
36th International Symposium
on Computational Geometry

SoCG 2020, June 23–26, 2020, Zürich, Switzerland
(Virtual Conference)

Edited by

Sergio Cabello
Danny Z. Chen

LIPIcs – Vo l . 164 – SoCG 2020 www.dagstuh l .de/ l ip i c s

Editors

Sergio Cabello
University of Ljubljana, Ljubljana, Slovenia
sergio.cabello@fmf.uni-lj.si

Danny Z. Chen
University of Notre Dame, Indiana, USA
dchen@nd.edu

ACM Classification 2012
Theory of computation → Computational geometry; Theory of computation → Design and analysis of
algorithms; Mathematics of computing → Combinatorics; Mathematics of computing → Graph algorithms

ISBN 978-3-95977-143-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-143-6.

Publication date
June, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SoCG.2020.0

ISBN 978-3-95977-143-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-3183-4126
mailto:sergio.cabello@fmf.uni-lj.si
https://orcid.org/0000-0001-6565-2884
mailto:dchen@nd.edu
https://www.dagstuhl.de/dagpub/978-3-95977-143-6
https://www.dagstuhl.de/dagpub/978-3-95977-143-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.SoCG.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-143-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SoCG 2020

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Sergio Cabello and Danny Z. Chen . 0:xi

Conference Organization
. 0:xiii

Additional Reviewers
. 0:xv

Regular Papers

An Almost Optimal Bound on the Number of Intersections of Two Simple Polygons
Eyal Ackerman, Balázs Keszegh, and Günter Rote . 1:1–1:18

Dynamic Geometric Set Cover and Hitting Set
Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue . . 2:1–2:15

The Parameterized Complexity of Guarding Almost Convex Polygons
Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh,
and Meirav Zehavi . 3:1–3:16

Euclidean TSP in Narrow Strips
Henk Alkema, Mark de Berg, and Sándor Kisfaludi-Bak . 4:1–4:16

The ε-t-Net Problem
Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and
Yelena Yuditsky . 5:1–5:15

Terrain Visibility Graphs: Persistence Is Not Enough
Safwa Ameer, Matt Gibson-Lopez, Erik Krohn, Sean Soderman, and
Qing Wang . 6:1–6:13

On β-Plurality Points in Spatial Voting Games
Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton 7:1–7:15

Testing Polynomials for Vanishing on Cartesian Products of Planar Point Sets
Boris Aronov, Esther Ezra, and Micha Sharir . 8:1–8:14

Extending Drawings of Graphs to Arrangements of Pseudolines
Alan Arroyo, Julien Bensmail, and R. Bruce Richter . 9:1–9:14

Dimensionality Reduction for k-Distance Applied to Persistent Homology
Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz 10:1–10:15

Persistent Homology Based Characterization of the Breast Cancer Immune
Microenvironment: A Feasibility Study

Andrew Aukerman, Mathieu Carrière, Chao Chen, Kevin Gardner, Raúl Rabadán,
and Rami Vanguri . 11:1–11:20

Homotopic Curve Shortening and the Affine Curve-Shortening Flow
Sergey Avvakumov and Gabriel Nivasch . 12:1–12:15

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Empty Squares in Arbitrary Orientation Among Points
Sang Won Bae and Sang Duk Yoon . 13:1–13:17

Holes and Islands in Random Point Sets
Martin Balko, Manfred Scheucher, and Pavel Valtr . 14:1–14:16

The Reeb Graph Edit Distance Is Universal
Ulrich Bauer, Claudia Landi, and Facundo Mémoli . 15:1–15:16

Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages
Michael A. Bekos, Giordano Da Lozzo, Svenja M. Griesbach, Martin Gronemann,
Fabrizio Montecchiani, and Chrysanthi Raftopoulou . 16:1–16:17

Parallel Computation of Alpha Complexes for Biomolecules
Talha Bin Masood, Tathagata Ray, and Vijay Natarajan . 17:1–17:16

Relative Persistent Homology
Nello Blaser and Morten Brun . 18:1–18:10

Edge Collapse and Persistence of Flag Complexes
Jean-Daniel Boissonnat and Siddharth Pritam . 19:1–19:15

The Topological Correctness of PL-Approximations of Isomanifolds
Jean-Daniel Boissonnat and Mathijs Wintraecken . 20:1–20:18

Minimum Bounded Chains and Minimum Homologous Chains in Embedded
Simplicial Complexes

Glencora Borradaile, William Maxwell, and Amir Nayyeri . 21:1–21:15

On Rectangle-Decomposable 2-Parameter Persistence Modules
Magnus Bakke Botnan, Vadim Lebovici, and Steve Oudot . 22:1–22:16

Robust Anisotropic Power-Functions-Based Filtrations for Clustering
Claire Brécheteau . 23:1–23:15

Geometric Secluded Paths and Planar Satisfiability
Kevin Buchin, Valentin Polishchuk, Leonid Sedov, and Roman Voronov 24:1–24:15

The Next 350 Million Knots
Benjamin A. Burton . 25:1–25:17

Elder-Rule-Staircodes for Augmented Metric Spaces
Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang . 26:1–26:17

Faster Approximation Algorithms for Geometric Set Cover
Timothy M. Chan and Qizheng He . 27:1–27:14

Further Results on Colored Range Searching
Timothy M. Chan, Qizheng He, and Yakov Nekrich . 28:1–28:15

A Generalization of Self-Improving Algorithms
Siu-Wing Cheng, Man-Kwun Chiu, Kai Jin, and Man Ting Wong 29:1–29:13

Dynamic Distribution-Sensitive Point Location
Siu-Wing Cheng and Man-Kit Lau . 30:1–30:13

No-Dimensional Tverberg Theorems and Algorithms
Aruni Choudhary and Wolfgang Mulzer . 31:1–31:17

Contents 0:vii

Lexicographic Optimal Homologous Chains and Applications to Point
Cloud Triangulations

David Cohen-Steiner, André Lieutier, and Julien Vuillamy . 32:1–32:17

Finding Closed Quasigeodesics on Convex Polyhedra
Erik D. Demaine, Adam C. Hesterberg, and Jason S. Ku . 33:1–33:13

The Stretch Factor of Hexagon-Delaunay Triangulations
Michael Dennis, Ljubomir Perković, and Duru Türkoğlu . 34:1–34:16

Flipping Geometric Triangulations on Hyperbolic Surfaces
Vincent Despré, Jean-Marc Schlenker, and Monique Teillaud . 35:1–35:16

An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology
Tamal K. Dey, Tianqi Li, and Yusu Wang . 36:1–36:15

Persistence of the Conley Index in Combinatorial Dynamical Systems
Tamal K. Dey, Marian Mrozek, and Ryan Slechta . 37:1–37:17

On Implementing Straight Skeletons: Challenges and Experiences
Günther Eder, Martin Held, and Peter Palfrader . 38:1–38:17

Removing Connected Obstacles in the Plane Is FPT
Eduard Eiben and Daniel Lokshtanov . 39:1–39:14

A Toroidal Maxwell-Cremona-Delaunay Correspondence
Jeff Erickson and Patrick Lin . 40:1–40:17

Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries
Parker Evans, Brittany Terese Fasy, and Carola Wenk . 41:1–41:17

Worst-Case Optimal Covering of Rectangles by Disks
Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and
Sahil Shah . 42:1–42:23

Minimum Scan Cover with Angular Transition Costs
Sándor P. Fekete, Linda Kleist, and Dominik Krupke . 43:1–43:18

ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi . 44:1–44:18

A Near-Linear Time Approximation Scheme for Geometric Transportation with
Arbitrary Supplies and Spread

Kyle Fox and Jiashuai Lu . 45:1–45:18

Bounded VC-Dimension Implies the Schur-Erdős Conjecture
Jacob Fox, János Pach, and Andrew Suk . 46:1–46:8

Almost-Monochromatic Sets and the Chromatic Number of the Plane
Nóra Frankl, Tamás Hubai, and Dömötör Pálvölgyi . 47:1–47:15

Almost Sharp Bounds on the Number of Discrete Chains in the Plane
Nóra Frankl and Andrey Kupavskii . 48:1–48:15

Convex Hulls of Random Order Types
Xavier Goaoc and Emo Welzl . 49:1–49:15

SoCG 2020

0:viii Contents

Fast Algorithms for Geometric Consensuses
Sariel Har-Peled and Mitchell Jones . 50:1–50:16

Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and
Hyperrectangles

Monika Henzinger, Stefan Neumann, and Andreas Wiese . 51:1–51:14

How to Find a Point in the Convex Hull Privately
Haim Kaplan, Micha Sharir, and Uri Stemmer . 52:1–52:15

Efficient Approximation of the Matching Distance for 2-Parameter Persistence
Michael Kerber and Arnur Nigmetov . 53:1–53:16

Homotopy Reconstruction via the Cech Complex and the Vietoris-Rips Complex
Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and
Larry Wasserman . 54:1–54:19

A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP
Sándor Kisfaludi-Bak . 55:1–55:15

Intrinsic Topological Transforms via the Distance Kernel Embedding
Clément Maria, Steve Oudot, and Elchanan Solomon . 56:1–56:15

Long Alternating Paths Exist
Wolfgang Mulzer and Pavel Valtr . 57:1–57:16

k-Median Clustering Under Discrete Fréchet and Hausdorff Distances
Abhinandan Nath and Erin Taylor . 58:1–58:15

Four-Dimensional Dominance Range Reporting in Linear Space
Yakov Nekrich . 59:1–59:14

Radon Numbers Grow Linearly
Dömötör Pálvölgyi . 60:1–60:5

Bounding Radon Number via Betti Numbers
Zuzana Patáková . 61:1–61:13

Barycentric Cuts Through a Convex Body
Zuzana Patáková, Martin Tancer, and Uli Wagner . 62:1–62:16

Sketched MinDist
Jeff M. Phillips and Pingfan Tang . 63:1–63:16

Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis
Abhishek Rathod . 64:1–64:11

Dense Graphs Have Rigid Parts
Orit E. Raz and József Solymosi . 65:1–65:13

Incidences Between Points and Curves with Almost Two Degrees of Freedom
Micha Sharir and Oleg Zlydenko . 66:1–66:14

Connectivity of Triangulation Flip Graphs in the Plane (Part II: Bistellar Flips)
Uli Wagner and Emo Welzl . 67:1–67:16

On the Planar Two-Center Problem and Circular Hulls
Haitao Wang . 68:1–68:14

Contents 0:ix

Algorithms for Subpath Convex Hull Queries and Ray-Shooting Among Segments
Haitao Wang . 69:1–69:14

GPU-Accelerated Computation of Vietoris-Rips Persistence Barcodes
Simon Zhang, Mengbai Xiao, and Hao Wang . 70:1–70:17

Media Expositions

The Spiroplot App
Casper van Dommelen, Marc van Kreveld, and Jérôme Urhausen 71:1–71:5

Coordinated Particle Relocation with Global Signals and Local Friction
Victor M. Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt 72:1–72:5

Space Ants: Constructing and Reconfiguring Large-Scale Structures with
Finite Automata

Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung,
Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett,
Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer,
and Michael Yannuzzi . 73:1–73:6

How to Make a CG Video
Aaron T. Becker and Sándor P. Fekete . 74:1–74:6

Covering Rectangles by Disks: The Video
Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer . 75:1–75:4

Step-By-Step Straight Skeletons
Günther Eder, Martin Held, and Peter Palfrader . 76:1–76:4

Computing Animations of Linkages with Rotational Symmetry
Sean Dewar, Georg Grasegger, and Jan Legerský . 77:1–77:4

Hiding Sliding Cubes: Why Reconfiguring Modular Robots Is Not Easy
Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and
Jules Wulms . 78:1–78:5

Dots & Polygons
Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, Max van Mulken,
Jolan Rensen, and Leo van Schooten . 79:1–79:4

Designing Art Galleries
Toon van Benthem, Kevin Buchin, Irina Kostitsyna, and Stijn Slot 80:1–80:5

Plane-Filling Trails
Herman Haverkort . 81:1–81:5

Visual Demo of Discrete Stratified Morse Theory
Youjia Zhou, Kevin Knudson, and Bei Wang . 82:1–82:4

SoCG 2020

0:x Contents

CG Challenge

Computing Low-Cost Convex Partitions for Planar Point Sets with Randomized
Local Search and Constraint Programming

Da Wei Zheng, Jack Spalding-Jamieson, and Brandon Zhang . 83:1–83:7

Computing Low-Cost Convex Partitions for Planar Point Sets Based on a
Memetic Approach

Laurent Moalic, Dominique Schmitt, Julien Lepagnot, and Julien Kritter 84:1–84:9

Computing Low-Cost Convex Partitions for Planar Point Sets Based on Tailored
Decompositions

Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader 85:1–85:11

Preface

The 36th International Symposium on Computational Geometry (SoCG 2020) was held
online, June 23-26, 2020, as part of the Computational Geometry Week (CG Week 2020).
The event was planned to take place in Zürich, Switzerland, but eventually it was organized
online because of the COVID-19 pandemic. We are very grateful to the organizing team at
ETH Zürich to organize the event and adapt to the unusual situation.

Altogether, 205 papers have been submitted to SoCG 2020. After a thorough review
process, in which each paper has been evaluated by three or more independent reviewers, the
Program Committee accepted 70 papers for presentation at SoCG 2020. These proceedings
contain extended abstracts of the accepted papers, limited to 500 lines plus references. If any
supporting material (e.g., proofs or experimental details) does not fit in the line limit, the
full paper is available at a public repository and referenced in the corresponding extended
abstract.

The Best Paper Award of SoCG 2020 went to the paper “Convex Hulls of Random Order
Types” by Xavier Goaoc and Emo Welzl. The Best Student Presentation Award will be
determined and announced at the symposium, based on ballots cast by the attendees. A few
selected papers with very positive reviews will be invited to forthcoming special issues of
Discrete & Computational Geometry and the Journal of Computational Geometry dedicated
to the symposium.

This year, for the first time, there is a SoCG Test of Time Award and a committee was
appointed for this task. In this first edition, the winners of the first edition of this new award
are the papers “Epsilon-Nets and Simplex Range Queries” by David Haussler and Emo Welzl,
presented at SoCG 1986, “Applications of Random Sampling in Computational Geometry, II ”
by Kenneth L. Clarkson, presented at SoCG 1988, and “Algorithms for Diametral Pairs and
Convex Hulls That Are Optimal, Randomized, and Incremental” by Kenneth L. Clarkson
and Peter W. Shor, presented at SoCG 1988.

The scientific program of the CG Week 2020 was enriched by two distinguished invited
speakers. An invited talk, entitled “Geometric statistics for computational anatomy”, was
delivered by Xavier Pennec, from Université Côte d’Azur and Inria. Another invited
talk, entitled “Discrete developable surfaces: Theory and fabrication of 3D shapes from 2D
sheets”, was delivered by Olga Sorkine-Hornung, from ETH Zürich. We thank the invited
speakers for their excellent invited talks.

The Media Exposition was significantly changed from previous years, no longer restricted
to video submissions. The media portfolio now included animations, software and games,
scientific artwork, sculptures, paintings, and more. We only required it to be related to
computational geometry, broadly interpreted, as well as being “displayable” during CG Week.
All SoCG attendees were also invited to bring media “side pieces” to display during CG Week
to complement the Exposition collection. We reviewed 15 submissions (of all media types),
of which 12 were accepted. The extended abstracts that describe these lovely submissions
are included in this proceedings volume, while their corresponding media content can be
found at http://www.computational-geometry.org.

A new feature in this year’s proceedings is the CG Challenge. The goal was to compute
minimum convex decompositions for a benchmark collection of point sets in the plane. 21
teams submitted solutions; these proceedings contain contributions by the three top-placed
teams describing their winning approaches.
36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.computational-geometry.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xii Preface

We thank the authors of all submitted works. We are most grateful to the members of
the SoCG Program Committee, the Media Exposition Committee and the CG Challenge
Committee for their dedication, expertise, and hard work that ensured the high quality of
the works in these proceedings. We are grateful to the assistance provided by 331 additional
reviewers; without their help it would be nearly impossible to run the selection process.

Finally, we would like to thank Matias Korman, who kindly accepted to be the Proceedings
Chair for a second year and did a meticulous work. Many other people contributed to the
success of SoCG 2020 and the entire CG Week. We especially thank the local organizers,
all the members of the Workshop and YRF Committees, and the Computational Geometry
Steering Committee.

Sergio Cabello
SoCG Program Committee, co-chair

University of Ljubljana

Danny Z. Chen
SoCG Program Committee, co-chair

University of Notre Dame

Satyan Devadoss
Media Exposition, chair
University of San Diego

Sándor P. Fekete
CG Challenge, co-chair

TU Braunschweig

Conference Organization

SoCG Program Committee
Mikkel Abrahamsen, University of Copenhagen
Therese Biedl, University of Waterloo
Mickaël Buchet, TU Graz
Sergio Cabello (co-chair), University of Ljubljana
Danny Z. Chen (co-chair), University of Notre Dame
David Eppstein, University of California, Irvine
Stefan Funke, University Stuttgart
Marc Glisse, INRIA Saclay
Dan Halperin, Tel Aviv University
Iyad Kanj, DePaul University
Irina Kostitsyna, TU Eindhoven
Jan Kynčl, Charles University
Jian Li, Tsinghua University
Nabil Mustafa, Université Paris-Est, ESIEE Paris
Eunjin Oh, POSTECH
Tim Ophelders, Michigan State University
Florian T. Pokorny, KTH Royal Institute of Technology
Sharath Raghvendra, Virginia Tech
Don Sheehy, North Carolina State University
Primož Škraba, Queen Mary University of London
Frank Staals, Utrecht University
Katharine Turner, Australian National University
Torsten Ueckerdt, Karlsruhe Institute of Technology
Hubert Wagner, IST Austria
Bartosz Walczak, Jagiellonian University
Jinhui Xu, SUNY Buffalo

SoCG Proceedings Chair
Matias Korman, Tufts University, USA

Media Exposition Committee
Henry Adams, Colorado State University
Jit Bose, Carleton University
Satyan Devadoss (chair), University of San Diego
David Eppstein, University of California, Irvine
John McCleary, Vassar College
Marc van Kreveld, Utrecht University
Yusu Wang, The Ohio State University
Lori Ziegelmeier, Macalester College

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Conference Organization

CG Challenge Committee
Erik Demaine, MIT
Sándor P. Fekete, TU Braunschweig
Phillip Keldenich, TU Braunschweig
Dominik Krupke, TU Braunschweig
Joseph S. B. Mitchell, Stony Brook University

SoCG Test of Time Award Committee
Pankaj K. Agarwal, Duke University
Dan Halperin, Tel Aviv University
Raimund Seidel, Saarland University

Workshop Committee
Anne Driemel, University of Bonn
Elizabeth Munch, Michigan State University
Jeff M Phillips (chair), University of Utah
Rodrigo Silveira, Universitat Politècnica de Catalunya
Jack Snoeyink, University of North Carolina, Chapel Hill

Young Researchers Forum Program Committee
Erin Chambers, Saint Louis University
Anne Driemel, University of Bonn
Tamal Dey, Ohio State University
Michael Kerber (chair), TU Graz
Wouter Meulemans, TU Eindhoven
Evanthia Papadopoulou, Universita della Svizzera italiana
Zuzana Patáková, IST Austria
Sharath Raghvendra, Virginia Tech

Local Organizing Committee
Bernd Gärtner, ETH Zürich
Michael Hoffmann (chair), ETH Zürich
Andrea Salow, ETH Zürich
Patrick Schnider, ETH Zürich
Emo Welzl, ETH Zürich
Manuel Wettstein, ETH Zürich

Steering Committee (2018–2020)
Mark de Berg, TU Eindhoven
Erin Chambers (Secretary), Saint Louis University
Michael Hoffmann, ETH Zürich
Joe Mitchell (Treasurer), State University of New York at Stony Brook
Bettina Speckmann, TU Eindhoven
Monique Teillaud (Chair), INRIA Nancy - Grand Est

Additional Reviewers

Anders Aamand

Mohammad Ali Abam

Ahmed Abdelkader

Henry Adams

Thomas Dybdahl Ahle

Hee-Kap Ahn

Taehoon Ahn

Oswin Aichholzer

Noga Alon

Helmut Alt

Alexandr Andoni

Alan Arroyo

Elena Arseneva

Dominique Attali

Sergey Avvakumov

Arturs Backurs

Martin Balko

Djordje Baralic

Imre Barany

Ulrich Bauer

Robin Belton

Sergey Bereg

Ahmad Biniaz

Ranita Biswas

Thomas Bläsius

Omer Bobrowski

Bianca Boeira Dornelas

Jean-Daniel Boissonnat

Prosenjit Bose

Karl Bringmann

Adam Brown

Kevin Buchin

Maike Buchin

Pierre Calka

Jean Cardinal

Paz Carmi

Mathieu Carrière

J. Frederico Carvalho

Wojciech Chachólski

Erin Chambers

Timothy M. Chan

Manoj Changat

Steven Chaplick

Bapi Chatterjee

Bhaskar Ray Chaudhury

Chao Chen

Ke Chen

Xiaoming Chen

Siu-Wing Cheng

Victor Chepoi

Jongmin Choi

Josef Cibulka

Éric Colin de Verdière

Robert Connelly

René Corbet

Mónika Csikós

Guilherme D. Da Fonseca

Daniel Dadush

Ovidiu Daescu

Gautam K Das

Mark de Berg

Alessandro De Gregorio
36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Additional Reviewers

Arnaud de Mesmay

Vin de Silva

Olaf Delgado-Friedrichs

Shichuan Deng

Olivier Devillers

Tamal Dey

Emilio Di Giacomo

Hu Ding

Pawel Dlotko

Michael Gene Dobbins

Anne Driemel

Vida Dujmovic

Adrian Dumitrescu

Stephane Durocher

Kunal Dutta

Zdenek Dvorak

Eduard Eiben

Friedrich Eisenbrand

Khaled Elbassioni

Jeff Erickson

Emerson G. Escolar

Esther Ezra

Brittany Terese Fasy

Dan Felmdan

Stefan Felsner

Fabien Feschet

Fabrizio Frati

Bin Fu

Ulderico Fugacci

Radoslav Fulek

Jie Gao

Kirk Gardner

Cyril Gavoille

Arijit Ghosh

Panos Giannopoulos

Emeric Gioan

Xavier Goaoc

Tanja Gologranc

José Carlos Gómez Larrañaga

Lee-Ad Gottlieb

Dejan Govc

Joachim Gudmundsson

Andrea Guidolin

Xiangyu Guo

Mohammadtaghi Hajiaghayi

Thekla Hamm

Sariel Har-Peled

Joel Hass

Teresa Heiss

Darryl Hill

Petr Hliněný

Andreas Holmsen

Ron Holzman

Lingxiao Huang

Ziyun Huang

Alfredo Hubard

Clemens Huemer

Mark Hughes

Dan Ismailescu

Bruno Jartoux

Vít Jelínek

Shaofeng Jiang

Alvin Jin

Mateusz Juda

Taeho Jung

Sara Kalisnik

Additional Reviewers 0:xvii

Haim Kaplan

Matthew Katz

Michael Kerber

Andreas Kerren

Balázs Keszegh

Jisu Kim

Mincheol Kim

Woojin Kim

Philipp Kindermann

Sándor Kisfaludi-Bak

Linda Kleist

Bettina Klinz

Kolja Knauer

Christian Konrad

Matias Korman

Michal Koucký

Laszlo Kozma

Tomasz Krawczyk

Bala Krishnamoorthy

Andrey Kupavskii

Theo Lacombe

Nathaniel Lahn

Kasper Green Larsen

Soeren Laue

Jesus Leanos

Seungjun Lee

Michael Lesnick

Ran Levi

Shi Li

Andre Lieutier

Bingkai Lin

Giuseppe Liotta

Maarten Löffler

Martin Lotz

Ben Lund

Kelly Maggs

Mathieu Mari

Clément Maria

Leonardo Ignacio Martínez Sandoval

Domagoj Matijevic

Andrew McGregor

Tamara Mchedlidze

Killian Meehan

Saeed Mehrabi

Ezra Miller

Till Miltzow

Majid Mirzanezhad

Matthias Mnich

Dylan Molho

Fabrizio Montecchiani

Pat Morin

Sonoko Moriyama

Guillaume Moroz

Dmitriy Morozov

David Mount

Shay Mozes

Sayan Mukherjee

Wolfgang Mulzer

Elizabeth Munch

Meiram Murzabulatov

Anurag Murty Naredla

Marton Naszodi

Abhinandan Nath

Yakov Nekrich

Benjamin Niedermann

Arnur Nigmetov

SoCG 2020

0:xviii Additional Reviewers

Aleksandar Nikolov

Gabriel Nivasch

André Nusser

Joseph O’Rourke

Ippei Obayashi

Yoshio Okamoto

Katharina Ölsböck

Krzysztof Onak

Aurélien Ooms

Georg Osang

Nina Otter

Steve Oudot

Arnau Padrol

Eyvindur Ari Palsson

Irene Parada

Ji-won Park

Zuzana Patáková

Amit Patel

Florian Pausinger

Petar Pavešić

Jose Perea

Pablo Pérez-Lantero

Ljubomir Perkovic

William Pettersson

Julian Pfeifle

Thang Pham

Jeff Phillips

Paweł Pilarczyk

Vincent Pilaud

Adam Polak

Vladislav Polianskii

Valentin Polishchuk

Marc Pouget

Ioannis Psarros

Marcel Radermacher

Saladi Rahul

Benjamin Raichel

Rajiv Raman

Saurabh Ray

Vanessa Robins

Oliver Roche-Newton

Marcel Roeloffzen

Edgardo Roldán-Pensado

Alexander Rolle

Jonathan Rollin

Günter Rote

Ignaz Rutter

Paweł Rzążewski

Noushin Saeedi

Robert Samal

Rik Sarkar

Radmila Sazdanovic

Christian Scheffer

Stefan Schirra

Lena Schlipf

Christiane Schmidt

Hannah Schreiber

André Schulz

Jordan Schupbach

Martina Scolamiero

Eric Sedgwick

Michael Segal

Steven Senger

Micha Sharir

Jonathan Shewchuk

Anastasios Sidiropoulos

Rodrigo Silveira

Francesco Silvestri

Additional Reviewers 0:xix

Meera Sitharam

Michiel Smid

Alexander Soifer

Chinmay Sonar

Willem Sonke

Jonathan Spreer

Thomas Steinke

Noah Stephens-Davidowitz

Martijn Struijs

Peter Stumpf

Andrew Suk

Konrad Swanepoel

Wai Ming Tai

Martin Tancer

Shin-ichi Tanigawa

Erin Taylor

Francesca Tombari

Justin Toth

Csaba Tóth

Chittaranjan Tripathy

Sarah Tymochko

Mees van de Kerkhof

André van Renssen

Kasturi Varadarajan

Anastasiia Varava

Mikael Vejdemo-Johansson

Santosh Vempala

Kevin Verbeek

Stéphane Vialette

Antoine Vigneron

Oliver Vipond

Žiga Virk

Alexander Wagner

Bei Wang

Di Wang

Haitao Wang

Jiayuan Wang

Qingsong Wang

Yusu Wang

Zhewei Wei

Emo Welzl

Carola Wenk

Manuel Wettstein

Andreas Wiese

Sebastian Wild

Mathijs Wintraecken

David R. Wood

Xiaodong Wu

Xuan Wu

Ge Xia

Jiayi Xian

Allen Xiao

Jie Xue

Katsuhisa Yamanaka

Deshi Ye

Emre Alper Yıldırım

Sang Duk Yoon

Huacheng Yu

Yelena Yuditsky

Joshua Zahl

Meirav Zehavi

Wei Zhan

Guochuan Zhang

Hanrui Zhang

Huaming Zhang

Qin Zhang

Binhai Zhu

SoCG 2020

An Almost Optimal Bound on the Number of
Intersections of Two Simple Polygons
Eyal Ackerman
Department of Mathematics, Physics, and Computer Science, University of Haifa at Oranim,
Tivon 36006, Israel
ackerman@sci.haifa.ac.il

Balázs Keszegh
Alfréd Rényi Institute of Mathematics, H-1053 Budapest, Hungary
MTA-ELTE Lendület Combinatorial Geometry Research Group, Budapest, Hungary
keszegh@renyi.hu

Günter Rote
Department of Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany
rote@inf.fu-berlin.de

Abstract
What is the maximum number of intersections of the boundaries of a simple m-gon and a simple
n-gon, assuming general position? This is a basic question in combinatorial geometry, and the answer
is easy if at least one of m and n is even. If both m and n are odd, the best known construction
has mn− (m + n) + 3 intersections, and it is conjectured that this is the maximum. However, the
best known upper bound is only mn − (m + dn

6 e), for m ≥ n. We prove a new upper bound of
mn− (m + n) + C for some constant C, which is optimal apart from the value of C.

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics
of computing → Combinatoric problems

Keywords and phrases Simple polygon, Ramsey theory, combinatorial geometry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.1

Related Version A slightly expanded version is available at http://arxiv.org/abs/2002.05680.

Funding Eyal Ackerman: The main part of this work was performed during a visit to Freie Universität
Berlin which was supported by the Freie Universität Alumni Program.
Balázs Keszegh: Research supported by the Lendület program of the Hungarian Academy of Sciences
(MTA), under the grant LP2017-19/2017 and by the National Research, Development and Innovation
Office – NKFIH under the grant K 116769.

Acknowledgements We thank the reviewers for helpful suggestions.

1 Introduction

To determine the union of two or more geometric objects in the plane is one of the basic
computational geometric problems. In strong relation to that, determining the maximum
complexity of the union of two or more geometric objects is a basic extremal geometric
problem. We study this problem when the two objects are simple polygons.

Let P and Q be two simple polygons with m and n sides, respectively, where m, n ≥ 3.
For simplicity we always assume general position in the sense that no three vertices (of P

and Q combined) lie on a line and no two sides (of P and Q combined) are parallel. We are
interested in the maximum number of intersections of the boundaries of P and Q.

This problem was first studied in 1993 by Dillencourt, Mount, and Saalfeld [2]. The cases
when m or n is even are solved there. If m and n are both even, then every pair of sides may
cross and so the answer is mn. Figure 1a shows one of many ways to achieve this number.

© Eyal Ackerman, Balázs Keszegh, and Günter Rote;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ackerman@sci.haifa.ac.il
https://orcid.org/0000-0002-3839-5103
mailto:keszegh@renyi.hu
https://orcid.org/0000-0002-0351-5945
mailto:rote@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.1
http://arxiv.org/abs/2002.05680
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 The Number of Intersections Between Two Simple Polygons

(c)(b)

PP
Q Q

(a)

P

Q

Figure 1 (a) Optimal construction for m = n = 8, with 8× 8 = 64 intersections. (b) Optimal
construction for m = 8, n = 7, with 8 × 6 = 48 intersections. (c) Lower-bound construction for
m = 9, n = 7. There are 8× 6 + 2 = 50 intersections.

If one polygon, say Q, has an odd number n of sides, no line segment s can be intersected
n times by Q, because otherwise each side of Q would have to flip from one side of s to the
other side. Thus, each side of the m-gon P is intersected at most n− 1 times, for a total of
at most mn−m intersections. It is easy to see that this bound is tight when P has an even
number of sides, see Figure 1b.

When both m and n are odd, the situation is more difficult; the bound that is obtained
by the above argument remains at mn−max{m, n}, because the set of m intersections that
are necessarily “missing” due to the odd parity of n might conceivably overlap with the
n intersections that are “missing” due to the odd parity of m. However, the best known
family of examples gives only mn− (m + n) + 3 = (m− 1)(n− 1) + 2 intersection points, see
Figure 1c. Note that in Figure 1, all vertices of the polygons contribute to the boundary of
the union of the polygon areas.

I Conjecture 1. Let P and Q be simple polygons with m and n sides, respectively, such that
m, n ≥ 3 are odd numbers. Then there are at most mn − (m + n) + 3 intersection points
between sides of P and sides of Q.

In [2] an unrecoverable error appears in a claimed proof of Conjecture 1. Another
attempted proof [5] also turned out to have a fault. The only correct improvement over the
trivial upper bound is an upper bound of mn− (m + dn

6 e) for m ≥ n, due to Černý, Kára,
Král’, Podbrdský, Sotáková, and Šámal [1]. We will briefly discuss their proof in Section 2.

We improve the upper bound to mn− (m + n) + O(1), which is optimal apart from an
additional constant:

I Theorem 1. There is an absolute constant C such that the following holds. Suppose that
P and Q are simple polygons with m and n sides, respectively, such that m and n are odd
numbers. Then there are at least m + n−C pairs of a side of P and a side of Q that do not
intersect. Hence, there are at most mn− (m + n) + C intersections.

The value of the constant C that we obtain in our proof is around 2267. We did not make
a large effort to optimize this value, and obviously, there is ample space for improvement.

2 Overview of the proof

First we establish the crucial statement that the odd parity of m and n allows us to associate
to any two consecutive sides of one polygon a pair of consecutive sides of the other polygon
with a restricted intersection pattern among the four involved sides (Lemma 5 and Figure 5).
This is the only place where we use the odd parity of the polygons.

E. Ackerman, B. Keszegh, and G. Rote 1:3

III

II

I

IV

L(e2) = a

L(e1) = ∗

L(e5) = b

L(e4) = a

L(e3) = b

Figure 2 The edge-labeled multi-
graph G0 in Proposition 2.

Ib

II

Ia

IV

L(e2) = a

L(e1) = ∗

L(e5) = b L(e4) = a

L(e3) = b

IIIaIIIb

Figure 3 The unfolded graph G′0.

A simple observation (Observation 3) relates the bound on C in Theorem 1 to the number
of connected components of the bipartite “disjointness graph” between the polygon sides of
P and Q. Our goal is therefore to show that there are few connected components.

We proceed to consider two pairs of associated pairs of sides (4 consecutive pairs with 8
sides in total). Unless they form a special structure, they cannot belong to four different
connected components (Lemma 7). (Four is the maximum number of components that they
could conceivably have.) The proof involves a case distinction with a moderate amount of
cases. This structural statement allows us to reduce the bound on the number of components
by a constant factor, and thereby, we can already improve the best previous result on the
number of intersections (Proposition 9 in Section 6).

Finally, to get a constant bound on the number of components, our strategy is to
use Ramsey-theoretic arguments like the Erdős–Szekeres Theorem on caps and cups or
the pigeonhole principle (see Section 7) in order to impose additional structure on the
configurations that we have to analyze. This is the place in the argument where we give
up control over the constant C in exchange for useful properties that allow us to derive a
contradiction. This eventually boils down again to a moderate number of cases (Section 8.2).

By contrast, the proof of the bound mn−(m+dn
6 e) for m ≥ n proceeds more locally. The

core of the argument [1, Lemma 3], which is proved by case distinction, is that it is impossible
to have 6 consecutive sides of one polygon together with 6 distinct sides of the other polygon
forming a perfect matching in the disjointness graph. This statement is used to bound the
number of components of the disjointness graph. (Lemma 8 below uses a similar argument.)

3 An auxiliary lemma on closed odd walks

We begin with the following seemingly unrelated claim concerning a specific small edge-labeled
multigraph. Let G0 = (V0, E0) be the undirected multigraph shown in Figure 2. It has four
nodes V0 = {I, II, III, IV} and five edges E0 = {e1 = {II, IV}, e2 = {I, IV}, e3 = {I, II}, e4 =
{I, III}, e5 = {I, III}}. Every edge ei ∈ E0 has a label L(ei) ∈ {a, b, ∗} as follows: L(e1) = ∗,
L(e2) = L(e4) = a, L(e3) = L(e5) = b.

I Proposition 2. If W is a closed walk in G0 of odd length, then W contains two cyclically
consecutive edges of labels a and b.

Proof. Suppose for contradiction that W does not contain two consecutive edges of labels a

and b. Since W cannot switch between the a-edges and the b-edges in I or III, we can split I
(resp., III) into two nodes Ia and Ib (resp., IIIa and IIIb) such that every a-labeled edge that
is incident to I (resp., III) in G0 becomes incident to Ia (resp., IIIa) and every b-labeled edge

SoCG 2020

1:4 The Number of Intersections Between Two Simple Polygons

that is incident to I (resp., III) in G0 becomes incident to Ib (resp., IIIb). In the resulting
graph G′0, which is shown in Figure 3, we can find a closed walk W ′ that corresponds to W

and that uses the edges with the same name as W . Since G′0 is a path, every closed walk
has even length. Thus, W cannot have odd length. J

4 General assumptions and notations

Let P and Q be two simple polygons with sides p0, p1, . . . , pm−1 and q0, q1, . . . , qn−1. We
assume that m ≥ 3 and n ≥ 3 are odd numbers. Addition and subtraction of indices is
modulo m or n, respectively. We consider the sides pi and qj as closed line segments. The
condition that the polygon P is simple means that its edges are pairwise disjoint except for
the unavoidable common endpoints between consecutive sides pi and pi+1. Throughout this
paper, unless stated otherwise, we regard a polygon as a piecewise linear closed curve, and
we disregard the region that it encloses. Thus, by intersections between P and Q, we mean
intersection points between the polygon boundaries.

As mentioned, we assume that the vertices of P and Q are in general position (no three
of them on a line), and so every intersection point between P and Q is an interior point of
two polygon sides.

The disjointness graph. As in [1], our basic tool of analysis is the disjointness graph of
P and Q, which we denote by GD = (V D, ED). (Its original name in [1] is non-intersection
graph.) It is a bipartite graph with node set V D = {p0, p1, . . . , pm−1}∪{q0, q1, . . . , qn−1} and
edge set ED = { (pi, qj) | pi ∩ qj = ∅ }. (Since we are interested in the situation where almost
all pairs of edges intersect, the disjointness graph is more useful than its more commonly
used complement, the intersection graph.)

Our goal is to bound from above the number of connected components of GD:

I Observation 3. If GD has at most C connected components, then GD has at least m+n−C

edges. Thus, there are at least m + n− C pairs of a side of P and a side of Q that do not
intersect, and there are at most mn− (m + n) + C crossings between P and Q. J

Geometric notions. Let s and s′ be two line segments. We denote by `(s) the line through
s and by I(s, s′) the intersection of `(s) and `(s′) see Figure 4. We say that s and s′

are avoiding if neither of them contains I(s, s′). (This requirement is stronger than just
disjointness.) If s and s′ are avoiding or share an endpoint, we denote by ~rs′(s) the ray
from I(s, s′) to infinity that contains s, and by ~rs(s′) the ray from I(s, s′) to infinity that
contains s′. Moreover, we denote by Cone(s, s′) the convex cone with apex I(s, s′) between
these two rays.

I Observation 4. If a segment s′′ that does not go through I(s, s′) has one of its endpoints
in the interior of Cone(s, s′), then s′′ cannot intersect both ~rs′(s) and ~rs(s′). In particular,
it cannot intersect both s and s′. J

For a polygon side s of P or Q, CC(s) denotes the connected component of the disjointness
graph GD to which s belongs.

4.1 Associated pairs of consecutive sides
I Lemma 5. Let pa and pb be two sides of P that are either consecutive or avoiding
such that CC(pa) 6= CC(pb). Then there are two consecutive sides qi, qi±1 of Q such that
(pa, qi), (pb, qi±1) ∈ ED and (pa, qi±1), (pb, qi) /∈ ED. Furthermore, I(pa, pb) ∈ Cone(qi, qi±1)
or I(qi, qi±1) ∈ Cone(pa, pb).

E. Ackerman, B. Keszegh, and G. Rote 1:5

The sign “±” is needed since we do not know which of the consecutive sides intersects pi

and is disjoint from pi+1.

Proof. We may assume without loss of generality that I(pa, pb) is the origin, pa lies on the
positive x-axis and the interior of pb is above the x-axis. The lines `(pa) and `(pb) partition
the plane into four convex cones (“quadrants”). Denote them in counterclockwise order by
I, II, III, IV, starting with I = Cone(pa, pb), see Figure 4. Every side of Q must intersect pa

pa

pb
I = Cone(pa, pb)

II

III
IV

Q

I(pa, pb)

~rpa(pb)

s
s′

I(s, s′)~rpb
(pa)

`(s)
`(s′)

Figure 4 How an odd polygon Q can intersect two segments. The segments pa and pb are
avoiding, whereas s and s′ are disjoint but non-avoiding. In this situation, we say that s stabs s′.

or pb (maybe both), since CC(pa) 6= CC(pb). One can now check that traversing the sides
of Q in order generates a closed walk W in the graph G0 of Figure 2. For example, a side
of Q that we traverse from its endpoint in I to its endpoint in III and that intersects pa

corresponds to traversing the edge e4 = {I, III} from I to III, whose label is L(e4) = a. We
do not care which of pa and pb are crossed when we move between II and IV.

It follows from Proposition 2 that Q has two consecutive sides qi, qi±1 such that qi

intersects pb and does not intersect pa, while qi±1 intersects pa and does not intersect pb.
Hence, (pa, qi), (pb, qi±1) ∈ ED and (pa, qi±1), (pb, qi) /∈ ED. Furthermore, I(qi, qi±1) must
be either in I or III as these are the only nodes in G0 that are incident both to an edge
labeled a and an edge labeled b. In the latter case I(pa, pb) ∈ Cone(qi, qi±1), and in the
former case I(qi, qi±1) ∈ Cone(pa, pb). J

Let pi, pi+1 be two sides of P such that CC(pi) 6= CC(pi+1). Then by Lemma 5 there
are sides qj , qj±1 of Q such that (pi, qj), (pi+1, qj±1) ∈ ED. We say that the pair qj , qj±1
is associated to pi, pi+1. By Lemma 5 we have I(qj , qj±1) ∈ Cone(pi, pi+1) or I(pi, pi+1) ∈
Cone(qj , qj±1). If the first condition holds we say that pi, pi+1 is hooking and qj , qj±1 is
hooked, see Figure 5. In the second case we say that pi, pi+1 is hooked and qj , qj±1 is hooking.
Note that it is possible that a pair of consecutive sides is both hooking and hooked (with
respect to two different pairs from the other polygon or even with respect to a single pair, as
in Figure 5c).

I Observation 6 (The Axis Property). If the pair pi, pi+1 and the pair qj , qj±1 are associated
such that (pi, qj), (pi+1, qj±1) ∈ ED, then the line through I(pi, pi+1) and I(qj , qj±1) separates
pi and qj±1 on the one side from pi+1 and qj on the other side. J

We call this line the axis of the associated pairs. In our figures it appears as a dotted line
when it is shown.

SoCG 2020

1:6 The Number of Intersections Between Two Simple Polygons

pi

pi+1
qj

qj±1 pi

pi+1
qj

qj±1
pi

pi+1

qj

qj±1

(a) (b) (c)

Figure 5 Hooking and hooked pairs of consecutive sides. (a) The pair pi, pi+1 is hooking and the
associated pair qj , qj±1 is hooked. (b) vice versa. (c) Both pairs are both hooking and hooked.

pi+1

pj+1

pj

qj′

qi′

qi′±1

qj′±1

Figure 6 The pair pi, pi+1 is hooking with respect to the pair qi′ , qi′±1, and pj , pj+1 is hooked
with respect to qj′ , qj′±1.

5 The principal structure lemma about pairs of associated pairs

I Lemma 7. Let pi, pi+1, pj , pj+1 be two pairs of consecutive sides of P that belong to four
different connected components of GD. Then it is impossible that both pi, pi+1 and pj , pj+1
are hooked or that both pairs are hooking.

Figure 6 shows a scenario with four different components, together with the associated pairs
of Q. The combinatorial structure of such a configuration is unique up to relabeling.

Proof. Suppose first that both pairs pi, pi+1 and pj , pj+1, are hooking and let qi′ , qi′±1
and qj′ , qj′±1 be their associated (hooked) pairs such that: (pi, qi′), (pi+1, qi′±1) ∈ ED,
(pj , qj′), (pj+1, qj′±1) ∈ ED, I(qi′ , qi′±1) ∈ Cone(pi, pi+1) and I(qj′ , qj′±1) ∈ Cone(pj , pj+1).

For better readability, we rename pi, pi+1 and qi′ , qi′±1 as a, b and A, B, and we rename
pj , pj+1 and qj′ , qj′±1 as a′, b′ and A′, B′. The small letters denote sides of P and the capital
letters denote sides of Q. In the new notation, a, b are consecutive sides of P with an
associated pair A, B of consecutive sides of Q, and a′, b′ are two other consecutive sides
of P with an associated pair A′, B′ of consecutive sides of Q. The disjointness graph GD

contains the edges (a, A), (b, B), (a′, A′), (b′, B′). Since a, b, a′, b′ belong to different connected
components of GD, it follows that the nodes A, B, A′, B′, to which they are connected, belong
to the same four different connected components. There can be no more edges among these
eight nodes, and they induce a matching in GD. One can remember as a rule that every
side of P intersects every side of Q among the eight involved sides, except when their names

E. Ackerman, B. Keszegh, and G. Rote 1:7

F1
F2

F3

F4

F5

F6

a

b

B′

A′b

a

A′

B′

I(A′, B′)

I(a, b)

I(A′, b)

b

a

A′

B′

(a) (b) (c)

Figure 7 Normalizing the position of a, b, A′, B′.

differ only in their capitalization. In particular, each of A′ and B′ intersects each of a and b

and hence they must lie as in Figure 7a. To facilitate the future discussion, we will now
normalize the positions of these four sides.

We first ensure that the intersection I(A′, b) is directly adjacent to the two polygon
vertices I(a, b) and I(A′, B′) in the arrangement of the four sides, as shown in Figure 7b.
This can be achieved by swapping the labels a, A with the labels b, B if necessary, and
by independently swapping the labels a′, A′ with b′, B′ if necessary. Our assumptions are
invariant under these swaps.

By an affine transformation we may finally assume that I(A′, b) is the origin; b lies on the
x-axis and is directed to the right; and A′ lies on the y-axis and is directed upwards. Then
a has a positive slope and its interior is in the upper half-plane, and B′ has a positive slope
and its interior is to the right of the y-axis, see Figure 7c.

ra

F1

F2

F3

F4

F5

F6

a

b

B′

A′

B

a′

A

rb

Figure 8 Case 1: I(A, B) ∈ F1, I(a′, b′) ∈
F2.

F1
F2

F3

F4

F5

F6

a

b

B′

A′

B

a′
b′A

rb

Figure 9 Case 2: I(A, B) ∈ F1, I(a′, b′) ∈
F4.

The arrangement of the lines through a, b, A′, B′ has 11 faces, some of which are marked
as F1, . . . , F6 in Figure 7. Our current assumption is that both a, b and a′, b′ are hooking:
The hooking of a, b means that I(A, B) ∈ Cone(a, b) = F1 ∪ F2 ∪ F3. By the Axis Property
(Observation 6), the line through I(A′, B′) and I(a′, b′) must separate A′ from B′. Therefore,
the vertex I(a′, b′) can lie only in F2 ∪ F4 ∪ F5 ∪ F6. Thus, based on the faces that contain
I(A, B) and I(a′, b′), there are 12 cases to consider. Some of these cases are symmetric, and
all can be easily dismissed, as follows.

In the figures, the four sides a′, b′, A′, B′, which are associated to the second associated pair
are dashed. All dashed sides of one polygon must intersect all solid sides of the other polygon.

SoCG 2020

1:8 The Number of Intersections Between Two Simple Polygons

1. I(A, B) ∈ F1 and I(a′, b′) ∈ F2, see Figure 8 (symmetric to I(A, B) ∈ F2 and I(a′, b′) ∈
F4). Let ra (resp., rb) be the ray on `(a) (resp., `(b)) that goes from the right endpoint of
a (resp., b) to the right. Since a′ is not allowed to cross b, the only way for a′ to intersect
A is by crossing rb. Similarly, in order to intersect B, a′ has to cross ra. However, it
cannot intersect both ra and rb, by Observation 4.
Since we did not use the assumption that A, B are hooked, the analysis holds for the
symmetric Case 6, I(A, B) ∈ F2 and I(a′, b′) ∈ F4, as well.

2. I(A, B) ∈ F1 and I(a′, b′) ∈ F4, see Figure 9. Since a′ is not allowed to cross b, the only
way for a′ to intersect B is by crossing rb. However, in this case a′ cannot intersect A.

F1

F2

F3

F4

F5

F6

a

b

B′

A′

B

a′

A

b′

Figure 10 Case 3: I(A, B) ∈ F1 and I(a′, b′) ∈ F5.

3. I(A, B) ∈ F1 and I(a′, b′) ∈ F5, see Figure 10 (symmetric to I(A, B) ∈ F3 and
I(a′, b′) ∈ F4). Both a′ and b′ must intersect A, and they have to go below the line `(b)
to do so. However, a′ can only cross `(b) to the right of b, and b′ can only cross `(b) to
the left of b, and therefore they cross A from different sides. This is impossible, because
a′ and b′ start from the same point.

4. I(A, B) ∈ F1 and I(a′, b′) ∈ F6. If one of the polygon sides a′ and b′ has an endpoint in F4
(see Figure 11a), then this side cannot intersect B. So assume otherwise, see Figure 11b.
The side a′ intersects B′ and is disjoint from A′, while b′ is disjoint from B′ and intersects
A′. (Due to space limitation some line segments are drawn schematically as curves.)
Thus, each of a′ and b′ has an endpoint in F2 ∪ F5. But then I(A, B) ∈ Cone(a′, b′) and
it follows from Observation 4 that neither A nor B can intersect both a′ and b′.

5. I(A, B) ∈ F2 and I(a′, b′) ∈ F2, see Figure 12. Since a′, b′ is hooking, I(A′, B′) ∈
Cone(a′, b′), and the line segments a′, b′, A′, b, B′ enclose a convex pentagon. The polygon
side A must intersect b, a′ and b′, but it is restricted to F2 ∪ F4. It follows that A must
intersect three sides of the pentagon, which is impossible. (This is in fact the only place
where we need the assumption that a′, b′ is hooking.)

6. I(A, B) ∈ F2 and I(a′, b′) ∈ F4. This is symmetric to Case 1.
7. I(A, B) ∈ F2 and I(a′, b′) ∈ F5, see Figure 13 (symmetric to I(A, B) ∈ F3 and

I(a′, b′) ∈ F2). Then A is restricted to F2 ∪ F4, while a′ and b′ do not intersect F2
and F4. Therefore A can intersect neither a′ nor b′.

8. I(A, B) ∈ F2 and I(a′, b′) ∈ F6. This case is very similar to Case 4, where I(A, B) ∈ F1
and I(a′, b′) ∈ F6, see Figure 11. If one of the polygon sides a′ and b′ has an endpoint in
F4, then it cannot intersect B. Otherwise, I(A, B) ∈ Cone(a′, b′) and therefore, neither
A nor B can intersect both a′ and b′.

9. I(A, B) ∈ F3 and I(a′, b′) ∈ F2. This is symmetric to Case 7.

E. Ackerman, B. Keszegh, and G. Rote 1:9

F1
F2

F3

F4

F5

F6

a

b

B′

A′

B

a′
A

b′

(a) At least one of the sides a′ and b′ has an
endpoint in F4.

F1

F2

F3

F4

F5

F6

a

b

B′

A′

B

a′

A

b′

(b) None of the sides a′ and b′ has an endpoint
in F4.

Figure 11 Case 4: I(A, B) ∈ F1 (or I(A, B) ∈ F2, which is similar) and I(a′, b′) ∈ F6.

F1

F2

F3

F4

F5

F6

a

b

B′

A′

Ab′ a′

Figure 12 Case 5: I(A, B) ∈ F2,
I(a′, b′) ∈ F2.

F1

F2 F3

F4

F5

F6

a

b

B′A′

B

A

b′ a′

Figure 13 Case 7: I(A, B) ∈ F2, I(a′, b′) ∈
F5.

10. I(A, B) ∈ F3 and I(a′, b′) ∈ F4. This is symmetric to Case 3.
11. I(A, B) ∈ F3 and I(a′, b′) ∈ F5, see Figure 14. Then the intersection of b′ and A can lie

only in the lower left quadrant. It follows that the triangle whose vertices are I(a′, b′),
I(a′, A) and I(A, b′) contains a and does not contain I(A, B). This in turn implies that
B cannot intersect both b′ and a, without intersecting B′.

12. I(A, B) ∈ F3 and I(a′, b′) ∈ F6, see Figure 15. As in Case 4, we may assume that neither
a′ nor b′ has an endpoint in F4, since then this side could not intersect B. We may also
assume that I(A, B) /∈ Cone(a′, b′) for otherwise neither A nor B intersects both of a′ and
b′, according to Observation 4. If a′ has an endpoint in F2, then it cannot intersect B (see
Figure 15a). Otherwise, if a′ has an endpoint in F5, then B cannot intersect b′ (Figure 15b).

We have finished the case that a, b and a′, b′ are hooking. Suppose now that a, b and a′, b′

are hooked, with respect to some pairs A, B and A′, B′. Then A, B is hooking with respect
to a, b and A′, B′ is hooking with respect to a′, b′. Recall that A, B, A′ and B′ belong to four
different connected components. Hence, this case can be handled as above, after exchanging
the capital letters with the small letters (i.e., exchanging P and Q). J

SoCG 2020

1:10 The Number of Intersections Between Two Simple Polygons

F1

F2
F3

F4

F5

F6

a

b

B′

A′

A

a′

B

b′

Figure 14 Case 11: I(A, B) ∈ F3 and I(a′, b′) ∈ F5.

F1
F2

F3

F4

F5

F6

a

b

B′

A′

b′

a′

B

(a) If a′ has an endpoint in F2, then it cannot
intersect B.

F1
F2

F3

F4

F5

F6

a

b

B′A′

b′

a′

B

(b) If a′ has an endpoint in F5, then B cannot
intersect b′.

Figure 15 Case 12: I(A, B) ∈ F3 and I(a′, b′) ∈ F6.

6 A weaker bound

The principal structure lemma is already powerful enough to get an improvement over the
previous best bound:

I Lemma 8. GD has at most (n + 5)/2 connected components.

Proof. Partition the sides q0, q1, . . . , qn−1 of Q into (n−1)/2 disjoint pairs q2i, q2i+1, discard-
ing the last side qn−1. Let H+ denote the subset of these pairs that are hooked. Suppose first
that this set contains some pair q2i0 , q2i0+1 of sides that are in two different connected com-
ponents. Combining q2i0 , q2i0+1 with any of the remaining pairs q2i, q2i+1 of H+, Lemma 7
tells us that the sides q2i and q2i+1 must either belong to the same connected component, or
one of them must belong to CC(q2i0) or CC(q2i0+1). In other words, each remaining pair
contributes at most one “new” connected component, and it follows that the sides in H+
belong to at most |H+|+ 1 connected components. This conclusion holds also in the case
that H+ contains no pair q2i0 , q2i0+1 of sides that are in different connected components.

E. Ackerman, B. Keszegh, and G. Rote 1:11

The same argument works for the complementary subset H− of pairs that are not
hooked, but hooking. Along with CC(qn−1) there are at most (|H+|+ 1) + (|H−|+ 1) + 1 =
(n− 1)/2 + 3 = (n + 5)/2 components. J

Together with Observation 3, this already improves the previous bound mn− (m + dn
6 e)

for a large range of parameters, namely when m ≥ n ≥ 11:

I Proposition 9. Let P and Q be simple polygons with m and n sides, respectively, such
that m and n are odd and m ≥ n ≥ 3. Then there are at most mn− (m + n−5

2) intersection
points between P and Q. J

7 Ramsey-theoretic tools

We recall some classic results. A tournament is a directed graph that contains between
every pair of nodes x, y either the arc (x, y) or the arc (y, x) but not both. A tournament is
transitive if for every three nodes x, y, z the existence of the arcs (x, y) and (y, z) implies the
existence of the arc (x, z). Equivalently, the nodes can be ordered on a line such that all arcs
are in the same direction. The following is easy to prove by induction.

I Lemma 10 (Erdős and Moser [3]). Every tournament on a node set V contains a transitive
sub-tournament on 1 + blog2 |V |c nodes.

Proof. Choose v ∈ V arbitrarily, and let N ⊆ V − {v} with |N | ≥ (|V | − 1)/2 be the set of
in-neighbors of v or the set of out-neighbors of v, whichever is larger. Then v together with
a transitive sub-tournament of N gives a transitive sub-tournament of size one larger. J

A set of points p1, p2, . . . , pr in the plane sorted by x-coordinates (and with distinct
x-coordinates) forms an r-cup (resp., r-cap) if pi is below (resp., above) the line through
pi−1 and pi+1 for every i with 1 < i < r.

I Theorem 11 (Erdős–Szekeres Theorem for caps and cups in point sets [4]). For any two
integers r ≥ 2 and s ≥ 2, the value ES(r, s) :=

(
r+s−4

r−2
)
fulfills the following statement:

Suppose that P is a set of ES(r, s) + 1 points in the plane with distinct x-coordinates
such that no three points of P lie on a line. Then P contains an r-cup or an s-cap.

Moreover, ES(r, s) is the smallest value that fulfills the statement. J

A similar statement holds for lines by the standard point-line duality. A set of lines
`1, `2, . . . , `r sorted by slope forms an r-cup (resp., r-cap) if `i−1 and `i+1 intersect below
(resp., above) `i for every 1 < i < r.

I Theorem 12 (Erdős–Szekeres Theorem for lines). For the numbers ES(r, s) from Theorem 11,
the following statement holds for any two integers r ≥ 2 and s ≥ 2:

If L is a set of ES(r, s) + 1 non-vertical lines in the plane no two of which are parallel
and no three of which intersect at a common point, then L contains an r-cup or an s-cap. J

I Theorem 13 (Erdős–Szekeres Theorem for monotone subsequences [4]). For any integer
r ≥ 0, a sequence of r2 + 1 distinct numbers contains either an increasing subsequence of
length r + 1 or a decreasing subsequence of length r + 1. J

SoCG 2020

1:12 The Number of Intersections Between Two Simple Polygons

8 Proof of Theorem 1

8.1 Imposing more structure on the examples
Going back to the proof of Theorem 1, recall that in light of Observation 3 it is enough to
prove that GD, the disjointness graph of P and Q, has at most constantly many connected
components. We will use the following constants: C6 := 6; C5 := (C6)2 + 1 = 37; C4 :=
ES(C5, C5) + 1 =

(70
35

)
+ 1 = 112,186,277,816,662,845,433 < 270; C3 := 2C4−1; C2 := C3 + 5;

C1 := 8C2; C := C1 − 1 < 2270 .
We claim that GD has at most C connected components. Suppose that GD has at

least C1 = C + 1 connected components, numbered as 1, 2, . . . , C1. For each connected
component j, we find two consecutive sides qij , qij+1 of Q such that CC(qij) = j and
CC(qij+1) 6= j. We call qij

the primary side and qij+1 the companion side of the pair. We
take these C1 consecutive pairs in their cyclic order along Q and remove every second pair.
This ensures that the remaining C1/2 pairs are disjoint in the sense that no side of Q belongs
to two different pairs.

We apply Lemma 5 to each of the remaining C1/2 pairs qij , qij+1 and find an associated
pair pkj

, pkj±1 such that (qij
, pkj

), (qij+1, pkj±1) ∈ ED. Therefore, CC(qij
) = CC(pkj

) and
CC(qij+1) = CC(pkj±1) 6= CC(qij). Again, we call pkj the primary side and pkj±1 the com-
panion side. We delete half of the pairs pkj

, pkj±1 in cyclic order along P , along with their as-
sociated pairs from Q, and thus we ensure that the remaining C1/4 pairs are disjoint also on P .

At least C1/8 of the remaining pairs qij , qij+1 are hooking or at least C1/8 of them are
hooked. We may assume that at least C2 = C1/8 of the pairs qij

, qij+1 are hooking with
respect to their associated pair, pkj

, pkj±1, for otherwise, pkj
, pkj±1 is hooking with respect

to qij
, qij+1 and we may switch the roles of P and Q. Let us denote by Q2 the set of C2

hooking consecutive pairs (qij
, qij±1) at which we have arrived. (Because of the potential

switch, we have to denote the companion side by qij±1 instead of qij+1 from now on.)
By construction, all C2 primary sides qij

of these pairs belong to distinct components.
We now argue that all C2 adjacent companion sides qij±1 with at most one exception lie in
the same connected component, provided that C2 ≥ 4.

We model the problem by a graph whose nodes are the connected components of GD. For
each pair qij

, qij±1, we insert an edge between CC(qij
) and CC(qij±1). The result is a multi-

graph with C2 edges and without loops. Two disjoint edges would represent two consecutive
pairs of the form (qij

, qij±1) whose four sides are in four distinct connected components, but
this is a contradiction to Lemma 7. Thus, the graph has no two disjoint edges, and such graphs
are easily classified: they are the triangle (cycle on three vertices) and the star graphs K1t,
possibly with multiple edges. Overall, the graph involves at least C2 ≥ 4 distinct connected
components CC(qij

), and therefore the triangle graph is excluded. Let v be the central vertex
of the star. There can be at most one j with CC(qij

) = v, and we discard it. All other sides qij

have CC(qij
) 6= v, and therefore CC(qij±1) must be the other endpoint of the edge, that is, v.

In summary, we have found C2 − 1 adjacent pairs qij
, qij±1 with the following properties.

The primary sides qij
belong to C2 − 1 distinct components.

All companion sides qij±1 belong to the same component, distinct from the other C2 − 1
components.
All 2C2 − 2 sides of the pairs qij

, qij±1 are distinct.
Each qij

, qij±1 is hooking with respect to an associated pair pkj
, pkj±1.

All 2C2 − 2 sides of the pairs pkj
, pkj±1 are distinct.

Let us denote by Q′2 the set of C2 − 1 sides qij
.

E. Ackerman, B. Keszegh, and G. Rote 1:13

`2

`3

`4

`5
`6

`1

`0

a3
a4

a1

a2

a5

a6

a0

Figure 16 The seven sides a0, a1, . . . , a6. The lines `0, . . . , `6 form a 7-cup.

I Proposition 14. There are no six distinct sides qa, qb, qc, qd, qe, qf among the C2 − 1 sides
qij
∈ Q′2 such that qa, qb are avoiding or consecutive, qc, qd are avoiding or consecutive, and

qe, qf are avoiding or consecutive.

Proof. Suppose for contradiction that six such sides exist. It follows from Lemma 5 that there
are two consecutive sides pa′ and pb′ of P such that CC(pa′) = CC(qa) and CC(pb′) = CC(qb).

Similarly, we find a pair of consecutive sides pc′ and pd′ of P such that CC(pc′) = CC(qc)
and CC(pd′) = CC(qd), and the same story for e and f . By the pigeonhole principle, two
of the three consecutive pairs (pa′ , pb′), (pc′ , pd′), (pe′ , pf ′) are hooking or two of them are
hooked. This contradicts Lemma 7. J

Define a complete graph whose nodes are the C2 − 1 sides qij ∈ Q′2, and color an edge
(qij

, qik
) red if qij

and qik
are avoiding or consecutive and blue otherwise. Proposition 14

says that this graph contains no red matching of size three. This means that we can get rid
of all red edges by removing at most 4 nodes. To see this, pick any red edge and remove
its two nodes from the graph. If any red edge remains, remove its two nodes. Then all red
edges are gone, because otherwise we would find a matching with three red edges.

We conclude that there is a blue clique of size C3 = C2 − 5, i.e., there is a set Q3 ⊂ Q′2
of C3 polygon sides among the C2 − 1 sides qij ∈ Q′2 that are pairwise non-avoiding and
disjoint, i.e., they do not share a common endpoint.

Our next goal is to find a subset of 7 segments in Q3 that are arranged as in Figure 16.
To define this precisely, we say for two segments s and s′ that s stabs s′ if I(s, s′) ∈ s′, see
Figure 4. Among any two non-avoiding and non-consecutive sides s and s′, either s stabs s′

or s′ stabs s, but not both. Define a tournament T whose nodes are the C3 sides qij
∈ Q3,

and the arc between each pair of nodes is oriented towards the stabbed side. It follows from
Lemma 10 that T has a transitive sub-tournament of size 1 + blog2 C3c = C4.

Furthermore, since C4 = ES(C5, C5) + 1, it follows from Theorem 12 that there is a
subset of C5 sides such that the lines through them form a C5-cup or a C5-cap. By a vertical
reflection if needed, we may assume that they form a C5-cup.

We now reorder these C5 sides qij
of Q in stabbing order, according to the transitive sub-

tournament mentioned above. By the Erdős–Szekeres Theorem on monotone subsequences
(Theorem 13), there is a subsequence of size C6 + 1 =

√
C5 − 1 + 1 = 7 such that their slopes

form a monotone sequence. By a horizontal reflection if needed, we may assume that they
have decreasing slopes.

SoCG 2020

1:14 The Number of Intersections Between Two Simple Polygons

We rename these 7 segments to a0, a1, . . . , a6, and we denote the line `(ai) by `i, see
Figure 16. We have achieved the following properties:

The lines `0, . . . , `6 form a 7-cup, with decreasing slopes in this order.
The segments ai are pairwise disjoint and non-avoiding.
ai stabs aj for every i < j.

These properties allow a0 to lie between any two consecutive intersections on `0. There
is no such flexibility for the other sides: Every side aj is stabbed by every preceding side ai.
For 1 ≤ i < j, ai cannot stab aj from the right, because then a0 would not be able to stab ai.
Hence, the arrangement of the sides a1, . . . , a6 must be exactly as shown in Figure 16, in the
sense that the order of endpoints and intersection points along each line `i is fixed. We will
ignore a0 from now on.

8.2 Finalizing the analysis
Recall that every ai is the primary side of two consecutive sides ai, bi of Q that are hooking
with respect to an associated pair Ai, Bi of consecutive sides of P . The sides ai and Ai are
the primary sides and bi and Bi are the companion sides. All these 4× 6 sides are distinct,
and they intersect as follows: ai intersects Bi and is disjoint from Ai; bi intersects Ai and is
disjoint from Bi; and I(Ai, Bi) ∈ Cone(ai, bi).

Figure 17 summarizes the intersection pattern among these sides. A side Ai must
intersect every side aj with j 6= i and every side bj since CC(Ai) = CC(ai) 6= CC(aj)
and CC(Ai) = CC(ai) 6= CC(bi) = CC(bj). (Recall that all companion sides bi belong to
the same component.) Similarly, every side Bi must intersect every side aj . We have no
information about the intersection between Bi and bj , as these sides belong to the same
connected component.

ai

bi

Ai

Bi

aj

bj

Aj

Bj

PQ

Figure 17 The subgraph of GD induced on two pairs of consecutive sides ai, bi and aj , bj of P

and their associated partner pairs Ai, Bi and Aj , Bj of Q. Parts of P and Q are shown to indicate
consecutive sides. The dashed edges may or may not be present.

We will now derive a contradiction through a series of case distinctions.

Case 1: There are three segments Ai with the property that Ai crosses `i to the left of ai.
Without loss of generality, assume that these segments are A1, A2, A3, see Figure 18. The
segments A1, A2, A3 must not cross because P is a simple polygon. Therefore A1 intersects
a2 to the right of I(a1, a2) because otherwise A1 would cross A2 on the way between its
intersections with `2 and with a1. A3 must cross `3, a2, a1 in this order, as shown. But then
A1 and A3 (and a2) block A2 from intersecting a3.

E. Ackerman, B. Keszegh, and G. Rote 1:15

?

?

a1

a2

a3

A1

A2

A3

`1

`3

`2

Figure 18 The assumed intersection points between Ai and `i are marked.

Case 2: There at most two segments Ai with the property that Ai crosses `i to the left of ai.
In this case, we simply discard these segments. We select four of the remaining segments
and renumber them from 1 to 4.

From now on, we can make the following assumption:

General Assumption: For every 1 ≤ i ≤ 4, the segment Ai does not cross `i at all, or
it crosses `i to the right of ai.

This implies that A3 must intersect the sides a2, a1, a4 in this order, and it is determined
in which cell of the arrangement of the lines `1, `2, `3, `4 the left endpoint of A3 lies (see
Figures 16 and 19). For the right endpoint, we have a choice of two cells, depending on
whether A3 intersects `3 or not.

We denote by left(s) and right(s) the left and right endpoints of a segment s. We
distinguish four cases, based on whether the common endpoint of A3 and B3 lies at left(A3)
or right(A3), and whether the common endpoint of a3 and b3 lies at left(a3) or right(a3).

Case 2.1: I(A3, B3) = left(A3) and I(a3, b3) = right(a3), see Figure 19.
As indicated in the figure, we leave it open whether and where A3 intersects `3. We know

that b3 must lie below `3 because I(A3, B3) ∈ Cone(a3, b3).
We claim that A2 cannot have the required intersections with a1, a3, and b3. Let us first

consider a1: It is cut into three pieces by A3 and B3.
If A2 intersects the middle piece of a1 in the wedge between A3 and B3, then A2 intersects

exactly one of a3 and b3 inside the wedge, as these parts together with a1 are three sides of a
convex pentagon. If A2 intersects a3, then it has crossed `3 and it cannot cross b3 thereafter.
If A2 intersects b3, it must cross `4 before leaving the wedge, and then it cannot cross a3
thereafter.

Suppose now that A2 crosses the bottom piece of a1. Then it cannot go around A3, B3
to the right in order to reach a3 because it would have to intersect `4 twice. A2 also cannot
pass to the left of A3, B3 because it cannot cross `2 through a2 or, by the general assumption,
to the left of a2.

Suppose finally that A2 crosses the top piece of a1. Then it would have to cross `3 twice
before reaching b3.

SoCG 2020

1:16 The Number of Intersections Between Two Simple Polygons

a4

b3

a3

A3

B3

`3
a1

`2
`1

a2

`4

A2

I(a3, a4)I(A3, B3)

Figure 19 Case 2.1, I(A3, B3) = left(A3) and I(a3, b3) = right(a3). A hypothetical segment A2

is shown as a dashed curve. The side a2 and the part of `2 to the left of a2 is blocked for A2.

Case 2.2: I(A3, B3) = left(A3) and I(a3, b3) = left(a3).
If `(A3) does not intersect a3, we derive a contradiction as follows, see Figure 20. We know

that the sides a2, a3, a4 must be arranged as shown. The segment A3 crosses a2 but not a3.
Now, the parts of a3 and A3 to the left of `2 form two opposite sides of a quadrilateral, as
shown in the figure. If this quadrilateral were not convex, then either `(A3) would intersect a3,
which we have excluded by assumption, or `3 would intersect A3 left of a3, contradicting the
General Assumption. Thus, the sides a3 and A3 violate the Axis Property (Observation 6),
which requires a3 and A3 to lie on different sides of the line through I(A3, B3) and I(a3, b3).

a4

a3

A3

`3

a2

`2

`4

`(A3)

Figure 20 Case 2.2. I(A3, B3) = left(A3),
I(a3, b3) = left(a3), `(A3) does not intersect a3.

a4

a3

A3

`3

a2

`2

`4

Figure 21 Case 2.3. I(A3, B3) = right(A3),
and I(a3, b3) = right(a3), A3 lies below `3.

If `(A3) intersects a3, the situation must be as shown in Figure 22: the pair A3, B3 is
hooked by a3 and b3. The analysis of Case 2.1 (Figure 19) applies verbatim, except that the
word “pentagon” must be replaced by “hexagon”.

Case 2.3: I(A3, B3) = right(A3), and I(a3, b3) = right(a3).
If A3 lies entirely below `3, then A3 together with a3 violates the Axis Property (Obser-

vation 6), see Figure 21. Let us therefore assume that A3 intersects `3 (to the right of a3),
and thus right(A3) = I(A3, B3) lies above `3, see Figure 23a. Then b3 must also lie above `3,
because a3, b3 is supposed to be hooking, that is, I(A3, B3) ∈ Cone(a3, b3).

E. Ackerman, B. Keszegh, and G. Rote 1:17

a4

b3

a3

A3

B3

`3

a1

`2
`1

a2

`4

A2

`(A3)

Figure 22 Case 2.2, I(A3, B3) = left(A3), I(a3, b3) = left(a3), and `(A3) intersects A3. A hypo-
thetical segment A2 is shown as a dashed curve.

a2

A3

`1
`3

b3

a3

B3

`4

a1

I(a3, a4)

b3

a3

a4
A3

`3
B3

A3?

(b)(a)

A2

Figure 23 Case 2.3. A3 intersects `3.

It follows that A3 cannot intersect `3 to the right of I(a3, a4) (the option shown as a
dashed curve), because otherwise it would miss b3: b3 is blocked by a4. Thus, the situation
looks like in Figure 23a. Figure 23b shows the position of the relevant pieces. The segments
a4, B3, a3, b3, A3 enclose a convex pentagon. Now, the segment A2 should intersect a3, b3,
and a4 without crossing A3 and B3, like the dashed curve in the figure. This is impossible.

Case 2.4: I(A3, B3) = right(A3) and I(a3, b3) = left(a3).
If A3 intersects `3 (to the right of a3), then A3 together with a3 violates the Axis Property

(Observation 6), see Figure 24. We thus assume that A3 lies entirely below `3.
If `(A3) passes above I(a3, b3) = left(a3), the sides a3 and A3 violate the Axis Property

see Figure 25a. On the other hand, if `(A3) passes below I(a3, b3) = left(a3), as shown in
Figure 25b, then b3 must cross `1 to the right of a1 in order to reach A2. Again by the Axis
Property, B3 must remain above the dotted axis line through I(A3, B3) = right(A3) and
I(a3, b3) = left(a3). On `1, b3 separates a1 from the axis line, and hence a1 lies below the
axis line. Therefore B3 and a1 cannot intersect.

This concludes the proof of Theorem 1. J

SoCG 2020

1:18 The Number of Intersections Between Two Simple Polygons

a4a3
A3

`3

Figure 24 Case 2.4. A3 intersects `3.

a2

a4

A3

A2

`1 `3

b3

a3

B3

`4

a1

I(a3, b3)

a2

a4

A3

`3

a3

`4

a1

I(a3, b3)

`(A3)

(a) (b)

Figure 25 Case 2.4. A3 lies below `3.

References

1 J. Černý, J. Kára, D. Král’, P. Podbrdský, M. Sotáková, and R. Šámal. On the number of
intersections of two polygons. Comment. Math. Univ. Carolinae, 44(2):217–228, 2003. URL:
https://cmuc.karlin.mff.cuni.cz/cmuc0302/cmuc0302.htm.

2 Michael B. Dillencourt, David M. Mount, and Alan Saalfeld. On the maximum number of
intersections of two polyhedra in 2 and 3 dimensions. In Proceedings of the 5th Canadian
Conference on Computational Geometry, Waterloo, Ontario, Canada, August 1993, pages
49–54. University of Waterloo, 1993.

3 P. Erdős and L. Moser. On the representation of directed graphs as unions of orderings.
Magyar Tud. Akad. Mat. Kutató Int. Közl., 9:125–132, 1964.

4 P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio Mathematica,
2:463–470, 1935.

5 Felix Günther. The maximum number of intersections of two polygons, July 2012. withdrawn
by the author. arXiv:1207.0996.

https://cmuc.karlin.mff.cuni.cz/cmuc0302/cmuc0302.htm
http://arxiv.org/abs/1207.0996

Dynamic Geometric Set Cover and Hitting Set
Pankaj K. Agarwal
Department of Computer Science, Duke University, Durham, NC, USA
pankaj@cs.duke.edu

Hsien-Chih Chang
Department of Computer Science, Duke University, Durham, NC, USA
hsienchih.chang@duke.edu

Subhash Suri
Department of Computer Science, University of California at Santa Barbara, CA, USA
suri@cs.ucsb.edu

Allen Xiao
Department of Computer Science, Duke University, Durham, NC, USA
axiao@cs.duke.edu

Jie Xue
Department of Computer Science, University of California at Santa Barbara, CA, USA
jiexue@ucsb.edu

Abstract
We investigate dynamic versions of geometric set cover and hitting set where points and ranges may
be inserted or deleted, and we want to efficiently maintain an (approximately) optimal solution
for the current problem instance. While their static versions have been extensively studied in the
past, surprisingly little is known about dynamic geometric set cover and hitting set. For instance,
even for the most basic case of one-dimensional interval set cover and hitting set, no nontrivial
results were known. The main contribution of our paper are two frameworks that lead to efficient
data structures for dynamically maintaining set covers and hitting sets in R1 and R2. The first
framework uses bootstrapping and gives a (1 + ε)-approximate data structure for dynamic interval
set cover in R1 with O(nα/ε) amortized update time for any constant α > 0; in R2, this method
gives O(1)-approximate data structures for unit-square (and quadrant) set cover and hitting set
with O(n1/2+α) amortized update time. The second framework uses local modification, and leads to
a (1 + ε)-approximate data structure for dynamic interval hitting set in R1 with Õ(1/ε) amortized
update time; in R2, it gives O(1)-approximate data structures for unit-square (and quadrant) set
cover and hitting set in the partially dynamic settings with Õ(1) amortized update time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric set cover, Geometric hitting set, Dynamic data structures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.2

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.00202.

Funding Pankaj K. Agarwal: NSF grants CCF-15-13816, CCF-15-46392, and IIS-14-08846; ARO
grant W911NF-15-1-0408; BSF Grant 2012/229 from the U.S.-Israel Binational Science Foundation.
Hsien-Chih Chang: NSF grants CCF-15-13816, CCF-15-46392, and IIS-14-08846; ARO grant
W911NF-15-1-0408; BSF Grant 2012/229 from the U.S.-Israel Binational Science Foundation.
Subhash Suri: NSF grant CCF-18-14172.
Allen Xiao: NSF grants CCF-15-13816, CCF-15-46392, and IIS-14-08846; ARO grant W911NF-15-1-
0408; BSF Grant 2012/229 from the U.S.-Israel Binational Science Foundation.
Jie Xue: NSF grant CCF-18-14172.

© Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:hsienchih.chang@duke.edu
mailto:suri@cs.ucsb.edu
mailto:axiao@cs.duke.edu
mailto:jiexue@ucsb.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.2
https://arxiv.org/abs/2003.00202
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Dynamic Geometric Set Cover and Hitting Set

1 Introduction

A range space (X,R) consists of a set X of objects and a family R of subsets of X called
ranges. A subset H ⊆ X is called a hitting set of (X,R) if it intersects every (nonempty)
range in R, and a subset C ⊆ R is called a set cover of (X,R) if

⋃
C∈C C = X. In many

applications X is a set of points in Rd and R is induced by a set of geometric regions
(rectangles, balls, simplices, etc.), i.e., each is the subset of points lying inside one of the
regions. With a slight abuse of notation, we will use R to denote the set of ranges as well
as the set of regions that define these ranges. Given a geometric range space (S,R), the
geometric set-cover (resp., hitting-set) problem is to find the smallest number of ranges in R
(resp., points in S) that cover all points in S (resp., hit all ranges in R). Geometric set cover
and hitting set are classical geometric optimization problems, with numerous applications in
databases, sensor networks, VLSI design, etc.

In many applications, the problem instance can change over time and re-computing a
new solution after each change is too costly. In these situations, a dynamic data structure
that can update the solution after a change more efficiently than constructing the entire new
solution from scratch is highly desirable. This motivates the main problem studied in our
paper: dynamically maintaining geometric set covers and hitting sets under insertion and
deletion of points and ranges. In this paper, we formulate the problem as follows: after each
update, our data structure should (implicitly) store an approximate set-cover solution R′
(resp., hitting-set solution S′) for the current instance such that the following queries can be
supported efficiently.

Size query: report the size of R′ (resp., S′).
Membership query: for a given range R ∈ R (resp., point a ∈ S), report whether R
(resp., a) is contained in R′ (resp., S′).
Reporting query: report all elements in R′ (resp., S′).

We require the size query to be answered in O(1) time, a membership query to be answered in
O(log |R′|) time (resp., O(log |S′|) time), and the reporting query to be answered in O(|R′|)
time (resp., O(|S′|) time); this is the best one can expect in the pointer machine model.

We say that a set-cover (resp., hitting-set) instance is fully dynamic if insertions and
deletions on both points and ranges are allowed, and partially dynamic if only the points
(resp., ranges) can be inserted and deleted. In this paper, unless explicitly mentioned
otherwise, problems are always considered in the fully dynamic setting.

Related work

The set-cover and hitting-set problems for general range spaces are well-known to be NP-
complete [12]. A simple greedy algorithm achieves an O(logn)-approximation [7, 13, 15],
which is tight under appropriate complexity-theoretic assumptions [8, 14]. The problems
remain NP-hard or even hard to approximate in many geometric settings [5, 16, 17]. However,
by exploiting the geometric nature of the problems, efficient algorithms with o(logn) approx-
imation factors can be obtained. For example, Mustafa and Ray [18] showed the existence
of polynomial-time approximation schemes (PTAS) for halfspace hitting set in R3 and disk
hitting set in R2. There is also a PTAS for unit-square set cover given by Erlebach and
van Leeuwen [9]. Agarwal and Pan [3] proposed approximation algorithms with near-linear
running time to the set-cover and hitting-set problems for halfspaces in R3, disks in R2, and
orthogonal rectangles.

Despite extensive work on the static versions of hitting set and set cover, very little is
known about these problems in the dynamic setting. There is some recent work on set cover
in the partially dynamic setting. Gupta et al. [11] showed that an O(logn)-approximation

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:3

can be maintained with O(f logn) amortized update time and an O(f3)-approximation can
be maintained with O(f2) amortized update time, where f is the maximum number of ranges
that a point belongs to. These bounds were subsequently improved by Bhattacharya et al. [6]
to O(f2)-approximation factor and O(f logn) amortized update time, and by Abboud et al. [1]
to (1 + ε)f -approximation factor and O(f2 logn/ε5) amortized update time.

In geometric settings, there has been some work on the dynamic hitting-set problem.
Agarwal et al. [4] described a dynamic data structure for maintaining an (1+ε)-approximation
of the optimal hitting set when the set of points S is R1 and R is a set of intervals.
Ganjugunte [10] studied the dynamic hitting-set problem for the case where S is a set of
points in R2 and R is a set of squares or discs, under two different dynamic settings: (a) only
the range set R is dynamic and (b) R is dynamic and S is semi-dynamic (i.e., insertion-only).
We are not aware of any non-trivial results for geometric set cover or hitting set even in 1D,
except that the greedy algorithm can be implemented in an output-sensitive manner in some
special cases (see below).

Our results

The main contribution of this paper are two frameworks for designing fully dynamic geometric
set-cover and hitting-set data structures, leading to efficient data structures in R1 and R2

(see Table 1). The first framework is based on bootstrapping, which results in efficient
(approximate) dynamic data structures for interval set cover and quadrant/unit-square set
cover and hitting set (the first three rows of Table 1). The second framework is based on local
modification, which results in efficient (approximate) dynamic data structures for interval
hitting set and quadrant/unit-square set cover and hitting set in the partially dynamic setting
(the last three rows of Table 1).

Table 1 Summary of our results for dynamic geometric set cover and hitting set (SC = set cover
and HS = hitting set). All update times are amortized. The notation Õ(·) hides logarithmic factors;
n is the size of the current instance, and α > 0 is any small constant. All data structures can be
constructed in Õ(n0) time where n0 is the size of the initial instance.

Framework Problem Range Approx. Update time Setting

Bootstrapping
SC Interval 1 + ε Õ(nα/ε) Fully dynamic

SC & HS Quadrant O(1) Õ(n1/2+α) Fully dynamic

SC & HS Unit square O(1) Õ(n1/2+α) Fully dynamic

Local modification
HS Interval 1 + ε Õ(1/ε) Fully dynamic

SC & HS Quadrant O(1) Õ(1) Part. dynamic

SC & HS Unit square O(1) Õ(1) Part. dynamic

For technical reasons, our algorithms maintain a multiset solution, as opposed to a regular
subset of R (resp., S). That is, we allow the solution to be a multiset of elements in R (resp.,
S) that cover all points in S (resp., hit all ranges in R), and the quality of the solution is
also evaluated in terms of the multiset cardinality. Unless explicitly mentioned otherwise,
solutions for set cover and hitting set always refer to multiset solutions hereafter.

Overview of the techniques

The basic idea of our bootstrapping framework is as follows: We begin from a simple dynamic
set-cover or hitting-set data structure (e.g., a data structure that re-computes a solution
after each update), and repeatedly use the current data structure to obtain an improved

SoCG 2020

2:4 Dynamic Geometric Set Cover and Hitting Set

one. The main challenge here is to design the bootstrapping procedure: how to use a given
data structure to construct a new data structure with improved update time. We achieve
this by using output-sensitive algorithms and carefully partitioning the problem instances
to sub-instances. We say an algorithm is output-sensitive if it computes an (approximate)
optimal solution in time proportional to the size of the output, using only basic data structures.
A data structure built on a dataset of size n is basic if it can be constructed in Õ(n) time
and made dynamic with Õ(1) update time. One of our technical contributions is in designing
an O(1)-approximate output-sensitive algorithm for 2D quadrant set cover, which is new to
the best of our knowledge.

Our second framework is much simpler, which is based on local modification. Namely,
we construct a new solution by slightly modifying the previous one after each update, and
re-compute a new solution periodically using an output-sensitive algorithm. This framework
applies to the problems which are stable, i.e., the optimum of a dynamic instance does not
change significantly. The discussion of this framework can be found in the full version [2].

Organization

The rest of the paper is organized as follows. Due to limited space, only the results of our first
framework (bootstrapping) are discussed in this conference version: Section 2 presents the
1D results and Section 3 presents the 2D results. The results of our second framework (local
modification), as well as all the omitted proofs and details, can be found in the full version [2].

2 Warm-up: 1D set cover for intervals

As a warm up for our bootstrapping framework, we first study the 1D problem. Let S be a
set of points in R1 and I a set of intervals in R1; set n = |S|+ |I|. Our goal is to maintain a
small-size set cover of the range space (S, I) as S and I are updated dynamically; we refer
to this instance as the dynamic interval cover problem. We note that (static) interval set
cover can be solved using the greedy algorithm that repeatedly picks the leftmost uncovered
point and covers it using the interval with the rightmost right endpoint. By storing S and I
in a height-balanced tree, the greedy algorithm can be made output sensitive, i.e., it reports
an optimal set cover of size opt in O(opt logn) time.

I Lemma 1. Interval set cover admits an exact output-sensitive algorithm.

Using the output-sensitive algorithm, now we sketch how to design a fully dynamic data
structure to solve the interval-set-cover problem. Set a threshold nα for some α ∈ (0, 1). The
main bootstrapping step is as follows: Assume that we have a dynamic data structure solving
the interval-set-cover problem with O(nα/(1−α)) update time (modulo the dependencies
on the approximation parameter ε). Using this data structure, we construct a dynamic
data structure with Õ(nα) update time as follows: Run the output-sensitive algorithm for
O(nα) steps; if the optimal set cover has size opt at most nα then the algorithm correctly
computes an optimal set cover. Otherwise, we know that opt is at least nα. We partition the
points and the intervals on the real line into roughly εnα portions in a balanced way. The
number of points and endpoints of the intervals per portion is O(n1−α/ε), and the number
of portions is at most O(εnα). On each portion, we build a sub-instance using the points
contained in the portion, with all intervals that have an endpoint in the portion. We use the
slower data structure to maintain a set cover of this sub-instance. If one of these intervals
completely covers the portion (the portion is coverable), we solve its sub-instance with a
single covering interval. If the portion is not coverable, we rely on the slower data structure

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:5

to provide an approximate solution. Because opt is so large, an (ε/2)-approximation on each
uncoverable portion combined with the single intervals of each coverable portion still gives
an (1 + ε)-approximate multiset solution to the entire instance.

The size of each portion is O(n1−α) (omitting ε for now), so each update to the dynamic
data structure on the portions takes about O((n1−α)α/(1−α)) = O(nα) time, which only
happens at most two times per insertion (an interval can partially intersects at most two
portions). The data structure periodically reconstructs itself after processing about n1−α

operations; which means in amortization each operation costs an extra O(nα) time. Overall,
this gives O(nα) update time for the new data structure.

We now describe the data structure in detail and analyze its performance.

2.1 Bootstrapping
We begin by stating the bootstrapping theorem, which is the technical heart of our result.

I Theorem 2. Let (S, I) be an instance of interval set cover, with n = |S| + |I|. Let
α, ε ∈ (0, 1) be parameters. If there exists a (1 + ε)-approximate dynamic set-cover structure
Dold for (S, I) with Õ(nα/ε1−α) amortized update time and Õ(n) construction time for any
ε > 0, then there exists a (1 + ε)-approximate dynamic interval-set-cover data structure Dnew
with Õ(nα′

/ε1−α′) amortized update time and Õ(n) construction time for any ε > 0, where
α′ = α/(1 + α). Here n denotes the size of the current problem instance.

Constructing Dnew

The data structure Dnew consists of two parts. The first part is the basic data structure A
required for the output-sensitive algorithm of Lemma 1. The second part is a family of Dold
data structures. Let f(n, ε) = min{n

1
1+α /ε

α
1+α , n/2}. Dnew is reconstructed periodically.

Let n0 = |S| + |I| when the data structure is being constructed. Set r = dn0/f(n0, ε)e.
We partition the real line R into r intervals J1, . . . , Jr such that each interval Ji contains
at most 2f(n0, ε) points in S plus the endpoints of the intervals in I. For i ≤ r, define
Si = S ∩ Ji and Ii ⊆ I the subsets of intervals that intersect Ji but do not cover it, i.e.,
Ii = {I ∈ I : Ji∩I 6= ∅ and Ji * I}. When Dnew is updated, the partition J1, . . . , Jr remains
unchanged, but the Si’s and Ii’s change as S and I are updated. We view each (Si, Ii) as a
dynamic interval-set-cover instance, and build the data structure D(i)

old on (Si, Ii) using Dold,
with the approximation parameter ε̃ = ε/2. Thus, D(i)

old maintains a (1 + ε̃)-approximate set
cover for (Si, Ii). The second part of Dnew consists of the data structures D(1)

old, . . . ,D
(r)
old.

Maintaining a set cover

We now describe the algorithm for maintaining a set cover Iappx for (S, I), if there exists
one. Set δ = min{(6 + 2ε) · r/ε, n}. We simulate the output-sensitive greedy algorithm for
at most δ steps. If the algorithm successfully computes a set cover, we use it as our Iappx.
Otherwise, we construct Iappx as follows. For i ∈ {1, . . . , r}, we say Ji is coverable if there
exists I ∈ I such that Ji ⊆ I and uncoverable otherwise. Let P = {i : Ji is coverable} and
P = {i : Ji is uncoverable}. For each i ∈ P , we choose an interval in I that contains Ji,
and denote by I∗ the collection of these intervals. If for some i ∈ P , the data structure
D(i)
old tells us that the current (Si, Ii) does not have a set cover, then we immediately

conclude that the current (S, I) has no feasible set cover, record as such. Otherwise, for
every i ∈ P , D(i)

old maintains a (1 + ε̃)-approximate optimal set cover I∗i for (Si, Ii). Set
Iappx = I∗ t

(⊔
Ji∈P′ I∗i

)
.

SoCG 2020

2:6 Dynamic Geometric Set Cover and Hitting Set

It can be shown that if (S, I) has a feasible set cover, our algorithm maintains one, namely,
Iappx. Later we prove that Iappx is always a (1 + ε)-approximate optimal set cover for (S, I).
We now describe how to store Iappx properly to support the size, membership, and reporting
queries in the required query times. If Iappx is computed by the output-sensitive algorithm,
then the size of Iappx is at most δ, and we have all the elements of Iappx in hand. In this
case, it is not difficult to build a data structure on Iappx to support the desired queries. On
the other hand, if Iappx is defined as the disjoint union of I∗ and I∗i ’s, the size of Iappx might
be very large and we do not explicitly store all elements of Iappx. Fortunately, in this case,
each I∗i is already maintained in the data structure D(i)

old. Therefore, we only compute P , P ,
and I∗; with these in hand, we easily build a data structure to support the desired queries
for Iappx. A detailed discussion is presented in the full version [2].

Updating Dnew

Let n0 be the size of the data structure when Dnew was previously constructed. We reconstruct
Dnew after f(n0, ε) update operations and reset n0 to the current value of |S|+ |I|. If Dnew is
not being reconstructed after an update operation, we first update the basic data structure A.
Then, we update the data structure D(i)

old if the instance (Si, Ii) changes due to the operation.
Note that an update on S changes exactly one Si and an update on I changes at most two
Ii’s (because an interval can belong to at most two Ii’s). Thus, we in fact only need to
update at most two D(i)

old’s.

Correctness

Now we show that the set cover Iappx maintained by Dnew is a (1 + ε)-approximate optimal
set cover for (S, I). Let opt be the size of the optimal set cover of (S, I). If Iappx is computed
by the output-sensitive algorithm, then it is an optimal set cover for (S, I). Otherwise,
opt > δ = min{(6 + 2ε) · r/ε, n}. If opt > n, then the current (S, I) has no set cover (i.e.,
opt =∞) and thus Dnew makes a no-solution decision. So assume opt > (6 + 2ε) · r/ε. In this
case, Iappx = I∗t (

⊔
i∈P I

∗
i). For each i ∈ P , let opti be the optimum of the instance (Si, Ii).

Then we have |I∗i | ≤ (1 + ε̃) · opti for all i ∈ P where ε̃ = ε/2. Since |I∗| ≤ r, we have

|Iappx| = |I∗|+
∑
i∈P

|I∗i | ≤ r +
(

1 + ε

2

)∑
i∈P

opti. (1)

Let Iopt be an optimal set cover for (S, I). We observe that for i ∈ P , Iopt ∩Ii is a set cover
for (Si, Ii), because Ji is uncoverable (so the points in Si cannot be covered by any interval
in I\Ii). It immediately follows that opti ≤ |Iopt ∩ Ii| for all i ∈ P . Therefore, we have∑

i∈P

opti ≤
∑
i∈P

|Iopt ∩ Ii|. (2)

The right-hand side of the above inequality can be larger than |Iopt| as some intervals in
Iopt can belong to two Ii’s. The following lemma bounds the number of such intervals.

I Lemma 3. There are at most 2r intervals in Iopt that belong to exactly two Ii’s.

Proof. Suppose the portions J1, . . . , Jr are sorted from left to right. Let si be the separation
point of Ji and Ji+1. Observe that an interval I ∈ Iopt belongs to exactly two Ii’s only
if I contains one of the separation points s1, . . . , sr−1. We claim that for each si, at most
two intervals in Iopt contain si. Assume there are three intervals I−, I, I+ that contain si.

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:7

Without loss of generality, assume that I− (resp., I+) has the leftmost left endpoint (resp.,
the rightmost right endpoint) among I−, I, I+. Then one can easily see that I ⊆ I− ∪ I+.
Therefore, Iopt\{I} is also a set cover for (S, I), contradicting the optimality of Iopt. Thus,
at most two intervals in Iopt contain si. It follows that there are at most 2(r − 1) intervals
in Iopt that contain some separation point, and only these intervals can belong to exactly
two Ii’s, which proves the lemma. J

The above lemma immediately implies∑
i∈P

|Iopt ∩ Ii| ≤ |Iopt|+ 2r = opt + 2r. (3)

Combining Inequalities 1, 2, and 3, we deduce that

|Iappx| ≤ r +
(

1 + ε

2

)∑
i∈P

opti

≤ r +
(

1 + ε

2

)∑
i∈P

|Iopt ∩ Ii|

≤ r +
(

1 + ε

2

)
· (opt + 2r) = (3 + ε) · r +

(
1 + ε

2

)
· opt

<
ε

2 · opt +
(

1 + ε

2

)
· opt = (1 + ε) · opt,

where the last inequality follows from the assumption opt > (6 + 2ε) · r/ε.

Time complexity analysis

We briefly discuss the amortized update time of Dnew; a detailed analysis can be found in the
full version [2]. Recall that f(n, ε) = min{n

1
1+α /ε

α
1+α , n/2} and that Dnew is reconstructed

after f(n0, ε) update operations, where n0 is the size of (S, I) when Dnew was last constructed,
|n− n0| ≤ n0/2 and the size of each (Si, Ii) is O(f(n0, ε)). The construction of Dnew can be
easily done in Õ(n0) time.

The update time of Dnew consists of the time for updating the data structures A and
D(1)
old, . . . ,D

(r)
old, the time for maintaining the solution, and the (amortized) time for reconstruc-

tion. As argued before, we only need to update at most two D(i)
old’s after each operation. Thus,

updating the Dold data structures takes Õ(f(n0, ε)α/ε1−α) amortized time. Maintaining Iappx
takes Õ(δ+r) = O(n0/(f(n0, ε) ·ε)) time, with a careful implementation. The reconstruction
time is Õ(n) = Õ(n0 + f(n0, ε)), which we pay for by charging Õ(n0/f(n0, ε)) = Õ(r) to
each update operation since the previous reconstruction. In total, the amortized update time
of Dnew is Õ(f(n0, ε)α/ε1−α +n0/(f(n0, ε) · ε)). By substituting the value of f(n0, ε) (which
balances the two terms in the update time) and using the inequality |n− n0| ≤ n0/2, the
amortized update time is Õ(n

α
1+α /ε1− α

1+α) = Õ(nα′
/ε1−α′) (recall that α′ = α/(1 + α)).

2.2 Putting everything together
With the bootstrapping theorem in hand, we are now able to design our dynamic interval-set-
cover data structure. The starting point is a “trivial” data structure, which simply uses the
output-sensitive algorithm of Lemma 1 to recompute an optimal interval set cover after each
update. Clearly, the update time of this data structure is Õ(n) and the construction time is
Õ(n0). Thus, there exists a (1 + ε)-approximate dynamic interval-set-cover data structure
with Õ(nα0/ε1−α0) amortized update time for α0 = 1 and Õ(n0) construction time. Define

SoCG 2020

2:8 Dynamic Geometric Set Cover and Hitting Set

αi = αi−1/(1 + αi−1) for i ≥ 1. By applying Theorem 2 i times for a constant i ≥ 1, we
see the existence of a (1 + ε)-approximate dynamic interval-set-cover data structure with
Õ(nαi/ε1−αi) amortized update time and Õ(n0) construction time. One can easily verify
that αi = 1/(i+ 1) for all i ≥ 0. Therefore, for any constant α > 0, we have an index i ≥ 0
satisfying αi < α and hence Õ(nαi/ε1−αi) = O(nα/ε). We finally conclude the following.

I Theorem 4. Let (S, I) be an instance of interval set cover, with n = |S| + |I|. Let
α, ε ∈ (0, 1) be two constants. There exists a (1 + ε)-approximate dynamic interval-set-cover
data structure with O(nα/ε) amortized update time.

3 2D set cover for quadrants and unit squares

In this section, we present dynamic set-cover data structures for quadrants and unit squares
using the bootstrapping framework. Most of the section focuses on dynamic quadrant set
cover. At the end of the section, we reduce dynamic unit-square set cover to dynamic
quadrant set cover.

Let (S,Q) be a range space where S is a set of points in R2 and Q is a set of quadrants
in R2. We wish to maintain a set cover of (S,Q) as both S and Q are updated dynamically.
In order to apply the bootstrapping framework, we need an output-sensitive algorithm for
quadrant set cover, analog to the one in Lemma 1 for intervals. Designing such an algorithm
is considerably more difficult compared to the 1D case, and we defer it to Section 3.2.
We first discuss the bootstrapping procedure, assuming the existence of a µ-approximate
output-sensitive algorithm for quadrant set cover.

3.1 Bootstrapping
We prove the following bootstrapping theorem, which is the technical heart of our result.

I Theorem 5. Let (S,Q) be an instance of quadrant set cover, with n = |S| + |Q|. Let
α, ε ∈ (0, 1) be parameters and µ > 0. If there exist a (µ+ ε)-approximate output-sensitive
algorithm for quadrant set cover and a (µ + ε)-approximate dynamic set-cover structure
Dold for (S,Q) with Õ(nα/ε1−α) amortized update time and Õ(n) construction time, then
there exists a (µ + ε)-approximate dynamic quadrant-set-cover data structure Dnew with
Õ(nα′

/ε1−α′) amortized update time and Õ(n) construction time, where α′ = 2α/(1 + 2α).

Constructing Dnew

As in the 1D case, the data structure Dnew consists of two parts. The first part is the data
structure A required for the µ-approximate output-sensitive algorithm. The second part is
a family of Dold data structures defined as follows. Let f(n, ε) = min{n

1+α
1+2α /ε

α
1+2α , n/2}.

Dnew is reconstructed periodically. Let n0 = |S| + |I| when the data structure is being
constructed. Set r = dn0/f(n0, ε)e. We use an orthogonal grid to partition the plane R2

into r × r cells such that each row (resp., column) of the grid contains f(n0, ε) points in
S plus vertices of the quadrants in Q (see the left of Figure 1 for an illustration). Denote
by �i,j the cell in the i-th row and j-th column. Define Si,j = S ∩ �i,j . We also define
a sub-collection Qi,j ⊆ Q, as follows: We include in Qi,j all the quadrants in Q whose
vertices lie in �i,j . Besides, we also include in Qi,j the following (at most) four special
quadrants. We say a quadrant Q left intersects �i,j if Q partially intersects �i,j and contains
the left edge of �i,j (see the right of Figure 1 for an illustration); similarly, we define “right
intersects”, “top intersects”, and “bottom intersects”. Among a collection of quadrants, the

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:9

r rows

r columns

A cell

�i,j

Q

Figure 1 Left: The r× r grid. Note that the cells may have different sizes. Right: A quadrant Q
that left intersects �i,j .

leftmost/rightmost/topmost/bottommost quadrant refers to the quadrant whose vertex is
the leftmost/rightmost/topmost/bottommost. We include in Qi,j the rightmost quadrant
in Q that left intersects �i,j , the leftmost quadrant in Q that right intersects �i,j , the
bottommost quadrant in Q that top intersects �i,j , and the topmost quadrant in Q that
bottom intersects �i,j (if these quadrants exist).1 When the instance (S,Q) is updated,
the grid remains unchanged, but the Si,j ’s and Qi,j ’s change as S and Q are updated. We
view each (Si,j ,Qi,j) as a dynamic quadrant-set-cover instance, and build the data structure
D(i,j)
old on (Si,j ,Qi,j) using Dold, with approximation factor ε̃ = ε/2. The second part of Dnew

consists of the data structures D(i,j)
old for i, j ∈ {1, . . . , r}.

Maintaining a set cover

We now describe the algorithm for maintaining a set cover Qappx for (S,Q), if one exists.
Set δ = min{(8µ + 4ε + 2) · r2/ε, n}. We simulate the output-sensitive algorithm for at
most δ steps. If the algorithm successfully computes a set cover, we use it as our Qappx.
Otherwise, we construct Qappx as follows. We say the cell �i,j is coverable if there exists
Q ∈ Q that contains �i,j and uncoverable otherwise. Let P = {(i, j) : �i,j is coverable}
and P = {(i, j) : �i,j is uncoverable}. For each (i, j) ∈ P , we choose a quadrant in Q
that contains �i,j , and denote by Q∗ the set of these quadrants. If for some (i, j) ∈ P ,
D(i,j)
old tells us that the instance (Si,j ,Qi,j) has no set cover, then we immediately conclude

that the current (S,Q) has no feasible set cover, and record as such. Otherwise, for each
(i, j) ∈ P , D(i,j)

old maintains a (µ+ ε̃)-approximate optimal set cover Q∗i,j for (Si,j ,Qi,j). Set
Qappx = Q∗ t

(⊔
(i,j)∈P Q

∗
i,j

)
. Qappx is stored in roughly the same way as Iappx is in the

1D case, and we omit the details from here.

1 Recall that in the 1D case, we define Ii as the sub-collection of intervals in I that partially intersect
the portion Ji. However, we cannot simply define Qi,j as the sub-collection of quadrants in Q that
partially intersect �i,j because a quadrant partially intersects too many cells.

SoCG 2020

2:10 Dynamic Geometric Set Cover and Hitting Set

Updating Dnew

Let n0 be the size of the data structure when Dnew was previously constructed. We reconstruct
Dnew after f(n0, ε) update operations and reset n0 to the current value of |S|+ |I|. If Dnew
is not being reconstructed after an update operation, we first update the basic data structure
A. Then, we update those data structures D(i,j)

old for which (Si,j ,Qi,j) change. Note that
an update on S changes exactly one Si,j , and an update on Q may only change the Qi,j ’s
in one row and one column (specifically, if the vertex of the inserted/deleted quadrant lies
in �i,j , then only Qi,1, . . . ,Qi,r,Q1,j , . . . ,Qr,j may change). Thus, we in fact only need to
update the D(i,j)

old ’s in one row and one column.

Correctness

We show that the set cover Qappx maintained by Dnew is a (µ + ε)-approximate optimal
set cover for (S,Q). If Qappx is computed by the output-sensitive algorithm, then it is a
µ-approximate optimal set cover for (S,Q). Otherwise, opt > δ = min{(8µ+4ε+2) ·r2/ε, n},
i.e., either opt > (8µ+ 4ε+ 2) · r2/ε or opt > n. If opt > n, then (S,Q) has no set cover (i.e.,
opt =∞) and Dnew makes a no-solution decision. So assume (8µ+ 4ε+ 2)r2/ε < opt < n.
In this case, Qappx = Q∗ t (

⊔
(i,j)∈P Q

∗
i,j). For each (i, j) ∈ P , let opti,j be the optimum

of (Si,j ,Qi,j). Then we have |Q∗i,j | ≤ (µ+ ε̃) · opti,j for all (i, j) ∈ P where ε̃ = ε/2. Since
|Q∗| ≤ r2, we have

Qappx = |Q∗|+
∑

(i,j)∈P

|Q∗i,j | ≤ r2 +
(
µ+ ε

2

) ∑
(i,j)∈P

opti,j . (4)

Let Q′i,j ⊆ Qi,j consist of the non-special quadrants, i.e., those whose vertices are in �i,j .

I Lemma 6. We have opti,j ≤ |Qopt ∩Q′i,j |+ 4 for all (i, j) ∈ P , and in particular,∑
(i,j)∈P

opti,j ≤ opt + 4r2. (5)

Using Equations 4 and 5, we deduce that

|Qappx| ≤ r2 +
(
µ+ ε

2

) ∑
(i,j)∈P

opti,j

≤ r2 +
(
µ+ ε

2

)
(opt + 4r2)

≤ (4µ+ 2ε+ 1) · r2 +
(
µ+ ε

2

)
· opt

<
ε

2 · opt +
(
µ+ ε

2

)
· opt = (µ+ ε) · opt,

where the last inequality follows from the fact that opt > (8µ+ 4ε+ 2) · r2/ε.

Time complexity analysis

We briefly discuss the amortized update time of Dnew; a detailed analysis can be found
in the full version [2]. Recall that f(n, ε) = min{n1−α′/2/(

√
ε)α′

, n/2} and that Dnew is
reconstructed after f(n0, ε) update operations, where n0 is the size of (S,Q) when Dnew was
last constructed, |n− n0| ≤ n0/2. We first observe the following fact.

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:11

I Lemma 7. At any time between reconstructions, we have
∑r
k=1(|Si,k| + |Qi,k|) =

O(f(n0, ε) + r) for all i ∈ {1, . . . , r} and
∑r
k=1(|Sk,j | + |Qk,j |) = O(f(n0, ε) + r) for all

j ∈ {1, . . . , r}.

The above lemma implies that the sum of the sizes of all (Si,j ,Qi,j) is O(n0 + r2) at any time
in the first period. Therefore, constructing Dnew can be done in Õ(n0 + r2) = Õ(n0) time.

The update time of Dnew consists of the (amortized) time for reconstruction, the time for
updating A and D(i,j)

old ’s, and the time for maintaining the solution. Using almost the same
analysis as in the 1D problem, we can show that the reconstruction takes Õ(r + r2/f(n0, ε))
amortized time and maintaining Qappx takes Õ(δ + r2) = Õ(r2/ε) time, with a careful
implementation. The time for updating the D(i,j)

old requires a different analysis. Let mi,j

denote the current size of (Si,j ,Qi,j). As argued before, we in fact only need to update the
D(i,j)
old in one row and one column (say the i-th row and j-th column). Hence, updating the
D(i,j)
old takes Õ(

∑r
k=1 m

α
i,k/ε

1−α +
∑r
k=1 m

α
k,j/ε

1−α) amortized time. Lemma 7 implies that∑r
k=1 mi,k = O(f(n0, ε) + r) and

∑r
k=1 mk,j = O(f(n0, ε) + r). Since α ≤ 1, by Hölder’s

inequality and Lemma 7,

r∑
k=1

mα
i,k ≤

(∑r
k=1 mi,k

r

)α
· r = O(r1−α · (f(n0, ε) + r)α) = O(r + r1−αfα(n0/ε))

and similarly
∑r
k=1 m

α
k,j = O(r + r1−αfα(n0/ε)). It follows that updating the Dold data

structures takes Õ((r+ r1−αfα(n0/ε))/ε1−α) amortized time. In total, the amortized update
time of Dnew (during the first period) is Õ((r+r1−αfα(n0/ε))/ε1−α+r2/ε). By substituting
the value of f(n0, ε) = n

1+α
1+2α /ε

α
1+2α (which balances the two main terms in the update

time) and using the fact that |n− n0| ≤ n0/2, we obtain that the amortized update time is
Õ(n

2α
1+2α /ε1− 2α

1+2α) = Õ(nα′
/ε1−α′).

3.2 An output-sensitive cover algorithm
The key to Theorem 5 is an output-sensitive algorithm for the quadrant-set-cover problem.
In this section, we develop such an algorithm, which computes an O(1)-approximation of the
set cover in Õ(opt) time, using basic data structures.

For simplicity, let us assume that (S,Q) has a set cover; how the no-solution case
is handled is discussed in the full version [2]. There are four types of quadrants in Q,
southeast, southwest, northeast, northwest; we denote by QSE,QSW,QNE,QNW ⊆ Q the
sub-collections of these types of quadrants, respectively. Let USE denote the union of the
quadrants in QSE, and define USW, UNE, UNW similarly. Since (S,Q) has a set cover, we
have S = (S ∩ USE) ∪ (S ∩ USW) ∪ (S ∩ UNE) ∪ (S ∩ UNW). Therefore, if we can compute
O(1)-approximate optimal set covers for each of (S ∩ USE,Q), (S ∩ USW,Q), (S ∩ UNE,Q),
and (S ∩ UNW,Q), then the union of these four set covers is an O(1)-approximate optimal
set cover for (S,Q).

With this observation, it now suffices to show how to compute an O(1)-approximate
optimal set cover for (S ∩ USE,Q) in Õ(optSE) time, where optSE is the optimum of (S ∩
USE,Q). The main challenge is to guarantee the running time and approximation ratio
simultaneously. We begin by introducing some notation. Let γ denote the boundary of USE,
which is an orthogonal staircase curve from bottom-left to top-right. If γ ∩ USW 6= ∅, then
γ ∩ USW is a connected portion of γ that contains the bottom-left end of γ. Define σ as the
“endpoint” of γ ∩ USW, i.e., the point on γ ∩ USW that is closest the top-right end of γ. See
Figure 2 for an illustration. If γ ∩ USW = ∅, we define σ as the bottom-left end of γ (which

SoCG 2020

2:12 Dynamic Geometric Set Cover and Hitting Set

γ

USW

σ

Figure 2 Illustrating the curve γ and the point σ.

is a point whose y-coordinate equals to −∞). For a number ỹ ∈ R, we define φ(ỹ) as the
leftmost point in S ∩ USE whose y-coordinate is greater than ỹ; we say φ(ỹ) does not exist if
no point in S ∩ USE has y-coordinate greater than ỹ. For a point a ∈ R2 and a collection P
of quadrants, we define Φ→(a,P) and Φ↑(a,P) as the rightmost and topmost quadrants in
P that contains a, respectively. For a quadrant Q, we denote by x(Q) and y(Q) the x- and
y-coordinates of the vertex of Q, respectively.

To get some intuition, let us consider a very simple case, where Q only consists of
southeast quadrants. In this case, one can compute an optimal set cover for (S ∩ USE,Q)
using a greedy algorithm similar to the 1D interval-set-cover algorithm: repeatedly pick the
leftmost uncovered point in S∩USE and cover it using the topmost (southeast) quadrant in Q.
Using the notations defined above, we can describe this algorithm as follows. Set Qans ← ∅
and ỹ ← −∞ initially, and repeatedly do a ← φ(ỹ), Q ← Φ↑(σ,QSE), Qans ← Qans ∪ {Q},
ỹ ← y(Q) until φ(ỹ) does not exist. Eventually, Qans is the set cover we want.

Now we try to extend this algorithm to the general case. However, the situation here
becomes much more complicated, since we may have three other types of quadrants in
Q, which have to be carefully dealt with in order to guarantee the correctness. But the
intuition remains the same: we still construct the solution in a greedy manner. The following
procedure describes our algorithm, see also Figure 3.

1. Qans ← ∅. ỹ ← −∞. If φ(ỹ) does not exist, then go to Step 6.
2. Qans ← {Φ→(σ,QSW), Φ↑(σ,QSE)}. ỹ ← y(Φ↑(σ,QSE)). If φ(ỹ) exists, then a ← φ(ỹ),

else go to Step 6.
3. If a ∈ UNE, then Qans ← Qans ∪ {Φ↑(a,QNE), Φ↑(a,QSE)} and go to Step 6.
4. If a ∈ UNW, then Qans ← Qans ∪ {Φ→(a,QNW), Φ↑(a,QSE)} and Q← Φ↑(v,QSE) where

v is the vertex of Φ→(a,QNW), otherwise Q← Φ↑(a,QSE).
5. Qans ← Qans ∪ {Q}. ỹ ← y(Q). If φ(ỹ) exists, then a← φ(ỹ) and go to Step 3.
6. Output Qans.

The following lemma proves the correctness of our algorithm.

I Lemma 8. Qans covers all points in S ∩ USE, and |Qans| = O(optSE).

The remaining task is to show how to perform our algorithm in Õ(optSE) time using
basic data structures. It is clear that our algorithm terminates in O(optSE) steps, since we
include at least one quadrant to Qans in each iteration of the loop Step 3–5 and eventually
|Qans| = O(optSE) by Lemma 8. Thus, it suffices to show that each step can be done in
Õ(1) time. In every step of our algorithm, all work can be done in constant time except the
tasks of computing the point σ, testing whether a ∈ UNE and a ∈ UNW for a given point

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:13

NENW

SW SE

a

ỹ

USE

NENW

SW SE

a

ỹ

UNE

USE

NENW

SW SE

a

ỹ
v

USE

UNW NENW

SW SE

a

ỹ

USE

UNW

Figure 3 Yet uncovered points lie in the hatch-shaded region (top left). In Step 3, the entire
region can be covered by two quadrants if a ∈ UNE (top right). In Step 4, the hatch-shaded region
can be reduced using one or three quadrants, depending on whether a ∈ UNW (bottom). After
Step 4, any quadrant intersecting the remaining hatch-shaded region will not cover a.

a, computing the quadrants Φ→(a,QSW), Φ→(a,QNW), Φ↑(a,QSE), Φ↑(a,QNE) for a given
point a, and computing φ(ỹ) for a given number ỹ. All these tasks except the computation
of φ(·) can be easily done in Õ(1) time by storing the quadrants in binary search trees. To
compute φ(·) in Õ(1) time is more difficult, and we achieve this by properly using range
trees built on both S and QSE. The details are presented in the full version [2].

Using the above algorithm, we can compute O(1)-approximate optimal set covers for
(S ∩ USE,Q), (S ∩ USW,Q), (S ∩ UNE,Q), and (S ∩ UNW,Q). As argued before, the union
of these four set covers, denoted by Q∗, is an O(1)-approximate optimal set covers for (S,Q).

I Theorem 9. Quadrant set cover admits an O(1)-approximate output-sensitive algorithm.

3.3 Putting everything together
With the bootstrapping theorem in hand, we are now able to design our dynamic quadrant-
set-cover data structure. Again, the starting point is a “trivial” data structure which uses the
output-sensitive algorithm of Theorem 9 to re-compute an optimal quadrant set cover after

SoCG 2020

2:14 Dynamic Geometric Set Cover and Hitting Set

each update. Clearly, the update time of this data structure is Õ(n) and the construction
time is Õ(n0). Let µ = O(1) be the approximation ratio of the output-sensitive algorithm.
The trivial data structure implies the existence of a (µ+ ε)-approximate dynamic quadrant-
set-cover data structure with Õ(nα0/ε1−α0) amortized update time for α0 = 1 and Õ(n0)
construction time. Define αi = 2αi−1/(1 + 2αi−1) for i ≥ 1. By applying Theorem 5 i times
for a constant i ≥ 1, we see the existence of a (µ+ε)-approximate dynamic quadrant-set-cover
data structure with Õ(nαi/ε1−αi) amortized update time and Õ(n0) construction time. One
can easily verify that αi = 2i/(2i+1 − 1) for all i ≥ 0. Therefore, for any constant α > 0,
we have a constant i ≥ 0 satisfying αi < 1/2 + α and hence Õ(nαi/ε1−αi) = O(n1/2+α/ε).
Setting ε to be any constant, we finally conclude the following.

I Theorem 10. Let (S,Q) be an instance of quadrant set cover, with n = |S| + |Q|. Let
α > 0 be an arbitrarily small constant. There exists an O(1)-approximate dynamic quadrant-
set-cover data structure with O(n1/2+α) amortized update time.

As mentioned earlier, set cover for unit squares can be reduced to instances of quadrant set
cover. In particular, we prove the following lemma in the full version [2]:

I Lemma 11. Suppose there exists a c-approximate dynamic quadrant-set-cover data structure
with f(n) amortized update time, where f is an increasing function. Then there exist O(c)-
approximate dynamic unit-square-set-cover, dynamic unit-square-hitting-set, and dynamic
quadrant-hitting-set data structures with Õ(f(n)) amortized update time.

Finally, it can be verified that the hitting-set problem for quadrants (resp., unit squares) is
the same as the set-cover problem for quadrants (resp., unit squares). We thus conclude the
following.

I Theorem 12. Let (S,R) be an instance of unit-square set cover, unit-square hitting set,
or quadrant hitting set, with n = |S|+ |R|. Let α > 0 be an arbitrarily small constant. There
exists an O(1)-approximate dynamic data structure for (S,R) with O(n1/2+α) amortized
update time.

References
1 Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna

Saha. Dynamic set cover: improved algorithms and lower bounds. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pages 114–125. ACM, 2019.

2 Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic
geometric set cover and hitting set. arXiv preprint, 2020. arXiv:2003.00202.

3 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and
set covers. In Proceedings of the thirtieth annual symposium on Computational geometry, page
271. ACM, 2014.

4 Pankaj K. Agarwal, Junyi Xie, Jun Yang, and Hai Yu. Monitoring continuous band-join
queries over dynamic data. In 16th International Symposium on Algorithms and Computation
(ISAAC), pages 349–359. Springer, 2005.

5 Piotr Berman and Bhaskar DasGupta. Complexities of efficient solutions of rectilinear polygon
cover problems. Algorithmica, 17(4):331–356, 1997.

6 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F Italiano. Design of dynamic algo-
rithms via primal-dual method. In International Colloquium on Automata, Languages, and
Programming, pages 206–218. Springer, 2015.

7 Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233–235, 1979.

http://arxiv.org/abs/2003.00202

P.K. Agarwal, H.-C. Chang, S. Suri, A. Xiao, and J. Xue 2:15

8 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the
forty-sixth annual ACM Symposium on Theory of Computing, pages 624–633. ACM, 2014.

9 Thomas Erlebach and Erik Jan Van Leeuwen. Ptas for weighted set cover on unit squares. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 166–177. Springer, 2010.

10 Shashidhara K. Ganjugunte. Geometric hitting sets and their variants. PhD thesis, Duke
University, 2011.

11 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 537–550. ACM, 2017.

12 Juris Hartmanis. Computers and intractability: a guide to the theory of np-completeness.
Siam Review, 24(1):90, 1982.

13 David S. Johnson. Approximation algorithms for combinatorial problems. Journal of computer
and system sciences, 9(3):256–278, 1974.

14 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

15 László Lovász. On the ratio of optimal integral and fractional covers. Discrete mathematics,
13(4):383–390, 1975.

16 Nimrod Megiddo and Kenneth J. Supowit. On the complexity of some common geometric
location problems. SIAM journal on computing, 13(1):182–196, 1984.

17 Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane.
Operations research letters, 1(5):194–197, 1982.

18 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

SoCG 2020

The Parameterized Complexity of Guarding
Almost Convex Polygons
Akanksha Agrawal
Ben-Gurion University, Beer-Sheba, Israel
agrawal@post.bgu.ac.il

Kristine V. K. Knudsen
University of Bergen, Bergen, Norway
kristine.knudsen@ii.uib.no

Daniel Lokshtanov
University of California, Santa Barbara, CA, USA
daniello@ucsb.edu

Saket Saurabh
The Institute of Mathematical Sciences, HBNI, Chennai, India
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University, Beer-Sheba, Israel
meiravze@bgu.ac.il

Abstract
The Art Gallery problem is a fundamental visibility problem in Computational Geometry. The
input consists of a simple polygon P , (possibly infinite) sets G and C of points within P , and an
integer k; the task is to decide if at most k guards can be placed on points in G so that every point
in C is visible to at least one guard. In the classic formulation of Art Gallery, G and C consist of
all the points within P . Other well-known variants restrict G and C to consist either of all the points
on the boundary of P or of all the vertices of P . Recently, three new important discoveries were
made: the above mentioned variants of Art Gallery are all W[1]-hard with respect to k [Bonnet
and Miltzow, ESA’16], the classic variant has an O(log k)-approximation algorithm [Bonnet and
Miltzow, SoCG’17], and it may require irrational guards [Abrahamsen et al., SoCG’17]. Building
upon the third result, the classic variant and the case where G consists only of all the points on the
boundary of P were both shown to be ∃R-complete [Abrahamsen et al., STOC’18]. Even when both
G and C consist only of all the points on the boundary of P , the problem is not known to be in NP.

Given the first discovery, the following question was posed by Giannopoulos [Lorentz Center
Workshop, 2016]: Is Art Gallery FPT with respect to r, the number of reflex vertices? In light
of the developments above, we focus on the variant where G and C consist of all the vertices of P ,
called Vertex-Vertex Art Gallery. Apart from being a variant of Art Gallery, this case
can also be viewed as the classic Dominating Set problem in the visibility graph of a polygon. In
this article, we show that the answer to the question by Giannopoulos is positive: Vertex-Vertex
Art Gallery is solvable in time rO(r2)nO(1). Furthermore, our approach extends to assert that
Vertex-Boundary Art Gallery and Boundary-Vertex Art Gallery are both FPT as well.
To this end, we utilize structural properties of “almost convex polygons” to present a two-stage
reduction from Vertex-Vertex Art Gallery to a new constraint satisfaction problem (whose
solution is also provided in this paper) where constraints have arity 2 and involve monotone functions.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Computational geometry

Keywords and phrases Art Gallery, Reflex vertices, Monotone 2-CSP, Parameterized Complexity,
Fixed Parameter Tractability

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.3

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.07793.

© Akanksha Agrawal, Kristine V.K. Knudsen, Daniel Lokshtanov, Saket Saurabh,
and Meirav Zehavi;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0656-7572
mailto:agrawal@post.bgu.ac.il
mailto:kristine.knudsen@ii.uib.no
mailto:daniello@ucsb.edu
mailto:saket@imsc.res.in
https://orcid.org/0000-0002-3636-5322
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.SoCG.2020.3
https://arxiv.org/abs/2003.07793
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 The Parameterized Complexity of Guarding Almost Convex Polygons

Funding Akanksha Agrawal: the PBC Fellowship Program for Outstanding Post-Doctoral Re-
searchers from China and India.
Daniel Lokshtanov: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (no. 715744), and United States – Israel Binational Science
Foundation (no. 2018302).
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020 research

 and innovation programme (no. 819416), and Swarnajayanti Fellowship (no. DST/SJF/MSA01/

2017-18).
Meirav Zehavi: Israel Science Foundation grant no. 1176/18, and United States – Israel Binational
Science Foundation (no. 2018302).

Acknowledgements We thank anonymous reviewers for helpful comments that improved and sim-
plified the paper.

1 Introduction

Given a simple polygon P on n vertices, two points x and y within P are visible to each other
if the line segment between x and y is contained in P . Accordingly, a set S of points within P
is said to guard another set Q of points within P if, for every point q ∈ Q, there is some point
s ∈ S such that q and s are visible to each other. The computational problem that arises
from this notion is loosely termed the Art Gallery problem. In its general formulation,
the input consists of a simple polygon P , possibly infinite sets G and C of points within P ,
and a non-negative integer k. The task is to decide whether at most k guards can be placed
on points in G so that every point in C is visible to at least one guard. The most well-known
cases of Art Gallery are identified as follows: the X-Y Art Gallery problem is the Art
Gallery problem where G is the set of all points within P (if X=Point), all boundary
points of P (if X=Boundary), or all vertices of P (if X=Vertex), and C is defined
analogously with respect to Y. The classic variant of Art Gallery is the Point-Point
Art Gallery problem. Nevertheless, all variants where X=Vertex or Y=Point received
attention in the literature.1 In particular, Vertex-Vertex Art Gallery is equivalent to
the classic Dominating Set problem in the visibility graph of a polygon.

Art Gallery is a fundamental visibility problem in Discrete and Computational
Geometry, which was extensively studied from both combinatorial and algorithmic viewpoints.
The problem was first proposed by Victor Klee in 1973, which prompted a flurry of results [15,
page 1]. The main combinatorial question posed by Klee was how many guards are sufficient
to see every point of the interior of an n-vertex simple polygon? Chvátal [6] showed in
1975 that bn

3 c guards are always sufficient and sometimes necessary for any n-vertex simple
polygon (see [8] for a simpler proof by Fisk). After this, many variants of Art Gallery,
based on different definitions of visibility, restricted classes of polygons, different shapes of
guards, and mobility of guards, have been defined and analyzed. A book [15] and several
extensive surveys and book chapters were dedicated to Art Gallery and its variants (see,
e.g., [7, 18, 19]). In this article, our main proof states that Vertex-Vertex Art Gallery
is fixed-parameter tractable (FPT) parameterized by r, the number of reflex vertices of
P . Additionally, we show that both Vertex-Boundary Art Gallery and Boundary-
Vertex Art Gallery are FPT with respect to the number of reflex vertices as well.

1 The X-Y Art Gallery problem, for any X,Y ∈ {Point, Boundary, Vertex}, is often loosely termed
the Art Gallery problem. For example, in the survey of open problems by Ghosh and Goswami [9],
the term Art Gallery problem refers to the Vertex-Vertex Art Gallery problem.

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:3

1.1 Background: Related Algorithmic Works
We focus only on algorithmic works on X-Y Art Gallery for X,Y∈ {Point,Boundary,
Vertex}. (The discussions regarding known approximation and exact algorithms can be
found in the full version [4] of the paper.)

Hardness. In 1983, O’Rourke and Supowit [16] proved that Point-Point Art Gallery
is NP-hard if the polygon can contain holes. The requirement to allow holes was lifted shortly
afterwards [3]. In 1986, Lee and Lin [12] showed that Vertex-Point Art Gallery is
NP-hard. This result extends to Vertex-Vertex Art Gallery and Vertex-Boundary
Art Gallery. Later, numerous other restricted cases were shown to be NP-hard as well.
For example, NP-hardness was established for orthogonal polygons by Katz and Roisman
[11] and Schuchardt and Hecker [17]. We remark that the reductions that show that X-Y
Art Gallery (for X,Y ∈ {Point, Boundary, Vertex}) is NP-hard also imply that these
cases cannot be solved in time 2o(n) under the Exponential-Time Hypothesis (ETH).

While it has long been known that even very restricted cases of Art Gallery are NP-
hard, the inclusion of X-Y Art Gallery, for X,Y ∈ {Point, Boundary}, in NP remained
open. (When X=Vertex, the problem is clearly in NP.) In 2017, Abrahamsen et al. [1]
began to reveal the reasons behind this discrepancy for the Point-Point Art Gallery
problem: they showed that exact solutions to this problem sometimes require placement
of guards on points with irrational coordinates. Shortly afterwards, they extended this
discovery to prove that Point-Point Art Gallery and Boundary-Point Art Gallery
are ∃R-complete [2]. Roughly speaking, this result means that (i) any system of polynomial
equations over the real numbers can be encoded as an instance of Point/Boundary-Point
Art Gallery, and (ii) these problems are not in the complexity class NP unless NP = ∃R.

Parameterized Complexity. Two years ago, Bonnet and Miltzow [5] showed that Vertex-
Point Art Gallery and Point-Point Art Gallery are W[1]-hard with respect to
the solution size, k. With straightforward adaptations, their results extend to most of the
known variants of the problem, including Vertex-Vertex Art Gallery. Thus, the classic
parameterization by solution size leads to a dead-end. However, this does not rule out the
existence of FPT algorithms for non-trivial structural parametrizations. We refer to the nice
surveys by Niedermeier on the art of parameterizations [13, 14].

1.2 Giannopoulos’s Parameterization and Our Contribution
In light of the W[1]-hardness result by Bonnet and Miltzow [5], Giannopoulos [10] proposed
to parameterize the Art Gallery problem by the number r of reflex vertices of the input
polygon P . Specifically, Giannopoulos [10] posed the following open problem: “Guarding
simple polygons has been recently shown to be W[1]-hard w.r.t. the number of (vertex or
edge) guards. Is the problem FPT w.r.t. the number of reflex vertices of the polygon?” The
motivation behind this proposal is encapsulated by the following well-known proposition,
see [15, Sections 2.5-2.6].

I Proposition 1 (Folklore). For any polygon P , the set of reflex vertices of P guards the set
of all points within P .

That is, the minimum number k of guards needed (for any of the cases of Art Gallery)
is upper bounded by the number of reflex vertices r. Clearly, k can be arbitrarily smaller than
r (see Fig. 1). Our main result is that the Vertex-Vertex Art Gallery problem is FPT
parameterized by r. This implies that guarding the vertex set of “almost convex polygons” is
easy. In particular, whenever r2 log r = O(logn), the problem is solvable in polynomial time.

SoCG 2020

3:4 The Parameterized Complexity of Guarding Almost Convex Polygons

Figure 1 The solution size k = 1, yet the number of reflex vertices r is arbitrarily large.

I Theorem 2. Vertex-Vertex Art Gallery is FPT parameterized by r, the number of
reflex vertices. In particular, it admits an algorithm with running time rO(r2)nO(1).

A few remarks are in place. First, our result extends (with straightforward adaptation) to
the most general discrete annotated case of Art Gallery where G and C are each a subset
of the vertex set of the polygon, which can include points where the interior angle is of 180
degrees. Consequently, a simple discretization procedure shows that Vertex-Boundary
Art Gallery and Boundary-Vertex Art Gallery are both FPT parameterized by
r as well. However, we do not know how to handle Vertex-Point Art Gallery and
Point-Vertex Art Gallery; determining whether these variants are FPT with respect to
r remains open. Second, for variants where both X 6= Vertex and Y 6= Vertex, the design
of exact algorithms poses extremely difficult challenges. As discussed earlier, these cases
are not even known to be in NP; in particular, Point-Point Art gallery is ∃R-hard [2].
Moreover, there is only one known exact algorithm that resolves these cases and it employs
extremely powerful machinery (as a black box), not known to be avoidable. Third, note that
our result is among very few positive results that concern optimal solutions to (any case of)
Art Gallery.

Along the way to establish our main result, we prove that a constraint satisfaction
problem called Monotone 2-CSP is solvable in polynomial time. This result might be
of independent interest. Informally, in Monotone 2-CSP, we are given k variables and
m constraints. Each constraint is of the form [x sign f(x′)] where x and x′ are variables,
sign ∈ {≤,≥}, and f is a monotone function. The objective is to assign an integer from
{0, 1, . . . , N} to each variable so that all of the constraints will be satisfied. For this problem,
we develop a surprisingly simple algorithm based on a reduction to 2-CNF-SAT.

I Theorem 3 (♠2). Monotone 2-CSP is solvable in polynomial time.

The main technical component of our work is an exponential-time reduction that creates
an exponential (in r) number of instances of Monotone 2-CSP so that the original instance
is a Yes-instance if and only if at least one of the instances of Monotone 2-CSP is a
Yes-instance. Our reduction is done in two stages due to its structural complexity. In the
first stage of the reduction, we aim to make “guesses” that determine the relations between
the “elements” of the problem (that are the “critical” visibility relations in our case) and
thereby elucidate and further binarize them (which, in our case, is required to impose order
on guards). This part requires exponential time (given that there are exponentially many
guesses) and captures the “NP-hardness” of the problem. Then, the second stage of the
reduction is to translate each guess into an instance of Monotone 2-CSP. This part, while

2 Details of the results marked with ♠ can be found in the full version of the paper [4].

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:5

Vertex-Vertex Art
Gallery

Structured Art Gallery

Structured Art Gallery

Structured Art Gallery

1. Structural Claims

2. Turing Reduction
Monotone 2-CSP

Monotone 2-CSP

Monotone 2-CSP

3. Karp Reduction

4. Polynomial time algorithm for
Monotone 2-CSP

1. Structural Claims

rO(r2) instances

poly time

poly time

poly time

Figure 2 The four components of our proof.

requiring polynomial time, relies on a highly non-trivial problem-specific insight – specifically,
here we need to assert that the relations considered earlier can be encoded by constraints
that are not only binary, but that the functions they involve are monotone. We strongly
believe that our approach can be proven fruitful to resolve the parameterized complexity of
other problems of discrete geometric flavour.

1.3 Our Methods and Preliminaries

Our Methods. The proof of Theorem 2 consists of four components (see Fig. 2). The
first component (in Section 2.1) establishes several structural claims regarding monotone
properties of visibility in polygons. Informally, we order the vertices of the polygon according
to their appearance on the boundary, and consider each sequence between two reflex vertices
to be a “convex region”. Then, we argue that for every pair of convex regions, as we “move
along” one of them, the (index of the) first vertex in the other region that we see either
never becomes smaller or never becomes larger. Symmetrically, this claim also holds for the
last visible vertices that we encounter. In addition, we argue that if a vertex sees some two
vertices in a convex region, then it also sees all vertices in between these two vertices.

Our second component (in Section 2.2) is a Turing reduction to an intermediate problem
that we term Structured Art Gallery. Roughly speaking, in this problem, each convex
region “announces” how many guards it will contain, and how many guards are necessary
to see it completely. In addition, it announces that a prefix of the sequence that forms this
region will be guarded by, say, “the ith guard to be placed on region C”, then the following
subsequence will be guarded by, say, “the jth guard to be placed on region C ′”, and so on,
until it announces how a suffix of it is to be guarded. We stress that the identity of what is
“the ith guard to be placed on region C”, or what is “the jth guard to be placed on region
C ′”, are of course not known, and should be discovered. Moreover, even the division into
subsequences is not known. In Structured Art Gallery, we only focus on solutions that
are of the above form. We utilize our second component not only to impose these additional
conditions, but also to begin the transition from the usage of visibility-based conditions to
function-based constraints. Specifically, functions called first and last will encode, for any
vertex v and convex region C, the first and last vertices in C visible to v. To argue that such
simple functions encode all necessary information concerning visibility, we make use of the
structural claims established earlier.

SoCG 2020

3:6 The Parameterized Complexity of Guarding Almost Convex Polygons

Our third component (in Section 2.3) is a Karp reduction from Structured Art
Gallery to the constraint satisfaction problem, Monotone 2-CSP, discussed in Section
1.2. This is the part of the proof that most critically relies on all of the structural claims
established earlier. Here, we need to translate the constraints imposed by Structured
Art Gallery into constraints that comply with the very restricted form of an instance
of Monotone 2-CSP, namely, being monotone and involving only two variables. We
remark that if one removes the requirement of monotonicity, or allows each constraint to
consist of more variables, then the problem can be easily shown to encode Clique and
hence become W[1]-hard (see Section 2.3). The translation entails a non-trivial analysis
to ensure that all functions are indeed monotone. Specifically, each convex region requires
its own set of tailored functions to enforce some relationships between the (unknown)
guards it announced to contain and the (unknown) subsequences that these guards are
supposed to see. In a sense, our first three components extract the algebraic essence of the
Vertex-Vertex Art Gallery problem: by identifying monotone properties and making
guesses to ensure binary dependencies between solution elements, the problem is encoded by
a restricted constraint satisfaction problem.

Lastly, our fourth component is a relatively simple polynomial-time algorithm for Mono-
tone 2-CSP (see Theorem 3), based on a reduction to 2-CNF-SAT. The crux is not to
encode every pair of a variable of Monotone 2-CSP and a potential value for it as a variable
of 2-CNF-SAT that signifies equality, because then, although the functions become easily
encodable in the language of 2-CNF-SAT, it is unclear how to ensure that each variable of
Monotone 2-CSP will be in exactly one pair that corresponds to a variable assigned true
when satisfying the 2-CNF-SAT formula. Indeed, the naive approach seems futile, because it
does not exploit the monotonicity of the input functions. Instead, for each pair of a variable
of Monotone 2-CSP and a potential value for it with the exception of 0, we introduce
a variable of 2-CNF-SAT signifying that the variable is assigned at least the value in the
pair. The assignment of value 0 is implicitly encoded by the negation of pairs with the value
1. Then, we can ensure that each variable is assigned exactly one value (when translating
a truth assignment for the 2-CNF-SAT instance we created back into an assignment for
the Monotone 2-CSP input instance), and by relying on the monotonicty of the input
functions, we are able to encode them correctly in the language of 2-CNF-SAT.

For notational clarity, we describe our proof for Vertex-Vertex Art Gallery. How-
ever, all arguments extend in a straightforward manner to solve the annotated generalization
of Vertex-Vertex Art Gallery where G and C are each a subset of the vertex set of the
polygon. Then, simple discretization procedures yield the positive resolution of the param-
eterized complexity also of Vertex-Boundary Art Gallery and Boundary-Vertex
Art Gallery (see Section 5 of the full version [4]).

Preliminaries. We use the abbreviation Art Gallery to refer to Vertex-Vertex Art
Gallery. We model a polygon by a graph P = (V,E) with V = {1, 2, . . . , n} and E =
{{i, i+1}} : i ∈ {1, . . . , n−1}}∪{{n, 1}}. For a simple polygon P , we consider the boundary
of P as part of its interior. We slightly abuse notation and refer to vertices i ∈ V where the
interior angle of P at i is 180 degrees as convex vertices. We denote the set of reflex vertices
of P by reflex(P), and the set of convex vertices of P by convex(P). Given a non-convex
polygon P = (V,E), we suppose w.l.o.g. that 1 ∈ V is a reflex vertex. We say that a point p
sees (or is visible to) a point q if every point of the line segment pq belongs to the interior of
P . More generally, a set of points S sees a set of points Q if every point in Q is seen by at
least one point in S. The definition of a convex polygon asserts the following.

I Observation 4. Any point within a convex polygon P sees all points within P .

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:7

1

2

3 4

5

6

7

8

9

10 11

12

13

14

15

16

17

Figure 3 A simple polygon with three maximal convex regions: [2, 7], [9] and [13, 17]. Although
2, 5 ∈ [2, 7] belong to the same convex region, they do not see each other.

2 Algorithm for Art Gallery

In this section, we prove that Art Gallery is FPT with respect to r, the number of reflex
vertices, by developing an algorithm with running time 2O(r2 log r)nO(1). We first present
structural claims that exhibit the monotone way in which vertices in a so called “convex region”
see vertices in another such region (Section 2.1). Then, we present a Turing reduction from
Art Gallery to a problem called Structured Art Gallery (Section 2.2). Next, based on
the claims in Section 2.1, we present our main reduction, which translates Structured Art
Gallery to Monotone 2-CSP (Section 2.3). By developing an algorithm for Monotone
2-CSP, we conclude the proof.

2.1 Simple Structural Claims
We begin our analysis with the definition of a subsequence of vertices termed a convex region,
illustrated in Fig. 3. Below, j + 1 for j = n refers to 1. Because we assumed that vertex 1 of
any non-convex polygon is a reflex vertex, any convex region [i, j] satisfies i 6= 1.

I Definition 5. Let P = (V,E) be a simple polygon. A non-empty set of vertices [i, j] =
{i, i+ 1, . . . , j} is a convex region of P if all the vertices in [i, j] are convex. In addition, if
i− 1 ≥ 1 and j + 1 are reflex vertices, then [i, j] is a maximal convex region.

In what follows, we would like to argue that for every two (not necessarily distinct) convex
regions, one convex region sees the other in a manner that is “monotone” for each “orientation”
in which we traverse these regions. To formalize this, we make use of the following notation,
illustrated in Fig. 4. For a polygon P = (V,E), a convex region [i, j] of P and a vertex
v ∈ V , denote the smallest and largest vertices in [i, j] that are seen by v by first(v, [i, j]) and
last(v, [i, j]), respectively. If v sees no vertex in [i, j], define first(v, [i, j]) = last(v, [i, j]) = nil.
Accordingly, we define two types of monotone views. First, we address the orientation
corresponding to first (see Fig. 4). Roughly speaking, we say that the way a convex region
[i, j] views a convex region [i′, j′] is, say, non-decreasing with respect to first, if when we
traverse [i, j] from i to j and consider the first vertices in [i′, j′] that vertices in [i, j] see, then
the sequence of these first vertices (viewed as integers) is a monotonically non-decreasing
sequence once we omit all occurrences of nil from it.3 We further demand that, between two
equal vertices in this sequence, no nil occurs. Formally,

3 A non-decreasing function (or sequence) is one that never decreases but can sometimes not increase.

SoCG 2020

3:8 The Parameterized Complexity of Guarding Almost Convex Polygons

1

2

17

3

4 5

6

7
8

9

10

11 12 13 14 15

16

18

19

first(2,[8,19]) = 9 last(2,[8,19]) = 11

first(3,[8,19]) = 12 last(3,[8,19]) = 15

first(4,[8,19]) = 14 last(4,[8,19]) = 15

first(5,[8,19]) = nil last(5,[8,19]) = nil

first(6,[8,19]) = 17 last(6,[8,19]) = 17

Figure 4 The way [2, 6] views [8, 19] is non-decreasing with respect to both first and last.

I Definition 6. Let P = (V,E) be a simple polygon. We say that the way a convex region
[i, j] of P views a (not necessarily distinct) convex region [i′, j′] of P is non-decreasing
(resp. non-increasing) with respect to first if for all t, t̂ ∈ {i, i + 1, . . . , j} such that t ≤ t̂,
first(t, [i′, j′]) 6= nil and first(t̂, [i′, j′]) 6= nil, we have that

first(t, [i′, j′]) ≤ first(t̂, [i′, j′]) (resp. first(t, [i′, j′]) ≥ first(t̂, [i′, j′])), and
if first(t, [i′, j′]) = first(t̂, [i′, j′]), then for all p ∈ {t, . . . , t̂}, first(p, [i′, j′]) = first(t, [i′, j′]).4

Symmetrically, we address the orientation corresponding to the notation last.

I Definition 7. Let P = (V,E) be a simple polygon. We say that the way a convex region
[i, j] of P views a (not necessarily distinct) convex region [i′, j′] of P is non-decreasing
(resp. non-increasing) with respect to last if for all t, t̂ ∈ {i, i + 1, . . . , j} such that t ≤ t̂,
last(t, [i′, j′]) 6= nil and last(t̂, [i′, j′]) 6= nil, we have that

last(t, [i′, j′]) ≤ last(t̂, [i′, j′]) (resp. last(t, [i′, j′]) ≥ last(t̂, [i′, j′])), and
if last(t, [i′, j′]) = last(t̂, [i′, j′]), then for all p ∈ {t, . . . , t̂}, last(p, [i′, j′]) = last(t, [i′, j′]).

The main purpose of this section is to prove the following two lemmas. We believe that
some arguments required to establish their proofs might be folklore. The first lemma asserts
that the subsequence seen by a vertex within a convex region does not contain “gaps”.

I Lemma 8 (♠). Let P = (V,E) be a simple polygon, v ∈ V , and [i, j] be a convex region
of P . Then, v sees every vertex t ∈ [i, j] such that first(v, [i, j]) ≤ t ≤ last(v, [i, j]).5

The second lemma asserts that views are monotone. Intuitively, whenever we move along
a convex region [i, j] while viewing a convex region [i′, j′] as described earlier, the first vertices
(and last vertices) seen form a non-increasing or non-decreasing sequence.6

I Lemma 9 (♠). Let P = (V,E) be a simple polygon, and let [i, j] and [i′, j′] be two (not
necessarily distinct) maximal convex regions of P . Then, (i) the way in which [i, j] views
[i′, j′] with respect to first is either non-decreasing or non-increasing, and (ii) the way in
which [i, j] views [i′, j′] with respect to last is either non-decreasing or non-increasing.

4 We remark that this condition cannot be replaced by “for all p ∈ {t, . . . , t̂}, first(p, [i′, j′]) 6= nil”. For
example, in Fig. 4, neither first(4, [8, 19]) nor first(6, [8, 19]) is nil, but first(5, [8, 19]) = nil.

5 If v does not see any vertex in [i, j], the claim holds vacuously.
6 We remark that we do not know whether it is possible that the first vertices would form a non-increasing
(or non-decreasing) sequence and the last vertices would not. Our weaker claim suffices for our purposes.

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:9

ig(1) = ig([2,4]) = ig(6) = ig(7) = ig(15) = ig([16]) = ig(17) = ig(23) = 0

ig(5) = ig([18,22]) = 1

ig([8,14]) = 3

og(1) = og([2,4]) = og(5) = og(6) = og(7) = og(15) = og([16]) = og(17) = og(23) = 1

og([8,14]) = 2

og([18,22]) = 3

how[18,22]: 1 → ([8,14],1), 2 → (5,1), 3 → ([18,22],1)

how[8,14]: 1 → ([8,14],1), 2 → ([8,14],3)

how1(1) = how[2,4](1) = how5(1) = how6(1) = (5,1)

how7(1) = how15(1) = how17(1) = ([8,14],1)

how[16](1) = ([8,14],2)

how23(1) = ([18,22],1)

8
1

2 3

4 5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21 22

Input.

23

Solution. S ={5, 9, 10, 12, 22}

k = 5

s(5,1)=5, s([8,14],1)=9, s([8,14],2)=10, s([8,14],3)=12, s([18,22],1)=22

Figure 5 An input and a solution for the Structured Art Gallery problem.

2.2 Turing Reduction to Structured Art Gallery

An intermediate step in our reduction from Art Gallery to Monotone 2-CSP addresses
an annotated version of Art Gallery, called Structured Art Gallery. Intuitively, in
Structured Art Gallery each convex region “announces” how many guards it should
contain, and how many guards are to be used to see it completely. In addition, each convex
region announces by which unknown guard (identified as “the ith guard to be placed on
region C” for some i and C) its prefix should be guarded, by which unknown guard a region
after this prefix should be guarded, and so on. In what follows, we formally define the
Structured Art Gallery problem; then, we present our reduction from Art Gallery
to Structured Art Gallery, and afterwards argue that this reduction is correct. For a
polygon P , let C(P) be the set of maximal convex regions of P . Note that |C(P)| ≤ r.

Problem Definition. The input of Structured Art Gallery consists of a simple polygon
P = (V,E), a non-negative integer k < r, and the following functions (see Fig. 5).

ig : C(P) ∪ reflex(P) → {0, . . . , k}, where
∑

x∈C(P)∪reflex(P) ig(x) ≤ k. Intuitively, for a
convex region or reflex vertex x, ig assigns the number of guards to be placed in x.
og : C(P) ∪ reflex(P)→ {1, . . . , k}, where for all x ∈ reflex(P), og(x) = 1. Intuitively, for
a convex region or reflex vertex x, og assigns the number of guards required to see x.
For each x ∈ C(P) ∪ reflex(P), howx : {1, . . . , og(x)} → (C(P) ∪ reflex(P)) × {1, . . . , k},
where for each (y, i) in the image of howx, i ≤ ig(y). Intuitively, for any j ∈ {1, . . . , og(x)},
howx(j) = (y, i) indicates that the jth guard required to see x is the ith guard placed in y.

The objective of Structured Art Gallery is to determine whether there exists a set
S ⊆ V of size at most k such that the following conditions hold:

SoCG 2020

3:10 The Parameterized Complexity of Guarding Almost Convex Polygons

8
1

2 3

4 5

6

7

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

For C = [8,14] and t = 1:

i = 11, j = 11, q = 14

For C = [18,22] and t = 1:

i = 19, j = 20, q = 20

For C = [18,22] and t = 2:

i = 20, j = 21, q = 22

first

last

Input and solution in Fig. 3.

Figure 6 Condition 3b satisfied by a solution for Structured Art Gallery.

1. For each x ∈ C(P)∪ reflex(P), |S ∩x| = ig(x).7 Accordingly, for each x ∈ C(P)∪ reflex(P)
and i ∈ {1, . . . , ig(x)}, let s(x,i) denote the ith largest vertex in S ∩ x (see Fig. 5).

2. For each x ∈ reflex(P), showx(1) sees x.
3. For each C ∈ C(P), the following conditions hold:

a. first(showC (1), C) is the smallest vertex in C.
b. For every t ∈ {1, . . . , og(C) − 1}, denote i = last(showC (t), C), j = first(showC(t+1), C)

and q = last(showC (t+1), C). Then, (i) i ≥ j − 1, and (ii) i ≤ q − 1. (See Fig. 6.)
c. last(showC (og(C)), C) is the largest vertex in C.

Informally, Condition 3b states that (i) the last vertex in C seen by its tth guard should be
at least as large as the predecessor of the first vertex in C seen by its (t+ 1)th guard, and
(ii) the last vertex in C seen by its tth guard should be smaller than the last vertex in C seen
by its (t+ 1)th guard. The first condition ensures that no unseen “gaps” are created within
C, while the second condition ensures that as the index t grows larger, the last vertex seen
by the tth guard grows larger as well. (The second condition will be part of our transition
towards the interpretation of the objective of Art Gallery by binary constraints.)

Turing Reduction. Given an instance (P, k) of Art Gallery, in case r ≤ k, output
Yes.8 Otherwise, the output of the reduction, reduction(P, k), is the set of all instances
(P, k, ig, og, {howx}|x∈C(P)∪reflex(P)) of Structured Art Gallery.

Observe that |C(P) ∪ reflex(P)| ≤ 2r, and therefore the number of possible functions ig is
upper bounded by (k + 1)2r, the number of possible functions og is upper bounded by k2r,
and for each x ∈ C(P) ∪ reflex(P), the number of possible functions howx is upper bounded
by (2rk)k. Hence, the number of instances produced is upper bounded by (k + 1)2r · k2r ·
((2rk)k)2r. When k ≤ r, this number is upper bounded by rO(r2). Moreover, the instances
in reduction(P, k) can be enumerated with polynomial delay. Thus,

I Observation 10. Let (P, k) be an instance of Art Gallery. Then, | reduction(P, k)| =
rO(r2), and reduction(P, k) is computable in time rO(r2)nO(1).

7 If x ∈ reflex(P), by S ∩ x we mean S ∩ {x}.
8 To comply with the formal definition of a Turing reduction, by Yes we mean a set with a single trivial

Yes-instance of Structured Art Gallery.

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:11

w2

w1

w3
w4

Figure 7 Example of a possible selection of w1, w2, . . . , wp. Solution vertices are colored green
and red, and C is colored blue.

Correctness. Our proof of correctness crucially relies on Lemma 8 and Proposition 1.

I Lemma 11. An instance (P, k) is a Yes-instance of Art Gallery if and only if there is
a Yes-instance of Structured Art Gallery in reduction(P, k).

Proof.
Forward Direction. Suppose that (P, k) is a Yes-instance of Art Gallery and that r > k.

Accordingly, let S ⊆ V be a solution to (P, k). We first define the function ig : C(P) ∪
reflex(P) → {0, . . . , k} as follows. For each x ∈ C(P) ∪ reflex(P), let ig(x) = |S ∩ x|.
Because |S| ≤ k (since S is a solution to (P, k)), we have that

∑
x∈C(P)∪reflex(P) ig(x) ≤ k.

For each x ∈ C(P)∪ reflex(P), we order the vertices in S ∩ x from smallest to largest, and
denote them accordingly by s(x,1), s(x,2), . . . , s(x,ig(x)).
We define the functions og : C(P) ∪ reflex(P)→ {1, . . . , k} and howx : {1, . . . , og(x)} →
(C(P) ∪ reflex(P)) × {1, . . . , k} for all x ∈ C(P) ∪ reflex(P). For each reflex vertex
x ∈ reflex(P), define og(x) = 1, and howx(1) = (y, i) for some vertex s(y,i) ∈ S that sees
x. The existence of such a vertex s(y,i) follows from the assertion that S is a solution
to (P, k). For each convex region C ∈ C(P), define og(C) and howC as follows. Let W
denote the set of vertices in S that see at least one vertex in C. Since W sees C, there
exists a vertex in W that sees the smallest vertex in C. Pick such a vertex arbitrarily and
denote it by w1. Now, if w1 does not see the largest vertex in C, then there exists a vertex
in W that sees the smallest vertex in C that is larger than the largest vertex seen by w1.
We pick such a vertex arbitrarily, and denote it by w2. Next, if w2 does not see the largest
vertex in C, then there exists a vertex in W that sees the smallest vertex in C that is
larger than the largest vertex seen by w2. We pick such a vertex arbitrarily, and denote it
by w3. Similarly, we define w4, w5, . . . , wp, for the appropriate p ∈ {1, . . . , k} (see Fig. 7).
Here, the supposition that p ≤ k follows from Lemma 8, which implies that wi 6= wj

for all distinct i, j ∈ {1, . . . , p}. We define og(C) = p, and for all t ∈ {1, . . . , og(C)}, we
define howC(t) = (y, i) for the pair (y, i) ∈ (C(P) ∪ reflex(P))× {1, . . . , k} that satisfies
wt = s(y,i).
Our definitions directly ensure that for each C ∈ C(P), the following conditions hold:
1. first(showC(1), C) is the smallest vertex in C.
2. For every t ∈ {1, . . . , og(C) − 1}, denote i = last(showC (t), C), j = first(showC(t+1), C)

and q = last(showC (t+1), C). Then, (i) i ≥ j − 1, and (ii) i ≤ q − 1.
3. last(showC (og(C)), C) is the largest vertex in C.

SoCG 2020

3:12 The Parameterized Complexity of Guarding Almost Convex Polygons

By the arguments above, I = (P, k, ig, og, {howx}|x∈C(P)∪reflex(P)) is an instance of Struc-
tured Art Gallery, and S is a solution to I. Since I ∈ reduction(P, k), the proof of
the forward direction is complete.

Reverse Direction. If k ≥ r, then we output Yes (or rather a trivial Yes-instance), and
by Proposition 1, indeed the input is a Yes-instance as well. Next, suppose that k < r,
and there is a Yes-instance I = (P, k, ig, og, {howx}|x∈C(P)∪reflex(P)) in reduction(P, k).
Accordingly, let S ⊆ V be a solution to I. Then, |S| ≤ k. Thus, to prove that (P, k) is a
Yes-instance of Art Gallery, it suffices to show that S sees V . For each x ∈ reflex(P),
showx(1) sees x, and therefore S sees reflex(P).
Now, we show that S sees convex(P). To this end, we choose a convex region [i, j] ∈ C(P),
and show that S sees [i, j]. Specifically, for each p ∈ {i, . . . , j}, we prove that there is
t ∈ {1, . . . , og([i, j])} such that show[i,j](t) (which is a vertex in S) sees p. The proof is
by induction on p. In the basis, where p = i, correctness follows from the assertion
that first(show[i,j](1), [i, j]) is the smallest vertex in [i, j]. Now, we suppose that the
claim is correct for p, and prove it for p+ 1. By the inductive hypothesis, there is
t ∈ {1, . . . , og([i, j])} such that show[i,j](t) sees p. If show[i,j](t) sees p+ 1, then we are done.
Thus, we now suppose that show[i,j](t) does not see p+ 1. Then, last(show[i,j](t), [i, j]) = p.
We have two cases:

First, consider the case where t < og([i, j]). Then, because S is a solution to I, the
vertex p = last(show[i,j](t), [i, j]) is larger or equal to d−1 for d = first(show[i,j](t+1), [i, j]).
This means that first(show[i,j](t+1), [i, j]) ≤ p+ 1. Moreover, p is smaller than the vertex
last(show[i,j](t+1), [i, j]). Thus, p+ 1 ≤ last(show[i,j](t+1), [i, j]). Then, first(show[i,j](t+1),

[i, j]) ≤ p+ 1 ≤ last(show[i,j](t+1), [i, j]). By Lemma 8, show[i,j](t+1) sees p+ 1.
Second, consider the case where t = og([i, j]). In this case, because S is a solution
to I, we have that last(show[i,j](og([i,j])), [i, j]) is the largest vertex in [i, j]. Thus,
p+ 1 ≤ last(show[i,j](og([i,j])), [i, j]), which is a contradiction. J

2.3 Karp Reduction to Monotone 2-CSP
We proceed to the second part of our proof, a reduction from Structured Art Gallery to
Monotone 2-CSP.9 (The analysis of this can be found in the full version of the paper [4]).

Problem Definition. The input of Monotone 2-CSP consists of a set X of variables,
denoted by X = {x1, x2, . . . , x|X|}, a set C of constraints, and N ∈ N given in unary. Each
constraint c ∈ C has the form [xi sign f(xj)] where i, j ∈ {1, . . . , |X|}, sign ∈ {≥,≤} and
f : {0, . . . , N} → {0, . . . , N} is a monotone function. An assignment α : X → {0, . . . , N}
satisfies a constraint c = [xi sign f(xj)] ∈ C if [α(xi) sign f(α(xj))] is true. The objective
of Monotone 2-CSP is to decide if there exists an assignment α : X → {0, . . . , N} that
satisfies all the constraints in C (see Fig. 8).

If the function f of a constraint c = [xi sign f(xj)] is constantly β (that is, for every
t ∈ {0, . . . , N}, f(t) = β), then we use the shorthand c = [xi signβ]. Moreover, we suppose
that every constraint represented by a quadruple is associated with two distinct variables.

Karp Reduction. Given an instance I = (P, k, ig, og, {howx}|x∈C(P)∪reflex(P)) of Struc-
tured Art Gallery, define an instance reduction(I) = (X,C,N) of Monotone 2-CSP
as follows. Let k? =

∑
e∈C(P)∪reflex(P) ig(e), X = {x1, x2, . . . , xk?} and N = n + 1. (Here,

9 CSP is an abbreviation of Constraint Satisfaction Problem, and 2 is the maximum arity of a constraint.

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:13

X = {x1, x2, x3}

C = {[x1 ≥ f(x2)], [x1 ≤ g(x3)], [x2 ≤ h(x3)], [x2 ≥ 3]}

N = 5

Solution. (x1) = 2, (x2) = 3, (x3) = 5.

0

1

2

3

4

5

0 1 2 3 4 5

Constraint Functions

f g h

Figure 8 An input for Monotone 2-CSP that has a unique solution.

n = |V |.) Additionally, let bij be an arbitrary bijective function from X to {(e, i) : e ∈
C(P) ∪ reflex(P), i ∈ {1, . . . , ig(e)}}. Intuitively, for any variable x ∈ X with bij(x) = (e, i),
we think of x as the ith guard to be placed in region e. In particular, the value to be assigned
to x is the identity of this guard. The values 0 and n+ 1 are not identities of vertices in V ,
and we will ensure that no solution assignment assigns them; we note that these two values
are useful because they will allow us to exclude assignments that should not be solutions.
Next, we define our constraints and show that their functions are monotone.

Association. For each x ∈ X with bij(x) = (e, i), we need to ensure that the vertex assigned
to x is within the region e. To this end, we introduce the following constraints.

If e ∈ reflex(P), then insert the constraint [x = e]. (That is, insert [x ≤ e] and [x ≥ e].)
Else, bij(x) = (e, j) for e ∈ C(P). Let ` and h be the smallest and largest vertices in e,
respectively, and insert the constraints [x ≥ `] and [x ≤ h].

Let A denote this set of constraints.

Order in a convex region. For all x, x′ ∈ X where bij(x) = (C, i) and bij(x′) = (C, j) for
the same convex region C ∈ C(P) and i < j, we need to ensure that the vertex assigned to
x′ is larger than the one assigned to x. To this end, we introduce the constraint [x′ ≥ f(x)]
where f is defined as follows. For all q ∈ {0, . . . , N − 1}, f(q) = q+ 1, and f(N) = N . Let O
denote this set of constraints. We note that the constraints in A ∪O together enforce each
variable x ∈ X with bij(x) = (C, i) for C ∈ C(P) to be assigned the ith guard placed in C.

Guarding reflex vertices. For every reflex vertex y ∈ reflex(P) with howy(1) = (e, i), we
need to ensure that the vertex assigned to x = bij−1(e, i) sees y. To this end, consider two
cases. First, suppose that e ∈ reflex(P). Then, (i) if e does not see y, output No, and (ii)
else, no constraint is introduced. Second, suppose that e ∈ C(P). Denote ` = first(y, e) and
h = last(y, e). Then, (i) if ` (and thus also h) is nil, then output No, and (ii) else, introduce
the constraints c1

y = [x ≥ `] and c2
y = [x ≤ h].

Guarding first vertices in convex regions. For every convex region C = [q, q′] ∈ C(P) with
howC(1) = (e, i), we need to ensure that the vertex assigned to x = bij−1(e, i) sees q, the first
vertex of C. To this end, consider two cases. First, suppose that e ∈ reflex(P). Then, (i) if e
does not see q, output No, and (ii) else, no constraint is introduced. Second, suppose that
e ∈ C(P). Denote ` = first(q, e) and h = last(q, e). Then, (i) if ` is nil, then output No, and
(ii) else, insert the constraints c1

(C,1) = [x ≥ `] and c2
(C,1) = [x ≤ h].

SoCG 2020

3:14 The Parameterized Complexity of Guarding Almost Convex Polygons

Guarding last vertices in convex regions. For every convex region C = [q, q′] ∈ C(P) with
howC(og(C)) = (e, i), we need to ensure that the vertex assigned to x = bij−1(e, i) sees q′,
the last vertex of C. To this end, consider two cases. First, suppose that e ∈ reflex(P). Then,
(i) if e does not see q′, output No, and (ii) else, no constraint is introduced. Second, suppose
that e ∈ C(P). Denote ` = first(q′, e) and h = last(q′, e). Then, (i) if ` is nil, then output No,
and (ii) else, insert the constraints c1

(C,og(C)) = [x ≥ `] and c2
(C,og(C)) = [x ≤ h].

Guarding middle vertices in convex regions. For every convex region C ∈ C(P) and
t ∈ {2, . . . , og(C)}, we introduce four constraints based on the following notation.

(e, γ) = howC(t) and x = bij−1(e, γ). Intuitively, the tth vertex to guard C should be the
γth guard to be placed in e, and its precise identity should be assigned to x. If no vertex
in e sees at least one vertex in C, then return No.10 Let ` and h be the smallest and
largest vertices in e that see at least one vertex in C, respectively.
(e′, γ′) = howC(t− 1) and x′ = bij−1(e′, γ′). Intuitively, the (t− 1)th vertex to guard C
should be the γ′th guard to be placed in e′, and its precise identity should be assigned to
x′. If no vertex in e′ sees at least one vertex in C, then return No. Let `′ and h′ be the
smallest and largest vertices in e′ that see at least one vertex in C, respectively.

Now, insert the constraints c̃1
(C,t) = [x ≥ `] and c̃2

(C,t) = [x ≤ h]. Intuitively, these two
constraints help to ensure that x will be assigned a vertex that sees at least one vertex in C.
However, these constraints alone are insufficient for this task – ensuring that we pick a guard
between two vertices that see vertices in C does not ensure that this guard sees vertices in
C.11 Nevertheless, combined with our final constraints, this task is achieved.

