + b(|x| − |ỹ|)/2c, x1 6= y1 ∧ |x| > |ỹ|

.

Note that Lemma 5 implies that one can compute the dtw distance in constant time when
the condensation lengths of the inputs are known and the string with longer condensation
length is condensed.

Our key lemma now states that the dtw distances between an arbitrary fixed string and
all condensed strings of shorter condensation length can also be computed efficiently.

I Lemma 6. Let s ∈ {0, 1}n with ` := |s̃|. Given ` and the block sizes b1, . . . , b` of s, the
dtw distances between s and all condensed strings of lengths `′, . . . , ` for some given `′ ≤ `
can be computed in
(i) O(n1.87) time and in
(ii) O(`(`− `′)) time, respectively.

Proof. Let x be a condensed string of length i ∈ {`′, . . . , `}. Observation 4 and Theorem 2
imply that we essentially have to solve MSS on four different subsequences of block sizes of s
(depending on the first and last symbol of x) in order to compute dtw(s, x). Namely, the four
cases are (b2, . . . , b`−1), (b3, . . . , b`−1), (b2, . . . , b`−2), and (b3, . . . , b`−2). Let r := d(`− `′)/2e

(i) We run the algorithm of Abboud et al. [1, Theorem 10] on the instance ((b2, . . . , b`−1), r)
to obtain in O(n1.87) time the four lists Cαβ , for α, β ∈ {0, 1}, where Cαβ contains the
solutions of ((b2+α, . . . , b`−1−β), r′) for all r′ ∈ {0, . . . , r}. From these four lists, we can
compute the requested dtw distances (using Observation 4) in O(`) time.

(ii) We compute the solutions of the four above MSS instances using Lemma 3. For each
α, β ∈ {0, 1}, let Mαβ be the dynamic programming table computed in O(`(` − `′)) time
for the instance ((b2+α, . . . , b`−1−β), r). Again, we can compute the requested dtw distances
from these four tables in O(`) time (using Observation 4). J

4 More Efficient Solution of BDTW-Mean

Brill et al. [2] gave an O(kn3)-time algorithm for BDTW-Mean. The result is based on
showing that there always exists a condensed mean of length at most n + 1. Thus, there
are 2(n+1) candidate strings to check. For each candidate, one can compute the dtw distance
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to every input string in O(kn2) time. It is actually enough to only compute the dtw distance
for the two length-(n + 1) candidates to all k input strings since the resulting dynamic
programming tables also yield all the distances to shorter candidates. That is, the running
time can actually be bounded in O(kn2).

We now give an improved algorithm. To this end, we first show the following improved
bounds on the (condensation) length of a mean.

I Lemma 7. Let s1, . . . , sk be binary strings with |s̃1| ≤ · · · ≤ |s̃k| and let z be a mean of
these k strings, that is,

z ∈ arg min
x∈{0,1}∗

k∑
i=1

dtw(si, x)2.

Then, it holds µ − 2 ≤ |z̃| ≤ m + 1, where µ := |s̃dk/2e| is the median condensation length
and m := |s̃k| is the maximum condensation length.

Proof. It suffices to show the claimed bounds for condensed means. Since dtw(x̃, y) ≤
dtw(x, y) holds for all strings x, y [2, Proposition 1], the bounds also hold for arbitrary
means.

The upper bound m + 1 can be derived from Lemma 5. Let x be a condensed string
of length |x| ≥ m + 2 and let x′ := x[1,m]. If |x| > m + 2, then dtw(x′, si)2 < dtw(x, si)2

holds for every i ∈ [k], which implies F (x′) =
∑k
i=1 dtw(si, x′)2 <

∑k
i=1 dtw(si, x)2 = F (x).

Hence, x is not a mean. If |x| = m+ 2, then dtw(x′, si)2 ≤ dtw(x, si)2 holds for every i ∈ [k],
that is, F (x′) ≤ F (x). If F (x′) < F (x), then x is clearly not a mean. If F (x′) = F (x), then
dtw(x′, si)2 = dtw(x, si)2 holds for all i ∈ [k]. In fact, dtw(x′, si)2 = dtw(x, si)2 only holds
if |s̃i| = m and si[1] 6= x[1], in which case dtw(x, si)2 = 2. Thus, we have F (x) = 2k and
s̃1 = s̃2 = · · · = s̃k. But then s̃1 is clearly the unique mean (with F (s̃1) = 0).

For the lower bound, let x be a condensed string of length ` < µ − 2 and let x′ :=
x[1] . . . x[`]x[`− 1]x[`]. Then, for every si with |s̃i| ≤ ` (of which there are less than dk/2e
since ` < µ), it holds dtw(x′, si)2 ≤ dtw(x, si)2 + 1 (by Lemma 5).

Now, for every si with |s̃i| > ` + 2 (of which there are at least dk/2e since ` + 2 < µ),
it holds dtw(x′, si)2 ≤ dtw(x, si)2 − 1. This is easy to see from Theorem 2 for the case
that si[1] = x′[1] and si[−1] = x′[−1] holds since the number of misaligned blocks of si
decreases by at least one. From this, Observation 4 yields the other three possible cases
of starting and ending symbols since the sizes of the first and last block of x and of x′ are
clearly all the same (one).

It remains to consider input strings si with ` < |s̃i| ≤ ` + 2. We show that in this
case dtw(x′, si)2 ≤ dtw(x, si)2 holds. Let |s̃i| = ` + 2. Note that then either x′[1] = si[1]
and x′[−1] = si[−1] holds or x′[1] 6= si[1] and x′[−1] 6= si[−1] holds. In the former case, it
clearly holds dtw(x′, si)2 = 0 by Lemma 5. In the latter case, we clearly have dtw(x, si)2 ≥ 2,
and, by Lemma 5, we have dtw(x′, si)2 = 2. Finally, let |s̃i| = ` + 1 and note that then
either x′[1] = si[1] and x′[−1] 6= si[−1] holds or x′[1] 6= si[1] and x′[−1] = si[−1] holds. Thus,
we clearly have dtw(x, si)2 ≥ 1. By Lemma 5, we have dtw(x′, si)2 = 1.

