
k-Approximate Quasiperiodicity
under Hamming and Edit Distance
Aleksander Kędzierski
Institute of Informatics, University of Warsaw, Poland
Samsung R&D Institute, Warsaw, Poland
aa.kedzierski2@uw.edu.pl

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Poland
Samsung R&D Institute, Warsaw, Poland
jrad@mimuw.edu.pl

Abstract
Quasiperiodicity in strings was introduced almost 30 years ago as an extension of string periodicity.
The basic notions of quasiperiodicity are cover and seed. A cover of a text T is a string whose
occurrences in T cover all positions of T . A seed of text T is a cover of a superstring of T . In various
applications exact quasiperiodicity is still not sufficient due to the presence of errors. We consider
approximate notions of quasiperiodicity, for which we allow approximate occurrences in T with a
small Hamming, Levenshtein or weighted edit distance.

In previous work Sip et al. (2002) and Christodoulakis et al. (2005) showed that computing
approximate covers and seeds, respectively, under weighted edit distance is NP-hard. They, therefore,
considered restricted approximate covers and seeds which need to be factors of the original string T

and presented polynomial-time algorithms for computing them. Further algorithms, considering
approximate occurrences with Hamming distance bounded by k, were given in several contributions
by Guth et al. They also studied relaxed approximate quasiperiods that do not need to cover all
positions of T .

In case of large data the exponents in polynomial time complexity play a crucial role. We present
more efficient algorithms for computing restricted approximate covers and seeds. In particular,
we improve upon the complexities of many of the aforementioned algorithms, also for relaxed
quasiperiods. Our solutions are especially efficient if the number (or total cost) of allowed errors is
bounded. We also show NP-hardness of computing non-restricted approximate covers and seeds
under Hamming distance.

Approximate covers were studied in three recent contributions at CPM over the last three years.
However, these works consider a different definition of an approximate cover of T , that is, the
shortest exact cover of a string T ′ with the smallest Hamming distance from T .

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases approximate cover, approximate seed, enhanced cover, Hamming distance,
edit distance

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.18

Related Version https://arxiv.org/abs/2005.06329

Funding Jakub Radoszewski: Supported by the Polish National Science Center, grant number
2018/31/D/ST6/03991.

1 Introduction

Quasiperiodicity was introduced as an extension of periodicity [6]. Its aim is to capture
repetitive structure of strings that do not have an exact period. The basic notions of
quasiperiodicity are cover (also called quasiperiod) and seed. A cover of a string T is a string
C whose occurrences cover all positions of T . A seed of string T is a cover of a superstring

© Aleksander Kędzierski and Jakub Radoszewski;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0335-2963
mailto:aa.kedzierski2@uw.edu.pl
https://orcid.org/0000-0002-0067-6401
mailto:jrad@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.CPM.2020.18
https://arxiv.org/abs/2005.06329
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 k-Approximate Quasiperiodicity under Hamming and Edit Distance

of T . Covers and seeds were first considered in [7] and [21], respectively, and linear-time
algorithms computing them are known; see [9, 21, 29, 30, 31] and [24].

A cover is necessarily a border, that is, a prefix and a suffix of the string. A seed C of T
covers all positions of T by its occurrences or by left- or right-overhangs, that is, by suffixes
of C being prefixes of T and prefixes of C being suffixes of T . In order to avoid extreme
cases one usually assumes that covers C of T need to satisfy |C| < |T | and seeds C need to
satisfy 2|C| ≤ |T | (so a seed needs to be a factor of T). Seeds, unlike covers, preserve an
important property of periods that if T has a period or a seed, then every (sufficiently long)
factor of T has the same period or seed, respectively.

The classic notions of quasiperiodicity may not capture repetitive structure of strings
in practical settings; it was also confirmed by a recent experimental study [12]. In order to
tackle this problem, further types of quasiperiodicity were studied that require that only a
certain number of positions in a string are covered. This way notions of enhanced cover,
partial cover and partial seed were introduced. A partial cover and partial seed are required
to cover a given number of positions of a string, where for the partial seed overhangs are
allowed, and an enhanced cover is a partial cover with an additional requirement of being a
border of the string. O(n logn)-time algorithms for computing shortest partial covers and
seeds were shown in [26] and [25], respectively, whereas a linear-time algorithm for computing
a proper enhanced cover that covers the maximum number of positions in T was presented
(among other variations of the problem) in [14].

Further study has lead to approximate quasiperiodicity in which approximate occurrences
of a quasiperiod are allowed. In particular, Hamming, Levenshtein and weighted edit distance
were considered. A k-approximate cover of string T is a string C whose approximate
occurrences with distance at most k cover T . Similarly one can define a k-approximate seed,
allowing overhangs. These notions were introduced by Sip et al. [33] and Christodoulakis
et al. [10], respectively, who showed that the problem of checking if a string T has a k-
approximate cover and k-approximate seed, respectively, for a given k is NP-complete under
weighted edit distance. (Their proof used arbitrary integer weights and a constant-sized – 12
letters in the case of approximate seeds – alphabet.) Therefore, they considered a restricted
version of the problem in which the approximate cover or seed is required to be a factor
of T . Formally, the problem is to compute, for every factor of T , the smallest k for which
it is a k-approximate cover or seed of T . For this version of the problem, they presented
an O(n3)-time algorithm for the Hamming distance and an O(n4)-time algorithm for the
edit distance1. The same problems under Hamming distance were considered by Guth et
al. [19] and Guth and Melichar [18]. They studied a k-restricted version of the problems,
in which we are only interested in factors of T being `-approximate covers or seeds for
` ≤ k, and developed O(n3(|Σ|+ k))-time and O(n3|Σ|k)-time automata-based algorithms
for k-restricted approximate covers and seeds, respectively. Experimental evaluation of these
algorithms was performed by Guth [16].

Recently, Guth [17] extended this study to k-approximate restricted enhanced covers
under Hamming distance. In this problem, we search for a border of T whose k-approximate
occurrences cover the maximum number of text positions. In another variant of the problem,
which one could see as approximate partial cover problem, we only require the approximate

1 In fact, they consider relative Hamming and Levenshtein distances which are inversely proportional to
the length of the candidate factor and seek for an approximate cover/seed that minimizes such distance.
However, their algorithms actually compute the minimum distance k for every factor of T under the
standard distance definitions.

