
DAWGs for Parameterized Matching: Online
Construction and Related Indexing Structures
Katsuhito Nakashima
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan
katsuhito_nakashima@shino.ecei.tohoku.ac.jp

Noriki Fujisato
Department of Informatics,
Kyushu University, Fukuoka, Japan
noriki.fujisato@inf.kyushu-u.ac.jp

Diptarama Hendrian
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan
diptarama@tohoku.ac.jp

Yuto Nakashima
Department of Informatics,
Kyushu University, Fukuoka, Japan
yuto.nakashima@inf.kyushu-u.ac.jp

Ryo Yoshinaka
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan
ryoshinaka@tohoku.ac.jp

Shunsuke Inenaga
Department of Informatics,
Kyushu University, Fukuoka, Japan
PRESTO, Japan Science and Technology Agency,
Kawaguchi, Japan
inenaga@inf.kyushu-u.ac.jp

Hideo Bannai
M&D Data Science Center,
Tokyo Medical and Dental University,
Tokyo, Japan
hdbn.dsc@tmd.ac.jp

Ayumi Shinohara
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan
ayumis@tohoku.ac.jp

Masayuki Takeda
Department of Informatics,
Kyushu University, Fukuoka, Japan
takeda@inf.kyushu-u.ac.jp

Abstract
Two strings x and y over Σ∪Π of equal length are said to parameterized match (p-match) if there is a
renaming bijection f : Σ∪Π → Σ∪Π that is identity on Σ and transforms x to y (or vice versa). The
p-matching problem is to look for substrings in a text that p-match a given pattern. In this paper,
we propose parameterized suffix automata (p-suffix automata) and parameterized directed acyclic
word graphs (PDAWGs) which are the p-matching versions of suffix automata and DAWGs. While
suffix automata and DAWGs are equivalent for standard strings, we show that p-suffix automata
can have Θ(n2) nodes and edges but PDAWGs have only O(n) nodes and edges, where n is the
length of an input string. We also give O(n|Π| log(|Π| + |Σ|))-time O(n)-space algorithm that builds
the PDAWG in a left-to-right online manner. As a byproduct, it is shown that the parameterized
suffix tree for the reversed string can also be built in the same time and space, in a right-to-left
online manner.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases parameterized matching, suffix trees, DAWGs, suffix automata

Digital Object Identifier 10.4230/LIPIcs.CPM.2020.26

Related Version A full version of the paper is available at [17], https://arxiv.org/abs/2002.06786.

Funding Diptarama Hendrian: JSPS KAKENHI Grant Number JP19K20208.
Yuto Nakashima: JSPS KAKENHI Grant Number JP18K18002.
Ryo Yoshinaka: JSPS KAKENHI Grant Number JP18H04091.

© Katsuhito Nakashima, Noriki Fujisato, Diptarama Hendrian, Yuto Nakashima, Ryo Yoshinaka,
Shunsuke Inenaga, Hideo Bannai, Ayumi Shinohara, and Masayuki Takeda;
licensed under Creative Commons License CC-BY

31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020).
Editors: Inge Li Gørtz and Oren Weimann; Article No. 26; pp. 26:1–26:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:katsuhito_nakashima@shino.ecei.tohoku.ac.jp
mailto:noriki.fujisato@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-8168-7312
mailto:diptarama@tohoku.ac.jp
https://orcid.org/0000-0001-6269-9353
mailto:yuto.nakashima@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-5175-465X
mailto:ryoshinaka@tohoku.ac.jp
https://orcid.org/0000-0002-1833-010X
mailto:inenaga@inf.kyushu-u.ac.jp
https://orcid.org/0000-0002-6856-5185
mailto:hdbn.dsc@tmd.ac.jp
https://orcid.org/0000-0002-4978-8316
mailto:ayumis@tohoku.ac.jp
https://orcid.org/0000-0002-6138-1607
mailto:takeda@inf.kyushu-u.ac.jp
https://doi.org/10.4230/LIPIcs.CPM.2020.26
https://arxiv.org/abs/2002.06786
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 DAWGs for Parameterized Matching

Shunsuke Inenaga: JSPS KAKENHI Grant Number JP17H01697, JST PRESTO Grant Number
JPMJPR1922.
Hideo Bannai: JSPS KAKENHI Grant Numbers JP16H02783, JP20H04141.
Ayumi Shinohara: JSPS KAKENHI Grant Number JP15H05706.
Masayuki Takeda: JSPS KAKENHI Grant Number JP18H04098.

1 Introduction

The parameterized matching problem (p-matching problem) [2] is a class of pattern matching
where the task is to locate substrings of a text that have “the same structure” as a given
pattern. More formally, we consider a parameterized string (p-string) over a union of two
disjoint alphabets Σ and Π for static characters and for parameter characters, respectively.
Two equal length p-strings x and y are said to parameterized match (p-match) if x can be
transformed to y (and vice versa) by a bijection which renames the parameter characters.
The p-matching problem is, given a text p-string T and pattern p-string P , to report the
occurrences of substrings of T that p-match P . P-matching is well-motivated by plagiarism
detection, software maintenance, RNA structural pattern matching, and so on [2, 18, 15, 16].

The parameterized suffix tree (p-suffix tree) [1] is the fundamental indexing structure for
p-matching, which supports p-matching queries in O(m log(|Π|+ |Σ|) + pocc) time, where
m is the length of pattern P , and pocc is the number of occurrences to report. It is known
that the p-suffix tree of a text w of length n can be built in O(n log(|Π|+ |Σ|)) time with
O(n) space in an offline manner [13] and in a left-to-right online manner [18]. A randomized
O(n)-time left-to-right online construction algorithm for p-suffix trees is also known [14].
Indexing p-strings has recently attracted much attention, and the p-matching versions of
other indexing structures, such as parameterized suffix arrays [6, 12, 3, 9], parameterized
BWTs [11], and parameterized position heaps [7, 8, 10], have also been proposed.

This paper fills in the missing pieces of indexing structures for p-matching, by proposing
the parameterized version of the directed acyclic word graphs (DAWGs) [4, 5], which we call
the parameterized directed acyclic word graphs (PDAWGs).

For any standard string T , the three following data structures are known to be equivalent:
(1) The suffix automaton of T , which is the minimum DFA that is obtained by merging

isomorphic subtrees of the suffix trie of T .
(2) The DAWG, which is the edge-labeled DAG of which each node corresponds to a

equivalence class of substrings of T defined by the set of ending positions in T .
(3) The Weiner-link graph, which is the DAG consisting of the nodes of the suffix tree of the

reversal T of T and the reversed suffix links (a.k.a. soft and hard Weiner links).
The equality of (2) and (3) in turn implies symmetry of suffix trees and DAWGs, namely:
(a) The suffix links of the DAWG for T form the suffix tree for T .
(b) Left-to-right online construction of the DAWG for T is equivalent to right-to-left online

construction of the suffix tree for T .

Firstly, we present (somewhat surprising) combinatorial results on the p-matching versions
of data structures (1) and (2). We show that the parameterized suffix automaton (p-suffix
automaton), which is obtained by merging isomorphic subtrees of the parameterized suffix
trie of a p-string T of length n, can have Θ(n2) nodes and edges in the worst case, while the
PDAWG for any p-string has O(n) nodes and edges. On the other hand, the p-matching
versions of data structures (2) and (3) are equivalent: The parameterized Weiner-link graph
of the p-suffix tree for T is equivalent to the PDAWG for T . As a corollary to this, symmetry
(a) also holds: The suffix links of the PDAWG for T form the p-suffix tree for T .

K. Nakashima et al. 26:3

Secondly, we present algorithmic results on PDAWG construction. We first propose
left-to-right online construction of PDAWGs that works in O(n|Π| log(|Π|+ |Σ|)) time with
O(n) space. In addition, as a byproduct of this algorithm, we obtain a right-to-left online
construction of the p-suffix tree in O(n|Π| log(|Π|+ |Σ|)) time with O(n) space. This can be
seen as the p-matching version of symmetry (b). We suspect that it is difficult to shave the
n|Π| term in the left-to-right online construction of PDAWGs, as well as in the right-to-left
construction of p-suffix trees.

A full version of this work can be found in [17].

2 Preliminaries

We denote the set of all non-negative integers by N . A linear order ≺ over N is identical to
the ordinary linear order < on integers except that 0 is always bigger than any other positive
integers: a ≺ b if and only if 0 < a < b or a 6= b = 0. For a nonempty finite subset S of N ,
max≺ S and min≺ S denote the maximum and minimum elements of S with respect to the
order ≺, respectively.

