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Abstract
One of the most well-known variants of the Burrows-Wheeler transform (BWT) [Burrows and
Wheeler, 1994] is the bijective BWT (BBWT) [Gil and Scott, arXiv 2012], which applies the
extended BWT (EBWT) [Mantaci et al., TCS 2007] to the multiset of Lyndon factors of a given
text. Since the EBWT is invertible, the BBWT is a bijective transform in the sense that the inverse
image of the EBWT restores this multiset of Lyndon factors such that the original text can be
obtained by sorting these factors in non-increasing order.

In this paper, we present algorithms constructing or inverting the BBWT in-place using quadratic
time. We also present conversions from the BBWT to the BWT, or vice versa, either (a) in-place
using quadratic time, or (b) in the run-length compressed setting using O(n lg r/ lg lg r) time with
O(r lgn) bits of words, where r is the sum of character runs in the BWT and the BBWT.

2012 ACM Subject Classification Theory of computation; Mathematics of computing → Combina-
torics on words

Keywords and phrases In-Place Algorithms, Burrows-Wheeler transform, Lyndon words

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.21

Related Version http://arxiv.org/abs/2004.12590

Supplementary Material At https://github.com/daikihashimoto/BWT_to_BBWT, we have some
preliminary implementations available giving empirical evidence of our conversions.

Funding Dominik Köppl: JSPS KAKENHI Grant Number JP18F18120.
Diptarama Hendrian: JSPS KAKENHI Grant Number JP19K20208.
Ayumi Shinohara: JSPS KAKENHI Grant Number JP15H05706.

Acknowledgements We thank the anonymous reviewers for attracting our attention to the related
work of Mantaci et al. [24].

1 Introduction

The Burrows-Wheeler transform (BWT) [6] is one of the most favored options both for
(a) compressing and (b) indexing data sets. On the one hand, compression programs like
bzip2 apply the BWT to achieve high compression rates. For that, they leverage the effect
that the BWT built on repetitive data tends to have long character runs, which can be
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21:2 In-Place Bijective Burrows-Wheeler Transforms

compressed by run-length compression, i.e., representing a substring of ` a’s by the tuple
(a, `). On the other hand, self-indexing data structures like the FM-index [11] enhance the
BWT to a full-text self-index. A combined approach of both compression and indexing is
the run-length compressed FM-index [21], representing a BWT with rBWT character runs,
i.e., maximal repetitions of a character, run-length compressed in O(rBWT lgn) bits. This
representation can be computed directly in run-length compressed space thanks to Policriti
and Prezza [30]. The BWT and its run-length compressed representation have been intensively
studied during the past decades (e.g., [12, 1, 14] and the references therein). Contrary to that,
a variant, called the bijective BWT (BBWT) [16], is far from being well-studied despite its
mathematically appealing characteristics1. As a matter of fact, we are only aware of one index
data structure based on the BBWT [3] and of two non-trivial construction algorithms [5, 2]
of the (uncompressed) BBWT, both with the need of additional data structures.

In this article, we shed more light on the connection between the BWT and the BBWT
by quadratic time in-place conversion algorithms in Sect. 5 constructing the BWT from the
BBWT, or vice versa. We can also perform these conversions in the run-length compressed
setting in O(n lg r/ lg lg r) time with space linear to the number of the character runs
(cf. Sect. 4 and Thm. 3), where r is the sum of character runs in the BWT and the BBWT.

2 Related Work

Given a text T of length n, the BWT of T is the string obtained by assigning BWT[i] to
the character preceding the i-th lexicographically smallest suffix of T (or the last character
of T if this suffix is the text itself). By this definition, we can construct the BWT with
any suffix array [22] construction algorithm. However, storing the suffix array inherently
needs n lgn bits of space. Crochemore et al. [9] tackled this space problem with an in-place
algorithm constructing the BWT in O(n2) online on the reversed text by simulating queries
on a dynamic wavelet tree [17] that would be built on the (growing) BWT. They also gave
an algorithm for restoring the text in-place in O(n2+ε) time.

In the run-length compressed setting, Policriti and Prezza [30] can compute the run-length
compressed BWT having rBWT character runs in O(n lg rBWT) time while using O(rBWT lgn)
bits of space. They additionally presented an adaption of the wavelet tree on run-length
compressed texts, yielding a representation using O(rBWT lgn) bits of space with O(lg rBWT)
query and update time. Finally, practical improvements of the run-length compressed BWT
construction were considered by Ohno et al. [29].

The BBWT is the string obtained by assigning BBWT[i] to the last character of the i-th
smallest string in the list of all conjugates of the factors of the Lyndon factorization sorted
with respect to the ≺ω order [23, Def. 4]. Bannai et al. [2] recently revealed a connection
between the bijective BWT and suffix sorting by presenting an O(n) time BBWT construction
algorithm based on SAIS [28]. With dynamic data structures like a dynamic wavelet tree [27],
Bonomo et al. [5] could devise an algorithm computing the BBWT in O(n lgn/ lg lgn) time.
With nearly the same techniques, Mantaci et al. [24] presented an algorithm computing the
BWT (and simultaneously the suffix array if needed) from the Lyndon factorization. All
these construction algorithms need however data structures taking O(n lgn) bits of space.
However, the latter two (i.e., [5] and [24]) can work in-place by simulating the LF mapping
(cf. Sects. 3.4 and 3.5), which we focus on in Sect. 5.1.