Lastly, we consider two sets of four cases. The first set introduces a constraint to ensure
that x, which stands for the tth vertex to guard C, should satisfy that the first vertex in
C seen by x is smaller or equal than the vertex larger by 1 than the last vertex in C seen
by x′, which stands for the (t− 1)th vertex to guard C. On the other hand, the second set
introduces a constraint to ensure that the last vertex in C seen by x is larger than the last
vertex in C seen by x′. Together, because views have no “gaps”, this would imply that x
sees the vertex in C that is larger by 1 than the last vertex in C seen by x′. Due to lack of
space, we only present the first case of each set. (Omitted details can be found in the full
version [4]). To unify notation, if e (or e′) is a reflex vertex, we say that the way e (or e′)
views C is non-decreasing with respect to both first and last.

First, consider the case where the way e′ views C is non-decreasing with respect to
last, and the way e views C is non-decreasing with respect to first. We insert a constraint
[x ≤ f(x′)], where f (having domain and range {0, . . . , N}) is defined as follows.

For all i < `′: f(i) = 0. Intuitively, we forbid x to be assigned a vertex smaller than the
first vertex in e that can see C.
For i = `′, `′ + 1, . . . , h′: Denote a = last(i, C). We have two subcases.

If (i) a = nil, (ii) a+ 1 /∈ C, or (iii) first(j, C) ≤ a+ 1 for no j ∈ e, let f(i) = f(i− 1).
Roughly speaking, given that x′ sees C, a 6= nil (in cases we will care about). Moreover,
a+ 1 ∈ C will be ensured by the second set of cases and the way we guard the last
vertex of a convex region. Lastly, first(j, C) ≤ a+ 1 for some j ∈ e will be ensured
using that f(i− 1) (unless f(i− 1) = 0) is a vertex that sees a+ 1.

10 In case e ∈ reflex(P), we mean that e itself does not see any vertex in C.
11For example, in Fig. 4, neither first(4, [8, 19]) nor first(6, [8, 19]) is nil, but first(5, [8, 19]) = nil.

A. Agrawal, K. V. K. Knudsen, D. Lokshtanov, S. Saurabh, and M. Zehavi 3:15

Else, let j be the largest vertex in e such that first(j, C) ≤ a+ 1. Define f(i) = j.
Intuitively, by enforcing x to be smaller or equal than j – the largest vertex in e that
might see a+ 1 – we ensure that the following condition holds: the first vertex x sees
in C, under the assumption that it is not nil,12 is smaller or equal to a+ 1 (because
the way e views C is non-decreasing with respect to first).

For all i > h′: f(i) = N .

Second, consider the case where the ways e′ and e view C are both non-decreasing with
respect to last. We insert a constraint [x ≥ f(x′)], where f is defined as follows.

For all i > h′: f(i) = N .
For i = h′, h′ − 1, . . . , `′: Denote a = last(i, C). We have two subcases.

If (i) a = nil, (ii) a+ 1 /∈ C, or (iii) last(j, C) ≥ a+ 1 for no j ∈ e, let f(i) = f(i+ 1).
Else, let j be the smallest vertex in e such that last(j, C) ≥ a+ 1. Define f(i) = j.

For all i < `′: f(i) = 0.

Here, as the sign is ≥ and f is monotonically non-decreasing, f must be defined first for N ,
then for N − 1, and so on. Then, as long as i is such that last(j, C) ≥ a+ 1 for no j ∈ e (a
case that we want to avoid), f(i) = N and hence [x ≥ f(i)] cannot be satisfied.

References
1 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. Irrational guards are sometimes

needed. In Proceedings of the 33rd International Symposium on Computational Geometry
(SoCG), pages 3:1–3:15, 2017. doi:10.4230/LIPIcs.SoCG.2017.3.

2 Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. The art gallery problem is
∃R-complete. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 65–73, 2018.

3 Alok Aggarwal. The art gallery theorem: its variations, applications and algorithmic aspects.
PhD thesis, The Johns Hopkins University, Baltimore, Maryland, 1986.

4 Akanksha Agrawal, Kristine V. K. Knudsen, Daniel Lokshtanov, Saket Saurabh, and Meirav
Zehavi. The parameterized complexity of guarding almost convex polygons, 2020. arXiv:
2003.07793.

5 Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. In
Proceedings of the 24th Annual European Symposium on Algorithms (ESA), pages 19:1–19:17,
2016.

6 Vasek Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory,
Series B, 18(1):39–741, 1975.

7 Pedro J. de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alexander
Kröller, and Davi C. Tozoni. Engineering art galleries. In Algorithm Engineering - Selected
Results and Surveys, pages 379–417. Springer, 2016.

8 Steve Fisk. A short proof of Chvátal’s watchman theorem. Journal of Combinatorial Theory,
Series B, 24(3):374, 1978.

9 Subir Kumar Ghosh and Partha P. Goswami. Unsolved problems in visibility graphs of points,
segments, and polygons. ACM Computing Surveys, 46(2):22:1–22:29, 2013.

10 Panos Giannopoulos. Open problems: Guarding problems. Lorentz Workshop on Fixed-
Parameter Computational Geometry, Leiden, the Netherlands, page 12, 2016.

11 Matthew J Katz and Gabriel S Roisman. On guarding the vertices of rectilinear domains.
Computational Geometry, 39(3):219–228, 2008.

12 In the proof, to ensure that this vertex is indeed not nil, we will utilize both sets of cases, together with
c̃1

(C,t) and c̃2
(C,t), to argue that x is between two vertices seen by a + 1 and hence must see a + 1 itself.

SoCG 2020

https://doi.org/10.4230/LIPIcs.SoCG.2017.3
http://arxiv.org/abs/2003.07793
http://arxiv.org/abs/2003.07793

3:16 The Parameterized Complexity of Guarding Almost Convex Polygons

12 D. T. Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986.

13 Rolf Niedermeier. Ubiquitous parameterization - invitation to fixed-parameter algorithms. In
Proceedings of the 29th International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 84–103, 2004.

14 Rolf Niedermeier. Reflections on multivariate algorithmics and problem parameterization. In
Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science
(STACS), pages 17–32, 2010.

15 Joseph O’rourke. Art gallery theorems and algorithms, volume 57. Oxford University Press
Oxford, 1987.

16 Joseph O’Rourke and Kenneth J. Supowit. Some NP-hard polygon decomposition problems.
IEEE Transactions on Information Theory, 29(2):181–189, 1983.

17 Dietmar Schuchardt and Hans-Dietrich Hecker. Two NP-hard art-gallery problems for ortho-
polygons. Mathematical Logic Quarterly, 41(2):261–267, 1995.

18 Thomas C Shermer. Recent results in art galleries (geometry). Proceedings of the IEEE,
80(9):1384–1399, 1992.

19 Jorge Urrutia. Art gallery and illumination problems. Handbook of computational geometry,
1(1):973–1027, 2000.

Euclidean TSP in Narrow Strips
Henk Alkema
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
h.y.alkema@tue.nl

Mark de Berg
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
m.t.d.berg@tue.nl

Sándor Kisfaludi-Bak
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Abstract
We investigate how the complexity of Euclidean TSP for point sets P inside the strip (−∞,+∞)×
[0, δ] depends on the strip width δ. We obtain two main results.

For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic
tour (which can be computed in O(n log2 n) time using an existing algorithm) is guaranteed to
be a shortest tour overall when δ 6 2

√
2, a bound which is best possible.

We present an algorithm that is fixed-parameter tractable with respect to δ. More precisely, our
algorithm has running time 2O(

√
δ)n2 for sparse point sets, where each 1 × δ rectangle inside

the strip contains O(1) points. For random point sets, where the points are chosen uniformly at
random from the rectangle [0, n]× [0, δ], it has an expected running time of 2O(

√
δ)n2 +O(n3).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Computational geometry, Euclidean TSP, bitonic TSP, fixed-parameter
tractable algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.4

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.09948.

Funding The work in this paper is supported by the Netherlands Organisation for Scientific Research
(NWO) through Gravitation-grant NETWORKS-024.002.003.

Acknowledgements We thank Remco van der Hofstad for discussions about the probabilistic analysis
of an earlier version of the algorithm.

1 Introduction

In the Traveling Salesman Problem one is given an edge-weighted complete graph and
the goal is to compute a tour – a simple cycle visiting all nodes – of minimum total weight.
Due to its practical as well as theoretical importance, the Traveling Salesman Problem
and its many variants are among the most famous problems in computer science and
combinatorial optimization. In this paper we study the Euclidean version of the problem.
In Euclidean TSP the input is a set P of n points in Rd, and the goal is to compute
a minimum-length tour visiting each point. Euclidean TSP in the plane was proven to
be np-hard in the 1970s [16, 21]. Around the same time, Christofides [4] gave an elegant
(3/2)-approximation algorithm, which works in any metric space. For a long time it was
unknown if Euclidean TSP is APX-hard, until Arora [2], and independently Mitchell [20],
presented a PTAS. Mitchell’s algorithm works for the planar case, while Arora’s algorithm
also works in higher dimensions. Rao and Smith [22] later improved the running time of
Arora’s PTAS, obtaining a running time of 2(1/ε)O(d)

n+ (1/ε)O(d)n logn in Rd.
© Henk Alkema, Mark de Berg, and Sándor Kisfaludi-Bak;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.y.alkema@tue.nl
mailto:m.t.d.berg@tue.nl
mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.4
https://arxiv.org/abs/2003.09948
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Euclidean TSP in Narrow Strips

We are interested in exact algorithms for Euclidean TSP. As mentioned, the problem
is already np-hard in the plane. Unlike the general (metric) version, however, it can be
solved in subexponential time, that is, in time 2o(n). In particular, Kann [19] and Hwang et
al. [17] presented algorithms with nO(

√
n) running time. Smith and Wormald [26] gave

a subexponential algorithm that works in any (fixed) dimension; its running time in Rd
is nO(n1−1/d). Very recently De Berg et al. [8] improved this to 2O(n1−1/d), which is tight up
to constant factors in the exponent, under the Exponential-Time Hypothesis (ETH) [18].

There has also been considerable research on special cases of Euclidean TSP that are
polynomial-time solvable. One example is Bitonic TSP, where the goal is to find a shortest
bitonic tour. (A tour is bitonic if any vertical line crosses it at most twice; here the points from
the input set P are assumed to have distinct x-coordinates.) It is a classic exercise [5] to prove
that Bitonic TSP can be solved in O(n2) time by dynamic programming. De Berg et al. [9]
showed how to speed up the algorithm to O(n log2 n). When P is in convex position, then
the convex hull of P is a shortest tour and so one can solve Euclidean TSP in O(n logn)
time [10]. Deineko et al. [12] studied the case where the points need not all be on the convex
hull; the points inside the convex hull, however, are required to be collinear. Their algorithm
runs in O(n2) time. Deineko and Woeginger [13] extended this to the case where the points
in the interior of the convex hull lie on k parallel lines, obtaining an O(nk+2) algorithm.
These results generalize earlier work by Cutler [6] and Rote [24] who consider point sets lying
on three, respectively k, parallel lines. Deineko et al. [11] gave a fixed-parameter tractable
algorithm for Euclidean TSP where the parameter k is the number of points inside the
convex hull, with running time O(2kk2n). Finally, Reinhold [23] and Sanders [25] proved
that when there exists a collection of disks centered at the points in P whose intersection
graph is a single cycle – this is called the necklace condition – then the tour following the
cycle is optimal. Edelsbrunner et al. [15] gave an O(n2 logn) algorithm to verify if such a
collection of disks exists (and, if so, find one).

Our contribution. The computational complexity of Euclidean TSP in Rd is 2Θ(n1−1/d)

(for d > 2), assuming ETH. Thus the complexity depends heavily on the dimension d. This
is most pronounced when we compare the complexity for d = 2 with the trivial case d = 1:
in the plane Euclidean TSP takes 2Θ(

√
n) time in the worst case, while the 1-dimensional

case is trivially solved in O(n logn) time by just sorting the points. We study the complexity
of Euclidean TSP for planar point sets that are “almost 1-dimensional”. In particular, we
assume that the point set P is contained in the strip (−∞,∞) × [0, δ] for some relatively
small δ and investigate how the complexity of Euclidean TSP depends on the parameter δ.
As any instance of Euclidean TSP can be scaled to fit inside a strip, we need to make
some additional restriction on the input. We consider three scenarios.

Integer x-coordinates. Bitonic TSP can be solved in O(n log2 n) time [9]. It is natural
to conjecture that for points with distinct integer x-coordinates inside a sufficiently
narrow strip, an optimal bitonic tour is a shortest tour overall. We give a (partially
computer-assisted) proof that this is indeed the case: we prove that when δ 6 2

√
2 an

optimal bitonic tour is optimal overall, and we show that the bound 2
√

2 is best possible.
Sparse point sets. We generalize the case of integer x-coordinate to the case where each
rectangle [x, x+ 1]× [0, δ] contains O(1) points, and we investigate how the complexity
of Euclidean TSP grows with δ. We show in the full version [1] that for sparse point
sets an optimal tour must be k-tonic – a tour is k-tonic if it intersects any vertical line at
most k-times – for k = O(

√
δ). This suggests that one might be able to use a dynamic-

programming algorithm similar to the ones for for points on k parallel lines [13, 24].

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:3

The latter algorithms run in O(nk) time, suggesting that a running time of nO(
√
δ) is

achievable in our case. We give a much more efficient algorithm, which is fixed-parameter
tractable (and subexponential) with respect to the parameter δ. Its running time is
2O(
√
δ)n2.

Random point sets. In the third scenario the points in P are drawn independently and
uniformly at random from the rectangle R := [0, n] × [0, δ]. For this case we prove
that the same algorithm as for sparse point sets has a (now expected) running time of
2O(
√
δ)n2 +O(n3).

Notation and terminology. Let P := {p1, . . . , pn} be a set of points in a horizontal strip
of width δ – we call such a strip a δ-strip – which we assume without loss of generality to be
the strip (−∞,∞)× [0, δ]. We denote the x-coordinate of a point p ∈ R2 by x(p), and its
y-coordinate by y(p). To simplify the notation, we also write xi for x(pi), and yi for y(pi).
We sort the points in P such that 0 6 xi 6 xi+1 for all 1 6 i < n.

For two points p, q ∈ R2, we write pq to denote the directed edge from p to q. Paths
are written as lists of points, so (q1, q2, ..., qm) denotes the path consisting of the edges
q1q2, . . . , qm−1qm. All points in a path must be distinct, except possibly q1 = qm in which
case the path is a tour. The length of an edge pq is denoted by |pq|, and the total length of
a set E of edges is denoted by ‖E‖.

A separator is a vertical line not containing any of the points in P that separates P into
two non-empty subsets.

2 Bitonicity for points with integer x-coordinates

In this section we consider the case where the points in P have distinct integer x-coordinates.
For our purposes, two separators s, s′ that induce the same partitioning of P are equivalent.
Therefore, we can define S := {s1, . . . , sn−1} as the set of all combinatorially distinct
separators, obtained by taking one separator between any two points pi, pi+1. Let E be a set
of edges with endpoints in P . The tonicity of E at a separator s, written as ton(E, s), is the
number of edges in E crossing s. We say that a set E has lower tonicity than a set F of edges,
denoted by E 4 F , if ton(E, si) 6 ton(F, si) for all si ∈ S. The set E has strictly lower
tonicity, denoted by E ≺ F , if there also exists at least one i for which ton(E, si) < ton(F, si).
Finally, we call a set E of edges k-tonic – or monotonic when k = 1, and bitonic when k = 2
– if ton(E, si) 6 k for all si ∈ S.

The goal of this section is to prove the following theorem.

I Theorem 1. Let P be a set of points with distinct and integer x-coordinates in a δ-strip.
When δ 6 2

√
2, a shortest bitonic tour on P is a shortest tour overall. Moreover, for any

δ > 2
√

2 there is a point set P in a δ-strip such that a shortest bitonic tour on P is not a
shortest tour overall.

The construction for the case δ > 2
√

2 is shown in Fig. 1. It is easily verified that, up to
symmetrical solutions, the tours T1 and T2 are the only candidates for the shortest tour.
Observe that ‖T2‖ − ‖T1‖ = |p1p4| − |p4p5| = 3 −

√
1 + δ2. Hence, for δ > 2

√
2 we have

‖T2‖ < ‖T1‖, which proves the lower bound of Theorem 1. The remainder of the section is
devoted to proving the first statement.

Let P be a point set in a δ-strip for δ = 2
√

2, where all points in P have distinct integer
x-coordinates. Among all shortest tours on P , let Topt be one that is minimal with respect
to the 4-relation; Topt exists since the number of different tours on P is finite. We claim
that Topt is bitonic, proving the upper bound of Theorem 1.

SoCG 2020

4:4 Euclidean TSP in Narrow Strips

p1

p2

p3

p4

p5

δ/2

δ/2

T1

T2

Figure 1 Construction for δ > 2
√

2 for Theorem 1. The grey vertical segments are at distance 1
from each other. If δ > 2

√
2 then T1, the shortest bitonic tour (in blue), is longer than T2, the

shortest non-bitonic tour (in red).

Suppose for a contradiction that Topt is not bitonic. Let s∗ ∈ S be the rightmost
separator for which ton(Topt, s

∗) > 2. We must have ton(Topt, s
∗) = 4 because otherwise

ton(Topt, s) > 2 for the separator s ∈ S immediately to the right of s∗, since there is only
one point from P between s∗ and s. Let F be the four edges of Topt crossing s∗, and let E
be the remaining set of edges of Topt. Let Q be the set of endpoints of the edges in F . We
will argue that there exists a set F ′ of edges with endpoints in Q such that E ∪ F ′ is a tour
and (i) ‖F ′‖ < ‖F‖, or (ii) ‖F ′‖ = ‖F‖ and F ′ ≺ F . We will call such an F ′ superior to F .
Option (i) contradicts that Topt is a shortest tour, and (ii) contradicts that Topt is a shortest
tour that is minimal with respect to 4 (since E ∪ F ′ ≺ E ∪ F if and only if F ′ ≺ F). Hence,
proving that such a set F ′ exists finishes the proof.

The remainder of the proof proceeds in two steps. In the first step we move the points in
Q to obtain a set Q with consecutive integer coordinates, in such a way that there exists
an edge set F on Q such that if an F

′ superior to F exists, then there also exists an F ′

superior to F . In the second step we then give a computer-assisted proof that the desired
set F ′ exists.

Step 1: Finding a suitable Q with consecutive x-coordinates. Let Topt, s∗, E, F and Q
be defined as above. We assume without loss of generality that the x-coordinate of s∗ is
equal to x∗ + 1

2 , where x
∗ is the largest integer such that the line x = x∗ + 1

2 intersects all
four edges in F . Since the actual edges in E are not important for our arguments, we replace
them by abstract “connections” specifying which pairs of endpoints of the edges in F are
connected by paths of edges in E. It will be convenient to duplicate the points in Q that are
shared endpoints of two edges in F , and add a connection between the two copies; see Fig. 2.
We denote the set of connections obtained in this way by Ẽ, and we call Ẽ the connectivity
pattern of F (in E ∪ F).

Next we show how to move the points in Q such that the modified set Q uses consecutive
x-coordinates. Recall that s∗ : x = x∗ + 1

2 is a separator that intersects all edges in F . Let
Qleft and Qright be the subsets of points from Q lying to the left and right of s∗, respectively.
We will move the points in Qleft such that they will get consecutive x-coordinates with the
largest one being equal to x∗, while the points in Qright will get consecutive x-coordinates
with the smallest one being x∗ + 1.

We move the points in Qleft as follows. Let z 6 x∗ be the largest x-coordinate currently not
in use by any of the points in Qleft. If Qleft lies completely to the right of the line `(z) : x = z,
then we are done: the set of x-coordinates used by points in Qleft is {z+1, . . . , x∗}. Otherwise
we take an arbitrary edge e ∈ F that crosses `(z), and we move its left endpoint to the point
e ∩ `(z); see Fig. 3(i). This process is repeated until Qleft uses consecutive x-coordinates.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:5

s∗ s∗

=⇒

Figure 2 Replacing the paths connecting endpoints of edges in F by abstract connections. The
copies of duplicated shared endpoints are slightly displaced in the figure to be able to distinguish
them, but they are actually coinciding.

s∗

=⇒

s∗ s∗

(i) (ii)

`(z)

Figure 3 The process of moving the points in Q. Grey vertical lines have integer x-coordinates.
(i) Moving a point in Qleft so that it gets x-coordinate z. (ii) A possible configuration after Qleft

and Qright have been treated.

After moving the points in Qleft we treat Qright in a similar manner; the only difference is
that now we define z > x∗ to be the smallest x-coordinate currently not in use by any of the
points in Qright. Fig. 3(ii) shows the final result for the example in part (i) of the figure.

Before we prove that this procedure preserves the desired properties, two remarks are
in order about the process described above. First, in each iteration we may have different
choices for the edge e crossing `(z), and the final result depends on these choices. Second,
when we move a point in Q to a new location, then the new x-coordinate is not used by Q
but it may already be used by points in P \Q. Neither of these facts cause any problems for
the coming arguments.

Let Q be the set of points from Q after they have been moved to their new locations,
and let F be the set of edges from F after the move. With a slight abuse of notation we still
use Ẽ to specify the connectivity pattern on F , which is simply carried over from F . The
following lemma shows that we can use F , Q and Ẽ in Step 2 of the proof.

I Lemma 2. Let E,F,Q, Ẽ, F ,Q be defined as above. Let F ′ be any set of edges (with
endpoints in Q) superior to F , such that Ẽ ∪ F ′ is a tour. Then there is a set of edges F ′
(with endpoints in Q) superior to F such that E ∪ F ′ is a tour.

Proof. We define F ′ in the obvious way, by simply taking F ′ and replacing each endpoint
(which is a point in Q) by the corresponding point in Q. Clearly E ∪ F ′ forms a tour if
Ẽ ∪ F ′ forms a tour.

Suppose F ′ is superior to F . We will now show that F ′ is superior to F . We will show
this by first proving that ‖F‖− ‖F ′‖ > ‖F‖− ‖F ′‖, and then proving that for any separator
we have s ∈ S, ton(F, s)− ton(F ′, s) = ton(F , s)− ton(F ′, s).

SoCG 2020

4:6 Euclidean TSP in Narrow Strips

Recall that each edge e ∈ F is obtained from the corresponding edge e ∈ F by moving
one or both endpoints along the edge e itself. Also recall that we duplicated shared endpoints
of edges in F , so if we move a point in Q we move the endpoint of a single edge in F . Hence,

‖F‖ − ‖F‖ = total distance over which the points in Q are moved.

Since we added a connection to Ẽ between the two copies of a shared endpoint, each point
in Q is incident to exactly one connection in Ẽ and, hence, to exactly one edge in F ′. This
means that if we move a point in Q we move the endpoint of a single edge in F ′, so

‖F ′‖ − ‖F ′‖ 6 total distance over which the points in Q are moved.

We conclude that ‖F‖ − ‖F ′‖ > ‖F‖ − ‖F ′‖.

Next, consider any separator s ∈ S to the left of s∗. Since points in Qleft are only moved
towards s∗ we know that

ton(F, s)−ton(F , s) = (number of points in Qleft moved across s) = ton(F ′, s)−ton(F ′, s).

A similar argument shows that ton(F, s)− ton(F ′, s) = ton(F , s)− ton(F ′, s) for any separa-
tor s to the right of s∗.

Now, since we have proven that ‖F‖ − ‖F ′‖ > ‖F‖ − ‖F ′‖ and that for any separator
we have s ∈ S, ton(F, s)− ton(F ′, s) = ton(F , s)− ton(F ′, s), we can conclude that if F ′ is
superior to F , then F ′ is superior to F . J

Step 2: Finding the set F ′. The goal of Step 2 of the proof is the following: given the
tour Topt = E ∪ F inside a δ-strip of width δ = 2

√
2, show that there exists a set F ′ of edges

such that E ∪ F ′ is a tour and F ′ is superior to F . Lemma 2 implies that we may work with
Ẽ and F instead of E and F (and then find F ′ instead of F ′).

In Step 1 we duplicated shared endpoints of edges in E. We now merge these two copies
again if they are still at the same location. This will always be the case for the shared endpoint
immediately to the right of the separator s∗, since we picked s∗ : x = x∗+ 1

2 such that there is
a shared endpoint at x = x∗+ 1 and the copies of this endpoint will not be moved. So if nleft
and nright denote the number of distinct endpoints to the right and left of s∗, respectively, then
nright ∈ {2, 3} and nleft ∈ {2, 3, 4}. We thus have six cases in total for the pair (nleft, nright),
as depicted in Fig. 4. Each of the six cases has several subcases, depending on the left-to-right
order of the vertices inside the gray rectangles in the figure. Once we fixed the ordering, we
can still vary the y-coordinates in the range [0, δ], which may lead to scenarios where different
sets F ′ are required. We handle this potentially huge amount of cases in a computer-assisted
manner, using an automated prover FindShorterTour(nleft, nright, F , Ẽ,X, δ, ε). The input
parameter X is an array where X[i] specifies the set from which the x-coordinate of the i-th
point in the given scenario may be chosen, where we assume w.l.o.g. that x(s∗) = −1/2; see
Fig. 4. The role of the parameter ε will be explained below.

The output of FindShorterTour is a list of scenarios and an outcome for each scenario. A
scenario contains for each point q an x-coordinate x(q) from the set of allowed x-coordinates
for q, and a range y-range(q) ⊆ [0, 2

√
2] for its y-coordinate, where the y-range is an interval

of length at most ε. The outcome is either Success or Fail. Success means that a set F ′

has been found with the desired properties: Ẽ∪F ′ is a tour, and for all possible instantiations
of the scenario – that is, all choices of y-coordinates from the y-ranges in the scenario – we
have ‖F ′‖ < ‖F‖. Fail means that such an F ′ has not been found, but it does not guarantee
that such an F ′ does not exist for this scenario. The list of scenarios is complete in the sense
that for any instantiation of the input case there is a scenario that covers it.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:7

65

4

• (nleft, nright) = (2, 2)

• F = {(1, 3), (1, 4), (2, 3), (2, 4)}
• Ẽ = ∅
• X = [{−2}, {−1}, {0}, {1}]

• (nleft, nright) = (3, 2)

• F = {(1, 4), (1, 5), (2, 4), (3, 5)}
• Ẽ = {(2, 3)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {0}, {1}]

1

2

3

4

1

3

2

• (nleft, nright) = (4, 2)

• F = {(1, 6), (2, 5), (3.5), (4, 6)}
• Ẽ = {(1, 2), (3, 4)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {−3,−2,−1},
{0}, {2}]

1

2

3

4

5

4

• (nleft, nright) = (2, 3)

• F = {(1, 3), (1, 5), (2, 3), (2, 4)}
• Ẽ = {(4, 5)}
• X = [{−2}, {−1}, {0}, {1, 2}, {1, 2}]

• (nleft, nright) = (3, 3)

• F = {(1, 4), (1, 5), (2, 4), (3, 6)}
• Ẽ = {(2, 3), (5, 6)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {0}, {1, 2}, {1, 2}]

1

2

3

4

1

3

2
5

5

• (nleft, nright) = (4, 3)

• F = {(1, 6), (2, 5), (3.5), (4, 7)}
• Ẽ = {(1, 2), (3, 4), (6, 7)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {−3,−2,−1},
{0}, {1, 2}, {1, 2}]

1

2

3

6

4
7

5

6

s∗ s∗ s∗

s∗ s∗ s∗

Figure 4 The six different cases that result after applying Step 1 of the proof. Points indicated by
filled disks have a fixed x-coordinate. The left-to-right order of points drawn inside a grey rectangle,
on the other hand, is not known yet. The vertical order of the edges is also not fixed, as the points
can have any y-coordinate in the range [0, 2

√
2].

FindShorterTour works brute-force, by checking all possible combinations of x-coordinates
and subdividing the y-coordinate ranges until a suitable F ′ can be found or until the y-ranges
have length at most ε. The implementation details of the procedure are the full version [1].

Note that case (nleft, nright) = (2, 3) in Fig. 4 is a subcase of case (nleft, nright) = (3, 2),
if we exchange the roles of the points lying to the left and to the right of s∗. Hence, we
ignore this subcase and run our automated prover on the remaining five cases, where we
set ε := 0.001. It successfully proves the existence of a suitable set F ′ in four cases; the
case where the prover fails is the case (nleft, nright) = (3, 2). For this case it fails for the
two scenarios depicted in Fig. 5; all other scenarios for these cases are handled successfully
(up to symmetries). For both scenarios we consider two alternatives for the set F ′: the set
F
′
1 shown in red in Fig. 5, and the set F ′2 shown in blue in Fig. 5. We will show that in

any instantiation of both scenarios, either F ′1 or F ′2 is at least as short as F ; since both
alternatives are bitonic this finishes the proof.

For 1 6 i 6 5, let qi be the point labeled i in Fig. 5. We first argue that (for both scenarios)
we can assume without loss of generality that y(q2) = y(q4) = 2

√
2 and y(q3) = y(q5) = 0.

To this end, consider arbitrary instantiations of these scenarios, and imagine moving q2 and
q4 up to the line y = 2

√
2, and moving q3 and q5 down to the line y = 0. It suffices to show,

for i ∈ {1, 2}, that if we have ‖F ′i‖ 6 ‖F‖ after the move, then we also have ‖F i‖ 6 ‖F‖
before the move. This can easily be proven by repeatedly applying the following observation.

I Observation 3. Let a, b, c be three points. Let ` be the vertical line through c, and let us
move c downwards along `. Let α be the smaller angle between ac and ` if y(c) < y(a), and
the larger angle otherwise, and let β be the smaller angle between bc and ` if y(c) < y(b), and
the larger angle otherwise, and suppose α < β throughout the move. Then the move increases
|ac| more than it increases |bc|.

SoCG 2020

4:8 Euclidean TSP in Narrow Strips

4

• X = [{−1}, {−2}, {−3, }, {0}, {1}]
• Y = [[1.61, 1.62], [2.82, 2

√
2],

[0, 0.01], [2.82, 2
√
2], [0, 0.01]]

5

4

5

• X = [{−1}, {−3}, {−2, }, {0}, {1}]
• Y = [[1.41, 1.42], [2.82, 2

√
2],

[0, 0.01], [2.82, 2
√
2], [0, 0.01]]

F
′
1 F

′
1

1

1

2 2

33
F

′
2 F

′
2

Figure 5 Two scenarios covering all subscenarios where the automated prover fails. Each point
has a fixed x-coordinate and a y-range specified by the array Y ; the resulting possible locations
are shown as small grey rectangles (drawn larger than they actually are for visibility). For all
subscenarios, at least one of F ′1 (in red) and F ′2 (in blue) is at most as long as F (in black).

So now assume y(q2) = y(q4) = 2
√

2 and y(q3) = y(q5) = 0. Consider the left scenario in
Fig. 5, and let y := y(q3). If y > (8

√
2)/7 then

|q2q1|+ |q4q5| =
√

1 + (2
√

2− y)2 + 3 6 2 +
√

4 + y2 = |q2q4|+ |q1q5|,

so ‖F ′1‖ 6 ‖F‖. On the other hand, If y 6 (8
√

2)/7 then

|q3q1|+ |q4q5| =
√

4 + y2 + 3 6
√

1 + (2
√

2− y)2 + 4 = |q1q4|+ |q3q5|,

so ‖F ′2‖ 6 ‖F‖. So either F ′1 or F ′2 is at least as short as F , finishing the proof for the left
scenario in Fig. 5. The proof for the right scenario in Fig. 5 is analogous, with cases y >

√
2

and y 6
√

2. This finishes the proof for the right scenario and, hence, for Theorem 1.

3 An algorithm for narrow strips

In this section we investigate how the complexity of Euclidean TSP depends on the width δ
of the strip containing the point set P . Recall that a point set P inside a δ-strip is sparse if
for every x ∈ R the rectangle [x, x+ 1]× [0, δ] contains O(1) points.

I Theorem 4. Let P be a set of n points in δ-strip.
(i) If for any i ∈ Z the square [(i− 1)δ, iδ]× [0, δ] contains at most k points, then we can

solve Euclidean TSP on P in 2O(
√
k)n2 time.

(ii) If P is sparse then we can solve Euclidean TSP in 2O(
√
δ)n2 time.

Part (ii) of the theorem is a trivial consequence of part (i), so the rest of the section focuses
on proving part (i). Our proof uses and modifies some techniques of [8]. For i ∈ Z, let σi be
the square [(i− 1)δ, iδ]× [0, δ]. Define ni := |σi ∩ P | – we assume without loss of generality
that all points from P lie in the interior of a square σi – and let k := maxi ni. We say that a
square σi is empty if ni = 0.

We will regularly use that any subset E of edges from an optimal tour of a planar point
set P has the Packing Property [8]: for any t > 0 and any square σ of side length t, the
number of edges from E of length at least t/4 that intersect σ is O(1). The Packing Property
is at the heart of several subexponential algorithms [19, 26]. We also need the following
lemma, which is essentially a special case of a recent result by De Berg et al. [8, Theorem 5];
see the full version [1] for a proof.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:9

s1 s2 s3s0 s4

block blockblock block

Figure 6 The separators s0, . . . , st+1 and the blocks they define.

I Lemma 5. Let σi be a square as defined above. Then we can compute in O(k3) time a
separator s intersecting σi such that the following holds. Let Topt be an optimal TSP tour
on P . For a separator s, let T (s, σi) denote the set of edges from Topt with both endpoints in
σi−1 ∪ σi ∪ σi+1 and crossing s. Then |T (s, σi)| = O(

√
k). Furthermore, there is a family C

of 2O(
√
k) sets, which we call candidate sets, such that T (s, σi) ∈ C, and this family can be

computed in 2O(
√
k) time.

Separators and blocks. Consider the sequence of non-empty squares σi, ordered from left
to right. We use Lemma 5 to place a separator in every second block of this sequence. Let
S := {s1, . . . , st} be the resulting (ordered) set of separators, and let s0 and st+1 denote
separators coinciding with the left side of the leftmost non-empty square and the right side
of the rightmost non-empty square, respectively; see Fig. 6. We call the region of the δ-strip
between two consecutive separators sj−1 and sj a block. Let Pj ⊆ P denote the set of points
in this block. Note that |Pj | 6 3k.

For an edge set E and a separator s, let E(s) ⊆ E denote the subset of edges intersecting s,
and define Pright(E, s) to be the set of endpoints of the edges in E(s) that lie on or to the
right of s. We call Pright(E, s) the endpoint configuration of E at s. The next two lemmas
rule out endpoint configurations with two “distant” points from the separator.

I Lemma 6. Let sleft : x = xleft and sright : x = xright be two separators such that
xright−xleft > 3δ, and suppose there is a point z ∈ P with xleft + 3δ/2 < x(z) < xright−3δ/2.
Then an optimal tour on P cannot have two edges that both cross sleft and sright.

Proof. Suppose for a contradiction that an optimal tour T has two directed edges, q1q2 and
r1r2, that both cross sleft and sright. (The direction of q1q2 and r1r2 is according to a fixed
traversal of the tour.) If both edges cross sleft and sright from left to right (or both cross
from right to left) then replacing q1q2 and r1r2 by q1r1 and r2q2 gives a shorter tour – see
Observation 14 in the full version [1] – leading to the desired contradiction.

Now suppose that q1q2 and r1r2 cross sleft and sright in opposite directions. Assume
w.l.o.g. that x(q1) < xleft and x(r2) < xleft, and that z lies on the path from r2 to q1. Let
u1, . . . , uk, v1, . . . , vl, and w1, . . . , wm be such that

T = (q1, q2, u1, . . . , uk, r1, r2, v1, . . . , vl, z, z2, w1, . . . , wm, q1).

We claim that the tour T ′ defined as

T ′ = (q1, r2, v1, . . . , vl, z, r1, uk, . . . , u1, q2, z2, w1, . . . , wm, q1)

is a strictly shorter tour. To show this, we will first change our point set P into a point
set P ′ such that if ‖T ′‖ < ‖T‖ on P ′, then ‖T ′‖ < ‖T‖ also on P . To this end we replace q1
by q′1 := q1q2 ∩ sleft and q2 by q′2 := q1q2 ∩ sright, and we replace r1 by r′1 := r1r2 ∩ sleft and
r2 by r′2 := r1r2 ∩ sright; see Fig. 7.

SoCG 2020

4:10 Euclidean TSP in Narrow Strips

Finally, we replace z2 by a point z′2 coinciding with z (note that if z2 = q1, we can split
it before moving the resulting two points, analogous to the proof of Theorem 1). Using
a similar reasoning as in the proof of Lemma 2, one can argue that the point set P ′ :=
(P \ {q1, q2, r1, r2, z2}) ∪ {q′1, q′2, r′1, r′2, z′2} has the required property. To get the desired
contradiction it thus suffices to show that ‖T‖ − ‖T ′‖ > 0 on P ′. This is true because

‖T‖ − ‖T ′‖ = |q′1q′2|+ |r′1r′2|+ |zz′2| − |q′1r′2| − |zr′1| − |q′2z′2|
> |xleft − xright|+ |xright − xleft|+ 0

−δ − (|x(z)− xright|+ δ)− (|xright − x(z)|+ δ)
= 2(x(t)− xleft)− 3δ > 0,

where the last line uses that xleft + 3δ/2 < x(z). J

I Lemma 7. Let sj ∈ S be a separator, and let σj∗ = [(j∗ − 1)δ), j∗δ] × [0, δ] denote the
square in which it is placed. Let Topt be an optimal tour on P and let V := Pright(Topt, sj)
be its endpoint configuration at sj. Let P ′ denote the set of input points with x-coordinates
between (j∗ + 1)δ and x(sj+3), and let P ′′ be the set of input points with x-coordinate larger
than x(sj+3). Then (i) |P ′ ∩ V | 6 c∗ for some absolute constant c∗, and (ii) |P ′′ ∩ V | 6 1.

Proof. Let uv be a tour edge crossing sj . By definition of sj , the number of edges crossing
sj with both endpoints in σj∗−1 ∪ σj∗ ∪ σj∗+1 is O(

√
k). Any other edge crossing sj must

fully cross σj∗−1 or σj∗+1 (or both), see Fig. 8. Therefore such edges have length at least δ.
By the Packing Property, there can be at most c∗ = O(1) such edges. This proves (i).

To prove (ii), note there are five non-empty squares between sj and sj+3. Hence, there is a
non-empty square between sj and sj+3 with distance at least 2δ from sj and sj+3. Lemma 6
thus implies that Topt has at most one edge crossing both sj and sj+3, proving (ii). J

Putting Lemma 5 and Lemma 7 together, we get the following corollary.

I Corollary 8. Let Topt be an optimal tour, let sj ∈ S be a separator, and let V ⊂ P be the
endpoint configuration of Topt at sj. Then we can enumerate in 2O(

√
k) · n time a family Bj

of candidate endpoint sets such that V ∈ Bj.

In addition to the sets Bj (j = 1, . . . , t), we define B0 = Bt+1 := ∅.

Matchings, the rank-based approach, and representative sets. When we cut a tour using
a vertical separator line, the tour falls apart into several paths. As in other TSP algorithms,
we need to make sure that the paths on each side of the separator can be patched up into a

sleft

=⇒

sright

q1
q2

r2

r1

z
z2

sleft sright

q′1
q′2

r′2 r′1

z

z′2

T

T ′

Figure 7 Illustration for the proof of Lemma 6. The point z′2 coincides with z but is slightly
displaced for visibility. The sum of the length of the edges unique to T (displayed in blue) is strictly
larger than the sum of the length of the edges unique to T ′ (displayed in red).

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:11

sj+1sj sj+2
sj+3

σj∗−1 σj∗ σj∗+1
P ′ P ′′

> 2δ > 2δ

δ δ

Figure 8 Tour edges crossing sj and x = (j∗ + 1)δ satisfy the Packing Property. Tour edges
crossing sj and sj+3 obey Lemma 6. The points in the red area form P ′. The points in the blue
area form P ′′.

Hamiltonian cycle. Following the terminology of [8], let P be our input point set, and let
M be a perfect matching on a set B ⊆ P , where the points of B are called boundary points.
A collection P = {π1, . . . , π|B|/2} of paths realizes M on P if (i) for each edge (p, q) ∈ M
there is a path πi ∈ P with p and q as endpoints, and (ii) the paths together visit each point
p ∈ P exactly once. We define the total length of P as the length of the edges in its paths.
In general, the type of problem that needs to be solved on one side of a separator is called
Euclidean Path Cover. The input to such a problem is a point set P ⊂ R2, a set of
boundary points B ⊆ P , and a perfect matching M on B. The task is to find a collection of
paths of minimum total length that realizes M on P .

To get the claimed running time, we need to avoid iterating over all matchings. We can
do this with the so-called rank-based approach [3, 7]. As our scenario is very similar to the
general Euclidean TSP, we can reuse most definitions and some proof ideas from [8].

Let M(B) denote the set of all perfect matchings on B, and consider a matching
M ∈M(B). We can turn M into a weighted matching by assigning to it the minimum total
length of any collection of paths realizing M . In other words, weight(M) is the length of the
solution of Euclidean Path Cover for input (P,B,M). We useM(P,B) to denote the
set of all such weighted matchings on B. Note that |M(P,B)| = |M(B)| = 2O(|B| log |B|).

We say that two matchings M,M ′ ∈ M(B) fit if their union is a Hamiltonian cycle.
Consider a pair P,B. Let R be a set of weighted matchings on B and let M be another
matching on B. We define opt(M,R) := min{weight(M ′) : M ′ ∈ R,M ′ fits M}, that is,
opt(M,R) is the minimum total length of any collection of paths on P that together with
the matching M forms a cycle. A set R ⊆ M(P,B) of weighted matchings is defined to
be representative of another set R′ ⊆ M(P,B) if for any matching M ∈ M(B) we have
opt(M,R) = opt(M,R′). Note that our algorithm is not able to compute a representative
set ofM(P,B), because it is also restricted by the Packing Property and Lemma 6, while
a solution of Euclidean Path Cover for a generic P,B,M may not satisfy them. Let
M∗(P,B) denote the set of weighted matchings in M(P,B) that have a corresponding
Euclidean Path Cover solution satisfying the Packing Property and Lemma 6.

The basis of the rank-based method is the following result.

I Lemma 9 (Bodlaender et al. [3], Theorem 3.7). There exists a set R consisting of 2|B|−1

weighted matchings that is representative of the setM(P,B). Moreover, there is an algorithm
Reduce that, given a representative set R ofM(P,B), computes such a set R in |R| · 2O(|B|)

time.

Lemma 9 can also be applied for our case, where R is representative ofM∗(P,B) ⊆M(P,B),
the set of weighted matchings in M(P,B) that have a corresponding Euclidean Path
Cover solution satisfying the Packing Property and Lemma 6.

SoCG 2020

4:12 Euclidean TSP in Narrow Strips

We say that perfect matchings M on B and M ′ on B′ are compatible if their union on
B∪B′ is either a single cycle or a collection of paths. The join of these matchings, denoted by
Join(M,M ′) is a perfect matching on the symmetric difference B4B′ obtained by iteratively
contracting edges with an incident vertex of degree 2 in the graph (B ∪B′,M ∪M ′) .

The algorithm. Our algorithm is a dynamic program, where we define a subproblem for
each separator index j, and each set of endpoints B ∈ Bj . The value of A[j, B] will be a
representative set containing pairs (M,x), where M is a perfect matching on B and x is a
real number equal to the total length of the path cover of P1 ∪ · · · ∪ Pj ∪ B realizing the
matching M . The length of the entire tour will be the value corresponding to the empty
matching at index t+ 1, that is, it will be the value x such that A[t+ 1, ∅] = {(∅, x)}.

Our dynamic-programming algorithm works on a block-by-block basis (which explains
the parameter j) and it solves subproblems inside a block using the algorithm TSP-repr by
De Berg et al. [8] for Euclidean Path Cover on arbitrary planar point sets. Algorithm 1
gives our algorithm in a pseudocode, which is further explained below.

Algorithm 1 NarrowRectTSP-DP(P, δ).
Input: A set P of points in [0, |P |]× [0, δ] chosen independently, uniformly at random
Output: The length of the shortest tour through all points in P

1: Compute the separators s1, . . . , st using Lemma 5, as explained above.
2: A[0, ∅] := {(∅, 0)}
3: for j = 1 to t+ 1 do
4: for all B ∈ Bj do
5: A[j, B] := ∅
6: for B′ ∈ Bj−1 where B′ ∩ distant(sj) ⊆ B do
7: for all (M,x) ∈ TSP-repr(Pj ∪B′ ∪B, B′4B)) do
8: for all (M ′, x′) ∈ A[j − 1, B′] do
9: if M ′ and M are compatible then
10: Insert (Join(M,M ′), x+ x′) into A[j, B]
11: Reduce(A[j, B])
12: return length(A[t+ 1, ∅])

The goal of Lines 4–11 is to compute a representative set A[j, B] ofM∗(P1∪· · ·∪Pj∪B, B)
of size 2O(

√
k). We say that a point p ∈ P is distant (with respect to a separator sj) if it is

more than five non-empty squares after sj , and denote the set of distant input points from
sj by distant(sj). First, we iterate over all sets B ∈ Bj in Line 4. Next, we consider certain
boundary sets B′ ∈ Bj−1. Notice that if there is a distant point p ∈ B′ ∩ distant(sj), then a
tour edge crossing sj−1 ending at p also crosses sj , and thus p is also a (distant) point of B.

In Line 7 we call the algorithm of De Berg et al. [8] for Euclidean Path Cover within
the block Pj and the boundary points B′ ∪ B. This gives us a representative set R of
M∗(Pj ∪B′ ∪B, B′4B). For each weighted matching (M,x) ∈ R, and for each weighted
matching from the representative set (M ′, x′) ∈ A[j − 1, B′], we check if M and M ′ are
compatible. If so, then taking the union of the corresponding path covers gives a path cover
of P1 ∪ · · · ∪ Pj ∪B of total length x+ x′, which realizes the matching Join(M,M ′) on B;
we then add (Join(M,M∗), x+ x∗) to A[j, B] in Line 10.

After iterating over all boundary sets B′, the entry A[j, B] stores a set of weighted
matchings, which we reduce to size 2O(

√
k) using the Reduce algorithm [3] in Line 11.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:13

Note that in the final iteration, when j = t + 1, we take B = ∅. Now M and M ′ are
compatible if and only if the union of the corresponding path covers is a Hamiltonian cycle.
Line 11 then gives to a single entry the smallest weight. Therefore, the length of the only
entry in A[t+ 1, ∅] after the loops have ended, is the length of the optimal TSP tour. Hence,
the correctness of NarrowRectTSP-DP follows from the next lemma, proved in the full
version [1].

I Lemma 10. After Step 11, the set A[j, B] is a representative set ofM∗(P1∪· · ·∪Pj∪B, B).

Analysis of the running time. The loop of Lines 3–11 has t+ 2 = O(n) iterations. Each
set Bj contains 2O(

√
k)n sets. For each choice of B ∈ Bj , we have 2O(

√
k) options for B′,

since B can have at most one point distant from sj by Lemma 6. The running time of
TSP-repr is T (|P |, |B|) = 2O(

√
|P |+|B|) [8, Lemma 8]. By Lemma 5 we have |B| = O(

√
k),

so the running time of each call to TSP-repr in Algorithm 1 is 2O(
√

3k+|B|+
√
|B|) = 2O(

√
k).

The representative set returned by TSP-repr has 2O(
√
k) weighted matchings, and the

representative set of A[j − 1, B′] also has 2O(
√
k) matchings. Checking compatibility, joining

and insertion in Lines 9 and 10 takes poly(|M |, |M ′|) = poly(k) time. Consequently, before
executing the reduction in Line 11, the set A[j, B] contains at most 2O(

√
k) · 2O(

√
k) =

2O(
√
k) entries. The application of the Reduce algorithm ensures that the constant in the

exponent in the 2O(
√
k) is kept under control; see Lemma 9. Hence, the total running time is

n · 2O(
√
k)n · 2O(

√
k) = 2O(

√
k)n2.

4 Random point sets inside a narrow rectangle

The algorithm from Theorem 4 also works efficiently on random point sets inside a narrow
rectangle, as stated in the following theorem.

I Theorem 11. Let P be a set of n points chosen independently and uniformly at random
from [0, n]× [0, δ]. Then a shortest tour on P can be computed in 2O(

√
δ)n2 +O(n3) expected

time.

Proof. To prove that the expected running time of our algorithm is as claimed, we need
a good bound on k, the expected maximum number of points falling in any square σi :=
[(i− 1)δ, iδ)× [0, δ]. Note that ni := |P ∩ σi| is a random variable with binomial distribution
with parameters n and δ/n, so

Pr[ni = `] =
(
n

`

)(
δ

n

)`(
n− δ
n

)n−`
.

As above, let k := maxi ni. We need a strong upper bound on k. We have that

Pr[k > `] = Pr[there is an i such that ni > `] 6
dn/δe∑
i=1

Pr[ni > `] = nPr[n1 > `].

We use the Chernoff-Hoeffding theorem [14]: for a binomially distributed random variable x
with parameters n, p and for ` > np, we have that Pr(x > `) 6 exp

(
−n ·D

(
`
n

∣∣∣∣p)), where
D(`n ||p) = `

n ln(`/np) + n−`
n ln((n−`)/n

1−p). Consequently,

nPr[n1 > `] 6 n · exp
(
−n
(
`
n ln `/n

δ/n + n−`
n ln (n−`)/n

(n−δ)/n

))
= n · exp

(
−` ln `

δ − (n− `) ln n−`
n−δ

)
.

SoCG 2020

4:14 Euclidean TSP in Narrow Strips

Assuming e2δ < `, we get

Pr[k > `] < n · exp
(
−` ln `

δ + (n− `) ln n−δ
n−`

)
< n · exp

(
−` ln `

δ + (n− `) ln n
n−`

)
< n · exp

(
−` ln `

δ + (n− `) `
n−`

)
= n · exp(−`(ln `

δ − 1))
< ne−`,

where the third inequality uses that ln(x) < x − 1 for x > 1. The running time of the
algorithm can now be bounded the following way.

E[running time] 6 Pr[k 6 e2δ] · 2O(
√
δ)n2 +

n∑
`=be2δ+1c

Pr[k = `] · 2O(
√
`)n2

6 2O(
√
δ)n2 + n2

n∑
`=be2δ+1c

Pr[k > `] · 2O(
√
`)

6 2O(
√
δ)n2 + n3

n∑
`=be2δ+1c

e−`2O(
√
`)

6 2O(
√
δ)n2 + n3

∞∑
`=0

e−`+O(
√
`)

6 2O(
√
δ)n2 +O(n3) J

5 Concluding remarks

Our paper contains two main results on Euclidean TSP. First, we proved that for points
with integer x-coordinates in a strip of width δ, an optimal bitonic tour is optimal overall
when δ 6 2

√
2. The proof of this bound, which is tight in the worst case, is partially

automated to reduce the potentially very large number of cases to two worst-case scenarios.
It would be interesting to see if a direct proof can be given for this fundamental result.
Furthermore, we note that the proof of Theorem 1 can easily be adapted to point sets of
which the x-coordinates of the points need not be integer, as long as the difference between
x-coordinates of any two consecutive points is at least 1.

Second, we gave a 2O(
√
δ)n2 algorithm for sparse point sets, which also works in 2O(

√
δ)n2 +

O(n3) expected time for random point sets. For δ = Θ(n) the running time becomes 2O(
√
n),

which is optimal under ETH. For small δ it would be interesting to improve the dependency
on n in the running time. Another direction for future research is to study the problem in
higher dimensions. We believe that our algorithmic results may carry over to Rd to points
that are almost collinear, that is, that lie in a narrow cylinder. Generalizing the results to,
say, points lying in a narrow slab will most likely be more challenging.

References
1 H Alkema, M. de Berg, and S. Kisfaludi-Bak. Euclidean TSP in narrow strips. arXiv, 2020.

arXiv:2003.09948.
2 S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other

geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

http://arxiv.org/abs/2003.09948
https://doi.org/10.1145/290179.290180

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:15

3 H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential time
algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111,
2015. doi:10.1016/j.ic.2014.12.008.

4 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie Mellon University,
1976.

5 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (3rd
edition). MIT Press, 2009.

6 M. Cutler. Efficient special case algorithms for the n-line planar traveling salesman problem.
Networks, 10:183–195, 1980. doi:10.1002/net.3230100302.

7 M. Cygan, S. Kratsch, and J. Nederlof. Fast hamiltonicity checking via bases of perfect
matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

8 M. de Berg, H.L. Bodlaender, S. Kisfaludi-Bak, and S. Kolay. An ETH-tight exact algorithm
for Euclidean TSP. In Proc. 59th IEEE Symp. Found. Comput. Sci. (FOCS), pages 450–461,
2018. doi:10.1109/FOCS.2018.00050.

9 M. de Berg, K. Buchin, B.M.P. Jansen, and G. Woeginger. Fine-grained complexity analysis
of two classic TSP variants. In Proc. 43rd Int. Conf. Automata Lang. Prog. (ICALP), pages
5:1–5:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.5.

10 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 2008. doi:10.1007/978-3-540-77974-2.

11 V.G. Deineko, M. Hoffmann, Y. Okamoto, and G.J. Woeginger. The traveling salesman
problem with few inner points. Oper. Res. Lett., 34(1):106–110, 2006. doi:10.1016/j.orl.
2005.01.002.

12 V.G. Deineko, R. van Dal, and G. Rote. The convex-hull-and-line traveling salesman problem:
a solvable case. Inf. Proc. Lett., 51:141–148, 1994. doi:10.1016/0020-0190(94)00071-9.

13 V.G. Deineko and G. Woeginger. The convex-hull-and-k-line traveling salesman problem. Inf.
Proc. Lett., 59(3):295–301, 1996. doi:10.1016/0020-0190(96)00125-1.

14 J. Doe. Probability inequalities for sums of bounded random variables. The Collected Works
of Wassily Hoeffding, pages 409–426, 1994. doi:10.1007/978-1-4612-0865-5_26.

15 H. Edelsbrunner, G. Rote, and E. Welzl. Testing the necklace condition for shortest tours
and optimal factors in the plane. Theoret. Comput. Sci., 66:157–180, 1989. doi:10.1016/
0304-3975(89)90133-3.

16 M.R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geometric problems. In Proc.
8th ACM Symp. Theory Comp. (STOC), pages 10–22, 1976. doi:10.1145/800113.803626.

17 R.Z. Hwang, R.C. Chang, and R.C.T. Lee. The searching over separators strategy to solve
some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993. doi:
10.1007/BF01228511.

18 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–
375, 2001. doi:10.1006/jcss.2000.1727.

19 V. Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology, Stockholm, 1992.

20 J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

21 C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret.
Comput. Sci., 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.

22 S. Rao and W. D. Smith. Approximating geometrical graphs via ‘spanners’ and ‘banyans’. In
Proc. 30th ACM Symp. Theory Comp. (STOC), pages 540–550, 1998. doi:10.1145/276698.
276868.

23 A.G. Reinhold. Some results on minimal covertex polygons. Manuscript, City College of New
York, 1965.

SoCG 2020

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1002/net.3230100302
https://doi.org/10.1145/3148227
https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.4230/LIPIcs.ICALP.2016.5
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/0020-0190(94)00071-9
https://doi.org/10.1016/0020-0190(96)00125-1
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1016/0304-3975(89)90133-3
https://doi.org/10.1016/0304-3975(89)90133-3
https://doi.org/10.1145/800113.803626
https://doi.org/10.1007/BF01228511
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/276698.276868
https://doi.org/10.1145/276698.276868

4:16 Euclidean TSP in Narrow Strips

24 G. Rote. The n-line traveling salesman problem. Networks, 22:91–108, 1992. doi:10.1002/
net.3230220106.

25 D. Sanders. On extreme circuits. PhD thesis, City University of New York, 1968.
26 W.D. Smith and N.C. Wormald. Geometric separator theorems and applications. In Proc. 39th

IEEE Symp. Found. Comput. Sci. (FOCS), pages 232–243, 1998. doi:10.1109/SFCS.1998.
743449.

https://doi.org/10.1002/net.3230220106
https://doi.org/10.1002/net.3230220106
https://doi.org/10.1109/SFCS.1998.743449
https://doi.org/10.1109/SFCS.1998.743449

The ε-t-Net Problem
Noga Alon
Princeton University, NJ, USA
Tel Aviv University, Israel
nogaa@tau.ac.il

Bruno Jartoux
Ben-Gurion University of the Negev, Be’er-Sheva, Israel
jartoux@post.bgu.ac.il

Chaya Keller
Ariel University, Ariel, Israel
chayak@ariel.ac.il

Shakhar Smorodinsky
Ben-Gurion University of the Negev, Be’er-Sheva, Israel
shakhar@math.bgu.ac.il

Yelena Yuditsky
Ben-Gurion University of the Negev, Be’er-Sheva, Israel
yuditskyL@gmail.com

Abstract
We study a natural generalization of the classical ε-net problem (Haussler–Welzl 1987), which we
call the ε-t-net problem: Given a hypergraph on n vertices and parameters t and ε ≥ t

n
, find a

minimum-sized family S of t-element subsets of vertices such that each hyperedge of size at least εn
contains a set in S. When t = 1, this corresponds to the ε-net problem.

We prove that any sufficiently large hypergraph with VC-dimension d admits an ε-t-net of
size O((1+log t)d

ε
log 1

ε
). For some families of geometrically-defined hypergraphs (such as the dual

hypergraph of regions with linear union complexity), we prove the existence of O(1
ε
)-sized ε-t-nets.

We also present an explicit construction of ε-t-nets (including ε-nets) for hypergraphs with
bounded VC-dimension. In comparison to previous constructions for the special case of ε-nets (i.e.,
for t = 1), it does not rely on advanced derandomization techniques. To this end we introduce a
variant of the notion of VC-dimension which is of independent interest.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Theory of computa-
tion → Computational geometry

Keywords and phrases epsilon-nets, geometric hypergraphs, VC-dimension, linear union complexity

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.5

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.07061.

Funding Noga Alon: Research supported in part by NSF grant DMS-1855464, ISF grant 281/17,
GIF grant G-1347-304.6/2016, and the Simons Foundation.
Bruno Jartoux: Research supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 678765) and by
Grant 635/16 from the Israel Science Foundation.
Chaya Keller : Part of the research was done when the author was at the Technion, Israel, and was
supported by Grant 409/16 from the Israel Science Foundation.
Shakhar Smorodinsky: Research partially supported by Grant 635/16 from the Israel Science
Foundation.
Yelena Yuditsky: Research supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement No. 678765) and by
Grant 635/16 from the Israel Science Foundation.

Acknowledgements The authors are grateful to Adi Shamir for fruitful suggestions regarding the
application of ε-t-nets to secret sharing.

© Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and Yelena Yuditsky;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nogaa@tau.ac.il
https://orcid.org/0000-0002-5341-1968
mailto:jartoux@post.bgu.ac.il
mailto:chayak@ariel.ac.il
https://orcid.org/0000-0003-3038-6955
mailto:shakhar@math.bgu.ac.il
mailto:yuditskyL@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.5
https://arxiv.org/abs/2003.07061
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The ε-t-Net Problem

1 Introduction

1.1 Preliminaries

Hypergraphs and VC-dimension
A hypergraph is a pair H = (V, E) where V is a set of vertices and E ⊆ 2V is the set of
hyperedges of H. When V is finite, H is a finite hypergraph.

A subset V ′ ⊆ V is shattered if all its subsets are realized by E , meaning {V ′∩e : e ∈ E} =
2V ′ . The VC-dimension of H, denoted by dimH, is the cardinality of a largest shattered
subset of V or +∞ if arbitrarily large subsets are shattered (which does not happen in finite
hypergraphs). This parameter plays a central role in statistical learning, computational
geometry, and other areas of computer science and combinatorics [36, 26, 28].

ε-nets, Mnets
Let ε ∈ (0, 1). An ε-net for a finite hypergraph (V, E) is a subset of vertices S ⊆ V such that
S ∩ e 6= ∅ for every hyperedge e ∈ E such that |e| ≥ ε|V |.

Haussler and Welzl [18] proved that finite hypergraphs with VC-dimension d admit ε-nets
of size O(dε log d

ε), later improved to O(dε log 1
ε) [22]. In the last three decades, ε-nets have

found applications in diverse areas of computer science, including machine learning [9],
algorithms [12], computational geometry [6] and social choice [2].

Mustafa and Ray introduced the notion of Mnets [27]. For a hypergraph (V, E) and for a
fixed ε ∈ (0, 1), an ε-Mnet is a family {V1, V2, . . . , V`} such that each Vi ⊆ V , each Vi is of
size Θ(ε|V |), and, for each e ∈ E such that |e| ≥ ε|V |, Vi ⊆ e for some Vi. They constructed
small ε-Mnets (i.e., such families with small `) for several classes of geometric hypergraphs.
These results were extended by Dutta et al. [16] using polynomial partitioning.

Explicit constructions
Although Hausssler and Welzl’s proof of the ε-net theorem is probabilistic, several de-
terministic constructions of ε-nets for hypergraphs with finite VC-dimension have been
devised [10, 24, 13]. The best result of this kind is Brönniman, Chazelle and Matoušek’s
O(ε−d logd 1

ε |V |)-time algorithm for computing an ε-net of size O(dε log d
ε) [10]. These con-

structions are used to derandomize applications of ε-nets, such as low-dimensional linear
programming [12].

In scenarios where the VC-dimension is Ω(log|V |), the running time of these constructions
becomes exponential in |V |. For one such scenario – the hypergraph induced by half-spaces
on the discrete cube V = {−1, 1}d – Rabani and Shpilka [31] presented an efficient explicit
construction of an ε-net, alas of sub-optimal size: O(ε−b|V |a) for some universal constants
a, b > 0, whereas O(|V |/ε) can be obtained by random sampling. Like the aforementioned
explicit constructions, the construction of [31] is based on derandomization.

1.2 Our problem
We denote by

(
X
k

)
the set of all subsets of cardinality k (or “k-subsets”) of the set X.

I Definition 1. Let H = (V, E) be a finite hypergraph, t a positive integer and ε ∈ (t/|V |, 1).
A family S ⊆

(
V
t

)
of t-subsets of V is an ε-t-net for H if for every e ∈ E with |e| ≥ ε|V |

there is an s ∈ S such that s ⊆ e.

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:3

As mentioned already, for t = 1 this is equivalent to the ε-net notion, and for t = Θ(ε|V |)
this corresponds to the notion of ε-Mnets. In this paper we study the following problem.

I Problem. How small are the smallest ε-t-nets for H? Can we compute them efficiently?

Motivation
Instances of the ε-t-net problem appear naturally in various contexts in computer science
and combinatorics. For example, the following is a basic motivating example for secret
sharing [23, 34]: “Eleven scientists are working on a secret project. They wish to lock up the
documents in a cabinet so that the cabinet can be opened if and only if six or more of the
scientists are present. What is the smallest number of locks needed?”. Consider a variant of
this question in which the number of scientists is large. We still insist on the basic security
condition – that no less than six scientists can open the cabinet. On the other hand, due to
the large number of scientists, we do not require that any six should be able to do so, but
rather any sufficiently large group of a certain kind, e.g., at least one tenth of all scientists
including a representative of each university involved.

The classical secret sharing methods (see, e.g., [8]) distribute “keys” to subsets of 6
scientists so that any six scientists will be able to open the cabinet but no five will be able to
do that. But as we require only certain groups of scientists to be able to open it, it is possible
to distribute shared keys to only some of the 6-subsets. The questions: “What is the minimal
number of 6-subsets we can achieve? and how can we choose the 6-subsets of scientists we
distribute keys to?” are an instance of the ε-t-net problem – with t = 6, ε = 1/10, and the
hyperedges of the hypergraph being all groups of scientists that are required to be able to
open the cabinet.

Other contexts in which the ε-t-net problem appears (described in the full version of this
paper [3]) include the Turán numbers of hypergraphs, χ-boundedness of graphs, edge-coloring
of hypergraphs and more.

Related work: ε-Nets and Mnets
For any t, the minimum size of an ε-t-net is sandwiched between the corresponding minimum
sizes of ε-nets and of Mnets. Indeed, given an Mnet, one obtains an ε-t-net by picking one
t-subset from each subset, and given an ε-t-net, one obtains an ε-net by taking one vertex
from each t-subset. The survey [28] has most known bounds on these objects.

1.3 Results
Notation: we write Ox,y(·) when the implicit constants depend on parameters x and y.

Hypergraphs of finite VC-dimension have small ε-t-nets
Our main result is an existence result for small ε-t-nets.

I Theorem 2. For every ε ∈ (0, 1) and t ∈ N \ {0}, every hypergraph on ≥ C1
(
t−1
ε

)d∗
vertices with VC-dimension d and dual shatter function π∗H(m) ≤ Cmd∗ admits an ε-t-net of
size O(d(1+log t)

ε log 1
ε), all elements of which are pairwise disjoint. Here C1 = C1(d∗, C).

(The dual shatter function, described in Section 2, is a property of the hypergraph such
that we may always take d∗ < 2d+1.)

SoCG 2020

5:4 The ε-t-Net Problem

This bound is asymptotically tight when t = O(1), in the sense that there exist hypergraphs
for which any ε-net, and consequently also any ε-t-net, is of size Ω(1

ε log 1
ε) [22]. The proof

of Theorem 2 involves a surprising relation between the ε-t-net problem and the existence of
spanning trees with a low crossing number, proved by Welzl in 1988 [37].

Hypergraphs with VC-dimension 1 admit O(1
ε)-sized ε-nets [22] and ε-Mnets [16]. The

latter fact yields the following result, albeit with worse constants. We offer a simple proof.

I Theorem 3. For every positive integer t and ε ≤ 1
2 , every finite hypergraph on ≥ td 1

ε e
vertices with VC-dimension 1 admits an ε-t-net of size at most td 1

ε e+ 1.

An efficient explicit construction of ε-t-nets
Our second result is a new explicit construction of ε-t-nets, for all t ≥ 1. The case of t = 1
(i.e., ε-nets) is of independent interest, as in this case our construction does not follow the
proof strategy of Haussler and Welzl and does not use derandomization (unlike all previously
known explicit constructions of ε-nets). On the other hand, it has a sub-optimal size of
Od(1

εd
), where d is the VC-dimension of the underlying hypergraph.

For a higher t, we introduce a new parameter of the hypergraph, which we call the t-VC-
dimension. For hypergraphs of t-VC-dimension d, we construct ε-t-nets of size Od(1

εd+t−1).
We give some first results on the relation between this new parameter and the standard
VC-dimension.

Small ε-2-nets for geometric hypergraphs
In view of Theorem 2, which shows that for hypergraphs with a constant VC dimension
one can obtain an ε-t-net of roughly the same size as the smallest ε-net, it is natural to ask
whether a similar result can be achieved for geometrically-defined hypergraphs that admit
an ε-net of size O(1

ε). We obtain such results for several geometrically-defined hypergraphs
in R2, including the intersection hypergraph of two families of pseudo-disks and the dual
hypergraph of a family of regions with linear union complexity. Namely, we show that these
hypergraphs have O(1

ε)-sized ε-2-nets provided they have Ω(1
ε) vertices. Interestingly, in

some scenarios the minimum size of an ε-2-net is sensitive to the exact multiplicative constant:
there are subhypergraphs (of the same hypergraph which is described in the appendix) on
Θ(1

ε) vertices for which any ε-2-net is of size Ω(1
ε2).

2 Construction of auxiliary hypergraphs

2.1 Some preparatory results
Sauer’s lemma
Given a hypergraph H = (V, E) the trace (also known as projection or restriction) of H on
A ⊆ V is ΠH(A) = {A ∩ e : e ∈ E}; shattered subsets are those for which ΠH(A) = 2A. The
shatter function of H is

πH : n ∈ N 7→ max{|ΠH(A)| : A ⊆ V, |A| ≤ n}.

It is bounded by the Sauer–Shelah lemma:

I Lemma 4 ([36, 33, 35]). If dimH = d then πH(n) ≤
(
n
0
)

+
(
n
1
)

+ · · ·+
(
n
d

)
. In particular,

for 1 ≤ d ≤ n one has πH(n) ≤ (ed)d · nd, where e is Euler’s number.

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:5

0 1
2

1

1
2

1

Figure 1 The binary entropy function.

Binary entropy function
This is h : x ∈ (0, 1) 7→ −x log x− (1−x) log(1−x). (All logarithms are binary. See Figure 1.)
We will use the following inequality:

∀α ∈
(

0, 1
2

]
, ∀n ∈ N, log

bαnc∑
i=0

(
n

i

)
≤ nh(α). (1)

The binary entropy function restricted to (0, 1
2] is invertible, and [11, Th. 2.2]:

∀x ∈ (0, 1), x

2 log 6
x

≤ h−1(x) ≤ x

log 1
x

. (2)

2.2 A first hypergraph on t-subsets
I Definition 5. Given a hypergraph H = (V, E) and a positive integer t, let Ht be the
hypergraph (V t, Et) where V t =

(
V
t

)
and Et =

{(
e
t

)
: e ∈ E

}
. That is, its vertices are all

t-element subsets of V and each hyperedge of Ht consists of all such subsets contained in a
given hyperedge of H.

For t ∈ N \ {0, 1}, let γt = (th−1(1/t))−1. Note that log t ≤ γt ≤ 2 log 6t.

I Proposition 6. If H is a hypergraph with dimH = d then d− t+ 1 ≤ dimHt ≤ γtd.

Proof. We assume that t ≥ 2, as for t = 1, dimHt = dimH1 = dimH = d.
To prove the left inequality, let {v1, . . . , vd} be a shattered subset of vertices in H, with

d ≥ t− 1. There are d− t+ 1 sets containing all vertices in {v1, v2, . . . , vt−1} and exactly
one in {vt, vt+1, . . . vd}. It is easy to see that they form a shattered subset in Ht.

For the right inequality, suppose to the contrary that P is a shattered set in Ht with
d′ = |P | > γtd. Let S = ∪p∈P p; clearly |S| ≤ td′. Observe also that d′ + t− 1 ≤ |S|. If this
were not the case there would exist some p1 ∈ P such that p1 ⊆ ∪p∈P\{p1}p, which would
contradict the fact that P is shattered.

We denote |S| = βd′; we have 1 < β ≤ t.
Since P is shattered in Ht, each P1 ⊆ P is of the form P ∩

(
e
t

)
= {p ∈ P : p ⊆ (S ∩ e)}

for some e ∈ E . Thus |ΠH(S)| ≥ |2P | = 2d′ .

SoCG 2020

5:6 The ε-t-Net Problem

On the other hand, dimH = d, and so by Lemma 4, |ΠH(S)| ≤
(
βd′

0
)

+
(
βd′

1
)

+ · · ·+
(
βd′

d

)
.

It follows from Equation (1) (with βd′ ≥ βγtd > 2d) that d′ ≤ log|ΠH(S)| ≤ βd′h(d
βd′). We

show that 1 > βh(d
βd′), a contradiction.

Note that 1
tγt
≤ 1

γtβ
< 1

2 . Since t 7→ h(t)
t is monotone decreasing in the range (0, 1),

we have γtβ · h(1
γtβ

) ≤ tγt · h(1
tγt

) = γt. As h is increasing on (0, 1
2), it follows that

βh(d
βd′) < βh(1

βγt
) ≤ 1. J

Proposition 6 allows us to slightly improve the “trivial” upper bound of O(d
t

εt (log 1
ε)t) on

the minimum size of an ε-t-net for any hypergraph with constant VC-dimension.

I Corollary 7. Let H be a hypergraph on n vertices with VC-dimension d. For any t, ε such
that n ≥ t

ε , H admits an ε-t-net of size O(dt(1+log t)
εt log 1

ε).

Indeed, observe that an εt-net for Ht is an ε-t-net for H, and apply the classical ε-net
theorem to Ht.

2.3 A smaller, well-behaved hypergraph on t-subsets
A spanning cycle P for H = (V, E) is a cycle graph on V that visits all vertices (exactly
once). For e ∈ E , let cr(P, e) be the number of edges of P with one endpoint in e and the
other in V \ e. The crossing number of P with respect to H is sup{cr(P, e) : e ∈ E}.

The dual hypergraph of H is H∗ = (E , E∗), where E∗ consists of all hyperedges v∗ = {e ∈
E : v ∈ e} for v ∈ V . Its shatter function is the dual shatter function of H, and is denoted by
π∗H .

If dimH = d then dimH∗ ≤ 2d+1 [7], and hence π∗H(m) ≤ Cdm
2d+1 for every positive

m, where Cd is a constant depending on d. In particular, any hypergraph with finite
VC-dimension satisfies the hypotheses of the following theorem.

I Theorem 8 ([37, Lemma 3.3 and Theorem 4.2]). Let H be a hypergraph on n vertices such
that π∗H(m) ≤ Cmd for some constants C > 0 and d > 1. Then there exists another constant
C1 (depending on C and d) and a spanning cycle for H with crossing number ≤ C1n

1− 1
d .

(An additional logn factor in Welzl’s original result was later removed [25, Sec. 5.4]. Up
to constant factors, this theorem is equivalent to the same result for paths or trees.)

I Definition 9. Let H = (V, E) be a finite hypergraph with π∗H(m) ≤ Cmd. Let P be a
spanning cycle for H whose crossing number is minimal (and thus ≤ C1|V |1−

1
d). Fix an

arbitrary starting point v0 ∈ P and orientation of P . For 0 ≤ i < |V |, let vi ∈ V be the
i-th vertex along P . Let V tlc = {{vkt, vkt+1, . . . , vkt+t−1} : 0 ≤ k < b |V |t c} (

(
V
t

)
(where the

subscript lc stands for low crossing). Observe that its elements are pairwise disjoint. Let Ht
lc

be the hypergraph on V tlc whose hyperedges are of the form {v ∈ V tlc : v ⊆ e} for each e ∈ E.

I Remark 10. In order to make Ht
lc uniquely defined, P is chosen arbitrarily from all suitable

spanning cycles. As Ht
lc is a subhypergraph of Ht, dimHt

lc ≤ dimHt, and thus we also have
dimHt

lc ≤ γt dimH.

3 Existence of small ε-t-nets

I Theorem 2. For every ε ∈ (0, 1) and t ∈ N \ {0}, every hypergraph on ≥ C1
(
t−1
ε

)d∗
vertices with VC-dimension d and dual shatter function π∗H(m) ≤ Cmd∗ admits an ε-t-net of
size O(d(1+log t)

ε log 1
ε), all elements of which are pairwise disjoint. Here C1 = C1(d∗, C).

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:7

Proof. For t = 1, this is simply the ε-net theorem. For higher t, let H = (V, E) be such
a hypergraph and n = |V |. Consider the hypergraph Ht

lc defined in Section 2. It has
bnt c vertices and VC-dimension ≤ γtd (by Remark 10), and thus admits an ε

2 -net of size
O(γtdε log 1

ε). We claim that any such ε
2 -net N ⊆

(
V
t

)
is also an ε-t-net for H.

Indeed, the crossing number of the associated spanning cycle is OC,d∗(n1−1/d∗). Every
hyperedge e of H with |e| ≥ εn fully contains at least b εnt c −OC,d∗(n

1−1/d∗) elements of V tlc,
which is ≥ εn

2t as soon as n = ΩC,d∗(tεn
1−1/d∗), or equivalenty (noting also that 2(t− 1) ≥ t

for t ≥ 2) when n = ΩC,d∗(t−1
ε

d∗). One of these t-subsets is in N . J

I Remark 11. In general, some fast growth of n = |V | as a function of 1
ε is necessary. For

example, given any ε such that t
ε ∈ N, the complete t-uniform hypergraph on t

ε vertices does
not have any ε-t-net with fewer than

(
t/ε
t

)
elements. Moreover, there exist geometrically-

defined hypergraphs that do not admit ε-2-nets of size o(1
ε2) (see the full version of the paper

[3]). On the other hand, in Section 5 we show that certain classes of geometrically-defined
hypergraphs have “small” ε-t-nets even for “small” values of n.

Small ε-nets, small ε-2-nets
A natural question arising from Theorem 2 is whether any hypergraph that admits small
ε-nets must also admit ε-t-nets of approximately same size. In general, the answer is negative.
Take for example a hypergraph whose smallest ε-net is of size Ω(1

ε log 1
ε) (see [22], [29]), and

augment it by adding a vertex that belongs to all hyperedges. Clearly, this second hypergraph
has the same VC-dimension and a one-element ε-net, but any ε-2-net is of size Ω(1

ε log 1
ε).

However, this example is quite artificial. In “natural” scenarios (and for sufficiently large
vertex sets) the smallest ε-nets and ε-2-nets might still have approximately same size. In
Section 5 we show that this is the case for some geometrically-defined hypergraphs.

Another scenario in which there exist both an ε-net and an ε-2-net of size O(1
ε) is when

the VC-dimension of the hypergraph is 1. In this case, the existence of an ε-net of size O(1
ε)

was proved in [22]. The next theorem could be derived from results on Mnets [16], at the
cost of poor multiplicative constants. Here we give a simpler proof for it.

I Theorem 3. For every positive integer t and ε ≤ 1
2 , every finite hypergraph on ≥ td 1

ε e
vertices with VC-dimension 1 admits an ε-t-net of size at most td 1

ε e+ 1.

Proof. Let (V, E) be such a hypergraph and n = |V |. Without loss of generality, min{|e| : e ∈
E} ≥ εn. For 1 ≤ i ≤ t, there exists an ε-net Ni that hits each e ∈ E at least i times, and
|Ni| = id 1

ε e. To see this let N1 be an ε-net of size d 1
ε e [22]. In the hypergraph induced on

V \Ni the hyperedges hit only i times by Ni have cardinality ≥ εn− i, while the number of
vertices is n− id 1

ε e, for a ratio εn−i
n−id 1

ε e
≥ ε. Take an ε-net N of size d 1

ε e for this hypergraph
and let Ni+1 = Ni ∪ N . Finally, let the desired ε-t-net consist of one t-subset from each
element of ΠH(Nt) with ≥ t vertices, of which there are at most |Nt|+ 1 by Lemma 4. J

4 Deterministic construction of ε-t-nets

Let H = (V, E) be a finite hypergraph with VC-dimension d, and fix ε ∈ (0, 1). In this
section we provide an explicit polynomial-time construction of ε-nets that immediately implies
an explicit construction of ε-t-nets. The size is far from optimal, but the construction is
simpler than previous explicit constructions, as it does not rely on packing numbers nor on
pseudo-random choices.

SoCG 2020

5:8 The ε-t-Net Problem

4.1 Deterministic construction of ε-nets
We start with the following definition:

I Definition 12. Let A,B be two subsets of V . We say that A stabs B if for every hyperedge
S ∈ E with B ⊆ S we have S ∩A 6= ∅.

Let S ∈ E be a hyperedge, |S| ≥ d+ 1, and let X ∈
(
S
d+1
)
. Since the VC-dimension is

d the set X is not shattered. Notice that X = X ∩ S ∈ ΠH(X). We can also assume that
∅ ∈ ΠH(X), for otherwise X is a transversal for H of size d+ 1. Hence there exists at least
one non-trivial, proper subset A (X such that (X \A) /∈ ΠH(X). Equivalently, there is a
non-trivial partition of X into A and X \A such that A stabs X \A. We say that X is of
type |A| ∈ {1, . . . , d}. Note that X could have several types. By the pigeonhole principle,
there is a type i and a subset A ∈

(
S
i

)
such that a fraction d−1(|S|

i

)−1
of the elements of(

S
d+1
)
are stabbed by A, hence the following lemma holds:

I Lemma 13. Let S be a hyperedge containing ≥ d+ 1 vertices of V . Then there exists an
integer i ∈ {1, . . . , d} and a subset A ∈

(
S
i

)
that stabs

(|S|
d+1
)
d−1(|S|

i

)−1
subsets of cardinality

d+ 1− i.

Constructing ε-nets
Put n := |V |. We construct an ε-net of size Od(1

εd
) as follows. Start with N = ∅. As long

as there is a hyperedge S ∈ E with |S| ≥ εn and S ∩N = ∅, Lemma 13 asserts that some
i-subset from S stabs Ωd((εn)d+1−i) subsets of S with cardinality d+ 1− i for an appropriate
i ∈ {1, . . . , d}. Add all elements of this subset to N ; we call this a type i iteration.

The resulting set is an ε-net by construction. It is left to show that |N | = Od(1
εd

). As
each step of the construction adds at most d vertices to N it is enough to bound the number
of iterations T . By the pigeonhole principle, at least T

d of the iterations have the same type,
say i. After a type-i iteration N stabs an additional Ωd((εn)d+1−i) subsets of cardinality
d+1− i none of which were previously stabbed. Since there are

(
n

d+1−i
)
subsets of cardinality

d+ 1− i we have T
d = Od(

(
n

d+1−i
)
(εn)−(d+1−i)) = Od(1

εd
).

Complexity analysis
We analyze the running time of the above algorithm. We assume that for the algorithm we
have a data structure which is the incidence matrix of the hypergraph H. Without loss of
generality, each hyperedge of E may be replaced with a subset of cardinality dεne. This can
be done in time O(εnd+1) due to the fact that |E| = O(nd).

We consider each X ∈
(
V
d+1
)
. Firstly we check if there is a hyperedge S ∈ E which

contains X, if not, we continue to the next subset. If yes, we consider each of the 2d+1 − 2
proper subsets of X. Let A ⊂ X be such a subset. We check if X \ A is stabbed by A.
We can do it by going over all O(nd) hyperedges of H. Hence, in total this pre-processing
step takes O(nd+1 · 2d+1 · nd) = Od(n2d+1) running time. While determining the type of
any (d+ 1)-subset of X and scanning all the hyperedges of the hypergraph, we maintain for
any i-subset A ⊂ X (1 ≤ i ≤ d), a list of all the (d+ 1− i)-subsets of X that A stabs and
their number.

Consider some iteration of the algorithm and let S ∈ E be such that |S| ≥ εn and
S ∩N = ∅ where N is the collection of elements found until this iteration. We find a subset
A ⊂ S of size at most d which stabs the most subsets of size (d+ 1)− |A|.

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:9

The running time of each iteration is O(|S|d · nd) = O(εdn2d). Hence in total the running
time of the algorithm after the pre-processing step is Od(ε

dn2d

εd
) = Od(n2d). Hence the total

running of the algorithm described in the previous section is Od(n2d).

Immediate applications to ε-t-nets

The construction of ε-nets in Section 4.1 gives two straightforward constructions of ε-t-nets.
1. Trivial construction. Use the above algorithm to explicitly construct t disjoint ε-nets of

size Od(1/εd), and take all t-subsets of elements in their union that contain one element
from each net. The resulting ε-t-net is of size Od(1/εtd).

2. Construction via Ht
lc. Use the above algorithm to explicitly construct an ε

2 -net for the
hypergraph Ht

lc, which is an ε-t-net for H (as was shown in the proof of Theorem 2).
The resulting ε-t-net is of size Od,t(1/εdimHtlc). (The cycle with a low crossing number
required for constructing the hypergraph Ht

lc can be found in polynomial time [37, 25]).

4.2 Deterministic construction of ε-t-nets

We present a direct construction of ε-t-nets without passing through ε-nets. For the sake of
convenience, we present the method for t = 2, and extend it in the full version [3] for t > 2.

The following definition extends the classical notion of VC-dimension.

I Definition 14. Let t be a positive integer. Also let H = (V, E) be a hypergraph, and T ′, T
such that T ′ ⊆ T ⊆ V . We say that T ′ is t-realized by H (with respect to T) if T ′∪S ∈ ΠH(T)
for some S ⊆ T such that |S| < t. We say that T is t-shattered by H if every T ′ ⊆ T is
t-realized by H (with respect to T). The t-VC-dimension of H, denoted by dimtH, is the
maximal size of a vertex set that is t-shattered by H.

Note that the 1-VC-dimension is the standard VC-dimension. Moreover, the t-VC-
dimension is at most the (t+ 1)-VC-dimension for any psitive integer t. We use the following
adaptation of Definition 12:

I Definition 15. Let H = (V, E) be a hypergraph. Given two vertex sets A,B ⊆ V , we say
that A 2-stabs B if each hyperedge of E that contains B also contains at least two vertices
from A.

I Theorem 16. For a hypergraph H = (V, E) with 2-VC-dimension d, one can construct
explicitly an ε-2-net of size Od(1/εd−1).

Proof. Let S ∈ E be a hyperedge and let X ∈
(
S
d+1
)
. Since the 2-VC-dimension is d the set

X is not 2-shattered. Notice that X = X ∩S and so X and all elements of
(
X
d

)
are 2-realized

by H with respect to X. For our purpose, we can also assume that ∅ is 2-realized by H
(with respect to X), for otherwise

(
X
2
)
is a transversal for H of size

(
d+1

2
)
. This means that

there is a partition, say X = A∪ (X \A), such that A 2-stabs X \A. Let i = |A|. Note that
i ∈ {2, . . . , d}. We say that X = A ∪ (X \ A) is a type i partition. We need the following
lemma, whose proof is similar to that of Lemma 13.

I Lemma 17. Let S be a hyperedge containing ≥ d+ 1 vertices of V . Then there exists an
integer i ∈ {2, . . . , d} and a subset A ⊂ S with cardinality i that 2-stabs (|S|d+1)

(d−1)(|S|i) subsets B
of cardinality d+ 1− i.

SoCG 2020

5:10 The ε-t-Net Problem

Constructing ε-2-nets
Let H = (V, E) be as above and let ε > 0 be fixed. Put n = |V |. We construct an ε-2-net of
size Od(1

εd−1) as follows. We start with a set N = ∅. As long as there is a hyperedge S ∈ E
with |S| ≥ εn that does not contain any pair {v, w} ∈ N , for an appropriate i ∈ {2, . . . , d}
we take an i-subset A ⊂ S 2-stabbing Ωd((εn)d+1−i) subsets of S with cardinality d+ 1− i,
and add to N all

(
i
2
)
elements of A. We call this a type i iteration. This is possible by

Lemma 17.
The resulting set is an ε-2-net by construction. It is left to show that |N | = Od(1

εd−1). In
each step of the construction we add at most

(
d
2
)
pairs to N so it is enough to bound the

number of iterations T . By the pigeonhole principle, at least T
d−1 of the iterations have the

same type, say i. There are
(

n
d+1−i

)
subsets of cardinality d+ 1− i, and in each of the at

least T
d−1 type i iterations we 2-stab at least Ωd((εn)d+1−i) additional subsets of cardinality

d+ 1− i, so we have T
d−1 = Od(

(n
d+1−i)

(εn)d+1−i) = Od(1
εd+1−i) so t = Od(1

εd−1) (since i ≥ 2). This
completes the proof of Theorem 16. J

Complexity analysis
The only significant difference between the constructions of Section 4.1 and of Section 4.2
is the factor that depends on the size of the resulting net. Hence, the complexity of the
algorithm in this section is bounded by Od(n2d), where d is the 2-VC-dimension of H.

4.3 t-VC-dimension versus classical VC-dimension
What can be said about the relation between VC-dimension and our newly introduced
t-VC-dimension, for t ≥ 2? By definition, dimH ≤ dim2 H. Ideas from Dudley’s unpublished
lecture notes [15, Th. 4.37] (see also the full version [3]) yield dim2 H ≤ 2 dimH + 1. This
is sharp for some small hypergraphs, such as that with vertex set {a, b, c} and hyperedges
{a}, {b, c}, {a, c}, and {a, b, c}, which has VC-dimension 1 but 2-VC-dimension 3. For
general t, we conjecture that dimtH ≤ 2 dimH + 2t− 1. The reasoning below gives roughly
dimtH ≤ 9.09 max{dimH, t− 1}.

Let H be a hypergraph of finite VC-dimension with a largest t-shattered subset of vertices
T . As T is t-shattered, we have 2T = {e \ S : e ∈ ΠH(T), S ⊆ T, |S| < t}. This yields

2dimtH ≤ |ΠH(T)| ·
t−1∑
i=0

(
dimtH

i

)
≤

dimH∑
i=0

(
dimtH

i

)
·
t−1∑
i=0

(
dimtH

i

)
,

with the last inequality following from Lemma 4. When dimtH ≥ 2 max{t − 1,dimH},
applying Equation (1) gives

1 ≤ h
(

dimH

dimtH

)
+ h

(
t− 1

dimtH

)
.

From this inequality we obtain:

I Proposition 18. For t ∈ N \ {0}, the t-VC-dimension of a hypergraph of VC-dimension d
is at least d, at most 2γ2 max{d, t− 1} (where γ2 ' 4.54), and, as d→∞, at most 2d+ o(d).

An interesting geometric example is the hypergraph H whose vertex set is a finite subset
of Rd−1 and whose hyperedges are induced by half-spaces. It is well-known that dimH = d.

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:11

More generally, we have dimtH ≤ td for all t. Indeed, by Tverberg’s theorem (see, e.g.,
[26]), every set T of td + 1 points in Rd−1 admits a partition into t + 1 pairwise disjoint
and non-empty sets T = X ∪ Y1 ∪ · · · ∪ Yt such that the intersection of their convex hulls is
non-empty. No half-space can t-realize X since any half-space that contains X must contain
at least one point from each Yi, that is, at least t points of T \X.

Therefore, for this hypergraph and t = 2, the direct construction yields an ε-2-net of size
Od(1/ε2d−1), while the trivial construction (described at the end of Section 4.1) yields only
a weaker upper bound of Od(1/ε2d). With good bounds on dimH2

lc, the construction via
H2
lc (see again Section 4.1) might provide even smaller ε-2-nets. In the plane (namely, where

d = 3), it follows from [17] that dimH2
lc ≤ 5, and so the upper bounds obtained using the

direct construction and using H2
lc are the same – O(1/ε5).

5 Geometric ε-2-nets

For a fixed ε > 0, any hypergraph with VC-dimension d and n ≥ Cd
ε2d+1 vertices admits, by

Theorem 2, an ε-2-net of size O(dε log 1
ε). This leaves open two interesting questions:

1. In cases where the hypergraph admits an ε-net of small size, say O(1
ε), does it also admit

an O(1
ε)-sized ε-2-net (or, more generally, ε-t-nets)?

2. Does this extend to smaller values of n?

In this section we answer both in the affirmative for several classes of geometrically-defined
hypergraphs.

I Definition 19. Given two families B and R of sets, the intersection hypergraph H(B,R)
is the hypergraph on vertex set B, where any r ∈ R defines a hyperedge {b ∈ B : b ∩ r 6= ∅}.

Note that H(B,R) and H(R,B) are (in general) not isomorphic but dual to each other.
Intersection hypergraphs are ubiquitous in discrete and computational geometry. Particular
attention is given to the case where either B or R is a set of points, with H(B,R) respectively
known as a primal hypergraph defined by R or a dual hypergraph defined by B. See the
survey [28] and the references therein.

We present below and in the full version of the paper [3] several intersection hypergraphs
that admit O(1

ε)-sized ε-nets, and prove that each of them has ε-2-nets of the same size.
Furthermore, while Theorem 2 applies only to hypergraphs with a very large number of
vertices, the geometric hypergraphs discussed do not have to contain “many” vertices in order
to guarantee the existence of “small” ε-2-nets. In some cases (see, e.g., the full version of the
paper [3]), the behavior is sharp: we can point out two constants c1 < c2 s.t. if the number
of vertices satisfies |V | ≥ c2

ε the hypergraph admits an O(1
ε)-sized ε-2-net, while for |V | ≤ c1

ε ,
there exist hypergraphs from the same family that admit only ε-2-nets of size Ω(1

ε2).

5.1 Non-piercing regions
For our first example we consider a large class of geometric objects introduced by Raman
and Ray [32]. A family of non-piercing regions is a family of regions of R2 such that for any
two regions γ1 and γ2 the difference γ1 \ γ2 is connected. (Each region may contain holes.
See [32] for the exact definitions.)

This extends the more familiar notion of pseudo-disks.

I Theorem 20. The intersection hypergraph of two families B and R of non-piercing regions
with B finite admits an ε-net of size O(1

ε) and, if ε|B| ≥ 2, an ε-2-net of size O(1
ε).

SoCG 2020

5:12 The ε-t-Net Problem

The proof relies on several intermediary results. The first one is about an analogue of the
Delaunay graph for non-piercing regions [32]. The important specific case where the regions
are pseudo-disks had already been studied [4, 20, 21].

I Definition 21. A planar support for the hypergraph (V, E) is a planar graph G on the
same vertex set V such that any hyperedge in E induces a connected subgraph of G.

I Theorem 22 ([32]). Given two families B and R of non-piercing regions, B finite, their
intersection hypergraph H(B,R) admits a planar support.

The following corollary has already been noted for families of pseudo-discs [4].

I Corollary 23. Given two families B and R of non-piercing regions, dimH(B,R) ≤ 4.

Proof. Let B′ ⊆ B be a shattered subset of vertices in H(B,R). As the non-piercing property
is clearly hereditary, the hypergraph H(B′, R) also admits a planar support. For every pair
of vertices in B′ there exists a hyperedge of H(B′, R) that contains these two vertices and no
other. Following Definition 21 these two vertices must share an edge in any planar support
of H(B′, R). Thus said planar support is a complete graph on B′, forcing |B′| ≤ 4. J

Proof of Theorem 20. First we observe that H(B,R) has ε-nets of size O(1
ε). Since H(B,R)

is finite, we may assume that R is finite as well. To paraphrase from Pyrga and Ray [30,
Theorem 4], the following properties suffice:

For any 0 < ε < 1 and any B′ ⊆ B, H(B′, R) admits an ε-net whose size depends only
on ε.
There exist constants α > 0, β ≥ 0 and τ > 0 s.t. for any R′ ⊆ R there is a graph
GR′ = (R′, ER′) with |ER′ | ≤ β|R′| so that for any element b ∈ B we have mb ≥ αnb− τ ,
where nb is the number of regions of R′ intersecting b and mb is the number of edges in
ER′ whose both endpoints (which are regions of R′) intersect b.

The first condition is verified because dimH(B′, R) ≤ 4 for every B′. For the second one,
let α = τ = 1 and β = 3, and let GR′ be a planar support of H(R′, B). (Note the use of
duality!) The inequalities follow from its planarity and the connectedness of the subgraph
“cut out” by each b ∈ B.

Finally, to obtain an ε-2-net, let K1 ⊆ B be an ε-net for H(B,R) of size O(1
ε). Let R

′

consist of the regions of R, if any, that intersect ≥ ε|B| regions of B but only one of K1, and
let K2 be an ε

2 -net for H(B \K1, R
′) also of size O(1

ε). Then the desired ε-2-net consists of
all edges in a planar support of H(K1 ∪K2, R). J

5.2 Small union complexity
Next, we prove the existence of a small ε-2-net for the intersection hypergraph of regions in
the plane with linear union complexity and points (i.e. the dual hypergraph defined by the
regions).

The union complexity of a family of objects is the function κ : N→ N that sends each
n ∈ N to the number of faces of all dimensions in the boundary of the union of ≤ n objects,
maximized over all subsets of ≤ n objects. If κ(n) = O(n), we say that the family has linear
union complexity. Families with linear union complexity include, e.g., families of pseudo-discs:
the boundary of the union of n ≥ 3 pseudo-discs consists of at most 6n − 12 arcs and as
many vertices [19].

The (≤ k)-level complexity of the family is defined by counting all faces included in at
most k objects (not just on the boundary). To make these definitions precise, one needs to
define faces and their dimension; see the survey by Agarwal, Pach and Sharir [1].

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:13

A specific case of the following result could also be derived from previous results on
Mnets [16], if one adds the additional assumption that the regions have bounded “semi-
algebraic description complexity”. (The proof of [16] is involved and uses algebraic arguments).

I Theorem 24. Let L be a finite family of regions in R2 with linear union complexity and
let P ⊆ R2 be a set of points. If |L| ≥ 2

ε then H(L,P) admits an ε-2-net of size O(1
ε).

Proof. Let n := |L|. First, construct a set K ⊆ L of size O(1
ε) such that every “heavy” point

of P is included in at least two elements of K, as in the proofs of Theorem 3 or Theorem 20.
This relies on the existence of ε-nets of size O(1

ε) for H(L,P), a result of Aronov, Ezra and
Sharir [5].

Since linear union complexity is a hereditary property, K as a subset of L also has
linear union complexity. By a standard argument using the Clarkson–Shor theorem [14],
the (≤ 2)-level complexity of K is linear as well. Hence, by Euler’s formula, the number
of hyperedges of size 2 in H(K,P) (whose order of magnitude is equal to the number of
(≤ 2)-level faces in the arrangement of K) is at most c|K| for some constant c. By the
pigeonhole principle, some region d ∈ K participates in at most c such hyperedges (i.e.,
pairs of regions). We pick these at most c pairs of regions to be elements of the ε-2-net we
construct, and repeat the process for K \ {d}.

We continue in this fashion until all elements of K are removed, and set the ε-2-net N to
be the set of pairs we picked. Clearly, |N | = O(|K|) = O(1

ε). To see that N is indeed an
ε-2-net, let p be a point that belongs to at least εn regions of L. By construction, p belongs
to at least two regions of K. Consider the process in which the elements of K are gradually
removed, until none of them are left. As a single region is removed at every step, we can look
at the step in which the number of remaining regions that contain p is reduced from 2 to 1.
Since at that step p is included in exactly two regions of the arrangement, the corresponding
pair of regions is added to the ε-2-net. Hence, p is covered by both elements of a pair in the
ε-2-net, as asserted. This completes the proof. J

I Remark 25. By essentially the same argument, the hypergraph H(L,P) admits an ε-t-net
of size Ot(1

ε) for any constant t ≤ ε|L|.

We can extend Theorem 24 to a family L with union complexity κ(n) = n · f(n). In this
case, the size of the ε-2-net is O(1

ε · log f(1
ε) · f(1

ε · log f(1
ε))). For example, if κ(n) = n logn,

then one obtains an ε-2-net of size O(1
ε · log 1

ε · log log 1
ε).

Indeed, by [5], the hypergraph H(L,P) admits an ε-net of size O(1
ε · log f(1

ε)). Let
n′ = 1

ε · log f(1
ε). By the Clarkson–Shor theorem [14], the (≤ 2)-level complexity is bounded

by O(n′ · f(n′)), hence there exists a region that participates in at most f(n′) hyperedges of
order 2. This means that the size of the obtained ε-2-net is bounded by O(n′ · f(n′)).

6 Discussion and open problems

A hypergraph H with finite VC-dimension d has ε-2-nets of size O(dε log 1
ε) when n is very

large as a function of 1
ε . This upper bound is the best possible in general, and as we saw in

Section 3 may also be best possible even if H admits smaller ε-nets. However, we conjecture
that in any “reasonable” setting, (including, e.g., all the geometric scenarios discussed in
Section 5, and all hypergraphs with hereditarily small ε-nets), the existence of an ε-net of
some order of magnitude, implies the existence of an ε-2-net of roughly the same order of
magnitude.

SoCG 2020

5:14 The ε-t-Net Problem

Furthermore, we are not aware of any hypergraph in which the dependence of n in 1
ε has

to be as large as in the assumption of Theorem 2. It may be interesting to extend our results
to smaller values of n (as a function of 1

ε), and to understand whether (as in some of the
geometric cases discussed above), there exists a sharp threshold (as a function of 1

ε) such
that if n is above this threshold, then the hypergraph admits an ε-2-net of size Õ(1

ε), but if
n is below it, then any ε-2-net for the hypergraph contains at least Ω(1

ε2) pairs.

References
1 Pankaj K. Agarwal, János Pach, and Micha Sharir. State of the union (of geometric objects).

In Proc. Joint Summer Research Conference on Discrete and Computational Geometry: 20
Years Later, Contemporary Mathematics 452, AMS, pages 9–48, 2008.

2 Noga Alon, Graham Brightwell, H.A. Kierstead, A.V. Kostochka, and Peter Winkler. Dominat-
ing sets in k-majority tournaments. Journal of Combinatorial Theory, Series B, 96(3):374–387,
2006. doi:10.1016/j.jctb.2005.09.003.

3 Noga Alon, Bruno Jartoux, Chaya Keller, Shakhar Smorodinsky, and Yelena Yuditsky. The
Epsilon-t-Net Problem, 2020. arXiv:2003.07061.

4 Boris Aronov, Anirudh Donakonda, Esther Ezra, and Rom Pinchasi. On pseudo-disk hyper-
graphs, 2018. arXiv:1802.08799.

5 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010. doi:10.1137/090762968.

6 Sunil Arya, Guilherme Dias da Fonseca, and David M. Mount. Polytope approximation
and the Mahler volume. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 29–42. SIAM, 2012. doi:10.1137/1.9781611973099.3.

7 Patrick Assouad. Densité et dimension. Annales de l’Institut Fourier, 33(3):233–282, 1983.
doi:10.5802/aif.938.

8 Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo Guo, San Ling,
Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding and
Cryptology - Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3,
2011. Proceedings, volume 6639 of Lecture Notes in Computer Science, pages 11–46. Springer,
2011. doi:10.1007/978-3-642-20901-7_2.

9 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learnability
and the Vapnik–Chervonenkis dimension. J. ACM, 36(4):929–965, 1989. doi:10.1145/76359.
76371.

10 Hervé Brönnimann, Bernard Chazelle, and Jiří Matoušek. Product range spaces, sensitive
sampling, and derandomization. SIAM Journal on Computing, 28(5):1552–1575, 1999. doi:
10.1137/S0097539796260321.

11 Chris Calabro. The Exponential Complexity of Satisfiability Problems. Phd thesis, University
of California, San Diego, 2009. URL: https://escholarship.org/uc/item/0pk5w64k.

12 Timothy M. Chan. Improved deterministic algorithms for linear programming in low dimensions.
ACM Trans. Algorithms, 14(3):30:1–30:10, June 2018. doi:10.1145/3155312.

13 Bernard Chazelle and Jiří Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996. doi:10.1006/jagm.
1996.0060.

14 Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4:387–421, 1989. doi:10.1007/BF02187740.

15 Richard M. Dudley. Notes on empirical processes. Lecture notes, second printing, 2000.
16 Kunal Dutta, Arijit Ghosh, Bruno Jartoux, and Nabil H. Mustafa. Shallow packings, semialge-

braic set systems, Macbeath regions, and polynomial partitioning. Discrete & Computational
Geometry, 61(4):756–777, 2019. doi:10.1007/s00454-019-00075-0.

https://doi.org/10.1016/j.jctb.2005.09.003
http://arxiv.org/abs/2003.07061
http://arxiv.org/abs/1802.08799
https://doi.org/10.1137/090762968
https://doi.org/10.1137/1.9781611973099.3
https://doi.org/10.5802/aif.938
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1145/76359.76371
https://doi.org/10.1145/76359.76371
https://doi.org/10.1137/S0097539796260321
https://doi.org/10.1137/S0097539796260321
https://escholarship.org/uc/item/0pk5w64k
https://doi.org/10.1145/3155312
https://doi.org/10.1006/jagm.1996.0060
https://doi.org/10.1006/jagm.1996.0060
https://doi.org/10.1007/BF02187740
https://doi.org/10.1007/s00454-019-00075-0

N. Alon, B. Jartoux, C. Keller, S. Smorodinsky, and Y. Yuditsky 5:15

17 Nicolas Grelier, Saeed Gh. Ilchi, Tillmann Miltzow, and Shakhar Smorodinsky. On the
VC-dimension of convex sets and half-spaces, 2019. arXiv:1907.01241.

18 David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2:127–151, 1987. doi:10.1007/BF02187876.

19 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete & Computational
Geometry, 1:59–71, 1986. doi:10.1007/BF02187683.

20 Chaya Keller and Shakhar Smorodinsky. Conflict-free coloring of intersection graphs
of geometric objects. Discrete & Computational Geometry, June 2019. doi:10.1007/
s00454-019-00097-8.

21 Balázs Keszegh. Coloring intersection hypergraphs of pseudo-disks. Discrete & Computational
Geometry, October 2019. doi:10.1007/s00454-019-00142-6.

22 János Komlós, János Pach, and Gerhard Woeginger. Almost tight bounds for ε-nets. Discrete
& Computational Geometry, 7(2):163–173, February 1992. doi:10.1007/BF02187833.

23 Chung L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, New York, 1968.
24 Jiří Matoušek. Approximations and optimal geometric divide-and-conquer. Journal of

Computer and System Sciences, 50(2):203–208, 1995. doi:10.1006/jcss.1995.1018.
25 Jiří Matoušek. Geometric Discrepancy: An Illustrated Guide. Number 18 in Algorithms and

Combinatorics. Springer, Berlin, New York, 1999. doi:10.1007/978-3-642-03942-3.
26 Jiří Matoušek. Lectures on Discrete Geometry. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2002. doi:10.1007/978-1-4613-0039-7.
27 Nabil H. Mustafa and Saurabh Ray. ε-Mnets: Hitting geometric set systems with subsets.

Discrete & Computational Geometry, 57(3):625–640, 2017. doi:10.1007/s00454-016-9845-8.
28 Nabil H. Mustafa and Kasturi Varadarajan. Epsilon-approximations and epsilon-nets. In

Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and
Computational Geometry, 3rd Edition, pages 1241–1267. CRC Press, 2018.

29 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. J. Amer. Math.
Soc., 26(3):645–658, 2013. doi:10.1090/S0894-0347-2012-00759-0.

30 Evangelia Pyrga and Saurabh Ray. New existence proofs for ε-nets. In Proceedings of the
Twenty-fourth Annual Symposium on Computational Geometry, SCG ’08, pages 199–207, New
York, NY, USA, 2008. ACM. doi:10.1145/1377676.1377708.

31 Yuval Rabani and Amir Shpilka. Explicit construction of a small ε-net for linear threshold
functions. SIAM Journal on Computing, 39(8):3501–3520, 2010. doi:10.1137/090764190.

32 Rajiv Raman and Saurabh Ray. Planar support for non-piercing regions and applications. In
Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium
on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages
69:1–69:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ESA.2018.69.

33 Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972. doi:10.1016/0097-3165(72)90019-2.

34 Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
doi:10.1145/359168.359176.

35 Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific J. Math., 41(1):247–261, 1972. URL: https://projecteuclid.
org:443/euclid.pjm/1102968432.

36 Vladimir N. Vapnik and Alexei Ya. Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264–
280, 1971.

37 Emo Welzl. Partition trees for triangle counting and other range searching problems. In
Proceedings of the Fourth Annual Symposium on Computational Geometry (Urbana, IL, 1988),
pages 23–33. ACM, New York, 1988. doi:10.1145/73393.73397.

SoCG 2020

http://arxiv.org/abs/1907.01241
https://doi.org/10.1007/BF02187876
https://doi.org/10.1007/BF02187683
https://doi.org/10.1007/s00454-019-00097-8
https://doi.org/10.1007/s00454-019-00097-8
https://doi.org/10.1007/s00454-019-00142-6
https://doi.org/10.1007/BF02187833
https://doi.org/10.1006/jcss.1995.1018
https://doi.org/10.1007/978-3-642-03942-3
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00454-016-9845-8
https://doi.org/10.1090/S0894-0347-2012-00759-0
https://doi.org/10.1145/1377676.1377708
https://doi.org/10.1137/090764190
https://doi.org/10.4230/LIPIcs.ESA.2018.69
https://doi.org/10.4230/LIPIcs.ESA.2018.69
https://doi.org/10.1016/0097-3165(72)90019-2
https://doi.org/10.1145/359168.359176
https://projecteuclid.org:443/euclid.pjm/1102968432
https://projecteuclid.org:443/euclid.pjm/1102968432
https://doi.org/10.1145/73393.73397

Terrain Visibility Graphs:
Persistence Is Not Enough
Safwa Ameer
Department of Computer Science, The University of Texas at San Antonio, TX, USA
safwa.ameer@gmail.com

Matt Gibson-Lopez
Department of Computer Science, The University of Texas at San Antonio, TX, USA
matthew.gibson@utsa.edu

Erik Krohn
Department of Computer Science, The University of Wisconsin, Oshkosh, WI, USA
krohne@uwosh.edu

Sean Soderman
Department of Computer Science, The University of Texas at San Antonio, TX, USA
sean.soderman@my.utsa.edu

Qing Wang
Department of Computer Science, The University of Tennessee at Martin, TN, USA
qwang44@utm.edu

Abstract
In this paper, we consider the Visibility Graph Recognition and Reconstruction problems in the
context of terrains. Here, we are given a graph G with labeled vertices v0, v1, . . . , vn−1 such that the
labeling corresponds with a Hamiltonian path H. G also may contain other edges. We are interested
in determining if there is a terrain T with vertices p0, p1, . . . , pn−1 such that G is the visibility graph
of T and the boundary of T corresponds with H. G is said to be persistent if and only if it satisfies
the so-called X-property and Bar-property. It is known that every “pseudo-terrain” has a persistent
visibility graph and that every persistent graph is the visibility graph for some pseudo-terrain. The
connection is not as clear for (geometric) terrains. It is known that the visibility graph of any terrain
T is persistent, but it has been unclear whether every persistent graph G has a terrain T such that
G is the visibility graph of T . There actually have been several papers that claim this to be the case
(although no formal proof has ever been published), and recent works made steps towards building a
terrain reconstruction algorithm for any persistent graph. In this paper, we show that there exists a
persistent graph G that is not the visibility graph for any terrain T . This means persistence is not
enough by itself to characterize the visibility graphs of terrains, and implies that pseudo-terrains are
not stretchable.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Terrains, Visibility Graph Characterization, Visibility Graph Recognition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.6

Related Version A full version of the paper is available at https://arxiv.org/abs/3112749.

Funding Matt Gibson-Lopez: Supported by theNational Science Foundation under GrantNo. 1733874.
Sean Soderman: Supported by the National Science Foundation under Grant No. 1733874.

1 Introduction

The notion of geometric visibility plays a fundamental role in many applications such as
robotics [8, 17] and shortest path computation in the presence of obstacles [16]. One of the
most fundamental data structures in visibility is the visibility graph (VG). Let P be a simple

© Safwa Ameer, Matt Gibson-Lopez, Erik Krohn, Sean Soderman, and Qing Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:safwa.ameer@gmail.com
https://orcid.org/0000-0001-5777-8313
mailto:matthew.gibson@utsa.edu
mailto:krohne@uwosh.edu
mailto:sean.soderman@my.utsa.edu
mailto:qwang44@utm.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.6
https://arxiv.org/abs/3112749
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Terrain Visibility Graphs: Persistence Is Not Enough

polygon in the plane with n vertices labeled p0, . . . , pn−1 following the boundary of P in
“counter-clockwise” order. P partitions the plane into two sets: “inside P” and “outside P”.
We say two vertices pi and pj see each other if and only if the line segment pipj does not
intersect the “outside P” region. The VG G of P has a vertex vi for each point of pi, and
{vi, vj} is an edge in G if and only if pi and pj see each other in P .

Given a simple polygon P , computing its VG in polynomial-time is a fairly trivial matter;
however, if we are given a graph G, determining if it is the VG for some simple polygon has
remained a tantalizing open problem for over 30 years. Along these lines, there are three
main VG problems that have received much attention: 1) characterization, 2) recognition,
and 3) reconstruction. In the visibility graph characterization problem, we seek to define a
set of necessary and sufficient conditions that all VGs must satisfy. In the visibility graph
recognition problem, we seek to design an algorithm that, given a graph G, determines if
there is a simple polygon P such that G is the VG of P . In the visibility graph reconstruction
problem, we are given a VG G and we wish to reconstruct a simple polygon P such that G
is the VG of P .

1.1 Previous work
The history of simple polygon VG characterization dates back to 1988, when Ghosh gave
three necessary conditions (NCs) that any VG must satisfy [12]. Shortly after, Everett
and Corneil [11, 10] showed a counterexample to the sufficiency of NCs 1-3; that is, they
gave an example of a graph that satisfies NCs 1-3 but is not the VG of any simple polygon.
Everett [11] also showed that a NC might need to be strengthened to rule this example out.
Srinivsraghavan and Mukhopadhyay [20] showed that a strengthening of this NC was in fact
necessary, but a counterexample given by Abello, Lin, and Pisupati [5] showed that more
NCs would be needed to complete the characterization. In 1997, Ghosh [13] gave a fourth
NC that circumvents the latest counterexample, but in 2005 Streinu gave an example of a
graph that satisfies the four NCs but is not a VG for any simple polygon [21].

Unfortunately, it is not known if simple polygon VG recognition is in NP. Even for special
cases, characterization and recognition results have only been given in the extremely restricted
special cases of simple polygons such as “spiral” polygons [10] and “tower polygons” [7].

1.2 Pseudo-visibility
Faced with the complexity of understanding simple polygon VGs, O’Rourke and Streinu
[18] turned their attention to pseudo-polygons, a generalization of simple polygons where
visibility is determined by a set of curves in the plane called pseudo-lines. An arrangement
of pseudo-lines L is a collection of simple curves, each of which separates the plane, such
that each pair of pseudo-lines in L intersects at exactly one point, where they cross. Given a
set of n points in the plane and a set of pseudo-lines L such that every pair of points has
a pseudo-line that contains them, a pseudo-polygon is determined similarly to a standard
Euclidean simple polygon except that visibility is defined using L instead of straight line
segments. Note that every simple polygon is a pseudo-polygon, where L is a set of straight
line segments. Streinu showed that there are pseudo-polygons that cannot be stretched into
a simple polygon [21]. That is, there is a pseudo-polygon such that its VG is not the VG for
any simple polygon.

In 1997, O’Rourke and Streinu [18] gave a characterization of vertex-edge VGs of pseudo-
polygons. In this setting, for any vertex v we are told which edges v sees rather than which
vertices it sees. Unfortunately this does not extend to the desired characterization of regular

S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman, and Q. Wang 6:3

VGs, as O’Rourke and Streinu showed that vertex-edge VGs encode more information about
a pseudo-polygon than a regular VG [19]. More recently, Gibson, Krohn, and Wang gave the
desired characterization of the VGs of pseudo polygons [14] which has very recently been
extended to a polynomial-time recognition and reconstruction algorithm [6].

1.3 The visibility graphs of terrains
One geometric structure that has gathered a lot of attention in the computational geometry
community is the terrain. A terrain T is an x-monotone (a vertical line intersects it at
most once) polygonal chain in the plane. Let T be a terrain with points labeled p0, . . . , pn−1
from left to right. Let pxi denote the x-coordinate of the point pi on T . Note that due to
monotonicity, we have pxi < pxi+1 for each i ∈ {0, . . . , n − 2}. We say points pi and pj see
each other if and only if the open line segment pipj lies completely above T . Given this
definition of vision, one can define the VG of a terrain similarly to that of a simple polygon.

Abello et al. [4] studied so-called “convex fans” which is essentially a simple polygon P
that can be decomposed into a terrain T and one additional point p∗ such that p∗ sees every
point of T (the boundary of P uses the boundary of T as well as the line segments p∗p0 and
p∗pn−1). They show that every simple polygon can be decomposed into some number of
convex fans, and therefore a potential strategy of tackling the simple polygon problem is
to take such a decomposition and handle the fans individually. Since p∗ sees every point of
the convex fan, the complexity in understanding the convex fan lies almost entirely with the
analysis of the “terrain portion” of the convex fan.

1.4 Persistent graphs
With a goal towards understanding the visibility graphs of convex fans, Abello et al. [3] defined
a notion of so-called persistent graphs and established a connection with terrain visibility
graphs and persistent graphs, which we will now describe. Suppose we are given a graph G
with labeled vertices v0, v1, . . . vn−1 such that {vi, vi+1} is an edge for each i ∈ {0, 1, . . . , n−2}
(i.e., the labeling gives a Hamiltonian path). Let H denote this Hamiltonian Path. G also
may contain other edges. We are interested in determining if there is a terrain T with points
p0, p1, . . . , pn−1 such that G is the visibility graph of T and the boundary of T corresponds
with H.

G is said to be persistent if and only if it satisfies the following two properties:

X-property: for any set of four distinct integers a, b, c, d ∈ {0, . . . , n − 1} such that
a < b < c < d, if {va, vc} and {vb, vd} are edges in G then {va, vd} is also an edge in G.
Bar-property: for every edge {vi, vk} in G such that k ≥ i+ 2, there exists a j ∈ (i, k)
such that {vi, vj} and {vj , vk} are edges in G.

Abello et al. [3] showed that for any terrain T , its visibility graph is persistent (albeit
for a slightly different definition of persistence), and Evans and Saeedi [9] showed it for the
definition of persistence being used here.

We now will help develop intuition for these properties (see [9] for a formal proof). For
the X-property (sometimes referred to as the “order claim”), consider Figure 1. In part
(a), we have a terrain such that: (1) p0 sees p3, and (2) p1 sees p4 (the blue dotted lines).
Therefore no vertex between p0 and p4 is strictly above either of the blue dotted lines. Then
the line segment connecting p0 and p4 will be “above” the blue dotted lines and therefore p0
must see p4. So now consider the graph in part (b). If the edges {v0, v3} and {v1, v4} are in
the graph but {v0, v4} is not an edge in the graph then it cannot be the visibility graph of a
terrain.

SoCG 2020

6:4 Terrain Visibility Graphs: Persistence Is Not Enough

p0

p1

p2

p3

p4

v3

v0

v1 v2

v4

(a) (b)

Figure 1 An illustration of the X-property.

p0

p1

p2

p3

p4
v0

v1

v2

v3

v4

(a) (b)

Figure 2 An illustration of the Bar-Property.

For the Bar-property, see Figure 2. In the terrain in part (a), we have that p0 sees p4. p1
sees p0, but it doesn’t see p4 because it is blocked by p2. Then it must be that p2 also sees
p0. Since p2 also sees p4 so we are done. In general, if pi sees pk, then pi+1 must see pi. If
pi+1 also sees pk we are done, so suppose it doesn’t see pk because there is some point pj
for j ∈ {i+ 2, . . . , k − 1} such that pi+1 sees pj , and pj is over the line segment pi+1, pk. pj
must see pi, and if it sees pk we are done. Otherwise we repeat this argument with the point
that blocks pj from pk, and eventually we find a point that sees both pi and pk. Therefore if
the graph in part (b) only contains the black edges, it cannot be the visibility graph of a
terrain, as the graph implies that p0 should see p4 but no other point between them should
see both p0 and p4.

Abello et al. [3] showed a one-to-one correspondence between the VGs of pseudo-terrains
(terrains using pseudo-lines to define visibilities rather than straight line segments) and
persistent graphs. That is, they show that the VG of any pseudo-terrain is persistent, and
they show that any persistent graph has a pseudo-terrain and give a polynomial-time algorithm
to reconstruct it. Evans and Saeedi [9] give a simpler proof (and a faster reconstruction
algorithm) of the same result.

It has remained an open problem to show that persistent graphs and the visibility graphs
of (geometric) terrains are exactly the same set (i.e., to show that G is a persistent graph
if and only if there is a terrain T such that G is the visibility graph of T). Several papers
have made progress towards giving a reconstruction algorithm that can take a persistent
graph G as input and construct a terrain T such that G is the visibility graph of T . In fact,
there are papers [4, 1] that claim that there exists such a reconstruction algorithm although
a formal proof of this has not been published. Evans and Saeedi [9] state that they ideally
would like to reconstruct a terrain from a persistent graph but that it seems difficult. Most
of the previous attempts to reconstruct terrains from a persistent graph involves an iterative
placement of the points of the terrain (e.g., determining the x and y coordinates of the points
of the terrain from left to right).

S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman, and Q. Wang 6:5

1.5 Our contribution
The main result of this paper is to prove that these two classes of graphs are in fact not the
same.

I Theorem 1. There is a persistent graph G such that there is no terrain T such that G is
the visibility graph of T .

We obtain this result by introducing a new style of reconstruction algorithm. We show
that if one can compute a set of feasible x-coordinates for the points of the terrain, then the
y-coordinates can be computed via linear programming (LP). Using standard LP analysis
techniques, we identify a seven-vertex, persistent graph G′ that must have its x-coordinates
chosen carefully in order to be able to reconstruct a terrain with G′ as its visibility graph.
We then build a graph G∗ that has thirty-five vertices which can be partitioned into five
“copies” of G′. In order to represent G∗ as a terrain, we would need to pick the thirty-five
x-coordinates in a way where each “copy” of G′ has its condition satisfied, and we show that
this is not possible.

Since G∗ is persistent, it is the visibility graph of some pseudo-terrain, and therefore our
result also is a proof that pseudo-terrains are not stretchable.

1.5.1 Organization of the paper
In Section 2, we describe our LP-based reconstruction algorithm. In Section 3, we give our
graph G′ and show that it requires very specifically chosen x-coordinates in order to be
realizable as a terrain. This critically uses our new LP-based reconstruction approach. In
Section 4, we give our persistent graph G∗ and prove that there is no terrain that has it as
its visibility graph. We give a conclusion and some open problems in Section 5.

2 Reconstructing terrains via linear programming

Let G be a persistent graph with vertices v0, . . . vn−1. For any terrain T with points
p0, . . . , pn−1, we let pxi denote the x-coordinate of pi. Let X = (x0, x1, . . . xn−1) be a vector
of real numbers such that xi < xi+1 for each i ∈ {0, 1, . . . n− 2}, and let T (G,X) be the set
of all terrains T with n points such that:
1. px0 = x0, p

x
1 = x1, . . . p

x
n−1 = xn−1 (i.e., it is the set of all terrains that have x-coordinates

that correspond with X).
2. The boundary of T corresponds to the Hamiltonian path H.
3. G is the visibility graph of T .
For any two integers i, j ∈ {0, . . . , n− 1} such that i < j, let di,j := |xi − xj |. Intuitively, for
a terrain T ∈ T (G,X), di,j is the distance between the x-coordinates of pi and pj .

We will now show that given G and X, we can determine in polynomial-time if there is a
terrain in T (G,X), and moreover if T (G,X) 6= ∅ then we can compute in polynomial-time a
feasible set of y-coordinates for some terrain T ∈ T (G,X). This algorithm is via a reduction
to linear programming (LP) where the variables of the LP are the y-coordinates of the points
of the terrain T . We show that given a fixed set of x-coordinates, we can model all of the
visibility constraints that T must satisfy as inequalities that are linear in the y-coordinates
of the points of T . It is not immediately obvious blocking constraints can be modeled as
linear constraints (i.e, if {vi, vj} is not an edge in G, ensuring that the y-coordinates are
computed so that the points pi and pj do not see each other in T), but we will show that we
can in fact model this as a linear constraint.

SoCG 2020

6:6 Terrain Visibility Graphs: Persistence Is Not Enough

pi pj pk

(xk, yk)

(xj, αik)
(xi, yi)

v0

v1 v2

v3
v0

v1
v2

v3

v4

v5

v6

(a) (b) (c)

Figure 3 (a) LP constraint illustration. (b) A sample terrain VG. (c) The VG G’.

First let us consider a visibility constraint: let {vi, vk} be an edge in G. We must ensure
that the y-coordinates yi and yk for pi and pk respectively are such that the line segment
pipk “stays above” T . We can ensure this, by enforcing that for every j ∈ (i, k), we choose
the y-coordinate yj such that pj is underneath pipk. Let αjik denote the y-coordinate of the
intersection of pipk and the vertical line x = xj (as illustrated in Figure 3 (a)). It is easy
to see that αjik = dj,k·yi+di,j ·yk

di,k
, a linear function of yi and yk since di,j , dj,k, and di,k are

functions of the constant x-coordinates. Therefore the visibility constraint yj < αjik is a linear
inequality. In our LP, we will write the constraint as dj,k · yi − di,k · yj + di,j · yk ≥ ε where ε
is a positive constant. Note that {vi, vk} can have many constraints in the LP associated
with it (although some of them may be redundant and can be removed without affecting the
set of feasible solutions to the LP, more on this later).

Now suppose vi and vk are such that {vi, vk} is not an edge in G. Then we must enforce
that the corresponding points pi and pk do not see each other in T . This means that pipk
must cross under the terrain T . We can do this by enforcing that some point pj between pi
and pk has its y-coordinate chosen to be large enough so that it is above pipk. Unfortunately
the notion that some point must be over pipk cannot directly be represented as a linear
constraint (whereas in the previous case it had to be that every point must be under pipk).
However we can see that by employing an analysis similar to the so-called designated blocker
from the analysis of pseudo-polygon visibility graphs [14], we can identify a specific point (or
two) that must be above pipk which allows us to express the constraint as a linear inequality.
To find the first such point, start at vk and “walk to the left” along H towards vi and let vj
be the first vertex encountered such that {vi, vj} is an edge in G (note that such a vertex
must exist; {vi, vi+1} is an edge in G). We claim that for every T ∈ T (G,X), it must be
that pj is over pipk. Suppose for the sake of contradiction that pj is under pipk. If there is a
point pz over pipk such that z < j, then pi doesn’t see pj , a contradiction, so suppose there
is no such point over pipk. So now let pz be the first point to the right of pj that is over
pipk. Then it must be that pi sees pz, but {vi, vz} is not an edge in G by definition of pj , a
contradiction. So it is true that for every T ∈ T (G,X), it must be that pj is over pipk, and
we call pj the designated blocker to block pi from pk. Therefore we can add the blocking
constraint yj > αjik to our LP. We write this constraint −dj,k · yi + di,k · yj − di,j · yk ≥ ε

where ε is a positive constant. We symmetrically compute the designated blocker to block pk
from seeing pi. Note that this point pj′ may not be the same point as the first designated
blocker pj (but it must be that j ≤ j′ or else G violates the X-property and therefore is not
persistent). If j′ 6= j, then we add another blocking constraint for pj′ . We again remark that
sometimes these blocking constraints are redundant and can be removed without altering
the set of feasible solutions to the LP.

The choice of ε does not effect whether or not there is a feasible solution to the LP (as
long as ε is positive). If there is a solution vector y that is feasible with right hand side ε′,
then one can obtain a feasible solution with right hand side ε by scaling y by a factor of ε

ε′ .

S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman, and Q. Wang 6:7

To illustrate our approach, consider the example VG in Figure 3 (b). We will show how
we construct the LP in order to reconstruct a terrain that has this graph as its VG. Suppose
X = (0, 1, 2, 3). First note that since {v0, v2} is an edge, we need the visibility constraint
y1 ≤ α1

0,2 = y0+y2
2 , which we can write as y0− 2y1 + y2 ≥ 1. Secondly note that p0 and p3 do

not see each other and p2 is the designated blocker. Therefore we add the blocking constraint
y2 > α2

0,3 = y0+2y3
3 , which we state as −y0 + 3y2 − 2y3 ≥ 1. Note p1 does not see p3 and

has designated blocker p2, but this constraint is redundant with the other two constraints.
Therefore our final LP is the following: y0 − 2y1 + y2 ≥ 1;−y0 + 3y2 − 2y3 ≥ 1. Any feasible
solution to this LP will give y-coordinates for a terrain T such that G is the VG of T .

One of the advantages of the LP-based approach is we can use standard LP techniques to
help us determine what (if any) constraints on x-coordinates need to be satisfied in order to
reconstruct the terrain (or determine that no x-coordinates are possible). In particular, we
will be using the well-known Farkas’ Lemma. Let m denote the number of constraints in our
LP, and let n be the number of points in the terrain. The LP can be represented as Ay ≥ b,
where A is an m× n matrix of coefficients, y ∈ Rn is the vector of y-coordinate variables of
the LP, and b = {ε}m for some ε > 0. Then Farkas’ Lemma [15] says that exactly one of the
following two statements is true:
1. there exists a y satisfying Ay ≥ b (i.e., there exists a terrain in T (G,X))
2. there is a z ∈ Rm such that z ≤ 0, ATz ≥ 0 and bTz < 0.
Our result heavily relies on the use of Case 2 of Farkas’ Lemma to determine exactly which
X vectors create a non-empty T (G,X) for a given persistent graph G.

3 A picky persistent graph

In this section, we will prove one of the key lemmas that leads to our result: there is a
persistent graph that requires its x-coordinates to satisfy a strict inequality in order for there
to be a feasible solution to the LP. The same visibility graph was analyzed in [2] where they
showed that this graph cannot be represented with “uniform step lengths” (which in our
context means that for any c > 0 we have di,i+1 = c). While this graph has been observed in
previous works, what is new in this paper is the exact requirements that the x-coordinates
must satisfy in order for there to be a terrain.

Let G′ be the visibility graph in Figure 3 (c). A terrain that has G′ as its visibility graph
is shown in Figure 4. Consider the LP using the following constraints: (1) p1 should be
above p0p2, (2) p3 should be under p0p4, (3) p3 should be over p1p5, (4) p3 should be under
p2p6, (5) p5 should be under p3p6, and (6) p5 should be over p4p6. Note that there are other
constraints we aren’t explicitly stating here such as p3 being under p0p5 (we will show they
are redundant and adding them does not affect the feasible region of the LP; removing the
redundant constraints will simplify the later analyses). Here the number of constraints m = 6
and the number of points n = 7. We express this LP in the form Ay ≥ b where A, y, and b
are as follows:

A =

∣∣∣∣∣∣∣∣∣∣∣

−d1,2 d0,2 −d0,1 0 0 0 0
d3,4 0 0 −d0,4 d0,3 0 0

0 −d3,5 0 d1,5 0 −d1,3 0
0 0 d3,6 −d2,6 0 0 d2,3

0 0 0 d5,6 0 −d3,6 d3,5

0 0 0 0 −d5,6 d4,6 −d4,5

∣∣∣∣∣∣∣∣∣∣∣
y =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y0

y1

y2

y3

y4

y5

y6

∣∣∣∣∣∣∣∣∣∣∣∣∣
b =

∣∣∣∣∣∣∣∣∣∣∣

ε

ε

ε

ε

ε

ε

∣∣∣∣∣∣∣∣∣∣∣

SoCG 2020

6:8 Terrain Visibility Graphs: Persistence Is Not Enough

Again, ε is a positive constant. Let T (X,y) denote the n-point terrain whose x-coordinates
correspond with X and y-coordinates correspond with y. Clearly if T is a terrain in T (G′, X)
then the vector of y-coordinates of its points is a feasible solution to this LP. We will now
argue that if y is a feasible solution to this LP then T (X,y) ∈ T (G′, X).

I Lemma 2. Let y be a feasible solution to the LP. Then the visibility graph of T (X,y)
is G′.

Proof. The combination of constraints 5 (p5 should be under p3p6) and 6 (p5 should be over
p4p6) directly implies that the visibilities of pi and pj correctly match those given by G′ for
vi and vj for each pair when i, j ≥ 3. In particular, p4 must be under p3p5 and p3p6.

Now consider point p0. Constraint 2 (p3 should be under p0p4) implies that p0 will
see p3, p4, p5, and p6 as long as p1 and p2 do not block them. Constraint 3 (p3 should be
over p1p5) ensures that p1 will be under p0p3 and then Constraint 1 (p1 should be above
p0p2) implies p2 is under p0p3 and p1p3. Therefore p0 will correctly see p3, p4, p5, and p6.
Moreover, Constraint 1 directly implies that p0 will not see p2, and therefore all visibilities
corresponding to p0 are correct.

The fact that p2 is under p1p3 implies that p1 and p3 correctly see each other. Constraint 4
(p3 should be under p2p6) implies that p2 will correctly see p6 given the earlier configurations
of p4 and p5. So using the fact that the visibility graph of any terrain satisfies the X-property,
we can see that p1 correctly sees p6 (applying the X-property with a = 1, b = 2, c = 3, and
d = 6).

Finally we need that pi does not see pj for i ∈ {1, 2} and j ∈ {4, 5}. p1 does not see
p5 as directly implied by Constraint 3, and we already showed the following: p2 is under
p1p3, p4 is under p3, p5. This implies the remaining three pairs of points correctly do not see
each other. J

The following lemma uses Farkas’ Lemma to determine requirements on X (which in
turn determines A) in order to have T (G′, X) 6= ∅.

I Lemma 3. There is a terrain T ∈ T (G′, X) if and only if X satisfies d0,1d2,3d3,4d5,6 >

d1,2d4,5d0,3d3,6.

Proof. Suppose that X satisfies d0,1d2,3d3,4d5,6 > d1,2d4,5d0,3d3,6. Let ε (which appears
in b) be the minimum of d3,5(d0,1d2,3d3,4d5,6 − d1,2d4,5d0,3d3,6) and d3,5(d0,1d3,4d5,6d3,5 +
d3,4d5,6d0,2d3,6 + d1,2d5,6d3,5d3,6 + d3,4d5,6d3,5d3,6 + d1,2d0,3d3,6d3,5). Note that ε is strictly
positive given our assumption on X. We show that the following vector y is a feasible
solution to the LP (work shown in the full version):

y =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d0,1d2,3d3,5d5,6 + d0,3d3,5d0,1d2,3 + d0,3d3,5d0,1d4,5 + d4,5d0,3d0,2d3,6 + d0,3d3,5d4,5d3,6

d1,2d4,5d0,3d3,6 − d0,1d2,3d3,4d5,6

−d2,3d5,6(d3,4d0,2 + d3,5(d1,2 + d3,4))− d1,2d0,3d3,5(d2,3 + d4,5)

0

−d0,1d3,4d3,5(d2,3 + d4,5)− d4,5d3,6(d3,4(d0,2 + d3,5) + d1,2d3,5)

0

d0,1d3,4d5,6d3,5 + d3,4d5,6d0,2d3,6 + d1,2d5,6d3,5d3,6 + d3,4d5,6d3,5d3,6 + d1,2d0,3d3,6d3,5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman, and Q. Wang 6:9

Now suppose X is such that d0,1d2,3d3,4d5,6 ≤ d1,2d4,5d0,3d3,6. We will show that
T (G′, X) = ∅ by using Farkas’ Lemma. In particular, we show that there is a vector z ∈ Rm
such that z ≤ 0, ATz ≥ 0, and bTz < 0 for every ε > 0. Our vector z is as follows:

z =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d3,4d5,6

d1,2d0,3

−d5,6

d0,3

−d3,4d5,6d0,2

d2,1d0,3d3,5

−d0,1d3,4d5,6

d1,2d0,3d3,6

d0,1d2,3d3,4d5,6 − d1,2d4,5d0,3d3,6

d1,2d0,3d3,6d3,5

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Note that the next-to-last entry is at most 0 due to the assumption on X, and the rest

are strictly negative for all X. Therefore it immediately follows that z ≤ 0 and bTz < 0 for
every ε > 0. We complete the proof by showing that ATz is a zero vector (work shown in
the full version). J

p1

p2

p3

p4

p5

p6
p0

d0,1 d1,2 d2,3 d3,4 d4,5 d5,6

d0,3 d3,6

Figure 4 A terrain whose VG is G′.

We remark that Lemma 3 can illustrate the difficulty in designing an algorithm that
reconstructs the terrain from left to right, placing the points of the terrain one at a time.
Let G′′ be the subgraph of G′ induced by the first six vertices {v0, . . . , v5}. It is not hard to
see that G′′ can be reconstructed using any vector of six, increasing x-coordinates. Suppose
we take such a reconstruction and then try to extend the reconstruction to handle all of G′.
If we reconstructed G′′ using, say, xi = i for each i ∈ {0, . . . , 5} (implying that di,i+1 = 1
for each i ∈ {0, . . . , 4}), one can see that every choice of x6 such that x6 > x5 will violate
the inequality stated in Lemma 3 (note that the choice of x6 impacts the d5,6 term on the
left side and impacts the d3,6 term on the right side). This implies that a left-to-right style
approach may need to shift both the x-coordinates and y-coordinates of the previously-placed
points to accommodate the new point.

SoCG 2020

6:10 Terrain Visibility Graphs: Persistence Is Not Enough

r1 g4 m0 g5 g6 m2 y1 r5 y2 b5 b6 m6g0 g1 r0 b0

y5

y6

m6

m5

b6

b5

y4

y3

y2

r6

r5

y1

y0

r3

r4

r2

b4

b3

b2

m4

m3

m2

g6

g5

m1

m0

g4

g3

g2

b1

b0

r1

r0

g1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

1

11

1

1

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

1

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

0

0

0

0

0

0

0

1

0

0 1 1

1

0

0

0

0

0

0

1 1

0 01 1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

b1 g2 m1 m3 m4 b2 b3 b4 r2 r3 r4g3 y0 r6 y3 y4 m5 y5 y6

g0

1

0 1

Figure 5 The adjacency matrix of G∗, a persistent graph that is not a terrain visibility graph.

4 A persistent graph that is not a terrain visibility graph

We are now ready to prove our main result of the paper, that there is a persistent graph
G∗ such that there is no terrain T such that G∗ is the visibility graph of T . The adjacency
matrix of G∗ is given in Figure 5. There are 35 vertices in G∗, listed from left to right along
the “horizontal axis” of the graph. The naming convention that we are using in this graph
partitions the vertices into five color groups, each color containing seven vertices. There
is green (g0, . . . , g6), red (r0, . . . , r6), blue (b0, . . . , b6), magenta (m0, . . . ,m6), and yellow
(y0, . . . y6). The key observation about each of these color classes is that the subgraph of G∗
induced by each of the color classes is exactly the graph G′ used in Lemma 3, and moreover
the designated blockers are exactly the same. For example, g1 must be over g0g2, because g0
doesn’t see any point between g1 and g2 (including points of different colors) and g2 doesn’t
see any point between g0 and g1. This implies that in order to obtain a terrain T that has
G∗ as its visibility graph, the x-coordinates must be chosen so that each of the 5 color classes
satisfy the inequality of Lemma 3, and we will show that this is not possible.

Proving that G∗ is persistent via a direct proof involves a tedious case analysis, and we
instead show it is persistent via a computer program. The program builds the adjacency
matrix as it is shown in Figure 5 and then ensures that the graph satisfies both the X-

S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman, and Q. Wang 6:11

property and the Bar-property. It can be much more easily verified that the algorithm we
used to check the properties is correct than it would be to analyze a direct proof that G∗ is
persistent. A copy of the C++ source code we use to perform the check can be found at
https://github.com/PySean/GraphChecker.

The following lemma will be used to prove the main result.

I Lemma 4. If X satisfies d0,1d2,3d3,4d5,6 > d1,2d4,5d0,3d3,6, then at least one of the following
two statements is true: 1) d1,2 < min{d0,1, d2,3}, or 2) d4,5 < min{d3,4, d5,6}.

Proof. Suppose without loss of generality that X is such that d1,2 ≥ d0,1 and d4,5 ≥ d5,6.
We will show that d0,1d2,3d3,4d5,6 < d1,2d4,5d0,3d3,6. We have:

d0,1d2,3d3,4d5,6 ≤ d1,2d2,3d3,4d4,5

< d1,2d0,3d3,6d4,5

= d1,2d4,5d0,3d3,6

Note that the second inequality follows since for all X we have x0 < x2 < x3 implying
d2,3 < d0,3, and similarly we have d3,4 < d3,6.

The lemma follows by applying a similar analysis for the other 3 cases. For example, if
d1,2 ≥ d2,3 and d4,5 ≥ d3,4 then we’d have:

d0,1d2,3d3,4d5,6 ≤ d0,1d1,2d4,5d5,6

< d0,3d1,2d4,5d3,6

= d1,2d4,5d0,3d3,6 J

For any color c from our set of colors {g, r, b,m, y} and any pair of distinct integers
i, j ∈ {0, . . . , 6} such that i < j, we let dci,j denote the absolute value of the difference
of x-coordinates of ci and cj . For example, dm2,3 is the absolute value of the difference of
x-coordinates of m2 and m3. We next show that for any vector X of thirty-five, increasing
x-coordinates, at least one color class has to violate the inequality from Lemma 3.

I Lemma 5. Let X be any vector of 35 x-coordinates in increasing order. There is at least
one color c ∈ {g, r, b,m, y} such that the x-coordinates for the seven points of that color do
not satisfy dc0,1dc2,3dc3,4dc5,6 > dc1,2d

c
4,5d

c
0,3d

c
3,6.

Proof. If blue does not satisfy the inequality then we are done, so suppose that blue does
satisfy it. Then according to Lemma 4, it must be that either db1,2 < db0,1 or db4,5 < db5,6.
Without loss of generality, suppose that db1,2 < db0,1.

Now consider the green points. If green does not satisfy the inequality then we are done,
so suppose it does. Since g1 < b0 < b1 < g2 < g3 < b2 and db1,2 < db0,1, we must have that
dg2,3 < dg1,2. Then by Lemma 4 we have that that dg4,5 < dg5,6.

Now consider the magenta points. If magenta does not satisfy the inequality then we
are done, so suppose it does. Since g4 < m0 < m1 < g5 < g6 < m2 and dg4,5 < dg5,6, we have
that dm0,1 < dm1,2. Therefore if magenta satisfies the inequality then we have dm4,5 < dm3,4 and
dm4,5 < dm5,6 by Lemma 4.

Now consider the red points. If red does not satisfy the inequality then we are done, so
suppose it does. Since r1 < m3 < m4 < r2 < r3 < m5 and dm4,5 < dm3,4, we have dr2,3 < dr1,2.
Then by Lemma 4, we must have that dr4,5 < dr5,6.

Now consider the yellow points. Since m4 < y3 < y4 < m5 < m6 < y5 and dm4,5 < dm5,6
then it must be that dy3,4 < dy4,5. Since r4 < y0 < y1 < r5 < r6 < y2 and dr4,5 < dr5,6, we also
have that dy0,1 < dy1,2. Then by Lemma 4 we have that yellow must violate the inequality. J

SoCG 2020

https://github.com/PySean/GraphChecker

6:12 Terrain Visibility Graphs: Persistence Is Not Enough

We now show that G∗ is not the visibility graph for any terrain, proving Theorem 1.

I Lemma 6. For any choice X of thirty-five, increasing x-coordinates, T (G∗, X) = ∅.

Proof. By Lemma 5, there must be at least one color that does not satisfy the inequality
from Lemma 3. Arbitrarily pick one such color with a violated inequality, and let c denote
our choice.

Let A be the constraint matrix generated by our reconstruction approach for G∗. Note
that for each of the 6 constraints that we used in the proof of Lemma 3, we must have a
similar set of constraints for the points of color c here, namely: (1) pc1 should be above pc0pc2,
(2) pc3 should be under pc0pc4, (3) pc3 should be over pc1pc5, (4) pc3 should be under pc2pc6, (5) pc5
should be under pc3pc6, and (6) pc5 should be over pc4pc6. The “under” constraints clearly must
be satisfied, but it is not immediately clear that the “over” constraints must be satisfied: it
must be verified that, for example, pc1 is a designated blocker for pc0 and pc2 (for example, pc0
shouldn’t see any points of any color between pc1 and pc2). One can easily verify that this is
the case for G∗ for each of the “over” constraints for each of the color classes.

We then prove that T (G∗, X) = ∅ using Farkas’ Lemma. That is, we show the existence
of a vector z such that z ≤ 0, ATz ≥ 0, and bTz < 0 for every ε > 0. Note that each entry
in z corresponds with one of the constraints of A. We can simply pick our z by allowing
each of the entries in z that correspond with one of the six constraints associated with the
vertices of color c to take the same value as the corresponding entry in our vector in the
proof of Lemma 3. We set every other entry of z to be 0. The analysis to see that this vector
satisfies the conditions of Case 2 of Farkas’ Lemma is then identical to that of the proof of
Lemma 3, completing the proof of this lemma. J

5 Conclusions and open problems

The visibility graphs of terrains have been studied for almost 30 years, and it was known
that the visibility graph for any terrain must be persistent. Previous works tended to believe
that persistence formed a characterization of the visibility graphs of terrains, that is that
for any persistent graph G, there is a terrain T such that G is the visibility graph of T .
Our main result in this paper is to show the existence of a persistent graph that is not the
visibility graph for any terrain. This proves that pseudo-terrains are not stretchable (as every
persistent graph is the visibility graph for some pseudo-terrain).

There is much left to be determined about the visibility graphs of terrains. This paper re-
opens the question about obtaining a characterization of the visibility graphs of terrains. We
now have that the X-property and Bar-properties are necessary but not sufficient properties
for a graph to be the visibility graph of a terrain. What additional properties must the graph
satisfy? We believe our linear programming approach to reconstructing terrains can shed
some light on the reconstruction problem as well. Previous research attempted to perform
an iterative placement of points from left to right. Our work shows that one needs not be
concerned with the y-coordinates of points when reconstructing a terrain, as if one has a
set of feasible x-coordinates then the y-coordinates can be computed in polynomial time
using linear programming. Given a visibility graph for a terrain, is there a polynomial-time
algorithm that can compute such a set of x-coordinates?

S. Ameer, M. Gibson-Lopez, E. Krohn, S. Soderman, and Q. Wang 6:13

References
1 James Abello. The majority rule and combinatorial geometry (via the symmetric group), 2004.
2 James Abello and Ömer Eğecioğlu. Visibility graphs of staircase polygons with uniform step

length. International Journal of Computational Geometry & Applications, 3(01):27–37, 1993.
3 James Abello, Ömer Eğecioğlu, and Krishna Kumar. Visibility graphs of staircase polygons and

the weak bruhat order, i: from visibility graphs to maximal chains. Discrete & Computational
Geometry, 14(3):331–358, 1995.

4 James Abello, Krishna Kumar, and Ömer Eğecioğlu. A combinatorial view of visibility graphs
of simple polygons. In Proceedings of ICCI’93: 5th International Conference on Computing
and Information, pages 87–92. IEEE, 1993.

5 James Abello, Hua Lin, and Sekhar Pisupati. On visibility graphs of simple polygons.
Congressus Numerantium, 90:119–128, 1992.

6 Safwa Ameer, Matt Gibson, Erik Krohn, and Qing Wang. Recognizing and reconstructing
pseudo-polygons from their visibility graphs. Manuscript, 2020.

7 Seung-Hak Choi, Sung Yong Shin, and Kyung-Yong Chwa. Characterizing and recognizing
the visibility graph of a funnel-shaped polygon. Algorithmica, 14(1):27–51, 1995. doi:
10.1007/BF01300372.

8 Peter Corke. Robotics, vision and control: fundamental algorithms in MATLAB, volume 73.
Springer Science & Business Media, 2011.

9 William S. Evans and Noushin Saeedi. On characterizing terrain visibility graphs. JoCG,
6(1):108–141, 2015. URL: http://jocg.org/index.php/jocg/article/view/130, doi:10.
20382/jocg.v6i1a5.

10 Hazel Everett and Derek G. Corneil. Negative results on characterizing visibility graphs.
Comput. Geom., pages 51–63, 1995. doi:10.1016/0925-7721(95)00021-Z.

11 Hazel Jane Margaret Everett. Visibility graph recognition. PhD thesis, University of Toronto,
1990.

12 Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
In SWAT, pages 96–104, 1988.

13 Subir Kumar Ghosh. On recognizing and characterizing visibility graphs of simple polygons.
Discrete & Computational Geometry, 17(2):143–162, 1997. doi:10.1007/BF02770871.

14 Matt Gibson, Erik Krohn, and Qing Wang. A characterization of visibility graphs for pseudo-
polygons. In ESA, pages 607–618, 2015.

15 Jean B. Lasserre. A discrete farkas lemma. Discrete Optimization, 1(1):67–75, 2004. doi:
10.1016/j.disopt.2004.04.002.

16 Tomás Lozano-Pérez and Michael A Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.

17 Saeed B Niku. Introduction to robotics: analysis, systems, applications, volume 7. Prentice
Hall New Jersey, 2001.

18 Joseph O’Rourke and Ileana Streinu. Vertex-edge pseudo-visibility graphs: Characterization
and recognition. In Symposium on Computational Geometry, pages 119–128, 1997. doi:
10.1145/262839.262915.

19 Joseph O’Rourke and Ileana Streinu. The vertex-edge visibility graph of a polygon. Computa-
tional Geometry, 10(2):105–120, 1998. doi:10.1016/S0925-7721(97)00011-4.

20 G. Srinivasaraghavan and Asish Mukhopadhyay. A new necessary condition for the vertex
visibility graphs of simple polygons. Discrete & Computational Geometry, 12:65–82, 1994.
doi:10.1007/BF02574366.

21 Ileana Streinu. Non-stretchable pseudo-visibility graphs. Comput. Geom., 31(3):195–206, 2005.
doi:10.1016/j.comgeo.2004.12.003.

SoCG 2020

https://doi.org/10.1007/BF01300372
https://doi.org/10.1007/BF01300372
http://jocg.org/index.php/jocg/article/view/130
https://doi.org/10.20382/jocg.v6i1a5
https://doi.org/10.20382/jocg.v6i1a5
https://doi.org/10.1016/0925-7721(95)00021-Z
https://doi.org/10.1007/BF02770871
https://doi.org/10.1016/j.disopt.2004.04.002
https://doi.org/10.1016/j.disopt.2004.04.002
https://doi.org/10.1145/262839.262915
https://doi.org/10.1145/262839.262915
https://doi.org/10.1016/S0925-7721(97)00011-4
https://doi.org/10.1007/BF02574366
https://doi.org/10.1016/j.comgeo.2004.12.003

On β-Plurality Points in Spatial Voting Games
Boris Aronov
Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

Mark de Berg
Department of Computing Science, TU Eindhoven, 5600 MB Eindhoven, The Netherlands
m.t.d.berg@tue.nl

Joachim Gudmundsson
School of Computer Science, University of Sydney, Sydney, NSW 2006, Australia
joachim.gudmundsson@sydney.edu.au

Michael Horton
Sportlogiq, Inc., Montreal, Quebec H2T 3B3, Canada
michael.horton@sportlogiq.com

Abstract

Let V be a set of n points in Rd, called voters. A point p ∈ Rd is a plurality point for V when the
following holds: for every q ∈ Rd the number of voters closer to p than to q is at least the number of
voters closer to q than to p. Thus, in a vote where each v ∈ V votes for the nearest proposal (and
voters for which the proposals are at equal distance abstain), proposal p will not lose against any
alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce
the concept of β-plurality points, which are defined similarly to regular plurality points except that
the distance of each voter to p (but not to q) is scaled by a factor β, for some constant 0 < β 6 1.
We investigate the existence and computation of β-plurality points, and obtain the following results.

Define β∗d := sup{β : any finite multiset V in Rd admits a β-plurality point}. We prove that
β∗2 =

√
3/2, and that 1/

√
d 6 β∗d 6

√
3/2 for all d > 3.

Define β(V) := sup{β : V admits a β-plurality point}. We present an algorithm that, given a
voter set V in Rd, computes an (1− ε) · β(V) plurality point in time O(n2

ε3d−2 · log n
εd−1 · log2 1

ε
).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Computational geometry, Spatial voting theory, Plurality point, Computa-
tional social choice

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.7

Related Version A full version of the paper is available at [1] https://arxiv.org/abs/2003.07513.

Funding Boris Aronov: Partially supported by NSF grant CCF-15-40656 and by grant 2014/170
from the US-Israel Binational Science Foundation.
Mark de Berg: Supported by the Netherlands’ Organisation for Scientific Research (NWO) under
project no. 024.002.003.
Joachim Gudmundsson: Supported under the Australian Research Council Discovery Projects
funding scheme (project numbers DP150101134 and DP180102870).
Michael Horton: Part of the work performed on this paper was done while visiting NYU, supported
by NSF grant CCF 12-18791.

Acknowledgements The authors would like to thank Sampson Wong for improving an earlier version
of Lemma 2.6.

© Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3110-4702
mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0001-5770-3784
mailto:m.t.d.berg@tue.nl
https://orcid.org/0000-0002-6778-7990
mailto:joachim.gudmundsson@sydney.edu.au
https://orcid.org/0000-0001-6388-9634
mailto:michael.horton@sportlogiq.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.7
https://arxiv.org/abs/2003.07513
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On β-Plurality Points in Spatial Voting Games

Donald Trump

Hillary Clinton

Gary Johnson
Jill Stein

Authoritarian

Libertarian

RightLeft

(i) (ii)

Figure 1 (i) The US presidential candidates 2016 modelled in the spatial voting model, according to
The Political Compass (https://politicalcompass.org/uselection2016). Note that the points
representing voters are not shown. (ii) The point set satisfies the generalized Plott symmetry
conditions and therefore admits a plurality point.

1 Introduction

Background. Voting theory is concerned with mechanisms to combine preferences of in-
dividual voters into a collective decision. A desirable property of such a collective decision
is that it is stable, in the sense that no alternative is preferred by more voters. In spatial
voting games [6,10] this is formalized as follows; see Fig. 1(i) for an example in a political
context. The space of all possible decisions is modeled as Rd and every voter is represented
by a point in Rd, where the dimensions represent different aspects of the decision and the
point representing a voter corresponds to the ideal decision for that voter. A voter v now
prefers a proposed decision p ∈ Rd over some alternative proposal q ∈ Rd when v is closer
to p than to q. Thus a point p ∈ Rd represents a stable decision for a given finite set V of
voters if, for any alternative q ∈ Rd, we have

∣∣{v ∈ V : |vp| < |vq|}
∣∣ > ∣∣{v ∈ V : |vq| < |vp|}

∣∣.
Such a point p is called a plurality point.1

For d = 1, a plurality point always exists, since in R1 a median of V is a plurality point.
This is not true in higher dimensions, however. Define a median hyperplane for a set V of
voters to be a hyperplane h such that both open half-spaces defined by h contain fewer than
|V |/2 voters. For d > 2 a plurality point in Rd exists if and only if all median hyperplanes
for V meet in a common point; see Fig. 1(ii). This condition is known as generalized Plott
symmetry conditions [12,23]; see also the papers by Wu et al. [28] and de Berg et al. [5], who
present algorithms to determine the existence of a plurality point for a given set of voters.

It is very unlikely that voters are distributed in such a way that all median hyperplanes
have a common intersection. (Indeed, if this happens, then a slightest generic perturbation
of a single voter destroys the existence of the plurality point.) When a plurality point
does not exist, we may want to find a point that is close to being a plurality point. One
way to formalize this is to consider the center of the yolk (or plurality ball) of V , where
the yolk [14,17,21,22] is the smallest ball intersecting every median hyperplane of V . We
introduce β-plurality points as an alternative way to relax the requirements for a plurality
point, and study several combinatorial and algorithmic questions regarding β-plurality points.

1 One can also require p to be strictly more popular than any alternative q. This is sometimes called a
strong plurality point, in contrast to the weak plurality points that we consider.

https://politicalcompass.org/uselection2016

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:3

β-Plurality points: definition and main questions. Let V be a multiset2 of n voters in Rd
in arbitrary, possibly coinciding, positions. In the traditional setting a proposed point p ∈ Rd
wins a voter v ∈ V against an alternative q if |pv| < |qv|. We relax this by fixing a parameter β
with 0 < β 6 1 and letting p win v against q if β · |pv| < |qv|. Thus we give an advantage to
the initial proposal p by scaling distances to p by a factor β 6 1. We now define

V [p �β q] := {v ∈ V : β · |pv| < |qv|} and V [p ≺β q] := {v ∈ V : β · |pv| > |qv|}

to be the multisets of voters won by p over q and lost by p against q, respectively. Finally,
we say that a point p ∈ Rd is a β-plurality point for V when∣∣V [p �β q]

∣∣ > ∣∣V [p ≺β q]
∣∣ , for any point q ∈ Rd.

Observe that β-plurality is monotone in the sense that if p is a β-plurality point then p is
also a β′-plurality point for all β′ < β.

The spatial voting model was popularised by Black [6] and Down [10] in the 1950s.
Stokes [26] criticized its simplicity and was the first to highlight the importance of taking
non-spatial aspects into consideration. The reasoning is that voters may evaluate a candidate
not only on their policies – their position in the policy space – but also take their so-called
valence into account: charisma, competence, or other desirable qualities in the public’s
mind [13]. A candidate can also increase her valence by a stronger party support [27] or
campaign spending [18]. Several models have been proposed to bring the spatial model closer
to a more realistic voting approach; see [15, 16, 24] as examples. A common model is the
multiplicative model, introduced by Hollard and Rossignol [19], which is closely related to
the concept of a β-plurality point. The multiplicative model augments the existing spatial
utility function by scaling the candidate’s valence by a multiplicative factor. Note that in the
2-player game considered in this paper the multiplicative model is the same as our β-plurality
model. From a computational point of view very little is known about the multiplicative
model. We are only aware of a result by Chung [7], who studied the problem of positioning a
new candidate in an existing space of voters and candidates, so that the valence required to
win at least a given number of voters is minimized.

One reason for introducing β-plurality was that a set V of voters in Rd, for d > 2,
generally does not admit a plurality point. This immediately raises the question: Is it true
that, for β small enough, any set V admits a β-plurality point? If so, we want to know the
largest β such that any voter set V admits a β-plurality point, that is, we wish to determine

β∗d := sup{β : any finite multiset V in Rd admits a β-plurality point}.

Note that β∗1 = 1, since any set V in R1 admits a plurality point and 1-plurality is equivalent
to the traditional notion of plurality.

After studying this combinatorial problem in Section 2, we turn our attention to the
following algorithmic question: given a voter set V , find a point p that is a β-plurality point
for the largest possible value β. In other words, if we define

β(V) := sup{β : V admits a β-plurality point}

and

β(p, V) := sup{β : p is a β-plurality point for V }

then we want to find a point p such that β(p, V) = β(V).

2 Even though we allow V to be a multiset, we sometimes refer to it as a “set” to ease the reading. When
the fact that V is a multiset requires special treatment, we explicitly address this.

SoCG 2020

7:4 On β-Plurality Points in Spatial Voting Games

v1 v2

v3

p
2

2

2

2/
√ 3

v1 v2

v3

p

V(v3)

E

(ii)(i)

Figure 2 (i) The set V = {v1, v2, v3} of voters and the point p used in the proof of Lemma 2.2.
(ii) The ellipse E is tangent to the Voronoi cell V(v3).

Outline. In Section 2 we prove that β∗d 6
√

3/2 for all d > 2. To this end we first show that
β∗d is non-increasing in d, and then we exhibit a voter set V in R2 such that β(V) 6

√
3/2.

We also show how to construct, for any given V in R2, a (
√

3/2)-plurality point, thus proving
that β∗2 =

√
3/2. For d > 3 we show how to construct a (1/

√
d)-plurality point.

In Section 3 we study the problem of computing, for a given voter set V of n points in Rd,
a β-plurality point for the largest possible β. (Here we assume d to be a fixed constant.)
While such a point can be found in polynomial time, the resulting running time is quite high.
We therefore focus our attention on finding an approximately optimal point p, that is, a
point p such that β(p, V) > (1− ε) · β(V). We show that such a point can be computed in
O(n2

ε3d−2 · log n
εd−1 · log2 1

ε) time.

Notation. We denote the open ball of radius ρ centered at a point q ∈ Rd by B(q, ρ) and,
for a point p ∈ Rd and a voter v, we define Dβ(p, v) := B(v, β · |pv|). Observe that p wins v
against a competitor q if and only if q is strictly outside Dβ(p, v), while q wins v if and
only if q is strictly inside Dβ(p, v). Hence, V [p ≺β q] = {v ∈ V : q ∈ Dβ(p, v)}. We define
Dβ(p) := {Dβ(p, v) : v ∈ V } – here we assume V is clear from the context – and let A(Dβ(p))
denote the arrangement induced by Dβ(p). The competitor point q that wins the most voters
against p will thus lie in the cell of A(Dβ(p)) of the greatest depth or, more precisely, the
cell contained in the maximum number of disks Dβ(p, v).

2 Bounds on β∗d
In this section we will prove bounds on β∗d , the supremum of all β such that any finite set
V ⊂ Rd admits a β-plurality point. We start with an observation that allows us to apply
bounds on β∗d to those on β∗d′ for d′ > d. Let conv(V) denote the convex hull of V .

I Observation 2.1. Let V be a finite multiset of voters in Rd.
(i) Suppose a point p ∈ Rd is not a β-plurality point for V . Then there is a point

q ∈ conv(V) such that
∣∣V [p �β q]

∣∣ < ∣∣V [p ≺β q]
∣∣.

(ii) For any p′ 6∈ conv(V), there is a point p ∈ conv(V) with β(p, V) > β(p′, V).
(iii) For any d′ > d we have β∗d′ 6 β∗d .

The proof is available in the full version [1]. We can now prove an upper bound on β∗d .

I Lemma 2.2. β∗d 6
√

3/2, for d > 2.

Proof. By Observation 2.1(iii), it suffices to prove the lemma for d = 2. To this end let
V = {v1, v2, v3} consist of three voters that form an equilateral triangle ∆ of side length 2
in R2; see Fig. 2(i).

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:5

x1

x2

x3

Figure 3 The cone C+
3 used in the proof of Lemma 2.3.

Let p denote the center of ∆. We will first argue that β(p, V) =
√

3/2. Note that
|pvi| = 2/

√
3 for all three voters vi. Hence, for β =

√
3/2, the open balls Dβ(vi, p) are

pairwise disjoint and touching at the mid-points of the edges of ∆. Therefore any competitor q
either wins one voter and loses the remaining two, or wins no voter and loses at least one.
The former happens when q lies inside one of the three balls Dβ(vi, p); the later happens
when q does not lie inside any of the balls, because in that case q can be on the boundary of
at most two of the balls. Thus, for β =

√
3/2, the point p always wins more voters than q

does. On the other hand, for β >
√

3/2, any two balls Dβ(vi, p), Dβ(vj , p) intersect and so a
point q located in such a pairwise intersection wins two voters and beats p. We conclude
that β(p, V) =

√
3/2, as claimed.

The lemma now follows if we can show that β(p′, V) 6
√

3/2 for any p′ 6= p. Let Vor(V)
be the Voronoi diagram of V , and let V(vi) be the closed Voronoi cell of vi, as shown in
Fig. 2(ii). Assume without loss of generality that p′ lies in V(v3). Let E be the ellipse with
foci v1 and v2 that passes through p. Thus

E := {z ∈ R2 : |zv1|+ |zv2| = 4/
√

3}.

Note that E is tangent to V(v3) at the point p. Hence, any point p′ 6= p in V(v3) has
|p′v1| + |p′v2| > 4/

√
3. This implies that for β >

√
3/2 we have β · |p′v1| + β · |p′v2| > 2,

and so the disks Dβ(p′, v1) and Dβ(p′, v2) intersect. It follows that for β >
√

3/2 there is
a competitor q that wins two voters against p′, which implies β(p′, V) 6

√
3/2 and thus

finishes the proof of the lemma. J

We now prove lower bounds on β∗d . We first prove that β∗d > 1/
√
d for any d > 2, and

then we improve the lower bound to
√

3/2 for d = 2. The latter bound is tight by Lemma 2.2.

Let V be a finite multiset of n voters in Rd. We call a hyperplane h balanced with respect
to V , if both open half-spaces defined by h contain at most n/2 voters from V . Note the
difference with median hyperplanes, which are required to have fewer than n/2 voters in
both open half-spaces. Clearly, for any 1 6 i 6 d there is a balanced hyperplane orthogonal
to the xi-axis, namely the hyperplane xi = mi, where mi is a median in the multiset of all
xi-coordinates of the voters in V . (In fact, for any direction ~d there is a balanced hyperplane
orthogonal to ~d.)

I Lemma 2.3. Let d > 2. For any finite multi-set V of voters in Rd there exists a point p ∈ Rd
such that β(p, V) = 1/

√
d. Moreover, such a point p can be computed in O(n) time.

Proof. Let H := {h1, . . . , hd} be a set of balanced hyperplanes with respect to V such that
hi is orthogonal to the xi-axis, and assume without loss of generality that hi : xi = 0. We
will prove that the point p located at the origin is a β-plurality point for V for any β < 1/

√
d,

thus showing that β(p, V) > 1/
√
d.

SoCG 2020

7:6 On β-Plurality Points in Spatial Voting Games

Let q = (q1, . . . , qd) be any competitor of p. We can assume without loss of generality
that max16i6d |qi| = qd > 0. Thus q lies in the closed cone C+

d defined as

C+
d := { (x1, . . . , xd) ∈ Rd : xd > |xj | for all j 6= d }.

Note that C+
d is bounded by portions of the 2(d− 1) hyperplanes xd = ±xj with j 6= d; see

Fig. 3.
Because hd : xd = 0 is a balanced hyperplane, the open halfspace h+

d : xd > 0 contains at
most n/2 voters, which implies that the closed halfspace cl(h−d) : xd 6 0 contains at least
n/2 voters. Hence, it suffices to argue that for any β < 1/

√
d the point p wins all the voters

in cl(h−d) against q. For this we need the following claim, proved in the full version [1].

B Claim 2.4. For any voter v ∈ cl(h−d) with v 6= p, we have that sin (∠qpv) > 1/
√
d with

equality if and only if q lies on an edge of C+
d and v lies on the orthogonal projection of this

edge onto hd.

