
Detecting k-(Sub-)Cadences and Equidistant
Subsequence Occurrences
Mitsuru Funakoshi
Department of Informatics, Kyushu University, Fukuoka, Japan
mitsuru.funakoshi@inf.kyushu-u.ac.jp

Yuto Nakashima
Department of Informatics, Kyushu University, Fukuoka, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Shunsuke Inenaga
Department of Informatics, Kyushu University, Fukuoka, Japan
PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
hdbn.dsc@tmd.ac.jp

Masayuki Takeda
Department of Informatics, Kyushu University, Fukuoka, Japan
takeda@inf.kyushu-u.ac.jp

Ayumi Shinohara
Graduate School of Information Sciences, Tohoku University, Sendai, Japan
ayumis@tohoku.ac.jp

Abstract

The equidistant subsequence pattern matching problem is considered. Given a pattern string P and
a text string T , we say that P is an equidistant subsequence of T if P is a subsequence of the text such
that consecutive symbols of P in the occurrence are equally spaced. We can consider the problem of
equidistant subsequences as generalizations of (sub-)cadences. We give bit-parallel algorithms that
yield o(n2) time algorithms for finding k-(sub-)cadences and equidistant subsequences. Furthermore,
O(n log2 n) and O(n log n) time algorithms, respectively for equidistant and Abelian equidistant
matching for the case |P | = 3, are shown. The algorithms make use of a technique that was recently
introduced which can efficiently compute convolutions with linear constraints.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases string algorithms, pattern matching, bit parallelism, subsequences, cadences

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.12

Funding Mitsuru Funakoshi: JSPS KAKENHI Grant Number JP20J21147.
Yuto Nakashima: JSPS KAKENHI Grant Number JP18K18002.
Shunsuke Inenaga: JSPS KAKENHI Grant Number JP17H01697, JST PRESTO Grant Number
JPMJPR1922.
Hideo Bannai: JSPS KAKENHI Grant Numbers JP16H02783, JP20H04141.
Masayuki Takeda: JSPS KAKENHI Grant Number JP18H04098.
Ayumi Shinohara: JSPS KAKENHI Grant Number JP15H05706.

© Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, and
Ayumi Shinohara;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 12; pp. 12:1–12:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2547-1509
mailto:mitsuru.funakoshi@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-6269-9353
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-1833-010X
mailto:inenaga@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:hdbn.dsc@tmd.ac.jp
https://orcid.org/0000-0002-6138-1607
mailto:takeda@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-4978-8316
mailto:ayumis@tohoku.ac.jp
https://doi.org/10.4230/LIPIcs.CPM.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences

1 Introduction

Pattern matching on strings is a very important topic in string processing. Usually, strings
are regarded and stored as one dimensional sequences and many pattern matching algorithms
have been proposed to efficiently find particular substrings occurring in them [9, 2, 4, 8, 6, 3].
However, when one is to view the string/text data on paper or on a screen, it is usually
shown in two dimensions: the single dimensional sequence is displayed in several lines folded
by some length. It is known that the two dimensional arrangement can be used to embed
hidden messages, and/or cause occurrences of unexpected or unintentional messages in the
text. A common form for such an embedding is to consider the occurrence of a pattern in a
linear layout: vertically or possibly diagonally along the two dimensional display.

For example, there was a (rather controversial) paper [12] on the so called Bible Code,
claiming that the Bible contains statistically significant occurrences of various related words,
occurring vertically and/or diagonally, in close proximity. Furthermore, there was an incident
with a veto letter by the California State Governor [11]; Although it was considered a “weird
coincidence”, the first character on each line of the letter could be connected and interpreted
as a very provocative message. In Japanese internet forums, there was a culture of actively
using these techniques, referred to as “tate-yomi”(vertical reading) and “naname-yomi”
(diagonal reading), where the author of a message purposely embeds a hidden message in
his/her post. Most commonly, the author will write a message that praises some object or
opinion in question, but embed a message with a completely opposite meaning bearing the
author’s true intention. The hidden message can be recovered by reading the text message
vertically or diagonally from some position, and is used as form of sarcasm, as well as a
clever method to mock those who were unable to get it.

Assuming that the text is folded into lines of equal length, vertical or diagonal occurrences
of the pattern in two dimensions can be regarded as a subsequence of the original text,
where the distance between each character is equal. We call the problem of detecting such
occurrences of the pattern as the equidistant subsequence matching problem. To the best of
the authors’ knowledge, there exist only publications concerning the statistical properties of
the occurrence of equidistant subsequence patterns, mainly with the so called Bible Code.

