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Abstract
The last decade brought a significant increase in the amount of data and a variety of new inference
methods for reconstructing the detailed evolutionary history of various cancers. This brings the
need of designing efficient procedures for comparing rooted trees representing the evolution of
mutations in tumor phylogenies. Bernardini et al. [CPM 2019] recently introduced a notion of the
rearrangement distance for fully-labelled trees motivated by this necessity. This notion originates
from two operations: one that permutes the labels of the nodes, the other that affects the topology
of the tree. Each operation alone defines a distance that can be computed in polynomial time, while
the actual rearrangement distance, that combines the two, was proven to be NP-hard.

We answer two open question left unanswered by the previous work. First, what is the complexity
of computing the permutation distance? Second, is there a constant-factor approximation algorithm
for estimating the rearrangement distance between two arbitrary trees? We answer the first one by
showing, via a two-way reduction, that calculating the permutation distance between two trees on n

nodes is equivalent, up to polylogarithmic factors, to finding the largest cardinality matching in a
sparse bipartite graph. In particular, by plugging in the algorithm of Liu and Sidford [ArXiv 2020],
we obtain an Õ(n4/3+o(1) time algorithm for computing the permutation distance between two trees
on n nodes. Then we answer the second question positively, and design a linear-time constant-factor
approximation algorithm that does not need any assumption on the trees.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Approximation algorithms analysis; Theory of computation → Problems,
reductions and completeness

Keywords and phrases Tree distance, Cancer progression, Approximation algorithms, Fine-grained
complexity

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.6

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 872539.
Giulia Bernardini: Partially supported by a research internship at CWI.

1 Introduction

Phylogenetic trees represent a plausible evolutionary relationship between the most disparate
objects: natural languages in linguistics [22, 36, 44], ancient manuscripts in archaeology [12],
genes and species in biology [25, 26]. The leaves of such trees are labelled by the entities
they represent, while the internal nodes are unlabelled and stand for unknown or extinct
items. A great wealth of methods to infer phylogenies have been developed over the
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6:2 On Two Measures of Distance Between Fully-Labelled Trees

decades [19,42], together with various techniques to compare the output of different algorithms,
e.g., by building a consensus tree that captures the similarity between a set of conflicting
trees [11,20,27,28] or by defining a metric between two trees [10,16–18,39,40].

Fully-labelled trees, in opposition to classical phylogenies, may model an evolutionary
history where the internal nodes, just like the leaves, correspond to extant entities. An
important phenomenon that fits this model well is cancer progression [23, 37]. With the
increasing amount of data and algorithms becoming available for inferring cancer evolution [6,
7, 29, 34, 46], there is a pressing need of methods to provide a meaningful comparison among
the trees produced by different approaches. Besides the well-studied edit distance for
fully-labelled trees [35, 38, 43, 47], a few recent papers proposed ad-hoc metrics for tumor
phylogenies [13, 15, 21, 31]. Taking inspiration from the existing literature [4, 8, 14, 42] on
phylogeny rearrangement, the study of an operational notion of distance for rearranging a
fully-labelled tree is of great interest, and there are still many unexplored questions to be
answered.

Following this line of research, we revisit the two notions of operational distance between
fully-labelled trees recently introduced by Bernardini et al. [5]. We consider rooted trees on
n nodes labelled with distinct labels from [n] = {1, 2, . . . , n}, and identify nodes with their
labels. We recall the following two basic operations on such trees:

link-and-cut operation: given u, v and w such that v is a child of u and w is not a
descendant of v, the link-and-cut operation v |u→ w consists of two suboperations: cut
the edge (v, u) and add the edge (v, w), effectively switching the parent of v from u to w.
permutation operation: apply some permutation π : [n]→ [n] to the nodes. If a node
u was a child of v before the operation, then after the operation π(u) is a child of π(v).

The size |π| of a permutation is the number of elements x s.t. π(x) 6= x. Two trees T1 and
T2 are isomorphic if and only if one can reorder the children of every node so as to make the
trees identical after disregarding the labels. The permutation distance dπ(T1, T2) between
two isomorphic trees is the smallest size |π| of a permutation π that transforms T1 into T2.
Bernardini et al. [5] designed a cubic time algorithm for computing the permutation distance.

The size of a sequence of link-and-cut and permutation operations is the sum of the
number of link-and-cut operations and the total size of all permutations. The rearrangement
distance d(T1, T2) between two (not necessarily isomorphic) trees with identical roots is
the smallest size of any sequence of link-and-cut and permutation operations that, without
permuting the root, transform T1 into T2. Bernardini et al. [5] proved that computing the
rearrangement distance is NP-hard, but for binary trees there exists a polynomial time
4-approximation algorithm.

We consider two natural open questions. First, what is the complexity of computing
the permutation distance? Second, is there a constant-factor approximation algorithm for
estimating the rearrangement distance between two arbitrary trees? For computing the
permutation distance, in Section 3 we connect the complexity to that of calculating the
largest cardinality matching in a sparse bipartite graph. By designing two-way reductions
we show that these problems are equivalent, up to polylogarithmic factors. Due to the
recent progress in the area of fine-grained complexity we now know, for many problems
that can be solved in polynomial time, what is essentially the best possible exponent in
the running time, conditioned on some plausible but yet unproven hypothesis [45]. For
max-flow, and more specifically maximum matching, this is not the case yet, although we
do have some understanding of the complexity of the related problem of computing the
max-flow between all pairs of nodes [1,2,32]. So, even though our reductions don’t tell us
what is the best possible exponent in the running time, they do imply that it is the same
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as for maximum matching in a sparse bipartite graph. In particular, by plugging in the
asymptotically fastest known algorithm [33], we obtain an Õ(n4/3+o(1)) time algorithm for
computing the permutation distance between two trees on n nodes. The main technical
novelty in our reduction from permutation distance is that, even though the natural approach
would result in multiple instances of weighted maximum bipartite matching, we manage to
keep the graphs unweighted.