A. Kędzierski and J. Radoszewski 18:3

enhanced cover to be a k-approximate border of T , but still to be a factor of T . Guth [17]
proposed O(n2)-time and O(n3(|Σ|+ k))-time algorithms for the two respective variants.

We improve upon previous results on restricted approximate quasiperiodicity. We in-
troduce a general notion of k-coverage of a string S in a string T , defined as the number
of positions in T that are covered by k-approximate occurrences of S. Efficient algorithms
computing the k-coverage for factors of T are presented. We also show NP-hardness for
non-restricted approximate covers and seeds under the Hamming distance. A detailed list of
our results is as follows.

1. The Hamming k-coverage for every prefix and for every factor of a string of length n can
be computed in O(nk2/3 log1/3 n log k) time (for a string over an integer alphabet) and
O(n2) time, respectively. (See Section 3.)
With this result we obtain algorithms with the same time complexities for the two
versions of k-approximate restricted enhanced covers that were proposed by Guth [17]
and an O(n2k)-time algorithm computing k-restricted approximate covers and seeds. Our
algorithm for prefixes actually works in linear time assuming that a k-mismatch version
of the PREF table [11] is given. Thus, as a by-product, for k = 0, we obtain an alternative
linear-time algorithm for computing all (exact) enhanced covers of a string. (A different
linear-time algorithm for this problem was given in [14]).
The complexities come from using tools of Kaplan et al. [22] and Flouri et al. [13],
respectively.

2. The k-coverage under Levenshtein distance and weighted edit distance for every factor of
a string of length n can be computed in O(n3) time and O(n3√n logn) time, respectively.
(See Section 4.)
We also show in Section 4 how our approach can be used to compute restricted approximate
covers and seeds under weighted edit distance in O(n3√n logn) time, thus improving
upon the previous O(n4)-time algorithms of Sip et al. [33] and Christodoulakis et al. [10].
Our algorithm for Levenshtein distance uses incremental string comparison [27].

3. Under Hamming distance, it is NP-hard to check if a given string of length n has a
k-approximate cover or a k-approximate seed of a given length c. This statement holds
even for strings over a binary alphabet. (See Section 5.)
This result extends the previous proofs of Sip et al. [33] and Christodoulakis et al. [10]
which worked for the weighted edit distance.

A different notion of approximate cover, which we do not consider in this work, was
recently studied in [1, 2, 3, 4, 5]. This work assumed that the string T may not have a cover,
but it is at a small Hamming distance from a string T ′ that has a proper cover. They defined
an approximate cover of T as the shortest cover of a string T ′ that is closest to T under
Hamming distance. Interestingly, this problem was also shown to be NP-hard [2] and an
O(n4)-time algorithm was developed for it in the restricted case that the approximate cover
is a factor of the string T [4]. Our work can be viewed as complementary to this study as
“the natural definition of an approximate repetition is not clear” [4].

2 Preliminaries

We consider strings over an alphabet Σ. The empty string is denoted by ε. For a string T ,
by |T | we denote its length and by T [0], . . . , T [|T | − 1] its subsequent letters. By T [i, j] we
denote the string T [i] . . . T [j] which we call a factor of T . If i = 0, it is a prefix of T , and
if j = |T | − 1, it is a suffix of T . A string that is both a prefix and a suffix of T is called

CPM 2020

18:4 k-Approximate Quasiperiodicity under Hamming and Edit Distance

a border of T . For a string T = XY such that |X| = b, by rotb(T) we denote Y X, called a
cyclic shift of T .

For equal-length strings U and V , by Ham(U, V) we denote their Hamming distance, that
is, the number of positions where they do not match. For strings U and V , by ed(U, V) we
denote their edit distance, that is, the minimum cost of edit operations (insertions, deletions,
substitutions) that allow to transform U to V . Here the cost of an edit operation can vary
depending both on the type of the operation and on the letters that take part in it. In case
that all edit operations have unit cost, the edit distance is also called Levenshtein distance
and denoted here as Lev(U, V).

For two strings S and T and metric d, we denote by

Occdk(S, T) = {[i, j] : d(S, T [i, j]) ≤ k}

the set of approximate occurrences of S in T , represented as intervals, under the metric d.
We then denote by

Covereddk(S, T) = |
⋃

Occdk(S, T)|

the k-coverage of S in T . In case of Hamming or Levenshtein distances, k ≤ n, but for the
weighted edit distance k can be arbitrarily large. Moreover, by StartOccdk(S, T) we denote
the set of left endpoints of the intervals in Occdk(S, T).

I Definition 1. Let d be a metric and T be a string. We say that string C, |C| < |T |, is a
k-approximate cover of T under metric d if Covereddk(C, T) = |T |.

We say that string C, 2|C| ≤ |T |, is a k-approximate seed of T if it is a k-approximate
cover of some string T ′ whose factor is T . Let ♦ be a wildcard symbol that matches every
other symbol of the alphabet. Strings over Σ ∪ {♦} are also called partial words. In order to
compute k-approximate seeds, it suffices to consider k-approximate covers of ♦|T |T♦|T |.

The main problems in scope can now be stated as follows.

General k-Approximate Cover/Seed
Input: String T of length n, metric d, integer c ∈ {1, . . . , n− 1} and number k
Output: A string C of length c that is a k-approximate cover/seed of T under d

Prefix/Factor k-Coverage
Input: String T of length n, metric d and number k
Output: For every prefix/factor of T , compute its k-coverage under d

Restricted Approximate Covers/Seeds
Input: String T of length n and metric d
Output: Compute, for every factor C of T , the smallest k such that C is a k-approximate
cover/seed of T under d

2.1 Algorithmic Toolbox for Hamming Distance
For a string T of length n, by lcpk(i, j) we denote the length of the longest common prefix
with at most k mismatches of the suffixes T [i, n−1] and T [j, n−1]. Flouri et al. [13] proposed
an O(n2)-time algorithm to compute the longest common factor of two strings T1, T2 with at
most k mismatches. Their algorithm actually computes the lengths of the longest common
prefixes with at most k mismatches of every two suffixes T1[i, |T1| − 1] and T2[j, |T2| − 1] and
returns the maximum among them. Applied for T1 = T2, it gives the following result.

A. Kędzierski and J. Radoszewski 18:5

I Lemma 2 ([13]). For a string of length n, values lcpk(i, j) for all i, j = 0, . . . , n− 1 can
be computed in O(n2) time.