Recently, a notion of regularities in strings called (sub)-cadences, defined by equidistant
occurrences of the same character, was considered by Amir et al. [1]. A k-sub-cadence of
a string can be viewed as an occurrence of an equidistant subsequence of length k that
consists of the same character. A k-sub-cadence is a k-cadence, if the starting position is
less than or equal to d and the ending position is greater than n− d, where d is the distance
between each consecutive character occurrence and n is the length of the string. To date,
algorithms for detecting anchored cadences (cadences whose starting position is equal to
d), 3-(sub-)cadences, and (π1, π2, π3)-partial-3-cadences (an occurrence of an equidistant
subsequence that can become a cadence by changing a character at most all but three
positions i + π1d, i + π2d, and i + π3d, where i is the starting position of the equidistant
subsequence.) have been proposed [1, 5]. However, no efficient algorithm for detecting
k-(sub)-cadences for arbitrary k (1 ≤ k ≤ n) is known so far.

In this paper, we present counting algorithms for k-sub-cadences, k-cadences, equidistant
subsequence patterns of length m and length 3, and equidistant Abelian subsequence patterns
of length 3. Table 1 shows a summary of the results. All algorithms run in O(n) space.
Furthermore, we present locating algorithms for k-sub-cadences, k-cadences, and equidistant
subsequence patterns of length m. The time complexities of these algorithms can be obtained
by adding occ to the second term inside the minimum function of each time complexity of

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, and A. Shinohara 12:3

the counting algorithm. To the best of the authors’ knowledge, these are the first o(n2)
time algorithms for k-(sub)-cadences and equidistant subsequence patterns. In this paper,
we assume a word RAM model with word size Θ(logn). Also, unless otherwise noted, we
assume that strings over a general ordered alphabet.

Table 1 Summary of results. Note that an equidistant Abelian subsequence pattern is an
equidistant subsequence of any permutation of a given pattern.

Counting time For a constant size alphabet For a general ordered alphabet

k-sub-cadences O
(

min
{

n2

k
, n2

log n

})
O
(

min
{

n2

k
, n2√k√

log n

})
k-cadences O

(
n2

k2 log n

)
O
(

min
{

n2

k2 , n2
√

k
√

log n

})
Counting time For a general ordered alphabet

Equidistant subsequence pattern O
(

min
{

n2

m
, n2

log n

})
Equidistant subsequence pattern of length three O(n log2 n)

Equidistant Abelian subsequence pattern of length three O(n log n)

2 Preliminaries

Let Σ be the alphabet. An element of Σ∗ is called a string. The length of a string T is denoted
by |T |. String s ∈ Σ∗ is said to be a subsequence of string T ∈ Σ∗ if s can be obtained by
removing zero or more characters from T .

For a string T and an integer 1 ≤ i ≤ |T |, T [i] denotes the i-th character of T . For two
integers 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins at position i and ends
at position j. For convenience, let T [i..j] = ε when i > j.

2.1 k-(Sub-)Cadences
The term “cadence” has been used in slightly different ways in the literature (e.g., see [7, 10, 1]).
In this paper, we use the definitions of cadences and sub-cadences which are used in [1]
and [5].

For integers i and d, the pair (i, d) is called a k-sub-cadence of T ∈ Σn if T [i] = T [i+d] =
T [i + 2d] = · · · = T [i + (k − 1)d], where 1 ≤ i ≤ n and 1 ≤ d ≤ b n−ik−1c. The set of
k-sub-cadences of T can be defined as follows:

I Definition 1. For T ∈ Σn, n ∈ N , and k ∈ [1..n],

KSC (T, k) =
{

(i, d)
∣∣∣∣ T [i] = T [i+ d] = T [i+ 2d] = · · · = T [i+ (k − 1)d]

1 ≤ i ≤ n, 1 ≤ d ≤ b n−ik−1c

}
.

For integers i and d, the pair (i, d) is called a k-cadence of T ∈ Σn if (i, d) is a k-sub-
cadence and satisfies the inequalities i− d ≤ 0 and n < i+ kd. The set of k-cadences of T
can be defined as follows:

I Definition 2. For T ∈ Σn, n ∈ N , and k ∈ [1..n],

KC (T, k) =
{

(i, d)
∣∣∣∣ T [i] = T [i+ d] = T [i+ 2d] = · · · = T [i+ (k − 1)d]

1 ≤ i ≤ d, n−ik < d ≤ b n−ik−1c

}
.