For the rearrangement distance, in Section 4 we design a linear-time constant-factor
approximation algorithm that does not assume that the trees are binary. The algorithm
consists of multiple phases, each of them introducing more and more structure into the
currently considered instance, while making sure that we don’t pay more than the optimal
distance times some constant. To connect the number of steps used in every phase with the
optimal distance, we introduce a new combinatorial object that can be used to lower bound
the latter inspired by the well-known algorithm for computing the majority [9].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. We consider rooted trees and forests on nodes labelled with distinct
labels from [n], and identify nodes with their labels. The parent of u in F is denoted pF (u),
and we use the convention that pF (u) = ⊥ when u is a root in F . F |u denotes the subtree
of F rooted at u, childrenF (u) stands for the set of children of a node u in F , and levelF (u)
is the level of u in F (with the roots being on level 0).

Two trees T1 and T2 are isomorphic, denoted T1 ≡ T2, if and only if there exists a
bijection µ between their nodes such that, for every u ∈ [n] with pT1(u) 6= ⊥, it holds
that µ(pT1(u)) = pT2(µ(u)), implying in particular that µ maps the root of T1 to the root
of T2. Let I(T1, T2) denote the set of all such bijections µ. Given two isomorphic trees
T1 and T2, we seek a permutation π with the smallest size that transforms T1 into T2.
This is equivalent to finding µ ∈ I(T1, T2) that maximises the number of conserved nodes
conserved(µ) = {u : u = µ(u)}, as these two values sum up to n.

When working on the rearrangement distance, for ease of presentation, instead of the
link-and-cut operation we will work with the cut operation defined as follows:

cut operation: let u, v be two nodes such that v is a child of u. The cut operation
(v † u) removes the edge (v, u), effectively making v a root.

The size of a sequence of cut and permutation operations is defined similarly as for a sequence
of link-and-cut and permutation operations. Since a permutation operation is essentially just
renaming the nodes, we can assume that all permutation operations precede all link-and-cut
(or cut) operations, or vice versa. Furthermore, multiple consecutive permutation operations
can be replaced by a single permutation operation without increasing the total size.

This leads to the notion of rearrangement distance between two forests F1 and F2. We
write F1 ∼ F2 to denote that, for every u ∈ [n], at least one of the following three conditions
holds: (i) pF1(u) = pF2(u), (ii) pF1(u) = ⊥, or (iii) pF2(u) = ⊥. The rearrangement
distance d̃(F1, F2) is the smallest size of any sequence of cut and permutation operations
that transforms F1 into F ′1 such that F ′1 ∼ F2. This is the same as the smallest size of any
sequence of cut and permutation operations that transforms F2 into F ′2 such that F1 ∼ F ′2,
as both sizes are equal to the minimum over all permutations π that fix the original root of
the following expression

|{u : π(u) 6= u}|+ |{u : pF1(u) 6= pF2(π(u)) ∧ pF1(u) 6= ⊥ ∧ pF2(π(u)) 6= ⊥}|.

Consequently, d̃ defines a metric. The original notion of rearrangement distance d between
two trees was similarly defined as the smallest size of any sequence of link-and-cut and
permutation operations that transforms T1 into T2, under the additional assumption that
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6:4 On Two Measures of Distance Between Fully-Labelled Trees

the roots of T1 and T2 are identical (so d(T1, T2) is well-defined) and cannot participate in
any permutation operation [5]. In Section 4 we connect d(T1, T2) and d̃(T1, T2), and then
work with the latter.

A matching in a bipartite graph is a subset of edges with no two edges meeting at the same
vertex. A maximum matching in an unweighted bipartite graph is a matching of maximum
cardinality, whereas a maximum weight matching in a weighted bipartite graph is a matching
in which the sum of weights is maximised. Given an unweighted bipartite graph with m
edges, the well-known algorithm by Hopcroft and Karp [24] finds a maximum matching in
O(m1.5) time. This has been recently improved by Liu and Sidford to Õ(m4/3+o(1)) [33].

A heavy path decomposition of a tree T is obtained by selecting, for every non-leaf node
u ∈ T , its heavy child v such that T |v is the largest: there will be some subtlety in how
to resolve a tie in this definition that will be explained in detail later. This procedure
decomposes the nodes of T into node-disjoint paths called heavy paths. Each heavy path p
starts at some node, called its head, and ends at a leaf: headT (u) denotes the head of the
heavy path containing a node u in T . An important property of such a decomposition is
that the number of distinct heavy paths above any leaf (that is, intersecting the path from a
leaf to the root) is only logarithmic in the size of T [41].

3 A Fast Algorithm for the Permutation Distance

Our aim is to find µ ∈ I(T1, T2) that maximises conserved(µ), that is γ(T1, T2) =
max{conserved(µ) : µ ∈ I(T1, T2)}. To make the notation less cluttered, we define
γ(x, y) = γ(T1|x, T2|y). Let us start by describing a simple polynomial time algorithm
which follows the construction of [5]. We will then show how to improve it to obtain a
faster algorithm that uses unweighted bipartite maximum matching. Finally, we will show
a reduction from bipartite maximum matching to computing the permutation distance,
establishing that these two problems are in fact equivalent, up to polylogarithmic factors.