We denote the set of strings over an alphabet A by A∗. For a string w = xyz ∈ A∗, x, y,
and z are called prefix, factor, and suffix of w, respectively. The sets of the prefixes, factors,
and suffixes of a string w are denoted by Prefix(w), Factor(w), and Suffix(w), respectively.
The length of w is denoted by |w| and the i-th symbol of w is denoted by w[i] for 1 ≤ i ≤ |w|.
The factor of w that begins at position i and ends at position j is w[i : j] for 1 ≤ i ≤ j ≤ |w|.
For convenience, we abbreviate w[1 : i] to w[: i] and w[i : |w|] to w[i :] for 1 ≤ i ≤ |w|. The
empty string is denoted by ε, that is |ε| = 0. Moreover, let w[i : j] = ε if i > j. The reverse
w of w ∈ A∗ is inductively defined by ε = ε and xa = ax for a ∈ A and x ∈ A∗.

Throughout this paper, we fix two alphabets Σ and Π. We call elements of Σ static
symbols and those of Π parameter symbols. Elements of Σ∗ and (Σ ∪Π)∗ are called static
strings and parameterized strings (or p-strings for short), respectively.

Given two p-strings S1 and S2 of length n, S1 and S2 are a parameterized match (p-match),
denoted by S1 ≈ S2, if there is a bijection f on Σ ∪Π such that f(a) = a for any a ∈ Σ and
f(S1[i]) = S2[i] for all 1 ≤ i ≤ n [2]. The prev-encoding prev(S) of a p-string S is the string
over Σ ∪N of length |S| defined by

prev(S)[i] =


S[i] if S[i] ∈ Σ,
0 if S[i] ∈ Π and S[i] 6= S[j] for 1 ≤ j < i,

i− j if S[i] = S[j] ∈ Π, j < i and S[i] 6= S[k] for any j < k < i

for i ∈ {1, . . . , |S|}. We call a string x ∈ (Σ∪N)∗ a pv-string if x = prev(S) for some p-string
S. For any p-strings S1 and S2, S1 ≈ S2 if and only if prev(S1) = prev(S2) [2]. For example,
given Σ = {a, b} and Π = {u, v, x, y}, S1 = uvvauvb and S2 = xyyaxyb are a p-match
by f such that f(u) = x and f(v) = y, where prev(S1) = prev(S2) = 001a43b. For a p-string T ,
let PFactor(T) = { prev(S) | S ∈ Factor(T) } and PSuffix(T) = { prev(S) | S ∈ Suffix(T) } be
the sets of prev-encoded factors and suffixes of T , respectively. For a factor x ∈ (Σ∪N)∗ of a
pv-string, the re-encoding 〈x〉 of x is the pv-string of length |x| defined by 〈x〉[i] = Z(x[i], i−1)
for i ∈ {1, . . . , |x|} where

Z(a, j) =
{

0 if a ∈ N and a > j,
a otherwise.

We then have 〈prev(T)[i : j]〉 = prev(T [i : j]) for any i, j. We apply PFactor etc. to pv-strings
w so that PFactor(w) = { 〈x〉 | x ∈ Factor(w) }.

CPM 2020

26:4 DAWGs for Parameterized Matching

0

a

2

a

a

0

a 0

0

0

(a)

0

a

2

a

a

0

a 0

0

(b)

0

a

2

a

a

0

a

(a0)

0

(c)

Figure 1 (a) The parameterized suffix trie PSTrie(T), (b) the parameterized suffix automaton
PSAuto(T) and (c) the PDAWG PDAWG(T) for T = xaxay over Σ = {a} and Π = {x, y}, for which
prev(T) = 0a2a0. Solid and broken arrows represent the edges and suffix links, respectively. Some
nodes of PDAWG(T) cannot be reached by following the edges from the source node.

Let w, x, y ∈ (Σ ∪ N)∗. A symbol a ∈ Σ ∪ N is said to be a right extension of x w.r.t.
w if xa ∈ PFactor(w). The set of the right extensions of x is denoted by RExw(x). The
set of the end positions of x in a pv-string w is defined by RPosw(x) = { i ∈ {0, . . . , |w|} |
x = 〈w[i − |x| + 1 : i]〉 }. Note that 0 ∈ RPosw(x) iff x = ε. It is easy to see that
RPosw(x) ⊆ RPosw(y) if and only if y ∈ PSuffix(x) or RPosw(x) = RPosw(y). We write
x ≡R

w y iff RPosw(x) = RPosw(y), and the equivalence class of pv-strings w.r.t. ≡R
w as

[x]Rw. Note that for any x /∈ PFactor(w), [x]Rw is the infinite set of all the pv-strings outside
PFactor(w). For a finite nonempty set X of strings which has no distinct elements of equal
length, the shortest and longest elements of X are denoted by minX and maxX, respectively.

A basic indexing structure of a p-strings is a parameterized suffix trie. The parameterized
suffix trie PSTrie(T) is the trie for PSuffix(T). That is, PSTrie(T) is a tree (V,E) whose node
set is V = PSuffix(T) and edge set is E = { (x, a, xa) ∈ V × (Σ ∪N)× V }. An example can
be found in Figure 1 (a). Like the standard suffix tries for static strings, the size of PSTrie(T)
can be Θ(|T |2). Obviously we can check whether T has a substring that p-matches P of
length m in O(m log(|Σ| + |Π|)) time using PSTrie(T), assuming that finding the edge to
traverse for a given character takes O(log(|Σ|+ |Π|)) time by, e.g., using balanced trees. We
use the same assumption on other indexing structures considered in this paper.

3 Parameterized DAWG

3.1 Parameterized suffix automata
One natural idea to define the parameterized counterpart of DAWGs for p-strings, which
we actually do not take, is to merge isomorphic subtrees of parameterized suffix tries. In
other words, the parameterized suffix automaton of T , denoted by PSAuto(T), is the minimal
deterministic finite automaton that accepts PSuffix(T). Figure 1 (b) shows an example of a
parameterized suffix automaton. However, the size of PSAuto(T) can be Θ(|T |2), as witnessed
by a p-string Tk = x1a1 . . . xkakx1a1 . . . xkak over Σ = {a1, . . . , ak} and Π = {x1, . . . , xk}.

3.2 Parameterized directed acyclic word graphs
In this section, we present a new indexing structure for parameterized strings, which we
call parameterized directed acyclic word graphs (PDAWGs). A PDAWG can be obtained
from a parameterized suffix trie by merging nodes whose ending positions are the same.

K. Nakashima et al. 26:5

In the example of Figure 1 (a), the subtrees rooted at a and 0a have different shapes but
RPosw(a) = RPosw(0a) = {2, 4}. Particularly, the 0-edges of those two nodes point at nodes
a0 and 0a0 with different ending position sets, which shall not be merged. Our solution to
this obvious conflict is to use only the edges of the “representative” node among ones with
the same ending position sets. In the example, we take out-going edges of 0a and do not care
those of a. The resultant PDAWG by our solution is shown in Figure 1 (c). This might first
appear nonsense: by reading a0, whose ending positions are 3 and 5, one will reach to the
sink node, whose ending position is 5, and consequently one will reach no node by reading
a0a ∈ PFactor(T). We will argue in the next subsection that still we can correctly perform
parameterized matching using our PDAWG by presenting a p-matching algorithm.

I Definition 1 (Parameterized directed acyclic word graphs). Let w = prev(T) for a para-
meterized text T ∈ (Σ ∪ Π)∗. The parameterized directed acyclic word graph (PDAWG)
PDAWG(T) = PDAWG(w) of T is the directed acyclic graph (Vw, Ew) where

Vw = { [x]Rw | x ∈ PFactor(w) } ,
Ew = { ([x]Rw, c, [y]Rw) ∈ V × (Σ ∪N)× V | y = max[x]Rw · c }

together with suffix links

SLw([x]Rw) = [〈y[2 : |y|]〉]Rw where y = min[x]Rw.

The nodes [ε]Rw and [w]Rw are called the source and the sink, respectively. Suffix links are
defined on non-source nodes.

PDAWGs have the same size bound as DAWGs, shown by Blumer et al. [4].

I Theorem 2. PDAWG(T) has at most 2n − 1 nodes and 3n − 4 edges when n = |T | ≥ 3.
Those bounds are tight.

By definition, a node u has an out-going edge labeled with a if and only if a ∈ RExw(max u).
For a ∈ RExw(max u), by childw(u, a) we denote the unique element v such that (u, a, v) ∈ Ew.
For a /∈ RExw(max u), we define childw(u, a) = Null. For any u ∈ Vw, RPosw(SLw(u)) is
the least proper superset of RPosw(u). The reversed suffix links form a tree with root [ε]Rw.
Actually, the tree is isomorphic to the parameterized suffix tree [2] for T . We discuss the
duality between PDAWGs and parameterized suffix tree in more detail in Subsection 3.5.