Summing up, we obtain F (x′) ≤ F (x) + a − b, where a = |{i ∈ [k] | |s̃i| < `}| < dk/2e
and b = |{i ∈ [k] | |s̃i| > `+ 2}| ≥ dk/2e. That is, F (x′) < F (x) and x is not a mean. J

Note that the length bounds in Lemma 7 are tight. For the upper bound, consider the two
strings 000 and 111 having the two means 01 and 10. For the lower bound, consider the
seven strings 0, 0, 0, 101, 101, 010, 010 with the unique mean 0.
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Lemma 7 upper-bounds the number of mean candidates we have to consider in terms of
the condensation lengths of the inputs. In order to compute the dtw distances between mean
candidates and input strings, we can now use Lemma 6. We arrive at the following result.

I Theorem 8. Let s1, . . . , sk be binary strings with |s̃1| ≤ · · · ≤ |s̃k| and n := maxj=1,...,k |sj |,
µ := |s̃dk/2e|, and m := |s̃k|. The condensed means of s1, . . . , sk can be computed in
(i) O(kn1.87) time and in
(ii) O(k(n+m(m− µ))) time.

Proof. From Lemma 7, we know that there are O(m − µ) many candidate strings to
check. First, in linear time, we determine the block lengths for each sj . Now, let x be a
candidate string, that is, x is a condensed binary string with µ − 2 ≤ |x| ≤ m + 1. We
need to compute dtw(x, sj)2 for each j = 1, . . . , k. Consider a fixed string sj . For all
candidates x with|x| ≥ |s̃j |, we can simply compute dtw(x, sj)2 in constant time using
Lemma 5. For all x with |x| < |s̃j |, we can use Lemma 6. Thus, overall, we can compute the
dtw distances between all candidates and all input strings in O(kn1.87) time, or alternatively
in O(km(m − µ)) time. Finally, we determine the candidates with the minimum sum of
dtw distances in O(k(m− µ)) time. J

We remark that similar results also hold for the related problems Weighted Binary
DTW-Mean, where the objective is to minimize F (z) :=

∑k
i=1 wi dtw(si, z)2 for some

wi ≥ 0, and Binary DTW-Center with F (z) := maxi=1,...,k dtw(si, z)2 (that is, the dtw
version of Closest String). It is easy to see that also in these cases there exists a condensed
solution. Moreover, the length is clearly bounded between the minimum and the maximum
condensation length of the inputs. Hence, analogously to Theorem 8, we obtain the following.

I Corollary 9. Weighted Binary DTW-Mean and Binary DTW-Center can be solved
in O(kn1.87) time and in O(k(n+m(m− ν))) time, where m is the maximum condensation
length and ν is the minimum condensation length.

5 Linear-Time Solvable Special Cases

Notably, Theorem 8 (ii) yields a linear-time algorithm when m−µ is constant and also when
all input strings have the same length n and m(m − µ) ∈ O(n). Now, we show two more
linear-time solvable cases.

I Theorem 10. A condensed mean of two binary strings can be computed in linear time.

Proof. Let s1, s2 ∈ {0, 1}∗ be two input strings. We first determine the condensations and
block sizes of s1 and s2 in linear time. Let `i := |s̃i|, for i ∈ [2], and assume that `1 ≤ `2.
In the following, all claimed relations between dtw distances can easily be verified using
Observation 4 (together with Theorem 2) and Lemma 5.

If `1 = `2, then, by Theorem 8 (with µ = m = `1), all condensed means can be computed
in O(`1) time.

If `1 < `2, then s̃2 is a mean. To see this, note first that F (s̃2) = dtw(s1, s̃2)2. Let x
be a condensed string. If |x| < `1, then dtw(s1, x)2 > 0 and dtw(s2, x)2 ≥ dtw(s2, s̃1)2 ≥
dtw(s̃2, s̃1)2 = dtw(s̃2, s1)2. Thus, F (x) > F (s̃2). Similarly, if |x| > `2, then dtw(s1, x)2 ≥
dtw(s1, s̃2)2, dtw(s2, x)2 > 0, and F (x) > F (s̃2). If `1 ≤ |x| < `2, then dtw(s1, x)2 +
dtw(s2, x)2 ≥ dtw(s1, s̃2)2, and thus F (x) ≥ F (s̃2). J

For three input strings, we show linear-time solvability if all strings begin with the same
symbol and end with the same symbol.
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I Theorem 11. Let s1, s2, s3 be binary strings with s1[1] = s2[1] = s3[1] and s1[−1] =
s2[−1] = s3[−1]. A condensed mean of s1, s2, s3 can be computed in linear time.

Proof. We first determine the condensations and block sizes of s1, s2, and s3 in linear time.
Let `i := |s̃i|, for i ∈ [3], and assume `1 ≤ `2 ≤ `3. Note that every mean starts with s1[1]
and ends with s1[−1]. To see this, consider any string x with x[1] 6= s1[1] (or x[−1] 6= s1[−1])
and observe that either removing the first (or last) symbol or adding s1[1] to the front (or
s1[−1] to the end) yields a better F -value. Moreover, it is easy to see that every condensed
mean has length at least `2 since increasing the length of any shorter condensed string by two
increases the dtw distance to s1 by at most one (Lemma 5) and decreases the dtw distances
to s2 and s3 by at least one (Theorem 2).