3.1 Polynomial Time Algorithm
We first run the folklore linear-time algorithm of [3] for determining if two rooted trees
are isomorphic. Recall that this algorithm assigns a number from {1, 2, . . . , 2n} to every
node of T1 and T2 so that the subtrees rooted at two nodes are isomorphic if and only if
their numbers are equal. The high-level idea is then to consider a weighted bipartite graph
G(u, v) for each u, v ∈ [n] such that levelT1(u) = levelT2(v) and T1|u ≡ T2|v. The vertices of
G(u, v) are childrenT1(u) and childrenT2(v), and there is an edge of weight γ(u′, v′) between
u′ ∈ childrenT1(u) and v′ ∈ childrenT2(v) if and only if T1|u′ ≡ T2|v′ and γ(u′, v′) > 0. We
call such graphs the distance graphs for T1 and T2 and denote them collectively by G(T1, T2).

γ(u, v) is computed as follows, withM(G(u, v)) denoting the weight of a (not necessarily
perfect) maximum weight matching in G(u, v), Γ(u, v) = 1 if u = v and Γ(u, v) = 0 otherwise.

γ(u, v) =
{
M(G(u, v)) + Γ(u, v) if T1|u ≡ T2|v,
0 otherwise. (1)

The overall number of edges created in all graphs is O(n2). Indeed, for each u ∈ [n] such that
levelT1(u) = levelT2(u) and T1|u ≡ T2|u, and for each pair of ancestors z of u in T1 and w of
u in T2 such that levelT1(z) = levelT2(w) and T1|z ≡ T2|w, we possibly add an edge (z, w) to
the graph G(pT1(z), pT2(w)). Since there are up to n pairs of ancestors on the same level for
each label, and the labels are n, there are O(n2) edges overall.
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Figure 1 G(a, a) (type 1), G′(a, a), G′′(a, a) and G(b, c) (type 3) for T1 and T2 on the left. The
special edge in each graph is dashed.

We then start from the deepest level in both trees, and we move up level by level towards
the roots in both trees simultaneously. For each level k, we consider all pairs of isomorphic
subtrees rooted at level k, build the corresponding distance graphs, and use Equation
(1) to weigh the edges. After having reached the roots, we return the value of γ(T1, T2).
The correctness of the algorithm follows directly from Lemma 13 of [5], stating that the
permutation distance is equal to the minimum number of labels that are not conserved by
any isomorphic mapping, i.e., dπ(T1, T2) = n− γ(T1, T2). The running time is polynomial if
we plug in any polynomial-time maximum weight matching algorithm.

In the next subsection we show how to obtain a better running time by constructing a
different version of distance graphs, so that the total weight of their edges will be subquadratic,
and replacing maximum weight matching with maximum matching.

3.2 Reduction to Bipartite Maximum Matching
We start by finding a heavy path decomposition of T1 and T2, with some extra care in
resolving a tie if there are multiple children with subtrees of the same size, as follows. Recall
that we already know which subtrees of T1 and T2 are isomorphic, as the algorithm of [3]
assigns the same number from {1, 2, . . . , 2n} to nodes of T1 and T2 with isomorphic subtrees.
For every u, v ∈ [n] such that T1|u ≡ T2|v, we would like the heavy child u′ of u in T1 and v′
of v in T2 to be such that T1|u′ ≡ T2|v′. This can be implemented in linear time: it suffices
to group the nodes with isomorphic subtrees together, and then make the choice just once
for every such group.

Consider a graph G(u, v) for some u, v ∈ [n]: the edge corresponding to the heavy child
u′ of u in T1 and the heavy child v′ of v in T2 is called special (note that this edge might not
exist). The key observation is that the properties of heavy path decomposition allow us to
bound the total weight of non-special edges by O(n logn).

I Lemma 1. The total weight of all non-special edges in G(T1, T2) is O(n logn).

Proof. Consider any u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u. For each pair
of ancestors z of u in T1 and w of u in T2 such that levelT1(z) = levelT2(w), T1|z ≡ T2|w and
either headT1(z) = z or headT2(w) = w, u will contribute 1 to the weight of an edge (z, w) in
G(pT1(z), pT2(w)). Because there are at most logn heavy paths above any node of T1 or T2,
each label u ∈ [n] contributes 1 to the weight of at most 2 logn non-special edges, making
their total weight O(n logn) overall. J

We divide the graphs in G(T1, T2) into three types: see Figure 1 for an example.
Type 1: graphs G(u, v) with at least one non-special edge.
Type 2: graphs G(u, v) with no non-special edges, and Γ(u, v) = 1.
Type 3: graphs G(u, v) with no non-special edges, and Γ(u, v) = 0.
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6:6 On Two Measures of Distance Between Fully-Labelled Trees

We will construct only the graphs of type 1 and 2, and extract from them the information
that the graphs of type 3 would have captured. In what follows we show how to construct
the graphs of type 1 and 2 in O(n log2 n) time.

Constructing the Graphs of Type 1 and 2. The first step is to find all pairs of nodes that
correspond to graphs of type 1 or 2, and store them in a dictionary D implemented as a
balanced search tree with O(logn) access time. The second step is to find the non-special
edges of these graphs, and store them in a separate dictionary, also implemented as a balanced
search tree with O(logn) access time. Note that the weights will be found at a later stage of
the algorithm. We assume that both trees have been already decomposed into heavy paths,
and we already know which subtrees are isomorphic. This can be preprocessed in O(n) time.

I Lemma 2. All graphs of type 1 and 2 can be identified in O(n log2 n) time.