CPM 2020

12:4 Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences

2.2 Equidistant Subsequence Occurrences
For integers i and d, we say that pair (i, d) is an equidistant subsequence occurrence of
P ∈ Σm in T ∈ Σn if P = T [i] · T [i+ d] · T [i+ 2d] · · ·T [i+ (m− 1)d], where 1 ≤ i ≤ n and
1 ≤ d ≤ b n−im−1c. The set of equidistant subsequence occurrences of P in T can be defined as
follows:

I Definition 3. For T ∈ Σn, P ∈ Σm and n,m ∈ N ,

ESP(T, P) =
{

(i, d)
∣∣∣∣ P = T [i] · T [i+ d] · T [i+ 2d] · · ·T [i+ (m− 1)d]

1 ≤ i ≤ n, 1 ≤ d ≤ b n−im−1c

}
.

2.3 Equidistant Abelian Subsequence Occurrences
Two strings S1 and S2 are said to be Abelian equivalent if S1 is a permutation of S2, or vice
versa. Now for integers i and d, we say that pair (i, d) is an equidistant Abelian subsequence
occurrence of P ∈ Σm in T ∈ Σn if T [i] · T [i + d] · T [i + 2d] · · ·T [i + (m − 1)d] and P are
Abelian equivalent, where 1 ≤ i ≤ n and 1 ≤ d ≤ b n−im−1c. The set of equidistant Abelian
subsequence occurrences of P in T can be defined as follows:

I Definition 4. For T ∈ Σn, P ∈ Σm and n,m ∈ N ,

EASP(T, P) =
{

(i, d)
∣∣∣∣ T [i] · T [i + d] · · ·T [i + (m− 1)d] and P are Abelian equivalent

1 ≤ i ≤ n, 1 ≤ d ≤ b n−i
m−1c

}
.

When it is clear from the context, we denote KSC (T, k) as KSC , KC (T, k) as KC , and
ESP(T, P) as ESP.

3 Detecting k-Sub-Cadences

In this section, we consider algorithms for detecting k-sub-cadences.

3.1 Algorithm 1
One of the simplest methods is as follows: For each distance d with 1 ≤ d ≤ bn−1

k−1 c, we
construct text STd = T [1] · T [1 + d] · · ·T [1 + dbn−1

d c] · $ · T [2] · T [2 + d] · · ·T [2 + dbn−2
d c] ·

$ · · ·T [d] · T [2d] · · ·T [dbnd c] of length db
n
d c+ d− 1. Then, the strings T [1] · T [1 + d] · · ·T [1 +

dbn−1
d c], T [2] · T [2 + d] · · ·T [2 + dbn−2

d c], ..., T [d] · T [2d] · · ·T [dbnd c] are called d-skip-strings,
and the STd is called d-split text. If we would like to find k-sub-cadences with distance d in
text T , we find concatenations of the same character of length k as substrings in STd.

! " c a a a c a a b a a b a a b c a b c

! " c a a a a a $ a c b b b b $ a a a a c c
3-skip

strings

! " c a a a a a $ a c b b b b $ a a a a c c
3-split

text #!$

text !

Figure 1 Preprocessing for Algorithm 1.

Fig. 1 is an example of the 3-split text ST3. In STd, we use a symbol $ /∈ Σ in order to
prevent detecting false occurrences of concatenation of same character of the length k across
the ends of d-skip strings as a k-sub-cadence. The text obtained by concatenating all STd for

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, and A. Shinohara 12:5

all 1 ≤ d ≤ bn−1
k−1 c and $ is called the split text. If we prepare the split text, we can compute

KSC simply by checking that the same character is repeated k times.
The length of STd is at most n+ d including $. The maximum value of d is bn−1

k−1 c, and
therefore, the number of STd is at most bn−1

k−1 c. Hence, the length of the split text of T is
O(n

2

k). We can check that the same character is repeated k times in the split text in O(n
2

k)
time. Although we have presented the split text to ease the description, it does not have to
be constructed explicitly.

From the above, we can get the following result.

I Theorem 5. There is an algorithm for locating all k-sub-cadences for given k (1 ≤ k ≤ n)
which uses O

(
n2

k

)
time and O(n) space.