Note that a mean could be even longer than `2 since further increasing the length by
two increases the dtw distance to s1 and s2 by at most one and could possibly decrease
the dtw distance to s3 by at least two (if a misaligned block of size at least two can
be saved). In fact, we can determine an optimal mean length in O(`3) time by greedily
computing the maximum number ρ of 1-separated (that is, non-neighboring) blocks of size
one among s(2)

3 , . . . , s`3−1
3 . Then there is a mean of length `3 − 2ρ (that is, exactly ρ size-1

blocks of s3 are misaligned). Clearly, any longer condensed string has a larger F -value and
every shorter condensed string has at least the same F -value. J

We strongly conjecture that similar but more technical arguments can be used to obtain a
linear-time algorithm for three arbitrary input strings. For more than three strings, however,
it is not clear how to achieve linear time, since the mean length cannot be greedily determined.

6 Empirical Evaluation

We conducted some experiments to empirically evaluate our algorithms and to observe
structural characteristics of binary means. In Section 6.1 we compare the running times of
our O(k(n+m(m− µ)))-time algorithm (Theorem 8 (ii)) with the standard O(kn2)-time
dynamic programming approach [2] described in the beginning of Section 4. We implemented
both algorithms in Python.2 Note that we did not test the O(kn1.87)-time algorithm since
it uses another blackbox algorithm (which has not been implemented so far) in order to
solve MSS. However, we believe that it is anyway slower in practice. In Section 6.2, we
empirically investigate structural properties of binary condensed means such as the length
and the starting symbol (note that these two characteristics completely define the mean).
All computations have been done on an Intel i7 QuadCore (4.0 GHz).

For our experiments we used the CASAS human activity datasets3 [10] as well as some
randomly generated data. The data in the CASAS datasets are generated from sensors which
detect (timestamped) changes in the environment (for example, a door being opened/closed)
and have previously been used in the context of binary dtw computation [16]. We used
the datasets HH101–HH130 and sampled from them to obtain input strings of different
lengths and sparsities (for a binary string s, we define the sparsity as |s̃|/|s|). For the random
data, the sparsity value was used as the probability that the next symbol in the string will
be different from the last one (hence, the actual sparsities are not necessarily exactly the
sparsities given but very close to those).

2 Source code available at https://www.akt.tu-berlin.de/menue/software/.
3 Available at http://casas.wsu.edu/datasets/.

https://www.akt.tu-berlin.de/menue/software/
http://casas.wsu.edu/datasets/
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Figure 2 Running times of the standard and the fast algorithm on sparse data (sensor D002 in
dataset HH101) in 10-minute intervals (top) and 1-minute intervals (bottom).

6.1 Running Time Comparison

To examine the speedup provided by our algorithm, we compare it with the standard O(kn2)-
time dynamic programming algorithm on (very) sparse real-world data (sparsity ≈ 0.1 and
≈ 0.01) and on sparse (sparsity ≈ 0.1) and dense (sparsity ≈ 0.5) random data, both for
various values of k. Figure 2 shows the running times on real-world data. For sparsity ≈ 0.1,
our algorithm is around 250 times faster than the standard algorithm and for sparsity ≈ 0.01
it is around 350 times faster. Figure 3 shows the running times of the algorithms on larger
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Figure 3 Running times of the standard algorithm for n ≤ 1000 and of the fast algorithm for
n ≤ 5000 on dense random data (top) and for n ≤ 10, 000 on sparse random data (bottom).

random data. For sparsity ≈ 0.1, our algorithm is still twice as fast for n = 10, 000 as the
standard algorithm for n = 1000. These results clearly show that our algorithm is valuable
in practice.

6.2 Structural Observations

We also studied the typical shape of binary condensed means. The questions of interest
are “What is the typical length of a condensed mean?” and “What is the first symbol
of a condensed mean?”. Since the answers to these two questions completely determine a
condensed mean, we investigated whether they can be easily determined from the inputs.
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Figure 4 Difference between median condensed length and calculated mean length depending on
sparsity and number of input strings. For every pair (σ, k) ∈ {0.01, . . . , 1.0} × [60], we calculated
one mean for k strings with sparsity σ. No dot means that the median condensed length and the
mean length did not differ by more than one. A blue (dark gray) dot means they differed slightly
(difference between two and four) and a red (light gray) dot means they differed by at least five.

To answer the question regarding the mean length, we tested how much the actual mean
length differs from the median condensed length. Recall that by Lemma 7 we know that
every condensed mean has length at least µ− 2, where µ is the median input condensation
length. We call this lower bound the median condensed length. We used our algorithm
(Theorem 8 (ii)) to compute condensed means on random data with sparsities 0.01, . . . , 1.0,
k = 1, . . . , 60 and n ≤ 400. Figure 4 clearly shows that on dense data (sparsity > 0.5), the
difference between the mean length and the median condensed length is rarely more than one.
This can be explained by the fact that for dense strings all blocks are usually small such that
there is no gain in making the mean longer than the median condensed length. We remark
that a difference of one appears quite often which might be caused by different starting or
ending symbols of the inputs. In general, for dense data the mean length almost always is at
most the median condensed length plus one, whereas for sparser data the mean can become
longer. As regards the dependency of the mean length on the number k of inputs, it can
be observed that, for sparse data (sparsity < 0.5), the mean length differs even more for
larger k. This may be possible because more input strings increase the probability that there
is one input string with long condensation length and large block sizes. For dense inputs,
there seems to be no real dependence on k.