1 The BBWT is a bijection between strings without the need of an artificial delimiter needed, e.g., to
invert the BWT.
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3 Preliminaries

Our computational model is the word RAM model with word size Ω(lgn). Accessing a word
costs O(1) time. An algorithm is called in-place if it uses, besides a rewriteable input, only
O(lgn) bits of working space. We write [b(I) . . e(I)] = I for an interval I of natural numbers.

3.1 Strings
Let Σ denote an integer alphabet of size σ with σ = nO(1). We call an element T ∈ Σ∗
a string. Its length is denoted by |T |. Given an integer j ∈ [1 . . |T |], we access the j-th
character of T with T [j]. Concatenating a string T ∈ Σ∗ k times is abbreviated by T k. A
string T is called primitive if there is no string S ∈ Σ+ with T = Sk for an integer k with
k ≥ 2.

When T is represented by the concatenation of X,Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y
and Z are called a prefix, substring and suffix of T , respectively; the prefix X, substring Y ,
or suffix Z is called proper if X 6= T , Y 6= T , or Z 6= T , respectively. For two integers i, j
with 1 ≤ i ≤ j ≤ |T |, let T [i . . j] denote the substring of T that begins at position i and ends
at position j in T . If i > j, then T [i . . j] is the empty string. In particular, the suffix starting
at position j of T is called the j-th suffix of T , and denoted with T [j . . ]. An occurrence of a
substring S in T is treated as a sub-interval of [1 . . |T |] such that S = T [b(S) . . e(S)]. The
longest common prefix (LCP) of two strings S and T is the longest string that is a prefix of
both S and T .

Orders on Strings. We denote the lexicographic order with ≺lex . Given two strings S
and T , S ≺lex T if S is a prefix of T or there exists an integer ` with 1 ≤ ` ≤ min(|S|, |T |)
such that S[1 . . `− 1] = T [1 . . `− 1] and S[`] < T [`]. Next we define the ≺ω order of strings,
which is based on the lexicographic order of infinite strings: We write S ≺ω T if the infinite
concatenation Sω := SSS · · · is lexicographically smaller than Tω := TTT · · · . For instance,
ab ≺lex aba but aba ≺ω ab.

Rank and Select Queries. Given a string T ∈ Σ∗, a character c ∈ Σ, and an integer j, the
rank query T.rankc(j) counts the occurrences of c in T [1 . . j], and the select query T.selectc(j)
gives the position of the j-th c in T . We stipulate that rankc(0) = selectc(0) = 0. A wavelet
tree is a data structure supporting rank and select queries.

3.2 Lyndon Words
Given a string T = T [1 . . n], its i-th conjugate conji(T ) is defined as T [i+ 1 . . n]T [1 . . i] for an
integer i ∈ [0 . . n− 1]. We say that T and all of its conjugates belong to the conjugate class
conj(T ) := {conj0(T ), . . . , conjn−1(T )}. If a conjugate class contains exactly one conjugate
that is lexicographically smaller than all other conjugates, then this conjugate is called a
Lyndon word [20]. Equivalently, a string T is said to be a Lyndon word if and only if T ≺lex S

for every proper suffix S of T [10, Prop. 1.2].
The Lyndon factorization [8] of T ∈ Σ+ is the factorization of T into a sequence of

lexicographically non-increasing Lyndon words T1 · · ·Tt, where (a) each Tx ∈ Σ+ is a Lyndon
word for x ∈ [1 . . t], and (b) Tx �lex Tx+1 for each x ∈ [1 . . t). Each Lyndon word Tx is
called a Lyndon factor.
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Figure 1 All three BWT variants studied in this paper applied on our running example T =
bacabbabb. Left: BBWT built on the last characters of the conjugates of all Lyndon words sorted in
the ≺ω order. Middle and Right: BWT◦ and BWT built on the lexicographically sorted conjugates
of T and of T$, respectively. To ease understanding, each character is marked with its position
in T in subscript. Reading these positions in F of BBWT and in F of BWT gives a circular suffix
array (there are multiple possibilities with T3 = T4 = abb) and the suffix array (the position of $ is
uniquely defined as |T$| = 10).

I Lemma 1 ([10, Algo. 2.1]). Given a string T of length n, there is an algorithm that outputs
the Lyndon factors T1, . . . , Tt one by one in increasing order in O(n) total time while keeping
only a constant number of pointers to positions in T that (a) can move one position forward
at one time or (b) can be set to the position of another pointer.

For what follows, we fix a string T [1 . . n] over an alphabet Σ with size σ. We use the
string T := bacabbabb as our running example. Its Lyndon factors are T1 = b, T2 = ac,
T3 = abb, and T4 = abb.