As can be seen from the example of T = an, |KSC | can be Ω(n
2

k). Therefore, when we
locate all (i, d) ∈ KSC , this algorithm is optimal in the worst case. In the next subsection,
we show a counting algorithm that is efficient when the value of k is small. Moreover, we
show a locating algorithm that is efficient when both the value of k and |KSC | is small.

3.2 Algorithm 2
In this subsection, we will show the following result:

I Theorem 6. For a constant size alphabet, there is an O
(

n2

logn

)
time algorithm for counting

all k-sub-cadences for given k. We can also locate these occurrences in O
(

n2

logn + occ
)

time, where occ is the number of the outputs. For a general ordered alphabet, there is an

O

(
n2√k√

logn

)
time algorithm for counting all k-sub-cadences for given k. We can also locate

these occurrences in O

(
n2√k√

logn
+ occ

)
time. These algorithms run in O(n) space.

Note that for counting all k-sub-cadences, for a constant size alphabet (resp. for a general
ordered alphabet), this algorithm is faster than Algorithm 1 if k is o(logn) (resp. o

(
3
√

logn
)
).

For locating all k-sub-cadences, for a constant size alphabet (resp. for a general ordered
alphabet), if |KSC | is o(n

2

k) and k is o(logn) (resp. o
(

3
√

logn
)
), then this algorithm is faster.

Now we will show how to count all k-sub-cadences of character c ∈ Σ. Let δc[1..n] be a
binary sequence given by the indicator function for the character c:

δc[i] :=
{
1 if T [i] = c,

0 if T [i] 6= c.

If (i, d) is a k-sub-cadence with character c, δc[i] = δc[i+ d] = · · · = δc[i+ (k − 1)d] = 1.
Therefore, we can check whether (i, d) is a k-sub-cadence or not by computing δc[i] · δc[i+
d] · · · δc[i+ (k − 1)d]. To compute this, we use bit-parallelism, i.e, the bit-wise operations
AND and SHIFT_LEFT, denoted by & and «, respectively, as in the C language. For each
d with 1 ≤ d ≤ bn−1

k−1 c, let Qd = δc & (δc « d) & (δc « 2d) & · · · & (δc « (k − 1)d). If
Qd[i] = 1, then (i, d) is a k-sub-cadence. See Figure 2 for a concrete example.

If we want to count all k-sub-cadences with d, we only have to count the number of 1’s in
Qd. If we want to locate all k-sub-cadences with d, we have to locate all 1’s in Qd.

In the word RAM model, SHIFT_LEFT and AND operations can be done in constant
time per operation on bit sequences of length O(logn). Since δc is a binary sequence of
length n, one SHIFT_LEFT or AND operation can be done in O(n

logn) time. Therefore, Qd

CPM 2020

12:6 Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences

! " c a a a c a a b a a b a a b c a b c

#$ " 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

#$ " 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

% &#$ ' () " 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0

% &#$ ' *) " 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0

% &#$ ' +) " 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

,(" 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Figure 2 Let T = caaacaabaabaabcabc. (3, 3), (4, 3), and (7, 3) are 4-sub-cadences of character
‘a’ with d = 3.

can be obtained in O(k n
logn) time. Since it is known that the number of 1’s in a bit sequence

of length O(logn) can be obtained in O(1) time by using the “popcnt” operation which is a
standard operation on the word RAM model, the number of 1’s in Qd can be counted in
O(n

logn) time. Hence, for all 1 ≤ d ≤ bn−1
k−1 c, we can count all k-sub-cadences of character

c in O
(
k n

lognb
n−1
k−1 c+ n

lognb
n−1
k−1 c

)
⊆ O(n2

logn) time. Also, it is known that the position of
the rightmost 1 (the least significant set bit) in a bit sequence of length O(logn) can be
answered in constant time by using bit-wise operations. We split Qd into O(n

logn) blocks of
length O(logn). For each block, the least significant set bit can be found in O(1) time if the
block contains at least one 1. After finding the least significant set bit, we mask this bit to 0
and do the above operation again. Bit mask operation can be done in O(1) time. Hence, we
can answer all the positions of 1’s in Qd in O(n

logn + occ) time. Therefore, we can locate all
k-sub-cadences of character c in O(n2

logn + occ) time.
We showed how to detect all k-sub-cadences of character c, so we can detect all k-

sub-cadences by doing the above operations for each character in Σ. For a constant size
alphabet, since we only do the above operations a constant number of times, we can count
all k-sub-cadences in O(n2

logn) time. We can also locate these occurrences in O(n2

logn + occ)
time. However, for a general ordered alphabet, we have to do the above operations |Σ| times.