To answer the question regarding the first symbol of a mean, we tested on random data
with different k values and different sparsities (n ≤ 500), how the starting symbol of the
mean depends on the starting symbols or blocks of the input strings. First, we tested how
often the starting symbol of the mean equals the majority of starting symbols of the input
strings (see Table 1). Then, we also summed up the lengths of all starting 1-blocks and
the lengths of all starting 0-blocks and checked how often the mean starts with the symbol
corresponding to the larger of those two sums (see Table 2). Overall, the starting symbol of
the mean matches the majority of starting symbols or blocks of the input strings in most
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Table 1 Frequency (over 1000 runs) of the first symbol of the mean also being the first symbol
in the majority of input strings.

k/sparsity 0.05 0.1 0.2 0.5 0.8 1
5 76% 79% 82% 82% 82% 80%
15 75% 81% 82% 83% 85% 85%
40 82% 84% 88% 87% 91% 97%

Table 2 Frequency (over 1000 runs) of the first symbol of the mean also being the majority of
symbols throughout the first blocks of input strings.

k/sparsity 0.05 0.1 0.2 0.5 0.8 1
5 69% 73% 75% 83% 85% 80%
15 67% 73% 75% 82% 88% 85%
40 66% 70% 74% 81% 91% 97%

cases (≈ 70–90%, increasing with higher sparsity). For low sparsities, however, taking the
length of starting blocks into account seems to yield less matches. This might be due to
large outlier starting blocks (note that this effect is even worse for larger k).

To sum up the above empirical observations, we conclude that a condensed binary mean
typically has a length close to the median condensed length and starts with the majority
symbol among the starting symbols in the inputs.

7 Conclusion

In this work we made progress in understanding and efficiently computing binary means
of binary strings with respect to the dtw distance. First, we proved tight lower and upper
bounds on the length of a binary (condensed) mean which we then used to obtain fast
polynomial-time algorithms to compute binary means by solving a certain number problem
efficiently. We also obtained linear-time algorithms for k ≤ 3 input strings. Moreover, we
empirically showed that the actual mean length is often very close to the proven lower bound.

As regards future research challenges, it would be interesting to further improve the
running time with respect to the maximum input string length n. This could be achieved
by finding faster algorithms for our “helper problem” Min 1-Separated Sum (MSS). Can
one solve BDTW-Mean in linear time for every constant k (that is, f(k) · n time for some
function f)? Also, finding improved algorithms for the weighted version or the center version
(see Section 4) might be of interest.
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Abstract
Text-to-pattern distance is a fundamental problem in string matching, where given a pattern of
length m and a text of length n, over an integer alphabet, we are asked to compute the distance
between pattern and the text at every location. The distance function can be e.g. Hamming
distance or `p distance for some parameter p > 0. Almost all state-of-the-art exact and approximate
algorithms developed in the past ∼ 40 years were using FFT as a black-box. In this work we
present Õ(n/ε2) time algorithms for (1± ε)-approximation of `2 distances, and Õ(n/ε3) algorithm
for approximation of Hamming and `1 distances, all without use of FFT. This is independent to
the very recent development by Chan et al. [STOC 2020], where O(n/ε2) algorithm for Hamming
distances not using FFT was presented – although their algorithm is much more “combinatorial”,
our techniques apply to other norms than Hamming.
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1 Introduction

Text-to-pattern distance is a generalization of a classical pattern matching by incorporating
the notion of similarity (or dissimilarity) between pattern and locations of text. The problem
is defined in a following way: for a particular distance function between words (interpreted as
vectors), given a pattern of length m and a text of length n, we are asked to output distance
between the pattern and every m-substring of the text. Taking e.g. distance to be Hamming
distance, we are essentially outputting number of mismatches in a classical pattern matching
question (that is, not only detecting exact matches, but also counting how far pattern is
to from being located in a text, at every position). Such a formulation, for a constant-size
alphabet, was first considered by Fischer and Paterson in [12]. The algorithm of [12] uses
O(n logn) time and in substance computes the Boolean convolution of two vectors a constant
number of times. This was later extended to poly(n) size alphabets by Abrahamson in [1, 21]
with O(n

√
m logm) run-time.

The lack of progress in Hamming text-to-pattern distance complexity sparked interest in
searching for relaxations of the problem, with a hope for reaching linear (or almost linear) run-
time. There are essentially two takes on this. First consists of approximation algorithms. Until
very recently, the fastest known (1±ε)-approximation algorithm for computing the Hamming
distances was by Karloff [18]. The algorithm uses random projections from an arbitrary
alphabet to the binary one and Boolean convolution to solve the problem in O(ε−2n log3 n)
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time. Later Kopelowitz and Porat [19] gave a new approximation algorithm improving
the time complexity to O(ε−1n log3 n log ε−1), which was later significantly simplified in
Kopelowitz and Porat [20], with alternative formulation by Uznański and Studený [28].

Second widely considered way of relaxing exact text-to-pattern distance is to report exactly
only the values not exceeding certain threshold value k, the so-called k-mismatch problem.
The very first solution to the k-mismatch problem was shown by Landau and Vishkin in
[23] working in O(nk) time, using essentially a very combinatorial approach of taking O(1)
time per mismatch per alignment using LCP queries. This initiated a series of improvements
to the complexity, with algorithms of complexity O(n

√
k log k) and O((k3 log k +m) · n/m)

by Amir et al. in [3], later improved to O((k2 log k +m poly logm) · n/m) by Clifford et al.
[8] and finally O((m log2m log |Σ|+ k

√
m logm) · n/m) by Gawrychowski and Uznański [13]

(and following poly-log improvements by Chan et al. in [5]).
Moving beyond counting mismatches, we consider `1 distances, where we consider text

and pattern over integer alphabet, and distance is sum of position-wise absolute differences.
Using techniques similar to Hamming distances, the O(n

√
m logm) complexity algorithms

were developed by Clifford et al. and Amir et al. in [6, 4] for reporting all `1 distances. It is a
major open problem whether near-linear time algorithm, or even O(n3/2−ε) time algorithms,
are possible for such problems. A conditional lower bound was shown by Clifford in [7], via a
reduction from matrix multiplication. This means that existence of combinatorial algorithm
with O(n3/2−ε) run-time solving the problem for Hamming distances implies combinatorial
algorithms for Boolean matrix multiplication with O(n3−δ) run-time, which existence is
unlikely. Looking for unconditional bounds, we can state this as a lower-bound of Ω(nω/2)
for Hamming distances pattern matching, where 2 ≤ ω < 2.373 is the matrix multiplication
exponent. Later, complexity of pattern matching under Hamming distance and under `1
distance was proven to be identical (up to poly-logarithmic terms), see Labib et al. and
Lipsky et al. [22, 24].