3.3 Parameterized pattern matching with PDAWGs
This subsection discusses how we can perform p-matching using our PDAWGs: We must
reach a node [x]Rw ∈ Vw by reading x ∈ PFactor(w) and reach no node if x /∈ PFactor(w).
In DAWGs for static strings, by following the a-edge of [x]Rw, we will arrive in [xa]Rw,
which is guaranteed by the fact that x ≡R

w y implies xa ≡R
w ya. However, this does not

hold for pv-strings. For instance, for w = prev(xaxay) = 0a2a0 (a ∈ Σ and x, y ∈ Π),
we see RPosw(a) = RPosw(0a) = {2, 4} but 3 ∈ RPosw(a0) \ RPosw(0a0). Consequently
a0a ∈ PFactor(w) but 0a0a /∈ PFactor(w). By definition, if we reach a node u by reading
max u, we can simply follow the a-edge by reading a symbol a, similarly to matching using a
DAWG. We may behave differently after we have reached u by reading some other string in
u. The following lemma suggests how we can perform p-matching using PDAWG(T).

CPM 2020

26:6 DAWGs for Parameterized Matching

Algorithm 1 Parameterized pattern matching algorithm based on PDAWG(T).

1 p← prev(P);
2 Let u← [ε]Rw;
3 for i = 1 to |P | do
4 Let u← Trans(u, i− 1, p[i]);
5 if u = Null then return False;
6 return True;

Algorithm 2 Function Trans(u, i, a).

1 if a 6= 0 then return child(u, a);
2 else if there is no b ∈ rex(u) such that b � i then return Null;
3 else if there is only one b ∈ rex(u) such that b � i then return child(u, b);
4 else return SL(child(u, b)) for the smallest (w.r.t. ≺) b ∈ rex(u) such that b � i;

I Lemma 3. Suppose x ∈ PFactor(w) and a ∈ Σ ∪N . Then, for y = max[x]Rw,

[xa]Rw =


[ya]Rw if a 6= 0 or W = ∅,
[yk]Rw if a = 0 and |W | = 1,
SLw([yk]Rw) if a = 0 and |W | ≥ 2,

where W = { j ∈ N | yj ∈ PFactor(w) and j � |x| } and k = min≺W .

Proof. We first show for x ∈ PFactor(w), a ∈ Σ ∪N and y = max[x]Rw,

RPosw(xa) =
{⋃

k∈W RPosw(yk) if a = 0,
RPosw(ya) otherwise.

(1)

where W = { k ∈ N | yk ∈ PFactor(w) and k � |x| }.
For a ∈ Σ, i ∈ RPosw(xa) iff both i − 1 ∈ RPosw(x) = RPosw(y) and T [i] = a hold iff

i ∈ RPosw(ya). For a ∈ N \ {0}, noting that 0 < a ≤ |x|, we have i ∈ RPosw(xa) iff

i− 1 ∈ RPosw(x) = RPosw(y), T [i] = T [i− a] ∈ Π and T [i− b] 6= T [i] for all 0 < b < a

iff i ∈ RPosw(ya). For a = 0, i ∈ RPosw(xa) iff

i− 1 ∈ RPosw(x) = RPosw(y), T [i] ∈ Π, and T [i] 6= T [j] for all i− |x| < j < i

iff i ∈ RPosw(yk) for some k � |x|. This proves Eq. (1).
If a 6= 0 or |W | ≤ 1, we obtain the lemma immediately from Eq (1). Suppose a = 0

and |W | ≥ 2 and let k = min≺W . By Eq. (1), we see that RPosw(yk) (RPosw(x0),
where k � |x|. It is enough to show that for any z, RPosw(yk) ⊆ RPosw(z) implies
either RPosw(yk) = RPosw(z) or RPosw(x0) ⊆ RPosw(z). Since RPosw(yk) ⊆ RPosw(z),
z ∈ PSuffix(yk). If z = z′k, by |x| < k < |z′| ≤ |y|, z ∈ [yk]Rw. Then, Eq. (1) implies
RPosw(z′k) = RPosw(yk). Suppose z = z′0 for some z′. If |z| ≤ |x0|, RPosw(x0) ⊆ RPosw(z).
Otherwise, |x0| < |z| < |yk| implies z′ ∈ [y]Rw. By Eq. (1), |z′| < k implies RPosw(x0) ⊆
RPosw(z) by the choice of k. J

The function Trans of Algorithm 2 is a straightforward realization of Lemma 3. By rex(u)
we denote the set of labels of the out-going edges of u, i.e., rex(u) = RExw(max u). It takes
a node u ∈ V , a natural number i ∈ N , and a symbol a ∈ Σ ∪ N , and returns the node

K. Nakashima et al. 26:7

where we should go by reading a from u assuming that we have read i symbols so far. That
is, Trans([x]Rw, |x|, a) = [xa]Rw for every xa ∈ PFactor(w). Using Trans, Algorithm 1 performs
p-matching. We can locate the node v of the PDAWG in O(m log(|Σ| + |Π|)) for a given
pattern P of length m if it has a p-matching occurrence, or can determine that P does not
have such an occurrence. In case P has a p-matching occurrence, we can actually report all
of its occurrences by traversing the subtree of the (reversed) suffix links that is rooted at
the node v, since the reversed suffix link tree of PDAWG(T) forms the p-suffix tree of T (see
Subsection 3.5). Thus we obtain the following:

I Theorem 4. Using PDAWG(T) enhanced with the suffix links, we can find all substrings of
T that p-match a given pattern P in O(m log(|Σ|+ |Π|) + pocc) time, where m is the length
of pattern P and pocc is the number of occurrences to report.

3.4 Online algorithm for constructing PDAWGs
This subsection proposes an algorithm constructing the PDAWG online. Our algorithm is
based on the one by Blumer et al. [4] for constructing DAWGs of static strings. We consider
updating PDAWG(w) to PDAWG(wa) for a pv-string wa where a ∈ Σ ∪N .

We first observe properties similar to the DAWG construction.

I Definition 5. The longest repeated suffix (LRS) of a nonempty pv-string wa ∈ (Σ∪N)+ is
defined to be LRS(wa) = max(PSuffix(wa)∩PFactor(w)). If LRS(wa) 6= ε, the string obtained
from LRS(wa) by removing the last symbol is called the pre-LRS w.r.t. wa and denoted as
preLRS(wa) = LRS(wa)[: |LRS(wa)| − 1].

Note that the pre-LRS w.r.t. wa is a suffix of w and is defined only when LRS(wa) 6= ε. We
have LRS(wa) = ε if and only if a is new in the sense that wa ∈ Σ∗{0} ∪ (Σ ∪N \ {a})∗Σ.

The following lemma for node splits on PDAWGs is an analogue to that for DAWGs.

I Lemma 6 (Node update). For x = LRS(wa) and y = max[x]Rw,

Vwa = Vw \ {[x]Rw} ∪ {[x]Rwa, [y]Rwa, [wa]Rwa} .

If x = y, then [x]Rw = [x]Rwa = [y]Rwa, i.e., Vwa = Vw∪{[wa]Rwa}. Otherwise, [x]Rw = [x]Rwa∪[y]Rwa

and [x]Rwa 6= [y]Rwa.

Proof. First remark that RPoswa(z) = RPosw(z) ∪ {|wa|} for all z ∈ PSuffix(wa) and
RPoswa(z) = RPosw(z) for all z /∈ PSuffix(wa). For those z ∈ PSuffix(wa) \ PFactor(w),
we have RPoswa(z) = {|wa|} and [wa]Rwa = PSuffix(wa) \ PFactor(w) ∈ Vwa \ Vw. For z ∈
PFactor(w), if [z]Rw 6= [z]Rwa, some elements of [z]Rw are in PSuffix(wa) and some are not. That
is, [z]Rw is partitioned into two non-empty equivalence classes { z′ ∈ [z]Rw | z′ ∈ PSuffix(wa) }
and { z′ ∈ [z]Rw | z′ /∈ PSuffix(wa) }. By definition, the longest of the former is x = LRS(wa)
and the longest of the latter is y = max[x]Rw. Otherwise, [z]Rw = [z]Rwa ∈ Vw ∩ Vwa. J

I Example 7. Let w = 0a2a and a = 0. Then LRS(wa) = 〈w[2 : 3]〉 = 〈wa[4 : 5]〉 = a0.
We have LRS(wa) 6= max[LRS(wa)]Rw = 0a2, where RPosw(a0) = RPosw(0a2) = {3}. On the
other hand, RPoswa(a0) = {3, 5} 6= RPoswa(0a2) = {3}. Therefore, PDAWG(wa) has two
more nodes than PDAWG(w).