We can now use the Law of Sines and the claim above to derive that for any β < 1/
√
d and

any voter v ∈ cl(h−d) with v 6= p we have

β · |pv| < 1√
d
· |pv| = 1√

d
· |qv| · sin (∠pqv)

sin (∠qpv) 6 |qv| · sin (∠pqv) 6 |qv| .

Hence, p wins every point in cl(h−d). This proves the first part of the lemma since cl(h−d)
contains at least n/2 voters, as already remarked.

Computing the point p is trivial once we have the balanced hyperplanes hi, which can be
found in O(n) time by computing a median xi-coordinate for each 1 6 i 6 d. J

In R2 we can improve the above bound: for any voter set V in the plane we can find a
point p such that β(p, V) =

√
3/2. By Lemma 2.2 this bound is tight. The improvement is

based on Lemma 2.5 below. This lemma – in fact a stronger version, stating that any two
opposite cones defined by the three concurrent lines contain the same number of points –
has been proved for even n by Dumitrescu et al. [11]. Our proof of Lemma 2.5 is similar
to their proof. We give it because we also need it for odd n, and because we will need an
understanding of the proof to describe our algorithm for computing the concurrent triple in
the lemma. Our algorithm will run in O(n log2 n) time, a significant improvement over the
O(n4/3 log1+ε n) running time obtained (for the case of even n) by Dumitrescu et al. [11].

I Lemma 2.5. Given a multiset V of n voters in R2, there exists a triple of concurrent
balanced lines (`1, `2, `3) such that the smaller angle between any two of them is π

3 .

Proof. Define the orientation of a line to be the counterclockwise angle it makes with the
positive y-axis. Recall that for any given orientation θ there exists at least one balanced
line with orientation θ. When n is odd this line is unique: it passes through the median
of the voter set V when V is projected orthogonally onto a line orthogonal to the lines of
orientation θ. In the rest of the proof it will be convenient to have a unique balanced line
for any orientation θ. To achieve this when n is even, we simply delete an arbitrary voter
from V . (If there are other voters at the same location, these voters are not deleted.) This is
allowed because when |V | is even, a balanced line for V \ {v} is also a balanced line for V .

Now let µ be the function that maps an angle value θ to the unique balanced line µ(θ); see
Figure 4(i). Note that µ is continuous for 0 6 θ < π. Let `1(θ) := µ(θ), and `2(θ) := µ(θ+ π

3),
and `3(θ) := µ(θ + 2π

3). For i 6= j, let pij(θ) := `i(θ) ∩ `j(θ) be the intersection point

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:7

θ

µ(θ)(i) (ii)

p23(0)

p13(0)

`1(0)

`2(0)

`3(0)

Figure 4 (i) The balanced line µ(θ). (ii) If p23 is to the left of the directed line `1(0) then p13(0)
is to the right of `2(0).

between `i(θ) and `j(θ). If p23(0) ∈ `1(0) then the lines `1(0), `2(0), `3(0) are concurrent and
we are done. Otherwise, consider the situation at θ = 0 and imagine `1(0) and `2(0) to be
directed in the positive y-direction, as in Fig. 4(ii). Clearly, if p23(0) is to the left of the
directed line `1(0) then p13(0) is to the right of the directed line `2(0), and vice versa. Now
increase θ from 0 to π/3, and note that `1(π/3) = `2(0) and p23(π/3) = p13(0). Hence, p23(θ)
lies to a different side of the directed line `1(θ) for θ = 0 than it does for θ = π/3. Since both
`1(θ) and p23(θ) move continuously, this implies that for some θ ∈ (0, π/3) the point p23(θ)
crosses the line `1(θ), and so the lines `1(θ), `2(θ), `3(θ) are concurrent. J

Next we show how to efficiently compute a triple as in Lemma 2.5. We follow the definitions
and notation from the proof of Lemma 2.5. We will assume that n is odd, which, as argued,
is without loss of generality.

To find a concurrent triple of balanced lines, we first compute the lines `1(0), `2(0), `3(0)
in O(n) time. If they are concurrent, we are done. Otherwise, there is a θ ∈ (0, π/3) such
that `1(θ), `2(θ), `3(θ) are concurrent. To find this value θ, we dualize the voter set V , using
the standard duality transform that maps a point (a, b) to the line y = ax + b, and vice
versa. Let v∗ denote the dual line of the voter v, and let V ∗ := {v∗ : v ∈ V }. Note that,
for θ ∈ (0, π/3), the lines `1(θ), `2(θ), `3(θ) are all non-vertical, therefore their duals `∗i (θ)
are well-defined.

Consider the arrangement A(V ∗) defined by the duals of the voters. For θ 6= 0, define
slope(θ) to be the slope of the lines with orientation θ. Then µ∗(θ), the dual of µ(θ), is the
intersection point of the vertical line x = slope(θ) with Lmed, the median level in A(V ∗).
(The median level of A(V ∗) is the set of points q such that there are fewer than n/2 lines
below q and fewer than n/2 lines above q; this is well defined since we assume n is odd. The
median level forms an x-monotone polygonal curve along edges of A(V ∗).)

Now consider the duals `∗1(θ), `∗2(θ), `∗3(θ), which all lie on Lmed. For θ ∈ (0, π/3), the
x-coordinate of `∗1(θ) lies in (−∞,−1/

√
3), the x-coordinate of `∗2(θ) lies in (−1/

√
3, 1/
√

3),
and the x-coordinate of `∗3(θ) lies in (1/

√
3,∞). We split Lmed into three pieces corresponding

to these ranges of x-coordinate. Let E1, E2, and E3 denote the sets of edges forming the
parts of Lmed in the first, second, and third range, respectively, where edges crossing the
vertical lines x = −1/

√
3 and x = 1/

√
3 are split; see Fig. 5.

x = −1/
√
3 x = 1/

√
3

Lmed

E1 E2 E3

Figure 5 The edge sets E1, E2, and E3 of Lmed, the median level in A(V ∗).

SoCG 2020

7:8 On β-Plurality Points in Spatial Voting Games

Recall that we want to find a value θ ∈ (0, π/3) such that `1(θ), `2(θ), `3(θ) are concurrent
(or, in other words, such that the points `∗1(θ), `∗2(θ), `∗3(θ) are collinear). Also recall that,
for any θ ∈ (0, π/3), the point `∗i (θ) lies on an edge in Ei, for i = 1, 2, 3. One way to find θ
would be to explicitly compute Lmed, and then increase θ (starting at θ = 0) and see how
the points `∗i (θ) move over Ei, until we reach a value where `1(θ), `2(θ), `3(θ) are concurrent.
Since the best known bounds on the complexity of the median level is O(n4/3) [9] we will
proceed differently, as follows.
1. Find an interval (θ1, θ

′
1) ⊆ (0, π/3) for which there is a θ with the desired properties and

such that `∗1(θ) lies on the same edge of E1 for all θ ∈ (θ1, θ
′
1).

2. Find an interval (θ2, θ
′
2) ⊆ (θ1, θ

′
1) for which there is a θ with the desired properties and

such that `∗2(θ) lies on the same edge of E2 for all θ ∈ (θ2, θ
′
2).

3. Find an interval (θ3, θ
′
3) ⊆ (θ2, θ

′
2) for which there is a θ with the desired properties and

such that `∗3(θ) lies on the same edge of E3 for all θ ∈ (θ3, θ
′
3).

4. After Step 3 we have an interval (θ3, θ
′
3) ⊆ (0, π/3) for which there is a θ with the desired

properties and such that `∗1(θ), `∗2(θ), and `∗3(θ) each lie on a fixed edge of Lmed. Let v1,
v2, and v3 denote the voters whose dual lines contain these three edges. We know that
for any θ ∈ (θ3, θ

′
3), the line through v1 with orientation θ is a balanced line. Similarly,

for any θ ∈ (θ3, θ
′
3) the line through v2 with orientation θ + π/3 is a balanced line, and

the line through v3 with orientation θ + 2π/3 is a balanced line. Finding a θ ∈ (θ3, θ
′
3)

with the desired properties thus only requires finding a θ ∈ (θ3, θ
′
3) for which these three

lines are concurrent. Such a θ is guaranteed to exist by construction, and finding it is a
constant-time operation.

It remains to explain how to perform Steps 1–3. Below we describe this for Step 1; the other
steps can be implemented in a similar way.

To implement Step 1 we perform a binary search over the x-coordinates of the ver-
tices of A(V ∗) in the slab (−∞,−1/

√
3) × (−∞,∞), as follows. In a generic step of this

binary search we have an interval (θmin, θmax) such that p23(θ) lies to a different side of
the directed line `1(θ) for θ = θmin than for θ = θmax. (Recall that this implies that
there is a θ ∈ (θmin, θmax) with the desired property.) This interval corresponds to the
slab (slope(θmin), slope(θmax))×(−∞,∞) in the dual plane. Let X be the set of x-coordinates
of the vertices of A(V ∗) inside this slab. We can find the median xmed of X in O(n logn)
time using the algorithm by Cole et al. [8]. We then compute the three balanced lines
`i(θmed), where θmed is such that slope(θmed) = xmed. If these three lines are concurrent we
are immediately done, and we can stop. Otherwise we determine where p23(θmed) lies relative
to `1(θmed), and based on that decide whether to recurse on (θmin, θmed) or on (θmed, θmax).
We continue until the slab (slope(θmin), slope(θmax))× (−∞,∞) contains no more vertices
of A(V ∗). We then finish Step 1 by setting (θ1, θ

′
1) := (θmin, θmax).

Each iteration of the binary search takes O(n logn) time, so Step 1 takes O(n log2 n) time.
Steps 2 and 3 can be done in a similar fashion, so we can find a concurrent triple of balanced
lines as in Lemma 2.5 in O(n log2 n) time. In [1] we show that the common intersection of
these three lines is a (

√
3/2)-plurality point, thus proving the following lemma.

I Lemma 2.6. For any finite multi-set V of voters in R2 there exists a point p ∈ R2 such
that β(p, V) >

√
3/2. Moreover, such a point p can be computed in O(n log2 n) time.

The following theorem summarizes the results of this section.

I Theorem 2.7.
(i) We have β∗2 =

√
3/2. Moreover, for any multiset V of n voters in R2 we can compute

a point p such that β(p, V) =
√

3/2 in O(n log2 n) time.
(ii) For d > 2, we have 1/

√
d 6 β∗d 6

√
3/2. Moreover, for any multiset V of n voters in

Rd we can compute a point p such that β(p, V) = 1/
√
d in O(n) time.

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:9

3 Finding a point that maximizes β(p, V)

We know from Theorem 2.7 that, for any multiset V of n voters in Rd, we can compute a
point p with β(p, V) ≥ 1/

√
d (even with β(p, V) ≥

√
3/2, in the plane). However, a given

voter multiset V may admit a β-plurality point for larger values of β – possibly even for
β = 1. In this section we study the problem of computing a point p that maximizes β(p, V),
that is, a point p with β(p, V) = β(V).

3.1 An exact algorithm

Below we sketch an exact algorithm to compute β(V) together with a point p such that
β(p, V) = β(V). Our goal is to show that, for constant d, this can be done in polynomial
time. We do not make a special effort to optimize the exponent in the running time; it may
be possible to speed up the algorithm, but it seems clear that it will remain impractical,
because of the asymptotic running time, and also because of algebraic issues.

Note that we can efficiently check whether a true plurality point exists (i.e., β = 1 can be
achieved) in time O(n logn) by an algorithm of De Berg et al. [5], and if so, identify this
point. Therefore, hereafter β = 1 is used as a sentinel value, and our algorithm proceeds on
the assumption that β(p, V) < 1 for any point p.

For a voter v ∈ V , a candidate p ∈ Rd, and an alternative candidate q ∈ Rd, define
fv(p, q) := min(|qv|/|pv|, 1) when p 6= v, and define fv(p, q) := 1 otherwise. Observe that for
fv(p, q) < 1 we have

q wins voter v over p if and only if β > fv(p, q),
q and p have a tie over voter v if and only if β = fv(p, q), and
p wins voter v over q if and only if β < fv(p, q).

For fv(p, q) = 1 this is not quite true: when p = q = v we always have a tie, and when
|pv| < |qv| then p wins v even when β = fv(p, q) = 1. When p = q there is a tie for all voters,
so the final conclusion (namely that

∣∣V [p �β q]
∣∣ > ∣∣V [p ≺β q]

∣∣) is still correct. The fact that
we incorrectly conclude that there is a tie when |pv| < |qv| and β = fv(p, q) = 1 does not
present a problem either, since we assume β(p, V) < 1. Hence, we can pretend that checking
if β > fv(p, q), or β = fv(p, q), or β < fv(p, q) tells us whether q wins v, or there’s a tie, or p
wins v, respectively.

Hereafter we identify fv : R2d → R with its graph {(p, q, fv(p, q))} ⊂ R2d+1, which is a
d-dimensional surface. Let f+

v be the set of points lying above this graph, and f−v be the set of
points lying below it. Thus f+

v is precisely the set of combinations of (p, q, β) where q wins v
over p, while fv is the set where p ties with q, and f−v is the set where q loses v to p. Consider
the arrangement A := A(F) defined by the set of surfaces F := {fv : v ∈ V }. Each face C
in A is a maximal connected set of points with the property that all points of C are contained
in, lie below, or lie above, the same subset of surfaces of F . (Note that we consider faces of
all dimensions, not just full-dimensional cells.) Thus for all (p, q, β) ∈ C, exactly one of the
following holds:

∣∣V [p �β q]
∣∣ < ∣∣V [p ≺β q]

∣∣, or ∣∣V [p �β q]
∣∣ =

∣∣V [p ≺β q]
∣∣, or ∣∣V [p �β q]

∣∣ >∣∣V [p ≺β q]
∣∣. Let L be the union of all faces C of A(F) such that

∣∣V [p �β q]
∣∣ < ∣∣V [p ≺β q]

∣∣,
that is, such that p loses against q for all (p, q, β) in C. We can construct A and L in
time O(n2d+1) using standard machinery, as A is an arrangement of degree-4 semi-algebraic
surfaces of constant description complexity [3, 4]. We are interested in the set

W := {(p, β) :
∣∣V [p �β q]

∣∣ > ∣∣V [p ≺β q]
∣∣ for any competitor q } ⊂ Rd+1.

SoCG 2020

7:10 On β-Plurality Points in Spatial Voting Games

What is the relationship between W and L? A point (p, β) is in W precisely when, for every
choice of q ∈ Rd, p wins at least as many voters as q (for the given β). In other words,

W = {(p, β) | there is no q such that (p, q, β) ∈ L}.

That is, W is the complement of the projection of L to the space Rd+1 representing the
pairs (p, β). The most straightforward way to implement the projection would involve
constructing semi-algebraic formulas describing individual faces and invoking quantifier
elimination on the resulting formulas [3]. Below we outline a more obviously polynomial-time
alternative.

Construct the vertical decomposition vd(A) of A, which is a refinement of A into pieces
(“subfaces” τ), each bounded by at most 2(2d+ 1) surfaces of constant degree and therefore
of constant complexity; see [25]. A vertical decomposition is specified by ordering the
coordinates – we put the coordinates corresponding to q last. Since vd(A) is a refinement
of A, the set L is the union of subfaces τ of vd(A) fully contained in L. Since A is
an arrangement of n well-behaved surfaces in 2d + 1 > 5 dimensions, the complexity of
vd(A) is O(n2(2d+1)−4+ε) = O(n4d−2+ε), for any ε > 0 [20]. In particular, L comprises
` := O(n4d−2+ε) subfaces.

Since each τ ⊂ L is a subface of the vertical decomposition vd(A) in which the last
d coordinates correspond to q, the projection τ ′ of τ to Rd+1 is easy obtain (see [25]) in constant
time; indeed it can be obtained by discarding the constraints on these last d coordinates from
the description of τ . Thus, in time O(`) we can construct the family of all the projections
of the ` subfaces of L, each a constant-complexity semi-algebraic object in Rd+1. We now
construct the arrangement A′ of the resulting collection and its vertical decomposition vd(A′).
The complexity of vd(A′) is either O(`d+1+ε) or O(`2(d+1)−4+ε) = O(`2d−2+ε), depending on
whether d+ 1 6 4 or not, respectively [20]. Each subface in vd(A′) is either fully contained
in the projection of L or fully disjoint from it. Collecting all of the latter subfaces, we obtain
a representation of W as a union of at most O(`O(d)) = O(nO(d2)) constant-complexity
semi-algebraic objects.

Now if (p, β) ∈W is the point with the highest value of β, then β(V) = β(p, V) = β. It
can be found by enumerating all the subfaces of vd(A′) contained in the closure of W – we
take the closure because V (p, β) is defined as a supremum – and identifying their topmost
point or points. Since each face has constant complexity, this can be done in O(1) time per
subface.3 This completes our description of an O(nO(d2))-time algorithm to compute the
best β that can be achieved for a given set of voters V , and the candidate p (or the set of
candidates) that achieve this value.

3.2 An approximation algorithm
Since computing β(V) exactly appears expensive, we now turn our attention to approximation
algorithms. In particular, given a voter set V in Rd and an ε ∈ (0, 1/2], we wish to compute
a point p such that β(p, V) > (1− ε) · β(V).

Our approximation algorithm works in two steps. In the first step, we compute a set P
of O(n/ε2d−1 log(1/ε)) candidates. P may not contain the true optimal point p, but we will
ensure that P contains a point p such that β(p, V) > (1− ε/2) · β(V). In the second step,
we approximate β(p′, V) for each p′ ∈ P , to find an approximately best candidate.

3 Once again, the projection to the β coordinate is particularly easy to obtain if, when constructing
vd(A′), we set the coordinate corresponding to β first.

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:11

vi

radius = dc/ε

Ai(C)
Aout

i (C)

vi

radius = εdCAin
i (C)

(i) (ii)

Figure 6 (i) The closed spherical shell Ai(C) defined by the two balls of radii ε · dC and dC/ε

around vi. (ii) The exponential grid Gi(C). The grid is defined by a collection of spheres centered
at vi, plus extreme rays of the cones with apex at vi. The spheres have radii (1 + ε/4)i · ε · dC for
0 6 i 6 log(1+ε/4)(1/ε2) = O((1/ε) log(1/ε)), and the interior angle of a cone is ε/2

√
d.

Constructing the candidate set P . To construct the candidate set P , we will generate,
for each voter vi ∈ V , a set Pi of O(1/ε2d−1 log(1/ε)) candidate points. Our final set P of
candidates will be the union of the sets P1, . . . , Pn. Next we describe how to construct Pi.

Partition Rd into a set C of O(1/εd−1) simplicial cones with apex at vi and opening angle
ε/(2
√
d), so that for every pair of points u and u′ in the same cone we have ∠uviu′ 6 ε/(2

√
d).

We assume for simplicity (and can easily guarantee) that no voter in V lies on the boundary
of any of the cones, except for vi itself and any voters coinciding with vi. Let C(vi) denote
the set of all cones in C whose interior contains at least one voter. For each cone C ∈ C(vi) we
generate a candidate set Gi(C) as explained next, and then we set Pi :=

⋃
C∈C(vi) Gi(C)∪{vi}.

Let dC be the distance from vi to the nearest other voter (not coinciding with vi) in C.
Let Ai(C) be the closed spherical shell defined by the two spheres of radii ε · dC and dC/ε
around vi, as shown in Fig. 6(i). The open ball of radius ε · dC is denoted by Ain

i (C), and
the complement of the closed ball of radius dC/ε is denoted by Aout

i (C). Let Gi(C) be the
vertices in an exponential grid defined by a collection of spheres centered at vi, and the
extreme rays of the cones in C; see Fig. 6(ii). The spheres have radii (1 + ε/4)i · ε · dC ,
for 0 6 i 6 log(1+ε/4)(1/ε2) = O((1/ε) log(1/ε)). Observe that Gi(C) contains not only
points in C, but in the entire spherical shell Ai(C). The set Gi(C) consists of O(1/εd log(1/ε))
points, and it has the following property:

Let p be any point in the spherical shell Ai(C), and let p′ be a corner of the grid cell
containing p and nearest to p. Then |p′p| 6 ε · |pvi|. (∗)

To prove the property, let q be the point on pvi such that |qvi| = |p′vi|. From the construction
of the exponential grid we have |pq| 6 ε

4 ·|pvi|. Since p
′ and q lie in the same cone ∠p′viq 6 ε

2
√
d

and, consequently, |p′q| 6 ε
2 · |qvi| 6 (1 + ε

4) · ε2 · |pvi|. The property is now immediate since
|pp′| 6 |pq|+ |qp′| < ε · |pvi|.

As mentioned above, Pi :=
⋃
C∈C(vi) Gi(C) ∪ {vi}, and the final candidate set P is

defined as P :=
⋃
vi∈V Pi. Computing the sets Pi is easy: for each of the O(1/εd−1) cones

C ∈ C(vi), determine the nearest neighbor of vi in C in O(n) time by brute force, and
then generate Gi(C) in O((1/ε(d−1)) log(1/ε)) time. (It is not hard to speed up the nearest-
neighbor computation using appropriate data structures, but this will not improve the final
running time in Theorem 3.4.) We obtain the following lemma.

SoCG 2020

7:12 On β-Plurality Points in Spatial Voting Games

vi

p

p′′

vk

p′

C∗

C

(i) (ii)
p

vi
vkdC

≥ dC/ε ≥ |pvi|

vj

≥ 1
2 (π − ε)

≤ ε

Figure 7 Illustration for Case III.

I Lemma 3.1. The candidate set P has size O(n/ε2d−1 log(1/ε)) and can be constructed in
O(n2/εd−1 + n/ε2d−1 log(1/ε)) time.

The next lemma is crucial to show that P is a good candidate set.

I Lemma 3.2. For any point p ∈ Rd, there exists a point p′ ∈ P with the following property:
for any voter vj ∈ V , we have that |p′vj | 6 (1 + 2ε) · |pvj |.

Proof. Let vi be a voter nearest to p. We will argue that the set Pi contains a point p′ with
the desired property. We distinguish three cases.
Case I: There is a cone C ∈ C(vi) such that p lies in the spherical shell Ai(C). In this

case we pick p′ to be a point of Gi(C) nearest to p, that is, p′ is a corner nearest to p
of the grid cell containing p. By property (∗) we have

|p′vj | 6 |p′p|+ |pvj | 6 ε · |pvi|+ |pvj | 6 (1 + ε) · |pvj |,

where the last inequality follows from the fact that vi is a voter nearest to p.
Case II: Point p lies in Ain

i (C) for all C ∈ C(vi). In this case we pick p′ := vi. Clearly
|p′vj | = 0 6 (1 + ε) · |pvj | for j = i. For j 6= i, we argue as follows. Let C ∈ C(vi) be the
cone containing vj . Since we are in Case II we know that p ∈ Ain

i (C), and so

|p′vj | 6 |p′p|+ |pvj | 6 εdC + |pvj | 6 ε|p′vj |+ |pvj |. (1)

Moreover, we have

|pvj | > |p′vj | − |pp′| > |p′vj | − εdC > |p′vj |/2, (2)

where the last step uses that ε 6 1/2 and dC 6 |p′vj |. Combining (1) and (2), we obtain
|p′vj | 6 (1 + 2ε) · |pvj |.

Case III: Cases I and II do not apply. In this case there is at least one cone C such that
p ∈ Aout

i (C). Of all such cones, let C∗ be the one whose associated distance dC∗ is
maximized. Let p′′ be the point on the segment pvi at distance dC/ε from vi. Without
loss of generality, we will assume that p and vi only differ in the xd coordinate; see
Fig. 7(i).
We will prove that the point p′ of Gi(C∗) nearest to p′′ (refer to Fig. 7(i)) has the desired
property. Consider a voter vj . We distinguish three cases.

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:13

When i = j, then we have

|p′vi| 6 |p′p′′|+ |p′′vi| 6 (1 + ε)|p′′vi| 6 (1 + ε)|pvi|,

where the second inequality follows from (∗).
When vj lies in a cone C such that p ∈ Ain

i (C), then we can use the same argument as
in Case II to show that |p′vj | 6 (1 + 2ε) · |pvj |.
In the remaining case vj lies in a cone C such that p ∈ Aout

i (C). Let vk be a voter in
C nearest to vi. Since |vivk| = dC , |pvi| > dC/ε, and |pvk| > |pvi|, we can deduce that
∠pvivk > π/2− ε/2, as illustrated in Fig. 7(ii). Furthermore, since vk and vj belong
to the same cone C the angle ∠vkvivj is bounded by ε/2

√
d 6 ε/2 according to the

construction. Putting the two angle bounds together we conclude that ∠pvivj > π
2 − ε.

Now consider the triangle defined by p, vi and vj . From the Law of Sines we obtain

|vivj |
sin∠vipvj

= |pvj |
sin∠pvivj

, or |vivj | = |pvj | ·
sin∠vipvj
sin∠pvivj

6
|pvj |
cos ε 6 (1 + ε) · |pvj |,

for ε < 1/2. Since p′′ lies on the line between p and vi we have:

|p′′vj | 6 max{|pvj |, |vivj |} 6 (1 + ε) · |pvj |.

Finally we get the claimed bound by noting that |p′p′′| 6 ε · |p′vi| (from (*)),

|p′vj | 6 |p′p′′|+ |p′′vj | 6 ε · |p′vi|+ (1 + ε) · |pvj | 6 (1 + 2ε) · |pvj |. J

An approximate decision algorithm. Given a point p, a positive real value ε and the voter
multiset V , we say that an algorithm Alg is an ε-approximate decision algorithm if

Alg answers yes if p is a β-plurality point, and
Alg answers no if p is not a (1− ε)β-plurality point.

In the remaining cases, where (1− ε)β < β(p, V) < β, Alg may answer yes or no.

Next we propose an ε-approximate decision algorithm Alg. The algorithm will use the
so-called Balanced Box-Decomposition (BBD) tree introduced by Arya and Mount [2]. BBD
trees are hierarchical space-decomposition trees such that each node µ represents a region
in Rd, denoted by region(µ), which is a d-dimensional axis-aligned box or the difference of
two such boxes. A BBD tree for a set P of n points in Rd can be built in O(n logn) time
using O(n) space. It supports (1 + ε)-approximate range counting queries with convex query
ranges in O(logn+ ε1−d) time [2]. In our algorithm all query ranges will be balls, hence a
(1 + ε)-approximate range-counting query for a d-dimensional ball s(v, r) with center at v
and radius r returns an integer I such that |P ∩ s(v, r)| 6 I 6 |P ∩ s(v, (1 + ε)r)|.

Our ε-approximate decision algorithm Alg works as follows.
1. Construct a set Q of O(n/εd−1) potential candidates competing against p, as follows.

Let Q(v) be a set of O(1/εd−1) points distributed uniformly on the boundary of the ball
s(v, (1− ε/2) · β · |pv|), such that the distance between any point on the boundary and
its nearest neighbor in Q(v) is at most ε

4
√
d
· |pv| 6 ε

4 · β · |pv|. In the last step we use the
fact that β > 1/

√
d, according to Lemma 2.3. Set Q := Q(v1) ∪ · · · ∪Q(vn).

2. Build a BBD tree T on Q. Add a counter c(µ) to each node µ in T , initialized to zero.
3. For each voter v ∈ V perform a (1 + ε/4)-approximate range-counting query with

s(v, (1− ε/4) · β · |pv|) in T . We modify the search in T slightly as follows. If an internal
node µ ∈ T is visited and expanded during the search, then for every non-expanded child
µ′ of µ with region(µ′) entirely contained in s(v, (1+ε/4)(1−ε/4) ·β · |pv|)) ⊂ s(v, β · |pv|)
we increment the counter c(µ′). Similarly, if a leaf is visited then the counter is incremented
if the point stored in the leaf lies within s(v, (1− ε/4) · β · |pv|).

SoCG 2020

7:14 On β-Plurality Points in Spatial Voting Games

4. For a leaf µ in T , let M(µ) be the set of nodes in T on the path from the root to µ, and
let C(µ) =

∑
µ′∈M(µ) c(µ′). Compute C(µ) for all leaves µ in T by a pre-order traversal

of T , and set C := maxµ C(µ).
5. If C 6 n/2, then return yes, otherwise no.

The proof of the following lemma can be found in the full version of the paper [1].

I Lemma 3.3. Algorithm Alg ε-approximately decides if p is a β-plurality point in time
O(n

εd−1 log n
εd−1).

The algorithm. Now we have the tools required to approximate β(V). First, generate the
set P of O(n

ε2d−1 log 1
ε) candidate points. For each candidate point p ∈ P , perform a binary

search for an approximate β∗(p) in the interval [1/
√
d, 1], until the remaining search interval

has length at most ε/2 · 1/
√
d. For each p and β∗, (ε/2)-approximately decide if p is a

β∗-plurality point in V . Return the largest β∗ and the corresponding point p on which the
algorithm says yes.

I Theorem 3.4. Given a multiset V of voters in Rd, a ((1− ε) · β(V))-plurality point can
be computed in O(n2

ε3d−2 · log n
εd−1 · log2 1

ε).

4 Concluding Remarks

We proved that any finite set of voters in Rd admits a β-plurality point for β = 1/
√
d and

that some sets require β =
√

3/2. For d = 2 we managed to close the gap by showing that
β∗2 =

√
3/2. One of the main open problems is to close the gap for d > 2. We also presented

an approximation algorithm that finds, for a given V , a (1− ε) · β(V)-plurality point. The
algorithm runs in O∗(n2/ε3d−2) time. Another open problem is whether a subquadratic
approximation algorithm exists, and to prove lower bounds on the time to compute β(V) or
β(p, V) exactly. Finally, it will be interesting to study β-plurality points in other metrics,
for instance in the personalized L1-metric [5] for d > 2.

References
1 Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton. On β-plurality

points in spatial voting games, 2020. arXiv:2003.07513.
2 Sunil Arya and David M. Mount. Approximate range searching. Computational Geometry –

Theory & Applications, 17(3):135–152, 2000.
3 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic

Geometry (Algorithms and Computation in Mathematics). Springer-Verlag, Berlin, Heidelberg,
2006.

4 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

5 Mark De Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing
plurality points. ACM Transactions on Algorithms, 14(3), 2018.

6 Duncan Black. On the rationale of group decision-making. Journal of Political Economy,
56(1):23–34, 1948.

7 Jonathan Chung. Optimally locating a new candidate in spatial and valence models of voting
games, 2018. Honours thesis, University of Sydney.

8 Richard Cole, Jeffrey S. Salowe, William L. Steiger, and Endre Szemerédi. An optimal-time
algorithm for slope selection. SIAM Journal on Computing, 18(4):792–810, 1989.

9 Tamal K. Dey. Improved bounds for planar k-sets and related problems. Discrete and
Computational Geometry, 19(3):373–382, 1998.

http://arxiv.org/abs/2003.07513

B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:15

10 Anthony Downs. An Economic Theory of Political Action in a Democracy. Journal of Political
Economy, 65(2):135–135, 1957.

11 Adrian Dumitrescu, János Pach, and Géza Tóth. Drawing Hamiltonian cycles with no large
angles. The Electronic Journal of Combinatorics, 19(2):P31, 2012.

12 James Enelow and Melvin Hinisch. On Plott’s pairwise symmetry condition for majority rule
equilibrium. Public Choice, 40(3):317–321, 1983.

13 Haldun Evrenk. Valence politics. In Roger D. Congleton, Bernard Grofman, Stefan Voigt,
and Haldun Evrenk, editors, Oxford Handbook of Public Choice, chapter 13. Oxford University
Press, 2019.

14 Scott Feld, Bernard Grofman, and Nicholas Miller. Centripetal forces in spatial voting: On
the size of the yolk. Public Choice, 59:37–50, October 1988.

15 Noah Giansiracusa and Cameron Ricciardi. Computational geometry and the U.S. supreme
court. Math. Soc. Sci., 98:1–9, 2019.

16 Fabian Gouret, Guillaume Hollard, and Stéphane Rossignol. An empirical analysis of valence
in electoral competition. Social Choice and Welfare, 37(2):309–340, 2011.

17 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games
without computing median lines. In The 33rd AAAI Conference on Artificial Intelligence,
pages 2012–2019. AAAI Press, 2019.

18 Helios Herrera, David K. Levine, and César Martinelli. Policy platforms, campaign spending
and voter participation. Journal of Public Economics, 92(3):501–513, 2008.

19 Guillaume Hollard and Stéphane Rossignol. An alternative approach to valence advantage in
spatial competition. Journal of Public Economic Theory, 10(3):441–454, 2008.

20 Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions.
Journal of the ACM, 51(5):699–730, 2004.

21 Richard D. McKelvey. Covering, dominance, and institution-free properties of social choice.
American Journal of Political Science, 30(2):283–314, 1986.

22 Nicholas R. Miller. The spatial model of social choice and voting. In Jac C. Heckelman and
Nicholas R. Miller, editors, Handbook of Social Choice and Voting, chapter 10, pages 163–181.
Edward Elgar Publishing, 2015.

23 Charles R. Plott. A notion of equilibrium and its possibility under majority rule. The American
Economic Review, 57(4):787–806, 1967.

24 David Sanders, Harold D. Clarke, Marianne C. Stewart, and Paul Whiteley. Downs, stokes
and the dynamics of electoral choice. British Journal of Political Science, 41(2):287–314, 2011.

25 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, 1995.

26 Donald E. Stokes. Spatial models of party competition. American Political Science Review,
57(2):368–377, 1963.

27 Alan E. Wiseman. A theory of partisan support and entry deterrence in electoral competition.
Journal of Theoretical Politics, 18(2):123–158, 2006.

28 Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao. Computing plurality points
and condorcet points in Euclidean space. In Proceedings of the 24th International Symposium
on Algorithms and Computation (ISAAC), volume 8283 of Lecture Notes in Computer Science,
pages 688–698. Springer, 2013.

SoCG 2020

Testing Polynomials for Vanishing on Cartesian
Products of Planar Point Sets
Boris Aronov
Department of Computer Science and Engineering, Tandon School of Engineering, New York
University, Brooklyn, NY 11201, USA
boris.aronov@nyu.edu

Esther Ezra
School of Computer Science, Bar Ilan University, Ramat Gan, Israel
ezraest@cs.biu.ac.il

Micha Sharir
School of Computer Science, Tel Aviv University, Israel
michas@tau.ac.il

Abstract
We present subquadratic algorithms, in the algebraic decision-tree model of computation, for
detecting whether there exists a triple of points, belonging to three respective sets A, B, and C of
points in the plane, that satisfy a certain polynomial equation or two equations. The best known
instance of such a problem is testing for the existence of a collinear triple of points in A×B × C, a
classical 3SUM-hard problem that has so far defied any attempt to obtain a subquadratic solution,
whether in the (uniform) real RAM model, or in the algebraic decision-tree model. While we are still
unable to solve this problem, in full generality, in subquadratic time, we obtain such a solution, in
the algebraic decision-tree model, that uses only roughly O(n28/15) constant-degree polynomial sign
tests, for the special case where two of the sets lie on one-dimensional curves and the third is placed
arbitrarily in the plane. Our technique is fairly general, and applies to any other problem where
we seek a triple that satisfies a single polynomial equation, e.g., determining whether A×B × C
contains a triple spanning a unit-area triangle.

This result extends recent work by Barba et al. [4] and by Chan [7], where all three sets A, B,
and C are assumed to be one-dimensional. While there are common features in the high-level
approaches, here and in [4], the actual analysis in this work becomes more involved and requires
new methods and techniques, involving polynomial partitions and other related tools.

As a second application of our technique, we again have three n-point sets A, B, and C in the
plane, and we want to determine whether there exists a triple (a, b, c) ∈ A×B×C that simultaneously
satisfies two real polynomial equations. For example, this is the setup when testing for the existence
of pairs of similar triangles spanned by the input points, in various contexts discussed later in the
paper. We show that problems of this kind can be solved with roughly O(n24/13) constant-degree
polynomial sign tests. These problems can be extended to higher dimensions in various ways, and
we present subquadratic solutions to some of these extensions, in the algebraic decision-tree model.

2012 ACM Subject Classification Theory of computation; Theory of computation→ Computational
geometry

Keywords and phrases Algebraic decision tree, Polynomial partition, Collinearity testing, 3SUM-
hard problems, Polynomials vanishing on Cartesian products

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.8

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.09533.

Funding Boris Aronov: Partially supported by NSF grant CCF-15-40656 and by grant 2014/170
from the US-Israel Binational Science Foundation.
Esther Ezra: Partially supported by NSF CAREER under grant CCF:AF-1553354 and by Grant
824/17 from the Israel Science Foundation.

© Boris Aronov, Esther Ezra, and Micha Sharir;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3110-4702
mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0001-8133-1335
mailto:ezraest@cs.biu.ac.il
mailto:michas@tau.ac.il
https://doi.org/10.4230/LIPIcs.SoCG.2020.8
https://arxiv.org/abs/2003.09533
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Testing Polynomials for Vanishing on Products of Planar Sets

Micha Sharir : Partially supported by ISF Grant 260/18, by grant 1367/2016 from the German-
Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv
University.

Acknowledgements The authors wish to thank Adam Sheffer and Frank de Zeeuw for suggesting
the transformation used for collinearity testing in Theorem 6.1. We also thank Jean Cardinal, John
Iacono, Stefan Langerman, and Aurélien Ooms for useful discussions.

1 Introduction

General background. Let A, B, and C be three n-point sets in the plane. We want to
determine whether there exists a triple of points (a, b, c) ∈ A×B ×C that satisfy one or two
prescribed polynomial equations. An example of such a scenario, with a single vanishing
polynomial, is to determine whether A×B × C contains a collinear triple of points. This
classical problem is at least as hard as the 3SUM problem [14], in which we are given three
sets A, B, and C, each consisting of n real numbers, and we want to determine whether
there exists a triple of numbers (a, b, c) ∈ A×B × C that add up to zero.

The 3SUM problem itself, conjectured for a long time to require Ω(n2) time, has recently
been shown by Grønlund and Pettie [16] (with further improvements by Chan [7]) to be
solvable in very slightly subquadratic time. Moreover, in the linear decision-tree model,
in which we only count linear sign tests performed on the input points (and do not allow
any other operation to access the input explicitly), Grønlund and Pettie have improved the
running time to nearly O(n3/2) (see also [13, 15] for subsequent slight speedups), which has
been drastically further improved (still in the linear decision-tree model) to O(n log2 n) time
by Kane et al. [18].

In contrast, no subquadratic algorithm is known for the collinearity detection problem,
either in the standard real RAM model (also known as the uniform model) or in the decision-
tree model; see [4] for a discussion. In the uniform model, the problem can be solved
in O(n2) time. The primitive operation needed to test for collinearity of a specific triple
is the so-called orientation test, in which we test for the sign of a quadratic polynomial in
the six coordinates of a triple of points in A × B × C (see Eq. (1) below for the concrete
expression). Consequently, it is natural (and apparently necessary) to use the more general
algebraic decision-tree model, in which each comparison is a sign test of some constant-degree
polynomial in the coordinates of a constant number of input points; see [6, 20] and below.

The problems, in more detail

In this paper we consider several variants of testing a polynomial, or polynomials, for
vanishing on a triple Cartesian product. The main motivation for the present study is the
aforementioned collinearity testing question. We present the problem in a wider context,
where we are given three sets A, B, and C, each consisting of n points in the plane, and we
consider two scenarios:

(a) A single vanishing polynomial. Given a single constant-degree irreducible 6-variate
polynomial F , determine whether there exists a triple (a, b, c) ∈ A× B × C such that
F (a, b, c) = 0.

(b) A pair of vanishing polynomials. Given a pair F , G of constant-degree irreducible 4-
variate polynomials, determine whether there exists a triple (a, b, c = (c1, c2)) ∈ A×B×C
such that c1 = F (a, b) and c2 = G(a, b).

B. Aronov, E. Ezra, and M. Sharir 8:3

We begin by studying the vanishing pair problem in (b), because our results are stronger
for this setup, and show that, as can be expected, requiring the triple (a, b, c) to satisfy two
equalities facilitates a more efficient solution. In contrast, the collinearity testing problem, as
well as more general instances of a single vanishing polynomial in (a), seem harder to solve
efficiently. As we spell out below, we can solve problems of the latter kind in subquadratic
time, in the algebraic decision-tree model, only for restricted input sets.

We note that the vanishing pair problem in (b) is a special case of a more general question,
in which F and G are 6-variate real polynomials, and the equations that we want to satisfy
are F (a, b, c) = G(a, b, c) = 0. This general setting can also be handled by a more involved
variant of the technique presented here, using standard tools from real algebraic elimination
theory (as in [5]), but we will not consider this extension in the paper. (See also [4] for the
treatment of this issue in a different, and simpler, context.)

A special (but natural) case of the problem with two polynomial constraints is where
each of the sets A, B, C consists of n complex numbers, and we want to test the vanishing of
a single constant-degree bivariate polynomial H : C2 → C defined over the complex numbers;
this is an extension of the problem studied by Barba et al. [4] over the reals. That is, the
problem is to determine whether there is a triple (a, b, c) ∈ A×B×C such that1 c = H(a, b).
Two concrete instances of this question, involving testing for the existence of similar triangles
that are determined by A, B, and C, will be used to present our technique.

Comments on the purely one-dimensional setup. Questions of the type studied here are
(extensions to higher dimensions of) the algorithmic counterparts of the classical problems in
combinatorial geometry, studied by Elekes and Rónyai [10] and by Elekes and Szabó [11],
and later improved in [22, 21]. We comment on this connection in some detail in the full
version of the paper [3]. In the setup studied in [10, 11, 22, 21], all three sets A, B, C are one-
dimensional. This purely one-dimensional setup has recently been studied by Barba et al. [4],
both for the algebraic decision tree model and for the uniform model, whose algorithm
in the algebraic decision tree model runs in close to O(n12/7) time. The same approach,
combined with more involved algorithmic techniques, yields an algorithm in the uniform
model that runs in O(n2(log logn)3/2/ log1/2 n) time, which has been slightly improved to
O(n2(log logn)O(1)/ log2 n) by Chan [7].

Given this apparent (polynomial) hardness of computation, our goal is thus to obtain a
significantly subquadratic solution in the algebraic decision-tree model. Here we only pay
for sign tests that involve the input point coordinates, where each such test determines the
sign of some real polynomial of constant degree in a constant number of variables. All other
operations cost nothing in this model, and are assumed not to access the input explicitly.
For example, each orientation test used in collinearity detection examines the sign of the
determinant (a quadratic polynomial in a1, a2, b1, b2, c1, c2)∣∣∣∣∣∣

1 a1 a2
1 b1 b2
1 c1 c2

∣∣∣∣∣∣ , (1)

for some triple of points (a1, a2) ∈ A, (b1, b2) ∈ B, (c1, c2) ∈ C.

1 Over the reals, H induces two polynomial equations, one for the real part and the other for the imaginary
part, so this is indeed a special case of the polynomial vanishing pair problem. Here too one may
consider the more general case where H is trivariate and we test for H(a, b, c) = 0.

SoCG 2020

8:4 Testing Polynomials for Vanishing on Products of Planar Sets

Concrete problems in the two-dimensional setup. Each of the two general questions
studied here (of one or two vanishing polynomials) arises in various concrete problems in
computational geometry. For the case of a single vanishing polynomial, collinearity testing is
a fairly famous (or should we say, notorious) example. Other problems include testing for the
existence of a triangle ∆abc, for (a, b, c) ∈ A×B ×C, that has a given area, or perimeter, or
circumscribing disk of a given radius, and so on.

We consider two simple instances of the vanishing polynomial pair problem. In the first
one, we are given sets A, B, and C, each of n points in the plane, none of which contains
the origin, and wish to determine whether there exists a triple (a, b, c) ∈ A × B × C such
that the triangle spanned by o (the origin), b and c is similar to the triangle spanned by
o, e1 = (1, 0), and a (with e1 corresponding to b and a to c). As a matter of fact, and as
easily verified, this instance can also be interpreted as having three sets A, B, C of complex
numbers, and the goal is to determine whether there exists a triple (a, b, c) ∈ A×B×C such
that c = ab. This is a single complex quadratic equation that (a, b, c) has to satisfy, which
translates to two real quadratic equations in the coordinates of a, b, c, when treated as points
in the real plane.

In the second instance, we are given sets A, B, and C, each of n points in the plane,
and a fixed triangle ∆ = ∆uvw, and we want to determine whether there exists a triple
(a, b, c) ∈ A×B × C that spans a triangle similar to ∆, with a corresponding to u, b to v,
and c to w. This instance too can be interpreted as having three sets A, B, C of complex
numbers, and the goal is to determine whether there exists a triple (a, b, c) ∈ A×B×C that
satisfies a certain single linear equation over complex numbers, determined by ∆; see the full
version [3] for these details.

We note that the first instance can also be turned into an instance that involves a single
complex linear equation, simply by replacing every z ∈ A ∪B ∪ C by ln z. As it turns out,
complex linear equations can be handled more efficiently (see below for details), but we use
these examples as showcases of the more general technique that we develop.

In the full version of this paper [3] we show that both versions of the triangle similarity
testing problem are 3SUM-hard.

I Remark 1.1. Since the underlying vanishing complex polynomial can be assumed to be
linear (in both instances), the analysis in the very recent work of Aronov and Cardinal [2]
implies that both problems can be reduced to the classical real-3SUM problem, via a random
projection technique, and then solved, in the linear decision-tree model, in O(n log2 n) time,
using the technique of Kane et al. [18].

Our results. After setting up the technical machinery that our analysis requires, in Sections 2
and 3, we first consider, in Section 4, the problem of testing for a vanishing pair of polynomials,
which includes the triangle similarity testing problems. We show that such problems can
be solved, in the algebraic decision-tree model, with O(n24/13+ε) polynomial sign tests, for
any ε > 0 (with the constant of proportionality depending on ε), where each test involves
a polynomial of constant degree in a constant number of variables, which in general might
be more involved than just orientation tests. For the analysis, we need to assume that the
pair of polynomials F , G have “good fibers” (which they do in the triangle similarity testing
problems) – see Sections 2 and 4 for details.

We then consider, in Section 5, the problem of ‘2× 1× 1-dimensional’ collinearity testing,
meaning that A is an arbitrary set of points in the plane, but each of B and C lies on some
respective constant-degree algebraic curve γB , γC . We show that this restricted problem can
be solved in the algebraic decision-tree model with O(n28/15+ε) polynomial sign tests, for any

B. Aronov, E. Ezra, and M. Sharir 8:5

ε > 0 (where again the constant of proportionality depends on ε). The technique extends
naturally to similar problems involving a single vanishing polynomial, such as determining
whether A×B × C spans a unit-area triangle.

We still do not have a subquadratic solution, even in the algebraic decision-tree model, to
the unconstrained (referred to as 2× 2× 2-dimensional) collinearity testing problem, or even
for the more restricted 2× 2× 1-dimensional scenario, where only C is constrained to lie on
a given curve. The techniques that we use for the 2× 1× 1 version can be extended to the
general unconstrained (or less constrained) case, but they actually result in a superquadratic
algorithm; see the full version of the paper for more details. As shown by Erickson and
Seidel [12], if the only sign tests that we allow in the decision tree are orientation tests, then
Ω(n2) tests are needed in the worst case. The solution presented here uses other sign tests,
making it more powerful (and more efficient).

We also consider, in the full version, extensions of both problems to higher dimensions.
Specifically, we study collinearity testing in d dimensions, where we assume that each of
B and C lies on a hyperplane. Our solution is based on projections of the input onto
lower-dimensional subspaces, and achieves the same asymptotic performance as in the plane.
This result is presented in Section 6. More general extensions to higher dimensions are
discussed in the appendix of the full version [3].

I Remark 1.2. We are not aware of a simple extension of the analysis in the earlier work of
Barba et al. [4] or of Chan [7] to the problems studied in this paper. A main technique in our
arsenal is to consider the Cartesian product of polynomial partitionings, which we believe
to be essential, mainly for the triangle similarity problems and their higher-dimensional
extensions, as well as to higher-dimensional extensions of collinearity testing.

The 2 × 1 × 1 case of problems involving a single vanishing polynomial, considered
in Section 5, has an alternative subquadratic, albeit less efficient, solution, using simpler
considerations, which somewhat resemble the analysis in [4]. We sketch this alternative
technique in the full version of the paper [3]

We also comment that Chan [7] addresses several related geometric 3SUM-hard problems,
among which is a variant of dual collinearity testing: Given three sets A, B, and C of
line segments in the plane, where the segments in A are pairwise disjoint, and so are the
segments in B, decide whether there exist a triple of segments in A×B × C that meet at a
common point. Although Chan’s technique results in a slightly subquadratic algorithm in
the RAM model, and is also claimed to yield a truly subquadratic algorithm in the algebraic
decision-tree model, the disjointness assumptions significantly restrict the problem, so, to
quote [7], “it remains open whether there is a subquadratic algorithm for the degeneracy
testing for n lines in R2.”

2 Preliminaries

Our analysis relies on planar polynomial partitioning and on properties of Cartesian products
of pairs of them. For a polynomial f : Rd → R, for any d ≥ 2, the zero set of f is
Z(f) := {x ∈ Rd | f(x) = 0}. We refer to an open connected component of Rd \ Z(f) as a
cell. The classical Guth-Katz result is:

I Proposition 2.1 (Polynomial partitioning; Guth and Katz [17]). Let P be a finite set of
points in Rd, for any d ≥ 2. For any real parameter D with 1 ≤ D ≤ |P |1/d, there exists
a real d-variate polynomial f of degree O(D) such that Rd \ Z(f) has O(Dd) cells, each
containing at most |P |/Dd points of P .

SoCG 2020

8:6 Testing Polynomials for Vanishing on Products of Planar Sets

Agarwal, Matoušek, and Sharir [1] presented an algorithm that efficiently computes2 such
a polynomial f , whose expected running time is O(nr + r3), where r = Dd.

Note that the number of points of P on Z(f) can be arbitrarily large. For planar polyno-
mial partitions, though, this can be handled fairly easily, by partitioning the algebraic curve
Z(f) into subarcs, each containing at most |P |/D2 points (as do the complementary cells).
We state this property formally and spell out the easy details in the full version of the paper.

Polynomial partitioning for Cartesian products of point sets in the plane. Solymosi and
De Zeeuw [23] studied polynomial partitioning for Cartesian products of planar point sets.
Given two finite sets P1 and P2 of points in the plane, a natural strategy to construct a
partitioning polynomial for P1 × P2 ⊂ R2 × R2, a space that we simply regard as R4, is to
construct suitable bivariate partitioning polynomials ϕ1 for P1 and ϕ2 for P2, as provided in
Proposition 2.1, and then take their product ϕ(x, y, z, w) := ϕ1(x, y)ϕ2(z, w).

I Corollary 2.2 (Polynomial partitioning of Cartesian product [23]). The partition of P1,2 :=
P1×P2 just described results in overall O(D4) relatively open cells of dimensions 2, 3, and 4,
each of which contains at most |P1,2|/D4 points of P1,2. The zero- and one-dimensional cells
do not contain any point of P1,2.

The analysis in [23] also bounds the number of partition cells intersected by a two-
dimensional algebraic surface S in R4, provided it has “good fibers.” We define this notion:

I Definition 2.3 (Good fibers). (i) A two-dimensional algebraic surface S in R4 has good
fibers if, for every point p ∈ R2, the fibers ({p}×R2)∩S and (R2×{p})∩S are finite. (ii) A
two-dimensional algebraic surface S in R3 has good fibers if, for every point p ∈ R2, except
for O(1) exceptional points, the fiber ({p} × R) ∩ S is finite (it is one-dimensional for an
exceptional point p), and for every point q ∈ R, the fiber (R2 ×{q})∩ S is a one-dimensional
variety (i.e., an algebraic curve).

Note that in this definition we are only concerned with one specific decomposition of the
underlying space into a product of two subspaces.

I Proposition 2.4 (Cells intersected by a surface [23]). Let S be a constant-degree two-
dimensional algebraic surface in R4 that has good fibers. Then S intersects at most O(D2)
two-, three-, and four-dimensional cells in the partitioning induced by P1,2.

Both Corolloary 2.2 and Proposition 2.4 have three-dimensional counterparts (for Carte-
sian products of a plane and a curve), presented in the full version of this paper.

3 Hierarchical Polynomial Partitioning

Even though we work in the algebraic decision-tree model, we still need to account for the
cost of constructing the various polynomial partitionings (as it requires explicit access to
the input points), which, if done by a straightforward application of the technique of [1],
would be too expensive, as a naïve implementation of our technique needs to use polynomials
of high, non-constant degree. We circumvent this issue by constructing a hierarchical
polynomial partitioning, akin to the constructions of hierarchical cuttings of Chazelle [8]
and Matoušek [19] from the 1990s. The material is rather technical, and we only state the
resulting theorems, giving details in the full version.

2 This polynomial forms a partition approximating the one in Proposition 2.1, and the constant of
proportionality in the degree bound of [1] is slightly larger.

B. Aronov, E. Ezra, and M. Sharir 8:7

Roughly, we gain efficiency by constructing a hierarchical tree of partitions using constant-
degree polynomials, until we reach subsets of the input point set of the desired size.

The actual hierarchical partitions that we will need are within a Cartesian product
of either two planes or a plane and a one-dimensional curve, and are obtained by taking
suitable Cartesian products of partitions constructed within each of these subspaces. We
show that, up to nε factors, we achieve the same combinatorial properties as in a single-shot
construction with a higher-degree polynomial, at a lower algorithmic cost. Specifically, we
have the following results:

I Theorem 3.1 (One set in the plane). Let P be a set of n points in the plane, let 1 ≤ r ≤ n
be an integer, and let ε > 0.
(i) There is a hierarchical polynomial partition for P with O((n/r)1+ε) bottom-level cells,
each of which is associated with at most r points of P which it contains. The hierarchy can
be constructed in expected O(n logn) time.
(ii) Any constant-degree algebraic curve γ reaches at most O((n/r)1/2+ε) cells at all levels of
the hierarchy.3 These cells can be computed within the same asymptotic time bound.

I Theorem 3.2 (Cartesian product of two planar point sets). Let P1, P2 be two sets of points
in the plane, each of size n, put P1,2 = P1×P2 ⊂ R4. Let 1 ≤ r ≤ n be an integer and ε > 0.
(i) There is a hierarchical polynomial partition for P1,2 with O((n/r)2+ε) bottom-level cells,
each of which is associated with a subset of at most r2 points of P1,2, which is the Cartesian
product of a set of at most r points from P1 and a set of at most r points from P2, which it
contains. The hierarchy can be constructed in expected O(n logn) time.
(ii) Any constant-degree two-dimensional algebraic surface S with good fibers reaches (in the
same sense as in Theorem 3.1) at most O((n/r)1+2ε) cells at all levels of the hierarchical
partition of P1,2. These cells can be computed within the same asymptotic time bound.

I Theorem 3.3 (Cartesian product of a planar point set and a 1D set). Let P be a set of
n points in the plane, and let Q be a set of n points lying on a constant-degree algebraic
curve γ ⊂ R2. Let 1 ≤ r, s ≤

√
n be real parameters.

(i) There is a hierarchical polynomial partition for P × Q ⊂ R2 × γ into O(n2+ε/(rs)1+ε)
bottom-level cells, for any ε > 0, each of which is associated with a subset of at most rs
points of P ×Q, which is the Cartesian product of a set of at most r points from P and a set
of at most s points from Q. The hierarchy can be constructed in expected O(n logn) time.
(ii) Any constant-degree two-dimensional surface S with good fibers reaches (in the same
sense as above) at most O

(
n3/2+ε

r1/2+εs1+ε

)
cells at all levels of the hierarchical partition of P ×Q.

These cells can be computed within the same asymptotic time bound.

4 Testing for a Vanishing Pair of Polynomials

In this section we study problems of type (b), where A, B, and C are three sets of n points in
the plane, and we seek a triple (a, b, c) ∈ A×B × C that satisfies two polynomial equations.
To simplify the presentation, we assume that they are of the form c1 = F (a, b), c2 = G(a, b),
for c = (c1, c2), where F and G are constant-degree 4-variate polynomials with good fibers,
in the following sense: For any pair of real numbers κ1, κ2, the two-dimensional surface
π(κ1,κ2) := {(a, b) ∈ R4 | F (a, b) = κ1, G(a, b) = κ2} has good fibers.

We fix a parameter g � n (whose value will be set later), and apply Theorem 3.2(i)
to the sets A, B, with r = g, to construct, in expected O(n logn) time two hierarchical
planar polynomial partitionings, one for A and one for B, and combine them to obtain, a

3 A curve γ is said to reach a cell τ if it intersects τ and all its ancestral cells – see the full version.

SoCG 2020

8:8 Testing Polynomials for Vanishing on Products of Planar Sets

hierarchical four-dimensional polynomial partitioning for A×B, so that each bottom-level
cell ζ contains a Cartesian product Aζ ×Bζ with |Aζ |, |Bζ | ≤ g, and the overall number of
cells is O((n/g)2+ε), for any prescribed ε > 0.

Let τ (resp., τ ′) be a bottom-level cell at the hierarchical partition of A (resp., of B). Put
Aτ := A∩τ and Bτ ′ := B∩τ ′. The high-level idea of the algorithm is to sort lexicographically
each of the sets Hτ,τ ′ := {(F (a, b), G(a, b)) | (a, b) ∈ Aτ ×Bτ ′}, over all pairs of cells (τ, τ ′).
We then search with each c = (c1, c2) ∈ C through the sorted lists of those sets Hτ,τ ′ that
might contain (c1, c2). We show that each c ∈ C has to be searched for in only a small
number of sets. As in all works on this type of problems, starting from [16], sorting the
sets explicitly is too expensive. We overcome this issue by considering the problem in the
algebraic decision-tree model, and by using an algebraic variant of Fredman’s trick, extending
those used in the previous algorithms for one-dimensional point sets [4, 16]. (Also, rather
than carrying out the sorting in the lexicographical order, we do it in a primary round, in
which we only sort the values of F (a, b), followed by secondary rounds, in which we sort the
values of G(a, b), for each maximal block of equal values of F . For clarity of presentation, we
only focus on F in the discussion below, while G is treated analogously and implicitly.)

Consider the step of sorting {F (a, b) | (a, b) ∈ Aτ × Bτ ′}. It has to perform various
comparisons of pairs of values F (a, b) and F (a′, b′), for a, a′ ∈ Aτ , b, b′ ∈ Bτ ′ .

We consider Aτ ×Aτ as a set of g2 points in R4, and associate, with each pair (b, b′) ∈
Bτ ′ × Bτ ′ , the 3-surface σb,b′ = {(a, a′) ∈ R4 | F (a, b) = F (a′, b′)}. Let Στ ′ denote the set
of these surfaces. The arrangement A(Στ ′) has the property that each of its cells ζ (of
any dimension) has a fixed sign pattern with respect to all these surfaces. That is, each
comparison of F (a, b) with F (a′, b′), for any (a, b), (a′, b′) ∈ Aτ ×Bτ ′ , has a fixed outcome
for all points (a, a′) ∈ ζ (for a fixed pair b, b′). In other words, if we locate the points of
Aτ ×Aτ in A(Στ ′), we have available the outcome of all the comparisons needed to sort the
set {F (a, b) | (a, b) ∈ Aτ ×Bτ ′}.

Doing what has just been described is still too expensive (takes Ω(n2) steps, in the
algebraic decision-tree model) if implemented naïvely, processing each pair τ × τ ′ separately.
We circumvent this issue, in the algebraic decision-tree model, by forming the unions
P :=

⋃
τ Aτ × Aτ , and Σ :=

⋃
τ ′ Στ ′ ; we have |P |, |Σ| = O(g2 · (n/g)1+ε) = O(n1+εg1−ε).

By locating each point of P in A(Σ), we get all the signs that are needed to sort all the sets
{F (a, b) | (a, b) ∈ Aτ ×Bτ ′}, over all pairs τ , τ ′ of cells, and the actual sorting costs nothing
in our model, once the answers to all the relevant comparisons are known.

Searching with the points of C. We next search the structure with every c = (c1, c2) ∈ C.
We only want to visit subproblems (τ, τ ′) where there might exist a ∈ τ and b ∈ τ ′, such that
F (a, b) = c1 and G(a, b) = c2. To find these cells, and to bound their number, we consider
the two-dimensional surface πc=(c1,c2) := {(a, b) ∈ R4 | F (a, b) = c1, G(a, b) = c2}, and our
goal is to enumerate the bottom-level cells τ × τ ′ in the hierarchical partition of A × B
crossed by πc. By assumption, πc has good fibers, so, by Theorem 3.2(ii) (with r = g), we
can find, in time O((n/g)1+ε), the O((n/g)1+ε) cells τ × τ ′ that πc intersects.

Summing over all the n possible values of c, the number of crossings between the surfaces πc
and the cells τ × τ ′ is O(n2+ε/g1+ε), for any ε > 0. In other words, denoting by nτ,τ ′ the
number of surfaces πc that cross τ × τ ′, we have

∑
τ,τ ′

nτ,τ ′ = O(n2+ε/g1+ε). Thus computing

all such surface-cell crossings, over all c ∈ C, costs O(n2+ε/g1+ε) time. The cost of searching
with any specific c, in the structure of a cell τ × τ ′ crossed by πc, is O(log g) (it is simply a
binary search over the sorted lists). Hence the overall cost of searching with the elements of

C through the structure is (with a slightly larger ε) O
(
n2+ε

g1+ε

)
.

B. Aronov, E. Ezra, and M. Sharir 8:9

Preprocessing: Sorting the F and G values. In order to sort the F and G values, we
follow a similar batched point location strategy as the one taken in [4]. That is, we perform
O(n1+εg1−ε) point location queries in an arrangement of O(n1+εg1−ε) algebraic 3-surfaces of
constant degree in R4. The output of this algorithm is a compact representation for the signs
F (a, b)−F (a′, b′) (where a, a′ ∈ Aτ , b, b′ ∈ Bτ ′ over all pairs of cells τ , τ ′), given as a disjoint
union of complete bipartite graphs of the form (Pα × Σβ , σ), where Pα ⊆ P , Σβ ⊆ Σ, and
σ ∈ {−1, 0, 1} is the fixed sign of all points in Pα with respect to the 3-surfaces in Σβ , where
the sign of a point (a, a′) with respect to a surface σb,b′ is positive (resp., zero, negative) if
F (a, b) > F (a′, b′) (resp., F (a, b) = F (a′, b′), F (a, b) < F (a′, b′)). We show, in the following
lemma, that the overall complexity of this representation, measured by the total size of the
vertex sets of these graphs, as well as the time to construct it, is only O

(
(ng)8/5+ε), where

the ε > 0 here is slightly larger than the prescribed ε. Interestingly, as the proof of the
lemma (in the full version) shows, this bound also holds in the uniform model. (G is handled
by similar means.)

I Lemma 4.1. One can perform batched point location of the points of P within the ar-
rangement of Σ, and obtain the above complete bipartite graph representation of the output,
in O

(
(ng)8/5+ε) randomized expected time in the uniform model, for any prescribed ε > 0,

where the constant of proportionality depends on ε and on the degree of F (and G).

The overall algorithm. Combining the cost of this preprocessing stage with that of the
construction of the hierarchical partitions for A and B, and of searching with the elements
of C in the sorted order obtained (for free) from the complete bipartite graph representation,

we get total expected running time of O
(
n logn+ (ng)8/5+ε + n2+ε

g1+ε

)
. We now choose

g = n2/13, and obtain expected running time of O
(
n24/13+ε), where the implied constant

of proportionality depends on the degrees of F and G and on ε, and the final ε is a (small)
constant multiple of the initially prescribed ε. That is, we have shown:

I Theorem 4.2. Let A, B, C be three n-point sets in the plane, and let F , G be a pair of
constant-degree 4-variate polynomials with good fibers (in the sense defined at the beginning
of this section). Then one can test, in the algebraic decision-tree model, whether there exists
a triple a ∈ A, b ∈ B, c = (c1, c2) ∈ C, such that c1 = F (a, b) and c2 = G(a, b), using only
O
(
n24/13+ε) polynomial sign tests (in expectation), for any ε > 0.

I Corollary 4.3. Let A, B, C be three sets, each of n complex numbers, and let H be a
constant-degree bivariate polynomial defined over the complex numbers, with good fibers.4
Then one can determine, in the algebraic decision-tree model, whether there exists a triple
(a, b, c) ∈ A×B ×C such that c = H(a, b), with only O

(
n24/13+ε) real-polynomial sign tests,

in expectation, for any ε > 0.

We can demonstrate this result on both instances of the triangle similarity testing problem,
and show that, if A, B, C are n-point sets in the plane, so that the origin does not belong to
A∪B ∪C, then the following holds: One can determine, in the algebraic decision-tree model,
whether there exists a triple (a, b, c) ∈ A × B × C such that the triangle ∆oe1a is similar
to the triangle ∆obc, or that the triangle ∆abc is similar to a given triangle ∆uvw, with
O
(
n24/13+ε) polynomial sign tests, in expectation, for any ε > 0. (In the full version [3] we

show that the good-fiber property holds in this setting.)

4 That is, the real and the imaginary parts of H are a pair of constant-degree 4-variate polynomials so
that the intersection of their zero sets is a two-dimensional surface with good fibers.

SoCG 2020

8:10 Testing Polynomials for Vanishing on Products of Planar Sets

I Remark 4.4. In the full version we describe a direct extension of the technique reviewed in
this section to a single vanishing polynomial (which is different from the technique presented
in the next section), and show that it results in a super-quadratic bound. In particular, this
applies to the unconstrained collinearity testing problem in the plane.

5 Collinearity Testing and Related Problems: The Case of 2 × 1 × 1
Dimensions

Let A, B, and C be three sets of points in the plane, but assume that B and C lie on
respective constant-degree algebraic curves γB and γC . Our goal is to determine whether
there exists a collinear triple of points in A × B × C, or more generally a triple (a, b, c)
satisfying some prescribed constant-degree polynomial equation5 F (a, b, c) = 0. To make the
exposition easier to follow, we mostly focus on the collinearity testing problem.

Further simplifying, we assume that γB and γC are given in the parametric forms
γB(t) = (xB(t), yB(t)) and γC(s) = (xC(s), yC(s))), for t, s ∈ R, where xB(t), yB(t), xC(s),
yC(s) are constant-degree continuous algebraic functions, and that the sets A, B, and C are
pairwise disjoint, for otherwise collinear triples exist trivially; the latter condition can be
checked efficiently. A triple (a = (a1, a2), b = (xB(t), yB(t)), c = (xC(s), yC(s))) is collinear
if and only if∣∣∣∣∣∣

1 a1 a2
1 xB(t) yB(t)
1 xC(s) yC(s)

∣∣∣∣∣∣ = 0, or

xB(t)yC(s)− yB(t)xC(s)− a1(yC(s)− yB(t)) + a2(xC(s)− xB(t)) = 0.

While the theory can be developed for this general setting, we only consider here the special
case where γC is a line, say the x-axis, so γC(s) = (s, 0), and the last equality becomes:

−yB(t)s+ a1yB(t) + a2(s− xB(t)) = 0 or s = ϕ(a, t) := a1yB(t)− a2xB(t)
yB(t)− a2

.

Here ϕ is a constant-degree algebraic function; it is a linear rational function in a.
We fix a pair of parameters g, h� n (whose values will be set later) and a parameter ε > 0,

and apply Theorem 3.3(i) to the sets A, B, with the respective parameters r = g, s = h. Let
τ (resp., τ ′) be a bottom-level cell in the resulting partition for A (resp., B). Put Aτ := A∩ τ
and Bτ ′ := B ∩ τ ′. In this analysis, somewhat abusing the notation, we regard B as a subset
of R, and denote by t the real parameter that parameterizes γB ; in particular, we write t ∈ B
(resp., t ∈ Bτ ′) instead of γB(t) ∈ B (resp., γB(t) ∈ Bτ ′). The number of bottom-level cells τ

(and sets Aτ) is O
((

n
g

)1+ε
)
, for any ε > 0, and the number of bottom-level cells τ ′ (and

sets Bτ ′) is n/h.
The high-level idea of the algorithm is to sort each of the sets {ϕ(a, t) | (a, t) ∈ Aτ ×Bτ ′},

over all pairs (τ, τ ′) of cells, and then to search with each c = (s, 0) ∈ C (i.e., with the
corresponding real s) through the sorted lists of only those sets that might contain s; this
number is small, as argued below.

Again, sorting the sets explicitly is too expensive, and we use an instance of the algebraic
variant of Fredman’s trick, as in the previous section.

5 Note that here F is (naturally) implicit, as opposed to the preceding section, where we used two explicit
expressions c1 = F (a, b), c2 = G(a, b).

B. Aronov, E. Ezra, and M. Sharir 8:11

Preprocessing for batched point location. Consider the step of sorting {ϕ(a, t) | (a, t) ∈
Aτ ×Bτ ′}, which has to perform various comparisons of pairs of values ϕ(a, t) and ϕ(a′, t′),
for a, a′ ∈ Aτ , t, t′ ∈ Bτ ′ . We perform this task globally over all pairs (τ, τ ′) of cells.

We recurse by switching between a “primal” and a “dual” setups. In the primal, we view

P =
⋃
τ Aτ × Aτ as a set of O

((
n
g

)1+ε
· g2
)

= O(n1+εg1−ε) points in R4, and associate

with each pair (t, t′) ∈ Bτ ′ × Bτ ′ , for each cell τ ′, the three-dimensional constant-degree
algebraic surface σt,t′ = {(a, a′) ∈ R4 | ϕ(a, t) = ϕ(a′, t′)}. We let Σ be the collection of all
these surfaces, over all cells τ ′, and have |Σ| = n/h · h2 = O(nh).

In the dual, we view the pairs (t, t′) ∈
⋃
τ ′ Bτ ′ ×Bτ ′ as points in the plane, and associate

with each pair (a, a′) ∈ P the curve δa,a′ = {(t, t′) ∈ R2 | ϕ(a, t) = ϕ(a′, t′)}. In each primal
problem we need to perform batched point-location queries in an arrangement of (some
subset of the) constant-degree algebraic 3-surfaces σt,t′ in R4, and in each dual problem we
need to perform batched point location queries in an arrangement of (some subset of the)
constant-degree algebraic curves δa,a′ in R2. Initially we are in the primal, with O(n1+εg1−ε)
points and O(nh) 3-surfaces.

If we could construct the full arrangement A of these surfaces and locate in it all
these points, we would get the signs of all the differences ϕ(a, t) − ϕ(a′, t′), for all (a, t),
(a′, t′) ∈ Aτ ×Bτ ′ , over all pairs (τ, τ ′) of cells, from which we would get (for free) the sorted
order of the sets {ϕ(a, t) | (a, t) ∈ Aτ × Bτ ′}, over all pairs (τ, τ ′). However, a single-step
construction of A is too expensive, so we replace it with the above “flip-flop” primal-dual
processing, each time partitioning the (current version of the) arrangement using a polynomial
of small degree, and thereby reduce the cost to that stated below.

The output of this preprocessing is a representation of P × Σ as a disjoint union of
complete bipartite graphs, described in the following lemma (see the full version [3]):

I Lemma 5.1. The above recursive batched point-location stage takes randomized expected
time O

(
n10/7+ε′

g6/7+ε′
h4/7

)
, also in the uniform model, where ε′ is larger, by a small

constant factor, than the prescribed ε.

Searching with the points of C. We next search the structure with every s ∈ C (identified
with the point (s, 0) on the x-axis). For each s ∈ C, we only want to visit subproblems
(τ, τ ′) where there might exist a ∈ τ and t ∈ τ ′ (not necessarily from Aτ ×Bτ ′), such that
ϕ(a, t) = s. We consider the two-dimensional surface πs := {(a, t) ∈ R3 | ϕ(a, t) = s} and
show that it has good fibers (details appear in the full version [3]).

We next proceed as follows. By Theorem 3.3(ii), choosing g and h to satisfy
(
n
g

)1/2
= n

h ,

or h = n1/2g1/2, we ensure that πs reaches O
(
n1+ε

g1+ε

)
cells τ × τ ′. Summing over all the n

possible values of s, the number of crossings between the surfaces πs and the cells τ × τ ′

is O
(
n2+ε

g1+ε

)
. Denoting by nτ,τ ′ the number of surfaces πs that cross τ × τ ′, we have∑

τ,τ ′

nτ,τ ′ = O

(
n2+ε

g1+ε

)
and we can enumerate all such crossings in O(n2+ε/g1+ε) time.

The cost of searching with any specific s in the structure of a cell τ × τ ′ crossed by πs,
is O(log g). Hence the overall cost of searching with the elements of C through the structure
is O(n2+ε/g1+ε), where ε is slightly larger than the originally prescribed one.

SoCG 2020

8:12 Testing Polynomials for Vanishing on Products of Planar Sets

Combining this cost with that of the construction of the hierarchical polynomial parti-
tioning, and the point-location preprocessing stage, we get overall expected time of

O

(
n logn+ n10/7+εg6/7+εh4/7 + n2+ε

g1+ε

)
= O

(
n logn+ n12/7+εg8/7+ε + n2+ε

g1+ε

)
.

We roughly balance the two last terms by choosing g = n2/15, making the overall cost of the

procedure O
(
n2+ε

g1+ε

)
= O

(
n28/15+ε

)
.

A similar analysis, albeit somewhat more complicated, can handle the case where C is
contained in a general constant-degree algebraic curve, rather than a line.6 In summary, we
thus obtain (see the full version for more details [3]):

I Theorem 5.2. Let A, B, C be n-point sets in the plane, where B and C are each contained
in some respective constant-degree algebraic curve γB, γC , and assume B ∩ γC = ∅. Then
one can test whether A × B × C contains a collinear triple, in the algebraic decision-tree
model, using only O

(
n28/15+ε) polynomial sign tests (in expectation), for any ε > 0, where

the constant of proportionality depends on ε and on the degrees of γB, γC .

Unit area triangles and other problems. This analysis can be extended to the unit area
triangle problem, where we want to test for the existence of a triangle spanned by A×B×C
that has unit area, as well as to many other similar problems (e.g., does there exist a triangle
spanned by A×B × C that has circumradius 1, or inradius 1, or unit perimeter, and so on).
All these variants can be solved with the same technique and within the same asymptotic
performance bound as in Theorem 5.2, provided that the good-fiber property is satisfied.

6 Higher Dimensions

Collinearity in higher dimensions: The d × (d − 1) × (d − 1) case. Let A, B and C be
three sets of n points each, so that A is a set of points in Rd and each of B and C lies in
a hyperplane. The goal is to test, in the algebraic decision tree model, whether A×B × C
contains a collinear triple. Our approach is to use a recursive chain of projections, which
ultimately map the points in A, B, and C to some plane, so that B and C is each mapped
to a set of points on some respective line, collinearity is preserved, and no new collinearity
appears among the projected points. This is a variant of a projection technique described by
De Zeeuw [9]. Deferring all the details to the full version of the paper, we obtain:

I Theorem 6.1. Let A, B and C be three sets of n points each, where A is a set of
points in Rd and B, C each lies in a respective hyperplane h1, h2. Assume that h1 6= h2,
A ⊂ Rd \ (h1∪h2) and (B∪C)∩h1∩h2 = ∅. Then one can test whether A×B×C contains
a collinear triple, in the algebraic decision tree model, by a randomized algorithm that succeeds
with probability 1, and uses only O

(
n28/15+ε) polynomial sign tests (in expectation), for any

ε > 0, where the constant of proportionality depends on ε and on d.

We present in the full version [3] several initial results for more general extensions of both
the single-polynomial and the polynomial-pair vanishing problems to higher dimensions. In
the former setup, each of B and C is contained in an algebraic surface of codimension 1 and
constant degree. Unlike the bound in Theorem 6.1, the bounds that we obtain deteriorate
with d, but remain subquadratic for every d.

6 For this extension one can apply quantifier elimination (see, e.g., [5]) and use a similar batched point-
location mechanism, albeit with more complicated semi-algebraic sets (but still of constant complexity
and same dimensionality).

B. Aronov, E. Ezra, and M. Sharir 8:13

References
1 Pankaj K. Agarwal, Jiří Matoušek, and Micha Sharir. On range searching with semialgebraic

sets. II. SIAM J. Comput., 42(6):2039–2062, 2013. doi:10.1137/120890855.
2 Boris Aronov and Jean Cardinal. Geometric pattern matching reduces to k-SUM, 2020.

arXiv:abs/2003.11890.
3 Boris Aronov, Esther Ezra, and Micha Sharir. Testing polynomials for vanishing on Cartesian

products of planar point sets, 2020. Full version of this paper. arXiv:2003.09533.
4 Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam

Solomon. Subquadratic algorithms for algebraic 3SUM. Discrete Comput. Geom., 61(4):698–
734, 2019. doi:10.1007/s00454-018-0040-y.

5 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic
Geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin,
second edition, 2006.

6 Michael Ben-Or. Lower bounds for algebraic computation trees (preliminary report). In
Proc. of the 15th Annual ACM Symposium on Theory of Computing, pages 80–86, 1983.
doi:10.1145/800061.808735.

7 Timothy M. Chan. More logarithmic-factor speedups for 3SUM, (median, +)-convolution,
and some geometric 3SUM-hard problems. ACM Trans. Algorithms, 16(1):7:1–7:23, 2020.
doi:10.1145/3363541.

8 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom.,
9:145–158, 1993. doi:10.1007/BF02189314.

9 Frank de Zeeuw. Ordinary lines in space, 2018. arXiv:1803.09524.
10 György Elekes and Lajos Rónyai. A combinatorial problem on polynomials and rational

functions. J. Comb. Theory, Ser. A, 89(1):1–20, 2000. doi:10.1006/jcta.1999.2976.
11 György Elekes and Endre Szabó. How to find groups? (and how to use them in Erdős

geometry?). Combinatorica, 32(5):537–571, 2012. doi:10.1007/s00493-012-2505-6.
12 Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine and spherical

degeneracies. Discrete Comput. Geom., 13:41–57, 1995. doi:10.1007/BF02574027.
13 Ari Freund. Improved subquadratic 3SUM. Algorithmica, 77(2):440–458, 2017. doi:10.1007/

s00453-015-0079-6.
14 Anka Gajentaan and Mark H. Overmars. On a class of O(n2) problems in computational

geometry. Comput. Geom., 5:165–185, 1995. doi:10.1016/0925-7721(95)00022-2.
15 Omer Gold and Micha Sharir. Improved bounds for 3SUM, k-SUM, and linear degener-

acy. In 25th Annual European Symposium on Algorithms, pages 42:1–42:13, 2017. Also in
arXiv:1512.05279. doi:10.4230/LIPIcs.ESA.2017.42.

16 Allan Grønlund and Seth Pettie. Threesomes, degenerates, and love triangles. J. ACM,
65(4):22:1–22:25, 2018. doi:10.1145/3185378.

17 Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane. Ann.
Math. (2), 181(1):155–190, 2015. doi:10.4007/annals.2015.181.1.2.

18 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-SUM and related problems. J. ACM, 66(3):16:1–16:18, 2019. doi:10.1145/3285953.

19 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete Comput. Geom.,
10(2):157–182, 1993. doi:10.1007/BF02573972.

20 Franco P. Preparata and Michael Ian Shamos. Computational Geometry—An Intro-
duction. Texts and Monographs in Computer Science. Springer, 1985. doi:10.1007/
978-1-4612-1098-6.

21 Orit E. Raz, Micha Sharir, and Frank de Zeeuw. Polynomials vanishing on Cartesian products:
the Elekes-Szabó theorem revisited. Duke Math. J., 165(18):3517–3566, 2016 . doi:10.1215/
00127094-3674103.

SoCG 2020

https://doi.org/10.1137/120890855
http://arxiv.org/abs/abs/2003.11890
http://arxiv.org/abs/2003.09533
https://doi.org/10.1007/s00454-018-0040-y
https://doi.org/10.1145/800061.808735
https://doi.org/10.1145/3363541
https://doi.org/10.1007/BF02189314
http://arxiv.org/abs/1803.09524
https://doi.org/10.1006/jcta.1999.2976
https://doi.org/10.1007/s00493-012-2505-6
https://doi.org/10.1007/BF02574027
https://doi.org/10.1007/s00453-015-0079-6
https://doi.org/10.1007/s00453-015-0079-6
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.4230/LIPIcs.ESA.2017.42
https://doi.org/10.1145/3185378
https://doi.org/10.4007/annals.2015.181.1.2
https://doi.org/10.1145/3285953
https://doi.org/10.1007/BF02573972
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1215/00127094-3674103
https://doi.org/10.1215/00127094-3674103

8:14 Testing Polynomials for Vanishing on Products of Planar Sets

22 Orit E. Raz, Micha Sharir, and József Solymosi. Polynomials vanishing on grids: the Elekes-
Rónyai problem revisited. Amer. J. Math., 138(4):1029–1065, 2016. doi:10.1353/ajm.2016.
0033.

23 József Solymosi and Frank de Zeeuw. Incidence bounds for complex algebraic curves on
Cartesian products. In New Trends in Intuitive Geometry, volume 27 of Bolyai Soc. Math.
Stud., pages 385–405. János Bolyai Math. Soc., Budapest, 2018.

https://doi.org/10.1353/ajm.2016.0033
https://doi.org/10.1353/ajm.2016.0033

Extending Drawings of Graphs to Arrangements
of Pseudolines
Alan Arroyo
IST Austria, Klosterneuburg, Austria
https://alanarroyo.github.io/
alanmarcelo.arroyoguevara@ist.ac.at

Julien Bensmail
Université Côte d’Azur, CNRS, Inria, I3S, Sophia-Antipolis, France
julien.bensmail.phd@gmail.com

R. Bruce Richter
Department of Combinatorics and Optimization, University of Waterloo, Canada
brichter@uwaterloo.ca

Abstract
In the recent study of crossing numbers, drawings of graphs that can be extended to an arrangement of
pseudolines (pseudolinear drawings) have played an important role as they are a natural combinatorial
extension of rectilinear (or straight-line) drawings. A characterization of the pseudolinear drawings
of Kn was found recently. We extend this characterization to all graphs, by describing the set of
minimal forbidden subdrawings for pseudolinear drawings. Our characterization also leads to a
polynomial-time algorithm to recognize pseudolinear drawings and construct the pseudolines when
it is possible.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Graphs and surfaces

Keywords and phrases graphs, graph drawings, geometric graph drawings, arrangements of pseudo-
lines, crossing numbers, stretchability

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.9

Related Version A full version of the paper is available at [4], https://arxiv.org/abs/1804.09317.

Funding Alan Arroyo: Supported by CONACYT. This project has received funding from the
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement No 754411.
Julien Bensmail: ERC Advanced Grant GRACOL, project no. 320812.
R. Bruce Richter : Supported by NSERC grant number 50503-10940-500.

1 Introduction

Since 2004, geometric methods have been used to make impressive progress for determining
the crossing number of (certain classes of drawings of) the complete graph Kn. In particular,
drawings that extend to straight lines, or, more generally, arrangements of pseudolines, have
been central to this work, spurring interest in such drawings for arbitrary graphs, not just
complete graphs [2, 5, 6, 7, 12].

In particular, for pseudolinear drawings, it is now known that, for n ≥ 10, a pseudolinear
drawing of Kn has more than

H(n) := 1
4

⌊
n

2

⌋⌊
n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
crossings [1, 13]. The number H(n) is conjectured by Harary and Hill to be the smallest
number of crossings over all topological drawings of Kn; that is, the crossing number cr(Kn)
is conjectured to be H(n).

© Alan Arroyo, Julien Bensmail, and R. Bruce Richter;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2401-8670
https://alanarroyo.github.io/
mailto:alanmarcelo.arroyoguevara@ist.ac.at
mailto:julien.bensmail.phd@gmail.com
mailto:brichter@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.SoCG.2020.9
https://arxiv.org/abs/1804.09317
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Extending Drawings of Graphs to Arrangements of Pseudolines

Figure 1 Obstructions to pseudolinearity.

A pseudoline is the image ` of a continuous injection from the real numbers R to the plane
R2 such that R2 \ ` is not connected. An arrangement of pseudolines is a set Σ of pseudolines
such that, if `, `′ are distinct elements of Σ, then |`∩ `′| = 1 and the intersection is a crossing
point. More on pseudolines and their importance for studying geometric drawings of graphs
can be found in [10, 11].

A drawing D of a graph G is pseudolinear if there is an arrangment of pseudolines
consisting of a different pseudoline `e for each edge e of G and such that D[e] ⊆ `e.

In the study of crossing numbers, restricting the drawing to either straight lines or
pseudolines yields the rectilinear crossing number cr(Kn) or the pseudolinear crossing number
c̃r(Kn), respectively. Clearly cr(Kn) ≥ c̃r(Kn) and the geometric methods prove that
c̃r(Kn) > H(n), for n ≥ 10.

A good drawing is one where no edge self-intersects and any two edges share at most
one point – either a crossing or a common end point – and no three edges share a common
crossing. One somewhat surprising result is from Aichholzer et al.: a good drawing of Kn

in the plane is homeomorphic to a pseudolinear drawing if and only if it does not contain
a non-planar drawing of K4 whose crossing is incident with the unbounded face of the K4
[2]. There are equivalent characterizations in [5, 6]. These conditions can be shown to be
equivalent to not containing the B-configuration depicted as the third drawing of the first
row of Figure 1.

Twenty-five years earlier, Thomassen proved a similar theorem for drawings in which
each edge is crossed only once [16]. The B- and W -configurations are shown as the third
and fourth drawings in the first row of Figure 1. Thomassen’s theorem is: if D is a planar
drawing of a graph G in which each edge is crossed at most once, then D is homeomorphic
to a rectilinear drawing of G if and only if D contains no B- or W -configuration.

Thomassen presented in [16] the clouds (first column in Figure 1) as an infinite family of
drawings that are minimally non-pseudolinear.

Shortly after Thomassen’s paper, Bienstock and Dean proved that if cr(G) ≤ 3, then
cr(G) = cr(G) [8]. They also exhibited examples based on overlapping W -configurations to
show the result fails for cr(G) = 4; such graphs can have arbitrarily large rectilinear crossing
number.

Despite the existence of infinitely many obstructions to pseudolinearity, we characterize
them all.

I Theorem 1. A good drawing of a graph G is pseudolinear if and only if it does not contain
one of the infinitely many obstructions shown in Figure 1.

A. Arroyo, J. Bensmail, and R. B. Richter 9:3

The drawings in Figure 1 are obtained from the clouds (first column) by replacing at most
two crossings by vertices. The formal statement of Theorem 1 is Theorem 15 in Section 6;
also a more general version of this statement, Theorem 2, is discussed below. That there is a
result such as ours is somewhat surprising, because stretching an arrangement of pseudolines
to a rectilinear drawing has been shown by Mnëv [14, 15] to be ∃R-hard. In particular,
recognizing a drawing as being homeomorphic to a rectilinear drawing is NP-hard.

The natural setting for our characterization is strings embedded in the plane. An arc σ
is the image f([0, 1]) of the compact interval [0, 1] under a continuous map f : [0, 1]→ R2.
Let S(σ) = {p ∈ σ : |f−1(p)| ≥ 2} be the set of self-intersections of σ. A string is an arc σ
for which S(σ) is finite. If S(σ) = ∅, then σ is simple.

An intersection point between of two strings σ and σ′ is ordinary if it is either an endpoint
of σ or σ′, or is a crossing (a crossing is a non-tangential intersection point in σ ∩ σ′ that
is not an end of σ or σ′). A set Σ of strings is ordinary if Σ is finite and any two strings
in Σ have only finitely many intersections, all of which are ordinary. All the sets of strings
considered in this paper are ordinary.

If Σ is an ordinary set of strings, then its planarization G(Σ) is the plane graph obtained
from Σ by inserting vertices at each crossing between strings and also at the endpoints of
every string in Σ. To keep track of the information given by the strings, we will always
assume that each string Σ has a different color and that each edge in G(Σ) inherits the color
of the string including it.

If Σ is an ordinary set of strings, then, for a cycle C in G(Σ) (which is a simple closed
curve in R2) and a vertex v ∈ V (C), v is a rainbow for C if all the edges incident with v and
drawn in the closed disk bounded by C (including the two edges of C at v) have different
colours. The reader can verify that, for each drawing in Figure 1, if we let Σ be the edges
of the drawing, then the unique cycle in G(Σ) has at most two rainbows. Our main result
characterizes these cycles as the only possible obstructions:

I Theorem 2. An ordinary set of strings Σ can be extended to an arrangement of pseudolines
if and only if every cycle C of G(Σ) has at least three rainbows.

Henceforth, we define any cycle C in G(Σ) with at most two rainbows as an obstruction.
A set of strings is pseudolinear if it has an extension to an arrangement of pseudolines.

Theorem 2 is our main contribution. In the next section, we show that the presence
of an obstruction implies the set of ordinary strings is not pseudolinear. The converse is
proved in Section 4 by extending, one small step at a time, the strings in Σ to get closer
to an arrangement of pseudolines. After each extension, we must show that no obstruction
has been introduced. This involves dealing with cycles in G(Σ) that have precisely three
rainbows (that we refer as near-obstructions). In Section 3 we show the key lemma that if G
has two such near-obstructions that intersect nicely at a vertex v, then G has an obstruction.
In Section 5 we present a polynomial-time algorithm for detecting obstructions and we argue
why the proof of Theorem 2 implies a polynomial-time algorithm for extending a pseudolinear
set of strings. Finally, in Section 6, we show how Theorem 1 follows from Theorem 2 and we
present some concluding remarks.

2 A set of strings with an obstruction is not extendible

Let us start by showing the easy direction of Theorem 2:

I Lemma 3. If the underlying graph G(Σ) of a set Σ of strings has an obstruction, then Σ
is not pseudolinear.

SoCG 2020

9:4 Extending Drawings of Graphs to Arrangements of Pseudolines

Suppose that C is a cycle of G(Σ) for some set of strings Σ. We define δ(C) as the set of
vertices of C for which their two incident edges in C have different colours. In a set Σ of
simple strings where no two intersect twice, |δ(C)| ≥ 3 for every cycle C of G(Σ).

I Lemma 4. Let Σ be a set of simple strings where every pair intersect at most once. Suppose
that C is an obstruction with |δ(C)| as small as possible. Let S = x0, x1, . . . , x` be a path
of G(Σ) representing a subsegment of some string σ ∈ Σ such that x0x1 ∈ E(C), x1 ∈ δ(C)
and x1 is not a rainbow of C. Then V (C) ∩ V (S) = {x0, x1}.

Proof. By way of contradiction, suppose that there is a vertex xr ∈ V (C)∩V (S) with r ≥ 3.
Assume that r ≥ 3 is as small as possible. Let P be the subpath of S connecting x1 to xr.
Since x0x1 ∈ E(C) and x1 ∈ δ(C) and P ⊆ σ, x1x2 /∈ E(C). Because x1 is not a rainbow
for C and no two strings tangentially intersect at x1, the edge x1x2 is drawn in the closed
disk bounded by C. By choice of r, P is an arc connecting x1 to xr in the interior of C.

Let C1 and C2 be the cycles obtained from the union of P and one of the two xy-subpaths
in C. We may assume that x0x1 ∈ E(C1). Let ρ(C) be either δ(C) or the set of rainbows
in C. For i = 1, 2, let Qi = V (Ci) \ V (P). Then ρ(C) ∩ Qi = ρ(Ci) ∩ Qi. We see that
ρ(C1) \Q1 ⊆ {xr} and ρ(C2) \Q2 ⊆ {x1, xr}.

For ρ = δ, |δ(C2)| ≥ 3, so |δ(C) ∩ Q2| ≥ 1. Since x1 /∈ δ(C1), |δ(C1)| ≤ |δ(C1) ∩ Q2| +
|{xr}| ≤ |δ(C)| − 2 + |{xr}| < |δ(C)|. Likewise, |δ(C) ∩ Q1| ≥ 2 and x1 ∈ δ(C) ∩ δ(C2).
Therefore, |δ(C2)| ≤ |δ(C)| − 2 + |{xr}| < |δ(C)|. Thus, neither C1 nor C2 is an obstruction.

Now taking ρ to be the set of rainbows, the preceding paragraph shows |ρ(C1)| ≥ 3 and
|ρ(C2)| ≥ 3. Therefore, |ρ(C) ∩Q1| = |ρ(C1) ∩Q1| ≥ 2 and |ρ(C) ∩Q2| = |ρ(C2) ∩Q2| ≥ 1.
Thus, |ρ(C)| ≥ 3, a contradiction. J

Proof of Lemma 3. By way of contradiction, suppose that Σ is pseudolinear and that G(Σ)
has an obstruction C.

Consider an extension of Σ to an arrangement of pseudolines, and then cut off the two
infinite ends of each pseudoline to obtain a set of strings Σ′ extending Σ, and in which every
pair of strings in Σ′ cross once. In G(Σ′), there is a cycle C ′ that represents the same simple
closed curve as C. Because C ′ is obtained from subdividing some edges of C and the colours
of a subdivided edge are the same, C ′ has fewer than three rainbows. Therefore, we may
assume that Σ = Σ′ and C = C ′. Now, the ends of every string in Σ are degree-1 vertices in
the outer face of G(Σ).

As every string in Σ is simple and no two strings intersect more than once, |δ(C)| ≥ 3.
We will assume that C is chosen to minimize |δ(C)|.

Since C is an obstruction, there exists x1 ∈ δ(C) such that x1 is not a rainbow in
C. Consider a neighbour x0 of x1 in C. Let S = x0, x1, . . . x` be the path obtained by
traversing the string σ extending x0x1, such that x` is an end of σ. By Observation 4,
V (S) ∩ V (C) = {x0, x1}, and because x` is in the outer face of C, the segment of σ from x1
to x` has its relative interior in the outer face of C.

However, since x1 is not a rainbow, there exists a string σ′ ∈ Σ including two edges
at x1 drawn in the disk bounded by C. Thus, σ and σ′ tangentially intersect at x1, a
contradiction. J

3 The key lemma

In this section we present the key lemma used in the proof of Theorem 2.
A plane graph G is path-partitioned if for m ≥ 1, there exists a colouring χ : E(G) →

{1, . . . ,m} such that for each i ∈ {1, . . . ,m}, the edges in χ−1(i) induce a path Pi ⊆ G where
any two distinct paths Pi and Pj do not tangentially intersect. Indeed, every underlying

A. Arroyo, J. Bensmail, and R. B. Richter 9:5

planar graph G(Σ) of a set of simple strings Σ is path-partitioned. Moreover, every path-
partitioned plane graph can be obtained by subdividing a planarization of an ordinary set of
simple strings. To extend the previously introduced notation we refer to each Pi as a string.
The concepts of rainbow and obstruction naturally extend to the context of path-partitioned
plane graphs.

Suppose that G is a path-partitioned plane graph. Given v ∈ V (G), a near-obstruction at
v is a cycle C with at most three rainbows and such that v is a rainbow of C. Understanding
how near-obstructions behave is the key ingredient needed in the proof of Theorem 2:

I Lemma 5. Let G be a path-partitioned plane graph and let v ∈ V (G). Suppose that C1
and C2 are two near-obstructions at v such that the union of the closed disks bounded by C1
and C2 contains a small open ball centered at v. Suppose that one of the following two holds:
1. no obstruction of G contains v; or
2. the two edges of C1 incident with v are the same as the two edges of C2 incident with v.
Then G has an obstruction not including v.

Given a plane graph G, a cycle C ⊆ G and a vertex v ∈ V (C), the edges at v inside C are
the edges of G incident with v drawn in the disk bounded by C.

I Useful Fact. Let G be planar path-partitioned graph. Suppose that for two cycles C and
C ′, v ∈ V (C)∩V (C ′) is a vertex such that the edges at v inside C ′ are also edges at v inside
C. If v is a rainbow for C, then v is a rainbow for C ′.

Proof of Lemma 5. By way of contradiction, suppose that G has no obstruction not includ-
ing v. The “small ball” hypothesis implies that v is not in the outer face of the subgraph
C1 ∪ C2.

We claim that |V (C1) ∩ V (C2)| ≥ 2. Suppose not. Then C1 and C2 are edge-disjoint
and V (C1) ∩ V (C2) = {v}. For i = 1, 2, let ei and fi be the edges of Ci at v and let ∆i

be the closed disk bounded by Ci. From the “small ball” hypothesis it follows that (i) ∆1
contains the edges e2 and f2; and (ii) the points near v in the exterior of ∆2 are contained
in ∆1. These two properties imply that the path C2 − {e2, f2} intersects C1 at least twice,
and hence, |V (C1) ∩ V (C2)| ≥ 2.

From the last paragraph we know that C1 ∪ C2 is 2-connected, and hence the outer face
of C1 ∪ C2 is bounded by a cycle Cout. We will assume that

(*) the cycles C1 and C2 satisfying the hypothesis of Lemma 5 are chosen so that the number
of vertices of G in the disk bounded by Cout is minimal.

The Useful Fact applied to C = Cout and to each C ′ ∈ {C1, C2}, shows that every vertex
that is a rainbow in Cout is also a rainbow in each of the cycles in {C1, C2} containing it.
We can assume that Cout is not an obstruction or else we are done. We may relabel C1 and
C2 so that two of the rainbows of Cout, say p and q, are also rainbows in C1. Neither p
nor q is v because v /∈ V (Cout). Because C1 is a near-obstruction, p, q and v are the only
rainbows of C1.

Since v /∈ V (Cout), by following C1 in the two directions starting at v, we find a path
Pv ⊆ C1 containing v in which only the ends u and w of Pv are in Cout (note that u 6= v

because {p, q} ⊆ V (C1) ∩ V (Cout)). As v is in the interior face of Cout, Pv is also in the
interior of Cout. Let Q1

out, Q2
out be the uw-paths of Cout. One of the two closed disks bounded

by Pv ∪Q1
out and Pv ∪Q2

out contains C1. By symmetry, we may assume that C1 is contained
in the first disk. Since Cout ⊆ C1 ∪ C2, this implies that Q2

out is a subpath of C2.

SoCG 2020

9:6 Extending Drawings of Graphs to Arrangements of Pseudolines

Our desired contradiction will be to find three rainbows in C2 distinct from v. We
find the first: let C1 − (Pv) be the uw-path in C1 distinct from Pv. The disk bounded
by (C1 − (Pv)) ∪ Q2

out contains the one bounded by C1. The Useful Fact applied to C =
(C1 − (Pv)) ∪ Q2

out and C ′ = C1 implies that each vertex in C1 − (Pv) that is rainbow in
(C1 − (Pv)) ∪Q2

out is also rainbow in C1. Since C1 has at most two rainbows in C1 − (Pv),
namely p and q, (C1 − (Pv)) ∪ Q2

out has a third rainbow r1 in the interior of Q2
out (else

(C1 − (Pv)) ∪Q2
out is an obstruction and we are done). Note that r1 is also a rainbow for C2.

To find another rainbow in C2, consider the edge eu of C2 incident to u and not in Q2
out.

We claim that either u is a rainbow in C2 or that eu is not included in the closed disk
bounded by Pv ∪Q2

out. Seeking a contradiction, suppose that u is not a rainbow of C2 and
that eu is included in the disk. Then we can find two edges in the rotation at u, included in
the disk bounded by Pv ∪Q2

out, that belong to the same string σ. The vertex u is a rainbow
in C1, as else, we would find a string σ′ with two edges inside Q1

out ∪ Pv, showing that σ
and σ′ tangentially intersect at u. As p and q are the only rainbows of C1 in Cout, u is one
of p and q. Therefore u is a rainbow in Cout, and hence, a rainbow in C2, a contradiction.

If u is a rainbow in C2, then this is the desired second one. Otherwise, eu is not in the
closed disk bounded by Pv ∪Q2

out. Let Pu ⊆ C2 be the path starting at u, continuing on eu
and ending on the first vertex u′ in Pv that we encounter. Let Cu be the cycle consisting of
Pu and the uu′-subpath uPvu′ of Pv.

B Claim 6. If Pu does not have a rainbow of Cu in its interior, then either Cu is an
obstruction not containing v or:
(a) Cu and C2 are near-obstructions at v satisfying the same conditions as C1 and C2 in

Lemma 5; and
(b) the closed disk bounded by the outer cycle of Cu ∪ C2 contains fewer vertices than the

disk bounded by Cout.

Proof. Suppose that all the rainbows of Cu are located in uPvu′. If z is a rainbow of Cu,
then z ∈ {u, v, u′}, as otherwise z is a rainbow of C1 distinct from p, q and v, a contradiction.
Thus, if v /∈ V (Cu), then Cu is the desired obstruction. We may assume that v ∈ V (Cu).

If u′ = w, then C2 = Pu ∪Q2
out, violating the assumption that v ∈ V (C2). Thus u′ 6= w.

If u′ = v, then the rainbows of Cu are included in {u, u′}, and hence Cu is an obstruction.
However, the existence of Cu shows that both alternatives (1) and (2) in Lemma 5 fail:
condition (1) fails because Cu contains v and (2) fails because the edge of Pu incident with v
is in E(C2) \ E(C1). Thus u′ 6= v.

The previous two paragraphs show that Cu is a near-obstruction at v with rainbows u,
v and u′. Since the interior of Cu near v is the same as the interior of C1 near v, the pair
(Cu, C2) satisfies the “small ball” hypothesis. Thus, (a) holds.

Let C ′out be the outer cycle of Cu ∪ C2. From the fact that Cu ∪ C2 ⊆ C1 ∪ C2 it follows
that the disk bounded by Cout includes the disk bounded by C ′out.

Since p, q ∈ V (Cout), p and q are in the disk bounded by Cout. If both p and q are in
C2, then p, q and r1 are rainbows in C2, and also distinct from v, contradicting that C2 is a
near-obstruction for v. If, say p /∈ V (C2), then p is not in the disk bounded by C ′out, which
implies (b). C

From Claim 6(b) and assumption (*) either Cu is the desired obstruction or Pu contains
a rainbow r2 of C2 in its interior. We assume the latter as else we are done.

In the same way, the last rainbow r3 comes by considering the edge of C2 −Q2
out incident

with w. It follows that v, r1, r2 and r3 are four different rainbows in C2, contradicting the
fact that C2 is a near-obstruction. J

A. Arroyo, J. Bensmail, and R. B. Richter 9:7

4 Proof of Theorem 2

In this section we prove that a set of strings with no obstructions can be extended to an
arrangement of pseudolines.

Proof of Theorem 2. It was shown in Observation 3 that the existence of obstructions
implies non-extendibility. For the converse, suppose that Σ is a set of strings for which G(Σ)
has no obstructions.

We start by reducing to the case where the point set
⋃

Σ is connected: iteratively add a
new string in a face of

⋃
Σ connecting two connected components of

⋃
Σ. No obstruction is

introduced at each step (obstructions are cycles), and, eventually, the obtained set
⋃

Σ is
connected. An extension of the new set of strings contains an extension for the original set,
thus we may assume that

⋃
Σ is connected.

Our proof is algorithmic, and consists of repeatedly applying one of the three steps
described below.

Disentangling Step. If a string σ ∈ Σ has an end a with degree at least 2 in G(Σ),
then we slightly extend the a-end of σ into one of the faces incident with a.
Face-Escaping Step. If a string σ ∈ Σ has an end a with degree 1 in G(Σ), and is
incident with an interior face, then we extend the a-end of σ until it intersects some point
in the boundary of this face.
Exterior-Meeting Step. Assuming that all the strings in Σ have their two ends in
the outer face and these ends have degree 1 in G(Σ), we extend the ends of two disjoint
strings so that they meet in the outer face.

Each of these three steps either increases the number of pairs of strings that intersect, or
increase the number crossings (recall that a crossing between σ and σ′ is a non-tangential
intersection point in σ ∩ σ′ that is not an end of σ or σ′). Moreover, these steps can be
performed as long as not all the strings have their ends in the outer face and they are pairwise
crossing (in this case we extend their ends to infinity to obtain the desired arrangement
of pseudolines). Henceforth, we will show that, if performed correctly, none of these steps
introduces an obstruction. The proof for each step can be read independently.

I Lemma 7 (Disentangling Step). Suppose that σ ∈ Σ has an end a with degree at least 2 in
G(Σ). Then we can extend the a-end of σ into one of the faces incident to a without creating
an obstruction.

Proof. A pair of different edges f and f ′ in G(Σ) incident with a are twins if they belong to
the same string in Σ. The edge e ⊆ σ incident with a has no twin.

The fact that no pair of strings tangentially intersect at a tells us that if (f1, f
′
1) and

(f2, f
′
2) are pairs of twins, then f1, f2, f ′1, f ′2 occur in this cyclic order for either the clockwise

or counterclockwise rotation at a. Thus, we may assume that the counterclockwise rotation
at a restricted to the twins and e is e, f1, . . . , ft, f

′
1, . . . , f

′
t , where (fi, f ′i) is a twin pair for

i = 1, . . . , t.
To avoid tangential intersections, the extension of σ at a must be in the angle between ft

and f ′1 not containing e. Let e1, . . . , ek be the counterclockwise ordered list of non-twin edges
at a having an end in this angle (as depicted in Figure 2). We label e0 = ft and ek+1 = f ′1.
If there are no twins, then let e0 = ek+1 = e.

Let us consider all the possible extensions: for i ∈ {0, . . . , k}, let Σi be the set of strings
obtained from Σ by slightly extending the a-end of σ into the face containing the angle
between ei and ei+1. Let αi be the new edge at a extending σ in Σi (see α0 in Figure 2).

SoCG 2020

9:8 Extending Drawings of Graphs to Arrangements of Pseudolines

e

f1

ft = e0

α0

e1

e2ek−1

ek

f ′1 = ek+1

f ′t

Figure 2 Substrings included in the disk bounded by C0.

Seeking a contradiction, suppose that, for each i ∈ {0, ..., k}, G(Σi) contains an obstruction
Ci. Since αi contains a degree-1 vertex, αi is not in Ci. Hence Ci is a cycle of G(Σ). Thus
Ci is not an obstruction in G(Σ) that becomes one in G(Σi). This conversion has a simple
explanation: in G(Σ), Ci has exactly three rainbows, and one of them is a. After αi is added,
a is not a rainbow in Ci (witnessed by the edges e and αi included in the new version of σ).

Recall from Section 3 that a near-obstruction at a is a cycle with exactly three rainbows,
and one of them is a. Each of C0, C1,...,Ck is a near-obstruction at a in G(Σ).

For a cycle C ⊆ G, let ∆(C) denote the closed disk bounded by C. Both e and α0 are in
∆(C0). Thus, either ∆(C0) ⊇ {e, f1, f2, . . . , ft, e1} (blue bidirectional arrow in Figure 2) or
∆(C0) ⊇ {ft, e1, . . . , ek, f

′
1, f
′
2, . . . , f

′
t , e} (green bidirectional arrow). We rule out the latter

situation as the second list contains ft and f ′t , and this would imply that a is not a rainbow
for C0 in G(Σ).

We just showed that {e, e0, e1} ⊆ ∆(C0). By symmetry, {ek, ek+1, e} ⊆ ∆(Ck). Consider
the largest index i ∈ {0, 1, . . . , k − 1} for which {e, e0, . . . , ei+1} ⊆ ∆(Ci). By the choice
of i, and because {e, αi+1} ⊆ ∆(Ci+1), {e, f ′t , . . . , f ′1, ek, . . . , ei} ⊆ ∆(Ci+1). However, by
applying Lemma 5 to the pair Ci and Ci+1, we obtain that G(Σ) has an obstruction, a
contradiction. J

I Lemma 8 (Face-Escaping Step). Suppose that there is a string σ that has an end a with
degree 1 in G(Σ), and a is incident to an interior face F . Then there is an extension σ′ of
σ from its a-end to a point in the boundary of F such that the set (Σ \ {σ}) ∪ {σ′} has no
obstruction.

a

x1 = x8
x2

x3 = x5

x6

x4
x7

Figure 3 All possible extensions in the Face-Escaping Step.

A. Arroyo, J. Bensmail, and R. B. Richter 9:9

Proof. Let W be the closed boundary walk (x0, e1, x1, e2, . . . , en, xn) of F such that x0 =
xn = a and F is to the left as we traverse W (see Figure 3 for an illustration with n = 9).
For i = 1, . . . , n we let mi be a point in the relative interior of ei, and let P be the list of
non-necessarily distinct points m1, x1, m2, x2 . . . ,mn, which are the potential ends for all
the different extensions. For each p ∈ P , let Σp be the set of strings obtained from Σ by
extending the a-end of σ by adding an arc αp connecting a to p in F (see Figure 3). We
assume that every two distinct arcs αp and αp′ are internally disjoint.

Let fp be the edge e1 ∪αp in G(Σp); fp has ends x1 and p. Also, let σp = σ∪αp. Seeking
a contradiction, suppose that each G(Σp) has an obstruction.

B Claim 9. Let p ∈ P . Then there exists an obstruction Cp in G(Σp) including fp. Moreover,
(1) if p ∈ σ, then Cp can be chosen so that all its edges are included in σp; and
(2) if p /∈ σ, then every obstruction includes fp.

Proof. First, if p ∈ σ, then the string σp self-intersects at p; thus σp has a simple close curve
including fp. In this case let Cp be the cycle in G(Σp) representing this simple closed curve
without rainbows, and thus (1) holds.

Second, assume that p /∈ σ and let Cp be any obstruction of G(Σp). For (2), we will show
that fp ∈ E(Cp).

Seeking a contradiction, suppose that fp /∈ E(Cp).
If p = mi for i ∈ {1, . . . , n}, since mi is the only vertex whose rotation in G(Σ) differs

from its rotation in G(Σmi
), mi ∈ V (Cp). Consider the cycle C of G(Σ) obtained from Cp

by replacing the subpath (xi−1, mi, xi) by the edge xi−1xi. For each vertex v ∈ V (C) the
colors of the edges of G(Σ) at v included in the disk bounded by C are the same as in G(Σp)
for the disk bounded by V (Cp). Thus, C is an obstruction for G(Σ), a contradiction.

Suppose now that p is one of x1, . . . , xn−1. The only vertex in G(Σ) whose rotation is
different in G(Σp) is p. Therefore, p is a point that is a rainbow for Cp in G(Σ), but not
a rainbow in G(Σp), witnessed by two edges included in σp. Since at least one of the two
witnessing edges is in G(Σ), p ∈ σ. This contradicts the assumption that p /∈ σ. Hence
fp ∈ E(Cp). C

Henceforth we assume that, for p ∈ P , Cp is an obstruction in G(Σp) as in Claim 9.
More can be said about the obstructions in G(Σp), but for this we need some terminology.

If we orient an edge e in a plane graph, then the sides of e are either the points near e that
are to the right of e, or the points near e to the left of e. For any cycle C of G through e,
exactly one side of e lies inside C. This is the side of e covered by C. For the next claim
and in the rest of the proof we will assume that for p ∈ P , fp is oriented from x1 to p.

B Claim 10. For p ∈ P with p /∈ σ, every obstruction in G(Σp) covers the same side of fp.

Proof. Suppose that for p ∈ P there are obstructions Cp and C ′p covering both sides of fp.
Let G′ be the plane graph obtained from G(Σp) by subdividing fp, and let v be the new
degree-2 vertex inside fp.

We consider the edge-colouring χ induced by the strings in Σp. Let χ′ be a new colouring
obtained from χ by replacing the colour of the edge vp by a new colour not used in χ. It is a
routine exercise to verify that (i) χ′ induces a path-partition in G′ (defined in Section 3);
and (ii) Cp and C ′p are near-obstructions for v with respect to χ′. By applying Lemma 5
to C1 = Cp and C2 = C ′p, we obtain an obstruction in G′ not containing v. However, this
implies the existence of an obstruction in G(Σ), a contradiction. C

SoCG 2020

9:10 Extending Drawings of Graphs to Arrangements of Pseudolines

Recall that the boundary walk of F is W = (x0, e1, . . . , en, xn), with x0 = xn = a. Since
x1 and xn−1 are in σ, the extreme obstructions Cx1 and Cx2 cover the right of fx1 and the
left of fxn−1 , respectively. Thus, there are two consecutive vertices xi−1, xi in W − a, such
that the interior of Cxi−1 covers the right of fxi−1 and the interior of Cxi covers the left of
fxi

. Moreover, we may assume that the interior of Cmi
includes the left of fmi

(otherwise
we reflect our drawing).

The next claim (proved in the full version of this paper [4]) is the last ingredient to obtain
a final contradiction.

B Claim 11. Exactly one of the following holds:
(a) xi−1 ∈ σ, mi /∈ σ and G(Σmi) has an obstruction covering the side of fmi not covered

by Cmi
; or

(b) xi−1 /∈ σ and G(Σxi−1) has an obstruction covering the side of fxi−1 not covered by
Cxi−1 .

Claims 10 and 11 contradict each other. Thus, for some p ∈ P , G(Σp) has no obstructions. J

I Lemma 12 (Exterior-Meeting Step). If all the strings in Σ have their ends on the outer
face of G(Σ) and the ends have degree 1 in G(Σ), then we can extend a pair disjoint strings
so that they intersect without creating an obstruction.

Proof. By following the outer boundary of
⋃

Σ, we obtain a simple closed curve O containing
all the ends of the strings in Σ, but otherwise disjoint from

⋃
Σ.

Suppose σ1, σ2 are two disjoint strings in Σ. For i = 1, 2, let ai, bi be the ends of σi;
since σ1 and σ2 do not cross, we may assume that these ends occur in the cyclic order a1, b1,
b2, a2. We extend the ai-ends of σ1 and σ2 so that they meet in a point p in the outer face,
and so that all the ends of σ1 and σ2 remain incident with the outer face (Figure 4). Let Σ′
be the obtained set of strings.

O
σ1 σ2

p

a1

b1 b2

a2

Figure 4 Exterior-Meeting Step.

Seeking a contradiction, suppose that G(Σ′) has an obstruction C. Since G(Σ) has no
obstruction, p ∈ V (C). Our contradiction will be to find three rainbows in C. Note that
p is a rainbow. To obtain a second rainbow, traverse C starting from p towards a1. Let
d1 be the first vertex during our traversal that is not in the extended σ1, and let c1 be its
neighbour in σ1, one step before we reach d1. Since b1 has degree one, c1 6= b1.

B Claim 13. The cycle C has a rainbow included in the closed disk ∆1 bounded by σ1 and
the a1b1-arc of O disjoint from σ2.

A. Arroyo, J. Bensmail, and R. B. Richter 9:11

Proof. First, suppose that d1 /∈ ∆1. In this case, c1 is a rainbow because otherwise there
would be a string σ that tangentially intersects σ1 at c1. Thus, if d1 /∈ ∆1, then c1 is the
desired rainbow.

Second, suppose that d1 ∈ ∆1. Let P1 be the path of C starting at c1, continuing on the
edge c1d1, and ending at the first vertex we encounter in σ1. Since the cycle C ′ enclosed by
P1 ∪ σ1 is not an obstruction, there is one rainbow of C ′ that is an interior vertex of P1; this
is the desired rainbow of C. This concludes the proof of Claim 13. C

Considering σ2 instead of σ1, Claim 13 yields a third rainbow in C inside an analogous
disk ∆2 disjoint from ∆1, contradicting that C is an obstruction. Hence Lemma 12 holds. J

We iteratively apply the Disentangling Step, Face-Escaping Step or Exterior-Meeting Step
without creating obstructions. Each step increases the number of pairwise intersecting strings
in Σ until we reach a stage where the strings are pairwise intersecting and all of them have
their two ends in the unbounded face. From this we extend them into an arrangement of
pseudolines. This concludes the proof of Theorem 2. J

5 Finding obstructions and extending strings in polynomial time

We start this section by describing an algorithm to detect obstructions. Henceforth, we
assume that the input to the problem is the planarization G(Σ) of an ordinary set of s strings
Σ. For the running-time analysis, we assume that n and m are the number of vertices and
edges in G(Σ), respectively. Since G(Σ) is planar, m = O(n). Moreover, if Σ is pseudolinear,
then n ≤

(
s
2
)

+ 2s =
(
s+2

2
)
− 1. At the end of this section we explain how to extend Σ (if

possible) in polynomial time.
Recall that each string in Σ receives a different colour; this induces an edge-colouring on

G(Σ) where each string is a monochromatic path. An outer-rainbow is a vertex x ∈ V (G(Σ))
incident with the outer face and for which the edges incident with x have different colours.
Next we describe the basic operation in our obstruction-detecting algorithm.

x

Figure 5 From Σ to Σ− x.

Outer-rainbow deletion. Given an outer-rainbow x ∈ V (G(Σ)), the instance G(Σ− x) is
defined by: first, removing x and the edges incident to x; second, suppressing the degree-2
vertices incident with edges of the same colour; and third, removing remaining degree-0
vertices (Figure 5 illustrates this process). Edge colours are preserved.

It is easy to verify that G(Σ− x) is the planarization of an arrangement of strings. The
colours removed by this operation are those belonging to strings that are paths of length 1 in
G(Σ) incident with x. Our obstruction-detecting algorithm relies on the following property:

(**) if x is an outer-rainbow of G(Σ), then there is an obstruction in G(Σ) not including x
if and only if there is an obstruction in G(Σ− x).

SoCG 2020

9:12 Extending Drawings of Graphs to Arrangements of Pseudolines

This property holds because cycles in G(Σ)− x and in G(Σ− x) are in 1-1 correspon-
dence: two cycles correspond to each other if they are the same simple closed curve. This
correspondence is obstruction-preserving.

Let us now describe the two subroutines in our algorithm. For this, we remark that an
outer-rainbow of G(Σ) is a rainbow for any cycle containing it.

Algorithm 1 Subroutine for detecting an obstruction through two outer-rainbows x and y.

(1) Find a cycle C through x and y whose edges are incident with the outer face of G(Σ). If
no such C exists, then output No obstruction through x and y. Else, go to Step 2.

(2) Find whether there is a third outer-rainbow z ∈ V (C) \ {x, y}. If such z exists, update
G(Σ)←− G(Σ− z) and go to Step 1. If no such z exists, output C.

Correctness and running-time of Algorithm 1: If an obstruction through x and y exists, then
x and y are in the same block (some authors use the term “biconnected component”). Since
x and y are incident with the outer face, the outer boundary of the block containing x and y
is the cycle C from Step 1. This C can be found by considering outer boundary walk W of
G(Σ) and then by finding whether x and y belong to the same non-edge block of W . Finding
W is O(m) and computing the blocks of W via a DFS takes O(m) time.

In Step 2, if there is a third outer rainbow z in C, then no obstruction through x and y
contains z. Property (**) justifies the update that takes O(m) time.

A full run from Step 1 to Step 2 takes O(m). Moving from Step 2 to Step 1 occurs O(n)
times. Thus, the total time for Algorithm 1 is O(mn) = O(n2).

Algorithm 2 Subroutine for detecting an obstruction through a single outer-rainbow x.

(1) Find a cycle C through x whose edges are incident with the outer face of G(Σ). If no
such C exists, output No obstruction through x. Else, go to Step 2.

(2) Find whether there is an outer-rainbow y in V (C) \ {x}. If no such y exists, output C.
Else, apply Algorithm 1 to x and y; if there is an obstruction C ′ through x and y, then
output C ′. Else, update G(Σ)←− G(Σ− y) and go to Step 1.

Correctness and running-time of Algorithm 2: If G(Σ) has an obstruction through x, then
there is a non-edge block in G(Σ) containing x. The outer boundary of this block is a cycle
C through x having all edges incident with the outer face. As in Algorithm 1, Step 1 takes
O(m) time.

Detecting the existence of y in Step 2 is O(m) because to detect rainbows in C, each edge
incident with a vertex in V (C) is verified at most twice. The update in Step 2 is justified by
Property (**). Since Step 2 may use Algorithm 1, Step 2 takes O(n2) time. As moving from
Step 2 to Step 1 occurs O(n) times, the total running-time for Algorithm 2 is O(n3).

We are now ready for the algorithm to detect obstructions.

Algorithm 3 Detecting obstructions in G(Σ).

(1) Find a cycle C having all edges incident with the outer face. If no such C exists, output
No obstruction. Else, go to step 2.

(2) Find whether there is an outer rainbow x ∈ V (C). If not, output C. Else apply
Algorithm 2 to x; if there is an obstruction C ′ through x, output C ′. Else, update
G(Σ)←− G(Σ− x) and go to Step 1.

A. Arroyo, J. Bensmail, and R. B. Richter 9:13

Correctness and running-time of Algorithm 3: If G(Σ) has an obstruction, then it has a
non-trivial block whose outer boundary is a cycle C as in Step 1. As before, C and x as in
Step 2 can be found in O(m) steps. If C has not outer rainbow x, then C is an obstruction;
Property (**) justifies the update in Step 2.

Since Step 2 may use Algorithm 2, a full run of Steps 1 and 2 takes O(n3) time. Since
Step 2 goes to Step 1 O(n) times, the running-time of Algorithm 3 is O(n4).

Algorithm 3 and the constructive proof of Theorem 2 imply the following result (proved
in the full version of this paper [4]).

I Theorem 14. There is a polynomial-time algorithm to recognize and extend an ordinary
set of strings that are extendible to an arrangement of pseudolines.

6 Concluding remarks

In this work we characterized in Theorem 2 sets of strings that can be extended into
arrangements of pseudolines. Moreover, we showed that the obstructions to pseudolinearity
can be detected in O(n4) time, where n is the number of vertices in the planarization of the
set of strings.

An easy consequence of Theorem 2 is the following (presented before as Theorem 1). We
prove this result in the full version of this paper [4].

I Theorem 15. Let D be a non-pseudolinear good drawing of a graph H. Then there is a
subset S of edge-arcs in {D[e] : e ∈ E(H)}, such that each σ ∈ S has a substring σ′ ⊆ σ

for which
⋃
σ∈S σ

′ is one of the drawings represented in Figure 1.

Theorem 2 can also be applied to find a short proof that pseudolinear drawings of Kn

are characterized by forbidding the B-configuration (see Theorem 2.5.1 in [3]). This implies
the characterizations of pseudolinear drawings of Kn presented in [2, 5, 6].

A drawing is stretchable if it is homeomorphic to a rectilinear drawing. There are
pseudolinear drawings that are not stretchable. For instance, consider the Non-Pappus
configuration in Figure 6. Nevertheless, as an immediate consequence of Thomassen’s main
result in [16], pseudolinear and stretchable drawings are equivalent, under the assumption
that every edge is crossed at most once.

Figure 6 Non-Pappus configuration.

I Corollary 16. A drawing D of a graph in which every edge is crossed at most once is
stretchable if and only if it is pseudolinear.

Proof. If a drawing D is stretchable then clearly it is pseudolinear. To show the converse,
suppose that D is pseudolinear. Then D does not contain any obstruction, and in particular,
neither of the B- and W -configurations in Figure 1 occurs in D. This condition was shown
in [16] to be equivalent to being stretchable. J

SoCG 2020

9:14 Extending Drawings of Graphs to Arrangements of Pseudolines

One can construct more general examples of pseudolinear drawings that are not stretchable
by considering non-strechable arrangements of pseudolines. However, such examples seem to
inevitably have some edge with multiple crossings. This leads to a natural question.

I Question 17. Is it true that if D is a pseudolinear drawing in which every edge is crossed
at most twice, then D is stretchable?

We believe that there are other instances where pseudolinearity characterizes stretchability
of drawings. A drawing is near planar if the removal of one edge produces a planar graph.
One instance, is the following result by Eades et al. that can be translated to the language
of pseudolines:

I Theorem 18 ([9]). A drawing of a near-planar graph is stretchable if and only if the
drawing induced by the crossed edges is pseudolinear.

References

1 Bernardo M Ábrego and Silvia Fernández-Merchant. A lower bound for the rectilinear crossing
number. Graphs and Combinatorics, 21(3):293–300, 2005.

2 Oswin Aichholzer, Thomas Hackl, Alexander Pilz, Birgit Vogtenhuber, and G Salazar. De-
ciding monotonicity of good drawings of the complete graph. In Encuentros de Geometría
Computacional, pages 33–36. ., 2015.

3 Alan Arroyo. On Geometric Drawings of Graphs. PhD thesis, University of Waterloo, 2018.
4 Alan Arroyo, Julien Bensmail, and R Bruce Richter. Extending drawings of graphs to

arrangements of pseudolines. arXiv preprint, 2018. arXiv:1804.09317.
5 Alan Arroyo, Dan McQuillan, R Bruce Richter, and Gelasio Salazar. Levi’s lemma, pseudolinear

drawings of, and empty triangles. Journal of Graph Theory, 87(4):443–459, 2018.
6 Martin Balko, Radoslav Fulek, and Jan Kynčl. Crossing numbers and combinatorial charac-

terization of monotone drawings of Kn. Discrete & Computational Geometry, 53(1):107–143,
2015.

7 József Balogh, Jesús Leaños, Shengjun Pan, R Bruce Richter, and Gelasio Salazar. The
convex hull of every optimal pseudolinear drawing of Kn is a triangle. Australasian Journal of
Combinatorics, 38:155, 2007.

8 Daniel Bienstock and Nathaniel Dean. Bounds for rectilinear crossing numbers. Journal of
Graph Theory, 17(3):333–348, 1993.

9 Peter Eades, Seok-Hee Hong, Giuseppe Liotta, Naoki Katoh, and Sheung-Hung Poon. Straight-
line drawability of a planar graph plus an edge. arXiv preprint, 2015. arXiv:1504.06540.

10 Stefan Felsner. Geometric graphs and arrangements: some chapters from combinatorial
geometry. Springer Science & Business Media, 2012.

11 Stefan Felsner and Jacob E Goodman. Pseudoline arrangements. In Handbook of Discrete and
Computational Geometry, pages 125–157. Chapman and Hall/CRC, 2017.

12 César Hernández-Vélez, Jesús Leaños, and Gelasio Salazar. On the pseudolinear crossing
number. Journal of Graph Theory, 84(3):155–162, 2017.

13 László Lovász, Katalin Vesztergombi, Uli Wagner, and Emo Welzl. Convex quadrilaterals and
k-sets. Contemporary Mathematics, 342:139–148, 2004.

14 Nicolai E Mnëv. Varieties of combinatorial types of projective configurations and convex
polytopes. Doklady Akademii Nauk SSSR, 283(6):1312–1314, 1985.

15 Nikolai E Mnëv. The universality theorems on the classification problem of configuration
varieties and convex polytopes varieties. In Topology and geometry – Rohlin seminar, pages
527–543. Springer, 1988.

16 Carsten Thomassen. Rectilinear drawings of graphs. Journal of Graph Theory, 12(3):335–341,
1988.

http://arxiv.org/abs/1804.09317
http://arxiv.org/abs/1504.06540

Dimensionality Reduction for k-Distance Applied
to Persistent Homology
Shreya Arya
Duke University, Durham, NC, USA
shreya.arya14@gmail.com

Jean-Daniel Boissonnat
Université Côte d’Azur, INRIA, Sophia-Antipolis, France
jean-daniel.boissonnat@inria.fr

Kunal Dutta
Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
K.Dutta@mimuw.edu.pl

Martin Lotz
Mathematics Institute, University of Warwick, Coventry, United Kingdom
martin.lotz@warwick.ac.uk

Abstract
Given a set P of n points and a constant k, we are interested in computing the persistent homology
of the Čech filtration of P for the k-distance, and investigate the effectiveness of dimensionality
reduction for this problem, answering an open question of Sheehy [Proc. SoCG, 2014]. We show
that any linear transformation that preserves pairwise distances up to a (1± ε) multiplicative factor,
must preserve the persistent homology of the Čech filtration up to a factor of (1− ε)−1. Our results
also show that the Vietoris-Rips and Delaunay filtrations for the k-distance, as well as the Čech
filtration for the approximate k-distance of Buchet et al. are preserved up to a (1± ε) factor.

We also prove extensions of our main theorem, for point sets (i) lying in a region of bounded
Gaussian width or (ii) on a low-dimensional manifold, obtaining the target dimension bounds of
Lotz [Proc. Roy. Soc. , 2019] and Clarkson [Proc. SoCG, 2008] respectively.

2012 ACM Subject Classification Theory of computation; Theory of computation→ Computational
geometry

Keywords and phrases Dimensionality reduction, Johnson-Lindenstrauss lemma, Topological Data
Analysis, Persistent Homology, k-distance, distance to measure

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.10

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement No. 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in
Higher Dimensions).

Acknowledgements We thank the reviewers for their helpful comments and suggestions.

1 Introduction

Persistent homology is one of the main tools used to extract information from data in
topological data analysis. Given a data set as a point cloud in some ambient space, the idea
is to construct a filtration sequence of topological spaces from the point cloud, and extract
topological information from this sequence. The topological spaces are usually constructed
by considering balls around the data points, in some given metric of interest, as the open
sets. However the usual distance function is highly sensitive to the presence of outliers and

© Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shreya.arya14@gmail.com
mailto:jean-daniel.boissonnat@inria.fr
mailto:K.Dutta@mimuw.edu.pl
mailto:martin.lotz@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.SoCG.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Dimensionality Reduction for k-Distance

noise. One approach is to use distance functions that are more robust to outliers, such as the
distance-to-a-measure and the related k-distance (for finite data sets), proposed recently by
Chazal et al. [9] Although this is a promising direction, an exact implementation is extremely
costly. To overcome this difficulty, approximations of the k-distance have been proposed
recently that led to certified approximations of persistent homology [22, 7]. Other approaches
involve using kernels [28], de-noising algorithms [8, 33], etc.

In all the above settings, the sub-routines required for computing persistent homology have
exponential or worse dependence on the ambient dimension, and rapidly become unusable
in real-time once the dimension grows beyond a few dozens - which is indeed the case in
many applications, for example in image processing, neuro-biological networks, data mining
(see e.g. [20]), a phenomenon often referred to as the curse of dimensionality.

The Johnson-Lindenstrauss Lemma. One of the simplest and most commonly used mech-
anisms to mitigate this curse, is that of random projections, as applied in the celebrated
Johnson and Lindenstrauss lemma (JL Lemma for short) [24]. The JL Lemma states that
any set of n points in Euclidean space can be embedded in a space of dimension O(ε−2 logn)
with (1 ± ε) distortion. Since the initial non-constructive proof of this fact by Johnson
and Lindenstrauss [24], several authors have given successive improvements, e.g. Indyk,
Motwani, Raghavan and Vempala [23], Dasgupta and Gupta [14], Achlioptas [1], Ailon and
Chazelle [2], Matoušek [26] and others, which address the issues of efficient constructivization
and implementation, using random linear transformations. Dirksen [15] gave a unified theory
for dimensionality reduction using subgaussian matrices.

In a different direction, variants of the Johnson-Lindenstrauss lemma with better target
dimension have been given under several specific settings. For point sets lying in regions of
bounded Gaussian width, a theorem of Gordon [21] implies that the target dimension can be
reduced to a function of the Gaussian width, independent of the number of points. Sarlos [29]
showed that points lying on a d-flat can be mapped on to O(d/ε2) dimensions independently
of the number of points. Baraniuk and Wakin [5] proved an analogous result for points on a
smooth manifold, which was subsequently sharpened by Clarkson [12]. Verma [31] gave a
further improvement, directly preserving geodesic distances on the manifold. Other related
results include those of Indyk and Naor [12] for sets of bounded doubling dimension, with
additive errors, and Alon and Klartag [3] preserving general inner products, again with
additive error only.

Dimension Reduction and Persistent Homology. The JL Lemma has also been used by
Sheehy [30] and Lotz [25] to reduce the complexity of computing persistent homology. Both
Sheehy and Lotz show that the persistent homology of a point cloud is approximately
preserved under random projections [30, 25], up to a (1± ε) multiplicative factor, for any
ε ∈ [0, 1]. Sheehy proves this for an n-point set, whereas Lotz’s generalization applies to sets
of bounded Gaussian width. However, their techniques involve only the usual distance to
a point set and therefore remain sensitive to outliers and noise as mentioned earlier. The
question of adapting the method of random projections in order to reduce the complexity of
computing persistent homology using the k-distance, is therefore a natural one, and has been
raised by Sheehy [30], who observed that “One notable distance function that is missing from
this paper [i.e. [30]] is the so-called distance to a measure or . . .k-distance . . . it remains open
whether the k-distance itself is (1± ε)-preserved under random projection.”

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:3

Our Contribution

In this paper, we combine the method of random projections with the k-distance and show
its applicability in computing persistent homology. It is not very hard to see that for a given
point set P , the random Johnson-Lindenstrauss mapping preserves the pointwise k-distance
to P (Theorem 13). However, this is not enough to preserve intersections of balls at varying
scales of the radius parameter and thus does not suffice to preserve the persistent homology
of Čech filtrations, as noted by Sheehy [30] and Lotz [25]. We show how the squared radius
of a set of weighted points can be expressed as a convex combination of pairwise squared
distances. From this, it follows that the Čech filtration under the k-distance, will be preserved
by any linear mapping that preserves pairwise distances.

Extensions

Further, as our main result applies to any linear mapping that approximately preserves
pairwise distances, the theorems of Lotz, Baraniuk and Wakin, and others apply immediately.
Thus, we give two extensions of our results. The first one, analogous to Lotz [25], shows that
the persistent homology with respect to the k-distance, of point sets contained in regions
having bounded Gaussian width, can be preserved via dimensionality reduction, with target
dimension a function of the Gaussian width. Another result is that for points lying in a
low-dimensional submanifold of a high-dimensional Euclidean space, the target dimension
for preserving the persistent homology with k-distance depends linearly on the dimension
of the manifold. Both these settings are commonly encountered in high-dimensional data
analysis, machine learning, etc. (see e.g. the manifold hypothesis [18]).
I Remark 1. It should be noted that the approach of using dimensionality reduction for
the k-distance, is complementary to denoising techniques such as [8] as we do not try to
remove noise, only to be more robust to noise. Therefore, it can be used in conjunction with
denoising techniques, as a pre-processing tool when the dimensionality is high.

Outline

The rest of this paper is as follows. In Section 2, we briefly summarize some basic definitions
and background. Our theorems are stated in Section 3 and proved in Section 4. Some
applications of our results are proved in Section 5. We end with some final remarks and open
questions in Section 6.

2 Background

We begin with some preliminary background.

We shall need a well-known identity for the variance of bounded random variables, which
will be crucial in the proof of our main theorem. Let λ1, . . . , λk ≥ 0 be such that

∑k
i=1 λi = 1.

Let p1, . . . , pk ∈ RD be given points. and let b =
∑k
i=1 λipi. Then for any point x ∈ RD, the

following holds
k∑
i=1

λi‖x− pi‖2 = ‖x− b‖2 +
k∑
i=1

λi‖b− pi‖2. (1)

In particular, for λi = 1/k for all i, we have

1
k

k∑
i=1
‖x− pi‖2 = ‖x− b‖2 +

k∑
i=1

1
k
‖b− pi‖2. (2)

SoCG 2020

10:4 Dimensionality Reduction for k-Distance

2.1 Random Projections
The Johnson-Lindenstrauss lemma [24] states that any subset of n points of Euclidean
space can be embedded in a space of dimension O(ε−2 logn) with (1 ± ε) distortion. In
order to separate the technical aspects of our result from the issues of implementation, we
use the notion of an ε-distortion map with respect to P (also commonly called a Johnson-
Lindenstrauss map).

I Definition 2. Given a point set P ⊂ RD, and ε ∈ (0, 1), a mapping f : RD → Rd for some
d ≤ D is an ε-distortion map with respect to P , if for all x, y ∈ P ,

(1− ε)‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤ (1 + ε)‖x− y‖.

A random variable X with mean zero, is said to be subgaussian with subgaussian norm
K if E

[
expX2/K2] ≤ 2. In this case, the tails of the random variable satisfy

P [|X| ≥ t] ≤ 2 exp
(
−t2/2K2) .

We focus on the case where the Johnson-Lindenstrauss embedding is carried out via random
subgaussian matrices, i.e. matrices where for some given K > 0, each entry is an independent
subgaussian random variable with subgaussian norm K. This case is general enough to
include the mappings of e.g. Achlioptas [1], Ailon and Chazelle [2], Dasgupta and Gupta [14],
Indyk, Motwani, Raghavan, and Vempala [23], and Matoušek [26] (see e.g. Dirksen for a
unified treatment [15]).

I Lemma 3 (JL Lemma). Given 0 < ε, δ < 1, and a finite point set P ⊂ RD of size |p| = n.
Then a random linear mapping f : RD → Rd where d = O(ε−2 logn) given by f(v) =

√
D
d Gv

where G is a d×D subgaussian random matrix, is an ε-distortion map with respect to P ,
with probability at least 1− δ.

2.2 k-Distance
The distance to a finite point set P is usually taken to be the minimum distance to a point in
the set. For the computations involved in geometric and topological inference, however, this
distance is extremely sensitive to outliers and noise. To handle this problem of sensitivity,
Chazal et al. in [9] introduced the distance to a probability measure which, in the case of a
uniform probability on P , is called the k-distance.

I Definition 4 (k-distance). For k ∈ {1, ..., n} and x ∈ RD, the k-distance of x to P is

dP,k(x) = min
Sk∈(P

k)

√
1
k

∑
p∈Sk

‖x− p‖2 =
√√√√1
k

∑
p∈NNk

P
(x)

‖x− p‖2 (3)

where NNkP (x) ⊂ P denotes the k nearest neighbours in P to the point x ∈ RD.

It was shown in [4], that the k-distance can be expressed in terms of weighted points
and power distance. A weighted point p̂ is a point p of RD together with a (not necessarily
positive) real number called its weight and denoted by w(p). The distance between two
weighted points p̂i = (pi, wi) and p̂j = (pj , wj) is defined as D(p̂i, p̂j) = ‖pi − pj‖2 −wi −wj .
This definition encompasses the case where the two weights are 0, in which case we have
the squared euclidean distance and the case where one of the points has weight 0, in which
case, we have the power distance of a point to a ball. We say that two weighted points are
orthogonal when their distance is 0.

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:5

Let BP,k be the set of iso-barycentres of all subsets of k points in P . To each barycenter
b = (1/k)

∑
i pi ∈ BP,k, we associate the weight w(b) = − 1

k

∑
i ‖b − pi‖2. Writing B̂P,k =

{b̂ = (b, w(b)), b ∈ BP,k}, we see from (2) that the k-distance is the square root of a power
distance [4]

dP,k(x) = min
b̂∈B̂P,k

√
D(x, b̂). (4)

Observe that in general the squared distance between a pair of weighted points can be
negative, but the above assignment of weights ensures that the k-distance dP,k is a real
function. Since dP,k is the square root of a non-negative power distance, the α-sublevel set of
dP,k, dP,k([−∞, α]), α ∈ R, is the union of

(
n
k

)
balls B(b,

√
α2 + w(b)), b ∈ BP,k. However,

some of the balls may be included in the union of others and be redundant. In fact, the
number of barycenters (or equivalently of balls) required to define a level set of dP,k is equal
to the number of the non-empty cells in the kth-order Voronoi diagram of P . Hence the
number of non-empty cells is Ω

(
nb(D+1)/2c) [13] and computing them in high dimensions is

intractable. It is then natural to look for approximations of the k-distance, e.g., the following
definition has been proposed [7]:

I Definition 5 (Approximation). Let P ⊂ RD and x ∈ RD. The approximate k-distance
d̃P,k(x) is defined as

d̃P,k(x) := min
p∈P

√
D(x, p̂) (5)

where p̂ = (p, w(p)) with w(p) = −d2
P,k(p), the opposite of the squared k-distance of p.

As in the exact case, d̃P,k is the square root of a power distance and its α-sublevel set,
α ∈ R, is a union of balls, specifically the balls B(p,

√
α2 − d2

P,k(p)), p ∈ P . The major
difference with the exact case is that, since we consider only balls around the points of P ,
their number is n instead of

(
n
k

)
in the exact case (compare Eq. (5) and Eq. (4)). Still,

d̃P,k(x) approximates the k-distance [7]:

1√
2
dP,k ≤ d̃P,k ≤

√
3 dP,k. (6)

We now make an observation for the case when the weighted points are barycenters,
which will be very useful in proving our main theorem.

I Lemma 6. Given b1, b2 ∈ BP,k, and pi,1, . . . , pi,k ∈ P for i = 1, 2, such that bi =
1
k

∑k
l=1 pi,l, and w(bi) = 1

k

∑k
l=1 ‖bi − pi,l‖2 for i = 1, 2, then it holds that

D(b̂1, b̂2) = 1
k2

k∑
l,s=1

‖p1,l − p2,s‖2.

Proof of Lemma 6. We have

D(b̂1, b̂2) = ‖b1−b2‖2−w(b1)−w(b2) = ‖b1−b2‖2+ 1
k

k∑
l=1
‖b1−p1,l‖2+ 1

k

k∑
l=1
‖b2−p2,l‖2.

Applying the identity (2), we get ‖b1 − b2‖2 + 1
k

∑k
l=1 ‖b2 − p2,l‖2 = 1

k

∑k
l=1 ‖b1 − p2,l‖2,

so that

SoCG 2020

10:6 Dimensionality Reduction for k-Distance

D(b̂1, b̂2) = 1
k

k∑
l=1
‖b1 − p2,l‖2 + 1

k

k∑
l=1
‖b1 − p1,l‖2

= 1
k

k∑
l=1
‖b1 − p2,l‖2 + 1

k2

k∑
s=1

k∑
l=1
‖b1 − p1,l‖2

= 1
k

k∑
l=1

(
‖b1 − p2,l‖2 + 1

k

k∑
s=1
‖b1 − p1,s‖2

)

= 1
k

k∑
l=1

(
1
k

k∑
s=1
‖p1,s − p2,l‖2

)
= 1

k2

k∑
l,s=1

‖p1,s − p2,l‖2, (7)

where in (7), we again applied (2) to each of the points p2,s, with respect to the barycenter b1.
J

2.3 Persistent Homology
Simplicial Complexes and Filtrations. Let V be a finite set. An (abstract) simplicial
complex with vertex set V is a set K of finite subsets of V such that if A ∈ K and B ⊆ A,
then B ∈ K. The sets in K are called the simplices of K. A simplex F ∈ K that is strictly
contained in a simplex A ∈ K, is said to be a face of A.

A simplicial complex K with a function f : K → R such that f(σ) ≤ f(τ) whenever σ
is a face of τ is a filtered simplicial complex. The sublevel set of f at r ∈ R, f−1 (−∞, r],
is a subcomplex of K. By considering different values of r, we get a nested sequence of
subcomplexes (called a filtration) of K, ∅ = K0 ⊆ K1 ⊆ ... ⊆ Km = K, where Ki is the
sublevel set at value ri.

The Čech filtration associated to a finite set P of points in RD plays an important role
in Topological Data Analysis.

I Definition 7 (Čech Complex). The Čech complex Čα(P) is the set of simplices σ ⊂ P such
that rad(σ) ≤ α, where rad(σ) is the radius of the smallest enclosing ball of σ, i.e.

rad(σ) ≤ α⇔ ∃x ∈ RD, ∀pi ∈ σ, ‖x− pi‖ ≤ α.

When α goes from 0 to +∞, we obtain the Čech filtration of P . Čα(P) can be equivalently
defined as the nerve of the closed balls B(p, α), centered at the points in P and of radius α:

Čα(P) = {σ ⊂ P | ∩p∈σ B(p, α) 6= ∅}.

By the nerve lemma, we know that the union of balls Uα = ∪p∈PB(p, α), p ∈ P , and Čα(P)
have the same homotopy type.

Persistence Diagrams. Persistent homology is a means to compute and record the changes
in the topology of the filtered complexes as the parameter α increases from zero to infinity.
Edelsbrunner, Letscher and Zomorodian [17] gave an algorithm to compute the persistent
homology, which takes a filtered simplicial complex as input, and outputs a sequence
(αbirth, αdeath) of pairs of real numbers. Each such pair corresponds to a topological feature,
and records the values of α at which the feature appears and disappears, respectively,
in the filtration. Thus the topological features of the filtration can be represented using
this sequence of pairs, which can be represented either as points in the extended plane

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:7

R̄2 = (R ∪ {−∞,∞})2, called the persistence diagram or as a sequence of barcodes (the
persistence barcode) (see, e.g., [16]). A pair of persistence diagrams G and H corresponding
to the filtrations (Gα) and (Hα) respectively, are multiplicatively β-interleaved, (β ≥ 1),
if for all α, we have that Gα/β ⊆ Hα ⊆ Gαβ . We shall crucially rely on the fact that a
given persistence diagram is closely approximated by another one if they are multiplicatively
c-interleaved, with c close to 1 (see e.g. [10]).

The Persistent Nerve Lemma [11] shows that the persistent homology of the Čech complex
is the same as the homology of the α-sublevel filtration of the distance function.

The Weighted Case. Our goal is to extend the above definitions and results to the case
of the k-distance. As we observed earlier, the k-distance is a power distance in disguise.
Accordingly, we need to extend the definition of the Čech complex to sets of weighted points.

I Definition 8 (Weighted Čech Complex). Let P̂ = {p̂1, ..., p̂n} be a set of weighted points,
where p̂i = (pi, wi). The α-Čech complex of P̂ , Čα(P̂), is the set of all simplices σ satisfying

∃x, ∀pi ∈ σ, ‖x− pi‖2 ≤ wi + α2 ⇔ ∃x, ∀pi ∈ σ, D(x, p̂i) ≤ α2.

In other words, the α-Čech complex of P̂ is the nerve of the closed balls B(pi, r2
i = wi + α2),

centered at the pi and of squared radius wi + α2 (if negative, B(pi, r2
i) is imaginary).

The notions of weighted Čech filtrations and their persistent homology now follow naturally.
Moreover, it follows from (4) that the Čech complex Čα(P) for the k-distance is identical to
the weighted Čech complex Čα(B̂P,k), where B̂P,k is, as above, the set of iso-barycenters of
all subsets of k points in P .

In the Euclidean case, we equivalently defined the α-Čech complex as the collection of
simplices whose smallest enclosing balls have radius at most α. We can proceed sim-
ilarly in the weighted case. Let X̂ ⊆ P̂ . We define the radius of X̂ as rad2(X̂) =
minx∈RD maxp̂i∈X̂ D(x, p̂i), and the weighted center or simply the center of X̂ as the point,
noted c(X̂), where the minimum is reached.

Our goal is to show that preserving smallest enclosing balls in the weighted scenario
under a given mapping, also preserves the persistent homology. Sheehy [30] and Lotz [25],
proved this for the unweighted case. Their proofs also work for the weighted case but only
under the assumption that the weights stay unchanged under the mapping. In our case
however, the weights need to be recomputed in f(P̂). We therefore need a version of [25,
Lemma 2.2] for the weighted case which does not assume that the weights stay the same
under f . This is Lemma 12, which follows at the end of this section. The following lemmas
will be instrumental in proving Lemma 12 and in proving our main result. Let X̂ ⊆ P̂ and
assume without loss of generality that X̂ = {p̂1, ..., p̂m}, where p̂i = (pi, wi).

I Lemma 9. c(X̂) and rad(X̂) are uniquely defined.

I Lemma 10. Let I be the set of indices for which D(c, p̂i) = rad(X̂) and let X̂I = {p̂i, i ∈ I}.
c(X̂) is a convex combination of the points in XI , i.e. c(X̂) =

∑m
i=1 λipi with

∑m
i=1 λi = 1,

λi ≥ 0 for all i, and λi = 0 for all i 6∈ I.

Combining the above lemmas with [25, Lemma 4.2] gives the following lemma.

I Lemma 11. rad2(X̂) = 1
2
∑
i∈I
∑
j∈I λiλjD(p̂i, p̂j).

Let X ∈ RD be a finite set of points and X̂ be the associated weighted points where the
weights are computed according to a weighting function w : X → R−. Given a mapping
f : RD → Rd, we define f̂(X) as the set of weighted points {(f(x), w(f(x))), x ∈ X}. Note
that the weights are recomputed in the image space Rd.

SoCG 2020

10:8 Dimensionality Reduction for k-Distance

I Lemma 12. In the above setting, if f is such that for some ε ∈ (0, 1) and for all subsets
Ŝ ⊆ X̂ we have

(1− ε)rad2(Ŝ) ≤ rad2(f̂(S)) ≤ (1 + ε)rad2(Ŝ),

then the weighted Čech filtrations of X̂ and f(X̂) are multiplicatively (1− ε)−1/2 interleaved.

3 Results

For the subsequent theorems, we denote by P a set of n points in RD.
Our first theorem shows that for the points in P , the pointwise k-distance dP,k is preserved

by a random subgaussian matrix satisfying Lemma 3.

I Theorem 13. Given ε ∈ (0, 1], an ε-distortion map with respect to P f : RD → Rd, where
d = O(ε−2 logn), satisfies for all points x ∈ P :

(1− ε)d2
P,k(x) ≤ d2

f(P),k(f(x)) ≤ (1 + ε)d2
P,k(x).

Moreover, given any δ ∈ (0, 1), the above inequality holds with probability at least 1− δ for a
random function f : RD → Rd given by f(x) =

√
D/dGx, where G is a random subgaussian

matrix, and d = O
(

logn
ε2

)
, where the constant in the O-notation depends on δ.

As mentioned previously, the preservation of the pointwise k-distance does not imply the
preservation of the Čech complex formed using the points in P . Nevertheless, the following
theorem shows that this can always be done in dimension O(logn/ε2).

Let B̂P,k be the set of iso-barycenters of every k-subset of P , weighted as in Section 2.2.
Recall from Section 2.3 that the weighted Čech complex Čα(B̂P,k) is identical to the Čech
complex Čα(P) for the k-distance.

I Theorem 14 (k-distance). Let σ̂ ⊆ B̂P,k be a simplex in the weighted Čech complex
Čα(B̂P,k). Then, given d ≤ D such that there exists a ε-distortion map with respect to P
f : RD → Rd, the following holds:

(i) (1− ε)rad2(σ̂) ≤ rad2(f̂(σ)) ≤ (1 + ε)rad2(σ̂).
(ii) In particular, for a n-point set P , given δ ∈ (0, 1), the function f : RD → Rd

given by f(x) =
(√

D/d
)
Gx, where G is a random d×D Gaussian matrix G where

d = O
(

logn
ε2

)
, satisfies the above inequality with probability at least 1− δ.

For the approximation of the k-distance given by [7] also, we get an optimal target
dimension, as the number of weighted points needed to compute the approximate k-distance,
is just n.

I Theorem 15 (Approximate k-distance). Let P̂ be the weighted points associated with P ,
introduced in Definition 5 (Equ. 5). Let, in addition, σ̂ ⊆ P̂ be a simplex in the associated
weighted Čech complex Čα(P̂). Then an ε-distortion mapping with respect to P , f : RD → Rd

satisfies: (1− ε)rad2(σ̂) ≤ rad2(f̂(σ)) ≤ (1 + ε)rad2(σ̂). Moreover, the function f : RD → Rd

given by f(x) =
(√

D/d
)
Gx, where G is a random d × D Gaussian matrix G where

d = O(logn/ε2), satisfies the above inequality, with probability at least 1− δ.

Applying Lemma 12 to the theorems 14 and 15, we get the following corollary.

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:9

I Corollary 16. The persistent homology for the Čech filtrations of P and its image f(P)
under any ε-distortion mapping with respect to P , using the (i) exact k-distance, as well as the
(ii) approximate k-distance, are multiplicatively (1− ε)−1/2-interleaved with probability 1− δ.

However, note that the approximation in Corollary 16 (ii) is with respect to the approxi-
mate k-distance, which is itself an O(1) approximation of the k-distance (see (6)).

4 Proofs

We begin with the proofs of the auxiliary lemmas.

Proof of Lemma 9. The proof follows from the convexity of D (see Lemma 6). Assume, for
a contradiction, that there exists two centers c0 and c1 6= c0 for X̂. For convenience, write
r = rad(X̂). By the definition of the center of X̂, we have

∃p̂0,∀p̂i : D(c0, p̂i) ≤ D(c0, p̂0) = ‖c0 − p0‖2 − w0 = r2

∃p̂1,∀p̂i : D(c1, p̂i) ≤ D(c1, p̂1) = ‖c1 − p1‖2 − w1 = r2.

Consider Dλ(p̂i) = (1 − λ)D(c0, p̂i) + λD(c1, p̂i) and write cλ = (1 − λ)c0 + λc1. For any
λ ∈ (0, 1), we have

Dλ(p̂i) = (1− λ)D(c0, p̂i) + λD(c1, p̂i)
= (1− λ)(c0 − pi)2 + λ(c1 − pi)2 − wi
= D(cλ, p̂i)− c2

λ + (1− λ)c2
0 + λc2

1

= D(cλ, p̂i) + λ(1− λ)(c0 − c1)2

> D(cλ, p̂i).

Moreover, for any i,

Dλ(p̂i) = (1− λ)D(c0, p̂i) + λD(c1, p̂i) ≤ r2.

Thus, for any i and any λ ∈ (0, 1), D(cλ, p̂i) < r2. Hence cλ is a better center than c0 and
c1, and r is not the minimal possible value for rad(X̂). We have obtained a contradiction. J

Proof of Lemma 10. We write for convenience c = c(X̂) and r = rad(X̂) and prove that
c ∈ conv(XI) by contradiction. Let c′ 6= c be the point of conv(XI) closest to c, and c̃ 6= c

be a point on [cc′]. Since ‖c̃ − pi‖ < ‖c − pi‖ for all i ∈ I, D(c̃, p̂i) < D(c, p̂i) for all i ∈ I.
For c̃ sufficiently close to c, c̃ remains closer to the weighted points p̂j , j 6∈ I, than to the p̂i,
i ∈ I. We thus have

D(c̃, p̂j) < D(c̃, p̂i) < D(c, p̂i) = r2.

It follows that c is not the center of X̂, a contradiction. J

Proof of Lemma 11. From Lemma 10, and writing c = c(X̂) for convenience, we have

rad2(X̂) =
∑
i∈I

λi
(
‖c− pi‖2 − wi

)
.

We use the following simple fact from [25, Lemma 4.5]∑
i∈I

λi‖c− pi‖2 = 1
2
∑
i∈I

∑
j∈I

λiλj‖pi − pj‖2.

SoCG 2020

10:10 Dimensionality Reduction for k-Distance

Substituting in the expression for rad2(X̂),

rad2(X̂) = 1
2
∑
j∈I

∑
i∈I

λjλi‖pi − pj‖2 − 1
2
∑
i∈I

2λiwi

= 1
2
∑
i,j∈I

λjλi‖pi − pj‖2 − 1
2
∑
i,j∈I

2λiλjwi (since
∑
j∈I

λj = 1)

= 1
2
∑
i,j∈I

λjλi‖pi − pj‖2 − 1
2
∑
i,j∈I

λiλj(wi + wj)

= 1
2
∑
i,j∈I

λiλj
(
‖pi − pj‖2 − wi − wj

)
= 1

2
∑
i,j∈I

λiλjD(p̂i, p̂j). J

Proof of Theorem 13. The proof follows from the observation that the squared k-distance
from any point p ∈ P to the point set P , is a convex combination of the squares of the
Euclidean distances to the k nearest neighbours of p. Since the mapping in the JL Lemma 3
is linear, and it (1± ε)-preserves squared pairwise distances, their convex combinations also
get (1± ε)-preserved. J

Proof of Theorem 14. Let σ̂ = {b̂1, b̂2, ..., b̂m}, where b̂i is the weighted point defined in
Section 2.3, i.e. b̂i = (bi, w(bi)) with bi ∈ BP,k and w(bi) = − 1

k

∑k
l=1 ‖bi − pil‖2, where

pi,1, . . . , pi,k ∈ P are such that bi = 1
k

∑k
j=1 pi,j . Applying Lemma 11 to σ̂, we have that

rad2(σ̂) = 1
2
∑
i,j∈I

λiλjD(b̂i, b̂j). (8)

By Lemma 6, the distance between p̂i and p̂j is D(b̂i, b̂j) = 1
k2

∑k
l,s=1 ‖pi,l − pj,s‖2. As this

last expression is a convex combination of squared pairwise distances of points in P , it is
(1± ε)-preserved by any ε-distortion map with respect to P , which implies that the convex
combination rad2(σ̂) = 1

2
∑
i,j∈I λiλjD(p̂i, p̂j) corresponding to the squared radius of σ in

RD, will be (1± ε)-preserved.
Let f : RD → Rd be an ε-distortion map with respect to P , from RD to Rd, where d will

be chosen later. By Lemma 11, the centre of f̂(σ) is a convex combination of the points
(f(bi))mi=1. Let the centre c(f̂(σ)) be given by c(f̂(σ)) =

∑
i∈I νiD(f̂(bi)). where for i ∈ I,

νi ≥ 0,
∑
i νi = 1. Consider the convex combination of power distances

∑
i,j∈I νiνjD(b̂i, b̂j).

Since f is an ε-distortion map with respect to P , by Lemmas 6 and 3 we get

1
2(1− ε)

∑
i,j∈I

νiνjD(b̂i, b̂j) ≤ 1
2
∑
i,j∈I

νiνjD(f̂(bi), f̂(bj)) = rad2(f̂(σ)). (9)

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:11

On the other hand, since the squared radius is a minimizing function by definition, we
get that

rad2(σ̂) = 1
2
∑
i,j∈I

λiλjD(b̂i, b̂j) ≤
1
2
∑
i,j∈I

νiνjD(b̂i, b̂j) (10)

≤ 1
(1− ε) rad2(f(σ)), by (9)

rad2(f̂(σ)) = 1
2
∑
i,j∈I

νiνjD(f̂(bi), f̂(bj)) (11)

≤ 1
2
∑
i,j∈I

λiλjD(f̂(bi), f̂(bj)). (12)

Combining the inequalities (9), (10), (12) gives

(1− ε)rad2(σ̂) ≤ rad2(f̂(σ)) ≤ 1
2
∑
i,j∈I

λiλjD(f̂(bi), f̂(bj)) ≤ (1 + ε)rad2(σ̂).

where the final inequality follows by Lemma 3, since f is an ε-distortion map with respect to
P . Thus, we have that

(1− ε)rad2(σ̂) ≤ rad2(f̂(σ)) ≤ (1 + ε)rad2(σ̂),

which completes the proof of the theorem. J

Proof of Theorem 15. Recall that, in Section 2.2, we defined the approximate k-distance
to be d̃P,k(x) := minp∈P

√
D(x, p̂), where p̂ = (p, w(p)) is a weighted point, having weight

w(p) = −d2
P,k(p). So, the Čech complex would be formed by the intersections of the balls

around the weighted points in P . The proof follows on the lines of the proof of Theorem 14.
Let σ̂ = {p̂1, p̂2, ..., p̂m}, where p̂1, . . . , p̂m are weighted points in P̂ , and let c(σ̂) be the center
of σ̂. Applying again Lemma 11, we get

rad2(σ̂) = 1
2
∑
i,j∈I

λiλj‖pi − pj‖2 +
∑
i∈I

λiw(pi) =
∑

i,j∈I;i<j
λiλj‖pi − pj‖2 +

∑
i∈I

λiw(pi),

where w(p) = d2
P,k(p). In the second equality, we used the fact that the summand correspond-

ing to a fixed pair of distinct indices i < j is being counted twice and that the contribution
of the terms corresponding to indices i = j is zero. An ε-distortion map with respect to P
preserves pairwise distances and the k-distance in dimension O(ε−2 logn). The result then
follows as in the proof of Theorem 14. J

5 Extensions

In this section we state and prove some extensions of Theorem 14 for dimensionality reduction,
obtaining better bounds for the target dimension than in Section 3, in certain settings like
point sets contained in regions of bounded Gaussian width, or in low-dimensional submanifolds
of Euclidean space.

SoCG 2020

10:12 Dimensionality Reduction for k-Distance

5.1 Sets of Bounded Gaussian Width
The first result in this section, is analogous to a theorem [25] for point sets contained in a
region of bounded Gaussian width.

I Definition 17. Given a set S ⊂ RD, the Gaussian width of S is

w(S) := E
[
sup
x∈S
〈x, g〉

]
,

where g ∈ RD is a random standard D-dimensional Gaussian vector.

In several areas like geometric functional analysis, compressed sensing, machine learning,
etc. the Gaussian width is a very useful measure of the width of a set in Euclidean space
(see e.g. [19] and the references therein). It is also closely related to the statistical dimension
of a set (see e.g. [32, Chapter 7]).

I Theorem 18. Let P ⊂ RD be a finite set of points, and define S := {(x − y)/‖x − y‖ :
x, y ∈ P}. Let w(S) denote the Gaussian width of S. Then, given any ε, δ ∈ (0, 1), for

any d ≥
(
w(S)+

√
2 log(2/δ)

)2

ε2 + 1, the map from RD → Rd, given by x 7→
√
D/dGx, where

d = O
(

logn
ε2

)
and G is a d×D random Gaussian matrix, preserves the persistent homology

of the Čech filtration associated to P , up to a multiplicative factor of (1 − ε)−1/2, with
probability at least 1− δ.

Note that since the Gaussian width of an n-point set is at most O(logn) (using e.g. the
Gaussian concentration inequality, see e.g. [6, Section 2.5]), Theorem 18 strictly generalizes
Theorem 14 (ii).

Proof of Theorem 18. We state an analogue of the Johnson Lindenstrauss lemma for sets
of bounded Gaussian width, given in [21, Theorem 3.1], which essentially follows from a
result of Gordon [21].

I Theorem 19 ([25], Theorem 3.1). Given ε, δ ∈ (0, 1), P ⊂ RD, let S := {(x−y)/‖x−y‖ :

x, y ∈ S}. Then for any d ≥
(
w(S)+

√
2 log(2/δ)

)2

ε2 + 1, the function f : RD → Rd given by
f(x) =

(√
D/d

)
Gx, where G is a random d×D Gaussian matrix G, is an ε-distortion map

with respect to P , with probability at least 1− δ.

By Theorem 19, the scaled random Gaussian matrix f : x 7→
(√

D/d
)
Gx is an ε-

distortion map with respect to P , with target dimension d ≥
(
w(S)+

√
2 log(2/δ)

)2

ε2 + 1. Now
applying the first statement in Theorem 14 to the point set P with the mapping f , immediately
gives us that for any simplex σ̂ ∈ Čα(B̂P,k), where Čα(B̂P,k) is the weighted Čech complex
with parameter α, the squared radius rad2(σ̂) is preserved up to a multiplicative factor of
(1± ε). By Lemma 12, this implies that the persistent homology for the Čech filtration is
(1− ε)−1/2-multiplicatively interleaved. J

5.2 Submanifolds of Euclidean Space
For point sets lying on a low-dimensional manifold in a high-dimensional Euclidean space,
one can obtain a better target dimension using the bounds of Baraniuk and Wakin [5] or
Clarkson [12], which will depend only on the parameters of the manifold.

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:13

I Theorem 20. There exists an absolute constant c > 0 such that, given a finite point set P
lying on a connected, compact, orientable, differentiable µ-dimensional manifold M ⊂ RD,
and ε, δ ∈ (0, 1), a random projection map f : RD → Rd preserves the persistent homology
of the Čech filtraton computed on P , using the k-distance, with probability at least 1 − δ,
provided

d ≥ c
(
µ log(1/ε) + log(1/δ)

ε2 + C(M)
ε2

)
,

where C(M) depends only on M .

Proof of Theorem. The proof is a direct application of Clarkson’s bound [12] to Theorem 14
(i). Clarkson’s theorem is stated below.

I Theorem 21 (Clarkson [12]). There exists an absolute constant c > 0 such that, given
a connected, compact, orientable, differentiable µ-dimensional manifold M ⊂ RD, and
ε, δ ∈ (0, 1), any random projection map f : RD → Rd, is an ε-distortion map with respect to
P , with probability at least 1− δ, for

d ≥ c
(
µ log(1/ε) + log(1/δ)

ε2 + C(M)
ε2

)
,

where C(M) depends only on M .