We also use a table PREFk such that PREFk[i] = lcpk(0, i). LCP-queries with mismatches
can be answered in O(k) time after linear-time preprocessing using the kangaroo method [28].
In particular, this allows to compute the PREFk table in O(nk) time. Kaplan et al. [22]
presented an algorithm that, given a pattern P of length m, a text T of length n over an
integer alphabet Σ ⊆ {1, . . . , nO(1)}, and an integer k, finds in O(nk2/3 log1/3 m log k) time
for all positions j of T , the index of the k-th mismatch of P with the suffix T [j, n − 1].
Applied for P = T , it gives the following result.

I Lemma 3 ([22]). The PREFk table of a string of length n over an integer alphabet can be
computed in O(nk2/3 log1/3 n log k) time.

We say that strings U and V have a k-mismatch prefix-suffix of length p if U has a prefix
U ′ of length p and V has a suffix V ′ of length p such that Ham(U ′, V ′) ≤ k.

2.2 Algorithmic Toolbox for Edit Distance
For x, y ∈ Σ, let c(x, y), c(ε, x) and c(x, ε) be the costs of substituting letter x by letter y
(equal to 0 if x = y), inserting letter x and deleting letter x, respectively. They are usually
specified by a penalty matrix c; it implies a metric if certain conditions are satisfied (identity
of indiscernibles, symmetry, triangle inequality).

The classic dynamic programming solution to the edit distance problem (see [34]) for
strings T1 and T2 uses the so-called D-table such that D[i, j] is the edit distance between
prefixes T1[0, i] and T2[0, j]. Initially D[−1,−1] = 0, D[i,−1] = D[i− 1,−1] + c(T1[i], ε) for
i ≥ 0 and D[−1, j] = D[−1, j−1]+ c(ε, T2[j]) for j ≥ 0. For i, j ≥ 0, D[i, j] can be computed
as follows:

D[i, j] = min(D[i−1, j−1]+c(T1[i], T2[j]), D[i, j−1]+c(ε, T2[j]), D[i−1, j]+c(T1[i], ε)).

Given a threshold h on the Levenshtein distance, Landau et al. [27] show how to compute
the Levenshtein distance between T1 and bT2, for any b ∈ Σ, in O(h) time using previously
computed solution for T1 and T2 (another solution was given later by Kim and Park [23]).
They define an h-wave that contains indices of the last value h in diagonals of the D-table.
Let Lh(d) = max{i : D[i, i+ d] = h}. Formally an h-wave is:

Lh = [Lh(−h), Lh(−h+ 1), . . . , Lh(h− 1), Lh(h)].

Landau et al. [27] show how to update the h-wave when string T2 is prepended by a single
letter in O(h) time. This method was introduced to approximate periodicity in [32].

3 Computing k-Coverage under Hamming Distance

Let T be a string of length n and assume that its PREFk table is given. We will show a
linear-time algorithm for computing the k-coverage of every prefix of T under the Hamming
distance.

In the algorithm we consider all prefix lengths ` = 1, . . . , n. At each step of the algorithm,
a linked list L is stored that contains all positions i such that PREFk[i] ≥ ` and a sentinel
value n, in an increasing order. The list is stored together with a table A(L)[0..n− 1] such
that A(L)[i] is a link to the occurrence of i in L or nil if i 6∈ L. It can be used to access and
remove a given element of L in O(1) time. Before the start of the algorithm, L contains all
numbers 0, . . . , n.

CPM 2020

18:6 k-Approximate Quasiperiodicity under Hamming and Edit Distance

If i ∈ L and j is the successor of i in L, then the approximate occurrence of T [0, `− 1]
at position i accounts for min(`, j − i) positions that are covered in T . A pair of adjacent
elements i < j in L is called overlapping if j − i < ` and non-overlapping otherwise. Hence,
each non-overlapping adjacent pair adds the same amount to the number of covered positions.

All pairs of adjacent elements of L are partitioned in two data structures, Do and Dno,
that store overlapping and non-overlapping pairs, respectively. Data structure Dno stores
non-overlapping pairs (i, j) in buckets that correspond to j − i, in a table B(Dno) indexed
from 1 to n. It also stores a table A(Dno) indexed 0 through n − 1 such that A(Dno)[i]
points to the location of (i, j) in its bucket, provided that such a pair exists for some j, or
nil otherwise. Finally, it remembers the number num(Dno) of stored adjacent pairs. Do
does not store the overlapping adjacent pairs (i, j) explicitly, just the sum of values j − i, as
sum(Do). Then

CoveredHam
k (T [0, `− 1], T) = sum(Do) + num(Dno) · `. (1)

Now we need to describe how the data structures are updated when ` is incremented.
In the algorithm we store a table Q[0..n] of buckets containing pairs (PREFk[i], i) grouped

by the first component. When ` changes to `+ 1, the second components of all pairs from
Q[`] are removed, one by one, from the list L (using the table A(L)).

Let us describe what happens when element q is removed from L. Let q1 and q2 be its
predecessor and successor in L. (They exist because 0 and n are never removed from L.)
Then each of the pairs (q1, q) and (q, q2) is removed from the respective data structure Do
or Dno, depending on the difference of elements. Removal of a pair (i, j) from Do simply
consists in decreasing sum(Do) by j − i, whereas to remove (i, j) from Dno one needs to
remove it from the right bucket (using the table A(Dno)) and decrement num(Do). In the
end, the pair (q1, q2) is inserted to Do or to Dno depending on q2 − q1. Insertion to Do and
to Dno is symmetric to deletion.

When ` is incremented, non-overlapping pairs (i, j) with j − i = ` become overlapping.
Thus, all pairs from the bucket B(Dno)[`] are removed from Dno and inserted to Do.

This concludes the description of operations on the data structures. Correctness of the
resulting algorithm follows from (1). We analyze its complexity in the following theorem.

I Theorem 4. Let T be a string of length n. Assuming that the PREFk table for string T is
given, the k-coverage of every prefix of T under the Hamming distance can be computed in
O(n) time.

Proof. There are up to n removals from L. Initially L contains n adjacent pairs. Every
removal from L introduces one new adjacent pair, so the total number of adjacent pairs that
are considered in the algorithm is 2n− 1. Each adjacent pair is inserted to Do or to Dno,
then it may be moved from Dno to Do, and finally it is removed from its data structure. In
total, O(n) insertions and deletions are performed on the two data structures, in O(1) time
each. This yields the desired time complexity of the algorithm. J

Let us note that in order to compute the k-coverage of all factors of T that start at
a given position i, it suffices to use a table [lcpk(i, 0), . . . , lcpk(i, n − 1)] instead of PREFk.
Together with Lemma 2 this gives the following result.