When updating PDAWG(w) to PDAWG(wa), all edges that do not involve the node
[LRS(wa)]Rw are kept by definition. What we have to do is to manipulate in-coming edges
for the new sink node [wa]Rwa, and, if necessary, to split the LRS node [LRS(wa)]Rw into two

CPM 2020

26:8 DAWGs for Parameterized Matching

and to manipulate in-coming and out-going edges of them. Therefore, it is very important
to identify the LRS node [LRS(wa)]Rw and to decide whether LRS(wa) = max[LRS(wa)]Rw.
The special case where LRS(wa) = ε is easy to handle, since the LRS node will never be
split by [ε]Rw = {ε}. Hereafter we assume that LRS(wa) 6= ε and preLRS(wa) is defined. The
LRS node can be reached from the pre-LRS node [preLRS(wa)]Rw, which can be found by
following suffix links from the sink node [w]Rw of PDAWG(w). This appears quite similar to
online construction of DAWGs for static strings, but there are nontrivial differences. Main
differences from the DAWG construction are in the following points:

Our PDAWG construction uses Transw(u, i,Z(a, i)) with an appropriate i, when the
original DAWG construction refers to childw(u, a),
While preLRS(wa) is the longest of its equivalence class for static strings in DAWG(w),
it is not necessarily the case for p-strings (like the one in Figure 1), which affects the
procedure to find the node of LRS(wa),
When a node of PDAWG(w) is split into two in PDAWG(wa), the out-going edges of the
two nodes are identical in the DAWG construction, while it is not necessarily the case
any more in our PDAWG construction. Moreover, we do not always have an edge from
the node of preLRS(wa) to that of LRS(wa) in PDAWG(wa).

In DAWGs, the pre-LRS node is the first node with an a-edge that can be found by
recursively following the suffix links from the old sink [w]Rw. However, it is not necessarily
the case for PDAWGs. The following lemma suggests how to find [LSR(wa)]Rw and |LSR(wa)|
and how to decide whether the node shall be split.

I Lemma 8. Let x′ = preLRS(wa), a′ = Z(a, |x′|), i.e., x′a′ = LRS(wa), and ui = SLi
w(w)

for i ≥ 0.
1. We have x′ ∈ ui for the least i such that Transw(ui, |min ui|,Z(a, |min ui|)) 6= Null,

2. |x′a′| =
{
|max[x′]Rw|+ 1 if a ∈ RExw(max[x′]Rw),
min≺{a, max(REx(max[x′]Rw) ∩N)} otherwise,

3. [x′a′]Rw = Transw(ui, |x′|, a′),
4. [x′a′]Rw 6= [x′a′]Rwa if and only if |x′a′| 6= |max[x′a′]Rw|.
Proof. Suppose x′ ∈ ui.

(1) Every string z ∈ uj with j < i is properly longer than x′, so z · Z(a, |z|) /∈ PFactor(w)
by definition. On the other hand, for z = min ui, the fact z · Z(a, |z|) ∈ PFactor(x′a′) implies
Transw(ui, |z|,Z(a, |z|)) 6= Null.

(2) If a ∈ RExw(y′) for y′ = max[x′]Rw, we have y′a ∈ PFactor(w) and thus y′a = x′a′.
Suppose a /∈ RExw(y′). In this case, [x′]Rw is not a singleton and thus not the source node,
i.e., |x′| 6= 0. We have Transw(ui, |x′|, a′) 6= Transw(ui, |x′|+ 1,Z(a, |x′|+ 1)) = Null and thus
a ∈ N . Let W = RExw(max ui) ∩ N and Wj = { k ∈ W | k � j }. Lemma 3 implies that
a′ = 0 and W|x′| 6= ∅ by Transw(ui, |x′|, a′) 6= Null. If W|x′|+1 6= ∅, then Z(a, |x′| + 1) =
a 6= 0 = Z(a, |x′|), i.e., |x′| = a − 1. By W|x′| 6= ∅, |x′| = a − 1 ≺ max≺W|x′|. Therefore,
|x′| = min≺{a, max≺W} − 1. If W|x′|+1 = ∅ 6= W|x′|, then 0 /∈ W and max≺W = |x′|+ 1.
By Z(a, |x′|) = 0, |x′| ≺ a. Therefore, |x′| = min≺{a, max≺W} − 1.

(3) By Lemma 3. (4) By Lemma 6. J

Edges are created or replaced in accordance with the definition of a PDAWG. The in-coming
edges for the new sink node [wa]Rwa of PDAWG(wa) are given as follows.

I Lemma 9 (In-coming edges of the new sink). If LRS(wa) 6= ε, the in-coming edges for
the new sink [wa]Rwa are exactly those (u,Z(a, |max u|), [wa]Rwa) such that u = SLi

w([w]Rw) for
some i ≥ 0 and child(u,Z(a, |max u|)) = Null, i.e., |max u| > |preLRS(wa)|. If LRS(wa) = ε,
the in-coming edges for [wa]Rwa are exactly those (SLi

w([w]Rw), a, [wa]Rwa) for all i ≥ 0.

K. Nakashima et al. 26:9

0

a

2

a

a
0

a

2

a

a

0

a

(a0)

0

Figure 2 PDAWG(w), PDAWG(wa)
for w = 0a2a, a = 0. LRS(wa) = x =
a0, preLRS(wa) = x′ = a and y =
max[x]Rw = 0a2.

32 0

(a0) (0a0)

(00a)

32 00 2

(00a)(0a)

(a0)

Figure 3 Parts of PDAWG(w) and PDAWG(wa) for w =
00a30a20a0, a = a. [0a]Rwa does not inherit the out-going
edges of [0a]Rw labeled with 3 and 0. Instead, the 3-edge
and 0-edge are bundled into a single 0-edge which points
at Transw([0a]Rw, 2, 0) = SL([00a3]Rw) = [0a0]Rw.

This is not much different from DAWG update, except that the pre-LRS node has an
edge towards the new sink when the pre-LRS is not the longest in the pre-LRS node (see
Figure 2, where the pre-LRS node [x′]Rwa has got a 0-edge towards the sink). If the LRS node
[LRS(wa)]Rwa is not split, we have nothing more to do on edges.

Hereafter, we suppose that the LRS node must be split. That is, x 6= y for x = LRS(wa)
and y = max[LRS(wa)]Rw. By definition, all edges of PDAWG(w) that do not involve the LRS
node [LRS(wa)]Rw will be inherited to PDAWG(wa). The nodes [x]Rwa and [y]Rwa in PDAWG(wa)
will have the following in-coming and out-going edges.

I Lemma 10 (In-coming edges of the LRS node). We have
(u, b, [y]Rwa) ∈ Ewa if and only if (u, b, [y]Rw) ∈ Ew and |max u|+ 1 > |x|,
(u, b, [x]Rwa) ∈ Ewa if and only if b = Z(a, |max u|), (u, b, [y]Rw) ∈ Ew and |max u|+1 ≤ |x|.

Lemma 10 is no more than a direct implication of the definition of edges of PDAWGs. An
important fact is that (u, b, [y]Rw) ∈ Ew only if u = SLi

w([x′]Rw) with x′ = preLRS(wa) for some
i ≥ 0, which is essentially no difference from the DAWG case. Therefore, one can find all
in-coming edges that may need to manipulate by following suffix links from the pre-LRS node.
Note that in the on-line construction of a DAWG, the edge from the pre-LRS node [x′]Rw
to the LRS node [y]Rw in the old DAWG will be inherited to the new node [x]Rwa in the new
DAWG. However, it is not necessarily the case in the PDAWG construction, as demonstrated
in Figure 2, where the 2-edge from [x′]Rw to [y]Rw in PDAWG(w) is kept as the 2-edge from
[x′]Rwa to [y]Rwa in PDAWG(wa) and, as a result, the new node [x]Rwa has no in-coming edges.

I Lemma 11 (Out-going edges of the LRS node). We have
([y]Rwa, b, u) ∈ Ewa if and only if ([y]Rw, b, u) ∈ Ew,
([x]Rwa, b, u) ∈ Ewa if and only if Trans([y]Rw, |x|, b) = u if and only if either ([y]Rw, b, u) ∈
Ew and Z(b, |x|) 6= 0 or Trans([y]Rw, |x|, 0) = u and Z(b, |x|) = 0.