Now the statement of Theorem 20 follows directly by applying Clarkson’s theorem to
Theorem 14 (i). J

6 Conclusion and Future Work

Vietoris-Rips and Delaunay filtrations. Since the Vietoris-Rips filtration [27, Chapter 4]
depends only on pairwise distances, it follows from Theorem 13 that this filtration is
preserved upto a multiplicative factor of (1−ε)−1/2, under a Johnson-Lindenstrauss mapping.
Furthermore, the Delaunay and the Čech filtrations [27, Chapter 4] have the same persistent
homology. Theorems 14 (i) therefore implies that the Delaunay filtration of a given finite
point set P is also (1− ε)−1/2-preserved under an ε-distortion map with respect to P . Thus,
theorems 14 (ii), 15, 18 and 20 apply also to the Vietoris-Rips and Delaunay filtrations.

Kernels. Other distance functions defined using kernels have proved successful in overcoming
issues due to outliers. Using a result analogous to Theorem 13, we can show that random
projections preserve the persistent homology for kernels up to a C(1− ε)−1/2 factor where C
is a constant. We don’t know if we can make C = 1 as for the k-distance.

References
1 Dimitris Achlioptas. Database-friendly random projections. In Peter Buneman, editor,

Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, May 21-23, 2001, Santa Barbara, California, USA. ACM, 2001. doi:
10.1145/375551.375608.

2 Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approximate
nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009. doi:10.1137/060673096.

3 Noga Alon and Bo’az Klartag. Optimal compression of approximate inner products and
dimension reduction. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 639–650.
IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.65.

SoCG 2020

https://doi.org/10.1145/375551.375608
https://doi.org/10.1145/375551.375608
https://doi.org/10.1137/060673096
https://doi.org/10.1109/FOCS.2017.65

10:14 Dimensionality Reduction for k-Distance

4 Franz Aurenhammer. A new duality result concerning voronoi diagrams. Discret. Comput.
Geom., 5:243–254, 1990. doi:10.1007/BF02187788.

5 Richard G. Baraniuk and Michael B. Wakin. Random projections of smooth manifolds. Found.
Comput. Math., 9(1):51–77, 2009. doi:10.1007/s10208-007-9011-z.

6 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities - A
Nonasymptotic Theory of Independence. Oxford University Press, 2013. doi:10.1093/acprof:
oso/9780199535255.001.0001.

7 Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald R. Sheehy. Efficient and robust
persistent homology for measures. Comput. Geom., 58:70–96, 2016. doi:10.1016/j.comgeo.
2016.07.001.

8 Mickaël Buchet, Tamal K. Dey, Jiayuan Wang, and Yusu Wang. Declutter and resample:
Towards parameter free denoising. JoCG, 9(2):21–46, 2018. doi:10.20382/jocg.v9i2a3.

9 Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probabil-
ity measures. Found. Comput. Math., 11(6):733–751, 2011. doi:10.1007/s10208-011-9098-0.

10 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Y. Oudot. The Structure and Stability
of Persistence Modules. Springer Briefs in Mathematics. Springer, 2016. doi:10.1007/
978-3-319-42545-0.

11 Frédéric Chazal and Steve Oudot. Towards persistence-based reconstruction in euclidean spaces.
In Monique Teillaud, editor, Proceedings of the 24th ACM Symposium on Computational
Geometry, College Park, MD, USA, June 9-11, 2008, pages 232–241. ACM, 2008. doi:
10.1145/1377676.1377719.

12 Kenneth L. Clarkson. Tighter bounds for random projections of manifolds. In Monique Teillaud,
editor, Proceedings of the 24th ACM Symposium on Computational Geometry, College Park,
MD, USA, June 9-11, 2008, pages 39–48. ACM, 2008. doi:10.1145/1377676.1377685.

13 Kenneth L. Clarkson and Peter W. Shor. Application of random sampling in computational
geometry, II. Discret. Comput. Geom., 4:387–421, 1989. doi:10.1007/BF02187740.

14 Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003. doi:10.1002/rsa.10073.

15 Sjoerd Dirksen. Dimensionality reduction with subgaussian matrices: A unified theory. Found.
Comput. Math., 16(5):1367–1396, 2016. doi:10.1007/s10208-015-9280-x.

16 Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American
Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.

17 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and sim-
plification. Discret. Comput. Geom., 28(4):511–533, 2002. doi:10.1007/s00454-002-2885-2.

18 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016. doi:10.1090/jams/852.

19 Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing. Ap-
plied and Numerical Harmonic Analysis. Birkhäuser, 2013. doi:10.1007/978-0-8176-4948-7.

20 C. Giraud. Introduction to High-Dimensional Statistics. Chapman & Hall/CRC Monographs
on Statistics & Applied Probability. Taylor & Francis, 2014. URL: https://www.crcpress.
com/Introduction-to-High-Dimensional-Statistics/Giraud/p/book/9781482237948.

21 Y. Gordon. On milman’s inequality and random subspaces which escape through a mesh in
rn. In Joram Lindenstrauss and Vitali D. Milman, editors, Geometric Aspects of Functional
Analysis, pages 84–106, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg. doi:10.1007/
BFb0081737.

22 Leonidas J. Guibas, Dmitriy Morozov, and Quentin Mérigot. Witnessed k-distance. Discret.
Comput. Geom., 49(1):22–45, 2013. doi:10.1007/s00454-012-9465-x.

23 Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh S. Vempala. Locality-
preserving hashing in multidimensional spaces. In Frank Thomson Leighton and Peter W.
Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 618–625. ACM, 1997. doi:
10.1145/258533.258656.

https://doi.org/10.1007/BF02187788
https://doi.org/10.1007/s10208-007-9011-z
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1016/j.comgeo.2016.07.001
https://doi.org/10.1016/j.comgeo.2016.07.001
https://doi.org/10.20382/jocg.v9i2a3
https://doi.org/10.1007/s10208-011-9098-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1145/1377676.1377719
https://doi.org/10.1145/1377676.1377719
https://doi.org/10.1145/1377676.1377685
https://doi.org/10.1007/BF02187740
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1007/s10208-015-9280-x
http://www.ams.org/bookstore-getitem/item=MBK-69
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1090/jams/852
https://doi.org/10.1007/978-0-8176-4948-7
https://www.crcpress.com/Introduction-to-High-Dimensional-Statistics/Giraud/p/book/9781482237948
https://www.crcpress.com/Introduction-to-High-Dimensional-Statistics/Giraud/p/book/9781482237948
https://doi.org/10.1007/BFb0081737
https://doi.org/10.1007/BFb0081737
https://doi.org/10.1007/s00454-012-9465-x
https://doi.org/10.1145/258533.258656
https://doi.org/10.1145/258533.258656

S. Arya, J.-D. Boissonnat, K. Dutta, and M. Lotz 10:15

24 William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26(189-206):1, 1984. doi:10.1007/BF02764938.

25 Martin Lotz. Persistent homology for low-complexity models. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 475(2230):20190081, 2019. doi:
10.1098/rspa.2019.0081.

26 Jiří Matoušek. On variants of the Johnson Lindenstrauss lemma. Random Structures &
Algorithms, 33(2):142–156, 2008. doi:10.1002/rsa.20218.

27 Steve Y. Oudot. Persistence Theory - From Quiver Representations to Data Analysis, volume
209 of Mathematical surveys and monographs. American Mathematical Society, 2015. URL:
http://bookstore.ams.org/surv-209/.

28 Jeff M. Phillips, Bei Wang, and Yan Zheng. Geometric inference on kernel density estimates. In
Lars Arge and János Pach, editors, 31st International Symposium on Computational Geometry,
SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, volume 34 of LIPIcs, pages
857–871. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
SOCG.2015.857.

29 Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24
October 2006, Berkeley, California, USA, Proceedings, pages 143–152. IEEE Computer Society,
2006. doi:10.1109/FOCS.2006.37.

30 Donald R. Sheehy. The persistent homology of distance functions under random projection.
In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational
Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014, page 328. ACM, 2014. doi:10.1145/
2582112.2582126.

31 Nakul Verma. A note on random projections for preserving paths on a manifold. Technical re-
port, UC San Diego, 2011. URL: https://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/
ncstrl.ucsd_cse/CS2011-0971.

32 Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2018. doi:10.1017/9781108231596.

33 Ji Zhang. Advancements of outlier detection: A survey. EAI Endorsed Trans. Scalable
Information Systems, 1(1):e2, 2013. doi:10.4108/trans.sis.2013.01-03.e2.

SoCG 2020

https://doi.org/10.1007/BF02764938
https://doi.org/10.1098/rspa.2019.0081
https://doi.org/10.1098/rspa.2019.0081
https://doi.org/10.1002/rsa.20218
http://bookstore.ams.org/surv-209/
https://doi.org/10.4230/LIPIcs.SOCG.2015.857
https://doi.org/10.4230/LIPIcs.SOCG.2015.857
https://doi.org/10.1109/FOCS.2006.37
https://doi.org/10.1145/2582112.2582126
https://doi.org/10.1145/2582112.2582126
https://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2011-0971
https://csetechrep.ucsd.edu/Dienst/UI/2.0/Describe/ncstrl.ucsd_cse/CS2011-0971
https://doi.org/10.1017/9781108231596
https://doi.org/10.4108/trans.sis.2013.01-03.e2

Persistent Homology Based Characterization of
the Breast Cancer Immune Microenvironment:
A Feasibility Study
Andrew Aukerman
Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
aa4542@cumc.columbia.edu

Mathieu Carrière
Department of Systems Biology, Columbia University, New York, NY, United States
mc4660@cumc.columbia.edu

Chao Chen
Department of Biomedical Informatics, Stony Brook University, NY, United States
chao.chen.1@stonybrook.edu

Kevin Gardner
Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
klg2160@cumc.columbia.edu

Raúl Rabadán
Department of Systems Biology, Columbia University, New York, NY, United States
rr2579@cumc.columbia.edu

Rami Vanguri
Department of Pathology & Cell Biology, Columbia University, New York, NY, United States
r.vanguri@columbia.edu

Abstract

Persistent homology is a common tool of topological data analysis, whose main descriptor, the
persistence diagram, aims at computing and encoding the geometry and topology of given datasets.
In this article, we present a novel application of persistent homology to characterize the spatial
arrangement of immune and epithelial (tumor) cells within the breast cancer immune microenviron-
ment. More specifically, quantitative and robust characterizations are built by computing persistence
diagrams out of a staining technique (quantitative multiplex immunofluorescence) which allows us
to obtain spatial coordinates and stain intensities on individual cells. The resulting persistence
diagrams are evaluated as characteristic biomarkers of cancer subtype and prognostic biomarker
of overall survival. For a cohort of approximately 700 breast cancer patients with median 8.5-year
clinical follow-up, we show that these persistence diagrams outperform and complement the usual
descriptors which capture spatial relationships with nearest neighbor analysis. This provides new
insights and possibilities on the general problem of building (topology-based) biomarkers that are
characteristic and predictive of cancer subtype, overall survival and response to therapy.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Topological data analysis, persistence diagrams

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.11

Funding Mathieu Carrière: research was partially supported by NIH T15LM007079-28.
Chao Chen: research was partially supported by NSF IIS-1909038, IIS-1855759, CCF-1855760.

© Andrew Aukerman, Mathieu Carrière, Chao Chen, Kevin Gardner, Raúl Rabadán, and
Rami Vanguri;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1944-769X
mailto:aa4542@cumc.columbia.edu
mailto:mc4660@cumc.columbia.edu
https://orcid.org/0000-0003-1703-6483
mailto:chao.chen.1@stonybrook.edu
mailto:klg2160@cumc.columbia.edu
https://orcid.org/0000-0001-7946-9255
mailto:rr2579@cumc.columbia.edu
https://orcid.org/0000-0001-8049-4829
mailto:r.vanguri@columbia.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 PH Based Characterization of the Breast Cancer Immune Microenvironment

1 Introduction

Descriptors computed with topological data analysis (TDA), such as persistence diagrams
[21, 60] and Mapper [56], have shown strong analytical power in many real world biological
data. Examples include (but are not limited to) neuronal structures [41, 33], cardiac trabeculae
[24, 59], brain images [46, 39] and genomics data [44, 12, 51]. These methods capture multi-
scale geometric and structural patterns of the data with guaranteed robustness against
potential noise introduced in measurement [17, 18] and in upstream preprocessing steps [7].
As such, they provide a systematic way to quantify complex biomedical systems. Furthermore,
state-of-the-art discriminative models (i.e., classifiers) [11, 30, 34] and unsupervised models
(i.e., clustering methods) [36] have been recently introduced, and are able to effectively
connect topological features and clinical/biological outcomes of interest.

In this paper, we present a new application of topological data analysis, namely, the
characterization of breast cancer immune microenvironment using persistence diagrams.
Despite tremendous advancements in cancer screening, diagnostic methods and treatment,
breast cancer remains the second leading cause of cancer death in women with projections of
270,000 new cases and approximately 42,000 deaths from invasive breast cancer in 2019 [53].
Therefore, identifying descriptors that indicate potential therapeutic targets and predict
outcome is a critical yet unmet need in breast cancer [20]. The goal of this article is to show
how persistence diagrams can help in fulfilling this task.

Cancer research and characterization of spatial cell arrangement. In the past decade, a
major focus of cancer research has been on the interplay between the tumor and the immune
environment, referred to as the tumor immune microenvironment [8]. By characterizing
host-specific functional anti-tumor immune responses and their correlation to cancer subtype
and overall survival, patient specific immunotherapeutic targets can be identified [49] with
higher precision. To achieve the goal, it is necessary to characterize the complex spatial
arrangement between cancer cells and a mixture of different immune cells, e.g., T-cells and
macrophages, both of which play a versatile biological role and are believed to be crucially
relevant to initiation and regulation of the immune response. This task involves two important
steps: cell detection and characterization.

Thanks to the rapid development of imaging technology and deep learning methods, we
are able to detect not only locations, but also types of different cells within a slide of tumor
biopsy sample from a cancer patient. By staining the slide using immunohistochemical (IHC)
markers, we are able to tag different types of cells with different stains, i.e., colors bounded
with different protein biomarkers. Using a brightfield image scanner, we convert the stained
slide into a whole slide image in which various cells can be identified by their respective stains
[47, 32]. The identification of cells is referred to as phenotyping. Advanced deep learning
methods [23, 1] have been developed to unmix the stains and to detect cells and their types.
This approach, called multiplex IHC, is scalable but less precise as noise is introduced due to
the additional deep learning cell detector. Alternatively, we may use quantitative multiplex
immunofluorescence (qmIF), which stains different cells with different fluorescent stains and
detect them using lenses with specific filters. The qmIF approach is highly reliable, albeit
costly in material and in time.

Once cells of different types are detected, we need to quantitatively characterize their
spatial arrangements in order to evaluate correlations with various outcomes of interest.
There are two major challenges. First, the spatial arrangement is highly heterogeneous
across different patients and even within a single tissue sample. Second, stain intensity is

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:3

relative, and phenotype thresholds must be manually determined. Discerning true signal
from background isn’t always clear, and currently is done in relation to other tissue samples.
Nonetheless, qmIF imaging provides rich data for study; see Figure 1 for an example of the
raw image data.

Figure 1 An example input data. Left: The raw microscopic image of a stained tissue sample.
The sample is approximately 1x1 mm2 large. The image is 2,000x2,000 pixels, 0.5x0.5 micron2

per pixel. A sample usually contains 3,000 to 5,000 cells. Right: The processed results. Cells are
identified by localizing their nuclei with a special stain (shown as white regions). The phenotype of
each cell can be identified by the stain intensity of its cytoplasm and nucleus: T cells are tagged with
CD8 (blue), macrophages are tagged with CD68 (green), tumor cells are tagged with pancytokeratin
(cyan). Any cell may additionally be tagged with PD-L1 (red). The cells are abstracted into point
clouds with different stain intensities, as shown in Figure 3.

Related work. Previous methods [25, 54] focus on using nearest neighbor distances from
cells of one type (obtained by thresholding the stain intensities) to cells of a second type.
Unfortunately, this approach is sensitive to noise and lacks the ability to model stain
concentration variations due to the thresholding. Moreover, it can only characterize fixed
neighborhoods around the cells and is oblivious to larger cell arrangements.

Persistent homology has recently been used to characterize cellular architecture in patho-
logy images in [37], where these descriptors were shown to successfully detect and quantify
circular cell structures corresponding to glands. In contrast, our work operates on coordinates
of phenotyped cells and deals with the global characterization of complex interactions between
these cellular phenotypes.

Contributions. In this article, we propose the first topological analysis of tumor immune
microenvironment. More specifically, we provide empirical evidence that persistence diagrams
are suitable descriptors by experimentally demonstrating the following points:

First, stain concentration levels, or stain intensities, that are usually used by practitioners
to filter cells, are natural candidates for defining filtrations (in the TDA vocabulary)
from which persistence diagrams can be computed. This way, the whole range of stain
intensities is taken into account instead of thresholding. We hypothesize that the stain
intensity is biologically meaningful and the resulting persistence diagrams will be more
predictive than just using cell coordinates from thresholding.

SoCG 2020

11:4 PH Based Characterization of the Breast Cancer Immune Microenvironment

Second, persistence diagrams are able to capture topological and structural features
that are characteristic of the arrangement of the cells. This is because the structures
encoded by persistence diagrams are robust to spatial deformation and other types of noise
introduced in detection, which prevents the analysis from being biased by measurement
errors, contrarily to other descriptors used in the literature.

Our study, although preliminary, demonstrates the potential of persistence homology being
a novel tool to characterize the tumor immune microenvironment. With rich computation
and learning tools available for persistence-derived features, we are confident that topological
characterization will lead to powerful diagnostic and prognostic cancer biomarkers.

Plan of the article. We introduce our biological data, and briefly recall the basics of
topological data analysis in Section 2. Then, we explain our methods for computing and
running statistical tests on persistence diagrams in Section 3. Finally, we conclude and
summarize future investigations and open questions in Section 4.

2 Data and Background

In this section, we introduce our biological data (Section 2.1), and briefly recall the rationale
for nearest neighbor analysis (Section 2.2) and topological data analysis (Section 2.3).

2.1 Biological Data
We analyze a large cohort of patients with extensive 8.5 years of follow-up. For each tissue
sample, qmIF imaging was obtained with a panel of immune markers for phenotyping
the tumor immune microenvironment, including: CD8 (T-cells), CD68 (macrophages) and
pancytokeratin (cancer cells). Then, a commercial software package (HALO, Indica Labs)
was used to perform nuclear segmentation, cytoplasmic definition, and stain quantification.
Cell phenotypes, based on a threshold applied to the stain intensity, were defined manually.
See Figures 1 for the conventional threshold-based phenotype analysis. Let us now provide
details on the important steps that were necessary to collect our data.

Patient Cohort. Our raw data is comprised of high-throughput tissue microarrays (TMA)
consisting of 1mm × 1mm cores of tissue. The TMA were assembled with tissues from a
cohort of 900 patients that underwent tumor resection following a diagnosis of breast cancer
at Pitt County Memorial Hospital (now Vidant Hospital) in Greenville, North Carolina.
Patient samples and clinicopathological data were collected under an IRB approved protocol
at the Brody School of Medicine, East Carolina University [9]. The cohort is uniquely
valuable for research as there is median 8.5 year follow-up data which allows for in depth
evaluation for topological biomarkers with patient attributes and clinical outcomes.

Quantitative Multiplex Immunofluorescence. Unlike traditional immunohistochemistry,
qmIF enables simultaneous staining of multiple markers in a single piece of tissue. We use
the Ultivue UltiMapper I/O PD-L1 assay consisting of the following markers: CD8 (cytotoxic
T-cells), CD68 (macrophages), PD-L1 (an immune suppressive protein), pancytokeratin (epi-
thelial cells), and DAPI (DNA marker) for identification of cell nuclei. In our data, positively
stained epithelial cells via pancytokeratin are considered to be tumor cells. Every cell in the
tissue is designated with a PD-L1 status being either positive or negative corresponding to
above or below threshold stain intensity. All staining thresholds are adaptively determined to

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:5

enhance signal (consistent with a positive staining pattern assessed visually) to background.
The result of the phenotyping analysis is a text file for each tissue sample consisting of entries
listing information about each cell location, including the manual phenotyping result and
raw stain intensities. Each tissue sample consists of 3,000-5,000 cells.

2.2 Nearest Neighbor Analysis

Nearest neighbor analysis is commonly performed with qmIF data [25]. We perform a nearest
neighbor search between combinations of phenotypes for all possible phenotype pairs. More
specifically, for a given pair of phenotypes P1, P2, each composed of cells (detected with
thresholds on their stain intensities) with two coordinates, we compute, for a given cell
Ci belonging to P1, the Euclidean distances to all cells belonging to P2, excluding those
whose distance is less than 0.05 microns to prevent cell-overlap. We keep the minimum
distance value among those, which we call the nearest neighbor distance, and repeat this
process for each cell in P1 to form a distribution of nearest neighbor distances, di. The mean
and standard deviation of di are then derived. We apply the same process for all pairs of
phenotypes and used the corresponding means and deviations as features of biomarkers,
potentially predictive of triple-negative status and prognostic of overall survival. This can
also be written as a function of matrix operations involving the similarity matrix of cell
coordinates between P1 and P2:

qik = {C1k, C2k, ..., Cik}, tkj = {C1k, C2k, ..., Cjk}T, k = 1, 2
Nij = (q2

k)i + (t2
k)j − 2qiktkj

di =
√

minjNij (Nij ≥ 0.05)

2.3 Topological Data Analysis

In this article, we aim at characterizing the spatial arrangement of phenotypes using per-
sistence diagrams, which are common descriptors of topological data analysis. Thus, we
briefly recall, in this section, the basics of persistent homology and persistence diagrams.
The interested reader can find a thorough treatment of persistence in several computational
topology and algebraic topology textbooks such as [22, 14, 45].

Persistent homology. The aim of persistent homology is to encode the topological inform-
ation contained in a dataset X through the lens of a filter function f : X → R. This is
achieved by considering the sublevel sets of f : Fα = {x ∈ X : f(x) ≤ α}. The family of
sublevel sets F = {Fα}α∈R defines a filtration, i.e., a family of subsets of X that are nested
with respect to the inclusion: Fα ⊆ Fβ if α ≤ β. The idea of persistence is to track the
topological changes occurring in the filtration as the sublevel set threshold α increases from
−∞ to +∞. For instance, each time a topological structure such as a connected component,
a handle or a void, appears in the sublevel set, we use the corresponding threshold as the
so-called birth time for this structure. Similarly, each time a structure disappears in the
sublevel set (think for instance of a handle being filled in after data points inside the handle
were added to the sublevel set), we use the corresponding threshold as the death time. This
tracking is eventually encoded in a persistence diagram, that we denote by D(f), which is a
set of dots in the Euclidean plane R2, each dot representing a topological structure whose
birth and death times can be retrieved from the coordinates of the dot.

SoCG 2020

11:6 PH Based Characterization of the Breast Cancer Immune Microenvironment

Persistence on images. In Figure 2, we provide an example of persistent homology compu-
tation performed on an image taken from the MNIST [38] dataset using the opposite of the
pixel stain intensity as the filter function, so that it increases from white to black. Given a
specific filter function value, the black pixels displayed in the top row of Figure 2 are those
constituting the sublevel sets. One can see that at values b and d, handles are created in the
union of black pixels, and they are eventually filled in at value e, for which the corresponding
sublevel set includes all pixels. Other examples on our biological data are also displayed in
Figures 5 and 6.

a

a b c d ee

Figure 2 Example of a persistence diagram (lower right) computed on an image taken from the
MNIST [38] dataset (lower left) using the opposite of the pixel stain intensity whose sublevel sets
are displayed in the top row. Green squares represent connected components while the blue and
orange circles represent handles, whose representative cycles are displayed on the original image.

Stability of persistence diagrams. One of the most useful properties of persistence diagrams
is their stability: persistence diagrams computed from similar images must be similar
themselves, w.r.t. the so-called Wasserstein distances between them.

I Definition 1 ([14, 17]). The p-Wasserstein distance dp between two persistence diagrams
D,D′ is defined as:

dp(D,D′)p = infγ
∑

pt∈D∪∆

‖pt− γ(pt)‖p∞,

where ∆ is made of an infinite number of copies of the diagonal {(x, x) : x ∈ R} and γ
ranges over all matchings between D ∪∆ and D′ ∪∆.

When the sum in Definition 1 is replaced by a maximum, the Wasserstein distance becomes
the so-called bottleneck distance d∞. Using this distance, one can state the stability property
of persistence diagrams, which shows that the Wasserstein distance between persistence
diagrams is upper bounded by the distance (in the ‖ · ‖∞ norm) between filter functions.

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:7

I Theorem 2 ([13, 17]). Given a topological space X and two continuous functions f, g :
X → R, the following inequality is true:

d∞(D(f), D(g)) ≤ ‖f − g‖∞ (1)

Note that similar stability results can be obtained with p-Wasserstein distances, with
different upper bounds [45].

3 Methods and Results

In this section, we detail our methods to compute and analyze persistence diagrams from
point clouds representing cells with different stain intensities. More specifically, we show how
to discretize the cell domain into an image with stain intensity-valued pixels, from which we
calculate the corresponding persistence diagrams (in homological dimension zero and one)
in Section 3.1. Then, we show how to run statistical tests on persistence diagrams between
different populations using Hilbert space embeddings with the Sliced Wasserstein kernel [11]
in Section 3.2. Finally, we provide and discuss results for different patient groups (patients
with different molecular subtypes, patients that survived after 8.5 years vs. deceased) in
Section 3.3.

3.1 Persistence Diagrams of Cells with Stain Intensity values
In this section, we explain how persistence diagrams were computed on our point clouds
representing cells so as to make use of the associated stain intensities.

Point clouds. As mentioned above, the image data for each patient is summarized in
a point cloud, where the points represent cells, and have four associated stain intensities,
corresponding to the CD8, CD68, PD-L1, and pancytokeratin (tumor) stains (see Section 2.1).
Each patient also has two binary labels corresponding to overall survival and whether the
cancer subtype is triple-negative. After removing samples with bad quality or missing labels,
our final dataset is comprised of 671 point clouds. See Figure 3 for an example of such
point clouds, where we only kept the cells with stain intensities above a certain threshold to
ease visualization. One can see from these point clouds that different topological structures
seem to emerge depending on the stain being considered: structures can be either isolated
connected components corresponding to the scattered spots of cells exhibiting large stain
intensity values (such as pancytokeratin (tumor) in Figure 3) or small cycles corresponding
to regions where there are no cells with large stain intensity (such as CD8 in Figure 3). The
lack of any discernible structure is also a possible feature if the stain intensity is diffuse
across the whole tissue (such as PD-L1 in Figure 3).

Persistence Diagrams. It is common in topological data analysis to use Rips, Cech or
Alpha filtrations [13] when dealing with point clouds. However, this would leave the stain
intensity values aside and only provide information about the shape of the whole point cloud,
which might not be sufficient to successfully encode the spatial and geometrical relationships
between phenotypes.

Hence, in order to take the stain intensities into account when computing topological
descriptors, we first discretized the plane into a grid of 40 × 40 pixels. Next, we binned
the stain intensity values on this grid, so as to obtain an image. Note that the choice of
resolution (i.e. the number of pixels) has to be carefully done: if the number of pixels is too

SoCG 2020

11:8 PH Based Characterization of the Breast Cancer Immune Microenvironment

Figure 3 Illustration of the point clouds corresponding to the different stains (cell color and
size is proportional to stain intensity to ease visualization). One can see that the different stain
intensities induce different geometric patterns.

Figure 4 Discretization process turning a point cloud with stain intensity values into an image.
We start with the full point cloud with the corresponding stain intensity values (upper left). Note
that we only show cells above a certain stain intensity threshold to ease visualization. The cells are
then placed into pixels of a grid drawn on top of the plane (upper right). These pixels with the
corresponding stain intensity values are then turned into an image (down right and left).

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:9

small, one might not be able to see and compute the topological structures, but in the other
hand, a resolution that is too large would induce artifacts, in the sense that all cells would
be isolated, and no interesting topology could be computed. Our resolution of 40× 40 pixels
was manually chosen and seemed to be the best tradeoff on our data. See Figure 4 for an
illustration of this process. Note also that it would be interesting to use Nadaraya-Watson
kernel-based estimators (see Chapter 6 in [29]) to smooth the stain intensities of the pixels,
but we left this possibility for future work.

Finally, we used persistent homology (see Section 2.3) to produce persistence diagrams
out of our stain intensity-based images, by filtering the pixels with the opposite of the
stain intensity (so that pixels with large stain intensity appear first). Note that points with
ordinate 0 corresponds to topological structures that disappeared when adding the pixels
with stain intensity 0, i.e., the pixels corresponding either to the cells not belonging to the
corresponding phenotype or to pixels with no associated cells. These points should thus
not be considered characteristic of the corresponding phenotype. See Figure 5 for examples
of such persistence diagrams. One can see from these images that some patterns in the
persistence diagrams, such as the distance-to-the-diagonal of points in homological dimension
0, or the number of points in homological dimension 1, seem to be correlated with how diffuse
the cells with large stain intensity values are within the image.

Pairs of phenotypes. As mentioned in Section 1, characterizing the interactions, or co-
localizations, between pairs of phenotypes might be as important, if not more, as characterizing
them alone. Hence, we also computed persistence diagrams out of images with pixels colored
by the average of pairs of phenotypes. This can be thought of as a similar but quite more
general measure of co-localization than the one given by nearest neighbors (see Section 2.2).
Indeed, the standard nearest neighbors analysis basically ranks the cells with respect to the
distance to their closest neighbor. In terms of persistence, this ranking can be retrieved from
the pixel filtration values: the lower they are, the more the corresponding pixels are likely
to contain cells that co-localize from the two phenotypes. However, persistence diagrams
also encode the interactions between the topological structures that are born from these
co-localization spots. See Figure 6 for examples of such persistence diagrams. One can see
from these images that the topological structures that are present in the image of a pair
of phenotypes roughly include those of each phenotype alone, and that the structures that
co-localize are emphasized.

Robustness. From a theoretical point of view, the stability property that persistence
diagrams enjoy (see Section 2.3 and Proposition 2) is very advantageous. Indeed, it is well-
known that any nearest neighbors analysis is sensitive to measurement errors: even a slight
mistake in the measurement of stain intensity can induce different phenotype assignments
for the cells, and thus different outputs from a nearest neighbor analysis. Since we do not
depend on thresholding to compute persistence diagrams, we avoid this issue. On the other
hand, the stability theorem for persistence diagrams ensures that any measurement error
only has a small effect, provided that the error is small itself.

3.2 Statistics on Persistence Diagrams

In this section, we provide details about the statistical methods we used to assess the efficiency
of persistence diagrams as characteristic and predictive biological descriptors.

SoCG 2020

11:10 PH Based Characterization of the Breast Cancer Immune Microenvironment

Figure 5 Examples of images with stain intensity-based pixels computed from point clouds
(left) and their corresponding persistence diagrams (right). Points in homological dimension 0 are
displayed in red and points in homological dimension 1 are displayed in green. From top to bottom:
stains of CD8, CD68, PD-L1 and pancytokeratin.

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:11

Figure 6 Examples of images and associated persistence diagrams computed from pairs of
phenotypes/stains. Points in homological dimension 0 are displayed in red and points in homological
dimension 1 are displayed in green.

Kernel-based Statistical Tests. In order to formally assess the statistical power of per-
sistence diagrams with respect to the groups of interest, such as survived vs. not-survived,
or triple-negative cancer subtype vs. other subtype, we need to be able to run statistical
tests on distributions of persistence diagrams. Several recent works have looked at this
question from a theoretical point of view [35, 52, 58]. In this article, we focus on Kernel Mean
Embeddings [26], that is, we characterize a sample of a distribution D of persistence diagrams
D̂n = {D1, · · · , Dn} by embedding the diagrams in a Hilbert space H with a continuous map
Φ, and by taking the mean (in the Hilbert space) of this sample: Φ(D̂n) := 1

n

∑n
i=1 Φ(Di).

Now, given two samples D̂n and D̂′n, one can compute the statistic:

MMD(D̂n, D̂′n) := ‖Φ(D̂n)− Φ(D̂′n)‖H,

also called the maximum mean discrepancy, and use it to perform statistical tests in order to
check whether D and D′ are the same. This statistic has been shown to be a good proxy,
with quantified approximation bounds, to its continuous version ‖Φ(D)− Φ(D′)‖H in [26],
where Φ(D) is defined as ED∼D[Φ(D)].

Choice of the embedding function. It might not be totally clear how to choose such a
map Φ for embedding persistence diagrams. This can actually be done quite easily with the
use of kernels:

I Definition 3. Let DN,L be the space of persistence diagrams with at most N points included
in [−L,L]2. A kernel is a pairwise function k : DN,L × DN,L → R such that the matrix
K = ((k(Di, Dj)))1≤i,j≤n is positive semi-definite for any family of persistence diagrams
D1, · · · , Dn ∈ DN,L.

A useful result of kernel methods actually relates kernels to embeddings in Hilbert spaces:

I Proposition 4. Let k be a kernel on DN,L. Then, there exists a Hilbert space Hk and a
map Φk such that, for any D,D′ ∈ DN,L, one has k(D,D′) = 〈Φ(D),Φ(D′)〉Hk .

SoCG 2020

11:12 PH Based Characterization of the Breast Cancer Immune Microenvironment

In other words, any kernel matrix can be interpreted as a Gram matrix in an implicit
(and potentially infinite-dimensional) Hilbert space. Moreover, the statistic MMD can be
easily computed from k with:

MMD(D̂n, D̂′n)2 =
〈

1
n

n∑
i=1

Φ(Di)−
1
m

m∑
j=1

Φ(D′j),
1
n

n∑
i=1

Φ(Di)−
1
m

m∑
j=1

Φ(D′j)
〉
Hk

= 1
n2

n∑
i=1

n∑
u=1
〈Φ(Di),Φ(Du)〉Hk + 1

m2

m∑
j=1

m∑
v=1
〈Φ(D′i),Φ(D′v)〉Hk

− 2
nm

n∑
i=1

m∑
j=1
〈Φ(Di),Φ(D′j)〉Hk

= 1
n2 ‖K‖1 + 1

m2 ‖K
′‖1 −

2
nm
‖K̃‖1,

where K,K ′ and K̃ are the kernel matrices computed on D ×D, D′ ×D′, and D ×D′
respectively. Note however that it has been shown in [26] that MMD is a biased statistic –
in practice, we compute the unbiased MMD, defined as:

MMDu(D̂n, D̂′n)2 = 1
n(n− 1)

n∑
i=1
u 6=i

〈Φ(Di),Φ(Du)〉Hk + 1
m(m− 1)

m∑
j=1
v 6=j

〈Φ(D′i),Φ(D′v)〉Hk

− 2
nm

n∑
i=1

m∑
j=1
〈Φ(Di),Φ(D′j)〉Hk

Now it only remains to pick a kernel for persistence diagrams. Several choices have
been proposed in recent works [2, 6, 11, 34, 50], and we will focus on one called the Sliced
Wasserstein kernel kSW [11] in this work, since it has been shown to be one of the most
efficient approach in different statistical tasks [11]. Its definition is based on the Sliced
Wasserstein distance SW between persistence diagrams, which is defined (informally) as
the integral over all possible lines of the 1-Wasserstein distance (see Section 2.3) computed
between projections of these diagrams onto a line going through the origin. In practice, one
does not compute this integral exactly but rather samples a fixed number of lines, finding the
average Wasserstein distance between the corresponding projections. We refer the interested
reader to [11] for a precise definition of this distance, and we merely recall the definition of
the associated kernel:

I Definition 5 ([11]). Let D,D′ ∈ DN,L and σ > 0. The Sliced Wasserstein kernel is:

kSW(D,D′) = e−
SW(D,D′)

σ2 ,

where SW denotes the Sliced Wasserstein distance between persistence diagrams.

One can easily see that kSW can be interpreted as a Gaussian kernel, with its only
parameter σ being the corresponding bandwidth.

Characteristic kernels. There is a specific class of kernels in the literature that is of
particular interest when it comes to statistical tests: the so-called characteristic kernels [57,
55].

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:13

I Definition 6. A kernel k is called characteristic if its corresponding map Φk is injective
on distributions, i.e., for any pair of distributions D and D′, one has:

‖Φ(D)− Φ(D′)‖Hk = 0 =⇒ D = D′

Obviously, any statistical test based on a kernel requires it to be characteristic in order
to be theoretically backed-up. Even though it is not clear whether the Sliced Wasserstein
kernel is characteristic or not, there exists a strategy to build a characteristic kernel out of
another one, that was first presented in [35], and that we use again in this work:

I Theorem 7 ([35]). Let k be a kernel on DN,L whose associated map Φk is continuous and
injective and whose associated Hilbert space Hk is separable. Then the kernel k̃ := ek is a
characteristic kernel.

Theorem 7 is actually a consequence of a more general theorem that is valid on any
compact metric space (the fact that DN,L is compact, with respect to the first Wasserstein
distance between persistence diagrams, was proved in [35]). Moreover, it has been shown
in [11] that the map ΦkSW associated to kSW is continuous and injective. Finally, since it is
also known that DN,L is separable [43], it follows that the Hilbert space associated to kSW is
separable as well, as the completion of the span of a separable space. Hence the following
result:

I Proposition 8. The kernel k̃SW := ekSW is characteristic.

All of the statistical analysis presented in the following section has been performed with
the kernel k̃SW, that we call the characteristic Sliced Wasserstein kernel.

Comparison with NN features. Concerning the features given by nearest neighbors analysis,
i.e., the means and variances of the distribution of Euclidean distances to the closest neighbors
(see Section 2.2), we use kernel-based statistical tests based on the MMD computed with a
standard Gaussian kernel (which is known to be characteristic). Moreover, we also test the
independence between persistence diagrams and nearest neighbors features in order to check
whether these two types of features are complementary or not. Again, kernel methods can
be used to define the correlation between features living in different spaces. The so-called
constrained covariance (COCO for short) [27] is defined as:

COCO(D̂Xn , D̂Yn) = 1
n

√
‖K̃XK̃Y ‖2,

where D̂Xn (resp. D̂Yn) is a sample from a distribution in a space X (resp. Y), K̃X (resp.
K̃Y) is the centered (i.e., multiplied with I− 1

n 11T) version of the kernel matrix KX (resp.
KY) computed on D̂Xn (resp. D̂Yn), and ‖ · ‖2 is the largest singular value. It has been
shown in [27] that the COCO can be used as a general measure of correlation (for random
variables that are not directly comparable), since having a null COCO is equivalent to being
independent (see Theorem 6 in [27]) for characteristic kernels1.

1 The cited result is actually proved for the so-called universal kernels but we leave this subtlety aside in
the context of this work since it has no effect on our analysis

SoCG 2020

11:14 PH Based Characterization of the Breast Cancer Immune Microenvironment

3.3 Results

We focus on statistical significance between populations of patients instead of building a
classifier. This is due to the lack of tissue area and access to tissue heterogeneity typically
available in whole-slide images which are typically used for diagnosis. In an ongoing analysis,
we are expanding the analysis for the same patients to whole slide imaging, where the point
clouds will be ≈ 400× larger. In this section, we provide the experimental results obtained
on our data using the characteristic Sliced Wasserstein kernel k̃SW presented in Section 3.2
for persistence diagrams and a standard Gaussian kernel for the NN features. For both types
of descriptors, the kernel bandwidth was selected manually as the median of all pairwise
distances (the distances used being the Sliced Wasserstein distance for persistence diagrams
and the Euclidean distance for NN features). Moreover, the p-values were computed with
2 · 103 random permutations. The individual sample labels were shuffled and p-values were
calculated from the rank of the true labels.

Triple-negative subtype. In this first experiment, we separate the patients with respect to
their cancer subtypes. More specifically, we aim at distinguishing between patients diagnosed
with triple-negative breast cancer and those with other subtypes. Triple-negative breast
cancer is especially interesting due to its high ability to provoke an immune response, or
immunogenecity, among subtypes. However, triple-negative breast cancer patients typically
have poor prognosis due to the lack of response to hormonal or receptor-status therapy. By
better understanding the immune profiles associated with triple-negative breast cancers and
the association with treatment response (i.e. overall survival), it could be possible to design
targeted immunotherapies [42].

We show in Figure 7 (left) the p-values obtained with persistence diagrams, and the
ones computed with NN features, for each (pair of) phenotypes. It can be seen from this
plot that the p-values obtained with persistence diagrams are most of the time comparable
to those given by NN features, with the exception of CD8 and the CD8-pancytokeratin
pair. We find that the NN metrics are not significant, and this was further verified with
the full NN distribution shapes. On the other hand, persistence diagrams demonstrated
consistency of the p-values including CD8-involved pairs, indicating they reveal topology
beyond that quantified by the NN algorithm. Moreover, 1-dimensional persistence diagrams,
which encode higher-order interactions between the phenotypes (that cannot be retrieved
from NN analysis), also seem to be statistically more efficient than their 0-dimensional
counterparts.

Survival. In this second experiment, we now aim at distinguishing between patients that
were alive at the latest follow-up after diagnosis. Although this includes causes unrelated to
the breast cancer morbidity and associated treatment, such as dying of natural causes or
other disease, this is still a good measure of overall disease-free survival. The corresponding
p-values are displayed in Figure 7 (right). It can be seen that the p-values corresponding to
persistence diagrams are in general much lower than those corresponding of NN features,
especially in PD-L1 involved pairs. PD-L1 combinations are relatively rare and, as explained
at the end of Section 3.1, NN features are sensitive to noise and the counting statistics on
the number of phenotype pairs. Characterizing the spatial interactions of PD-L1 expression,
however, would provide valuable insight into the possible immuno-repressive patterns in the
tumor immune microenvironment.

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:15

We see, on the other hand, stability of persistence diagrams providing statistically
significant measures. This makes diagrams a more robust descriptor than NN alone at the
same statistical power. Similarly, it is clear from the distribution of values that persistence
diagrams are more stable descriptors than NN features, picking up topology relating to
PD-L1.

Figure 7 P-values computed by kernel-based statistical tests for NN features (red), 0-dimensional
persistence diagrams (green) and 1-dimensional persistence diagrams (blue), for different (pairs of)
phenotypes. “Pancytokeratin” has been abbreviated to “Pctk”.

Correlation. Finally, we check the correlation values, as measured with COCO, between the
NN features and persistence diagrams. We show the computed values in Figure 8. One can
see that the correlation is always less than 0.1, which indicates that these features are almost
statistically completely independent, and thus complementary. Moreover, these correlations
seem to be oblivious to homological dimension since the shape of the curves for 0- and
1-dimensional persistence diagrams is roughly the same.

Figure 8 Correlation coefficients, measured with COCO, between NN features and 0-dimensional
persistence diagrams (green), and 1-dimensional persistence diagrams (blue).

SoCG 2020

11:16 PH Based Characterization of the Breast Cancer Immune Microenvironment

4 Open Questions and Future Work

We presented a novel approach for cancer research through the analysis of qmIF data using
persistent homology, evaluated our method on a unique cohort of 671 patients using high-
throughput tumor microarrays with a median 8.5 year follow-up. Our preliminary analyses
show that features derived from persistent homology between groups of patients stratified
by survival and triple negative status are statistically significant and are complementary to
the state-of-the-art nearest neighbor approach. This indicates that the persistent homology
features can be used as a complementary biomarker. Although the features do not separate
the groups well enough to form a viable classifier, our results indicate feasibility of strong
classification results in future work using more tissue area and larger associated point clouds.
We are actively pursuing this by performing qmIF on tissue sections that contain 400×
more area. If a successful classifier can be built, it could be possible to characterize patient
immune profiles to build specific treatments. It could also be possible to use features derived
from persistent homology to study functional breast cancer dynamics. For example, the
relationship between persistence diagrams and other biological data such as proteomics or
genomic sequencing could reveal factors that play a role in cancer initiation or progression.

Open questions. Our preliminary study is by no means comprehensive, and many questions
remain open. Here is a list of the future investigations that we plan to work on:

We only considered single phenotypes and pairs of phenotypes. However, one might be
interested in the interactions between more than two phenotypes, although this would
greatly increase the number of persistence diagrams computed for each patient. Moreover,
there is no single solution on how to combine the different stain intensities. In this work,
we merely took the average between normalized stain intensities, even though it would be
interesting to weight the filtrations given by stain intensities in order to take the range
of stain intensity values into account. The weight coefficients could even be learned so
as to avoid a brute force search, using for instance recent works on differentiability of
persistence diagrams for learning [5, 15, 31, 48].
More generally, the question of turning a point cloud with different stain intensity values
into one (or more) persistence diagram has many different solutions, the most natural one
being to use Alpha or Rips filtrations, even though it would not be satisfactory since stain
intensity values would be left aside. In this work, we built images with fixed resolution,
that is, number of pixels, on top of the point clouds and used these images to compute
persistence. However, other choices of filtrations are possible. For instance, one could
think of constructing a graph on top of the point cloud, such as a δ-neighborhood graph,
and then filter this graph with the stain intensity values on the nodes. Note that the δ
parameter actually plays the role of the resolution of the image.
Multiple stain intensities actually fits into the multiparameter persistence framework [10,
28], where data is filtered by several filtrations at the same time. Our approach of
taking linear combinations of stain intensities actually amounts to draw lines in this
multiparameter space and compute usual persistence along this line, which is the approach
that is also advocated in recent works [19, 40]. However, multiparameter persistence is
a current area of research, and invariants have been obtained in recent works, at least
for bifiltrations, that is, filtrations with two parameters [3, 4, 16]. Even though they are
harder to encode than persistence diagrams, it might be interesting to apply these results
in our context.

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:17

There are many different choices available when it comes to computing statistics on
persistence diagrams. In this work, we restricted to kernel-based approaches, even though
many other choices are available, see for instance [2, 6, 34, 50]. Overall, statistics and
machine learning with persistence diagrams is also a current area of research, with new
methods appearing regularly.

References
1 Shahira Abousamra, Danielle Fassler, Le Hou, Yuwei Zhang, Rajarsi Gupta, Tahsin Kurc,

Luisa F. Escobar-Hoyos, Dimitris Samaras, Beatrice Knudson, Kenneth Shroyer, Joel Saltz,
and Chao Chen. Weakly-supervised deep stain decomposition for multiplex ihc images. In
IEEE International Symposium on Biomedical Imaging (ISBI), 2019.

2 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
a stable vector representation of persistent homology. Journal of Machine Learning Research,
18(8), 2017.

3 Magnus Botnan and William Crawley-Boevey. Decomposition of persistence modules. arXiv,
November 2018. arXiv:1811.08946.

4 Magnus Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules.
Algebraic and Geometric Topology, 18(6):3133–3204, October 2018.

5 Rickard Brüel-Gabrielsson, Bradley Nelson, Anjan Dwaraknath, Primoz Skraba, Leonidas
Guibas, and Gunnar Carlsson. A topology layer for machine learning. arXiv, May 2019.
arXiv:1905.12200.

6 Peter Bubenik. Statistical topological data analysis using persistence landscapes. Journal of
Machine Learning Research, 16(77):77–102, 2015.

7 Mickaël Buchet, Frédéric Chazal, Steve Y Oudot, and Donald R Sheehy. Efficient and robust
persistent homology for measures. Computational Geometry, 58:70–96, 2016.

8 Samantha Burugu, Karama Asleh-Aburaya, and Torsten O Nielsen. Immune infiltrates in the
breast cancer microenvironment: detection, characterization and clinical implication. Breast
Cancer, 24(1):3–15, 2017.

9 Jung Byun, Sandeep Singhal, Samson Park, IK Dae, Ambar Caban, Nasreen Vohra, Eliseo
Perez-Stable, Anna Napoles, and Kevin Gardner. Transcription regulatory networks associated
with luminal master regulator expression and breast cancer survival, 2019.

10 Gunnar Carlsson and Afra Zomorodian. The theory of multidimensional persistence. Discrete
and Computational Geometry, 42(1):71–93, July 2009.

11 Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence
diagrams. In International Conference on Machine Learning, volume 70, pages 664–673, July
2017.

12 Joseph Minhow Chan, Gunnar Carlsson, and Raul Rabadan. Topology of viral evolution.
Proceedings of the National Academy of Sciences, 110(46):18566–18571, 2013.

13 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas Guibas, and Steve Oudot. Prox-
imity of persistence modules and their diagrams. In International Symposium on Computational
Geometry, page 237, 2009.

14 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of
persistence modules. Springer International Publishing, 2016.

15 Chao Chen, Xiuyan Ni, Qinxun Bai, and Yusu Wang. A topological regularizer for classifiers
via persistent homology. In International Conference on Artificial Intelligence and Statistics,
pages 2573–2582, 2019. URL: http://proceedings.mlr.press/v89/chen19g.html.

16 Jérémy Cochoy and Steve Oudot. Decomposition of exact pfd persistence bimodules. arXiv,
May 2016. arXiv:1605.09726.

17 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, January 2007.

SoCG 2020

http://arxiv.org/abs/1811.08946
http://arxiv.org/abs/1905.12200
http://proceedings.mlr.press/v89/chen19g.html
http://arxiv.org/abs/1605.09726

11:18 PH Based Characterization of the Breast Cancer Immune Microenvironment

18 David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Yuriy Mileyko. Lipschitz
functions have l p-stable persistence. Foundations of computational mathematics, 10(2):127–
139, 2010.

19 René Corbet, Ulderico Fugacci, Michael Kerber, Claudia Landi, and Bei Wang. A kernel for
multi-parameter persistent homology. Computers & Graphics: X, 2:100005, December 2019.

20 Xiaofeng Dai, Liangjian Xiang, Ting Li, and Zhonghu Bai. Cancer hallmarks, biomarkers and
breast cancer molecular subtypes. Journal of Cancer, 7(10):1281, 2016.

21 Herbert Edelsbrunner and John Harer. Persistent homology-a survey. Contemporary mathem-
atics, 453:257–282, 2008.

22 Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

23 Danielle J Fassler, Shahira Abousamra, Rajarsi Gupta, Chao Chen, Maozheng Zhao, David
Paredes-Merino, Syeda Areeha Batool, Beatrice Knudsen, Luisa Escobar-Hoyos, Kenneth R
Shroyer, Dimitris Samaras, Tahsin Kurc, and Joel Saltz. Deep learning-based image analysis
methods for brightfield-acquired multiplex immunohistochemistry images, 2019. under review.

24 Mingchen Gao, Chao Chen, Shaoting Zhang, Zhen Qian, Dimitris Metaxas, and Leon Axel.
Segmenting the papillary muscles and the trabeculae from high resolution cardiac ct through
restoration of topological handles. In International Conference on Information Processing in
Medical Imaging, pages 184–195. Springer, 2013.

25 Robyn Gartrell, Douglas Marks, Thomas Hart, Gen Li, Danielle Davari, Alan Wu, Zoe Blake,
Yan Lu, Kayleigh Askin, Anthea Monod, et al. Quantitative analysis of immune infiltrates in
primary melanoma. Cancer immunology research, 6(4):481–493, 2018.

26 Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.

27 Arthur Gretton, Ralf Herbrich, Alexander Smola, Olivier Bousquet, and Bernhard Schölkopf.
Kernel methods for measuring independence. Journal of Machine Learning Research, 6:2075–
2129, 2005.

28 Heather Harrington, Nina Otter, Hal Schenck, and Ulrike Tillmann. Stratifying multiparameter
persistent homology. SIAM Journal on Applied Algebra and Geometry, 3(3):439–471, January
2019.

29 Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning.
Springer-Verlag, 2003.

30 Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with
topological signatures. In Advances in Neural Information Processing Systems, pages 1634–1644,
2017.

31 Xiaoling Hu, Li Fuxin, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In the Thirty-third Conference on Neural Information Processing Systems
(NeurIPS), 2019.

32 Jessica Kalra and Jennifer Baker. Multiplex immunohistochemistry for mapping the tumor
microenvironment. In Signal Transduction Immunohistochemistry, pages 237–251. Springer,
2017.

33 Lida Kanari, Paweł Dłotko, Martina Scolamiero, Ran Levi, Julian Shillcock, Kathryn Hess,
and Henry Markram. A topological representation of branching neuronal morphologies.
Neuroinformatics, 16(1):3–13, 2018.

34 Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted Gaussian kernel
for topological data analysis. In International Conference on Machine Learning, volume 48,
pages 2004–2013, June 2016.

35 Roland Kwitt, Stefan Huber, Marc Niethammer, Weili Lin, and Ulrich Bauer. Statistical
topological data analysis - a kernel perspective. In Advances in Neural Information Processing
Systems, pages 3070–3078, 2015.

A. Aukerman, M. Carrière, C. Chen, K. Gardner, R. Rabadán, and R. Vanguri 11:19

36 Théo Lacombe, Marco Cuturi, and Steve Oudot. Large scale computation of means and
clusters for persistence diagrams using optimal transport. In Advances in Neural Information
Processing Systems, pages 9770–9780, 2018.

37 Peter Lawson, Andrew B Sholl, J Quincy Brown, Brittany Terese Fasy, and Carola Wenk.
persistent homology for the quantitative evaluation of architectural features in prostate cancer
histology. Scientific reports, 9, 2019.

38 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

39 Hyekyoung Lee, Hyejin Kang, Moo K Chung, Bung-Nyun Kim, and Dong Soo Lee. Persistent
brain network homology from the perspective of dendrogram. IEEE transactions on medical
imaging, 31(12):2267–2277, 2012.

40 Michael Lesnick and Matthew Wright. Interactive visualization of 2D persistence modules.
arXiv, December 2015. arXiv:1512.00180.

41 Yanjie Li, Dingkang Wang, Giorgio A Ascoli, Partha Mitra, and Yusu Wang. Metrics for
comparing neuronal tree shapes based on persistent homology. PloS one, 12(8):e0182184, 2017.

42 Zhixian Liu, Mengyuan Li, Zehang Jiang, and Xiaosheng Wang. A comprehensive immunologic
portrait of triple-negative breast cancer. Translational oncology, 11(2):311–329, 2018.

43 Yuriy Mileyko, Sayan Mukherjee, and John Harer. Probability measures on the space of
persistence diagrams. Inverse Problems, 27(12):124007, December 2011.

44 Monica Nicolau, Arnold J Levine, and Gunnar Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.
Proceedings of the National Academy of Sciences, 108(17):7265–7270, 2011.

45 Steve Oudot. Persistence theory: from quiver representations to data analysis. American
Mathematical Society, 2015.

46 Deepti Pachauri, Chris Hinrichs, Moo K Chung, Sterling C Johnson, and Vikas Singh. Topology-
based kernels with application to inference problems in alzheimer’s disease. IEEE transactions
on medical imaging, 30(10):1760–1770, 2011.

47 Edwin Roger Parra, Alejandro Francisco-Cruz, and Ignacio Ivan Wistuba. State-of-the-art of
profiling immune contexture in the era of multiplexed staining and digital analysis to study
paraffin tumor tissues. Cancers, 11(2):247, 2019.

48 Adrien Poulenard, Primoz Skraba, and Maks Ovsjanikov. Topological function optimization
for continuous shape matching. In Computer Graphics Forum, volume 37, pages 13–25. Wiley
Online Library, 2018.

49 Lajos Pusztai, Thomas Karn, Anton Safonov, Maysa M Abu-Khalaf, and Giampaolo Bianchini.
New strategies in breast cancer: immunotherapy. Clinical Cancer Research, 22(9):2105–2110,
2016.

50 Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel
for topological machine learning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

51 Abbas Rizvi, Pablo Cámara, Elena Kandror, Thomas Roberts, Ira Schieren, Tom Maniatis,
and Raul Rabadan. Single-cell topological RNA-seq analysis reveals insights into cellular
differentiation and development. Nature Biotechnology, 35(6):551–560, May 2017.

52 Andrew Robinson and Katharine Turner. Hypothesis testing for topological data analysis.
Journal of Applied and Computational Topology, 1(2):241–261, December 2017.

53 Rebecca L Siegel, Kimberly D Miller, and Ahmedin Jemal. Cancer statistics, 2019. CA: a
cancer journal for clinicians, 69(1):7–34, 2019.

54 Alexandra Signoriello, Marcus Bosenberg, Mark Shattuck, and Corey O’Hern. Modeling
the spatiotemporal evolution of the melanoma tumor microenvironment. In APS Meeting
Abstracts, 2016.

55 Carl-Johann Simon-Gabriel and Bernhard Schölkopf. Kernel distribution embeddings: universal
kernels, characteristic kernels and kernel metrics on distributions. Journal of Machine Learning
Research, 19(44):1–29, 2018.

SoCG 2020

http://arxiv.org/abs/1512.00180

11:20 PH Based Characterization of the Breast Cancer Immune Microenvironment

56 Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological methods for the analysis
of high dimensional data sets and 3D object recognition. In Eurographics Symposium on
Point-Based Graphics, pages 91–100, 2007.

57 Bharath K Sriperumbudur, Kenji Fukumizu, and Gert RG Lanckriet. Universality, charac-
teristic kernels and RKHS embedding of measures. Journal of Machine Learning Research,
12(Jul):2389–2410, 2011.

58 Mikael Vejdemo-Johansson and Sayan Mukherjee. Multiple testing with persistent homology.
arXiv, December 2018. arXiv:1812.06491.

59 Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris
Metaxas, and Leon Axel. Optimal topological cycles and their application in cardiac trabeculae
restoration. In International Conference on Information Processing in Medical Imaging, pages
80–92. Springer, 2017.

60 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Compu-
tational Geometry, 33(2):249–274, 2005.

http://arxiv.org/abs/1812.06491

Homotopic Curve Shortening and the Affine
Curve-Shortening Flow
Sergey Avvakumov
Institute of Science and Technology Austria (IST Austria),
Am Campus 1, 3400 Klosterneuburg, Austria
sergey.avvakumov@ist.ac.at

Gabriel Nivasch1

Ariel University, Ariel, Israel
gabrieln@ariel.ac.il

Abstract

We define and study a discrete process that generalizes the convex-layer decomposition of a planar
point set. Our process, which we call homotopic curve shortening (HCS), starts with a closed curve
(which might self-intersect) in the presence of a set P ⊂ R2 of point obstacles, and evolves in discrete
steps, where each step consists of (1) taking shortcuts around the obstacles, and (2) reducing the
curve to its shortest homotopic equivalent.

We find experimentally that, if the initial curve is held fixed and P is chosen to be either a very
fine regular grid or a uniformly random point set, then HCS behaves at the limit like the affine
curve-shortening flow (ACSF). This connection between HCS and ACSF generalizes the link between
“grid peeling” and the ACSF observed by Eppstein et al. (2017), which applied only to convex curves,
and which was studied only for regular grids.

We prove that HCS satisfies some properties analogous to those of ACSF: HCS is invariant
under affine transformations, preserves convexity, and does not increase the total absolute curvature.
Furthermore, the number of self-intersections of a curve, or intersections between two curves
(appropriately defined), does not increase. Finally, if the initial curve is simple, then the number of
inflection points (appropriately defined) does not increase.

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics
of computing → Geometric topology

Keywords and phrases affine curve-shortening flow, shortest homotopic path, integer grid, convex-
layer decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.12

Related Version A full version of this paper is available at https://arxiv.org/abs/1909.00263.

Supplementary Material Our code is available at https://github.com/savvakumov/.

Funding Sergey Avvakumov: Supported by the Austrian Science Fund (FWF), Project P31312-N35.

Acknowledgements Thanks to Arseniy Akopyan, Imre Bárány, Jeff Erickson, Radoslav Fulek, Jeremy
Schiff, Arkadiy Skopenkov, and Peter Synak for useful discussions. Thanks also to the referees for
their useful comments.

1 Corresponding author

© Sergey Avvakumov and Gabriel Nivasch;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergey.avvakumov@ist.ac.at
https://orcid.org/0000-0001-5960-4253
mailto:gabrieln@ariel.ac.il
https://doi.org/10.4230/LIPIcs.SoCG.2020.12
https://arxiv.org/abs/1909.00263
https://github.com/savvakumov/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Homotopic Curve Shortening and the ACSF

Figure 1 Affine curve-shortening flow. The arrows indicate the instantaneous velocity of different
points along the curve at the shown time moment.

1 Introduction

Let S1 be the unit circle. In this paper we call a piecewise-smooth function γ : [0, 1]→ R2 a
path, and a piecewise-smooth function γ : S1 → R2 a closed curve, or simply a curve. If γ is
injective then the curve or path is said to be simple. We say that two paths or curves γ, δ are
ε-close to each other if their Fréchet distance is at most ε, i.e. if they can be re-parametrized
such that for every t, the Euclidean distance between the points γ(t), δ(t) is at most ε.

1.1 Shortest Homotopic Curves
Let P be a finite set of points in the plane, which we regard as obstacles. Two curves γ, δ
that avoid P are said to be homotopic if there exists a way to continuously transform γ into
δ while avoiding P at all times. And two paths γ, δ that avoid P (except possibly at the
endpoints) and satisfy γ(0) = δ(0), γ(1) = δ(1) are said to be homotopic if there exists a way
to continuously transform γ into δ, without moving their endpoints, while avoiding P at all
times (except possibly at the endpoints). We extend these definitions to the case where γ
avoids obstacles but δ does not, by requiring the continuous transformation of γ into δ to
avoid obstacles at all times except possibly at the last moment.

Then, for every curve (resp. path) γ in the presence of obstacles there exists a unique
shortest curve (resp. path) δ that is homotopic to γ. The problem of computing the shortest
path or curve homotopic to a given piecewise-linear path or curve, under the presence of
polygonal or point obstacles, has been studied extensively. A simple and efficient algorithm
for this task is the so-called “funnel algorithm” [12, 26, 27]. See also [7, 9, 18].

1.2 The Affine Curve-Shortening Flow
In the affine curve-shortening flow, a smooth curve γ ⊂ R2 varies with time in the following
way. At each moment in time, each point of γ moves perpendicularly to the curve, towards
its local center of curvature, with instantaneous velocity r−1/3, where r is that point’s radius
of curvature at that time. See Figure 1.

The ACSF was first studied by Alvarez et al. [3] and Sapiro and Tannenbaum [28].
It differs from the more usual curve-shortening flow (CSF) [10, 14], in which each point
is given instantaneous velocity r−1. Unlike the CSF, the ACSF is invariant under affine
transformations: Applying an affine transformation to a curve, and then performing the

S. Avvakumov and G. Nivasch 12:3

ACSF, gives the same results (after rescaling the time parameter appropriately) as performing
the ACSF and then applying the affine transformation to the shortened curves. Moreover, if
the affine transformation preserves area, then the time scale is unaffected.

The ACSF was originally applied in computer vision, as a way of smoothing object
boundaries [10] and of computing shape descriptors that are insensitive to the distortions
caused by changes of viewpoint.

Properties of the CSF and ACSF for Simple Curves. Under either the CSF or the ACSF,
a simple curve remains simple, and its length decreases strictly with time ([14], [28], resp.).
Furthermore, a pair of disjoint curves, run simultaneously, remain disjoint at all times ([29],
[5], resp.). More generally, the number of intersections between two curves never increases
([4], [5], resp.). The total absolute curvature2 of a curve decreases strictly with time and
tends to 2π ([21, 22], [5], resp.). The number of inflection points of a simple curve does not
increase with time ([4], [5], resp.).

Under the CSF, a simple curve eventually becomes convex and then converges to a circle
as it collapses to a point [21, 22]. Correspondingly, under the ACSF, a simple curve becomes
convex and then converges to an ellipse as it collapses to a point [5].

Self-Intersecting Curves. When the initial curve is not simple, a self-intersection might
collapse and form a cusp with infinite curvature. For the CSF, it has been shown that, as
long as the initial curve satisfies some natural conditions, it is possible with some care to
continue the flow past the singularity [2, 4]. Angenent [4] generalized these results to a wide
range of flows, but unfortunately the ACSF is not included in this range [5]. Hence, no
rigorous results have been obtained for self-intersecting curves under the ACSF. Still, ACSF
computer simulations can be run on curves that have self-intersections or singularities with
little difficulty.

1.3 Relation to Grid Peeling
Let P be a finite set of points in the plane. The convex-layer decomposition (also called the
onion decomposition) of P is the partition of P into sets P1, P2, P3, . . . obtained as follows:
Let Q0 = P . Then, for each i ≥ 1 for which Qi−1 6= ∅, let Pi be the set of vertices of the
convex hull of Qi−1, and let Qi = Qi−1 \ Pi. In other words, we repeatedly remove from P

the set of vertices of its convex hull. See [6, 13, 16, 17].
Eppstein et al. [19], following Har-Peled and Lidický [24], studied grid peeling, which is

the convex-layer decomposition of subsets of the integer grid Z2. Eppstein et al. found an
experimental connection between ACSF for convex curves and grid peeling. Specifically, let γ
be a fixed convex curve. Let n be large, let (Z/n)2 be the uniform grid with spacing 1/n, and
let Pn(γ) be the set of points of (Z/n)2 that are contained in the region bounded by γ. Then,
as n→∞, the convex-layer decomposition of Pn(γ) seems experimentally to converge to the
ACSF evolution of γ, after the time scale is adjusted appropriately. They formulated this
connection precisely in the form of a conjecture. They also raised the question whether there
is a way to generalize the grid peeling process so as to approximate ACSF for non-convex
curves as well.

Dalal [16] studied the convex-layer decomposition of point sets chosen uniformly and
independently at random from a fixed convex domain, in the plane as well as in Rd.

2 Let γ : [0, 1] → R2 be a smooth closed curve, and let α : [0, 1] → S1 be continuous such that α(s) is
tangent to γ(s) for all s ∈ [0, 1]. Then the total absolute curvature of γ is the total distance traversed by
α(s) in S1 as s goes from 0 to 1. If γ is convex then its total absolute curvature is exactly 2π; otherwise,
it is larger than 2π.

SoCG 2020

12:4 Homotopic Curve Shortening and the ACSF

1.4 Our Contribution
In this paper we describe a generalization of the convex-layer decomposition to non-convex,
and even non-simple, curves. We call our process homotopic curve shortening, or HCS. Under
HCS, an initial curve evolves in discrete steps in the presence of point obstacles. We find
that, if the obstacles form a uniform grid, then HCS shares the same experimental connection
to ACSF that grid peeling does. Hence, HCS is the desired generalization sought by Eppstein
et al. [19]. We also find that the same experimental connection between ACSF and HCS
(and in particular, between ACSF and the convex-layer decomposition) holds when the
obstacles are distributed uniformly at random, with the sole difference being in the constant
of proportionality.

Although the experimental connection between HCS and ACSF seems hard to prove, we
do prove that HCS satisfies some simple properties analogous to those of ACSF: HCS is
invariant under affine transformations, preserves convexity, and does not increase the total
absolute curvature. Furthermore, the number of self-intersections of a curve, or intersections
between two curves (appropriately defined), does not increase. Finally, if the initial curve is
simple, then the number of inflection points (appropriately defined) does not increase.

Organization of This Paper. In Section 2 we describe homotopic curve shortening (HCS),
our generalization of the convex-layer decomposition. In Section 3 we present our conjectured
connection between ACSF and HCS, as well as experimental evidence supporting this
connection. In Section 4 we state our theoretical results, to the effect that HCS satisfies
some properties analogous to those of ACSF. In Section 5 we sketch the proofs the results
stated in Section 4. Missing details can be found in the full version in the arXiv.

2 Homotopic Curve Shortening

Let P be a finite set of obstacle points. A P -curve (resp. P -path) is a curve (resp. path) that
is composed of straight-line segments, where each segment starts and ends at obstacle points.

Homotopic curve shortening (HCS) is a discrete process that starts with an initial P -curve
γ0 (which might self-intersect), and at each step, the current P -curve γn is turned into a
new P -curve γn+1 = HCSP (γn).

The definition of γ′ = HCSP (γ) for a given P -curve γ is as follows. Let (p0, . . . , pm−1)
be the circular list of obstacle points visited by γ. Call pi nailed if γ goes straight through
pi, i.e. if ∠pi−1pipi+1 = π.3 Let (q0, . . . , qk−1) be the circular list of nailed vertices of γ.
Suppose first that k ≥ 1. Then γ′ is obtained through the following three substeps:
1. Splitting. We split γ into k P -paths δ0, . . . , δk−1 at the nailed vertices, where each δi goes

from qi to qi+1.
2. Shortcutting. For each non-endpoint vertex pi of each δi, we make the curve avoid pi

by taking a small shortcut. Specifically, let ε > 0 be sufficiently small, and let Cpi be a
circle of radius ε centered at pi. Let ei be the segment pi−1pi of δi. Let xi = ei ∩ Cpi

and yi = ei+1 ∩Cpi
. Then we make the path go straight from xi to yi instead of through

pi. Call the resulting path ρi, and let ρ be the curve obtained by concatenating all the
paths ρi.

3. Shortening. Each ρi in ρ is replaced by the shortest P -path homotopic to it. The resulting
curve is γ′.

3 All indices in circular sequences are modulo the length of the sequence.

S. Avvakumov and G. Nivasch 12:5

Figure 2 Computation of a single step of homotopic curve shortening: Given a P -curve γ (blue),
we first identify its nailed vertices (purple). In this case, the two nailed vertices split γ into two
paths δ0, δ1. In each δi we take a small shortcut around each intermediate vertex (red). Then we
replace each δi by the shortest path homotopic to it, obtaining the new P -curve γ′ = HCSP (γ)
(green).

If γ has no nailed vertices (k = 0) then γ′ is obtained by performing the shortcutting
and shortening steps on the single closed curve γ. Figure 2 illustrates one HCS step on a
sample curve.

The process terminates when the curve collapses to a point. This will certainly happen
after a finite number of steps, since at each step the curve gets strictly shorter, and there is
a finite number of distinct P -curves of at most a certain length.

HCS for Convex Curves. If the initial curve γ0 is the boundary of the convex hull of P ,
then the HCS evolution of γ0 is equivalent to the convex-layer decomposition of P . Namely,
for every i ≥ 0, the curve γi is the boundary of a convex polygon, and the set of vertices of
this polygon equals the (i+ 1)-st convex layer of P . See Section 4 below.

3 Experimental Connection Between ACSF and HCS

Our experiments show that HCS, using P = (Z/n)2 as the obstacle set, approximates
ACSF at the limit as n → ∞, just as grid peeling approximates ACSF for convex curves.
The connection between the two processes is formalized in the following conjecture, which
generalizes Conjecture 1 of [19].

I Conjecture 1. There exists a constant cg ≈ 1.6 such that the following is true: Let δ be a
piecewise-smooth initial curve. Fix a time t > 0, and let δ′ = δ(t) under ACSF. For a fixed n,
let γ0 be the shortest curve homotopic to δ under obstacle set Pn = (Z/n)2. Let m = cgtn

4/3,
and let γm = HCS(m)

P (γ0) be the result of m iterations of HCS starting with γ0. Then, as
n→∞, the Fréchet distance between γm and δ′ tends to 0.

Furthermore, we find that the connection between ACSF and HCS also holds if the
uniform grid (Z/n)2 is replaced by a random point set, though with a different constant of
time proportionality.

SoCG 2020

12:6 Homotopic Curve Shortening and the ACSF

Figure 3 Left: Initial curve ∆ (blue) and simulated ACSF result after the curve’s length reduced
to 70% of its original length (red). Right: Comparison between ACSF approximation (red), HCS
with n = 107 uniform-grid obstacles (green), and HCS with n = 107 random obstacles (yellow) on a
small portion of the curve.

I Conjecture 2. There exists a constant cr ≈ 1.3 such that the following is true: Let δ be a
piecewise-smooth initial curve, contained in a convex region R of area A. Fix a time t > 0,
and let δ′ = δ(t) under ACSF. For a fixed n, let P be a set of An2 obstacle points chosen
uniformly and independently at random from R. Let γ0 be the shortest curve homotopic
to δ under obstacle set P . Let m = crtn

4/3, and let γm = HCS(m)
P (γ0) be the result of m

iterations of HCS starting with γ0. Then, as n→∞, the Fréchet distance between γm and δ′
is almost surely smaller than ε, for some ε = ε(n) that tends to 0 with n.

3.1 Experiments
We tested Conjectures 1 and 2 on a variety of test curves. We found that for all our test
curves, the result of HCS does seem to converge to the result of ACSF as n→∞, both for
grid and for random obstacle sets.

We illustrate our experiments on the piecewise-liner curve ∆ having vertices (0, 0),
(0.16, 0.81), (0.4, 0.45), (0.64, 1), (0.94, 0.3), (1, 0.45), (0.56, 0.07), (0.52, 0.13). We approxima-
ted ACSF using an approach similar to the one in [19]. We ran our ACSF simulation on
∆ until we obtained a curve ∆′ whose length equals 70% of the original length of ∆. See
Figure 3 (left). This happened at t∗ ≈ 0.0266. By this time, the self-intersection and an
inflection point of the curve have disappeared.

Then we introduced in the unit square [0, 1]2 ⊃ ∆ a set P of n obstacle points, where P is
either a uniform grid (i.e. a

√
n×
√
n grid) Gn, or a random set Rn. For each case, we initially

snapped each vertex of ∆ to its closest point in P , obtaining a P -curve, and then we ran
HCS until the length of the curve shrank to 70% of its original length, obtaining a new curve
∆′′ = ∆′′(P). We did this for several values of n. For each case, we computed h(∆′,∆′′),
where h(γ1, γ2) for piecewise-linear curves γ1, γ2 is defined as the maximum distance between
a vertex of one curve and the closest point on the other curve. (For “nice” curves as ours,
there is no significant difference, if at all, between this distance h and either the Hausdorff or
the Fréchet distance between the two curves.)

S. Avvakumov and G. Nivasch 12:7

●

●
●

●
●

■

■

■

■

● h(Δ', Δ''(G_n))

■ h(Δ', Δ''(R_n))

104 105 106 107 108
n

0.01

0.001

0.1
h

●

●
●

●

●

●

●

● h(Δ''(G_n), Δ''(G_(10^11)))

104 105 106 107 108 109 1010
n

0.01

0.001

0.0001

h

Figure 4 Left: Distance between ACSF approximation and HCS with uniform-grid obstacles
(blue curve) or random obstacles (red curve, average of 5 trials), for increasing values of n, the
number of obstacles. Right: Distance between HCS with uniform-grid obstacles for n = 104, . . . , 1010

and with n = 1011.

Table 1 Approximations of the constants cg and cr given by the experiments.

n iterations with Gn cg avg. iterations with Rn cr

104 20 1.616 15.6 1.261
105 93 1.619 75.2 1.309
106 434 1.628 351.2 1.317
107 2006 1.621 1628.6 1.316
108 9266 1.613

For random obstacles, we conducted this experiment for n = 104, 105, 106, 107, taking the
average of 5 samples for each value of n. Our random-obstacle program is limited by memory
rather than by time, since it stores all the obstacle points in memory. For uniform-grid
obstacles, we conducted this experiment also for n = 108. After this point, our ACSF
approximation ∆′ does not seem to be accurate enough for reliable comparisons. The results
are shown in Figure 4 (left).

We also checked whether the relation between the ACSF time t∗ and the number of HCS
iterations m behaves as predicted by Conjectures 1 and 2. For this purpose, we computed
c = m/(t∗n2/3) for each case, and checked whether c is roughly constant. The results are
shown in Table 1.

As we can see, Conjectures 1 and 2 are well supported by the experiments.
Finally, we measured the rate of convergence of the uniform-grid HCS to its limit shape

as n→∞. To this end, we computed h(∆′′(Gn),∆′′(Gm)) for n ∈ {104, 105, . . . , 1010} and
m = 1011. See Figure 4 (right). As we can see, increasing n by a factor of 10 has the effect
of multiplying the distance by roughly a factor of 0.47.

See the full version in the arXiv for some implementation details of our ACSF and HCS
simulations.

4 Properties of Homotopic Curve Shortening

We now prove that HCS satisfies some properties analogous to those of ACSF.

I Theorem 3. HCS is invariant under affine transformations. Namely, if P is a set of
obstacle points, γ is a P -curve, and T is a non-degenerate affine transformation, then
T (HCSP (γ)) = HCST (P)(T (γ)).

SoCG 2020

12:8 Homotopic Curve Shortening and the ACSF

Figure 5 HCS might cause disjoint curves to intersect, or a simple curve to self-intersect.

In particular, if T is a grid-preserving affine transformation, meaning that T maps (Z/n)2

injectively to itself, then the HCS evolution using P = (Z/n)2 (as in Conjecture 1) is
unaffected by T . Hence, HCS on uniform-grid obstacles is invariant under a certain subset of
the area-preserving affine transformations, just as in grid peeling [19].

Also, if T is an area-preserving affine transformation, then the probability distribution of
random sets P in the convex region R of Conjecture 2 stays unaffected after applying T to R.

I Theorem 4. Let γ be a simple P -curve, and let γ′ = HCSP (γ). If γ is the boundary of a
convex polygon, then so is γ′. Hence, under HCS, once a curve becomes the boundary of a
convex polygon, it stays that way.

The total absolute curvature of a piecewise-linear curve γ with vertices (p0, . . . , pm−1) is
the sum of the exterior angles

∑m−1
i=0 (π − |∠pi−1pipi+1|). It equals 2π if γ is the boundary

of a convex polygon, and it is larger than 2π otherwise.

I Theorem 5. Let γ be a P -curve, and let γ′ = HCSP (γ). Let α, α′ be the total absolute
curvature of γ, γ′, respectively. Then α ≥ α′. Hence, under HCS, the total absolute curvature
of a curve never increases.

If γ, δ are disjoint P -curves, then HCSP (γ),HCSP (δ) are not necessarily disjoint. Similarly,
if γ is a simple P -curve, then HCSP (γ) is not necessarily simple. See Figure 5.

Curves γ, δ are called disjoinable if they can be made into disjoint curves by peforming
on them an arbitrarily small perturbation. Similarly, a curve γ is called self-disjoinable if
it can be turned into a simple curve by an arbitrarily small perturbation. Note that if γ is
self-disjoinable then γ, γ are disjoinable, though the reverse is not necessarily true: Consider
for example a curve γ that makes two complete clockwise turns around the unit circle.

Akitaya et al. [1] recently found an O(n logn)-time algorithm for deciding whether a
given mapping of a graph into the plane is a so-called weak embedding. This algorithm can
decide, in particular, whether a given curve is self-disjoinable.

An intersection between two curves, or between two portions of one curve, is called
transversal, if at the point of intersection both curves are differentiable and their normal vectors
are not parallel at that point. If all intersections between curves γ1 and γ2 are transversal,
then we say that γ1, γ2 are themselves transversal. Similarly, if all self-intersections of γ are
transversal, then we say that γ is self-transversal. (Transversal and self-transversal curves
are sometimes called generic, see e.g. [11].)

S. Avvakumov and G. Nivasch 12:9

If γ is self-transversal, we denote by χ(γ) the number of self-intersections of γ.4 If γ is
not self-transversal, then we define χ(γ) as the minimum of χ(γ̂) among all self-transversal
curves γ̂ that are ε-close to γ, for all small enough ε > 0. Hence, χ(γ) = 0 if and only if γ is
self-disjoinable. We define similarly the number of intersections χ(γ1, γ2) between two curves.
Then, γ1 and γ2 are disjoinable if and only if χ(γ1, γ2) = 0. Fulek and Tóth recently proved
that the problem of computing χ(γ) is NP-hard [20].

I Theorem 6. Let γ be a P -curve, and let γ′ = HCSP (γ). Then their self-intersection
numbers satisfy χ(γ′) ≤ χ(γ). Let δ be another P -curve, and let δ′ = HCSP (δ). Then their
intersection numbers satisfy χ(γ′, δ′) ≤ χ(γ, δ). In particular, if γ is self-disjoinable, so is
γ′, and if γ, δ are disjoinable, then so are γ′, δ′. Hence, under HCS, the intersection and
self-intersection numbers never increase.

With the technique of Theorem 6 we can obtain an upper bound on the number of
iterations of HCS:

I Theorem 7. If |P | = n then the HCS process starting with any P -curve ends in at most
n/2 iterations. If P = {1, 2, . . . ,

√
n}2 then the process ends in at most O(n2/3) iterations.

If P is uniformly and independently chosen at random inside a fixed convex domain, then
the expected number of iterations is O(n2/3).

We say that an obstacle set P is in general position if no three points of P lie on a line.
Note that if P is in general position then there are no nailed vertices in HCS.

I Theorem 8. Let P be an obstacle set in general position. Let γ be a simple P -curve. Then
HCSP (γ) is also simple. Let γ1, γ2 be disjoint P -curves. Then HCSP (γ1),HCSP (γ2) are also
disjoint. Hence, under HCS with obstacles in general position, a simple curve stays simple,
and a pair of disjoint curves stay disjoint.

Let γ be a simple piecewise-linear curve with vertices (v0, . . . , vn−1). Assume that the
sequence of vertices is minimal, meaning no vi−1, vi, vi+1 lie on a straight line. An inflection
edge of γ is an edge vivi+1 such that the previous and next vertices vi−1, vi+2 lie on opposite
sides of the line through vi, vi+1. Let ϕ(γ) be the number of inflection edges of γ. Note
that ϕ(γ) is always even, since every inflection edge lies either after a sequence of clockwise
vertices and before a sequence of counterclockwise vertices, or vice versa.

If γ is not simple but self-disjoinable, then we define ϕ(γ) as the minimum of ϕ(γ′) over
all simple piecewise-linear curves γ′ that are ε-close to γ, for all sufficiently small ε > 0.
(Note that for a given γ there might exist different curves γ′ with different values of ϕ(γ′).
For example, if γ goes from a point p to a point q and back n times, then γ′ could be a spiral
with just two inflection edges, or a double zig-zag with 2n− 2 inflection edges.)

I Theorem 9. Let γ be self-disjoinable, and let γ′ = HCSP (γ). Then their inflection-edge
numbers satisfy ϕ(γ′) ≤ ϕ(γ). Hence, under HCS on a self-disjoinable curve, the curve’s
number of inflection edges never increases.

5 Proofs

In order to prove Theorems 3–9, we rely on two different approaches for computing shortest
homotopic curves. The first approach uses a triangulation of the ambient space, while the
second aproach consists of repeatedly releasing unstable vertices. We start by describing
these two approaches in detail.

4 A self-intersection in a curve γ : S1 → R2 is a pair s 6= t such that γ(s) = γ(t). Hence, if γ passes k
times through a certain point, that counts as

(
k
2

)
self-intersections.

SoCG 2020

12:10 Homotopic Curve Shortening and the ACSF

x

γ

Figure 6 In the shortest curve homotopic to γ, the position of the point x is not uniquely defined.

5.1 Triangulations
Let P be a finite set of point obstacles, and let γ be a piecewise-smooth curve avoiding P .
Assume without loss of generality that γ is contained in the convex hull of P (by adding
points outside the convex hull of γ if necessary). Let T be a triangulation of the convex hull
of P using the points of P as vertices.

We can assume without loss of generality that the curve γ intersects each triangle edge
transversally. Let E = E(γ) be the circular sequence of triangle edges intersected by γ. Then
a piecewise-smooth homotopic change of γ can only have two possible types of effects on
E : Either an adjacent pair ee is inserted somewhere in the sequence, or an existing such
pair is deleted. Hence, two curves γ, γ′ are homotopic if and only if their corresponding
edge sequences E(γ), E(γ′) are equivalent, in the sense that they can be transformed into one
another by a sequence of operations of these two types.

Call an edge sequence E(γ) reduced if it contains no adjacent pair ee. Then every
edge sequence is equivalent to a unique reduced sequence. (Proof sketch: Supposing for
a contradiction that there exist two distinct equivalent reduced sequences S1, S2, consider
a transformation of S1 into S2 that uses the minimum possible number of deletions, and
among those, consider one in which the first deletion is done as early as possible. Then it is
easy to arrive at a contradiction.)

Hence, in order to compute the shortest curve homotopic to γ, we first compute E(γ),
then we reduce this sequence by repeatedly removing adjacent pairs, obtaining a reduced
sequence E ′, then we place a point x(e) on each e ∈ E ′, and then we slide the points x(e)
along their edges so as to minimize the length of the curve. This last step can be done by
the above-mentioned “funnel algorithm”, the details of which we omit.

See the full version of this paper for a proof that there is always a unique shortest curve.
Note that, even though the shortest curve is always unique, the final positions of the points
x(e) are not necessarily unique. This can happen if a triangulation edge is an edge of the
final curve. See Figure 6.

5.2 The Vertex Release Algorithm
We now present another simple algorithm for the shortest homotopic curve problem. This
algorithm is not mentioned in any previous publication that we are aware of, but it is similar
in spirit to well-known algorithms, in particular to the funnel algorithm.

As a warm-up, let us first consider the case in which the obstacles are are not single
points but rather polygons. Let γ be a curve that avoids all the obstacles. Call a vertex v
of γ unstable if v does not lie on any obstacle, or if v lies on the boundary of an obstacle
T , but T lies locally on the side of γ at which the angle is larger than π. If v is unstable,
then the process of releasing v is as follows: Let u and w be the previous and next vertices

S. Avvakumov and G. Nivasch 12:11

Figure 7 Releasing an unstable vertex in the presence of polygonal obstacles (left) or point
obstacles (right).

of γ. Suppose first that u 6= w. Let ∆ be the triangle uvw, and let S be the set of obstacle
vertices that lie inside ∆. Let u, z1, . . . , zk, w be the vertices of the convex hull of S \ {v}
in order. Then we replace v by z1, . . . , zk in γ. The new vertices z1, . . . , zk are necessarily
stable, but u and w might change from stable to unstable or vice versa. If u = w then we
simply remove v and w from γ. See Figure 7 (left).

Then the algorithm consists of releasing unstable vertices one by one, in an arbitrary
order, until no more unstable vertices remain.

If there are also point obstacles, then the algorithm becomes slightly more complicated.
For each curve vertex v that lies on a point obstacle, we need to remember the corresponding
signed angle αv that the curve turns around the obstacle, since this angle could be larger
than 2π in absolute value. The angle αv is always congruent modulo 2π to ∠uvw, where u
and w are the previous and next vertices. A vertex v is unstable if and only if |αv| < π.

Whenever we release an unstable vertex v preceded by u and followed by w, we proceed
as described above, and we update the angles as follows (see Figure 7, right):

If u 6= w then we give to each new vertex zi the unique appropriate angle that has the
opposite sign of αv and satisfies π ≤ |αzi | < 2π. We then update the angles αu and αw

as follows: Denote z0 = u and zk+1 = w (in order to handle properly the case k = 0).
We add to αu the angle ∠vuz1, and we add to αw the angle ∠zkwv.
If u = w then we update αu by adding to it the angle αw.

For the proof of correctness of the vertex release algorithm, see the full version of this
paper.

5.3 Proof of Theorems 3–5
Theorems 3–5 follow easily from the vertex-release algorithm.

Proof of Theorem 3. The claim follows from the fact that shortest homotopic curves and
paths are invariant under affine transformations. Namely, let γ be a curve or path in the
presence of obstacle points P , let δ be the shortest curve or path homotopic to γ, and let
T : R2 → R2 be a non-degenerate affine transformation. Then the shortest curve or path
homotopic to T (γ) in the presence of T (P) is T (δ). This, in turn, follows from the fact
that T does not affect whether a vertex is stable or unstable, and furthermore, if a vertex is
unstable, then it does not matter whether we first release the vertex and then apply T , or do
these operations in the opposite order. J

Theorem 4 is also trivial, since the property of being the boundary of a convex polygon
is preserved by each vertex release.

SoCG 2020

12:12 Homotopic Curve Shortening and the ACSF

γ

δ

Figure 8 A P -curve γ and a corresponding type-2 curve δ.

Proof of Theorem 5. Given a curve γ with vertices (p0, . . . , pm−1), let vi ∈ S1 be the
unit vector parallel to −−−−→pipi+1 for each i . Call a tour of S1 valid if it visits the vectors
v0, v1, . . . , vm−1, v0 in this order. Then the total absolute curvature of γ equals the length of
the shortest valid tour of S1.

Now let γ be a given P -curve, and let γ′ = HCSP (γ). Recall that γ′ is obtained from γ by
a series of vertex releases. Each vertex release replaces two adjacent vectors vi, vi+1 ∈ S1 by
a certain number k ≥ 1 of vectors w1, . . . , wk lying between them, in this order. Hence, the
shortest valid tour of S1 for the old vector sequence goes from vi to vi+1 through w1, . . . , wk,
and hence this tour is also valid for the new vector sequence. J

5.4 Proof sketch of Theorems 6–8

The proof of Theorems 6–8 is based on the triangulation technique. Let γ be a P -curve, let
ε > 0 be small enough, and let γ̂ be a self-transversal curve that is ε-close to γ and has the
minimum possible number of self-intersections.

In order to prove Theorem 6, we proceed as follows:
1. We show that, without loss of generality, we can assume that γ̂ passes through the “correct

side” of each non-nailed obstacle, as in the “shortcutting” step of HCS.
2. We modify γ̂ homotopically, by first eliminating repetitions in its edge sequence E and

then sliding its vertices along the triangulation edges, until each vertex comes within ε of
its final position as given by γ′ = HCSP (γ). We show that the number of self-intersections
never increases in the process.

The case of two curves is similar.
In order to do the first step, we define a type of curves that are ε-close to P -curves and

pass through the “correct side” of non-nailed obstacles. We call them type-2 curves. We also
define a “snapping” operation, which transforms γ̂ into a type-2 curve without increasing its
number of self-intersections.

Type-2 Curves. Let γ be a P -curve, let (p0, . . . , pk−1) be the circular list of obstacles visited
by γ, and let ε > 0 be small enough. For each p ∈ P , let Cp be a circle of radius ε centered
at p. For each i, let xi ∈ Cpi be a point at distance at most ε2 from the segment pi−1pi,
and let yi ∈ Cpi

be a point at distance at most ε2 from the segment pipi+1. Then a type-2
curve δ corresponding to γ travels in a straight line from yi−1 to xi and then in a straight
line from xi to yi for each i. See Figure 8. We call each segment yi−1xi a long part and
each segment xiyi a short part. If ∠pi−1pipi+1 6= π and ε is chosen small enough, then pi

lies on the side of the curve at which the angle is larger than π. If ∠pi−1pipi+1 = π then the
corresponding short part passes within distance ε2 of vi.

S. Avvakumov and G. Nivasch 12:13

e e

Figure 9 Reducing a curve’s edge sequence without increasing its number of self-intersections.
Different portions of the curve are shown in different colors.

The Snapping Operation. Let γ be a P -curve, and let γ̂ be a curve (ε2)-close to γ. We
define the type-2 curve snap(γ̂) as follows. For each pi visited by γ̂ there exists a point zi in
γ̂ that is within distance ε2 of pi. Let yi be the first intersection of γ̂ with Cpi that comes
after zi, and let xi be the last intersection of γ̂ with Cpi

that comes before zi. (Thus, the
part of γ̂ between xi and yi is entirely contained in the disk bounded by Cpi .) Then we let
snap(γ̂) be the type-2 curve that uses these points xi, yi for all i as vertices.

The curve δ = snap(γ̂) also is also self-transversal, and it satisfies χ(δ) ≤ χ(γ̂). Similarly,
if γ1, γ2 are two P -curves, and γ̂1, γ̂2 are transversal curves (ε2)-close to them, respectively,
such that no intersection between γ̂1 and γ̂2 occurs on any circle Cp, then the curves
δ1 = snap(γ̂1), δ2 = snap(γ̂2) are transversal and satisfy χ(δ1, δ2) ≤ χ(γ̂1, γ̂2). See the full
version of this paper.

Proof of Theorem 6. Let γ be a P -curve, let ε > 0 be small enough, and let γ̂ be a
self-transversal curve that is ε-close to γ and has the minimum possible number of self-
intersections. Fix a triangulation T of P . Assume without loss of generality that γ̂ does
not pass through any obstacle, and that no self-intersection of γ lies on any edge of T . Let
η = snap(γ̂). Partition η into paths η0, . . . , ηk−1 that are ε-close to the corresponding paths
δ0, . . . , δk−1 of the HCS “splitting” step, by introducing split points as follows: For each
nailed visit to an obstacle p ∈ P , we choose a split point that is within distance O(ε) of p
and lies on a triangle edge (where the implicit constant depends only on P).

Then we modify each ηi into a homotopic path η′i whose edge sequence E(η′i) is reduced.
We do this without increasing the number of intersections, by repeatedly doing the following:
Let e be triangulation edge such that ee appears one or more times in the sequences E(η′i).
We shortcut the corresponding paths η′i so as to not cross e at all, instead keeping a small
distance from e. We make the distance to e inversely related to the distance between the
two crossing points of η′i with e. See Figure 9.

Next, we modify each η′i into η′′i by straightening out each part within each triangle of T .
Hence, each η′′i is determined by the position of its vertices x(e) along the triangle edges e.

Finally, we slide the vertices x(e) along the edges to within ε of their final positions, as
given by γ′. We do this without changing the order of any pair of vertices along the same
edge, unless necessary. Call the resulting paths η′′′i . Meaning, if in γ′ there are several vertices
along an edge that coincide, then in the paths η′′′i we place those vertices within ε of each
other, conserving the order they had in η′′i . Let η′′, η′′′ be the curves formed by concatenating
the paths η′′i , η′′′i for all i, respectively. Hence, by construction, η′′′ is ε-close to γ′.

The number of self-intersections of η′′′ is not larger than that of η′′. See the full version
of this paper. This concludes the proof of Theorem 6 for the case of the number of self-
intersections of a single curve. The case of the number of intersections of two curves
is similar. J

SoCG 2020

12:14 Homotopic Curve Shortening and the ACSF

Theorem 7 follows by running HCS simultaneously on the given curve γ0 and on the
boundary δ0 of the convex hull of P . The HCS process starting with δ0 is just the convex-layer
decomposition of P , so we can apply the known bounds on the number of convex layers.
Denote γi+1 = HCSP (γi) and δi+1 = HCSP (δi) for all i. By the proof of Theorem 6, the two
curves stay disjoinable throughout the HCS process, with δi bounding γi for all i. See the
full version for more details, as well as for the proof of Theorem 8.

5.5 Proof sketch of Theorem 9
The proof of Theorem 9 (regarding the number of inflection edges) is based of the vertex-
release algorithm. The basic idea is that, given a self-disjoinable curve, if the vertex releases
are performed in an appropriate order, then the curve stays self-disjoinable at all times.
Moreover, no vertex release increases the number of inflection edges. Along the way, we
develop enough machinery to re-prove Theorem 6. The proof appears in the full version of
this paper.

6 Discussion

One of the reasons continuous curve-shortening flows were introduced and studied was to
overcome the shortcomings of the Birkhoff curve-shortening process ([8], see also e.g. [15]),
specifically the fact that it might cause the number of curve intersections to increase [23, 25].
As we have shown, HCS is a discrete process that overcomes this flaw without introducing
analytical difficulties, at least in the plane. It would be interesting to check whether HCS
can be applied on more general surfaces.

References
1 Hugo A. Akitaya, Radoslav Fulek, and Csaba D. Tóth. Recognizing weak embeddings of

graphs. In Proc. 29th Symp. on Discrete Algorithms, pages 274–292, 2018. doi:10.1137/1.
9781611975031.20.

2 Steven J. Altschuler and Matthew A. Grayson. Shortening space curves and flow through
singularities. J. Differential Geom., 35(2):283–298, 1992. doi:10.4310/jdg/1214448076.

3 Luis Alvarez, Frédéric Guichard, Pierre-Luis Lions, and Jean-Michel Morel. Axioms and
fundamental equations of image processing. Arch. Rational Mech. Anal., 123(3):199–257, 1993.
doi:10.1007/BF00375127.

4 Sigurd Angenent. Parabolic equations for curves on surfaces: Part II. Intersections, blow-up and
generalized solutions. Annals of Mathematics, 133(1):171–215, 1991. doi:10.2307/2944327.

5 Sigurd Angenent, Guillermo Sapiro, and Allen Tannenbaum. On the affine heat equa-
tion for non-convex curves. J. Amer. Math. Soc., 11(3):601–634, 1998. doi:10.1090/
S0894-0347-98-00262-8.

6 Vic Barnett. The ordering of multivariate data. J. Roy. Statist. Soc. Ser. A, 139(3):318–355,
1976. doi:10.2307/2344839.

7 Sergei Bespamyatnikh. Computing homotopic shortest paths in the plane. Journal of
Algorithms, 49(2):284–303, 2003. doi:10.1016/S0196-6774(03)00090-7.

8 George D. Birkhoff. Dynamical systems with two degrees of freedom. Trans. Amer. Math.
Soc., 18:199–300, 1917.

9 Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. Testing homotopy for
paths in the plane. Discrete & Computational Geometry, 31(1):61–81, 2004. doi:10.1007/
s00454-003-2949-y.

10 Frédéric Cao. Geometric Curve Evolution and Image Processing, volume 1805 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin, 2003. doi:10.1007/b10404.

https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.4310/jdg/1214448076
https://doi.org/10.1007/BF00375127
https://doi.org/10.2307/2944327
https://doi.org/10.1090/S0894-0347-98-00262-8
https://doi.org/10.1090/S0894-0347-98-00262-8
https://doi.org/10.2307/2344839
https://doi.org/10.1016/S0196-6774(03)00090-7
https://doi.org/10.1007/s00454-003-2949-y
https://doi.org/10.1007/s00454-003-2949-y
https://doi.org/10.1007/b10404

S. Avvakumov and G. Nivasch 12:15

11 Hsien-Chih Chang and Jeff Erickson. Untangling planar curves. Discrete & Computational
Geometry, 58:889–920, 2017. doi:10.1007/s00454-017-9907-6.

12 Bernard Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annual
Symposium on Foundations of Computer Science (FOCS 1982), pages 339–349, 1982. doi:
10.1109/SFCS.1982.58.

13 Bernard Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory,
31(4):509–517, 1985. doi:10.1109/TIT.1985.1057060.

14 Kai-Seng Chou and Xi-Ping Zhu. The Curve Shortening Problem. Chapman & Hall/CRC,
Boca Raton, FL, 2001. doi:10.1201/9781420035704.

15 Cristopher B. Croke. Area and the length of the shortest closed geodesic. J. Differential
Geometry, 27:1–21, 1988.

16 Ketan Dalal. Counting the onion. Random Struct. Algor., 24(2):155–165, 2004. doi:10.1002/
rsa.10114.

17 William F. Eddy. Convex Hull Peeling. In COMPSTAT 1982 5th Symposium held at Toulouse
1982, pages 42–47. Physica-Verlag, 1982. doi:10.1007/978-3-642-51461-6_4.

18 Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homotopic shortest paths
efficiently. Computational Geometry, 35(3):162–172, 2006. doi:10.1016/j.comgeo.2006.03.
003.

19 David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve-
shortening flow. Experimental Mathematics, page to appear, 2018. doi:10.1080/10586458.
2018.1466379.

20 Radoslav Fulek and Csaba D. Tóth. Crossing minimization in perturbed drawings. In T. Biedl
and A. Kerren, editors, Proc. 26th Symp. Graph Drawing and Network Visualization, pages
229–241. Springer, 2018. doi:10.1007/978-3-030-04414-5_16.

21 Michael Gage and Richard S. Hamilton. The heat equation shrinking convex plane curves. J.
Differential Geom., 23(1):69–96, 1986. doi:10.4310/jdg/1214439902.

22 Matthew A. Grayson. The heat equation shrinks embedded plane curves to round points. J.
Differential Geom., 26(2):285–314, 1987. doi:10.4310/jdg/1214441371.

23 Matthew A. Grayson. Shortening embedded curves. Annals of Mathematics, 129(1):79–111,
1989.

24 Sariel Har-Peled and Bernard Lidický. Peeling the grid. SIAM J. Discrete Math., 27(2):650–655,
2013. doi:10.1137/120892660.

25 Joel Hass and Peter Scott. Shortening curves on surfaces. Topology, 33:25–43, 1994. doi:
10.1016/0040-9383(94)90033-7.

26 John Hershberger and Jack Snoeyink. Computing minimum length paths of a given homotopy
class. Computational Geometry, 4(2):63–97, 1994. doi:10.1016/0925-7721(94)90010-8.

27 Der-Tsai Lee and Franco P. Preparata. Euclidean shortest paths in the presence of rectilinear
barriers. Networks, 14(3):393–410, 1984. doi:10.1002/net.3230140304.

28 Guillermo Sapiro and Allen Tannenbaum. Affine invariant scale-space. Int. J. Comput. Vision,
11(1):25–44, 1993. doi:10.1007/bf01420591.

29 Brian White. Evolution of curves and surfaces by mean curvature. In Proceedings of the Inter-
national Congress of Mathematicians, Vol. I (Beijing, 2002), pages 525–538, 2002. URL: https:
//www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.1/ICM2002.1.ocr.pdf.

SoCG 2020

https://doi.org/10.1007/s00454-017-9907-6
https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1109/TIT.1985.1057060
https://doi.org/10.1201/9781420035704
https://doi.org/10.1002/rsa.10114
https://doi.org/10.1002/rsa.10114
https://doi.org/10.1007/978-3-642-51461-6_4
https://doi.org/10.1016/j.comgeo.2006.03.003
https://doi.org/10.1016/j.comgeo.2006.03.003
https://doi.org/10.1080/10586458.2018.1466379
https://doi.org/10.1080/10586458.2018.1466379
https://doi.org/10.1007/978-3-030-04414-5_16
https://doi.org/10.4310/jdg/1214439902
https://doi.org/10.4310/jdg/1214441371
https://doi.org/10.1137/120892660
https://doi.org/10.1016/0040-9383(94)90033-7
https://doi.org/10.1016/0040-9383(94)90033-7
https://doi.org/10.1016/0925-7721(94)90010-8
https://doi.org/10.1002/net.3230140304
https://doi.org/10.1007/bf01420591
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.1/ICM2002.1.ocr.pdf
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2002.1/ICM2002.1.ocr.pdf

Empty Squares in Arbitrary Orientation Among
Points
Sang Won Bae
Division of Computer Science and Engineering, Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

Sang Duk Yoon
Department of Service and Design Engineering, Sungshin Women’s University, Seoul, South Korea
sangduk.yoon@sungshin.ac.kr

Abstract
This paper studies empty squares in arbitrary orientation among a set P of n points in the plane.
We prove that the number of empty squares with four contact pairs is between Ω(n) and O(n2), and
that these bounds are tight, provided P is in a certain general position. A contact pair of a square
is a pair of a point p ∈ P and a side ` of the square with p ∈ `. The upper bound O(n2) also applies
to the number of empty squares with four contact points, while we construct a point set among
which there is no square of four contact points. We then present an algorithm that maintains a
combinatorial structure of the L∞ Voronoi diagram of P , while the axes of the plane continuously
rotate by 90 degrees, and simultaneously reports all empty squares with four contact pairs among P
in an output-sensitive way within O(s logn) time and O(n) space, where s denotes the number of
reported squares. Several new algorithmic results are also obtained: a largest empty square among
P and a square annulus of minimum width or minimum area that encloses P over all orientations
can be computed in worst-case O(n2 logn) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases empty square, arbitrary orientation, Erdős–Szekeres problem, L∞ Voronoi
diagram, largest empty square problem, square annulus

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.13

Related Version A full version [8] of the paper is available at https://arxiv.org/abs/1911.12988.

Funding Sang Won Bae: Supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042755).
Sang Duk Yoon: Supported by “Cooperative Research Program for Agriculture Science & Technology
Development (Project No. PJ01526903)” Rural Development Administration, Republic of Korea.

1 Introduction

We start by posing the following combinatorial question:

Given a set P of n points in a proper general position in R2, how many empty squares
in arbitrary orientation whose boundary contains four points in P can there be?

For a square, its contact pair is a pair of a point p ∈ P and a side ` of it such that p ∈ `,
regarding ` as a segment including its endpoints. An analogous question asks the number
of empty squares with four contact pairs. These questions can be seen as a new variant of
the Erdős–Szekeres problem [22,23] for empty squares. Let s = s(P) and s∗ = s∗(P) be the
number of empty squares with four contact points and with four contact pairs, respectively.
The difference between contact points and contact pairs is that the first counts the number
of points, while the second counts the number of incidences; in particular contact points
that are corners count as two contact pairs. In this paper, we prove that 0 ≤ s < c1n

2 and
c2n < s∗ < c3n

2 for some constants c1, c2, c3 > 0. These lower and upper bounds are tight
© Sang Won Bae and Sang Duk Yoon;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8802-4247
mailto:swbae@kgu.ac.kr
https://orcid.org/0000-0002-4664-7921
mailto:sangduk.yoon@sungshin.ac.kr
https://doi.org/10.4230/LIPIcs.SoCG.2020.13
https://arxiv.org/abs/1911.12988
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Empty Squares in Arbitrary Orientation Among Points

by the existence of point sets with the asymptotically same number of such squares. These
questions and results are shown to be intrinsic to several computational problems on empty
squares, implying new algorithmic results.

For the purpose, we provide a solid understanding of empty squares in arbitrary orientation
among P by establishing a geometric and topological relation among those squares. The
family of axis-parallel empty squares is well understood by the L∞ Voronoi diagram of P .
We extend this knowledge to those in arbitrary orientation by investigating the L∞ Voronoi
diagrams of P with the axes rotated. Our proof for the above combinatorial results is based
on new observations made upon the consideration of the Voronoi diagram in this way. This
also motivates the problem of maintaining the L∞ diagram of P while the axes continuously
rotate. A noteworthy observation states that every combinatorial change of the diagram
during the rotation of the axes corresponds to an empty square with four contact pairs.
Hence, the total amount of changes of the diagram is bounded by Θ(s∗) = O(n2).

Based on the observations, we then present an output-sensitive algorithm that finds all
empty squares with four contact pairs in O(s∗ logn) time using O(n) space. Our algorithm
indeed maintains a combinatorial description of the L∞ Voronoi diagram as the axes con-
tinuously rotates by 90 degrees by capturing every occurrence of such special squares and
handling them so that the diagram is correctly maintained as the invariants. To our best
knowledge, there was no such algorithmic result in the literature. Our algorithm also applies
to two other geometric problems, achieving new algorithmic results:

(1) A largest empty square in arbitrary orientation can be found in O(n2 logn) time. This
improves the previous O(n3)-time algorithm by Bae [6]. We also solve some query
versions of this problem.

(2) A square annulus is the closed region between a pair of concentric and parallel squares.
A square annulus in arbitrary orientation with minimum width or area can be computed
in O(n2 logn) time, improving the previous O(n3 logn) and O(n3)-time algorithms [5,6].

Our combinatorial problem on the number of empty squares in arbitrary orientation can
be viewed as a new variant of the Erdős–Szekeres problem, which has a long history since
1935 [22] with consistent effort [23,41] on its original version and many other variants and
generalizations [9–11,18, 21, 24, 26, 28, 36, 38, 42]. Among them the most relevant to us is the
problem of bounding the number of empty convex k-gons whose corners are chosen from P ,
called k-holes. The maximum number of k-holes among n points is proven to be Θ(nk) for
k ≥ 3 and sufficiently large n by Bárány and Valtr [10]. Its minimum is known to be Θ(n2)
for 3 ≤ k ≤ 4; Ω(n) and O(n2) for 5 ≤ k ≤ 6 [9]; and zero for k ≥ 7 [28]. For more details on
this subject, see survey papers by Morris and Soltan [33] and [34].

Since any four points in P lying on the boundary of an empty square form a 4-hole, s
cannot exceed the number of 4-holes among P . This, however, gives only trivial upper and
lower bounds on s and s∗. In this paper, we give asymptotically tight bounds on s and s∗
since we rather focus on algorithmic applications of the bounds.

Dobkin, Edelsbrunner, and Overmars [16] presented an algorithm that enumerates all
convex k-holes for 3 ≤ k ≤ 6. Their algorithm in particular for k = 3, 4 is indeed output-
sensitive in time proportional to the number of reported k-holes, which is comparable to
our algorithm that enumerates all squares with four contact pairs. Rote et al. [39], Rote
and Woeginger [40], and Mitchell et al. [32] considered the problem of exactly counting
convex k-gons and convex k-holes faster than enumerating them. Some minimization and
maximization problems have also been considered in the literature [2, 13,17,19,20].

The problem of maintaining the L∞ (or, equivalently, L1) Voronoi diagram while the
axes rotate cannot be found in the literature. A similar paradigm about rotating axes can
be seen in Bae et al. [7] in which the authors show how to maintain the orthogonal convex

S.W. Bae and S.D. Yoon 13:3

hull of P in O(n2) time. Alegría-Galicia et al. [4] recently improved it into O(n logn) time
using O(n) space. As will be seen in the following, the orthogonal convex hull of P indeed
describes the unbounded edges of the L∞ Voronoi diagram of P .

The problem of finding a largest empty square is a square variant of the well-known largest
empty rectangle problem. The largest empty rectangle problem is one of the most intensively
studied problems in early time of computational geometry. After early results [15, 31,35, 37],
the currently fastest algorithm that finds a largest empty axis-parallel rectangle among
P runs in O(n log2 n) time by Aggarwal and Suri [3]. Mckenna et al. [31] proved a lower
bound of Ω(n logn) for this problem. Chauduri et al. [14] showed that there are O(n3)
combinatorially different classes of maximal empty rectangles over all orientations and
presented an O(n3)-time algorithm that computes a largest empty rectangle in arbitrary
orientation by enumerating all those classes.

The largest empty square problem, however, has attained relatively less interest. It
is obvious that a largest empty axis-parallel square can be found in O(n logn) time by
computing the L∞ Voronoi diagram of P [29,30], as also remarked in early papers, including
Naamad et al. [35] and Chazelle et al. [15]. It is rather surprising, however, that no further
result about the largest empty square problem in arbitrary orientation has been come up
with for over three decades, to our best knowledge. From an easy observation that any
maximal empty square in arbitrary orientation is contained in a maximal empty rectangle,
Bae [6] recently showed how to compute a largest empty square in arbitrary orientation in
O(n3) time. In this paper, we improve this to O(n2 logn) time.

The square annulus problem asks to find a square annulus of minimum width or area that
encloses a given set P of points. Its fixed-orientation version is solved in O(n logn) time [1,25].
Bae [5] presented the first O(n3 logn)-time algorithm for the problem in arbitrary orientation,
and improved it to O(n3) time [6]. In this paper, we further improve it to O(n2 logn) time.

2 Preliminaries

We consider the standard coordinate system with the (horizontal) x-axis and the (vertical)
y-axis in the plane R2. We mean by the orientation of any line, half-line, or line segment ` a
unique real number θ ∈ [0, π) such that ` is parallel to a counter-clockwise rotated copy of
the x-axis by θ.

For any square S in R2, the orientation of S is a real number θ ∈ [0, π/2) such that the
orientation of each side of S is either θ or θ + π/2. We regard the set O := [0, π/2) of all
orientations of squares as a topological space homeomorphic to a circle.

Each side of a square, as a subset of R2, is assumed to include its incident corners. We
identify the four sides of a square S by the top, bottom, left, and right sides, denoted by q(S),q(S), q (S), and q(S), respectively. This identification is clear, regardless of the orientation
of S since it is chosen from O = [0, π/2). The center of a square is the intersection point of
its two diagonals, and its radius is half its side length.

Let P be a set of n points in R2. A square is called empty if no point in P lies in its
interior. An empty square may contain some points in P on its boundary. A pair (p,) of
a point p ∈ P and a side identifier ∈ { q, q, q, q } is called a contact pair of S if p ∈ (S).
A set of contact pairs is called a contact type. If κ is the set of all contact pairs of S, then
we say that κ is the contact type of S. A contact point p ∈ P of S is a point on a side of S,
that is, one belonging to a contact pair of S. Each contact point p ∈ P of S may lie either
on the relative interior of a side of S or at a corner of S. In the former case, the contact
point p contributes to one contact pair of S, while in the latter case, it contributes to two
contact pairs.

SoCG 2020

13:4 Empty Squares in Arbitrary Orientation Among Points

Throughout the paper, we assume that P is in general position in the following sense:

There is no square in arbitrary orientation with five or more contact pairs among P .

Note that the assumption implies the number of empty squares with four contact pairs is
finite.

non-stapled (4, 2)

stapled (4, 2) stapled (4, 3)-(b)

stapled (4, 3)-(a)

non-stapled (4, 3)

stapled (4, 3)-(c)

stapled (4, 4)-(a)

stapled (4, 4)-(b)

(4, 1)

non-stapled (4, 4)

Figure 1 Illustration of 10 types of 4-squares and the type names. Small circles on the boundary
of each square depict its contact points in P . The four left ones are non-stapled types and the six
right ones are stapled types.

Consider any empty square S of contact type κ. We call S an m-square or (m, k)-square
if m = |κ| and k is the number of contact points in κ. A side of S is called pinned if it
contains a point in P , so it is involved in some contact pair in κ; or stapled if it contains
two distinct points in P . If S has a stapled side, then S is called stapled. From the general
position assumption, there are no three or more contact pairs in κ involving a common side
of S, and there is at most one stapled side of S.

We then classify the 4-squares into 10 types under the symmetry group of the square.
See Figure 1 for an illustration to the 10 types of 4-squares with type names.

Throughout the paper, we are less interested in trivial (4, 1)-squares in most cases.
Hereafter, we thus mean by a 4-square a nontrivial 4-square, that is, a (4, k)-square with
k ≥ 2, unless stated otherwise.

3 Empty Squares and the Voronoi Diagram

The empty squares among P are closely related to the Voronoi diagram of P under the L∞
distance. In this section, we define the Voronoi diagram for every θ ∈ O based on empty
squares and collect several essential properties of empty squares in terms of the Voronoi
diagram, based on which we will be able to bound the number of 4-squares and to present
an efficient algorithm that computes all 4-squares.

3.1 Definition of Voronoi diagrams
Let P be a given set of n points in general position as discussed in Section 2. For each
θ ∈ O, we define VD(θ) to be the L∞ Voronoi diagram of P with the axes rotated by θ, or
equivalently, the Voronoi diagram of P under the symmetric convex distance function dθ
based on a unit square whose orientation is θ. The Voronoi region of p ∈ P in θ is

VRp(θ) := {x ∈ R2 | dθ(x, p) < dθ(x, q), q ∈ P \ {p}}.

S.W. Bae and S.D. Yoon 13:5

The diagram VD(θ) can also be defined in terms of empty squares. More precisely, we
view VD(θ) as a plane graph whose vertices V̂ (θ) and edges Ê(θ) are determined as follows:

The vertex set V̂ (θ) consists of the centers of all empty squares in orientation θ with
three or four pinned sides, and a point at infinity, denoted by ∞̂.
An edge is contained in Ê(θ) if and only if it is a maximal set of centers of all empty
squares in orientation θ having a common contact type with two pinned sides. Each edge
in Ê(θ) is either a half-line or a line segment, called unbounded or bounded, respectively.

p1

p2 p3

p4

VD(φ− ε) VD(φ) VD(φ+ ε)

Figure 2 Illustration of VD(φ− ε), VD(φ), and VD(φ+ ε) for P = {p1, . . . , p4} and some φ ∈ O.

See Figure 2. From our definition, there are four more edges incident to each p ∈ P such
that each of them corresponds to 2-squares with one corner anchored at p. In this way, each
point p ∈ P is also a vertex in V̂ (θ) since p is the center of a trivial (4, 1)-square with its four
sides pinned. The diagram VD(θ) as a plane graph divides the plane into its faces. Each face
of VD(θ) is the locus of centers of empty squares having a common contact type with one
pinned side; hence, for every contact pair (p,), there exists a unique face of VD(θ) consisting
of the centers of 1-squares with contact type {(p,)}. Therefore, the Voronoi region VRp(θ)
of each p ∈ P includes exactly four faces of VD(θ). On the other hand, there may exist some
neutral faces of VD(θ) that do not belong to any Voronoi region VRp(θ), if it corresponds
to 2-squares with a stapled side (see the two shaded faces of VD(φ) in color lightblue in
Figure 2). This is obviously a degenerate case which has been avoided from most discussions
about Voronoi diagrams in the literature. In this way, our definition of VD(θ) completely
represents all cases of point set P , even if there are four equidistant points in P under dθ or
there are two points in P such that pq is in orientation θ or θ + π/2.

The combinatorial structure of VD(θ) is represented by its underlying graph VG(θ) =
(V (θ), E(θ)), called the Voronoi graph; conversely, VD(θ) is a plane embedding of VG(θ).
More precisely, the vertices and edges of VG(θ) are described and identified as follows:

Each vertex v ∈ V (θ) corresponds to v̂ ∈ V̂ (θ). In particular, the vertex at infinity,
denoted by ∞ ∈ V (θ), corresponds to ∞̂ ∈ V̂ (θ). Each v ∈ V (θ) \ {∞} is identified by
the contact type κv of the square defining v̂ ∈ V̂ (θ). For completeness, we define κ∞ := ∅.
Each edge e ∈ E(θ) corresponds to ê ∈ Ê(θ). Each edge e = uv ∈ E(θ) for u, v ∈ V (θ)
is identified by a triple (κu, κv;κe), where κe is the contact type of the squares defining
ê ∈ Ê(θ). If e is bounded, then we have κe = κu ∩ κv.

Hence, for θ, θ′ ∈ O, two vertices v ∈ V (θ) and v′ ∈ V (θ′) are the same if κv = κv′ ; two
edges uv ∈ E(θ) and u′v′ ∈ E(θ′) are the same if (κu, κv;κuv) = (κu′ , κv′ ;κu′v′). We say
that VD(θ) and VD(θ′) are combinatorially equivalent if VG(θ) = VG(θ′).

SoCG 2020

13:6 Empty Squares in Arbitrary Orientation Among Points

3.2 Basic properties
For each vertex v ∈ V (θ), we call v and its embedding v̂ ∈ V̂ (θ) regular if |κv| = 3, that
is, its corresponding empty square is a 3-square. For each edge e ∈ E(θ), we call e and its
embedding ê ∈ Ê(θ) regular if |κe| = 2.

Each edge e ∈ E(θ) is called sliding if the two pinned sides in κe are parallel, or growing,
otherwise. From the properties of the L∞ Voronoi diagram, we observe that any sliding
edge is in orientation θ or θ + π/2, while any growing edge is in orientation θ + π/4 or
θ + 3π/4 (modulo π). For e ∈ E(θ), we regard each growing edge to be directed in which its
corresponding square is growing.

(3, 2)

(3, 3) non-stapled (4, 2)

stapled (4, 2)

stapled (4, 3)-(c)

stapled (4, 3)-(b)non-stapled (4, 3)

stapled (4, 3)-(a)

stapled (4, 4)-(a)

stapled (4, 4)-(b)

(4, 1)

non-stapled (4, 4)

p

Figure 3 Illustration of the 12 vertex types of VD(θ) labeled with their type names. Dotted
squares and small circles on them depict an empty square corresponding to each vertex type and
its contact points. Dots and line segments depict vertices and all incident edges to each vertex;
in black if regular, or in blue, otherwise. The arrows on edges depict the direction in which the
corresponding square grows. The shaded area in the stapled (4, 2)-type depicts a neutral face which
does not belong to any Voronoi region VRp(θ) for p ∈ P . (We keep the above convention on every
figure in this paper.) Note that the right six types are stapled, while the left six are not.

For each vertex v ∈ V (θ) with v 6=∞, the local structure of the diagram VD(θ) around v̂
is completely determined by its contact type κv. From the possible contact types of 3- and
4-squares, we classify all vertices in V (θ) \ {∞} into 12 vertex types.

I Lemma 3.1. There are 12 types for the vertices of VD(θ) as illustrated in Figure 3. For
any vertex v ∈ V (θ) \ {∞}, the contact types κe of all edges e ∈ E(θ) incident to v can be
obtained just from the contact type κv without knowing the other incident vertex of e.

Consider all squares with contact type κe defining ê ∈ Ê(θ). If e is sliding, then all these
squares have the same radius; if e is growing, then their radius grows along ê. The following
lemma is an immediate observation.

I Lemma 3.2 (Boissonnat et al. [12]). Let e = uv ∈ E(θ) be any bounded edge for any θ ∈ O,
and Su and Sv be the empty squares in θ with contact types κu and κv, respectively. Then,
the union R of all squares in θ with contact type κe is equal to Su ∪ Sv. More specifically,
if e is sliding, then R = Su ∪ Sv forms a rectangle; if e is growing, then one of Su and Sv
completely contains the other, so R is a square.

The above lemma indeed extends to the case of unbounded edges. Consider any unbounded
edge e ∈ E(θ) and the union R of all squares as declared in Lemma 3.2. Observe that R forms
an empty unbounded quadrant rotated by θ and the empty quadrant R has two or three

S.W. Bae and S.D. Yoon 13:7

OH(θ)

Figure 4 Illustration to Lemma 3.3. The orthogonal convex hull OH(θ) of P (shaded region)
and the four staircases (gray thick lines) describe all unbounded edges (arrows) and their incident
vertices of VD(θ) (small circles and dots).

contact points in P . This tells us a relation between unbounded edges and the orthogonal
convex hull of P . The orthogonal convex hull of point set P is defined to be the minimal
subset of R2 such that any vertical or horizontal line intersects it in at most one connected
component. It is known that the orthogonal convex hull is obtained by subtracting all empty
quadrants (of four directions) from the whole plane R2 and its boundary is represented by
four monotone chains, called the staircases. For θ ∈ O, let OH(θ) denote the orthogonal
convex hull of P with the axes rotated by θ. See Figure 4 and Bae et al. [7] for more details
on OH(θ), including the precise definition of OH(θ) and the staircases.

I Lemma 3.3. For any θ ∈ O, all the unbounded edges and their incident vertices of VD(θ)
are explicitly described by OH(θ), in the sense that if v ∈ V (θ) \ {∞} is a vertex incident to
an unbounded edge, then either
(i) we have v̂ = p ∈ P and p coincides with a vertex of OH(θ), or
(ii) its contact points in κv appear consecutively in a staircase of OH(θ).

Another implication of Lemma 3.1 is that the degree of every vertex, except ∞ ∈ V (θ),
is at least three and at most five. This implies the linear complexity of VD(θ) for any θ ∈ O.

I Lemma 3.4. For any θ ∈ O, the number of vertices, edges, and faces of VD(θ) is Θ(n).

3.3 Combinatorial changes of VD(θ) and 4-squares
Let S4 be the set of all nontrivial 4-squares among P . By our general position assumption
on P , we know that S4 is finite. Let s4 := |S4| be the number of 4-squares among P . For
any orientation θ ∈ O, we call θ regular if there is no nontrivial 4-square in orientation
θ, or degenerate, otherwise. Since there are only finitely many (exactly s4) 4-squares, all
orientations θ ∈ O but at most s4 of them are regular.

In a regular orientation θ, the diagram VD(θ) has the following properties.

I Lemma 3.5. For any regular orientation θ ∈ O, every vertex in V (θ), except those in P
and ∞, is regular, and every edge in E(θ) is regular. There are five types of bounded edges,
as shown in Figure 5, and two types of unbounded edges.

SoCG 2020

13:8 Empty Squares in Arbitrary Orientation Among Points

(3, 2)–(3, 2) (3, 2)–(3, 3) (3, 2)–(3, 3)(3, 3)–(3, 3) (4, 1)–(3, 2)

Figure 5 Illustration of five types of bounded edges of VD(θ) for a regular orientation θ ∈ O,
depending on the types of incident vertices. The first three are sliding and the last two are growing.

Consider any contact type κ with three contact pairs and three pinned sides. For any
θ ∈ O, let Sκ(θ) be the square in orientation θ whose contact type includes the three contact
pairs in κ, regardless of its emptiness. Note that Sκ(θ) is well defined only in a closed interval
of O, or is never defined for any θ ∈ O. For each θ for which Sκ(θ) is well defined, we call θ
valid for κ if Sκ(θ) is empty and its contact type is exactly κ. Note that if θ is valid for κ,
then there exists a vertex v ∈ V (θ) with κv = κ.

I Lemma 3.6. For any contact type κ with three contact pairs and three pinned sides, the
set of all valid orientations for κ forms zero or more open intervals I ⊂ O such that Sκ(φ) is
a 4-square for any endpoint φ of I.

We call each of these open intervals described in Lemma 3.6 a valid interval for κ. Lemma 3.6
also implies that any endpoint of a valid interval for κ is a degenerate orientation.

For any degenerate orientation φ ∈ O, let S4(φ) ⊆ S4 be the set of 4-squares whose
orientation is φ. Note that S4(φ) is nonempty and consists of at most O(n) squares by
Lemma 3.4. We then observe the following.

I Lemma 3.7. Let S ∈ S4(φ) be any 4-square in orientation φ and κ be its contact type.
Then, there are exactly two or four contact types κ′ with three contact pairs and three pinned
sides such that Sκ′(φ) = S and either φ − ε or φ + ε is valid for κ′ for sufficiently small
ε > 0. Specifically, the number of such κ′ is four if S is non-stapled, or two if S is stapled.

Figure 6 illustrates transitions of a non-regular vertex, which corresponds to a 4-square
in S4(φ), from and to regular vertices, locally at θ = φ, so almost describes our proof for
Lemma 3.7. Observe that any non-stapled 4-square is relevant to an edge flip of VD(θ),
and that only stapled (4, 3)-(b)- or (c)-type squares show a bit different behavior; such a
non-regular vertex suddenly appears on a regular edge and splits to two regular vertices, or,
reversely, two regular vertices are merged into such a non-regular one and soon disappear.

The above discussions provide us a thorough view on the 3-squares and the 4-squares.
Consider the graph G whose vertex set is the set S4 of all 4-squares and whose edge set
consists of edges (S, S′) for S, S′ ∈ S4 such that there is a valid interval I = (φ, φ′) for
some contact type κ such that Sκ(φ) = S and Sκ(φ′) = S′. The graph G is well defined by
Lemma 3.6 and the degree of every vertex in G is exactly two or four by Lemma 3.7.

4 Number of 4-Squares

In this section, we prove asymptotically tight upper and lower bounds on the number of
4-squares and (4, k)-squares for each 2 ≤ k ≤ 4. Following are two main theorems.

I Theorem 4.1. The number of 4-squares among n points in general position is always
between Ω(n) and O(n2). These lower and upper bounds are asymptotically tight.

S.W. Bae and S.D. Yoon 13:9

stapled (4, 2)

stapled (4, 3)-(c)

stapled (4, 3)-(b)

stapled (4, 3)-(a)

stapled (4, 4)-(a)

stapled (4, 4)-(b)

non-stapled (4, 2)

θ = φθ = φ− ε θ = φ+ ε

non-stapled (4, 3)

non-stapled (4, 4)

Figure 6 Transitions between regular (3-squares) and non-regular vertices (4-squares).

SoCG 2020

13:10 Empty Squares in Arbitrary Orientation Among Points

I Theorem 4.2. Among n points in general position, the number of empty squares whose
boundary contains four points of P is between 0 and O(n2). These lower and upper bounds
are asymptotically tight.

For any positive integersm and k ≤ m, let sm(P) and sm,k(P) be the number ofm-squares
and (m, k)-squares, respectively, among P . We then define

σm(n) := min
|P |=n

sm(P), σm,k(n) := min
|P |=n

sm,k(P),

Σm(n) := max
|P |=n

sm(P), and Σm,k(n) := max
|P |=n

sm,k(P).

In the following, we show the asymptotically tight bounds on these quantities for m = 4.
It is obvious that σ4,1(n) = Σ4,1(n) = n and Σ4,k(n) ≤

(
n
k

)
for 2 ≤ k ≤ 4. So, we have

σ4(n) = Ω(n) and Σ4(n) = O(n4).

4.1 Upper bounds
Here, we prove the upper bounds Σ4,k(n) for 2 ≤ k ≤ 4 and Σ4(n) are quadratic in n. We
first show that there exists a point set P with n = |P | having Ω(n2) many 4-squares.

Figure 7 Illustration of a point set Pn with Ω(n2) many 4-squares.

I Lemma 4.3. For any n ≥ 4, there exists a set Pn of n points such that s4,k(Pn) = Ω(n2)
for each 2 ≤ k ≤ 4 and thus s4(Pn) = Ω(n2).

This already proves that Σ4,2(n) = Θ(n2). In the following, we prove the matching upper
bounds of Σ4,3(n) and Σ4,4(n).

Upper bound of Σ4,3(n)

Any (4, 3)-square is of one of the four types: non-stapled (4, 3) and stapled (4, 3)-(a–c) types,
see Figure 1. We bound the number of (4, 3)-squares of each type, separately.

First, consider the stapled (4, 3)-(b–c) types. Note that if S is in this case with two
contact points p, q ∈ P on its stapled side, then one of p and q also lie on a corner of S.

I Lemma 4.4. Let S ∈ S4(φ) be a square of stapled (4, 3)-(b)- or (c)-type with contact
type κ, and v ∈ V (φ) be the vertex with κv = κ. Then, there exists a stapled (4, 2)-square
S′ ∈ S4(φ) with contact type κ′ such that v is adjacent to v′ ∈ V (φ) with κv′ = κ′ in VG(φ).

S.W. Bae and S.D. Yoon 13:11

From Lemma 3.1, we know that each vertex v′ ∈ V (φ) of stapled (4, 2)-type has two growing
edges whose growing direction is outwards from v′. Hence, for each vertex of stapled (4, 2)-
type, there can be at most two adjacent vertices whose corresponding square is larger and
has three contact points. This implies that the number of stapled (4, 3)-(b)- and (c)-type
squares is at most twice the number of stapled (4, 2)-squares, which is O(n2), by Lemma 4.4.

Next, we consider the other two types of (4, 3)-squares: non-stapled (4, 3)-type and stapled
(4, 3)-(a)-type. Consider any (4, 3)-square S ∈ S4(φ) whose type is one of the above two.
Without loss of generality, assume that a contact point p ∈ P lies on the bottom-left corner
of S. Then, regardless of its specific type, the other two contact points q1, q2 ∈ P lie on either
the top or the right side of S. So, κ = {(p, q), (p, q), (q1, 1), (q2, 2)} for 1, 2 ∈ { q, q}. See
Figure 1. Notice that q1 and q2 are two equidistantly closest points from p under the distance
function dφ among those points in the quadrant with apex p in orientation φ.

In the following, we count the number of those pairs (q1, q2) with the discussed property
for each fixed p ∈ P . This bounds the number of those (4, 3)-squares with p on the bottom-left
corner. More precisely, let `θ be the upward half-line from p in orientation θ ∈ [0, π), and ∠θ
be the cone with apex p and angle span π/4 defined by two half-lines `θ and `θ+π/4. Then,
for any θ ∈ O, consider the two subsets

Q q(θ) := P \ {p} ∩ ∠θ and Q q(θ) := P \ {p} ∩ ∠θ+π/4.

For any q ∈ P \ {p}, define a function fq : O→ R to be

fq(θ) :=
{
dθ(p, q) if q ∈ Q q(θ) ∪Q q(θ)
∞ otherwise

.

Then, our task is reduced to find the complexity of the lower envelope F of the functions fq
for all q ∈ P \ {p}. By a trick similar to that used in Hershberger [27], we show the following.

I Lemma 4.5. The complexity of the lower envelope F of fq for all q ∈ P \ {p} is O(n).

This proves that the number of non-stapled (4, 3)-squares and stapled (4, 3)-(a)-squares
among P is at most O(n2). Combining the above discussions about stapled (4, 3)-(b–c)
squares and Lemma 4.3, we conclude that Σ4,3(n) = Θ(n2).

Upper bound of Σ4,4(n)

Now, we prove the matching upper bound on the number of (4, 4)-squares. Any (4, 4)-square
is one of the three types: non-stapled (4, 4) and stapled (4, 4)-(a–b) types. See Figure 1.

I Lemma 4.6. Let S ∈ S4(φ) be a stapled (4, 4)-square with contact type κ, and v ∈ V (φ)
be the vertex with κv = κ. Then, there exists a stapled (4, 3)-square S′ ∈ S4(φ) with contact
type κ′ such that v is adjacent to v′ ∈ V (φ) in VG(φ) with κv′ = κ′.

From Lemma 3.1, we know that each vertex v′ ∈ V (φ) of stapled (4, 3)-type has at most
one growing edge whose growing direction is outwards from v′. Hence, for each vertex of
stapled (4, 3)-type, there can be at most one adjacent vertex whose corresponding square is
larger and has four contact points. This implies that the number of stapled (4, 4)-squares is
at most the number of stapled (4, 3)-squares, which is O(n2) by Lemmas 4.4 and 4.6.

Lastly, we bound the number of non-stapled (4, 4)-squares. Recall that we have so far
proved that the number of 4-squares whose type is not non-stapled (4, 4)-type is O(n2).

I Lemma 4.7. In the graph G defined in Section 3, any non-stapled (4, 4)-square is adjacent
to at least one 4-square that is not of non-stapled (4, 4)-type.

SoCG 2020

13:12 Empty Squares in Arbitrary Orientation Among Points

Lemma 3.7 states that the degree of each 4-square in S4 is of degree at most four, and hence
is adjacent to at most four non-stapled (4, 4)-squares. Since the number of 4-squares that is
not of non-stapled (4, 4)-type is O(n2) and each non-stapled (4, 4)-square is adjacent to one
of them by Lemma 4.7, we conclude that the number of non-stapled (4, 4)-squares is also
O(n2). This proves the upper bound of Theorem 4.2.

Since Σ4(n) ≤
∑

1≤k≤4 Σ4,k(n), we have that Σ4(n) = O(n2). By Lemma 4.3, we have
Σ4(n) = Ω(n2), completing our proof for the claimed upper bound of Theorem 4.1.

4.2 Lower bounds
We then turn into proving the lower bounds. As discussed above, we already have σ4(n) =
Ω(n), which matches the claimed lower bound in Theorem 4.1. Here, we show Ω(n) lower
bounds for σ4,2(n) and σ4,3(n), and then construct a point set with O(n) 4-squares.

I Lemma 4.8. For any integer n ≥ 3, σ4,2(n) = Ω(n) and σ4,3(n) = Ω(n).

Figure 8 Illustration of a point set P ′
n with O(n) many 4-squares.

We finally construct a point set having a small number of 4-squares.

I Lemma 4.9. For any integer n ≥ 1, there exists a set P ′n of n points such that s4,2(P ′n) =
O(n), s4,3(P ′n) = O(n), s4,4(P ′n) = 0, and thus s4(P ′n) = O(n).

Consequently, by Lemma 4.9, we have σ4,2(n) = Θ(n), σ4,3(n) = Θ(n), and thus
σ4(n) = Θ(n), while σ4,4(n) = 0. This proves the lower bounds in Theorems 4.1 and 4.2.

5 Maintaining the L∞ Voronoi Diagram under Rotation

Lemma 3.6 implies that for any two consecutive degenerate orientations φ1, φ2 ∈ O the
vertex set V (θ) stays the same for all φ1 < θ < φ2. By Lemma 3.2, a change in the edge set
E(θ) happens when and only when its incident vertices change, so VD(θ) for all φ1 < θ < φ2
are combinatorially equivalent. So, the combinatorial change of VD(θ) happens at every
degenerate orientation θ = φ only.

In the following, ε ∈ R denotes arbitrarily small positive real. For any degenerate
orientation φ ∈ O and a 4-square S ∈ S4(φ) with contact type κ, let V −S ⊆ V (φ − ε) and
V +
S ⊆ V (φ+ ε) be the sets of regular vertices v in V (φ− ε) and V (φ+ ε), respectively, such

that κv ⊂ κ. For each degenerate orientation φ ∈ O, define

V −(φ) := V (φ− ε) \ V (φ+ ε) and V +(φ) := V (φ+ ε) \ V (φ− ε)

S.W. Bae and S.D. Yoon 13:13

to be the sets of vertices to be deleted and inserted, respectively, as θ goes through φ.
Similarly, define

E−(φ) := E(φ− ε) \ E(φ+ ε) and E+(φ) := E(φ+ ε) \ E(φ− ε).

Lemmas 3.6 and 3.7 imply the following.

I Lemma 5.1. For any degenerate orientation φ ∈ O, the following hold:
(i) V −(φ) =

⋃
S∈S4(φ) V

−
S and V +(φ) =

⋃
S∈S4(φ) V

+
S .

(ii) E−(φ) and E+(φ) consist of edges incident to a vertex in V −(φ) and V +(φ), respectively.
(iii) |V −(φ)|+ |V +(φ)|+ |E−(φ)|+ |E+(φ)| = Θ(|S4(φ)|).

5.1 Events
Thus, every combinatorial change of VD(θ) can be specified by finding all degenerate
orientations and all 4-squares. For the purpose, our algorithm handles events.

An edge event is a pair (e, φ) for a bounded edge e ∈ E(φ− ε) and an orientation φ ∈ O
such that the embedding ê ∈ Ê(φ− ε) of e is about to collapse into a point in orientation
φ. As a result, the two vertices u, v incident to e are merged into one with contact type
κu ∪ κv, and there is a unique 4-square S ∈ S4(φ) such that S = Sκu

(φ) = Sκv
(φ) and

its contact type is κu ∪ κv. We call S the relevant square to this edge event.
An align event is a triple (p, q, φ) for distinct p, q ∈ P and φ ∈ O such that the orientation
of segment pq is either φ or φ+ π/2 and there is a 4-square in S4(φ) one of whose sides
contains both p and q. Each such 4-square is called relevant to this align event.

We then observe the following lemmas.

I Lemma 5.2. For any degenerate orientation φ ∈ O, an event occurs at φ. More precisely,
every stapled 4-square in S4(φ) is relevant to an align event at φ and every non-stapled
4-square in S4(φ) is relevant to an edge event at φ.

We call an align event (p, q, φ) an outer align event if both p and q appear consecutively
on the boundary of OH(φ) or, otherwise, an inner align event. By Lemma 3.3, we can
precompute all outer align events using the algorithm by Alegría-Galicia et al. [4].

I Lemma 5.3. There are O(n) outer align events and we can compute them in O(n logn)
time.

We then observe the following for inner align events. See also Figure 9.

I Lemma 5.4. If an inner align event occurs at φ ∈ O, then there is a stapled (4, 3)-square
in S4(φ) that is relevant to an edge event that occurs at φ.

Lemma 5.4 implies that every inner align event can be noticed by handling an edge event
whose relevant 4-square is of stapled (4, 3)-type. This, together with Lemma 5.3, allows us
to maintain the diagram VD(θ) in an efficient and output-sensitive way, as we do not need
to test all pairs of points p, q ∈ P for potential align events.

In order to catch every edge event, we define the potential edge event as follows: for any
regular orientation θ ∈ O and any bounded edge e = uv ∈ E(θ), the potential edge event
w(e, θ) for e and θ is a pair (e, φ) such that θ < φ < π/2 and Sκu

(φ) = Sκv
(φ), regardless of

its emptiness. If such φ does not exist, then w(e, θ) is undefined.

I Lemma 5.5. The potential edge event w(e, θ) is uniquely defined, unless undefined. Given
e and θ, one can decide if w(e, θ) is defined and compute it, if defined, in O(1) time.

SoCG 2020

13:14 Empty Squares in Arbitrary Orientation Among Points

p q

p′

θ = φ− ε θ = φ
p q

p′

p q

p′

θ = φ− ε θ = φ

(a) (b)

p′

p q

e′ e′

Figure 9 Illustration to the proof of Lemma 5.4. This figure shows the combinatorial changes
around the vertex corresponding to a stapled (4, 2)-square and incident edges (a) when p′ lies on the
left side of S′ and (b) when p′ lies on the top side of S′, at θ = φ− ε and θ = φ. The red edge ê in
φ− ε is collapsed into the red vertex in φ, and the blue edges are those that are non-regular.

5.2 Algorithm
Our algorithm maintains the combinatorial structure VG(θ) of the Voronoi diagrams VD(θ)
as θ ∈ O continuously increases from 0 to π/2. For the purpose, we increase θ and stop at
every degenerate orientation φ to find all 4-squares in S4(φ) and update VG(θ) according
to the corresponding changes. For the purpose, we maintain data structures, keeping the
invariants at the current orientation θ ∈ O as follows.

The graph G = (V,E) stores the current Voronoi graph VG(θ) = (V (θ), E(θ)).
The event queue Q is a priority queue that stores potential edge events w(e, θ) for all e ∈ E
and all outer align events that occur after θ, ordered by their associated orientations.
The search tree T is a balanced binary search tree on the set K := P × { q, q , q, q} of all
contact pairs indexed by any total order on K. Each node labeled by (p,) ∈ K stores
the set of all regular vertices v ∈ V such that (p,) ∈ κv, denoted by T (p,), into a
sorted list L(p,) by the order along the boundary of the face of VD(θ) for (p,).

Note that the structures we maintain stay the same between any two consecutive degen-
erate orientations. Also, by Lemmas 3.4 and 5.3, the space used by the data structures is
bounded by O(n) at any time by the invariants.

Our algorithm runs in two phases: the initialization and the main loop. Without loss
of generality, we assume that 0 ∈ O is a regular orientation. In the initialization phase, we
initialize the data structures for θ = 0. We first compute VG(0) by any optimal algorithm
computing the L∞ Voronoi diagram [29, 30]. Then, for any regular vertex v ∈ V (0), we
insert v into V and T ; for any bounded edge e ∈ E(0), we insert e into E, we compute the
potential edge event w(e, 0), if defined, and insert it into Q. Compute all outer align events
by Lemma 5.3 and insert them into Q.

We are then ready to run the main loop of our algorithm from the current orientation
θ = 0. In the main loop, we repeatedly recognize the next degenerate orientation φ > θ

by finding an event with a smallest orientation from Q, collect all events that occur at φ
by extracting them from Q, and handle them by performing the following two steps: (1)
computing all 4-squares in S4(φ) and (2) updating our structures as θ proceeds over φ.

For the first step, let W be the set of all events in Q whose associated orientation is φ.
The set W can be obtained by repeatedly performing operations on the event queue Q; check
if the associated orientation of the minimum element in Q is exactly φ and extract it, if so.

S.W. Bae and S.D. Yoon 13:15

For each event w ∈ W , we find all squares relevant to w, according to the type of w. We
initialize S4(w) to be an empty set as a variable, and will finally consist of all 4-squares
relevant to w. Consequently, we have the following.
I Lemma 5.6. The first step of the main loop can be done in O(|S4(φ)| logn) time and we
have S4(φ) =

⋃
w∈W S4(w) in the end.

In the second step, we first specify the sets V −(φ), V +(φ), E−(φ), and E+(φ), and then
update our data structures to keep the invariants accordingly. For each S ∈ S4(φ), we
compute V −S and V +

S by Lemma 3.7 and its proof as illustrated in Figure 6. By Lemma 5.1(i),
we obtain V −(φ) and V +(φ). By Lemma 5.1(ii), we can compute the edge sets E−(φ) and
E+(φ) by searching the neighbors of V −(φ) in VG = VG(θ).
I Lemma 5.7. The sets E−(φ) and E+(φ) can be found in O(|S4(φ)| log |S4(φ)|) time.

We are ready to update our structures for φ+ ε for arbitrarily small ε > 0. Note that
we currently have V = V (θ) = V (φ − ε) and E = E(θ) = E(φ − ε). We update V and E
as follows: delete all vertices in V −(φ) from V and all edges in E−(φ) from E, and then
insert all vertices in V +(φ) into V and all edges in E+(φ) into E. Then, update T and
Q as follows: We delete each v ∈ V −(φ) from T and insert each v ∈ V +(φ) into T . For
each e ∈ E−(φ), we delete the potential edge event for e from Q. For each e ∈ E+(φ), we
compute the potential edge event w(e, φ+ ε) by Lemma 5.5 and insert it into Q, if defined.
Lastly, set θ to be φ+ ε.

We finally conclude the following.
I Theorem 5.8. Given a set P of n points in general position, the total amount of combina-
torial changes of the L∞ Voronoi diagram of P while the axes rotate by π/2 is bounded by
Θ(s4), where s4 denotes the number of 4-squares among P . The combinatorial structure of
the Voronoi diagram can be maintained explicitly in total O(s4 logn) time using O(n) space.
I Corollary 5.9. Given a set P of n points in general position, we can compute all 4-squares
among points in P in O(s4 logn) time and O(n) space.

6 Maximal Empty Squares

It is now clear that our algorithm in the previous section collects a full description of all
maximal empty squares in O(n2 logn) time and its complexity is O(n2). Hence, it is not
difficult to derive an algorithm that finds a largest empty square over all orientations.
I Theorem 6.1. Given a set P of n points in the plane, a largest empty square among P in
arbitrary orientation can be computed in worst-case O(n2 logn) time.

Some query versions of the problem can also be considered.
I Theorem 6.2. Given a set P of n points, in O(n2 logn) time, we can preprocess P into a
data structure of size O(n2α(n)) that answers the following query in O(logn) time: given an
orientation β ∈ O, find a largest empty square in orientation β.
I Theorem 6.3. Given a set P of n points, in O(s4 logn) time, we can preprocess P into a
data structure of size O(s4) that answers the following query in O(logn) time: given a point
c ∈ R2 and β ∈ O, find a largest empty square centered at c in orientation β.

By a similar approach to that used in Bae [6], we reduce the problem of computing a
square annulus of minimum width or area to that of finding all maximal empty squares.
I Theorem 6.4. Given a set P of n points, a square annulus of minimum width or minimum
area in arbitrary orientation that encloses P can be computed in O(n2 logn) time.

SoCG 2020

13:16 Empty Squares in Arbitrary Orientation Among Points

References
1 M. Abellanas, Ferran Hurtado, C. Icking, L. Ma, B. Palop, and P.A. Ramos. Best fitting

rectangles. In Proc. Euro. Workshop Comput. Geom. (EuroCG 2003), 2003.
2 A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a

matrix-searching algorithm. Alogorithmica, 2:195–208, 1987.
3 A. Aggarwal and S. Suri. Fast algorithm for computing the largest empty rectangle. In Proc.

3rd ACM Sympos. Comput. Geom. (SoCG 1987), pages 278–290, 1987.
4 Carlos Alegría-Galicia, David Orden, Carlos Seara, and Jorge Urrutia. On the Oβ-hull of a

planar point set. Comput. Geom.: Theory Appl., 68:277–291, 2018.
5 Sang Won Bae. Computing a minimum-width square annulus in arbitrary orientation. Theoret.

Comput. Sci., 718:2–13, 2018.
6 Sang Won Bae. On the minimum-area rectangular and square annulus problem, 2019. submitted

to CGTA. arXiv:1904.06832.
7 Sang Won Bae, Chunseok Lee, Hee-Kap Ahn, Sunghee Choi, and Kyung-Yong Chwa. Com-

puting minimum-area rectilinear convex hull and L-shape. Comput. Geom.: Theory Appl.,
42(9):903–912, 2009.

8 Sang Won Bae and Sang Duk Yoon. Empty squares in arbitrary orientation among points,
2019. arXiv:1911.12988.

9 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canad. Math. Bull., 30:436–445,
1987.

10 I. Bárány and P. Valtr. A positive fraction Erdős–Szekeres theorem. Discrete Comput. Geom.,
19(3):335–342, 1998.

11 I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons.
Studia Sci. Math. Hungar., 41:243–269, 2005.

12 J.-D. Boissonnat, M. Sharir, B. Tagansky, and M. Yvinec. Voronoi diagrams in higher
dimensions under certain polyhedral distance functions. Discrete Comput. Geom., 19(4):485–
519, 1998.

13 J.E. Boyce, D.P. Dobkin, R.L. Drysdale, and L.J. Guibas. Finding extreman polygons. SIAM
J. Comput., 14:134–147, 1985.

14 Jeet Chaudhuri, Subhas C. Nandy, and Sandip Das. Largest empty rectangle among a point
set. J. Algo., 46:54–78, 2003.

15 B. Chazelle, R.L. Drysdale, and D.T. Lee. Computing the largest empty rectangle. SIAM J.
Comput., 15:300–315, 1986.

16 David P. Dobkin, Herbert Edelsbrunner, and Mark H. Overmars. Searching for empty convex
polygons. Algorithmica, 5(1):561–571, 1990.

17 R.L. Drysdale and J.W. Jaromczyk. A note on lower bounds for the maximum area and
maximum perimeter k-gon problems. Inform. Proc. Lett., 32(6):301–303, 1989.

18 A. Dumistrescu. Planar sets with few empty convex polygons. Studia Sci. Math. Hungar.,
36:93–109, 2000.

19 David Eppstein. New algorithms for minimum area k-gons. In Proc. 3rd Annu. ACM-SIAM
Sympos. Discrete Algo. (SODA’92), pages 83–88, 1992.

20 David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger. Finding minimum
area k-gons. Discrete Comput. Geom., 7(1):45–58, 1992.

21 Pual Erdős. Some more problems on elementary geometry. Austral. Math. Soc. Gaz., 5:52–54,
1978.

22 Pual Erdős and Georege Szekeres. A combinatorial problem in geometry. Compositio Math.,
2:463–470, 1935.

23 Pual Erdős and Georege Szekeres. On some extremum problems in elementary geometry. Ann.
Univ. Sci. Budapest Eötvös Sect. Math., 3–4:53–62, 1961.

24 Tobias Gerken. Empty convex hexagons in planar point sets. Discrete Comput. Geom.,
39(1):239–272, 2008.

http://arxiv.org/abs/1904.06832
http://arxiv.org/abs/1911.12988

S.W. Bae and S.D. Yoon 13:17

25 Olga N. Gluchshenko, Horst W. Hamacher, and Arie Tamir. An optimal O(n logn) algorithm
for finding an enclosing planar rectilinear annulus of minimum width. Operations Research
Lett., 37(3):168–170, 2009.

26 H. Harborth. Kovexe Fünfecke in ebenen Punktmengen. Elem. Math., 33:116–118, 1978.
27 J. Hershberger. Finding the upper envelope of n line segments in O(n logn) time. Inform.

Proc. Lett., 33:169–174, 1989.
28 J.D. Horton. Sets with no empty convex 7-gons. Canad. Math. Bull., 26:482–484, 1983.
29 D. T. Lee. Two-dimensional Voronoi diagrams in the Lp-metric. J. ACM, 27:604–618, 1980.
30 D.T. Lee and C.K. Wong. Voronol diagrams in L1(L∞) metrics with 2-dimensional storage

applications. SIAM J. Comput., 9:200–211, 1980.
31 M. Mckenna, J. O’Rourke, and S. Suri. Finding the largest rectangle in an orthogonal polygon.

In Proc. 23rd Annual Allerton Conf. Comm. Control Comput., 1985.
32 J.S.B. Mitchell, G. Rote, G. Sundaram, and G. Woeginger. Counting convex polygons in

planar point sets. Inform. Proc. Lett., 56(1):45–49, 1995.
33 W. Morris and V. Soltan. The Erdős–Szekeres problem on points in convex position—a survey.

Bull. Amer. Math. Soc., 33:437–458, 2000.
34 Walter Morris and Valeriu Soltan. The Erdős–Szekeres problem. In John Forbes Nash, Jr.

and Michael Th. Rassias, editors, Open Problems in Mathematics, pages 351–375. Springer
International Publishing, Cham, 2016.

35 A. Naamad, D.T. Lee, and W.L. Hsu. On the maximum empty rectangle problem. Discrete
Appl. Math., 8:267–277, 1984.

36 C. M. Nicolás. The empty hexagon theorem. Discrete Comput. Geom., 38(2):389–397, 2007.
37 M. Orlowski. A new algorithm for largest empty rectangle problem. Algorithmica, 5:65–73,

1990.
38 Rom Pinchasi, Radoš Radoičić, and Micha Sharir. On empty convex polygons in a planar

point set. J. Combinat. Theory, Series A, 113(3):385–419, 2006.
39 G. Rote, Z. Wang, G. Woeginger, and B. Zhi. Counting k-subsets and convex k-gons in the

plane. Inform. Proc. Lett., 38(4):149–151, 1991.
40 G. Rote and G. Woeginger. Counting convex k-gons in planar point sets. Inform. Proc. Lett.,

41(4):191–194, 1992.
41 George Szekeres and Lindsay Peters. Computer solution to the 17-point Erdős–Szekeres

problem. ANZIAM J., 48(2):151–164, 2006.
42 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Sci. Math.

Hungar., 30:155–163, 1995.

SoCG 2020

Holes and Islands in Random Point Sets
Martin Balko
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
balko@kam.mff.cuni.cz

Manfred Scheucher
Institut für Mathematik, Technische Universität Berlin, Germany
scheucher@math.tu-berlin.de

Pavel Valtr
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
Department of Computer Science, ETH Zürich, Switzerland

Abstract
For d ∈ N, let S be a finite set of points in Rd in general position. A set H of k points from S is
a k-hole in S if all points from H lie on the boundary of the convex hull conv(H) of H and the
interior of conv(H) does not contain any point from S. A set I of k points from S is a k-island in S
if conv(I) ∩ S = I. Note that each k-hole in S is a k-island in S.

For fixed positive integers d, k and a convex body K in Rd with d-dimensional Lebesgue measure
1, let S be a set of n points chosen uniformly and independently at random from K. We show that
the expected number of k-islands in S is in O(nd). In the case k = d+ 1, we prove that the expected
number of empty simplices (that is, (d+ 1)-holes) in S is at most 2d−1 · d! ·

(
n
d

)
. Our results improve

and generalize previous bounds by Bárány and Füredi [4], Valtr [19], Fabila-Monroy and Huemer [8],
and Fabila-Monroy, Huemer, and Mitsche [9].

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Theory of
computation → Computational geometry

Keywords and phrases stochastic geometry, random point set, Erdős-Szekeres type problem, k-hole,
k-island, empty polytope, convex position, Horton set

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.14

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.00909.

Funding Martin Balko: was supported by the grant no. 18-19158S of the Czech Science Foundation
(GAČR), by the Center for Foundations of Modern Computer Science (Charles University project
UNCE/SCI/004), and by the PRIMUS/17/SCI/3 project of Charles University. This article is
part of a project that has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 810115).
Manfred Scheucher : was supported by DFG Grant FE 340/12-1.
Pavel Valtr : was supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR)
and by the PRIMUS/17/SCI/3 project of Charles University.

1 Introduction

For d ∈ N, let S be a finite set of points in Rd. The set S is in general position if, for every
k = 1, . . . , d − 1, no k + 2 points of S lie in an affine k-dimensional subspace. A set H of
k points from S is a k-hole in S if H is in convex position and the interior of the convex
hull conv(H) of H does not contain any point from S; see Figure 1 for an illustration in the
plane. We say that a subset of S is a hole in S if it is a k-hole in S for some integer k.

© Martin Balko, Manfred Scheucher, and Pavel Valtr;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:balko@kam.mff.cuni.cz
mailto:scheucher@math.tu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.14
https://arxiv.org/abs/2003.00909
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Holes and Islands in Random Point Sets

(a) (b) (c)

Figure 1 (a) A 6-tuple of points in convex position in a planar set S of 10 points. (b) A 6-hole
in S. (c) A 6-island in S whose points are not in convex position.

Let h(k) be the smallest positive integer N such that every set of N points in general
position in the plane contains a k-hole. In the 1970s, Erdős [6] asked whether the number h(k)
exists for every k ∈ N. It was shown in the 1970s and 1980s that h(4) = 5, h(5) = 10 [11],
and that h(k) does not exist for every k ≥ 7 [12]. That is, while every sufficiently large set
contains a 4-hole and a 5-hole, Horton constructed arbitrarily large sets with no 7-holes.
His construction was generalized to so-called Horton sets by Valtr [18]. The existence of
6-holes in every sufficiently large point set remained open until 2007, when Gerken [10] and
Nicolas [15] independently showed that h(6) exists; see also [20].

These problems were also considered in higher dimensions. For d ≥ 2, let hd(k) be the
smallest positive integer N such that every set of N points in general position in Rd contains
a k-hole. In particular, h2(k) = h(k) for every k. Valtr [18] showed that hd(k) exists for
k ≤ 2d + 1 but it does not exist for k > 2d−1(P (d − 1) + 1), where P (d − 1) denotes the
product of the first d − 1 prime numbers. The latter result was obtained by constructing
multidimensional analogues of the Horton sets.

After the existence of k-holes was settled, counting the minimum number Hk(n) of k-holes
in any set of n points in the plane in general position attracted a lot of attention. It is known,
and not difficult to show, that H3(n) and H4(n) are in Ω(n2). The currently best known
lower bounds on H3(n) and H4(n) were proved in [1]. The best known upper bounds are
due to Bárány and Valtr [5]. Altogether, these estimates are

n2 + Ω(n log2/3 n) ≤ H3(n) ≤ 1.6196n2 + o(n2)

and

n2

2 + Ω(n log3/4 n) ≤ H4(n) ≤ 1.9397n2 + o(n2).

For H5(n) and H6(n), the best quadratic upper bounds can be found in [5]. The best lower
bounds, however, are only H5(n) ≥ Ω(n log4/5 n) [1] and H6(n) ≥ Ω(n) [21]. For more
details, we also refer to the second author’s dissertation [17].

The quadratic upper bound on H3(n) can be also obtained using random point sets. For
d ∈ N, a convex body in Rd is a compact convex set in Rd with a nonempty interior. Let k be
a positive integer and let K ⊆ Rd be a convex body with d-dimensional Lebesgue measure
λd(K) = 1. We use EHK

d,k(n) to denote the expected number of k-holes in sets of n points
chosen independently and uniformly at random from K. The quadratic upper bound on
H3(n) then also follows from the following bound of Bárány and Füredi [4] on the expected
number of (d+ 1)-holes:

EHK
d,d+1(n) ≤ (2d)2d2

·
(
n

d

)
(1)

M. Balko, M. Scheucher, and P. Valtr 14:3

for any d and K. In the plane, Bárány and Füredi [4] proved EHK
2,3(n) ≤ 2n2 +O(n logn) for

every K. This bound was later slightly improved by Valtr [19], who showed EHK
2,3(n) ≤ 4

(
n
2
)

for any K. In the other direction, every set of n points in Rd in general position contains at
least

(
n−1
d

)
(d+ 1)-holes [4, 13].

The expected number EHK
2,4(n) of 4-holes in random sets of n points in the plane was

considered by Fabila-Monroy, Huemer, and Mitsche [9], who showed

EHK
2,4(n) ≤ 18πD2n2 + o(n2) (2)

for any K, where D = D(K) is the diameter of K. Since we have D ≥ 2/
√
π, by the

Isodiametric inequality [7], the leading constant in (2) is at least 72 for any K.
In this paper, we study the number of k-holes in random point sets in Rd. In particular,

we obtain results that imply quadratic upper bounds on Hk(n) for any fixed k and that both
strengthen and generalize the bounds by Bárány and Füredi [4], Valtr [19], and Fabila-Monroy,
Huemer, and Mitsche [9].

2 Our results

Throughout the whole paper we only consider point sets in Rd that are finite and in general
position.

2.1 Islands and holes in random point sets
First, we prove a result that gives the estimate O(nd) on the minimum number of k-holes in
a set of n points in Rd for any fixed d and k. In fact, we prove the upper bound O(nd) even
for so-called k-islands, which are also frequently studied in discrete geometry. A set I of k
points from a point set S ⊆ Rd is a k-island in S if conv(I) ∩ S = I; see part (c) of Figure 1.
Note that k-holes in S are exactly those k-islands in S that are in convex position. A subset
of S is an island in S if it is a k-island in S for some integer k.

I Theorem 1. Let d ≥ 2 and k ≥ d+ 1 be integers and let K be a convex body in Rd with
λd(K) = 1. If S is a set of n ≥ k points chosen uniformly and independently at random
from K, then the expected number of k-islands in S is at most

2d−1 ·
(

2d2d−1
(

k

bd/2c

))k−d−1
· (k − d) · n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1 ,

which is in O(nd) for any fixed d and k.

The bound in Theorem 1 is tight up to a constant multiplicative factor that depends on
d and k, as, for any fixed k ≥ d, every set S of n points in Rd in general position contains at
least Ω(nd) k-islands. To see this, observe that any d-tuple T of points from S determines a
k-island with k − d closest points to the hyperplane spanned by T (ties can be broken by,
for example, taking points with lexicographically smallest coordinates), as S is in general
position and thus T is a d-hole in S. Any such k-tuple of points from S contains

(
k
d

)
d-tuples

of points from S and thus we have at least
(
n
d

)
/
(
k
d

)
∈ Ω(nd) k-islands in S.

Thus, by Theorem 1, random point sets in Rd asymptotically achieve the minimum
number of k-islands. This is in contrast with the fact that, unlike Horton sets, they contain
arbitrarily large holes. Quite recently, Balogh, González-Aguilar, and Salazar [3] showed
that the expected number of vertices of the largest hole in a set of n random points chosen
independently and uniformly over a convex body in the plane is in Θ(logn/(log logn)).

For k-holes, we modify the proof of Theorem 1 to obtain a slightly better estimate.

SoCG 2020

14:4 Holes and Islands in Random Point Sets

I Theorem 2. Let d ≥ 2 and k ≥ d+ 1 be integers and let K be a convex body in Rd with
λd(K) = 1. If S is a set of n ≥ k points chosen uniformly and independently at random
from K, then the expected number EHK

d,k(n) of k-holes in S is in O(nd) for any fixed d and
k. More precisely,

EHK
d,k(n) ≤ 2d−1 ·

(
2d2d−1

(
k

bd/2c

))k−d−1
· n(n− 1) · · · (n− k + 2)

(k − d− 1)! · (n− k + 1)k−d−1 .

For d = 2 and k = 4, Theorem 2 implies EHK
2,4(n) ≤ 128 · n2 + o(n2) for any K, which is

a worse estimate than (2) if the diameter of K is at most 8/(3
√
π) ' 1.5. However, the proof

of Theorem 2 can be modified to give EHK
2,4(n) ≤ 12n2 + o(n2) for any K, which is always

better than (2); see the final remarks in Section 3. We believe that the leading constant
in EHK

2,4(n) can be estimated even more precisely and we hope to discuss this direction in
future work.

In the case k = d+ 1, the bound in Theorem 2 simplifies to the following estimate on
the expected number of (d + 1)-holes (also called empty simplices) in random sets of n
points in Rd.

I Corollary 3. Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K) = 1.
If S is a set of n points chosen uniformly and independently at random from K, then the
expected number of (d+ 1)-holes in S satisfies

EHK
d,d+1(n) ≤ 2d−1 · d! ·

(
n

d

)
.

Corollary 3 is stronger than the bound (1) by Bárány and Füredi [4] and, in the planar
case, coincides with the bound EHK

2,3(n) ≤ 4
(
n
2
)
by Valtr [19]. Very recently, Reitzner and

Temesvari [16] proved an upper bound on EHK
d,d+1(n) that is asymptotically tight if d = 2 or

if d ≥ 3 and K is an ellipsoid. In the planar case, their result shows that the bound 4
(
n
2
)
on

EHK
2,3(n) is best possible, up to a smaller order error term. No tight bounds on EHK

d,d+1(n)
are known if d ≥ 3 and K is not an ellipsoid.

We also consider islands of all possible sizes and show that their expected number is in
2Θ(n(d−1)/(d+1)).

I Theorem 4. Let d ≥ 2 be an integer and let K be a convex body in Rd with λd(K) = 1.
Then there are constants C1 = C1(d), C2 = C2(d), and n0 = n0(d) such that for every set S
of n ≥ n0 points chosen uniformly and independently at random from K the expected number
EKd of islands in S satisfies

2C1·n(d−1)/(d+1)
≤ EKd ≤ 2C2·n(d−1)/(d+1)

.

Since each island in S has at most n points, there is a k ∈ {1, . . . , n} such that the
expected number of k-islands in S is at least (1/n)-fraction of the expected number of all
islands, which is still in 2Ω(n(d−1)/(d+1)). This shows that the expected number of k-islands
can become asymptotically much larger than O(nd) if k is not fixed. Due to space limitations,
the proof of Theorem 4 is omitted.

2.2 Islands and holes in d-Horton sets
To our knowledge, Theorem 1 is the first nontrivial upper bound on the minimum number of
k-islands a point set in Rd with d > 2 can have. For d = 2, Fabila-Monroy and Huemer [8]
showed that, for every fixed k ∈ N, the Horton sets with n points contain only O(n2)

M. Balko, M. Scheucher, and P. Valtr 14:5

k-islands. For d > 2, Valtr [18] introduced a d-dimensional analogue of Horton sets. Perhaps
surprisingly, these sets contain asymptotically more than O(nd) k-islands for k ≥ d+ 1. For
each k with d+ 1 ≤ k ≤ 3 · 2d−1, they even contain asymptotically more than O(nd) k-holes.