Once again, existence of such lower-bound spurs interest in approximation algorithm
for `1 distances. Lipsky and Porat [25] gave a deterministic algorithm with a run time of
O( nε2 logm logU), while later Gawrychowski and Uznański [13] have improved the complexity
to a (randomized) O(nε log2 n logm logU), where U is the maximal integer value on the input.
Later [28] has shown that such complexity is in fact achievable (up to poly-log factors) with
a deterministic solution.

Considering other norms, we mention following results. First, that for any p > 0 there is
`p distance (1±ε)-approximated algorithm running in Õ(n/ε) time by [28]. More importantly,
for specific case of p = 2 (or more generally, constant, positive even integer values of p) the
exact problem reduces to computation of convolution, as observed by [25].

Text-to-pattern distance via convolution

Consider the case of computing `2 distances. We are computing output array O[1 .. n−m+1]
such that O[i] =

∑
j(T [i+ j]− P [j])2. However, this is equivalent to computing, for every i

simultaneously, the value of
∑
j T [i+ j]2 +

∑
j P [j]2 − 2

∑
j T [i+ j]P [j]. While the terms∑

j T [i+ j]2 and
∑
j P [j]2 can be easily precomputed in O(n) time, we observe (following

[25]) that
∑
j T [i+ j]P [j] is essentially a convolution. Indeed, let PR denote reverse string

to P . Then∑
j

T [i+ j]P [j] =
∑
j

T [i+ j]PR[m+ 1− j] =
∑

j+k=m+1+i
T [j]P ′[k] = (T ◦PR)[m+ 1 + i].
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Since T ◦ PR can be computed efficiently this provides a very strong tool in constructing
text-to-pattern distance algorithms. Almost all of the discussed results use convolution as
a black-box. For example, by appropriate binary encoding we can compute using a single
convolution the number of Hamming mismatches generated by a single letter c ∈ Σ, which is
a crucial observation leading to computation of exact Hamming distances in O(n

√
n logn)

time. Other results rely on projecting large alphabets into smaller ones, e.g. [18, 20, 28].
Convolution over integers is computed by FFT in O(n logn) time. This requires actual

embedding of integers into field, e.g. Fp or C. This comes at a cost, if e.g. we were to consider
text-to-pattern distance over (non-integer) alphabets that admit only field operations, e.g.
matrices or geometric points. Convolution can be computed using “simpler” set of operations,
that is just with ring operations in e.g. Zp using Toom-Cook multiplication [29], which is
a generalization of famous divide-and-conquer Karatsuba’s algorithm [17]. This however
comes at a cost, with Toom-Cook algorithm taking O(n2

√
2 logn logn) time, and increased

complexity of the algorithm.
Computing convolution comes with another string attached – it is inefficient to com-

pute/sketch in the streaming setting. All of the efficient streaming text-to-pattern distance
algorithms [5, 8, 9, 10, 26, 14, 27] use some form of sketching and are actually avoiding
convolution computation. The reason for this is that convolution does not admit efficient
sketching schemes other than with additive error, that is any algorithm based on convolution
is supposed to make the same error of estimation in small and large distance regime.

Our results

We present approximation algorithm for computing the `2 text-to-pattern distance in Õ(n/ε2)
time, where Õ hides poly logn terms. Our algorithm is convolution-avoiding, and in fact it
uses mostly additions and subtractions in its core part (some non-ring operations are necessary
for output-scaling and hashing). We thus claim our algorithm to be more “combinatorial”,
in the sense that it does not rely on field embedding and FFT computation. Our algorithm
is also first non-trivial algorithm for text-to-pattern distance computation with other norms
(than Hamming, which was presented recently in [5]).

I Theorem 1. Text-to-pattern `2 distances can be approximated by an algorithm using
only basic arithmetic operations and not using convolution. The approximation is 1 ± ε
multiplicative with high probability, computed in O(n log3 n

ε2 ) time.

This mirrors the recent development of [5] where a combinatorial algorithm for Hamming
distances was presented with O(n/ε2) run-time. However, our techniques are general enough
so that we can construct algorithm for `1 norm (and Hamming), however with Õ(n/ε3)
run-time.

I Theorem 2. Text-to-pattern Hamming distances can be approximated by an algorithm
using only basic arithmetic operations and not using convolution. The approximation is 1± ε
multiplicative with high probability, computed in O(n log4 n

ε3 ) time.

I Theorem 3. Text-to-pattern `1 distances over alphabet [u] for some constant u = poly(n)
can be approximated by an algorithm using only basic arithmetic operations and not using
convolution. The approximation is 1 ± ε multiplicative with high probability, computed in
O(n log2 n(log2 n+log4 u)

ε3 ) time.

We present two novel techniques, to our knowledge never used previously in this setting.
First, we show that a “mild” dimensionality reduction (linear map reducing from dimension
2d to d, while preserving `2 norm) can be used to repeatedly compress word, and produce
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sketches for its every m-subword. Second, we show an approximate embedding of `1 space
into `22, that can be efficiently computed. We believe our techniques are of independent
interest, both to stringology and general algorithmic communities.

2 Definitions and preliminaries

Distance between strings

Let X = x1x2 . . . xn and Y = y1y2 . . . yn be two strings. We define their `2 distance as

‖X − Y ‖ =
(∑

i

|xi − yi|2
)1/2

.

More generally, for any p > 0, we define their `p distance as

‖X − Y ‖p =
(∑

i

|xi − yi|p
)1/p

.