Lemma 11 is also an immediate consequence of the definition of PDAWG edges. In the
DAWG construction, those two nodes [x]Rwa and [y]Rwa simply inherit the out-going edges of
the LRS node [x]Rw = [y]Rw. However, in the PDAWG construction, due to the prev-encoding
rule on variable symbols, the node [x]Rwa will lose edges whose labels are integers greater
than |x|, as demonstrated in Figure 3. Those edges are “bundled” into a single 0-edge which
points at Trans([y]Rw, 0, |x|).

Updates of suffix links simply follow the definition.

CPM 2020

26:10 DAWGs for Parameterized Matching

Algorithm 3 Constructing PDAWG(T).

1 Let V ← {>, ρ }, E ← { (>, a, ρ) | a ∈ Σ ∪ {0} }, SL(ρ) = >, len(>) = −1, len(ρ) = 0,
sink ← ρ, and t← prev(T);

2 for i← 1 to |t| do
3 Let a← t[i] and u← sink;
4 Create a new node and let sink be that node with len(sink) = i;
5 while Trans(u, len(SL(u)) + 1,Z(a, len(SL(u)) + 1)) = Null do
6 Let child(u,Z(a, len(u)))← sink and u← SL(u);

// u corresponds to [preLRS(t[: i])]Rt[:i−1]
7 if Z(a, len(u)) ∈ rex(u) then // preLRS(t[: i]) = max[preLRS(t[: i])]Rt[:i−1]
8 Let k ← len(u) + 1 and v ← child(u,Z(a, len(u)))
9 else // preLRS(t[: i]) 6= max[preLRS(t[: i])]Rt[:i−1]

10 Let k ← min≺{a, max(rex(u) ∩N)}, v ← Trans(u, k − 1, 0),
child(u,Z(a, len(u))← sink, and u← SL(u);

// v corresponds to [LRS(t[: i])]Rt[:i−1] and k = |LRS(t[: i])|
11 if len(v) = k then Let SL(sink)← v; // No node split
12 else // Node split
13 Create a new node v′; // v′ corresponds to [LRS(t[: i])]Rt[:i]
14 Let len(v′)← k;

// In-coming edges of the new node
15 while child(u,Z(a, len(u))) = v do
16 Let child(u,Z(a, len(u)))← v′ and u← SL(u);

// Out-going edges of the new node
17 for each b ∈ { b ∈ rex(v) | Z(b, k) 6= 0 } do
18 Let child(v′, b)← child(v, b);
19 if Trans(v, k, 0) 6= Null then Let child(v′, 0)← Trans(v, k, 0);

// Suffix links
20 Let SL(v′)← SL(v), SL(v)← v′ and SL(sink)← v′;
21 return (V,E,SL);

I Lemma 12 (Suffix link update). Suppose Vwa = Vw ∪ {[wa]Rwa}. Then, for each u ∈ Vwa,

SLwa(u) =
{

[LRS(wa)]Rwa if u = [wa]Rwa,
SLw(u) otherwise.

Suppose [x]Rw 6= [x]Rwa for x = LRS(wa), i.e., Vwa = Vw \ {[y]Rw} ∪ {[wa]Rwa, [x]Rwa, [y]Rwa},
where y = max[x]Rw. Then, for each u ∈ Vwa,

SLwa(u) =


[x]Rwa if u ∈ {[wa]Rwa, [y]Rwa},
SLw([y]Rw) if u = [x]Rwa,
SLw(u) otherwise.

Algorithm 3 constructs PDAWGs based on the above lemmas. An example of online
construction of a PDAWG can be found in Figure 4. For technical convenience, like the
standard DAWG construction algorithm, we add a dummy node > to the PDAWG that
has edges to the source node, denoted as ρ in Algorithm 3, labeled with all elements of

K. Nakashima et al. 26:11

0

a

2

a
0

a

2

a

a

0a2a0a 0a2a0a

0

a

2

a

a

0

a

(a0)

0a2a0a

0

a

2

a

a

0

a

(a0)

0

a

0

0a2a0a

0

LRS = 0 LRS = a0aLRS = a0LRS = 0a

23:10 DAWGs for parameterized matching

construction algorithm, we add a dummy node € to the PDAWG that has edges to the342

source node fl labeled with all elements of � fi {0}. This trick allows us to uniformly treat343

the special case where the LRS node is fl, in which case the pre-LRS node is defined to be €.344

In addition, we let SL(fl) = €. Each node u does not remember the elements of u but we345

remember len(u) = |max u|. Note that |min u| = |len(SL(u))|+1. Hereafter we use functions346

SL, child, Trans, etc. without a subscript specifying a text, to refer to the data structure347

that the algorithm is manipulating, rather than the mathematical notion relative to the text.348

Of course, we design our algorithm so that those functions coincide with the corresponding349

mathematical notions.350

Suppose we have constructed PDAWG(w) and want to obtain PDAWG(wa). The sink351

node of PDAWG(w), denoted as oldsink, corresponds to [w]Rw. We first make a new sink352

node newsink = [wa]Rwa. Then we visit ui = SLi(oldsink) for i = 1, 2, . . . , j, until we find the353

pre-LRS node uj = [preLRS(wa)]Rw. By Lemma 8, we can identify uj and kÕ = |preLRS(wa)|.354

For each node ui with i < j, we make an edge labeled with Z(a, len(ui)) pointing at newsink355

and, moreover, uj also has an edge pointing at newsink if kÕ < len(uj) by Lemma 9. We356

then reach the LRS node v = [LRS(wa)]Rw = Trans(uj , kÕ,Z(a, kÕ)). We compare k = kÕ + 1 =357

|LRS(wa)| and len(v) to decide whether the LRS node shall be split based on Lemma 6. If358

|LRS(wa)| = len(v), the node v will not be split, in which case we obtain PDAWG(wa) by359

making SL(newsink) = v (Lemma 12).360

Suppose k < len(v). In this case, the LRS node v must be split. We reuse the old node v,361

which used to correspond to [LRS(wa)]Rw, as a new node corresponding to [max[LRS(wa)]Rw]Rwa,362

and create another new node vÕ for [LRS(wa)]Rwa with len(vÕ) = k. Edges are determined363

in accordance with Lemmas 10 and 11. All incoming edges from SLi([preLRS(wa)]Rw) to v364

in PDAWG(w) are redirected to vÕ, except when preLRS(wa) ”= max[preLRS(wa)]Rw for i = 0.365

The outgoing edges from v will be kept. We create outgoing edges of vÕ referring to the366

corresponding transitions from v. If (v, b, u) œ E with Z(b, k) ”= 0, then we add (vÕ, b, u) to E.367

In addition, we add (vÕ, 0,Transw(v, 0, k)) to E if Trans(v, 0, k) ”= Null. At last, su�x links368

among newsink, v, vÕ are determined in accordance with Lemma 12.369

We conclude the subsection with the complexity of Algorithm 3. Let us call an edge370

(u, a, v) primary if max v = max u · a, and secondary otherwise. The following lemma is an371

adaptation of the corresponding one for DAWGs by Blumer et al. [5].372

I Lemma 13. Let SCw(u) = {SLiw(u) | i Ø 0 } for a node u. If PDAWG(w) has a primary373

edge from u to v, then the total number of secondary edges from nodes in SCw(u) to nodes in374

SCw(v) is bounded by |SCw(u)| ≠ |SCw(v)| + |�| + 1.375

Proof. See Appendix D. J376

We then obtain our main theorem.377

I Theorem 14. Given a string T of length n, Algorithm 3 constructs PDAWG(T) in378

O(n|�| log(|�| + |�|)) time and O(n) space online, by reading T from left to right.379

Proof. Since the size of a PDAWG is bounded by O(n) (Theorem 2) and nodes are monoton-380

ically added, it is enough to bound the number of edges and su�x links that are deleted. In381

each iteration of the for loop, at most one su�x link is deleted. So at most n su�x links are382

deleted in total. We count the number of edges whose target is altered from v = [LSR(wa)]Rw383

to vÕ = [LSR(wa)]Rwa on Line 15 when updating PDAWG(w) to PDAWG(wa). Let ki be the384

number of such edges at the i-th iteration of the for loop. Note that those are all secondary385

23:10 DAWGs for parameterized matching

construction algorithm, we add a dummy node € to the PDAWG that has edges to the342

source node fl labeled with all elements of � fi {0}. This trick allows us to uniformly treat343

the special case where the LRS node is fl, in which case the pre-LRS node is defined to be €.344

In addition, we let SL(fl) = €. Each node u does not remember the elements of u but we345

remember len(u) = |max u|. Note that |min u| = |len(SL(u))|+1. Hereafter we use functions346