3.3 Burrows-Wheeler Transforms
We denote the bijective BWT of T by BBWT, where BBWT[i] is the last character of the
i-th string in the list storing the conjugates of all Lyndon factors T1, . . . , Tt of T sorted with
respect to the ≺ω order. A property of BBWT used in this paper as a starting point for an
inversion algorithm is the following:

I Lemma 2 ([5, Lemma 15]). BBWT[1] = T [n].

Proof. There is no conjugate of a Lyndon factor that is smaller than the smallest Lyndon
factor Tt since Tt �lex Tx ≺lex Tx[j . . ] for every j ∈ [2 . . |Tx|] and every x ∈ [1 . . t]. Therefore,
Tt is the smallest string among all conjugates of all Lyndon factors. Hence, BBWT[1] is the
last character of Tt, which is T [n]. J

The BWT of T , called in the following BWT, is the BBWT of $T for a delimiter $ 6∈ Σ
smaller than all other characters in T (cf. [15, Lemma 12] since $T is a Lyndon word).
Originally, the BWT is defined by reading the last characters of all cyclic rotations of T
(without $) sorted lexicographically [6]. Here, we call the resulting string BWT◦. BWT◦ is
equivalent to BWT if T contains the aforementioned unique delimiter $. We further write
BWTP (and analogously BBWTP or BWT◦P ) to denote the BWT of P for a string P .

Since BWT (and analogously BBWT or BWT◦) is a permutation of T , it is natural to
identify each entry of BWT with a text position: By construction BWT[i] = T [j], where
T [j+1 . . ] is the i-th lexicographically smallest suffix, i.e., SA[i] = j+1, where SA is the suffix
array of T . A similar relation is given between BBWT and the circular suffix array [19, 2],
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which is uniquely defined up to positions of equal Lyndon factors. Figure 1 gives an example
for all three variants. In what follows, we review means to simulate a linear traversal of the
text in forward or backward manner by BWT, and then translate this result to BBWT.

3.4 Backward and Forward Steps
Having the location of T [i] in BWT, we can compute T [i+ 1] (i.e., T [1] for i = 1) and T [i−1]
(i.e., T [n] for i = 0) by rank and select queries. To move from T [i] to T [i+ 1], which we call
a forward step, we can use the FL mapping:

FL[i] := BWT.selectF[i](F.rankF[i](i)), (1)

where F[i] is the i-th lexicographically smallest character in BWT. To move from T [i] to
T [i− 1], we can use the backward step of the FM-index [11], which is also called LF mapping,
and is defined as follows:

LF[i] := F.selectBWT[i](BWT.rankBWT[i](i)) = C[BWT[i]] + BWT.rankBWT[i](i), (2)

where C[c] is the number of occurrences of those characters in BWT that are smaller than c
(for each character c ∈ [1 . . σ]). We observe from the second equation of (2) that there is no
need for F when having C. This is important, as we can compute C[i] in O(n) time only
having BWT available. Hence, we can compute LF[i] in O(n) time in-place. However, the
same trick does not work with FL[i] = BWT.selectF[i](i−C[F[i]]). To lookup F[i], we can use
the selection algorithm of Chan et al. [7] using BWT and O(lgn) bits as working space (the
algorithm restores BWT after execution) to compute an entry of F in O(n) time.

In summary, we can compute both FL[i] and LF[i] in-place in O(n) time. The algorithm
of Crochemore et al. [9, Thm. 2] inverting BWT in-place in O(n2+ε) time uses the result of
Munro and Raman [26] computing F[i] in O(n1+ε) time for a constant ε > 0 in the comparison
model. As noted by Chan et al. [7, Sect. 1], the time bound for the inversion can be improved
to O(n2) time in the RAM model under the assumption that BWT is rewritable.

If we allow more space, it is still advantageous to favor storing C instead of F if σ = o(n)
because storing F and C in their plain forms take n lg σ bits and σ lgn bits, respectively. To
compute FL[i], we can also compute FL without F by endowing C with a predecessor data
structure (which we do in Sect. 4.3).

Finally, we also need LF and FL on BBWT for our conversion algorithms. We can define
LF and FL similarly for BBWT with the following peculiarity:

3.5 Steps in the Bijective BWT
The major difference to the BWT is that the LF mapping of the BBWT can contain multiple
cycles, meaning that LF (or FL) recursively applied to a BBWT position would result in
searching circular (more precisely, the search stays within the same Lyndon factor). This is
because BBWT is the extended BWT [23, Thm. 20 and Remark 12] applied to the multiset
of Lyndon factors {T1, . . . , Tt}. This fact was exploited for circular pattern matching [19],
but is not of interest here.