Particularly, the `1 distance is known as the Manhattan distance. By a slight abuse of
notation, we define the `0 (Hamming distance) to be

‖X − Y ‖0 =
∑
i

|xi − yi|0 = |{i : xi 6= yi}|,

where x0 = 1 when x 6= 0 and 00 = 0.

Text-to-pattern distance

For text T = t1t2 . . . tn and pattern P = p1p2 . . . pm, the text-to-pattern d-distance is
defined as an array Sd such that, for every i, Sd[i] = d(T [i + 1 .. i + m], P ). Thus, for `p
distance S`p

[i] =
(∑m

j=1 |ti+j − pj |p
)1/p

, while for Hamming distance SHAM[i] = |{j : ti+j 6=
pj}|. Then (1± ε)-approximated distance is defined as an array Sε such that, for every i,
(1− ε) · Sd[i] ≤ Sε[i] ≤ (1 + ε) · Sd[i].

3 Sketching via dimensionality reduction

Sketching is a tool in algorithm design, where a large object is summarized succinctly, so that
some particular property is approximately preserved and some predefined operations/queries
are still supported. Our interest lies on sketches that preserve `2 distances, for which we use
the standard tools from dimensionality reduction.

I Theorem 4 (Johnson-Lindenstrauss [15]). Let P ⊆ Rm be of size m. Then for some
d = O( logm

ε2 ) there is linear map A ∈ Rd×m such that

∀x,y∈P ‖Ax−Ay‖ = (1± ε)‖x− y‖.

A map that preserves `2 distances is useful. Our goal is to construct a linear map such that
we can apply the map to P and to everym-substring of T simultaneously and computationally
efficiently. For this, we need to actually use constructive version of Johnson-Lindenstrauss
lemma.
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I Theorem 5 (Achlioptas [2]). Consider a probability distribution D over matrices Rm×d
defined as follow so that each matrix entry is either −1 or 1 independently and uniformly at
random. Then for any x ∈ Rm there is

Pr
A∼D

(
1√
d
‖Ax‖ = (1± ε)‖x‖

)
≥ 1− δ

if only d = O( log δ−1

ε2 ) is large enough.

Computing such dimension-reduction naively takesO(md) time. However better constructions
are possible.

I Theorem 6 (Sparse JL, c.f. [11, 16]). There is probability distribution S over matrices of
dimension d×m with elements from {−1, 0, 1}, for large enough d = O( log δ−1

ε2 ), such that
each column has only s = O(dε) non-zero elements and for any vector x ∈ Rm there is

Pr
A∼S

(
1√
s
‖Ax‖ = (1± ε)‖x‖

)
≥ 1− δ.

Such matrices can be easily drawn from the distribution by selecting the s positions in each
column independently at random and then filling them uniformly at random with {−1, 1}.
The advantage of this is that single dimensionality reduction operation is computed in O(sm)
time which is ε−1 factor faster than for dense matrices.

We now state the take-away from this section, which is our main technical tool to be
used in the following.

I Corollary 7. For d = O( logn
ε2 ) large enough there is a probability distribution F of linear

maps ϕ : Rd × Rd → Rd such that:
1. ϕ(x, y) = A0x+A1y can be evaluated in O(d2ε) = O( log2 n

ε3 ) time,
2. Prϕ∼F

(
‖ϕ(x, y)‖2 = (1± ε)(‖x‖2 + ‖y‖2)

)
= 1− n−Ω(1),

3. both A0 and A1 are {− 1√
s
, 0, 1√

s
}-matrices where s = O(dε) is the sparsity of each column

of A0 and A1.

4 Algorithm for `2 distances.

We first use Corollary 7 to construct dimensionality reduction with guarantees similar to
Johnson-Lindenstrauss (reducing dimension n to dimension Õ(ε−2)). In the following we
assume that d = O( logn

ε2 ) is large enough. We show a procedure which assumes that m is
divisible by d, and denote s = m

d . We assume s is a power of two, and if the case is otherwise,
we can always pad input with enough zeroes at the end (we can do this, since extra zeroes
have no effect on the output of linear map). We also denote k = log2 s.
We then have the following

I Theorem 8. Given input x ∈ Rm, and ε ≤ 1
k , procedure SingleSketch outputs v ∈ Rd

such that

‖v‖ = (1±O(kε))‖x‖

with high probability, in time O(m logn
ε ). The map x→ v is linear.

Proof. We first bound the stretch. Denote by

αi =
∑
j

‖v(i)
j ‖

2.
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Algorithm 1 At each level i, we partition its vectors into 2k−i pairs, and compress each pair
using ϕi producing vectors for level i+ 1.
1: Input: x ∈ Rm.
2: Output: v ∈ Rd.
3: procedure SingleSketch(x)
4: Pick k fully independent maps ϕ1, . . . , ϕk as in Corollary 7.
5: Partition input x = (x1, . . . , xm) into s vectors v

(0)
1 , . . . , v

(0)
s where v

(0)
i ←

(xd·(i−1)+1, . . . , xd·i).
6: for i← 1 .. k do
7: for j ← 1 .. 2k−i do
8: v

(i)
j ← ϕi(v(i−1)

2j−1 , v
(i−1)
2j )

9: return v = v
(k)
1 .

Naturally,

α0 =
∑
j

‖v(0)
j ‖

2 =
s∑
j=1

(x2
d·(j−1)+1 + . . .+ x2

d·j) =
n∑
j=1

x2
j = ‖x‖2.

Moreover, by Corollary 7

αi =
2k−i∑
j=1
‖v(i)
j ‖

2 =
2k−i∑
j=1

(1± ε)(‖v(i−1)
2j−1 ‖

2 + ‖v(i−1)
2j ‖2)

= (1± ε)
2k−i+1∑
j=1

‖v(i−1)
j ‖2 = (1± ε)αi−1

We could apply Corollary 7 at this step since for any usage of map ϕi, its inputs are
independent from actual choice of ϕi (e.g. are result of processing x and ϕ1, . . . , ϕi−1). Then
we have ‖v‖2 = αk = (1± ε)kα0 = (1± ε)k‖x‖2. Since ε ≤ 1

k , the claimed bound follows.
We then observe that the map is linear, since every building step of the map is linear.