SL, child, Trans, etc. without a subscript specifying a text, to refer to the data structure347

that the algorithm is manipulating, rather than the mathematical notion relative to the text.348

Of course, we design our algorithm so that those functions coincide with the corresponding349

mathematical notions.350

Suppose we have constructed PDAWG(w) and want to obtain PDAWG(wa). The sink351

node of PDAWG(w), denoted as oldsink, corresponds to [w]Rw. We first make a new sink352

node newsink = [wa]Rwa. Then we visit ui = SLi(oldsink) for i = 1, 2, . . . , j, until we find the353

pre-LRS node uj = [preLRS(wa)]Rw. By Lemma 8, we can identify uj and kÕ = |preLRS(wa)|.354

For each node ui with i < j, we make an edge labeled with Z(a, len(ui)) pointing at newsink355

and, moreover, uj also has an edge pointing at newsink if kÕ < len(uj) by Lemma 9. We356

then reach the LRS node v = [LRS(wa)]Rw = Trans(uj , kÕ,Z(a, kÕ)). We compare k = kÕ + 1 =357

|LRS(wa)| and len(v) to decide whether the LRS node shall be split based on Lemma 6. If358

|LRS(wa)| = len(v), the node v will not be split, in which case we obtain PDAWG(wa) by359

making SL(newsink) = v (Lemma 12).360

Suppose k < len(v). In this case, the LRS node v must be split. We reuse the old node v,361

which used to correspond to [LRS(wa)]Rw, as a new node corresponding to [max[LRS(wa)]Rw]Rwa,362

and create another new node vÕ for [LRS(wa)]Rwa with len(vÕ) = k. Edges are determined363

in accordance with Lemmas 10 and 11. All incoming edges from SLi([preLRS(wa)]Rw) to v364

in PDAWG(w) are redirected to vÕ, except when preLRS(wa) ”= max[preLRS(wa)]Rw for i = 0.365

The outgoing edges from v will be kept. We create outgoing edges of vÕ referring to the366

corresponding transitions from v. If (v, b, u) œ E with Z(b, k) ”= 0, then we add (vÕ, b, u) to E.367

In addition, we add (vÕ, 0,Transw(v, 0, k)) to E if Trans(v, 0, k) ”= Null. At last, su�x links368

among newsink, v, vÕ are determined in accordance with Lemma 12.369

We conclude the subsection with the complexity of Algorithm 3. Let us call an edge370

(u, a, v) primary if max v = max u · a, and secondary otherwise. The following lemma is an371

adaptation of the corresponding one for DAWGs by Blumer et al. [5].372

I Lemma 13. Let SCw(u) = {SLiw(u) | i Ø 0 } for a node u. If PDAWG(w) has a primary373

edge from u to v, then the total number of secondary edges from nodes in SCw(u) to nodes in374

SCw(v) is bounded by |SCw(u)| ≠ |SCw(v)| + |�| + 1.375

Proof. See Appendix D. J376

We then obtain our main theorem.377

I Theorem 14. Given a string T of length n, Algorithm 3 constructs PDAWG(T) in378

O(n|�| log(|�| + |�|)) time and O(n) space online, by reading T from left to right.379

Proof. Since the size of a PDAWG is bounded by O(n) (Theorem 2) and nodes are monoton-380

ically added, it is enough to bound the number of edges and su�x links that are deleted. In381

each iteration of the for loop, at most one su�x link is deleted. So at most n su�x links are382

deleted in total. We count the number of edges whose target is altered from v = [LSR(wa)]Rw383

to vÕ = [LSR(wa)]Rwa on Line 15 when updating PDAWG(w) to PDAWG(wa). Let ki be the384

number of such edges at the i-th iteration of the for loop. Note that those are all secondary385

23:10 DAWGs for parameterized matching

construction algorithm, we add a dummy node € to the PDAWG that has edges to the342

source node fl labeled with all elements of � fi {0}. This trick allows us to uniformly treat343

the special case where the LRS node is fl, in which case the pre-LRS node is defined to be €.344

In addition, we let SL(fl) = €. Each node u does not remember the elements of u but we345

remember len(u) = |max u|. Note that |min u| = |len(SL(u))|+1. Hereafter we use functions346

SL, child, Trans, etc. without a subscript specifying a text, to refer to the data structure347

that the algorithm is manipulating, rather than the mathematical notion relative to the text.348

Of course, we design our algorithm so that those functions coincide with the corresponding349

mathematical notions.350

Suppose we have constructed PDAWG(w) and want to obtain PDAWG(wa). The sink351

node of PDAWG(w), denoted as oldsink, corresponds to [w]Rw. We first make a new sink352

node newsink = [wa]Rwa. Then we visit ui = SLi(oldsink) for i = 1, 2, . . . , j, until we find the353

pre-LRS node uj = [preLRS(wa)]Rw. By Lemma 8, we can identify uj and kÕ = |preLRS(wa)|.354

For each node ui with i < j, we make an edge labeled with Z(a, len(ui)) pointing at newsink355

and, moreover, uj also has an edge pointing at newsink if kÕ < len(uj) by Lemma 9. We356

then reach the LRS node v = [LRS(wa)]Rw = Trans(uj , kÕ,Z(a, kÕ)). We compare k = kÕ + 1 =357

|LRS(wa)| and len(v) to decide whether the LRS node shall be split based on Lemma 6. If358

|LRS(wa)| = len(v), the node v will not be split, in which case we obtain PDAWG(wa) by359

making SL(newsink) = v (Lemma 12).360

Suppose k < len(v). In this case, the LRS node v must be split. We reuse the old node v,361

which used to correspond to [LRS(wa)]Rw, as a new node corresponding to [max[LRS(wa)]Rw]Rwa,362

and create another new node vÕ for [LRS(wa)]Rwa with len(vÕ) = k. Edges are determined363

in accordance with Lemmas 10 and 11. All incoming edges from SLi([preLRS(wa)]Rw) to v364

in PDAWG(w) are redirected to vÕ, except when preLRS(wa) ”= max[preLRS(wa)]Rw for i = 0.365

The outgoing edges from v will be kept. We create outgoing edges of vÕ referring to the366

corresponding transitions from v. If (v, b, u) œ E with Z(b, k) ”= 0, then we add (vÕ, b, u) to E.367

In addition, we add (vÕ, 0,Transw(v, 0, k)) to E if Trans(v, 0, k) ”= Null. At last, su�x links368

among newsink, v, vÕ are determined in accordance with Lemma 12.369

We conclude the subsection with the complexity of Algorithm 3. Let us call an edge370

(u, a, v) primary if max v = max u · a, and secondary otherwise. The following lemma is an371

adaptation of the corresponding one for DAWGs by Blumer et al. [5].372

I Lemma 13. Let SCw(u) = {SLiw(u) | i Ø 0 } for a node u. If PDAWG(w) has a primary373

edge from u to v, then the total number of secondary edges from nodes in SCw(u) to nodes in374

SCw(v) is bounded by |SCw(u)| ≠ |SCw(v)| + |�| + 1.375

Proof. See Appendix D. J376

We then obtain our main theorem.377

I Theorem 14. Given a string T of length n, Algorithm 3 constructs PDAWG(T) in378

O(n|�| log(|�| + |�|)) time and O(n) space online, by reading T from left to right.379

Proof. Since the size of a PDAWG is bounded by O(n) (Theorem 2) and nodes are monoton-380

ically added, it is enough to bound the number of edges and su�x links that are deleted. In381

each iteration of the for loop, at most one su�x link is deleted. So at most n su�x links are382

deleted in total. We count the number of edges whose target is altered from v = [LSR(wa)]Rw383

to vÕ = [LSR(wa)]Rwa on Line 15 when updating PDAWG(w) to PDAWG(wa). Let ki be the384

number of such edges at the i-th iteration of the for loop. Note that those are all secondary385

23:10 DAWGs for parameterized matching

construction algorithm, we add a dummy node € to the PDAWG that has edges to the342

source node fl labeled with all elements of � fi {0}. This trick allows us to uniformly treat343

the special case where the LRS node is fl, in which case the pre-LRS node is defined to be €.344

In addition, we let SL(fl) = €. Each node u does not remember the elements of u but we345

remember len(u) = |max u|. Note that |min u| = |len(SL(u))|+1. Hereafter we use functions346

SL, child, Trans, etc. without a subscript specifying a text, to refer to the data structure347

that the algorithm is manipulating, rather than the mathematical notion relative to the text.348