Instead, we follow the analysis of the so-called rewindings [3, Sect. 3]: Remembering
that we store the last character of all conjugates of all Lyndon factors in BBWT, we observe
that the entries in BBWT representing the Lyndon factors (i.e., the last characters of the
Lyndon factors) are in sorted order (starting with Tt[|Tt|] and ending with T1[|T1|]). That
is because the lexicographic order and the ≺ω order are the same for Lyndon words [5,

CPM 2020
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Thm. 8]. Applying the backward step at such an entry results in a rewinding, i.e., we can
move from the beginning of a Lyndon factor Tx (represented by Tx[|Tx|] in BBWT) to the
end of Tx (represented by Tx[1] in BBWT) with one backward step. We use this property
with Lemma 2 in the following sections to read the Lyndon factors from T individually in
the order Tt, . . . , T1.

4 Run-Length Compressed Conversions

We now consider BWT and BBWT represented as run-length compressed strings taking
O(rBWT lgn) and O(rBBWT lgn) bits of space, where rBWT and rBBWT are the number of
character runs in BWT and BBWT, respectively. For r := max(rBWT, rBBWT), the goal of
this section is the following:

I Theorem 3. We can convert RLBBWT to RLBWT in O(n lg r/ lg lg r) time using O(r lgn)
bits as working space, or vice versa.

To prove this theorem, we need a data structure that works in the run-length compressed
space while supporting rank and select queries as well as updates more efficiently than the
O(n) time in-place approach described in Sects. 3.4 and 3.5:

4.1 Run-length Compressed Wavelet Trees
Given a run-length compressed string S of uncompressed length n with r character runs,
there is an O(r lgn) bits representation of S that supports access, rank, select, insertions, and
deletions in O(lg r) time [30, Lemma 1]. It consists of (1) a dynamic wavelet tree maintaining
the starting characters of each character run and (2) a dynamic Fenwick tree maintaining
the lengths of the runs. It can be accelerated to O(lg r/ lg lg r) time by using the following
representations:
1. The dynamic wavelet tree of Navarro and Nekrich [27] on a text of length r uses O(r lg r)

bits, and supports both updates and queries in O(lg r/ lg lg r) time.
2. The dynamic Fenwick tree of Bille et al [4, Thm. 2] on r (lgn)-bit numbers uses O(r lgn)

bits, and supports both updates and queries in constant time if updates are restricted to
be in-/decremental.

The obtained time complexity of this data structure directly improves the construction of
RLBWT:

I Corollary 4 ([30, Thm. 2]). We can construct the RLBWT in O(rBWT lgn) bits of space
online on the reversed text in O(n lg rBWT/ lg lg rBWT) time.

In the run-length compressed wavelet tree representation, RLBWT and RLBBWT support
an update operation and a backward step in O(lg r/ lg lg r) time with r := max(rBWT, rBBWT).
This helps us to devise the following two conversions:

4.2 From RLBBWT to RLBWT
We aim for directly outputting the characters of T in reversed order since we can then use
the algorithm of Cor. 4 building RLBWT online on the reversed text. We start with the
first entry of BBWT (corresponding to the last Lyndon factor Tt, i.e., storing Tt[|Tt|] = T [n]
according to Lemma 2) and do a backward step until we come back at this first entry (i.e.,
we have visited all characters of Tt). During that search, we copy the read characters to
RLBWT and mark in an array R of length rBBWT at entry i how often we visited the i-th
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character run of RLBBWT. Finally, we remove the read cycle of RLBBWT by decreasing the
run lengths of RLBBWT by the numbers stored in R. By doing so, we remove the last Lyndon
factor Tt from RLBBWT and consequently know that the currently first entry of BBWT must
correspond to Tt−1. This means that we can apply the algorithm recursively on the remaining
RLBBWT to extract and delete the Lyndon factors in reversed order while building RLBWT
in the meantime. By removing Tt, BBWT is still a valid BBWT since BBWT becomes the
BBWT of T ′ := T1 · · ·Tt−1 whose Lyndon factors are the same as of T (but without Tt).
Note that it is also possible to build RLBWT in forward order, i.e., computing RLBWTT1···Tx

for increasing x by applying the algorithm of Mantaci et al. [24, Fig. 1] while omitting the
suffix array construction.

4.3 From RLBWT to RLBBWT
To build BBWT, we need to be aware of the Lyndon factors of T , which we compute with
Lemma 1 by simulating a forward scan on T with FL on BWT. To this end, we store the
entries of the C array in a Fusion tree [13] using O(σ lgn) bits and supporting predecessor
search in O(lg σ/ lg lg σ) = O(lg r/ lg lg r) time.2 This time complexity also covers a forward
step in RLBWT by simulating F with the Fusion tree on C. Hence, this fusion tree allows us to
apply Lemma 1 computing the Lyndon factorization of T with a multiplicative O(lg r/ lg lg r)
time penalty since this algorithm only needs to perform forward traversals. The starting
point of such a traversal is the position i with BWT[i] = $ because FL[i] returns the first
character of T . Whenever we detect a Lyndon factor Tx (starting with x = 1), we copy this
factor to our dynamic RLBBWT. For that, we always maintain the first and the last position
of Tx in memory. Having the last position of Tx, we perform backward steps on RLBWT
until returning at the first position of Tx to read the characters of Tx in reversed order. Then
we continue with the algorithm of Lemma 1 at the position after Tx (for recursing on Tx+1).
Inserting a Lyndon factor into RLBBWT works exactly as sketched by Bonomo et al. [5,
Thm. 17] (we review this algorithm in detail in Sect. 5.1).