The total number of times we apply one of ϕ1, . . . , ϕk is O(m/d), so the total run-time is
O(md d

2ε). J

We then extend the algorithm to a scenario where for an input word (vector) x ∈ Rn
we compute the same dimensionality reduction for all m-subwords of x that start at all the
positions divisible by d. In the following we assume that d divides n, and denote t = n−m

d + 1
to be the number of such m-subwords. If its not the case, input can be padded with enough
zeroes at the end.

I Theorem 9. Given input x ∈ Rn, denote by y1, . . . , yt ∈ Rm vectors such that yi =
(x1+(i−1)d, . . . , xm+(i−1)d). For ε ≤ 1

k procedure AllSketch outputs v1, . . . , vt ∈ Rd such
that

‖vj‖ = (1±O(kε))‖yj‖

with high probability, in time O(n log2 n
ε ). Moreover, the map yi → vi is linear and identical

to map from Theorem 8.
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Algorithm 2

1: Input: x ∈ Rn.
2: Output: v1, . . . , vt ∈ Rd for t = n−m

d + 1.
3: procedure AllSketch(x)
4: Let ϕ1, . . . , ϕk be k fully independent maps used in procedure SingleSketch.
5: Partition input x = (x1, . . . , xn) into n/d vectors v

(0)
1 , . . . , v

(0)
n
d

where v
(0)
i ←

(xd·(i−1)+1, . . . , xd·i).
6: for i← 1 .. k do
7: for j ← 1 .. (nd − 2i + 1) do
8: v

(i)
j ← ϕi(v(i−1)

j , v
(i−1)
j+2i−1)

9: return v
(k)
1 , . . . , v

(k)
t .

Proof. The proof follows from inductive observation that ‖v(i)
j ‖2 = (1 ± ε)i(‖v(0)

j ‖2 +
. . . ‖v(0)

j+2i−1‖
2), which results in

‖vj‖2 = (1± ε)k
s∑
i=1
‖v(0)
j+i‖

2

= (1± ε)k
m∑
i=1
‖xi+(j−1)d‖2

= (1± ε)k‖yj‖2.

The rest of the proof follows reasoning from Theorem 8. J

I Theorem 1. Text-to-pattern `2 distances can be approximated by an algorithm using
only basic arithmetic operations and not using convolution. The approximation is 1 ± ε
multiplicative with high probability, computed in O(n log3 n

ε2 ) time.

Proof. First, we note that for simplicity we compute (`2)2 distances since they are additive
when taken under concatenation of inputs (unlike `2), that is ‖x◦y−u◦v‖2 = ‖x−u‖2+‖y−v‖2
for equal length x, u and equal length y, v.

We then assume w.l.o.g. that n is divisible by d. We then observe that contribution
of any fragment of pattern to distance at every text location can be computed naively in
O(c · n) time where c is fragment length. We are thus safe to discard any suffix of pattern of
length O(d) as this time is absorbed in total computation time. So we fix h = O(logn/ε)
and assume w.l.o.g. that m′ = m− 2h is divisible by d.

We denote by ε′ = Ω(ε/ logn) such value that guarantees (1 ± ε)-approximation in
Theorem 8 and Theorem 9. First, assume for simplicity that m′

d is a power of two. We then
consider P0, . . . , Ph, the (h+ 1) distinct m′-substrings of P , and for each we run procedure
SingleSketch on each of them, so by Theorem 8 we compute their sketches in total
O(m logn

ε′ h) time. Similarly, for text T we run AllSketch d
h times to compute sketches of

all m′-substrings of T starting at positions 1, h + 1, 2h + 1, . . .. By Theorem 9 this takes
O(n log2 n

ε′ · dh ) time. Both steps take thus O(n log3 n
ε2 ) time, and maps used to compute sketches

in both steps are linear.
We now observe that for any starting position t, the substring T [t .. (t+m′ − 1)] can be

partitioned into T1 = T [t .. t1], T2 = T [t1 + 1 .. t2] and T3 = T [t2 + 1 .. (t+m′ − 1)], where
length of T1 and T3 is at most 2h, length of T3 is m′ and t1 and t2 are multiplies of h. We
then compute the distances between corresponding fragments of T and P as follows (where
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29:8 Approximating Text-To-Pattern Distance via Dimensionality Reduction

we consider corresponding partitioning of P into P1, P2 and P3): computing ‖T1 − P1‖2 and
‖T3 − P3‖2 takes O(h) each (O(nh) in total for all alignments), while (1± ε) approximating
‖T2 − P2‖2 follows from pre-computed sketches.

We now discuss the general case when m′

d is not a power of two. However we then
observe that m′ can be represented as m′ = d(2i1 + . . . + 2is) where s ≤ logn. And so
the necessary computation require actually querying s different sketches for fragments of
length d · 2i` . To avoid unnecessary O(logn) overhead in time (and repeating running the
preprocessing steps logn times for many various lengths of fragments) we observe that all the
necessary sketches are already computed as temporary values in procedures SingleSketch
and AllSketch. J

5 Hamming and `1 distances.

We now briefly discuss how to use our framework for approximating other norms. We first
recall the classical result by [18].

I Lemma 10 ([18]). Let d = O(logn/ε2) be large enough. Consider µ : Σ→ {0, 1}d where
each ϕ(c) is chosen uniformly and independently at random. Then

∀c1 6=c2‖µ(c1)− µ(c2)‖2 = (1± ε) · d2

with high probability.