I Theorem 5. Let d ≥ 2 and k be fixed positive integers. Then every d-dimensional Horton
set H with n points contains at least Ω(nmin{2d−1,k}) k-islands in H. If k ≤ 3 · 2d−1, then H
even contains at least Ω(nmin{2d−1,k}) k-holes in H.

3 Proofs of Theorem 1 and Theorem 2

Let d and k be positive integers and let K be a convex body in Rd with λd(K) = 1. Let S
be a set of n points chosen uniformly and independently at random from K. Note that S
is in general position with probability 1. We assume k ≥ d + 1, as otherwise the number
of k-islands in S is trivially

(
n
k

)
in every set of n points in Rd in general position. We also

assume d ≥ 2 and n ≥ k, as otherwise the number of k-islands is trivially n− k + 1 and 0,
respectively, in every set of n points in Rd.

First, we prove Theorem 1 by showing that the expected number of k-islands in S is at
most

2d−1 ·
(

2d2d−1
(

k

bd/2c

))k−d−1
· (k − d) · n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1 ,

which is in O(nd) for any fixed d and k. At the end of this section, we improve the bound
for k-holes, which will prove Theorem 2.

Let Q be a set of k points from S. We first introduce a suitable unique ordering q1, . . . , qk
of points from Q. First, we take a set D of d+ 1 points from Q that determine a simplex ∆
with largest volume among all (d+1)-tuples of points from Q. Let q1q2 be the longest edge of
∆ with q1 lexicographically smaller than q2 and let a be the number of points from Q inside
∆. For every i = 2, . . . , d, let qi+1 be the furthest point from D \{q1, . . . , qi} to aff(q1, . . . , qi).
Next, we let qd+2, . . . , qd+a+1 be the a points of Q inside ∆ ordered lexicographically. The
remaining k − d − a − 1 points qd+a+2, . . . , qk from Q lie outside of ∆ and we order them
so that, for every i = 1, . . . , k − a − d − 1, the point qd+a+i+1 is closest to conv({q1, . . . ,

qd+a+i}) among the points qd+a+i+1, . . . , qk. In case of a tie in any of the conditions, we
choose the point with lexicographically smallest coordinates. Note, however, that a tie occurs
with probability 0.

Clearly, there is a unique such ordering q1, . . . , qk of Q. We call this ordering the
canonical (k, a)-ordering of Q. To reformulate, an ordering q1, . . . , qk of Q is the canonical
(k, a)-ordering of Q if and only if the following five conditions are satisfied:
(L1) The d-dimensional simplex ∆, with vertices q1, . . . , qd+1 has the largest d-dimensional

Lebesgue measure among all d-dimensional simplices spanned by points from Q.
(L2) For every i = 1, . . . , d − 1, the point qi+1 has the largest distance among all points

from {qi+1, . . . , qd} to the (i − 1)-dimensional affine subspace aff(q1, . . . , qi) spanned
by q1, . . . , qi. Moreover, q1 is lexicographically smaller than q2.

(L3) For every i = 1, . . . , d− 1, the distance between qi+1 and aff(q1, . . . , qi) is at least as
large as the distance between qd+1 and aff(q1, . . . , qi). Also, the distance between q1
and q2 is at least as large as the distance between qd+1 and any qi with i ∈ {1, . . . , d}.

(L4) The points qd+2, . . . , qd+a+1 lie inside ∆ and are ordered lexicographically.
(L5) The points qd+a+2, . . . , qk lie outside of ∆. For every i = 1, . . . , k− a− d− 1, the point

qd+a+i+1 is closest to conv({q1, . . . , qd+a+i}) among the points qd+a+i+1, . . . , qk.

SoCG 2020

14:6 Holes and Islands in Random Point Sets

Figure 2 gives an illustration in R2. We note that the conditions (L2) and (L3) can
be merged together. However, later in the proof, we use the fact that the probability that
the points from Q satisfy the condition (L2) equals 1/d!, so we stated the two conditions
separately.

q1

q2

q3

q4

q5

q6

q7

q8

q9

q11

q10 q12

Figure 2 An illustration of the canonical (k, a)-ordering of a planar point set Q. Here we have
k = 12 points and a = 4 of the points lie inside the largest area triangle 4 with vertices q1, q2, q3.

Before going into details, we first give a high-level overview of the proof of Theorem 1.
First, we prove an O(1/na+1) bound on the probability that 4 contains precisely the points
pd+2, . . . , pd+1+a from S (Lemma 9), which means that the points p1, . . . , pd+1+a determine
an island in S. Next, for i = d + 2 + a, . . . , k, we show that, conditioned on the fact that
the (i− 1)-tuple (p1, . . . , pi−1) determines an island in S in the canonical (k, a)-ordering, the
i-tuple (p1, . . . , pi) determines an island in S in the canonical (k, a)-ordering with probability
O(1/n) (Lemma 10). Then it immediately follows that the probability that I determines a
k-island in S with the desired properties is at most O

(
1/na+1 · (1/n)k−(d+1+a)) = O(nd−k).

Since there are n · (n − 1) · · · (n − k + 1) = O(nk) possibilities to select such an ordered
subset I and each k-island in S is counted at most k! times, we obtain the desired bound
O
(
nk · nd−k · k!

)
= O(nd) on the expected number of k-islands in S.

We now proceed with the proof. Let p1, . . . , pk be points from S in the order in which they
are drawn from K. We use ∆ to denote the d-dimensional simplex with vertices p1, . . . , pd+1.
We eventually show that the probability that p1, . . . , pk is the canonical (k, a)-ordering of
a k-island in S for some a is at most O(1/nk−d). First, however, we need to state some
notation and prove some auxiliary results.

Consider the points p1, . . . , pd. Without loss of generality, we can assume that, for each
i = 1, . . . , d, the point pi has the last d− i+ 1 coordinates equal to zero. Otherwise we apply
a suitable isometry to S. Then, for every i = 1, . . . , d, the distance between pi+1 and the
(i− 1)-dimensional affine subspace spanned by p1, . . . , pi is equal to the absolute value of the
ith coordinate of pi+1. Moreover, after applying a suitable rotation, we can also assume that
the first coordinate of each of the points p1, . . . , pd is nonnegative.

Let ∆0 be the (d − 1)-dimensional simplex with vertices p1, . . . , pd and let H be the
hyperplane containing ∆0. Note that, according to our assumptions about p1, . . . , pd, we
have H = {(x1, . . . , xd) ∈ Rd : xd = 0}. Let B be the set of points (x1, . . . , xd) ∈ Rd that
satisfy the following three conditions:
(i) x1 ≥ 0,
(ii) |xi| is at most as large as the absolute value of the ith coordinate of pi+1 for every

i ∈ {1, . . . , d− 1}, and
(iii) |xd| ≤ d/λd−1(∆0).

M. Balko, M. Scheucher, and P. Valtr 14:7

See Figures 3a and 3b for illustrations in R2 and R3, respectively. Observe that B is a
d-dimensional axis-parallel box. For h ∈ R, we use Ih to denote the intersection of B with
the hyperplane xd = h.

p1 p2

p3

B

∆0 = I0

Ih

H
x1

x2

(a)

∆0

p1

p2

p3

I0 = B ∩H

B

p4

Ih

x1

x2

x3

(b)

Figure 3 An illustration of the proof of Theorem 1 in (a) R2 and (b) R3.

Having fixed p1, . . . , pd, we now try to restrict possible locations of the points pd+1, . . . , pk,
one by one, so that p1, . . . , pk is the canonical (k, a)-ordering of a k-island in S for some a.
First, we observe that the position of the point pd+1 is restricted to B.

I Lemma 6. If p1, . . . , pd+1 satisfy condition (L3), then pd+1 lies in the box B.

Proof. Let pd+1 = (x1, . . . , xd). According to our choice of points p1, . . . , pd and from the
assumption that p1, . . . , pd satisfy (L3), we get x1 ≥ 0 and also that |xi| is at most as large
as the absolute value of the ith coordinate of pi+1 for every i ∈ {1, . . . , d− 1}.

It remains to show that |xd| ≤ d/λd−1(∆0). The simplex ∆ spanned by p1, . . . , pd+1
is contained in the convex body K, as p1, . . . , pd+1 ∈ K and K is convex. Thus λd(∆) ≤
λd(K) = 1. On the other hand, the volume λd(∆) equals λd−1(∆0) · h/d, where h is the
distance between pd+1 and the hyperplane H containing ∆0. According to our assumptions
about p1, . . . , pd, the distance h equals |xd|. Since λd(∆) ≤ 1, it follows that |xd| = h ≤
d/λd−1(∆0) and thus pd+1 ∈ B. J

The following auxiliary lemma gives an identity that is needed later. We omit the proof,
which can be found, for example, in [2, Section 1].

I Lemma 7 ([2]). For all nonnegative integers a and b, we have∫ 1

0
xa(1− x)b dx = a! b!

(a+ b+ 1)! .

We will also use the following result, called the Asymptotic Upper Bound Theorem [14],
that estimates the maximum number of facets in a polytope.

SoCG 2020

14:8 Holes and Islands in Random Point Sets

I Theorem 8 (Asymptotic Upper Bound Theorem [14]). For every integer d ≥ 2, a d-
dimensional convex polytope with N vertices has at most 2

(
N
bd/2c

)
facets.

Let a be an integer satisfying 0 ≤ a ≤ k − d− 1 and let Ea be the event that p1, . . . , pk
is the canonical (k, a)-ordering such that {p1, . . . , pd+a+1} is an island in S. To estimate
the probability that p1, . . . , pk is the canonical (k, a)-ordering of a k-island in S, we first
find an upper bound on the conditional probability of Ea, conditioned on the event L2 that
p1, . . . , pd satisfy (L2).

I Lemma 9. For every a ∈ {0, . . . , k − d− 1}, the probability Pr[Ea | L2] is at most

2d−1 · d!
(k − a− d− 1)! · (n− k + 1)a+1 .

Proof. It follows from Lemma 6 that, in order to satisfy (L3), the point pd+1 must lie
in the box B. In particular, pd+1 is contained in Ih ∩ K for some real number h ∈
[−d/λd−1(∆0), d/λd−1(∆0)]. If pd+1 ∈ Ih, then the simplex ∆ = conv({p1, . . . , pd+1})
has volume λd(∆) = λd−1(∆0) · |h|/d and the a points pd+2, . . . , pd+a+1 satisfy (L4) with
probability

1
a! · (λd(∆))a = 1

a! ·
(
λd−1(∆0) · |h|

d

)a
,

as they all lie in ∆ ⊆ K in the unique order.
In order to satisfy the condition (L5), the k − a − d − 1 points pd+a+i+1, for i ∈

{1, . . . , k− a− d− 1}, must have increasing distance to conv({p1, . . . , pd+a+i}) as the index i
increases, which happens with probability at most 1

(k−a−d−1)! . Since {p1, . . . , pd+a+1} must
be an island in S, the n− d− a− 1 points from S \ {p1, . . . , pd+a+1} must lie outside ∆. If
pd+1 ∈ Ih, then this happens with probability

(λd(K \∆))n−d−a−1 = (λd(K)− λd(∆))n−d−a−1 =
(

1− λd−1(∆0) · |h|
d

)n−d−a−1
,

as they all lie in K \∆ and we have ∆ ⊆ K and λd(K) = 1.
Altogether, we get that Pr[Ea | L2] is at most

d/λd−1(∆0)∫
−d/λd−1(∆0)

λd−1(Ih ∩K)
a! · (k − a− d− 1)! ·

(
λd−1(∆0) · |h|

d

)a
·
(

1− λd−1(∆0) · |h|
d

)n−d−a−1
dh.

Since we have λd−1(I0) = λd−1(Ih) for every h ∈ [−d/λd−1(∆0), d/λd−1(∆0)], we obtain
λd−1(Ih ∩K) ≤ λd−1(I0) and thus Pr[Ea | L2] is at most

2 · λd−1(I0)
a! · (k − a− d− 1)! ·

d/λd−1(∆0)∫
0

(
λd−1(∆0) · h

d

)a
·
(

1− λd−1(∆0) · h
d

)n−d−a−1
dh.

By substituting t = λd−1(∆0)·h
d , we obtain

Pr[Ea | L2] ≤ 2d · λd−1(I0)
a! · (k − a− d− 1)! · λd−1(∆0) ·

∫ 1

0
ta(1− t)n−d−a−1dt.

M. Balko, M. Scheucher, and P. Valtr 14:9

By Lemma 7, the right side in the above inequality equals

2d · λd−1(I0)
a! · (k − a− d− 1)! · λd−1(∆0) ·

a! · (n− d− a− 1)!
(n− d)!

= 2d · λd−1(I0)
(k − a− d− 1)! · λd−1(∆0) ·

(n− d− a− 1)!
(n− d)! .

For every i = 1, . . . , d− 1, let hi be the distance between the point pi+1 and the (i− 1)-
dimensional affine subspace spanned by p1, . . . , pi. Since the volume of the box I0 satisfies

λd−1(I0) = h1(2h2) · · · (2hd−1) = 2d−2 · h1 · · ·hd−1

and the volume of the (d− 1)-dimensional simplex ∆0 is

λd−1(∆0) = h1

1 ·
h2

2 · · · · ·
hd−1

d− 1 = h1 · · ·hd−1

(d− 1)! ,

we obtain λd−1(I0)/λd−1(∆0) = 2d−2 · (d− 1)!. Thus

Pr[Ea | L2] ≤ 2d−1 · d!
(k − a− d− 1)! ·

(n− d− a− 1)!
(n− d)!

= 2d−1 · d!
(k − a− d− 1)! · (n− d) · · · (n− d− a)

≤ 2d−1 · d!
(k − a− d− 1)! · (n− k + 1)a+1 ,

where the last inequality follows from a ≤ k − d− 1. J

For every i ∈ {d + a + 1, . . . , k}, let Ea,i be the event that p1, . . . , pk is the canonical
(k, a)-ordering such that {p1, . . . , pi} is an island in S. Note that in the event Ea,i the
condition (L5) implies that {p1, . . . , pj} is an island in S for every j ∈ {d + a + 1, . . . , i}.
Thus we have

L2 ⊇ Ea = Ea,d+a+1 ⊇ Ea,d+a+2 ⊇ · · · ⊇ Ea,k.

Moreover, the event Ea,k says that p1, . . . , pk is the canonical (k, a)-ordering of a k-island in S.
For i ∈ {d+ a+ 2, . . . , k}, we now estimate the conditional probability of Ea,i, conditioned
on Ea,i−1.

I Lemma 10. For every i ∈ {d+ a+ 2, . . . , k}, we have

Pr[Ea,i | Ea,i−1] ≤
2d2d−1 ·

(
k
bd/2c

)
n− i+ 1 .

Proof. Let i ∈ {d+ a+ 2, . . . , k} and assume that the event Ea,i−1 holds. That is, p1, . . . , pk
is the canonical (k, a)-ordering such that {p1, . . . , pi−1} is an (i− 1)-island in S.

First, we assume that ∆ is a regular simplex with height η > 0. At the end of the proof
we show that the case when ∆ is an arbitrary simplex follows by applying a suitable affine
transformation.

For every j ∈ {1, . . . , d+ 1}, let Fj be the facet conv({p1, . . . , pd+1} \ {pj}) of ∆ and let
Hj be the hyperplane parallel to Fj that contains pj . We use H+

j to denote the halfspace
determined by Hj such that ∆ ⊆ H+

j . We set ∆∗ = ∩d+1
j=1H

+
j ; see Figures 4a and 4b for

illustrations in R2 and R3, respectively. Note that ∆∗ is a d-dimensional simplex containing ∆.
Also, notice that if x /∈ ∆∗, then x /∈ H+

j for some j and the distance between x and the
hyperplane containing Fj is larger than η.

SoCG 2020

14:10 Holes and Islands in Random Point Sets

∆∗

p1 p3

p2

4

H1

H2

F1F3

F2

H3H+
1

H+
3

H+
2

(a) (b)

Figure 4 An illustration of (a) the simplex ∆∗ in R2 and (b) in R3.

We show that the fact that p1, . . . , pk is the canonical (k, a)-ordering implies that every
point from {p1, . . . , pk} is contained in ∆∗. Suppose for contradiction that some point
p ∈ {p1, . . . , pk} does not lie inside ∆∗. Then there is a facet Fj of ∆ such that the distance
η′ between p and the hyperplane containing Fj is larger than η. Then, however, the simplex
∆′ spanned by vertices of Fj and by p has volume larger than ∆, because

λd(∆′) = 1
d
· λd−1(Fj) · η′ >

1
d
· λd−1(Fj) · η = λd(∆).

This contradicts the fact that p1, . . . , pk is the canonical (k, a)-ordering, as, according to (L1),
∆ has the largest d-dimensional Lebesgue measure among all d-dimensional simplices spanned
by points from {p1, . . . , pk}.

Let σ be the barycenter of ∆. For every point p ∈ ∆∗ \∆, the line segment σp intersects
at least one facet of ∆. For every j ∈ {1, . . . , d+ 1}, we use Rj to denote the set of points
p ∈ ∆∗ \∆ for which the line segment σp intersects the facet Fj of ∆. Observe that each
set Rj is convex and the sets R1, . . . , Rd+1 partition ∆∗ \ ∆ (up to their intersection of
d-dimensional Lebesgue measure 0); see Figure 5 for an illustration in the plane.

Consider the point pi. Since p1, . . . , pk is the canonical (k, a)-ordering, the condition (L5)
implies that pi lies outside of the polytope conv({p1, . . . , pi−1}). To bound the prob-
ability Pr[Ea,i | Ea,i−1], we need to estimate the probability that conv({p1, . . . , pi}) \
conv({p1, . . . , pi−1}) does not contain any point from S \ {p1, . . . , pi}, conditioned on Ea,i−1.
We know that pi lies in ∆∗ \∆ and that pi ∈ Rj for some j ∈ {1, . . . , d+ 1}.

Since pi /∈ conv({p1, . . . , pi−1}), there is a facet ϕ of the polytope conv({p1, . . . , pi−1})
contained in the closure of Rj such that σpi intersects ϕ. Since S is in general position
with probability 1, we can assume that ϕ is a (d− 1)-dimensional simplex. The point pi is
contained in the convex set Cϕ that contains all points c ∈ Rd such that the line segment σc
intersects ϕ. We use H(0) to denote the hyperplane containing ϕ. For a positive r ∈ R, let
H(r) be the hyperplane parallel to H(0) at distance r from H(0) such that H(r) is contained
in the halfspace determined by H(0) that does not contain conv({p1, . . . , pi−1}). Then we
have pi ∈ H(h) for some positive h ∈ R.

Since pi ∈ K and ϕ ⊆ K, the convexity of K implies that the simplex conv(ϕ ∪ {pi})
has volume λd(conv(ϕ ∪ {pi})) ≤ λd(K) = 1. Since λd(conv(ϕ ∪ {pi})) = λd−1(ϕ) · h/d, we
obtain h ≤ d/λd−1(ϕ).

M. Balko, M. Scheucher, and P. Valtr 14:11

p1
p3

p2

R2

σ

F2

H2

R1R3

F1

F3

H(h)

∆

∆∗

Cϕ

H(0)

h

hϕ

pi

ϕ

H
+

2

τ

η

Figure 5 An illustration of the proof of Lemma 10. In order for {p1, . . . , pi} to be an i-island
in S, the light gray part cannot contain points from S. We estimate the probability of this event
from above by the probability that the dark gray simplex conv(ϕ ∪ {pi}) contains no point of S.
Note that the parameters η and τ coincide for d = 2, as then τ = d2−1

d+1 η = η.

The point pi lies in the (d− 1)-dimensional simplex Cϕ ∩H(h), which is a scaled copy
of ϕ. We show that

λd−1(Cϕ ∩H(h)) ≤ d2d−2 · λd−1(ϕ). (3)

Let hϕ be the distance between H(0) and σ and, for every j ∈ {1, . . . , d+ 1}, let Hj be the
hyperplane parallel to Fj containing the vertex H1 ∩ · · · ∩Hj−1 ∩Hj+1 ∩ · · · ∩Hd+1 of ∆∗.
We denote by H+

j the halfspace determined by Hj containing ∆∗. Since ∆ lies on the same
side of H(0) as σ, we see that hϕ is at least as large as the distance between σ and Fj , which
is η/(d + 1). Since pi lies in ∆∗ ⊆ H

+
j , we see that h is at most as large as the distance

τ between Hj and the hyperplane containing the facet Fj of ∆. Note that τ + η/(d + 1)
is the distance of the barycenter of ∆∗ and a vertex of ∆∗ and dη/(d + 1) is the distance
of the barycenter of ∆∗ and a facet of ∆∗. Thus we get τ = d2η

d+1 −
η
d+1 = d2−1

d+1 η from the
fact that the distance between the barycenter of a d-dimensional simplex and any of its
vertices is d-times as large as the distance between the barycenter and a facet. Consequently,
h ≤ d2−1

d+1 η and η
d+1 ≤ hϕ, which implies h ≤ (d2 − 1)hϕ. Thus Cϕ ∩H(h) is a scaled copy

of ϕ by a factor of size at most d2. This gives λd−1(Cϕ ∩H(h)) ≤ d2d−2 · λd−1(ϕ).
Since the simplex conv(ϕ ∪ {pi}) is a subset of the closure of conv({p1, . . . , pi}) \

conv({p1, . . . , pi−1}), the probability Pr[Ea,i | Ea,i−1] can be bounded from above by the con-
ditional probability of the event Ai,ϕ that pi ∈ Cϕ∩K and that no point from S \{p1, . . . , pi}
lies in conv(ϕ ∪ {pi}), conditioned on Ea,i−1. All points from S \ {p1, . . . , pi} lie outside of
conv(ϕ ∪ {pi}) with probability(

1− λd(conv(ϕ ∪ {pi}))
λd(K \ conv({p1, . . . , pi−1}))

)n−i
.

SoCG 2020

14:12 Holes and Islands in Random Point Sets

Since λd(K \ conv({p1, . . . , pi−1})) ≤ λd(K) = 1, this is bounded from above by

(1− λd(conv(ϕ ∪ {pi})))n−i =
(

1− λd−1(ϕ) · h
d

)n−i
.

Since the sets Cϕ partition K \ conv({p1, . . . , pi−1}) (up to intersections of d-dimensional
Lebesgue measure 0) and since h ≤ d/λd−1(ϕ), we have, by the law of total probability,

Pr[Ea,i | Ea,i−1] ≤
∑
ϕ

Pr[Ai,ϕ | Ea,i−1]

≤
∑
ϕ

d/λd−1(ϕ)∫
0

λd−1(Cϕ ∩H(h)) ·
(

1− λd−1(ϕ) · h
d

)n−i
dh.

The sums in the above expression are taken over all facets ϕ of the convex polytope
conv({p1, . . . , pi−1}). Using (3), we can estimate Pr[Ea,i | Ea,i−1] from above by

d2d−2 ·
∑
ϕ

λd−1(ϕ) ·
d/λd−1(ϕ)∫

0

(
1− λd−1(ϕ) · h

d

)n−i
dh.

By substituting t = λd−1(ϕ)·h
d , we can rewrite this expression as

d2d−2 ·
∑
ϕ

d · λd−1(ϕ)
λd−1(ϕ) ·

∫ 1

0
(1− t)n−i dt = d2d−1 ·

∑
ϕ

∫ 1

0
1 · (1− t)n−i dt.

By Lemma 7, this equals

d2d−1 ·
∑
ϕ

0! · (n− i)!
(n− i+ 1)! = d2d−1

n− i+ 1
∑
ϕ

1.

Since conv({p1, . . . , pi−1}) is a convex polytope in Rd with at most i − 1 ≤ k vertices,
Theorem 8 implies that the number of facets ϕ of conv({p1, . . . , pi−1}) is at most 2

(
k
bd/2c

)
.

Altogether, we have derived the desired bound

Pr[Ea,i | Ea,i−1] ≤
2d2d−1 ·

(
k
bd/2c

)
n− i+ 1

in the case when ∆ is a regular simplex.
If ∆ is not regular, we first apply a volume-preserving affine transformation F that maps

∆ to a regular simplex F (∆). The simplex F (∆) is then contained in the convex body
F (K) of volume 1. Since F translates the uniform distribution on F (K) to the uniform
distribution on K and preserves holes and islands, we obtain the required upper bound also
in the general case. J

Now, we finish the proof of Theorem 1.

Proof of Theorem 1. We estimate the expected value of the number X of k-islands in S.
The number of ordered k-tuples of points from S is n(n − 1) · · · (n − k − 1). Since every
subset of S of size k admits a unique labeling that satisfies the conditions (L1), (L2), (L3),
(L4), and (L5), we have

M. Balko, M. Scheucher, and P. Valtr 14:13

E[X] = n(n− 1) · · · (n− k + 1) · Pr
[
∪k−d−1
a=0 Ea,k

]
= n(n− 1) · · · (n− k + 1) ·

k−d−1∑
a=0

Pr [Ea,k] ,

as the events E0,k, . . . Ek−d−1,k are pairwise disjoint.
The probability of the event L2, which says that the points p1, . . . , pd satisfy the

condition (L2), is 1/d!. Let P =
∑k−d−1
a=0 Pr [Ea,k | L2]. For any two events E,E′ with

E ⊇ E′ and Pr[E] > 0, we have Pr[E′] = Pr[E ∩ E′] = Pr[E′ | E] · Pr[E]. Thus, using
L2 ⊇ Ea = Ea,d+a+1 ⊇ Ea,d+a+2 ⊇ · · · ⊇ Ea,k, we get

E[X] = n(n− 1) · · · (n− k + 1) · Pr[L2] · P = n(n− 1) · · · (n− k + 1)
d! · P

and

P =
k−d−1∑
a=0

Pr[Ea | L2] ·
k∏

i=d+a+2
Pr[Ea,i | Ea,i−1].

For every a ∈ {d+ 2, . . . , k − d− 1}, Lemma 9 gives

Pr[Ea | L2] ≤ 2d−1 · d!
(k − a− d− 1)! · (n− k + 1)a+1 ≤

2d−1 · d!
(n− k + 1)a+1

and, due to Lemma 10,

Pr[Ea,i | Ea,i−1] ≤
2d2d−1 ·

(
k
bd/2c

)
n− i+ 1

for every i ∈ {d+ a+ 2, . . . , k}.
Using these estimates we derive

P ≤ 2d−1 · d! ·
(

2d2d−1
(

k

bd/2c

))k−d−1
·
k−d−1∑
a=0

1
(n− k + 1)a+1 ·

k∏
i=d+a+2

1
n− i+ 1

≤ 2d−1 · d! ·
(

2d2d−1
(

k

bd/2c

))k−d−1
·
k−d−1∑
a=0

1
(n− k + 1)a+1 ·

1
(n− k + 1)k−d−a−1

= 2d−1 · d! ·
(

2d2d−1
(

k

bd/2c

))k−d−1
· (k − d) · 1

(n− k + 1)k−d .

Thus the expected number of k-islands in S satisfies

E[X] = n(n− 1) · · · (n− k + 1)
d! · P

≤
2d−1 · d! ·

(
2d2d−1(k

bd/2c
))k−d−1

· (k − d)

d! · n(n− 1) · · · (n− k + 1)
(n− k + 1)k−d

= 2d−1 ·
(

2d2d−1
(

k

bd/2c

))k−d−1
· (k − d) · n(n− 1) · · · (n− k + 2)

(n− k + 1)k−d−1 .

This finishes the proof of Theorem 1. J

SoCG 2020

14:14 Holes and Islands in Random Point Sets

In the rest of the section, we sketch the proof of Theorem 2 by showing that a slight
modification of the above proof yields an improved bound on the expected number EHK

d,k(n)
of k-holes in S.

Sketch of the proof of Theorem 2. If k points from S determine a k-hole in S, then, in
particular, the simplex ∆ contains no points of S in its interior. Therefore

EHK
d,k(n) ≤ n(n− 1) · · · (n− k + 1) · Pr[E0,k].

Then we proceed exactly as in the proof of Theorem 1, but we only consider the case a = 0.
This gives the same bounds as before with the term (k − d) missing and with an additional
factor 1

(k−d−1)! from Lemma 9, which proves Theorem 2. J

For d = 2 and k = 4, Theorem 2 gives EHK
2,4(n) ≤ 128n2 + o(n2). We can obtain an

even better estimate EHK
2,4(n) ≤ 12n2 + o(n2) in this case. First, we have only three facets

ϕ, as they correspond to the sides of the triangle ∆. Thus the term
(

2
(

k
bd/2c

))k−d−1
= 8 is

replaced by 3. Moreover, the inequality (3) can be replaced by

λ1(Cϕ ∩H(h) ∩∆∗) ≤ λ1(ϕ),

since every line H(h) intersects Rj ⊆ ∆∗ in a line segment of length at most λ1(Fj) = λ(ϕ).
This then removes the factor d(2d−2)(k−d−1) = 4.

4 Proof of Theorem 5

Here, for every d, we state the definition of a d-dimensional analogue of Horton sets on n
points from [18] and show that, for all fixed integers d and k, every d-dimensional Horton set
H with n points contains at least Ω(nmin{2d−1,k}) k-islands in H. If k ≤ 3 · 2d−1, then we
show that H contains at least Ω(nk) k-holes in H.

First, we need to introduce some notation. A set Q of points in Rd is in strongly general
position if Q is in general position and, for every i = 1, . . . , d− 1, no (i+ 1)-tuple of points
from Q determines an i-dimensional affine subspace of Rd that is parallel to the (d − i)-
dimensional linear subspace of Rd that contains the last d− i axes. Let π : Rd → Rd−1 be the
projection defined by π(x1, . . . , xd) = (x1, . . . , xd−1). For Q ⊆ Rd, we use π(Q) to denote the
set {π(q) ∈ Rd−1 : q ∈ Q}. If Q is a set of n points q0, . . . , qn−1 from Rd in strongly general
position that are ordered so that their first coordinates increase, then, for all m ∈ N and
i ∈ {0, 1, . . . ,m− 1}, we define Qi,m = {qj ∈ Q : j ≡ i (mod m)}.

For two sets A and B of points from Rd with |A|, |B| ≥ d, we say that B is deep below
A and A is high above B if B lies entirely below any hyperplane determined by d points of
A and A lies entirely above any hyperplane determined by d points of A. For point sets A′
and B′ in Rd of arbitrarily size, we say that B′ is deep below A′ and A′ is high above B′ if
there are sets A ⊇ A′ and B ⊇ B′ such that |A|, |B| ≥ d, B is deep below A, and A is high
above B.

Let p2 < p3 < p4 < · · · be the sequence of all prime numbers. That is, p2 = 2, p3 = 3,
p4 = 5 and so on.

We can now state the definition of the d-dimensional Horton sets from [18]. Every finite
set of n points in R is 1-Horton. For d ≥ 2, finite set H of points from Rd in strongly general
position is a d-Horton set if it satisfies the following conditions:

M. Balko, M. Scheucher, and P. Valtr 14:15

(a) the set H is empty or it consists of a single point, or
(b) H satisfies the following three conditions:

(i) if d > 2, then π(H) is (d− 1)-Horton,
(ii) for every i ∈ {0, 1, . . . , pd − 1}, the set Hi,pd

is d-Horton,
(iii) every I ⊆ {0, 1, . . . , pd − 1} with |I| ≥ 2 can be partitioned into two nonempty

subsets J and I \ J such that ∪j∈JHj,pd
lies deep below ∪i∈I\JHi,pd

.

Valtr [18] showed that such sets indeed exist and that they contain no k-hole with
k > 2d−1(p2p3 · · · pd + 1). The 2-Horton sets are known as Horton sets. We show that
d-Horton sets with d ≥ 3 contain many k-islands for k ≥ d+ 1 and thus cannot provide the
upper bound O(nd) that follows from Theorem 1. This contrasts with the situation in the
plane, as 2-Horton sets of n points contain only O(n2) k-islands for any fixed k [8].

Let d and k be fixed positive integers. Assume first that k ≥ 2d−1. We want to prove
that there are Ω(n2d−1) k-islands in every d-Horton set H with n points. We proceed by
induction on d. For d = 1 there are n− k + 1 = Ω(n) k-islands in every 1-Horton set.

Assume now that d > 1 and that the statement holds for d − 1. The d-Horton set H
consists of pd ∈ O(1) subsets Hi,pd

, each of size at least bn/pdc ∈ Ω(n). The set {0, . . . , pd−1}
is ordered by a linear ordering ≺ such that, for all i and j with i ≺ j, the set Hi,pd

is deep
below Hj,pd

; see [18]. Take two of sets X = Ha,pd
and Y = Hb,pd

such that a ≺ b are
consecutive in ≺. Since k ≥ 2d−1, we have dk/2e ≥ bk/2c ≥ 2d−2. Thus by the inductive
hypothesis, the (d − 1)-Horton set π(X) of size at least Ω(n) contains at least Ω(n2d−2)
bk/2c-islands. Similarly, the (d− 1)-Horton set π(Y) of size at least Ω(n) contains at least
Ω(n2d−2) dk/2e-islands.

Let π(A) be any of the Ω(n2d−2) bk/2c-islands in π(X), where A ⊆ X. Similarly, let
π(B) be any of the Ω(n2d−2) dk/2e-islands in π(Y), where B ⊆ Y . We show that A ∪B is a
k-island in H. Suppose for contradiction that there is a point x ∈ H \ (A ∪B) that lies in
conv(A ∪B). Since a and b are consecutive in ≺, the point x lies in X ∪ Y = Ha,pd

∪Hb,pd
.

By symmetry, we may assume without loss of generality that x ∈ X. Since x /∈ A and H
is in strongly general position, we have π(x) ∈ π(X) \ π(A). Using the fact that π(A) is a
bk/2c-island in π(X), we obtain π(x) /∈ conv(π(A)) and thus x /∈ conv(A). Since X is deep
below Y , we have x /∈ conv(B). Thus, by Carathédory’s theorem, x lies in the convex hull of
a (d+ 1)-tuple T ⊆ A ∪B that contains a point from A and also a point from B.

Note that, for U = (T ∪ {x}), we have |U ∩A| ≥ 2, as x ∈ A and |T ∩A| ≥ 1. We also
have |U ∩ B| ≥ 2, as X is deep below Y and π(x) /∈ conv(π(A)). Thus the affine hull of
U ∩A intersects the convex hull of U ∩B. Then, however, the set U ∩A is not deep below
the set U ∩B, which contradicts the fact that X is deep below Y .

Altogether, there are at least Ω(n2d−2) ·Ω(n2d−2) = Ω(n2d−1) such k-islands A∪B, which
finishes the proof if k is at least 2d−1. For k < 2d−1, we use an analogous argument that
gives at least Ω(nbk/2c) · Ω(ndk/2e) = Ω(nk) k-islands in the inductive step.

If d ≥ 2 and k ≤ 3 ·2d−1 then a slight modification of the above proof gives Ω(nmin{2d−1,k})
k-islands which are actually k-holes in H. We just use the simple fact that every 2-Horton
set with n points contains Ω(n2) k-holes for every k ∈ {2, . . . , 6} as our inductive hypothesis.
This is trivial for k = 2 and it follows for k ∈ {3, 4} from the well-known fact that every set
of n points in R2 in general position contains at least Ω(n2) k-holes. For k ∈ {5, 6}, this fact
can be proved using basic properties of 2-Horton sets (we omit the details). Then we use
the inductive assumption, which says that every d-Horton set of n points contains at least
Ω(nmin{2d−1,k}) k-holes if d ≥ 2 and 1 ≤ k ≤ 3 · 2d−1. This finishes the proof of Theorem 5.

SoCG 2020

14:16 Holes and Islands in Random Point Sets

References
1 O. Aichholzer, M. Balko, T. Hackl, J. Kynčl, I. Parada, M. Scheucher, P. Valtr, and

B. Vogtenhuber. A Superlinear Lower Bound on the Number of 5-Holes. In 33rd Inter-
national Symposium on Computational Geometry (SoCG 2017), volume 77 of Leibniz Inter-
national Proceedings in Informatics, pages 8:1–8:16, 2017. Full version: arXiv:1703.05253.
doi:10.4230/LIPIcs.SoCG.2017.8.

2 G. E. Andrews, R. Askey, and R. Roy. Special functions, volume 71 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge, 1999. doi:
10.1017/CBO9781107325937.

3 J. Balogh, H. González-Aguilar, and G. Salazar. Large convex holes in random point sets.
Computational Geometry, 46(6):725–733, 2013. doi:10.1016/j.comgeo.2012.11.004.

4 I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical Bulletin,
30(4):436–445, 1987. doi:10.4153/cmb-1987-064-1.

5 I. Bárány and P. Valtr. Planar point sets with a small number of empty convex polygons.
Studia Scientiarum Mathematicarum Hungarica, 41(2):243–266, 2004. doi:10.1556/sscmath.
41.2004.2.4.

6 P. Erdős. Some more problems on elementary geometry. Australian Mathematical Society
Gazette, 5:52–54, 1978. URL: http://www.renyi.hu/~p_erdos/1978-44.pdf.

7 L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. Textbooks in
Mathematics. CRC Press, Boca Raton, FL, revised edition, 2015.

8 R. Fabila-Monroy and C. Huemer. Covering Islands in Plane Point Sets. In Compu-
tational Geometry: XIV Spanish Meeting on Computational Geometry, EGC 2011, vol-
ume 7579 of Lecture Notes in Computer Science, pages 220–225. Springer, 2012. doi:
10.1007/978-3-642-34191-5_21.

9 R. Fabila-Monroy, C. Huemer, and D. Mitsche. Empty non-convex and convex four-gons
in random point sets. Studia Scientiarum Mathematicarum Hungarica. A Quarterly of the
Hungarian Academy of Sciences, 52(1):52–64, 2015. doi:10.1556/SScMath.52.2015.1.1301.

10 T. Gerken. Empty Convex Hexagons in Planar Point Sets. Discrete & Computational Geometry,
39(1):239–272, 2008. doi:10.1007/s00454-007-9018-x.

11 H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathematik,
33:116–118, 1978. In German. URL: http://www.digizeitschriften.de/dms/img/?PID=
GDZPPN002079801.

12 J. D. Horton. Sets with no empty convex 7-gons. Canadian Mathematical Bulletin, 26:482–484,
1983. doi:10.4153/CMB-1983-077-8.

13 M. Katchalski and A. Meir. On empty triangles determined by points in the plane. Acta
Mathematica Hungarica, 51(3-4):323–328, 1988. doi:10.1007/BF01903339.

14 J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

15 M. C. Nicolas. The Empty Hexagon Theorem. Discrete & Computational Geometry, 38(2):389–
397, 2007. doi:10.1007/s00454-007-1343-6.

16 Matthias Reitzner and Daniel Temesvari. Stars of empty simplices, 2019. arXiv:1808.08734.
17 M. Scheucher. Points, Lines, and Circles: Some Contributions to Combinatorial Geometry.

PhD thesis, Technische Universität Berlin, Institut für Mathematik, 2019.
18 P. Valtr. Sets in Rd with no large empty convex subsets. Discrete Mathematics, 108(1):115–124,

1992. doi:10.1016/0012-365X(92)90665-3.
19 P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scientiarum

Mathematicarum Hungarica, pages 155–163, 1995. URL: https://refubium.fu-berlin.de/
handle/fub188/18741.

20 P. Valtr. On empty hexagons. In Surveys on Discrete and Computational Geometry: Twenty
Years Later, volume 453 of Contemporary Mathematics, pages 433–441. American Mathematical
Society, 2008. URL: http://bookstore.ams.org/conm-453.

21 P. Valtr. On empty pentagons and hexagons in planar point sets. In Proceedings of Computing:
The Eighteenth Australasian Theory Symposium (CATS 2012), pages 47–48, Melbourne,
Australia, 2012. URL: http://crpit.com/confpapers/CRPITV128Valtr.pdf.

https://arXiv.org/abs/1703.05253
https://doi.org/10.4230/LIPIcs.SoCG.2017.8
https://doi.org/10.1017/CBO9781107325937
https://doi.org/10.1017/CBO9781107325937
https://doi.org/10.1016/j.comgeo.2012.11.004
https://doi.org/10.4153/cmb-1987-064-1
https://doi.org/10.1556/sscmath.41.2004.2.4
https://doi.org/10.1556/sscmath.41.2004.2.4
http://www.renyi.hu/~p_erdos/1978-44.pdf
https://doi.org/10.1007/978-3-642-34191-5_21
https://doi.org/10.1007/978-3-642-34191-5_21
https://doi.org/10.1556/SScMath.52.2015.1.1301
https://doi.org/10.1007/s00454-007-9018-x
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
https://doi.org/10.4153/CMB-1983-077-8
https://doi.org/10.1007/BF01903339
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/s00454-007-1343-6
http://arxiv.org/abs/1808.08734
https://doi.org/10.1016/0012-365X(92)90665-3
https://refubium.fu-berlin.de/handle/fub188/18741
https://refubium.fu-berlin.de/handle/fub188/18741
http://bookstore.ams.org/conm-453
http://crpit.com/confpapers/CRPITV128Valtr.pdf

The Reeb Graph Edit Distance Is Universal
Ulrich Bauer
Department of Mathematics, Technical University of Munich (TUM), Germany
ulrich.bauer@tum.de

Claudia Landi
Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia,
Reggio Emilia, Italy
clandi@unimore.it

Facundo Mémoli
Department of Mathematics, The Ohio State University, Columbus, OH, USA
memoli@math.osu.edu

Abstract
We consider the setting of Reeb graphs of piecewise linear functions and study distances between
them that are stable, meaning that functions which are similar in the supremum norm ought to have
similar Reeb graphs. We define an edit distance for Reeb graphs and prove that it is stable and
universal, meaning that it provides an upper bound to any other stable distance. In contrast, via a
specific construction, we show that the interleaving distance and the functional distortion distance
on Reeb graphs are not universal.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology

Keywords and phrases Reeb graphs, topological descriptors, edit distance, interleaving distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.15

Funding This research has been partially supported by FAR 2014 (UniMORE), ARCES (University
of Bologna), and the DFG Collaborative Research Center SFB/TRR 109 “Discretization in Geometry
and Dynamics”.

Acknowledgements We thank Barbara Di Fabio and Yusu Wang for valuable discussions.

1 Introduction

The concept of a Reeb graph of a Morse function first appeared in [13] and has subsequently
been applied to problems in shape analysis in [14, 10]. The literature on Reeb graphs in
the computational geometry and computational topology is ever growing (see, e.g., [2, 3]
for a discussion and references). The Reeb graph plays a central role in topological data
analysis, not least because of the success of Mapper [15], a data analysis method providing a
discretization of the Reeb graph for a function defined on a point cloud.

A recent line of work has concentrated on questions about identifying suitable notions of
distance between Reeb graphs. These include the so called functional distortion distance [2],
the interleaving distance [6], and various graph edit distances [9, 7, 1]. Naturally, there is a
strong interest in understanding the connection between different existing distances. In this
regard, it has been shown in [3] that the functional distortion and the interleaving distances
are bi-Lipschitz equivalent. The edit distances defined in [9, 7] for Reeb graphs of curves and
surfaces, respectively, are shown to be universal in their respective settings, so the functional
distortion and interleaving distances restricted to the same settings are a lower bound for
those distances. Moreover, an example in [7] shows that the functional distortion distance
can be strictly smaller than the edit distance considered in that paper.

© Ulrich Bauer, Claudia Landi, and Facundo Mémoli;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9683-0724
mailto:ulrich.bauer@tum.de
https://orcid.org/0000-0001-8725-4844
mailto:clandi@unimore.it
https://orcid.org/0000-0001-8409-0549
mailto:memoli@math.osu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 The Reeb Graph Edit Distance Is Universal

In this paper, we consider the setting of piecewise linear (PL) functions on compact
triangulable spaces, and in this realm we study the properties of stability and universality
of distances between Reeb graphs. The notion of stability has been introduced by Cohen-
Steiner et al. [4] in the context of persistence diagrams, and is a key property for topological
descriptors [12]. Stability means that two objects at a given distance are assigned descriptors
at no more than that distance. This requires a notion of distance on both the collection of
objects as well as on the collection of descriptors. The practical relevance of stability lies in
the guaranteed robustness of the method with respect to bounded imprecision, caused by
noise, coarse sampling, or other sources of uncertainty. However, the stability of a descriptor
is not sufficient to warrant discriminativeness, i.e., the ability to distinguish different objects:
a construction that assigns to every object the same descriptor is certainly stable, but contains
no information. For that reason, given a fixed distance on the objects and a construction
for a descriptor, it is desirable to assign to the descriptors a distance that is as large as
possible while still satisfying the stability property. In that sense, such a distance is then the
most discriminative stable distance. Following Lesnick [11], we call such a distance universal,
noting that the concept already appears in [5] in the context of topological descriptors.

Inspired by a construction of distance between filtered spaces [12], we first construct
a novel distance δU based on considering joint pullbacks of two given Reeb graphs and
prove that this distance satisfies both stability and universality. Via analyzing a specific
construction we then prove that neither the functional distortion nor the interleaving distances
are universal. Finally, we define two edit-like additional distances between Reeb graphs that
reinterpret those appearing in [9, 7, 1] and prove that both are stable and universal. As a
consequence, both distances agree with δU .

2 Topological aspects of Reeb graphs

We start by exploring some topological ideas behind the definition of Reeb graphs. All maps
and functions considered in this paper will be assumed to be continuous. Otherwise, we call
them set maps and set functions.

2.1 Reeb graphs as quotient spaces
The classical construction of a Reeb graph [13] is given via an equivalence relation as follows:

I Definition 2.1. For f : X → R a Morse function on a compact smooth manifold, the Reeb
graph of f is the quotient space X/∼f , with x ∼f y if and only if x and y belong to the same
connected component of some level set f−1(t) (implying t = f(x) = f(y)).

While this definition was originally considered in the setting of Morse theory, it does not
make explicit use of the smooth structure, and so it can be applied quite broadly. However,
some additional assumptions on the space X and the function f are justified in order to
maintain some of the characteristic properties of Reeb graphs in a generalized setting. With
this motivation in mind, we revisit the definition in terms of quotient maps and functions
with discrete fibers.

A quotient map p : X → Y is a surjection such that a set U is open in Y if and only
if p−1(U) is open in X. In particular, a surjection between compact Hausdorff spaces is a
quotient map by the closed map lemma. A quotient map p : X → Y is characterized by the
universal property that a set map Φ : Y → Z into any topological space Z is continuous if
and only if Φ ◦ p is continuous.

U. Bauer, C. Landi, and F. Mémoli 15:3

The motivation for considering quotient maps and functions with discrete fibers is
explained by the following fact.

I Proposition 2.2. Let f : X → R be a function with locally connected fibers, and let
q : X → X/∼f be the canonical quotient map. Then the induced function f̃ : X/∼f → R
with f = f̃ ◦ q has discrete fibers.

Proof. To see that the fibers of f̃ are discrete, we show that any subset S of f̃−1(t) is closed.
Let T = f̃−1(t) \ S. Then q−1(T) is a disjoint union of connected components of f−1(t).
Since f−1(t) is locally connected, each of its connected components is open in the fiber, and
so q−1(T) is open in f−1(t), implying that q−1(S) is closed in f−1(t) and hence in X. Since
q is a quotient map, q−1(S) is closed if and only if S is closed, yielding the claim. J

2.2 Reeb quotient maps and Reeb graphs of piecewise linear functions
We now define a class of quotient maps that leave Reeb graphs invariant up to isomorphism.
The main goal is to provide a natural construction for lifting a function f : X → R to a
space Y through a quotient map Y → X in a way that yields isomorphic Reeb graphs. To
this end, we will define a general notion of Reeb quotient maps and Reeb graphs.

I Definition 2.3. A Reeb domain is a connected compact triangulable space. A Reeb quotient
map is a surjective piecewise linear map of Reeb domains with connected fibers.

We remark that connectedness of Reeb domains is assumed only for the sake of simplicity
(see Remark 3.4).

As shown in Corollary 2.8, Reeb domains and Reeb quotient maps constitute a subcategory
of the category of triangulable spaces and piecewise linear maps.

I Definition 2.4. A Reeb graph is a pair (Rf , f̃) where Rf is a Reeb domain endowed with
a PL function f̃ : Rf → R with discrete fibers, called a Reeb function.

In particular, the isomorphisms between Reeb graphs are PL homeomorphisms that preserve
the function values of the associated Reeb functions. While the definition does not assume
this explicitly, a Reeb graph is indeed a finite topological graph (a compact triangulable space
of dimension at most 1).

I Proposition 2.5. For any Reeb graph (Rf , f̃), the space Rf is a finite topological graph.

Proof. By definition, f̃ is (simplexwise) linear for some triangulation of Rf . If there were a
simplex σ of dimension at least 2 in the triangulation of Rf , then for any x in the interior
of σ, the intersection σ ∩ f̃−1(f̃(x)) would have to be of dimension at least 1. But this would
contradict the assumption that f̃ has discrete fibers. J

I Definition 2.6. Generalizing the classical definition (Definition 2.1), we say that a Reeb
graph (Rf , f̃) is a Reeb graph of f : X → R if there is a Reeb quotient map p : X → Rf
such that f = f̃ ◦ p.

We now proceed to prove that Reeb quotient maps are closed under composition. We start
by showing that not only the fibers, but more generally all preimages of closed connected
sets are connected.

I Proposition 2.7. If p : X → Y is a Reeb quotient map, then the preimage p−1(K) of a
closed connected set K ⊆ Y is connected.

SoCG 2020

15:4 The Reeb Graph Edit Distance Is Universal

Proof. Assume thatK is nonempty; otherwise, the claim holds trivially. Let p−1(K) = U∪V ,
with U, V nonempty and closed in p−1(K). To show that p−1(K) is connected, it suffices to
show that U ∩ V is necessarily nonempty.

Because p−1(K) is closed in X, the sets U and V are also closed in X. The images p(U)
and p(V) are closed by the closed map lemma, and their union is K. By connectedness of K,
their intersection is nonempty. Let y ∈ p(U) ∩ p(V). We have

p−1(y) = (p−1(y) ∩ U) ∪ (p−1(y) ∩ V).

The subspaces (p−1(y) ∩ U) and (p−1(y) ∩ V) are closed in p−1(y), and by connectedness of
the fiber p−1(y), their intersection must be nonempty. In particular, U ∩ V is nonempty. J

I Corollary 2.8. If p : X → Y and q : Y → Z are Reeb quotient maps, then the composition
q ◦ p : X → Z is a Reeb quotient map too.

As mentioned before, the main purpose of Reeb quotient maps is to lift Reeb functions
to larger domains while maintaining the same Reeb graph. The following property is a
consequence of the above statement:

I Corollary 2.9. Let (Rf , f̃) be a Reeb graph of a function f : X → R, and let q : Y → X

be a Reeb quotient map. Then (Rf , f̃) is also a Reeb graph of f ◦ q : Y → R.

Proof. Let p : X → Rf be the Reeb quotient map factoring f = f̃ ◦ p, as in the following
diagram:

R

Y X Rf
q p

f
f̃

Then by Corollary 2.8, (Rf , f̃) is also a Reeb graph for f ◦ q = f̃ ◦ (p ◦ q) : Y → R via the
Reeb quotient map p ◦ q : Y → Rf . J

The following lemma shows how a transformation g = ξ ◦ f of a function f lifts to a Reeb
quotient map ζ between the corresponding Reeb graphs.

I Lemma 2.10. Consider a commutative diagram

im f im g

Rf Rg

X

χ

f̃

ζ
g̃

pf
pg

f

g

where (Rf , f̃), (Rg, g̃) are Reeb graphs, pf : X → Rf , pg : X → Rg are Reeb quotient maps,
and χ : im f → im g is a PL function such that g = χ ◦ f . Then ζ = pg ◦ p−1

f is a Reeb
quotient map from Rf to Rg.

In particular, if χ is a PL homeomorphism, then so is ζ. Note that the definition of ζ does
not involve the function χ; the existence of χ already ensures that ζ is a Reeb quotient map.

U. Bauer, C. Landi, and F. Mémoli 15:5

Proof. Let x ∈ Rf , and let t = f̃(x). Then C = p−1
f (x) is a connected component of f−1(t)

by the assumption that pf is a Reeb quotient map. By commutativity, we have

f−1 ⊆ f−1 ◦ χ−1 ◦ χ = g−1 ◦ χ,

and since C is connected, there must be a single y ∈ Rg with pg(C) = {y}. Hence, ζ = pg◦p−1
f

is a set map. Moreover, since pg is continuous and pf is closed, the map ζ is continuous;
since pg and pf are PL, the map ζ is PL as well.

Now let y ∈ Rg and let s = g̃(y). Similarly to above, C = p−1
g (y) is a connected

component of g−1(s). We have pf (C) = pf ◦ p−1
g (y) = ζ−1(y) 6= ∅, so ζ is surjective, and the

fiber ζ−1(y) = pf (C) is connected as the image of a connected set. J

I Remark 2.11. By Proposition 2.2 and Lemma 2.10, given a Reeb graph (Rf , f̃) of f : X → R
with Reeb quotient map p : X → Rf , there is a canonical isomorphism Rf ∼= X/∼f . As a
consequence, the Reeb graph (Rf , f̃) together with the Reeb quotient map p is unique up to
a unique isomorphism, defining the Reeb graph as a universal property.

We now show that Reeb quotient maps are stable under pullbacks.

I Proposition 2.12. Consider a pullback diagram of PL maps p1 : X1 → Y , p2 : X2 → Y :

Y

X1 X2

X1 ×Y X2

p1 p2

q1 q2

If the map p1 (resp. p2) is a Reeb quotient map, then so is the map q2 (resp. q1). Hence,
the class of Reeb quotient maps is stable under pullbacks.

Proof. First note that the category of compact triangulable spaces has all pullbacks [16].
For x2 ∈ X2, by surjectivity of p1 there is some x1 ∈ X1 such that p1(x1) = p2(x2). Thus
(x1, x2) ∈ X1×Y X2 and q2(x1, x2) = x2, proving that q2 is surjective. Moreover, for x2 ∈ X2,
we have q−1

2 (x2) = p−1
1 (p2(x2))× {x2}. By assumption, p−1

1 (p2(x2)) is connected as a fiber
of p1, implying that p−1

1 (p2(x2))×{x2} is connected. Finally, applying Proposition 2.7 to q2,
we obtain that the pullback space X1 ×Y X2 is connected. The proof for q1 is analogous. J

3 Stable and universal distances

Throughout this paper, we will use the term distance to describe an extended pseudo-metric
d : X ×X → [0,∞] on some collection X. Our main goal is the introduction of a distance
between Reeb graphs that is stable and universal in the following sense.

I Definition 3.1. We say that a distance dS between Reeb graphs is stable if and only if
given any two Reeb graphs (Rf , f̃) and (Rg, g̃), for any Reeb domain X with Reeb quotient
maps pf : X → Rf and pg : X → Rg we have

dS((Rf , f̃), (Rg, g̃)) ≤ ‖f̃ ◦ pf − g̃ ◦ pg‖∞. (S)

Note that stability implies that isomorphic Reeb graphs have distance 0. Indeed, an isomor-
phism of Reeb graphs γ : Rf → Rg yields dS((Rf , f̃), (Rg, g̃)) ≤ ‖f̃ ◦ id−g̃ ◦ γ‖∞ = 0.

SoCG 2020

15:6 The Reeb Graph Edit Distance Is Universal

Moreover, we say that a stable distance dU between Reeb graphs is universal if and only
if for any other stable distance dS between Reeb graphs, we have

dS((Rf , f̃), (Rg, g̃)) ≤ dU ((Rf , f̃), (Rg, g̃)), (U)

for all (Rf , f̃) and (Rg, g̃).

I Remark 3.2. By connectedness of Rf and Rg, there is at least one space X with maps
pf , pg as needed to define the stability property: X = Rf × Rg, with pf , pg the canonical
projections. The resulting functions f = f̃ ◦ pf , g = g̃ ◦ pg : Rf × Rg → R then satisfy
‖f − g‖∞ = max(sup f̃ − inf g̃, sup g̃− inf f̃). In particular, by compactness a stable distance
for Reeb graphs is always finite.

The definition of stability yields the following universal distance.

I Definition 3.3. For any two Reeb graphs (Rf , f̃), (Rg, g̃), let

δU ((Rf , f̃), (Rg, g̃)) := inf
pf : Rf←X→Rg : pg

‖f̃ ◦ pf − g̃ ◦ pg‖∞,

where the infimum is taken over all possible Reeb domains X and Reeb quotient maps
pf : X → Rf and pg : X → Rg, as in the following diagram.

R R

Rf Rg

X

f̃ g̃

pf pg

I Remark 3.4. The connectedness assumption for Reeb domains can be dropped by adapting
the definition of the universal distance as follows. If Rf and Rg have a different number
of connected components, then δU (Rf , Rg) := ∞. If both Rf and Rg have n connected
components so that Rf =

∐
i∈[n] Fi and Rg =

∐
i∈[n] Gi with each Fi and Gi connected, then

δU (Rf , Rg) := min
γ

inf
p:Fi←X→Gγ(i):q

‖f̃ ◦ p− g̃ ◦ q‖∞

where γ varies among all permutations on n objects, i ∈ [n], and the infimum is taken over
all possible Reeb domains X and Reeb quotient maps p : X → Fi and q : X → Gi.

I Proposition 3.5. The distance δU is the largest stable distance on Reeb graphs. Hence,
δU is universal.

Proof. To see that δU is a distance, the only non-trivial part is showing the triangle inequality.
To this end, given diagrams pf : Rf ← X → Rg : pg and p′g : Rg ← Y → Rh : ph, we can
form a pullback of the diagram pg : X → Rg ← Y : p′g to obtain the diagram

R R R

Rf Rg Rh

X Y

X ×Rg Y

f̃ g̃ h̃

pf pg p′g
ph

qX qY

U. Bauer, C. Landi, and F. Mémoli 15:7

where X ×Rg Y is a Reeb domain and qX , qY are Reeb quotient maps by Proposition 2.12.
Defining f = f̃ ◦ pf ◦ qX , g = g̃ ◦ pg ◦ qX = g̃ ◦ p′g ◦ qY , and h = h̃ ◦ ph ◦ qY , we have

δU ((Rf , f̃), (Rh, h̃)) ≤ ‖f − h‖∞ ≤ ‖f − g‖∞ + ‖g − h‖∞
= ‖f̃ ◦ pf − g̃ ◦ pg‖∞ + ‖g̃ ◦ p′g − h̃ ◦ ph‖∞,

where the last equality holds because qX and qY are surjective. Hence

δU ((Rf , f̃), (Rh, h̃)) ≤ δU ((Rf , f̃), (Rg, g̃)) + δU ((Rg, g̃), (Rh, h̃)).

The stability of δU is immediate from its definition. Moreover, for any stable distance dS
between Reeb graphs, combining the stability of dS and the definition of δU , we obtain
dS ≤ δU , implying that δU is universal. J

I Corollary 3.6. The universal distance δU is a metric on isomorphism classes of Reeb
graphs.

Proof. According to Remark 3.2, by stability, δU is always finite. Moreover, we recall
from [6] that there exists a stable distance dI , the interleaving distance, which is a metric
on isomorphism classes of Reeb graphs; in particular, dI((Rf , f̃), (Rg, g̃)) = 0 if and only if
(Rf , f̃) ∼= (Rg, g̃). By stability of dI and universality of δU , we have dI((Rf , f̃), (Rg, g̃)) ≤
δU ((Rf , f̃), (Rg, g̃)). Thus, δU ((Rf , f̃), (Rg, g̃)) = 0 implies dI(Rf , Rg) = 0 and hence
(Rf , f̃) ∼= (Rg, g̃). J

I Example 3.7. Consider the one point Reeb graph (∗, c) endowed with the function identical
to c ∈ R. Then, for any Reeb graph (Rf , f̃), we have δU ((Rf , f̃), (∗, c)) = ‖f̃ − c‖∞.

We now consider an example where we can explicitly determine the value of the distance
δU ((Rf , f̃), (Rg, g̃)) between two specific simple Reeb graphs Rf = S1 = {(x, y) ∈ R2 :
x2 + y2 = 1} with f̃(x, y) = x and Rg = [−1, 1] with g̃(t) = t. The example demonstrates
the non-universality of certain distances proposed in the literature. We prove:

I Proposition 3.8. δU ((Rf , f̃), (Rg, g̃)) = 1.

The proof of this proposition will be obtained from the two claims below.

B Claim 3.9. δU (Rf , Rg) ≤ 1.

Proof. Consider the cylinder C = {(x, y, z) ∈ R3 : x2 + y2 = 1, |2z − x| ≤ 1} together with
functions f(x, y, z) = x and g(x, y, z) = z defined on C. Then (Rf , f̃) is a Reeb graph of f

via the Reeb quotient map (x, y, z) 7→ (x, y), and (Rg, g̃) is a Reeb graph of g via the Reeb
quotient map (x, y, z) 7→ z. Since we have |f(c)− g(c)| ≤ 1 for all c ∈ C, this implies that
δU ((Rf , f̃), (Rg, g̃)) ≤ 1. C

B Claim 3.10. δU ((Rf , f̃), (Rg, g̃)) ≥ 1.

SoCG 2020

15:8 The Reeb Graph Edit Distance Is Universal

Proof. Assume for a contradiction that there is a diagram pf : Rf ← Z → Rg : pg of Reeb
quotient maps such that, letting f̂ = f̃ ◦ pf and ĝ = g̃ ◦ pg, we have ‖f̂ − ĝ‖∞ = δ < 1. We
then observe the following:

ĝ−1(0) ⊆ f̂−1([−δ,+δ]).
f̃−1([−δ,+δ]) consists of two circular arcs homeomorphic by f̃ to [−δ,+δ], and thus, by
Proposition 2.7, f̂−1([−δ,+δ]) consists of two connected components C+ and C− as well.
For both components we have f̂(C±) = [−δ, δ], and so ‖f̂ − ĝ‖∞ = δ implies that
0 ∈ ĝ(C±). Thus ĝ−1(0) ∩ C− 6= ∅ and ĝ−1(0) ∩ C+ 6= ∅.

But since ĝ−1(0) ⊆ C− t C+, this would contradict the assumption that the fiber ĝ−1(0)
is connected. C

The current example illustrates that the functional distortion distance introduced in [2]
and the interleaving distance introduced in [6] are both stable but fail to be universal. We
first recall the definition of the former. For any Reeb graph (Rf , f̃), (Rg, g̃), consider the
metric on Rf given by

df (x, y) = inf{b− a | x, y are in the same connected component of f̃−1([a, b])}.

Given maps φ : Rf → Rg and ψ : Rg → Rf , we write

G(φ, ψ) =
{

(p, φ(p)) : p ∈ Rf} ∪ {(ψ(q), q) : q ∈ Rg
}

for the correspondences induced by the two maps, and

D(φ, ψ) = sup
(p,q),(p′,q′)∈G(φ,ψ)

1
2 |df (p, p′)− dg(q, q′)|

for the metric distortion induced by (φ, ψ). The functional distortion distance is then
defined as

dFD(Rf , Rg) = inf
φ,ψ

(max
{
D(φ, ψ), ‖f − g ◦ φ‖∞, ‖f ◦ ψ − g‖∞

}
).

To see that neither the functional distortion distance nor the interleaving distance are
universal, we establish:

I Proposition 3.11. dI((Rf , f̃), (Rg, g̃)) ≤ dFD((Rf , f̃), (Rg, g̃)) ≤ 1
2 .

Proof. By [3, Lemma 8], the functional distortion distance is an upper bound on the interleav-
ing distance on Reeb graphs [6], and so it is enough to prove that dFD((Rf , f̃), (Rg, g̃)) ≤ 1

2 .

To this end, consider the maps

φ : Rf → Rg, (x, y) 7→ x and ψ : Rg → Rf , t 7→
(
t,
√

1− t2
)
.

For every pair p, p′ ∈ Rf one can verify that

|f̃(p)− f̃(p′)| ≤ df (p, p′) ≤ |f̃(p)− f(p′)|+ 1,

while for every pair q, q′ ∈ Rg, we have

dg(q, q′) = |g̃(q)− g̃(q′)|.

This implies that for any two corresponding pairs (p, q), (p′, q′) ∈ G(φ, ψ), we have

|df (p, p′)− dg(q, q′)| ≤ 1,

and thus D(φ, ψ) ≤ 1
2 . Both maps preserve function values, so dFD(Rf , Rg) ≤ 1

2 . J

U. Bauer, C. Landi, and F. Mémoli 15:9

4 Edit distances

Given a pair of Reeb graphs Rf , Rg, consider a diagram of the form

R R R R

Rf = R1 R2 · · · Rn−1 Rn = Rg

X1 X2 Xn−2 Xn−1

f̃1 f̃2 f̃n−1 f̃n

(1)

where for n ∈ N f̃1, . . . , f̃n are Reeb functions with f̃1 = f̃ and f̃n = g̃, and the maps
Xi → Ri, Ri+1 for i = 1, . . . , n − 1, are Reeb quotient maps. We call the diagram a Reeb
zigzag diagram between Rf and Rg. Observe that, by Remark 3.2, between any two Reeb
graphs Rf and Rg there exists a Reeb zigzag diagram.

A Reeb zigzag diagram can be regarded as being composed of the following elementary
diagrams:

R

Ri

Xi−1 Xi

f̃i

R R

Ri Ri+1

Xi

f̃i f̃i+1

This way, we may think of a Reeb zigzag diagram as a sequence of operations transforming
the Rf into Rg. The elementary diagram on the left corresponds to an edit operation: the
space Xi−1, together with a function Xi−1 → R with Reeb graph Ri, is transformed to
another space Xi, with a function Xi → R having the same Reeb graph Ri. The elementary
diagram on the right corresponds to a relabel operation: the function on Xi with Reeb graph
Ri is transformed to another function with Reeb graph Ri+1. The idea of edit and relabel
operations is inspired by previous work on edit distances for Reeb graphs [7, 1].

In order to define an edit distance using Reeb zigzag diagrams, we need to assign a cost
to a given Reeb zigzag diagram between Rf and Rg. To that end, we can consider a cone
from a space V by Reeb quotient maps V → Ri:

R R R R

R1 R2 · · · Rn−1 Rn

X1 X2 · · · Xn−2 Xn−1

V

f̃1 f̃2 f̃n−1 f̃n

(2)

We call this diagram a Reeb cone. Any Reeb zigzag diagram admits such a cone. Indeed,
the limit over the lower part of the diagram (1) can be constructed from iterated pullbacks,
and since Reeb quotient maps are stable under pullbacks, the maps in the resulting limit
diagram are Reeb quotient maps as well. In a Reeb cone, by commutativity, each of the
Reeb functions f̃i induces a unique function fi : V → R. By Corollary 2.9, the Reeb graph

SoCG 2020

15:10 The Reeb Graph Edit Distance Is Universal

of fi is isomorphic to Ri. This way, we pull back the individual functions f̃i to functions
fi on a common space with the same Reeb graphs, where they can be compared using the
supremum norm.

Using these ideas, we can now introduce distances on Reeb graphs, and proceed to prove
that they are stable and universal.

I Definition 4.1. Given a Reeb cone from a space V as in (2), we define the spread of the
functions (fi)i=1,...,n : V → R, as the function

sV : V → R, x 7→ max
i=1,...,n

fi(x)− min
j=1,...,n

fj(x).

Moreover, for a Reeb zigzag diagram Z between Rf and Rg as in (1), consider the limit of Z,
denoted by L. The cost of the Reeb zigzag diagram Z is the supremum norm of the spread sL,

cZ := ‖sL‖∞ = sup
x∈L

(
max
i
fi(x)−min

j
fj(x)

)
.

I Definition 4.2. We define the (PL) edit distance δe between Reeb graphs (Rf , f̃) and
(Rg, g̃) as the infimum cost of all Reeb zigzag diagrams Z between Rf and Rg:

δe(Rf , Rg) = inf
Z
cZ .

Moreover, we define the graph edit distance δeGraph between Reeb graphs (Rf , f̃) and (Rg, g̃)
analogously by restricting the infimum to Reeb zigzag diagrams Z where all the spaces Xi

and Ri are finite topological graphs.

Thus, on Reeb graphs we have two edit distances, satisfying

δe ≤ δeGraph . (3)

The Reeb graph edit distance δeGraph is a categorical reformulation of the definition given
in [1]. The main goal is to prove that these distances have the stability and universality
properties (Propositions 4.4 and 4.5, Theorem 5.6, and Corollary 5.7). As a consequence,
whenever applicable, they actually coincide with the canonical universal distance δU defined
in Definition 3.3:

I Corollary 4.3. δU = δe = δeGraph .

The proofs of stability and universality for δe are straightforward and are given next. The
verification of stability and universality for δeGraph follows in Section 5.

I Proposition 4.4. δe is a stable distance.

Proof. Let (Rf , f̃), (Rg, g̃) be Reeb graphs. For any space X such that there exist two Reeb
quotient maps pf : X → Rf and pg : X → Rg, the diagram

R R

Rf Rg

X

f̃ g̃

pf

f

pg

g

is a Reeb zigzag diagram with limit object X. The cost of this Reeb zigzag diagram is exactly
‖f − g‖∞. Hence, δe((Rf , f̃), (Rg, g̃)) ≤ ‖f − g‖∞. J

U. Bauer, C. Landi, and F. Mémoli 15:11

Our proof of universality of the edit distance is similar to previous universality proofs for
the bottleneck distance [5] and for the interleaving distance [11].

I Proposition 4.5. δe is a universal distance.

Proof. Let (Rf , f̃), (Rg, g̃) be Reeb graphs with δe((Rf , f̃), (Rg, g̃)) = d. Hence, for any
ε > 0, there is a Reeb zigzag diagram Z between Rf = R1 and Rg = Rn, with limit L and
functions fi as in Definition 4.1, having cost

cZ = ‖sL‖∞ = ‖max
i
fi −min

j
fj‖∞ ≤ d+ ε.

Let pf : L → Rf and pg : L → Rg be the induced Reeb quotient maps. If dS is any other
stable distance (cf. Definition 3.1) between Rf and Rg, we have

dS((Rf , f̃), (Rg, g̃)) ≤ ‖f̃ ◦ pf − g̃ ◦ pg‖∞ ≤ ‖max
i
fi −min

j
fj‖∞ ≤ d+ ε.

Since the above holds for all ε > 0, we have dS((Rf , f̃), (Rg, g̃)) ≤ d = δe((Rf , f̃), (Rg, g̃)). J

5 Stability and universality of the Reeb graph edit distance

We now turn to the proof of stability and universality for the Reeb graph edit distance.
Recall that, in the case of δeGraph, the admissible Reeb zigzag diagrams are PL zigzags of
finite topological graphs. As mentioned above, the distance δeGraph is applicable to Reeb
graphs of compact triangulable spaces.

I Lemma 5.1. Let X be a compact triangulable space, with PL functions f, g : X → R,
simplexwise linear on a triangulation |K| ∼= X of X by some simplicial complex K. Let
χ : im f → im g be a weakly monotonic PL surjection such that χ ◦ f(v) = g(v) for every
vertex v ∈ V of K. Then there is a Reeb quotient map X/∼f → X/∼g.

Proof. Without loss of generality, assume X = |K|. For simplicity, we write Rf = X/∼f ,
Rg = X/∼g, and Rh = X/∼h, where h = χ◦f . Applying Proposition 2.2, f can be factorized
as f = f̃ ◦ qf , where qf : X → Rf is the canonical projection and f̃ : Rf → R is a Reeb
function. Analogously, we obtain g = g̃ ◦ qg and h = h̃ ◦ qh. We show that there is a Reeb
quotient map k : X → Rh making the following diagram commute:

im f im g

Rf Rh Rg

X X

χ

f̃
h̃

g̃

qf qh k
qg

The claim then follows by applying Lemma 2.10 to obtain Reeb quotient maps Rf → Rh
and Rh → Rg, which compose to the desired map Rf → Rg.

In order to prove the existence of such a Reeb quotient map k, we define the relation

k = qh ◦ ((h−1 ◦ g) ∩ stK)

on X ×Rh. Here stK denotes the open star on X = |K|, defined as

stK(x) = {y ∈ X | σ ∈ K, y ∈ σ◦, x ∈ σ},

SoCG 2020

15:12 The Reeb Graph Edit Distance Is Universal

where σ◦ is the interior of the simplex σ. Note that the converse relation to the open star is
the (closed) carrier, st−1

K = carrK , where carrK(A) is the underlying space of the smallest
subcomplex of K containing A ⊆ X. We will also use the open carrier relation carr◦K , where
carr◦K(A) is the smallest union of open simplices of K covering A. Note that the open carrier
relation is symmetric, i.e., (carr◦K)−1 = carr◦K . Moreover, we have carr◦K ⊆ stK .

The remainder of the proof is split into several lemmas. Lemma 5.2 describes the behaviour
of the functions h and g on the simplices of K. Lemma 5.3 shows that k is a continuous
surjection, and Lemma 5.4 shows that k has connected fibers. Since h̃ ◦ k = g, we conclude
that k is PL. Thus, k is a Reeb quotient map, and the claim follows from Lemma 2.10. J

I Lemma 5.2. For every simplex σ in K, g(σ) = h(σ) and g(σ◦) ⊆ h(σ◦).

Proof. We have h(σ) = g(σ) because h is equal to g on the vertices of K, and h = χ ◦ f
with f linear on σ and χ a weakly monotonic surjection.

To show that g(σ◦) ⊆ h(σ◦), note that since g is linear on σ, either g is constant on σ
and so g(σ◦) = g(σ) = h(σ), or g(σ◦) = (g(v), g(w)) for some vertices v, w of σ. In the latter
case, since h and g coincide on the vertices, we have g(σ◦) = g(σ)◦ = h(σ)◦. Finally, since
h(σ◦) ⊆ h(σ) ⊆ h(σ◦) are nested intervals, we have h(σ)◦ ⊆ h(σ◦) and the claim follows. J

I Lemma 5.3. k is a continuous surjection.

Proof. Recall that the relation k ⊆ X × Rh is a partial set map if for any x ∈ X and
y, y′ ∈ k(x), we have y = y′. Moreover, a partial set map k is a (total) set map if for every
x ∈ X, k(x) 6= ∅. Finally, a set map k is a surjection if for every y ∈ Rh, there is some
x ∈ k−1(y).

We first show that k is a partial set map, i.e., for any x ∈ X and y, y′ ∈ k(x), we have
y = y′. To see this, let t = g(x) and note that h̃(y) = h̃(y′) = t. Let σ ∈ K be such that
x ∈ σ◦. By Lemma 5.2 there is a point ζ ∈ σ◦ with h(ζ) = g(x) = t; in particular,

ζ ∈ h−1(t) ∩ stK(x).

Furthermore, there are points ξ, ξ′ ∈ h−1(t) ∩ stK(x) with ξ ∈ q−1
h (y) and ξ′ ∈ q−1

h (y′).
But since h−1(t) ∩ τ is necessarily connected for every simplex τ , we know that ζ lies
in the same connected component of h−1(t) ∩ stK(x) as both ξ and ξ′, and so we have
y = qh(ξ) = qh(ξ′) = y′ as claimed.

To show that k is a set map, we need to show that for every x ∈ X, k(x) 6= ∅. It
suffices to show that for every x ∈ X, stK(x) contains a point x′ with h(x′) = g(x). This
follows by considering the simplex σ ∈ K with x ∈ σ◦. Now by Lemma 5.2, there is a point
x′ ∈ σ◦ ⊆ stK(x) with h(x′) = g(x) as claimed.

To show that k is surjective, we show that for every y ∈ Rh, there is some

x ∈ k−1(y) = (carrK ◦ q−1
h)(y) ∩ (g−1 ◦ h̃)(y),

or equivalently, there is some x ∈ carrK ◦ q−1
h (y) such that g(x) = h̃(y). If q−1

h (y) contains
some vertex v of K, choose x = v. Otherwise, let ξ ∈ q−1

h (y), and let σ ∈ K be such that
ξ ∈ σ◦. Now by Lemma 5.2 there is a point x ∈ σ ⊆ carrK ◦ q−1

h (y) with g(x) = h(ξ) = h̃(y).
Finally, to show that k is continuous, we show that for every closed subset L of Rh, the

preimage k−1(L) is closed. Since k−1 = (carrK ◦ q−1
h)∩ (g−1 ◦ h̃), it is sufficient to show that

both carrK ◦ q−1
h (L) and g−1 ◦ h̃(L) are closed in X. First note that carrK ◦ q−1

h (L) is closed
as a subcomplex of K. Furthermore, the image h̃(L) is closed by the closed map lemma. By
continuity of g it follows that g−1 ◦ h̃(L) is closed in X. J

U. Bauer, C. Landi, and F. Mémoli 15:13

I Lemma 5.4. The fibers of k are connected.

Proof. Let y ∈ Rh be a point in the Reeb graph with value t = h̃(y), and C = q−1
h (y) ⊆ h−1(t)

the corresponding component of the level set of h. Let U = carrK(C), and let L be the
corresponding subcomplex of K. Writing D = k−1(y), we have C = U ∩ h−1(t) and
D = U ∩ g−1(t). To prove that D is connected, it is sufficient to show that C and D have
finite closed covers with isomorphic nerves; since C is connected, both nerves and hence also
D are then connected too.

The cover of C is given by {σ∩C | σ ∈ L}, and similarly the cover of D is {σ∩D | σ ∈ L}.
Observe that any two cover elements of C, say σ∩C and τ ∩C, have a nonempty intersection
(σ ∩ C) ∩ (τ ∩ C) = (σ ∩ τ) ∩ C if and only if t ∈ h(σ ∩ τ). Similarly, σ ∩D and τ ∩D have
nonempty intersection if and only if t ∈ g(σ ∩ τ). But g(σ ∩ τ) = h(σ ∩ τ) by Lemma 5.2,
and so the nerves of both covers are isomorphic as claimed. J

We thus have shown the existence of the Reeb quotient map k. This completes the proof
of Lemma 5.1. We will now apply Lemma 5.1 to construct Reeb graph edit zigzags from
straight line homotopies.

I Lemma 5.5. Let X be a compact triangulable space, with PL functions f, g : X → R,
simplexwise linear on a triangulation |K| ∼= X. Consider the straight line homotopy fλ =
(1 − λ)f + λg, with 0 ≤ λ ≤ 1. Then there exists a partition 0 = λ1 < · · · < λn = 1 such
that for every 1 ≤ i < n and ρ ∈ (λi, λi+1), there exist weakly monotonic PL surjections
χi : im fρ → im fλi and ξi+1 : im fρ → im fλi+1 with

χi ◦ fρ(v) = fλi(v) and ξi+1 ◦ fρ(v) = fλi+1(v)

for every vertex v of K.

Proof. Consider the set of values 0 < λ < 1 such that there exist vertices v, w ∈ K with

fλ(v) = fλ(w), but fρ(v) 6= fρ(w) for every ρ 6= λ.

This set is finite because the function λ 7→ fλ(v)− fλ(w) is linear and K has a finite number
of vertices. Let {λi}1≤i≤n be this set together with 0 and 1, indexed in ascending order. By
the linearity of fλ with respect to the parameter λ, we also see that the order induced by
fρ on the vertices is the same for every ρ ∈ (λi, λi+1). Indeed, if there exist two distinct
vertices v, w of K such that fρ(v) = fρ(w) for some ρ ∈ (λi, λi+1), then fλ(v) = fλ(w) for
every λ ∈ [0, 1]. By continuity, the order is still weakly preserved along [λi, λi+1].

Therefore, the function fρ(v) 7→ fλi(v) is well-defined and can be extended to a piecewise
linear function χi satisfying the claim. The function ξi+1 can be defined similarly. J

I Theorem 5.6. δeGraph is a stable distance.

Proof. Let X ∼= |K| be a compact triangulable space with f, g : X → R be PL functions,
simplexwise linear on K; without loss of generality, assume X = |K|. Consider the straight
line homotopy fλ = (1− λ)f + λg, with 0 ≤ λ ≤ 1, and take values λi ∈ [0, 1], 1 ≤ i ≤ n, as
in Lemma 5.5. Set ρi = (λi + λi+1)/2.

We first define a Reeb cone of the form (2), with V = X, Ri = X/∼fλi , i = 1, . . . , n, and
Xi = X/∼fρi , i = 1, . . . , n− 1. The canonical projections qρi : X → Xi and qλi : X → Ri are
Reeb quotient maps, and the Reeb functions Ri → R are induced by fλi as in Proposition 2.2.
To complete the construction, we show that there are Reeb quotient maps pi : X/∼fρi →
X/∼fλi and oi+1 : X/∼fρi → X/∼fλi+1

that make the following diagram commute:

SoCG 2020

15:14 The Reeb Graph Edit Distance Is Universal

Ri = X/∼fλi Ri+1 = X/∼fλi+1

Xi = X/∼fρi

X

pi oi+1

qρi
qλi qλi+1

We prove the existence of pi, that of oi+1 being analogous. By Lemma 5.5, there is a weakly
monotonic PL surjection χi : im fρi → im fλi such that χi ◦ fρi = fλi . Hence, Lemma 5.1
provides the desired Reeb quotient map pi : X/∼fρi → X/∼fλi .

Now consider the limit L over the resulting Reeb zigzag diagram Z consisting of the maps
pi and oi, with maps ri : L → Xi and si : L → Ri. Since the maps from X in the above
Reeb cone factor through a unique map m : X → L by the universal property of the limit,
we obtain the commutative diagram

R R

· · · Ri Ri+1 · · ·

Xi−1 Xi Xi+1

L

X

f̃λi f̃λi+1

oi pi oi+1 pi+1

ri−1
ri

ri+1

si si+1

qρi−1

qρi

qρi+1
m

We have fλi = fLλi ◦m for 1 ≤ i ≤ n, with fLλi = f̃λi ◦ si. Hence, for every ` ∈ L,

sL(`) = max
j
fLλj (`)−min

k
fLλk(`) ≤

n−1∑
i=1
|fLλi+1

(`)− fLλi(`)|.

By the surjectivity of qρi , for every i there is x`,i ∈ X such that qρi(x`,i) = ri(`). Thus,

|fLλi+1
(`)− fLλi(`)| = |fλi+1(x`,i)− fλi(x`,i)| ≤ (λi+1 − λi) · ‖f − g‖∞.

Together, for every ` ∈ L we have

sL(`) ≤
n−1∑
i=1

(λi+1 − λi) · ‖f − g‖∞ = ‖f − g‖∞.

We conclude that

δe(Rf , Rg) ≤ cZ = ‖sL‖∞ ≤ ‖f − g‖∞,

showing that δe is a stable distance. J

I Corollary 5.7. δeGraph = δU is the universal distance.

Proof. The claim is a direct consequence of inequality (3) together with Theorem 5.6
and Propositions 4.4 and 4.5. J

U. Bauer, C. Landi, and F. Mémoli 15:15

6 Discussion

We believe that the following questions are of interest and could motivate further research:
Do minimizers in the definition of the universal distance always exist? This would have
algorithmic implications. See below.
Is the interleaving distance [6] bi-Lipschitz equivalent to the universal distance? If the
answer to this question is affirmative, then by results of [3], one would obtain the bi-
Lipschitz equivalence between the universal distance and the functional distortion distance
from [2].
What is the computational complexity of the universal distance? This problem is at least
graph-isomorphism hard, which can be seen as follows. First note that bipartite graphs
form a graph-isomorphism complete class of graphs. Any bipartite simple graph can be
interpreted as a Reeb graph with function values in {0, 1} corresponding to the partition
of the vertex set. Using Corollary 3.6, these Reeb graphs are at universal distance 0 if
and only if the bipartite graphs are isomorphic, so both of these decision problems are
graph-isomorphism complete. A similar observation has been made for the interleaving
distance [6].
These considerations motivate the following two ancillary questions:

Is the universal distance a minimum over a certain finite set, possibly of cardinality
polynomial in the size of the input Reeb graphs?
More generally, are the possible values of the universal distance always contained in
some canonical set of values, constructed from the sets of vertex function values of the
two Reeb graphs? Related results in the context of manifolds endowed with Morse
functions are in the work of Donatini and Frosini [8]. This work carries over to the
setting of Reeb graphs by the results of [7].

How do the theoretical properties of the universal distance extend to more genreal settings?
The definition of the universal distance also makes sense in a more general topological
setting, where we consider locally compact Hausdorff spaces as Reeb domains and
proper quotient maps with connected fibers as Reeb quotient maps. The distance one
obtains in this larger category can still be applied to finite Reeb graphs, in which case
it will be smaller or equal to the PL universal distance that we described in this paper.
However, we conjecture that in this case the two distances actually coincide.
Reeb spaces: Generalizing our definitions and results up to Section 5 to Reeb spaces
of piecewise linear maps X → Rn is straightforward. Do our results of Section 5
generalize as well?

References
1 Ulrich Bauer, Barbara Di Fabio, and Claudia Landi. An Edit Distance for Reeb Graphs.

In Eurographics Workshop on 3D Object Retrieval. The Eurographics Association, 2016.
doi:10.2312/3dor.20161084.

2 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between Reeb graphs. In
Proceedings of the Thirtieth Annual Symposium on Computational Geometry, SoCG’14, New
York, NY, USA, 2014. ACM. doi:10.1145/2582112.2582169.

3 Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving
and functional distortion metrics for Reeb graphs. In 31st International Symposium on
Computational Geometry (SoCG 2015), Leibniz International Proceedings in Informatics
(LIPIcs), pages 461–475, Dagstuhl, Germany, 2015. doi:10.4230/LIPIcs.SOCG.2015.461.

4 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete Comput. Geom., 37(1):103–120, 2007. doi:10.1007/s00454-006-1276-5.

SoCG 2020

https://doi.org/10.2312/3dor.20161084
https://doi.org/10.1145/2582112.2582169
https://doi.org/10.4230/LIPIcs.SOCG.2015.461
https://doi.org/10.1007/s00454-006-1276-5

15:16 The Reeb Graph Edit Distance Is Universal

5 Michele d’Amico, Patrizio Frosini, and Claudia Landi. Natural pseudo-distance and optimal
matching between reduced size functions. Acta Applicandae Mathematicae, 109(2):527–554,
2010. doi:10.1007/s10440-008-9332-1.

6 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete &
Computational Geometry, 55(4):854–906, 2016. doi:10.1007/s00454-016-9763-9.

7 Barbara Di Fabio and Claudia Landi. The edit distance for Reeb graphs of surfaces. Discrete
& Computational Geometry, 55(2):423–461, 2016. doi:10.1007/s00454-016-9758-6.

8 Pietro Donatini and Patrizio Frosini. Natural pseudodistances between closed manifolds.
Forum Math., 16(5):695–715, 2004. doi:10.1515/form.2004.032.

9 Barbara Di Fabio and Claudia Landi. Reeb graphs of curves are stable under function
perturbations. Mathematical Methods in the Applied Sciences, 35(12):1456–1471, 2012. doi:
10.1002/mma.2533.

10 Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. Topology
matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01, pages
203–212. ACM Press, 2001. doi:10.1145/383259.383282.

11 Michael Lesnick. The theory of the interleaving distance on multidimensional persistence
modules. Foundations of Computational Mathematics, 15(3):613–650, 2015. doi:10.1007/
s10208-015-9255-y.

12 Facundo Mémoli. A distance between filtered spaces via tripods. Preprint, 2017. arXiv:
1704.03965.

13 Georges Reeb. Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une
fonction numérique. Comptes Rendus de L’Académie des Sciences, 222:847–849, 1946.

14 Yoshihisa Shinagawa and Tosiyasu L. Kunii. Constructing a Reeb graph automatically
from cross sections. IEEE Computer Graphics and Applications, 11(6):44–51, 1991. doi:
10.1109/38.103393.

15 Gurjeet Singh, Facundo Mémoli, and Gunnar Carlsson. Topological Methods for the Analysis of
High Dimensional Data Sets and 3D Object Recognition. In Eurographics Symposium on Point-
Based Graphics. The Eurographics Association, 2007. doi:10.2312/SPBG/SPBG07/091-100.

16 John R. Stallings. Brick’s Quasi Simple Filtrations and 3-Manifolds, volume 188 of London
Mathematical Society Lecture Note Series, page 188–203. Cambridge University Press, 1993.
doi:10.1017/CBO9780511661860.017.

https://doi.org/10.1007/s10440-008-9332-1
https://doi.org/10.1007/s00454-016-9763-9
https://doi.org/10.1007/s00454-016-9758-6
https://doi.org/10.1515/form.2004.032
https://doi.org/10.1002/mma.2533
https://doi.org/10.1002/mma.2533
https://doi.org/10.1145/383259.383282
https://doi.org/10.1007/s10208-015-9255-y
https://doi.org/10.1007/s10208-015-9255-y
http://arxiv.org/abs/1704.03965
http://arxiv.org/abs/1704.03965
https://doi.org/10.1109/38.103393
https://doi.org/10.1109/38.103393
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://doi.org/10.1017/CBO9780511661860.017

Book Embeddings of Nonplanar Graphs with
Small Faces in Few Pages
Michael A. Bekos
Department of Computer Science, University of Tübingen, Germany
bekos@informatik.uni-tuebingen.de

Giordano Da Lozzo
Department of Engineering, Roma Tre University, Rome, Italy
giordano.dalozzo@uniroma3.it

Svenja M. Griesbach
Department of Mathematics and Computer Science, University of Cologne, Germany
sgriesba@smail.uni-koeln.de

Martin Gronemann
Department of Mathematics and Computer Science, University of Cologne, Germany
gronemann@informatik.uni-koeln.de

Fabrizio Montecchiani
Department of Engineering, University of Perugia, Italy
fabrizio.montecchiani@unipg.it

Chrysanthi Raftopoulou
School of Applied Mathematical & Physical Sciences, NTUA, Athens, Greece
crisraft@mail.ntua.gr

Abstract
An embedding of a graph in a book, called book embedding, consists of a linear ordering of its vertices
along the spine of the book and an assignment of its edges to the pages of the book, so that no
two edges on the same page cross. The book thickness of a graph is the minimum number of pages
over all its book embeddings. For planar graphs, a fundamental result is due to Yannakakis, who
proposed an algorithm to compute embeddings of planar graphs in books with four pages. Our main
contribution is a technique that generalizes this result to a much wider family of nonplanar graphs,
which is characterized by a biconnected skeleton of crossing-free edges whose faces have bounded
degree. Notably, this family includes all 1-planar and all optimal 2-planar graphs as subgraphs. We
prove that this family of graphs has bounded book thickness, and as a corollary, we obtain the first
constant upper bound for the book thickness of optimal 2-planar graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph algorithms

Keywords and phrases Book embeddings, Book thickness, Nonplanar graphs, Planar skeleton

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.16

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.07655.

Funding Michael A. Bekos: Partially supported by DFG grant KA812/18-1.
Giordano Da Lozzo: Partially supported by MSCA-RISE project “CONNECT”, N◦ 734922, and by
MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms for HArnessing networked Data”.
Fabrizio Montecchiani: Partially supported by MIUR, grant 20174LF3T8 “AHeAD: efficient Algo-
rithms for HArnessing networked Data”, and by Dipartimento di Ingegneria, Università degli studi
di Perugia, grant RICBA19FM: “Modelli, algoritmi e sistemi per la visualizzazione di grafi e reti”.

Acknowledgements This work began at the Dagstuhl Seminar 19092 “Beyond-Planar Graphs:
Combinatorics, Models and Algorithms” (February 24 - March 1, 2019).

© Michael A. Bekos, Giordano Da Lozzo, Svenja M. Griesbach, Martin Gronemann, Fabrizio
Montecchiani, and Chrysanthi Raftopoulou;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 16; pp. 16:1–16:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3414-7444
mailto:bekos@informatik.uni-tuebingen.de
https://orcid.org/0000-0003-2396-5174
mailto:giordano.dalozzo@uniroma3.it
mailto:sgriesba@smail.uni-koeln.de
https://orcid.org/0000-0003-2565-090X
mailto:gronemann@informatik.uni-koeln.de
https://orcid.org/0000-0002-0543-8912
mailto:fabrizio.montecchiani@unipg.it
https://orcid.org/0000-0001-6457-516X
mailto:crisraft@mail.ntua.gr
https://doi.org/10.4230/LIPIcs.SoCG.2020.16
https://arxiv.org/abs/2003.07655
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

Figure 1 Graph K6 and a book embedding of it with the minimum of three pages.

1 Introduction

Book embeddings of graphs form a well-known topic in topological graph theory that has
been a fruitful subject of intense research over the years, with seminal results dating back
to the 70s [38]. In a book embedding of a graph G, the vertices of G are restricted to a line,
called the spine of the book, and the edges of G are assigned to different half-planes delimited
by the spine, called pages of the book. From a combinatorial point of view, computing a
book embedding of a graph corresponds to finding a linear ordering of its vertices and a
partition of its edges, such that no two edges in the same part cross; see Fig. 1. The book
thickness (also known as stack number or page number) of a graph is the minimum number
of pages required by any of its book embeddings, while the book thickness of a family of
graphs G is the maximum book thickness of any graph G ∈ G.

Book embeddings were originally motivated by the design of VLSI circuits [14, 42], but
they also find applications, among others, in sorting permutations [39, 43], compact graph
encodings [30, 35], graph drawing [9, 10, 45], and computational origami [1]; for a more
complete list, we point the reader to [22]. Unfortunately, determining the book thickness of
a graph turns out to be an NP-complete problem even for maximal planar graphs [44]. This
negative result has motivated a large body of research devoted to the study of upper bounds
on the book thickness of meaningful graph families.

In this direction, there is a very rich literature concerning planar graphs. The most
notable result is due to Yannakakis, who back in 1986 exploited a peeling-into-levels technique
(a flavor of it is given in Section 2) to prove that the book thickness of any planar graph is
at most 4 [46, 47], improving uppon a series of previous results [13, 27, 29]. Even though it
is not yet known whether the book thickness of planar graphs is 3 or 4, there exist several
improved bounds for particular subfamilies of planar graphs. Bernhart and Kainen [8] showed
that the book thickness of a graph G is 1 if and only if G is outerplanar, while its book
thickness is at most 2 if and only if G is subhamiltonian, that is, G is a subgraph of a
Hamiltonian planar graph. In particular, several subfamilies of planar graphs are known to
be subhamiltonian, e.g., 4-connected planar graphs [37], planar graphs without separating
triangles [31], Halin graphs [15], series-parallel graphs [40], bipartite planar graphs [17], planar
graphs of maximum degree 4 [6], triconnected planar graphs of maximum degree 5 [28], and
maximal planar graphs of maximum degree 6 [24]. In this plethora of results, we should also
mention that planar 3-trees have book thickness 3 [27] and that general (i.e., not necessarily
triconnected) planar graphs of maximum degree 5 have book thickness at most 3 [26].

In contrast to the planar case, there exist far fewer results for non-planar graphs. Bernhart
and Kainen first observed that the book thickness of a graph can be linear in the number
of its vertices; for instance, the book thickness of the complete graph Kn is dn/2e [8].
Improved bounds are usually obtained by meta-theorems exploiting standard parameters of

M.A. Bekos et al. 16:3

the graph. In particular, Malitz proved that if a graph has m edges, then its book thickness
is O(

√
m) [34], while if its genus is g, then its book thickness is O(√g) [33]. Also, Dujmovic

and Wood [23] showed that if a graph has treewidth w, then its book thickness is at most
w + 1, improving an earlier linear bound by Ganley and Heath [25]. It is also known that
all graphs belonging to a minor-closed family have bounded book thickness [11], while the
other direction is not necessarily true. As a matter of fact, the family of 1-planar graphs
is not closed under taking minors [36], but it has bounded book thickness [3, 4]. We recall
that a graph is h-planar (with h ≥ 0), if it can be drawn in the plane such that each edge is
crossed at most h times; see, e.g., [19, 32] for recent surveys.

Notably, the approaches presented in [3, 4] form the first non-trivial extensions of the
above mentioned peeling-into-levels technique by Yannakakis [46, 47] to graphs that are
not planar. Both approaches exploit an important property of 3-connected 1-planar graphs,
namely, they can be augmented and drawn so that all pairs of crossing edges are “caged” in
the interior of degree-4 faces of a planar skeleton, i.e., the graph consisting of all vertices and
of all crossing-free edges of the drawing [41]. A similar property also holds for the optimal
2-planar graphs. Each graph in this family admits a drawing whose planar skeleton is simple,
biconnected, and has only degree 5 faces, each containing five crossing edges [7]. The book
thickness of these graphs, however, has not been studied yet; the best-known upper bound of
O(logn) is derived from the corresponding one for general h-planar graphs [21].

Our contribution. We present a technique that further generalizes the result by Yannakakis
to a much wider family of non-planar graphs, called partial k-framed graphs, which is general
enough to include all 1-planar graphs and all optimal 2-planar graphs. A graph is k-framed,
if it admits a drawing having a simple biconnected planar skeleton, whose faces have degree
at most k ≥ 3, and whose crossing edges are in the interiors of these faces. A partial k-framed
graph is a subgraph of a k-framed graph. Clearly, the book thickness of partial k-framed
graphs is lower bounded by dk/2e, as they may contain cliques of size k [8]. In this work,
we present an upper bound on the book thickness of partial k-framed graphs that depends
linearly only on k (but not on n). Our main result is as follows.

I Theorem 1. The book thickness of a partial k-framed graph is at most 6dk2 e+ 5.

Note that the partial 3-framed graphs are exactly the (simple) planar graphs. Also, it is
known that 3-connected 1-planar graphs are partial 4-framed [2], while general 1-planar
graphs can be augmented to 8-framed. Hence, Theorem 1 implies constant upper bounds for
the book thickness of these families of graphs. Since optimal 2-planar graphs are 5-framed, the
next corollary guarantees the first constant upper bound on the book thickness of this family.

I Corollary 2. The book thickness of an optimal 2-planar graph is at most 23.

More in general, each partial k-framed graph is h-planar for h = (k−2
2)2, and hence

for this family of h-planar graphs we prove that the book thickness is O(
√
h), while the

best-known upper bound for general h-planar graphs is O(h logn) [21].

Preliminaries. We assume familiarity with basic graph-theoretic [20] and graph-drawing [18]
concepts. Let Γ be a drawing of a graph G. The planar skeleton σ(G) of G in Γ is the plane
subgraph of G induced by the crossing-free edges of G in Γ (where the embedding of σ(G)
is the one induced by Γ). The edges of σ(G) are crossing-free, while the edges that belong
to G but not to σ(G) are crossing edges. A k-framed drawing of a graph is one such that
its crossing-free edges determine a planar skeleton, which is simple, biconnected, spans all

SoCG 2020

16:4 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

Figure 2 A drawing of a 6-framed graph, whose crossing-free (crossing) edges are black (gray).

the vertices, and has faces of degree at most k ≥ 3. A graph is k-framed, if it admits a
k-framed drawing; see Fig. 2. A partial k-framed graph is a subgraph of a k-framed graph.
Clearly, if a k-framed graph has book thickness at most b, then the book thickness of any of
its subgraphs is at most b. Thus, we will only consider k-framed graphs. Further, w.l.o.g., we
will also assume that each pair of vertices that belongs to a face f of σ(G) is connected either
by a crossing-free edge (on the boundary of f) or by a crossing edge (drawn inside f). In
other words, the vertices on the boundary of f induce a clique of size at most k. Under this
assumption, graph G may contain parallel crossing edges connecting the same pair of vertices,
but drawn in the interior of different faces of σ(G); see, e.g., the dashed edges of Fig. 2.

2 Proof of Theorem 1

Our approach adopts some ideas from the seminal work by Yannakakis on embeddings of
planar graphs in books with five pages [47], not four. The main challenges of our generalization
are posed by the crossing edges and by the fact that we cannot augment the input graph
so that its underlying planar skeleton is internally-triangulated. Our technique is based on
the so-called peeling-into-levels decomposition. Let G be an n-vertex k-framed graph with a
k-framed drawing Γ. We classify the vertices of G as follows: (i) vertices on the unbounded
face of σ(G) are at level 0, and (ii) vertices that are on the unbounded face of the subgraph
of σ(G) obtained by deleting all vertices of levels ≤ i− 1 are at level i (0 < i < n); see, e.g.,
Fig. 3. Denote by σi(G) the subgraph of σ(G) induced by the vertices of Li. Observe that
σi(G) is outerplane, but not necessarily connected. Next, we consider σi(G) and delete any
edge that is not incident to the unbounded face. The resulting spanning subgraph of σi(G)
is denoted by Ci(G). By definition, each connected component of Ci(G) is a cactus. Also,
the only edges that belong to σi(G) but not to Ci(G) are the chords of σi(G). Finally, we
denote by Gi the subgraph of G induced by the vertices of L0 ∪ . . . ∪ Li containing neither
chords of σi(G) nor the crossing edges that are in the interior of the unbounded face of σ(G).

Consider an edge e of σ(G). If the endpoints of e are assigned to the same level, e is a
level edge; otherwise, e connects vertices of consecutive levels and is called a binding edge;
see Fig. 3. By the definition of the level-partition, there is no edge e ∈ E, that connects two
vertices of levels i and j, such that |i− j| > 1. Another consequence of the level-partition
is that any vertex of level i + 1 lies in the interior of a cycle of level i. Next, we give a
characterization for bounded faces of σ(G). A bounded face of σ(G) is an intra-level face of
σi(G) if it is incident to at least one vertex of Li−1 but to no vertex of Li−2. We denote by
Fi the set of all the intra-level faces of σi(G). By definition, the unbounded face of σi(G) is
not an intra-level face. Each intra-level face of σi(G) has either at least one binding edge
between Li−1 and Li on its boundary, or it consists exclusively of Li−1-level edges.

M.A. Bekos et al. 16:5

level partition

Figure 3 The peeling-into-levels decomposition of an 8-framed graph without its crossing edges.
The vertices and level-edges of level L0 (L1;L2, resp.) are blue (orange; green, resp.) and induce
σ0(G) (σ1(G);σ2(G), resp.). Chords are drawn dashed; binding edges are drawn gray. The blue
(orange; green, resp.) faces are the intra-level faces of σ1(G) (σ2(G);σ3(G), resp.). Graph σ0(G)
(σ1(G);σ2(G), resp.) without the dashed chords forms C0(G) (C1(G);C2(G), resp.). The striped
blue face is an intra-level face of σ1(G), whose boundary exists exclusively of L0-level edges.

At a high level, we will inductively compute a book embedding of Gi+1, assuming that
we have already computed a book embedding of Gi. For this inductive strategy to work, the
computed book embeddings satisfy particular invariants, which we define subsequently. We
first focus on the base case, in which G consists of only two levels L0 and L1 under some
additional assumptions (see Section 2.1). Afterwards, we consider the inductive case, in
which G consists of more than two levels (see Section 2.2).

2.1 Base case: two-level instances
A two-level instance is a k-framed graph G consisting of two levels L0 and L1, such that there
is no crossing edge in the unbounded face of σ0(G), and either L1 = ∅ or σ1(G) = C1(G),
i.e., σ1(G) is chord-less; refer to Fig. 4 of a two-level instance (see Fig. 4). Since σ(G) is
biconnected, C0(G) is a simple cycle. Let u0, u1, . . . , us−1 with s ≥ 3 be the vertices of L0 in
the order they appear in a clockwise traversal of C0(G) starting from u0. An edge (ui, uj)
of σ0(G) is short if i − j = ±1; otherwise it is long. By definition, (u0, us−1) is long. In
the following we will refer to the intra-level faces of σ1(G) simply as intra-level faces, and
we will further denote F1 as F . Consider now the graph C1(G). Each of its connected
components is a cactus; thus, its biconnected components, called blocks, are either single
edges or simple cycles (that are chordless, as σ1(G) = C1(G)). A connected component of
C1(G) may degenerate into a single vertex, and this vertex itself is a degenerate block. A
block that consists of more than one vertex is called non-degenerate. We equip F with a
linear ordering λ(F) as follows. For i = 0, . . . , s− 1, the intra-level faces incident to vertex ui
are appended to λ(F) as they appear in counterclockwise order around ui starting from the
one incident to (ui−1, ui) and ending at the one incident to (ui, ui+1) (indices taken modulo
s), unless already present. For a pair of intra-level faces f and f ′, we write f ≺λ f ′ if f
precedes f ′ in λ(F); similarly, we write f �λ f ′ if f = f ′ or f ≺λ f ′.

Let C1, . . . , Cγ be the connected components of C1(G) and let C ∈ {C1, . . . , Cγ}. In
general, several intra-level faces in F may contain vertices of C on their boundary. Let
fC be the first face in the ordering λ(F) that contains a vertex of C. Consider now a
counterclockwise traversal of the boundary of fC starting from the vertex of L0 with the
smallest subscript that belongs to fC . We refer to the vertex, say vC , of C that is encountered
first in this traversal as the first vertex of C. Observe that, by definition, vC is incident

SoCG 2020

16:6 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

u10

u2

u3 u5 u6 u8

u11

u12

u18 u14u15u16u17

u9

u13

vC1

u4 u7

f1

f2

f3

f4

f5 f6

f7

f8 f9

f10 f11

f12

f13

f14f16f17f18

f15

B6

`(B6)u0

u20

u19

f0

u1

C1

C2

C3

vC2

vC3

B1

B2

B3

B4 B5
B7

B8

B9

B11

B12

B13

B14

B16

B17

B18

B19
B20

B21

B22

B
2
4

B
2
3

Figure 4 Illustration of the graph σ1(G) of a two-level instance G: u0, . . . , u20 are the vertices of
L0; C1(G) consists of three connected components C1, C2 and C3, whose first vertices are denoted
by vC1 , vC2 and vC3 , resp.; vertices assigned to each block have the same color as the block; C1

contains two blocks B2 and B21 that are simple edges; the two level edges (u5, u6) and (u5, u8) are
short and long, resp.; (u1, vC1) is a binding edge; the intra-level faces of F are numbered according
to λ(F); the intra-level face d(B6) that discovers B6 is the face f5 tilled gray; hence, dom(B6) = u3;
f1, f9 and f12 discover the degenerate blocks.

to a binding edge that is on the boundary of fC . We will further assume that vC forms a
degenerate block rC of C. The leader of a block B of C, denoted by `(B), is the first vertex
of B that is encountered in any path of C from vC to B; note that `(B) is uniquely defined.

Consider a vertex v of C. If v belongs to only one block of C, then v is assigned to
that block. Otherwise v is assigned to the block B of C such that v belongs to B and the
graph-theoretic distance in C between `(B) and vC is the smallest. It follows that vC is
assigned to the degenerate block rC , and that for any non-degenerate block B the leader
`(B) is not assigned to B. We denote by B(v) the block of C that a vertex v is assigned to.
Let B be a block of C. Assume first that B is non-degenerate. We refer to the first face in
the ordering λ(F) containing an edge of B as the face that discovers B. Assume now that B
is degenerate, i.e., it consists of a single vertex v. We refer to the first face in the ordering
λ(F) that has v on its boundary as the face that discovers B. In both cases, we denote by
d(B) the face in F that discovers block B. We extend the notion of discovery to the vertices
of G. To this end, let v be a vertex of G (which can be incident to several intra-level faces in
F). We distinguish whether v belongs to L0 or L1. In the former case, face f of F discovers
vertex v if f is the first intra-level face in the ordering λ(F) that contains v on its boundary.
In the latter case, face f in F discovers vertex v if f is the face that discovers the block
vertex v is assigned to. In both cases we denote by d(v) the face in F that discovers vertex v.
This yields d(v) = d(B(v)) for any v ∈ L1. The dominator dom(B) of block B is the vertex
of L0 with the smallest subscript that is on the boundary of d(B). Several blocks of C can
be discovered by the same face, and by definition, these blocks have the same dominator.
Analogously, we define the dominator dom(f) of an intra-level face f as the vertex of L0
with the smallest subscript that is on the boundary of f . This yields dom(B) = dom(d(B)).

I Property 3. The face d(B) that discovers block B is the first face in λ(F) that has a
vertex assigned to block B on its boundary.

M.A. Bekos et al. 16:7

Proof. If B is a degenerate block, the property follows by definition. Otherwise, B contains
at least one edge on its boundary. The face d(B) is the first intra-level face in λ(F) that
contains an edge (v, w) of B on its boundary. Since only `(B) is not assigned to B and since
(v, w) is a boundary edge of B, at least one of v and w is assigned to B. The property follows
from the fact that at most one of the endpoints of (v, w) is not assigned to B. J

Let B and B′ be two blocks of C1(G). We say that B precedes B′ and write B ≺ B′ if
(i) d(B) ≺λ d(B′), or (ii) d(B) = d(B′) and in a counterclockwise traversal of d(B) starting
from dom(d(B)) block B is encountered before block B′. Since λ(F) is a well-defined ordering,
the relationship “precedes” defines a total ordering of the blocks of C1(G).

I Property 4. Let v be a vertex of G and let fv ∈ F be an intra-level face that contains v
on its boundary. Then, d(v) �λ fv holds.

Proof. If v belongs to L0, then the property follows by definition. Otherwise, v belongs to
L1, and d(v) is the intra-level face that discovers the block B(v), that is, d(v) = d(B(v)). If
B(v) is degenerate, then d(v) is the first intra-level face in λ(F) that has v on its boundary.
Hence, d(v) �λ fv. Otherwise, by Property 3, d(B(v)) is the first intra-level face in λ(F)
that contains a vertex assigned to block B on its boundary. Since d(v) = d(B(v)) and since
v is assigned to block B, it follows that d(v) �λ fv. J

A vertex v of L0 belonging to the boundary of an intra-level face f is prime with respect
to f if no vertex of L1 and no long level edge is encountered in the clockwise traversal of f
from dom(f) to v. By definition, dom(f) is prime with respect to f . We say that a vertex
v is f-prime if either v is prime with respect to face f or v belongs to L1. By definition,
any vertex of L1 is g-prime with respect to any intra-level face g. Let uj be a vertex on L0
that is not d(uj)-prime with j ∈ {1, . . . , s− 1}. Let fuj

0 , . . . , f
uj

t be the faces that have uj
on their boundary in a counterclockwise traversal of uj starting from (uj−1, uj) and ending
at (uj , uj+1) (indices taken modulo s). Let d be smallest index such that fuj

d = d(uj). The
faces fuj

0 , . . . , f
uj

d−1 that have uj as their dominator are called small.

2.1.1 Linear ordering
We compute the linear ordering ρ of the vertices by first embedding the vertices of L0 in the
order u0, u1, . . . , us−1, and by embedding the remaining vertices of L1 based on the blocks
that they have been assigned to and according to the following rules:

R.1 For j = 0, . . . , s−1, let Bj0, . . . , B
j
t−1 be the blocks with uj as dominator such that the faces

that discover them are not small (are small, resp.), and Bji ≺ B
j
i+1 for i = 0, 1, . . . , t− 2.

The vertices assigned to these blocks are placed right after (before, resp.) uj in ρ.
R.2 The vertices assigned to Bji are right before those assigned to Bji+1, for each i = 0, . . . , t−2.
R.3 The vertices assigned to the same block Bji are in the order they appear in a counterclock-

wise traversal of the boundary of Bji starting from the leader of Bji , for i = 0, . . . , t− 1.

For a pair of distinct vertices v and w, we write v ≺ρ w if v precedes w in ρ. By Rule R.1,
the vertices of L1 discovered by f and the f -prime vertices of L0 are right next to each other
in ρ. The next property is consequence of Rules R.1–R.3.

I Property 5. The vertices assigned to a block B of L1 appear consecutively in ρ.

Properties 6 to 8 will be useful in Section 2.2; for the proofs of Properties 7 and 8 refer to [5].

SoCG 2020

16:8 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

fw

fw′
L0

v v′ w′ w′

(a)

fw

fw′
L0

v v′ w′ w′

B(w)w

(b)

Figure 5 Illustration for the proof of Lemma 9.

I Property 6. Let C1 and C2 be two connected components of C1(G) rooted at their first
vertices, and let B1 and B2 be two non-degenerate blocks of C1 and C2, respectively. If there
exists a vertex v assigned to B2 between `(B1) and the vertices assigned to B1 in ρ, then all
vertices assigned to B2 appear in ρ between `(B1) and the vertices assigned to B1.

Proof. Let B′1 be the block that `(B1) is assigned to. Then B′1 is a block of C1 and B′1 6= B1.
Let w be a vertex assigned to block B1. Then we have `(B1) ≺ρ v ≺ρ w with `(B1) assigned
to B′1, v assigned to B2, and w assigned to B1. By Property 5, all vertices assigned to the
same block are consecutive in ρ, and the claim follows. J

I Property 7. Let C be a connected component of C1(G) rooted at its first vertex, and let B
be a non-degenerate block of C with two children B1 and B2. If `(B1) �ρ `(B2) and B2 ≺ B1,
then all vertices assigned to descendant blocks of B2 (including B2) precede in ρ all vertices
assigned to descendant blocks of B1 (including B1).

I Property 8. Let C be a connected component of C1(G), and let B1 and B2 be two distinct
non-degenerate blocks of C. If there is a vertex v assigned to a block B1 between `(B2) and
the remaining vertices of B2 such that `(B1) ≺ρ `(B2), then `(B2) is assigned to B1.

2.1.2 Edge-to-page assignment
An edge (v, w) is a dominator edge if v is the dominator of an intra-level face fw containing
w on its boundary. A dominator edge (v, w) is backward if v ≺ρ w or forward otherwise.
Next, we prove that all backward edges of G can be assigned to a single page. The proof is
reminiscent of a corresponding one by Yannakakis [47] for similarly-defined backward edges.

I Lemma 9. Let (v, w) and (v′, w′) be two backward edges of G, such that v, w, v′ and w′
are four distinct vertices of G with v ≺ρ w, v′ ≺ρ w′ and v ≺ρ v′. Then, v ≺ρ w ≺ρ v′ ≺ρ w′
or v ≺ρ v′ ≺ρ w′ ≺ρ w holds.

Proof. By definition, v and v′ are the dominators of two intra-level faces fw and fw′

containing w and w′ on their boundaries. If w ≺ρ v′, we have v ≺ρ w ≺ρ v′ ≺ρ w′. Thus,
assume v′ ≺ρ w. If w belongs to L0, then w is not fw-prime; see Fig. 5a. Since v ≺ρ v′, and
v and v′ are the dominators of fw and fw′ , respectively, it follows that fw ≺λ f ′w. Since
vertex w is not fw-prime, we have w′ ≺ρ w. Hence, v ≺ρ v′ ≺ρ w′ ≺ρ w. Assume now that w
belongs to L1; see Fig. 5b. Since v is the dominator of fw, and v ≺ρ w, the vertex w belongs
to a block B(w) discovered by v. By Rule R.1, there is no vertex of L0 between v and the
vertices assigned to B(w) in ρ. Hence, v′ cannot appear between v and w in ρ. J

Similarly, we can prove that all forward edges can be assigned to a single page.

M.A. Bekos et al. 16:9

L0

B(v) v fvd(v)

B(w) w fwd(w)

(a)

L0

B(w)

v fv

d(v) = d(w)

B(v)

w fw

(b)
L0

B
(v
)
=

B
(w

)

v fv

d(v) = d(w)

w fw

(c)

Figure 6 Illustration for the proof of Lemma 13.

I Lemma 10. Let (v, w) and (v′, w′) be two forward edges of G, such that v, w, v′ and w′
are four distinct vertices of G with w ≺ρ v, w′ ≺ρ v′ and v′ ≺ρ v. Then, w′ ≺ρ v′ ≺ρ w ≺ρ v
or w ≺ρ w′ ≺ρ v′ ≺ρ v holds.

We now present properties helpful for the page assignment of the non-dominator edges.

I Property 11. Let v be a d(v)-prime vertex of L0. Then v is f-prime for any intra-level
face f that has v on its boundary. Also, v = dom(f), except possibly for f = d(v).

Proof. Let f be an intra-level face that is different from d(v) such that f has v on its
boundary. By planarity, vertex v is the dominator of face f . Thus, v is f -prime. J

I Property 12. Let w be a d(w)-prime vertex. For any vertex v with v ≺ρ w, d(v) �λ d(w).

Proof. Since w is d(w)-prime, w precedes any vertex discovered by a face f with d(w) ≺λ f .
Assuming to the contrary that d(w) ≺λ d(v), we get w ≺ρ v; a contradiction. J

I Lemma 13. Let v and w be two vertices of G, such that v ≺ρ w. Also, let fv and fw be
two intra-level faces containing v and w on their boundaries, respectively, such that fv ≺λ fw.
If the following conditions hold (i) v is d(v)-prime, (ii) w is d(w)-prime, and (iii) v and w
are not the dominators of fv and fw, respectively, then fv �λ d(w) holds.

Proof. First, observe that by Property 12, we have d(v) �λ d(w). We split the proof into
four cases based on whether v and w belong to L0 or to L1. (a) v and w belong to L0. Since
v is d(v)-prime, it follows by Property 11 that v is also fv-prime. However, since v is not
the dominator of fv, it follows that d(v) = fv. The same holds for vertex w and the faces
d(w) and fw. Now the claim fv �λ d(w) is an immediate consequence of the assumption
fv ≺λ fw. (b) v belongs to L0 and w belongs to L1. By Property 11 and Condition (i), we
know that v is fv-prime. By Property 4, we have d(v) �λ fv. If d(v) ≺λ fv, Property 11
implies v = dom(fv) which contradicts Condition (iii). However, if d(v) = fv, the claim
follows from d(v) �λ d(w). (c) v belongs to L1 and w belongs to L0. Consider vertex w. As
above, by Property 11 and Condition (ii), it follows that w is fw-prime and therefore, by
Condition (iii), d(w) = fw holds. Recalling the assumption fv ≺λ fw, the claim fv �λ d(w)

SoCG 2020

16:10 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

u10

u2

u3 u5 u6 u8

u11

u12

u18 u14u15u16u17

u9

u13

u4 u7

1

2

3

4

5

6

7

8 9

10 11

12

13

14161718

15

u0

u20

u19

0

u1

Figure 7 The conflict graph of Fig. 4.

is a direct consequence of fv ≺λ fw. (d) v and w belong to L1. Assume to the contrary
that d(w) ≺λ fv. This implies d(v) �λ d(w) ≺λ fv ≺λ fw. We consider the two subcases,
namely, d(v) ≺λ d(w) and d(v) = d(w). In the former, since v belongs to L1, vertex v

belongs to the boundary of block B(v) discovered by d(v). Similarly, vertex w belongs to the
boundary of block B(w) discovered by d(w). Hence, we have B(v) 6= B(w), as d(v) ≺λ d(w);
see Fig. 6a. The order fv ≺λ fw violates the planarity of σ(G); a contradiction. In the
latter, since v belongs to L1, vertex v belongs to the boundary of block B(v) discovered
by d(v) = d(w). Similarly, vertex w belongs to the boundary of block B(w) discovered
by d(v) = d(w). For the two blocks B(v) and B(w) either B(v) 6= B(w) or B(v) = B(w)
holds. First, assume that B(v) 6= B(w); see Fig. 6b. B(v) and B(w) are discovered by the
same face, and v ≺ρ w. By Rule R.2 it follows B(v) precedes B(w) in the counterclockwise
traversal of d(v) = d(w). With fv ≺λ fw, the planarity of σ(G) is violated; a contradiction.
Next, assume B(v) = B(w). Since v ≺ρ w, by Rule R.3, in the counterclockwise traversal of
B(v) = B(w) starting from its leader, vertex v precedes w; see Fig. 6c. The order fv ≺λ fw
violates the planarity of σ(G); a contradiction. J

I Lemma 14. Let v, w, x and z be four vertices of G, such that (v, w) and (x, z) are two
non-dominator edges of G, and v ≺ρ x ≺ρ w ≺ρ z. Let fvw be a face with v and w on its
boundary, and let fxz be a face with x and z on its boundary such that fvw and fxz are two
distinct faces. Moreover, v and w are fvw-prime, whereas x and z are fxz-prime. Then
d(x) = fvw or d(w) = fxz holds.

Observe that in Lemma 14 the edges (v, w) and (x, z) form two non-dominator edges that
cannot be assigned to the same page. Lemma 14 translates this conflict into a relationship
between the two faces fvw and fxz containing these edges. In the following, we model these
conflicts as edges of an auxiliary graph which we call the conflict graph and denote by C(G).

I Definition 15. The conflict graph C(G) of G is an undirected graph whose vertices are
the faces of F . There exists an edge (f, g) with f 6= g in C(G) if and only if there exists a
vertex w of level L1 on the boundary of g such that f = d(w); see Fig. 7.

With this definition, we are able to restate Lemma 14 as follows.

M.A. Bekos et al. 16:11

L0
w

fvw

fxz = d(w)

Figure 8 Illustration for the proof of Lemma 16.

I Lemma 16. Let (v, w) and (x, z) be two non-dominator edges of G belonging to two distinct
faces fvw and fxz such that v and w are fvw-prime, x and z are fxz-prime, v ≺ρ w, and
x ≺ρ z. If (v, w) and (x, z) cross in ρ, then there is an edge (fvw, fxz) in C(G).

Proof. W.l.o.g. assume v ≺ρ x ≺ρ w ≺ρ z. As in Lemma 14, we show v, x ∈ L1. By
Lemma 14, fvw = d(x) or fxz = d(w) holds. Since x ∈ L1, (fvw, fxz) ∈ C(G) if fvw = d(x)
holds. Thus, consider fxz = d(w). If w ∈ L1, (fvw, fxz) ∈ C(G). Assume w ∈ L0. If
fvw ≺λ fxz, we get d(w) �λ fvw ≺λ fxz = d(w) by Property 4; a contradiction. Otherwise,
if w is d(w)-prime, we have d(w) = fxz ≺λ fvw and thus, w = dom(fvw) by Property 11;
a contradiction. So, w is not d(w)-prime. Since w is fvw-prime with w 6= dom(fvw), at
least one vertex of L0 on fvw is right before w in a clockwise traversal of L0; see Fig. 8. By
Property 12 and v, x ∈ L1, we have d(v) �λ d(x). By Property 4, we get d(v) �λ d(x) �λ fxz.
In fact, d(v) = d(x) = fxz holds as otherwise d(v) and fvw cannot bound B(v) without
violating planarity. Thus, d(v) = fxz and v ∈ L1 imply (fvw, fxz) ∈ C(G). J

In the following lemma, we prove an important property of the conflict graph.

I Lemma 17. Graph C(G) is 1-page book embeddable.

Proof. We order the vertices of C(G) as in λ(F). For a contradiction, suppose C(G) contains
two crossing edges (f, g) and (f ′, g′) such that, w.l.o.g., f ≺λ f ′ ≺λ g ≺λ g′. Then, there is
either v ∈ L1 on f with g = d(v), or w ∈ L1 on g with f = d(w). In the former, by Property 4,
we have d(v) �λ f , contradicting g = d(v) �λ f ≺λ g. In the latter, we argue analogously
for (f ′, g′). Hence, there exist w,w′ ∈ L1 on g and g′, respectively, with f = d(w) and
f ′ = d(w′). This yields d(w) ≺λ d(w′) ≺λ g ≺λ g′. Since w,w′ ∈ L1, they are d(w)- and
d(w′)-prime. By Property 12 and since w 6= w′, we have w ≺ρ w′. We apply Lemma 13 on
w and w′ with fv = g and fw = g′, and obtain g �λ d(w), contradicting d(w) ≺λ g. J

Since C(G) is 1-page book embeddable, it is outerplanar [8]. Hence, we have the following.

I Corollary 18. Graph C(G) admits a vertex coloring with three colors.

We are now ready to give the main result of the section.

I Theorem 19. The book thickness of a two-level k-framed graph G is at most 3dk2 e+ 2.

Sketch. By Lemma 9, we embed all backward edges in page p0, and all forward edges
in page p1. We next assign the remaining edges of G to three sets R1, B1 and G1, each
containing dk2 e pages. We process the intra-level faces of F according to λ(F). Let f be the
next face to process. By Corollary 18, face f has a color in {r, b, g}. The vertices of f induce
at most a k-clique Cf in G. We assign the non-dominator edges of Cf to the pages of one of
the sets R1, B1 and G1 depending on whether the color of f is r, b, or g, respectively. This
is possible since Cf is at most a k-clique [8]. Let (v, w) and (x, z) be two non-dominator
edges, and let fvw and fxz be the faces of F responsible for assigning (v, w) and (x, z) to one

SoCG 2020

16:12 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

p2

p3

p4

G
p0p1

p0

p2

p0

p2

p1p3
p4

p1p2

p0

p4

L0

L1

L2

L3

Figure 9 A multi-level instance G with four levels of vertices, such that the bicomponents of Ĝ2

(which are shaded blue) form two connected components. Incoming edge and the two outgoing edges
incident to the components are used to indicate page to which the backward edges and the the two
sets of forward edges of each bicomponent are assigned, respectively.

of the pages of R1 ∪B1 ∪G1. If v and w are fvw-prime, and x and z are fxz-prime, then by
Lemma 16, (v, w) and (x, z) cannot cross. In the full version [5], we prove that no two edges
in the same page can cross, even if their endpoints are non-prime vertices of L0. J

2.2 Inductive step: multi-level instances

In this section, we consider the general instances, which we call multi-level instances, in
which the input k-framed graph G consists of q ≥ 3 levels L0, L1, . . . , Lq−1. We refer to
Fig. 9 for a schematic representation of a multi-level instance. Initially, we assume that
the unbounded face of σ(G) contains no crossing edges in its interior; we will eventually
drop this assumption. Recall that Gi denotes the subgraph of G induced by the vertices
of L0 ∪ . . . ∪ Li containing neither chords of σi(G) nor the crossing edges that are in the
interior of the unbounded face of σ(G). We will further denote by Ĝi the subgraph of Gi
that is induced by the vertices of Li−1 ∪ Li without the chords of σi+1(G). Observe that Ĝi
is not necessarily connected; however, its maximal biconnected components, refered to as
bicomponents in the following, form two-level instances. To ease the description, we refer to
the blocks of all bicomponents of Ĝi simply as the blocks of Ĝi. In a book embedding of
Gi, we say that two vertices of the level Lj (with j ≤ i) are sequential if there is no other
vertex of level Lj between them along the spine. We say that a set U of vertices of level
Lj′ is j-delimited, with j′ 6= j, if either: (a) there exist two sequential vertices of level Lj
such that all vertices of U appear between them along the spine, or (b) all vertices of U are
preceded or followed along the spine by all vertices of Lj .

M.A. Bekos et al. 16:13

A book embedding Ei of Gi is good if it satisfies the following properties1:

P.1 The left-to-right order of the vertices on the boundary of each non-degenerate block B
of Ĝi in Ei complies with the order of these vertices in a counterclockwise (clockwise)
traversal of the boundary of B, if i is odd (even).

P.2 All vertices of each block B of Ĝi, except possibly for its leftmost vertex, are consecutive
and (i− 1)-delimited.

P.3 If between the leftmost vertex `(B) of a block B of Ĝi and the remaining vertices of
B there is a vertex v of Li that belongs to a block B′ of Ĝi in the same connected
component as B, such that the leftmost vertex `(B′) of B′ is to the left of `(B), then B
and B′ share `(B).

P.4 Let B and B′ be two blocks of Ĝi for which P.3 does not apply, and let `(B) and `(B′) be
their leftmost vertices. If `(B) precedes `(B′), then either `(B′) precedes all remaining
vertices of B or all remaining vertices of B′ precede all remaining vertices of B.

P.5 For any j ≤ i− 2, all the vertices of each block of Ĝi are j-delimited.
P.6 The edges of Gi are assigned to 6dk/2e + 5 pages partitioned as (i) P = {p0, . . . , p4},

and (ii) Rj = {rj1, . . . , r
j
dk/2e}, B

j = {bj1, . . . , b
j
dk/2e}, G

j = {gj1, . . . , g
j
dk/2e}, j ∈ {0, 1}.

P.7 The edges of Gi are classified as backward, forward, or non-dominator such that:
a For ζ ≤ i, the non-dominator edges of Ĝζ belong to Rj ∪Bj ∪Gj with j = ζ mod 2.
b The edges that are incident to the leftmost vertex of a bicomponent of Ĝi and that

are in its interior are backward.
c Let Bi be a bicomponent of Ĝi. The backward edges of Ĝi in the interior of Bi are
assigned to a single page b(Bi), while the forward edges are assigned to two pages
f1(Bi) and f2(Bi) of P different from b(Bi); refer to Fig. 9.

d Let Bi−1 be a bicomponent of Ĝi−1. The blocks B1
i−1, . . . , B

µ
i−1 of Bi−1 are the

boundaries of several bicomponents of Ĝi. Then, the forward edges of Ĝi−1 incident
to Bji−1, with j = 1, . . . , µ, are either all assigned to f1(Bi−1) or to f2(Bi−1).

e Let 〈p′0, . . . , p′4〉 be a permutation of P . Assume that the backward edges of Ĝi−2
that are in the interior of a bicomponent Bi−2 of Ĝi−2 have been assigned to p′0 (in
accordance with P.7c), while the forward edges of Ĝi−2 that are in the interior of Bi−2
have been assigned to p′1 and p′2 (in accordance to P.7c and P.7d). The blocks of Bi−2
are the boundaries of several bicomponents B1

i−1, . . . ,B
µ
i−1 of Ĝi−1. Consider now a

bicomponent Bji−1 with 1 ≤ j ≤ µ of Ĝi−1. Assume w.l.o.g. that the forward edges of
Bi−2 incident to Bji−1 are assigned to p′1. Then, the backward edges of Bji−1 (which
are incident to its blocks, and thus to the bicomponents of Ĝi) are assigned to p′2,
while its forward edges to p′3 and p′4.

The book embeddings computed in Section 2.1 can be easily adjusted to become good.

I Lemma 20. Any two-level instance admits a good book embedding.

Finally, the next lemma deals with good book embeddings of multi-level instances.

I Lemma 21. Any multi-level instance admits a good book embedding.

1 We stress at this point that even though Properties P.7c, P.7d and P.7e might be a bit difficult to be
parsed, they formalize the main idea of Yannakakis’ algorithm for reusing the same set of pages in a
book embedding. Notably, this formalization in the original seminal paper [47] is not present.

SoCG 2020

16:14 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

Sketch. Assume to have recursively computed a good book embedding Ei of Gi. We show
how to extend Ei to a good book embedding Ei+1 of Gi+1. Consider the setH of bicomponents
B1, . . . ,Bχ of Ĝi+1, each of which forms a two-level instance. Hence, the vertices delimiting
the unbounded faces of B1, . . . ,Bχ form blocks B1, . . . , Bχ of Ĝi, which form a set of cacti
in σi(G). By rooting each connected component in this set at one of its blocks, we associate
each bicomponent in H with a root bicomponent denoted by r(Bi), i = 1, . . . , χ, and with a
parity bit ε(Bi) that expresses whether the distance between Bi and r(Bi) is odd or even.

Assume to have processed the first x−1 < χ bicomponents B1, . . . ,Bx−1 of H and to have
extended Ei to a good book embedding Ex−1

i of Gi together with B1, . . . ,Bx−1. Consider
the next bicomponent Bx of Ĝi+1 in H. The boundary of Bx is a simple cycle of vertices
of Li. Therefore, the vertices and the edges of this cycle are present in Gi and have been
embedded in Ei and thus in Ex−1

i . We show how to extend Ex−1
i to a good book embedding

Exi of Gi together with B1, . . . ,Bx. Once all blocks in H have been processed, the obtained
book embedding Eχi is the desired good book embedding Ei+1 of Gi+1. The vertices that
delimit the unbounded face of Bx form a block Bx of Ĝi. Let u0, . . . , us−1 be the order
of these vertices by Property P.1. We proceed by computing a good book embedding Ex
of Bx which exists by Lemma 20, such that the left-to-right order of the vertices of Bx is
u0, . . . , us−1 in Ex. If i is even, this can be achieved by flipping Bx. Further, note that Ex is
good by Lemma 20. We extend Ex−1

i to a good book embedding Exi in two steps as follows.
In the first step, for j = 0, 1, . . . , s − 2, the vertices of Bx that appear between uj and

uj+1 in Ex, if any, are embedded right before uj+1 in Ex−1
i in the same left-to-right order

as in Ex; also, the vertices of Bx that appear after us−1 in Ex, if any, are embedded right
after us−1 in Ex−1

i in the same left-to-right order as in Ex. In the second step, we assign the
internal edges of Bx to the already existing pages of Exi . This step will complete the extension
of Ex−1

i to Exi . The backward, forward, and non-dominator edges of Ex that are internal
in Bx will be classified as backward, forward, and non-dominator, respectively, also in Exi .
The non-dominator edges of Ex that are internal in Bx and are assigned to r1

1, . . . , r
1
dk/2e,

b1
1, . . . , b

1
dk/2e, g1

1 , . . . , g
1
dk/2e in Ex are assigned to rj1, . . . , r

j
dk/2e, b

j
1, . . . , b

j
dk/2e, g

j
1, . . . , g

j
dk/2e

in Exi , respectively, where j = i+ 1 mod 2. All backward edges of Ex have been assigned to
page p0 in Ex, while its forward edges have been assigned to p1 and p2; also, recall that no
edge of Ex has been assigned to pages p3 and p4. The backward edges of Ex that are interior
to Bx will be assigned to Exi to a common page b of P (i.e., not necessarily to p0), while the
corresponding forward edges assigned to p1 and p2 in Ex will be reassigned to two pages f1
and f2, respectively. We determine pages p, f1 and f2 as follows. Assuming i ≥ 3, there is a
bicomponent Bi−2 of Ĝi−2, whose boundary vertices form a cycle that, in Gi+1, contains the
bicomponent Bx in its interior. Assume w.l.o.g. that the backward edges of Bi−2 are assigned
to page p′0 ∈ P , in accordance to P.7c. It follows by P.7e that we may further assume w.l.o.g.
that all the backward edges of the bicomponents of Ĝi−1, whose boundaries are blocks of
Bi−2, have been assigned to pages p′1 and p′2 different from p′0. Assume also, w.l.o.g., that
the forwards edges of Bi−2 incident to Bx have been assigned to p′1. By Property P.7e, this
implies that the backward (forward) edges of bicomponent Bx must be assigned to page p′2
(to p′3 and p′4, respectively). Note that also of all the previously processed bicomponents of
Ĝi+1 in H make use of these three pages plus the page p′1. The choice between the two pages
p′3 and p′4 is done based on the parity bit ε(Bx), so that, all forward edges of all bicomponents
in H having the same parity bit will be assigned to the same page in {p′3, p′4}.

We initially assumed that the unbounded face of σ(G) contains no crossing edges in its
interior, to support the recursive strategy. We drop this assumption as follows. We assign
these edges to the pages of R0 ∪ B0 ∪ G0, which results in a good book embedding of G,
since the endvertices of the edges already assigned to these pages are 0-delimited. J

Altogether, Lemma 21 in conjunction with Lemma 20 completes the proof of Theorem 1.

M.A. Bekos et al. 16:15

3 Conclusions and open problems

Our research generalizes a fundamental result by Yannakakis in the area of book embeddings.
To achieve O(k) pages for partial k-framed graphs, we exploit the special structure of these
graphs which allows us to model the conflicts of the crossing edges by means of a graph with
bounded chromatic number (thus keeping the unavoidable relationship with k low).

Even though our result only applies to a subclass of h-planar graphs, it provides useful
insights towards a positive answer to the intriguing question of determining whether the book
thickness of (general) h-planar graphs is bounded by a function of h only. Another direction
for extending our result is to drop the biconnectivity requirement of partial k-framed graphs.

We conclude that the time complexity of our algorithm is O(k2n), assuming that a
k-framed drawing of the considered graph is also provided. It is of interest to investigate
whether (partial) k-framed graphs can be recognized in polynomial time. The question
remains valid even for the class of optimal 2-planar graphs, which exhibit a quite regular
structure. Brandenburg [12] provided a corresponding linear-time recognition algorithm for
the class of optimal 1-planar graphs, while Da Lozzo et al. [16] showed that the related
question of determining whether a graph admits a planar embedding whose faces have all
degree at most k is polynomial-time solvable for k ≤ 4 and NP-complete for k ≥ 5.

References
1 Hugo A. Akitaya, Erik D. Demaine, Adam Hesterberg, and Quanquan C. Liu. Upward

partitioned book embeddings. In Graph Drawing, volume 10692 of LNCS, pages 210–223.
Springer, 2017.

2 Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov. Straight-line grid
drawings of 3-connected 1-planar graphs. In Stephen K. Wismath and Alexander Wolff,
editors, Graph Drawing, volume 8242 of LNCS, pages 83–94. Springer, 2013. doi:10.1007/
978-3-319-03841-4_8.

3 Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov. On the book thickness
of 1-planar graphs. CoRR, abs/1510.05891, 2015. arXiv:1510.05891.

4 Michael A. Bekos, Till Bruckdorfer, Michael Kaufmann, and Chrysanthi N. Raftopoulou.
The book thickness of 1-planar graphs is constant. Algorithmica, 79(2):444–465, 2017. doi:
10.1007/s00453-016-0203-2.

5 Michael A. Bekos, Giordano Da Lozzo, Svenja M. Griesbach, Martin Gronemann, Fabrizio
Montecchiani, and Chrysanthi Raftopoulou. Book embeddings of nonplanar graphs with small
faces in few pages. CoRR, abs/2003.07655, 2020. arXiv:2003.07655.

6 Michael A. Bekos, Martin Gronemann, and Chrysanthi N. Raftopoulou. Two-page
book embeddings of 4-planar graphs. Algorithmica, 75(1):158–185, 2016. doi:10.1007/
s00453-015-0016-8.

7 Michael A. Bekos, Michael Kaufmann, and Chrysanthi N. Raftopoulou. On optimal 2-
and 3-planar graphs. In Boris Aronov and Matthew J. Katz, editors, SoCG, volume 77 of
LIPIcs, pages 16:1–16:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.SoCG.2017.16.

8 Frank Bernhart and Paul C. Kainen. The book thickness of a graph. J. Comb. Theory, Ser.
B, 27(3):320–331, 1979. doi:10.1016/0095-8956(79)90021-2.

9 Therese C. Biedl, Thomas C. Shermer, Sue Whitesides, and Stephen K. Wismath. Bounds for
orthogonal 3D graph drawing. J. Graph Algorithms Appl., 3(4):63–79, 1999. doi:10.7155/
jgaa.00018.

10 Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze,
and Maurizio Patrignani. Upward book embeddings of st-graphs. In SoCG, volume 129 of
LIPIcs, pages 13:1–13:22. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.SoCG.2019.13.

SoCG 2020

https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-319-03841-4_8
http://arxiv.org/abs/1510.05891
https://doi.org/10.1007/s00453-016-0203-2
https://doi.org/10.1007/s00453-016-0203-2
http://arxiv.org/abs/2003.07655
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.1007/s00453-015-0016-8
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
https://doi.org/10.1016/0095-8956(79)90021-2
https://doi.org/10.7155/jgaa.00018
https://doi.org/10.7155/jgaa.00018
https://doi.org/10.4230/LIPIcs.SoCG.2019.13
https://doi.org/10.4230/LIPIcs.SoCG.2019.13

16:16 Book Embeddings of Nonplanar Graphs with Small Faces in Few Pages

11 Robin L. Blankenship. Book Embeddings of Graphs. PhD thesis, Louisiana State University,
2003.

12 Franz J. Brandenburg. Characterizing and recognizing 4-map graphs. Algorithmica, 81(5):1818–
1843, 2019. doi:10.1007/s00453-018-0510-x.

13 Jonathan F. Buss and Peter W. Shor. On the pagenumber of planar graphs. In Richard A.
DeMillo, editor, ACM Symposium on Theory of Computing, pages 98–100. ACM, 1984.
doi:10.1145/800057.808670.

14 Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Embedding graphs in books:
A layout problem with applications to VLSI design. SIAM Journal on Algebraic and Discrete
Methods, 8(1):33–58, 1987.

15 Gérard Cornuéjols, Denis Naddef, and William R. Pulleyblank. Halin graphs and the travelling
salesman problem. Math. Program., 26(3):287–294, 1983. doi:10.1007/BF02591867.

16 Giordano Da Lozzo, Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. Planar embeddings with
small and uniform faces. In Hee-Kap Ahn and Chan-Su Shin, editors, ISAAC, volume 8889 of
LNCS, pages 633–645. Springer, 2014. doi:10.1007/978-3-319-13075-0_50.

17 Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. A left-first search algorithm
for planar graphs. Discrete & Computational Geometry, 13:459–468, 1995. doi:10.1007/
BF02574056.

18 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

19 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019. doi:10.1145/3301281.

20 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

21 Vida Dujmović and Fabrizio Frati. Stack and queue layouts via layered separators. J. Graph
Algorithms Appl., 22(1):89–99, 2018. doi:10.7155/jgaa.00454.

22 Vida Dujmovic, Pat Morin, and David R. Wood. Layered separators in minor-closed graph
classes with applications. J. Comb. Theory, Ser. B, 127:111–147, 2017. doi:10.1016/j.jctb.
2017.05.006.

23 Vida Dujmović and David R. Wood. Graph treewidth and geometric thickness parameters.
Discrete & Computational Geometry, 37(4):641–670, 2007. doi:10.1007/s00454-007-1318-7.

24 Günter Ewald. Hamiltonian circuits in simplicial complexes. Geometriae Dedicata, 2(1):115–
125, 1973. doi:10.1007/BF00149287.

25 Joseph L. Ganley and Lenwood S. Heath. The pagenumber of k-trees is O(k). Discrete Applied
Mathematics, 109(3):215–221, 2001. doi:10.1016/S0166-218X(00)00178-5.

26 Xiaxia Guan and Weihua Yang. Embedding 5-planar graphs in three pages. CoRR, 1801.07097,
2018. arXiv:1801.07097.

27 Lenwood S. Heath. Embedding planar graphs in seven pages. In FOCS, pages 74–83. IEEE
Computer Society, 1984. doi:10.1109/SFCS.1984.715903.

28 Michael Hoffmann and Boris Klemz. Triconnected planar graphs of maximum degree five are
subhamiltonian. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, ESA,
volume 144 of LIPIcs, pages 58:1–58:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ESA.2019.58.

29 Sorin Istrail. An algorithm for embedding planar graphs in six pages. Iasi University Annals,
Mathematics-Computer Science, 34(4):329–341, 1988.

30 Guy Jacobson. Space-efficient static trees and graphs. In Symposium on Foundations of
Computer Science, pages 549–554. IEEE Computer Society, 1989. doi:10.1109/SFCS.1989.
63533.

31 Paul C. Kainen and Shannon Overbay. Extension of a theorem of whitney. Appl. Math. Lett.,
20(7):835–837, 2007. doi:10.1016/j.aml.2006.08.019.

https://doi.org/10.1007/s00453-018-0510-x
https://doi.org/10.1145/800057.808670
https://doi.org/10.1007/BF02591867
https://doi.org/10.1007/978-3-319-13075-0_50
https://doi.org/10.1007/BF02574056
https://doi.org/10.1007/BF02574056
https://doi.org/10.1145/3301281
https://doi.org/10.7155/jgaa.00454
https://doi.org/10.1016/j.jctb.2017.05.006
https://doi.org/10.1016/j.jctb.2017.05.006
https://doi.org/10.1007/s00454-007-1318-7
https://doi.org/10.1007/BF00149287
https://doi.org/10.1016/S0166-218X(00)00178-5
http://arxiv.org/abs/1801.07097
https://doi.org/10.1109/SFCS.1984.715903
https://doi.org/10.4230/LIPIcs.ESA.2019.58
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1016/j.aml.2006.08.019

M.A. Bekos et al. 16:17

32 Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibliography
on 1-planarity. Computer Science Review, 25:49–67, 2017. doi:10.1016/j.cosrev.2017.06.
002.

33 Seth M. Malitz. Genus g graphs have pagenumber O(√q). J. Algorithms, 17(1):85–109, 1994.
doi:10.1006/jagm.1994.1028.

34 Seth M. Malitz. Graphs with E edges have pagenumber O(
√
E). J. Algorithms, 17(1):71–84,

1994. doi:10.1006/jagm.1994.1027.
35 J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and

static trees. SIAM J. Comput., 31(3):762–776, 2001. doi:10.1137/S0097539799364092.
36 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-

gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

37 Takao Nishizeki and Norishige Chiba. Planar Graphs: Theory and Algorithms, chapter 10.
Hamiltonian Cycles, pages 171–184. Dover Books on Mathematics. Courier Dover Publications,
2008.

38 Taylor Ollmann. On the book thicknesses of various graphs. In F. Hoffman, R.B. Levow,
and R.S.D. Thomas, editors, Southeastern Conference on Combinatorics, Graph Theory and
Computing, volume VIII of Congressus Numerantium, page 459, 1973.

39 Vaughan R. Pratt. Computing permutations with double-ended queues, parallel stacks and
parallel queues. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, ACM Symposium
on Theory of Computing, pages 268–277. ACM, 1973. doi:10.1145/800125.804058.

40 S. Rengarajan and C. E. Veni Madhavan. Stack and queue number of 2-trees. In Ding-Zhu
Du and Ming Li, editors, COCOON, volume 959 of LNCS, pages 203–212. Springer, 1995.
doi:10.1007/BFb0030834.

41 Gerhard Ringel. Ein Sechsfarbenproblem auf der kugel. Abhandlungen aus dem Mathematischen
Seminar der Universitaet Hamburg, 29(1–2):107–117, 1965.

42 Arnold L. Rosenberg. The diogenes approach to testable fault-tolerant arrays of processors.
IEEE Trans. Computers, 32(10):902–910, 1983. doi:10.1109/TC.1983.1676134.

43 Robert E. Tarjan. Sorting using networks of queues and stacks. J. ACM, 19(2):341–346, 1972.
doi:10.1145/321694.321704.

44 Avi Wigderson. The complexity of the Hamiltonian circuit problem for maximal planar graphs.
Technical Report TR-298, EECS Department, Princeton University, 1982. arXiv:https:
//www.math.ias.edu/avi/node/820.

45 David R. Wood. Degree constrained book embeddings. J. Algorithms, 45(2):144–154, 2002.
doi:10.1016/S0196-6774(02)00249-3.

46 Mihalis Yannakakis. Four pages are necessary and sufficient for planar graphs (extended
abstract). In Juris Hartmanis, editor, ACM Symposium on Theory of Computing, pages
104–108. ACM, 1986. doi:10.1145/12130.12141.

47 Mihalis Yannakakis. Embedding planar graphs in four pages. J. Comput. Syst. Sci., 38(1):36–67,
1989. doi:10.1016/0022-0000(89)90032-9.

SoCG 2020

https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1006/jagm.1994.1028
https://doi.org/10.1006/jagm.1994.1027
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1145/800125.804058
https://doi.org/10.1007/BFb0030834
https://doi.org/10.1109/TC.1983.1676134
https://doi.org/10.1145/321694.321704
http://arxiv.org/abs/https://www.math.ias.edu/avi/node/820
http://arxiv.org/abs/https://www.math.ias.edu/avi/node/820
https://doi.org/10.1016/S0196-6774(02)00249-3
https://doi.org/10.1145/12130.12141
https://doi.org/10.1016/0022-0000(89)90032-9

Parallel Computation of Alpha Complexes for
Biomolecules
Talha Bin Masood1

Scientific Visualization Group, Linköping University, Norrköping, Sweden
talha.bin.masood@liu.se

Tathagata Ray
BITS Pilani, Hyderabad Campus, Hyderabad, India
rayt@hyderabad.bits-pilani.ac.in

Vijay Natarajan
Department of Computer Science and Automation, Indian Institute of Science, Bangalore, India
https://www.csa.iisc.ac.in/~vijayn/
vijayn@iisc.ac.in

Abstract
The alpha complex, a subset of the Delaunay triangulation, has been extensively used as the
underlying representation for biomolecular structures. We propose a GPU-based parallel algorithm
for the computation of the alpha complex, which exploits the knowledge of typical spatial distribution
and sizes of atoms in a biomolecule. Unlike existing methods, this algorithm does not require prior
construction of the Delaunay triangulation. The algorithm computes the alpha complex in two
stages. The first stage proceeds in a bottom-up fashion and computes a superset of the edges,
triangles, and tetrahedra belonging to the alpha complex. The false positives from this estimation
stage are removed in a subsequent pruning stage to obtain the correct alpha complex. Computational
experiments on several biomolecules demonstrate the superior performance of the algorithm, up to a
factor of 50 when compared to existing methods that are optimized for biomolecules.

2012 ACM Subject Classification Theory of computation→ Parallel algorithms; Computing method-
ologies → Shape modeling; Applied computing → Molecular structural biology

Keywords and phrases Delaunay triangulation, parallel algorithms, biomolecules, GPU

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.17

Related Version The full version of this paper is available at [29], https://arxiv.org/abs/1908.
05944.

Supplementary Material Source code available at: https://bitbucket.org/vgl_iisc/parallelac/

Funding Vijay Natarajan: This work is partially supported by a Swarnajayanti Fellowship from
the Department of Science and Technology, India (DST/SJF/ETA-02/2015-16); a Mindtree Chair
research grant; and the Robert Bosch Centre for Cyber Physical Systems, IISc.

Acknowledgements Part of this work was done when the first author was at Indian Institute of
Science, Bangalore. The authors would like to thank Sathish Vadhiyar and Nikhil Ranjanikar for
helpful discussions and suggestions during the early phase of this work.

1 Introduction

The alpha complex of a set of points in R3 is a subset of the Delaunay triangulation. A size
parameter α determines the set of simplices (tetrahedra, triangles, edges, and vertices) of the
Delaunay triangulation that are included in the alpha complex. It is an elegant representation
of the shape of the set of points [16, 18, 14] and has found various applications, particularly
in molecular modeling and molecular graphics. The atoms in a biomolecule are represented

1 Corresponding author

© Talha Bin Masood, Tathagata Ray, and Vijay Natarajan;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5352-1086
mailto:talha.bin.masood@liu.se
mailto:rayt@hyderabad.bits-pilani.ac.in
https://orcid.org/0000-0002-7956-1470
https://www.csa.iisc.ac.in/~vijayn/
mailto:vijayn@iisc.ac.in
https://doi.org/10.4230/LIPIcs.SoCG.2020.17
https://arxiv.org/abs/1908.05944
https://arxiv.org/abs/1908.05944
https://bitbucket.org/vgl_iisc/parallelac/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Parallel Computation of Alpha Complexes for Biomolecules

by weighted points in R3, and the region occupied by the molecule is represented by the
union of balls centered at these points. The geometric shape of a biomolecule determines its
function, namely how it interacts with other biomolecules. The alpha complex represents
the geometric shape of the molecule very efficiently. It has been widely used for computing
and studying geometric features such as cavities and channels [25, 26, 10, 30, 33, 28, 23].
Further, an alpha complex based representation is also crucial for accurate computation of
geometric properties like volume and surface area [24, 12, 27].

Advances in imaging technology have resulted in a significant increase in the size of
molecular structure data. This necessitates the development of efficient methods for storing,
processing, and querying these structures. In this paper, we study the problem of efficient
construction of the alpha complex with particular focus on point distributions that are
typical of biomolecules. In particular, we present a parallel algorithm for computing the
alpha complex and an efficient GPU implementation that outperforms existing methods. In
contrast to existing algorithms, our algorithm does not require the explicit construction of
the Delaunay triangulation.

1.1 Related work

The Delaunay triangulation has been studied within the field of computational geometry for
several decades and numerous algorithms have been proposed for its construction [1]. Below,
we describe only a few methods that are most relevant to this paper.

A tetrahedron belongs to the Delaunay triangulation of a set of points in R3 if and only
if it satisfies the empty circumsphere property, namely no point is contained within the
circumsphere of the tetrahedron. The Bowyer-Watson algorithm [4, 34] and the incremental
insertion algorithm by Guibas et al. [21] are based on the above characterization of the Delau-
nay triangulation. In both methods, points are inserted incrementally and the triangulation is
locally updated to ensure that the Delaunay property is satisfied. The incremental insertion
method followed by bi-stellar flipping works in higher dimensions also [20] and can construct
the Delaunay triangulation in O(n logn + ndd/2e) time in the worst case, where n is the
number of input points in Rd. A second approach for constructing the Delaunay triangulation
is based on its equivalence to the convex hull of the points lifted onto a (d+ 1)-dimensional
paraboloid [19].

A third divide-and-conquer approach partitions the inputs points into two or generally
multiple subsets, constructs the Delaunay triangulation for each partition, and merges the
pieces of the triangulation finally. The merge procedure depends on the ability to order the
edges incident on a vertex and hence works only in R2. The extension to R3 requires that the
merge procedure be executed first [6]. The divide-and-conquer strategy directly extends to a
parallel algorithm [31, 5]. The DeWall algorithm [6] partitions the input point set into two
halves and first constructs the triangulation of points lying within the boundary region of the
two partitions. The Delaunay triangulation of the two halves is then constructed in parallel.
The process is repeated recursively resulting in increased parallelism. Cao et al. [5] have
developed a GPU parallel algorithm, gDel3D, that constructs the Delaunay triangulation in
two stages. In the first stage, points are inserted in parallel followed by flipping to obtain an
approximate Delaunay triangulation. In the second stage, a star splaying procedure works
locally to convert non-Delaunay tetrahedra into Delaunay tetrahedra. The algorithm can be
extended to construct the weighted Delaunay triangulation for points with weights. Cao et al.
report a speed up of up to a factor of 10 over a sequential implementation for constructing
the weighted Delaunay triangulation of 3 million weighted points.

T.B. Masood, T. Ray, and V. Natarajan 17:3

Existing algorithms for constructing the alpha complex [11, 18, 27, 9] often require that
the Delaunay triangulation be computed in a first step, with the exception of a recent method
that guarantees output sensitive construction under mild assumptions on weights [32] or a
possible construction from Čech complexes [2]. Simplices that belong to the alpha complex
are identified using a size filtration in a second step. Simplices that belong to the alpha
complex are identified using a size filtration in a second step. In the case of biomolecules, only
small values of the size parameter are of interest and the number of simplices in the alpha
complex is a small fraction of those contained in the Delaunay triangulation. Hence, the
Delaunay triangulation construction is often the bottleneck in the alpha complex computation.
The key difficulty lies in the absence of a direct characterization of simplices that belong to
the alpha complex.

1.2 Summary of results

We propose an algorithm that avoids the expensive Delaunay triangulation computation and
instead directly computes the alpha complex for biomolecules. The key contributions of this
paper are summarized below:

A new characterization of the alpha complex – a set of conditions necessary and sufficient
for a simplex to be a part of the alpha complex.
A new algorithm for computing the alpha complex of a set of weighted points in R3.
The algorithm identifies simplices of the alpha complex in decreasing order of dimension
without computing the complete weighted Delaunay triangulation.
An efficient CUDA-based parallel implementation of this algorithm for biomolecular data
that can compute the alpha complex for a 10 million point dataset in approximately 10
seconds.
A proof of correctness of the algorithm and comprehensive experimental validation to
demonstrate that it outperforms existing methods.

While the experimental results presented here focus on biomolecular data, the algorithm is
applicable to data from other application domains as well. In particular, the efficient GPU
implementation may be used for points that arise in smoothed particle hydrodynamics (SPH)
simulations, atomistic simulations in material science, and particle systems that appear in
computational fluid dynamics (CFD).

2 Background

In this section, we review the necessary background on Delaunay triangulations required
to describe the algorithm and also establish a new characterization of the alpha complex
that does not require the Delaunay triangulation. For a detailed description of Delaunay
triangulations, alpha complexes, and related structures, we refer the reader to various books
on the topic [1, 13, 15].

Let B = {bi} denote a set of balls or weighted points, where bi = (pi, ri) represents a ball
centered at pi with radius ri. We limit our discussion to balls in R3, so pi = (xi, yi, zi) ∈ R3.
Further, we assume that the points in B are in general position, i.e., no two points have the
same location, no three points are collinear, no four points are coplanar, and no subset of
five points are equidistant from a point in R3. Such configurations are called degeneracies.
In practice, a degenerate input can be handled via symbolic perturbation [17].

SoCG 2020

17:4 Parallel Computation of Alpha Complexes for Biomolecules

(a) (b)

(c) (d)

(e)

Figure 1 2D weighted Delaunay triangulation and alpha complex. (a) A set of weighted points
B in R2 shown as disks. (b) The weighted Voronoi diagram of B. Voronoi edges and vertices
are highlighted in green. (c) The weighted Delaunay complex is the dual of the weighted Voronoi
diagram. (d) The alpha complex Kα for α = 0 is shown in red. This is the dual of the intersection
of the weighted Voronoi diagram and union of balls. (e) The alpha complex shown for an α > 0.
It is the dual of the intersection of the weighted Voronoi diagram and union of balls after growing
them to have radius

√
r2
i + α.

2.1 Simplex and simplicial complex

A d-dimensional simplex σd is defined as the convex hull of d+ 1 affinely independent points.
Assuming the centres of balls in B are in general position, all (d+ 1) sized subsets of B form
a simplex σd = (pσ0 , pσ1 , · · · , pσd). For simplicity, we sometimes use bi instead of the center pi
to refer to points incident on a simplex. For example, we may write σd = (bσ0 , bσ1 , · · · , bσd).

A non-empty strict subset of σd is also a simplex but with dimension smaller than d.
Such a simplex is called a face of σd. Specifically, a (d− 1)-dimensional face of σd is referred
to as a facet of σd. A set of simplices K is called a simplicial complex if: 1) a simplex σ ∈ K
implies that all faces of σ also belong to K, and 2) for two simplices σ1, σ2 ∈ K, either
σ1 ∩ σ2 ∈ K or σ1 ∩ σ2 = ∅.

T.B. Masood, T. Ray, and V. Natarajan 17:5

2.2 Power distance and weighted Voronoi diagram
The power distance π(p, bi) between a point p ∈ R3 and a ball bi = (pi, ri) ∈ B is defined as

π(p, bi) = ‖p− pi‖2 − r2
i .

The weighted Voronoi diagram is an extension of the Voronoi diagram to weighted points. It
is a partition of R3 based on proximity to input balls bi in terms of the power distance. Points
p ∈ R3 that are closer to the ball bi compared to all other balls bj ∈ B (j 6= i) constitute the
Voronoi region of bi. Points equidistant from two balls bi, bj ∈ B and closer to these two
balls compared to other balls constitute a Voronoi face. Similarly, points equidistant from
three balls and fours balls constitute Voronoi edges and Voronoi vertices of the weighted
Voronoi diagram, respectively. Figure 1b shows the weighted Voronoi diagram for a set of 2D
weighted points or disks on the plane. Similar to the unweighted case, the Voronoi regions
of the weighted Voronoi diagram are convex and linear. However, the weights may lead to
a configuration where the Voronoi region of bi is disjoint from bi. This occurs when bi is
contained within another ball bj . Further, the Voronoi region of bi may even be empty.

2.3 Weighted Delaunay triangulation
The weighted Delaunay triangulation is the dual of the weighted Voronoi diagram, see
Figure 1c. It is a simplicial complex consisting of simplices that are dual to the cells of the
weighted Voronoi diagram. The following equivalent definition characterizes a simplex σd
belonging to a Delaunay triangulation D.

I Definition 1 (Weighted Delaunay Triangulation). A simplex σd = (pσ0 , pσ1 , · · · , pσd), 0 ≤ d ≤
3, belongs to the weighted Delaunay triangulation D of B if and only if there exists a point
p ∈ R3 such that
DT1: π(p, bσ0) = π(p, bσ1) = · · · = π(p, bσd), and
DT2: π(p, bσ0) ≤ π(p, bi) for bi ∈ B − σd.

A point p that satisfies the above two conditions, DT1 and DT2, is called a witness for
σd. We call a point that minimizes the distance π(p, bσ0) and satisfies both conditions as
the closest witness, denoted by pσmin. This minimum distance π(pσmin, b

σ
0) is called the Size

of the simplex σd. A point that minimizes the distance π(p, bσ0) and satisfies DT1 is called
the ortho-center pσortho of simplex σd. The distance π(pσortho, b

σ
0) is called the OrthoSize of the

simplex σd. Clearly, the Size of a simplex is lower bounded by its OrthoSize. Figure 2 shows
the two possible scenarios, namely when OrthoSize = Size and OrthoSize < Size.

2.4 Alpha complex
Given a parameter α ∈ R, we can construct a subset of the weighted Delaunay triangulation
by filtering simplices whose Size is less than or equal to α, see Figures 1d and 1e. The
resulting subset, called the alpha complex, is a subcomplex of the Delaunay complex and is
denoted Kα:

Kα = {σd ∈ D such that Size(σd) ≤ α}.

The following equivalent definition characterizes simplices of the alpha complex without
explicitly referring to the Delaunay triangulation.

SoCG 2020

17:6 Parallel Computation of Alpha Complexes for Biomolecules

I Definition 2 (Alpha complex). A d-dimensional simplex σd = (pσ0 , pσ1 , · · · , pσd), 0 ≤ d ≤ 3,
belongs to the alpha complex Kα of B if and only if there exists a point p ∈ R3 such that the
following three conditions are satisfied:
AC1: π(p, bσ0) = π(p, bσ1) = · · · = π(p, bσd),
AC2: π(p, bσ0) ≤ π(p, bi) for bi ∈ B − σd, and
AC3: π(p, bσ0) ≤ α or equivalently, the Size of σd is at most α.

3 Algorithm

We now describe an algorithm to compute the alpha complex and prove its correctness.
The algorithm utilizes the characterizing conditions introduced above. It first identifies the
tetrahedra that belong to the alpha complex, followed by the set of triangles, edges and
vertices. Figure 3 illustrates the algorithm as applied to disks on the plane.

(a)

(b) (c)

Figure 2 Size and OrthoSize of a simplex. (a) A set B of weighted points. Two edges (bold)
belong to the Delaunay triangulation. (b) The Size of edge b1b2 is equal to its OrthoSize. Points p,
p′, pmin and portho are witnesses. Each one is equidistant from b1 and b2 and farther away from other
disks in B. The distance is proportional to the length of the tangent to the disk that represents the
weighted point. The next closest disk from these points is b3. In this case, pmin and portho coincide
and hence Size = OrthoSize. (c) b4b5 is also a Delaunay edge. The location of a neighboring disk b6

could lead to a different configuration. The point portho is closest to b4 and b5 among all the points
that are equidistant from both. However portho is closer to b6 as compared to b4 and b5. The closest
point pmin that satisfies DT1 and DT2 is farther away, hence for b4b5 Size is greater than OrthoSize.

T.B. Masood, T. Ray, and V. Natarajan 17:7

3.1 Outline
The alpha complex of a point set in R3 consists of simplices of dimensions 0–3, Kα =
K0
α ∪ K1

α ∪ K2
α ∪ K3

α, where Kd
α ⊂ Kα is the set of d-dimensional simplices in Kα. We

initialize Kd
α = ∅ and construct Kα in five steps described below:

Step 1: For 0 ≤ d ≤ 3, compute the set of all simplices σd such that OrthoSize(σd) ≤ α. Let
this set be denoted by Σortho = Σ0

ortho ∪ Σ1
ortho ∪ Σ2

ortho ∪ Σ3
ortho.

Step 2: For all tetrahedra σ3 ∈ Σ3
ortho, check condition AC2 using p = pσortho. If σ3 satisfies

AC2 then insert it into K3
α.

Step 3: Insert all triangles that are incident on tetrahedra in K3
α into K2

α. Let Σ2
free =

Σ2
ortho − Facets(K3

α), where Facets(K3
α) denotes the set of facets of tetrahedra in K3

α. For
all triangles σ2 ∈ Σ2

free, check condition AC2 using p = pσortho. If σ2 satisfies AC2 then
insert it into K2

α.
Step 4: Insert all edges incident on triangles in K2

α into K1
α. Let Σ1

free = Σ1
ortho−Facets(K2

α),
where Facets(K2

α) denotes the set of facets of triangles in K2
α. For all edges σ1 ∈ Σ1

free,
check condition AC2 using p = pσortho. If σ1 satisfies AC2 then insert it into K1

α.
Step 5: Insert all endpoints of edges in K1

α into K0
α. Let Σ0

free = Σ0
ortho − Facets(K1

α), where
Facets(K1

α) denotes the set of balls incident on edges in K1
α. For all balls bi = (pi, ri) ∈

Σ0
free, check condition AC2 using p = pi. If pi satisfies AC2 then insert it into K0

α.