Proof. We consider every u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u in two
passes. In the first pass, we need to iterate over every ancestor z of u in T1 and w of u in T2
such that levelT1(z) = levelT2(w), T1|z ≡ T2|w and either headT1(z) = z or headT2(w) = w,
and if additionally T1|pT1(z) ≡ T2|pT2(w) then designate G(pT1(z), pT2(w)) to be a graph of
type 1 and insert it into D. As a non-special edge (z, w) of a graph G(pT1(z), pT2(w)) is such
that either z or w are not on the same heavy path as their parents, this correctly determines
all graphs of type 1.

To efficiently iterate over all such z and w given u, we assume that the nodes of every
heavy path of a tree T are stored in an array, so that, given any node u ∈ T , we are able to
access the node that belongs to the same heavy path as u and whose level is ` in constant
time, if it exists. We denote such operation accessT (u, `). Given two nodes u ∈ T1 and
v ∈ T2 on the same level, the procedure below shows how to iterate over every ancestor z of
u and w of v such that levelT1(z) = levelT2(w) and either headT1(z) = z or headT2(w) = w,
in O(logn) time, implying that all graphs of type 1 can be identified in O(n log2 n) time.

1 while u 6= ⊥ and v 6= ⊥ do
2 if levelT1(headT1(u)) < levelT2(headT2(v)) then
3 output accessT1(u, levelT2(headT2(v))) and headT2(v)
4 v ← pT2(headT2(v))
5 if levelT1(headT1(u)) > levelT2(headT2(v)) then
6 output headT1(u) and accessT2(v, levelT1(headT1(u)))
7 u← pT1(headT1(u))
8 else
9 output headT1(u) and headT2(v)

10 u← pT1(headT1(u))
11 v ← pT2(headT2(v))

In the second pass, for each u ∈ [n] such that levelT1(u) = levelT2(u) and T1|u ≡ T2|u,
we designate G(u, u) to be a graph of type 2, unless it has been already designated to be a
graph of type 1. J

I Lemma 3. All graphs of type 1 and 2 can be populated with their edges in O(n log2 n)
time.

Proof. For each such graph G(u, v) such that none of u, v is a leaf, let u′ be the unique heavy
child of u, and v′ be the unique heavy child of v. We add the special edge (u′, v′) to G(u, v).
To find the non-special edges, we again consider every u ∈ [n] such that levelT1(u) = levelT2(u)
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and T1|u ≡ T2|u: we iterate over the ancestors z of u in T1 and w of u in T2 such that
levelT1(z) = levelT2(w), T1|z ≡ T2|w and either headT1(z) = z or headT2(w) = w, and if
additionally T1|pT1(z) ≡ T2|pT2(w) then add a non-special edge (z, w) to G(pT1(z), pT2(w)) .
This takes O(n log2 n) time overall. J

Processing the Graphs of Type 1 and 2. Having constructed the graphs of type 1 and 2
in O(n log2 n) time, we process them level by level. Consider G(u, v): for each of its edges
(u′, v′) corresponding to u′ ∈ childrenT1(u) and v′ ∈ childrenT2(v), we need to extract its
weight γ(u′, v′). If G(u′, v′) is of type 1 or 2, the graph can be extracted from the dictionary
in O(logn) time. Otherwise, G(u′, v′) is of type 3 and we need to make up for not having
processed such graphs.

To this aim, we associate a sorted list of levels with each pair of heavy paths of T1 and
T2. The lists are stored in a dictionary indexed by the heads of the heavy paths. For every
u, v ∈ [n] such that G(u, v) is of type 1 or 2, we append the levels of u and v to the lists
associated with the respective heavy paths. The lists can be constructed in O(n log2 n) time
by processing the graphs level by level, and allow us to efficiently use the following lemma.

I Lemma 4. Consider u, v ∈ [n] such that levelT1(u) = levelT2(v) and T1|u ≡ T2|v, but
G(u, v) is of type 3. Either both u and v are leaves and γ(u, v) = 0, or the heavy child of u
is u′, the heavy child of v is v′, and γ(u, v) = γ(u′, v′).

Proof. First observe that u 6= v, as otherwise G(u, v) would be of type 2. Becase T1|u ≡ T2|v,
either both u and v are leaves or none of them is a leaf. In the former case, G(u, v) is empty
and γ(u, v) = 0. By how we resolve ties in the heavy path decomposition, in the latter
case we have T1|u′ ≡ T2|v′, where u′ is the heavy child of u and v′ is the heavy child of
v. G(u, v) consists of the unique special edge corresponding to the heavy child u′ of u and
v′ of v, so M(G(u, v)) is equal to the cost of the special edge, and by (1) we obtain that
γ(u, v) = γ(u′, v′). J

Given u, v ∈ [n] such that levelT1(u) = levelT2(v) = ` and T1|u ≡ T2|v, we extract γ(u, v)
by accessing the sorted list associated with the heavy paths of u and v: we binary search for
the smallest level `′ ≥ ` such that the heavy paths of u and v respectively contain a node u′
and v′, both on level `′, with G(u′, v′) of type 1 or 2. Then Lemma 4, together with the fact
that in our heavy path decomposition the subtrees rooted at the heavy children of two nodes
with isomorphic subtrees are also isomorphic, implies that γ(u, v) = γ(u′, v′).