5 In-Place Conversions

We finally present our in-place conversions that work in quadratic time by computing LF
or FL in O(n) time having only stored either BWT, BBWT, or BWT◦. We note that the
constructions from the text also work in the comparison model, while inverting a transform
or converting two different transforms have a multiplicative O(nε) time penalty as the fastest
option to access F in the comparison model uses O(n1+ε) time for a constant ε > 0 [26]. We
start with the construction and inversion of BWT◦ (Sects. 5.1 and 5.2), where we show (a)
that we can construct BWT◦ from the text in the same manner as Bonomo et al. [5] construct
BBWT, and (b) that the latter construction works also in-place. Next, we show in Sect. 5.3
how to invert BBWT with the BWT inversion algorithm of Crochemore et al. [9, Fig. 3],
which allows us to also convert BBWT to BWT with the BWT construction algorithm of the
same paper [9, Fig. 2]. Finally, we show a conversion from BWT to BBWT in Sect. 5.4. An
overview is given in Table 1.

2 We assume that the alphabet Σ is effective, i.e., that each character of Σ appears at least once in T .
Otherwise, assume that T uses σ′ characters. Then we build the static dictionary of Hagerup [18] in
O(σ′ lg σ′) time, supporting access to a character in O(lg lg σ′) = O(lg lg r) time, assigning each of the
σ′ characters an integer from [1 . . σ′]. We further map RLBWT to the alphabet [1 . . σ′], which can be
done in O(r) time by using O(r lgn) space for a linear-time integer sorting algorithm.

CPM 2020



21:8 In-Place Bijective Burrows-Wheeler Transforms

Table 1 Overview of in-place conversions in focus of Sect. 5 working in quadratic time.

To
From

T BWT BBWT BWT◦

T \ [9, Fig. 3] Sect. 5.3 Sect. 5.2
BWT [9, Fig. 2] \ Sect. 5.3

BBWT Sect. 5.1 Sect. 5.4 \
BWT◦ Sect. 5.1 \

5.1 Constructing BWT◦ and BBWT
We can compute BWT◦ and BBWT from T with the algorithm of Bonomo et al. [5] computing
the extended BWT [23]. The extended BWT is the BWT defined on a set of primitive strings.
As stated in Sect. 3.5, the extended BWT coincides with BBWT if this set of primitive strings
is the set of Lyndon factors of T [5, Thm. 14]. We briefly describe the algorithm of Bonomo
et al. [5] for computing the BBWT (cf. Fig. 2): For each Lyndon factor Tx (starting with
x = 1), prepend Tx[|Tx|] to BBWT. To insert the remaining characters of the factor Tx, let
p← 1 be the position of the currently inserted character. Then perform, for each j = |Tx|− 1
down to 1, a backward step p ← LF[p] + 1, and insert Tx[j] at BBWT[p]. To understand
why this computes BBWT, we observe that the last character of the most recently inserted
Lyndon factor Tx is always the first character in BBWTT1···Tx

according to Lemma 2. By
recursively inserting the preceding character at the place returned by a backward step, we
precisely insert this character at the position where we would expect it (another backward
step from the same position p would then return the inserted character). Using only n

backward steps and n insertions, this algorithm works in-place in O(n2) time by simulating
LF as described in Sect. 3.4.

Consequently, we can build BWT◦ if T is a Lyndon word since in this case BWT◦ and
BBWT coincide [15, Lemma 12]. That is because sorting the suffixes of T is equivalent to
sorting the conjugates of T (if T is a Lyndon word, then its Lyndon factorization consists
only of T itself).

It is easy to generalize this to work for a general string T . First, if T is primitive, then
we compute its so-called Lyndon conjugate, i.e., a conjugate of T that is a Lyndon word.
(The Lyndon conjugate of T is uniquely defined if T is primitive.) We can find the Lyndon
conjugate of T in O(n) time with the following two lemmata:

I Lemma 5 ( [10, Prop. 1.3] ). Given two Lyndon words S and T , ST is a Lyndon word if
S ≺lex T .

I Lemma 6. Given a primitive string T , we can find its Lyndon conjugate in O(n) time
with O(lgn) bits of space.