Step 1 selects simplices that satisfy AC3. Step 2 recognizes tetrahedra that belong to
the alpha complex by checking AC2 using p = pσortho. Triangle faces of these tetrahedra also
belong to Kα. The other “free” triangles belong to K2

α if they satisfy AC2. Step 4 identify
edges similarly. First all edge faces of triangles in K2

α are inserted followed by those “free”
edges that satisfy AC2. Vertices are identified similarly in Step 5.

A notion related to free simplices, called unattached simplices, was introduced by Edels-
brunner [11]. However, the characterization of unattached simplices depends on the fact that
they belong to the Delaunay complex.

3.2 Proof of correctness
We now prove that that the algorithm described above correctly computes the alpha complex
of the given set of weighted points by proving the following four claims. Each claim states
that the set of simplices computed in Steps 2, 3, 4 and 5 are exactly the simplices belonging
to the alpha complex. We assume that the input is non-degenerate.

B Claim 3. Step 2 computes K3
α correctly.

Proof. For a tetrahedron σ3, pσortho is the only point that satisfies condition AC1. In Step 2 of
the proposed algorithm, we check if AC2 holds for pσortho. If yes, then pσortho is a witness for σ3,
i.e., pσortho = pσmin. Further, since OrthoSize(σ3) ≤ α and pσortho = pσmin, we have Size(σ3) ≤ α
thereby satisfying AC3. Therefore, σ3 belongs to K3

α because it satisfies all three conditions.
C

We now prove that the algorithm correctly identifies the triangles of the alpha complex.

I Lemma 4. A triangle σ2 ∈ Σ2
free belongs to K2

α if and only if it satisfies AC2 with p = pσortho.

Proof. We first prove the backward implication, namely if σ2 ∈ Σ2
free satisfies AC2 with

p = pσortho, then σ2 ∈ K2
α. Note that pσortho satisfies AC1 by definition. Further, it satisfies

AC2 by assumption and hence Size(σ2) = OrthoSize(σ2). We also have OrthoSize(σ2) ≤ α

because σ1 ∈ Σ2
free ⊆ Σ2

ortho. So, Size(σ2) ≤ α thereby satisfying AC3. The triangle σ2 with
p = pσortho satisfies all three conditions and hence belongs to K2

α.

SoCG 2020

17:8 Parallel Computation of Alpha Complexes for Biomolecules

(a) (b)

(c) (d)

(e) (f)

Figure 3 Illustration of the proposed algorithm in 2D. (a) The set of disks B grown by the
parameter α. (b) First, compute the set of edges Σ1

ortho whose OrthoSize ≤ α (red). The triangles
Σ2

ortho that satisfy this condition are also computed but they are not shown here. (c) Next, identify
the triangles that satisfy AC2 (red). (d) Collect edges in Σ1

ortho that are not incident on triangles in
K2
α into Σ1

free. Check if these edges satisfy AC2 with p = pσortho. For example, the edge b1b2 does not
satisfy this condition because b3 is closer to portho than b1 and b2. (e) One edge survives the AC2
check and thus belongs to Kα. (f) The alpha complex is obtained as the union of K2

α, K1
α and K0

α.

We will now prove the forward implication via contradiction. Suppose there exists a
triangle σ2 ∈ Σ2

free that belongs to K2
α but does not satisfy AC2 with p = pσortho. In other

words, there exists a ball bi ∈ B−σ2 for which π(pσortho, bi) < π(pσortho, b
σ
0). Let Bv denote the

set of all such balls bi. The set of points that are equidistant from the three balls (bσ0 , bσ1 , bσ2)
corresponding to σ2 form a line perpendicular to the plane containing σ2 called the radical
axis. Each ball bi ∈ Bv partitions the radical axis into two half-intervals based on whether
the point on radical axis is closer to bi or to bσ0 , see Figure 4. Let I+(bi) denote the half
interval consisting of points that are closer to bσ0 compared to bi. Let I+(Bv) denote the
intersection of all such half intervals I+(bi). We have assumed that σ2 ∈ K2

α, so there must
exist a closest witness pσmin, and it lies within I+(Bv). Thus, I+(Bv) is non-empty. In fact,
I+(Bv) = I+(bj) for some bj ∈ Bv and pσmin is exactly the end point of I+(bj). This implies
that pσmin is also a closest witness for the tetrahedron σ3 = (bσ0 , bσ1 , bσ2 , bj). So, σ3 belongs to
K3
α and its Size is equal to Size(σ2). However, this means that σ2 /∈ Σ2

free, a contradiction.
So, the forward implication in the lemma is true. J

T.B. Masood, T. Ray, and V. Natarajan 17:9

Figure 4 The radical axis of a triangle σ2 is drawn such that pσortho is at the origin. A ball
bi ∈ B − σ2 divides the radical axis into two half intervals. Points in the half interval I+(bi) are
closer to bσ0 as compared to bi, i.e. for all p ∈ I+(bi), π(p, bσ0) < π(p, bi). Consider the set Bv of
balls that are closer to pσortho as compared to bσ0 So, I+(bi) does not contain pσortho. The intersection of
these intervals, denoted by I+(Bv), is equal to one of the intervals I+(bi). Here, I+(Bv) = I+(b3).
The end point of the interval I+(b3) is the closest witness for the tetrahedron σ2 ∪ b3.

B Claim 5. Step 3 computes K2
α correctly.

Proof. If a simplex σ3 belongs to Kα then naturally all of its faces also belong to Kα. The
algorithm includes such triangles into K2

α and remove them from Σ2
ortho to obtain the set of

free triangles Σ2
free. It follows directly from Lemma 4 that AC2 is a necessary and sufficient

condition for a triangle in Σ2
free to belong to K2

α. Hence, Step 3 correctly computes the
triangles belonging to K2

α. C

The above arguments need to be extended to prove that the edges of the alpha complex
are also correctly identified.

I Lemma 6. An edge σ1 ∈ Σ1
free belongs to K1

α if and only if it satisfies the condition AC2
with p = pσortho.

The proof is similar to that of Lemma 4 and appears in the full version [29]. A general
result is likely true for d-dimensional simplices in Σdfree. However, given the focus on alpha
complexes in R3, we prefer to state and prove these results specific to lower dimensions.
We also prefer to provide individual proofs for edges and triangles because it simplifies
the exposition and could also potentially help in the design of improved data structures to
accelerate computation of different steps of the algorithm.

B Claim 7. Step 4 computes K1
α correctly.

Proof. All edge faces of triangles in K2
α naturally belong to K1

α. Step 4 inserts all edges
incident on triangles in K2

α into K1
α as valid edges and removes them from Σ1

ortho to obtain
the set of free edges Σ1

free. It follows directly from Lemma 6 that AC2 is a necessary and
sufficient condition for an edge σ1 ∈ Σ1

free to belong to K1
α. Therefore, Step 4 correctly

computes the edges belonging to K1
α. C

B Claim 8. Step 5 computes K0
α correctly.

Proof. All vertices incident on K1
α naturally belong to K0

α. Step 5 inserts all such vertices
in K0

α as valid vertices and removes them from Σ0
ortho to obtain the set of free vertices Σ0

free.
Next, the vertices in Σ0

free for which the center of the ball bi = (pi, ri) satisfies AC2 are also

SoCG 2020

17:10 Parallel Computation of Alpha Complexes for Biomolecules

inserted into K0
α. Clearly, these vertices also satisfy AC3 because they belong to Σ0

ortho. The
condition AC1 is not relevant for 0-dimensional simplices. Therefore, these vertices clearly
belong to the alpha complex. Similar to Lemmas 4 and 6, it is easy to prove that checking
for AC2 for p = pi is necessary and sufficient condition to decide whether a vertex in Σ0

free
belongs to the alpha complex. That is, it is possible to show that vertices in alpha complex
that have non-empty Voronoi regions but do not satisfy AC2 for p = pi would be incident on
some edge in K1

α, and therefore must have been already detected by Step 4 and hence can
not belong to Σ0

free. Therefore, Step 5 correctly computes the vertices belonging to K0
α. C

4 Parallel algorithm for biomolecules

Although the algorithm as described above is provably correct, a straightforward imple-
mentation will be extremely inefficient with a worst-case running time of O(n5), where
n is the number of weighted points in B. This is because Step 1 requires O(n4) time to
generate all possible tetrahedra. In later steps, we need O(n) effort per simplex to check AC2.
However, the input corresponds to atoms in a biomolecule. We show how certain properties
of biomolecules can be leveraged to develop a fast parallel implementation.

4.1 Biomolecular data characteristics
Atoms in a biomolecule are well distributed. The following three properties of biomolecules
are most relevant:

The radius of an atom is bounded. The typical radius of an atom in a protein molecule
ranges between 1Å to 2Å [3]. Further, a protein molecule contains upwards of thousand
atoms. So, the radius is small compared to the total size of the molecule.
There is a lower bound on the distance between the centres of two atoms. This is called the
van der Waals contact distance, beyond which the two atoms start repelling each other. In
the case of atoms in protein molecules, this distance is at least 1Å. This property together
with the upper bound on atomic radii ensures that no atom is completely contained inside
another. This means that the weighted Voronoi regions corresponding to the atoms in a
biomolecule can be always be assumed to be non-empty.
Structural biologists are interested in small values of α. The two crucial values are 0Å and
1.4Å. The former corresponds to using van der Waals radius and the latter corresponds
to the radius of water molecule, which acts as the solvent.

In the light of the above three properties, we can say that the number of simplices of the
alpha complex that are incident on a weighted point (atom) is independent of the total
number of input atoms and hence bounded by a constant [22].

4.2 Acceleration data structure
The algorithm will benefit from an efficient method for accessing points of B that belong to
a local neighborhood of a given weighted point. We store the weighted points in a grid-based
data structure. Let rmax denote the radius of the largest atom and assume that the value of
the parameter α is available as input. First, we construct a grid with cells of side length√
r2
max + α and then bin the input atoms into the grid cells. In our implementation, we do

not store the grid explicitly because it may contain several empty cells. Instead, we compute
the cell index for each input atom and sort the list of atoms by cell index to ensure that
atoms that belong to a particular cell are stored at consecutive locations. The cell index
is determined based on a row-major or column-major order. Alternatively, a space-filling
curves like the Hilbert curve could also be used to order the cells.

T.B. Masood, T. Ray, and V. Natarajan 17:11

After the atoms are stored in grid cells, the alpha complex is computed in two stages. In
the first stage, we employ a bottom-up approach to obtain a conservative estimate of the
edges, triangles, and tetrahedra belonging to the alpha complex. The false positives from the
first stage are removed in a subsequent pruning stage resulting in the correct alpha complex.
We describe these two stages in the following subsections.

4.3 Potential simplices
The first stage essentially corresponds to Step 1 of the algorithm described in the previous
section. We compute the set Σortho of potential simplices for which OrthoSize(σd) ≤ α.
However, for efficiency reasons we process the simplices in the order of increasing dimension.
First, we identify edges that satisfy the AC3 condition as described below. Given the size of
the grid cell, endpoints of edges that satisfy the condition either lie within the same grid cell
or in adjacent cells. So, the grid data structure substantially reduces the time required to
compute the list of potential edges Σ1

ortho. Beginning from this set of edges, we construct
the set of all possible triangles and retain the triangles whose OrthoSize is no greater than
α, resulting in the set Σ2

ortho. Finally, we use the triangles in Σ2
ortho to construct the list of

tetrahedra that satisfy the OrthoSize ≤ α condition. The above procedure works because
the OrthoSize of a simplex is always greater than or equal to the OrthoSize of its faces. The
set of simplices identified in this stage contains all simplices of the alpha complex. False
positives are pruned in the second stage described below.

4.4 Pruning
The second stage corresponds to Steps 2-5 of the algorithm and processes the potential
simplices in the decreasing order of dimension. This stage checks the characterizing condition
AC2 to prune Σortho into Kα. The tetrahedra are processed by checking if any of the input
balls are closer to the ortho-center than the balls incident on the tetrahedron. If yes, the
tetrahedron is pruned away. Else, the tetrahedron is recognized as belonging to the alpha
complex and inserted into K3

α. Triangles incident on these tetrahedra also belong to the alpha
complex and are inserted into K2

α after they are removed from the list of potential triangles
Σ2

ortho. Next, the triangles in Σ2
ortho are processed by checking if they satisfy AC2. If yes,

they are inserted into K2
α. Otherwise, they are pruned away. All edges incident on triangles

belonging to K2
α are inserted into K1

α and removed from the set Σ1
ortho. Next, the edges in

Σ1
ortho are processed by checking if they satisfy AC2. Edges that satisfy AC2 are inserted

into K1
α and the others are pruned away. All the vertices in Σ0

ortho are directly inserted into
K0
α without the AC2 check because for biomolecular data we assume that Voronoi regions of

all the atoms are non-empty. The check for condition AC2 for each simplex is again made
efficient by the use of the grid data structure. Atoms that may violate AC2 lie within the
same cell as that containing the ortho-center or within the adjacent cells. Atoms that lie
within other cells may be safely ignored.

4.5 CUDA implementation
We use the CUDA framework [7] and the thrust library [8] within CUDA to develop a
parallel implementation of the algorithm that executes on the many cores of the GPU. The
grid computation is implemented as a CUDA kernel where all atoms are processed in parallel.
The computation of potential simplices and pruning stages are broken down into multiple
CUDA kernels and parallelized differently in order to increase efficiency. We now describe
the parallelization strategy in brief.

SoCG 2020

17:12 Parallel Computation of Alpha Complexes for Biomolecules

For computing the set of potential edges, the initial enumeration of possible edges incident
on an atom is done using the atoms in the corresponding grid cell and its neighbouring cells.
This is done per atom in parallel, the thread corresponding to the atom i being responsible for
generating the edges ij, j > i to ensure no duplicate edges are generated. Subsequently, the
AC3 condition is checked for the edges in parallel to finally generate the list of potential edges
Σ1

ortho. For computing potential triangles Σ2
ortho, the potential edge list is used as a starting

point for the initial enumeration of all possible triangles. This step is also parallelized per
atom, the thread i being responsible for generation of triangles of the type ijk; j, k > i if all
three edges ij, ik and jk are potential edges. The AC3 condition for the triangle is checked
next within a separate kernel and parallelized per triangle to generate the potential triangles
Σ2

ortho. A similar strategy is used for computing the set of potential tetrahedra Σ3
ortho.

The pruning stage is parallelized per tetrahedron, triangle, and edge as required. So,
computation of pσortho is done in parallel. The grid data structure is again useful in checking
for potential violators of the AC2 condition. Only the atoms belonging to the grid cell
corresponding to pσortho or the those in neighbouring grid cells can violate the AC2 condition.

4.6 Handling large data sizes
Typical protein structures consist of up to 100,000 atoms. Our implementation can handle
datasets of this size easily for reasonable values of α. However, the size of datasets is ever
increasing. Protein complexes that are available nowadays may consist of millions of atoms,
necessitating smart management of GPU memory while handling such data sets.

We propose two strategies and implement one of them. The first strategy is to partition
the grid by constructing an octree data structure and choosing an appropriate level in the
octree to create partitions. Each partition together with its border cells can be processed
independently of other partitions. So, we can copy one partition and its border to the GPU
memory, compute its alpha complex, and copy the results back from GPU to CPU memory.
After all the partitions are processed, the list of simplices can be concatenated followed by
duplicate removal to generate the final alpha complex.

The second strategy is to partition the sorted list of atoms into chunks of equal sizes and to
process each chunk independently. Here, we assume that the complete list of atoms together
with the grid data structure fits in the GPU memory. This is a reasonable assumption
considering that datasets containing several million atoms can easily fit on modern GPUs,
which typically have at least 2GB video memory. Also, the main difficulty in handling large
protein structures is managing the large lists of simplices generated within the intermediate
steps of the algorithm, when compared to handling the input list of atoms or the output list
of simplices. We compute the alpha complex by executing the algorithm in multiple passes.
Each pass computes the alpha complex for a single chunk and copies it back to the CPU
memory. We have implemented this second strategy and can handle data sizes of up to 16
million atoms on a GPU with 2GB of memory. Results are reported in the next section.

5 Experimental results

We now present results of computational experiments, which demonstrate that the parallel
algorithm is fast in practice and significantly better than the state-of-the-art. We also
performed runtime profiling to better understand the bottlenecks and effect of the parameter
α on the runtime. We present results for α in the range 0.0 to 2.0. This range is important
for structural analysis of biomolecules as it corresponds to solvent accessible surface of the
biomolecule for typical solvent molecules like water (van der Waals radius = 1.4Å). The value

T.B. Masood, T. Ray, and V. Natarajan 17:13

α = 0 corresponds to the van der Waals surface of the biomolecule. All experiments, unless
stated otherwise, were performed on a Linux system with an nVidia GTX 660 Ti graphics
card running CUDA 8.0 and a 2.0GHz Intel Xeon octa core processor with 16 GB of main
memory. The default number of threads per block was set at 512 for all the CUDA kernels.

Mach and Koehl describe two techniques for computing alpha complex of biomolecules
called AlphaVol and UnionBall in their paper [27]. Both approaches construct the weighted
Delaunay triangulation of input atoms first followed by a filtering step to obtain the alpha
complex.UnionBall is the state-of-the-art technique for alpha complex computation for
biomolecules on multi-core CPU. It uses heuristics and optimizations specific to biomolecular
data to improve upon AlphaVol. For biomolecules containing 5 million atoms, AlphaVol
takes approximately 8600 seconds for computing the alpha complex, while UnionBall takes
approximately 150 seconds. Our method computes the alpha complex in less than 3 seconds
for similar sized data, see Table 1.

5.1 Comparison with gReg3D

Table 1 Runtime comparison of the proposed algorithm with gReg3D on an nVidia GTX 660
Ti graphics card. Timings are reported in milliseconds. %Simplex refers to the size of the alpha
complex as a percentage of the size of the weighted Delaunay triangulation. The last column shows
the speedup in runtime of our algorithm over gReg3D. “*” indicates the data was partitioned and
processed in chunks. “–” indicates that the code could not execute due to insufficient memory.

α PDB id #Atoms Kα gReg3D %Simplex Speed up
#Simplices Time(ms) #Simplices Time(ms)

0.0

1GRM 260 932 13 6295 117 14.8 9.0
1U71 1505 5696 13 40878 115 13.9 11.1
3N0H 1509 5739 14 41244 137 13.9 10.0
4HHB 4384 38796 29 150141 193 25.8 6.6
2J1N 8142 29642 18 227719 229 13.0 12.7
1K4C 16068 62851 27 446383 347 14.1 12.9
2OAU 16647 123175 56 466586 344 26.4 6.2
1AON 58674 262244 65 1650841 879 15.9 13.5
1X9P* 217920 924086 113 6142811 2555 15.0 22.6
1IHM* 677040 2713083 277 – – – –
4CWU* 5905140 23450403 2709 – – – –
3IYN* 5975700 24188892 2874 – – – –

1.0

1GRM 260 1598 15 6295 117 25.4 7.9
1U71 1505 10828 17 40878 115 26.5 8.5
3N0H 1509 10965 30 41244 137 26.6 4.6
4HHB 4384 65987 86 150141 193 44.0 2.2
2J1N 8142 58205 30 227719 229 25.6 7.6
1K4C 16068 118467 52 446383 347 26.5 6.7
2OAU 16647 199101 159 466586 344 42.7 2.2
1AON 58674 495683 160 1650841 879 30.0 5.5
1X9P* 217920 1653778 196 6142811 2555 26.9 13.0
1IHM* 677040 5058507 605 – – – –
4CWU* 5905140 44411353 5118 – – – –
3IYN* 5975700 45790463 5501 – – – –

SoCG 2020

17:14 Parallel Computation of Alpha Complexes for Biomolecules

We are not aware of any available software that can compute the alpha complex directly
without first constructing the complete Delaunay triangulation. In order to compare the
performance, we chose the state-of-the-art parallel algorithm for computing the weighted
Delaunay triangulation in 3D, gReg3D [5]. The CUDA implementation of gReg3D is available
in the public domain. Table 1 compares the running times of our proposed algorithm with
that of gReg3D for twelve different biomolecules at α = 0 and α = 1. As evident from the
table, we consistently observe significant speedup over gReg3D. The observed speedup is as
high as a factor of 22 for the biomolecule 1X9P at α = 0, one of the largest molecules in
our dataset. Clearly, the speedup goes down for α = 1 when compared to α = 0 because
of the increased number of simplices in the output alpha complex. We also report the
number of simplices in the alpha complex compared to the total number of simplices in
the Delaunay triangulation under the column “%Simplex”. This makes it clear why the
speedup decreases as α is increased from 0 to 1. For example, for the protein 1AON, the
fraction of alpha complex simplices increases from 15.9% to 30% as α is increased from 0
to 1. Correspondingly, the speedup decreases from a factor of 13.5 to 5.5. We repeated the
experiment on a MS Windows system with an nVidia GTX 980 Ti card running CUDA 8.0
and observed similar speedups. However, the individual runtimes both for our algorithm and
for gReg3D were higher on the GTX 980 Ti.

The starred entries in Table 1 are results for execution using the data partitioning
approach. This is necessitated because these four large molecules generate large intermediate
simplex lists that can not fit into the GPU memory if all the atoms in the molecule are
processed at once. We observe that gReg3D is able to successfully compute the Delaunay
complex for only one out of these four large molecules and runs out of GPU memory for the
remaining three molecules.

We discuss the run time profiling, the effect of the value of α and numerical issues in
more detail in the full version of the paper [29].

6 Conclusions

We proposed a novel parallel algorithm to compute the alpha complex for biomolecular
data that does not require prior computation of the complete Delaunay triangulation. The
useful characterization of simplices that belong to the alpha complex may be of independent
interest. The algorithm was implemented using CUDA, which exploits the characteristics of
the atom distribution in biomolecules to achieve speedups of up to a factor of 22 compared
to the state-of-the-art parallel algorithm for computing the weighted Delaunay triangulation,
and up to a factor of 50 speedup over the state-of-the-art implementation that is optimized
for biomolecules. In future work, we plan to further improve the runtime efficiency of the
parallel implementation and to resolve the numerical issues using real arithmetic.

Applications of alpha complex outside the domain of biomolecular analysis often require
the complete filtration of Delaunay complex. The algorithm as presented here is not best
suited for such cases. However, the algorithm may be modified to utilize a previously
computed alpha complex to efficiently compute the alpha complex for higher values of α.
We plan to investigate this extension in future work.

T.B. Masood, T. Ray, and V. Natarajan 17:15

References
1 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangu-

lations. World Scientific, 2013. doi:10.1142/8685.
2 Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay filtrations.

In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Computational
Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014, page 484. ACM, 2014. doi:10.1145/
2582112.2582167.

3 A Bondi. van der Waals volumes and radii. The Journal of Physical Chemistry, 68(3):441–451,
1964.

4 Adrian Bowyer. Computing Dirichlet tessellations. Comput. J., 24(2):162–166, 1981. doi:
10.1093/comjnl/24.2.162.

5 Thanh-Tung Cao, Ashwin Nanjappa, Mingcen Gao, and Tiow Seng Tan. A GPU accelerated
algorithm for 3d Delaunay triangulation. In John Keyser and Pedro V. Sander, editors,
Symposium on Interactive 3D Graphics and Games, I3D ’14, San Francisco, CA, USA - March
14-16, 2014, pages 47–54. ACM, 2014. doi:10.1145/2556700.2556710.

6 Paolo Cignoni, Claudio Montani, and Roberto Scopigno. DeWall: A fast divide and conquer
Delaunay triangulation algorithm in Ed. Comput. Aided Des., 30(5):333–341, 1998. doi:
10.1016/S0010-4485(97)00082-1.

7 Nvidia Corporation. CUDA Zone. https://developer.nvidia.com/cuda-zone, 2020. [Online;
accessed 17-March-2020].

8 Nvidia Corporation. Thrust. https://developer.nvidia.com/thrust, 2020. [Online; accessed
17-March-2020].

9 Tran Kai Frank Da, Sébastien Loriot, and Mariette Yvinec. 3D alpha shapes. In CGAL User
and Reference Manual. CGAL Editorial Board, 4.11 edition, 2017. URL: http://doc.cgal.
org/4.11/Manual/packages.html#PkgAlphaShapes3Summary.

10 Joe Dundas, Zheng Ouyang, Jeffery Tseng, T. Andrew Binkowski, Yaron Turpaz, and Jie Liang.
CASTp: computed atlas of surface topography of proteins with structural and topographical
mapping of functionally annotated residues. Nucleic Acids Research, 34(Web-Server-Issue):116–
118, 2006. doi:10.1093/nar/gkl282.

11 H. Edelsbrunner. Weighted alpha shapes. University of Illinois at Urbana-Champaign, Depart-
ment of Computer Science, 1992.

12 H. Edelsbrunner and P. Koehl. The geometry of biomolecular solvation. In Discrete and
Computational Geometry, pages 243–275. MSRI Publications, 2005.

13 Herbert Edelsbrunner. Geometry and Topology for Mesh Generation, volume 7 of Cambridge
monographs on applied and computational mathematics. Cambridge University Press, 2001.

14 Herbert Edelsbrunner. Alpha shapes – a survey. In R. van de Weygaert, G. Vegter, J. Ritzerveld,
and V. Icke, editors, Tesellations in the Sciences: Virtues, Techniques and Applications of
Geometric Tilings, 2011.

15 Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American
Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.

16 Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of a set of
points in the plane. IEEE Trans. Inf. Theory, 29(4):551–558, 1983. doi:10.1109/TIT.1983.
1056714.

17 Herbert Edelsbrunner and Ernst P. Mücke. Simulation of simplicity: a technique to cope
with degenerate cases in geometric algorithms. ACM Trans. Graph., 9(1):66–104, 1990.
doi:10.1145/77635.77639.

18 Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. ACM Trans.
Graph., 13(1):43–72, 1994. doi:10.1145/174462.156635.

19 Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discret.
Comput. Geom., 1:25–44, 1986. doi:10.1007/BF02187681.

20 Herbert Edelsbrunner and Nimish R. Shah. Incremental topological flipping works for regular
triangulations. Algorithmica, 15(3):223–241, 1996. doi:10.1007/BF01975867.

SoCG 2020

https://doi.org/10.1142/8685
https://doi.org/10.1145/2582112.2582167
https://doi.org/10.1145/2582112.2582167
https://doi.org/10.1093/comjnl/24.2.162
https://doi.org/10.1093/comjnl/24.2.162
https://doi.org/10.1145/2556700.2556710
https://doi.org/10.1016/S0010-4485(97)00082-1
https://doi.org/10.1016/S0010-4485(97)00082-1
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/thrust
http://doc.cgal.org/4.11/Manual/packages.html#PkgAlphaShapes3Summary
http://doc.cgal.org/4.11/Manual/packages.html#PkgAlphaShapes3Summary
https://doi.org/10.1093/nar/gkl282
http://www.ams.org/bookstore-getitem/item=MBK-69
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1109/TIT.1983.1056714
https://doi.org/10.1145/77635.77639
https://doi.org/10.1145/174462.156635
https://doi.org/10.1007/BF02187681
https://doi.org/10.1007/BF01975867

17:16 Parallel Computation of Alpha Complexes for Biomolecules

21 Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir. Randomized incremental con-
struction of delaunay and voronoi diagrams. Algorithmica, 7(4):381–413, 1992. doi:
10.1007/BF01758770.

22 Dan Halperin and Mark H. Overmars. Spheres, molecules, and hidden surface removal. Comput.
Geom., 11(2):83–102, 1998. doi:10.1016/S0925-7721(98)00023-6.

23 Michael Krone, Barbora Kozlíková, Norbert Lindow, Marc Baaden, Daniel Baum, Július
Parulek, Hans-Christian Hege, and Ivan Viola. Visual analysis of biomolecular cavities: State
of the art. Comput. Graph. Forum, 35(3):527–551, 2016. doi:10.1111/cgf.12928.

24 J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, and S. Subramaniam. Analytical shape
computation of macromolecules: I. molecular area and volume through alpha shape. Proteins
Structure Function and Genetics, 33(1):1–17, 1998.

25 J. Liang, H. Edelsbrunner, P. Fu, P.V. Sudhakar, and S. Subramaniam. Analytical shape
computation of macromolecules: II. inaccessible cavities in proteins. Proteins Structure
Function and Genetics, 33(1):18–29, 1998.

26 J. Liang, H. Edelsbrunner, and C. Woodward. Anatomy of protein pockets and cavities.
Protein Science, 7(9):1884–1897, 1998.

27 Paul Mach and Patrice Koehl. Geometric measures of large biomolecules: Surface, volume,
and pockets. Journal of Computational Chemistry, 32(14):3023–3038, 2011. doi:10.1002/
jcc.21884.

28 Talha Bin Masood and Vijay Natarajan. An integrated geometric and topological approach to
connecting cavities in biomolecules. In Chuck Hansen, Ivan Viola, and Xiaoru Yuan, editors,
2016 IEEE Pacific Visualization Symposium, PacificVis 2016, Taipei, Taiwan, April 19-22,
2016, pages 104–111. IEEE Computer Society, 2016. doi:10.1109/PACIFICVIS.2016.7465257.

29 Talha Bin Masood, Tathagata Ray, and Vijay Natarajan. Parallel computation of alpha
complex for biomolecules. CoRR, abs/1908.05944, 2019. arXiv:1908.05944.

30 Talha Bin Masood, Sankaran Sandhya, Nagasuma R. Chandra, and Vijay Natarajan.
CHEXVIS: a tool for molecular channel extraction and visualization. BMC Bioinform.,
16:119:1–119:19, 2015. doi:10.1186/s12859-015-0545-9.

31 Ashwin Nanjappa. Delaunay triangulation in R3 on the GPU. PhD thesis, National University
of Singapore, 2012.

32 Donald R. Sheehy. An output-sensitive algorithm for computing weighted α-complexes. In
Proceedings of the 27th Canadian Conference on Computational Geometry, CCCG 2015,
Kingston, Ontario, Canada, August 10-12, 2015. Queen’s University, Ontario, Canada, 2015.
URL: http://research.cs.queensu.ca/cccg2015/CCCG15-papers/42.pdf.

33 Raghavendra Sridharamurthy, Talha Bin Masood, Harish Doraiswamy, Siddharth Patel,
Raghavan Varadarajan, and Vijay Natarajan. Extraction of robust voids and pockets in
proteins. In Lars Linsen, Bernd Hamann, and Hans-Christian Hege, editors, Visualization in
Medicine and Life Sciences III, Mathematics and Visualization, pages 329–349. Springer, 2016.
doi:10.1007/978-3-319-24523-2_15.

34 David F Watson. Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes. The Computer Journal, 24(2):167–172, 1981.

https://doi.org/10.1007/BF01758770
https://doi.org/10.1007/BF01758770
https://doi.org/10.1016/S0925-7721(98)00023-6
https://doi.org/10.1111/cgf.12928
https://doi.org/10.1002/jcc.21884
https://doi.org/10.1002/jcc.21884
https://doi.org/10.1109/PACIFICVIS.2016.7465257
http://arxiv.org/abs/1908.05944
https://doi.org/10.1186/s12859-015-0545-9
http://research.cs.queensu.ca/cccg2015/CCCG15-papers/42.pdf
https://doi.org/10.1007/978-3-319-24523-2_15

Relative Persistent Homology
Nello Blaser
Department of Informatics, University of Bergen, Norway
nello.blaser@uib.no

Morten Brun
Department of Mathematics, University of Bergen, Norway
morten.brun@uib.no

Abstract
The alpha complex efficiently computes persistent homology of a point cloud X in Euclidean
space when the dimension d is low. Given a subset A of X, relative persistent homology can
be computed as the persistent homology of the relative Čech complex Č(X, A). But this is not
computationally feasible for larger point clouds X. The aim of this note is to present a method
for efficient computation of relative persistent homology in low dimensional Euclidean space. We
introduce the relative Delaunay-Čech complex DelČ(X, A) whose homology is the relative persistent
homology. It is constructed from the Delaunay complex of an embedding of X in (d + 1)-dimensional
Euclidean space.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases topological data analysis, relative homology, Delaunay-Čech complex, alpha
complex

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.18

1 Introduction

Persistent homology is receiving growing attention in the machine learning community. In
that light, the scalability of persistent homology computations is of increasing importance.
To date, the alpha complex is the most widely used method to compute persistent homology
for large low-dimensional data sets.

Relative persistent homology has been considered several times in recent years. For
example Edelsbrunner and Harrer [8] have presented an application of relative persistent
homology to estimate the dimension of an embedded manifold. Relative persistent homology
is also a way to introduce the concept of extended persistence [5]. De Silva and others have
shown that the relative persistent homology H∗(X,At) with an increasing family of sets At
and a constant X = ∪tAt, and the corresponding relative persistent cohomology have the
same barcode [6]. They also show that absolute persistent homology of At can be computed
from this particular type of relative persistent homology. More recently, Pokorny and others
[9] have used relative persistent homology to cluster two-dimensional trajectories. Some
software, such as PHAT [2], even allows for the direct computation of relative persistent
homology. For an example see the PHAT github repository.

Despite the fact that relative persistent homology has been considered in many different
situations, we are not aware of a relative version of the alpha- or Delaunay-Čech complexes
being used.

Our contributions are as follows.
1. We give a new elementary proof that the Delaunay-Čech complex is level homotopy

equivalent to the Čech complex. This has previously been shown using discrete Morse
theory [1].

2. We extend this proof to the relative versions of the Delaunay-Čech complex and the Čech
complex.

© Nello Blaser and Morten Brun;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 18; pp. 18:1–18:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9489-1657
mailto:nello.blaser@uib.no
mailto:morten.brun@uib.no
https://doi.org/10.4230/LIPIcs.SoCG.2020.18
https://github.com/blazs/phat/blob/master/src/relative_example.cpp
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Relative Persistent Homology

3. We explain how the relative Delaunay-Čech complex can be constructed through embed-
ding in a higher dimension.

Given finite A ⊆ X ⊆ Rd, these contributions lead to the constuction of a filtered
simplicial complex DelČ(X,A) with persistent homology isomorphic to the relative persistent
homology of Čech persistence modules Č∗(X; k)/Č∗(A; k). The underlying simplicial complex
of DelČ(X,A) is the Delaunay complex of an embedding Z of X in Rd+1 with the property
that the projection pr: Rd+1 → Rd takes Z onto X. All simplices in the Delaunay complex
of Z projecting to a subset of A are given filtration value zero. The filtration value of the
remaining simplices in the Delaunay complex of Z is defined to be the Čech filtration value
of their projection to Rd. This is the content of Theorem 2.

This manuscript is structured as follows. In Section 2, we introduce relative persistent
homology, and in Section 3 we construct the relative Delaunay-Čech complex. The rest of the
paper serves to prove that the relative Delaunay-Čech complex is level homotopy equivalent
to the relative Čech complex. Section 4 introduces Dowker Nerves, the theoretical foundation
used in the proof. In Section 5, we introduce the alpha- and Delaunay-Čech complexes using
the Dowker Nerve terminology and show that they are level homotopy equivalent to the
Čech complex. Section 6 introduces the relative alpha- and Delaunay-Čech dissimilarities,
and proves that their nerves are level homotopy equivalent to the relative Čech complex.
Finally, in Section 7 we show that the nerve of the relative Delaunay-Čech dissimilarity is
level homotopy equivalent to the relative Delaunay-Čech complex.

2 Relative persistent homology

Let X be a finite subset of Euclidean space Rd. Given t > 0, the Čech complex Čt(X) of X
is the abstract simplicial complex with vertex set X and with σ ⊆ X a simplex of Čt(X) if
and only if there exists a point p ∈ Rd with distance less than t to every point in σ. Varying
t we obtain the filtered Čech complex Č(X).

Given a subset A ofX we obtain an inclusion Č(A) ⊆ Č(X) of filtered simplicial complexes
and an induced inclusion Č∗(A; k) ⊆ Č∗(X; k) of associated chain complexes of persistence
modules over the field k. The relative persistent homology of the pair (X,A) is defined as
the homology of the factor chain complex of persistence modules Č∗(X; k)/Č∗(A; k).

For X of small cardinality, the relative persistent homology can be calculated as the
reduced persistent homology of the relative Čech complex Č(X,A), where σ ⊆ X is a simplex
of Č(X,A)t if either σ ⊆ A or σ ∈ Čt(X). However, as the cardinality of X grows, this
quickly becomes computationally infeasible.

3 The relative Delaunay-Čech complex

Before delving into theory we present a filtered simplicial complex that is level homotopy
equivalent to the relative Čech complex Č(X,A) of a pair of finite subsets A ⊆ X of Euclidean
space Rd. Two filtered simplicial complexes K = (Kt)t≥0 and L = (Lt)t≥0 are level homotopy
equivalent if there exists a filtered simplicial map f : K → L so that the geometric realizaton
of ft : Kt → Lt is a homotopy equivalence for each t.

For convenience, we let B = X −A so that X is the disjoint union of A and B. Choose
s > 0 bigger than the maximal filtration values in the alpha complexes of A and B. The set

Z = A× {s} ∪B × {−s}

is an embedding of X in Rd+1. Let Del(Z) be the Delaunay complex of Z.

N. Blaser and M. Brun 18:3

I Definition 1. The relative Delaunay-Čech complex of the finite subsetes A ⊆ X of Rd
is the filtered simplicial complex DelČ(X,A) with Del(Z) as underlying simplicial complex
and with filtration R : Del(Z) → R defined as follows: Given σ ∈ Del(Z), let pr(σ) be the
projection of σ ⊆ Rd+1 to Rd. If pr(σ) is contained in A we let R(σ) = 0. Otherwise we let
R(σ) be the radius of the smallest enclosing ball of pr(σ).

I Theorem 2. The filtered simplicial complex DelČ(X,A) is level homotopy equivalent to
the relative Čech complex Č(X,A). In particular, the persistent homology of DelČ(X,A) is
isomorphic to the relative Čech persistent homology of the pair (X,A). If X is of cardinality
n, then DelČ(X,A) contains O(nd(d+1)/2e) simplices.

The statement about the size of the relative Delaunay-Čech complex is a direct consequence
of the result of [10] that the Delaunay triangulation of n points in d+ 1 dimensions contains
O(nd(d+1)/2e) simplices

4 Dowker nerves

A dissimilarity is a continuous function of the form Λ: X×Y → [0,∞], for topological spaces
X and Y , where [0,∞] is given the order topology. A morphism f : Λ→ Λ′ of dissimilarities
Λ: X×Y → [0,∞] and Λ′ : X ′×Y ′ → [0,∞] consists of a pair (f1, f2) of continuous functions
f1 : X → X ′ and f2 : Y → Y ′ so that for all (x, y) ∈ X × Y the following inequality holds:

Λ′(f1(x), f2(y)) ≤ Λ(x, y).

This notion of morphism is less general than for example [3, Definition 2.10], but it is simpler
and suffices for our purposes.

The Dowker Nerve NΛ of Λ is the filtered simplicial complex described as follows: For
t > 0, the simplicial complex NΛt consists of the finite subsets σ of X for which there exists
y ∈ Y so that Λ(x, y) < t for every x ∈ σ.

Let f : Λ→ Λ′ be a morphism of dissimilarities as above and let σ ∈ NΛt. Given y ∈ Y
with Λ(x, y) < t for every x ∈ σ we see that

Λ′(f1(x), f2(y)) ≤ Λ(x, y) < t,

so f1(σ) ∈ NΛ′t. Thus we have a simplicial map f : NΛ→ NΛ′.
Given x ∈ X and t > 0, the Λ-ball of radius t centered at x is the subset of Y defined as

BΛ(x, t) = {y ∈ Y, | Λ(x, y) < t}.

The t-thickening of Λ is the subset of Y defined as

Λt =
⋃
x∈X

BΛ(x, t).

Note that by construction the set of Λ-balls of radius t is an open cover of the t-thickening
of Λ.

The geometric realization |K| of a simplicial complex K on the vertex set V is the
subspace of the space [0, 1]V of functions α : V → [0, 1] described as follows:
1. The subset α−1((0, 1]) of V consisting of elements where α is strictly positive is a simplex

in K. In particular it is finite.
2. The sum of the values of α is one, that is

∑
v∈V α(v) = 1.

SoCG 2020

18:4 Relative Persistent Homology

With respect to the product topology, the subspace topology on |K| is called the strong
topology on the geometric realization. It is convenient for construction of functions into |K|.
The weak tooplogy on |K|, which we are not going to use here, is convenient for construction
of functions out of |K|. The homotopy type of |K| is the same for these two topologies [7,
p. 355, Corollary A.2.9]. Given a simplex σ ∈ K, the simplex |σ| of |K| is the closure of

{α : V → [0, 1] |α(v) > 0 for all v ∈ σ}.

The simplices of |K| are the sets of this form.
A partition of unity subordinate to the dissimilarity Λ: X × Y → [0,∞] consists of

continuous maps ϕt : Λt → |NΛt| such that given x ∈ X, the closure of the set

{y ∈ Y | ϕt(y)(x) > 0}

is contained in BΛ(x, t). We say that Λ is numerable if a partition of unity subordinate to
Λ exists. If Y is paracompact, then every dissimilarity of the form Λ: X × Y → [0,∞] is
numerable [7, p. 355, paragraph after Definition A.2.10].

Let y ∈ Λt and let {ϕt : Λt → |NΛt|} be a partition of unity subordinate to Λ. If x ∈ X
with ϕt(y)(x) > 0, then Λ(x, y) < t. Therefore ϕt(y) is contained in a simplex |σ| in |NΛt|
with σ contained in {x ∈ X | Λ(x, y) < t}. Every finite subset of this set is an element
of NΛt. This implies that for s ≤ t there is a simplex of |NΛt| containing both ϕs(y) and
ϕt(y). It also implies that given another partition of unity {ψt : Λt → |NΛt|} subordinate to
Λ there is a simplex of |NΛt| containing both ϕt(y) and ψt(y). This is exactly the definition
of contiguous maps, so ϕt and ψt are contiguous, and thus homotopic maps [7, Remark 2.22,
p. 350]. Similarly, the diagram

Λs ϕs

−−−−→ |NΛs|y y
Λt ϕt

−−−−→ |NΛt|

commutes up to homotopy [7, paragraph on the nerve starting on page 355 and ending on
page 356].

Recall that a cover U of Y is good if all non-empty finite intersections of members of U
are contractible. We now state the Nerve Lemma in the context of dissimilarities.

I Theorem 3. If Y is paracompact and Λ: X × Y → [0,∞] is a dissimilarity, then there
exists a partition of unity {ϕt : Λt → |NΛt|} subordinate to Λ. Moreover, if the cover of Λt
by Λ-balls of radius t is a good cover, then ϕt is a homotopy equivalence.

Proof. By the above discussion, we only need to note that the last statement about good
covers is [11, Theorem 4.3]. J

A functorial version of the Nerve Lemma can be stated as follows:

I Proposition 4. Let Λ: X × Y → [0,∞] and Λ′ : X ′ × Y ′ → [0,∞] be dissimilarities
and let f = f1 × f2 : X × Y → X ′ × Y ′ be a morphism f : Λ → Λ′ of dissimilarities. If
{ϕt : Λt → |NΛt|} is a partition of unity subordinate to Λ and {ψt : (Λ′)t → |NΛ′t|} is a
partition of unity subordinate to Λ′, then for every t ≥ 0 the diagram

Λt ϕt

−−−−→ |NΛt|

f2

y y|f1|

(Λ′)t ψt

−−−−→ |NΛ′t|,
commutes up to homotopy.

N. Blaser and M. Brun 18:5

Proof. We show that the two compositions are contiguous. Recall that |f1| takes a point
α : X → [0, 1] of |NΛt| to the point |f1|(α) of |NΛ′t| with |f1|(α)(x′) =

∑
f1(x)=x′ α(x).

Recall further that ϕt(y) is contained in a simplex |σ| in |NΛt|, where σ is contained in
{x ∈ X | Λ(x, y) < t}. Then we have that for y ∈ Λt, the elements |f1|(ϕt(y)) and ψt(f2(y))
of |NΛ′t| are contained in simplices |σ| and |τ | respectively. Both σ and τ are subsets of the
set {x′ ∈ X ′ | Λ′(x′, f2(y)) < t}. However every finite subset of this set is a simplex in NΛ′t.
In particular, so is the union σ ∪ τ . J

5 The alpha- and Delaunay-Čech complexes

Given a finite subset X of Rd we define the Voronoi cell of x ∈ X as

Vor(X,x) = {p ∈ Rd | d(x, p) ≤ d(y, p) for all y ∈ X}.

Let Rdd be Euclidean space with the discrete topology. The discrete Delaunay dissimilarity
of X is defined as

delX : X × Rdd → [0,∞], delX(x, p) =
{

0 if p ∈ V (X,x)
∞ if p /∈ V (X,x).

The Delaunay complex Del(X) is the simplicial complex with vertex set X and with σ ⊆ X
a simplex of Del(X) if and only if there exists a point in Rd belonging to Vor(X,x) for every
x ∈ σ. That is, Del(X) = N delXt for t > 0.

Note that with respect to Euclidean topology, the discrete Delaunay dissimilarity is not
continuous, and hence delX : X × Rd → [0,∞] is not a dissimilarity. One way to deal with
this is to use the Nerve Lemma for absolute neighbourhood retracts [4, Theorem 8.2.1]. In
order to use Theorem 3 and Proposition 4 from above, instead we construct a continuous
version of the Delaunay dissimilarity.

Given a subset σ of X and p ∈ Rd, let

dVor(p, σ) = max{d(p,Vor(X,x)) | x ∈ σ},

where for any A ⊆ Rd, we define d(p,A) = infa∈A{d(p, a)}.
Note that if σ /∈ Del(X), the infimum εσ of the continuous function dVor(−, σ) : Rd → R

is strictly positive. Choose ε > 0 so that 2ε < εσ for every subset σ of X that is not in
Del(X). Given x ∈ X we define the ε-thickened Voronoi cell Vor(X,x)ε by

Vor(X,x)ε = {p ∈ Rd | d(p,Vor(X,x)) < ε}.

By construction the nerve of the open cover (Vor(X,x)ε)x∈X of Rd is equal to Del(X).
Let h : [0,∞]→ [0,∞] be the order preserving map

h(t) =
{
− ln(1− t/ε) if t < ε

∞ if t ≥ ε.
(1)

For x ∈ X, let Delx : Rd → [0,∞] be the function defined by Delx(p) = h(d(p,Vor(X,x))) so
that Delx(Vor(X,x)) = 0 and Delx(Rd \Vor(X,x)ε) =∞.

The Delaunay dissimilarity of X is defined as

DelX : X × Rd → [0,∞], DelX(x, p) = Delx(p).

By the above discussion we know that N DelXt = N delXt = Del(X) whenever t > 0.

SoCG 2020

18:6 Relative Persistent Homology

The Čech dissimilarity of X is defined as

dX : X × Rd → [0,∞],

where dX(x, p) is the Euclidean distance between x ∈ X and p ∈ Rd.
The alpha dissimilarity of X is defined as

AX = max(DelX , dX) : X × Rd → [0,∞].

The Delaunay-Čech dissimilarity is defined as

DelČX : X ×
(
Rd × Rd

)
→ [0,∞], DelČX(x, (p, q)) = max(dX(x, p),DelX(x, q)).

Note the nerve of the dissimilarity

delČX : X ×
(
Rd × Rdd

)
→ [0,∞], delČX(x, (p, q)) = max(d(Xx, p),delX(x, q))

is identical to the nerve of DelČX . Moreover, the Dowker nerves of the Delaunay-, Čech-,
alpha- and Delaunay-Čech dissimilarities are the Delaunay-, Čech-, alpha- and Delaunay-Čech
complexes respectively. For all these dissimilarities, the corresponding balls are convex, so
the geometric realizations are homotopy equivalent to the corresponding thickenings. In
order to see that the morphism AX → dX of dissimilarities induces homotopy equivalences
|NAXt |

'−→ |NdXt | it suffices to note that the corresponding map (AX)t → (dX)t is the identity
map. This holds because BAX (x, t) = BdX (x, t)∩BDelX (x, t) and given y ∈ BdX (x, t) we have
that y ∈ Vor(X,x′) for some x′ ∈ X. Thus, dX(y, x′) is minimal, so dX(y, x′) ≤ dX(y, x) < t

and y ∈ BdX (x′, t) ∩BDelX (x′, t).
In order to see that the morphism DelČX → dX of dissimilarities induces homotopy

equivalences |N DelČXt |
'−→ |NdXt | we use the following lemma:

I Lemma 5. For every (p, q) ∈ (DelČX)t, the entire line segment between (p, p) and (p, q)
is contained in (DelČX)t.

Proof. In order not to clutter notation we omit superscript X on dissimilarities. Let
γ : [0, 1]→ Rd be the function γ(s) = (1− s)p+ sq. We claim that given (p, q) ∈ DelČt and
s ∈ [0, 1] the point (p, γ(s)) = (p, (1− s)p+ sq) is in DelČt.

If (p, q) ∈ DelČt, there exists a point x ∈ X, such that p ∈ Bd(x, t) and q ∈ BDel(x, t),
that is, d(q,Vor(X,x)) < h←(t), where h← is the generalized inverse of h. Pick q′ ∈ Vor(X,x)
so that d(q, q′) < h←(t). Let γ′ : [0, 1]→ Rd be the function γ′(s) = (1− s)p+ sq′. Given
s ∈ [0, 1], suppose that the point (p, γ′(s)) = (p, (1− s)p+ sq′) is in delČt. Then there exists
x′ ∈ X so that d(x′, p) < t and γ′(s) ∈ V (X,x′) and (p, γ(s)) is in DelČt since the distance
between (1− s)p+ sq and (1− s)p+ sq′ is less than h←(t) and d(γ′(s),Vor(X,x′)) = 0.

We are left to show that, given s ∈ [0, 1], the point (p, γ′(s)) = (p, (1− s)p+ sq′) is in
delČt. Suppose γ′(s) ∈ Vor(X, y) for some s ∈ [0, 1) and some y ∈ X. We claim that then
p ∈ Bd(y, t). To see this, we may without loss of generality assume that y 6= x. Let H be
the hyperplane in between x and y, i.e.

H = {z ∈ X | d(x, z) = d(y, z)}.

Let

H+ = {z ∈ X | d(x, z) ≥ d(y, z)}

N. Blaser and M. Brun 18:7

and

H− = {z ∈ X | d(x, z) ≤ d(y, z)}.

Since γ′(s) ∈ Vor(X, y) we have γ′(s) ∈ H+. Since q ∈ Vor(X,x) we have q ∈ H−. Since the
line segment between p and q either is contained in H or intersects H at most once we must
have p ∈ H+. That is, d(y, p) ≤ d(x, p) < t, so p ∈ Bd(y, t) as claimed. J

By Lemma 5, the inclusion

(dX)t = ∪x∈XBdX (x, t)→ ∪x∈XBDelČX (x, t) = (DelČX)t, p 7→ (p, p)

is a deformation retract. In particular it is a homotopy equivalence.

6 The relative Delaunay-Čech dissimilarity

In this section we consider two subsets X1 and X2 of d-dimensional Euclidean space Rd.
The Voronoi diagram of a finite subset X of Rd is the set of pairs of the form (x,Vor(X,x))

for x ∈ X, that is,

Vor(X) = {(x,Vor(X,x)) | x ∈ X}.

This may seem overly formal since the projection on the first factor gives a bijection
Vor(X)→ X. However, when we work with Voronoi cells with respect to different subsets
X1 and X2 of Rd it may happen that Vor(X1, x1) = Vor(X2, x2) even when x1 6= x2. The
Voronoi diagram of the pair of subsets X1 and X2 of Rd is the union

Vor(X1, X2) = Vor(X1) ∪Vor(X2).

The discrete Delaunay dissimilarity of X1 and X2 is defined as

delX1,X2 : Vor(X1, X2)× Rdd → [0,∞], delX1,X2((x, V), p) =
{

0 if p ∈ V
∞ if p /∈ V .

The simplicial complex N delX1,X2
t is independent of t > 0. It is the Delaunay complex

Del(X1, X2) on X1 and X2. In order to describe the homotopy type of this simplicial complex
we thicken the Voronoi cells like we did in the previous section:

Given a subset σ of Vor(X1, X2) and p ∈ Rd, let

dVor(p, σ) = max{d(p, V) | (x, V) ∈ σ}.

Note that if σ /∈ Del(X1, X2), the infimum εσ of the continuous function dVor(−, σ) : Rd → R
is strictly positive. Choose ε > 0 so that 2ε < εσ for every subset σ of Vor(X1, X2) that is
not in Del(X1, X2). Given (x, V) ∈ Vor(X1, X2) we define the ε-thickening V ε of V by

V ε = {p ∈ Rd | d(p, V) < ε}.

By construction, the nerve of the open cover {(x, V ε)}(x,V)∈Vor(X1,X2) is equal to Del(X1, X2).
The Delaunay dissimilarity DelX1,X2 of X1 and X2 is defined as

Vor(X1, X2)× Rd DelX1,X2
−−−−−−→ [0,∞], DelX1,X2((x, V), p) = h(d(p, V))

for h : [0,∞]→ [0,∞] the order preserving map defined in Equation (1).

SoCG 2020

18:8 Relative Persistent Homology

The inclusion X1 → Vor(X1, X2) taking x ∈ X1 to (x,Vor(X1, x)) induces a morphism
of dissimilarities DelX1 → DelX1,X2 and an inclusion of nerves N DelX1

t ⊆ N DelX1,X2
t for

t > 0.
Next, we construct the dissimilarity AX1,X2 as

Vor(X1, X2)× Rd AX1,X2
−−−−−→ [0,∞], ((x, V), p) 7→ max(d(x, p),DelX1,X2((x, V), p)).

Also here we have an obvious inclusion NAX1
t → NAX1,X2

t , and the AX1,X2 -balls are convex
so the nerve lemma yields a homotopy equivalence

|NAX1,X2
t | '

⋃
(x,V)∈Vor(X1,X2)

BAX1,X2 ((x, V), t) =
⋃

x∈X1∪X2

BdX1∪X2 (x, t) = (X1 ∪X2)t.

Finally, we construct the dissimilarity DelČX1,X2

Vor(X1, X2)× (Rd × Rd) DelČX1,X2
−−−−−−−→ [0,∞],

((x, V), (p, q)) 7→ max(d(x, p),DelX1,X2((x, V), q))

Here again we have an obvious inclusion N DelČX1
t → N DelČX1,X2

t , and the DelČX1,X2 -balls
are convex so the nerve lemma yields a homotopy equivalence

|N DelČX1,X2
t | ' (DelČX1,X2)t

The following variant of Lemma 5 implies that (DelČX1,X2)t is a deformation retract of
(X1 ∪X2)t.

I Lemma 6. For every (p, q) ∈ (DelČX1,X2)t, the entire line segment between (p, p) and
(p, q) is contained in (DelČX1,X2)t.

Proof. Given (p, q) ∈ (DelČX1,X2)t = (DelČX1)t ∪ (DelČX2)t, we have (p, q) ∈ (DelČXi)t

for some i ∈ {1, 2}. Then also (p, p) lies in (DelČXi)t, and Lemma 5 proves the claim. J

7 Nerve of the relative Delaunay-Čech dissimilarity

In this section we show that the nerve of the relative Delaunay dissimilarity is level homotopy
equivalent to the relative Dealunay-Čech complex.

We fix some notation used in this section: X1 ⊆ Rd and X2 ⊆ Rd are finite subsets. We
let s be a positive real number, we let Z = X1 ×{s} ∪X2 ×{−s} and we let pr: Rd+1 → Rd
be the projection omitting the last coordinate.

I Lemma 7. The projection pr: Rd+1 → Rd induces a surjection

Vor(Z) g−→ Vor(X1, X2), ((x, s), V) 7→ (x, V (X1, x)), ((x,−s), V) 7→ (x, V (X2, x)),

with pr(V) ⊆ V (Xi, x) for x ∈ Xi. Given (x, V) ∈ Vor(X1, X2) the fiber g−1((x, V)) consists
of all elements of Vor(Z) of the form ((x, a), V) for a ∈ {±s}.

Proof. We show that pr(V) ⊆ V (X1, x1) for ((x1, s), V) ∈ Vor(Z) with x1 ∈ X1. Given
(p, r) ∈ V we have for all points of the form (x′1, s) for x′1 ∈ X1 that d((p, r), (x1, s)) ≤
d((p, r), (x′1, s)). This implies that d(p, x1) ≤ d(p, x′1), and thus p ∈ V (X1, x1). We conclude
that pr(V) ⊆ V (X1, x1). An analogous argument applies for elements of the form ((x2,−s), V)
in Vor(Z). J

N. Blaser and M. Brun 18:9

Let s1 be larger than the largest filtration value of the alpha complex of X1. Then the
function j1 : Vor(X1) → Vor(Z) defined by j1(x1, V) = ((x1, s), V (Z, (x1, s))) induces a
simplicial map of nerves del(X1) → del(Z) for all s > s1. Similarly, there is a simplicial
map del(X2)→ del(Z) for all s > s2 when s2 is larger than all filtration values of the alpha
complex of X2. Let s(X1, X2) = max(s1, s2).

Recall, from the previous two sections, that εσ is the infimum of the continuous function
dVor(−, σ) : Rd → R. Choose ε > 0 satisfying the following two criteria:
1. 2ε < εσ for every subset σ of Vor(X1, X2) that is not in Del(X1, X2).
2. 2ε < εσ for every subset σ of Vor(Z) that is not in Del(Z).
Let h : [0,∞]→ [0,∞] be the order preserving map defined in Equation (1), and let DelZ

and DelX1,X2 be constructed using h. We define a new dissimilarity

D : Vor(Z)× (Rd×Rd+1)→ [0,∞], D((z, V), (p, q)) = max(d(pr(z), p),DelZ((z, V), q)).

Note that the underlying simplicial complex
⋃
t>0NDt of the nerve of D is the Delaunay

complex del(Z). The filtration value of σ ∈ del(Z) in the neve of D is the filtration value of
g(σ) in the nerve of DelČX1,X2 .

I Proposition 8. Let X1 ⊆ Rd and X2 ⊆ Rd be finite. Choose s > s(X1, X2). Then
Vor(Z) g−→ Vor(X1, X2) and id× pr: Rd × Rd+1 → Rd × Rd form a morphism

f = (g, id× pr) : D → DelČX1,X2

of dissimilarities inducing a homotopy equivalence

g : NDt → N DelČX1,X2
t

for every t > 0.

Proof. For i = 1, 2 the inclusion pr(V) ⊆ V (Xi, x) for ((x, (−1)i−1s), V) ∈ Vor(Z) implies
that

DelX1,X2(g(z, V),pr(q)) ≤ DelZ((z, V), q)

for all ((z, V), q) ∈ Vor(Z). So we have a morphism f = (g, id× pr) : D → DelČX1,X2 .
In order to show that g induces a homotopy equivalence of geometric realizations, by the

Nerve Lemma, it suffices to show that given a simplex σ of N DelČX1,X2
t , the inverse image

g−1(σ) is a simplex of NDt. Let p be a point in the intersection of the Voronoi cells in σ.
Write g−1(σ) = τ1 ∪ τ2, where τ1 consists of Voronoi cells with centers at height s and τ2
consists of Voronoi cells with centers at height −s. Let σ1 = {(x1, s) | (x1, V (X1, x1)) ∈ σ}
and σ2 = {(x2,−s) | (x2, V (X2, x2)) ∈ σ}.

Suppose that τ2 is empty. Then actually σ ∈ DelČX1
t , and since s > s1 we know that

j1(σ) ∈ del(Z). Since g ◦ j1 is the inclusion of Vor(X1) in Vor(X1, X2) = Vor(X1) ∪Vor(X2)
we know that j1(σ) ⊆ g−1(σ) = τ1 and that j1(σ) ∈ NDt. On the other hand, since τ2 is
empty, by Lemma 7 we know that g−1(σ) is contained in j1(σ), so they must be equal. We
conclude that g−1(σ) is a simplex of NDt. A similar argument applies when τ1 is empty.

In the remaining case where both τ1 and τ2 are nonempty, the function

f : Rd+1 → R, f(a) = dVor(a, σ1)− dVor(a, σ2)

has f((p,−s)) > 0 and f((p, s)) < 0. By the intermediate value theorem there exists
t ∈ [−s, s] with f(p, t) = 0. Since (p, t) has the same distance to all elements of σ1 and also
has the same distance to all elements of σ2 we conclude that (p, t) is in the intersection of
the Voronoi cells in g−1(σ) = τ1 ∪ τ2. Thus DelČZ((z, V), p) = 0 and d(pr(z), p) < t for all
(z, V) ∈ g−1(σ). In particular g−1(σ) ∈ NDt. J

SoCG 2020

18:10 Relative Persistent Homology

We are now ready to compute persistent homology of X1 ∪ X2 relative to X1. The
relative Delaunay-Čech complex DelČ(X1 ∪X2, X1) is the filtered simplicial complex with
DelČ(X1 ∪X2, X1)t = j1(del(X1)) ∪NDt. Note that this is consistent with Definition 1.

I Theorem 9. Let X1 ⊆ Rd and X2 ⊆ Rd be finite. Choose s > s(X1, X2). Then the
geometric realization of the filtered simplicial complex DelČ(X1 ∪X2, X1) is level homotopy
equivalent to the filtered space t 7→ (X1 ∪X2)t/Xt

1. In particular, there is an isomorphism

(H∗(DelČ(X1 ∪X2, X1)t))t>0 ∼= (H∗((X1 ∪X2)t, Xt
1))t>0

of persistence modules.

Proof. Since j1(del(X1) is contractible, the geometric realization of DelČ(X1 ∪X2, X1)t is
homotopy equivalent to the quotient space |DelČ(X1 ∪X2, X1)t|/|j1(del(X1)|. This quotient
space is homeomorphic to |NDt|/|NDt∩ j1(Del(X1))|. By Proposition 8 the map g : NDt →
N DelČX1,X2

t induces a homotopy equivalence of geometric realizations. Moreover g induces
an an isomorphism NDt ∩ j1(Del(X1)) → N DelČX1

t . Combining these two statements, g
induces a homotopy equivalence |NDt|/|NDt ∩ j1(Del(X1))| → |N DelČX1,X2

t |/|N DelČX1
t |.

The space |N DelČX1,X2
t | is homotopy equivalent to the Euclidean t-thickening (X1 ∪X2)t of

X1∪X2 and |N DelČX1
t | is homotopy equivalent to the Euclidean t-thickening Xt

1 of X1. J

This concludes the proof of Theorem 2.

References

1 Ulrich Bauer and Herbert Edelsbrunner. The Morse theory of Čech and Delaunay complexes.
Trans. Amer. Math. Soc., 369(5):3741–3762, 2017. doi:10.1090/tran/6991.

2 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat – persistent
homology algorithms toolbox. Journal of Symbolic Computation, 78:76–90, 2017. Algorithms
and Software for Computational Topology. doi:10.1016/j.jsc.2016.03.008.

3 Nello Blaser and Morten Brun. Sparse filtered nerves, 2018. ArXiv 1810.02149. arXiv:
1810.02149.

4 A. Borel and J.-P. Serre. Corners and arithmetic groups. Comment. Math. Helv., 48:436–491,
1973. doi:10.1007/BF02566134.

5 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
Poincaré and Lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103,
February 2009. doi:10.1007/s10208-008-9027-z.

6 Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent
(co)homology. Inverse Problems, 27(12):124003, November 2011. doi:10.1088/0266-5611/
27/12/124003.

7 Albrecht Dold. Lectures on algebraic topology. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the 1972 edition. doi:10.1007/978-3-642-67821-9.

8 Herbert Edelsbrunner and John Harer. Persistent homology—a survey. In Surveys on discrete
and computational geometry, volume 453 of Contemp. Math., pages 257–282. Amer. Math.
Soc., Providence, RI, 2008. doi:10.1090/conm/453/08802.

9 F. T. Pokorny, K. Goldberg, and D. Kragic. Topological trajectory clustering with relative
persistent homology. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 16–23, May 2016. doi:10.1109/ICRA.2016.7487092.

10 Raimund Seidel. The upper bound theorem for polytopes: an easy proof of its asymptotic
version. Computational Geometry, 5(2):115–116, 1995. doi:10.1016/0925-7721(95)00013-Y.

11 Žiga Virk. Rips complexes as nerves and a functorial Dowker-nerve diagram, 2019. ArXiv
1906.04028. arXiv:1906.04028.

https://doi.org/10.1090/tran/6991
https://doi.org/10.1016/j.jsc.2016.03.008
http://arxiv.org/abs/1810.02149
http://arxiv.org/abs/1810.02149
https://doi.org/10.1007/BF02566134
https://doi.org/10.1007/s10208-008-9027-z
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1088/0266-5611/27/12/124003
https://doi.org/10.1007/978-3-642-67821-9
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.1109/ICRA.2016.7487092
https://doi.org/10.1016/0925-7721(95)00013-Y
http://arxiv.org/abs/1906.04028

Edge Collapse and Persistence of Flag Complexes
Jean-Daniel Boissonnat
Université Côte d’Azur, INRIA, Sophia Antipolis, France
Jean-Daniel.Boissonnat@inria.fr

Siddharth Pritam
Université Côte d’Azur, INRIA, Sophia Antipolis, France
siddharth.pritam@inria.fr

Abstract
In this article, we extend the notions of dominated vertex and strong collapse of a simplicial complex
as introduced by J. Barmak and E. Miniam. We say that a simplex (of any dimension) is dominated
if its link is a simplicial cone. Domination of edges appears to be a very powerful concept, especially
when applied to flag complexes. We show that edge collapse (removal of dominated edges) in a
flag complex can be performed using only the 1-skeleton of the complex. Furthermore, the residual
complex is a flag complex as well. Next we show that, similar to the case of strong collapses, we can
use edge collapses to reduce a flag filtration F to a smaller flag filtration Fc with the same persistence.
Here again, we only use the 1-skeletons of the complexes. The resulting method to compute Fc is
simple and extremely efficient and, when used as a preprocessing for persistence computation, leads
to gains of several orders of magnitude w.r.t the state-of-the-art methods (including our previous
approach using strong collapse). The method is exact, irrespective of dimension, and improves
performance of persistence computation even in low dimensions. This is demonstrated by numerous
experiments on publicly available data.

2012 ACM Subject Classification Mathematics of computing; Theory of computation → Computa-
tional geometry; Mathematics of computing → Topology

Keywords and phrases Computational Topology, Topological Data Analysis, Edge Collapse, Simple
Collapse, Persistent homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.19

Funding This research has received funding from the European Research Council (ERC) under the
European Union’s Seventh Framework Programme (FP/2007- 2013) / ERC Grant Agreement No.
339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions).

Acknowledgements We want to thank Marc Glisse for useful discussions and Vincent Rouvreau for
his help with Gudhi.

1 Introduction

Improving the performance of computing persistent homology has been a central goal in
Topological Data Analysis (TDA) since the early days of the field about 20 years ago. Very
significant progress has been obtained on the two main components of the overall pipeline: the
preprocessing of the sequence of complexes given as input and the computation of persistence
homology (PH). The latter line of research led to improvement of the persistence algorithm
and of its analysis, to efficient implementations and optimizations, and to a new generation
of software [37, 8, 6, 45]. The former and complementary direction has been intensively
explored with the goal of reducing the size of the complexes in the input sequence while
preserving the persistent homology of the sequence, or approximating it in a controlled
way [44, 30, 18, 13, 51, 41, 20, 27]. Among the most widely used complexes in TDA are
the flag complexes and, in particular, the Vietoris-Rips complexes. These complexes are
of great theoretical and practical interest since they are fully characterized by their graph
(or 1-skeleton) and can thus be stored in a very compact way. Specific algorithms and very

© Jean-Daniel Boissonnat and Siddharth Pritam;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jean-Daniel.Boissonnat@inria.fr
mailto:siddharth.pritam@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Edge Collapse and Persistence of Flag Complexes

efficient codes have been developed for those complexes [6, 51]. Despite all these advances,
further progress has been obtained recently both for general simplicial complexes [12] and
for flag complexes [11] using a special type of collapses, called strong collapses, introduced
by J. Barmak and E. Miniam [5]. The basic idea is to simplify the complexes of the input
sequence by using strong collapses and to compute the PH of an induced sequence of reduced
simplicial complexes whose PH is the same or a close approximation of the PH of the initial
sequence. In the case of flag complexes, the critical observation was that the construction
of the reduced sequence can be done using only the 1-skeletons of the complexes, without
constructing the full complexes, therefore saving time and space.

This paper further improves on these last results. Although the general philosophy is
the same, there are some new key features that make the new method several orders of
magnitude more efficient than all known methods.

1. Instead of strong collapses, we use the so-called edge collapses. In fact, we more generally
define k-collapses that are identical to the extended collapses introduced in [4] (see also
the early work of V. Welker [53]). When k = 0, we have strong collapses and when k = 1
edge collapses. Edge collapses share with strong collapses some important properties.
Most notably, we can use edge collapses to reduce any flag filtration F to a smaller flag
filtration Fc with the same persistence, using only the 1-skeletons of the complexes.

2. The reduction is exact and the PH of the reduced sequence is identical to the PH of
the input sequence. However, the method can be easily adapted so as to produce an
approximate reduction that would lead to better run time.

3. In [12] and in [11], the reduced sequence associated to a filtration was usually a tower
(a sequence of simplicial complexes connected through simplicial maps), and part of the
computing time was devoted to transforming this tower in another equivalent filtration
using ideas from [26, 40]. There is no such need in the algorithm presented in this paper,
which is another main source of improvement. Note however that the algorithm described
in [11] works for flag towers while, in this paper, we restrict ourselves to flag filtrations.

4. The resulting method is simple and extremely efficient. On the theory side, we show that
the edge collapse of a flag filtration can be computed in time O(nnc k2), where n and
nc are the number of edges in the input and output 1-skeletons respectively and k is the
maximal degree of a vertex in the input graph. The algorithm has been implemented.
Numerous experiments on publicly available data show that preprocessing PH computation
of flag complexes using edge collapse leads to unprecedented performance. The code will
be soon released in the Gudhi library [37].

An outline of this paper is as follows. Section 2 recalls some basic ideas and constructions
related to simplicial complexes and simple collapses. We introduce k-collapses and then
edge collapses in Section 3. In Section 4, we prove that simple collapses preserve persistence.
In Section 5, we provide the main algorithm that reduces a flag filtration to another flag
filtration using edge collapses. Experiments are discussed in Section 6.

2 Preliminaries

In this section we provide some background material. Readers can refer to [38] for a
comprehensive introduction to these topics.

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K is
a collection of subsets of a non-empty finite set X, such that for every subset A in K, all
the subsets of A are in K. From now on, we will call an abstract simplicial complex simply

J.-D. Boissonnat and S. Pritam 19:3

a simplicial complex or just a complex. An element of K is called a simplex. An element
of cardinality k + 1 is called a k-simplex and k is called its dimension. Given a simplicial
complex K, we denote its geometric realization as |K|. A simplex is called maximal if
it is not a proper subset of any other simplex in K. A sub-collection L of K is called a
subcomplex if it is a simplicial complex itself.

A map ψ : K → L between two simplicial complexes is called a simplicial map if it
always maps a simplex in K to a simplex in L. Simplicial maps are induced by vertex-
to-vertex maps. A simplicial map ψ : K → L between two simplicial complexes K and L
induces a continuous map |ψ| : |K| → |L| between the underlying geometric realizations. Any
general simplicial map can be decomposed into more elementary simplicial maps, namely
elementary inclusions (i.e., inclusions of a single simplex) and elementary contractions
{{u, v} 7→ u} (where a vertex is mapped onto another vertex). The inverse operation of an
inclusion is called a simplicial removal, denoted as K ←↩ L.

Flag complex and Neighborhood. A complex K is a flag or a clique complex if, when a
subset of its vertices form a clique (i.e. any pair of vertices is joined by an edge), they span a
simplex. It follows that the full structure of K is determined by its 1-skeleton (or graph) we
denote by G. For a vertex v in G, the open neighborhood NG(v) of v in G is defined as
NG(v) := {u ∈ G | [uv] ∈ E}, here E is the set of edges of G. The closed neighborhood
NG[v] is NG[v] := NG(v) ∪ {v}. Similarly we define the closed and open neighborhood of an
edge [xy] ∈ G, NG[xy] and NG(xy) as NG[xy] := N [x] ∩N [y] and NG(xy) := N(x) ∩N(y),
respectively. The above definitions can be extended to any k-clique σ = [v1, v2, ..., vk] of G;
NG[σ] :=

⋂
vi∈σ N [vi] and NG(σ) :=

⋂
vi∈σ N(vi).

Star, Link and Simplicial Cone. Let σ be a simplex of a simplicial complex K, the closed
star of σ in K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈
K| τ ∪σ ∈ K}. The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which
do not intersect with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩σ = ∅}. The open star of σ in K, stoK(σ)
is defined as the set stK(σ) \ lkK(σ). Usually stoK(σ) is not a subcomplex of K.

Let L be a simplicial complex and let a be a vertex not in L. Then the set aL defined as
aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L} is called a simplicial cone.

Sequences of complexes. A sequence of simplicial complexes T : {K1
f1−→ K2

f2−→
· · ·

f(m−1)−−−−→ Km} connected through simplicial maps fi is called a simplicial tower or simply
a tower. When all the simplicial maps fi are inclusions, the tower is called a filtration. If all
the simplicial complexes Ki are flag complexes, we call it flag towers and flag filtrations.

Persistent homology. If we compute the homology classes of all the Ki, we get the sequence

P(T) : {Hp(K1) f∗1−→ Hp(K2) f∗2−→ Hp(K3) f∗3−→ · · ·
f∗(m−1)−−−−→ Hp(Km)}. Here Hp() denotes the

homology class of dimension p with coefficients from a field F and f∗i is the homomorphism
induced from fi. P(T) is a sequence of vector spaces connected through the f∗i called a
persistence module. More formally, a persistence module V is a sequence of vector spaces
{V1 −→ V2 −→ V3 −→ · · · −→ Vm} connected with homomorphisms {−→} between them. A
persistence module arising from a sequence of simplicial complexes captures the evolution of
the topology of the sequence. Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm}
and W : {W1 −→W2 −→ · · · −→Wm}, connected through a set of homomorphisms φi : Vi →Wi

are equivalent if the φi are isomorphisms and the following diagram commutes [14, 24].

SoCG 2020

19:4 Edge Collapse and Persistence of Flag Complexes

V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

φ1 φ2 φm−1 φm

Any persistence module can be decomposed into a collection of intervals of the form [i, j)
[14]. The multiset of all the intervals [i, j) in this decomposition is called the persistence
diagram of the persistence module. An interval of the form [i, j) in the persistence diagram
of P(T) corresponds to a homological feature (a “cycle”) which appeared at i and disappeared
at j. The persistence diagram (PD) completely characterizes the persistence module, that
is, there is a bijective correspondence between the PD and the equivalence class of the
persistence module [14, 58]. In other words, equivalent persistence modules have the same
the same persistence diagram.

Simple collapse. Given a complex K, a simplex σ ∈ K is called a free simplex if σ has
a unique coface τ ∈ K. The pair {σ, τ} is called a free pair. The action of removing a
free pair: K → K \ {σ, τ} is called an elementary simple collapse. A series of such
elementary simple collapses is called a simple collapse. We denote it as K ↘ L. This
operation preserves the homotopy type of the simplicial complex K, which we write K ∼ L.
In particular, there is a retraction map |r| : |K| → |L| between the underlying geometric
realization of K and L which is a strong deformation retraction. A complex K ′ will be called
simple-collapse minimal if there is no free pair {σ, τ} in K ′. A subcomplex Kec of K is
called an elementary core of K if K↘Kec and Kec is simple-collapse minimal.

Removal of a simplex. We denote by K \ σ the subcomplex of K obtained by removing
σ, i.e. the complex that has all the simplices of K except the simplex σ and the cofaces of σ.

3 Edge Collapse

In this section, we first extend the definition of a dominated vertex introduced in [5] to
simplices of any dimension. Given a simplex σ ∈ K, we denote by Σσ the set of maximal
simplices of K that contain σ. The intersection of all the maximal simplices in Σσ will be
denoted as

⋂
Σσ :=

⋂
τ∈Σσ τ .

Dominated simplex. A simplex σ in K is called a dominated simplex if the link lkK(σ)
of σ in K is a simplicial cone, i.e. if there exists a vertex v′ /∈ σ and a subcomplex L of K,
such that lkK(σ) = v′L. We say that the vertex v′ is dominating σ and that σ is dominated
by v′, which we denote as σ ≺ v′.

k-collapse. Given a complex K, the action of removing a dominated k-simplex σ from K

is called an elementary k-collapse, denoted as K↘↘k{K \ σ}. A series of elementary
k-collapses is called a k-collapse, denoted as K ↘↘k L. We further call a complex K
k-collapse minimal if it does not have any dominated k simplices. A subcomplex Kk of
K is called a k-core if K ↘↘k Kk and Kk is k-collapse minimal.
The notion of k-collapse is the same as the notion of extended collapse introduced in [4]. We
give it a different name to indicate the dependency on the dimension. A 0-collapse is a strong
collapse as introduced in [5]. A 1-collapse will be called an edge collapse. It is not hard to

J.-D. Boissonnat and S. Pritam 19:5

see that an elementary simple collapse of a k-simplex σ is a k-collapse, as it is dominated
by the vertex v = τ \ σ, where τ is the unique coface containing σ. Each k-collapse can be
decomposed into a sequence of elementary simple collapses and therefore k-collapses preserve
the simple homotopy type [53, Lemma 2.7] and [4, Lemma 8]. Therefore, like simple collapses,
k-collapses induce a strong deformation retract as well on the geometric realization.

The following lemma extends a result in [5] to general k-collapse. It shows that the
domination of a simplex can be characterized in terms of maximal simplices.

I Lemma 1. A simplex σ ∈ K is dominated by a vertex v′ ∈ K, v′ /∈ σ, if and only if all
the maximal simplices of K that contain σ also contain v′, i.e. v′ ∈

⋂
Σσ.

Proof. If σ ≺ v′ then lkK(σ) = v′L by definition. This implies that for any maximal simplex
τ in stK(σ), v′ ∈ τ . Therefore, v′ ∈

⋂
Σσ. For the reverse direction, let v′ ∈

⋂
Σσ. Hence,

for any maximal simplex τ in stK(σ), we have v′ ∈ τ . Now as v′ /∈ σ, v′ belong to all the
simplices τ \σ, and thus lkK(σ) = v′L where L = (τ \σ)\v′. Hence σ ≺ v′ iff v′ ∈

⋂
Σσ. J

Lemma 1 has important algorithmic consequences. To perform a k-collapse, one simply
needs to store the adjacency matrix between the k-simplices and the maximal simplices of K.

Next we study the special case of a flag complex K and characterize the domination of a
simplex σ of a flag complex K in terms of its neighborhood.

I Lemma 2. Let σ be a simplex of a flag complex K. Then σ will be dominated by a vertex
v′ if and only if NG[σ] ⊆ NG[v′].

Proof. Assume that NG[σ] ⊆ NG[v′] and let τ be a maximal simplex of K that contains σ.
For a vertex x ∈ τ and for any vertex v ∈ σ, the edge [x, v] ∈ τ . Therefore x ∈ NG[σ] ⊆ NG[v′].
Every vertex in τ is thus linked by an edge to v′ and, since K is a flag complex and τ is
maximal, v′ must be in τ . This implies that all the maximal simplices that contains σ also
contain v′. Hence σ is dominated by v′.

Consider the other direction. If σ ≺ v′, by Lemma 1, all the maximal simplices that
contain σ also contain v′. This implies NG[σ] ⊆ NG[v′]. J

Lemma 2 is a generalisation of Lemma 1 in [11]. The next lemma, though elementary, is of
crucial significance. Both lemmas show that edge collapses are well-suited to flag complexes.

I Lemma 3. Let K be a flag complex and let L be any subcomplex of K obtained by edge
collapse. Then L is also a flag complex.

1

2

3
4

5
6

7

Figure 1 The above complex does not have any dominated vertex and thus cannot be 0-collapsed.
However, by proceeding from the boundary edges, one can edge collapse this complex to a 1-
dimensional complex. The 1-core obtained in this way is collapsible to a point using 0-collapse.

SoCG 2020

19:6 Edge Collapse and Persistence of Flag Complexes

Efficiency of reduction. As will be demonstrated in Section 6, edge collapse appears to be
a very efficient tool to reduce the size of a complex while preserving its homotopy type. A
simple example will help giving some intuition why edge collapse can be superior to vertex
collapse. See Figure 1.

1

2

3
4

5

6

1

2

3
4

5

6

1

2

3
4

5

6

Figure 2 The complex on the left has two different 1-cores, the one in the middle is obtained
after removing the inner edges [1, 3] and [4, 6], and the one in the right by removing the outer edges
[1, 2] and [4, 5]. Note that the one in the right can be further strong collapsed.

4 Simple Collapse and Persistence

In this section, we turn our attention to the general case of simple collapses (of which
k-collapses are a special case) and provide one of the main result of this article. This can be
seen as a generalization of Theorem 2 of [12].

I Theorem 4. Let f : K → L be a simplicial map between two complexes K and L and let
K ′ ⊂ K and L′ ⊂ L be subcomplexes of K and L such that K ↘ K ′ and L↘ L′. Then there
exists a map f ′ : K ′ → L′, induced by f , such that the persistence of f∗ : Hp(K)→ Hp(L)
and f ′∗ : Hp(K ′)→ Hp(L′) are the same for any integer p ≥ 0. The induced map f ′ may not
be simplicial. Nevertheless, it can be expressed as a combination of inclusions, contractions
and removals of simplices.

Proof. Let us consider the following diagram between the geometric realizations of the
complex |K|, |L|, |K ′| and |L′|.

|K| |L|

|K ′| |L′|

|f |

|rk| |rl|
|f ′|

|ik| |il|

and the associated diagram after computing the p-th singular homology groups

Ho
p(|K|) Ho

p(|L|)

Ho
p(|K ′|) Ho

p(|L′|)

|f |∗

|rk|∗ |rl|∗

|f ′|∗
|ik|∗ |il|∗

Here |rk| and |rl| are the deformation retractions on the geometric realizations associated
with the simple collapse and |ik| and |il| are the inclusion maps. Ho

p() denotes the singular
homology and * is the induced homomorphisms by the corresponding continuous maps.
The map |f ′| is defined as |f ′| := |rl||f ||ik|. Hence |f ′||rk| = |rl||f ||ik||rk|. Now observe

J.-D. Boissonnat and S. Pritam 19:7

that, since |rk| is a deformation retraction, |ik||rk| is homotopic to the identity over |K|.
It follows that |rl||f ||ik||rk| is homotopic to |rl||f |. Since homotopic maps induce identical
homomorphisms on the corresponding homology groups [38, Proposition 2.19], we deduce that
|f ′|∗|rk|∗ = |rl|∗|f |∗ (commutativity). Also, since |rk|∗ and |rl|∗ are induced by deformation
retractions, they are isomorphisms on their respective singular homology groups. We have
thus proved that the above diagram commutes and that the vertical maps |rk| and |rl| are
isomorphisms. This implies that the two maps |f | : |K| → |L| and |f ′| : |K ′| → |L′| have the
same singular persistent homology.
|f ′| induces a map f ′ := rl ◦ f ◦ ik between the simplicial complexes K ′ and L′. Note that

f ′ can be expressed as a composition of inclusions, contractions and removals of simplices, as
ik is an inclusion, f is simplicial and rl is a simple collapse. Also, for simplicial complexes,
singular homology is isomorphic to simplicial homology [38, Theorem 2.27]. This implies that
the persistent singular homology |f ′|∗ : Ho

p(|K ′|)→ Ho
p(|L′|) and the persistent simplicial

homology f ′
∗ : Hp(K ′) → Hp(L′) are equivalent. Therefore, the persistent simplicial

homologies f∗ : Hp(K)→ Hp(L) and f ′∗ : Hp(K ′)→ Hp(L′) are equivalent. J

The use of singular homology in the proof is due to the lack of a simplicial map associated
with the retraction (|r|) of a simple collapse. Due to the same reason, the induced map
f ′ : K ′ → L′ may not be necessarily simplicial. However, as mentioned in the above proof
the map f ′ can be expressed as a combination of inclusions, contractions and removals of
simplices. When a sequence of simplicial complexes contains removals of simplices, it is called
a zigzag sequence. There are algorithms [45, 42] to compute zigzag persistence but they are
not as efficient as the usual algorithms for filtrations and towers.

In the next section, we consider the case of flag filtrations and show that we can restrict
the way the edge collapses are performed so that the reduced filtration is also a flag filtration.

5 Edge collapse of a flag filtration

In Section 3, we have introduced edge collapse for general simplicial complexes and provided
an easy criterion for edge-domination in a flag complex using only the 1-skeleton of the
complex. In this section, we provide an algorithm to simplify a flag filtration by removing
dominated edges (i.e. edge collapses), again using only the 1-skeleton of the complex.

We define a notion of removable edge to help explain how our algorithm works (Al-
gorithm 1) and to prove its correctness. Let G be a graph and K be the associated flag
complex. We say that an edge e in a graph G is removable either if it is dominated in K
or if there exists a sequence of edge collapses K↘↘1Kc such that e is dominated in the
reduced complex Kc. Our algorithm is based on the fact that the flag complexes K and Kc

are homotopy equivalent [53, Lemma 2.7] and [4, Lemma 8]. If e = [u, v], we define the edge-
neighborhood of an edge e ∈ G as the set ENG(e) := {[x, y], x ∈ {u, v}, y ∈ NG([uv])}.

Algorithm. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→
· · · ↪→ Gn be the associated sequence of 1-skeletons. We further assume that Gi ↪→ Gi+1 is
an elementary inclusion, namely the inclusion of a single edge we name ei+1. The edges in
E := {e1, ..., en} are thus indexed by their order in the filtration and we denote by Gi the
subset {e1, ..., ei}. Our algorithm computes a subset of edges Ec ⊆ E and attach to each
edge in Ec a new index. We thus obtain a new sequence of flag complexes Fc corresponding
to Ec, we call the core sequence. The construction of Ec and of the new indices is done so
that Fc has the same persistence diagram as F .

Let’s give an intuitive presentation of the algorithm first. The central idea is to identify
edges that appear to be non-removable at some point in the algorithm. We store such edges

SoCG 2020

19:8 Edge Collapse and Persistence of Flag Complexes

in a set Ec. To be more specific, consider the case of the inclusion of an edge Gi−1
ei
↪−→ Gi

such that ei is dominated in Gi : ei is thus removable in Gi and is not included in Ec.
Suppose first that all further edges es are dominated in Gs, i < s ≤ n. Then ei remains
removable and will never be put in Ec. This is consistent with the fact that ei does not
change the topology of the complexes Ks and is therefore not required when computing
persistence.

Assume now that some edge ep, i < p ≤ n, is non-dominated in Gp. The status of ei,
that was removable in all Gs for s < p, may change to non-removable in Gp. Therefore, we
check whether ei is non-removable in Gp (by proceeding in the reverse filtration order) and,
in the affirmative, include ei in Ec. In turn, the fact that ei changed from removable to
non removable may change the status of the edges with smaller indices which could become
non-removable after the inclusion of ei. If such edges are found, they are also included in Ec.

Before describing the algorithm in detail, two remarks are in order. First, we do not change
the status of an edge from non-removable to removable even if it has become removable: this
will enforce the output sequence to be a filtration. Second, we change the filtration values of
some edges: the new filtration value of an edge is the first index at which it is found to be
non-removable. The second point leads to faster computation of Ec, otherwise one has to
proceed backward recursively to search for new non-removable edges.

We now explain how to compute Ec. See [Algorithm 1] for the pseudo-code. The main
for loop on line 6 (called the forward loop) iterates over the edges in the filtration F by
increasing filtration values, i.e. in the forward direction, and check whether or not the current
edge ei is dominated in the graph Gi. If not, we insert ei in Ec and keep its original index i.

After the insertion of an edge ei in Ec, we proceed to the so-called backward loop ([Lines
9-26]) and look for new non-dominated edges in Gi, considering the edges by decreasing
filtration values. We assign Gi to a temporary graph G, and we assign the edge-neighborhood
of ei in the graph Gi to Enbd [Line 9-10]. As established in Lemma 5, the search for new
non-dominated edges can be restricted to Enbd. If an edge ej is not in Ec and not in Enbd
[Line 13-14], ej is still dominated : we then remove it from G [Line 22]. If ej 6∈ Ec and
ej ∈ Enbd, then we check whether it is dominated or not. If ej is dominated, we remove it
from G [Line 19]. Otherwise, we insert ej in Ec and assign to it the new index i, i.e. the
index of the edge ei that has triggered the backward search in Gi. Next we enlarge the
edge-neighborhood Enbd by inserting the edge-neighbors of ej in G. We repeat this process
until the last index j = 1. Upon termination of the forward loop [Line 6-30], we output Ec
as the final set.

The computation of non-removable edges (the set Ec) is dependent on the order in which
we do the backward search (the backward loop). In Algorithm 1 we chose to proceed in the
reverse order of the filtration. A different choice of order might result in a different set of
non-removable edges since edge collapses are order dependent as mentioned in Section 3.

We now prove the correctness of the above algorithm after some more definitions.

Critical Edges. Edges in Ec are called critical while edges in E\Ec are called non-critical.
All edges have an original index i given by the insertion order in the input filtration F . The
critical edges received a second index j, called their critical index, when they are inserted
in Ec. By convention, if an edge is not critical and thus has never been inserted in Ec, we
will set its critical index to be ∞. Hence, at the end of Algorithm 1, each edge e ∈ E has
two indices, an original and a critical index. To make this explicit, we denote e as eji . Clearly
i ≤ j. We further distinguish the cases i = j and i < j. If i = j, ei has been put in Ec

during the forward loop and we call ei a primary critical edge. If i < j, ei has been put
in Ec during the backward loop and we call it a secondary critical edge.

J.-D. Boissonnat and S. Pritam 19:9

Algorithm 1 Core flag filtration algorithm.

1: procedure Core-Flag-Filtration(E)
2: input : set of edges E of GF sorted by filtration value.
3: Ec ← ∅; i← 1;
4: Enbd ← ∅
5: G← ∅
6: for ei ∈ E do . For i = 1, ..., n in increasing order
7: if ei is non-dominated in Gi then
8: Insert {ei, i} in Ec.
9: G← Gi

10: Enbd ← ENGi(ei)
11: j ← i− 1
12: for ej in Gi do . For j = (i− 1), ..., 1 in decreasing order
13: if ej /∈ Ec then
14: if ej ∈ Enbd then
15: if ej is non-dominated in G then
16: Insert {ej , i} in Ec.
17: Enbd ← Enbd ∪ ENG(ej)
18: else
19: G← G \ ej
20: end if
21: else
22: G← G \ ej
23: end if
24: end if
25: j ← j − 1
26: end for
27: end if
28: G← ∅
29: i← i+ 1
30: end for
31: return Ec . Ec is the 1-skeleton of the core flag filtration.
32: end procedure

For i = 1, ..., n, we define the critical graph at index i, denoted Gci , as the graph whose
edges are the edges in Ec with a critical index at most i. We denote the associated flag
complex as Kc

i .

Correctness. We now prove some lemmas to certify the correctness of our algorithm.
The following lemma justifies the fact that the search for new critical edges during the

backward loop of Algorithm 1 is restricted to the neighborhood of already found critical edges.

I Lemma 5. Let e be an edge in a graph G and let e′ be a new edge and G′ := G ∪ e′. If e
is dominated in G and e /∈ ENG′(e′), then e is dominated in G′.

Proof. Let e ≺ v′ in G, then NG[e] ⊆ NG[v′]. Plainly, NG[v′] ⊆ NG′ [v′] and, since e /∈
ENG′(e′), NG′ [e] = NG[e]. Therefore, NG′ [e] = NG[e] ⊆ NG′ [v′] implies e ≺ v′ in G′. J

The following lemma says that a non-critical edge is always removable and that a critical
edge is removable until it becomes critical.

SoCG 2020

19:10 Edge Collapse and Persistence of Flag Complexes

I Lemma 6. Let eji be an edge with i < j, then it is removable in all Gt, i ≤ t < min(n+1, j).

Proof. According to the algorithm, if i < j, eji is dominated in Gi (j being finite or not).

1. Let us first consider the case j = ∞. Note that e∞i is non-critical and let ji be the
smallest primary critical index greater than i. If no such index exists, set ji = n+ 1. We
show by induction that e∞i remains removable in all Gt, i ≤ t < n+ 1. As shown above, it
is true for t = i since eji is dominated in Gi. So assume that eji is removable in Gt−1 and
consider the insertion of et in Gt, for some t < ji. By definition of ji, et is dominated in
Gt, which implies that eji is removable in Gt (in the backward sequence et, et−1, . . . , ei).
Consider now t = ji. Since eji is a primary critical edge, it is non-dominated in Gji .
According to the algorithm, a backward loop has been triggered at ji. During this
backward loop, e∞i has not been inserted in Ec since its second critical index is ∞. This
is only possible because e∞i has been found to be dominated in G. Since G is initialized
as Gji , it follows that e∞i is removable in Gji . We can now proceed in a similar way for
all t, ji < t < n+ 1.

2. The proof is very similar for the case i < j ≤ n. As eji has not been inserted in Ec until
the backward loop triggered at index j, eji remains removable in all Gt, i ≤ t < j. J

Note that our statement does not imply that a critical edge eji , i < j ≤ n, can never be
removable in Gt, t ≥ j. It just means that we are sure that it will remain removable until
the point it becomes critical.

I Lemma 7. For each i, Algorithm 1 produces a sequence of elementary edge collapses such
that Ki ↘↘1 Kc

i .

Proof. By definition, Gi \Gci = {emt | t ≤ i,m > i} is the set of edges of Gi whose critical
index m is greater than i, which includes the non-critical edges (m = ∞). Any edge
emt ∈ Gi \Gci is removable in all Kj , j < m by Lemma 6. J

The proof of the following theorem certifying the correctness of our algorithm follows
directly through the application of Lemma 7 and Theorem 4.

I Theorem 8. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→
· · · ↪→ Gn be the associated sequence of 1-skeletons, such that Gi ↪→ Gi+1 is an elementary
inclusion of an edge ei+1. Let Gci be the critical graph and Kc

i be its flag complex as defined
before. Then the associated flag filtration of the critical edges, Fc : Kc

1 ↪→ Kc
2 ↪→ · · · ↪→ Kc

n

has the same persistence diagram as F .

Proof. Let us consider the following diagram of the geometric realizations of the flag
complexes for any i ∈ {1, ..., n}, where Kc

i is the flag complex of the critical graph Gci .

|Ki| |Ki+1|

|Kc
i | |Kc

i+1|

|ri| |ri+1|

Using Lemma 7, there is an edge collapse and therefore a simple collapse from Ki to
Kc
i and from Ki+1 to Kc

i+1. And |ri| and |ri+1| are the deformation retractions induced by
the corresponding edge collapses. The equivalence of the persistence modules then follows
directly from the application of Theorem 4. J

J.-D. Boissonnat and S. Pritam 19:11

Complexity. Write nv for the total number of vertices, n for the total number of edges and
k for the maximum degree of a vertex in Gn. We represent each graph Gi as an adjacency
list, where every vertex stores a sorted list of at most k adjacent vertices. Additionally, we
store the set of edges (E and Ec) as a separate data structure.

The cost of inserting and removing an edge from such an adjacency list is O(k). Since
the size of NG[v] is at most k for any vertex v, the cost of computing NG[e] for an edge e is
O(k). Checking if an edge e is dominated by a vertex v ∈ NG[e] reduces to checking whether
NG[e] ⊆ NG[v], see Lemma 2. Since all the lists are sorted, this operation takes O(k) time
per vertex v, hence O(k2) time in total.

Let us now analyze the worst-case time complexity of Algorithm 1. At each step i of
the forward loop [Line 6], either ei is dominated (which can be checked in O(k2) time) or a
backward loop is triggered [Line 12]. The backward loop will consider all edges with (original)
index at most i and check whether they are dominated or not. Writing nc for the number of
primary critical edges, the worst-case time complexity is nk2 +

∑nc
i=1 nk

2 = O(nnck2). The
space complexity is O(n). In practice, nc is a small fraction of n (see Table 1).

6 Computational Experiments

Our algorithm [Algorithm 1] has been implemented for VR filtrations as a C++ module
named EdgeCollapser. Our previous preprocessing method described in [11] to simplify VR
filtrations using strong collapses is called VertexCollapser (previously called RipsCollapser).
Both EdgeCollapser and VertexCollapser take as input a VR filtration and return the reduced
flag filtration according to their respective algorithms.

We present results on five datasets netw-sc, senate, eleg,HIV and torus. The first four
datasets are publicly available [22] and are given as the interpoint distance matrix of the points.
The last dataset torus has 2000 points sampled in a spiraled fashion on a torus embedded in
a 3-sphere of R4 [39]. The reported time includes the time of EdgeCollapser/VertexCollapser
and the time to compute the persistence diagram (PD) using the Gudhi library [37].

The code has been compiled using the compiler “clang-900.0.38” and all computations
were performed on a “2.8 GHz Intel Core i5” machine with 16 GB of available RAM. Both
EdgeCollapser and VertexCollapser work irrespective of the dimension of the complexes
associated to the input datasets. However, the size of the complexes in the reduced filtration,
even if much smaller than in the original filtration, might exceed the capacities of the PD
computation algorithm. For this reason, we introduced, as in Ripser [6], a parameter dim
and restricts the expansion of the flag complexes to a maximal dimension dim.

The experimental results using EdgeCollapser are summarized in Table 1. Observe
that the reduction in the number of edges done by EdgeCollapser is quite significant. The
ratio between the number of initial edges and the number of critical edges is approximately
20. Therefore the reduction in the size of k-simplices can be as large as O(20k). This is
verified experimentally too, as the reduced complexes are small and of low dimension (column
Size/Dim) compared to the input VR-complexes which are of dimensions respectively 57, 54
and 105 for the first three datasets netw-sc, senate and eleg.1

Comparison with VertexCollapser. The same set of experimental results using Vertex-
Collapser are summarized in Table 2. VertexCollapser can be used in two modes: in the
exact mode (step=0), the output filtration has the same PD as the input filtration while,

1 The sizes of the complexes are so big that we could not compute the exact number of simplices.

SoCG 2020

19:12 Edge Collapse and Persistence of Flag Complexes

in the approximate mode (step>0), a certified approximation is returned. For appropriate
comparison, we use VertexCollapser in exact mode. It can be seen that EdgeCollapser is
faster than VertexCollapser by approximately two orders of magnitude. The main reason for
this is the efficient preprocessing algorithm behind EdgeCollapser. As it can be noticed in
some cases, the reduction obtained using VertexCollapser is better than using EdgeCollapser,
but even in those cases EdgeCollapser is faster than VertexCollapser.

In terms of size reduction, EdgeCollapser either outperforms VertexCollapser by a big
amount or is comparable. Some intuition can be gained from the torus example. This is
a well distributed point sets sampled from a manifold without boundary. The fact that
there is no boundary implies that there are only a few number of dominated vertices, which
dramatically reduces the capacity of VertexCollapser to collapse.

EdgeCollapser computes the exact PD of the input filtration while VertexCollapser has
an exact and an approximate modes, Results in Table 2 are obtained using the exact mode
of VertexCollapser, while results in Table 1 [11] are obtained using the approximate mode.
In both cases, EdgeCollapser performs much better than VertexCollapser. An approximate
version of EdgeCollapser can be easily implemented similarly to the case of VertexCollapser.
Instead of triggering the backward loop of the algorithm [Line12-26] at each primary critical
edge we find, we can trigger the backward loop at certain snapshot values only. See Section
5 of [11] for more details on the approximate methodology and description of snapshot.

Table 1 The columns are, from left to right: dataset (Data), number of points (Pnt), max-
imum value of the scale parameter (Thrsld), Initial number of edges/Critical (final) number of
edges Edge(I)/Edge(C), number of simplices (Size) and dimension of the final filtration (Dim),
parameter (dim), time (in seconds) taken by Edge-Collapser and total time (in seconds) including
PD computation (Tot-Time).

Data Pnt Thrsld EdgeCollapser +PD
Edge(I)/Edge(C) Size/Dim dim Pre-Time Tot-Time

netw-sc 379 5.5 8.4K/417 1K/6 ∞ 0.62 0.73
senate 103 0.415 2.7K/234 663/4 ∞ 0.21 0.24
eleg 297 0.3 9.8K/562 1.8K/6 ∞ 1.6 1.7
HIV 1088 1050 182K/6.9K 86.9M/? 6 491 2789
torus 2000 1.5 428K/14K 44K/3 ∞ 288 289

Table 2 The columns are, from left to right: dataset (Data), number of points (Pnt), maximum
value of the scale parameter (Thrsld), number of simplices (Size) and dimension of the final
filtration (Dim), parameter (dim), time (in seconds) taken by VertexCollapser, total time (in
seconds) including PD computation (Tot-Time), parameter Step (linear approximation factor) and
the number of snapshots used (Snaps). For the last experiment (torus), the preprocessing was
stopped after 12hrs due to the number of snapshots and the size of the complexes.

Data Pnt Thrsld VertexCollapser +PD
Size/Dim dim Pre-Time Tot-Time Step Snaps

netw-sc 379 5.5 175/3 ∞ 366.46 366.56 0 8420
senate 103 0.415 417/4 ∞ 15.96 15.98 0 2728
eleg 297 0.3 835K/16 ∞ 518.36 540.40 0 9850
HIV 1088 1050 127.3M/? 4 660 3,955 4 184
torus 2000 1.5 4 ∞* ∞ 0 428K

J.-D. Boissonnat and S. Pritam 19:13

Comparison with Ripser. Ripser is a state-of-the-art software to compute the persistent
homology of VR-complexes [6]. Ripser computes the exact PD associated to an input
filtration up to some dimension dim. EdgeCollapser (as well as VertexCollapser) are not
really competitors of Ripser since they act more as a preprocessing of the input filtration
and do not compute Persistence Homology and can be associated to any software computing
PH of flag filtrations. Nevertheless, we run Ripser2 on the same datasets as in Table 1 to
demonstrate the benefit of using EdgeCollapser. Results are presented in Table 3. The main
observation is that, in most of the cases, EdgeCollapser computes PD in all dimensions
and outperforms Ripser, even when we restrict the dimension of the input filtration given
to Ripser.

Table 3 Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment ran
longer than 12 hours or crashed due to memory overload.

Data Pnt Threshold Ripser Ripser Ripser
dim Time dim Time dim Time

netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
senate 103 0.415 3 0.52 4 5.9 5 52.3

” ” ” 6 406.8 7 ∞
eleg 297 0.3 3 8.9 4 217 5 ∞
HIV 1088 1050 2 31.35 3 ∞
torus 2000 1.5 2 193 3 ∞

References
1 M. Adamaszek and J. Stacho. Complexity of simplicial homology and independence complexes

of chordal graphs. Computational Geometry: Theory and Applications, 57:8–18, 2016.
2 D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for representing and simplifying

simplicial complexes in high dimensions. International Journal of Computational Geometry
and Applications (IJCGA), 22:279–303, 2012.

3 Dominique Attali and André Lieutier. Geometry-driven collapses for converting a čech complex
into a triangulation of a nicely triangulable shape. Discrete & Computational Geometry,
54(4):798–825, 2015.

4 Dominique Attali, André Lieutier, and David Salinas. Vietoris-rips complexes also provide
topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448–
465, 2013.

5 J. A. Barmak and E. G. Minian. Strong homotopy types, nerves and collapses. Discrete and
Computational Geometry, 47:301–328, 2012.

6 U. Bauer. Ripser. URL: https://github.com/Ripser/ripser.
7 U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: Computing persistent homology

in chunks. In Topological Methods in Data Analysis and Visualization III, Mathematics and
Visualization, pages 103–117. Springer, 2014.

8 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT – persistent homology algorithms
toolbox. Journal of Symbolic Computation, 78, 2017.

9 J-D. Boissonnat and C. S. Karthik. An efficient representation for filtrations of simplicial
complexes. In ACM Transactions on Algorithms, 2018.

2 We used the command <./ripser inputData –format distances –threshold inputTh –dim inputDim >.

SoCG 2020

https://github.com/Ripser/ripser

19:14 Edge Collapse and Persistence of Flag Complexes

10 J-D. Boissonnat, C. S. Karthik, and S. Tavenas. Building efficient and compact data structures
for simplicial complexes. Algorithmica, 79:530–567, 2017.

11 J-D. Boissonnat and S. Pritam. Computing persistent homology of flag complexes via strong
collapses. International Symposium on Computational Geometry (SoCG), 2019.

12 J-D. Boissonnat, S.Pritam, and D. Pareek. Strong Collapse for Persistence. In 26th Annual
European Symposium on Algorithms (ESA 2018), volume 112, 2018.

13 M. Botnan and G. Spreemann. Approximating persistent homology in euclidean space through
collapses. Applicable Algebra in Engineering, Communication and Computing, 26:73–101, 2015.

14 G. Carlsson and V. de Silva. Zigzag persistence. Found Comput Math, 10, 2010.
15 G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions.

International Symposium on Computational Geometry (SoCG), pages 247–256, 2009.
16 G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behavior of spaces

of natural images. In: International Journal of Computer Vision, 76:1–12, 2008.
17 J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. In: Proceedings of the

National Academy of Sciences, 110:18566–18571, 2013.
18 F. Chazal and S. Oudot. Towards persistence-based reconstruction in Euclidean spaces.

International Symposium on Computational Geometry (SoCG), 2008.
19 C. Chen and M. Kerber. Persistent homology computation with a twist. In European Workshop

on Computational Geometry (EuroCG), pages 197–200, 2011.
20 Aruni Choudhary, Michael Kerber, and Sharath Raghvendra. Polynomial-Sized Topological

Approximations Using the Permutahedron. In Sándor Fekete and Anna Lubiw, editors, 32nd
International Symposium on Computational Geometry (SoCG 2016), volume 51 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:16, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/
volltexte/2016/5923, doi:10.4230/LIPIcs.SoCG.2016.31.

21 H. Edelsbrunner D. Cohen-Steiner and J. Harer. Stability of persistence diagrams. Discrete
and Compututaional Geometry, 37:103–120, 2007.

22 Datasets. URL: https://github.com/n-otter/PH-roadmap/.
23 V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology. In: Algebraic

and Geometric Topology, 7:339 – 358, 2007.
24 H. Derksen and J. Weyman. Quiver representations. Notices of the American Mathematical

Society, 52(2):200–206, February 2005.
25 T. K. Dey, H. Edelsbrunner, S. Guha, and D. Nekhayev. Topology preserving edge contraction.

Publications de l’Institut Mathematique (Beograd), 60:23–45, 1999.
26 T. K. Dey, F. Fan, and Y. Wang. Computing topological persistence for simplicial maps. In

International Symposium on Computational Geometry (SoCG), pages 345–354, 2014.
27 T. K. Dey, D. Shi, and Y. Wang. SimBa: An efficient tool for approximating Rips-filtration

persistence via Simplicial Batch-collapse. In European Symp. on Algorithms (ESA), pages
35:1–35:16, 2016.

28 T. K. Dey and R. Slechta. Filtration simplification for persistent homology via edge contraction.
International Conference on Discrete Geometry for Computer Imagery, 2019.

29 C. H. Dowker. Homology groups of relations. The Annals of Mathematics, 56:84–95, 1952.
30 P. Dłotko and H. Wagner. Simplification of complexes for persistent homology computations,.

Homology, Homotopy and Applications, 16:49–63, 2014.
31 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathem-

atical Society, 2010.
32 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.

Discrete and Compututational Geometry, 28:511–533, 2002.
33 Omer Egecioglu and Teofilo F. Gonzalez. A computationally intractable problem on simplicial

complexes. Computational Geometry, 6:85–98, 1996.
34 B. T. Fasy, J. Kim, F. Lecci, and C. Maria:. Introduction to the R-package tda. CoRR

abs/1411.1830, 2014. arXiv:1411.1830.

http://drops.dagstuhl.de/opus/volltexte/2016/5923
http://drops.dagstuhl.de/opus/volltexte/2016/5923
https://doi.org/10.4230/LIPIcs.SoCG.2016.31
https://github.com/n-otter/PH-roadmap/
http://arxiv.org/abs/1411.1830

J.-D. Boissonnat and S. Pritam 19:15

35 E. Fieux and J. Lacaze. Foldings in graphs and relations with simplicial complexes and posets.
Discrete Mathematics, 312(17):2639–2651, 2012.

36 F. Le Gall. Powers of tensors and fast matrix multiplication. ISSAC ’, 14:296–303, 2014.
37 Gudhi: Geometry understanding in higher dimensions. URL: http://gudhi.gforge.inria.

fr/.
38 A. Hatcher. Algebraic Topology. Univ. Press Cambridge, 2001.
39 Benoît Hudson, Gary L. Miller, Steve Oudot, and Donald R. Sheehy. Topological inference

via meshing. International Symposium on Computational Geometry (SoCG), 2010.
40 M. Kerber and H. Schreiber:. Barcodes of towers and a streaming algorithm for persistent

homology. International Symposium on Computational Geometry (SoCG), 2017. arXiv:
1701.02208.

41 M. Kerber and R. Sharathkumar. Approximate Čech complex in low and high dimensions. In
Algorithms and Computation, pages 666–676. by Leizhen Cai, Siu-Wing Cheng, and Tak-Wah
Lam. Vol. 8283. Lecture Notes in Computer Science, 2013.

42 C. Maria and S. Oudot. Zigzag persistence via reflections and transpositions. In Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA) pp. 181–199, January 2015.

43 N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag persistent homology in matrix multiplic-
ation time. In International Symposium on Computational Geometry (SoCG), 2011.

44 K. Mischaikow and V. Nanda. Morse theory for filtrations and efficient computation of
persistent homology. Discrete and Computational Geometry, 50:330–353, September 2013.

45 D. Mozozov. Dionysus. URL: http://www.mrzv.org/software/dionysus/.
46 J. Munkres. Elements of Algebraic Topology. Perseus Publishing, 1984.
47 N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington. A roadmap for the

computation of persistent homology. EPJ Data Science, Springer Nature, page 6:17, 2017.
48 Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips zigzags for homology inference.

Foundations of Computational Mathematics, 15, 2015.
49 J. Perea and G. Carlsson. A Klein-bottle-based dictionary for texture representation. In:

International Journal of Computer Vision, 107:75–97, 2014.
50 H. Schreiber. Sophia. URL: https://bitbucket.org/schreiberh/sophia/.
51 D. Sheehy. Linear-size approximations to the Vietoris–Rips filtration. Discrete and Computa-

tional Geometry, 49:778–796, 2013.
52 M. Tancer. Recognition of collapsible complexes is NP-complete. Discrete and Computational

Geometry, 55:21–38, 2016.
53 Volkmar Welker. Constructions preserving evasiveness and collapsibility. Discrete Mathematics,

207(1):243–255, 1999.
54 J. H. C Whitehead. Simplicial spaces nuclei and m-groups. Proc. London Math. Soc, 45:243–327,

1939.
55 A. C. Wilkerson, H. Chintakunta, and H. Krim. Computing persistent features in big data: A

distributed dimension reduction approach. In International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), pages 11–15, 2014.

56 A. C. Wilkerson, T. J. Moore, A. Swami, and A. H. Krim. Simplifying the homology of
networks via strong collapses. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 11–15, 2013.

57 A. Zomorodian. The tidy set: A minimal simplicial set for computing homology of clique
complexes. In International Symposium on Computational Geometry (SoCG), pages 257–266,
2010.

58 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational
Geometry, 33:249–274, 2005.

SoCG 2020

http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/
http://arxiv.org/abs/1701.02208
http://arxiv.org/abs/1701.02208
http://www.mrzv.org/software/dionysus/
https://bitbucket.org/schreiberh/sophia/

The Topological Correctness of
PL-Approximations of Isomanifolds
Jean-Daniel Boissonnat
Université Côte d’Azur, INRIA, Sophia-Antipolis, France
jean-daniel.boissonnat@inria.fr

Mathijs Wintraecken
IST Austria, Klosterneuburg, Austria
m.h.m.j.wintraecken@gmail.com

Abstract
Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e.
manifolds defined as the zero set of some multivariate vector-valued smooth function f : Rd → Rd−n.
A natural (and efficient) way to approximate an isomanifold is to consider its Piecewise-Linear (PL)
approximation based on a triangulation T of the ambient space Rd. In this paper, we give conditions
under which the PL-approximation of an isomanifold is topologically equivalent to the isomanifold.
The conditions are easy to satisfy in the sense that they can always be met by taking a sufficiently
fine triangulation T . This contrasts with previous results on the triangulation of manifolds where,
in arbitrary dimensions, delicate perturbations are needed to guarantee topological correctness,
which leads to strong limitations in practice. We further give a bound on the Fréchet distance
between the original isomanifold and its PL-approximation. Finally we show analogous results for
the PL-approximation of an isomanifold with boundary.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases PL-approximations, isomanifolds, solution manifolds, topological correctness

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.20

Related Version A full version of this paper is available at https://hal.archives-ouvertes.fr/
hal-02386193.

Funding The research leading to these results has received funding from the European Research
Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement No. 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in
Higher Dimensions).
Mathijs Wintraecken: Supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 754411.

Acknowledgements First and foremost, we acknowledge Siargey Kachanovich for discussions. We
thank Herbert Edelsbrunner and all members of his group, all former and current members of the
Datashape team (formerly known as Geometrica), and André Lieutier for encouragement. We thank
the reviewers for their comments which improved the exposition.

1 Introduction

Isomanifolds (also called solution manifolds) are the generalization of isosurfaces to arbitrary
dimension and codimension, i.e. manifolds defined as the zero set of some multivariate vector-
valued function f : Rd → Rd−n. Not all submanifolds of Rd are isomanifolds although locally
we can always write an embedded smooth manifold as the zero set of a smooth function,
because it can be parametrized as a function from the tangent space to the manifold itself as
a consequence of the implicit function theorem. Isosurfaces play a crucial role in medical

© Jean-Daniel Boissonnat and Mathijs Wintraecken;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jean-daniel.boissonnat@inria.fr
mailto:m.h.m.j.wintraecken@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.20
https://hal.archives-ouvertes.fr/hal-02386193
https://hal.archives-ouvertes.fr/hal-02386193
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 The Topological Correctness of PL-Approximations of Isomanifolds

imaging, computer graphics and geometry processing. Higher dimensional isomanifolds are
also of fundamental importance in many fields like statistics [19], dynamical systems [49],
econometrics or mechanics [41].

The most widely used algorithm to approximate an isosurface is the celebrated Marching
Cube algorithm (MC) [37, 42]. Extending the MC to isomanifolds of higher dimensions and
codimensions leads to major difficulties and it is then preferred to use the so-called Marching
Simplex algorithm (MS) where a simplicial triangulation of the ambient space is used instead
of the cubical grid [1, 29, 40]. The major advantage is that the PL-approximation M̂ ofM is
well defined and easy to compute inside each d-simplex of the triangulation. Moreover, some
regular triangulations, like Coxeter or Kuhn-Freudenthal triangulations do not require to be
stored and can be used implicitly like the cubical grid. Hence the algorithm can be made
efficient for isomanifolds of low dimensions even if they are embedded in high dimensional
spaces [16].

Proving that either the MC or the MS produce good approximations has been a long
lasting question. Some results were achieved within the computational geometry community
in three dimensions. In [10, 44], conditions were given that ensure that M̂ is a PL-manifold
close and topology equivalent (homeomorphic) toM. Unfortunately, [10] uses a particular
combination of collapses and Morse theory and [44] something akin to normal surface theory
[47], both of which are specific to low dimensions. In the case of MS in higher dimensions,
weaker results [2, 3] have been known for a while, e.g. bounds on the one-sided Hausdorff
distance, on the approximation of tangent spaces, and manifoldness of the approximation
(under strong conditions). However, it is only very recently that complete correctness results
have been proved for general submanifolds of any dimension [7, 11, 12, 15]. However, the
proofs in higher dimensions rely on perturbation schemes that are quite intricate and make
the methods of little practical value. This is a major difference with the case of curves and
surfaces where no such requirements exist [31], [46, Section 10.2].

In this paper, we restrict our attention to isomanifolds and show that, in this case, no
perturbation scheme is required to obtain correct outputs. This is a major achievement
with respect to effective computation and applications. Also the techniques used here are
different from many of the standard tools. We, in particular, do not rely on Delaunay
triangulations [48, 25, 21], nor on the closed ball property [33], Whitney’s lemma [13] or
collapses [4]. The current paper mainly relies on a version of the implicit function theorem
from non-smooth analysis [23] with some Morse theory. Another clear difference with previous
methods is that we do not provide lower bounds on the quality of the linear pieces in the
Piecewise-Linear (PL) approximation. Although this is an appealing property, it is extremely
difficult to satisfy in practice as mentionned above. Here we ask for less but still provide
strong guarantees on M̂. Perturbation techniques can be used in an optional postprocessing
step to improve the quality of the simplices of the output. They no longer play a critical role
in the construction of the approximation.

The rest of this paper is subdivided in two sections. In the first section, we treat closed
isomanifolds, i.e. compact manifolds without boundary. We show that, for a fine enough
ambient triangulation, the output M̂ of the MS is a manifold that is isotopic toM, close to
M with respect to the Fréchet distance, that approximates well the tangent bundle ofM
(Theorem 20 and Corollaries 22 and Proposition 6).

In the second section, we prove similar results for isomanifolds with boundary. Extension
to general isostratifolds is briefly discussed in Section 4. All proofs can be found in [17].

J.-D. Boissonnat and M. Wintraecken 20:3

2 Isomanifolds (without boundary)

Let f : Rd → Rd−n be a smooth (C2 suffices) function and suppose that 0 is a regular value
of f , meaning that at every point x such that f(x) = 0, the Jacobian of f is non-degenerate.
Then the zero set of f is an n-dimensional manifold as a direct consequence of the implicit
function theorem, see for example [30, Section 3.5]. We further assume that f−1(0) is compact.
As in [2] we consider a triangulation T of Rd. The function fPL is a linear interpolation
of the values of f at the vertices if restricted to a single simplex σ ∈ T . For any function
g : Rd → Rd−n we write gi, with i = 1, . . . , d− n, for the components of g.

We prove that, under certain conditions, there is an isotopy from the zero set of f to the
zero set of fPL. The proof will be using the Piecewise-Linear (PL) map

FPL(x, τ) = (1− τ)f(x) + τfPL(x), (1)

which interpolates between f and fPL and is based on the generalized implicit function
theorem. The isotopy is in fact stronger than just the existence of a homeomorphism from
the zero set of f to that of fPL.

Our result in particular implies that the zero set of fPL is a manifold. The fact that
the zero set of fPL is a manifold was proved (under strong condition) by Allgower and
Georg [3, Theorem 15.4.1], without a homeomorphism with the zero set of f . The conditions
here are weaker, because we do not require that the zero set avoids simplices that have
dimension less than the codimension, see [3, Definition 12.2.2] and the text above [3, Theorem
15.4.1]. The idea to avoid these low dimensional simplices originates with Whitney [50],
apparently unbeknownst to Allgower and George [3, 2]. Very heavy perturbation schemes for
the vertices of the ambient triangulation T are required for the manifold to be sufficiently far
from simplices in T that have dimension less than the codimension of the manifold [50, 15].
Various techniques have been developed to compute such perturbations with guarantees.
They typically consist in perturbing the position of the sample points or in assigning weights
to the points. Complexity bounds are then obtained using volume arguments. See, for
example [20, 14, 11, 9]. However, these techniques suffer from several drawbacks. The
constants in the complexity depend exponentially on the ambient dimension. Moreover the
analysis assumes that the probability of the simplices of dimension less than the codimension
to intersect the manifold is zero, which is not true when dealing with finite precision. As a
result, the actual implementations we are aware of fail to work well in practice except in
very simple cases.

We are, by definition, only interested in f−1(0) so we can ignore points that are sufficiently
far from this zero set. More precisely, we observe the following: If f i(x) is positive for all x
in a geometric simplex σ then so is f iPL(x), because f iPL(x) is a convex combination of the
(positive) values at the vertices. This in turn implies that F iPL(x, τ) is positive on σ × [0, 1],
as for each τ it is convex combination of positive numbers. The same argument holds for
negative values. So we see that

I Remark 1. Write Σ0 for the set of all σ ∈ T , such that (f i)−1(0) ∩ σ 6= ∅ for all i. Then
for all τ , {x | FPL(x, τ) = 0} ⊂ Σ0.

The results will be expressed using constants defined in terms of f and the ambient triangu-
lation T .

SoCG 2020

20:4 The Topological Correctness of PL-Approximations of Isomanifolds

I Definition 2. We define

γ0 = inf
x∈Σ0

|det(grad(f i) · grad(f j))i,j | (2)

γ1 = sup
x∈Σ0

max
i
|grad(f i)| (3)

α = sup
x∈Σ0

max
i
‖Hes(f i)(x)‖2 = sup

x
max
i
‖(∂k∂lf i(x))k,l‖2, (4)

D : the longest edge length of a simplex in Σ0 (5)
T : the smallest thickness of a simplex in Σ0. (6)

Here grad(f i) = (∂jfi)j denotes the gradient of component f i, det(grad(f i) · grad(f j))i,j
denotes the determinant of the matrix with entries grad(f i) · grad(f j), ‖ · ‖2 the operator
2-norm, and (∂k∂lfi)k,l the matrix of second order derivatives, that is the Hessian (Hes).
We recall the definition of the operator norm: ‖A‖p = maxx∈Rn |Ax|p|x|p , with | · |p the p-norm
on Rn. The thickness is the ratio of the height over the longest edge length.

We will assume that γ0, γ1, α,D, T ∈ (0,∞). The constant γ0 quantifies how close 0 to not
being a regular value of f . The thickness is a measure of how well shaped the simplices
are. A good choice for T is the Coxeter triangulation of type Ad, see [24, 22], or the related
Freudenthal triangulations, see [34, 36, 32, 49], which can be defined for different values of
D while keeping T constant. In this paper, we will thus think of all the above quantities as
well as d and n as constants except D and our results will hold for D small enough.

The result
We are going to construct an ambient isotopy based on (1). The zero set of FPL(x, 0) (or
f(x)) gives the smooth isosurface, while the zero set of FPL(x, 1) (or fPL(x)) gives the
PL approximation, that is the triangulation of the isosurface after possible barycentric
subdivision. The map τ 7→ {x | FPL(x, τ) = 0} in fact gives an isotopy. Without too much
extra work we will also bound the Fréchet distance between f(x) and fPL(x).

Proving isotopy consists of two technical steps, which consume most of the space in the
proof below, as well as the use of a standard observation from Morse theory/gradient flow in
the third step. The technical steps are

Let σ ∈ T . We first show that {(x, τ) | FPL(x, τ) = 0} ∩ (σ× [0, 1]) is a smooth manifold,
under certain conditions (Corollary 8).
We prove that F−1

PL(0) is a manifold, under certain conditions, using techniques from
nonsmooth analysis (Corollary 19).

Along the way we shall also see that F−1
PL(0) is never tangent to the τ = c planes, where

c is a constant. The gradient of (x, τ), 7→ τ in the ambient space is (0, 1). Projecting this
vector onto the tangent space of F−1

PL(0) gives the gradient of (x, τ), 7→ τ restricted to F−1
PL(0).

Because of the non-tangency property, this projection is non-zero. So the gradient field of the
function (x, τ), 7→ τ restricted to F−1

PL(0), is piecewise smooth (because F−1
PL(0) is piecewise

smooth) and never vanishes.
Now we arrive at the third step, which is similar to a standard observation in Morse

theory [38, 39], with the exception that we now consider piecewise-smooth instead of smooth
vector fields. We refer to Milnor [38] for an excellent introduction, see Lemma 2.4 and
Theorem 3.1 in particular.

I Lemma 3 (Gradient flow induced isotopies). The flow of a non-vanishing piecewise-smooth
gradient vector field of a function τ on a compact manifold generates an isotopy from τ = c1
to τ = c2, where c1 and c2 are constants.

J.-D. Boissonnat and M. Wintraecken 20:5

Figure 1 A pictorial overview of the proof. The τ -direction goes upwards. Similarly to Morse
theory we find that f−1

P L(0) (top) and f−1(0) (bottom) are homeomorphic if the function τ restricted
to F−1

P L(0) does not encounter a Morse critical point.

Bounds on the gradient of τ on the manifold give a bound on the Fréchet distance, which is
defined as follows:

I Definition 4 (Fréchet distance for embedded manifolds). LetM andM′ be two homeomor-
phic, compact submanifolds of Rd. Write H for the set of all homeomorphisms fromM to
M′. The Fréchet distance betweenM andM′ is

dF (M,M′) = inf
h∈H

sup
x∈M

d(x, h(x)).

2.1 Estimates for a single simplex
We now first concentrate on a single simplex σ and write fL for the linear function whose
values on the vertices of σ coincide with f , that is fL is the linear extension of the interpolation
of f . Note that fL coincides with fPL within the geometric simplex σ (but not necessarily
outside).

2.1.1 Preliminaries and variations of know results
We need a simple estimate similar to Proposition 2.1 of Allgower and George [2].

I Lemma 5. Let σ ⊂ Σ0 and let fL be as described above. Then |f iL(x) − f i(x)| ≤ 2D2α

for all x ∈ σ.

SoCG 2020

20:6 The Topological Correctness of PL-Approximations of Isomanifolds

We will also be using an estimate similar to Proposition 2.2 of Allgower and George [2].

I Proposition 6. Let σ ⊂ Σ0 and let fL be as described above. Then

|gradf iL − gradf i| =
√∑

j

(∂jf iL(x)− ∂jf i(x))2 ≤ 4dDα
T

,

for all x in the geometric simplex σ.

2.1.2 Estimates on the gradient inside a single simplex
We write

FL(x, τ) = (1− τ)f(x) + τfL(x). (7)

We note that FL extends smoothly outside σ, that is we can think of FL : Rd → Rd−n. Here
and throughout we restrict ourselves to the setting where τ ∈ [0, 1].

We now find the following

I Lemma 7. If we write grad(x,τ) for the gradient that includes the τ component, we have

|det(grad(x,τ)(F iL) · grad(x,τ)(F
j
L))i,j | > γ0 − g1(D), (8)

with g1(D) = O(D). See Appendix A of [17] for the exact expression of g1.

I Corollary 8 (F−1
L (0) is a manifold in a neighbourhood of σ × [0, 1]). If γ0 > g1(D) the

implicit function theorem applies to FL(x, τ) inside σ × [0, 1]. (In fact it applies to an open
neighbourhood of this set). In particular, we have proven the first of our two technical steps,
{(x, τ) | FPL(x, τ) = 0} ∩ (σ × [0, 1]) is a smooth manifold.

2.1.3 Transversality with regard to the τ -direction
We will also prove the main result which we need for the third step, that is the gradient of τ
restricted to F−1

PL(0), is piecewise smooth and never vanishes. We now prove that inside each
σ × [0, 1] the gradient of τ on F−1

L (0) is smooth and does not vanish.
We first give a simple lower bound on the lengths of vectors v1, . . . , vd−n, assuming that

the norms |vi| are upper bounded and the determinant of the Gram matrix is lower bounded.

I Lemma 9. Let v1, . . . , vd−n ∈ Rd, |vi| ≤ γ1, for all i, and assume that det(vi · vj)i,j > γ0.
Then |vi| ≥ √γ0/γ

d−n−1
1 .

We also need to bound the angle of the vectors grad(x,τ)(F iL) and the x plane, that is
Rd ⊂ Rd+1. We recall the definition. If v ∈ Rd+1 is a vector and Ξ = Rd ⊂ Rd+1, is the
space spanned by the d basis vectors corresponding to the x-directions, the angle between v
and Ξ is ∠(v,Ξ) = infw∈Ξ ∠(v, w).

I Lemma 10. Let Ξ be as above. We have

tan∠(grad(x,τ)(F iL),Ξ) ≤ 2D2α
√
γ0/γ

d−n−1
1 − 4dDα

T

.

In particular the manifold F−1
L (0) inside σ× [0, 1] is never tangent to the τ = c planes, where

c is a constant.

Combining Lemma 10 and Corollary 8 gives:

I Corollary 11. If γ0 > g1(D), and √γ0/γ
d−n−1
1 > 4dDα

T , then inside each σ × [0, 1] the
gradient of τ on F−1

L (0) is smooth and does not vanish.

J.-D. Boissonnat and M. Wintraecken 20:7

2.2 Global result
We are now going to prove the global result. For this, we need to recall some definitions and
results from non-smooth analysis. We refer to [23] for an extensive introduction.

I Definition 12 (Generalized Jacobian, Definition 2.6.1 of [23]). Let F : Rd+1 → Rd−n, where
F is assumed to be just Lipschitz. The generalized Jacobian of F at x0 denoted by JF (x0), is
the convex hull of all (d− n)× (d+ 1)-matrices B obtained as the limit of a sequence of the
form JF (xi), where xi → x0 and F is differentiable at xi.

Following [23, page 253] we also define:

I Definition 13. The generalized Jacobian JF (x0) is said to be of maximal rank provided
every matrix in JF (x0) is of maximal rank.

Write Rd+1 = Rn+1 × Rd−n and denote the coordinates of Rd+1 by (x, y) accordingly.
Fix a point (a, b), with F (a, b) = 0 ∈ Rd−n. We now write:

I Notation 14 ([23, page 256]). JF (x0, y0)|y is the set of all (n+ 1)× (n+ 1)-matrices M
such that, for some (n+ 1)× (d− n)-matrix N , the (n+ 1)× (d+ 1)-matrix [N,M] belongs
to JF (x0, y0).

With these definitions and notations we now have:

I Theorem 15 (The generalized implicit function theorem [23, page 256]). Suppose that
JF (a, b)|y is of maximal rank. Then there exists an open set U ⊂ Rn+1 containing a such
that there exists a Lipschitz function g : U → Rd−n, such that g(a) = b and F (x, g(x)) = 0
for all x ∈ U .

We recall the definition of FPL,

FPL(x, τ) = (1− τ)f(x) + τfPL(x). (1)

Further recall that the closed star of a vertex v in a simplicial complex is the closure of all
simplices in the complex that contain v.

Because of the definition of α, see (4), and Proposition 6, we have that grad(x,τ)FPL(x, τ)
and grad(x,τ)FPL(x̃, τ) are close if x and x̃ are. In particular,

I Lemma 16. Let v be a vertex in T , x1, x2 ∈ star(v), and τ1, τ2 ∈ [0, 1], such that
grad(x,τ)F

i
PL(x1, τ1) and grad(x,τ)F

i
PL(x2, τ2) are well defined, then

|grad(x,τ)F
i
PL(x1, τ1)− grad(x,τ)F

i
PL(x2, τ2)| ≤ 10d2Dα

T
+ 4γ1D + 4D2α.

We now immediately have the same bound on points in the convex hull of a number of
such vectors:

I Corollary 17. Suppose we are in the setting of Lemma 16 and x0, x1, . . . , xm ∈ star(v),
τ0, . . . , τm ∈ [0, 1], and suppose that µ1, . . . , µm are positive weights such that µ1+· · ·+µm = 1
then,∣∣∣∣∣grad(x,τ)F

i
PL(x0, τ0)−

m∑
k=1

µkgrad(x,τ)F
i
PL(xk, τk)

∣∣∣∣∣ ≤ 10d2Dα

T
+ 4γ1D + 4D2α.

Using Lemma 7, we see

SoCG 2020

20:8 The Topological Correctness of PL-Approximations of Isomanifolds

I Lemma 18. Let v be a vertex in T , x1, . . . , xm ∈ star(v), and τ1, . . . , τm ∈ [0, 1], such
that grad(x,τ)F

i
PL(xk, τk), k = 0, . . . ,m are well defined. If we moreover assume D ≤ 1, and

6dDα
T ≤ γ1 we have that∣∣∣∣det

((
m∑
k=1

µk grad(x,τ)F
i
PL(xk, τk)

)
·

(
m∑
k=1

µk grad(x,τ)FPL(xk, τk)
))

i,j

∣∣∣∣ ≥ γ0 − g2(D),

with g2(D) = O(D). See Appendix A of [17] for the exact expression of g2.

From the previous lemma, we immediately have that

I Corollary 19 ({(x, τ) | FPL(x, τ) = 0} is a manifold). If D ≤ 1, 6dDα
T ≤ γ1, and γ0 > g2(D)

the generalized implicit function theorem, Theorem 15, applies to FPL(x, τ) = 0. In particular,
{(x, τ) | FPL(x, τ) = 0} is a manifold.

We notice that this bound is stronger than the bound in Corollary 8, that is g1(D) ≤ g2(D).
This means that F−1

PL(0) is a Piecewise-Smooth manifold if the conditions of Corollary 19
hold. The second technical step of the proof is now also completed.

The fact that FL(x, τ) = 0 is a Piecewise-Smooth manifold and Corollary 11 give that
the gradient of τ is a Piecewise-Smooth vector field whose flow we can integrate to give a
isotopy ι from the zero set of f to that of fPL.

We summarize in a theorem:

I Theorem 20. If, D ≤ 1, 6dDα
T ≤ γ1,

√
γ0/γ

d−n−1
1 > 4dDα

T , and γ0 > g2(D) then the zero
set of fPL is a manifold isotopic to the zero set of f . We stress that one can satisfy all
conditions by choosing D sufficiently small.

2.2.1 Fréchet distance
To bound the Fréchet distance (dF) between the zero sets of f(x) and fPL, it suffices to
bound the angle that the gradient of τ , as restricted to F−1

PL(0)), makes with the (ambient)
τ -direction.

For this we will use the angle bound of Lemma 10, together with some estimates that are
similar in spirit to those in [8, Lemma C.13].

I Lemma 21. Let v1, . . . , vd−n ∈ Rd+1, |vi| ≤ γ̃1, for all i, and assume that det(vi ·
vj)i,j > γ̃0 > 0. Let eτ be a unit vector. If for all i, cos(∠vi, eτ) ≤ φ0, then for any
w ∈ span(v1, . . . , vd−n)

cos∠(w, eτ) ≤ (d− n)dd−n−1φ0γ̃
d−n
1√

γ̃0
.

Let eτ be the τ direction and let gτ be the gradient of τ restricted to F−1
PL(0), whenever

it exists. We want to bound the angle of gτ and the τ -direction. Because the isotopy ι is
given by integrating the gradient flow and we have a bound on the norm of the gradient, the
Fréchet distance is bounded (by the norm of the gradient because the time of the flow is 1).

There is one subtlety, because the manifold is only Piecewise-Smooth, we need to take
into account the points where gτ is not uniquely defined. Because for each simplex σ, FL
extends to a neighbourhood of σ × [0, 1], there exists a limit of gτ (xi, τi) for any sequence
(xi, τi) that lies in int(σ)× [0, 1], where int denotes the interior. This means that if we bound
gτ for each simplex we also bound its limits, where the limits are as just described.

We are now ready to combine Lemmas 10, 21, and Theorem 20.

J.-D. Boissonnat and M. Wintraecken 20:9

I Corollary 22 (Bound on the Fréchet distance). Suppose that the conditions of Theorem 20
are satisfied. Then, dF (f−1(0), f−1

PL(0)) ≤ tan arcsin g3(D), with g3(D) = O(D2), where we
think of γ0, γ1, d, n, T and α as constants. See Appendix A of [17] for the exact expression
of g2.

The most important thing to observe is that tan(arcsin(x)) = x√
1−x2 , so that we find

that dF (f−1(0), f−1
PL(0)) = O(D2), where we think of γ0, γ1, d, n, T and α as constants.

3 Isomanifolds with boundary

We will now consider isomanifolds with boundary. By this we mean that on top of the
function f : Rd → Rd−n, we’ll have another function f∂ : Rd → R and the set we consider
is M = f−1(0) ∩ f−1

∂ ([0,∞)). This is a manifold with boundary if the gradients of f i span
a (d− n)-dimensional space at each point of f−1(0) and the gradients of f i and f∂ span a
(d− n+ 1)-dimensional space at each point of ∂M = f−1(0) ∩ f−1

∂ (0), as a consequence of
the submersion theorem. We will again write fPL for the PL interpolation of f . Similarly we
write f∂,PL for the PL interpolation of f∂ . We prove that, under certain conditions, there
is an isotopy from f−1(0) ∩ f−1

∂ ([0,∞)) to f−1
PL(0) ∩ f−1

∂,PL([0,∞)). The conditions are very
similar to the conditions we have before, but of course we need to include bounds on the
gradient of f∂,PL.

Overview of the proof
We will again construct an isotopy, but in this case it will consist of two steps.

In the first step, we isotope the part of f−1(0) that is far from f−1
∂ (0) to its piecewise

linear approximation, while leaving the part of f−1(0) that is close to f−1
∂ (0) smooth.

We will denote the result by M1 = (FPL,1(·, 1))−1(0), see (9).
In the second step, we consider a (small) tubular neighbourhood around f−1

∂ (0) as
restricted to M1 by looking at all f−1

∂ (ε) for |ε| sufficiently small.1 We then isotope
M1 ∩ f−1

∂ (ε) to its piecewise linear approximation. Again the isotopy is chosen in such a
way that for ε relatively large (for the points such that M1 is already Piecewise-Linear)
it leaves M1 ∩ f−1

∂ (ε) invariant. This gives an isotopy of a tubular neighbourhood of
∂M1 = M1 ∩ f−1

∂ (0) to its Piecewise-Linear approximation.

We will first partition the manifold in two parts using a smooth bump function φ : R→
[0, 1] that is zero in a neighbourhood of zero and φ(y) = 1 if |y| > y0, for some y0 > 0. Such
bump functions can be easily constructed, see for example [35, Section 2.2]. We will be using
the function φ

(∑
i(f i)2 + f2

∂

)
.

The first step will be using the zero set of the following function:

FPL,1(x, τ) =
(

1− τφ
(∑

i

(f i)2 + f2
∂

))
f(x) + τφ

(∑
i

(f i)2 + f2
∂

)
fPL(x), (9)

on which we’ll apply the same gradient flow argument as before.
The resulting set M1 is the same zero set of fPL as before if we stay sufficiently far

away from ∂M and the isotopy leaves the manifold invariant close to ∂M . In particular,
∂M1 = ∂M .

1 We stress that ε may be negative.

SoCG 2020

20:10 The Topological Correctness of PL-Approximations of Isomanifolds

Figure 2 Top: we see the original isosurface with f−1
∂ (−1/10), f−1

∂ (0), f−1
∂ (1/10), and f−1

∂ (2/10)
indicated in blue. Bottom left: we see that at the end of Step 1 the neighbourhood of the boundary
is intact, while the rest has been isotoped to a Piecewise-Linear approximation. Bottom right: we
have also isotoped the neighbourhood of the boundary to a Piecewise-Linear approximation by
isotoping f−1

∂ (ε), to its Piecewise-Linear approximation for all sufficiently small ε.

In the second step, we define an isotopy that will act only on a small neighbourhood of
∂M . Consider the sets B1(ε) = M1 ∩ f−1

∂ (ε) and, for each ε, define the function

FPL,2,ε(x, τ) =
(

1− τψ
(∑

i

(f i)2 + f2
∂

))
(FPL,1(x, 1), f∂(x)− ε)

+ τψ

(∑
i

(f i)2 + f2
∂

)
(fPL(x), f∂,PL(x)− ε), (10)

where ψ : R → [0, 1] is now a smooth bump function that is 1 in a sufficiently large
neighbourhood of zero (somewhat larger than y0) and zero outside some compact set.
We stress that FPL,2,ε is a mapping from Rd × [0, 1] to Rd−n+1. Using the result for
isomanifolds (with some modifications), we can prove that each individual set B1(ε) is
isotopic to f−1

PL(0) ∩ f−1
∂,PL(ε) for small ε while, for sufficiently large ε, it leaves the set

invariant.

J.-D. Boissonnat and M. Wintraecken 20:11

3.1 Step 1
The proof closely follows the proof for the case without boundary in Section 2. The main
technical difficulty will be to provide bounds that serve as the counterparts of Lemmas 7
and 18. To be able to do so, we first need to discuss bounds on the bump functions φ and ψ.

3.1.1 Bump functions
Following [35, Section 2.2], we write

ζ1(x) =
{

0 if x ≤ 0
e−1/x if x > 0

For 0 < y1 < y2 we write ζ2(x) = ζ1(x − y1)ζ1(y2 − x). Then we define φl : R → [0, 1] by
φl(x) =

∫ y2
x
ζ2(x′)dx′

/∫ y2
y1
ζ2(x′)dx′ . Finally define φb : R→ [0, 1] by φb(x) = φl(|x|), and

let φ(x) = 1− φb(x).
I Lemma 23. We have φb(x) ∈ [0, 1] and, writing 2y1 = y2 = y0,

∂x(φl(x)) ≤ 2e
4

3(y2−y1)

y2 − y1
= 4e

2
3y0

y0
= γφ. (11)

3.1.2 Inside a single simplex
Similarly to Lemma 7, we now give a condition that ensures that the zero set of F iPL,1(x, τ)
is smooth inside σ × [0, 1]. In fact, similarly to (7), we define

F iL,1(x, τ) =
(

1− τφ
(∑

l

(f l)2 + f2
∂

))
f i(x) + τφ

(∑
l

(f l)2 + f2
∂

)
f iL(x)

= f(x) + τφ

(∑
i

(f i)2 + f2
∂

)
(f iL(x)− f i(x)),

where φ is as defined above. Observe that F iL,1(x, τ) can be extended to a neighbourhood of
σ × [0, 1].
I Remark 24. For the constants, it is better if y0 can be chosen as large as possible, but
we need y1 to be quite a bit larger than y0. In turn, we cannot choose y1 arbitrarily large
because this would mean that the gradient field gradf∂ |f−1(0) (seen as restricted on f−1(0))
would never vanish. The latter is in general impossible thanks to the hairy ball theorem [18].

We introduce the following definition that complements Definition 2:
I Definition 25.

γ2 = sup
x∈Σ0

∣∣∣∣∣grad
(∑

l

(f l)2 + f2
∂

)∣∣∣∣∣ = 2 sup
x∈Σ0

∣∣∣∣∣∑
l

f lgradf l + f∂ gradf∂

∣∣∣∣∣ (12)

We have then the analog of Lemma 7:
I Lemma 26. We have :

|det(grad(x,τ)F
i
L,1(x, τ) · grad(x,τ)F

j
L,1(x, τ))i,j | > γ0 − g4(D),

with g4(D) = O(D). The exact expression of g4 is given in [17, Appendix A].
The following corollary is then the analog of Corollary 8:

I Corollary 27 (F−1
L,1(0) is a manifold). If γ0 > g4(D), where g4(D) = O(D) is as in Lemma

26, then F−1
L,1(0) is a smooth manifold inside an ε neighbourhood of σ × [0, 1].

SoCG 2020

20:12 The Topological Correctness of PL-Approximations of Isomanifolds

3.1.3 Transversality with regard to the τ -direction
We note that, similarly to Lemma 10, we have

I Lemma 28. Let Ξ be as in Lemma 10 and γφ as in (11).

tan∠(grad(x,τ)(FL,1),Ξ) ≤ 2D2α
√
γ0/γ

d−n−1
1 − γ2γφ2D2α− 4dDα

T

.

In particular, if √γ0/γ
d−n−1
1 > γ2γφ2D2α + 4dDα

T , F−1
L,1(0) (if it is a manifold) is never

tangent to the τ = c planes, where c is a constant.

Now, similarly to Corollary 11, we find that

I Corollary 29 (Transversality with respect to τ for Step 1). Suppose that γ0 > g4(D) and
that √γ0/γ

d−n−1
1 > γ2γφ2D2α + 4dDα

T . Then, inside each σ × [0, 1], the gradient of τ on
F−1
L,1(0) is smooth and does not vanish.

3.1.4 Global result
We now have to prove that F−1

PL,1(0) is a manifold. For this, we shall use a bound similar to
the one given in Lemma 18, so that we are able to apply the generalized implicit function
theorem if this bound is satisfied. But first of all, we need the following bound, which is
similar to Lemma 16.

I Lemma 30. Assuming that the gradients are well defined, we have |grad(x,τ)F
i
PL,1(x1, τ1)−

grad(x,τ)F
i
PL,1(x2, τ2)| ≤ g5(D), with g5(D) = O(D). The expression for g5 is given in [17,

Appendix A].

Just as in Corollary 17, we immediately have the same bound on points in the convex
hull of a number of such vectors:

I Corollary 31. Suppose we are in the setting of Lemma 30 and x0, x1, . . . , xm ∈ star(v),
τ0, . . . , τm ∈ [0, 1], such that grad(x,τ)F

i
PL,1(xi, τi) is well defined for all i. Further assume

that µ1, . . . , µm are positive weights such that µ1 + · · ·+ µm = 1. Then,∣∣∣∣∣grad(x,τ)F
i
PL,1(x0, τ0)−

m∑
k=1

µkgrad(x,τ)F
i
PL,1(xk, τk)

∣∣∣∣∣ ≤ g5(D).

I Lemma 32. Under the same conditions as in Lemma 18,

det
((

m∑
k=1

µk grad(x,τ)F
i
PL,1(xk, τk)

)
·

(
m∑
k=1

µk grad(x,τ)F
j
PL,1(xk, τk)

))
i,j

≥ γ0 − g4(D)− g6(D),

with g6(D) = O(D). The exact expression of g6 is given in [17, Appendix A].

Lemma 32 immediately yields that

I Corollary 33 (F−1
PL,1(0) is a manifold). If, γ0 > g4(D) + g6(D) the generalized implicit

function theorem, Theorem 15, applies to FPL,1(x, τ) = 0. In particular F−1
PL,1(0) is a

manifold.

We stress again that inside the set {x|φ
(∑

i(f i)2(x) + f2
∂ (x)

)
= 1} the zero set of

FPL,1(x, 1) coincides with the zero set of fPL(x).

J.-D. Boissonnat and M. Wintraecken 20:13

3.2 Step 2
Before we can proceed we have to specify the bump function ψ. We suppose that

ψ(x) =
{

1 if |x| ≤ 101
100y0

0 if |x| ≥ 2y0.

In particular we pick ψ(x) = φb(x), with the choice y1 = 101
100y0 and y2 = 2y0.

First we stress that the zero set of FPL,2,ε(x, 1) coincides with the zero set of
(fPL(x), f∂,PL(x)− ε), provided that ψ(

∑
i fi(x)2 + f∂(x)2) = 1.

Secondly, we now claim the following:

I Lemma 34. The zero set of FPL,2,ε(x, 1) is a subset of the zero set of fPL(x), for each ε.

The technical result that remains to be proven is the counterpart of Theorem 20 for
FPL,2,ε(x, τ) and for each sufficiently small ε. To be precise it suffices for ε ≤ 2y0. We remark
that it is likely that this bound on ε can be improved.

We again follow the same path to prove this result. That is we first concentrate on a
single simplex and prove that inside that simplex the zero set of FPL,2,ε is a smooth manifold
on which the gradient of τ as restricted to the manifold does not vanish. We then prove that
is the zero set of FPL,2,ε is globally a manifold.

3.2.1 Assumptions and notations
Because we are now faced with both f(x) and f∂(x) we need to introduce a bound on how
far the gradients of all there are from being colinear. We write

fB(x) = (f(x), f∂(x)). (13)

Before we were only interested in the set Σ0, similarly here we sometimes concentrate on
a neighbourhood of the zero set of both f∂ and f . Therefore we write Bν for all σ ∈ T such
that (

∑
l(f l)2 + (f∂)2)−1([−2y0, 2y0]) ∩ σ 6= ∅.

We define γB0 in terms of the determinant of the Gram matrix of the gradients, that is

γB0 = inf
x∈Bν∩Σ0

|det(grad(f iB) · grad(f jB))i,j |. (14)

We note that because we take the gradients we can just ignore the ε constant. For the lengths
of the gradients of fB we define,

γB1 = sup
x∈Σ0

max
i
|grad(f iB)|, (15)

for all 1 ≤ i ≤ d− n+ 1. Similarly to α, we define β as the bound on the operator 2-norm of
all Hessians of fB , that is

β = sup
x∈Σ0

max
i
‖Hes(f iB)‖2 = sup

x∈Σ0

max
i
‖(∂k∂lf iB)k,l‖2. (16)

We stress that we have chosen our definitions such that α ≤ β.
We use the same notation for the ambient triangulation T , the lower bound on the

thickness of the simplices T and upper bound on the longest edge length D. We also need to
introduce a bound on the differential of the bump function ψ. Similarly to (11) we define,

γψ = 2e
4

3(y2−y1)

y2 − y1
= 2e

4
3(2y0− 101

100 y0)

2y0 − 101
100y0

= 200
99

e
400

297y0

y0
, (17)

because we picked y1 = 101
100y0 and y2 = 2y0, for ψ.

SoCG 2020

20:14 The Topological Correctness of PL-Approximations of Isomanifolds

3.2.2 Inside a single simplex
Similarly to Lemma 26, we now give a condition that ensure that the zero set of FPL,2,ε(x, τ)
is smooth inside σ × [0, 1]. In fact similarly to (7), we define

FL,2,ε(x, τ) =
(

1− τψ
(∑

i

(f i)2 + f2
∂

))
(FL,1(x, 1), f∂(x)− ε)

+ τψ

(∑
i

(f i)2 + f2
∂

)
(fL(x), f∂,L(x)− ε),

which can be extended to a neighbourhood of σ × [0, 1].

I Lemma 35. For all ε, det(grad(x,τ)F
i
L,2,ε(x, τ) ·grad(x,τ)F

j
L,2,ε(x, τ))i,j ≥ γB0 −g7(D) with

g7(D) = O(D). The exact expression of g7 is given in [17, Appendix A].

I Corollary 36 (F−1
L,2,ε(0) is a manifold). We have that F−1

L,2,ε(0) is a smooth manifold inside
an small neighbourhood of σ × [0, 1] provided γB0 > g7(D), with g7(D) as in Lemma 35.
As usual this can always be satisfied by choosing the triangulation fine enough, that is D
sufficiently small.

3.2.3 Transversality with regard to the τ -direction
Once more similarly to Lemma 10, we have

I Lemma 37. Let Ξ be as in Lemma 10. We have

tan∠(grad(x,τ)(FL,2,ε),Ξ) ≤ 2D2β√
γB0 /(γB1)d−n−2 − (γ2(2γφ + γψ) + 1)2D2β − 12dDβ

T

.

In particular the manifold F−1
L,2,ε(0) inside σ × [0, 1], if well defined, is never tangent to the

τ = c planes, where c is a constant, if√
γB0 /(γB1)d−n−2 > (γ2(2γφ + γψ) + 1)2D2β + 12dDβ

T
.

Now similary to Corollary 11, we find that

I Corollary 38 (Transversality with respect to τ for Step 2). Suppose that the conditions of
Corollary 36 are satisfied. If moreover√

γB0 /(γB1)d−n−2 > (γ2(2γφ + γψ) + 1)2D2β + 12dDβ
T

,

then inside each σ × [0, 1] the gradient of τ on F−1
L,2,ε(0) is smooth and does not vanish.

3.2.4 Global result
We now have to prove that F−1

PL,2,ε(0) is a manifold, for all sufficiently small ε. For this we
shall use a bound similar to the one given in Lemma 18, so that we are able to apply the
generalized implicit function theorem if this bound is satisfied. For this, we first need the
following bound, which is similar to Lemma 30.

I Lemma 39. Let v be a vertex in T , x1, x2 ∈ star(v), and τ1, τ2 ∈ [0, 1], such that
grad(x,τ)F

i
PL,2,ε(x1, τ1) and grad(x,τ)F

i
PL,2,ε(x2, τ2) are well defined, then

|grad(x,τ)F
i
PL,2,ε(x1, τ1)− grad(x,τ)F

i
PL,2,ε(x2, τ2)| ≤ g8(D),

with g8(D) = O(D).The exact expression of g8 is given in [17, Appendix A].

J.-D. Boissonnat and M. Wintraecken 20:15

Just as in Corollary 17, we immediately have the same bound on points in the convex
hull of a number of such vectors:

I Corollary 40. Suppose x0, x1, . . . , xm ∈ star(v), τ0, . . . , τm ∈ [0, 1], such that
grad(x,τ)F

i
PL,2,ε(xi, τi) is well defined for all i. Further assume that µ1, . . . , µm are positive

weights such that µ1 + · · ·+ µm = 1. Then,∣∣∣∣∣grad(x,τ)F
i
PL,2,ε(x0, τ0)−

m∑
k=1

µkgrad(x,τ)F
i
PL,2,ε(xk, τk)

∣∣∣∣∣ ≤ g8(D).

I Lemma 41. Under the same conditions as in Corollary 40,

det
((

m∑
k=1

µk grad(x,τ)F
i
PL,2,ε(xk, τk)

)
·

(
m∑
k=1

µk grad(x,τ)F
j
PL,2,ε(xk, τk)

))
i,j

≥ γB0 − g7(D)− g9(D),

where g9(D) = O(D). See Appendix A of [17] for the g9.

Lemma 41 immediately yields that

I Corollary 42 (The generalized implicit function theorem in Step 2). If, γB0 > g7(D) + g9(D)
the generalized implicit function theorem, Theorem 15, applies to FPL,1(x, τ) = 0. In
particular F−1

PL,1(0) is a manifold.

We stress that this condition only needs to be satisfied in a when
∑
l(f l)2 + (f∂)2 is small,

outside this neighbourhood the isotopy leaves the zero set invariant.

I Theorem 43. If,

√
γ0/γ

d−n−1
1 > γ2γφ2D2α+ 4dDα

T
(Corollary 29)

γ0 > g4(D) + g6(D) (Corollaries 27 and 33)√
γB0 /(γB1)d−n−2 > (γ2(2γφ + γψ) + 1)2D2β + 12dDβ

T
(Corollary 38)

γB0 > g7(D) + g9(D), (Corollaries 36 and 42)

then f−1(0)∩f−1
∂ ([0,∞)) is isotopic to f−1

PL(0)∩f−1
∂,PL([0,∞)). We stress that one can satisfy

all conditions by choosing D sufficiently small. See Appendix A of [17] for the gi(D).

4 Isostratifolds

There is no obstruction in principle that prevents us from extending the approach above to
isostratifolds. By isostratifolds we mean stratifolds that are given by the zero sets of functions
and inequalities. See [17], for a short discussion of the approach. However, finding the precise
constants involved would become prohibitively lengthy. Apart from some Delaunay based
work on triangulations of stratifolds in three dimensions [43, 45, 28, 27, 26], we are not aware
of similar results. Significant effort did go in the detection of strata, in this case in arbitrary
dimension, see for example [6, 5].

SoCG 2020

20:16 The Topological Correctness of PL-Approximations of Isomanifolds

References
1 Eugene L. Allgower and Kurt Georg. Simplicial and continuation methods for approximating

fixed points and solutions to systems of equations. Siam review, 22(1):28–85, 1980.
2 Eugene L. Allgower and Kurt Georg. Estimates for piecewise linear approximations of implicitly

defined manifolds. Applied Mathematics Letters, 2(2):111–115, 1989.
3 Eugene L. Allgower and Kurt Georg. Numerical continuation methods: an introduction,

volume 13. Springer Science & Business Media, 1990.
4 Dominique Attali and André Lieutier. Geometry-driven collapses for converting a Čech

complex into a triangulation of a nicely triangulable shape. Discrete & Computational
Geometry, 54(4):798–825, December 2015. doi:10.1007/s00454-015-9733-7.

5 P. Bendich, S. Mukherjee, and B. Wang. Stratification learning through homology inference.
In 2010 AAAI Fall Symposium Series, 2010.

6 Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov.
Inferring local homology from sampled stratified spaces. In Proceedings of the IEEE Symposium
on Foundations of Computer Science, pages 536–546, 2007.

7 J.-D. Boissonnat, R. Dyer, and A. Ghosh. The Stability of Delaunay Triangulations.
International Journal of Computional Geometry & Applications, 23(4-5):303–334, 2013.
doi:10.1142/S0218195913600078.

8 J-D. Boissonnat, M. Rouxel-Labbé, and M. Wintraecken. Anisotropic triangulations via
discrete Riemannian Voronoi diagrams. SIAM Journal on Computing, 48(3):1046–1097, 2019.
doi:10.1137/17M1152292.

9 Jean-Daniel Boissonnat, Frédéric Chazal, and Mariette Yvinec. Geometric and Topological
Inference. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2018.
doi:10.1017/9781108297806.

10 Jean-Daniel Boissonnat, David Cohen-Steiner, and Gert Vegter. Isotopic implicit surface
meshing. Discrete & Computational Geometry, 39(1):138–157, March 2008. doi:10.1007/
s00454-007-9011-4.

11 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. Delaunay stability via perturbations.
International Journal of Computational Geometry & Applications, 24(02):125–152, 2014.

12 Jean-Daniel Boissonnat, Ramsay Dyer, and Arijit Ghosh. Delaunay Triangulation of Manifolds.
Foundations of Computational Mathematics, 45:38, 2017. doi:10.1007/s10208-017-9344-1.

13 Jean-Daniel Boissonnat, Ramsay Dyer, Arijit Ghosh, André Lieutier, and Mathijs Wintraecken.
Local conditions for triangulating submanifolds of Euclidean space. Preprint, July 2019. URL:
https://hal.inria.fr/hal-02267620.

14 Jean-Daniel Boissonnat and Arijit Ghosh. Manifold reconstruction using tangential Delaunay
complexes. Discrete & Computational Geometry, 51(1):221–267, 2014.

15 Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. Triangulating
submanifolds: An elementary and quantified version of Whitney’s method. Preprint, December
2018. URL: https://hal.inria.fr/hal-01950149.

16 Jean-Daniel Boissonnat, Siargey Kachanovich, and Mathijs Wintraecken. Sampling and
Meshing Submanifolds in High Dimension. Preprint, November 2019. URL: https://hal.
inria.fr/hal-02386169.

17 Jean-Daniel Boissonnat and Mathijs Wintraecken. The topological correctness of
PL-approximations of isomanifolds, 2019. URL: https://hal.archives-ouvertes.fr/
hal-02386193.

18 L. E. J. Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71(4):598–
598, December 1912. doi:10.1007/BF01456812.

19 Yen-Chi Chen. Solution manifold and its statistical applications, 2020. arXiv:2002.05297.
20 S-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point samples. In

Proc. 16th ACM-SIAM Symp. Discrete Algorithms, pages 1018–1027, 2005.
21 S.-W. Cheng, T. K. Dey, and J. R. Shewchuk. Delaunay Mesh Generation. Computer and

information science series. CRC Press, 2013.

https://doi.org/10.1007/s00454-015-9733-7
https://doi.org/10.1142/S0218195913600078
https://doi.org/10.1137/17M1152292
https://doi.org/10.1017/9781108297806
https://doi.org/10.1007/s00454-007-9011-4
https://doi.org/10.1007/s00454-007-9011-4
https://doi.org/10.1007/s10208-017-9344-1
https://hal.inria.fr/hal-02267620
https://hal.inria.fr/hal-01950149
https://hal.inria.fr/hal-02386169
https://hal.inria.fr/hal-02386169
https://hal.archives-ouvertes.fr/hal-02386193
https://hal.archives-ouvertes.fr/hal-02386193
https://doi.org/10.1007/BF01456812
http://arxiv.org/abs/2002.05297

J.-D. Boissonnat and M. Wintraecken 20:17

22 Aruni Choudhary, Siargey Kachanovich, and Mathijs Wintraecken. Coxeter triangulations
have good quality. Preprint, December 2017. URL: https://hal.inria.fr/hal-01667404.

23 Frank H. Clarke. Optimization and Nonsmooth Analysis, volume 5 of Classics in applied
mathematics. SIAM, 1990.

24 Harold S. M. Coxeter. Discrete groups generated by reflections. Annals of Mathematics, pages
588–621, 1934.

25 T. K. Dey. Curve and Surface Reconstruction; Algorithms with Mathematical Analysis.
Cambridge University Press, 2007.

26 Tamal K. Dey and Joshua A. Levine. Delaunay meshing of piecewise smooth complexes
without expensive predicates. Algorithms, 2(4):1327–1349, 2009. doi:10.3390/a2041327.

27 Tamal K. Dey and Andrew G. Slatton. Localized Delaunay refinement for volumes. Computer
Graphics Forum, 30(5):1417–1426, 2011. doi:10.1111/j.1467-8659.2011.02016.x.

28 Tamal Krishna Dey and Andrew G. Slatton. Localized Delaunay refinement for piecewise-
smooth complexes. In Guilherme Dias da Fonseca, Thomas Lewiner, Luis Mariano Peñaranda,
Timothy M. Chan, and Rolf Klein, editors, Symposium on Computational Geometry 2013,
SoCG ’13, Rio de Janeiro, Brazil, June 17-20, 2013, pages 47–56. ACM, 2013. doi:10.1145/
2462356.2462376.

29 Akio Doi and Akio Koide. An efficient method of triangulating equi-valued surfaces by using
tetrahedral cells. IEICE TRANSACTIONS on Information and Systems, E74-D, 1991.

30 J. J. Duistermaat and J. A. C. Kolk. Multidimensional Real Analysis I: Differentiation.
Number 86 in Cambridge Studies in Advanced Mathematics. Cambridge University Press,
2004.

31 R. Dyer, H. Zhang, and T. Möller. Surface sampling and the intrinsic Voronoi diagram.
Computer Graphics Forum (Special Issue of Symp. Geometry Processing), 27(5):1393–1402,
2008.

32 B. Curtis Eaves. A course in triangulations for solving equations with deformations, volume
234. Lecture Notes in Economics and Mathematical Systems, 1984.

33 Herbert Edelsbrunner and Nimish R. Shah. Triangulating topological spaces. International
Journal of Computational Geometry & Applications, 7(04):365–378, 1997.

34 Hans Freudenthal. Simplizialzerlegungen von beschrankter flachheit. Annals of Mathematics,
pages 580–582, 1942.

35 M. W. Hirsch. Differential Topology. Springer-Verlag, 1976.
36 Harold W. Kuhn. Some combinatorial lemmas in topology. IBM Journal of research and

development, 4(5):518–524, 1960.
37 William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface

construction algorithm. In ACM SIGGRAPH Computer Graphics, volume 21, pages 163–169.
ACM, 1987.

38 J. Milnor. Morse Theory. Princeton University Press, 1969.
39 John Milnor. Lectures on the H-Cobordism Theorem. Princeton University Press, 1965. URL:

http://www.jstor.org/stable/j.ctt183psc9.
40 Chohong Min. Simplicial isosurfacing in arbitrary dimension and codimension. Journal of

Computational Physics, 190(1):295–310, 2003.
41 Timothy S. Newman and Hong Yi. A survey of the marching cubes algorithm. Computers &

Graphics, 30(5):854–879, 2006. doi:10.1016/j.cag.2006.07.021.
42 Timothy S Newman and Hong Yi. A survey of the marching cubes algorithm. Computers &

Graphics, 30(5):854–879, 2006.
43 Steve Oudot, Laurent Rineau, and Mariette Yvinec. Meshing Volumes Bounded by Smooth

Surfaces. Computational Geometry, Theory and Applications, 38:100–110, 2007. URL: https:
//hal.inria.fr/inria-00070382.

44 Simon Plantinga and Gert Vegter. Isotopic approximation of implicit curves and surfaces. In
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing,
pages 245–254. ACM, 2004.

SoCG 2020

https://hal.inria.fr/hal-01667404
https://doi.org/10.3390/a2041327
https://doi.org/10.1111/j.1467-8659.2011.02016.x
https://doi.org/10.1145/2462356.2462376
https://doi.org/10.1145/2462356.2462376
http://www.jstor.org/stable/j.ctt183psc9
https://doi.org/10.1016/j.cag.2006.07.021
https://hal.inria.fr/inria-00070382
https://hal.inria.fr/inria-00070382

20:18 The Topological Correctness of PL-Approximations of Isomanifolds

45 Laurent Rineau. Meshing Volumes bounded by Piecewise Smooth Surfaces. Theses, Univer-
sité Paris-Diderot - Paris VII, November 2007. URL: https://tel.archives-ouvertes.fr/
tel-00410864.