I Corollary 5. Let T be a string of length n. The k-coverage of every factor of T under the
Hamming distance can be computed in O(n2) time.

A. Kędzierski and J. Radoszewski 18:7

4 Computing k-Coverage under Edit Distance

Let us state an abstract problem that, to some extent, is a generalization of the k-mismatch
lcp-queries to the edit distance.

Longest Approximate Prefix Problem
Input: A string T of length n, a metric d and a number k
Output: A table P dk such that P dk [a, b, a′] is the maximum b′ ≥ a′ − 1 such that
d(T [a, b], T [a′, b′]) ≤ k or −1 if no such b′ exists.

Having the table P dk , one can easily compute the k-coverage of a factor T [a, b] under
metric d as:

Covereddk(T [a, b], T) =

∣∣∣∣∣
n−1⋃
a′=0

[a′, P dk [a, b, a′]]

∣∣∣∣∣ , (2)

where an interval of the form [a′, b′] for b′ < a′ is considered to be empty. The size of the
union of n intervals can be computed in O(n) time, which gives O(n3) time over all factors.

In Section 4.1 and 4.2 we show how to compute the tables PLev
k and P ed

k for a given
threshold k in O(n3) and O(n3√n logn) time, respectively. Then in Section 4.3 we apply the
techniques of Section 4.2 to obtain an O(n3√n logn)-time algorithm for computing restricted
approximate covers and seeds under the edit distance.

4.1 Longest Approximate Prefix under Levenshtein Distance
Let Hi,j be the h-wave for strings T [i, n−1] and T [j, n−1] and h = k. Then we can compute
PLev
k with Algorithm 1. The algorithm basically takes the rightmost diagonal of D-table in

which the value in row b− a+ 1 is less than or equal to k.

Algorithm 1 Computing P Lev
k table.

1 for a′ := n− 1 down to 0 do
2 Compute Hn−1,a′ ;
3 for a := n− 1 down to 0 do
4 if a < n then
5 Compute Ha,a′ from Ha+1,a′ ;
6 d := k;
7 for b := a to n− 1 do
8 i := b− a+ 1;
9 while d ≥ −k and Ha,a′(d) < i do

10 d := d− 1;
11 if d < −k then PLev

k [a, b, a′] := −1;
12 else PLev

k [a, b, a′] := a′ + i+ d;

The while-loop can run up to 2k times for given a and a′. Computing Hn−1,a′ takes
O(k2) time and updating Ha,a′ takes O(k) time. It makes the algorithm run in O(n3) time.
Together with Equation (2) this yields the following result.

I Proposition 6. Let T be a string of length n. The k-coverage of every factor of T under
the Levenshtein distance can be computed in O(n3) time.

A similar method could be used in case of constant edit operation costs, by applying the
work of [20]. In the following section we develop a solution for arbitrary costs.

CPM 2020

18:8 k-Approximate Quasiperiodicity under Hamming and Edit Distance

4.2 Longest Approximate Prefix under Edit Distance
For indices a, a′ ∈ [0, n] we define a table Da,a′ such that Da,a′ [b, b′] is the edit distance
between T [a, b] and T [a′, b′], for b ∈ [a− 1, n− 1] and b′ ∈ [a′ − 1, n− 1]. For other indices
we set Da,a′ [b, b′] = ∞. The Da,a′ table corresponds to the D-table for T [a, n − 1] and
T [a′, n− 1] and so it can be computed in O(n2) time.

We say that pair (d, b) (Pareto-)dominates pair (d′, b′) if (d, b) 6= (d′, b′), d ≤ d′ and b ≥ b′.
Let us introduce a data structure La,a′ [b] being a table of all among pairs (Da,a′ [b, b′], b′)
that are maximal in this sense (i.e., are not dominated by other pairs), sorted by increasing
first component. Using a folklore stack-based algorithm (Algorithm 2), this data structure
can be computed from Da,a′ [b, a′ − 1], . . . , Da,a′ [b, n− 1] in linear time.

Algorithm 2 Computing La,a′ [b] from Da,a′ [b, ·].

1 Q := empty stack;
2 for b′ := a′ − 1 to n− 1 do
3 d := Da,a′ [b, b′];
4 while Q not empty do
5 (d′, x) := top(Q);
6 if d′ ≥ d then pop(Q);
7 else break;
8 push(Q, (d, b′));
9 La,a′ [b] := Q;

Every multiple of M = b
√
n/ lognc will be called a special point. In our algorithm we

first compute the following data structures:
(a) all La,a′ [b] lists where a or a′ is a special point, for a, a′ ∈ [0, n− 1] and b ∈ [a− 1, n− 1]

(if a ≥ n or a′ ≥ n, the list is empty); and
(b) all cells Da,a′ [b, b′] of all Da,a′ tables for a, a′ ∈ [0, n] and −1 ≤ b− a, b′ − a′ < M − 1.
Computing part (a) takesO(n4/M) = O(n3√n logn) time, whereas part (b) can be computed
in O(n4/M2) = O(n3 logn) time. The intuition behind this data structure is shown in the
following lemma.

I Lemma 7. Assume that b− a ≥ M − 1 or b′ − a′ ≥ M − 1. Then there exists a pair of
positions c, c′ such that the following conditions hold:

a ≤ c ≤ b+ 1 and a′ ≤ c′ ≤ b′ + 1, and
c− a, c′ − a′ < M , and
ed(T [a, b], T [a′, b′]) = ed(T [a, c− 1], T [a′, c′ − 1]) + ed(T [c, b], T [c′, b′]), and
at least one of c, c′ is a special point.

Moreover, if c (c′) is the special point, then c ≤ b (c′ ≤ b′, respectively).