Proof. We use Lemma 1 to detect the last Lyndon factor Tt of the Lyndon factoriza-
tion T1 · · ·Tt of T with O(lgn) bits of working space. According to Lemma 5, TtT1 is a
Lyndon word since Tt ≺lex T1, and so is TtT1 · · ·Tt−1 a Lyndon word by a recursive argument.
Hence, we have found T ’s Lyndon conjugate. J

Let conjj(T ) be the Lyndon conjugate of T for j ∈ [0 . . n− 1]. Since BWT◦ is identical
to BBWTconjj(T ), we are done by running the algorithm of Bonomo et al. [5] on conjj(T ).
Finally, if T is not primitive, then there is a primitive string P such that T = P k for an
integer k ≥ 2. We can compute BWT◦P with the above considerations. For obtaining BWT◦,
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Figure 2 Computing BBWT from our running example T = bacabbabb in four steps (visualized
by four columns separated by three arrows ), cf. Sect. 5.1. In each column, the characters from the
top to the solid horizontal line ( ) form the currently built BBWT. The characters below that up
to the dashed horizontal line ( ) are under consideration of being merged into BBWT. This dashed
line is always before the beginning of the next yet unread Lyndon factor. First column: We have
already computed the BBWT of T1T2 = bac, which is cba. In the following we want to add the next
Lyndon factor T3 = abb to it. For that, we prepend its last character to the currently constructed
BBWT. Second column: We move the last character above the dashed line to the position LF[p] + 1
with p = 1, and update p ← LF[p] + 1. We recurse in the third column, and have produced the
BBWT of T1T2T3 = bacabb in the forth column.

according to [25, Prop. 2], we only need to make each character in BWT◦P to a character run
of length k, i.e., if BWT◦P [i] = c, we append ck to BWT◦ for increasing i ∈ [1 . . |P |] (cf. [15,
Thm. 13]). Checking whether T is primitive can be done in O(n2) time by checking for each
pair of positions their longest common prefix.

5.2 Inverting BWT◦

To invert BWT◦, we use the techniques of Crochemore et al. [9, Fig. 3] inverting BWT in-place
in O(n2) time. An invariant is that the BWT entry, whose FL mapping corresponds to the
next character to output, is marked with a unique delimiter $. Given that BWT[i] = $, the
algorithm outputs BWT[FL[i]], sets BWT[FL[i]]← $, removes BWT[i], and recurses until $ is
the last character remaining in BWT. By doing so, it restores the text in text order.

To adapt this algorithm for inverting BWT◦, we additionally need a pointer p storing
the first symbol of the text (since there is no unique delimiter such as $ in general). Given
that p points to BWT◦[i], we set i← FL[i] and subsequently output BWT◦[i]. From now on,
the algorithm works exactly as [9, Fig. 3] if we set BWT◦[i]← $ after outputting BWT◦[i].
More involving is inverting BBWT or converting BBWT to BWT, which we tackle next.

5.3 Inverting BBWT
Similarly to Sect. 4.2, we read the Lyndon factors from BBWT in the order Tt, . . . , T1, and
move each read Lyndon factor directly to a text buffer such that while reading the last
Lyndon factor Tx for an x ∈ [1 . . t] from BBWTT1···Tx

, we move the characters of Tx to
Tx+1 · · ·Tt, producing BBWTT1···Tx−1 and Tx · · ·Tt. This allows us to recurse by reading
always the last Lyndon factor Tx stored in BBWTT1···Tx

.
Here, we want to apply the inversion algorithm for BWT◦ described in Sect. 5.3. For

adapting this algorithm to work with BBWT, it suffices to insert $ at BBWT[2] (cf. Fig. 3).
By doing so, we add $ to the cycle of the currently last Lyndon factor Tx stored in BBWT,
i.e., we enlarge the Lyndon factor Tx to $Tx. That is because (a) BBWT[1] corresponds to
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Figure 3 Inverting BBWT of our running example T = bacabbabb (cf. Sect. 5.3). First Column:
We prepend the $ delimiter to the last Lyndon factor Tt by inserting $ at BBWT[2]. A forward step
symbolized by the dashed arrow ( ) leads us from $ to the first character of Tt. Second Column:
We output BBWT[6] = Tt[1] = T [7], remove $ and update BBWT[6]← $. The output is appended
to the string shown below the dashed horizontal line ( ). We continue with a forward step to
access BBWT[4] = Tt[2] = T [8], and recurse in the third column. Forth Column: Since a forward
step returns $, we know that we have successfully extracted Tt = abb.

the last character Tx[|Tx|] of Tx (cf. Lemma 2), and after inserting $, F[1] = $,F[2] = Tx[1],
hence FL[1] = 2 (a forward step on the last character of Tx gives $) and FL[2] gives the
position in BBWT corresponding to Tx[1]. Moreover, inserting $ makes BBWT the BBWT of
T ′ := T1 · · ·Tx1$Tx, where $Tx is the last Lyndon factor of T ′. We now use the property that
$Tx[i . . |Tx|] is a Lyndon word for each i ∈ [1 . . |Tx|], allowing us to perform the inversion
steps of Crochemore et al. [9, Fig. 3] on BBWT. By doing so, we can remove the entry of
BBWT corresponding to conjj(Tx) for increasing j ∈ [0 . . |Tx| − 1] and prepend the extracted
characters to the text buffer storing Tx+1 · · ·Tt within our working space while keeping
BBWT a valid BBWT.