46 Mael Rouxel-Labbé, Mathijs Wintraecken, and Jean-Daniel Boissonnat. Discretized Rie-
mannian Delaunay Triangulations. Research Report RR-9103, INRIA Sophia Antipolis -
Méditerranée, October 2017. URL: https://hal.inria.fr/hal-01612924.

47 Jennifer Schultens. Introduction to 3-manifolds, volume 151. American Mathematical Society,
2014.

48 Jonathan Richard Shewchuk. Lecture notes on Delaunay mesh generation, 1999.
49 Michael J. Todd. The computation of fixed points and applications, volume 124. Lecture Notes

in Economics and Mathematical Systems, 1976.
50 H. Whitney. Geometric Integration Theory. Princeton University Press, 1957.

https://tel.archives-ouvertes.fr/tel-00410864
https://tel.archives-ouvertes.fr/tel-00410864
https://hal.inria.fr/hal-01612924

Minimum Bounded Chains and Minimum
Homologous Chains in Embedded Simplicial
Complexes
Glencora Borradaile
Oregon State University, Corvallis, OR, USA
glencora@eecs.oregonstate.edu

William Maxwell
Oregon State University, Corvallis, OR, USA
maxwellw@oregonstate.edu

Amir Nayyeri
Oregon State University, Corvallis, OR, USA
nayyeria@oregonstate.edu

Abstract
We study two optimization problems on simplicial complexes with homology over Z2, the minimum
bounded chain problem: given a d-dimensional complex K embedded in Rd+1 and a null-homologous
(d− 1)-cycle C in K, find the minimum d-chain with boundary C, and the minimum homologous
chain problem: given a (d + 1)-manifold M and a d-chain D in M, find the minimum d-chain
homologous to D. We show strong hardness results for both problems even for small values of d;
d = 2 for the former problem, and d = 1 for the latter problem. We show that both problems
are APX-hard, and hard to approximate within any constant factor assuming the unique games
conjecture. On the positive side, we show that both problems are fixed-parameter tractable with
respect to the size of the optimal solution. Moreover, we provide an O(

√
log βd)-approximation

algorithm for the minimum bounded chain problem where βd is the dth Betti number of K. Finally,
we provide an O(

√
lognd+1)-approximation algorithm for the minimum homologous chain problem

where nd+1 is the number of (d+ 1)-simplices inM.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases computational topology, algorithmic complexity, simplicial complexes

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.21

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.02801.

Funding This material is based upon work supported by the National Science Foundation under
Grant Nos. CCF-1617951 and CCF-1816442.

1 Introduction

Simplicial complexes are best known as a generalization of graphs, but have more structure
than other generalizations such as hypergraphs. Despite the structure, simplicial complexes
are sufficiently expressive to make many algorithmic questions computationally intractable.
For example, the generalization of shortest path that we examine in this work is NP-hard
in 2-dimensional simplicial complexes [16]. Since planar graphs (1-dimensional simplicial
complexes embeddable in R2) exhibit structure that is algorithmically useful, resulting in more
efficient or more accurate algorithms than for general graphs, we ask whether 2-dimensional
simplicial complexes that are embeddable in R3 (and more generally, d-complexes emdeddable
in Rd+1) also have sufficient structure that can be exploited algorithmically. To this end, we
examine the algebraic generalization of the shortest path problem in graphs to simplicial

© Glencora Borradaile, William Maxwell, and Amir Nayyeri;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:glencora@eecs.oregonstate.edu
mailto:maxwellw@oregonstate.edu
mailto:nayyeria@oregonstate.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.21
https://arxiv.org/abs/2003.02801
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Minimum Bounded Chains

complexes of higher dimension. This restriction via embedding in Euclidean space would still
result in a useful algorithmic tool, given the connection of embedded simplicial complexes to
meshes arising from physical systems.

Formally we study the minimum bounded chain problem which is the algebraic generaliz-
ation of the shortest path problem in graphs [23]. The goal of the minimum bounded chain
problem is to find a subcomplex whose boundary is a given input cycle C. More precisely:
Given a d-dimensional simplicial complex K and a null-homologous (d− 1)-dimensional cycle
C ⊂ K, find a minimum-cost d-chain D ⊂ K whose boundary ∂D = C. The requirement
that the cycle be null-homologous is necessary and sufficient for the existence of a solution
and we study the problem in the context of Z2-homology.1 In Z2-homology, a d-chain is a
subset of d-simplices of the simplicial complex. We see this as a generalization of the shortest
path problem in graphs as follows: Let K be a one dimensional simplicial complex (i.e. a
graph). A pair of vertices in the same connected component, s and t, is a null-homologous
0-chain and the minimum 1-chain whose boundary is {s, t} is the shortest (s, t)-path. Grady
has written on why this generalization is useful in the context of 3D graphics [18].

The minimum bounded chain problem is closely related to the minimum homologous
chain problem which asks: given a d-chain D, find a minimum-cost d-chain X such that the
symmetric difference of D and X form the boundary of a (d+1)-chain. Alternatively, X is the
minimum-cost d-chain that is homologous to D. Dunfield and Hirani [16] show the minimum
bounded and homologous chain problems are equivalent under additional assumptions. We
study the minimum homologous chain problem for d-chains in (d+ 1)-manifolds.

1.1 Our results
We present approximation and fixed-parameter tractable algorithms for the minimum bounded
chain and the minimum homologous chain problem. In this paper we consider both problems
in the context of simplicial homology over Z2. We denote by nd the number of d-simplices
of the d-dimensional simplicial complex K. Two of our results assume the unique games
conjecture. For an overview of the unique games conjecture and its impact on computational
topology we refer the reader to the work of Growchow and Tucker-Foltz [19].

I Theorem 1. There exists an O(
√

log βd)-approximation algorithm for the minimum bounded
chain problem for a simplicial complex K embedded in Rd+1, with dth Betti number βd.

I Theorem 2. There exists an O(15k ·k ·n3
d) time exact algorithm for the minimum bounded

chain problem for simplicial complexes embedded in Rd+1, where k is the number of d-simplices
in the optimal solution.

I Theorem 3. There exists an O(
√

lognd+1)-approximation algorithm for the minimum
homologous chain problem for d-chains in (d+ 1)-manifolds.

I Theorem 4. There exists an O(15k·k·n3
d) time exact algorithm for the minimum homologous

chain problem for d-chains in (d+ 1)-manifolds, where k is the size of the optimal solution.

The running times for the first two theorems is computed assuming that the dual graph
of the complex in Rd+1 is available. The last two theorems hold, more generally, for weak
pseudomanifolds studied by Dey et al. in [14].

On the hardness side, we show that constant factor approximation algorithms for these
problems (minimum bounded chain and minimum homologous chain) are unlikely.

1 Formal definitions are presented in Section 2.

G. Borradaile, W. Maxwell, and A. Nayyeri 21:3

I Theorem 5. The minimum bounded chain problem is
(i) hard to approximate within a (1 + ε) factor for some ε > 0 assuming P 6= NP, and
(ii) hard to approximate within any constant factor assuming the unique games conjecture,

even if K is a 2-dimensional simplicial complex embedded in R3 with input cycle C embedded
on the boundary of the unbounded volume in R3 \ K.

I Theorem 6. The minimum homologous chain problem is
(i) hard to approximate within a (1 + ε) factor for some ε > 0 assuming P 6= NP, and
(ii) hard to approximate within any constant factor assuming the unique games conjecture,

even when the input chain is a 1-cycle on an orientable 2-manifold.

1.2 Related Work
1.2.1 Chain problems over Z and R
Research on the minimum bounded chain problem is limited to the case of Z-homology,
where linear programming techniques can be employed algorithmically. Sullivan described
the problem as the discretization of the minimal spanning surface problem [28] with Kirsanov
reducing the problem to an instance of minimum cut in the dual graph [23]. Sullivan’s
work is on the closely related cellular complexes, but under the same restrictions we study
(embedded in Rd) and Kirsanov studies the problem in embedded simplicial complexes.

Likewise, research on minimum homologous chain has largely worked in Z-homology. Dey,
Hirani and Krishnamoorthy formulate the minimum homologous chain problem over Z as
an integer linear program and describe topological conditions for the linear program to be
totally unimodular (and so, poly-time solvable) [13]. Of course, integer linear programming
approaches do not extend to Z2-homology.

This linear programming approach was then applied to the minimum bounded chain
problem (over Z) by Dunfield and Hirani [16]. Moreover, they show the minimum bounded
chain problem is NP-complete via a reduction from 1-in-3 SAT. The gadget they use was
originally used by Agol, Hass and Thurston to show that the minimal spanning area problem
is NP-complete [2].

Linear programming techniques have also been used by Chambers and Vejdemo-Johansson
to solve the minimum bounded chain problem in the context of R-homology [9]. In R-homology
Carvalho et al provide an algorithm finding a (not necessarily minimum) bounded chain in a
manifold by searching the dual graph of the manifold [7].

1.2.2 Chain problems over Z2

Special cases of the minimum homologous chain problem have been studied in Z2 homology.
The homology localization problem is the case when the input chain is a cycle. The homology
localization problem over Z2 in surface-embedded graphs is known to be NP-hard via a
reduction from maximum cut by Chambers et al. [8]; our reduction is from the complement
problem minimum uncut. On the algorithmic side, Erickson and Nayyeri provide a 2O(g)n logn
time algorithm where g is the genus of the surface [17]. Using the idea of annotated simplices,
Busaryev et al. generalize this algorithm for homology localization of 1-cycles in simplicial
complexes; the algorithm runs in O(nω) + 2O(g)n2 logn time where ω is the exponent of
matrix multiplication, and g is the first homology rank of the complex [6].

Using a reduction from the nearest codeword problem Chen and Freedman showed
that homology localization with coefficients over Z2 is not only NP-hard, but it cannot be
approximated within any constant factor in polynomial time [11]. These hardness results

SoCG 2020

21:4 Minimum Bounded Chains

hold for a 2-dimensional simplicial complex, but not necessarily for 2-dimensional complexes
embedded in R3. They also give a polynomial-time algorithm for the special case of d-
dimensional simplicial complex that is embedded in Rd. (This is different from our setting of
a d-dimensional simplicial complex that is embedded in Rd+1; however the algorithm also
reduces to a minimum cut problem in a dual graph, much like that of Kirsanov and Gortler.)

1.2.3 Algebraic formulations
The minimum bounded chain problem over Z2 can be stated as a linear algebra problem,
but this has little algorithmic use since the resulting problems are intractable. The algebraic
formulation is to find a vector x of minimum Hamming weight that solves an appropriately
defined linear system Ax = b. (It is possible to reduce in the reverse direction, but the
resulting complex is not embeddable in general, and so provides no new results.)

In coding theory this algebraic problem is a well studied decoding problem known as
maximum likelihood decoding, and it was shown to be NP-hard by Berlekamp, McEliece
and van Tilborg [4, 29]. Downey, Fellows, Vardy and Whittle show that maximum likelihood
decoding is W[1]-hard [15]. Further, Austrin and Khot show that maximum likelihood
decoding is hard to approximate within a factor of 2(logn)1−ε under the assumption that
NP * DTIME(2(logn)O(1)) [3]. This work was continued by Bhattacharyya, Gadekar, Ghosal
and Saket who showed that maximum likelihood decoding is still W[1]-hard when the problem
is restricted to O(k logn)×O(k logn) sized matrices for some constant k [5].

1.2.4 Paper organization
In Section 2, we give formal definitions for the paper. In Section 3, we present our approx-
imation algorithms and fixed-parameter tractable algorithms. In Section 4, we present our
hardness results.

2 Preliminaries

2.1 Simplicial complexes
Given a set of vertices V we define an abstract simplicial complex K to be a subset of the
power set of V such that the following property holds: if σ ∈ K and τ ⊂ σ then τ ∈ K. We
call any σ ∈ K a simplex and define the dimension of σ to be |σ| − 1 if |σ| − 1 = d we call σ
a d-simplex. Further, we call 0-simplices, 1-simplices, and 2-simplices vertices, edges, and
triangles. We define the dimension of K to be equal to the largest dimension of any simplex
in K. If K has dimension d we refer to K as a d-simplicial complex or d-complex. We refer
to any subset of a d-simplex σ as a face of σ.

2.2 Homology
In this paper we work in simplicial homology with coefficients over the finite field Z2. Here
we briefly define the concepts from homology that will be used throughout this paper. We
assume familiarity with the basics of algebraic topology, and refer the reader to standard
references [20, 25] for the details.

Given a simplicial complex K we define the dth chain group of K to be the free abelian
group, with coefficients over Z2, generated by the d-simplices in K. We denote the chain
group as Cd(K) and note that its elements are expressed as formal sums

⊕
αiσi where

G. Borradaile, W. Maxwell, and A. Nayyeri 21:5

αi ∈ Z2 and σi ∈ K is a d-simplex. We call the elements of the chain group chains or more
specifically d-chains. When working over Z2 there is a one-to-one correspondence between
d-chains and sets of d-simplices in K. It follows that adding two d-chains over Z2 is the
same thing as taking the symmetric difference of their corresponding sets. Hence, we use the
notation σ ⊕ τ to denote the sum of two d-chains. By abuse of notation we will also use ⊕
to denote the symmetric difference of sets, but the context should always be clear.

For a d-simplex σ we define its boundary ∂σ to be the sum of the (d − 1)-simplices
contained in σ. We extend this operation linearly to obtain the boundary operator on chain
groups, ∂d : Cd(K)→ Cd−1(K). We will often drop the subscript when the context is clear.
Note that the composition ∂d−1∂d is always equal to the zero map. If ∂σ = τ we say that σ
is bounded by τ . We call a chain σ a cycle if ∂σ = 0.

By Zd(K) we denote the dth cycle group of K. This is subgroup of Cp(K) generated by
the d-simplices in ker ∂d. Similarly, by Bd(K) we denote the dth boundary group of K, which
is the subgroup of Cp(K) generated by the d-simplices in im ∂d+1. Since ∂d+1∂d = 0 we have
that Bd(K) is a subgroup of Zd(K). We define the dth homology group of K, denoted Hd(K),
to be the quotient group Zd(K)/Bd(K). The dth Betti number of K, denoted βd, is defined
to be the dimension of Hd(K). We call a d-chain σ null-homologous if it is a boundary,
that is σ ∈ Bd(K). Further, we call two d-chains σ and τ homologous if their difference is a
boundary, that is σ ⊕ τ ∈ Bd(K).

2.3 Embeddings and duality
Given a d-complex K an embedding of K is a function f : K → Rd+1 such that f restricted
to any simplex in K is an injection. Further, for any two simplices σ, τ ∈ K we require that
f(σ) ∩ f(τ) = f(σ ∩ τ). That is, the images of two simplices only intersect at their common
faces. The function f is an embedding of the abstract simplicial complex K. In this paper we
make no distinction between K and an embedding of K. Hence, we use the notation K to
refer to both and refer to K as an embedded simplicial complex.

The Alexander duality theorem, a higher dimensional analog of the Jordan curve theorem,
states that Rd+1 \ K is partitioned into βd + 1 connected components. Exactly one of
these connected components is unbounded, and we refer to the unbounded component as
V∞. Using this partition we define the dual graph K∗ of K. K∗ has one vertex for each
connected component of Rd+1 \ K with the vertex corresponding to V∞ denoted by v∞.
Further, K∗ has one edge for each d-simplex in K. There is an edge between two vertices
representing connected components V1 and V2 in K if there is a d-simplex contained in
the intersection of the topological closures of V1 and V2. Note that K∗ can have parallel
edges and self-loops. Since each d-simplex can be in the closure of at most two connected
components we have a one-to-one correspondence between d-simplices in K and edges in K∗.
If S is a set of d-simplices in K we denote their corresponding edges in K∗ by S∗. Similar to
planar graphs, there is a duality between d-cycles in K and edge cuts in K∗. There exists a
one-to-one correspondence between d-cycles in K and minimal edge cuts in K∗. We refer to
this correspondence as cycle/cut duality, and it will play a central role in many of our proofs.

By shell(K) we denote the outer shell of K. This is defined to be the subcomplex of K
consisting of all d-simplices whose corresponding edges in K∗ are incident to v∞. Equivalently,
it is also the subcomplex of K consisting of all d-simplices contained in the boundary of V∞.

We endow the embedding of a simplicial complex K with the subspace topology inherited
from Rd+1. We call K a d-dimensional manifold if every point in its embedding is contained
in a neighborhood homeomorphic to Rd. If every point in the embedding of K is contained
in a neighborhood homeomorphic to either Rd or the d-dimensional half-space we call K a
manifold with boundary.

SoCG 2020

21:6 Minimum Bounded Chains

2.4 Graph cuts
Let G = (V,E) be a graph. For any two subsets V1, V2 ⊂ V a (V1, V2)-cut is a set of edges E′
such that the graph G′ = (V,E \E′) contains no path from V1 to V2. Often we will consider
(S, S)-cuts for some S ⊂ V where S denotes the complement of S in V . By ES we refer
to the edge set corresponding to all edges that have one endpoint in S and the other in S,
which is the minimum (S, S)-cut. We extend this notation to vertices. For any two vertices
s, t ∈ V an (s, t)-cut refers to a set of edges whose removal disconnects s from t.

2.5 The minimum bounded/homologous chain problems
Now we give the formal statement of the minimum bounded chain problem. Given a
d-dimensional simplicial complex K and a (d − 1)-cycle C contained in K the minimum
bounded chain problem (K, C) asks to find a d-chain X with ∂X = C such that the cost
of X is minimized. The cost of X is given by its `1 norm ‖X‖1. Here we are treating
X as an n-dimensional indicator vector where n is the number of d-simplices in K. The
simplicial complex K may be weighted by assigning a real number to each d-simplex in K.
In this case the cost of X is given by 〈W,X〉, where W is a vector assigning weights to the
d-simplices of K.

Now let D be a d-chain, which may or may not be a cycle. The minimum homologous
chain problem asks to find a minimum d-chain X such that X = D⊕∂V for some (d+1)-chain
V , equivalently, the minimum d-chain X such that D ⊕X is null-homologous. The cost of
X as well as the weighted problem are defined the same as in the previous paragraph.

In this paper, we study the minimum bounded chain problem for complexes embedded in
Rd+1, and the minimum homologous chain problem for d-chains in (d+ 1)-manifolds.

3 Approximation algorithm and fixed-parameter tractability

In this section, we describe approximation algorithms and parameterized algorithms for both
minimum bounded chain and minimum homologous chain problems. Our algorithms work
with the dual graph of the input space. In order to simplify our presentation we assume that
the dual graph of the input complex contains no loops. The following lemma shows that we
can make this assumption without any loss of generality. The proof can be found in the full
version of the paper.

I Lemma 7. In polynomial time we can preprocess an instance of the minimum bounded
chain problem (K, C) into a new instance (K′, C ′) such that (i) (K′)∗ contains no loops
and (ii) an α-approximation algorithm for (K′, C ′) implies an α-approximation algorithm
for (K, C).

3.1 Reductions to the minimum cut completion problem
Given G = (V,E) and E′ ⊆ E, the minimum cut completion problem asks for a cut (S, S)
with edge set ES that minimizes |ES ⊕E′|. First, we show that the minimum cut completion
problem generalizes the minimum bounded chain problem.

I Lemma 8. For any d-dimensional instance of the minimum bounded chain problem, (K, C),
there exists an instance of the minimum cut completion problem (G = (V,E), E′) that can
be computed in polynomial time, and a one-to-one correspondence between cuts in G and
d-chains with boundary C in K. Moreover, if the cut (S, S) with edge set ES in G corresponds
to the d-chain Q in K then |ES ⊕ E′| = |Q|.

G. Borradaile, W. Maxwell, and A. Nayyeri 21:7

Proof. Let F be any d-chain such that ∂F = C, such an F can be computed in polynomial
time, by solving the linear system. In turn, let G = K∗, and E′ = F ∗.

Now, let Q be any d-chain such that ∂Q = C. So, ∂(Q ⊕ F) = 0. Thus, by cycle/cut
duality Q⊕F partitions Rd+1, let (S, S) be the corresponding dual cut in K∗, and let ES be
the edge set of this cut. We have |ES ⊕ E′| = |ES ⊕ F ∗| = |Q∗| = |Q|.

On the other hand, let (S, S) be a cut in K∗, with edge set ES . By cycle/cut duality
∂E∗S = 0. Now, let Q = E∗S ⊕ F . It follows that ∂Q = C. Moreover, we have |Q| =
|E∗S ⊕ F | = |ES ⊕ F ∗| = |E∗S ⊕ E′|. J

We show via a similar argument that the cut completion problem also generalizes the
minimum homologous chain problem when the input complex is a weak pseudomanifold (see
the full version of the paper for the proof). A weak pseudomanifold is a pure d-complex
such that every (d− 1)-simplex is a face of at most two d-simplices. Weak pseudomanifolds
generalize manifolds and the definition was first introduced by Dey et al. in [14]. Although
recognizing d-manifolds is undecidable [12], weak pseudomanifolds can be recognized in
polynomial time.

I Lemma 9. For any d-dimensional instance of the minimum homologous chain problem
(M, D), whereM is a weak pseudomanifold, there exists an instance of the minimum cut
completion problem (G = (V,E), E′) that can be computed in polynomial time, and a one-
to-one correspondence between cuts in G and d-chains in M that are homologous to D.
Moreover, if the cut (S, S) with edge set ES in G corresponds to the d-chain Q in K then
|ES ⊕ E′| = |Q|.

3.2 Algorithms for the minimum cut completion problem
We show an O(

√
log |V |)-approximation algorithm and a fixed-parameter tractable algorithm

for the cut completion problem. We obtain both of these results via reduction to 2CNF
Deletion: given an instance of 2SAT, find the minimum number of clauses to delete to make
the instance satisfiable. Agarwal et al. [1] show an O(

√
logn)-approximation algorithm for

2CNF Deletion, where n is the number of clauses, and Razgon and O’Sullivan show that the
problem is fixed-parameter tractable.

I Lemma 10 (Agarwal et al.[1], Theorem 3.1). There is a randomized polynomial-time
algorithm for finding an O(

√
logn)-approximation for the minimum disagreement 2CNF

Deletion problem.

I Lemma 11 (Razgon and O’Sullivan [27], Theorem 7). Let B be an instance of 2CNF
Deletion problem with m clauses that admits a solution of size k. There is an O(15k · k ·m3)
time exact algorithm for solving B.

The next lemma shows similar results for the cut completion problem.

I Lemma 12. For the cut completion problem (G = (V,E), E′),
(i) there is a randomized polynomial-time O(

√
log |V |)-approximation algorithm, and

(ii) there is an O(15k · k · |E|3) time exact algorithm, where k is the size of the optimal
solution.

Proof. Let G = (V,E), and E′ ⊆ E. We show a 2CNF Deletion instance BG such that for
any cut (S, S) with edge set ES , the number of unsatisfied clauses in BG is exactly |ES ⊕E′|.
The statement of the lemma will follow from Lemma 10 and 11.

SoCG 2020

21:8 Minimum Bounded Chains

Let BG be the instance of the 2CNF Deletion problem defined on G as follows:
For each vertex v ∈ V , we have variable b(v).
For each edge (u, v) ∈ E:

if (u, v) ∈ E′, we add b(u) ∨ b(v) and ¬b(u) ∨ ¬b(v) to B, and
if (u, v) /∈ E′, we add b(u) ∨ ¬b(v) and ¬b(u) ∨ b(v) to B.

(Note that in both cases, any assignment of b(u) and b(v) satisfies at least one of the
clauses. Again in both cases, assignments exist that satisfy both clauses.)

Let (S, S) be a cut with edge set ES . Let bS be the natural boolean vector that corresponds
to the cut: b(v) = [v ∈ S] for all v ∈ V . We show that |ES ⊕ E′| is equal to the number of
clauses that are not satisfied in BG. Specifically, we show (I) for each edge (u, v) ∈ ES ⊕ E′,
exactly one of its corresponding clauses is satisfied, and (II) for each edge (u, v) /∈ ES ⊕E′
both of its corresponding clauses are satisfied.

If (u, v) ∈ ES ⊕ F there are two cases to consider: (I.1) (u, v) ∈ ES and (u, v) /∈ E′, that
is b(u) 6= b(v) and the corresponding clauses are b(u) ∨ ¬b(v) and ¬b(u) ∨ b(v). Exactly one
of the clauses is satisfied. (I.2) (u, v) /∈ ES and (u, v) ∈ E′, that is b(u) = b(v), and the
corresponding clauses are b(u)∨ b(v) and ¬b(u)∨¬b(v); exactly one of the clauses is satisfied.

If (u, v) /∈ ES ⊕ E′ there are two cases to consider: (II.1) (u, v) ∈ ES and (u, v) ∈ E′,
that is b(u) 6= b(v) and the corresponding clauses are b(u) ∨ b(v) and ¬b(u) ∨ ¬b(v). Both
of the clauses are satisfied. (II.2) (u, v) /∈ ES and (u, v) /∈ E′, that is b(u) = b(v), and the
corresponding clauses are b(u)∨¬b(v) and ¬b(u)∨ b(v). Both of the clauses are satisfied. J

3.3 Wrap up (Proofs of Theorems 1, 2, 3, and 4)
Lemma 8 and Lemma 9 show that the bounded chain problem and the minimum homologous
chain problem are special cases of the cut completion problem, and Lemma 12 shows that
we obtain O(

√
log |V |)-approximation algorithm and O(15k · k · |E|3) time exact algorithm

for the cut completion problem. The number of vertices |V | translates to βd for simplicial
complexes embedded in Rd+1 (Theorem 1), and nd+1, the number of (d+ 1)-dimensional
simplices for (d+ 1)-manifolds (Theorem 3). The number of edges |E| translates to nd in
both simplicial complexes embedded in Rd+1 (Theorem 2) (d+ 1)-manifolds (Theorem 4).

4 Hardness of approximation

In this section, we show it is unlikely that either of the minimum bounded chain or minimum
homologous chain problems admit constant factor approximation algorithms, even for their
low dimensional instances. Our hardness results follow from reductions from the minimum
cut completion problem, defined in the previous section.

4.1 Minimum bounded chain to minimum cut completion
We show that the minimum cut completion problem reduces to a 2-dimensional instance of
the minimum bounded chain problem (K, C), where shell(K) is in fact a manifold and C is
a (possibly not connected) cycle on shell(K). Our hardness of approximation result for the
minimum bounded chain problem is based on this reduction.

I Lemma 13. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.
There exists an instance of the 2-dimensional minimum bounded chain problem (K, C) with
C on the outer shell of K that can be computed in polynomial time, and a one-to-one
correspondence between cuts in G and 2-chains with boundary C in K. Moreover, if the cut
(S, S) with edge set ES in G corresponds to the 2-chain Q in K then

G. Borradaile, W. Maxwell, and A. Nayyeri 21:9

|Q|
τ
− 1 ≤ |ES ⊕ E′| ≤

|Q|
τ
,

where τ = 58m+ 2 and m is the number of edges in G.

Proof. Our construction is simple in high-level. We start from any embedding of G in R3,
and we thicken it to obtain a space, in which each edge corresponds to a tube. We insert a
disk in the middle of each tube; we call these disks edge disks. Then we triangulate all of
the 2-dimensional pieces. The dual of the complex that we build is almost G, except for one
extra vertex corresponding to its outer volume, and a set of extra edges, all incident to the
extra vertex. We give our detailed construction below.

We consider the following piecewise linear embedding of G in R3; let n and m be the
number of vertices and edges of G, respectively. First, map the vertices of G into {1, 2, . . . , n}
on the x-axis. Now, consider m+ 2 planes h0, h1, . . . , hm+1 all containing the x-axis with
normals being evenly spaced vectors ranging from (0, 1, 1) to (0, 1,−1). We use h1, . . . , hm
for drawing the edges G. We arbitrarily assign edges of G to these plane, so each plane will
contain exactly one edge. Each edge is drawn on its plane as a three-segment curve; the first
and the last segment are orthogonal to x-axis and the middle one is parallel. All edges are
drawn in the upper half-space of R3. See Figure 1, left.

Next, we place an axis parallel cube around each vertex. The size of the cubes must be so
that they do not intersect, fix the width of each cube to be 1/10. We refer to these cubes as
vertex cubes. Then, we replace the part of each edge outside the cubes with a cubical tube,
called edge tube. We choose the thickness of these tubes sufficiently small so that they are
disjoint. We also puncture the cubes so that the union of all vertex cubes and edges tubes
form a surface; see Figure 1, left. (This surface will have genus m− n+ 1 by Euler’s formula,
which is the dimension of the cycle space of G)

Figure 1 Left: an embedding of K3 in R3, and the thickened surface composed of blue vertex
cubes and pink edge tubes, right: an edge tube subdivided by an edge square.

Next, we subdivide each tube by placing a square in its middle; see Figure 1, right. We
refer to these squares as edge squares. Edge squares partition the inside of the surface into n
volumes. We observe that each of these volumes contains exactly one vertex of the drawing
of G, thus, we call them vertex volumes.

For our reduction to work, we need that the weight of each 2-cycle to be dominated by
the weight of its edge squares. To achieve that we finely triangulate each edge square. For an
edge tube, we first subdivide its surface to 16 quadrangles as shown in Figure 2, left. Then,
we obtain a triangulation with 32 triangles by splitting each quadrangle into two triangles.

SoCG 2020

21:10 Minimum Bounded Chains

For a vertex cube, note that all the punctures are on the top face by our construction.
We split all the other faces by dividing each of them into two triangles. For the top face,
we can obtain a triangulation in polynomial time; this triangulation will have 4 deg(v) + 8
triangles by Euler’s formula, where deg(v) is the degree of the vertex corresponding to the
cube. Therefore, the triangulation of each vertex cube will have 4 deg(v) + 18 triangles, see
Figure 2, right. Therefore, there are

(∑
v∈V 4 deg(v) + 18

)
+ 32m ≤ 58m triangles that are

not part of edge squares. Finally, we triangulate each edge square into 58m+ 2 triangles so
that the cost of one edge square is greater than the sum of all triangles not contained in edge
squares. This triangulation can be done by starting with a square made up of two triangles
and repeatedly subdividing triangles by inserting a new vertex in the interior and connecting
it to the corners with edges. The subdivision is performed by inserting a vertex into the
interior of the triangle and connecting it with an edge to each vertex on the boundary of the
triangle. The result is a new complex, homeomorphic to the original, with two additional
triangles. Overall, our complex K has O(m2) triangles.

Figure 2 Left: subdividing the surface of an edge-tube to quadrangles, right: triangulating the
surface of a vertex cube.

We are now done with the construction of K. Let B be the set of all triangles in edge
squares that correspond to edges in E′. Then, let C = ∂B. We show an almost cost
preserving one-to-one correspondence between cuts in the cut completion problem in G and
chains with boundary C in K.

Let (S, S) be a cut with edge set ES , note that the cost of this cut is |ES ⊕E′| in the cut
completion problem (G,E′). In K, let VS be the symmetric difference of the vertex volumes
that correspond to vertices of S. The total weight of VS is between |ES |(58m + 2) and
|ES |(58m+ 2) + 58m. Similarly, the total weight of VS ⊕B is between |ES ⊕ E′|(58m+ 2)
and |ES ⊕ E′|(58m+ 2) + 58m. Since we cannot get an exact count on the number of edges
in the subgraph induced by S we have a range of values for the weight of VS instead of an
exact weight. However, if ES and ES′ are two cuts with |ES | < |ES′ | then the weight of VS
is strictly less than the weight of VS′ by the construction of the edge squares.

On the other hand, let Q be a 2-chain with boundary C in K. As C does not intersect the
interior of any edge square, for each edge square either Q contains all of its triangles or none
of them. Also, Q⊕B has no boundary, thus its complement R3 \ (Q⊕B) is disconnected.
The interior of each vertex volume is completely inside one of the connected components of
R3 \ (Q⊕B), as by the construction Q⊕B must either contain the entire vertex volume or
none of it. Now, let S be the set of all vertices whose corresponding vertex volumes are in the
unbounded connected component of R3 \ (Q⊕B). The edges of the cut (S, S) correspond
to edge squares in Qs ⊕ B, where Qs is the set of edge square triangles of Q. As B is in
one-to-one correspondence to E′, it follows that the cut completion cost of (S, S) is |Qs|

58m+2 .

G. Borradaile, W. Maxwell, and A. Nayyeri 21:11

We have |Q| = |Qs|+ |Qr| where Qr is the set of triangles in Q not contained in edge squares.
The size of |Qs| is 58m+ 2 per edge square, and |Qr| ≤ 58m by construction. It follows that
we have our desired inequality,

Q

58m+ 2 − 1 ≤ |ES ⊕ E′| ≤
Q

58m+ 2 . J

The next lemma shows that an approximation algorithm for the minimum bounded chain
problem implies an approximation algorithm with almost the same quality for the minimum
cut completion problem.

I Lemma 14. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.
For any α ≥ 1 and any ε > 0, there exists an instance of the 2-dimensional minimum bounded
chain problem (K, C) that can be computed in polynomial time, such that an α-approximation
algorithm for (K, C) implies a ((1 + ε)α)-approximation algorithm for (G,E′), and C is on
the outer shell of K.

Proof. Let ε > 0. Given an α-approximation algorithm for the minimum bounded chain
problem, we describe an ((1 + ε)α)-approximation algorithm for the cut completion problem.
Let G = (V,E), and E′ ⊆ E be any instance of the cut completion problem, and let
(Sopt, Sopt) with edge set be an optimal solution for this instance. Our algorithm considers
two cases, based on whether |ESopt ⊕ E′| < 1/ε or not. It solves the problem under each
assumption and outputs the best solution it obtains in the end.

If |ESopt ⊕E′| < 1/ε, then our algorithm finds the optimal solution in O(n1/ε+O(1)) time
by considering all subsets of edges E′′ of size at most 1/ε as candidates for ESopt ⊕E′. From
all candidates, we return the minimum E′′ such that E′′ ⊕ E′ is a cut. Note this is an exact
algorithm, so in this case we find the optimal solution.

Otherwise, if |ESopt ⊕ E′| ≥ 1/ε, we use the given α-approximation algorithm for the
minimum bounded chain problem for a simplicial complex K, and chain C that corresponds
to (G,E′) by Lemma 13. Note that K is an unweighted simplicial complex piecewise linearly
embedded in R3 and C is a cycle in its outer shell.

Let Qopt be the corresponding 2-chain to (Sopt, Sopt) in K. Thus, Qoptτ −1 ≤ |ESopt⊕E′| ≤
|Qopt|
τ . In addition, let Q be the surface with boundary C that the α-approximation algorithm

finds, so |Q| ≤ α · |Qopt|. Finally, let (S, S) be the cut corresponding to Q in G via the
one-to-one correspondence of Lemma 13. Therefore, Q

τ − 1 ≤ |ES ⊕ E′| ≤ |Q|
τ . Putting

everything together,

|ES ⊕ E′| ≤
|Q|
τ
≤ α · |Qopt|

τ
≤ α ·

(
|ESopt ⊕ E′|+ 1

)
. (1)

Since |ESopt ⊕ E′| ≥ 1/ε, we have: |ESopt ⊕ E′|+ 1 ≤ (1 + ε) · |ESopt ⊕ E′|. Therefore,
together with (1), we have a ((1 + ε)α)-approximation algorithm, as desired. J

4.2 Minimum homologous cycle to minimum cut completion
We show a similar reduction from the cut completion problem to the minimum homologous
cycle problem for 1-dimensional cycles on orientable 2-manifolds. The minimum homologous
cycle problem is the special case of the minimum homologous chain problem when the input
chain is required to be a cycle, so showing hardness of approximation for it implies hardness
of approximation for the more general minimum homologous chain problem.

I Lemma 15. Let (G = (V,E), E′) be any instance of the minimum cut completion problem.
For any α ≥ 1, there exists an instance of the 1-dimensional minimum homologous cycle
problem (M, D) that can be computed in polynomial time such that an α-approximation for
(M, D) implies an α-approximation for (G,E′).

SoCG 2020

21:12 Minimum Bounded Chains

Proof. We construct a 2-manifoldM as in the proof of Lemma 13, but we omit the edge
squares. Each edge of G corresponds to a cycle with 4 edges in M; these cycles are the
boundaries of the omitted edge squares. We call these cycles edge rings. The connected
components of M after removing the edge rings correspond to the vertices of G, we call
these connected components vertex regions. We set D to be equal to the set of edge rings
corresponding to E′. Intuitively, if X is the minimum cycle homologous to D we do not want
X ⊕D to intersect the interior of any vertex region. That is, X ⊕D is a collection of edge
rings and corresponds to a cut in G. To achieve this, we subdivide each edge not contained
in an edge ring into a long path. The result is an embedded graph with non-triangular faces,
which is not a simplicial complex. To fix this, we triangulate the inside of each non-triangular
face such that the shortest path between any two vertices on the face remains the shortest
path after the triangulation. Given any α-approximation of the new complex we can obtain
a smaller solution using only the edge rings, which corresponds to a cut in G. Our formal
construction follows.

Let τ = 4dαe|E|+ 1; we subdivide each edge not contained in an edge ring τ times. For
each face of length ` > 3 we triangulate by adding `+1 concentric cycles, each with ` vertices,
labeled γ0, . . . , γ`, where γ0 is the original face from the subdivided version ofM. By vi,j
we denote the jth vertex in γi. We add the edges (vi,j , vi+1,j and (vi,j , vi,j+1 mod `). To
complete the triangulation we add one additional vertex v at the center of γ` and add an
edge between it and each vertex on γ`. We call the new simplicial complexM′. See Figure 3
for an example.

Figure 3 Subdividing a face of length five; the outer face with white vertices is the original face.

Let (Sopt, Sopt) be an optimal solution to the minimum cut completion instance (G,E′).
Suppose we can compute an α-approximation C of the minimum homologous cycle instance
(M′, D), hence |C| ≤ α|Copt|. By our construction an optimal solution to (M′, D) has the
same size as an optimal solution to (M, D). As C is a cycle, if C crosses a cycle γ0 it
must cross it an even number of times. For any two consecutive vertices u, v ∈ γ0 in C we
replace the path between them with the shortest path contained in γ0. We call the new cycle
C ′, since C ′ ≤ C we have that C ′ is also an α-approximation for (M′, D). Note that C ′
is a union of edge rings, otherwise |C ′| > α|Copt|. It follows that C ′ corresponds to a cut
ES′ with |C ′| = 4|ES′ ⊕ E′|. Hence, we have |ES′ ⊕ E′| ≤ α|ESopt ⊕ E′|. Thus, ES′ is an
α-approximation for (G,E′). J

4.3 Wrap up
It remains to show that the cut completion problem is hard to approximate. We show this
via a straightforward reduction from the minimum uncut problem: given a graph G = (V,E),
find a cut with minimum number of uncut edges. Note that the optimal cuts for the minimum
uncut problem and the maximum cut problem coincide, yet, approximation algorithms for
one problem do not necessarily imply approximation algorithm for the other one.

G. Borradaile, W. Maxwell, and A. Nayyeri 21:13

I Lemma 16. The minimum uncut problem is a special case of the minimum cut completion
problem.

Proof. Consider the cut completion problem for G = (V,E), and let E′ = E. Let (S, S) be
any cut with edge set ES . The cut completion cost of this cut is

|ES ⊕ E′| = |ES ⊕ E| = |E \ ES |,

which is the number of uncut edges by (S, S). J

Now, we are ready to prove our hardness results.

Proof of Theorem 5 and 6. The minimum uncut problem is hard to approximate within
(1 + ε) for some ε > 0 [26]. In addition, it is hard to approximate within any constant factor
assuming the unique games conjecture [24, 21, 10, 22]. By Lemma 16, the cut completion
problem generalizes the minimum uncut problem. Finally, by Lemma 15 and 14, for any
α > 1 and ε > 0, an α-approximation algorithm for the minimum bounded chain problem or
the minimum homologous cycle problem implies a ((1 + ε)α)-approximation algorithm, or an
α-approximation for the cut completion problem, respectively. J

References

1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(
√

logn)
approximation algorithms for min uncut, min 2CNF deletion, and directed cut problems. In
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC
’05, pages 573–581, New York, NY, USA, 2005. ACM. doi:10.1145/1060590.1060675.

2 Ian Agol, Joel Hass, and William Thurston. The computational complexity of knot genus
and spanning area. Transactions of the American Mathematical Society, 358(09):3821–3851,
September 2006. doi:10.1090/s0002-9947-05-03919-x.

3 Per Austrin and Subhash Khot. A simple deterministic reduction for the gap minimum distance
of code problem. In Proceedings of the 38th International Colloquim Conference on Automata,
Languages and Programming - Volume Part I, ICALP’11, pages 474–485, Berlin, Heidelberg,
2011. Springer-Verlag.

4 E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain
coding problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386, May
1978. doi:10.1109/TIT.1978.1055873.

5 Arnab Bhattacharyya, Ameet Gadekar, Suprovat Ghoshal, and Rishi Saket. On the hardness
of learning sparse parities. In 24th Annual European Symposium on Algorithms, ESA 2016,
August 22-24, 2016, Aarhus, Denmark, pages 11:1–11:17, 2016.

6 Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotating
simplices with a homology basis and its applications. In Fedor V. Fomin and Petteri Kaski,
editors, Algorithm Theory – SWAT 2012, pages 189–200, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

7 J. Carvalho, Mikael Vejdemo-Johansson, Danica Kragic, and Florian Pokorny. An algorithm
for calculating top-dimensional bounding chains. PeerJ Computer Science, 4:e153, May 2018.
doi:10.7717/peerj-cs.153.

8 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous
cycles. In Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry,
SCG ’09, pages 377–385, New York, NY, USA, 2009. ACM. doi:10.1145/1542362.1542426.

9 Erin Wolf Chambers and Mikael Vejdemo-Johansson. Computing minimum area homologies.
Comput. Graph. Forum, 34(6):13–21, September 2015. doi:10.1111/cgf.12514.

SoCG 2020

https://doi.org/10.1145/1060590.1060675
https://doi.org/10.1090/s0002-9947-05-03919-x
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.7717/peerj-cs.153
https://doi.org/10.1145/1542362.1542426
https://doi.org/10.1111/cgf.12514

21:14 Minimum Bounded Chains

10 Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. On the
hardness of approximating multicut and sparsest-cut. Comput. Complex., 15(2):94–114, June
2006. doi:10.1007/s00037-006-0210-9.

11 Chao Chen and Daniel Freedman. Hardness results for homology localization. Discrete &
Computational Geometry, 45(3):425–448, April 2011. doi:10.1007/s00454-010-9322-8.

12 A.V. Chernavsky and V.P. Leksine. Unrecognizability of manifolds. Annals of Pure and
Applied Logic, 141(3):325–335, 2006. Papers presented at the Second St. Petersburg Days of
Logic and Computability Conference on the occasion of the centennial of Andrey Andreevich
Markov, Jr. doi:10.1016/j.apal.2005.12.011.

13 Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles, total
unimodularity, and linear programming. SIAM J. Comput., 40(4):1026–1044, July 2011.
doi:10.1137/100800245.

14 Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Polynomial
and hard cases. ArXiv, abs/1907.04889, 2019. arXiv:1907.04889.

15 Rod G. Downey, Michael R. Fellows, Alexander Vardy, and Geoff Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM J. Comput., 29(2):545–570,
October 1999. doi:10.1137/S0097539797323571.

16 Nathan M. Dunfield and Anil N. Hirani. The least spanning area of a knot and the op-
timal bounding chain problem. In Proceedings of the Twenty-seventh Annual Symposium
on Computational Geometry, SoCG ’11, pages 135–144, New York, NY, USA, 2011. ACM.
doi:10.1145/1998196.1998218.

17 Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-separating cycles via homology
covers. In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’11, pages 1166–1176, Philadelphia, PA, USA, 2011. Society for Industrial
and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2133036.2133124.

18 Leo Grady. Minimal surfaces extend shortest path segmentation methods to 3D. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32:321–334, 2010.

19 Joshua A. Grochow and Jamie Tucker-Foltz. Computational Topology and the Unique
Games Conjecture. In Bettina Speckmann and Csaba D. Tóth, editors, 34th International
Symposium on Computational Geometry (SoCG 2018), volume 99 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 43:1–43:16, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SoCG.2018.43.

20 Allen Hatcher. Algebraic topology. Cambridge University Press, 2002.
21 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability

results for max-cut and other 2-variable csps? SIAM J. Comput., 37(1):319–357, April 2007.
doi:10.1137/S0097539705447372.

22 Subhash A. Khot and Nisheeth K. Vishnoi. The unique games conjecture, integrality gap for
cut problems and embeddability of negative-type metrics into `1. J. ACM, 62(1):8:1–8:39,
March 2015. doi:10.1145/2629614.

23 Danil Kirsanov and Steven Gortler. A discrete global minimization algorithm for continuous
variational problems, August 2004.

24 Pasin Manurangsi and Luca Trevisan. Mildly exponential time approximation algorithms for
vertex cover, balanced separator and uniform sparsest cut. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, pages 20:1–20:17, 2018. doi:10.4230/LIPIcs.
APPROX-RANDOM.2018.20.

25 James R. Munkres. Elements of Algebraic Topology. Addison Wesley Publishing Company,
1984. URL: http://www.worldcat.org/isbn/0201045869.

26 Christos Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity
classes. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 229–234, New York, NY, USA, 1988. ACM. doi:10.1145/62212.62233.

https://doi.org/10.1007/s00037-006-0210-9
https://doi.org/10.1007/s00454-010-9322-8
https://doi.org/10.1016/j.apal.2005.12.011
https://doi.org/10.1137/100800245
http://arxiv.org/abs/1907.04889
https://doi.org/10.1137/S0097539797323571
https://doi.org/10.1145/1998196.1998218
http://dl.acm.org/citation.cfm?id=2133036.2133124
https://doi.org/10.4230/LIPIcs.SoCG.2018.43
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1145/2629614
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.20
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.20
http://www.worldcat.org/isbn/0201045869
https://doi.org/10.1145/62212.62233

G. Borradaile, W. Maxwell, and A. Nayyeri 21:15

27 Igor Razgon and Barry O’Sullivan. Almost 2-sat is fixed-parameter tractable. J. Comput.
Syst. Sci., 75(8):435–450, December 2009. doi:10.1016/j.jcss.2009.04.002.

28 John M. Sullivan. A Crystalline Approximation Theorem for Hypersurfaces. PhD thesis,
Princeton University, 1990. URL: http://torus.math.uiuc.edu/jms/Papers/thesis.

29 A. Vardy. The intractability of computing the minimum distance of a code. IEEE Trans. Inf.
Theor., 43(6):1757–1766, November 1997.

SoCG 2020

https://doi.org/10.1016/j.jcss.2009.04.002
http://torus.math.uiuc.edu/jms/Papers/thesis

On Rectangle-Decomposable 2-Parameter
Persistence Modules
Magnus Bakke Botnan
Vrije Universiteit Amsterdam, The Netherlands
m.b.botnan@vu.nl

Vadim Lebovici
École Normale Supérieure, Paris, France
vadim.lebovici@ens.fr

Steve Oudot
Inria Saclay, Palaiseau, France
steve.oudot@inria.fr

Abstract
This paper addresses two questions: (1) can we identify a sensible class of 2-parameter persistence
modules on which the rank invariant is complete? (2) can we determine efficiently whether a given
2-parameter persistence module belongs to this class? We provide positive answers to both questions,
and our class of interest is that of rectangle-decomposable modules. Our contributions include:
(a) a proof that the rank invariant is complete on rectangle-decomposable modules, together with
an inclusion-exclusion formula for counting the multiplicities of the summands; (b) algorithms
to check whether a module induced in homology by a bifiltration is rectangle-decomposable, and
to decompose it in the affirmative, with a better complexity than state-of-the-art decomposition
methods for general 2-parameter persistence modules. Our algorithms are backed up by a new
structure theorem, whereby a 2-parameter persistence module is rectangle-decomposable if, and only
if, its restrictions to squares are. This local condition is key to the efficiency of our algorithms, and
it generalizes previous conditions from the class of block-decomposable modules to the larger one of
rectangle-decomposable modules. It also admits an algebraic formulation that turns out to be a
weaker version of the one for block-decomposability. Our analysis focuses on the case of modules
indexed over finite grids, the more general cases are left as future work.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases topological data analysis, multiparameter persistence, rank invariant

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.22

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.08894.

1 Introduction

A persistence module M over a subset U ⊆ Rd is a collection of vector spaces {Mt}t∈U and
linear maps ρts := M(s ≤ t) : Ms → Mt with the property that ρss is the identity map and
ρut ◦ ρts = ρus for all s ≤ t ≤ u ∈ U . Here s ≤ t if and only if si ≤ ti for all i ∈ {1, 2, . . . , d}.
In the language of category theory, a persistence module M is a functor M : U → vec
where vec is the category of vector spaces and the partially ordered set U is considered as a
category in the obvious way. In this setting, morphisms between persistence modules are
natural transformations M ⇒ N between functors, defined by collections of linear maps
{ϕt : Mt → Nt}t∈U such that ϕt ◦M(s ≤ t) = N(s ≤ t) ◦ ϕs for all s ≤ t ∈ U . Their
kernels, images and cokernels, as well as products, direct sums and quotients of persistence
modules, are defined pointwise at each index t ∈ U . Similarly, an isomorphism between
two persistence modules is a natural isomorphism between them. We will refer to the case
d = 1 as single-parameter persistence, and for d ≥ 2 we will use the term multi-parameter
persistence.

© Magnus Bakke Botnan, Vadim Lebovici, and Steve Oudot;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.b.botnan@vu.nl
mailto:vadim.lebovici@ens.fr
mailto:steve.oudot@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.22
https://arxiv.org/abs/2002.08894
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 On Rectangle-Decomposable 2-Parameter Persistence Modules

I Remark 1. Throughout this paper we will work exclusively with finite-dimensional vector
spaces over a fixed field k. When finite-dimensionality is emphasized we will refer to the
persistence module as being pointwise finite-dimensional (pfd).

Single-parameter persistence modules are typically obtained through the application
of homology to a filtered topological space. This process is known as persistent homology
and has found a wide range of applications to the sciences, as well as to other parts of
mathematics such as symplectic geometry. See [14, 20] for an introduction to persistent
homology. What makes such persistence modules particularly amenable to data analysis
is that they can be completely described by multisets of intervals in R called barcodes [12].
Such a collection of intervals can then in turn be used to extract topological information
from the data at hand, and further utilized in statistics and machine learning. We now give
an example of this structure theorem in the simple case of U = {1, 2, 3} ⊆ R.

I Example 2. Consider the following sequence of vector spaces and linear maps

k2

[
1 1
0 1

]
−−−−−→ k2 [1 −1]−−−−→ k.

By replacing the basis {e1, e2} of the middle vector space k2 with the basis {e1, e1 + e2} we
get the following matrix representations of the linear maps

k2

[
1 0
0 1

]
−−−−−→ k2 [1 0]−−−→ k =

(
k 1−→ k 1−→ k

)
⊕
(

k 1−→ k→ 0
)
.

The two persistence modules on the right-hand side are uniquely specified by their supports
{1, 2, 3} and {1, 2}, respectively. Their supports give rise to the barcode which in this case is
given by {{1, 2, 3}, {1, 2}}.

As illustrated by Example 2, a persistence module can be recovered from its barcode
thanks to the notion of indicator modules: for X × Y ⊆ R2 and a subset Q ⊆ X × Y , the
indicator module of Q, denoted kQ, is defined by

kQ,t =
{

k (t ∈ Q)
0 (t /∈ Q)

kQ(s ≤ t) =
{
Idk if s and t ∈ Q,
0 else.

By convention, we set k∅ = 0. A persistence module is an interval module if it is the
indicator module of an interval1. Note that, just as choosing a basis for a vector space
is not canonical, there may be many ways of decomposing a single-parameter persistence
module into a direct sum of such interval modules. However, just as for the dimension of
a finite-dimensional vector space, the associated barcode given by the multiset of interval
supports of the summands is independent of the chosen decomposition [1].

Another desirable property of single-parameter persistence modules M is that they
are completely described up to isomorphism by the rank invariant, i.e. the collection of
ranks r(s, t) = rank(M(s ≤ t)) for all s ≤ t. This can easily be verified in the previous
example, and more generally, for any pfd persistence moduleM indexed over a finite set J1, nK,
the following inclusion-exclusion formula (also known as the persistence measure [9, 11]) gives
the multiplicity m(s, t) of any interval Js, tK in the barcode of M :

m(s, t) = r(s, t)− r(s− 1, t)− r(s, t+ 1) + r(s− 1, t+ 1). (1)

1 In the poset X × Y , we say that Q is an interval if it is convex and zigzag path-connected, i.e if between
any two points p, q ∈ Q, there exists a zigzag path p ≤ p1 ≥ p2 ≤ · · · ≥ pn ≤ q with pi’s in Q.

M.B. Botnan, V. Lebovici, and S. Oudot 22:3

Many applications do however naturally come equipped with multiple parameters, and for
such applications it is natural to consider multi-parameter persistence modules, see e.g. the
introduction of [2] for an example of how multi-parameter persistence connects to hierarchical
clustering. Let us first consider the simplest instantiation of 2-parameter persistence modules,
namely modules indexed by the square S = {a = (0, 0), b = (1, 0), c = (0, 1), d = (1, 1)} ⊆ R2.

I Example 3. The persistence module on the left-hand side below can be transformed into
the one on the right-hand side via a change of basis at the vertices:

k2 k2 k2 k2

k k k k

(1 −1
0 1

)
(1 0

0 1)

1

(1
1) (0

1)

1

(0
1) (0

1)

In turn, the persistence module on the right-hand side is the direct sum

k k

0 0

1

0

0 0 ⊕

k k

k k

1

1

1 1

Just as in Example 2, these persistence modules are completely defined by their support.
We define the barcode of the aforementioned persistence module to be the (multi-)set of
supports of its summands, namely {{c, d}, {a, b, c, d}}.

Although commutative diagrams like the one in the previous example may appear unwieldy
at first glance, such persistence modules can – just as in the single-parameter case – be
completely described (up to isomorphism) by a multiset of elements from

I := {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c}, {b, c, d}, {a, b, c, d}}, (2)

called intervals in the 2 × 2 grid. See e.g. Figure 13 in [15]. However, in contrast to the
single-parameter case, the rank invariant on persistence modules indexed by S is no longer a
complete invariant, i.e. it does not fully determine the isomorphism type of such modules.
For instance, two persistence modules with barcodes {{a, b, c}, {a}} and {{a, b}, {{a, c}} are
non-isomorphic yet exhibit the same rank invariant.

I Example 4. Consider the following two persistence modules:

k k2 k k k2 k

0 k k 0 k k

(1
0) (1 0) (1

1) (1 0)

0

0 (1
0)

1

1

0

0 (1
0)

1

1

The diagram to the left can easily be seen to be composed of two interval summands in the
3× 2 grid. By contrast, the diagram to the right is indecomposable: there exists no change of
basis for which this persistence module can be written as a direct sum of persistence modules
in a non-trivial way. Again, the two modules have the same rank invariant.

SoCG 2020

22:4 On Rectangle-Decomposable 2-Parameter Persistence Modules

In the setting of no more than four columns and two rows, results from the field of represen-
tation theory of quivers show that there exists a finite set of building blocks (indecomposable
modules) from which every persistence module can be built (via direct sums, and up to
isomorphism). Based on this, one can associate a well-defined barcode-like structure to such
a module by counting the multiplicity of every summand in the decomposition. The inclusion
of such grids into topological data analysis was inspired by a problem in materials science [15].
For five or more columns the theory becomes increasingly complex. In particular, for six or
more columns there is no way to parametrize a set of building blocks in any reasonable way2.
This is a major obstacle to the development of the theory of multi-parameter persistence.

A natural question to consider then is whether one can endow multi-parameter persistence
modules with additional structure in order to enforce nice decomposition theorems akin to
that of single-parameter persistence. One such setting coming from computational topology
was identified in [3, 8], and further generalized in [10], where it is shown that the so-called
strongly exact 2-parameter persistence modules indexed over R2 are determined (up to
isomorphism) by a multiset of particularly simple planar rectangular regions called blocks.
Basically, a block is either an upper-right or lower-left quadrant, or a horizontal or vertical
infinite band. The great advantage of this condition is that it can be checked locally: a
2-parameter persistence module (called a bimodule for short) is block-decomposable if, and
only if, its restriction to any square as in Example 3 is block-decomposable.

Contributions. In this paper we address two important follow-up questions:
Can we work out conditions such as above for larger classes of bimodules?
Can we identify classes of bimodules for which the rank invariant is complete?

Our answers to both questions are positive, and the two classes of bimodules turn out to be the
same, namely that of rectangle-decomposable bimodules, which by definition are determined
(up to isomorphism) by a multiset of rectangles, i.e subsets R of the form R = I × J ⊆ R2

where I and J are intervals in R. Specifically, a bimodule is rectangle-decomposable if it
decomposes into a direct sum of rectangle modules, i.e. indicator modules of rectangles.

Our local condition for rectangle decomposability, called weak exactness, is a weaker
version of the condition for block decomposability, in that it allows all types of rectangular
shapes in the local squares’ decompositions, as opposed to just blocks. More precisely, calling
R the following subset of I:

R = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {b, d}, {c, d}, {a, b, c, d}}, (3)

I Definition 5 (Weak exactness). Given subsets X,Y of R, a persistence module M : X×Y ⊆
R× R→ vec is weakly exact if the barcode of the following square

M(sx,ty) Mt

Ms M(tx,sy)

ρt
(sx,ty)

ρ
(tx,sy)
s

ρ
(sx,ty)
s

ρt
(tx,sy) (4)

consists of elements from R for all indices s ≤ t in X × Y .

By comparison, the strong exactness condition replaces R by B = R \ {{b}, {c}}.

2 The underlying graph, called a quiver, is known to be of wild representation type.

M.B. Botnan, V. Lebovici, and S. Oudot 22:5

I Example 6. The persistence module to the left below is strongly exact, while the one to
the right is only weakly exact, and the persistence modules in Example 4 are not even weakly
exact (each time the weak or strong exactness condition fails on the outermost rectangle):

k k2 k2 k k2 k2

0 k k 0 k k

(1
0) (1 0

0 1) (1
0) (0 0

0 1)

0

0 (0
1)

1

(0
1)

0

0 (0
1)

1

(0
1)

Our analysis focuses on the case of modules indexed over finite grids3, the more general
cases are left as future work. Our contributions summarize as follows:

In Section 2 we prove that the rank invariant is complete on the class of rectangle-
decomposable bimodules (Theorem 8). To this end, we generalize the inclusion-exclusion
formula (1) to our setting. Note that our result also follows indirectly from an inclusion-
exclusion formula for a generalization of the rank invariant for interval-decomposable
modules [17, Prop. 7.13], but that we provide an explicit statement together with a
simple and direct proof.
In Section 3 we show that the rank invariant of a (1-critical) simplicical bifiltration with a
total of n simplices can be computed in O(n4) time (Theorem 9). In conjunction with our
inclusion-exclusion formula, this yields an O(n4) time algorithm for computing the barcode
of a persistence bimodule that is known to be rectangle-decomposable (Corollary 10). This
is an improvement over merely applying some state-of-the-art algorithm for computing
decompositions of general 2-parameter persistence modules, which would take O(n2ω+1)
time where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [13].
In Section 4 we propose an algebraic formulation of our weak exactness condition (Def-
inition 11). This formulation turns out to be equivalent to Definition 5 and to global
rectangle decomposability (the central mathematical result in the paper), specifically:
I Theorem 7. Let M be a pfd persistence module indexed over X × Y , where X,Y are
finite subsets of R. Then, M is rectangle-decomposable if and only if M is weakly exact.
In Section 5 we leverage this result to derive an O(n2+ω)-time algorithm for checking the
rectangle-decomposability of persistence bimodules induced in homology from (1-critical)
simplicical bifiltrations with at most n simplices (Theorem 19). Once again, this is an
improvement over applying some state-of-the-art algorithm for computing decompositions
of general 2-parameter persistence modules and then checking the summands one by one.
Finally, in Section 6 we show how rectangle-decomposable modules arise from (sufficiently
tame) real-valued functions on a topological space. This is then used to give a new proof
of the pyramid basis theorem of [3].

2 Completeness of the rank invariant

Suppose in this section that X,Y are subsets of Z.

I Theorem 8. The isomorphism type of any pfd rectangle-decomposable persistence moduleM
over X × Y is fully determined by the rank invariant of M .

3 A finite grid is the product of two finite subsets of R. Note that any finite grid can be identified with a
grid of the form J1, nK× J1,mK for appropriate choices of n,m ∈ N.

SoCG 2020

22:6 On Rectangle-Decomposable 2-Parameter Persistence Modules

The proof consists in showing that the multiplicity m(s, t) of each individual rectangle mod-
ule kJsx,txK×Jsy,tyK in the decomposition of M is given by the inclusion-exclusion formula (7)
below, which involves only the rank invariant r : X × Y → N of M . This formula is the
analogue, in the category of rectangle-decomposable pfd bimodules, of the inclusion-exclusion
formula (1) for counting the multiplicities of interval summands in one-parameter persistence.

Fix arbitrary indices s ≤ t ∈ X×Y . Recall that the rank of (A⊕B)(s ≤ t) is equal to the
sum of the ranks of A(s ≤ t) and B(s ≤ t). Meanwhile, for any summand kR of M , the rank
of kR(s ≤ t) is 1 if s, t ∈ R and 0 otherwise. Therefore, r(s, t) counts (with multiplicity) the
number of summands of M whose rectangle support contains both s and t. Then, denoting
by m(s, t+) the number of (rectangle) summands whose support contains t and has s as
lower-left corner, we have the folllowing inclusion-exclusion formula:

m(s, t+) = r(s, t)− r((sx − 1, sy), t)− r((sx, sy − 1), t) + r((sx − 1, sy − 1), t). (5)

This formula can be interpreted as follows: a rectangle containing t has s as lower-left corner
if and only if it contains s but neither (sx − 1, sy) nor (sx, sy − 1); and it contains both
(sx − 1, sy) and (sx, sy − 1) if and only if it contains (sx − 1, sy − 1).

Using the same approach at t, we can now compute the number m(s, t) of summands
of M whose support has s as lower-left corner and t as upper-right corner (i.e. is the
rectangle Jsx, txK× Jsy, tyK). The corresponding inclusion-exclusion formula is:

m(s, t) = m(s, t+)−m(s, (tx + 1, ty)+)−m(s, (tx, ty + 1)+) +m(s, (tx + 1, ty + 1)+). (6)

Combining (5) and (6) together gives the desired inclusion-exclusion formula for the mul-
tiplicity m(s, t) of the summand kJsx,txK×Jsy,tyK in the decomposition of M from the rank
invariant, hence completing the proof of Theorem 8, namely:

m(s, t) = r(s, t)− r((sx − 1, sy), t)

−r((sx, sy − 1), t) + r((sx − 1, sy − 1), t)

−r(s, (tx + 1, ty)) + r((sx − 1, sy), (tx + 1, ty))

+r((sx, sy − 1), (tx + 1, ty))− r((sx − 1, sy − 1), (tx + 1, ty))

−r(s, (tx, ty + 1)) + r((sx − 1, sy), (tx, ty + 1))

+r((sx, sy − 1), (tx, ty + 1))− r((sx − 1, sy − 1), (tx, ty + 1))

+r(s, (tx + 1, ty + 1))− r((sx − 1, sy), (tx + 1, ty + 1))

−r((sx, sy − 1), (tx + 1, ty + 1)) + r((sx − 1, sy − 1), (tx + 1, ty + 1)).

(7)

3 Computing the rank invariant and rectangle decompositions

Let F be a simplicial bifiltration with n simplices in total. Assume without loss of generality
that F is indexed over the grid G = J1, nK× J1, nK, for any larger indexing grid must contain
arrows with identity maps that can be pre- or post-composed, and any smaller grid can
be enlarged by inserting arrows with identity maps. Assume further that F is 1-critical,
meaning that the set {t ∈ G | σ ∈ Ft} has a unique minimal element for any simplex σ
entering the filtration. We also fix a homology degree p.

I Theorem 9. Given the above input, the rank invariant of the persistence bimodule M
induced by F in p-th homology can be computed in O(n4) time.

M.B. Botnan, V. Lebovici, and S. Oudot 22:7

As we have not seen any proof of this result in the literature, below we provide an algorithm
with the desired complexity. But before this, let us point out that this theorem, combined
with the inclusion-exclusion formula (7), gives an O(n4)-time algorithm to compute the
barcode of F assuming that M is rectangle-decomposable: once the rank invariant of M has
been computed, iterate over all the pairs (s, t) with s ≤ t ∈ G and, for each one of them, apply
the formula in constant time to get the multiplicity of the rectangle module kJsx,txK×Jsy,tyK

in the decomposition of M . Thus,

I Corollary 10. Computing the decomposition of a rectangle-decomposable module over X×Y
induced in homology by a 1-critical bifiltration with n simplices in total can be done in
O(n4) time.

This complexity compares favorably to that of the currently best known algorithm for
computing direct-sum decompositions of general persistence bimodules4, which is O(n2ω+1)
where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [13].

Let us now provide the algorithm for Theorem 9. First, we compute a free resolution
of M of size O(n2) from F in O(n3) time using the algorithm of [18]. This free resolution
takes the form of an exact sequence as follows5:

0 // Mζ
ψ // Mη

ϕ // Mγ
// M // 0,

where Mγ , Mη and Mζ are free bigraded modules, equipped with bases (γ1, · · · , γk),
(η1, · · · , ηl), (ζ1, · · · , ζm) respectively, of sizes k, l,m ≤ n. The elements γi are called
generators, while the ηj are called relations and the ζr are called relations on relations.
Each one of them is homogeneous and thus assigned a unique grade, denoted by gr(·). The
morphisms of free bigraded modules ϕ, ψ are given as k × l and l ×m matrices respectively,
with coefficients in k. Exactness implies that ψ is injective and M ∼= Cokerϕ.

Ignoring first the relations and the relations on relations (i.e. assuming that l = m = 0
hence Mη = Mζ = 0), the rank invariant r : J1, nK2 × J1, nK2 → N is given by:

∀s ≤ t ∈ G, r(s, t) = #{i | gr(γi) ≤ s}.

Computing the numbers on the right-hand side for all s ≤ t ∈ G is easily done in O(n4) time
by dynamic programming: first we iterate over the k ≤ n generators to fill in an n× n table
storing at each index s the number of generators having s as their grade; then we build a
n2 × n2 lookup table by iterating over the indices (s, t) in lexicographic order and using the
following recurrence formula6:

#{i | gr(γi) ≤ s} = #{i | gr(γi) < s}+ #{i | gr(γi) = s}
= #{i | gr(γi) ≤ (sx − 1, sy)}+ #{i | gr(γi) ≤ (sx, sy − 1)}

−#{i | gr(γi) ≤ (sx − 1, sy − 1)}+ #{i | gr(γi) = s}.

Once this is done, we can take the relations into account (still ignoring relations on relations,
i.e. assuming that m = 0 hence Mζ = 0). Each relation ηj gives a k-linear constraint on a
subset Υ of the generators, encoded in the j-th column of the matrix of ϕ:

∑
u∈Υ αuγu = 0,

4 Let us also point out that our approach does not suffer from the limitation of the algorithm of [13],
which is that no two generators or relations in a minimal presentation of M can have the same grade.

5 Such resolutions exist by Hilbert’s Syzygy theorem. As mentioned in [18], although their algorithm
only computes a free presentation, it adapts readily to compute a free resolution with the same time
complexity – simply reapply their kernel basis computation procedure to the algorithm’s output matrix.

6 The formula adapts to the cases where sx = 1 or sy = 1 by merely removing the invalid terms.

SoCG 2020

22:8 On Rectangle-Decomposable 2-Parameter Persistence Modules

η

γ1

γ2

gr(γ1)

gr(γ2)

gr(η)

lub(η)

s
t

s

s

-1

-1

-0

Figure 1 A relation η between two generators γ1, γ2, and its effect on r(s, t) for various s ≤ t.

where each αu belongs to k\{0}. Call lub(ηj) the least upper bound of the set {gr(γu) | u ∈ Υ}
in the product order ≤ on G. The effect of ηj on the rank invariant is to decrement it at
indices s ≤ t such that s ≥ lub(ηj) and t ≥ gr(ηj), as illustrated in Figure 1. Hence the
following formula for the update of r(s, t):

r(s, t) ←− r(s, t)−#{j | lub(ηj) ≤ s and gr(ηj) ≤ t}.

The numbers on the right-hand side can be computed in O(n4) time again using dynamic
programming: first we build a n2 × n2 table storing at each index (s, t) the number of
relations ηj such that gr(ηj) = t and lub(ηj) = s; then for each index t ∈ G we build an
intermediate n× n lookup table by iterating over the indices s in lexicographic order and
using the following recurrence formula6:

#{j | lub(ηj) ≤ s and gr(ηj) = t} =#{j | lub(ηj) ≤ (sx − 1, sy) and gr(ηj) = t}
+ #{j | lub(ηj) ≤ (sx, sy − 1) and gr(ηj) = t}
−#{j | lub(ηj) ≤ (sx − 1, sy − 1) and gr(ηj) = t}
+ #{j | lub(ηj) = s and gr(ηj) = t};

finally, we build the lookup table for the rank invariant r by iterating over the indices (s, t)
in lexicographic order and using the following recurrence formula6:

#{j | lub(ηj) ≤ s and gr(ηj) ≤ t} = #{j | lub(ηj) ≤ s and gr(ηj) ≤ (tx − 1, ty)}
+ #{j | lub(ηj) ≤ s and gr(ηj) ≤ (tx, ty − 1)}
−#{j | lub(ηj) ≤ s and gr(ηj) ≤ (tx − 1, ty − 1)}
+ #{j | lub(ηj) ≤ s and gr(ηj) = t}.

Once this is done, we can take the relations on relations into account. Each one of them,
say ζr, gives a k-linear constraint on a subset Ξ of the relations, encoded in the r-th column
of the matrix of ψ:

∑
v∈Ξ βvηv = 0, where each βv belongs to k \ {0}. Calling lub(ζr) the

least upper bound of the set {lub(ηv) | v ∈ Ξ}, the effect of ζr on the rank invariant is
to compensate for one of the relations by incrementing r(s, t) at indices s ≤ t such that
s ≥ lub(ζr) and t ≥ gr(ζr). Hence the following formula for the update of r(s, t):

r(s, t) ←− r(s, t) + #{r | lub(ζr) ≤ s and gr(ζr) ≤ t}.

The numbers on the right-hand side can be computed in O(n4) time using the same two-stage
dynamic programming scheme as introduced for relations.

M.B. Botnan, V. Lebovici, and S. Oudot 22:9

All in all, the algorithm takes O(n4) time. The injectivity of ψ means that the relations
on relations are linearly independent, so the correctness of the output table representing the
rank invariant follows by design. This completes the proof of Theorem 9.

4 Algebraic formulation of weak exactness

As shown in [5, 10], a persistence module M : X × Y ⊆ R×R→ vec is strongly exact if, and
only if, the following sequence induced by (4) is exact for all indices s ≤ t ∈ X × Y :

Ms

(ρ(tx,sy)
s ,ρ

(sx,ty)
s) // M(tx,sy) ⊕M(sx,ty)

ρt
(tx,sy)−ρ

t
(sx,ty) // Mt. (8)

Similarly, we can characterize weak exactness (Definition 5) algebraically:

I Definition 11 (Algebraic weak exactness). A persistence module M : X ×Y ⊆ R×R→ vec
is called algebraically weakly exact if the following equalities hold for all s ≤ t ∈ X × Y :

Im ρts = Im ρt(tx,sy) ∩ Im ρt(sx,ty),

Ker ρts = Ker ρ(tx,sy)
s + Ker ρ(sx,ty)

s .

This condition holds in particular when the sequence (8) is exact, but not only. Indeed, as
can be checked easily, any rectangle (not just block) module is algebraically weakly exact.
So is any rectangle-decomposable pfd persistence bimodule, since the property is obviously
preserved under taking direct sums of pfd persistence bimodules. The converse holds as well:

I Theorem 12 (Decomposition of algebraically weakly exact pfd bimodules). For any alge-
braically weakly exact pfd persistence module M over a finite grid (X × Y,≤), there is a
unique multiset RM of rectangles of X × Y such that:

M ∼=
⊕

R∈RM
kR.

Since this result holds in particular for persistence bimodules indexed over squares, it ensures
that a pfd persistence module over a square is algebraically weakly exact if, and only if, it is
rectangle-decomposable. Hence the equivalence between weak exactness (Definition 5) and
algebraic weak exactness (Definition 11), and the correctness of Theorem 7.

The rest of this section is devoted to the proof of Theorem 12. From this point on, and
until the end of the section, whenever we talk about weak exactness we refer consistently to
the algebraic formulation from Definition 11.

4.1 A preliminary remark concerning submodules and summands
A morphism f : M → N between two persistence modules over (X×Y,≤) is a monomorphism
(resp. epimorphism) if for every t ∈ X × Y , ft : Mt → Nt is injective (resp. surjective). We
say that a monomorphism f : M → N between two persistence modules M and N splits if
there is a morphism g : N →M such that g ◦ f = IdM . If every monomorphism with domain
M splits, we say that M is an injective persistence module.

It is not true that any submodule of a persistence module is a summand. However, if
f : M → N is a monomorphism between two persistence modules M and N which splits, it
is well known that there is a direct sum decomposition N ∼= M ⊕ Coker(f). Therefore, an
injective submodule of a persistence module is a summand thereof. In our analysis we will
often use the following result:

SoCG 2020

22:10 On Rectangle-Decomposable 2-Parameter Persistence Modules

I Lemma 13. For any indices k ∈ J1, nK and l ∈ J1,mK, the indicator module kJ1,kK×J1,lK is
an injective persistence module over J1, nK× J1,mK.

Proof. This lemma is a consequence of [5, Lem. 2.1] since the subset J1, kK× J1, lK is clearly
a directed ideal of the poset J1, nK× J1,mK, following the definition of [5, Sec. 2.1]. J

4.2 Proof of Theorem 12
Uniqueness of the decomposition follows directly from Krull-Schmidt-Remak-Azumaya’s
theorem [1], since the endomorphism ring of any rectangle module is clearly isomorphic
to k and thus local. We therefore focus on the existence of a decomposition into rectangle
summands. Our proof proceeds by induction on the poset of grid dimensions (n,m), also
viewed as a subposet of R2 equipped with the product order:

Our base cases are when n = 1 or m = 1. The result is then a direct consequence of
Gabriel’s theorem [16], which asserts that M decomposes as a direct sum of interval
modules, each interval being a rectangle of width 1.

Fix n > 1 and m > 1, and assume that the result is true for all grids of sizes n′×m′ such
that (n′,m′) < (n,m). Fix a persistence module M over J1, nK× J1,mK that is pfd and
weakly exact. Observe that M has finite total dimension

∑
t∈J1,nK×J1,mK dimMt, so we

know from a simple induction thatM decomposes as a direct sum of indecomposables – see
[5, Theorem 1.1] for a more general statement. As any summand of a weakly exact module
is again weakly exact, we may restrict our attention to pfd indecomposable modules. For
the sake of contradiction, assume that M is pfd, weakly exact, indecomposable, and not
isomorphic to a rectangle module. Then:

I Lemma 14. The map ρ(n,m)
(1,1) is zero.

Proof. Suppose the contrary. Then we have Ker ρ(n,m)
(1,1) (M(1,1). Let α ∈M(1,1) \Ker ρ(n,m)

(1,1) .
The submodule N of M spanned by the collection of images (ρ(i,j)

(1,1)(α))(i,j)∈J1,nK×J1,mK is
isomorphic to kJ1,nK×J1,mK, an injective persistence module by Lemma 13. Hence, N is a
summand of M , contradicting that M is not isomorphic to a rectangle module. J

I Lemma 15. The space M(1,1) maps injectively to the nodes of the grid J1, n−1K×J1,m−1K.

Proof. Let us restrict M to the grid J1, n− 1K× J1,mK. The restriction – denoted by N –
may no longer be indecomposable, however it is still pfd and weakly exact, therefore our
induction hypothesis asserts that N decomposes as a finite (internal) direct sum where each
summand is isomorphic to some rectangle module. Consider any one of these summands,
say N ′ ∼= kR′ , such that (1, 1) ∈ R′. Then, we claim that (n − 1, 1) ∈ R′ as well. Indeed,
otherwise, one can extend N ′ to a persistence module over J1, nK× J1,mK by putting zero
spaces on the last column n. This yields an injective rectangle submodule of M (Lemma 13),
and therefore a rectangle summand of M – a contradiction.

By our claim, M(1,1) maps injectively to the nodes (i, 1) for i ∈ J1, n− 1K. Similary, by
restricting M to the grid J1, nK× J1,m− 1K, we deduce that M(1,1) maps injectively to the
nodes (1, j) for j ∈ J1,m− 1K. Then, by weak exactness, we have

∀(i, j) ∈ J1, n− 1K× J1,m− 1K, Ker ρ(i,j)
(1,1) = Ker ρ(i,1)

(1,1) + Ker ρ(1,j)
(1,1) = 0,

so M(1,1) maps injectively to all the nodes of the grid J1, n− 1K× J1,m− 1K. J

M.B. Botnan, V. Lebovici, and S. Oudot 22:11

I Lemma 16. The spaces M(1,1) and M(n,m) are zero.

Proof. By weak exactness and Lemma 14, we have

M(1,1) = Ker ρ(n,m)
(1,1) = Ker ρ(n,1)

(1,1) + Ker ρ(1,m)
(1,1) .

Assuming for a contradiction that M(1,1) 6= 0, we have that at least one of the two terms on
the right-hand side of the above equation must be non-zero – say Ker ρ(n,1)

(1,1) 6= 0. Let α 6= 0
be an element in that kernel. By Lemma 15, its images at the nodes of J1, n− 1K× J1,m− 1K
are non-zero. Meanwhile, its images at the nodes of {n} × J1,mK are zero, by composition.
There are two cases:

Either ρ(1,m)
(1,1) (α) = 0, in which case the images of α at the nodes of J1, nK× {m} are also

zero, which implies that the persistence submodule of M spanned by the images of α is
isomorphic to kJ1,n−1K×J1,m−1K.
Or ρ(1,m)

(1,1) (α) 6= 0, in which case, for all i ∈ J1, n− 1K, we have

α /∈ Ker ρ(1,m)
(1,1)

(Lemma 15)= Ker ρ(1,m)
(1,1) + Ker ρ(i,1)

(1,1) = Ker ρ(i,m)
(1,1) ,

which implies that the images of α at the nodes of J1, n − 1K × {m} are non-zero as
well. Hence, the persistence submodule of M spanned by the images of α is isomorphic
to kJ1,n−1K×J1,mK.

In both cases, the persistence submodule of M spanned by the images of α is an injective
rectangle module (Lemma 13), hence a rectangle summand of M – a contradiction.

By applying vector-space duality pointwise to M , we obtain an indecomposable module
M∗ of the grid J1, nKop × J1,mKop – which is isomorphic to J1, nK × J1,mK as a poset.
This persistence module is still pfd, and still weakly exact as well since the equations of
weak exactness are stable under vector-space duality (kernels become images, sums become
intersections, and vice-versa). Hence, by the first part of the proof, M∗(1,1) = 0, i.e the space
at node (n,m) of M is zero, hence the result. J

I Lemma 17. The space M(1,m) is zero.

Proof. Assume for a contradiction that M(1,m) 6= 0. Call N the restriction of M to the grid
J1, n− 1K× J1,mK. By our induction hypothesis, N decomposes as a finite (internal) direct
sum where each summand is isomorphic to some rectangle module. Since M(1,m) 6= 0, at
least one of these rectangles contains the node (1,m). Among such rectangles, take one –
say R′ = J1, iK × Jj,mK – that has lowest lower-left corner, and call N ′ the corresponding
summand of N . Denote by N ′′ the rest of the internal decomposition of N , i.e. N = N ′⊕N ′′.

First, we claim that i = n − 1. Indeed, otherwise we can extend N ′ to a rectangle
persistence submodule N̄ ′ of M by putting zero spaces on the last column n, and N ′′ to
another persistence submodule N̄ ′′ by putting the internal spaces of M on the last column,
so that M = N̄ ′ ⊕ N̄ ′′ – a contradiction.

Second, we claim that j ∈ J2,m− 1K. Indeed, j ≥ 2 since by Lemma 16 we know that
M(1,1) = 0. Meanwhile, if j were equal to m, then N ′ would go to zero on the last column
of J1, nK× J1,mK since M(n,m) = 0 by Lemma 16, and so we could extend N to a rectangle
persistence submodule N̄ ′ ofM by putting zero spaces on the last column, and N ′′ to another
persistence submodule N̄ ′′ by putting the internal spaces of M on the last column, so that
M = N̄ ′ ⊕ N̄ ′′ – a contradiction.

SoCG 2020

22:12 On Rectangle-Decomposable 2-Parameter Persistence Modules

Consider now the space N(1,j) = M(1,j), and take a generator α of the subspace N ′(1,j) ∼= k.
By Lemma 16 we know that the map ρ(n,m)

(1,j) is zero, so by weak exactness we have α = αh+αv
for some αh ∈ Ker ρ(n,j)

(1,j) and αv ∈ Ker ρ(1,m)
(1,j) . We claim that αh /∈ N ′′(1,j). Indeed, otherwise

we would have

ρ
(1,m)
(1,j) (α) = ρ

(1,m)
(1,j) (αh) + ρ

(1,m)
(1,j) (αv) = ρ

(1,m)
(1,j) (αh) ∈ ρ(1,m)

(1,j) (N ′′(1,j)) ⊆ N ′′(1,m),

thus contradicting our assumption that N = N ′⊕N ′′ with the support of N ′ containing (1,m).
Likewise, for any node t ∈ R′ we have ρt(1,j)(αh) /∈ N ′′t , for otherwise we would get a
contradiction from

ρ
(tx,m)
(1,j) (α) = ρ

(tx,m)
(1,j) (αh) = ρ

(tx,m)
t (ρt(1,j)(αh)) ∈ ρ(tx,m)

t (N ′′t) ⊆ N ′′(tx,m).

Thus, the persistence submodule Nh of N generated by αh is isomorphic7 to N ′ and in
direct sum with N ′′. We can therefore exchange N ′ for Nh in the internal decomposition
of N . Since Nh is mapped to zero on the last column of J1, nK × J1,mK, we can extend it
to a rectangle persistence submodule N̄h of M by putting zero spaces on the last column,
meanwhile we can extend N ′′ to another persistence submodule N̄ ′′ by putting the internal
spaces of M on the last column, so that M = N̄h ⊕ N̄ ′′ – a contradiction. J

I Lemma 18. M(1,j) = 0 for all j ∈ J1,mK.

Proof. The result is already proven8 for j = m by Lemma 17. Let then j ∈ J1,m − 1K.
Call N the restriction of M to the grid J1, nK× J1,m− 1K. By our induction hypothesis, N
decomposes as a finite (internal) direct sum where each summand is isomorphic to some
rectangle module. Assuming for a contradiction that some summand N ′ has a support R′
that intersects the first column, we know from Lemma 17 that N ′ maps to zero at node (1,m).
By composition, N ′ maps to zero as well at the nodes on the last row m. Therefore, as in
the proof of Lemma 17, we can extend N ′ to a rectangle summand of M by putting zero
spaces on row m, thus reaching a contradiction. J

It follows from Lemma 18 that M itself is not supported outside the rectangle R =
J2, nK× J1,mK. The induction hypothesis (applied to the restriction of M to R) implies then
that M decomposes as a direct sum of rectangle modules, which raises a contradiction. This
concludes the induction step and the proof of Theorem 12.

5 Algorithm for checking rectangle decomposability

As in Section 3, let F be a simplicial bifiltration with n simplices in total, and let us assume
without loss of generality that F is indexed over the grid G = J1, nK × J1, nK. We further
assume that F is 1-critical, and we fix a homology degree p.

Given this input, how fast can we check whether the persistence bimodule M induced
in p-th homology decomposes into rectangle summands? An obvious solution is to first
decompose M from the data of F , then to check the summands one by one. As explained
in Section 3, the currently best known algorithm for decomposition runs in time O(n2ω+1),
where 2 ≤ ω < 2.373 is the exponent for matrix multiplication [13]. The advantage of the
algebraic weak exactness condition from Section 4 is that it can be checked locally, which
reduces the total running time to O(n2+ω). Below we sketch the algorithm:

7 Note that we do not need to check that αh goes to zero when leaving R′, since by assumption R′ reaches
row m and, as we saw earlier, i = n− 1 so R′ reaches column n− 1 as well.

8 It is also proven for j = 1 by Lemma 16, although we do not use this fact in the proof.

M.B. Botnan, V. Lebovici, and S. Oudot 22:13

1. Compute the rank invariant r : J1, nK2 × J1, nK2 → N of M .
2. Compute invariants for kernels and images, denoted by κ : J1, nK2 × J1, nK2 → N and ι :

J1, nK2×J1, nK2 → N respectively, which return the dimensions of Ker ρ(sx,ty)
s +Ker ρ(tx,sy)

s

and of Im ρt(sx,ty) ∩ Im ρt(tx,sy) respectively at indices s ≤ t, and zero elsewhere.
3. For each pair of indices s ≤ t, check whether r(s, t) = ι(s, t) and r(s, s)− r(s, t) = κ(s, t).

If any such equality fails, then answer that M is not rectangle-decomposable. Otherwise,
answer that M is rectangle-decomposable.

We now provide further implementation details and analyze the algorithm on the fly:
Step 1 has already been detailed in Section 3 and runs in O(n4) time.
Step 3 obviously runs in O(n4) time, and its correctness comes from the commutativity

of the square in (4): indeed, commutativity implies that Im ρts ⊆ Im ρt(sx,ty) ∩ Im ρt(tx,sy) and
Ker ρ(sx,ty)

s + Ker ρ(tx,sy)
s ⊆ Ker ρts, so checking weak exactness for this square amounts to

checking equality between the dimensions of the various spaces involved, hence the equations.
For Step 2, we first compute, for each t = (j, l) ∈ G, the barcode of the zigzag module9

induced in homology by the following zigzag of simplicial complexes:

F(1,l) // · · · // F(j−1,l) // Ft F(j,l−1)oo · · ·oo F(j,1)oo . (9)

We then do the same with the following zigzag, for each s = (i, k) ∈ G:

F(i,n) · · ·oo F(i,k+1)oo Fsoo // F(i+1,k) // · · · // F(n,k) . (10)

Then, for each indices (i, k) = s ≤ t = (j, l), by restriction, the dimension of Im ρt(i,l) ∩
Im ρt(j,k) is given by the number of intervals in the barcode of (9) that span the sub-
zigzag F(i,l) // Ft F(j,k)oo , while (dually) the dimension of Ker ρ(i,l)

s + Ker ρ(j,k)
s is

given by r(s, s) minus the number of intervals in the barcode of (10) that span the sub-
zigzag F(i,l) Fsoo // F(j,k) (the proof of these simple facts is given in [6, Appendix
A]). Regarding the running time: since the zigzags (9)-(10) involve O(n) simplex insertions
and deletions each, their barcode computation takes O(nω) using the algorithm based on
fast matrix multiplication [19]. Then, each barcode having O(n) intervals, the computa-
tion of the dimensions and their storage in tables of integers representing the invariants κ
and ι takes O(n). This is true for each choice of indices s ≤ t, hence a total running time
in O(n2+ω + n3) = O(n2+ω). As a consequence,

I Theorem 19. Checking the rectangle-decomposability of the bimodule induced in homology
by a 1-critical bifiltration with n simplices in total can be done in O(n2+ω) time.

6 An example of rectangle-decomposable module

In [8] the authors show that a large pyramidal diagram can be associated to a sufficiently
tame real valued function f : X → R. We briefly recall their construction. Under the
assumption that the function is of Morse type, there exists a finite set of critical values
a1 < a2 < . . . < an, and we may choose real values si satisfying

−∞ < s0 < a1 < s1 < · · · < an < sn < +∞. (11)

9 A zigzag module is a persistence module indexed over a poset of the form • oo // • oo // · · · oo // • ,
where double-headed arrows mean that the actual arrows can be oriented either forward or backward.
Such modules always decompose into direct sums of interval modules [4, 7].

SoCG 2020

22:14 On Rectangle-Decomposable 2-Parameter Persistence Modules

Here the idea is that the preimage of [si, si+1] deformation retracts onto the fiber over ai+1,
and that the fiber is constant (up to homotopy) between critical values. This gives a way of
studying how the topology of the fibers connect across scales.

Denoting Xj
i = f−1[si, sj] and j

iX = Xi
0 ∪Xn

j , obvious inclusions yield a commutative
diagram, such as the following one for n = 2:

(X2
0 , X

2
0) (X2

0 ,
2
2X)

(X1
0 , X

1
0) (X2

0 , X
1
0) (X2

0 ,
2
1X) (X2

0 ,
1
1X)

(X0
0 , X

0
0) (X1

0 , X
0
0) (X2

0 , X
0
0) (X2

0 ,
2
0X) (X2

0 ,
1
0X) (X2

0 ,
0
0X)

X0
0 X1

0 X2
0 (X2

0 , X
2
2) (X2

0 , X
2
1) (X2

0 , X
2
0)

X1
1 X2

1 (X2
1 , X

2
2) (X2

1 , X
2
1)

X2
2 (X2

2 , X
2
2)

Building on the work of [8], it is shown in [3] that the above diagram, upon application
of homology, decomposes into a direct sum of interval modules, where each interval is the
intersection of a rectangle in Z2 with the pyramid above. This result is referred to as the
pyramid basis theorem. We now give a new proof of this fact using Theorem 12. More
precisely, we show the following:

I Theorem 20 (Pyramid basis theorem). The homology pyramid as constructed in [8] is
interval-decomposable, where the intervals are restrictions of rectangles in Z2 to the pyramid.

To simplify the notation we prove the case for n = 2 and it will be evident that the argument
generalizes. First, extend the homology diagram to a bimodule on a finite grid as follows:

0 0 Hp(X2
0 , X

2
0) Hp(X2

0 ,
2
2X) PO2 PO3

0 Hp(X1
0 , X

1
0) Hp(X2

0 , X
1
0) Hp(X2

0 ,
2
1X) Hp(X2

0 ,
1
1X) PO1

Hp(X0
0 , X

0
0) Hp(X1

0 , X
0
0) Hp(X2

0 , X
0
0) Hp(X2

0 ,
2
0X) Hp(X2

0 ,
1
0X) Hp(X2

0 ,
0
0X)

Hp(X0
0) Hp(X1

0) Hp(X2
0) Hp(X2

0 , X
2
2) Hp(X2

0 , X
2
1) Hp(X2

0 , X
2
0)

PB1 Hp(X1
1) Hp(X2

1) Hp(X2
1 , X

2
2) Hp(X2

1 , X
2
1) 0

PB3 PB2 Hp(X2
2) Hp(X2

2 , X
2
2) 0 0

Here PBi denotes pullback and POi denotes pushout. Inductively these are defined (up
to canonical isomorphism) by

PB1 = ker
(
Hp(X0

0)⊕Hp(X1
1)→ Hp(X1

0)
)

PB2 = ker
(
Hp(X1

1)⊕Hp(X2
2)→ Hp(X2

1)
)

PB3 = ker
(
PB1 ⊕ PB2 → Hp(X1

1)
)
.

M.B. Botnan, V. Lebovici, and S. Oudot 22:15

and dually for the pushouts, with kernels replaced by cokernels. By Theorem 12 it suffices
to show that the extended diagram is weakly exact. The fact that any square with vertices
on the original ”pyramid” is strongly exact (i.e. the sequence (8) induced by such a square
is exact) follows from the exactness of the relative Mayer–Vietoris sequence. Morever, as
remarked in [5, Section 5.1], the extension of the pyramid to pullbacks and pushouts preserves
strong exactness (and thus weak exactness). It remains to consider squares with a 0 vector
space as either its top-left or bottom-right corner. The fact that such squares are weakly
exact is an easy consequence of commutativity. We conclude that the bimodule shown above
is weakly exact and therefore rectangle-decomposable. The restrictions of the rectangle
summands to the original homology pyramid give the intervals in the pyramid basis theorem.

References
1 Gorô Azumaya. Corrections and supplementaries to my paper concerning Krull-Remak-

Schmidt’s theorem. Nagoya Mathematical Journal, 1:117–124, 1950.
2 Ulrich Bauer, Magnus B Botnan, Steffen Oppermann, and Johan Steen. Cotorsion torsion

triples and the representation theory of filtered hierarchical clustering. arXiv preprint, 2019.
arXiv:1904.07322.

3 Paul Bendich, Herbert Edelsbrunner, Dmitriy Morozov, Amit Patel, et al. Homology and
robustness of level and interlevel sets. Homology, Homotopy and Applications, 15(1):51–72,
2013.

4 Magnus Bakke Botnan. Interval decomposition of infinite zigzag persistence modules. Proceed-
ings of the American Mathematical Society, 145(8):3571–3577, 2017.

5 Magnus Bakke Botnan and William Crawley-Boevey. Decomposition of persistence modules.
To appear in the Proceedings of the AMS, 2018. arXiv:1811.08946.

6 Magnus Bakke Botnan, Vadim Lebovici, and Steve Oudot. On rectangle-decomposable
2-parameter persistence modules, 2020. arXiv:2002.08894.

7 Gunnar Carlsson and Vin De Silva. Zigzag persistence. Foundations of computational
mathematics, 10(4):367–405, 2010.

8 Gunnar Carlsson, Vin De Silva, and Dmitriy Morozov. Zigzag persistent homology and
real-valued functions. In Proceedings of the twenty-fifth annual symposium on Computational
geometry, pages 247–256. ACM, 2009.

9 Frédéric Chazal, Vin De Silva, Marc Glisse, and Steve Oudot. The structure and stability of
persistence modules. Springer, 2016.

10 Jérémy Cochoy and Steve Oudot. Decomposition of exact pfd persistence bimodules. Dis-
crete and Computational Geometry, 2019. To appear, currently available as arXiv preprint
arXiv:1605.09726.

11 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, 2007.

12 William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules.
Journal of Algebra and its Applications, 14(05):1550066, 2015.

13 Tamal K Dey and Cheng Xin. Generalized persistence algorithm for decomposing multi-
parameter persistence modules. arXiv preprint arXiv:1904.03766, 2019.

14 Herbert Edelsbrunner and John Harer. Persistent homology-a survey. Contemporary mathe-
matics, 453:257–282, 2008.

15 Emerson G Escolar and Yasuaki Hiraoka. Persistence modules on commutative ladders of
finite type. Discrete & Computational Geometry, 55(1):100–157, 2016.

16 Peter Gabriel. Unzerlegbare Darstellungen I. manuscripta mathematica, 6(1):71–103, March
1972. doi:10.1007/BF01298413.

17 Woojin Kim and Facundo Memoli. Generalized persistence diagrams for persistence modules
over posets. arXiv preprint arXiv:1810.11517, 2018.

SoCG 2020

http://arxiv.org/abs/1904.07322
http://arxiv.org/abs/1811.08946
http://arxiv.org/abs/2002.08894
https://arxiv.org/abs/1605.09726
https://doi.org/10.1007/BF01298413

22:16 On Rectangle-Decomposable 2-Parameter Persistence Modules

18 Michael Lesnick and Matthew Wright. Computing minimal presentations and betti numbers
of 2-parameter persistent homology. arXiv preprint arXiv:1902.05708, 2019.

19 Nikola Milosavljević, Dmitriy Morozov, and Primoz Skraba. Zigzag persistent homology
in matrix multiplication time. In Proceedings of the twenty-seventh annual symposium on
Computational geometry, pages 216–225. ACM, 2011.

20 Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume 209.
American Mathematical Society Providence, RI, 2015.

Robust Anisotropic Power-Functions-Based
Filtrations for Clustering
Claire Brécheteau
Laboratoire de Mathématiques Jean Leray & École Centrale de Nantes, France
claire.brecheteau@ec-nantes.fr

Abstract
We consider robust power-distance functions that approximate the distance function to a compact
set, from a noisy sample. We pay particular interest to robust power-distance functions that are
anisotropic, in the sense that their sublevel sets are unions of ellipsoids, and not necessarily unions
of balls. Using persistence homology on such power-distance functions provides robust clustering
schemes. We investigate such clustering schemes and compare the different procedures on synthetic
and real datasets. In particular, we enhance the good performance of the anisotropic method for
some cases for which classical methods fail.

2012 ACM Subject Classification Theory of computation → Unsupervised learning and clustering

Keywords and phrases Power functions, Filtrations, Hierarchical Clustering, Ellipsoids

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.23

Related Version A full version of the paper is available at https://hal.archives-ouvertes.fr/
hal-02397100.

Supplementary Material At https://hal.archives-ouvertes.fr/hal-02397100, the source code
is available, as an annex file.

Acknowledgements I am extremely grateful to Samuel Tapie, for his suggestion to use tangency of
ellipsoids at their first intersection point, to derive the expression of their intersection radius.

1 Introduction

Often data can be represented as a point cloud X in a Euclidean space Rd. Grouping data
into clusters as homogeneous and well-separated as possible is the purpose of clustering.
When no label is know in advance, we talk about unsupervised clustering. Topological data
analysis (TDA) tools are designed to understand the shape of the data. Thereby, such tools
may help to understand the shape of clusters in which to group the data. In this paper, we
develop and study a TDA-based unsupervised clustering scheme. In addition, our method
detects and removes points that do not really belong to any cluster; the outliers.

Clustering datasets is of extreme importance in multiple domains including medicine and
social networks among others. The classical k-means method clusters data into isotropic
clusters. In particular, the trimmed version of k-means of [14] that removes outliers, supplies
balls-shaped clusters. These two algorithms have been extended by [2, 5] for Bregman-balls-
shaped clusters, see also tclust [17] for ellipsoidal clusters. Such methods are well-suited for
data generated according to mixtures of distributions which sublevel-set are Bregman balls
themselves. For more general datasets, for instance, a sample of point from a disconnected
manifold, these methods are no longer appropriate. Spectral clustering methods [27] perform
such tasks, but are not robust to outliers. DBSCAN [19] is an algorithm based on a fixed
upper-level set of an approximation of the density, and consequently, does not provide a
multiscale information. Via a dendrogram, the classical single-linkage hierarchical clustering
algorithm provides such a multiscale information. The dendrogram encodes information about
the connectivity of unions of balls centered at points in X, or equivalently, of the sublevel

© Claire Brécheteau;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:claire.brecheteau@ec-nantes.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.23
https://hal.archives-ouvertes.fr/hal-02397100
https://hal.archives-ouvertes.fr/hal-02397100
https://hal.archives-ouvertes.fr/hal-02397100
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Robust Anisotropic Power-Functions Filtrations

sets of the distance function to X. For a fixed radius r, the Čech complex is a simplicial
complex defined as the collection of simplices (vertex, edge, triangle, tetrahedron) for which
the r-balls centered at the vertices have a non-empty common intersection. We call 1-skeleton
its subcomplex (a graph) that contains only vertices and edges. The non-decreasing family
of such graphs indexed by r ∈ R is called a filtration. Single-linkage is a persistence-based
method since is based on the persistence, prominence or equivalently lifetime of the connected
components into this graph filtration, however, it is not robust to outliers. The algorithm
ToMATo in [12] is robust and persistence-based. Indeed, it is based on a graph filtration
built from a neighborhood graph and a (robust) distance-like function whose values guide
the appearance of vertices and edges in the graph filtration. An example of robust distance
function that Chazal et al. consider in [12] is given by the distance-to-measure (DTM) [10].
Note that the graph is a priori not intrinsic to the distance function, which may cause bad
clustering. For instance, an edge that links two vertices with small distance-function value
but intersects an area with large distance function value, may link two clusters that should
not be. This problem was the cause of failure of the single-linkage method for data corrupted
by outliers. Alternative filtrations that do not suffer from this problem are the DTM-filtration
[1], or the power filtrations [7], based on the 1-skeleton of the Čech filtration associated to
the sublevel sets of a power distance function: a function of type x 7→ mini∈I ‖x−mi‖2 + ωi
for some (mi)i∈I in Rd and (ωi)i∈I in R. Some approximations of the DTM that are power
functions have been introduced and studied in the literature: the k-witnessed distance [18],
the power distance [7], the c-PDTM [6] whose sublevel sets are unions of c balls, and the
c-PLM [4] whose sublevel sets are unions of c ellipsoids, with c possibly much smaller than
the sample size. The last two functions are robust to outliers since their construction is
based on the principle of trimmed least squares [26].

Contributions
By replacing balls with ellipsoids, we enlarge the notion of weighted Čech filtration into the
anisotropic weighted Čech filtration. We derive an expression for the radius of intersection of
two ellipsoids. We introduce a clustering algorithm based on persistence. Such a clustering
algorithm can be run from any graph filtration, in particular, from the 1-skeleton of the
anisotropic weighted Čech filtration, which corresponds to the filtration of sublevel sets of an
anisotropic power function. We experiment this algorithm on the filtration of the c-PLM [4].

Practical interests
A clustering algorithm based on the persistence filtration of the sublevel sets of a power
function is pertinent since unlike ToMATo, the graph is intrinsic to the distance function.
So, no additional parameters are required for the algorithm. The main advantage of using
an anisotropic power function is that its sublevel sets are ellipsoids. Much less ellipsoids are
required than balls to Hausdorff-approximate a compact manifold with intrinsic dimension
smaller than the ambient dimension. The clustering scheme can also be applied to decompose
a set of points generated on a polygonal line into segments. Once the ellipsoids computed,
the persistence algorithm runs fast. Its complexity in terms of number of comparisons is at
worst O(c4), with c, the number of ellipsoids, which is much smaller than the sample size.
Most importantly, the robustness of the persistence algorithm relies on the robustness of
the distance function. The c-PLM [4] is robust to outliers. The guaranty for the clustering
method follows from the ‖·‖∞-distance closeness between the power distance function and the
distance function to the underlying manifold X , relatively to the minimal distance between
the connected components of X . Note that such a proximity condition is sufficient but not
necessary, as illustrated by the different numerical examples, with the c-PLM.

C. Brécheteau 23:3

Organisation of the paper
In Section 2, we recall the notions of power function and weighted Čech filtration, the
filtration of the nerves of its sublevel sets, that we extend to anisotropic power functions.
We prove some stability and approximation properties for such filtrations. Examples of
robust power filtrations are also displayed. The main clustering algorithm, Algorithm 1 is
given in Section 3. This algorithm applies to any filtration of graphs, including the graph
filtrations obtained as the 1-skeleton of a weighted Čech filtration. We enumerate other types
of filtrations that fit into this framework. Finally, we implement Algorithm 1 with the robust
anisotropic aforementioned power function in Section 4. We compare this method to other
clustering methods on synthetic and real datasets.

2 Power-functions-based filtrations for robust clustering

In the sequel, we will recall the notion of filtration for subsets of Rd (equipped with the
Euclidean norm ‖ · ‖) and for simplicial complexes. We will consider a class of functions for
which filtrations associated to sublevel sets are easily represented by filtrations of simplicial
complexes, making the evolution of their connected components tractable: the power functions.
In addition, we will give an example of robust power-functions [6] that can be built from
a probability distribution or a pointset X. Their sublevel sets are unions of c balls, with c
possibly much smaller than the size of X. Most importantly, we will also give an example of
a robust anisotropic power-function, whose sublevel sets are unions of c ellipsoids [4]. Both
of these power functions will be considered in the next sections for clustering purposes.

2.1 Generalities on filtrations
A filtration indexed by a time set T ⊂ R is a family (V t)t∈T of subsets of Rd, non-decreasing
for the inclusion (i.e. ∀t ≤ t′, V t ⊂ V t′). A typical example is the filtration of the sub-level
sets of a function f : Rd 7→ R,

(
f−1((−∞, t])

)
t∈T . For any simplex S with finite vertex set X,

a filtration of simplicial complexes of S is a non-decreasing family (St)t∈T of subcomplexes
of S, meaning that for every t ≤ t′, any simplex of St is also a simplex of St′ .

The interleaving pseudo-distance between two filtrations (V t)t∈T and (W t)t∈T is defined
as the smallest ε > 0 such that (V t)t∈T and (W t)t∈T are ε-interleaved, i.e. such that:
∀t ∈ T , V t ⊂W t+ε and W t ⊂ V t+ε. This definition extends to simplicial complexes. Note
that the sub-level-sets filtrations of two functions f and g satisfying ‖f − g‖∞ ≤ ε are
ε-interleaved. We will see in Section 3 that the notion of interleaving is primordial, since it
measures the difference of topology between two filtrations. In particular, the stability of our
sub-level-sets-based clustering scheme will be guarantied from the closeness of the functions.

2.2 Power-functions-based filtrations
In this paper, we consider classes of functions whose sub-level sets filtration has a sparse
representation, the power functions. The sublevel sets of these functions can be represented
by simplicial complexes in so-called weighted Čech filtrations. We will consider two types of
power functions, the isotropic and the anisotropic ones.

2.2.1 The isotropic case
An isotropic power function is a function fm,ω : Rd → R defined from an index set I = [[1, c]],
a family of centers m = (mi)i∈I in Rd and a family of weights ω = (ωi)i∈I in R by
fm,ω : x 7→ mini∈I ‖x − mi‖2 + ωi. A simple example of power function is the squared

SoCG 2020

23:4 Robust Anisotropic Power-Functions Filtrations

Euclidean distance function to a set of points X, d2
X : x ∈ Rd 7→ minm∈X ‖x −m‖2. The

sublevel sets of fm,ω, V tm,ω = f−1
m,ω((−∞, t]), are unions of at most c balls Bti = B(mi,

√
t− ωi)

with B(m, r) = {x ∈ Rd | ‖x −m‖ ≤ r}. Note that Bti is empty for t < ωi and two balls
Bti and Btj intersect if and only if t ≥ ti,j with ti,j = (ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2 .
The connectivity of V tm,ω can be encoded in a graph Gtm,ω, whose vertices are indices i ∈ I
such that ωi ≤ t and whose edges are pairs of vertices [i, j] such that ti,j ≤ t. Indeed, Gtm,ω

and V tm,ω have the same number of connected components, and mi and mj are in the same
connected component in V tm,ω if and only if i and j are also in the same component in Gtm,ω.

More generally, the topological information of V tm,ω (number of connected components,
loops, voids etc.) can be encoded in the weighted Čech complex Cechm,ω(t), defined as
the nerve of the union of balls (Bti)i∈I : Cechm,ω(t) = {σ ⊂ I |

⋂
i∈σ Bti 6= ∅}, [1, 7, 3].

According to the Nerve Lemma [20, Corollary 4G.3], any sublevel set V tm,ω is homotopic
to Cechm,ω(t) and thus contains the same topological information. For computational
reasons, the weighted Vietoris-Rips filtration is frequently considered as a provably good
surrogate for the weighted Čech filtration (Cechm,ω(t))t∈T . The weighted Vietoris-Rips
complex VRm,ω(t) is the flag complex of Gtm,ω (Gtm,ω is the 1-skeleton of the weighted Čech
complex): VRm,ω(t) = {σ ⊂ I | ∀i, j ∈ σ,Bti ∩ Btj 6= ∅}. Indeed, as a direct consequence of
[3, Theorem 3.2] which is a generalization of the non-weighted case in [15, Theorem 2.5.], if
the weights in ω are non-negative, then these two filtrations are interleaved:

∀0 < t′ ≤ d+ 1
2d t,VRm,ω(t′) ⊂ Cechm,ω(t) ⊂ VRm,ω(t). (1)

These notions can all be extended to anisotropic power functions.

2.2.2 The anisotropic case
Consider I = [[1, c]], centers m = (mi)i∈I in Rd, weights ω = (ωi)i∈I in R and matrices
Σ = (Σi)i∈I inMd, the set of definite positive symmetric matrices. An anisotropic power
function is a function fm,ω,Σ : Rd → R defined from I, m, ω and Σ by fm,ω,Σ : x 7→
mini∈I ‖x−mi‖2Σ−1

i

+ωi. For any matrix Σ ∈Md and x ∈ Rd, ‖x‖Σ−1 =
√
xTΣ−1x denotes

the Σ-Mahalanobis norm of x. The sublevel sets of fm,ω,Σ, V tm,ω,Σ = f−1
m,ω,Σ((−∞, t]), are

unions of at most c ellipsoids Eti = BΣi
(mi,

√
t− ωi) = {x ∈ Rd | ‖x −mi‖2Σ−1

i

≤ t − ωi}.
Again, Eti is empty for t < ωi and the intersection time ti,j of Eti and Etj is given below. The
relative question of the emptiness of the intersection of two ellipsoids is tackled in [28, 25].

I Proposition 1. Consider two ellipsoids Eti = BΣi
(mi,

√
t− ωi) and Etj = BΣj

(mj ,
√
t− ωj)

with ωi ≤ ωj in R, mi and mj in Rd, Σi = PiDiP
T
i and Σj = PjDjP

T
j in Md, with two

positive diagonal matrices Di and Dj and two orthogonal matrices Pi and Pj from the spectral
theorem. Set Σ̃ =

√
DiP

T
i Σ−1

j Pi
√
Di = P̃ D̃P̃T , for orthogonal and diagonal matrices P̃ and

D̃ = diag(λ1, λ2, . . . , λd), and m̃ = P̃T
√
D−1
i PTi (mj −mi). Ellipsoids Eti and Etj intersect

if and only if t ≥ ti,j for ti,j = ωj when ‖m̃‖ ≤ √ωj − ωi, and ti,j = ωj +
∑d
k=1

(
λm̃k

λ+λk

)2
λk

when ‖m̃‖ > √ωj − ωi. The positive number λ is the unique solution of the following equation:

d∑
k=1

λk − λ2

(λ+ λk)2λkm̃
2
k = ωj − ωi. (2)

C. Brécheteau 23:5

The proof is based on the fact that the ellipsoids Eti and Etj are tangent at their first intersection
point, and the corresponding gradients are collinear. In the context of isotropy (i.e. for
Σi = Σj = Id, the identity matrix of Rd) m̃ = mj −mi, and when ‖mj −mi‖ >

√
ωj − ωi,

(2) has a unique positive solution given by λ = ωi−ωj+‖mj−mi‖2

ωj−ωi+‖mj−mi‖2 . We recover the merging
time ti,j given in Section 2.2.1. Now, define Gtm,ω,Σ, Cechm,ω,Σ(t) and VRm,ω,Σ(t), the
anisotropic counterparts of Gtm,ω, Cechm,ω(t) and VRm,ω(t). The nerve lemma still applies,
since unions of ellipsoids are contractible. Although this paper is mostly based on the study of
connected components for clustering, anisotropic weighted Čech and Vietoris-Rips filtrations
are primordial to have a tractable estimation of the topology of compact sets from suitable
approximations as finite unions of ellipsoids. In fact, as their isotropic counterparts (1), these
filtrations are interleaved, provided that the eigenvalues of the matrices in Σ are positive.

I Proposition 2. If ω is a set on non-negative weights in R and Σ a family of matrices with
eigenvalues in [λmin, λmax] for some λmin > 0, then for every t > 0 and 0 < t′ ≤ λmin

λmax
d+1
2d t,

VRm,ω,Σ(t′) ⊂ Cechm,ω,Σ(t) ⊂ VRm,ω,Σ(t). (3)

The condition of non-negative weights is not too restrictive since for general weights, it suffices
to replace ω, t and t′ by ω −mini∈I ωi, t−mini∈I ωi and t′ −mini∈I ωi in the proposition.
Then, the condition on t′ becomes mini∈I ωi < t′ ≤ λmin

λmax
d+1
2d t +

(
1− λmin

λmax
d+1
2d

)
mini∈I ωi.

As noted in [15], when λmin equals λmax and the weights in ω are null, the term λmin
λmax

d+1
2d is

optimal. When m is the set of vertices of a regular d-simplex, the left inclusion is an equality.
Often, less ellipsoids than balls are required to describe a compact set X , for a fixed

level of precision (e.g. for the Hausdorff distance). For instance, a segment in R2, and more
generally, any d′-dimensional submanifold in Rd, with d′ < d. For this reason, anisotropic
Čech and Vietoris-Rips filtrations are pertinent tools to compute and store the topological
information about X efficiently. The requisite condition is that we dispose of an anisotropic
power function that is a good approximation of d2

X . Such examples of functions follow.

2.3 Examples of filtrations based on robust power functions

2.3.1 Isotropic robust power functions
Set X, a set of n points generated on the neighborhood of a compact subset X of Rd. In order
to face the non robustness of the distance function to X, dX, Chazal et al. have introduced
the notion of distance-to-measure (DTM), in [10]. The DTM is a counterpart of dX robust
to noise and outliers. Its robustness follows from some parameter k ∈ [[1, n]], the number
of nearest-neighbors X1, X2, . . . , Xk of x in X, used to estimate dX(x). The DTM dX,k is
defined by d2

X,k : x 7→ 1
k

∑k
i=1 ‖x −Xi‖2 = ‖x −mx,k‖2 + vx,k with mx,k =

∑k
i=1X

i, the
mean of the k nearest neighbours of x in X and vx,k = 1

k

∑k
i=1 ‖Xi −mx,k‖2 their variance.

Note that dX,1 coincides with dX and is not robust, whereas dX,n(x) is the distance of x to
the barycenter of the point cloud X, up to some factor, which is robust, but very poor in
terms of topological information. The DTM is actually a weighted power function [18]:

d2
X,k(x) = inf

y∈Rd
‖x−my,k‖2 + vy,k. (4)

This follows from the fact that the mean distance between x and its k nearest neighbors is
not larger than the mean distance between x and the k nearest neighbors of any other point
y ∈ Rd. This infimum is actually a minimum over a set of c points y = (yi)i∈[[1,c]] in Rd, with

SoCG 2020

23:6 Robust Anisotropic Power-Functions Filtrations

c of order
(
n

k

)
. A power approximation of the DTM, the k-witnessed distance, was defined

in [18] by replacing Rd by X in (4). Its sublevel sets are unions of n balls. An approximation
of the DTM with c (possibly much smaller than n) balls, the c-PDTM, was defined in [6], by
replacing Rd by a set yc,k of c points in Rd. This set yc,k is a minimum of a “k-means”-type
criterion [24], y 7→

∑n
i=1 miny∈y ‖Xi −my,k‖2 + vy,k, for y with cardinality c. Morally, yc,k

is chosen such that on average on X, x 7→ miny∈y ‖x−my,k‖2 + vy,k is small. Note that the
graph of the c-PDTM is necessarily above the graph of the DTM. According to [6], for a
sample on a regular d′-dimensional manifold, c can be chosen of order n

d′
d′+4 , which is much

smaller than n. Moreover, the c-PDTM is a good approximation of d2
X , despite noise.

2.3.2 An anisotropic robust power function
An anisotropic version of the c-PDTM has been introduced in [4], the c-power likelihood to
measure (c-PLM). It consists in replacing Euclidean norms with Mahalanobis norms. For
every x ∈ Rd and Σ ∈ Md, set X1, X2,. . .Xk the k-nearest neighbors of x in X, for the
Σ−1-Mahalanobis norm: ‖Xi−x‖Σ−1 ≤ ‖Xj−x‖Σ−1 for every i ≤ j. Denote by mx,Σ,k their
mean, and by vx,Σ,k = 1

k

∑k
i=1 ‖Xi−mx,Σ,k‖2Σ−1 their variance, relative to the Σ-Mahalanobis

norm. Set θc,k, a family of c pairs (y,Σ) ∈ Rd ×Md that minimizes (or which criterion is as
close as possible to the optimal criterion, in case of non existence of a minimum) the following
“k-means”-type criterion Rc,k among all θs of cardinality c: Rc,k(θ) =

∑n
i=1 min(y,Σ)∈θ ‖Xi−

my,Σ,k‖2Σ−1 +vy,Σ,k+log(det(Σ)). The term log(det(Σ)) prevents optimal covariance matrices
to be degenerated, with Σ−1 going to 0. In some sense, minimizing such a criterion boils
down to fit Gaussian distributions to the data set X, at best. The c-PLM is the power
function defined from θc,k by: x 7→ min(y,Σ)∈θc,k

‖x−my,Σ,k‖2Σ−1 + vy,Σ,k + log(det(Σ)). A
modification of the criterion Rc,k has been introduced in [4], to remove some datapoints
(|X|−sig for some parameter sig), when X is corrupted with outliers. The criterion is given by
Rc,k,sig(θ) = min(i1,i2,...,isig)∈[[1,|X|]]

∑sig
j=1 min(y,Σ)∈θ ‖Xij−my,Σ,k‖2Σ−1 +vy,Σ,k+log(det(Σ)).

Iterative Lloyd-type algorithms [22] provide local minima θ̃c,k and θ̃c,k,sig for the criteria
Rc,k and Rc,k,sig [4]. These algorithms run in O(ncd2 + nkd2 + n log(n)c)it operations, with
it the number of iterations of the algorithm. They consist, given θ = (y,Σ), in splitting the
space Rd into weighted Σ-curved Voronoi cells, replacing centers y by the centroid of the cells,
and updating the matrices in Σ by a close formula from the points in the cells and ellipsoids.
To compute θ̃c,k,sig, a trimming step is added at each iteration. For clustering, disposing of
a local minimum is enough, as enhanced in the numerical illustration section, since we can
remove bad centers in θ̃c,k or in θ̃c,k,sig with the parameter Threshold in Algorithm 1.

3 Persistence-based clustering from power-functions-based filtrations

3.1 Persistence for power-functions-based filtrations
Set fm,ω,Σ : x ∈ Rd 7→ mini∈I ‖x−mi‖2Σ−1

i

+ ωi, an anisotropic power-function indexed by
a set I = [[1, c]] and with the ωis sorted in non-decreasing order. As above-mentioned, the
sublevel sets V t = f−1

m,ω,Σ((−∞, t]) are unions of at most c ellipsoids Eti = BΣi
(mi,

√
t− ωi),

non empty as soon as t ≥ ωi. In particular, each sublevel set of fm,ω,Σ contains at most c
connected components. Each connected component of V t, V ti is indexed by the smallest index
i ∈ I such that mi belongs to the component. With a language abuse, we call connected
component Vi, the family of connected components (V ti)t∈T that gets born at time t = bi = ωi
and dies at a time t = di when V ti merges with another connected component V tj for some

C. Brécheteau 23:7

j ≤ i. Note that d1 = ∞. The lifetime of the component V ti , di − bi, is called persistence
or prominence of the component i. This merging information is encoded in a barcode or a
dendrogram. In these two representations, each line is associated to a component Vi, has
length di − bi, and begins at the height bi. The dendrogram is obtained from the barcode by
linking the bars associated to merging components, at a height given by the merging time.

When m is a point set X, Σi = Id and ωi = 0 for every i, clustering points accordingly
to the connected components of V t boils down to the classical single-linkage clustering
procedure, with t > 0, calibrated in accordance with the dendrogram. This procedure is not
robust to outliers. In this paper, we consider an adjacent procedure, similar to the ToMATo
algorithm [12], based on the prominence of components. To be precise, in the clustering
scheme, a component Vi cannot merge with another component Vj at a time t larger than
ωi + Stop, for some parameter Stop. In other words, components with large prominence will
never die in this clustering procedure. This is the purpose of Algorithm 1 in the next section.

In order to better visualize the prominence of the components, we represent their lifetimes
in a persistence diagram. A persistence diagram is a multiset of points (bi, di) ∈ R2 that lie
above the diagonal b = d. Each point (bi, di) is associated to a connected component Vi. The
notion of persistence diagram was introduced by Edelsbrunner et al. in [16], in the broader
framework of homology, and allows to compute lifetimes of additionnal features such as loops,
voids etc. It is defined for filtrations that are regular enough, on triangulable spaces such
as Rd. The proper notion of regularity is the notion of q-tameness [11]. In [7, Proposition
3.5], Buchet et al. proved that the DTM is q-tame. The proof of [7] can be straightforwardly
adjusted for distance functions to compact sets and most importantly, for anisotropic power
functions, provided that the eigenvalues of the matrices Σi are all positive.

Since distance to compact sets, distance-to-measure and anisotropic power functions are
q-tame, the persistence diagrams associated to their filtrations are well defined. They can
be compared through the bottleneck distance, a distance between two diagrams D and D′
defined as the minimal value of maxx∈D,y∈D′ |y−φ(x)|∞ among functions φ that pair points
in D with points in D′, with some points potentially paired to diagonal points. Diagrams
associated to interleaved filtrations are close, according to the following theorem.

I Theorem 3 (Stability of persistence diagrams [11, 9, 13]). If two filtrations V and W are
q-tame and ε-interleaved, then the persistence diagrams of these filtrations are ε-close in
bottleneck distance.

According to Theorem 3, the persistence diagram of any anisotropic power function
fm,ω,Σ that is ε− ‖ · ‖∞ close to dX is ε-bottleneck close to the persistence diagram of the
sublevel sets of dX . Consequently, prominence of the connected components of X can be
deduced from the diagram associated to fm,ω,Σ, for ε small enough. This bottleneck closeness
occurs with large probability for a regular manifold X for the c-PDTM built from a noisy
sample from X , according to [6]. No such result has been proved yet for the c-PLM. Anyway,
intuitively, its sublevel sets are good approximations of the manifold X , with the advantage
that they are made of less ellipsoids, and that these ellipsoids are oriented accordingly to
the manifold, i.e. with large eigenvalues on the tangent space and small eigenvalues on its
orthogonal. This will be confirmed in the numerical illustrations section.

By construction, the persistence diagram (for connected components) associated to the
filtration of the sublevel sets of fm,ω,Σ coincides with the persistence diagram associated to
the anisotropic weighted Čech complex Cech(fm,ω,Σ). Consequently, we can forget about the
ellipsoids and focus on the simplicial complex filtration, which can be computed and stored
efficiently, in a c× c matrix Mat = (ti,j)i,j∈I . Such a matrix contains the times of appearance
of vertices and of merging of connected components in Cech(fm,ω,Σ). The clustering scheme
of this paper exposed just below is based on such a merging matrix Mat.

SoCG 2020

23:8 Robust Anisotropic Power-Functions Filtrations

3.2 An algorithm for persistence-based clustering

Consider (Gt)t∈R a filtration of sub-graphs of G, a graph with c nodes. Based on this filtration,
we define an algorithm, strongly inspired from the ToMATo algorithm [12]. The clustering
scheme is guided by the persistence of the connected components in (Gt)t∈R, and preserves
components with large prominence. We assume that the nodes of G are labeled such that the
node labeled i gets born before the node labeled j, when i ≤ j. The procedure is as follows.
A connected component gets born when a node gets born, with the same label. A component
changes of label at each time t for which it merges with a component with smaller label in Gt,
unless its prominence is larger than some parameter Stop. The prominence of a node or a
component is defined as the lifetime of the component in the filtration (i.e. the elapsed time
between the birth of the node and the time t such that a node with smaller index is present
in its connected component in Gt). The resulting clustering is given by the label of the nodes
at time t = +∞. It contains exactly labels of edges with a prominence larger than Stop. In
this clustering scheme, we decide that nodes born after some time parameter Threshold are
not relevant; they are removed. This procedure is implemented in Algorithm 1.

Algorithm 1 Persistence-based Clustering Algorithm.

Data: Mat, Threshold, Stop
Result: Color, Birth, Death
Initialization ;
c ← max{i | Mat[i,i] ≤ Threshold} ; Mat ← Mat[1:c,1:c] ;
Birth ← [Mat[i,i] for i in 1:c] ; Death ← [∞ for i in 1:c] ;
indice ← 1 ; I ← 1 ; time ← Mat[I,I] ; Color ← [] ;
while time <∞ do

if time = Mat[I,I] then
Component I appears ;
indice ← indice + 1 ; Mat[I,I] ← ∞ ; Color[I] ← I;

else
(col_max, col_min) ← (max(Color[I],Color[J]) , min(Color[I],Color[J]));
if time - Birth[col_max] ≤ Stop then

Components col_max and col_min merge ;
Replace all entries col_max by col_min in Color ;
Death[col_max] ← time ;

else
Component col_max will never die ;

end
Mat[i,j] ←∞ for every i, j ≤ min(indice,c) such that
(Color[i],Color[j]) ∈ {(col_min, col_max), (col_max, col_min)};

end
I,J ← arg mini,j≤min(indice,c) Mat[i,j] ; time ← Mat[I,J]

end

This algorithm requires a merging matrix Mat = (ti,j)i,j∈I , with I = [[1, c]]. We define its
coefficients by ti,i, the birth time of the node i in the filtration (Gt)t∈T ; for i > j, ti,j the
birth time of the edge [i, j] and for i < j, ti,j =∞. The vector Color contains the resulting
clustering, the vector Birth, the birth time of the components and Death their death time.
Note that Death[1] is always +∞. When (Gt)t∈T is the filtration of the sublevel sets of some
power function fm,ω,Σ, the matrix Mat has coefficients given by ti,i = ωi and for i > j ≥ 1,
ti,j the intersecting time of the ellipsoids Eti and Etj , given by Proposition 1.

C. Brécheteau 23:9

In practice, to label points in X (generated around X), we consider an approximation
of d2

X based on a family m of c centers. Set m′, the centers not removed and labeled by
Algorithm 1, and ω′ and Σ′ the corresponding parameters. Clustering points in X is made
accordingly to these labels and to the Voronoi decomposition of Rd, based on m′, ω′ and Σ′:
x ∈ X has the same label as m′i if ‖x −m′i‖2Σ′−1

i

+ ω′i ≤ ‖x −m′j‖2Σ′−1
j

+ ω′j for every j.
Since fm∗,ω∗,Σ∗ approximates d2

X , in order to deal with outliers, we remove (i.e. assign the
label 0) the points x ∈ X for which fm′,ω′,Σ′(x) is the largest. Note that a power function is
homogeneous to the square of a distance function. Therefore, for positive weights ω, it could
be more appropriate to consider the filtration of sublevel sets of

√
fm,ω,Σ instead of fm,ω,Σ.

The best complexity of Algorithm 1 (O(c3) comparisons) is obtained when Stop = ∞,
with 2c iterations of the algorithm. The worst complexity (O(c4)) is obtained when Stop = 0,
with O(c2) iterations. This is fast when c is much smaller than the sample size (e.g. for
c-PLM and c-PDTM), and does not depend on the dimension. In the experiments of Section
4, Algorithm 1 runs much faster than the computation of the c-PLM and the c-PDTM.

In practice, just as Chazal et al. [12], we recommend to run Algorithm 1 several times. A
first time with Threshold = Stop = ∞ to calibrate the parameter Threshold, in order to
remove bad nodes (i.e. nodes with late birth and short lifetime). A second time with this
parameter Threshold and Stop = ∞, to measure the prominence of the components and
select the number of clusters (via the parameter Stop), as the number of components with
prominence much larger than others. More details on the calibration of these two parameters,
from the persistence diagrams (Birth[i], Death[i])i∈I , are given in Section 4.1. The final
clustering is obtained from Color, after running Algorithm 1 with these two parameters.

Giving a sense to an optimal minimal prominence Stop is possible for distance functions.
For instance, for the sublevel-sets filtration of dX , Stop can be chosen as half of the minimal
distance between two distinct components of X . Consequently, for any ε − ‖ · ‖∞-close
approximation of dX , taking Stop− ε leads to a perfect clustering, provided that 2ε < Stop.

The parameter Threshold is primordial, especially for the c-PLM function. Indeed, the
algorithm for the c-PLM is based on θ̃c,k, a local minimizer of the criterion Rc,k. Consequently,
some ellipsoids Ei are far from the support, or in a wrong direction. Thus, their weight
ωi (and thus Birth[i]) is large with respect to other well-placed ellipsoids, due to a large
variance term vyi,Σi,k. Such bad ellipsoids are removed for a suitable parameter Threshold.

3.3 Connection to other persistence-based clustering methods
In the sequel, we display different graph filtrations, to be used for persistence-based clustering,
with Algorithm 1. For each of these filtrations, we give a summarize of the corresponding
matrices Mat, in Table 1, with the convention that ti,i ≤ tj,j when i ≤ j.

ToMATo Algorithm [12] rests on a graph filtration based on a graph G and a function
f defined on the nodes of G. Morally, Gt is the sub-graph of G that contains the nodes i
such that f(i) ≤ t, and the edges [i, j] if and only if i and j are in Gt. Chazal et al. mostly
studied this method for G, a Rips graph of a set X ⊂ Rd, and for f(i), the DTM to X at Xi.

The DTM-filtration [1] corresponds to the 1-skeleton of the nerve of the union of balls(⋃
x∈X B(x, rt(x))

)
t>0 with rt(x) = −∞ for t < dX,k(x) and rt(x) = (tp − dpX,k(x))

1
p for

t ≥ dX,k(x), for some p ≥ 1 and with the convention that B(x,−∞) is empty. In Table 1, we
give the coefficients for p = 1. The DTM-filtration with p = 2 was actually introduced in [7],
leading to what we call Power filtration, which coincides with the sublevel-sets filtration of
the square of a power distance. We also consider additional power-functions-based filtrations,
from the k-witnessed distance [18], the c-PDTM [6] and the c-PLM [4].

SoCG 2020

23:10 Robust Anisotropic Power-Functions Filtrations

Table 1 Coefficients of Mat for the different methods, with the notation f = dX,k for the DTM
to X with number of nearest neighbors parameter k.

Method ti,i ti,j for i < j

ToMATo f(i) max(f(i), f(j))(1[i,j]∈G)−1

DTM-filtration f(i)
(
‖Xi−Xj‖+f(i)+f(j)

2

)
1‖Xi−Xj‖>|f(i)−f(j)| + f(i)1f(i)−f(j)≥‖Xi−Xj‖

fm,ω ωi
(ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2√
fm,ω

√
ωi

√
(ωj−ωi)2+2(ωj+ωi)‖mj−mi‖2+‖mj−mi‖4

4‖mj−mi‖2

fm,ω,Σ ωi Given by Proposition 1

Power filtration
√

fm,ω with m = X and ω = (f2(x))x∈X
Witnessed

√
fm,ω with (m,ω) = (mx,k, vx,k)x∈X

c-PDTM fm,ω with (m,ω) = (my,k, vy,k)y∈yc,k

c-PLM fm,ω,Σ with (m,ω, Σ) = (my,Σ,k, vy,Σ,k + log(det(Σ)), Σ)(y,Σ)∈θc,k

4 Numerical illustrations

4.1 A complete illustration of the method
Consider the target X , a set of three curves in R2. We generate X = (Xi)i∈[[1,Ns+No]],
a set of Ns = 500 signal points (Xi = Yi + Zi)i∈[[1,Ns]], with Yi uniform on X and Zi
Gaussian with standard deviation σ = 0.02 ; corrupted by No = 200 outliers, uniform on
[−1.5, 2.5]2. We compare the clustering scheme based on Algorithm 1 with the sublevel
sets of the c-PLM, to the target labels in Figure 2 (left). Parameters are set to c = 50
centers, k = 10 nearest neighbors, sig = 520 points to consider as signal, and it = 100
iterations and n_ini = 10 initializations to compute a suitable local optimum θ̃c,k,sig of the
c-PLM-criterion Rc,k,sig. Since the DTM dX,k is large for outliers, we select sig from the
curve ([dX,k(Xi), i ∈ [[1, Ns +No]]] in non-decreasing order), as the point of slope break ; see
Figure 1 (left). The DTM can be replaced by any not-trimmed approximation of the c-PLM.

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●
●●●●●●●
●●●
●●●●●
●●●●●●●●

●●●
●●●●
●●●●●
●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●
●●●●
●●
●●●●●●●●

●●●●●●●
●●●●
●●
●●●
●●●●●
●●●●
●●
●●●
●
●
●●
●
●●
●●
●●●

●
●

●

0.0

0.2

0.4

0.6

0.8

0 200 400 600
point

D
T

M

Sorted vector of DTM on
points in X, to select sig

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

−15

−12

−9

−6

−15 −12 −9 −6
Birth

D
ea

th

Persistence diagram,
to select Threshold

●

●

●●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●
●

●
●

●

−10

0

10

−10 0 10
Birth

D
ea

th

Persistence diagram,
to select Stop

Figure 1 Parameters selection heuristics.

We run Algorithm 1 a first time with the parameters Threshold =∞ and Stop =∞, and
display the persistence diagram (Birth[i], Death[i])i∈[[1,c]], in Figure 1 (middle). In order to
have 3 clusters, we select Stop = 5.62, the height of a line parallel to the diagonal, separating
3 points from the others. We run Algorithm 1 a second time with this new parameter, which
results in the clustering C1 of Figure 2 (middle). A sublevel set of the function fθ̃c,k

is
represented by the union of ellipses. Note that some ellipses have a bad position. This results

C. Brécheteau 23:11

in a bad clustering. We use the parameter Threshold to remove them. In Figure 1 (middle),
6 points are on the right side, separated from the other points with a vertical line (of abscissa
−10.27). Then, we run Algorithm 1 with Threshold = −10.27 and Stop =∞. According to
the persistence diagram in Figure 1 (right), since 3 points are well-separated from the other
ones with a large band parallel to the diagonal (containing a line parallel to the diagonal,
with height 12), we recover the number of clusters, 3, and set Stop = 12. The clustering C2
obtained with Threshold = −10.27 and Stop = 12 is represented in Figure 2 (right). The
bad ellipses have been removed. Denote by θ̃′c,k,sig, the subfamily of θ̃c,k,sig made of centers
not removed by the procedure. The color of any point x in Figure 2 (right) is given by the
label in Color (label returned by the Algorithm 1) of its associated center (y,Σ) in θ̃′c,k,sig.
This is the center (y,Σ) such that fθ̃′c,k,sig

(x) = ‖x−my,Σ,k‖2Σ−1 + vy,Σ,k + log(det(Σ))). The
labels of the |X| − sig points with largest fθ̃′c,k,sig

-value are set to 0.

Note that for large datasets, computing θ̃′c,k,sig may take some time. We can compute it
from a sub-sample of X, run Algorithm 1, and label points in X accordingly.

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

−1

0

1

2

−1 0 1 2
x

y

color

●

●

●

●

0

1

2

3

Original labels

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

−1 0 1 2 3
x

y

color

●

●

●

●

0

1

5

15

C1, Threshold = ∞

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

−1 0 1 2
x

y

color

●

●

●

●

0

1

5

15

C2, Threshold = - 10.27

Figure 2 Two resulting clusterings, with ellipses.

We compare the performance of the two clusterings C1 and C2. In terms of outliers
detection, this can be assessed via the proportion of signal points labeled as outliers (0.034
for C1, 0.016 for C2) and as the proportion of outliers labeled as signal points (0.185 for C1,
0.14 for C2). As expected from Figure 2, removing bad ellipses reduces these proportions
and thus improves the outliers detection performance. In terms of clusters recovering, the
normalized mutual information (NMI) is classically used. It equals 1 for a perfect clustering
and 0 for a terrible clustering. When considering outliers as a cluster with label 0, we got
NMI = 0.586 for C1 and NMI = 0.841 for C2. The NMI computed on the signal points
labeled as signal points is NMI = 0.634 for C1 and NMI = 1 for C2, a perfect clustering.

4.2 Comparison of the different methods on synthetic datasets
We compare different clustering methods on two synthetic datasets : the previous dataset
with 3 curves, and datapoints from a polygonal curve of 14 segments, as in [8]. We set
parameters to Ns = 500, No = 200, σ = 0.02, c = 50, k = 10, it = 100, n_ini = 10 and
Threshold chosen such that 10 means are removed from the c-PLM-centers θ̃c,k,sig. For the
ToMATo algorithm we set r = 0.12, the radius of the Rips graph. We used the function
dbscan from the R packages dbscan [19], with parameters eps = 0.15 and minPts = 10;
tclust and specc from the tclust [17] and kernlab [21] R packages.

For the three curves, the parameter r for ToMATo is chosen such that the graph is not
connected, the clusterings are acceptable but have more than 3 clusters. The c-PLM often
performs perfectly, and sometimes performs poorly, since the number of bad ellipses removed

SoCG 2020

23:12 Robust Anisotropic Power-Functions Filtrations

●

●

●

●

●●●●

●

●●

●●

●

●●

●

●●●●●●

●

●
0.00

0.25

0.50

0.75

1.00

c−
P

D
T

M

c−
P

LM

D
T

M
 fi

ltr
at

io
n

po
w

er
 fu

nc
tio

n

tc
lu

st

To
M

AT
o

w
itn

es
se

d
di

st
an

ce

Method

N
M

I

Example of the 3 curves

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●0.4

0.5

0.6

0.7

0.8

c−
P

D
T

M

c−
P

LM

D
T

M
 fi

ltr
at

io
n

po
w

er
 fu

nc
tio

n

sp
ec

tr
al

tc
lu

st

To
M

AT
o

w
itn

es
se

d
di

st
an

ce

Method

N
M

I

Example of the 14 segments

True clustering

Figure 3 Violin plots representing the NMI computed on signal points, detected as signal points.

is fixed to 10 and not calibrated according to the heuristics, and their is some instability. We
observe the same clustering problem as in Figure 2 (middle) for the other methods since the
lines are close, compared to the distance between sample points from the same line. For the
polygonal line of 14 segments, all methods except the c-PLM and tclust put centers of clusters
on massive parts of X (the center and the intersections of 3 segments). For the c-PLM and
tclust, most clusters coincide with segments. Nonetheless, their is some instability (much
less pronounced for the c-PLM), since the algorithms are based on local minimizers.

4.3 Applications to real datasets

4.3.1 Recovering fleas species, based on 6 measurements
We picked the dataset flea from the R-package tourr [29], initially from [23]. This dataset
contains records of 6 measurements for 74 males insects from the Palaeartic, from three
different species : Heptapotamica, Concinna, Heikertingeri. The variables correspond to
measurements on the tarsus, the aedeagus and the head. We normalized data so that the
mean and variance of each of the 6 variables are respectively 0 and 1. In Table 2, we computed
the NMI between the true species and the clustering returned by different methods. We ran
each algorithm 10 times with at most 100 iterations. For every k-nearest-neighbours-based
algorithm, we set k = 10. For ToMATo, we set r = 1.9 so that the graph is connected ;
for the c-PLM and the c-PDTM, c = 50 and for dbscan, eps = 1.5 and minPts = 10. The
3-PDTM and 3-PLM methods consists in clustering data according to the weighted Voronoi
cells given by the optimal centers and covariance matrices.

Table 2 NMI between clustering of fleas and their true specie.

Without k-means tclust DBSCAN Spectral 3-PLM 3-PDTM
Algorithm 1 0.825 0.848 0.647 1 1 1

With ToMATo Witnessed power DTM-filt. c-PLM hier. c-PDTM hier.
Algorithm 1 0.628 0.906 1 1 1 1

The methods based on the decomposition of R6 into 3 (weighted and/or curved) Voronoi
cells are efficient: at most 3 bad labels for k-means and tclust and all labels correct for their
“robust” versions, the 3-PDTM and the 3-PLM. The perfect performance of these two last
functions is due to the weights that force the centers of cells to lie in massive areas for X. The
bad performance of ToMATo is due to the difficulty to select the parameter r for the Rips

C. Brécheteau 23:13

graph, the small number of points, and the fact that the inverse of the DTM should be used
instead of the DTM, as recommended by the authors. Nonetheless, we made the choice to
use the DTM since the other methods (witnessed distance, power function, DTM-filtration,
c-PLM and c-PDTM) are based on filtrations from approximations of the DTM, and almost
all of these methods perform perfectly. The method dbscan performs poorly since it labels
14 points as outliers. Nonetheless, the points considered as signal are well clustered.

4.3.2 Clustering a earthquake dataset

We consider a set of 12790 points representing the longitude and latitude of earthquakes of mag-
nitude non smaller than 5.0, between the 01/01/1970 and the 01/01/2010. This dataset was
picked from the website http://earthquake.usgs.gov/earthquakes/eqarchives/epic/.

We used Algorithm 1 with an approximation of the c-PLM based on a sub-sample of
2000 points from the dataset, with parameters c = 200, k = 10 and for it = 50 iterations.
We restricted matrices Σ to have eigenvalues smaller than 50 by thresholding them. The
persistence diagram in Figure 4 suggests that the dataset has 4 or 10 clusters. Moreover, the
curve of the sorted values of the c-PLM approximation on the pointset in Figure 4 suggests
to keep sig = 12250 points as signal points. See Figure 5 for the corresponding clustering.

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●●
●
●

●

●

●●
●
●

●

●●

●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●
●●

●

●●●

●
●●●

●●
●

●

●●
●

●

●

●

●
●

●●●

●

●

−5

0

5

10

15

−10 0 10
Birth

D
ea

th

Persistence diagram

−10

0

10

20

30

40

0 5000 10000
point

c−
P

LM

Number of signal points selection

Figure 4 Parameters selection heuristics.

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●●

●

●●●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●●●● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●●●

●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●●●●● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●
●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●●●● ●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●● ●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
● ●●

●●
●

●

●

●●

●

●●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●
●●●●●●●●●●●●● ●● ●●●● ●●●

●
●●●

●●●

●

●

●
●●● ●

●

●
●●●●● ●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●●●●●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●● ●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●

●
●

●

●
● ●

●

●

●

● ●
●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●● ●●●● ●● ● ●●

●

●

●

●

● ●●●●●

●

●●

●

●

●

● ●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●
●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●●
●

●●

●
●

●

●●

●

●
●●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●
●

●●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●●●●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●

●●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●
●● ●●

●

●
●
●●●

●●●●●●

●●

●
●●●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●

●

●●●
●

●●●

●

●●●●
●

●

●

●●●

●

●●●

●

●
●

●

●●●

●●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●●

●

●

●

●

● ●

●●

●●

●

●

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

−150

−100

−50

0

−40 0 40 80
x

y

color
●

●

●

●

●

0

1

2

50

76

Clustering, 4 groups

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●●

●

●●●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●●

●

●

●●●● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●●●

●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●●●●● ●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●
●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●
●

●●●● ●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●●● ●

●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
● ●●
●●

●

●

●

●●

●

●●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●●
●●●●●●●●●●●●● ●● ●●●● ●●●

●
●●●

●●●

●

●

●
●●● ●

●

●
●●●●● ●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●●●●●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●● ●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●

●
●

●

●
● ●

●

●

●

● ●
●●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●● ●●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

●● ●●●● ●● ● ●●

●

●

●

●

● ●●●●●

●

●●

●

●

●

● ●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●
●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●●
●

●●

●
●

●

●●

●

●
●●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●
●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●●

●●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●
●

●●

●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●●●●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●●

●●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●
●● ●●

●

●
●
●●●

●●●●●●

●●

●
●●●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●

●

●●●
●

●●●

●

●●●●
●

●

●

●●●

●

●●●

●

●
●

●

●●●

●●

●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●
●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●●

●

●

●

●

● ●

●●

●●

●

●

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

−150

−100

−50

0

−40 0 40 80
x

y

color
●

●

●

●

●

●

●

●

●

●

●

0

1

2

5

8

18

24

50

55

76

125

Clustering, 10 groups

Figure 5 Earthquake clustering with Algorithm 1, for the c-PLM function.

SoCG 2020

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/

23:14 Robust Anisotropic Power-Functions Filtrations

References
1 Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël Tinarrage,

and Yuhei Umeda. DTM-based filtrations. In 35th International Symposium on Computational
Geometry, volume 129 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 58, 15. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2019.

2 Arindam Banerjee, Srujana Merugu, Inderjit S. Dhillon, and Joydeep Ghosh. Clustering
with bregman divergences. J. Mach. Learn. Res., 6:1705–1749, December 2005. URL: http:
//dl.acm.org/citation.cfm?id=1046920.1194902.

3 Gregory Bell, Austin Lawson, Joshua Martin, James Rudzinski, and Clifford Smyth. Weighted
persistent homology. Involve, 12(5):823–837, 2019. doi:10.2140/involve.2019.12.823.

4 Claire Brécheteau. Robust shape inference from a sparse approximation of the gaussian
trimmed loglikelihood. Unpublished, 2018.

5 Claire Brécheteau, Aurélie Fischer, and Clément Levrard. Robust bregman clustering. In
revision, 2018.

6 Claire Brécheteau and Clément Levrard. A k-points-based distance for robust geometric
inference. To appear in Bernoulli, 2017.

7 Mickaël Buchet, Frédéric Chazal, Steve Y. Oudot, and Donald R. Sheehy. Efficient and robust
persistent homology for measures. Comput. Geom., 58:70–96, 2016. doi:10.1016/j.comgeo.
2016.07.001.

8 Mickaël Buchet, Tamal K. Dey, Jiayuan Wang, and Yusu Wang. Declutter and resample:
towards parameter free denoising. J. Comput. Geom., 9(2):21–46, 2018.

9 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot.
Proximity of persistence modules and their diagrams. In Proceedings of the Twenty-fifth
Annual Symposium on Computational Geometry, SCG ’09, pages 237–246, New York, NY,
USA, 2009. ACM. doi:10.1145/1542362.1542407.

10 Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric Inference for Measures
based on Distance Functions. Foundations of Computational Mathematics, 11(6):733–751,
2011. doi:10.1007/s10208-011-9098-0.

11 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of
persistence modules. SpringerBriefs in Mathematics. Springer, [Cham], 2016. doi:10.1007/
978-3-319-42545-0.

12 Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba. Persistence-based
clustering in Riemannian manifolds. J. ACM, 60(6):Art. 41, 38, 2013. doi:10.1145/2535927.

13 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete Comput. Geom., 37(1):103–120, 2007. doi:10.1007/s00454-006-1276-5.

14 J. A. Cuesta-Albertos, A. Gordaliza, and C. Matrán. Trimmed k-means: an attempt to
robustify quantizers. Ann. Statist., 25(2):553–576, 1997. doi:10.1214/aos/1031833664.

15 Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebr.
Geom. Topol., 7:339–358, 2007. doi:10.2140/agt.2007.7.339.

16 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete Comput. Geom., 28(4):511–533, 2002. Discrete and computational
geometry and graph drawing (Columbia, SC, 2001). doi:10.1007/s00454-002-2885-2.

17 Heinrich Fritz, Luis A. Garcia-Escudero, and Agustin Mayo-Iscar. tclust: An R package for
a trimming approach to cluster analysis. Journal of Statistical Software, 47(12):1–26, 2012.
URL: http://www.jstatsoft.org/v47/i12/.

18 Leonidas Guibas, Dmitriy Morozov, and Quentin Mérigot. Witnessed k-distance. Discrete
Comput. Geom., 49(1):22–45, 2013. doi:10.1007/s00454-012-9465-x.

19 Michael Hahsler, Matthew Piekenbrock, and Derek Doran. dbscan: Fast density-based
clustering with R. Journal of Statistical Software, 91(1):1–30, 2019. doi:10.18637/jss.v091.
i01.

20 Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

http://dl.acm.org/citation.cfm?id=1046920.1194902
http://dl.acm.org/citation.cfm?id=1046920.1194902
https://doi.org/10.2140/involve.2019.12.823
https://doi.org/10.1016/j.comgeo.2016.07.001
https://doi.org/10.1016/j.comgeo.2016.07.001
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1007/s10208-011-9098-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1007/978-3-319-42545-0
https://doi.org/10.1145/2535927
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1214/aos/1031833664
https://doi.org/10.2140/agt.2007.7.339
https://doi.org/10.1007/s00454-002-2885-2
http://www.jstatsoft.org/v47/i12/
https://doi.org/10.1007/s00454-012-9465-x
https://doi.org/10.18637/jss.v091.i01
https://doi.org/10.18637/jss.v091.i01

C. Brécheteau 23:15

21 Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kernlab – an S4
package for kernel methods in R. Journal of Statistical Software, 11(9):1–20, 2004. URL:
http://www.jstatsoft.org/v11/i09/.

22 Stuart P. Lloyd. Least squares quantization in PCM. IEEE Trans. Inform. Theory, 28(2):129–
137, 1982. doi:10.1109/TIT.1982.1056489.

23 Alexander A. Lubischew. On the use of discriminant functions in taxonomy. Biometrics, pages
455–477, 1962.

24 J. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 1: Statistics, pages 281–297, Berkeley, Calif., 1967. University of California Press.
URL: https://projecteuclid.org/euclid.bsmsp/1200512992.

25 Stephen B Pope. Algorithms for ellipsoids. Technical Report FDA-08-01, Sibley School of
Mechanical & Aerospace Engineering, Cornell University Ithaca, New York 14853, 2008.

26 P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection. John Wiley &
Sons, New York, 1987.

27 Ulrike von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4):395–416, 2007.
doi:10.1007/s11222-007-9033-z.

28 Wenping Wang, Jiaye Wang, and Myung-Soo Kim. An algebraic condition for the sep-
aration of two ellipsoids. Comput. Aided Geom. Design, 18(6):531–539, 2001. doi:
10.1016/S0167-8396(01)00049-8.

29 Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja. tourr: An R package for
exploring multivariate data with projections. Journal of Statistical Software, 40(2):1–18, 2011.
URL: http://www.jstatsoft.org/v40/i02/.

SoCG 2020

http://www.jstatsoft.org/v11/i09/
https://doi.org/10.1109/TIT.1982.1056489
https://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1016/S0167-8396(01)00049-8
https://doi.org/10.1016/S0167-8396(01)00049-8
http://www.jstatsoft.org/v40/i02/

Geometric Secluded Paths and Planar Satisfiability
Kevin Buchin
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
k.a.buchin@tue.nl

Valentin Polishchuk
Communications and Transport Systems, ITN, Linköping University, Sweden
firstname.lastname@liu.se

Leonid Sedov
Communications and Transport Systems, ITN, Linköping University, Sweden
firstname.lastname@liu.se

Roman Voronov
Institute of Mathematics and Information Technologies, Petrozavodsk State University, Russia
rvoronov@petrsu.ru

Abstract
We consider paths with low exposure to a 2D polygonal domain, i.e., paths which are seen as little
as possible; we differentiate between integral exposure (when we care about how long the path sees
every point of the domain) and 0/1 exposure (just counting whether a point is seen by the path or
not). For the integral exposure, we give a PTAS for finding the minimum-exposure path between
two given points in the domain; for the 0/1 version, we prove that in a simple polygon the shortest
path has the minimum exposure, while in domains with holes the problem becomes NP-hard. We
also highlight connections of the problem to minimum satisfiability and settle hardness of variants
of planar min- and max-SAT.

2012 ACM Subject Classification Theory of computation; Theory of computation→ Computational
geometry

Keywords and phrases Visibility, Route planning, Security/privacy, Planar satisfiability

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.24

Related Version A full version [6], including the omitted details, is available at https://arxiv.
org/abs/1902.06471.

Acknowledgements We thank Mike Paterson for raising the question of finding minimum-exposure
paths, and the anonymous reviewers for the comments improving the presentation of the paper;
we also acknowledge discussions with Irina Kostitsyna, Joe Mitchell and Topi Talvitie. Part of the
work was done at the workshop on Distributed Geometric Algorithms held in the University of
Bologna Centre at Bertinoro Aug 25-31, 2019. VP and LS are supported by the Swedish Transport
Administration and the Swedish Research Council.

1 Introduction and Related work

Both visibility and motion planning are textbook subjects in computational geometry –
see, e.g., the respective chapters in the handbook [21] and the books [20, 34]. Visibility
meets routing in a variety of geometric computing tasks. Historically, the first approach to
finding shortest paths was based on searching the visibility graph of the domain; visibility
is vital also in computing minimum-link paths, i.e., paths with fewest edges [25,31,32,39].
”Visibility-driven” path planning has attracted also some recent interest [3, 37, 44]. In
addition to the theoretical considerations, visibility and motion planning are closely coupled
in practice: computer vision and robot navigation go hand-in-hand in many courses and
real-world applications.

© Kevin Buchin, Valentin Polishchuk, Leonid Sedov, and Roman Voronov;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.a.buchin@tue.nl
mailto:firstname.lastname@liu.se
mailto:firstname.lastname@liu.se
mailto:rvoronov@petrsu.ru
https://doi.org/10.4230/LIPIcs.SoCG.2020.24
https://arxiv.org/abs/1902.06471
https://arxiv.org/abs/1902.06471
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Geometric Secluded Paths and Planar Satisfiability

Table 1 Hardness of minimum-exposure
paths in polygonal environments.

0/1 Integral
exposure exposure

With holes Hard (Thm. 1) PTAS
Simple P (Thm. 2) (Thm. 4)

Table 2 Hardness of versions of planar opt2SAT
(see Section 4 for definitions).

min2SAT max2SAT
V-cycle Hard (Thm. 7)
VC-cycle Hard (Thm. 7) Hard
Separable P (Thm. 5) (Thm. 7)
Monotone P (Cor. 6)

The question of hiding a path in a polygonal domain was first raised in a SoCG’88
paper [19]: it considered the robber route problem in which the goal is to minimize the length
traveled within sight of at least one of a number of threats (each threat being a point); the
problem reduces to finding the shortest path in the 0/1/∞ metric that assigns a cost of 1
to the union of the visibility polygons of the threats, and 0 to the rest of the domain (and
infinite weight to the complement of the domain, where travel is forbidden). Our settings
are different from [19] in two aspects: (1) we have a continuum of the threats (every point in
the domain is a threat) and (2) in the integral version, we care for how long threats are seen
from points along the path (formally: we integrate the visible area along the path); in other
words, we account for the “intensity” of the visibility from the threats.

Lately, motivated by the rise of the Internet of things (IoT) and mobile computing, there
has been a surge of research on anonymity, security, confidentiality and other forms of privacy
preservation (in particular, in geometric environments [4]), studying paths with minimum
exposure to sensors in a network [16, 17, 38, 43]. The standard model, again, assumes a finite
number of point sensors, so the visibility is changing discretely, as the path goes in/out of a
sensor coverage. To our knowledge, Lebeck, Mølhave and Agarwal [26,27] were the first to
introduce integration of the visibility continuously changing along the path (which is also
one of our models). Our paper is different from Lebeck et al. in that we give algorithms
with provable theoretical performance in continuous domains under the usual notion of
distance-independent visibility. Lebeck et al. presented strategies with outstanding practical
performance on discretized terrains, in the more realistic model of visibility deteriorating
with distance.

Minimizing the integral exposure can be viewed as an extension of the weighted region
problem (WRP) [2, 9–11,14,24,33,35] to the case of continuously changing weight, where the
weight of a point is the area of its visibility polygon; in the WRP the input is a weighted
polygonal subdivision of the domain (with a constant weight assigned to each cell of the
subdivision) and the goal is to find the path minimizing the integral of the weight along
the path. The computational complexity of the WRP is open; PTASs for the problem have
running times that depend not only on the complexity of the subdivision, but also on various
parameters of the input like ratio of max/min weight, largest coordinate and angles of the
regions, etc. (the parameters differ between the algorithms, see [41, Ch. 31] for details).
Integration of other measures of “local quality” (different from visibility) for points along a
path was the subject also in the study of high-quality paths [1,45] and related research [46,47].

Recent papers [8, 18, 29, 42] explored paths adjacent to few vertices in graphs; such paths
were dubbed secluded in [8]. Our paper may thus be viewed as studying geometric versions
of the secluded path problem.

Contributions and Roadmap. In Section 2 we prove that in a polygonal domain with holes
it is NP-hard to find a path, between two given points, minimizing the area seen from the
path; the reduction is from minSAT (find the truth assignment to Boolean variables so as to

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:3

satisfy the minimum number of given disjunctive clauses). In Section 2.1 we complement the
hardness by showing that in a simple polygon, shortest paths are the ones that see minimum
area; even more generally, we prove that in a polygon with holes, a locally shortest path sees
less area than any path of the same homotopy type (because for a small number of holes
the homotopy types can be efficiently enumerated, this implies that the problem is FPT
parameterized by the number of holes). Section 3 gives a PTAS for minimizing the integral of
the seen area along the path; we first give a generic scheme for building a piecewise-constant
approximation of the visibility area for points in the domain, and then in Section 3.2 present
details of an implementation which allows applying a PTAS for WRP on our “pixels” with
approximately constant seen area. Finally, in Section 4 we further explore the connection
between path hiding and minSAT, and determine hardness of versions of planar minSAT
(and maxSAT).

Tables 1 and 2 summarize the results. We leave open designing an approximation
algorithm for minimizing the seen area, as well as the complexity of the integral version of
the problem.

Notation and Problems formulation. We use | · | to denote the measure of a set, i.e., length
of a segment and area of a 2D set. Let P be a polygonal domain with n vertices and s, t ∈ P
be two given points in it. For a point p ∈ P let V (p) ⊆ P be the visibility polygon of p, i.e.,
the set of points seen by p. We study the following problems:

Geometric Secluded Path: Find the s-t path that sees as little area of P as possible
(the area seen by a path is defined as the area seen by at least one point of the path, i.e.,
the so called weak visibility region of the path).
Integral Geometric Secluded Path: Find the s-t path π that minimizes the integral
of the area of the visibility polygon over the points along the path,

∫
π
|V (p)|dp.

2 Minimizing seen area

We prove that exposure minimization is NP-hard in general, but in simple polygons the
minimum-exposure path is the shortest path.

I Theorem 1. Geometric Secluded Path is NP-hard.

Proof. We reduce from min2SAT: find truth assignment for a set of n variables, satisfying the
minimum number of given two-literal disjunctive clauses. (Inside this proof n will denote the
number of variables and c the number of clauses.) Figure 1, left illustrates the construction.
A variable gadget is an isosceles triangle. The triangles for the variables are stacked into a
Christmas tree, with s and t placed at the top and the root respectively. Going through the
left (resp. right) vertex of a triangle represents setting the variable to True (resp. False). The
clauses are all put on a horizontal line above the Christmas tree so that the segment between
any literal and any clause does not intersect the tree. Each clause is connected to its literals,
and all connections (including the ones forming the Christmas tree edges) are thin corridors
forming the domain; a clause gadget is simply the intersection of the two corridors. The idea
of the reduction is to have an s-t path go through all variable gadgets, choosing whether to
go through the variable or its negation in every gadget: the fewer clause gadgets are seen,
the fewer clauses are satisfied.

A few technicalities have to be taken care of:
Two variable–clause corridors, leading to different clauses, may intersect midway, meaning
that the intersection area may be seen twice. We have to make sure that the area of such
a midway intersection is much smaller than the clause gadget area. Being smaller by a

SoCG 2020

24:4 Geometric Secluded Paths and Planar Satisfiability

t

s

xi xi

s

H

nh

2n
t

αmax

αmin

β γ

α

α
α

1

H/h
clauses

Figure 1 Left: The reduction from min2SAT. All segments are thin corridors of P . Some
leakage-blocking high-area chambers are shown black and some area equalizers are shown gray (both
black and gray belong to the domain). Middle: the largest angle at a clause and the smallest angle
at a midway intersection. The c clauses are spread evenly on the segment of width 2H/h; thus, the
distance between clauses (the base of the triangle with angle αmin at the apex) is 2H

h(c−1) . Right:
Midway intersection of unit-width corridors is area- 1

sinα rhombus with side 1
sinα and angle α.

factor 4c3 will suffice: even if parts of a corridor are seen due to the midway intersections
with all (at most 2c− 1) other corridors, the total seen corridor’s midway area will still
be smaller (by a factor ≈ 2c) than the area of a single clause gadget. Moreover, with
such small midway intersections, they may be neglected altogether when counting the
areas of clause gadgets seen from literals: the total areas of all (at most 4c2 midway
intersections) will be smaller by at least a factor of c than the area of a single clause
gadget. To reduce areas of the midway intersections in comparison to the clause gadgets
areas, we put the clause gadgets high above the Christmas tree – at height H, to be
determined later (Fig. 1, middle). The area of intersection of two corridors (Fig. 1, right)
is inversely proportional to the sine of the angle between the corridors (the corridors are
all of the same width), so the smallest-area clause gadget would be the one for the clause
xn ∨ xn placed directly above the apex of the Christmas tree (since we do not control
which clause goes where on the clauses line, we have to consider the worst case); let αmax
be the angle between the corridors defining the gadget. Assuming the height of every
variable gadget triangle is h and their bases have lengths 2, 4, . . . , 2n (refer to Fig. 1,
middle),

αmax = 2 arctan n

H + nh
.

On the other hand, the smallest angle between two interesting corridors that do not
lead to the same clause (i.e., the smallest angle that may define the area of a midway
intersection) can be formed by corridors leading to last and last-but-one clause from the
last-but-one and last variables xn, xn−1 resp. (changing the endpoints of the corridors
would only increase the angle of intersection); the angle is

αmin = γ − β = arctan H + nh

H/h− 2H
h(c−1) − n

− arctan H + (n− 1)h
H/h− (n− 1) .

By trigonometric formulas, the ratio sinαmin/ sinαmax, after being squared a constant
number of times, is a ratio of polynomials. This ratio tends to infinity as H grows; hence,
at a polynomially large H, the ratio becomes larger than 4c2, as we need.

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:5

α

a

Figure 2 Left: Area seen by one literal only (gray) is
negligible for small α. Right: Decreasing clause gadget
area.

s

p a

b

V (p)

t

p′

Figure 3 V (p) is shaded; ab is the
essential cut of p. A dotted path, cross-
ing the cut of p′ (dashed), can be short-
cut along the cut.

We make sure that the area, around a clause gadget, seen from one literal but not from
the other (Fig. 2, left), is negligible in comparison with the clause gadget area (seen from
both literals of the clause). This is already taken care of by the above, as the whole
construction is made tall (large H).
Leakage of paths from the Christmas tree into variable–clause corridors is prevented
by attaching a large-area chamber to each corridor (between the literal and the first
intersection of two corridors), so that a path going through the corridor would see the
whole area of the chamber. To ensure that the area of a single chamber is larger than the
area seen by any path through the Christmas tree, the whole construction is scaled up
while keeping the width of the corridors fixed: since the areas available for the chambers
grow quadratically with the scaling factor and the areas seen along the corridors grow
linearly, a polynomial scaling will suffice to ensure that the chambers areas are large
enough to prevent the path going anywhere except through the variable gadgets.
We attach area equalizers to the literals so that no matter whether the path passes
through the variable or its negation, it sees the same non-clause area (the areas may be
different between the different variables; we only make sure that for any single variable
the seen non-clause area does not depend on whether the variable is set to true or false
by the path).
In the construction so far, different clause gadgets may have different areas; let a denote
the smallest area of a clause gadget. We make sure that all clause gadgets have area
a, which can be done e.g., by appropriately cutting off the clause gadgets from the top
(Fig 2, right).

Now, all s-t paths, going through the Christmas tree only, will see the same non-clause
area A. The total area seen by a path is then ≈ A+ka where k is the number of clauses seen
by the path, which is the same as the number of clauses satisfied by the truth assignment
set by the path (we say that the seen area is approximately equal to A+ ka because of the
non-counted areas that may be seen – midway intersections and parts seen by one literal
only – which we made sure to be negligible in comparison with a). J

In Section 4 we discuss why we could not use planar min2SAT to prove hardness of
Geometric Secluded Path, avoiding dealing with the crossings.

SoCG 2020

24:6 Geometric Secluded Paths and Planar Satisfiability

2.1 Simple polygons
We show that in a simple polygon shortest paths see least area:

I Theorem 2. If P is a simple polygon, the shortest s-t path is the solution to Geometric
Secluded Path.

Proof. The visibility polygon V (p) of a point p ∈ P is bounded by edges and chords of P ,
with each chord connecting a vertex of the polygon to a point on its boundary. If P is a
simple polygon and p does not see s (s /∈ V (p)), then there is a unique chord separating p
from s; the chord is called the essential cut of p [7] (Fig. 3).

If an essential cut does not separate s from t, then the shortest s-t path does not cross
the cut, for otherwise, the path could be shortcut along the cut. That is, the shortest path
crosses those and only those cuts that separate s from t. But any other path also has to
cross all such cuts, i.e., has to see all the points seen by the shortest path. J

For polygons with a small number of holes one may go through all homotopy types of
simple (without self-intersections) s-t paths: a simple argument shows that a shortcut of
a path sees less than the original path, and hence the locally shortest path is the secluded
path within its homotopy class.