It remains to describe how to computeM(G(u, v)) for every graph G(u, v) of type 1 and
2. We could have used any maximum weight matching algorithm, but this would result in a
higher running time. Our goal is to plug in a maximum matching algorithm. This seems
problematic as G(u, v) is a weighted bipartite graph, but we will show that maximum weight
matching can be reduced to multiple instances of maximum matching. However, bounding
the overall running time will require bounding the total weight of all edges belonging to
graphs of type 1 and 2. By Lemma 1 we already know that the total weight of all non-special
edges is O(n logn), but such bound doesn’t hold for the special edges. Therefore, we proceed
as follows. Let u′ be the heavy child of u and v′ be the heavy child of v. We construct
G′(u, v) by removing the special edge from G(u, v). We also construct G′′(u, v) from G(u, v)
by removing all the edges incident to u′ and v′ (see Figure 1 for an example). Equation (1)
can then be rewritten as follows:

γ(u, v) = max{M(G′(u, v)),M(G′′(u, v)) + γ(u′, v′)}+ Γ(u, v). (2)
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6:8 On Two Measures of Distance Between Fully-Labelled Trees

This is because a maximum weight matching in G(u, v) either includes the special edge
(u′, v′), implying that no other edges incident to u′ and v′ can be part of the matching and
thus M(G(u, v)) = M(G′′(u, v)) + γ(u′, v′), or it does not include it, thus M(G(u, v)) =
M(G′(u, v)). Since the graphs G′(u, v) and G′′(u, v) contain only non-special edges, the
overall weight of all edges in the obtained instances of maximum weight matching is O(n logn).

We already know that constructing all the relevant graphs takes O(n log2 n) time. It
remains to analyze the time to calculate the maximum weight matching in every G′(u, v) and
G′′(u, v). We first present a preliminary lemma that connects the complexity of calculating
the maximum weight matching in a weighted bipartite graph to the complexity of calculating
the maximum matching in an unweighted bipartite graph.

I Lemma 5 ([30]). Let G be a weighted bipartite graph, and let N be the total weight of all
the edges of G. Calculating the maximum weight matching in G can be reduced in O(N) time
to multiple instances of calculating the maximum matching in an unweighted bipartite graph,
in such a way that the total number of edges in all such graphs is at most N .

Proof. Using the decomposition theorem of Kao, Lam, Sung, and Ting [30], we can reduce
computing the maximum weight matching in a weighted bipartite graph such that the total
weight of all edges is N to multiple instances of calculating the largest cardinality matching
in an unweighted bipartite graph. The total number of edges in all unweighted bipartite
graphs is

∑
imi = N and the reduction can be implemented in O(N) time by maintaining a

list of edges with weight w, for every w = 1, 2, . . . , N . J

I Theorem 6. Let f(m) be the complexity of calculating the maximum matching in an
unweighted bipartite graph on m edges, and let f(m)/m be nondecreasing. The permutation
distance can be computed in Õ(f(n)) time.

Proof. The total number of edges in all constructed graphs is O(n logn), and the total time
to construct the relevant graphs and extract the costs of their edges is O(n log2 n). Thus, the
total running time is O(n log2 n) plus the time to compute the maximum weight matching in
every graph of type 1 and type 2. Let Ni be the total weight of all non-special edges in the
i-th of these graphs. By Lemma 1,

∑
iNi = O(n logn). Additionally, Ni ≤ n. Let mi,j be

the number of edges in the j-th instance of unweighted bipartite matching for the i-th graph.
By Lemma 5, the overall time is hence

∑
i,j f(mi,j), where

∑
i,jmi,j ≤

∑
iNi = O(n logn)

and mi,j ≤ Ni ≤ n. We upper bound
∑
i,j f(mi,j) using the assumption that f(m)/m is

nondecreasing as follows:∑
i,j

f(mi,j) =
∑
i,j

mi,j · f(mi,j)/mi,j ≤
∑
i,j

mi,j · f(n)/n = O(f(n) logn). J

I Corollary 7. The permutation distance can be computed in Õ(n4/3+o(1)) time.

3.3 Reduction from Bipartite Maximum Matching
We complement the algorithm described in Subsection 3.2 with a reduction from bipartite
maximum matching to computing the permutation distance: see Figure 2 for an example.

I Theorem 8. Given an unweighted bipartite graph on m edges, we can construct in O(m)
time two trees with permutation distance equal to the cardinality of the maximum matching.

Proof. We first modify the graph so that the degree of every node is at most 3. This can
be ensured in O(m) time by repeating the following transformation: take a node u with
neighbours v1, v2, . . . , vk, k ≥ 4. Replace u with u′ and u′′ both connected to a new node v,
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�1 �1

�2 �2

�3 �3
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�

ℎ�1 � ��2 � �� �3

Figure 2 The two trees built for the graph on the left, according to Theorem 8.

connect u′ to v1, v2, . . . , vk−2 and u′′ to vk−1, vk. It can be verified that the cardinality of
the maximum matching in the new graph is equal to that in the original graph increased by
1. By storing, for every node, the incident edges in a linked list, we can implement a single
step of this transformation in constant time, and there are at most m steps.

We will now first construct two unlabelled trees and then explicitly assign appropriate
labels to their nodes. Without loss of generality, let the nodes of the graph be u1, u2, . . . , um
and v1, v2, . . . , vm. In the first tree we createm nodes, labelled with u1, u2, . . . , um, connected
to a common unlabelled root. In the second tree we do the same with nodes v1, v2, . . . , vm.
Then, for every edge (ui, vj) of the graph, we attach a new leaf to ui in the first tree and to
vj in the second tree, and assign the same label to both of them. Finally, we attach enough
unlabelled leaves to every ui and vj to make their degrees all equal to 3. To make both trees
fully-labelled on the same set of labels, we further attach 1 +m+ 3m−m = 3m+ 1 extra
leaves to the roots of both trees. For every unlabelled leaf attached to u1, u2, . . . , um of the
first tree, we choose an unlabelled extra leaf of the second tree, and assign the same label to
both of them. We then assign the same label to the root of the first tree and an extra leaf of
the second tree, and label the last m extra leaves of the second tree with u1, u2, . . . , um. We
finally swap the trees and repeat the same procedure: see Figure 2 for an example.