Proof. By the assumption, at least one of the intervals [a, b] and [a′, b′] contains a special
point. Let p ∈ [a, b] and p′ ∈ [a′, b′] be the smallest among them; we have p− a, p′ − a′ < M

provided that p or p′ exists, respectively (otherwise p or p′ is set to ∞). Let us consider the
table Da,a′ and how its cell Da,a′ [b, b′] is computed. We can trace the path of parents in the
dynamic programming from Da,a′ [b, b′] to the origin (Da,a′ [a− 1, a′ − 1]). Let us traverse
this path in the reverse direction until the first dimension of the table reaches p or the second

A. Kędzierski and J. Radoszewski 18:9

dimension reaches p′. Say that just before this step we are at Da,a′ [q, q′]. If q + 1 = p and
q′ < p′, then we set c = q + 1 and c′ = q′ + 1. Indeed c = p is a special point,

ed(T [a, b], T [a′, b′]) = ed(T [a, c− 1], T [a′, c′ − 1]) + ed(T [c, b], T [c′, b′])

and c− a, c′ − a′ < M . Moreover, q′ ∈ [a′ − 1, b′], so c′ ∈ [a′, b′ + 1]. The opposite case (that
q′ + 1 = p′) is symmetric. J

If P ed
k [a, b, a′] − a′ < M − 1, then it can be computed using one the M ×M prefix

fragments of the Da,a′ tables. Otherwise, according to the statement of the lemma, one of the
Lc,c′ [b] lists can be used, where c− a, c′ − a′ < M , as shown in Algorithm 3. The algorithm
uses a predecessor operation Pred(x, L) which for a number x and a list L = Lc,c′ [b] returns
the maximal pair whose first component does not exceed x, or (∞,∞) if no such pair exists.
This operation can be implemented in O(logn) time via binary search.

Algorithm 3 Computing P ed
k [a, b, a′].

1 res := −1;
2 if b− a < M − 1 then
3 for b′ := a′ − 1 to a′ +M − 2 do
4 if Da,a′ [b, b′] ≤ k then
5 res := b′;
6 s := a+ ((−a) mod M); s′ := a′ + ((−a′) mod M); // closest special pts
7 foreach (c, c′) in ({s} × [a′, a′ +M − 1]) ∪ ([a, a+M − 1]× {s′}) do
8 (d′, b′) := Pred(k −Da,a′ [c− 1, c′ − 1], Lc,c′ [b]);
9 if d′ 6=∞ then

10 res := max(res, b′);
11 P ed

k [a, b, a′] := res;

I Theorem 8. Let T be a string of length n. The k-coverage of every factor of T under the
edit distance can be computed in O(n3√n logn) time.

Proof. We want to show that Algorithm 3 correctly computes P ed
k [a, b, a′]. Let us first check

that the result b′ = res of Algorithm 3 satisfies Da,a′ [b, b′] ≤ k. It is clear if the algorithm
computes b′ in line 5. Otherwise, it is computed in line 10. This means that Lc,c′ [b] contains
a pair (Dc,c′ [b, b′], b′) such that

k ≥ Dc,c′ [b, b′] +Da,a′ [c− 1, c′ − 1] ≥ Da,a′ [b, b′].

Now we show that the returned value res is at least x = P ed
k [a, b, a′]. If b−a < M −1 and

x− a′ < M − 1, then the condition in line 4 holds for b′ = x, so indeed res ≥ x. Otherwise,
the condition of Lemma 7 is satisfied. The lemma implies two positions c, c′ such that at
least one of them is special and that satisfy additional constraints.

If c is special, then the constraints a ≤ c and c− a < M imply that c = s, as defined in
line 6. Additionally, a′ ≤ c′ ≤ a′ +M − 1, so (c, c′) will be considered in the loop from line 7.
By the lemma and the definition of x, we have

Dc,c′ [b, x] = Da,a′ [b, x]−Da,a′ [c− 1, c′ − 1] ≤ k −Da,a′ [c− 1, c′ − 1]. (3)

CPM 2020

18:10 k-Approximate Quasiperiodicity under Hamming and Edit Distance

The list Lc,c′ [b] either contains the pair (Dc,c′ [b, x], x), or a pair (Dc,c′ [b, x′], x′) such that
Dc,c′ [b, x′] ≤ Dc,c′ [b, x] and x′ > x. In the latter case by (3) we would have

k ≥ Da,a′ [c− 1, c′ − 1] +Dc,c′ [b, x] ≥ Da,a′ [c− 1, c′ − 1] +Dc,c′ [b, x′] ≥ Da,a′ [b, x′]

and x′ > x. In both cases the predecessor computed in line 8 returns a value res such that
res ≥ x and res 6=∞. The case that c′ is special admits an analogous argument.

Combining Algorithm 3 with Equation (2), we obtain correctness of the computation.
As for complexity, Algorithm 3 computes P ed

k [a, b, a′] in O(M logn) = O(
√
n logn) time

and the pre-computations take O(n3√n logn) total time. J

4.3 Restricted Approximate Covers and Seeds under Edit Distance
The techniques that were developed in Section 4.2 can be used to improve upon the O(n4)
time complexity of the algorithms for computing the restricted approximate covers and seeds
under the edit distance [10, 33]. We describe our solution only for restricted approximate
covers; the solution for restricted approximate seeds follows by considering the text ♦|T |T♦|T |.

Let us first note that the techniques from the previous subsection can be used as a black
box to solve the problem in scope in O(n3√n logn log(nw)) time, where w is the maximum
cost of an edit operation. Indeed, for every factor T [a, b] we binary search for the smallest
k for which T [a, b] is a k-approximate cover of T . A given value k is tested by computing
the tables P ed

k [a, b, a′] for all a′ = 0, . . . , n− 1 and checking if Covereddk(T [a, b], T) = n using
Equation (2).

Now we proceed to a more efficient solution. Same as in the algorithms from [10, 33] we
compute, for every factor T [a, b], a table Qa,b[0..n] such that Qa,b[i] is the minimum edit
distance threshold k for which T [a, b] is a k-approximate cover of T [i, n− 1]. In the end, all
factors T [a, b] for which Qa,b[0] is minimal need to be reported as restricted approximate
covers of T . We will show how, given the data structures (a) and (b) of the previous section,
we can compute this table in O(nM logn) time.

A dynamic programming algorithm for computing the Qa,b table, similar to the one
in [10], is shown in Algorithm 4. Computing Qa,b takes O(n2) time provided that all Da,b

arrays, of total size O(n4), are available. The algorithm considers all possibilities for the
approximate occurrence T [i, j] of T [a, b].

Algorithm 4 Computing Qa,b in quadratic time.