For a general ordered alphabet, if the number of occurrences of the character is small, we
use another algorithm that generalizes Amir et al.’s algorithm [1] for detecting 3-cadences
to k-sub-cadences: Let Nc be the set of positions which are occurrences of a character
c. If we pick two positions in Nc and regard the smaller one as the starting position i of
k-sub-cadences and the larger one as the second position i+ d of a k-sub-cadence, then the
distance d is uniquely determined. We can check whether the pair (i, d) is a k-sub-cadence
or not in O(k) time. Since the number of pairs is at most |Nc|2, we can count or locate
k-sub-cadences of character c in O(k|Nc|2) time.

Thus, for a general ordered alphabet, all k-sub-cadences can be counted in
O(
∑
c∈Σ min{k|Nc|2, n2

logn}) time. Since O(
∑
c∈Σ min{k|Nc|2, n2

logn}) is maximized when
k|Nc|2 = n2

logn , then O(
∑
c∈Σ min{k|Nc|2, n2

logn}) ⊆ O((
∑
c∈Σ |Nc|)

n
√
k√

logn
) ⊆ O(n2√k√

logn
).

Therefore we can count in O(n2√k√
logn

) time by using Algorithm 2 and the above algorithm
that generalizes Amir et al.’s algorithm. Also, all k-sub-cadences can be located in
O(
∑
c∈Σ min{k|Nc|2, n2

logn + occc}) time where occc is the number of k-sub-cadences of char-
acter c. Since O(

∑
c∈Σ min{k|Nc|2, n2

logn + occc}) ⊆ O((
∑
c∈Σ min{k|Nc|2, n2

logn}) + occ) ⊆
O(n2√k√

logn
+ occ), we can locate all k-sub-cadences in O(n2√k√

logn
+ occ) time.

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, and A. Shinohara 12:7

From the above, we obtain the following result:

I Theorem 7. For a constant size alphabet (resp. for a general ordered alphabet), all k-sub-
cadences with given k can be counted in O

(
min

{
n2

k ,
n2

logn

})
time

(resp. O
(

min
{
n2

k ,
n2√k√

logn

})
time) and O(n) space, and can be located in

O
(

min
{
n2

k ,
n2

logn + occ
})

time (resp. O
(

min
{
n2

k ,
n2√k√

logn
+ occ

})
time) and O(n) space.

4 Detecting k-Cadences

In this section, we consider algorithms for detecting k-cadences.

4.1 Algorithm 3
Again, each (i, d) has to satisfy the following formulas: 1 ≤ i ≤ d and n−i

k < d ≤ b n−ik−1c.
Then, each distance d satisfies n

k+1 < d < n
k−1 . We use same techniques of Algorithm 1 for

each d with n
k+1 < d < n

k−1 . Since the number of possible values for d is O(nk2), we can check
that the same character is repeated k times in the split text in O(n

2

k2) time. Therefore, we
can obtain the following result:

I Theorem 8. There is an algorithm for locating all k-cadences for given k which uses
O
(
n2

k2

)
time and O(n) space.

4.2 Algorithm 4
Now, we will show the following result:

I Theorem 9. For a constant size alphabet, there is an O
(

n2

k2 logn

)
time algorithm for

counting all k-cadences for given k. We can also locate these occurrences in O
(

n2

k2 logn + occ
)

time. For a general ordered alphabet, there is an

O

(
n2

√
k
√

logn

)
time algorithm for counting all k-sub-cadences for given k. We can also locate

these occurrences in O

(
n2

√
k
√

logn
+ occ

)
time. These algorithms run in O(n) space.

Note that when we count all k-sub-cadences, for a constant size alphabet, this algorithm
is faster than Algorithm 3. Also, for a general ordered alphabet, this algorithm is faster if k
is o(3
√

logn). (This is because if n2
√
k
√

logn
is less than n2

k2 , then k
√
k ≤
√

logn.) When we
locate all k-sub-cadences, for a constant size alphabet (resp. for a general ordered alphabet),
if |KC | is o(n