The permutation distance between the two trees is equal to the cardinality of the maximum
matching. Indeed, the trees are clearly isomorphic; moreover, any isomorphism must match
extra leaves with extra leaves, and every ui to a vπ(j), for some permutation π on [m]. The
extra leaves do not contribute to the number of conserved nodes, while ui and vπ(j) contribute
1 if and only if (ui, vπ(j)) was an edge in the original graph. Thus, the distance is equal to
the maximum over all permutations π of the number of edges (ui, vπ(j)). This in turn is
equal to the cardinality of the maximum matching in the original graph. J

4 A Constant-Factor Approximation Algorithm for the
Rearrangement Distance

A linear-time algorithm that, given two trees T1 and T2, approximates d(T1, T2) within a
constant factor, was known for the case where at least one of the trees is binary [5]: here
we do not make any assumptions on the degrees. Throughout this section, we actually
consider d̃(F1, F2), and show how to approximate it within a constant factor. This allows us
to approximate d(T1, T2) within a constant factor using the following procedure. First, we
add n leaves n+ 1, n+ 2, . . . , n attached to the (identical) roots of T1 and T2 to obtain T ′1
and T ′2, respectively. We call the resulting trees anchored. Because T1 and T2 are assumed to
have the same root that cannot be permuted, we have d(T1, T2) = d(T ′1, T ′2). We claim that
d̃(T ′1, T ′2) = d(T ′1, T ′2). Intuitively, in one direction it suffices to replace every link-and-cut
operation v |u → w with a cut operation (v † u); for the other direction, we argue that it
does not make sense to permute the root, and every cut operation (v † u) can be replaced by
v |u → w, where w = pT2(v), and such link-and-cut operations are reordered so as not to
make w a descendant of v.
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I Lemma 9. For any two anchored trees T1 and T2, d̃(T1, T2) = d(T1, T2).

We can thus approximate d̃(T ′1, T ′2) within a constant factor to obtain a constant factor
approximation of d(T1, T2). In the remaining part of this section we design an approximation
algorithm for d̃(F1, F2), where F1 and F2 are two arbitrary forests.

We start with describing the notation. Consider two forests F1 and F2. For every i ∈ [n],
let a[i] ∈ [n] be the parent of a non-root node i in F1, and a[i] = 0 if i is a root in F1.
Formally, a[i] = pF1(i) when pF1(i) 6= ⊥ and a[i] = 0 otherwise; b[i] is defined similarly but
for F2. We think of a and b as vectors of length n.

The algorithm consists of four steps, with step j transforming forest F j−1
1 into F j1

by performing ALG(j) operations, starting from F 0
1 = F1. We will guarantee that

ALG(j) = O(d̃(F j−1
1 , F2)). Then, by triangle inequality and symmetry, d̃(F j1 , F2) ≤

d̃(F j−1
1 , F j1 ) + d̃(F j−1

1 , F2) ≤ ALG(j) + d̃(F j−1
1 , F2) = O(d̃(F j−1

1 , F2)), so by induction
d̃(F j1 , F2) = O(d̃(F1, F2)). Consequently, ALG(j) = O(d̃(F1, F2)), making the overall cost∑
j ALG(j) = O(d̃(F1, F2)) In the j-th step of the algorithm a[i] refers to the parent of i in

F j−1
1 . To analyse each step of the algorithm we will use the following two structures, the

first of which is a streamlined version of family partitions defined in the previous paper [5].

I Definition 10 (family partition). Given two forests F1 and F2, the family partition P (F1, F2)
is the set {(a[i], b[i]) : a[i], b[i] 6= 0 ∧ a[i] 6= b[i]}.

I Definition 11 (migrations graph). Given two forests F1 and F2, the migrations graph
MG(F1, F2) consists of edges {(i, j) : a[i], a[j], b[i], b[j] 6= 0 ∧ a[i] = a[j] ∧ b[i] 6= b[j]}.

For a multiset S, let |S| denote its cardinality, that is, the sum of multiplicities of all
distinct elements of S. The mode of S, denoted mode(S), is any element s ∈ S with the
largest multiplicity freqS(s). We will use the following combinatorial lemma.

I Lemma 12. Given any multiset S, let f = min{|S| − freqS(mode(S)), b|S|/2c}. All |S|
elements of S can be partitioned into f pairs (x1, y1), . . . , (xf , yf ), xi 6= yi, for every i ∈ [f ],
and the remaining |S| − 2f elements.

.	.	.	 �|�|−1�1 �|�|−2�2 �3 �|�|�⌊|�|/2⌋�� .	.	.	 .	.	.	 �|�|−� .	.	.	

=�� mode(S)

.	.	.	�1 �2 �3 �|�|�⌊|�|/2⌋ .	.	.	� (����(�))����
�

.	.	.	 �⌊|�|/2⌋+1 �⌊|�|/2⌋+2

mode(S)=��

Figure 3 Pairing in the case f = |S| − freqS(mode(S)) (left) and f = b|S|/2c (right).