1 Qa,b[n] := 0;
2 for i := n− 1 down to 0 do
3 Qa,b[i] :=∞;
4 minQ :=∞;
5 for j := i to n− 1 do
6 minQ := min(minQ, Qa,b[j + 1]); // minQ = minQa,b[i+ 1..j + 1]
7 Qa,b[i] := min(Qa,b[i], max(Da,i[b, j],minQ));

During the computation of Qa,b, we will compute a data structure for on-line range-
minimum queries over the table. We can use the following simple data structure with
O(n logn) total construction time and O(1)-time queries. For every position i and power of
two 2p, we store as RM [i, p] the minimal value in the table Qa,b on the interval [i, i+ 2p − 1].
When a new value Qa,b[i] is computed, we compute RM [i, 0] = Qa,b[i] and RM [i, p] for all
0 < p ≤ log2(n − i) using the formula RM [i, p] = min(RM [i, p − 1],RM [i + 2p−1, p − 1]).

A. Kędzierski and J. Radoszewski 18:11

Then a range-minimum query over an interval [i, j] of Qa,b can be answered by inspecting
up to two cells of the RM table for p such that 2p ≤ j − i+ 1 < 2p+1.

Let us note that the variable minQ, which denotes the minimum of a growing segment in
the Qa,b table, can only decrease. We would like to make the second argument of max in
line 7 non-decreasing for increasing j. The values ed(T [a, b], T [i, j]) = Da,i[b, j] may increase
or decrease as j grows. However, it is sufficient to consider only those values of j for which
(Da,i[b, j], j) is not (Pareto-)dominated (as in Section 4.2), i.e., the elements of the list La,i[b].
For these values, Da,i[b, j] is indeed increasing for increasing j. The next observation follows
from this monotonicity and the monotonicity of minQa,b[i+ 1..j + 1].

I Observation 9. Let (Da,i[b, j′], j′) be the first element on the list La,i[b] such that

minQa,b[i+ 1..j′ + 1] ≤ Da,i[b, j′].

If j′ does not exist, we simply take the last element of La,i[b]. Further let (Da,i[b, j′′], j′′)
be the predecessor of (Da,i[b, j′], j′) in La,i[b] (if it exists). Then j ∈ {j′, j′′} minimizes the
value of the expression max(minQa,b[i+ 1..j + 1], Da,i[b, j]).

If we had access to the list La,i[b], we could use binary search to locate the index j′
defined in the observation. However, we only store the lists La,i[b] for a and i such that at
least one of them is a special point. We can cope with this issue by separately considering all
j such that j < i+M − 1 and then performing binary search on every of O(M) lists Lc,c′ [b]
where a ≤ c < a+M , i ≤ c′ < i+M and at least one of c, c′ is a special point, just as in
Algorithm 3. A pseudocode of the resulting algorithm is given as Algorithm 5.

Algorithm 5 Computing Qa,b in O(n
√

n log n) time using pre-computed data structures.

1 Qa,b[n] := 0;
2 for i := n− 1 down to 0 do
3 Qa,b[i] :=∞;
4 minQ :=∞;
5 if b− a < M − 1 then
6 for j := i to i+M − 2 do
7 minQ := min(minQ, Qa,b[j + 1]);
8 Qa,b[i] := min(Qa,b[i], max(Da,i[b, j],minQ));
9 s := a+ ((−a) mod M); s′ := i+ ((−i) mod M);

10 foreach (c, c′) in ({s} × [i, i+M − 1]) ∪ ([a, a+M − 1]× {s′}) do
11 if Lc,c′ [b] is empty then continue;

/* Binary search */
12 (dj′ , j′) := the first pair in Lc,c′ [b] such that

minQa,b[i+ 1..j′ + 1] ≤ Da,i[c− 1, c′ − 1] + dj′ or the last pair;
13 (dj′′ , j′′) :=predecessor of (dj′ , j′) in Lc,c′ [b] or (dj′ , j′) if there is none;
14 foreach j in {j′, j′′} do
15 Qa,b[i] := min(Qa,b[i], max(Da,i[c− 1, c′ − 1] + dj ,minQa,b[i+ 1..j + 1]));

Let us summarize the complexity of the algorithm. Pre-computation of auxiliary data
structures requires O(n3√n logn) time. Then for every factor T [a, b] we compute the table
Qa,b. The data structure for constant-time range-minimum queries over the table costs only
additional O(n logn) space and computation time. When computing Qa,b[i] using dynamic
programming, we may separately consider first M − 1 indices j, and then we perform a
binary search in O(M) lists Lc,c′ [b]. In total, the time to compute Qa,b[i] given a, b, i is
O(M logn) = O(

√
n logn).

CPM 2020

18:12 k-Approximate Quasiperiodicity under Hamming and Edit Distance

I Theorem 10. Let T be a string of length n. All restricted approximate covers and seeds
of T under the edit distance can be computed in O(n3√n logn) time.

The work of [10, 33] on approximate covers and seeds originates from a study of ap-
proximate periods [32]. Interestingly, while our algorithm improves upon the algorithms for
computing approximate covers and seeds, it does not work for approximate periods.

5 NP-hardness of General Hamming k-Approximate Cover and Seed

We make a reduction from the following problem.

Hamming String Consensus
Input: Strings S1, . . . , Sm, each of length `, and an integer k < `

Output: A string S, called consensus string, such that Ham(S, Si) ≤ k for all i =
1, . . . ,m

The following fact is known.

I Fact 11 ([15]). Hamming String Consensus is NP-complete even for the binary alphabet.

Let strings S1, . . . , Sm of length ` over the alphabet Σ = {0, 1} and integer k be an
instance of Hamming String Consensus. We introduce a morphism φ such that

φ(0) = 02k+4 1010 02k+4, φ(1) = 02k+4 1011 02k+4.

We will exploit the following simple property of this morphism.

I Observation 12. For every string S, every length-(2k+ 4) factor of φ(S) contains at most
three ones.

We set γi = 12k+4φ(Si) and T = γ1 . . . γm. Further let ψ(U) be an operation that
reverses this encoding, i.e., ψ(γi) = Si. Formally, it takes as input a string U and outputs
U [4k + 12− 1]U [2 · (4k + 12)− 1] . . . U [(`− 1)(4k + 12)− 1].

I Lemma 13. Strings γi and γj , for any i, j ∈ {1, . . . ,m}, have no 2k-mismatch prefix-suffix
of length p ∈ {2k + 4, . . . , |γi| − 1}.