2

k2) (resp. |KC | is o(n
2

k2) and k is o(3
√

logn)) then this algorithm is faster.
Now we will show how to count all k-cadences of character c ∈ Σ. If (i, d) is a k-cadence

with character c, then δc[i] = δc[i+ d] = · · · = δc[i+ (k− 1)d] = 1, 1 ≤ i ≤ d, and n−i
k < d ≤

b n−ik−1c. Therefore, to calculate k-cadences, we need only the range [1..d] of i for d with n−i
k <

d ≤ b n−ik−1c. For each d with n−i
k < d ≤ b n−ik−1c, let Q

′
d = δc[1..d] & δc[d + 1..2d] & δc[3d +

1..4d] & · · · & δc[(k − 1)d+ 1..kd]. If Q′d[i] = 1, (i, d) is a k-cadence. Q′d can be obtained
by the following operation: Q′d = δc[1..d] & (δc « d)[1..d] & (δc « 2d)[1..d] & · · · & (δc «
(k − 1)d)[1..d]. By using the same techniques of Algorithm 2, we can compute Q′d in
O(k d

logn) time. Hence, for all n
k+1 < d < n

k−1 , we can count all k-cadences of a character in
O(k d

logn
n
k2) ⊆ O(lognn

2

k2) time.

CPM 2020

12:8 Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences

For a locating algorithm and for a general ordered alphabet, we can use same techniques
of the above section. Then we can locate all k-cadences of a character in O(n2

k2 logn + occ)
time. For a general ordered alphabet, all k-cadences can be counted in
O(
∑
c∈Σ min{k|Nc|2, n2

k2 logn}) time. Since O(
∑
c∈Σ min{k|Nc|2, n2

k2 logn}) is maximized when
k|Nc|2 = n2

k2 logn , then O(
∑
c∈Σ min{k|Nc|2, n2

k2 logn}) ⊆ O((
∑
c∈Σ |Nc|)

n√
k
√

logn
)

⊆ O(n2
√
k
√

logn
). Therefore we can count in O(n2

√
k
√

logn
) time. Also, all k-sub-cadences can

be located in O(n2
√
k
√

logn
+ occ) time. From the above, we obtain the following result:

I Theorem 10. For a constant size alphabet (resp. for a general ordered alphabet), all
k-cadences with given k can be counted in O

(
n2

k2 logn

)
time

(resp. O
(

min
{
n2

k2 ,
n2

√
k
√

logn

})
time) and O(n) space, and can be located in

O
(

n2

k2 logn + occ
)

time (resp. O
(

min
{
n2

k2 ,
n2

√
k
√

logn
+ occ

})
time) and O(n) space.

5 Detecting Equidistant Subsequence Pattern

In this section, we consider algorithms for detecting equidistant subsequence pattern.

5.1 Algorithm 5
We use similar techniques as of Algorithm 1. For each distance d with 1 ≤ d ≤ b n−1

m−1c,
we construct text STd. After preparing the split text, we can compute ESP using existing
substring pattern matching algorithms. Since Knuth-Morris-Pratt algorithm [9] runs in O(n)
time for a text of length n, we obtain the following result:

I Theorem 11. There is an algorithm for locating all equidistant subsequence occurrences
for given pattern P of length m which uses O

(
n2

m

)
time and O(n) space.

Like KSC , for text T = an and pattern P = am, |ESP| can be Ω(n
2

m). Therefore, when
we locate all (i, d) ∈ ESP, this algorithm is optimal in the worst case. In the next subsection,
we show a counting algorithm that is efficient when the value of m is small. And we show a
locating algorithm that is efficient when the value of m and |ESP| is small.

5.2 Algorithm 6
Now we will show the following results:

I Theorem 12. There is an algorithm for counting all equidistant subsequence occurrences
which uses O

(
n2

logn

)
time and O

(
|ΣP |n
logn

)
space, where ΣP is the set of distinct characters

in the given pattern P . We can also locate these occurrences in O
(

n2

logn + occ
)

time and

O
(
|ΣP |n
logn

)
space.

First, we construct δc for all c ∈ ΣP . For each d with 1 ≤ d ≤ b n−1
m−1c, let Q′′

d =
δP [1] & (δP [2] « d) & (δP [3] « 2d) & · · · & (δP [m] « (m − 1)d). If Q′′

d [i] = 1, (i, d) is an
occurrence of equidistant subsequence pattern P . See Figure 3 for a concrete example.