Of course, we design our algorithm so that those functions coincide with the corresponding349

mathematical notions.350

Suppose we have constructed PDAWG(w) and want to obtain PDAWG(wa). The sink351

node of PDAWG(w), denoted as oldsink, corresponds to [w]Rw. We first make a new sink352

node newsink = [wa]Rwa. Then we visit ui = SLi(oldsink) for i = 1, 2, . . . , j, until we find the353

pre-LRS node uj = [preLRS(wa)]Rw. By Lemma 8, we can identify uj and kÕ = |preLRS(wa)|.354

For each node ui with i < j, we make an edge labeled with Z(a, len(ui)) pointing at newsink355

and, moreover, uj also has an edge pointing at newsink if kÕ < len(uj) by Lemma 9. We356

then reach the LRS node v = [LRS(wa)]Rw = Trans(uj , kÕ,Z(a, kÕ)). We compare k = kÕ + 1 =357

|LRS(wa)| and len(v) to decide whether the LRS node shall be split based on Lemma 6. If358

|LRS(wa)| = len(v), the node v will not be split, in which case we obtain PDAWG(wa) by359

making SL(newsink) = v (Lemma 12).360

Suppose k < len(v). In this case, the LRS node v must be split. We reuse the old node v,361

which used to correspond to [LRS(wa)]Rw, as a new node corresponding to [max[LRS(wa)]Rw]Rwa,362

and create another new node vÕ for [LRS(wa)]Rwa with len(vÕ) = k. Edges are determined363

in accordance with Lemmas 10 and 11. All incoming edges from SLi([preLRS(wa)]Rw) to v364

in PDAWG(w) are redirected to vÕ, except when preLRS(wa) ”= max[preLRS(wa)]Rw for i = 0.365

The outgoing edges from v will be kept. We create outgoing edges of vÕ referring to the366

corresponding transitions from v. If (v, b, u) œ E with Z(b, k) ”= 0, then we add (vÕ, b, u) to E.367

In addition, we add (vÕ, 0,Transw(v, 0, k)) to E if Trans(v, 0, k) ”= Null. At last, su�x links368

among newsink, v, vÕ are determined in accordance with Lemma 12.369

We conclude the subsection with the complexity of Algorithm 3. Let us call an edge370

(u, a, v) primary if max v = max u · a, and secondary otherwise. The following lemma is an371

adaptation of the corresponding one for DAWGs by Blumer et al. [5].372

I Lemma 13. Let SCw(u) = {SLiw(u) | i Ø 0 } for a node u. If PDAWG(w) has a primary373

edge from u to v, then the total number of secondary edges from nodes in SCw(u) to nodes in374

SCw(v) is bounded by |SCw(u)| ≠ |SCw(v)| + |�| + 1.375

Proof. See Appendix D. J376

We then obtain our main theorem.377

I Theorem 14. Given a string T of length n, Algorithm 3 constructs PDAWG(T) in378

O(n|�| log(|�| + |�|)) time and O(n) space online, by reading T from left to right.379

Proof. Since the size of a PDAWG is bounded by O(n) (Theorem 2) and nodes are monoton-380

ically added, it is enough to bound the number of edges and su�x links that are deleted. In381

each iteration of the for loop, at most one su�x link is deleted. So at most n su�x links are382

deleted in total. We count the number of edges whose target is altered from v = [LSR(wa)]Rw383

to vÕ = [LSR(wa)]Rwa on Line 15 when updating PDAWG(w) to PDAWG(wa). Let ki be the384

number of such edges at the i-th iteration of the for loop. Note that those are all secondary385

Figure 4 A snapshot of left-to-right online construction of PDAWG(T) with T = xaxaya by
Algorithm 3. Each figure shows PDAWG(wa) for a prefix wa of prev(T) = 0a2a0a. Double arrows
show primary edges. The new nodes, edges and suffix links are colored red. The purple, red and
blue diamonds represent [x′]Rwa, [x]Rwa and [y]Rwa, respectively, where x′ = preLRS(wa), x = LRS(wa)
and y = max[x]Rw. When x = ε, the purple diamond is put on the dummy node >.

Σ ∪ {0}. This trick allows us to uniformly treat the special case where the LRS node is ρ,
in which case the pre-LRS node is defined to be >. In addition, we let SL(ρ) = >. Each
node u does not remember the elements of u but we remember len(u) = |max u|. Note
that |min u| = |len(SL(u))|+ 1. Hereafter we use functions SL, child, Trans, etc. without a
subscript specifying a text, to refer to the data structure that the algorithm is manipulating,
rather than the mathematical notion relative to the text. Of course, we design our algorithm
so that those functions coincide with the corresponding mathematical notions.

Suppose we have constructed PDAWG(w) and want to obtain PDAWG(wa). The sink
node of PDAWG(w), denoted as oldsink, corresponds to [w]Rw. We first make a new sink
node newsink = [wa]Rwa. Then we visit ui = SLi(oldsink) for i = 1, 2, . . . , j, until we find the
pre-LRS node uj = [preLRS(wa)]Rw. By Lemma 8, we can identify uj and k′ = |preLRS(wa)|.
For each node ui with i < j, we make an edge labeled with Z(a, len(ui)) pointing at newsink
and, moreover, uj also has an edge pointing at newsink if k′ < len(uj) by Lemma 9. We
then reach the LRS node v = [LRS(wa)]Rw = Trans(uj , k

′,Z(a, k′)). We compare k = k′ + 1 =
|LRS(wa)| and len(v) to decide whether the LRS node shall be split based on Lemma 6. If
|LRS(wa)| = len(v), the node v will not be split, in which case we obtain PDAWG(wa) by
making SL(newsink) = v (Lemma 12).

Suppose k < len(v). In this case, the LRS node v must be split. We reuse the old node v,
which used to correspond to [LRS(wa)]Rw, as a new node corresponding to [max[LRS(wa)]Rw]Rwa,
and create another new node v′ for [LRS(wa)]Rwa with len(v′) = k. Edges are determined
in accordance with Lemmas 10 and 11. All in-coming edges from SLi([preLRS(wa)]Rw) to v
in PDAWG(w) are redirected to v′, except when preLRS(wa) 6= max[preLRS(wa)]Rw for i = 0.
The out-going edges from v will be kept. We create out-going edges of v′ referring to the
corresponding transitions from v. If (v, b, u) ∈ E with Z(b, k) 6= 0, then we add (v′, b, u) to E.
In addition, we add (v′, 0,Transw(v, 0, k)) to E if Trans(v, 0, k) 6= Null. At last, suffix links
among newsink, v, v′ are determined in accordance with Lemma 12.

We conclude the subsection with the complexity of Algorithm 3. Let us call an edge
(u, a, v) primary if max v = max u · a, and secondary otherwise. The following lemma is an
adaptation of the corresponding one for DAWGs by Blumer et al. [4].

CPM 2020

26:12 DAWGs for Parameterized Matching

I Lemma 13. Let SCw(u) = { SLi
w(u) | i ≥ 0 } for a node u. If PDAWG(w) has a primary

edge from u to v, then the total number of secondary edges from nodes in SCw(u) to nodes in
SCw(v) is bounded by |SCw(u)| − |SCw(v)|+ |Π|+ 1.

Proof. Let us count the number of edges from nodes in SCw(u) to SCw(v). Baker [2,
Lemma 1] showed that in a parameterized suffix tree, each path from the root to a leaf has
at most |Π| nodes with bad suffix links. Through the duality of PDAWGs and parameterized
suffix trees stated in Lemma 16, this means that SCw(v) contains at most |Π| + 1 nodes
which has no in-coming primary edges, where the additional one node is the root of the
PDAWG. Since each node has at most one in-coming primary edge, the number of primary
edges in concern is at least |SCw(v)| − |Π| − 1 in total. Since each node in SCw(u) has just
one out-going edge to SCw(v), we obtain the lemma. J

I Theorem 14. Given a string T of length n, Algorithm 3 constructs PDAWG(T) in
O(n|Π| log(|Σ|+ |Π|)) time and O(n) space online, by reading T from left to right.

Proof. Since the size of a PDAWG is bounded by O(n) (Theorem 2) and nodes are monoton-
ically added, it is enough to bound the number of edges and suffix links that are deleted. In
each iteration of the for loop, at most one suffix link is deleted. So at most n suffix links are
deleted in total. We count the number of edges whose target is altered from v = [LSR(wa)]Rw
to v′ = [LSR(wa)]Rwa on Line 15 when updating PDAWG(w) to PDAWG(wa). Let ki be the
number of such edges at the i-th iteration of the for loop. Note that those are all secondary
edges from a node in SCw(u0) for the pre-LRS node u0. By Lemma 13,∑n

i=1 ki ≤
∑n

i=1
(
|SCwa(w)| − |SCwa(wa)|+ |Π|+ 1

)
≤∑n

i=1
(
|SCw(w)| − |SCwa(wa)|+ |Π|+ 1

)
= |SCε(ε)| − |SCt(t)|+ (|Π|+ 1)n ∈ O(|Π|n) . J

Since the suffix links of PDAWG(T) forms the p-suffix tree of T (see Subsection 3.5), the
following corollary is immediate from Theorem 14.