Proof. We will show that the prefix U of γi of length p and the suffix V of γj of length p
have at least 2k + 1 mismatches. Let us note that U starts with 12k+4. The proof depends
on the value d = |γi| − p; we have 1 ≤ d ≤ |γi| − 2k − 4. Let us start with the following
observation that can be readily verified.

I Observation 14. For A,B ∈ {1010, 1011}, the strings A04 and 04B have no 1-mismatch
prefix-suffix of length in {5, . . . , 8}.

If 1 ≤ d ≤ 4, then U and V have a mismatch at position 2k + 4 since V starts with
12k+4−d0. Moreover, they have at least 2` mismatches by the observation (applied for the
prefix-suffix length d+ 4). In total, Ham(U, V) ≥ 2`+ 1 ≥ 2k + 1.

If 4 < d < 2k + 4, then every block 1010 or 1011 in γi and in γj is matched against a
block of zeroes in the other string, which gives at least 4` mismatches. Hence, Ham(U, V) ≥
4` ≥ 2k + 1.

Finally, if 2k + 4 ≤ d ≤ |γi| − 2k − 4, then U starts with 12k+4 and every factor of V of
length 2k + 4 has at most three ones (see Observation 12). Hence, Ham(U, V) ≥ 2k + 1. J

A. Kędzierski and J. Radoszewski 18:13

The following lemma gives the reduction.

I Lemma 15. If Hamming String Consensus for S1, . . . , Sm has a positive answer, then
the General k-Approximate Cover under Hamming distance for T , k, and c = |γi|
returns a k-approximate cover C such that S = ψ(C) is a Hamming consensus string for
S1, . . . , Sm.

Proof. By Lemma 13, if C is a k-approximate cover of T of length c, then every position
a ∈ StartOccHk (C, T) satisfies c | a. Hence, StartOccHk (C, T) = {0, c, 2c, . . . , (m− 1)c}.

If Hamming String Consensus for S1, . . . , Sm has a positive answer S, then 12k+4φ(S)
is a k-approximate cover of T of length c. Moreover, if T has a k-approximate cover C of
length c, then for S = ψ(C) and for each i = 1, . . . ,m, we have that

Ham(C, T [(i− 1)c, ic− 1]) ≥ Ham(S, Si),

so S is a consensus string for S1, . . . , Sm. This completes the proof. J

Lemma 15 and Fact 11 imply that computing k-approximate covers is NP-hard. Obviously,
it is in NP.

I Theorem 16. General k-Approximate Cover under the Hamming distance is NP-
complete even over a binary alphabet.

A lemma that is similar to Lemma 15 can be shown for approximate seeds. We leave its
technical proof for the full version of the paper. Let T ′ = γ1γ1 . . . γm12k+4γm12k+4.

I Lemma 17. If Hamming String Consensus for S1, . . . , Sm has a positive answer, then
the General k-Approximate Seed under Hamming distance for T ′, k, and c = |γ1|+2k+4
returns a k-approximate seed C such that S = ψ(C ′) is a Hamming consensus string for
S1, . . . , Sm for some cyclic shift C ′ of C.

I Theorem 18. General k-Approximate Seed under the Hamming distance is NP-
complete even over a binary alphabet.

6 Conclusions

We have presented several polynomial-time algorithms for computing restricted approximate
covers and seeds and k-coverage under Hamming, Levenshtein and weighted edit distances
and shown NP-hardness of non-restricted variants of these problems under the Hamming
distance. It is not clear if any of the algorithms are optimal. The only known related
conditional lower bound shows hardness of computing the Levenshtein distance of two strings
in strongly subquadratic time [8]; however, our algorithms for approximate covers under edit
distance work in Ω(n3) time. An interesting open problem is if restricted approximate covers
or seeds under Hamming distance, as defined in [10, 33], can be computed in O(n3−ε) time,
for any ε > 0. Here we have shown an efficient solution for k-restricted versions of these
problems.

References
1 Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can we

recover the cover? In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors,
28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, volume 78 of
LIPIcs, pages 25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.CPM.2017.25.

CPM 2020

https://doi.org/10.4230/LIPIcs.CPM.2017.25
https://doi.org/10.4230/LIPIcs.CPM.2017.25

18:14 k-Approximate Quasiperiodicity under Hamming and Edit Distance

2 Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can we
recover the cover? Algorithmica, 81(7):2857–2875, 2019. doi:10.1007/s00453-019-00559-8.

3 Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate cover of strings. In
Juha Kärkkäinen, Jakub Radoszewski, and Wojciech Rytter, editors, 28th Annual Symposium
on Combinatorial Pattern Matching, CPM 2017, volume 78 of LIPIcs, pages 26:1–26:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.26.

4 Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate cover of strings.
Theoretical Computer Science, 793:59–69, 2019. doi:10.1016/j.tcs.2019.05.020.

5 Amihood Amir, Avivit Levy, and Ely Porat. Quasi-periodicity under mismatch errors. In
Gonzalo Navarro, David Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial
Pattern Matching, CPM 2018, volume 105 of LIPIcs, pages 4:1–4:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.CPM.2018.4.

6 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2):247–265, 1993. doi:10.1016/0304-3975(93)90159-Q.

7 Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39(1):17–20, 1991. doi:10.1016/0020-0190(91)
90056-N.

8 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM Journal on Computing, 47(3):1087–1097, 2018. doi:
10.1137/15M1053128.

9 Dany Breslauer. An on-line string superprimitivity test. Information Processing Letters,
44(6):345–347, 1992. doi:10.1016/0020-0190(92)90111-8.

10 Manolis Christodoulakis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim. Approximate
seeds of strings. Journal of Automata, Languages and Combinatorics, 10(5/6):609–626, 2005.
doi:10.25596/jalc-2005-609.

11 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2003.
doi:10.1142/4838.

12 Patryk Czajka and Jakub Radoszewski. Experimental evaluation of algorithms for computing
quasiperiods. CoRR (accepted to Theoretical Computer Science), 2019. arXiv:1909.11336.

13 Tomás Flouri, Emanuele Giaquinta, Kassian Kobert, and Esko Ukkonen. Longest common
substrings with k mismatches. Information Processing Letters, 115(6-8):643–647, 2015. doi:
10.1016/j.ipl.2015.03.006.

14 Tomás Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi,
William F. Smyth, and Wojciech Tyczyński. Enhanced string covering. Theoretical Computer
Science, 506:102–114, 2013. doi:10.1016/j.tcs.2013.08.013.