All of the elements of ESP can be counted / located by using a method similar to
Algorithm 2 for Q′′

d . After constructing δc for all c ∈ Σ, all occurrences of equidistant

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, and A. Shinohara 12:9

! " a a c c

#$ " 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

#$ " 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0

% &#$ ' () " 1 0 1 1 0 1 1 0 1 1 0 0 1 0 0 0 0 0

% &#* ' +) " 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

% &#* ' ,) " 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

-..(" 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

#* " 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1

/ " c a a a c a a b a a b a a b c a b c

Figure 3 Let T = caaacaabaabaabcabc and P = aacc. (9, 3) is an occurrence of equidistant
subsequence pattern with d = 3.

subsequence pattern can be counted in O(n2

logn) time and O(n) space and can be located in
O(n2

logn + occ) time and O(n) space. Constructing δc for all c ∈ ΣP needs O(|ΣP |n
logn) time and

space. Since |ΣP |n
logn is at most O(n2

logn), we get Theorem 12.
If m is o(logn), Algorithm 6 is faster than Algorithm 5 and O(|ΣP |n

logn) ⊆ O(n). From the
above, we obtain the following result:

I Theorem 13. All occurrences of equidistant subsequence pattern can be counted in
O
(

min
{
n2

m ,
n2

logn

})
time and O(n) space and can be located in

O
(

min
{
n2

m ,
n2

logn + occ
})

time and O(n) space.

6 Detecting Equidistant Subsequence Pattern of Length Three

In this section, we show more efficient algorithms that count all occurrences of an equidistant
subsequence pattern for the case where the length of the pattern is three. In addition, we
show an algorithm for counting all occurrences of equidistant Abelian subsequence patterns of
length three. Since we heavily use the techniques of [5] for 3-sub-cadences, we first show their
algorithm for 3-sub-cadences and then generalize it for solving the equidistant subsequence
pattern matching problem.

6.1 Counting 3-sub-cadences [5]
Let a[0..n] and b[0..n] be two sequences. The sequence h[1..2n] can be computed by the
discrete acyclic convolution h[z] =

∑
x+y=z

(x,y)∈[0,1,2,...,n]2
a[x]b[y]. The discrete acyclic convolution

can be computed in O(n logn) time by using the fast Fourier transform. This convolution can
be interpreted geometrically as follows: h[z] =

∑
x+y=z

(x,y)∈G∩Z2
a[x]b[y], where G is the square

given by {(x, y) : 0 ≤ x, y ≤ n}.
Funakoshi and Pape-Lange [5] showed that 3-sub-cadences can be counted by using the

discrete acyclic convolution. If (i, d) is a 3-sub-cadence with a character c, then δc[i]·δc[i+2d] =
1 and T [i + d] = c. Let h[2z] =

∑
x+y=2z

(x,y)∈[0,1,2,...,n]2
δc[x]δc[y], then h[2z] counts how many

pairs x and y there are that satisfies x+ y = 2z and T [x] = T [y] = c for the index z. Since

CPM 2020

12:10 Detecting k-(Sub-)Cadences and Equidistant Subsequence Occurrences

z + z = 2z and δc[z] · δc[z] = 1 if T [z] = 1, then h[2z] counts one false positive. In addition,
x + y = 2z and δc[x] · δc[y] = 1 if x 6= y, then h[2z] counts twice for same x and y. Let
f [z] be the number of all 3-sub-cadences with a character c such that the middle index of
3-sub-cadences is z. f [z] can be computed in O(n logn) time as follows:

f [z] :=
{
h[2z]−1

2 if T [z] = c,

0 if T [z] 6= c.

Furthermore, they extended the geometric interpretation of convolution and showed that
if G is a triangle with perimeter p, the sequence c can be computed in O(p log2 p) time.

6.2 Counting Equidistant Subsequence Patterns of Length Three
Now we show an algorithm for counting all occurrences of equidistant subsequence patterns
whose length is three. Let g[z] be the number of all occurrences of the equidistant subsequence
pattern such that the middle index of P is z. If P = ααα, this problem is equal to the
counting all 3-sub-cadences problem. Therefore, g[z] can be computed in O(n logn) time as
follows:

g[z] :=
{
h[2z]−1

2 if T [z] = α

0 if T [z] 6= α

where h[2z] =
∑

x+y=2z
(x,y)∈[0,1,2,...,n]2

δα[x]δα[y].

If P = αβα, since the pattern is symmetrical, g[z] can be computed in O(n logn) time as
follows, by using almost the same technique as above:

g[z] :=
{
h[2z]

2 if T [z] = β

0 if T [z] 6= β

where h[2z] =
∑

x+y=2z
(x,y)∈[0,1,2,...,n]2

δα[x]δα[y].