Proof. Number the elements of S so that s1 = . . . = sfreqS(mode(S)) = mode(S) and all of
the others are sorted and numbered from freqS(mode(S)) + 1 to |S| accordingly. Then, if
f = |S| − freqS(mode(S)), pairs (si, s|S|−i+1), i ∈ [f ] are s.t. si 6= s|S|−i+1 (Figure 3, left); if
f = b|S|/2c, pairs (si, sb|S|/2c+i), i ∈ [b|S|/2c] are s.t. si 6= sb|S|/2c+i (Figure 3, right). J

4.1 Step 1
Roughly speaking, the aim of the first step is to ensure that all nodes that might be possibly
involved in a permutation, i.e., the nodes with different children in F1 and F2, are roots.
This is so that we do not need to worry about the relationship with their parents. For every
i ∈ [n] such that a[i] and b[i] are both defined and different, we cut the edges from a[i] and
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Figure 4 F1 and F2. The family partition is P = {(2, 3), (2, 7), (3, 7), (7, 3), (7, 2)}.

b[i] to their parents in F1, thus making both of them roots. In other words, for every i such
that a[i], b[i] 6= 0 and a[i] 6= b[i], we cut edges (a[i], a[a[i]]) and (b[i], a[b[i]]). The resulting
forest F 1

1 has the following property: for each i ∈ [n] such that the parents of i in F 1
1 and in

F2 are both defined and different, a[a[i]] = a[b[i]] = ⊥.
The number of cuts in this step is by definition at most twice the size of the family

partition P (F1, F2). Bernardini et al. [5] already showed that |P (T1, T2)| ≤ 2d(T1, T2) for
two trees T1 and T2. We show that this still holds for forests and d̃: for completeness, we
provide a self-contained proof (cf. Lemma 16 in [5]).

I Lemma 13. |P (F1, F2)| ≤ 2d̃(F1, F2), implying ALG(1) ≤ 4d̃(F1, F2).

Proof. It is enough to verify that applying a single cut operation might decrease the size
of the family partition by at most one, while applying a permutation operation π might
decrease the size of the family partition by at most 2s, where s = |{u : u 6= π(u)}|.

Consider a cut operation (v † u). The only change to a is that a[v] becomes 0, so indeed
the size of the family partition might decrease by at most one.

Now consider a permutation π. After applying π, an edge (i, a[i]) becomes (π(i), π(a[i])),
making π(a[π−1(i)]) the parent of i. This transforms the family partition P into

P ′ = {(π(a[i]), b[π(i)]) : a[i] 6= 0 ∧ b[π(i)] 6= 0 ∧ π(a[i]) 6= b[π(i)]}.

To lower bound the size of |P ′|, we first focus on the subset of P corresponding to the nodes
that are fixed by π. We therefore define

Pf = {(a[i], b[i]) : a[i] 6= 0 ∧ b[i] 6= 0 ∧ a[i] 6= b[i] ∧ π(i) = i}.

By definition, we can equivalently rewrite Pf as

Pf = {(a[i], b[π(i)]) : a[i] 6= 0 ∧ b[π(i)] 6= 0 ∧ a[i] 6= b[π(i)] ∧ π(i) = i}.

Now consider all pairs with the same second coordinate y in Pf : (x1, y), (x2, y), . . . , (xk, y),
where xi 6= y for every i ∈ [k]. P ′ contains all pairs (π(xi), y) such that π(xi) 6= y. If
π(y) = y then π(xi) = y cannot happen and P ′ contains all pairs with the second coordinate
y from Pf ; otherwise, P ′ contains all such pairs except possibly one. Overall, |P ′| ≥ |Pf | − s,
and |Pf | ≥ |P | − s so indeed |P ′| ≥ |P | − 2s. J

I Example 14. Consider F1 and F2 depicted in Figure 4. Step 1 consists of cut operations
(2 † 1) (because, e.g., a[4] 6= b[4] and a[4] = 2), (3 † 1) (because b[4] = 3) and (7 † 2) (because,
e.g., a[11] 6= b[11] and a[11] = 7). The resulting forest F 1

1 is shown in Figure 5a.
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(a) F 1
1 . (b) F 2

1 . (c) F 3
1 . (d) F 4

1 .

Figure 5 The forests obtained after Step 1 (5a), Step 2 (5b), Step 3 (5c) and Step 4 (5d).

4.2 Step 2
Consider u ∈ [n], and let childrenF 1

1
(u) = {v1, . . . , vk}. We define the multiset B(u) = {b[vi] :

b[vi] 6= 0} containing the parents in F2 of the children of u in F 1
1 . Recall that mode(B(u))

is the most frequent element of B(u) (ties are broken arbitrarily). We cut all edges (vi, u)
such that b[vi] 6= 0 and b[vi] 6= mode(B(u)), and define, for each u ∈ [n], its representative
rep(u) = mode(B(u)). Intuitively, rep(u) is the node that might be convenient to replace u
with using a permutation. Roughly speaking, in this step we get rid of all of the children of u
that would be misplaced after permuting u and rep(u), for each u ∈ [n]. The resulting forest
F 2

1 has the following property: for each u ∈ [n], for any child v of u in F 2
1 , either b[v] = 0 or

b[v] = rep(u), i.e., the children of each node u of F 2
1 have all the same parent rep(u) in F2.

To bound the number of cuts in this step we first need a technical lemma relating the
rearrangement distance of two forests and the size of any matching in their migrations graph.

I Lemma 15. Consider two forests F1 and F2 and their migrations graph MG(F1, F2). For
any matching M in MG(F1, F2) it holds that |M | ≤ d̃(F1, F2).

Proof. By definition, there is an edge between i and j inMG(F1, F2) if and only if a[i] = a[j],
but b[i] 6= b[j]. Let M be any matching in MG(F1, F2). If |M | > 0 then d̃(F1, F2) ≥ 1,
so it is enough to show that, for a single operation transforming F1 into F ′1, the graph
MG(F ′1, F2) contains a matching M ′ of size at least |M | − s, where s = 1 for a cut operation
and s = |{u : u 6= π(u)}| for a permutation operation π.