15 Moti Frances and Ami Litman. On covering problems of codes. Theory of Computing Systems,
30(2):113–119, 1997. doi:10.1007/s002240000044.

16 Ondřej Guth. Searching Regularities in Strings using Finite Automata. PhD thesis, Czech
Technical University in Prague, 2014. URL: https://fit.cvut.cz/sites/default/files/
PhDThesis_Guth.pdf.

17 Ondřej Guth. On approximate enhanced covers under Hamming distance. Discrete Applied
Mathematics, 274:67–80, 2020. doi:10.1016/j.dam.2019.01.015.

18 Ondřej Guth and Bořivoj Melichar. Using finite automata approach for searching approximate
seeds of strings. In Xu Huang, Sio-Iong Ao, and Oscar Castillo, editors, Intelligent Automation
and Computer Engineering, pages 347–360, Dordrecht, 2010. Springer Netherlands. doi:
10.1007/978-90-481-3517-2_27.

19 Ondřej Guth, Bořivoj Melichar, and Miroslav Balík. Searching all approximate covers and
their distance using finite automata. In Peter Vojtás, editor, Proceedings of the Conference on
Theory and Practice of Information Technologies, ITAT 2008, volume 414 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008. URL: http://ceur-ws.org/Vol-414/paper4.pdf.

https://doi.org/10.1007/s00453-019-00559-8
https://doi.org/10.4230/LIPIcs.CPM.2017.26
https://doi.org/10.1016/j.tcs.2019.05.020
https://doi.org/10.4230/LIPIcs.CPM.2018.4
https://doi.org/10.1016/0304-3975(93)90159-Q
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.25596/jalc-2005-609
https://doi.org/10.1142/4838
http://arxiv.org/abs/1909.11336
https://doi.org/10.1016/j.ipl.2015.03.006
https://doi.org/10.1016/j.ipl.2015.03.006
https://doi.org/10.1016/j.tcs.2013.08.013
https://doi.org/10.1007/s002240000044
https://fit.cvut.cz/sites/default/files/PhDThesis_Guth.pdf
https://fit.cvut.cz/sites/default/files/PhDThesis_Guth.pdf
https://doi.org/10.1016/j.dam.2019.01.015
https://doi.org/10.1007/978-90-481-3517-2_27
https://doi.org/10.1007/978-90-481-3517-2_27
http://ceur-ws.org/Vol-414/paper4.pdf

A. Kędzierski and J. Radoszewski 18:15

20 Heikki Hyyrö, Kazuyuki Narisawa, and Shunsuke Inenaga. Dynamic edit distance table
under a general weighted cost function. Journal of Discrete Algorithms, 34:2–17, 2015.
doi:10.1016/j.jda.2015.05.007.

21 Costas S. Iliopoulos, Dennis W. G. Moore, and Kunsoo Park. Covering a string. Algorithmica,
16(3):288–297, 1996. doi:10.1007/BF01955677.

22 Haim Kaplan, Ely Porat, and Nira Shafrir. Finding the position of the k-mismatch and
approximate tandem repeats. In Lars Arge and Rusins Freivalds, editors, Algorithm Theory -
SWAT 2006, 10th ScandinavianWorkshop on Algorithm Theory, volume 4059 of Lecture Notes
in Computer Science, pages 90–101. Springer, 2006. doi:10.1007/11785293_11.

23 Sung-Ryul Kim and Kunsoo Park. A dynamic edit distance table. Journal of Discrete
Algorithms, 2(2):303–312, 2004. doi:10.1016/S1570-8667(03)00082-0.

24 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
A linear-time algorithm for seeds computation. ACM Transactions on Algorithms, 16(2):Article
27, April 2020. doi:10.1145/3386369.

25 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Efficient algorithms for shortest partial seeds in words. Theoretical Computer Science,
710:139–147, 2018. doi:10.1016/j.tcs.2016.11.035.

26 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015. doi:
10.1007/s00453-014-9915-3.

27 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998. doi:10.1137/S0097539794264810.

28 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theoretical
Computer Science, 43:239–249, 1986. doi:10.1016/0304-3975(86)90178-7.

29 Yin Li and William F. Smyth. Computing the cover array in linear time. Algorithmica,
32(1):95–106, 2002. doi:10.1007/s00453-001-0062-2.

30 Dennis W. G. Moore and William F. Smyth. An optimal algorithm to compute all the covers
of a string. Information Processing Letters, 50(5):239–246, 1994. doi:10.1016/0020-0190(94)
00045-X.

31 Dennis W. G. Moore and William F. Smyth. A correction to "An optimal algorithm to
compute all the covers of a string". Information Processing Letters, 54(2):101–103, 1995.
doi:10.1016/0020-0190(94)00235-Q.

32 Jeong Seop Sim, Costas S. Iliopoulos, Kunsoo Park, and William F. Smyth. Approx-
imate periods of strings. Theoretical Computer Science, 262(1):557–568, 2001. doi:
10.1016/S0304-3975(00)00365-0.

33 Jeong Seop Sim, Kunsoo Park, Sung-Ryul Kim, and Jee-Soo Lee. Finding approximate covers
of strings. Journal of Korea Information Science Society, 29(1):16–21, 2002. URL: http:
//www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JBGHG6_2002_v29n1_16.

34 R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the ACM,
21(1):168–173, 1974.

CPM 2020

https://doi.org/10.1016/j.jda.2015.05.007
https://doi.org/10.1007/BF01955677
https://doi.org/10.1007/11785293_11
https://doi.org/10.1016/S1570-8667(03)00082-0
https://doi.org/10.1145/3386369
https://doi.org/10.1016/j.tcs.2016.11.035
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0304-3975(86)90178-7
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/S0304-3975(00)00365-0
https://doi.org/10.1016/S0304-3975(00)00365-0
http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JBGHG6_2002_v29n1_16
http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JBGHG6_2002_v29n1_16

	Introduction
	Preliminaries
	Algorithmic Toolbox for Hamming Distance
	Algorithmic Toolbox for Edit Distance

	Computing k-Coverage under Hamming Distance
	Computing k-Coverage under Edit Distance
	Longest Approximate Prefix under Levenshtein Distance
	Longest Approximate Prefix under Edit Distance
	Restricted Approximate Covers and Seeds under Edit Distance

	NP-hardness of General Hamming k-Approximate Cover and Seed
	Conclusions