However, if P = αβγ, then h[2z] =
∑

x+y=2z
(x,y)∈[0,1,2,...,n]2

δα[x]δγ [y] would also include

occurrences of the equidistant subsequence pattern γβα. Thus, in order to compute g[z], we
further add the condition x < y. By using triangle convolution of [5], g[z] can be computed
in O(n log2 n) time as follows:

g[z] :=
{
h[2z] if T [z] = β

0 if T [z] 6= β

where h[2z] =
∑

x+y=2z
(x,y)∈G∩Z2

δα[x]δγ [y], where G is the triangle as in the following Figure 4.

If P = ααγ or P = αγγ, we can compute g[z] by using the same technique as for the
case of P = αβγ. Therefore, we get the following result:

I Theorem 14. All occurrences of equidistant subsequence pattern of length three can be
counted in O(n log2 n) time and O(n) space.

6.3 Counting Equidistant Abelian Subsequence Patterns of Length
Three

Now we show the algorithm for counting all occurrences of equidistant Abelian subsequence
pattern whose length is three. In this subsection we consider the case where all of the three
characters are distinct, namely, P = αβγ. The other cases can be computed similarly.

M. Funakoshi, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda, and A. Shinohara 12:11

0 !

!

"

#

Figure 4 The triangle G.

In the previous subsection, we showed that if P = αβγ, then
h[2z] =

∑
x+y=2z

(x,y)∈[0,1,2,...,n]2
δα[x]δγ [y] includes the occurrences of equidistant subsequence

pattern γβα. Therefore, we can compute all occurrences of equidistant subsequence pattern
αβγ, γβα, βγα, αγβ, γαβ, and βαγ by using discrete acyclic convolution for P = αβγ,
P = βγα, and P = γαβ. Hence, we can get following result:

I Theorem 15. All occurrences of equidistant Abelian subsequence pattern of length three
can be counted in O(n logn) time and O(n) space.

References
1 Amihood Amir, Alberto Apostolico, Travis Gagie, and Gad M. Landau. String cadences.

Theoretical Computer Science, 698:4–8, 2017. Algorithms, Strings and Theoretical Approaches
in the Big Data Era (In Honor of the 60th Birthday of Professor Raffaele Giancarlo).

2 Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, 1977.

3 Maxime Crochemore and Dominique Perrin. Two-way string-matching. J. ACM, 38(3):650–674,
1991.

4 Simone Faro, Thierry Lecroq, Stefano Borzi, Simone Di Mauro, and Alessandro Maggio. The
string matching algorithms research tool. In Proceedings of the Prague Stringology Conference
2016, Prague, Czech Republic, August 29-31, 2016, pages 99–111. Department of Theoretical
Computer Science, Faculty of Information Technology, Czech Technical University in Prague,
2016.

5 Mitsuru Funakoshi and Julian Pape-Lange. Non-rectangular convolutions and (sub-)cadences
with three elements. In 37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages
30:1–30:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

6 Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and
System Sciences, 26(3):280–294, 1983.

7 J. Gardelle. Cadences. Mathématiques et Sciences humaines, 9:31–38, 1964.
8 R. Nigel Horspool. Practical fast searching in strings. Software: Practice and Experience,

10(6):501–506, 1980.
9 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in

strings. SIAM J. Comput., 6(2):323–350, 1977.
10 M. Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cambridge University

Press, 1997.
11 Phillip Matier and Andrew Ross. Did Schwarzenegger drop 4-letter bomb in veto? San

Francisco Chronicle, 2009. URL: http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/
2009/10/28/MNBN1ABKB8.DTL.

12 Doron Witztum, Eliyahu Rips, and Yoav Rosenberg. Equidistant letter sequences in the book
of genesis. Statistical Science, 9(3):429–438, 1994.

CPM 2020

http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2009/10/28/MNBN1ABKB8.DTL
http://www.sfgate.com/cgi-bin/article.cgi?f=/c/a/2009/10/28/MNBN1ABKB8.DTL

	Introduction
	Preliminaries
	k-(Sub-)Cadences
	Equidistant Subsequence Occurrences
	Equidistant Abelian Subsequence Occurrences

	Detecting k-Sub-Cadences
	Algorithm 1
	Algorithm 2

	Detecting k-Cadences
	Algorithm 3
	Algorithm 4

	Detecting Equidistant Subsequence Pattern
	Algorithm 5
	Algorithm 6

	Detecting Equidistant Subsequence Pattern of Length Three
	Counting 3-sub-cadences [5]
	Counting Equidistant Subsequence Patterns of Length Three
	Counting Equidistant Abelian Subsequence Patterns of Length Three