I Corollary 15. The p-suffix tree of a string S of length n can be constructed in O(n|Π| log(|Σ|+
|Π|)) time and O(n) space online, by reading S from right to left.

Differently from the online DAWG construction algorithm [4], we have the factor |Π| in
our algorithm complexity analysis. Actually our algorithm takes time proportional to the
difference of the old and new PDAWGs modulo logarithmic factors, as long as the difference is
defined so that the split node [LRS(wa)]Rw automatically becomes [max[LRS(wa)]Rw]Rwa rather
than [LRS(wa)]Rwa. In this sense, our algorithm is optimal. It is open whether we could
improve the analysis.

3.5 Duality of PDAWGs and p-suffix trees
This subsection establishes the duality between parameterized suffix trees and PDAWGs.
An example can be found in Figure 5. For this sake, we introduce the reverse of a pv-string
and Weiner links (reversed suffix links) for parameterized suffix trees.

The “reverse” x̃ of a pv-string x must satisfy that x̃ = prev(S) iff x = prev(S) for any
p-string S ∈ (Σ ∪Π)∗. For the empty string ε̃ = ε. For x ∈ (Σ ∪N)∗ and a ∈ Σ ∪N ,

x̃a =
{
ax̃ if a ∈ Σ ∪ {0},
0y otherwise,

K. Nakashima et al. 26:13

a0

a
0
a
0

b

2

0

b

a
2

0a

a

a
2

0
a
2

02 b

0

a

2

a
a

b

b

a

a

0
0

(a)

2

0

bb

0

a
a

a

b

b

a

a

0
0

(b)

0

a

2

a

a

0

b

b

0
0b

a
b

a

(c)

Figure 5 (a) The parameterized suffix tree PSTree(S) for S = baxayay over Σ = {a, b} and
Π = {x, y}, augmented with the Weiner links (dashed red arcs). (b) The DAG consisting of the
p-suffix tree nodes and the Weiner-links. (c) The PDAWG PDAWG(T) for T = S = yayaxab. The
graphs (b) and (c) are isomorphic.

where y is obtained from x̃ by replacing the a-th element by a, i.e., y = x̃[: a−1] ·a · x̃[a+ 1 :].
This is well-defined if xa is a pv-string. For example, for T = xaxy with a ∈ Σ and x, y ∈ Π,
we have ˜prev(T) = 0̃a20 = 00a2 = prev(yxax) = prev(T).

The parameterized suffix tree PSTree(T) of a p-string T is the path-compacted (or
Patricia) tree for PSuffix(T). For any z ∈ (Σ ∪ N)∗, For PSTree(T), the Weiner links are
defined as follows. Let v be a node in PSTree(T) such that v = prev(S) for some substring S
of T , and a ∈ Σ ∪N . Let α(a, v) be the pv-string such that

α(a, v) =


av if av ∈ PFactor(T) and a ∈ Σ ∪ {0},
prev(S[a] · S) if prev(S[a] · x) ∈ PFactor(T) and a ∈ N \ {0},
undefined otherwise.

Then a Weiner link is a triple (v, a, u) such that u = α(a, v)y, where y ∈ (Σ ∪ N)∗ is the
shortest string such that α(a, v)y is a node of PSTree(T). The Weiner link (v, a, u) is said to
be explicit if u = α(a, v), and implicit otherwise1.

To establish the correspondence between PDAWG(T) and PSTree(T) easily, here we
rename the nodes [x]Rw of PDAWG(T) to be max[x]Rw where w = prev(T).

I Theorem 16. The following correspondence between PDAWG(T) = (VD, ED) and
PSTree(T) = (VT, ET) holds.
(1) PDAWG(T) has a node x ∈ VD iff PSTree(T) has a node x̃ ∈ VT.
(2) PDAWG(T) has a primary edge (x, a, y) ∈ ED iff PSTree(T) has an explicit Weiner link

(x̃, a, ỹ).
(3) PDAWG(T) has a secondary edge (x, a, y) ∈ ED iff PSTree(T) has an implicit Weiner

link (x̃, a, ỹ).
(4) PDAWG(T) has a suffix link from x̃y to x̃ iff PSTree(T) has an edge (x, y, xy) ∈ ET.

1 Explicit Weiner links are essentially the same as the reversed suffix links used for right-to-left online
construction of parameterized position heaps [8].

CPM 2020

26:14 DAWGs for Parameterized Matching

References
1 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.

In STOC 1993, pages 71–80, 1993.
2 Brenda S. Baker. Parameterized pattern matching: Algorithms and applications. Journal of

Computer and System Sciences, 52(1):28–42, 1996.
3 Richard Beal and Donald A. Adjeroh. p-suffix sorting as arithmetic coding. J. Discrete

Algorithms, 16:151–169, 2012.
4 Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, Mu-Tian Chen, and Joel

Seiferas. The smallest automation recognizing the subwords of a text. Theoretical computer
science, 40:31–55, 1985.

5 Maxime Crochemore. Transducers and repetitions. Theor. Comput. Sci., 45(1):63–86, 1986.
6 Satoshi Deguchi, Fumihito Higashijima, Hideo Bannai, Shunsuke Inenaga, and Masayuki

Takeda. Parameterized suffix arrays for binary strings. In PSC 2008, pages 84–94, 2008.
7 Diptarama, Takashi Katsura, Yuhei Otomo, Kazuyuki Narisawa, and Ayumi Shinohara.

Position heaps for parameterized strings. In CPM 2017, pages 8:1–8:13, 2017. doi:10.4230/
LIPIcs.CPM.2017.8.

8 Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Right-to-left online construction of parameterized position heaps. In PSC 2018, pages 91–102,
2018.

9 Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Direct Linear Time Construction of Parameterized Suffix and LCP Arrays for Constant
Alphabets. In SPIRE 2019, pages 382–391. Springer International Publishing, 2019.

10 Noriki Fujisato, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. The
Parameterized Position Heap of a Trie. In CIAC 2019, pages 237–248. Springer International
Publishing, 2019.

11 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. pBWT: Achieving succinct data
structures for parameterized pattern matching and related problems. In SODA 2017, pages
397–407, 2017.

12 Tomohiro I, Satoshi Deguchi, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Light-
weight parameterized suffix array construction. In IWOCA 2009, pages 312–323, 2009.

13 S. Rao Kosaraju. Faster algorithms for the construction of parameterized suffix trees (prelim-
inary version). In FOCS 1995, pages 631–637, 1995.

14 Taehyung Lee, Joong Chae Na, and Kunsoo Park. On-line construction of parameterized
suffix trees for large alphabets. Inf. Process. Lett., 111(5):201–207, 2011.

15 Juan Mendivelso and Yoan Pinzón. Parameterized matching: Solutions and extensions. In
Proc. PSC 2015, pages 118–131, 2015.

16 Juan Mendivelso, Sharma V. Thankachan, and Yoan Pinzón. A brief history of parameterized
matching problems. Discrete Applied Mathematics, 2018. Avaliable online. doi:10.1016/j.
dam.2018.07.017.

17 Katsuhito Nakashima, Noriki Fujisato, Diptarama Hendrian, Yuto Nakashima, Ryo Yosh-
inaka, Shunsuke Inenaga, Hideo Bannai, Ayumi Shinohara, and Masayuki Takeda. DAWGs
for parameterized matching: online construction and related indexing structures. CoRR,
abs/2002.06786, 2020. URL: https://arxiv.org/abs/2002.06786.

18 Tetsuo Shibuya. Generalization of a suffix tree for RNA structural pattern matching. Algorith-
mica, 39(1):1–19, 2004.

https://doi.org/10.4230/LIPIcs.CPM.2017.8
https://doi.org/10.4230/LIPIcs.CPM.2017.8
https://doi.org/10.1016/j.dam.2018.07.017
https://doi.org/10.1016/j.dam.2018.07.017
https://arxiv.org/abs/2002.06786

	Introduction
	Preliminaries
	Parameterized DAWG
	Parameterized suffix automata
	Parameterized directed acyclic word graphs
	Parameterized pattern matching with PDAWGs
	Online algorithm for constructing PDAWGs
	Duality of PDAWGs and p-suffix trees