First, consider a cut operation (v † u). The only change in MG(F ′1, F2) is removing all
edges incident to v. M contains at most one edge incident to v, so we construct M ′ of size
at least |M | − 1 from M by possibly removing a single edge. Second, consider a permutation
operation π: we construct M ′ from M by removing every edge (v, w) such that v 6= π(v) or
w 6= π(w). Because there is at most one edge incident to every u such that u 6= π(u), M ′
contains at least |M | − s edges. M ′ is a matching in MG(F ′1, F2), as for every (v, w) ∈M ′
we have pF ′

1
(v) = pF1(v) and pF ′

1
(w) = pF1(w). J

I Lemma 16. ALG(2) ≤ 2d̃(F 1
1 , F2).

Proof. We consider each u ∈ [n] separately. Let m = freqBu
(mode(Bu)) and MGu be the

subgraph of MG(F 1
1 , F2) induced by Bu. We will first construct a matching of appropriate

size in every MGu. We cut every (vi, u) such that b[vi] 6= 0 and b[vi] 6= mode(Bu), making
|Bu|−m cuts. Let f = min(|Bu|−m, b|Bu|/2c). By Lemma 12, we can partition a subset of Bu
into f pairs (b[vi], b[vj ]) such that b[vi] 6= b[vj ]. We add every edge (vi, vj) to the constructed
matching. We claim that |Bu| −m ≤ 2f . This holds because |Bu| −m ≤ 2(|Bu| −m) and
|Bu| −m ≤ |Bu| − 1 ≤ 2b|Bu/2|c for nonempty Bu.

We take the union of all such matchings to obtain a single matching M . As argued
above, the total number of cuts is at most 2|M |. Together with Lemma 15, this implies that
ALG(2) ≤ 2|M | ≤ 2d̃(F 1

1 , F2). J
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I Example 17. Consider again F1 and F2 of Figure 4. B(7) = {3, 3, 3, 2, 7}, thus we cut
(14 †7) and (15 †7). B(2) = {3, 3, 7}, implying (6 †2). The resulting F 2

1 is shown in Figure 5b.

4.3 Step 3

If after Step 2 all of the children of a node u of F1 have the same parent rep(u) in F2, it still
may be the case where rep(u) = rep(v) with u 6= v, i.e., all of the children of two distinct
nodes of F1 have the same parent in F2. In this case, it is not clear how to choose whether
to replace u or v with rep(u) = rep(v) in a permutation. This step aims at resolving this
situation by cutting the ambiguous edges.

Consider thus u ∈ [n], and let childrenF2(u) = {v1, v2, . . . , vk}. We define the multiset
B′(u) = {a[vi] : a[vi] 6= 0} containing the parents in F 2

1 of the children of u in F2. We cut all
edges (vi, a[vi]) such that a[vi] 6= 0 and a[vi] 6= mode(B′(u)), breaking ties arbitrarily, and
define rep′(u) = mode(B′(u)). The resulting forest F 3

1 has the following property: for each
u ∈ [n], for any child v of u in F2, we have a[v]) = ⊥ or a[v] = rep′(u).

We observe that the number of cuts performed by the above procedure is the same as if
we had applied Step 2 on F2 and F 2

1 . Therefore, Lemma 16 implies the following.

I Lemma 18. ALG(3) ≤ 2d̃(F 2
1 , F2).

I Example 19. Consider again F1 and F2 of Figure 4. We have B′(3) = {2, 2, 7, 7, 7}, we
thus cut (4 † 2) and (5 † 2). The resulting forest F 3

1 is shown in Figure 5c.

4.4 Step 4

We summarize the properties of F 3
1 and F2:

1. For each u ∈ [n] such that a[u], b[u] 6= 0 and a[u] 6= b[u], a[u] and b[u] are roots in F 3
1 .

2. For each u ∈ [n] we can define rep(u) ∈ [n] in such a way that, for any child v of u in F 3
1 ,

we have b[v] = 0 or b[v] = rep(u).
3. For each u ∈ [n] we can define rep′(u) ∈ [n] in such a way that, for any child v of u in F2,

we have a[v] = 0 or a[v] = rep′(u).
To finish the description of the algorithm, we show how to find a permutation operation π of
size O(d̃(F 3

1 , F2)) that transforms F 3
1 into F 4

1 such that F 4
1 ∼ F2.

For every u such that a[u], b[u] 6= 0 and a[u] 6= b[u], we require that π(a[u]) = b[u]. Due
to Property 1, for every such u we have ensured that a[u] and b[u] are roots of F 3

1 . So, if
we can find a permutation π that satisfies all the requirements and does not perturb the
non-roots of F 3

1 , then it will transform F 3
1 into F 4

1 such that F 3
1 ∼ F2. Furthermore, if for

every x perturbed by π there exists u such that a[u], b[u] 6= 0 and a[u] 6= b[u] with x = a[u]
or x = b[u] then by Lemma 13 |π| ≤ 2|P (F 3

1 , F2)| ≤ 4d̃(F 3
1 , F2) as required.

To see that there indeed exists such π, observe that due to Property 2 there cannot be two
requirements π(x) = y and π(x) = y′ with y 6= y′. Similarly, due to Property 3 there cannot
be two requirements π(x) = y and π(x′) = y with x 6= x′. Thinking of the requirements as a
graph, the in- and out-degree of every node is hence at most 1, so we can add extra edges to
obtain a collection of cycles defining a permutation π that does not perturb the nodes not
participating in any requirement.

I Example 20. Consider F1 and F2 of Figure 4. π = (3 7) transforms F 3
1 into F 4

1 ∼ F2.
The final F 4

1 is shown in Figure 5d.
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