Instead of inverting BBWT, we can convert BBWT to BWT in-place by running the
in-place BWT construction algorithm of Crochemore et al. [9, Fig. 2] on the text buffer
after the extraction of each Lyndon factor. Unfortunately, this works not character-wise,
but needs a Lyndon factor to be fully extracted before inserting its characters into BWT.
Interestingly, for the other direction (from BWT to BBWT), we can propose a different kind
of conversion that works directly on BWT without decoding it.

5.4 From BWT to BBWT on the Fly
Like in Sect. 4.3, we process the Lyndon factors of T individually to compute BBWT by
scanning BWT in text order to simulate Lemma 1. Suppose that we have built BWT on
T$ 6= $ with $ being the (t+ 1)-th Lyndon factor of T$, and suppose that we have detected
the first Lyndon factor T1. Let f denote the last character of T1. Further let if and i$ be
the position of the last character of T1 and the last character of T , respectively, such that
BWT[if] = f and BWT[i$] = $. Let p := LF[if] such that F[p] = f and BWT[p] = T1[|T1| − 1]
if |T1| > 1 or BWT[p] = $ otherwise. Since T1 and T2 are Lyndon factors, T1 �lex T2.
Consequently, the suffix T [b(T2) . . ] (the context of BWT[if]) is lexicographically smaller
than the suffix T [b(T1) . . ] (the context of BWT[i$]), i.e., if < i$. Figure 4 gives an overview
of the introduced setting.

Our aim is to change BWT such that a forward or backward step within the characters
belonging to T1 always results in a cycle. Informally, we want to cut T1 out of BWT, which
additionally allows us to recursively continue with the FL mapping to find the end of the
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Figure 4 Setting of Sect. 5.4 with focus on forming a cycle for a Lyndon factor ending with f in
BWT. Left: We exchange BWT[if] with BWT[i$] with the aim to form a cycle. Right: To obtain
this cycle we additionally need to swap BWT[p] with the elements of the dashed rectangle ( )
corresponding to the interval I having the same height as the dotted rectangle ( ) covering BWT[if +
1 . . i$ − 1].

next Lyndon factor T2. For that, we exchange BWT[i$] with BWT[if] (cf. Fig. 5). Then the
character T [e(T1) + 1] (i.e., the first character of T2) becomes the next character of $ in terms
of the forward step (BWT[FL[if]] = T [b(T2)]), while a backwards search on the first character
of T1 yields T1’s last character (LF returns i$, but now BWT[i$] = T1[|T1|] = f). This is
sufficient as long as BWT[i] 6= f for every i ∈ (if . . i$]. Otherwise, it can happen that we
change the mapping from the i-th f of F to the i-th f of BWT (or vice versa) unintentionally.
In such a case, we swap some entries in BWT within the f interval of F. In detail, we conduct
the exchange (BWT[i$] with BWT[if]), but continue with swapping BWT[i] and BWT[i+ 1]
unless BWT[FL[i]] becomes that f that corresponds to T1[|T1|] for increasing i starting with
i = p until F[i] 6= f or LF[i] 6∈ [if . . i$]. This may not be sufficient if the characters we swap
are identical (cf. Fig. 6). In such a case, we recurse on the T1[|T1| − 1] interval of F.

Instead of checking whether we have created a cycle after each swap, we want to compute
the exact number of swaps needed for this task. For that we note that exchanging BWT[i$]
with BWT[if] decrements the values of BWT.rankf(j) for every j ∈ [if . . i$] by one. In
particular, BWT.selectf changes for those f’s in BWT that are between if and i$. Hence, the
number of swaps m is the number of positions k ∈ [if + 1 . . i$ − 1] with BWT[k] = f. The
swaps are performed within the range I starting with p+ 1 and covering all positions i with
LF[i] ∈ [ii . . i$] and F[i] = f since I covers all entries whose mapping has changed. However,
if BWT[p . . ] starts with a character run of T [e(T1)− 1] (or of T [b(T1)] if |T1| = 1)3, swapping
the identical characters does not change BWT, and therefore has no effect of changing LF.
Instead, we search the end of this run within I to swap the first entry i below this run with
the first entry of this run, and recurse on swapping entry i with entries below of it.

Correctness. To see why the swaps restore the LF mapping for T1 and the remaining part
of the text T2 · · ·Tt, we examine those substrings of T that we might no longer find with the
LF mapping after exchanging BWT[i$] with BWT[if].