We note that we assumed that the dimension O(logn/ε2) of map µ matches value of
d = O(logn/ε2) from dimensionality-reductions in previous section. This can be easily
ensured w.l.o.g. as we can always either pad with extra zeroes each image of µ mapping, or
add extra null coordinates to dimensionality reduction. Extending the mapping from letters
to words, that is for w = c1 . . . ck ∈ Σ∗ denote µ(w) = µ(c1) . . . µ(ck), we have a corollary:

I Corollary 11. For µ as in Lemma 10, and any two words u, v ∈ Σn, there is

‖µ(u)− µ(v)‖2 = (1± ε) · d2‖u− v‖0

with high probability.

This allows us to estimate Hamming distance between words from `22 distance between the
respective embeddings, which are of length O(n logn

ε2 ).

I Theorem 2. Text-to-pattern Hamming distances can be approximated by an algorithm
using only basic arithmetic operations and not using convolution. The approximation is 1± ε
multiplicative with high probability, computed in O(n log4 n

ε3 ) time.

Proof. By Corollary 11 it is enough to estimate the `22 text-to-pattern distance between
embedded words µ(P ) and µ(T ) at starting positions 1, d+ 1, 2d+ 1, . . .. We use procedure
SingleSketch to compute sketch of µ(P ), and procedure AllSketch to compute sketch of
every (dm)-substring of ϕ(T ) starting at positions 1, d+1, 2d+1, . . .. Former takes O(n log2 n

ε2ε′ )
time, and latter takes O(n log3 n

ε2ε′ ) time, where we set ε′ = Ω(ε/k) so that error from sketching
accumulates to 1±O(ε) in total. All in all this gives O(n log4 n

ε3 ) time algorithm. J

We now proceed to `1 distances. Our goal is to construct a mapping f : [u]→ {0, 1}d that
embeds `1 into `22 approximately. That is, we require ∀a,b∈[u]|a− b| ∼ (1± ε)‖f(a)− f(b)‖2
where ∼ hides constant factors. The existence of such map can be easily shown: (i) Take exact
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map f1 : [u]→ {0, 1}u defined as f1(a) = 1a0u−a, (ii) Take any `2 dimensionality-reduction
map f2 : {0, 1}u → {0, 1}d, (iii) set f = f2 ◦ f1. However, our goal is to compute such f
faster than in time proportional to universe size u. We do it by running first a preprocessing
phase, and then a fast computation procedure.

Algorithm 3

1: procedure Preprocess(u)
2: Pick log(u/d) fully independent maps ϕ′1, . . . , ϕ′log(u/d) as in Corollary 7.
3: s0 ← (1, 1, . . . , 1) ∈ Rd.
4: for i← 1 .. log(u/d) do
5: si ← ϕ′i(si−1, si−1)
6: procedure Project(x ∈ [u], c)
7: if c = 0 then
8: return (1, 1, . . . , 1︸ ︷︷ ︸

x

, 0, . . . , 0︸ ︷︷ ︸
d−x

)

9: else if x < 1
2d · 2

c then
10: return ϕ′c(Project(x, c− 1), (0, . . . , 0))
11: else
12: return ϕ′c(sc−1,Project(x− 1

2d · 2
c, c− 1))

I Lemma 12. ψ : x→ Project(x, log(u/d)) represents a linear map [u]→ Rd that embeds
approximately `1 to `22, that is

|x− y| = (1±O(ε log u))‖ψ(x)− ψ(y)‖2

with high probability. Moreover, ψ takes O( log2 n logu
ε3 ) time to evaluate.

Proof. Let us define informally πi = ϕ′i(ϕ′i−1(. . . , . . .), ϕ′i−1(. . . , . . .)) to be unfolded version
of ϕ′, that is a linear map Rd·2i → Rd. Formally π0 = id, and for x = (x1, . . . , xd·2i), defining

πi((x1, . . . , xd·2i)) = ϕ′i(πi−1(xleft), πi−1(xright)),

where xleft = (x1, . . . , xd·2i−1), xright = (xd·2i−1+1, . . . , xd·2i).
We now observe that si = πi((1, . . . , 1︸ ︷︷ ︸

2id

)) and then (by induction)

Project(x, i) = πi((1, 1, . . . , 1︸ ︷︷ ︸
x

, 0, . . . , 0︸ ︷︷ ︸
2id−x

)).

Inductively, each iteration 1, .., log(u/d) results in extra multiplicative (1 ± ε) distortion.
Computation time is dominated by applications of ϕ′1, . . . , ϕ′log(u/d), both in the preprocessing
time and the evaluation time. Since each linear map ϕ′i is applied in time O( log2 n

ε3 ), the time
complexity bound follows.

J

I Theorem 3. Text-to-pattern `1 distances over alphabet [u] for some constant u = poly(n)
can be approximated by an algorithm using only basic arithmetic operations and not using
convolution. The approximation is 1 ± ε multiplicative with high probability, computed in
O(n log2 n(log2 n+log4 u)

ε3 ) time.

CPM 2020



29:10 Approximating Text-To-Pattern Distance via Dimensionality Reduction

Proof. We use Lemma 12 to reduce the problem to estimating `22 text-to-pattern dis-
tance between ψ(P ) and ψ(T ) at starting positions 1, d+ 1, 2d+ 1, . . .. We use procedure
SingleSketch to compute sketch of µ(P ), and procedure AllSketch to compute sketch
of every (dm)-substring of ϕ(T ) starting at selected positions. Denote by ε′ = Ω(ε/k) the
stretch constant in procedures SingleSketch and AllSketch, and by ε′′ = Ω(ε/ log u)
the stretch constant in procedures Project and Preprocess. The total run-time of AllS-
ketch is then O(n log3 n

ε2ε′ ) = O(n log4 n
ε3 ) and total run-time of computing ψ(T ) and ψ(P ) is

O(n log2 n logu
(ε′′)3 ) = O(n log2 n log4 u

ε3 ). J
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