In detail, we examine each substring Sj := xjyjf ∈ Σ3 with j ∈ [1 . .m] that is represented
in BWT (before changing it) with BWT[p+ j] = yj ,BWT[LF[p+ j]] = xj ,BWT[FL[p+ j]] = f,
and ij := FL[p+j] ∈ [if+1. .i$−1]. Due to the LF-mapping, BWT.selectf(BWT.rankf(if)+j) =

3 For |T1| = 1, p = i$, and hence, BWT[p] was $ but now is f = T1[|T1|] = T1[1].
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Figure 5 Computing BBWT from BWT (cf. Sect. 5.4) of our running example T = bacabbabb$.
In the left column, we find the first Lyndon factor T1 = b of T by forward steps with FL. Since
|T1| = 1, p = i$. We obtain the middle column by exchanging BWT[4] with BWT[7] = $. Since there
are two b’s between b at BWT[4] and $ in the left column, we need to swap BWT[p] with the two
elements below of it in the middle column. This gives a cycle in the right column. We can recurse
since the FL mapping of $ now yields the second character of T .

ij , meaning that BWT[ij ] is the j-th f in BBWT[if + 1 . . i$ − 1], which stores m f’s. After
exchanging BWT[i$] with BWT[if], FL[p+ j] becomes ij+1 for j ∈ [0 . . m] with im+1 := i$.
However, for all i > p+m, FL[i] did not change. Hence, we only have to focus on the range
I = [p+ 1 . . p+m].

First, suppose that y1 = BWT[p + 1] 6= BWT[p]. If we swap BWT[p] with BWT[p + 1],
then LF[p] is still i1, but BWT[LF[p]] becomes x1 such that we have fixed the substring x1y1f.
This also works in a more general setting: If yj = BWT[p+ j] 6= BWT[p] for every j ∈ [1 . .m],
we can perform m swaps like above for all m entries in BWT[I] to fix all substrings Sj .

Now suppose that yj = BWT[p + j] = BWT[p] for j ∈ [1 . . `] with the largest possible
` ∈ [2 . . m]. Let k > p + ` be the first entry with BWT[k] 6= BWT[p]. First, suppose that
k ∈ I. Then F[k] = f, and swapping BWT[k] with BWT[p] restores the LF mapping for the
substrings Sj with j ∈ [1 . . `] since this swap decrements BWT.rankyj [p+ j] by one for every
j ∈ [1 . . `]. We recurse on swapping BWT[k] with the following BBWT entries in I until all
m substrings got restored. Finally, if k ≥ p+m, then all yi are equal such that we can find
the xi in BWT consecutively stored at positions with an F value of yi. Thus, we can apply
the swaps there recursively.

Time Complexity. Fixing a Lyndon factor Tx, we spend O(|I|) time for the swaps in
BWT[I], and perform the swaps recursively at most |Tx| times, where we need additionally
O(n) time per recursion step for computing LF[p], summing up to O(|Tx|(|I|+n)) = O(n|Tx|)
time. Since

∑t
x=1 |Tx| = n, we yield O(n2) total time.

6 Open Problems

Our algorithm of Sect. 5.3 converts BBWT to BWT, Lyndon factor by Lyndon factor.
It would be interesting to find another conversion that works character-wise. Here, our
inversion algorithm extracts a Lyndon factor in text order from BBWT, while the used BWT
construction algorithm parses the text in reverse text order.
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Figure 6 Special case for computing BWT from BBWT (cf. Sect. 5.4) with the different example
string T$ := cedabedad$ having T1 = ced as its first Lyndon factor. Left column: We find the first
Lyndon factor T1 = ced of T by forward steps with FL. Its last character is stored at BWT[2]. By
exchanging $ with the last character of T1 in BWT, we obtain the middle column. Middle column:
The LF mapping for the third d in F becomes invalid. However, there is only a character run of
T1[|T1| − 1] = e in BWT of the T1[|T1|] = d interval [7 . . 8] in F starting with p = 7. So we recurse
on LF[p] to find characters different from T1[|T1| − 2] = c to swap in the respective T1[|T1| − 1] = e
interval [9 . . 10]. Right Column: We have created a cycle with the characters of the first Lyndon
factor. A forward step at $ gives the first character of the next Lyndon factor.

Crochemore et al. [9, Sect. 4] proposed a space and time trade-off algorithm based on
their in-place techniques computing or inverting BWT. We are positive that it should be
possible to adapt their techniques for computing or inverting BBWT or BWT◦ with a trade-off
parameter.

From the combinatorial perspective, we question whether the number of distinct Lyndon
words of T is bounded by the runs in BBWT. If we can affirm this question, it would be
possible to adapt the BBWT based index data structure [3] for RLBBWT using O(rBBWT lgn)
bits of space because this solution needs a bit vector with rank and select support marking
the positions in BBWT corresponding to the distinct Lyndon factors. If this number is at
most the number of runs rBBWT, then we can store this bit vector entropy-compressed in
O(r lgn) bits when rBBWT = o(n) since nH0(r) = n lg(n/(n− r)) + r lg((n− r)/r) ≤ n lg r ⇔
r lg((n− r)/r) ≤ n lg(r(n− r)/n) for r = rBBWT.

Speaking of RLBBWT, we wonder whether we can construct RLBBWT online in run-
length compressed space similar to Cor. 4. With the run-length compressed wavelet tree,
the algorithm of Bonomo et al. [5, Thm. 17] works in O(n lg rBBWT/ lg lg rBBWT) time with
maxx∈[1. .t] |Tx| + O(rBBWT lgn) bits of space by reading each Lyndon factor of the text
individually.
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