3 A PTAS for minimizing integral exposure

In Section 3.1 we give a generic way to partition the domain in such a way that the visible
area is approximately constant within a cell of the partition; then in Section 3.2 we present
details of a slightly different partitioning, having straight-line edges, on which a PTAS for
the WRP can be applied to find the path with approximately minimum integral exposure.

3.1 Reduction to WRP with curved regions
We first compute the visibility graph of P , i.e., the graph connecting pairs of mutually visible
vertices of the domain, and extend every edge of the graph in both directions maximally
within P . The extensions of the visibility edges split P into O(n4) cells such that the visibility
polygon V (p) is combinatorially the same for any point p within one cell of the subdivision;
the subdivision is called the visibility decomposition of P [5]. In particular, the area |V (p)| is
given by the same formula for any point p in one cell σ of the decomposition. Specifically,
the rays from p through the seen vertices of P split V (p) into O(n) triangles (Fig. 4, left).
The side of any triangle, opposite to p, is a subset of an edge of P ; we call this side the
base of the triangle. Each of the other, non-base sides is formed by a ray passing through
a vertex r′ of P and ending at a point r on the base. (In Section 3.2 we will differentiate
between fixed-endpoint sides for which r = r′ is an endpoint of the base and rotating rays
which rotate around r′ if p moves; here we treat both types of sides with a single formula,
since fixed-endpoint sides may be viewed as a special case of rotating sides with r = r′.)

To write the formula for the area of the triangle pqr, we follow [12, Appendix A.1] and
assume that the base is the x-axis and that both p = (x, y) and r′ = (a, b) lie above the base
(y, b ≥ 0); then the abscissa of r is x− y(x− a)/(y − b) (Fig. 4, right). Let q′ be the vertex
that defines the other side, pq, of pqr; to simplify the formulas, assume w.l.o.g. that q′ lies
on the y-axis: q′ = (0, d). The abscissa of q is then x− yx/(y − d), and the area y|rq|/2 of
the triangle pqr is

|pqr| = y2

2

(
x− a
y − b

− x

y − d

)
(1)

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:7

p

P

v

w

q

r

u

v′

w′

q′

r′

u′

f

g

qr

p = (x, y)

q′ = (0, d)

r′ = (a, b)

Figure 4 Left: Domain P with 3 holes and a point p ∈ P ;
V (p) is shaded. Triangle pqr has two rotating sides, triangles
puf, pvw′, pwg have one fixed-endpoint and one rotating side;
the other triangles have two fixed-endpoint sides. Right: |pqr| =
y|rq|/2. Green dashed curves are level sets of |pqr|.

qr

p

R

r′

σ0σ−

q

P

r

r′
p

q′

Q

σ+

R

Figure 5 Left: For p ∈ σ−,
|r′Rr| is subtracted from C while
|q′Qq| is added; for p ∈ σ0, both
areas are added; for p ∈ σ+, |r′Rr|
is added while |q′Qq| is subtracted.
Right: r′R is not fully inside P .

Next, to obtain a piecewise-constant (1+ε)-approximation of the area |V ((x, y))| visible
from point (x, y) ∈ P , we use level sets of the area function (1). For a given area A, the
equality |pqr| = A is attained along the curve γA

x = 2A/y2 + a/(y − b)
1/(y − b)− 1/(y − d) . (2)

Consider a cell σ of the visibility decomposition. We split σ with the curves γAi
for a

set A = (A1, . . . , Ai, . . .) of areas forming geometric progression with common ratio 1+ε:
Ai = (1 + ε)Ai−1. Let Si denote the set of points p for which the area of the triangle pqr is
between Ai−1 and Ai (that is, Si = {p ∈ σ : Ai−1 < |pqr| ≤ Ai} are the points between γAi−1

and γAi). We call Si a curved sector because in equation (2), we have limy→b x(y) = a for any
A, i.e., all curves γA have r′ = (a, b) as a common point. (We put a GeoGebra graphics to
play with the level sets to see how they look at https://www.geogebra.org/m/cvxvhfcf.)
We assign the same weight Ai to all points in the curved sector; this way, for i > 1 the weight
of any point p ∈ Si is within factor 1+ε of the area of the triangle pqr:

|pqr| ≤ Ai ≤ (1 + ε)|pqr| ∀p ∈ Si,∀i > 1 (3)

For every cell σ of the visibility decomposition, we overlay the level sets from each of the
O(n) triangles of V (p) for p ∈ σ. We confine the level sets to the cell, i.e., for each curve γA
use only the intersection γA ∩ σ. We call each cell of the overlay a region and set the weight
of the region to the sum of the weights of the curved sectors whose intersection forms the
region.

To bound the number of level sets used (i.e., to determine the first area A1 in the geometric
sequence A and the needed length of the sequence), assume that vertices of P have integer
coordinates and let L denote the largest coordinate. (This model and its variants are common
for WRP; in particular, the running times of known solutions for WRP [2,9–11,24,33] depend
on L.) Now, consider a triangulation T of P – any point p ∈ P lies inside a triangle τ of T
and sees all of the triangle; thus the area |V (p)| is at least the area of τ . Since τ has integer
coordinates, by Pick’s Theorem [22] the area of the triangle is at least 1/2:

|V (p)| ≥ 1/2 (4)

SoCG 2020

https://www.geogebra.org/m/cvxvhfcf

24:8 Geometric Secluded Paths and Planar Satisfiability

We are now ready to prove that it suffices to have

A1 = ε

2n (5)

Indeed, suppose V (p) consists of K triangles of areas ∆1, . . . ,∆K and let A1, . . . , AK be the
weights of the curved sectors that form the region to which p belongs; the weight of the
region is thus w(p) = A1 + · · ·+AK . Classify the triangles as “small” and “large”, with the
former having area at most A1 (and thus having p lie in the sector S1) and the latter having
area larger than A1 (with p in a sector Si for i > 1); let l = {k : ∆k > A1} be the indices
of the large triangles. By (3), for every large triangle k ∈ l, Ak ≤ (1 + ε)∆k. Since K ≤ n,
we have

w(p) =
∑
k∈l

Ak +
∑
k/∈l

Ak ≤ (1 + ε)
∑
k∈l

∆k +nA1 ≤ (1 + ε)|V (p)|+ ε
1
2 ≤ (1 + 2ε)|V (p)| (6)

where the last inequality is due to (4).

I Proposition 3. If WRP on N regions with curved boundaries of constant algebraic com-
plexity can be (1+ε)-approximated in time T (N, 1

ε), then a (1 + ε)2-approximation to the
minimum integral exposure path can be found in time T (n

10

ε2 log2(nL), 1
ε).

Proof. For an upper bound on the sector weight, note that obviously ∀p ∈ P, |V (p)| ≤ L2.
Hence, the number of needed level sets is at most log1+ε(2nL2) = O(1

ε log(nL)). The level
sets are defined for each of the O(n3) triples r′, q′, q̄r where r′, q′ are vertices and q̄r is the
side of P containing qr; thus overall there are O(n

3

ε log(nL)) level set curves. Since each
curve γA has constant algebraic degree (cf. (2)), any two curves intersect O(1) times, so the
complexity of the overlay of the level sets inside the cell σ of the visibility decomposition is
O((n

3

ε)2 log2(nL)). Since there are O(n4) cells, our construction splits P into O(n
10

ε2 log2(nL))
regions of constant weight.

By (6), region weights approximate the visibility area to within 1+ε (use ε:=ε/2 to get
rid of the factor 2 in front of ε); hence finding a (1+ε)-approximate solution to the WRP
on our regions provides a (1 + ε)2-approximation to the minimum integral exposure path.
Formally, let π∗ be the minimum integral exposure path (the optimal solution to Integral
Geometric Secluded Path), let π̄ be the minimum-weight path through our regions (the
optimal solution to WRP) and let π be the (1+ε)-approximate solution to WRP; then∫
π

|V (p)|dp ≤
∫
π

w(p) dp ≤ (1+ε)
∫
π̄

w(p) dp ≤ (1+ε)
∫
π∗
w(p) dp ≤ (1+ε)2

∫
π∗
|V (p)|dp

(7)

where the first inequality is due to the left inequality of (3), the second is because π
approximates π̄, the third is because π̄ is optimal w.r.t. w, and the last one is due to the
right inequality in (3). J

3.2 A detailed implementation
Applicability of Proposition 3 remains questionable due to absence of an algorithm for WRP
with curved regions boundaries. In this section we present another, direct approach to reduce
our problem to WRP on a polygonal subdivision. We refine the visibility decomposition
(without affecting the asymptotic complexity) and recalculate the area functions so that they
have linear levels. This way, the regions in the overlay of the level sets are convex, so existing
WRP solutions can be applied directly.

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:9

r

p = (x, y)

R

r′ = O

r

p

r′

Ai

Ai−1

+

r′1

r1
−

Aj−1
Aj

R R1

h

Figure 6 Left: Green dashed are level sets of the area function ∆r (9). Right: Ai contributes
positively to w(p) while Aj comes with minus into w(p), because for p in this region, r′ ∈ ⊕
(r′Rr ∈ V (p)) while r′1 ∈ 	 (r′1R′r′1 /∈ V (p)).

Specifically, we differentiate between fixed-endpoint and rotating sides of the triangles
into which V (p) is split: the former end at a vertex of P while the latter rotate around a
vertex if p moves (see Fig. 4, left). Triangles whose both sides are fixed-endpoint are easy to
handle: (while the area of each individual triangle changes as p moves,) the total area of all
such triangles remains the same (moving p just redistributes the area between the triangles,
“stealing” from some and “giving” to others). We therefore call such triangles fixed.

Consider now a triangle pqr whose both sides pq, pr are rotating around vertices q′, r′
resp. (this is the most general case: if one of the sides, say, pq′ is fixed, we can just assume
q = q′); assume that rq is horizontal (Fig. 5, left). We refine the visibility decomposition
by extending the vertical segments through each of r′, q′ maximally up and down; let R,Q
be the feet of the perpendiculars dropped from r′ and q′ resp. onto the supporting line of
pq (any of r′R, q′Q may lie only partially inside P , as in Fig. 5, right – this is not an issue).
Note that |Rr′pq′Q| may be added to the fixed-triangles areas – the total area of all fixed
triangles plus the areas of the pentagons Rr′pq′Q for all the triangles with p as the apex
does not depend on p (while p remains in the same cell). Denote this total area by C. The
area |V (p)| is obtained from C by adding/subtracting the areas of the triangles r′Rr for
all vertices r′ on which a side of a triangle of V (p) rotates – whether |r′Rr| is added or
subtracted depends on whether the triangle is in V (p) or not:

|V (p)| = C +
∑
r′∈⊕

∆r −
∑
r′∈	

∆r (8)

where ∆r = |r′Rr| and ⊕ (resp.) is the set of vertices whose triangles r′Rr are visible
(resp. invisible) from p.

Assume that r′ is the origin O and that the supporting line of rR is the horizontal line
y = −h, and let p = (x, y) with x ≥ 0 (Fig. 6, left). Then

∆r = h2

2
x

y
(9)

and a level set γA = {p = (x, y) : ∆r = A} of the function (9) is a ray (emanating from the
origin) of constant x/y: since the height r′R of the triangle is fixed, ∆r is constant whenever
r is fixed. As in Section 3.1, we draw the rays for a set A = (A1, . . . , Ai, . . .) of areas forming
geometric progression with common ratio 1+ε and assign the weight Ai to all points in the
sector Si = {p ∈ σ : Ai−1 < ∆r ≤ Ai} between γAi−1 and γAi

(we again use the weight
A1 = ε/(2n) for points between γ0 and γA1). Also as in Section 3.1, we define a region as a
cell in the overlay of the rays emanating from the vertices r′ of P . Finally, the weight w(p)
of any point p in a region is determined by C and the weights of the sectors forming the
region: for a vertex r′ ∈ ⊕ the weights of the sectors of r′ are added to regions weights; for a
vertex r′ ∈ 	, the weights are subtracted (Fig. 6, right).

SoCG 2020

24:10 Geometric Secluded Paths and Planar Satisfiability

The fact that our subdivision into regions provides a (1+ε)-approximation to |V (p)| can
be argued similarly to Section 3.1:

I Theorem 4. If WRP on N regions can be (1+ε)-approximated in time T (N, 1
ε), then

a (1 + ε)3-approximation to the minimum integral exposure path can be found in time
T (n

4

ε log(nL), 1
ε).

4 On planar optimal satisfiability

In this section we return to the (non-integral) Geometric Secluded Path problem
(Section 2) and elaborate on its connections to planar satisfiability, identifying, in particular,
polynomially solvable and hard versions of planar minSAT and maxSAT.

For a SAT instance with variables V and clauses C, the graph G = (V ∪ C,E) of the
instance is the bipartite graph whose vertices are the variables and the clauses, and whose
edges connect each variable to a clause whenever the variable or its negation appears in
the clause. In a planar SAT, G is planar. Planar SAT has been the staple starting point
for hardness reduction in computational geometry. In many cases, hardness of geometric
problems was proved using restricted hard versions of planar SAT, such as:

V-cycle SAT: G remains planar after adding a cycle through V (G is no longer bipartite)
VC-cycle SAT: G remains planar after adding a cycle through V ∪ C (this version, as well

as V-cycle SAT were defined already in the original paper on planar SAT [28])
Separable SAT: A further restriction of V-cycle SAT: for any variable x, the V-cycle separates

clauses containing x from the clauses containing x; in other words, no variable x has
an x-containing clause and a x-containing clause on the same side of the V-cycle (this
version is from [28, Lemma 1], but has no name there; we take the name from [40])

Monotone SAT: In any clause, all variables are either non-negated or all variables are
negated (this version is defined for general, not only for planar SAT).

See [15,36,40] for in-depth treatment of restricted planar SAT versions and their uses.
When proving hardness of Geometric Secluded Path in Section 2 (Theorem 1) we

spent considerable effort on dealing with crossings between variable–clause connectors. A
natural question is why we did not reduce from planar minSAT. The answer is that to avoid
crossings, our reduction should better start from separable minSAT (Fig. 7, left), so that for
any variable x, the connections from literal x reside on one side of the Christmas tree and
the connections from x – on its other side (otherwise, a connection from, say, x would cross
the Christmas tree itself; Fig. 7, middle). However:

I Theorem 5. Separable minSAT can be solved in polynomial time.

Proof. Let A be the clauses on one side of the variable chain and B = C \A – the clauses
on the other side. Construct the “clause conflict” graph H [30] whose vertices are the clauses
and whose edges connect two clauses whenever one contains the negation of a literal in the
other (Fig. 7, right). For any edge, at least one of the conflicting clauses will be satisfied in
any truth assignment; thus, every edge in the graph will be incident to a satisfied clause. In
particular, solving the minSAT is equivalent to finding minimum vertex cover (VC) in H.
By the separability, for any variable x, all clauses with x are in A and all clauses with x are
in B (or vice versa); thus, any edge of H connects a clause in A with a clause in B, i.e., H is
bipartite, and the VC in it can be found in polynomial time. J

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:11

t

s

x2 x2

x3

x1x1

x3 t

s

x2 x2

x3

x1x1

x3

x1 ∨ x3

x1 ∨ x2

x1 ∨ x2

x2 ∨ x3A

B

Figure 7 Left: Reduction from separable minSAT to Geometric Secluded Path would have
no crossings (note that some variables have their negations on one side of the Christmas tree, while
others – on the other; this is fine, since the definition of separable SAT requires separability locally
for each variable; the separability does not have to be consistent across all variables). Middle: In
non-separable minSAT, clause x1 ∨ x2 could be seen not only from s-t path via x2 but also from s-t
path via x2 due to the crossing with the Christmas tree. Right: the graph H (which happens to be
K2,2) for the instance on the left.

Note that the above proof does not use the planarity. In particular, monotone minSAT can
be solved similarly: the clauses with all positive variables can form the set A and the clauses
with all negative variables – set B in the graph H from the proof. We thus have:

I Corollary 6. Monotone minSAT (planar or not) can be solved in polynomial time.

In the full version [6], we prove NP-hardness of V- and VC-cycle min2SAT, as well as hardness
of all four versions of planar max2SAT (these do not have relation to secluded paths; we give
the proofs just for completeness of our treatment of planar optSAT):

I Theorem 7. The following planar versions of max2SAT are NP-hard: V-cycle, VC-cycle,
monotone, separable. V- and VC-cycle min2SAT are NP-hard.

5 Conclusion

We studied minimum-exposure paths in polygonal domains. We showed that minimizing
seen area is hard in polygons with (large number of) holes, while in polygons with a small
number of holes the s-t path that sees least area can be found in polynomial time. We also
gave a PTAS for finding an s-t path minimizing the integral of the seen area along the path.
Finally, we discussed the connection between the geometric secluded paths and optimizing
planar satisfiability, and identified hard and easy cases of planar optSAT (while the planar
optSAT variants, which we proved hard, were not used in reductions in this paper, we hope
that they may be useful in other settings). We conclude with some remarks on each of the
problems studied.

Minimizing seen area and Secluded paths in graphs

Recall that in Secluded Path (the original, graph problem) the goal is to find an s-t path
adjacent to fewest vertices of the graph (vertices of the path itself are also counted as adjacent
to the path). The problem was proved hard in [8]. Our proof of hardness of Geometric
Secluded Path (Theorem 1) gives an alternative proof of hardness of Secluded Path
in graphs: simply remove equalizers and leakage-blocking chambers from Fig. 1 (no need
to care about midway intersections and all the other geometric technicalities) and add a
large number of extra vertices adjacent to each clause vertex (Fig. 8, left). While our proof
is simpler than the ones in [8], it is less powerful because Chechik et al. [8] showed also
hardness of approximation. In fact, the reduction in [8], shown here on Fig. 8, right, may
also be seen as reduction from minSAT (in view of the connection between minSAT and VC

SoCG 2020

24:12 Geometric Secluded Paths and Planar Satisfiability

t

s

xi xi

Figure 8 Left: Our reduction from min2SAT to Secluded Path. To avoid high-degree vertices
at the clauses (hollow), the s-t path will go via the Christmas tree, setting the variables; the number
of seen (i.e., adjacent) clause vertices is the number of satisfied clauses. Right: The reduction from
VC in a graph G [8, Fig. 3]: the new graph G′ has new vertices s and t, and an s-t path (thin blue)
crossing all edges (thick blue) is added to G, with every crossing (lightgreen rhombi) turned into a
gadget (bottom) where the s-t path chooses which vertex of G (red) the path will see; leaking into
the original vertices of G (red) is prevented in G′ by attaching high-weight vertices (black).

in the clause conflict graph – see proof of Theorem 5): the choices that the s-t path makes
in the edges of the original graph G may be seen as setting the truth values to the variables
(similarly to how the path through our Christmas tree does it).

A natural question, arising in view of the effort we spent dealing with the crossings in
Section 2 when proving hardness of Geometric Secluded Path (Theorem 1), is why we
did not reduce from Secluded Path in planar graphs. The answer is that we are not aware
of a hardness result for the problem in planar graphs. Indeed, even though Chechik et al.’s
hardness proof for general graphs (refer to Fig. 8, right) could reduce from VC in a planar
graph G, in order to keep the planarity also in the resulting graph G′ (in which the secluded
s-t path is sought), the added path (crossing all edges of G) must cross each edge exactly
once, meaning that it is an Euler path in the planar dual of G, meaning that the dual has
vertices of even degree only, meaning that G has faces with even number of edges, meaning
it has only even cycles, meaning it is bipartite, meaning VC is polynomial in it. (Strictly
speaking, since we need only an Euler path through the edges, not Euler cycle, G may have
2 odd faces – we believe VC is still polynomial in such graphs).

The PTAS for integral seen area minimization

Several remarks on the complexity of our solution:
A faster algorithm for our problem could potentially be obtained by using a “1D” dis-
cretization of edges of the visibility decomposition (instead of creating a 2D “grid” of
regions, as we do), as done in many algorithms for WRP (and related problems on mini-
mizing path integral [1,45]). Such a solution, however, would require knowing the optimal
path connecting points on the boundary of the same cell of the decomposition. This, may
be quite complicated, as it amounts to minimizing the integral of a function with Ω(n)
terms, for which an analytical solution might not exist (though an approximation may be
possible).
An algorithm for WRP with regions whose boundaries are curves of constant algebraic
degree could be interesting and would lead to a solution of our problem just using the
generic scheme from Section 3.1. The biggest stumbling block for the design of such an

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:13

s t

Figure 9 Shortest s-t path (solid) sees the niches behind s and t for its whole length; stepping to
the side (dashed path) decreases the integral exposure.

algorithm may be the non-convexity of the regions, implying that a segment between two
points on the boundary of a region is not guaranteed to stay inside the region. It may be
possible that WRP techniques could be adapted to handle our regions from Section 3.1
by approximating their boundaries with piecewise-linear functions (since we are looking
only for a (1+ε)-optimal path, the fineness of such piecewise-linear approximation would
also be controlled by ε).
Since our problem is an extension of WRP to the case of continuously changing weight,
it may be tricky to establish hardness of the problem, as the complexity of WRP has
remained open for many years (see [14] for a recent proof of algebraic complexity of
WRP). Differently from 0/1 exposure (Theorem 3), even in simple polygons the shortest
path does not necessarily minimize the integral exposure (Fig. 9).

Optimal 2-satisfiability

Few observations on min2SAT and max2SAT:
Monotone minSAT is an example of the tractable class of submodular function minimiza-
tion [23].
Planar max2SAT has a PTAS [13, Thm. 8.8].
If in a separable max2SAT with VC cycle, the cycle also separates the variables at
the clauses (i.e., if at each clause the connections from the two variables come from
the different sides of the cycle), then the problem can be solved in polynomial time by
reduction to separable min2SAT.

References
1 Pankaj K Agarwal, Kyle Fox, and Oren Salzman. An efficient algorithm for computing

high-quality paths amid polygonal obstacles. ACM Transactions on Algorithms (TALG),
14(4):46, 2018.

2 Lyudmil Aleksandrov, Anil Maheshwari, and J-R Sack. Determining approximate shortest
paths on weighted polyhedral surfaces. Journal of the ACM (JACM), 52(1):25–53, 2005.

3 Esther M Arkin, Alon Efrat, Christian Knauer, Joseph Mitchell, Valentin Polishchuk, Günter
Rote, Lena Schlipf, and Topi Talvitie. Shortest path to a segment and quickest visibility
queries. Journal of Computational Geometry, 7(2):77–100, 2016. Special issue on SoCG’15.

4 Boris Aronov, Alon Efrat, Ming Li, Jie Gao, Joseph SB Mitchell, Valentin Polishchuk, Boyang
Wang, Hanyu Quan, and Jiaxin Ding. Are friends of my friends too social? limitations
of location privacy in a socially-connected world. In Proceedings of the Eighteenth ACM
International Symposium on Mobile Ad Hoc Networking and Computing, pages 280–289. ACM,
2018.

5 Boris Aronov, Leonidas J Guibas, Marek Teichmann, and Li Zhang. Visibility queries and
maintenance in simple polygons. Discrete & Computational Geometry, 27(4):461–483, 2002.

6 Kevin A. Buchin, Valentin Polishchuk, Leonid Sedov, and Roman Voronov. Geometric secluded
paths and planar satisfiability. CoRR, abs/1902.06471, 2019. arXiv:1902.06471.

SoCG 2020

http://arxiv.org/abs/1902.06471

24:14 Geometric Secluded Paths and Planar Satisfiability

7 Svante Carlsson, Håkan Jonsson, and Bengt Nilsson. Finding the shortest watchman route in
a simple polygon. Discrete & Computational Geometry, 22(3):377–402, 1999. doi:10.1007/
PL00009467.

8 Shiri Chechik, Matthew P Johnson, Merav Parter, and David Peleg. Secluded connectivity
problems. Algorithmica, 79(3):708–741, 2017.

9 Siu-Wing Cheng, Jiongxin Jin, and Antoine Vigneron. Triangulation refinement and approxi-
mate shortest paths in weighted regions. In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on Discrete algorithms, pages 1626–1640. SIAM, 2014.

10 Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Approximate shortest
paths in anisotropic regions. SIAM Journal on Computing, 38(3):802–824, 2008.

11 Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Querying approximate
shortest paths in anisotropic regions. SIAM Journal on Computing, 39(5):1888–1918, 2010.

12 Otfried Cheong, Alon Efrat, and Sariel Har-Peled. Finding a guard that sees most and a shop
that sells most. Discrete & Computational Geometry, 37(4):545–563, 2007.

13 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of boolean
constraint satisfaction problems, volume 7. SIAM, 2001.

14 Jean-Lou De Carufel, Carsten Grimm, Anil Maheshwari, Megan Owen, and Michiel Smid.
A note on the unsolvability of the weighted region shortest path problem. Computational
Geometry, 47(7):724–727, 2014.

15 Erik Demaine. Algorithmic lower bounds: Fun with hardness proofs. MIT OCW.
16 Hristo N Djidjev. Efficient computation of minimum exposure paths in a sensor network field.

In International Conference on Distributed Computing in Sensor Systems, pages 295–308.
Springer, 2007.

17 Hao Feng, Lei Luo, Yong Wang, Miao Ye, and Rongsheng Dong. A novel minimal exposure
path problem in wireless sensor networks and its solution algorithm. International Journal of
Distributed Sensor Networks, 12(8):1550147716664245, 2016.

18 Fedor V Fomin, Petr A Golovach, Nikolay Karpov, and Alexander S Kulikov. Parameterized
complexity of secluded connectivity problems. Theory of Computing Systems, 61(3):795–819,
2017.

19 Laxmi Gewali, Alex C. Meng, Joseph S. B. Mitchell, and Simeon C. Ntafos. Path planning in
0/1/infinity weighted regions with applications. In Herbert Edelsbrunner, editor, Proceedings
of the Fourth Annual Symposium on Computational Geometry, Urbana-Champaign, IL, USA,
June 6-8, 1988, pages 266–278. ACM, 1988.

20 Subir Ghosh. Visibility Algorithms in the Plane. Cambridge University Press, New York, NY,
USA, 2007.

21 J.E. Goodman and J. O’Rourke, editors. Handbook of Discrete and Computational Geometry.
Discrete Mathematics and Its Applications. Taylor & Francis, 2nd edition, 2004.

22 Branko Grünbaum and Geoffrey C Shephard. Pick’s theorem. The American Mathematical
Monthly, 100(2):150–161, 1993.

23 Dorit S Hochbaum. Complexity and approximations for submodular minimization problems
on two variables per inequality constraints. Discrete Applied Mathematics, 250:252–261, 2018.

24 Rajasekhar Inkulu and Sanjiv Kapoor. A polynomial time algorithm for finding an approximate
shortest path amid weighted regions. Preprint, 2015.

25 Irina Kostitsyna, Maarten Löffler, Valentin Polishchuk, and Frank Staals. On the complexity
of minimum-link path problems. JoCG, 8(2):80–108, 2017. Special Issue on SoCG’16. URL:
http://jocg.org/index.php/jocg/article/view/328, doi:10.20382/jocg.v8i2a5.

26 Niel Lebeck, Thomas Mølhave, and Pankaj K Agarwal. Computing highly occluded paths on a
terrain. In Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 14–23. ACM, 2013.

27 Niel Lebeck, Thomas Mølhave, and Pankaj K Agarwal. Computing highly occluded paths using
a sparse network. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 3–12. ACM, 2014.

https://doi.org/10.1007/PL00009467
https://doi.org/10.1007/PL00009467
http://jocg.org/index.php/jocg/article/view/328
https://doi.org/10.20382/jocg.v8i2a5

K. Buchin, V. Polishchuk, L. Sedov, and R. Voronov 24:15

28 David Lichtenstein. Planar formulae and their uses. SIAM journal on computing, 11(2):329–343,
1982.

29 Max-Jonathan Luckow and Till Fluschnik. On the computational complexity of length-and
neighborhood-constrained path problems. arXiv preprint, 2018. arXiv:1808.02359.

30 Madhav V Marathe and SS Ravi. On approximation algorithms for the minimum satisfiability
problem. Information Processing Letters, 58(1):23–29, 1996.

31 J. Mitchell, G. Rote, and G. Woeginger. Minimum-link paths among obstacles. Alg-ca’92,
8(1):431–459, 1992.

32 Joseph Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link paths revisited.
CGTA, 47(6):651–667, 2014. doi:10.1016/j.comgeo.2013.12.005.

33 Joseph SB Mitchell and Christos H Papadimitriou. The weighted region problem: finding
shortest paths through a weighted planar subdivision. Journal of the ACM (JACM), 38(1):18–
73, 1991.

34 Joseph O’Rourke. Art Gallery Theorems and Algorithms. The International Series of Mono-
graphs on Computer Science. Oxford University Press, New York, NY, 1987.

35 Christos H Papadimitriou. An algorithm for shortest-path motion in three dimensions.
Information Processing Letters, 20(5):259–263, 1985.

36 Alexander Pilz. Planar 3-sat with a clause/variable cycle. arXiv preprint, 2017. arXiv:
1710.07476.

37 Valentin Polishchuk and Leonid Sedov. Gender-aware facility location in multi-gender world.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 100. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

38 Yuning Song, Liang Liu, Huadong Ma, Athanasios V Vasilakos, et al. A biology-based
algorithm to minimal exposure problem of wireless sensor networks. IEEE Trans. Network
and Service Management, 11(3):417–430, 2014.

39 Subhash Suri. A linear-time algorithm for minimum link paths inside a simple polygon.
Computer Vision, Graphics and Image Processing, 35(1):99–110, 1986.

40 Simon Tippenhauer and Wolfgang Muzler. On planar 3-sat and its variants. Fachbereich
Mathematik und Informatik der Freien Universitat Berlin, 2016.

41 Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computa-
tional geometry. Chapman and Hall/CRC, 2017.

42 René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized algorithms and
data reduction for safe convoy routing. In 18th Workshop on Algorithmic Approaches for
Transportation Modelling, Optimization, and Systems, ATMOS 2018, August 23-24, 2018,
Helsinki, Finland, pages 10:1–10:19, 2018.

43 Giacomino Veltri, Qingfeng Huang, Gang Qu, and Miodrag Potkonjak. Minimal and maximal
exposure path algorithms for wireless embedded sensor networks. In Proceedings of the 1st
international conference on Embedded networked sensor systems, pages 40–50. ACM, 2003.

44 Haitao Wang. Quickest visibility queries in polygonal domains. In Boris Aronov and Matya
Katz, editors, 33rd International Symposium on Computational Geometry, SoCG 2017, July
4-7, 2017, Brisbane, Australia, volume 77 of LIPIcs, pages 61:1–61:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

45 Ron Wein, Jur Van Den Berg, and Dan Halperin. Planning high-quality paths and corridors
amidst obstacles. The International Journal of Robotics Research, 27(11-12):1213–1231, 2008.

46 Ron Wein, Jur Van Den Berg, and Dan Halperin. Planning near-optimal corridors amidst
obstacles. In Algorithmic Foundation of Robotics VII, pages 491–506. Springer, 2008.

47 Ron Wein, Jur P Van den Berg, and Dan Halperin. The visibility–voronoi complex and its
applications. Computational Geometry, 36(1):66–87, 2007.

SoCG 2020

http://arxiv.org/abs/1808.02359
https://doi.org/10.1016/j.comgeo.2013.12.005
http://arxiv.org/abs/1710.07476
http://arxiv.org/abs/1710.07476

The Next 350 Million Knots
Benjamin A. Burton
The University of Queensland, Brisbane, Australia

Abstract
The tabulation of all prime knots up to a given number of crossings was one of the founding problems
of knot theory in the 1800s, and continues to be of interest today. Here we extend the tables from
16 to 19 crossings, with a total of 352 152 252 distinct non-trivial prime knots.

The tabulation has two major stages: (1) a combinatorial enumeration stage, which involves
generating a provably sufficient set of candidate knot diagrams; and (2) a computational topology
stage, which involves identifying and removing duplicate knots, and certifying that all knots that
remain are topologically distinct. In this paper we describe the many different algorithmic components
in this process, which draw on graph theory, hyperbolic geometry, knot polynomials, normal surface
theory, and computational algebra. We also discuss the algorithm engineering challenges in solving
difficult topological problems systematically and reliably on hundreds of millions of inputs, despite
the fact that no reliably fast algorithms for these problems are known.

2012 ACM Subject Classification Mathematics of computing → Topology

Keywords and phrases Computational topology, knots, 3-manifolds, implementation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.25

Supplementary Material https://regina-normal.github.io/data.html

Funding Supported by the Australian Research Council, Discovery Project DP150104108.

1 Introduction

Knot tabulation is one of the oldest problems in knot theory, dating back to the 1800s when
it was thought to be fundamental to the structure of atoms [1]. The last major tabulation
work in the literature dates back to 1998, where Hoste, Thistlethwaite and Weeks enumerate
all 1 701 936 prime knots with ≤ 16 crossings [23]. In this paper we make the next major leap,
tabulating all 352 152 252 topologically distinct non-trivial prime knots with ≤ 19 crossings.

The history of knot theory dates back to Gauss [1], but the first serious tabulation was
done by Tait, Kirkman and Little from 1876–1899, culminating in Little’s tables for ≤ 10
crossings [25]. Conway extended the tables to 11 crossings in the 1960s [10], and in 1974
Perko unearthed a duplicate 10-crossing pair that had until then gone unnoticed. Dowker
and Thistlethwaite extended them to 13 crossings in the 1980s [14], followed by Hoste,
Thistlethwaite and Weeks’ most recent 16-crossing tables in 1998.

Our goal then is to build a census of all non-trivial prime knots that can be drawn
with ≤ 19 crossings. Each knot should appear in the census exactly once, up to topological
equivalence and/or reflection, using a diagram that uses the fewest crossings possible.

We build our census in two stages. In the first stage, described in section 3, we enumerate
a set of candidate diagrams that are guaranteed to include every knot in the census, but
which may also include unwanted (non-prime) knots and/or duplicates (where the same
topological knot appears with different diagrams). In the second stage, described in sections 4–
6, we remove duplicate and unwanted knots from our set of candidates, and certify that all
remaining knots are prime and topologically distinct.

© Benjamin A. Burton;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.SoCG.2020.25
https://regina-normal.github.io/data.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 The Next 350 Million Knots

cos
Figure 1 Examples of knot projections.

Computationally, the first stage is enormously easier than the second, both in human
effort and computational resources. The first stage uses only combinatorial tools, and took
just a few days on a single machine. The second stage involves combinatorics, hyperbolic
geometry, knot polynomials, normal surface theory, and computational algebra, and took
several months (walltime) with the assistance of a cluster of a few hundred machines.

This project has motivation beyond the “popular science” aspect of knot tabulation
(which of course is important for different reasons). An immediate use is to give topologists
access to richer data sets for experimentation and exploration. More broadly, computational
low-dimensional topology has made enormous progress in recent decades – despite a landscape
of algorithmic problems that often range from exponential to tower-of-exponentially slow,
are often enormously complex, sometimes unimplementable and occasionally undecidable,
practitioners are nevertheless equipping themselves with diverse and sophisticated software
tools that can solve these problems effectively in practice. This project showcases how far we
have come: we are able to systematically solve complex and difficult problems with at some
stages billions of inputs, with not one case left unresolved. In a sense, this project offers a
blueprint for what large-scale topological computation can look like going into the future.

The bulk of the code is implemented as part of Regina [4], and can be downloaded from
the master branch of the git repository [7]. We also make significant use of other software,
notably SnapPy for hyperbolic geometry [13], GAP for computational algebra [18], and
plantri for graph enumeration [3], and we note in sections 3–6 where these tools are used.

The final census includes 352 152 252 knots, including 352 151 858 hyperbolic knots, 380
satellite knots, and 14 torus knots. The full tables, including a more detailed statistical
breakdown, can be downloaded from https://regina-normal.github.io/data.html.

The computations described here drawn on many diverse branches of mathematics, which
we cannot hope to describe properly in this paper. Instead we try to give the flavour of each
technique as it is used, and offer the reader references for further reading.

2 Preliminaries

A knot is a piecewise-linear simple closed curve in R3, formed from finitely many line segments.
Two knots are topologically equivalent if one can be continuously deformed into the other in
R3 without introducing self-intersections. A non-trivial knot is one that cannot be deformed
into a simple planar polygon.

We typically represent a knot using a diagram: a projection of the knot onto the plane
with only finitely many double points called crossings at which two “strands” of the projection
cross transversely, and with no other multiple points at all. See Figure 1 for examples.

The composition of knots K and L is formed by cutting them open and connecting them
with a bridge, as shown in Figure 2; a prime knot is one that cannot be expressed as the
composition of two non-trivial knots.

Any two diagrams that represent equivalent knots can be connected through a sequence
of Reidemeister moves: R1 (twist/untwist); R2 (overlap or pull apart two strands); and R3
(move a strand over a crossing). See Figure 3 for illustrations.

https://regina-normal.github.io/data.html

B.A. Burton 25:3

Figure 2 The composition of two knots.

Q r Y K
Figure 3 The three Reidemeister moves.

Knots have a close relationship with 3-manifolds. If we extend R3 with a point at infinity
to form the 3-sphere S3, then the complement of a knot K is the 3-manifold K formed by
drilling out a small regular neighbourhood of K from S3. Two knots are equivalent if and
only if their complements are topologically equivalent; that is, homeomorphic [19].

Thurston’s work [31] shows that every knot is exactly one of a hyperbolic knot, a torus
knot, or a satellite. Hyperbolic knots have complements that admit a complete hyperbolic
metric; torus knots are drawn on an unknotted torus (Figure 4, left); and satellites essentially
embed one non-trivial knot inside the neighbourhood of another (Figure 4, right).

3 Stage one: Enumeration

The first stage of building our census is to enumerate a set of candidate diagrams, guaranteed
to include each knot from our census at least once.

We do this by first building a candidate set of model graphs where each crossing becomes
a vertex of degree 4. We reduce this set of graphs using a notion of flype equivalence, and
then for each graph on n vertices we (essentially) resolve the vertices into crossings in each
of the 2n possible ways. The details follow in sections 3.1–3.3 below.

3.1 Enumeration of model graphs
Here we enumerate our initial set of candidate model graphs. These are all planar 4-regular
graphs, and we enumerate not just the graphs but also their possible planar embeddings.

Our first observation is that embedding a graph in the plane is equivalent to embedding
the graph in the sphere and then selecting one of the resulting cells to be the “outer cell” (i.e.,

i e
Figure 4 A torus knot and a satellite knot.

SoCG 2020

25:4 The Next 350 Million Knots

i O
Figure 5 Converting a spherical embedding to a planar embedding.

e
Figure 6 Cells that are not allowed for embeddings of model graphs.

the exterior of the planar embedding); see Figure 5. For our census, it does not matter which
cell on the sphere becomes the outer cell: choosing a different outer cell simply corresponds
to rotating the knot through 3-dimensional space. We can therefore enumerate 4-regular
graphs and their embeddings in the sphere, which gives substantially less output.

We put further conditions on this enumeration:
1. We do not allow a cell with just one edge, since any resulting knot diagram can be

simplified with move R1 (Figure 6, left).
2. We do not allow a cell that touches itself along a vertex, since any resulting knot diagram

can be “untwisted” to use fewer crossings (Figure 6, centre).
3. We do not allow two cells that touch along multiple edges, since any resulting knot

diagram would be a composition of two knots, and so would either be non-prime or could
be simplified to fewer crossings (Figure 6, right).

4. We insist that, if we follow a path through the graph by always exiting a vertex through
the opposite edge from which we enter, then this path must traverse the entire graph.
This ensures that any resulting diagram represents a single connected knot, and not a
link with multiple disconnected components.

We perform this graph enumeration using the software plantri [3]. Conditions 1–3 are
supported natively through plantri options -c2m2, and for condition 4 we extend plantri
with a simple filter that is tested before each graph is output.

The resulting set: 823 708 396 graphs with spherical embeddings.

3.2 Flype equivalence
A flype is a move that involves twisting a section of a knot diagram. Specifically, we begin
with a connected region A of a diagram that has exactly four outgoing strands, and where
two of these strands immediately meet to form a crossing. The move involves twisting region
A upside-down, so that the original crossing disappears, and instead the other two outgoing
strands form a new crossing in its place. See Figure 7 (left) for an illustration. We can define
a similar move on a model graph, as shown in Figure 7 (right).

B.A. Burton 25:5

X A I try

A try

Figure 7 Performing a flype on a knot and a model graph.

A a Q I
Figure 8 Forced resolutions for subgraphs.

Tait first observed that, if two model graphs G,H are related by a flype, then any knot
diagram modelled by G can be flyped into a knot diagram modelled by H with exactly the
same number of crossings [23]. We can therefore partition our model graphs into equivalence
classes where the graphs in each class are related by sequences of flypes, and it is enough to
use just one representative from each class to build our census of knots.

Because we are dealing with hundreds of millions of graphs, we implement this using union-
find [11]. The trade-off is that we need to keep all model graphs in memory simultaneously:
for 19 crossings and heavily optimised data structures this required 41GB of RAM.

The resulting set: 51 280 976 graphs with spherical embeddings.

3.3 Resolving into knot diagrams
For each vertex v of each model graph G, there are two ways of resolving v into a crossing
(according to which strand runs above or below the other). This means that, if the graph G
has n vertices, it resolves into 2n knot diagrams.

This expands the size of our candidate set by many orders of magnitude, and so even at
this early stage we implement some simple heuristics to reduce the output size:

Whenever we have a subgraph σ that is (i) two parallel edges or (ii) two parallel edges
that form a triangle with a third crossing, we resolve the subgraph in one of the two ways
that does not allow a simplification using move R2 or a twist; see Figure 8. As a result,
we use only two of the total (four or eight) possible resolutions of S.
For each knot diagram K, we perform a short random sequence of R3 moves. If we ever
obtain a diagram that can be simplified using R1 or R2, we delete K from our output.

The resulting set: 21 004 314 525 candidate knot diagrams.

4 Stage two: Uniqueness

In the second stage, we need to (i) remove duplicates, i.e., different diagrams that represent
the same topological knots; (ii) remove non-prime knots (if any); and (iii) certify that all
remaining knots are topologically distinct.

In hindsight, as we start stage two, our candidate set is enormous – roughly 60 times
the final size of the census. Even disk space is now a serious problem: with compact
representations of diagrams, the candidate set still consumes over 1TB of space. As a result:

We interleave tasks (i)–(iii) throughout stage two. This is because computational topology
often exhibits a time/power trade-off (e.g., how fast an invariant is to compute versus how
well it distinguishes different knots). How we choose to resolve this trade-off must change
as our candidate set slowly shrinks but its members grow more resistant to simpler tests.
Therfore we must choose the order of our individual tests carefully.

SoCG 2020

25:6 The Next 350 Million Knots

Many of our algorithms work in a single read-write pass through the candidate set. We
cannot hold all of our candidates in memory at once (so techniques such as union-find
are completely out of reach). Even simple operations such as sorting become extremely
expensive, and so must be used sparingly.

Here in section 4 we describe an initial set of operations that we perform on all candidate
diagrams. The last of these initial operations splits the candidates into hyperbolic vs non-
hyperbolic knots; sections 5 and 6 then outline the very different ways that we handle the
remaining candidates in each category.

4.1 Exhaustive simplification via R3 moves

First we partition our candidates into equivalence classes, where the knot diagrams in each
class are related by sequences of R3 moves (which do not change the number of crossings).

We do this as follows:
For each input diagram K, we (i) use a breadth-first search to generate all possible
diagrams that can be obtained through R3 moves; and then (ii) replace K with the
lexicographically smallest of these diagrams. Essentially, this replaces K with a canonical
representative of its equivalence class.
This is computationally wasteful: if an equivalence class has k members then we generate
the entire class k times over. We do it this way because, as described above, more
sophisticated techniques such as union-find require too much memory, and this method
works in a single read-write pass through the entire data set.
In our breadth-first search we need a way to identify if a knot diagram has been seen before.
For this we use Regina’s knot signatures: short strings computed in small polynomial
time from a knot diagram that are the same for two diagrams if and only if the diagrams
are combinatorially isomorphic. Our notion of isomorphism here treats knot diagrams as
embedded in the sphere, not in the plane; see section 3.1 for details.
We then sort the resulting list of diagrams lexicographically. This effectively groups
together the members of each equivalence class by writing repeated copies of the same
canonical representative, and we finish by stripping out any repeats that we see.
With very tightly engineered data structures and a specialised large memory machine,
we were able to do this sort-and-strip in memory, not on disk. However, just this
sort-and-strip required 678GB of RAM, and took a little over a day to run.

The resulting set: 7 205 537 550 candidate knot diagrams.

4.2 Attempting canonical triangulations

Next we make our first use of tools from hyperbolic geometry (despite not yet knowing which
of our knots are hyperbolic). For this we work with the software SnapPy [13].

It is known that every hyperbolic 3-manifold with torus boundary has a canonical
cell decomposition [15]. With appropriate subdivision this can be made into a canonical
triangulation, and Weeks describes an algorithm for computing this triangulation that, whilst
not guaranteed to terminate, works effectively in practice [32].

For each candidate knot K, we: (i) build the complement K, (ii) ask SnapPy to find a
complete hyperbolic metric on this 3-manifold K, and if it is successful then we (iii) ask
SnapPy to compute the canonical triangulation τ of K.

B.A. Burton 25:7

Several things can go wrong here. First, SnapPy uses numerical algorithms with floating
point approximations1, and so it may incorrectly decide that K is hyperbolic and/or it
may compute a triangulation τ of K that is not canonical. Nevertheless, SnapPy computes
canonical triangulations by making local moves that preserve the topology [32], and so
regardless of whether τ is canonical, it is guaranteed that τ is topologically the same as
K. Therefore, regardless of what might go wrong, we are guaranteed that if two inputs
produce the same “attempted” canonical triangulation τ then the two knot complements are
homeomorphic as 3-manifolds, and therefore the two knots are identical.

So: if several knots produce the same “attempted” canonical triangluation then we keep
just one of these knots in our candidate set (in particular, one with the smallest number of
crossings). For each knot where SnapPy fails to produce a hyperbolic structure or canonical
triangulation, we simply keep the knot in our set.

On one triangulation at a time, SnapPy is extremely fast in practice; however, its
algorithms are non-trivial, and for 7 billion triangulations they are far too slow to run in
serial. We therefore split the candidate set into pieces which we process in parallel on a
cluster, keeping both the knots and the canonical triangulations; afterwards we merge the
results together using a similar sort-and-strip process as was used before.

Another point worth noting is SnapPy crashed ocassionally due to numerical instabilities
– whilst it is enormously effective software in practice, its rare numerical instabilities become
common when run through 7 billion inputs. This required specialised code that intercepted
and handled crashes automatically without needing a human to babysit, restart and extract
partial results from jobs on the cluster.

The resulting set: 367 000 154 candidate knot diagrams.

4.3 Separating hyperbolic from non-hyperbolic

Our next aim is to separate the hyperbolic knots from the non-hyperbolic (satellite and
torus) knots, since these two classes will need very different tools going forwards.

To rigorously certify that knots are hyperbolic, we use strict angle structures. These are
due to Casson and Rivin [28]; essentially they assign a positive internal dihedral angle to each
edge of each tetrahedron of a triangulation so that (i) opposite edges in each tetrahedron have
equal angles; (ii) all six angles in each tetrahedron sum to 2π; and (iii) the angles around
each edge of the triangulation sum to 2π. The key fact for us is a theorem of Casson that, if
an orientable 3-manifold triangulation with torus boundary has a strict angle structure, then
the underlying manifold admits a complete hyperbolic metric [17].

So, for each input knot K:
We ask SnapPy to find a complete hyperbolic metric on K as before, using its numerical
algorithms that do not guarantee correctness. If this fails then we retriangulate K using
local moves that preserve the topology and try again.
If, after 40 retriangulations, SnapPy still fails to find a hyperbolic structure then we
mark K as potentially non-hyperbolic. Note that this does not certify that K is non-
hyperbolic: SnapPy might have failed, or we might be working with a “bad” triangulation
that does not natively support the hyperbolic metric on K.

1 SnapPy is able to do verified computations, but these are too fragile to run at such an enormous scale –
we return to them in later sections where the candidate set is much, much smaller.

SoCG 2020

25:8 The Next 350 Million Knots

If SnapPy claims to find a hyperbolic structure on a triangulation τ of K, then we attempt
to certify that K is hyperbolic by finding a strict angle structure on τ . We do this with
Regina using linear programming with exact arithmetic, and so the result is certified. If
we do find a strict angle structure then we mark K as certified hyperbolic.
If SnapPy finds a hyperbolic structure but Regina does not find a strict angle structure
then we mark the knot K as unusual.

The resulting set: 352 160 183 certified hyperbolic knots, 14 839 971 potential non-
hyperbolic knots, and no unusual knots.

5 Stage two, continued: Finishing the non-hyperbolic case

Here we finish processing the 14 839 971 potential non-hyperbolic knots. By extrapolating
from smaller censuses and/or knowing what torus and satellite knots we expect to see, we
would only expect a few hundred non-hyperbolic knots at most. Therefore it seems reasonable
to guess that almost all of these 14 million potential non-hyperbolic knots are duplicates,
and so we focus our initial efforts on stripping these duplicates out.

5.1 Exhaustive simplification, 1 extra crossing

We begin by exhaustively attempting to simplify each knot (as opposed to the randomised
attempt in section 3.3). For each knot diagram K with n crossings, this involves a breadth-
first search that explores all possible diagrams that can be obtained through any sequence of
Reidemeister moves, allowing for ≤ n+ 1 crossings at any stage. If we ever reach a diagram
with < n crossings then we know that K is not minimal, and so it must be a duplicate of
another smaller knot in our set.

This is an expensive operation: the number of diagrams reachable from K is potentially
exponential in n. (This is why we only run this process over our 14 million potential non-
hyperbolic knots, and not our 352 million hyperbolic knots). As in section 4.1, we use knot
signatures to ensure that we do not revisit the same diagram more than once.

The resulting set: 3 326 443 potential non-hyperbolic knots.

5.2 Pass moves

We next attempt simplification moves that are more complex than the standard Reidemeister
moves. These are pass moves, which have been used with great success in knot tabulation
since the late 1800s [23, 25]. A pass move involves taking a strand that passes over k
consecutive crossings, and rerouting it (by moving it above the diagram) so that it passes
over ` consecutive crossings instead; see Figure 9 for an illustration. A pass move could of
course involve a similar procedure with a strand that passes under k consecutive crossings
instead.

We are interested in finding pass moves where ` < k, which reduce the total number of
crossings. Our implementation is straightforward: we identify strands that pass over (or
under) a maximal number of consecutive crossings, and use the Floyd-Warshall shortest path
algorithm [11] to see if there is a route that crosses through fewer cells in the diagram.

The resulting set: 239 950 potential non-hyperbolic knots.

B.A. Burton 25:9

A A

Figure 9 A pass move from k = 4 to ` = 2 crossings.

5.3 Exhaustive simplification, 2 extra crossings
We return now to the exhaustive simplification process described in section 5.1, but this time
if our input diagram has n crossings then we allow ≤ n+ 2 crossings at any intermediate
stage. The number of potential knot diagrams that we can reach increases exponentially
with the number of additional crossings that we allow, and so this process is significantly
slower than in section 5.1. Nevertheless, we have an order of magnitude fewer knots in our
set to begin with, and so the computation remains manageable.

The resulting set: 2 671 potential non-hyperbolic knots.

5.4 Exhaustive search for duplicates, 1 extra crossing
Next we perform another exhaustive search through sequences of Reidemeister moves.
However, our aim now is not to simplify one diagram, but rather to find paths that connect
different diagrams together.

To do this, for each n, we load all remaining diagrams with n crossings into memory at
once, and perform simultaneous breadth-first searches with all of these diagrams as starting
points. Whenever two searches connect, we know that the corresponding starting diagrams
represent the same topological knot. We continue this process until we have exhausted all
reachable diagrams with ≤ n+ 1 crossings.

As with exhaustive simplifiation, the number of diagrams that we could reach is exponential
in n; given the large number of starting points, this causes a difficulties with both running
time and memory. We are able to relieve the running time somewhat by using a multithreaded
implementation of our breadth-first search.

Memory, however, is a serious problem that for now stops us from going beyond n+ 1
crossings. We resolve this in the next section by splitting the knots into smaller classes.

The resulting set: 2 011 potential non-hyperbolic knots.

5.5 Separating using HOMFLY-PT polynomials
We pause now to split the remaining knots into smaller classes, where it is guaranteed that
knots from different classes are distinct. We do this using the HOMFLY-PT polynomial
[16, 27], a polynomial invariant that is reasonably strong, has a simple combinatorial
interpretation, and can be computed in O(2n) time (which is reasonably fast in the landscape
of knot invariants).2 In fact the HOMFLY-PT can be computed in sub-exponential time [6],
but Kauffman’s O(2n) skein-template algorithm [24] is enough for our purposes.

The resulting set: 2 011 potential non-hyperbolic knots, split into 412 classes.

2 For each knot K we actually compute both the HOMFLY-PT polynomial of K and the HOMFLY-PT
polynomial of the reflection of K, and take whichever is lexicographically smaller. This is necessary
because, unlike our census, the HOMFLY-PT polynomial is sensitive to reflection.

SoCG 2020

25:10 The Next 350 Million Knots

5.6 Exhaustive search for duplicates, 2 or 3 extra crossings

We now perform a fresh exhaustive search for duplicates, as in section 5.4, but this time
exhausting all reachable diagrams with ≤ n+ 3 crossings. Each extra crossing increases our
running time and memory by an order of magnitude; however, we work around this problem
by performing a separate exhaustive search only within each HOMFLY-PT class. Since the
classes are individually very small, the computation remains manageable.

The results are very pleasing: for every one of our HOMFLY-PT classes, we are able to
show that every diagram is a duplicate of the same knot. This leaves us with just one knot
per class, and therefore we have certified that all of our remaining knots are distinct.

The resulting set: 412 potential non-hyperbolic knots, all certified as distinct.

5.7 Certifying hyperbolicity, again

We do not yet know for certain that all 412 of our knots are non-hyperbolic. Since certifying
non-hyperbolicity is an expensive process, we pass our remaining 412 knots through SnapPy
once more in case we were unlucky with the random retriangulations the first time around.
This follows exactly the same process as in section 4.3, just with different random seeds.

This time we are luckier: the hyperbolic structures and strict angle structures are able to
certify 18 of our knots as hyperbolic. The other 394 knots remain potentially non-hyperbolic.

The resulting set: 394 potential non-hyperbolic knots; 18 new certified hyperbolic knots.

5.8 Certifying non-hyperbolicity

We now hope that our 394 potential non-hyperbolic knots are indeed non-hyperbolic, and so
we turn our attention to certifying this.

We begin with the torus knots. These are well-understood: they are completely classified,
and it is known exactly how many crossings each torus knot needs. We therefore know in
advance that there should be exactly 14 torus knots in our census with ≤ 19 crossings, and
we can compute their HOMFLY-PT polynomials. These 14 polynomials indeed appear in
our list, and so we know that the corresponding 14 knots are non-hyperbolic.

The remaining 380 knots, if non-hyperbolic, must all be satellites. To certify that a knot
K is a satellite, it is enough to find a torus τ embedded in K with the property that, if we
cut K open along τ , the piece containing the boundary of K is not the product Torus × I,
and the other piece is not the solid torus [31].

We use normal surface theory to find candidate tori. See [21] for an overview of normal
surfaces; the key fact for us is that “important” surfaces in a 3-manifold often appear in
the set of vertex normal surfaces, which can be constructed using techniques from polytope
theory and linear programming. We enumerate this set in quad-closed coordinates, which are
optimised for working with knot complements; see [9] for details.

For each candidate torus, we use Regina’s implementation of solid torus recognition,
which – though exponential time – is extremely efficient in practice [8]. To test for Torus × I,
we fill one of the boundaries with a solid torus in three different ways: by a theorem of
Haraway [20], if none of these fillings are solid tori then the manifold is not Torus × I.

Although there is no guarantee that the torus we seek must appear amongst our candidate
set of vertex normal surfaces, this indeed happens for all of our 380 remaining knots.

The resulting set: 394 certified non-hyperbolic knots (14 torus knots, 380 satellites).

B.A. Burton 25:11

y pt
Figure 10 A sample tangle, and a tangle that includes a knot composition.

ED

Figure 11 Inserting a tangle into the double of a trefoil.

5.9 Identifying satellites and certifying primeness

Our final step is to identify the exact structure of our 380 satellites. Our method here is
simple: we predict which satellites we expect to see, explicitly construct them, and observe
that these are the same as the 380 satellites in our census.

Our constructions are based on tangles. These are like knots, but instead of a closed loop
of string, we have four immovable external endpoints connected by two pieces of string. See
Figure 10 for some illustrations, or Adams [1] for a more thorough introduction.

The satellites we expect to see are formed by taking the double of the trefoil or figure
eight knot (with 12 or 16 crossings respectively) and then inserting a tangle between two
parallel strands, as shown in Figure 11.

The tangle we insert should use as few crossings as possible, should connect the two
parallel copies of the trefoil or figure eight to form a single knot, and should not be the
composition of a simpler tangle with another knot (as in Figure 10, right).

To build these tangles, we begin with Conway’s rational tangles, a class of tangles that
are fully classified and well understood [10]. We then hand-enumerate ten larger “templates”,
illustrated in Figure 12, and insert rational tangles into these templates so that the total
number of crossings is ≤ 7 (thus the final satellites will have ≤ 19 crossings overall).

These tangles that we construct number 380 in total. From their constructions we know
that they are prime satellites [12], and therefore must appear amongst the 380 satellites in
our census. Computing their HOMFLY-PT polynomials shows that they are all distinct, and
therefore (i) they are precisely the 380 satellites in our census, and (ii) the 380 satellites in
our census are therefore prime. Since torus knots are also known to be prime, this certifies
the primeness of all 394 non-hyperbolic knots.

SoCG 2020

25:12 The Next 350 Million Knots

ii
Ii

in
i I

i Ii

II

Figure 12 Templates into which we can insert rational tangles.

6 Stage two, continued: Finishing the hyperbolic case

Now we turn our attention to our 352 160 201 certified hyperbolic knots (these include the 18
extras that we picked up in section 5.7). We note that there is no need to certify primeness
here, since primeness already comes as a consequence of hyperbolicity.

Extrapolating growth rates from smaller censuses suggests that our count should be close
to the real number of distinct knots, and so our main task is to show that our knots are
distinct. Of course we still expect to find duplicates, which we remove as they appear.

Throughout this section, we group our knots into classes, where knots in different classes
have been certified as distinct, and knots in the same class might or might not be equivalent.
Whenever a class shrinks down to exactly one knot, we can store that knot in the final census
and forget about it in our computations here.

Throughout this section, we will count (i) the number of classes that still contain more
than one knot, and (ii) the total number of knots that those classes hold.

Our intial state: 1 class and 352 160 201 knots.

6.1 Separating using HOMFLY-PT polynomials

Our first step is to compute the HOMFLY-PT polynomials of each knot, as described in
section 5.6. We then sort the knots by their polynomials and use the results to split the
knots into classes, one for each distinct polynomial.

As the number of crossings grows, the HOMFLY-PT polynomials become longer, with
the result that simply writing all the polynomials consumes 230GB of disk space. The
subsequent sort operation was done using the GNU sort command, which only needed 40GB
of RAM but at the cost of doing significant work on the disk instead (which is much slower).

Our new state: 56 376 691 classes and 158 221 199 knots.

B.A. Burton 25:13

6.2 Subgroups of index 2–4
Next we turn to algebraic invariants: we can show that two knots are distinct by certifying
that their complements have non-isomorphic fundamental groups.

Unfortunately, each fundamental group π1(K) is computed as a presentation involving
generators and relations, and solving isomorphism problems on group presentations is
notoriously hard (indeed, undecidable in general [26]). Instead we use the popular strategy
of identifying invariants of these groups. For our application we enumerate all subgroups of
index k = 2, 3, 4 and compute their abelian invariants, and we do the same for the core of
π1(K) (the largest normal subgroup in π1(K)). We use GAP [18] for our computations.

These are all computations that terminate and give exact output, though their running
time increases exponentially (or worse) with the index k [30]. This is why we only use k ≤ 4;
we return to higher indices only once the number of knots remaining is substantially smaller.

Our new state: 42 091 807 classes and 115 086 342 knots.

6.3 Verified canonical triangulations
We now return to canonical triangulations, as computed in section 4.2. When used within
Sage [29], SnapPy can in some cases certify its canonical triangulation. The underlying
algorithm is based on certified interval arithmetic methods as originally used by HIKMOT [22]
for similar topological applications.

Whether SnapPy and Sage are able to certify the canonical triangulation depends on
many factors, such as numerical precision, the choice of underlying triangulation, and the
geometric properties of the canonical cell decomposition. Nevertheless, if they can certify
the canonical triangulations for two knots, we can just test the canonical triangulations for
combinatorial isomorphism (a polynomial-time operation [5]): if they are isomorphic then
the knots are duplicates, and if they are non-isomorphic then the knots are distinct.

When applied to our classes of potentially-equivalent knots, however, this process becomes
more fragile. If SnapPy and Sage are able to certify canonical triangulations for all knots in
a class, then we can completely resolve the class into duplicates and distinct knots. However,
if the certification fails for just one knot K in the class, we cannot prove uniqueness of
any of the knots in the class. We are still able to strip out duplicates where the canonical
triangulations are isomorphic, but otherwise all knots in the class must stay – even if some
of them are known to be pairwise distinct – because our problematic knot K could still be
equivalent to any of them.

A technical problem with this process was a memory leak when using SnapPy with Sage
(known to the SnapPy authors, but difficult to fix). As a result, the inputs had to be processed
in small batches so the memory leaks did not accumulate too badly – an inconvenience for
115 million inputs, but nevertheless manageable.

Our new state: 7 086 classes and 21 221 knots, after removing 2 939 duplicates.

6.4 Exhaustive search for duplicates, 1 or 2 extra crossings
Next, within each class, we perform an exhaustive search for duplicates by trying all possible
sequences of Reidemeister moves, allowing for at most two extra crossings at any stage. This
is the same procedure seen in section 5.4 for non-hyperbolic knots.

Our new state: 3 727 classes and 12 715 knots, after removing 5 147 duplicates.3

3 Note that each duplicate could potentially remove two knots from consideration, since removing the
duplicate could leave a class with just one knot that is then moved into the final census.

SoCG 2020

25:14 The Next 350 Million Knots

6.5 Subgroups of index 5
We return again to algebraic invariants, but this time we process subgroups of index k = 5.
Although the computations are enormously slower, we also have several orders of magnitude
fewer knots to process than for indices k ≤ 4, and so the computations remain managable.

Our new state: 479 classes and 1 040 knots.

6.6 Verified canonical triangulations, again
We return now to certified canonical triangulations with SnapPy and Sage, as seen before in
section 6.3. Since our classes now contain fewer knots than they did before, it is reasonable
to hope that more classes can now be resolved completely (i.e., they are not hampered by
one problematic knot whose canonical triangulation cannot be certified).

Moreover, our total number of knots remaining is orders of magnitude smaller than before.
We therefore make several attempts at certifying the canonical triangulation for each knot,
by starting from many different retriangulations of the same knot complement.

The SnapPy/Sage memory leak remains a problem, and since we are making many
attempts for each knot, our inputs need to be processed in much smaller batches. Again,
since the total number of knots is much smaller than before, this is manageable.

We made several more runs through this process, beginning with 10 attempts per knot,
and finishing with 300 attempts per knot.

Our new state: 45 classes and 105 knots, after removing 255 duplicates.

6.7 Subgroups of index 6
We return to algebraic invariants again, this time with index k = 6. As before, the
computations are much slower again, but we have orders of magnitude fewer knots to process.

Our new state: 3 classes and 6 knots, all drawn in Figure 13 (each line shows one class).

6.8 Exhaustive search for duplicates, 3 extra crossings
As before, within each class we perform an exhaustive search for duplicates by trying all
possible sequences of Reidemeister moves, this time allowing ≤ n+ 3 crossings at any stage.

This is enormously slow, but with only three classes remaining and a multithreaded
implementation of the underlying breadth-first search, it remains (just) within feasibility.

Our new state: 1 class and 2 knots, after removing 2 duplicates. The remaining two knots
are the green pair at the bottom of Figure 13.

6.9 Subgroups of index 7
For index k = 6, GAP was barely able to finish the computations and so for index k = 7
there is little hope. We therefore switch to Magma [2] for k = 7, since (in the author’s
experience) Magma’s running times are faster and more consistent. We did not use Magma
until now because it is commercial software and we only had a license for a single machine,
and so we could not parallelise the computations across a cluster.

Happily Magma was able to distinguish the final pair of knots, though even this depended
on starting with the “right” group presentations. We tried three different presentations of
the two groups (obtained by starting from different triangulations of the knot complements):
for one pair the computations took an hour, for one pair they took closer to a day, and for
one pair they did not finish after several days of running time.

Nevertheless, our new state: 0 classes and 0 knots. The census is complete!

B.A. Burton 25:15

T

EEE

EEE

tied

Figure 13 The three pairs of knots that remain after subgroups of index 6.

References
1 Colin C. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of

Knots. W. H. Freeman & Co., New York, 1994.
2 Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user

language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number
theory (London, 1993). doi:10.1006/jsco.1996.0125.

3 Gunnar Brinkmann and Brendan McKay. plantri, 2018. URL: http://users.cecs.anu.edu.
au/~bdm/plantri/.

4 Benjamin A. Burton. Introducing Regina, the 3-manifold topology software. Experiment.
Math., 13(3):267–272, 2004.

5 Benjamin A. Burton. Simplification paths in the Pachner graphs of closed orientable 3-manifold
triangulations. Preprint, arXiv:1110.6080, October 2011.

6 Benjamin A. Burton. The HOMFLY-PT polynomial is fixed-parameter tractable. In Bettina
Speckmann and Csaba D. Tóth, editors, 34th International Symposium on Computational
Geometry, volume 99 of LIPIcs. Leibniz Int. Proc. Inform., pages 18:1–18:14, Dagstuhl,
Germany, 2018. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern. doi:10.4230/LIPIcs.SoCG.
2018.18.

SoCG 2020

https://doi.org/10.1006/jsco.1996.0125
http://users.cecs.anu.edu.au/~bdm/plantri/
http://users.cecs.anu.edu.au/~bdm/plantri/
https://arxiv.org/abs/1110.6080
https://doi.org/10.4230/LIPIcs.SoCG.2018.18
https://doi.org/10.4230/LIPIcs.SoCG.2018.18

25:16 The Next 350 Million Knots

7 Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-
dimensional topology, 1999–2019. URL: http://regina-normal.github.io/.

8 Benjamin A. Burton and Melih Ozlen. A fast branching algorithm for unknot recognition with
experimental polynomial-time behaviour. To appear in Math. Program., arXiv:1211.1079,
November 2012.

9 Benjamin A. Burton and Stephan Tillmann. Computing closed essential surfaces in 3-manifolds.
Preprint, arXiv:1812.11686, December 2018.

10 J. H. Conway. An enumeration of knots and links, and some of their algebraic properties.
In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 329–358.
Pergamon, Oxford, 1970.

11 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

12 Peter R. Cromwell. Knots and links. Cambridge University Press, Cambridge, 2004. doi:
10.1017/CBO9780511809767.

13 Marc Culler, Nathan M. Dunfield, and Jeffrey R. Weeks. SnapPy, a computer program
for studying the geometry and topology of 3-manifolds, 1991–2013. URL: http://snappy.
computop.org/.

14 C. H. Dowker and Morwen B. Thistlethwaite. Classification of knot projections. Topology
Appl., 16(1):19–31, 1983. doi:10.1016/0166-8641(83)90004-4.

15 D. B. A. Epstein and R. C. Penner. Euclidean decompositions of noncompact hyperbolic
manifolds. J. Differential Geom., 27(1):67–80, 1988.

16 P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu. A new
polynomial invariant of knots and links. Bull. Amer. Math. Soc. (N.S.), 12(2):239–246, 1985.
doi:10.1090/S0273-0979-1985-15361-3.

17 David Futer and François Guéritaud. From angled triangulations to hyperbolic structures. In
Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, volume
541 of Contemp. Math., pages 159–182. Amer. Math. Soc., Providence, RI, 2011.

18 The GAP Group. GAP – Groups, Algorithms, and Programming, 2019. URL: https:
//www.gap-system.org.

19 C. McA. Gordon and J. Luecke. Knots are determined by their complements. J. Amer. Math.
Soc., 2(2):371–415, 1989.

20 Robert C. Haraway, III. Determining hyperbolicity of compact orientable 3-manifolds. Preprint,
arXiv:1410.7115, October 2014.

21 Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of
knot and link problems. J. Assoc. Comput. Mach., 46(2):185–211, 1999.

22 Neil Hoffman, Kazuhiro Ichihara, Masahide Kashiwagi, Hidetoshi Masai, Shin’ichi Oishi, and
Akitoshi Takayasu. Verified computations for hyperbolic 3-manifolds. Exp. Math., 25(1):66–78,
2016. doi:10.1080/10586458.2015.1029599.

23 Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks. The first 1,701,936 knots. Math. Intelli-
gencer, 20(4):33–48, 1998.

24 Louis H. Kauffman. State models for link polynomials. Enseign. Math. (2), 36(1-2):1–37, 1990.
25 C. N. Little. Non-alternate ± knots. Trans. Royal Soc. Edinburgh, 39:771–778, 1900.
26 A. A. Markov. Insolubility of the problem of homeomorphy. In Proc. Internat. Congress Math.

1958, pages 300–306. Cambridge Univ. Press, New York, 1960.
27 Józef H. Przytycki and Paweł Traczyk. Invariants of links of Conway type. Kobe J. Math.,

4(2):115–139, 1988.
28 Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. of Math.

(2), 139(3):553–580, 1994.
29 The Sage Developers. SageMath, the Sage Mathematics Software System, 2018. URL: https:

//www.sagemath.org/.

http://regina-normal.github.io/
https://arxiv.org/abs/1211.1079
https://arxiv.org/abs/1812.11686
https://doi.org/10.1017/CBO9780511809767
https://doi.org/10.1017/CBO9780511809767
http://snappy.computop.org/
http://snappy.computop.org/
https://doi.org/10.1016/0166-8641(83)90004-4
https://doi.org/10.1090/S0273-0979-1985-15361-3
https://www.gap-system.org
https://www.gap-system.org
https://arxiv.org/abs/1410.7115
https://doi.org/10.1080/10586458.2015.1029599
https://www.sagemath.org/
https://www.sagemath.org/

B.A. Burton 25:17

30 Charles C. Sims. Computation with Finitely Presented Groups, volume 48 of Encyclopedia
of Mathematics and its Applications. Cambridge University Press, Cambridge, 1994. doi:
10.1017/CBO9780511574702.

31 William P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry.
Bull. Amer. Math. Soc. (N.S.), 6(3):357–381, 1982.

32 Jeffrey R. Weeks. Convex hulls and isometries of cusped hyperbolic 3-manifolds. Topology
Appl., 52(2):127–149, 1993.

SoCG 2020

https://doi.org/10.1017/CBO9780511574702
https://doi.org/10.1017/CBO9780511574702

Elder-Rule-Staircodes for Augmented Metric
Spaces
Chen Cai
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
cai.507@osu.edu

Woojin Kim
Department of Mathematics, The Ohio State University, Columbus, OH, USA
kim.5235@osu.edu

Facundo Mémoli
Department of Mathematics and Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, USA
memoli@math.osu.edu

Yusu Wang
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
yusu@cse.ohio-state.edu

Abstract
An augmented metric space (X, dX , fX) is a metric space (X, dX) equipped with a function fX :
X → R. It arises commonly in practice, e.g, a point cloud X in Rd where each point x ∈ X has a
density function value fX(x) associated to it. Such an augmented metric space naturally gives rise
to a 2-parameter filtration. However, the resulting 2-parameter persistence module could still be of
wild representation type, and may not have simple indecomposables.

In this paper, motivated by the elder-rule for the zeroth homology of a 1-parameter filtration,
we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode the zeroth
homology of the 2-parameter filtration induced by a finite augmented metric space. Specifically,
given a finite (X, dX , fX), its elder-rule-staircode consists of n = |X| number of staircase-like blocks
in the plane. We show that the fibered barcode, the fibered merge tree, and the graded Betti
numbers associated to the zeroth homology of the 2-parameter filtration induced by (X, dX , fX) can
all be efficiently computed once the elder-rule-staircode is given. Furthermore, for certain special
cases, this staircode corresponds exactly to the set of indecomposables of the zeroth homology of
the 2-parameter filtration. Finally, we develop and implement an efficient algorithm to compute the
elder-rule-staircode in O(n2 logn) time, which can be improved to O(n2α(n)) if X is from a fixed
dimensional Euclidean space Rd, where α(n) is the inverse Ackermann function.

2012 ACM Subject Classification Mathematics of computing → Topology; Theory of computation
→ Computational geometry

Keywords and phrases Persistent homology, Multiparameter persistence, Barcodes, Elder rule,
Hierarchical clustering, Graded Betti numbers

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.26

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.04523.

Funding This work is supported by NSF grants DMS-1723003, CCF-1740761, DMS-1547357, and
IIS-1815697.

Acknowledgements The authors thank to the anonymous reviewers who made a number of helpful
comments to improve the paper. Also, CC and WK thank Cheng Xin for helpful discussions.

© Chen Cai, Woojin Kim, Facundo Mémoli, and Yusu Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cai.507@osu.edu
mailto:kim.5235@osu.edu
mailto:memoli@math.osu.edu
mailto:yusu@cse.ohio-state.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.26
https://arxiv.org/abs/2003.04523
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Elder-Rule-Staircodes for Augmented Metric Spaces

1 Introduction

An augmented metric space (X, dX , fX) is a metric space (X, dX) equipped with a function
fX : X → R. It arises commonly in practice: e.g, a point cloud X in Rd where each point
has a density function value fX associated to it. Studying the hierarchical clustering induced
in this setting has attracted much attention recently [2, 8]. Another example is where X = V

equals to the vertex set of a graph G = (V,E), dX represents certain graph-induced metric
on X (e.g, the diffusion distance induced by G), and fX is some descriptor function (e.g,
discrete Ricci curvature) at graph nodes. This graph setting occurs often in practice for
graph analysis applications, where G can be viewed as a skeleton of a hidden domain. When
summarizing or characterizing G, one wishes to take into consideration both the metric
structure of this domain and node attributes. Given that persistence-based summaries from
only the edge weights or from only node attributes have already shown promise in graph
classification (e.g, [5, 9, 18, 30]), it would be highly desirable to incorporate (potentially
more informative) summaries encoding both types of information to tackle such tasks. In
brief, we wish to develop topological invariants induced from such augmented metric spaces.

On the other hand, an augmented metric space naturally gives rise to a 2-parameter
filtration (by filtering both via fX and via distance dX ; see Definition 4). However, while a
standard (1-parameter) filtration and its induced persistence module has persistence diagram
as a complete discrete invariant, multi-parameter persistence modules do not have such
complete discrete invariant [6, 13]. The 2-parameter persistence module induced from an
augmented metric space may still be of wild representation type, and may not have simple
indecomposables [2]. Several recent work instead consider informative (but not necessarily
complete) invariants for multiparameter persistence modules [15, 19, 24, 26]. In particular,
RIVET [24] provides an interactive visualization of the barcodes of 1-dimensional slices of an
input 2-parameter persistence module M , called the fibered barcode. This interactivity uses
the graded Betti numbers of M , another invariant for the 2-parameter persistence module.

New work. We propose a barcode-like summary, called the elder-rule-staircode, as a way
to encode the zeroth homology of the 2-parameter filtration induced by a finite augmented
metric space. Specifically, given a finite (X, dX , fX), its elder-rule-staircode consists of
n = |X| number of staircase-like blocks of O(n) descriptive complexity in the plane. The
development of the elder-rule-staircode is motivated by the elder-rule behind the construction
of persistence pairing for a 1-parameter filtration [16]. For the 1-parameter case, barcodes [31]
can be obtained by the decomposition of persistence modules in the realm of commutative
algebra, or equivalently, by applying the elder-rule which is flavored with combinatorics or
order theory. As we describe in Section 4, our elder-rule-staircodes are obtained by adapting
the elder-rule for treegrams arisen from 1-parameter filtration.

Interestingly, we show that our elder-rule-staircode encodes much of topological informa-
tion of the 2-parameter filtration induced by (X, dX , fX). In particular, the fibered barcodes,
the fibered treegrams, and the graded Betti numbers associated to the zeroth homology of
the 2-parameter filtration induced by (X, dX , fX) can all be efficiently computed from the
elder-rule-staircodes (see Theorems 8, 19 and 23). Furthermore, for certain special cases,
these staircodes correspond exactly to the set of indecomposables of the zeroth order
2-parameter persistence module induced by (X, dX , fX); see Theorem 17.

Finally, in Section 6, we show that the elder-rule-staircode can be computed in O(n2 logn)
time for a finite augmented metric space (X, dX , fX) where n = |X|, and O(n2α(n)) time if X
is from a fixed dimensional Euclidean space and dX is Euclidean distance. We have software
to compute elder-rule-staircodes and to explore / retrieve information such as fibered barcodes
interactively, which is available at https://github.com/Chen-Cai-OSU/ER-staircode.

https://github.com/Chen-Cai-OSU/ER-staircode

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:3

More on related work. The elder-rule is an underlying principle for extracting the persist-
ence diagram from a persistence module induced by a nested family of simplicial complexes [16,
Chapter 7]. Recently this rule has come into the spotlight again for generalizing persistence
diagrams [19, 26, 27] and for addressing inverse problems in TDA [14].

The software RIVET and work of [25] can also be used to recover fibered barcodes and
bigraded Betti numbers. However, for the special case of zeroth 2-parameter persistence
modules induced from augmented metric spaces, our elder-rule-staircodes are simpler and more
efficient to achieve these goals: In particular, given an augmented metric space containing
n points, the algorithm of [25] computes the zeroth bigraded Betti numbers in Ω(n3) time,
while it takes O(n2 logn) time using elder-rule-staircode via Theorem 24. For zeroth fibered
barcodes, RIVET takes O(n8) time to compute a data structure of size O(n6) so as to support
efficient query time of O(logn+ |BL|) where |BL| is the size of the fibered barcode BL for a
query line L of positive slope. Our algorithm computes elder-rule-staircode of size O(n2) in
O(n2 logn) time, after which BL can be computed in O(|BL| logn) time for any query line L.
See the full version of this paper [4] for more detailed comparison. However, it is important
to note that RIVET allows much broader inputs and can work beyond zeroth homology.

2 Persistence modules and their decompositions

First we briefly review the definition of persistence modules. Let P be a poset. We regard
P as the category that has elements of P as objects. Also, for any a,b ∈ P, there exists a
unique morphism a → b if and only if a ≤ b. For d ∈ N, let Zd be the set of d-tuples of
integers equipped with the partial order defined as (a1, a2, . . . , ad) ≤ (b1, b2, . . . , bd) if and
only if ai ≤ bi for each i = 1, 2, . . . , d. The poset structure on Rd is defined in the same way.

We fix a certain field F and every vector space in this paper is over F. Let Vec denote
the category of finite dimensional vector spaces over F.

A (P-indexed) persistence module is a functor M : P → Vec. In other words, to each
a ∈ P, a vector space M(a) is associated, and to each pair a ≤ b in P, a linear map
ϕM (a,b) : M(a)→M(b) is associated. When P = Rd or Zd, M is said to be a d-parameter
persistence module. A morphism between M,N : P → Vec is a natural transformation
f : M → N between M and N . That is, f is a collection {fa}a∈P of linear maps such that
for every pair a ≤ b in P, the following diagram commutes:

M(a) M(b)

N(a) N(b).

ϕM (a,b)

fa fb

ϕN (a,b)

Two persistence modules M and N are isomorphic, denoted by M ∼= N , if there exists a
natural transformation {fa}a∈P from M to N where each fa is an isomorphism.

We now review the standard definition of barcodes, following the notations from [3].

I Definition 1 (Intervals). Let P be a poset. An interval J of P is a subset J ⊂ P such that:
(1) J is non-empty. (2) If a,b ∈ J and a ≤ c ≤ b, then c ∈ J . (3) For any a,b ∈ J ,
there is a sequence a = a0,a1, · · · ,al = b of elements of J with ai and ai+1 comparable for
0 ≤ i ≤ l − 1.

For J an interval of P, the interval module IJ : P→ Vec is defined as

IJ (a) =
{
F if a ∈ J ,
0 otherwise,

ϕIJ (a,b) =
{

idF if a,b ∈ J , a ≤ b,
0 otherwise.

SoCG 2020

26:4 Elder-Rule-Staircodes for Augmented Metric Spaces

Recall that a multiset is a collection in which elements may occur more than once.

I Definition 2 (Interval decomposability and barcodes). A functor M : P→ Vec is interval
decomposable if there exists a multiset barc(M) of intervals (Definition 1) of P such that
M ∼=

⊕
J∈barc(M) I

J . We call barc(M) the barcode of M.

By the theorem of Azumaya-Krull-Remak-Schmidt [1], such a decomposition is unique up
to a permutation of the terms in the direct sum. Therefore, the multiset barc(M) is unique if
M is interval decomposable. For d = 1, any M : Rd (or Zd) → Vec is interval decomposable
and thus barc(M) exists. However, for d ≥ 2, M may not be interval decomposable.

3 Elder-rule-staircodes for augmented metric spaces

Rips bifiltration for an aug-MS. Let (X, dX) be a metric space. For ε ∈ R, the Rips
complex Rε(X, dX) is the abstract simplicial complex defined as

Rε(X, dX) = {A ⊆ X : for all x, x′ ∈ A, dX(x, x′) ≤ ε}.

Let Simp be the category of abstract simplicial complexes and simplicial maps. The Rips
filtration is the functor R•(X, dX) : R→ Simp defined as

ε 7→ Rε(X, dX), and ε ≤ ε′ 7→ Rε(X, dX) ↪→ Rε′(X, dX).

I Definition 3 (Augmented metric spaces). Let (X, dX) be a metric space and fX : X → R a
function. We call the triple X = (X, dX , fX) an augmented metric space (abbrev. aug-MS).

We say that X is injective if fX : X → R is an injective function.

Throughout this paper, every (augmented) metric space will be assumed to be finite. Let
X = (X, dX , fX) be an aug-MS. For σ ∈ R, let Xσ denote the sublevel set f−1

X (−∞, σ] ⊆ X.
Let (Xσ, dX) denote the restriction of the metric space (X, dX) to the subset Xσ ⊆ X.
Similarly, (Xσ, dX , fX) is the aug-MS obtained by restricting dX to Xσ ×Xσ and fX to Xσ.
The following 2-parameter filtration is considered in [2, 8].

I Definition 4 (Rips bifiltration of an aug-MS). Let X = (X, dX , fX) be an aug-MS. We
define the Rips bifiltration Rbi

• (X) : R2 → Simp of X as (ε, σ) 7→ Rε(Xσ, dX).

Applying the k-th homology functor to the Rips bifiltration Rbi
• (X), we have the persist-

ence module M := Hk(Rbi
• (X)) : R2 → Vec. Let L denote the set of lines of positive slopes

in R2. Given L ∈ L, the restriction M |L : L → Vec can be decomposed into the unique
direct sum of interval modules over L and thus we have the barcode barc(M |L) of M |L.
The k-th fibered barcode of X is the L-parametrized collection {barc(M |L)}L∈L [10, 22, 24].

Elder-rule-staircode for an aug-MS. Let (X, dX) be a finite metric space. For ε ∈ [0,∞),
an ε-chain between x, x′ ∈ X stands for a sequence x = x1, x2, . . . , x` = x′ of points in X
such that dX(xi, xi+1) ≤ ε for i = 1, . . . , ` − 1. Now given X = (X, dX , fX) and σ ∈ R≥0,
consider a point x ∈ Xσ. Then for any ε ≥ 0, set [x](σ,ε) as the collection of all points x′ ∈ Xσ

that can be connected to x through an ε-chain in Xσ. The function fX : X → R induces an
order on X: Given x, x′ ∈ X, we say that x is older than x′ if and only if fX(x) < fX(x′).

I Definition 5 (Elder-rule-staircode for an aug-MS). Let X = (X, dX , fX) be an injective
aug-MS. For each x ∈ X, we define its staircode as:

Ix : = {(σ, ε) ∈ R2 : x ∈ Xσ and x is the oldest in [x](σ,ε) } (1)

The collection IX := {Ix}x∈X is called the elder-rule-staircode (ER-staircode for short) of X .

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:5

See Figure 1 for an example. The relationship between the ER-staircode and the
classic elder-rule will become clear in Section 4.1. An interval I of R2 (Definition 1) is
a staircase interval (or simply staircase) if there exists (σ0, ε0) ∈ R2 such that either
I = {(σ, ε) ∈ R2 : (σ0, ε0) ≤ (σ, ε)} (i.e. a quadrant) or there is also a stair-like upper
boundary – there exists a non-increasing piecewise constant function u : R→ (ε0,∞) such
that I = {(σ, ε) ∈ R2 : σ ∈ [σ0,∞) and ε ∈ [ε0, u(σ))} (see Figure 4). It turns out that each
Ix ∈ IX is in the form of a staircase interval (proof in the full version of this paper [4]):

I Proposition 6. Each Ix in Definition 5 is a staircase interval of R2.

Staircodes for non-injective case. Even if fX is not injective, we still have the concept of
the ER-staircode. Consider an aug-MS X = (X, dX , fX) such that fX is not injective. To
induce the ER-staircode of X , we pick any order on X which is compatible with fX : An
order < on X is compatible with fX if fX(x) < fX(x′) implies x < x′ for all x, x′ ∈ X. Now
we define I<X = {{I<x : x ∈ X}} where

I<x := {(σ, ε) ∈ R2 : x ∈ Xσ and x = min([x](σ,ε), <)} (2)

(we use double-curly-brackets {{−}} to denote multisets). Regardless of the choice of <, the
collection I<X = {{I<x : x ∈ X}} satisfies all properties / theorems we prove later. Hence, for
any possible compatible order < we will refer to I<X as an ER-staircode of X .

I Example 7 (Constant function case). Let (X, dX) be a metric space of n points. Then,
the barcode of H0(R•(X, dX)) : R → Vec consists of n intervals Ji, i = 1, . . . , n. Let
X = (X, dX , fX) be the aug-MS where fX is constant at c ∈ R. Then, all possible
total orders on X are compatible with fX and all induce the same ER-staircode IX =
{{[c,∞)× Ji : i = 1, . . . , n}}.

In contrast to Example 7, different orders on X in general induce different ER-staircodes
of X = (X, dX , fX) ; see Example 9. Therefore, a single ER-staircode of X is not necessarily
an invariant of X , whereas the collection of all possible ER-staircodes of X can be seen so (see
item 4 in Section 7). This collection, however, is not a complete invariant of X by the following
reasoning: It is not difficult to find two non-isometric metric spaces (X, dX) and (Y, dY)
such that H0(R•(X, dX)) and H0(R•(Y, dY)) have the same barcode. Let fX : X → R and
fY : Y → R be constant at c ∈ R. Then, by Example 7, all the ER-staircodes of (X, dX , fX)
and (Y, dY , fY) (induced by all possible total orders on X and Y) are the same.

We can recover the zeroth fibered barcode of an aug-MS X from its ER-staircode: The
proof of the following theorem will be given in Section 4.1.

I Theorem 8. Let X be an aug-MS and let M := H0(Rbi
• (X)). Let IX = {{Ix : x ∈ X}} be

an ER-staircode of X . For each L ∈ L, the barcode barc(M |L) coincides with the multiset
{{L ∩ Ix : x ∈ X}} (up to removal of empty sets, see Figure 2).

I Example 9. If an aug-MS is not injective, then there can be different ER-staircodes w.r.t.
different compatible orders. However, each of them will still be valid to produce the fibered
barcodes. For example, let (X, dX) be the metric space in Figure 1 (A). Define gX : X → R
by sending x1, x2, x3, x4 to 1, 2, 2, 4, respectively. Two orders (x1 < x2 < x3 < x4) and (x1 <

′

x3 <
′ x2 <

′ x4) are compatible with gX , giving two ER-staircodes I<X =
{{
I<xi

: i = 1, 2, 3, 4
}}

and I<
′

X =
{{
I<
′

xi
: i = 1, 2, 3, 4

}}
. While I<xi

= I<
′

xi
for i = 1, 4, the equality does not hold for

i = 2, 3. However, both I<X and I<
′

X satisfy the statement in Theorem 8. See Figure 3.

SoCG 2020

26:6 Elder-Rule-Staircodes for Augmented Metric Spaces

Figure 1 (A) Consider the triangle with edge lengths 3,4 and 5. Consider the aug-MS X =
(X, dX , fX) where X := {x1, x2, x3, x4}, dX is the Euclidean metric on the plane, and fX is given as
fX(xi) = i for i = 1, 2, 3, 4. (B) The ER-staircode of X .

Figure 2 Left: The stack of Ixi , i = 1, 2, 3, 4 from Figure 1 and a line L ∈ L . Right: The barcode
of M |L. Since L does not intersect Ix4 , only three intervals of L ⊂ R2 appear in the barcode.

Figure 3 Example 9: (A) I<
x2 and I<

x3 . (B) I<′
x2 and I<′

x3 . (C) Stack of I<
x2 and I<

x3 . Stack of I<′
x2

and I<′
x3 look the same. Observe that for any L ∈ L,

{{
L ∩ I<

x2 , L ∩ I
<
x3

}}
=
{{
L ∩ I<′

x2 , L ∩ I
<′
x3

}}
.

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:7

Figure 4 Every corner point of a staircase interval falls into three different types depending on
its neighborhood information, as the pictures above illustrate. Staircase intervals in the first row are
decorated by their corner points (a precise description is in Definition A.2 of the full version [4]).

We close this section with some definitions that will be useful later. Let I be a staircase
interval of R2. We define the three types of corner points as in Figure 4 (rigorous definition
of these corner points is in Definition A.2 in the full version [4]): Roughly speaking, for each
staircase Ix, type-0 is the left-bottom point; type-1 corners are those where the boundary
transitions from a vertical segment to a horizontal one, while type-2 are those transitions from
a horizontal one to vertical one. For each j = 0, 1, 2 we define the function γj(I) : R2 → Z≥0

as γj(I)(a) =
{

1, a is a j-th type corner point of I
0, otherwise.

Elder-rule feature functions defined below will be useful in Section 5.

I Definition 10. Let X be an aug-MS and let IX = {{Ix : x ∈ X}} be an ER-staircode of X .
For j = 0, 1, 2, we define the j-th elder-rule feature function as the sum γXj =

∑
x∈X γj(Ix).

4 Decorated elder-rule-staircodes and treegrams

In Section 4.1 we prove Theorem 8 and introduce bipersistence treegrams to encode multi-scale
clustering information of aug-MSs. In Section 4.2 we show that an “enriched” ER-staircode
of an aug-MS X can recover the so-called fibered treegram of X , i.e. 1-dimensional slices of
the aforementioned bipersistence treegram. Also, we identify a sufficient condition on X for
its ER-staircode to be the barcode of the 2-parameter persistence module H0(Rbi

• (X)).

4.1 Bipersistence treegrams
Let X be a non-empty finite set. Any partition P of a subset X ′ of X is a sub-partition of X;
and we refer toX ′ as the underlying set of P . Elements of a sub-partition ofX are called blocks.
A partition of the empty set is defined as the empty set. By Subpart(X), we denote the set of
all sub-partitions of X, i.e. Subpart(X) := {P : ∃X ′ ⊆ X , P is a partition of X ′} . Given
P,Q ∈ Subpart(X), P ≤ Q means that P refines Q, i.e. for all B ∈ P , there exists C ∈ Q s.t.
B ⊆ C. For example, let X = {x1, x2, x3}; then P ≤ Q for sub-partitions P := {{x1}, {x2}}
and Q := {{x1, x2}, {x3}}. Treegrams are a generalized notion of dendrograms [29].

SoCG 2020

26:8 Elder-Rule-Staircodes for Augmented Metric Spaces

Figure 5 A (1D) treegram θX over the set X. Notice that θX(t) = ∅ for t ∈ (−∞, S1). Also,
θX(S1) = {{x1}}, θX(S2) = {{x1}, {x2, x3}}, and θX(t) = {X} for all t ∈ [S3,∞).

I Definition 11 (Treegrams [29]). A treegram over a finite set X is any function θX : R→
Subpart(X) such that the following properties hold: (1) if t1 ≤ t2, then θX(t1) ≤ θX(t2),
(2) there exists T > 0 such that θX(t) = {X} for t ≥ T and θX(t) is empty for t ≤ −T ,
and (3) for all t there exists ε > 0 s.t. θX(s) = θX(t) for s ∈ [t, t+ ε]. See Figure 5 for an
example. Also, even when the domain R is replaced by any totally ordered set L isomorphic
to R, θX is said to be a (1-parameter) treegram.

Given a simplicial complex K, let K(0) be the vertex set of K. Let π0(K) be the partition
of the vertex set K(0) according to the connected components of K. A functor K : P→ Simp
is said to be a filtration of K if K(a) ⊆ K for all a ∈ P, every internal map is an inclusion,
and there exists a0 ∈ P such that for all a ∈ P with a0 ≤ a, K(a) = K.
I Remark 12 (Treegrams induced by simplicial filtrations). Let K be a simplicial complex on
the vertex set X = {x1, x2, . . . , xn} and let K : R → Simp be a filtration of K. Assume
that K consists solely of one connected component, i.e. π0(K) = {X}. Then, the function
π0(K) : R→ Subpart(X) defined as ε 7→ π0(K(ε)) is a treegram over X.

The zeroth elder rule for a 1-parameter filtration. Let θX be a treegram over X. We
define the birth time of x as b(x) := min{ε ∈ R : x is in the underlying set of θX(ε)} (by
Definition 11 (2), every x ∈ X has the birth time b(x)). Pick any order < on X such
that b(x) < b(x′) implies x < x′ for all x, x′ ∈ X. For ε ∈ [b(x),∞), we denote the block
to which x belongs in the sub-partition θX(ε) by [x]ε. We define the death time of x as
d<(x) = sup{ε ∈ [b(x),∞] : x = min([x]ε, <)}. As long as < is compatible with the birth
times, the elder-rule-barcode is uniquely defined (which is proved in the full version [4]):

I Definition 13 (Elder-rule-barcode of a treegram). Let θX : R→ Subpart(X) be a treegram
over X. For any order < on X compatible with the birth times, let Jx := [b(x), d<(x)). The
elder-rule-barcode of θX is defined as the multiset barc(θX) := {{Jx : x ∈ X}}.

For the 1-parameter case, the elder-rule-barcode of a treegram can be obtained by
dismantling the treegram into linear pieces w.r.t. the elder rule – see the theorem below.
Even though this result is well-known (e.g, [14]), we include a proof in the full version [4].

I Theorem 14 (Compatibility between the elder rule and algebraic decomposition). Let K and θX
be the filtration and the treegram in Remark 12, respectively. Let barc(θX) = {{Jx : x ∈ X}}
be the elder-rule-barcode of θX . Then, H0(K) ∼=

⊕
x∈X IJx (see Figure 6).

Proof of Theorem 8. We are now ready to prove Theorem 8. Fix L ∈ L. Since L is
isomorphic to R as a totally ordered set, K = Rbi

• (X)|L : L → Simp can be viewed as a
1-parameter filtration. Consider the treegram θX := π0(K) : L → Subpart(X). By the
definition of Ixs, it is clear that {{L ∩ Ix : x ∈ X}} is the elder-rule-barcode of the treegram
θX (Definition 13). Hence, by Theorem 14, the multiset {{L ∩ Ix : x ∈ X}} is equal to the
barcode of H0 (K). Since H0 (K) = M |L, we have {{L ∩ Ix : x ∈ X}} = barc(M |L). J

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:9

Figure 6 The first row represents a simplicial filtration K. The second row stands for the treegram
π0(K) which encodes the evolution of clusters in K (Remark 12). The third row is the barcode
of H0(K). The persistence module H0(K) can be obtained by applying the linearization functor
(Definition B.2 in the full version [4]) to π0(K). Alternatively, the barcode of H0(K) can also be
obtained by applying the elder rule to π0(K) (Definition 13).

Bipersistence treegrams. We now extend the notion of treegrams to encode the evolution
of clusters of a 2-parameter filtration (similar ideas appear in [20]). A bipersistence treegram
over a finite set X is any function θbi

X : R2 → Subpart(X) such that if a ≤ b in R2, then
θbi
X(a) ≤ θbi

X(b).

I Definition 15 (Rips bipersistence treegrams). Given an aug-MS X = (X, dX , fX), the Rips
bipersistence treegram of X is θbi

X : R2 → Subpart(X) such that (σ, ε) 7→ π0 (Rε(Xσ, dX)).

Observe that x ∈ X belongs to the underlying set of θbi
X (a) if and only if (fX(x), 0) ≤ a,

i.e. (fX(x), 0) is the birth grade of x in θbi
X . Assume that X is injective. Then the birth

grades of elements in X is totally ordered. The ER-staircode of X can be extracted from θbi
X :

Indeed, Ix in equation (1) can be rephrased as Ix = {(σ, ε) ∈ R2 : x is in the underlying set
of θbi

X (σ, ε) and x has the smallest birth grade in its block of θbi
X (σ, ε)}. See Figure 7.

I Definition 16 (Fibered treegrams). Let θbi
X be a Rips bipersistence treegram of an aug-MS

X . The fibered treegram of θbi
X refers to the collection {θbi

X |L}L∈L of treegrams obtained by
restricting θbi

X to positive-slope lines (see Figure 8 for an example).

4.2 Elder-rule-staircodes and fibered treegrams
In this section we identify a sufficient condition on an aug-MS X for its ER-staircode to
coincide with the barcode of the 2-parameter persistence module H0(Rbi

• (X)) (Theorem 17).
Also, in general, all fibered treegrams can be recovered from ER-staircodes (Theorem 19).

Let (X, dX) be a metric space and fix x, x′ ∈ X. Recall that an ε-chain between x and
x′ is a finite sequence x = x1, x2, . . . , x` = x′ in X where each consecutive pair xi, xi+1 is
within distance ε. Define (in fact an ultrametric) uX : X ×X → R≥0 as

uX(x, x′) := min{ε ∈ [0,∞) : there exists an ε-chain between x and x′} (see [7]).

For a metric space (X, dX) and pick any total order < on X. Let x ∈ X be a non-minimal
element of (X,<). A <-conqueror of x is an element x′ ∈ X such that (1) x′ < x, and (2)
for any x′′ ∈ X with x′′ < x, it holds that uX(x, x′) ≤ uX(x, x′′).

SoCG 2020

26:10 Elder-Rule-Staircodes for Augmented Metric Spaces

Figure 7 Consider the aug-MS X defined in Figure 1. Figure (A) and (C) above are identical to
Figure 1 (A) and (B), respectively. (B) The Rips bipersistence treegram of X (Definition 15). The
summarization processes (A)→(B)→(C) are analogous to the processes depicted in Figure 6.

Now consider an aug-MS X = (X, dX , fX). A <-conqueror function cx : [fX(x),∞)→ X

of a non-minimal x ∈ X sends σ ∈ [fX(x),∞) to a conqueror of x in (Xσ, dX). For the
minimum x′ ∈ (X,<), define cx′ : [fX(x′),∞)→ X to be the constant function at x′.

We generalize Theorem 14 and at the same time strengthen Theorem 8 for 2-parameter
persistence modules induced by a special type of aug-MSs:

I Theorem 17 (Compatibility between the ER-staircodes and algebraic decomposition). Let
X = (X, dX , fX) be an aug-MS and fix any order < on X compatible with fX . Assume that
there exists a constant <-conqueror function for each x ∈ X.1 Then, H0

(
Rbi
• (X)

)
is interval

decomposable and its barcode coincides with the ER-staircode I<X .

The proof of Theorem 17 is similar to that of Theorem 14, and is in the full version [4].
Consider the aug-MS X in Figure 1, which satisfies the assumption in Theorem 17. Therefore,
H0
(
Rbi
• (X)

)
is interval decomposable. The following corollary (proof in the full version [4])

gives an example of a class of aug-MSs to which Theorem 17 applies.

1 Observe that if this property holds for the order <, then the same property holds for any other order
<′ that is compatible with fX , and I<

X = I<′

X .

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:11

Figure 8 Consider the bipersistence treegram in Figure 7 (B) and pick a line L of positive slope.
Then, we obtain a treegram over L.

I Corollary 18. Let X = (X, dX , fX) be any aug-MS where dX is an ultrametric, i.e.
dX(x, x′′) ≤ max (dX(x, x′), dX(x′, x′′)) for all x, x′, x′′ ∈ X. Then, H0

(
Rbi
• (X)

)
is interval

decomposable (in fact, its barcode consists solely of infinite rectangular intervals).

We enrich the ER-staircode in order to query the fibered treegram: Given an aug-MS
X = (X, dX , fX), let < be any order on X compatible with fX . For each x, define I∗x as the
pair (Ix, cx) of the set Ix and the <-conqueror function cx. The collection I∗X := {I∗x}x∈X
is said to be the decorated ER-staircode of X . See Figure 9. The following result holds for
general aug-MSs.

I Theorem 19. Given any L ∈ L, the fibered treegram θbi
X |L can be recovered from the

decorated ER-staircode I∗X of the aug-MS X = (X, dX , fX).

5 Elder-rule-staircodes and graded Betti numbers

We now show that we can retrieve the graded Betti numbers of H0(Rbi
• (X)) from the ER-

staircode of an aug-MS X (Theorem 23). Along the way, we obtain a characterization result
for the graded Betti number of H0(Rbi

• (X)) (Theorem 22), which is of independent interest.

Graded Betti numbers. We briefly review the concept of graded Betti numbers [6, 21, 24,
25, 28, 31]. Since our interests are in studying finite aug-MSs, we restrict ourselves to finite
persistence modules – the k-th homology of a filtration of a finite simplicial complex for some
k ∈ Z≥0 [8].

Qa
x =

{
F, if a ≤ x
0, otherwise,

ϕQa(x,y) =
{

idF, if a ≤ x
0, otherwise.

Any F : Zd → Vec is said to be free if there exists a multiset A of elements of Zd such that
F ∼=

⊕
a∈AQ

a. For simplicity, we refer to free persistence modules as free modules.Let M
be a persistence module. An element m ∈ Ma for some a ∈ Zd is called a homogeneous

SoCG 2020

26:12 Elder-Rule-Staircodes for Augmented Metric Spaces

Figure 9 Decorated intervals corresponding to the four intervals in Figure 1 (C). For each
i = 2, 3, 4, the upper boundary of Ixi is decorated by the conqueror of xi.

element of M , denoted by gr(m) = a. Let F be a free module. A basis B of F is a minimal
homogeneous set of generators of F (see full version [4] for details). There can exist multiple
bases of F , but the number of elements at each grade a ∈ Zd in a basis of F is an isomorphism
invariant. For a finite M , let IM denote the submodule of M generated by the images of all
linear maps ϕM (a,b), with a < b in Zd. Assume that there is a chain of modules

F • : · · · F 2 F 1 F 0 M 0∂3 ∂2 ∂1 ∂0 0(=:∂−1) (3)

such that (1) each F i is a free module, and (2) im(∂i) = ker(∂i−1), i = 0, 1, 2, · · · . Then
we call F • a resolution of M . The condition (2) is referred to as exactness of F •. We call
the resolution F • minimal if im(∂i) ⊆ IF i−1 for i = 1, 2, · · · . It is a standard fact that a
minimal resolution of M always exists and is unique up to isomorphism [28, Chapter I].

I Definition 20 (Graded Betti numbers). Let M : Zd → Vec be finite. Assume that a minimal
free resolution of M is F • in (3). For i ∈ Z≥0, the i-th graded Betti number βMi : Zd → Z≥0
is defined as βMi (a) = (number of elements at grade a in any basis of F i).

We remark that βMi : Zd → Z≥0 is the zero function for every i > d [17, Theorem 1.13].

The graded Betti numbers of H0(Rbi
• (X)). Henceforth, every aug-MS X = (X, dX , fX)

is assumed to be generic: fX is injective and each pair of elements in X has different distance.
Non-generic aug-MSs can also be easily handled; see the full version [4]. Since X is finite, we
consider Z2-indexed filtration described subsequently as a substitute of Rbi

• (X):

I Definition 21. Consider an aug-MS X = (X, dX , fX) with X := {x1, . . . , xn} and assume
that fX(x1) < . . . < fX(xn). Define fZX : X → N as xi 7→ i. Define dZX : X ×X → N by
sending each non-trivial pair (xi, xj) (i 6= j) to ` ∈

{
1, . . . ,

(
n
2
)}
, where dX(xi, xj) is the

`-th smallest distance (among non-zero distance values). The restriction of Rbi
• (X, dZX , fZX) :

R2 → Simp to Z2 is the Z2-indexed Rips filtration of X . Also, let γXj denote the j-th
elder-rule feature function of (X, dZX , fZX) for j = 0, 1, 2 in this section.

For Theorem 22, we introduce relevant terminology and notation. Let S be the Z2-indexed
Rips filtration of an aug-MS X and let K be the 1-skeleton of S, i.e. K is another Z2-indexed
filtration where K(a) is the 1-skeleton of S(a) for every a ∈ P.

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:13

Figure 10 Assume that an aug-MS X consists of four staircase intervals as above with
types of corners marked. From these corner types, we can obtain the graded Betti numbers
of M := H0(Rbi

• (X)) via Theorem 23: Let supp(βM
i) := {a ∈ Z2 : βM

i (a) 6= 0} for i = 0, 1, 2
(the support of βM

i). By Theorem 23, we have supp(βM
0) = {(i, 0) : i = 1, 2, 3, 4}, supp(βM

1) =
{(2, 5), (3, 4), (4, 3), (3, 3), (4, 2), (4, 1)} \ {(3, 5), (4, 4), (4, 3)} = {(2, 5), (3, 4), (3, 3), (4, 2), (4, 1)}, and
supp(βM

2) = {{(3, 5), (4, 4), (4, 3)}} \ {(2, 5), (3, 4), (4, 3), (3, 3), (4, 2), (4, 1)} = {(3, 5), (4, 4)}. All
graded Betti numbers are 1 on their supports and 0 otherwise. In particular, note that the grade
a = (4, 3) receives both a 1-st type mark (in I2) and a 2-nd type mark (in I3). Thus it contributes
value 1 both to γX1 (a) and γX2 (a), and as a result, it does not appear in the support for βM

1 nor βM
2 .

Note that K is 1-critical: every simplex that appears in K has a unique birth index. Let
e be an edge that appears in K whose birth index is b(e) = (b1, b2) ∈ Z2. We say that
the edge e is negative if the number of connected components in K(b1, b2) is strictly less
than that of K(b1, b2 − 1). Otherwise, the edge e is positive.
Given a simplicial complex K and k ∈ Z≥0, let Ck(K) be the k-th chain group of K. For
k ∈ Z≥0, let ∂k : Ck(K) → Ck−1(K) be the boundary map, and Zk(K) := ker(∂k) the
k-th cycle group of K.
Let K : Z2 → Simp be a filtration. For each k ∈ Z≥0, let Ck(K) : Z2 → Vec be the
module defined as Ck(K)(a) := Ck(K(a)), where the internal maps ϕK(a,b) are the
canonical inclusion maps Ck(K(a)) ↪→ Ck(K(b)). In particular, if K is 1-critical, then
Ck(K) is the free module whose basis elements one-to-one correspond to all the k-th
simplices in S. More specifically, the birth of a simplex σ ∈ S in K at a ∈ Zd corresponds
to a generator of Ck(K) at a.

I Theorem 22. Let K be the 1-skeleton of the Z2-indexed Rips filtration of an aug-MS. Let
K− be the filtration of K that is obtained by removing all positive edges in K. Then,
(i) The following sequence of persistence modules is exact:

0 −→ Z1(K−) i−→ C1(K−) ∂1−→ C0(K−) p−→ H0(K) −→ 0, (4)

where i is the canonical inclusion, ∂1 is the boundary map, p is the canonical projection.
(ii) The sequence in (4) is a minimal free resolution of H0(K).2

Theorem 22 is proved in the full version [4].
Given any two functions α, α′ : Z2 → Z≥0, we define α− α′ : Z2 → Z≥0 as

(α− α′)(x) = max(α(x)− α′(x), 0), for x ∈ Z2.

For any aug-MS X , we can compute the graded Betti numbers of the zeroth homology of
Rbi
• (X) from the ER-staircode of X , as specified by the following result.

2 This means that F 0 = C0(K−), F 1 = C1(K−), F 2 = Z1(K−) and F i = 0 for i > 2 in the chain of (3).

SoCG 2020

26:14 Elder-Rule-Staircodes for Augmented Metric Spaces

I Theorem 23. Let K be the Z2-indexed Rips filtration of an aug-MS X and let M := H0(K).
Let βMi be the i-th grade Betti number of M . Then,

βM0 = γX0 , βM1 = γX1 − γX2 , βM2 = γX2 − γX1 . (5)

In particular, we note that the elder-rule feature functions γXj are easy to compute, as
one only needs to compute and aggregate the type of each corner in staircase intervals in the
ER-staircode of X . Once γXj s are known, one can easily compute the graded Betti number
of H0(Rbi

• (X)) by Theorem 23. See Figure 10 for an example. We also remark that Koszul
homology formulae [25, Proposition 5.1] are in a similar form to those in (5). However, Koszul
homology formulae do not directly imply those in (5) nor vice versa.

Sketch of proof of Theorem 23. Let X := (X, dX , fX) with X = {x1, . . . , xn}, and assume
that fX(x1) < . . . < fX(xn). By the construction of K and γXi , it suffices to show the
equalities in (5) hold on A := {1, 2, . . . , n} × {0, 1, . . . ,

(
n
2
)
} ⊂ Z2 (βMi and γXi vanish

outside A for i = 0, 1, 2). By Theorem 22 and the construction of γX0 , both of βM0 and γX0
have values 1 on A|y=0 = {(1, 0), (2, 0), (3, 0) . . . , (n, 0)} and zero outside A|y=0, implying
that βM0 = γX0 . Note that when i = 1, 2, the supports of βMi and γXi are contained in
A|y>0 = {1, 2, . . . , n} × {1, . . . ,

(
n
2
)
}. Using induction on x-coordinate of Z2, we will prove

that βM1 = γX1 − γX2 and βM2 = γX2 − γX1 on the horizontal line A|y=1 = {1, 2, . . . , n} × {1}.
Note that K(1, b) = {{x1}} for all 1 ≤ b ≤

(
n
2
)
, and thus again by Theorem 22 and the

construction of γXi , i = 1, 2,

for 1 ≤ b ≤
(
n
2
)
, βM1 (1, b) = γX1 (1, b) = 0, and βM2 (1, b) = γX2 (1, b) = 0. (6)

Specifically, we have βM1 (1, 1) = γX1 (1, 1) = γX1 (1, 1)− γX2 (1, 1) and βM2 (1, 1) = γX2 (1, 1) =
γX2 (1, 1) − γX1 (1, 1). Fix a natural number m > 2 and assume that βM1 (a, 1) = γX1 (a, 1) −
γX2 (a, 1) and βM2 (a, 1) = γX2 (a, 1)−γX1 (a, 1) for 1 ≤ a ≤ m−1. By Theorem A.5 and Theorem
C.1 in the full version [4], we have:

∑
x≤(m,1)

∑2
i=0(−1)iβMi (x) (∗)=

∑
x≤(m,1)

∑2
i=0(−1)iγXi (x).

Since (1) βM0 = γX0 on the entire Z2, and (2) βMi , γXi vanish outside A for i = 1, 2, the
induction hypothesis reduces equality (∗) to

−βM1 (m, 1) + βM2 (m, 1) = −γX1 (m, 1) + γX2 (m, 1).

By Lemma C.4 in the full version [4], three cases are possible: (Case 1) βM1 (m, 1) = 1 and
βM2 (m, 1) = 0, (Case 2) βM1 (m, 1) = 0 and βM2 (m, 1) = 1, or (Case 3) βM1 (m, 1) = 0 and
βM2 (m, 1) = 0. Invoking that γX1 (m, 1) and γX2 (m, 1) are non-negative, in all cases, we have

βM1 (m, 1) = γX1 (m, 1)− γX2 (m, 1), βM2 (m, 1) = γX2 (m, 1)− γX1 (m, 1),

completing the proof of βM1 = γX1 − γX2 and βM2 = γX2 − γX1 on A|y=1. We next apply the
same strategy to the horizontal lines y = 2, . . . , y =

(
n
2
)
in order, completing the proof. J

6 Computation and Algorithms

I Theorem 24. Let (X, dX , fX) be a finite aug-MS with n = |X|.
(a) We can compute the ER-staircode IX = {{Ix : x ∈ X}} in O(n2 logn) time. If X ⊂ Rd

for a fixed d and dX the Euclidean distance, the time can be improved to O(n2α(n)),
where α(n) is the inverse Ackermann function.

(b) Each Ix ∈ IX has complexity O(n). Given IX , we can compute zeroth fibered barcode BL
for any line L with positive slope in O(|BL| logn) time where |BL| is the size of BL.

(c) Given IX , we can compute the zeroth graded Betti numbers in O(n2) time.

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:15

Below we sketch the proof of the above theorem, with missing details in [4].
Consider a function value σ ∈ R, and recall that Xσ consists of all points in X with

fX value at most σ. Let Kσ = R•(Xσ, dX) denote the Rips filtration of (Xσ, dX) (recall
Remark 12). The corresponding 1-parameter treegram (dendrogram) is θσ := π0(Kσ). On
the other hand, for any σ, we can consider the complete weighted graph Gσ = (Vσ = Xσ, Eσ)
with edge weight w(x, x′) = dX(x, x′) for any x, x′ ∈ Xσ. It is folklore that the treegram θσ
can be computed from the minimum spanning tree (MST) Tσ of Gσ.

Assume all points in X are ordered x1, x2, . . . , xn such that fX(xi) ≤ fX(xj) whenever
i < j, and set σi = f(xi) for i ∈ [1, n]. Note that as σ varies, Xσ only changes at σi. For
simplicity, we set θi := θσi = π0(Kσi), Gi := Gσi and Ti := MST (Gi) is the minimum
spanning tree (MST) for the weighted graph Gi. Our algorithm depends on the following
lemma, the proof of which is in the full version [4].

I Lemma 25. A decorated ER-staircode for the finite aug-MS (X, dX , fX) can be computed
from the collection of treegrams {θi, i ∈ [1, n]} in O(n2) time.

In light of the above result, the algorithm to compute ER-staircode is rather simple:
(Step 1): We start with T0 = empty tree. At the i-th iteration,

(Step 1-a) we update Ti−1 (already computed) to obtain Ti; and
(Step 1-b) compute θi from Ti and θi−1.

(Step 2): We use the approach described in the proof of Lemma 25 to compute the ER-
staircode in O(n2) time.

For (Step 1-a), note that Gi is obtained by inserting vertex xi, as well as all i− 1 edges
between (xi, xj), j ∈ [1, i − 1], into graph Gi−1. By [12], one can update the minimum
spanning tree Ti−1 of Gi−1 to obtain the MST Ti of Gi in O(n) time.

For (Step 1-b), once all i − 1 edges spanning i vertices in Ti are sorted, then we can
easily build the treegram θi in O(iα(i)) = O(nα(n)) time, by using union-find data structure
(see Figure 14 in the full version [4]). Sorting edges in Ti takes O(i log i) = O(n logn) time.
Hence the total time spent on (Step 1-b) for all i ∈ [1, n] is O(n2 logn).

Knowing the order of all edges in Ti−1 does not appear to help, as compared to Ti−1, Ti
may have Ω(i) different edges newly introduced, and these new edges still need to be sorted.
Nevertheless, we show in the full version [4] that if X ⊂ Rd for a fixed dimension d, then each
Ti will only have constant number of different edges compared to Ti−1, and we can sort all
edges in Ti in O(n) time by inserting the new edges to the sorted list of edges in Ti−1. Hence
θi can be computed in O(nα(n)) +O(n) = O(nα(n)) time for this case. Putting everything
together, Theorem 24 (a) follows. See the full version [4] for the proofs of (b) and (c).

7 Discussion

Some open questions and conjectures are as follows:

1. Barcodes and elder-rule-staircodes. We conjecture that if the zeroth homology of
the Rips bifiltration of an augmented metric space is interval decomposable, then the
barcode must coincide with the elder-rule-staircode. Also, we suspect the sufficient
condition for X to be interval decomposable given in Theorem 17 is actually also a
necessary condition. Note that Theorem 17 and these conjectures are closely related to
questions raised in [2].

SoCG 2020

26:16 Elder-Rule-Staircodes for Augmented Metric Spaces

2. Extension to d-augmented metric spaces. Can we generalize our results to the
setting of more than two parameters? Namely, for d-augmented metric spaces X d :=
(X, dX , f1, f2, . . . , fd), fi : X → R, i = 1, . . . , d, can we recover the zeroth homological
information of the d+ 1-parameter filtration induced by X d by devising “an elder-rule-
staircode” of X d? Note that, under the assumption the set {(fi(x))di=1 ∈ Rd : x ∈ X}
is totally ordered in the poset Rd, a straightforward generalization of the elder-rule
staircode is conceivable. But it is not clear how to define elder-rule staircode without the
assumption.

3. Extension to higher-order homology. The ambiguity mentioned in the previous
paragraph also arises when trying to devise an “elder-rule-staircode” for higher-order
homology of a multiparameter filtration; namely, when k ≥ 1, the birth indices of k-cycles
are not necessarily totally ordered in the multiparameter setting, and thus determining
which cycle is older than another is not clear in general.

4. Metrics and stability. Recall that the collection E(X) of all possible ER-staircodes of
an aug-MS X is an invariant of X (the paragraph after Example 7). One possible metric
between two collections of ER-staircodes is the Hausdorff distance dbH in the metric space
of barcodes over R2 with the generalized bottleneck distance db [3]. On the other hand,
there exists a metric d1

GH which measures the difference between aug-MSs [11] and let
dI be the interleaving distance between 2-parameter persistence modules [23]. Are there
constants α, β > 0 such that for all aug-MSs X and Y, the inequalities below hold?

α · dI
(
H0
(
Rbi
• (X)

)
,H0

(
Rbi
• (Y)

))
≤ dbH(E(X), E(Y)) ≤ β · d1

GH(X ,Y).

5. Completeness. Recall that the collection E(X) of all the elder-rule-staircodes of an
aug-MS X is not a complete invariant (the paragraph after Example 7). How faithful is
this collection in general? Is there any class of aug-MSs X such that E(X) completely
characterizes X ?

References
1 Gorô Azumaya et al. Corrections and supplementaries to my paper concerning krull-remak-

schmidt’s theorem. Nagoya Mathematical Journal, 1:117–124, 1950.
2 Ulrich Bauer, Magnus B Botnan, Steffen Oppermann, and Johan Steen. Cotorsion torsion

triples and the representation theory of filtered hierarchical clustering. arXiv preprint, 2019.
arXiv:1904.07322.

3 Magnus Botnan and Michael Lesnick. Algebraic stability of zigzag persistence modules.
Algebraic & geometric topology, 18(6):3133–3204, 2018.

4 Chen Cai, Woojin Kim, Mémoli Facundo, and Yusu Wang. Elder-rule-staircodes for augmented
metric spaces. arXiv preprint, 2020. arXiv:2003.04523.

5 Chen Cai and Yusu Wang. Understanding the power of persistence pairing via permutation
test. arXiv preprint, 2020. arXiv:2001.06058.

6 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &
Computational Geometry, 42(1):71–93, 2009. doi:doi:10.1007/s00454-009-9176-0.

7 Gunnar Carlsson and Facundo Mémoli. Characterization, stability and convergence of hier-
archical clustering methods. Journal of machine learning research, 11(Apr):1425–1470, 2010.

8 Gunnar Carlsson and Facundo Mémoli. Multiparameter hierarchical clustering methods. In
Classification as a Tool for Research, pages 63–70. Springer, 2010.

9 Mathieu Carriere, Frédéric Chazal, Yuichi Ike, Théo Lacombe, Martin Royer, and Yuhei Umeda.
A general neural network architecture for persistence diagrams and graph classification. arXiv
preprint, 2019. arXiv:1904.09378.

http://arxiv.org/abs/1904.07322
http://arxiv.org/abs/2003.04523
http://arxiv.org/abs/2001.06058
https://doi.org/doi:10.1007/s00454-009-9176-0
http://arxiv.org/abs/1904.09378

C. Cai, W. Kim, F. Mémoli, and Y. Wang 26:17

10 Andrea Cerri, Barbara Di Fabio, Massimo Ferri, Patrizio Frosini, and Claudia Landi. Betti
numbers in multidimensional persistent homology are stable functions. Mathematical Methods
in the Applied Sciences, 36(12):1543–1557, 2013.

11 Frédéric Chazal, David Cohen-Steiner, Leonidas J Guibas, Facundo Mémoli, and Steve Y
Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. In Computer Graphics
Forum, volume 28 (5), pages 1393–1403. Wiley Online Library, 2009.

12 Francis Chin and David Houck. Algorithms for updating minimal spanning trees. Journal of
Computer and System Sciences, 16(3):333–344, 1978.

13 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, 2007.

14 Justin Curry. The fiber of the persistence map for functions on the interval. Journal of Applied
and Computational Topology, 2(3-4):301–321, 2018.

15 Tamal K Dey and Cheng Xin. Generalized persistence algorithm for decomposing multi-
parameter persistence modules. arXiv preprint, 2019. arXiv:1904.03766.

16 Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

17 David Eisenbud. Commutative Algebra: with a view toward algebraic geometry, volume 150.
Springer Science & Business Media, 2013.

18 Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with
topological signatures. In Advances in Neural Information Processing Systems, pages 1634–1644,
2017.

19 Woojin Kim and Facundo Mémoli. Generalized persistence diagrams for persistence modules
over posets. arXiv preprint, 2018. arXiv:1810.11517.

20 Woojin Kim and Facundo Mémoli. Spatiotemporal persistent homology for dynamic
metric spaces. Discrete & Computational Geometry, pages 1–45, 2020. doi:10.1007/
s00454-019-00168-w.

21 Kevin P. Knudson. A refinement of multi-dimensional persistence. Homology, Homotopy and
Applications, 10(1):259–281, 2008.

22 Claudia Landi. The rank invariant stability via interleavings. In Research in Computational
Topology, pages 1–10. Springer, 2018.

23 Michael Lesnick. The theory of the interleaving distance on multidimensional persistence mod-
ules. Found. Comput. Math., 15(3):613–650, June 2015. doi:10.1007/s10208-015-9255-y.

24 Michael Lesnick and Matthew Wright. Interactive visualization of 2-d persistence modules.
arXiv preprint, 2015. arXiv:1512.00180.

25 Michael Lesnick and Matthew Wright. Computing minimal presentations and betti numbers
of 2-parameter persistent homology. arXiv preprint, 2019. arXiv:1902.05708.

26 Alex McCleary and Amit Patel. Multiparameter persistence diagrams. arXiv preprint, 2019.
arXiv:1905.13220v3.

27 Amit Patel. Generalized persistence diagrams. Journal of Applied and Computational Topology,
1(3-4):397–419, 2018.

28 Irena Peeva. Graded syzygies, volume 14. Springer Science & Business Media, 2010.
29 Zane Smith, Samir Chowdhury, and Facundo Mémoli. Hierarchical representations of network

data with optimal distortion bounds. In Signals, Systems and Computers, 2016 50th Asilomar
Conference on, pages 1834–1838. IEEE, 2016.

30 Qi Zhao and Yusu Wang. Learning metrics for persistence-based summaries and applications
for graph classification. In 33rd Annu. Conf. Neural Inf. Processing Systems (NeuRIPS), 2019.
to appear.

31 Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Discrete & Compu-
tational Geometry, 33(2):249–274, 2005.

SoCG 2020

http://arxiv.org/abs/1904.03766
http://arxiv.org/abs/1810.11517
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s00454-019-00168-w
https://doi.org/10.1007/s10208-015-9255-y
http://arxiv.org/abs/1512.00180
http://arxiv.org/abs/1902.05708
http://arxiv.org/abs/1905.13220v3

Faster Approximation Algorithms for Geometric
Set Cover
Timothy M. Chan
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
tmc@illinois.edu

Qizheng He
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
qizheng6@illinois.edu

Abstract
We improve the running times of O(1)-approximation algorithms for the set cover problem in
geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces
in three dimensions. In the unweighted case, Agarwal and Pan [SoCG 2014] gave a randomized
O(n log4 n)-time, O(1)-approximation algorithm, by using variants of the multiplicative weight
update (MWU) method combined with geometric data structures. We simplify the data structure
requirement in one of their methods and obtain a deterministic O(n log3 n log logn)-time algorithm.
With further new ideas, we obtain a still faster randomized O(n logn(log logn)O(1))-time algorithm.

For the weighted problem, we also give a randomized O(n log4 n log logn)-time, O(1)-approxima-
tion algorithm, by simple modifications to the MWU method and the quasi-uniform sampling
technique.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Set cover, approximation algorithms, multiplicate weight update method,
random sampling, shallow cuttings

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.27

Related Version A full version of this paper is available at http://arxiv.org/abs/2003.13420.

Funding Timothy M. Chan: Supported in part by NSF Grant CCF-1814026.

1 Introduction

Unweighted geometric set cover. In this paper we study one of the most fundamental
classes of geometric optimization problems: geometric set cover. Given a set X of O(n)
points and a set S of O(n) geometric objects, find the smallest subset of objects from S to
cover all points in X. In the dual set system, the problem corresponds to geometric hitting
set (finding the smallest number of points from X that hit all objects in S).

This class of problems has been extensively investigated in the computational geometry lit-
erature. Since they are NP-hard in most scenarios, attention is turned towards approximation
algorithms. Different types of objects give rise to different results. Typically, approximation
algorithms fall into the following categories:
1. Simple heuristics, e.g., greedy algorithms.
2. Approaches based on solving the linear programming (LP) relaxation (i.e., fractional set

cover) and rounding the LP solution.
3. Polynomial-time approximation schemes (PTASs), e.g., via local search, shifted grid-

s/quadtrees (sometimes with dynamic programming), or separator-based divide-and-
conquer.

© Timothy M. Chan and Qizheng He;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8093-0675
mailto:tmc@illinois.edu
mailto:qizheng6@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.27
http://arxiv.org/abs/2003.13420
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Faster Approximation Algorithms for Geometric Set Cover

Generally, greedy algorithms achieve only logarithmic approximation factors (there are
some easy cases where they give O(1) approximation factors, e.g., hitting set for fat objects
such as disks/balls in the “continuous” setting with X = Rd [20]). The LP-based approaches
give better approximation factors in many cases, e.g., O(1) approximation for set cover and
hitting set for disks in 2D and halfspaces in 3D, set cover for objects in 2D with linear
“union complexity”, and hitting set for pseudodisks in 2D [7, 19, 5, 32, 29]. Subsequently,
local-search PTASs have been found by Mustafa and Ray [27] in some cases, including set
cover and hitting set for disks in 2D and halfspaces in 3D (earlier, PTASs were known for
hitting set only in the continuous setting for unit disks/balls [21], and for arbitrary disks/balls
and fat objects [11]).

Historically, the focus has been on obtaining good approximation factors. Here, we are
interested in obtaining approximation algorithms with good – ideally, near linear – running
time. Concerning the efficiency of known approximation algorithms:
1. Certain simple heuristics can lead to fast O(1)-approximation algorithms in some easy

cases (e.g., continuous hitting set for unit disks or unit balls by using grids), but generally,
even simple greedy algorithms may be difficult to implement in near linear time (as they
may require nontrivial dynamic geometric data structures).

2. LP-based approaches initially may not seem to be the most efficient, because of the
need to solve an LP. However, a general-purpose LP solver can be avoided. The set-
cover LP can alternatively be solved (approximately) by the multiplicative weight update
(MWU) method. In the computational geometry literature, the technique has been called
iterative reweighting, and its use in geometric set cover was explored by Brönnimann
and Goodrich [7] (one specific application appeared in an earlier work by Clarkson [18]),
although the technique was known even earlier outside of geometry. On the other hand,
the LP-rounding part corresponds to the well-known geometric problem of constructing
ε-nets, for which efficient algorithms are known [15, 25].

3. PTAS approaches generally have large polynomial running time, even when specialized
to specific approximation factors. For example, see [8] for efforts in improving the degree
of the polynomial.

In this paper we design faster approximation algorithms for geometric set cover via the
LP/MWU-based approaches. There has been a series of work on speeding up MWU methods
for covering or packing LPs (e.g., see [17, 22, 33]). In geometric settings, we would like more
efficient algorithms (as generating the entire LP explicitly would already require quadratic
time), by somehow exploiting geometric data structures. The main previous work was by
Agarwal and Pan [4] from SoCG 2014, who showed how to compute an O(1)-approximation
for set cover for 2D disks or 3D halfspaces, in O(n log4 n) randomized time.

Agarwal and Pan actually proposed two MWU-based algorithms: The first is a simple
variant of the standard MWU algorithm of Brönnimann and Goodrich, which proceeds
in logarithmically many rounds. The second views the problem as a 2-player zero-sum
game, works quite differently (with weight updates to both points and objects), and uses
randomization; the analysis is more complicated. Because the first algorithm requires stronger
data structures – notably, for approximate weighted range counting with dynamic changes
to the weights – Agarwal and Pan chose to implement their second algorithm instead, to get
their O(n log4 n) result for 3D halfspaces.

New results. In this paper we give:
a deterministic near-linear O(1)-approximation algorithm for set cover for 3D halfspaces.
Its running time is O(n log3 n log logn), which besides eliminating randomization is also
a little faster than Agarwal and Pan’s;

T.M. Chan and Q. He 27:3

a still faster randomized near-linear O(1)-approximation algorithm for set cover for
3D halfspaces. Its running time is O(n logn logO(1) logn), which is essentially optimal1
ignoring minor log logn factors.

Although generally shaving logarithmic factors may not be the most important endeavor,
the problem is fundamental enough that we feel it worthwhile to find the most efficient
algorithm possible.

Our approach interestingly is to go back to Agarwal and Pan’s first MWU algorithm.
We show that with one simple modification, the data structure requirement can actually be
relaxed: namely, for the approximate counting structure, there is no need for weights, and the
only update operation is insertion. By standard techniques, insertion-only data structures
reduce to static data structures. This simple idea immediately yields our deterministic result.
(Before, Bus et al. [9] also aimed to find variants of Agarwal and Pan’s first algorithm with
simpler data structures, but they did not achieve improved theoretical time bounds.) Our
best randomized result requires a more sophisticated combination of several additional ideas.
In particular, we incorporate random sampling in the MWU algorithm, and extensively use
shallow cuttings, in both primal and dual space.

We have stated our results for set cover for 3D halfspaces. This case is arguably the most
central. It is equivalent to hitting set for 3D halfspaces, by duality, and also includes set cover
and hitting set for 2D disks as special cases, by the standard lifting transformation. The case
of 3D dominance ranges is another special case, by a known transformation [14, 28] (although
for the dominance case, word-RAM techniques can speed up the algorithms further). The
ideas here are likely useful also in the other cases considered in Agarwal and Pan’s paper
(e.g., hitting set for rectangles, set cover for fat triangles, etc.), but in the interest of keeping
the paper focused, we will not discuss these implications.

Weighted geometric set cover. Finally, we consider the weighted version of set cover:
assuming that each object is given a weight, we now want a subset of the objects of R with
the minimum total weight that covers all points in X. The weighted problem has also received
considerable attention: Varadarajan [31] and Chan et al. [13] used the LP-based approach to
obtain O(1)-approximation algorithms for weighted set cover for 3D halfspaces (or for objects
in 2D with linear union complexity); the difficult part is in constructing ε-nets with small
weights, which they solved by the quasi-random sampling technique. Later, Mustafa, Raman,
and Ray [26] discovered a quasi-PTAS for 3D halfspaces by using geometric separators; the
running time is very high (nlogO(1) n).

Very recently, Chekuri, Har-Peled, and Quanrud [16] described new randomized MWU
methods which can efficiently solve the LP corresponding to various generalizations of
geometric set cover, by using appropriate geometric data structures. In particular, for weighted
set cover for 3D halfspaces, they obtained a randomized O(n logO(1) n)-time algorithm to
solve the LP but with an unspecified number of logarithmic factors. They did not address
the LP-rounding part, i.e., construction of an ε-net of small weight – a direct implementation
of the quasi-uniform sampling technique would not lead to a near-linear time bound.

We observe that a simple direct modification of the standard MWU algorithm of Brönni-
mann and Goodrich, or Agarwal and Pan’s first algorithm, can also solve the LP for weighted
geometric set cover, with arguably simpler data structures than Chekuri et al.’s. Secondly,

1 Just deciding whether a solution exists requires Ω(n logn) time in the algebraic decision-tree model,
even for 1D intervals.

SoCG 2020

27:4 Faster Approximation Algorithms for Geometric Set Cover

we observe that an ε-net of small weight can be constructed in near-linear time, by using
quasi-uniform sampling more carefully. This leads to a randomized O(n log4 n log logn)-
time, O(1)-approximation algorithm for weighted set cover for 3D halfspaces (and thus
for 2D disks).

2 Preliminaries

Let X be a set of points and S be a set of objects. For a point p, its depth in S refers to
the number of objects in S containing p. A point p is said to be ε-light in S, if it has depth
≤ ε|S| in S; otherwise it is ε-heavy. A subset of objects T ⊆ S is an ε-net of S if T covers
all points that are ε-heavy in S.

It is known that there exists an ε-net with size O(1
ε) for any set of halfspaces in 3D or

disks in 2D [24] (or more generally for objects in the plane with linear union complexity [19]).

2.1 The Basic MWU Algorithm

We first review the standard multiplicative weight2 update (MWU) algorithm for geometric set
cover, as described by Brönnimann and Goodrich [7] (which generalizes an earlier algorithm
by Clarkson [18], and is also well known outside of computational geometry).

Let X be the set of input points and S be the set of input objects, with n = |X|+ |S|.
Let OPT denote the size of the minimum set cover. We assume that a value t = Θ(OPT)
is known; this assumption will be removed later by a binary search for t. In the following
pseudocode, we work with a multiset Ŝ; in measuring size or counting depth, we include
multiplicities (e.g., |Ŝ| is the sum of the multiplicities of all its elements).

1: Guess a value t ∈ [OPT, 2OPT] and set ε = 1
2t .

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.
3: while we can find a point p ∈ X which is ε-light in Ŝ do
4: for each object i containing p do . call lines 4–5 a multiplicity-doubling step
5: Double its multiplicity mi.
6: Return an ε-net of the multiset Ŝ.

Since at the end all points in X are ε-heavy in Ŝ, the returned subset is a valid set cover
of X. For halfspaces in 3D or disks in 2D, its size is O(1

ε) = O(t) = O(OPT).
A standard analysis shows that the algorithm always terminates after O(t log n

t) multipli-
city-doubling steps. We include a quick proof: Each multiplicity-doubling step increases
|Ŝ| by a factor of at most 1 + ε, due to the ε-lightness of p. Thus, after z doubling steps,
|Ŝ| ≤ n(1 + ε)z ≤ neεz = nez/(2t). On the other hand, consider a set cover T ∗ of size t. In
each multiplicity-doubling step, at least one of the objects in T ∗ has its multiplicity doubled.
So, after z multiplicity-doubling steps, the total multiplicity in T ∗ is at least t2z/t. We
conclude that t2z/t ≤ |Ŝ| ≤ nez/(2t), implying that z = O(t log n

t).

2 In our algorithm description, we prefer to use the term “multiplicity” instead of “weight”, to avoid
confusion with the weighted set cover problem later.

T.M. Chan and Q. He 27:5

2.2 Agarwal and Pan’s (First) MWU Algorithm
Next, we review Agarwal and Pan’s first variant of the MWU algorithm [4]. One issue in
implementing the original algorithm lies in the test in line 3: searching for one light point by
scanning all points in X from scratch every time seems inefficient. In Agarwal and Pan’s
refined approach, we proceed in a small number of rounds, where in each round, we examine
the points in X in a fixed order and test for lightness in that order.

1: Guess a value t ∈ [OPT, 2OPT] and set ε = 1
2t .

2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.
3: loop . call this the start of a new round
4: for each point p ∈ X in any fixed order do
5: while p is ε-light in Ŝ do
6: for each object i containing p do . call lines 6–7 a multiplicity-doubling step
7: Double its multiplicity mi.
8: if the number of multiplicity-doubling steps in this round exceeds t then
9: Go to line 3 and start a new round.
10: Terminate and return an ε

2 -net of the multiset Ŝ.

To justify correctness, observe that since each round performs at most t multiplicity-
doubling steps, |Ŝ| increases by a factor of at most (1 + ε)t ≤ eεt ≤ e1/2 < 2. Thus, a point
p that is checked to be ε-heavy in Ŝ at any moment during the round will remain ε

2 -heavy in
Ŝ at the end of the round.

Since all but the last round performs t multiplicity-doubling steps and we have already
shown that the total number of such steps is O(t log n

t), the number of rounds is O(log n
t).

3 “New” MWU Algorithm

Agarwal and Pan’s algorithm still requires an efficient data structure to test whether a given
point is light, and the data structure needs to support dynamic changes to the multiplicities.
We propose a new variant that requires simpler data structures.

Our new algorithm is almost identical to Agarwal and Pan’s, but with just one very
simple change! Namely, after line 3, at the beginning of each round, we add the following
line, to readjust all multiplicities:

3.5: for each object i, reset its multiplicity mi ← dmi
10n
|Ŝ| e.

To analyze the new algorithm, consider modifying the multiplicity mi instead to dmi
10n
|Ŝ| e ·

|Ŝ|
10n . The algorithm behaves identically (since the multiplicities are identical except for a
common rescaling factor), but is more convenient to analyze. In this version, multiplicities
are nondecreasing over time (though they may be non-integers). After the modified line 3.5,
the new |Ŝ| is at most

∑
i

(
mi

10n
|Ŝ| + 1

)
· |Ŝ|10n ≤ 11n · |Ŝ|10n = 1.1|Ŝ|. If the algorithm makes

z multiplicity-doubling steps, then it performs line 3.5 at most z/t times and we now have
|Ŝ| ≤ n(1 + ε)z · 1.1z/t ≤ nez/(2t) · 1.1z/t. This is still sufficient to imply that z = O(t log n

t),
and so the number of rounds remains O(log n

t).

SoCG 2020

27:6 Faster Approximation Algorithms for Geometric Set Cover

Now, let’s go back to line 3.5 as written. The advantage of this multiplicity readjustment
step is that it decreases |Ŝ| to

∑
i

(
mi

10n
|Ŝ| + 1

)
= O(n). At the end of the round, |Ŝ|

increases by a factor of at most (1 + ε)t < 2 and so remains O(n). Thus, in line 7, instead of
doubling the multiplicity of an object, we can just repeatedly increment the multiplicity (i.e.,
insert one copy of an object) to reach the desired value. The total number of increments per
round is O(n).

Note that in testing for ε-lightness in line 5, a constant-factor approximation of the depth
is sufficient, with appropriate adjustments of constants in the algorithm. Also, although
the algorithm as described may test the same point p for lightness several times in a round,
this can be easily avoided: we just keep track of the increase D in the depth of the current
point p; the new depth of p can be 2-approximated by the maximum of the old depth and D.

To summarize, an efficient implementation of each round of the new algorithm requires
solving the following geometric data structure problems (Report for line 6, and Approx-
Count-Decision for line 5):
Problem Report: Design a data structure to store a static set S of size O(n) so that given a

query point p ∈ X, we can report all objects in S containing the query point p. Here, the
output size of a query is guaranteed to be at most O(k) where k := n

t (since ε-lightness
of p implies that its depth is at most ε|Ŝ| = Θ(nt) even including multiplicities).

Problem Approx-Count-Decision: Design a data structure to store a multiset Ŝ of size O(n)
so that given a query point p ∈ X, we can either declare that the number of objects in Ŝ
containing p is less than a fixed threshold value k, or that the number is more than k

c ,
for some constant c > 1. Here, the threshold again is k := n

t (since ε|Ŝ| = Θ(nt)). The
data structure should support the following type of updates: insert one copy of an object
to Ŝ. (Deletions are not required.) Each point in X is queried once.

To bound the cost of the algorithm:
Let Treport denote the total time for O(t) queries in Problem Report.
Let Tcount denote the total time for O(n) queries and O(n) insertions in Problem Approx-
Count-Decision. (Note that the initialization of Ŝ at the beginning of the round can
be done by O(n) insertions.)
Let Tnet denote the time for computing an ε-net of size O(1

ε) for a given multiset Ŝ of
size O(n).

The total running time over all O(log n
t) rounds is

O((Treport + Tcount) log n
t + Tnet). (1)

4 Implementations

In this section, we describe specific implementations of our MWU algorithm when the objects
are halfspaces in 3D (which include disks in 2D as a special case by the standard lifting
transformation). We first consider deterministic algorithms.

4.1 Deterministic Version
Shallow cuttings. We begin by reviewing an important tool that we will use several times
later. For a set of n planes in R3, a k-shallow ε-cutting is a collection of interior-disjoint
polyhedral cells, such that each cell intersects at most εn planes, and the union of the cells
cover all points of level at most k (the level of a point refers to the number of planes below
it). The list of all planes intersecting a cell ∆ is called the conflict list of ∆. Matoušek [23]

T.M. Chan and Q. He 27:7

proved the existence of a k-shallow (ckn)-cutting with O(nk) cells for any constant c. Chan and
Tsakalidis [15] gave an O(n log n

k)-time deterministic algorithm to construct such a cutting,
along with all its conflict lists (an earlier randomized algorithm was given by Ramos [30]). If
c is sufficiently large, the cells may be made “downward”, i.e., they all contain (0, 0,−∞).

Constructing ε-nets. The best known deterministic algorithm for constructing ε-nets for
3D halfspaces is by Chan and Tsakalidis [15] and runs in Tnet = O(n log 1

ε) = O(n logn) time.
The result follows directly from their shallow cutting algorithm (using a simple argument

of Matoušek [23]): Without loss of generality, assume that all halfspaces are upper halfspaces,
so depth corresponds to level with respect to the bounding planes (we can compute a net for
lower halfspaces separately and take the union, with readjustment of ε by a factor of 2). We
construct an (εn)-shallow ε

2 -cutting with O(1
ε) cells, and for each cell, add a plane completely

below the cell (if it exists) to the net. To see correctness, for a point p with level εn, consider
the cell ∆ containing p; at least εn− εn

2 > 0 planes are completely below ∆, and so the net
contains at least one plane below p.

Solving Problem Report. This problem corresponds to 3D halfspace range reporting in
dual space, and by known data structures [10, 2, 15], the total time to answer O(t) queries is
Treport = O(t · (logn+ k)) = O(t logn+ n), assuming an initial preprocessing of O(n logn)
time (which is done only once).

This result also follows directly from shallow cuttings (since space is not our concern,
the solution is much simplified): Without loss of generality, assume that all halfspaces are
upper halfspaces. We construct a k-shallow O(kn)-cutting with O(nk) downward cells. Given
a query point p ∈ X, we find the cell containing p, which can be done in O(logn) time by
planar point location; we then do a linear search over its conflict list, which has size O(k).

Note that the point location operations can be actually be done during preprocessing in
O(n logn) time since X is known in advance. This lowers the time bound for O(t) queries to
Treport = O(tk) = O(n).

Solving Problem Approx-Count-Decision. This problem corresponds to the decision ver-
sion of 3D halfspace approximate range counting in dual space, and several deterministic
and randomized data structures have already been given in the static case [1, 3], achieving
O(logn) query time and O(n logn) preprocessing time.

This result also follows directly from shallow cuttings: Without loss of generality, assume
that all halfspaces are upper halfspaces. We construct a n

bi -shallow O(1
bi)-cutting with

O(bi) downward cells for every i = 1, . . . , logb n for some constant b. Chan and Tsakalidis’s
algorithm can actually construct all O(logn) such cuttings in O(n logn) total time. With
these cuttings, we can compute an O(1)-approximation to the depth/level of a query point p
by simply finding the largest i such that p is contained in a cell of the n

bi -shallow cutting
(the level of p would then be O(nbi) and at least n

bi+1). In Chan and Tsakalidis’s construction,
each cell in one cutting intersects O(1) cells in the next cutting, and so we can locate the
cells containing p in O(1) time per i, for a total of O(logn) time.

To solve Problem Approx-Count-Decision, we still need to support insertion. Al-
though the approximate decision problem is not decomposable, the above solution solves the
approximate counting problem, which is decomposable, so we can apply the standard loga-
rithmic method [6] to transform the static data structure into a semi-dynamic, insertion-only
data structure. The transformation causes a logarithmic factor increase, yielding in our case
O(log2 n) query time and O(log2 n) insertion time. Thus, the total time for O(n) queries
and insertions is Tcount = O(n log2 n).

SoCG 2020

27:8 Faster Approximation Algorithms for Geometric Set Cover

Conclusion. By (1), the complete algorithm has running time O((Treport + Tcount) log n
t +

Tnet) = O((n+ n log2 n) log n
t + n logn) = O(n log3 n).

One final issue remains: we have assumed that a value t ∈ [OPT, 2OPT] is given. In
general, either the algorithm produces a solution of size O(t), or (if it fails to complete
within O(log n

t) rounds) the algorithm may conclude that OPT > t. We can thus find an
O(1)-approximation to OPT by a binary search over t among the O(logn) possible powers
of 2, with O(log logn) calls to the algorithm. The final time bound is O(n log3 n log logn).

I Theorem 1. Given O(n) points and O(n) halfspaces in R3, we can find a subset of
halfspaces covering all points, of size within O(1) factor of the minimum, in deterministic
O(n log3 n log logn) time.

4.2 Randomized Version 1
We now describe a better solution to Problem Approx-Count-Decision, by using random-
ization and the fact that all query points (namely, X) are given in advance.

Reducing the number of insertions in Problem Approx-Count-Decision. In solving Prob-
lem Approx-Count-Decision, one simple way to speed up insertions is to work with a
random sample R of Ŝ. When we insert an object to Ŝ, we independently decide to insert
it to the sample R with probability ρ := c0 logn

k , or ignore it with probability 1 − ρ, for a
sufficiently large constant c0. (Different copies of an object are treated as different objects
here.) It suffices to solve the problem for the sample R with the new threshold around ρk.

To justify correctness, consider a fixed query point p ∈ X. Let x1, x2, . . . be the sequence
of objects in Ŝ that contain p, in the order in which they are inserted (extend the sequence
arbitrarily to make its length greater than k). Let yi = 1 if object xi is chosen to be in
the sample R, or 0 otherwise. Note that the xi’s may not be independent (since the object
we insert could depend on random choices made before); however, the yi’s are independent.
By the Chernoff bound,

∑k/c
i=1 yi ≤

(1+δ)ρk
c and

∑k
i=1 yi ≥ (1 − δ)ρk with probability

1− e−Ω(ρk) = 1− n−Ω(c0) for any fixed constant δ > 0. Thus, with high probability, at any
time, if the number of objects in R containing p is more than (1+δ)ρk

c , then the number of
objects in Ŝ containing p is more than k

c ; if the former number is less than (1− δ)ρk, then
the later number is less than k. Since there are O(n) possible query points, all queries are
correct with high probability.

By this strategy, the number of insertions is reduced to O(ρn) = O(nk logn) = O(t logn)
with high probability.

Preprocessing step. Next we use a known preprocessing step to ensure that each object
contains at most n

t points, in the case of 3D halfspaces. This subproblem was addressed
in Agarwal and Pan’s paper [4] (where it was called “(P5)” – curiously, they used it to
implement their second algorithm but not their first MWU-based algorithm.) We state a
better running time:

I Lemma 2. In O(n log t) time, we can find a subset T0 ⊆ S of O(t) halfspaces, such that
after removing all points in X covered by T0, each halfspace of S contains at most n

t points.

Proof. We may assume that all halfspaces are upper halfspaces. We work in dual space,
where S is now a set of points and X is a set of planes. The goal is to find a subset T0 ⊆ S
of O(t) points such that after removing all planes of X that are below some points of T0,
each point of S has depth/level at most n

t .

T.M. Chan and Q. He 27:9

We proceed in rounds. Let b be a constant. In the i-th round, assume that all points of
S have level ≤ n

bi . Compute a n
bi -shallow 1

bi+1 -cutting with O(bi) cells. In each cell, add an
arbitrary point of S (if exists) to the set T0. In total O(bi) points are added. Remove all
planes that are below these added points from X.

Consider a point p of S. Let ∆ be the cell containing p, and let q be the point in ∆
that was added to T0. Any plane that is below p but not removed (and thus above q) must
intersect ∆, so there can be at most n

bi+1 such planes. Thus, after the round, the level of p is
at most n

bi+1 . We terminate when bi reaches t. The total size of T0 is O(
∑logb t
i=1 bi) = O(t).

Naively computing each shallow cutting from scratch by Chan and Tsakalidis’s algorithm
would require O(n logn · logn) = O(n log2 n) total time. But Chan and Tsakalidis’s approach
can compute multiple shallow cuttings more quickly: given a n

bi -shallow cutting along with
its conflict lists, we can compute the next n

bi+1 -shallow cutting along with its conflict lists in
O(n+ bi log bi) time. However, in our application, before computing the next cutting, we
also remove some of the input planes. Fortunately, this type of scenario has been examined
in a recent paper by Chan [12], who shows that the approach still works, provided that the
next cutting is relaxed to cover only points covered by the previous cutting (see Lemma 8 in
his paper); this is sufficient in our application. In our application, we also need to locate the
cell containing each point of S. This can still be done in O(n) time given the locations in
the previous cutting. Thus, the total time is O(

∑logb t
i=1 (n+ bi log bi)) = O(n log t). J

At the end, we add T0 back to the solution, which still has O(t) total size.

Solving Problem Approx-Count-Decision. We now propose a very simple approach to
solve Problem Approx-Count-Decision: just explicitly maintain the depth of all points in
X. Each query then trivially takes O(1) time. When inserting an object, we find all points
contained in the object and increment their depths.

Due to the above preprocessing step, the number of points contained in the object is
O(nt). For the case of 3D halfspaces, we can find these points by halfspace range reporting;
as explained before for Problem Report, this can be done in O(nt) time by using shallow
cuttings, after an initial preprocessing in O(n logn) time. Thus, each insertion takes O(nt)
time. Since the number of insertions has been reduced to O(t logn) by sampling, the total
time for Problem Approx-Count-Decision is Tcount = O((t logn) · nt) = O(n logn).

Conclusion. By (1), the complete randomized algorithm has running time O((Treport +
Tcount) log n

t + Tnet) = O((n+ n logn) log n
t + n logn) = O(n logn log n

t) = O(n log2 n) (even
including the O(n logn)-time preprocessing step). Including the binary search for t, the time
bound is O(n log2 n log logn).

4.3 Randomized Version 2
Finally, we combine the ideas from both the deterministic and randomized implementations,
to get our fastest randomized algorithm for 3D halfspaces.

Solving Problem Approx-Count-Decision. We may assume that all halfspaces are upper
halfspaces. We work in dual space, where Ŝ is now a multiset of points and X is a set of
planes. In a query, we want to approximately count the number of points in Ŝ that are above
a query plane in X. By the sampling reduction from Section 4.2, we may assume that the
number of insertions to Ŝ is O(t logn). By the preprocessing step from Section 4.2, we may
assume that all points in Ŝ have level at most n

t .

SoCG 2020

27:10 Faster Approximation Algorithms for Geometric Set Cover

Compute a n
t -shallow O(1

t)-cutting with O(t) downward cells, along with its conflict lists.
For each point p ∈ R, locate the cell containing p. All this can be done during a (one-time)
preprocessing in O(n logn) time.

For each cell ∆, we maintain Ŝ ∩∆ in a semi-dynamic data structure for 3D approximate
halfspace range counting. As described in Section 4.1, we get O(log2 n∆) query and insertion
time, where n∆ = |Ŝ ∩∆|.

In an insertion of a point p to Ŝ, we look up the cell ∆ containing p and insert the point
to the approximate counting structure in ∆.

In a query for a plane h ∈ X, we look up the cells ∆ whose conflict lists contain h, answer
approximate counting queries in these cells, and sum the answers.

We bound the total time for all insertions and queries. For each cell ∆, the number of
insertions in its approximate counting structure is n∆ and the number of queries is O(nt)
(since each plane h ∈ X is queried once). The total time is

O

(∑
∆

(nt + n∆) log2 n∆

)
.

Since there are O(t) terms and
∑

∆ n∆ = O(t logn), we have n∆ = O(logn) “on average”;
applying Jensen’s inequality to the first term, we can bound the sum by O(n log2 logn +
t log3 n). Thus, Tcount = O(n log2 logn+ t log3 n).

Conclusion. By (1), the complete randomized algorithm has running time O((Treport +
Tcount) log n

t + Tnet) = O((n+ n log2 logn+ t log3 n) log n
t + n logn) = O(n logn log2 logn+

t log4 n). If t ≤ n/ log3 n, the first term dominates. On the other hand, if t > n/ log3 n, our
earlier randomized algorithm has running time O(n logn log n

t) = O(n logn log logn). In any
case, the time bound is at most O(n logn log2 logn). Including the binary search for t, the
time bound is O(n logn log3 logn).

I Theorem 3. Given O(n) points and O(n) halfspaces in R3, we can find a subset of halfspaces
covering all points, of size within O(1) factor of the minimum, in O(n logn log3 logn) time
by a randomized Monte-Carlo algorithm with error probability O(n−c0) for any constant c0.

Remark. The number of the log logn factors is improvable with still more effort, but we
feel it is of minor significance.

5 Weighted Set Cover

In this final section, we consider the weighted set cover problem. We define ε-lightness and
ε-nets as before, ignoring the weights. It is known that there exists an ε-net of S with total
weight O(1

ε ·
w(S)
|S|), for any set of 3D halfspaces or 2D disks (or objects in 2D with linear

union complexity) [13]. Here, the weight w(S) of a set S refers to the sum of the weights of
the objects in S.

5.1 MWU Algorithm in the Weighted Case
Let X be the set of input points and S be the set of weighted input objects, where object i
has weight wi, with n = |X|+ |S|. Let OPT be the weight of the minimum-weight set cover.
We assume that a value t ∈ [OPT, 2OPT] is given; this assumption can be removed by a
binary search for t.

T.M. Chan and Q. He 27:11

We may delete objects with weights > t. We may automatically include all objects with
weights < 1

n t in the solution, and delete them and all points covered by them, since the total
weight of the solution increases by only O(n · 1

n t) = O(t). Thus, all remaining objects have
weights in [1

n t, t]. By rescaling, we may now assume that all objects have weights in [1, n]
and that t = Θ(n).

In the following, for a multiset Ŝ where object i has multiplicity mi, the weight of the
multiset is defined as w(Ŝ) =

∑
imiwi.

We describe a simple variant of the basic MWU algorithm to solve the weighted set cover
problem. (A more general, randomized MWU algorithm for geometric set cover was given
recently by Chekuri, Har-Peled, and Quanrud [16], but our algorithm is simpler to describe
and analyze.) The key innovation is to replace doubling with multiplication by a factor
1 + 1

wi
, where wi is the weight of the concerned object i. (Note that multiplicities may now

be non-integers.)

1: Guess a value t ∈ [OPT, 2OPT].
2: Define a multiset Ŝ where each object i in S initially has multiplicity mi = 1.
3: repeat
4: Find a point p which is ε-light in Ŝ with ε = 1

2t ·
w(Ŝ)
|Ŝ| .

5: for each object i containing p do . call lines 5–6 a “multiplicity-increasing step”
6: Multiply its multiplicity mi by 1 + 1

wi
.

7: until all points are ε-heavy in Ŝ.
8: Return an ε-net of the multiset Ŝ.

Since at the end all points are ε-heavy in Ŝ, the returned subset is a valid set cover of X.
For halfspaces in 3D or disks in 2D, its weight is O(1

ε ·
w(Ŝ)
|Ŝ|) = O(OPT).

We now prove that the algorithm terminates in O(t logn) = O(n logn) multiplicity-
increasing steps.

In each multiplicity-increasing step, w(Ŝ) increases by∑
object i containing p

mi · 1
wi
· wi =

∑
object i containing p

mi ≤ w(Ŝ)
2t ,

i.e., w(Ŝ) increases by a factor of at most 1 + 1
2t . Initially, w(Ŝ) ≤ n2. Thus, after z

multiplicity-increasing steps, w(Ŝ) ≤ n2(1 + 1
2t)

z ≤ n2ez/(2t).
On the other hand, consider the optimal set cover T ∗. Suppose that object i has its

multiplicity increased zi times. In each multiplicity-increasing step, at least one object in
T ∗ has its multiplicity increased. So, after z multiplicity-increasing steps,

∑
i∈T∗ zi ≥ z and∑

i∈T∗ wi ≤ t. In particular, zi/wi ≥ z/t for some i ∈ T ∗. Therefore, w(Ŝ) ≥ (1 + 1
wi

)ziwi ≥
(1 + 1

wi
)zi ≥ 2zi/wi ≥ 2z/t (since wi ≥ 1). We conclude that 2z/t ≤ w(Ŝ) ≤ n2ez/(2t),

implying that z = O(t logn).
Similar to Agarwal and Pan’s first MWU algorithm, we can also divide the multiplicity-

increasing steps into rounds, with each round performing up to t multiplicity-increasing steps.
Within each round, the total weight w(Ŝ) increases by at most (1 + 1

2t)
t = O(1). Also if |Ŝ|

increases by a constant factor, we immediately start a new round: because |Ŝ| ≤ w(Ŝ) and
w(Ŝ) may be doubled at most O(logn) times, this case can happen at most O(logn) times.
This ensures that if a point is checked to be ε-heavy at any moment during a round, it will
remain Ω(ε)-heavy at the end of the round. There are only O(logn) rounds.

SoCG 2020

27:12 Faster Approximation Algorithms for Geometric Set Cover

Additional ideas are needed to speed up implementation (in particular, our modified
MWU algorithm with multiplicity-readjustment steps does not work as well now). First, we
work with an approximation m̃i to the multiplicity mi of each object i. By rounding, we may
assume all weights wi are powers of 2. In the original algorithm, mi = (1 + 1

wi
)zi , where zi is

the number of points p ∈ Z that are contained in object i, and Z be the multiset consisting of
all points p that have undergone multiplicity-increasing steps so far. Note that since the total
multiplicity is nO(1), we have zi = O(wi logn). Let Y (wi) be a random sample of Z where
each point p ∈ Z is included independently with probability log2 n

wi
(if wi = O(log2 n), we can

just set Y (wi) = Z). Let yi be the number of points p ∈ Y (wi) that are contained in object i.
By the Chernoff bound, since log2 n

wi
zi = O(log3 n), we have |yi − log2 n

wi
zi| ≤ O(log2 n) with

high probability. By letting m̃i = (1 + 1
wi

)yiwi/ log2 n, it follows that m̃i and mi are within a
factor of O(1) of each other, with high probability, at all times, for all i. Thus, our earlier
analysis still holds when working with m̃i instead of mi. Since zi = O(wi logn), we have
yi = O(log3 n) with high probability. So, the total number of increments to all yi and updates
to all m̃i is O(n log3 n). In lines 5–6, we flip a biased coin to decide whether p should be
placed in the sample Y (2j) (with probability log2 n

2j) for each j, and if so, we use halfspace
range reporting in the dual to find all objects i of weight 2j containing p, and increment yi
and update m̃i. Over all O(n logn) executions of lines 5–6 and all O(logn) indices j, the
cost of these halfspace range reporting queries is O(n logn · logn · logn) plus the output size.
As the total output size for the queries is O(n log3 n), the total cost is O(n log3 n).

We also need to redesign a data structure for lightness testing subject to multiplicity
updates: For each j, we maintain a subset S(j) containing all objects i with multiplicity
at least 2j , in a data structure to support approximate depth (without multiplicity). The
depth of a point p in Ŝ can be O(1)-approximated by

∑
j 2j · (depth of p in S(j)). Each

subset S(j) undergoes insertion only, and the logarithmic method can be applied to each
S(j). Since |Ŝ| ≤ w(Ŝ) ≤ nO(1), there are O(logn) values of j. This slows down lightness
testing by a logarithmic factor, and so in the case of 3D halfspaces, the overall time bound is
O(n log4 n log logn), excluding the ε-net construction time.

We can efficiently construct an ε-net of the desired weight for 3D halfspaces in O(n logn)
randomized time, by using the quasi-random sampling technique of Varadarajan [31] and
Chan et al. [13] in a more careful way. Due to lack of space, we defer the description to the
full paper. We conclude:

I Theorem 4. Given O(n) points and O(n) weighted halfspaces in R3, we can find a subset
of halfspaces covering all points, of total weight within O(1) factor of the minimum, in
O(n log4 n log logn) expected time by a randomized Las Vegas algorithm.

Remark. A remaining open problem is to find efficient deterministic algorithms for the
weighted problem. Chan et al. [13] noted that the quasi-uniform sampling technique can be
derandomized via the method of conditional probabilities, but the running time is high.

References

1 Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Discrete
& Computational Geometry, 42(1):3–21, 2009. doi:10.1007/s00454-009-9177-z.

2 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.
In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 180–186, 2009.

https://doi.org/10.1007/s00454-009-9177-z

T.M. Chan and Q. He 27:13

3 Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach for cache-oblivious
range reporting and approximate range counting. Computational Geometry, 43(8):700–712,
2010.

4 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and
set covers. In Proceedings of the 30th Symposium on Computational Geometry (SoCG), page
271, 2014.

5 Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles
and boxes. SIAM Journal on Computing, 39(7):3248–3282, 2010. doi:10.1137/090762968.

6 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I. static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

7 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

8 Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Limits of local search:
Quality and efficiency. Discrete & Computational Geometry, 57(3):607–624, 2017. doi:
10.1007/s00454-016-9819-x.

9 Norbert Bus, Nabil H. Mustafa, and Saurabh Ray. Practical and efficient algorithms for the
geometric hitting set problem. Discrete Applied Mathematics, 240:25–32, 2018.

10 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of (≤ k)-
levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000. doi:10.1137/
S0097539798349188.

11 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. Journal of Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

12 Timothy M. Chan. Dynamic geometric data structures via shallow cuttings. In Proceedings of
the 35th Symposium on Computational Geometry (SoCG), pages 24:1–24:13, 2019.

13 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capaci-
tated, priority, and geometric set cover via improved quasi-uniform sampling. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1576–1585,
2012.

14 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching
on the RAM, revisited. In Proceedings of the 27th Symposium on Computational Geometry
(SoCG), pages 1–10, 2011.

15 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d and
3-d shallow cuttings. Discrete & Computational Geometry, 56(4):866–881, 2016.

16 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast LP solving and approximation
algorithms for geometric packing and covering problems. In Proceedings of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1019–1038, 2020.

17 Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Proceedings
of the 29th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 358–377,
2018.

18 Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Workshop on
Algorithms and Data Structures, pages 246–252, 1993.

19 Kenneth L. Clarkson and Kasturi Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

20 Alon Efrat, Matthew J. Katz, Frank Nielsen, and Micha Sharir. Dynamic data structures
for fat objects and their applications. Computational Geometry, 15(4):215–227, 2000. doi:
10.1016/S0925-7721(99)00059-0.

21 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.
doi:10.1145/2455.214106.

22 Christos Koufogiannakis and Neal E. Young. A nearly linear-time PTAS for explicit fractional
packing and covering linear programs. Algorithmica, 70(4):648–674, 2014. doi:10.1007/
s00453-013-9771-6.

SoCG 2020

https://doi.org/10.1137/090762968
https://doi.org/10.1007/s00454-016-9819-x
https://doi.org/10.1007/s00454-016-9819-x
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1016/S0925-7721(99)00059-0
https://doi.org/10.1145/2455.214106
https://doi.org/10.1007/s00453-013-9771-6
https://doi.org/10.1007/s00453-013-9771-6

27:14 Faster Approximation Algorithms for Geometric Set Cover

23 Jiří Matoušek. Reporting points in halfspaces. Computational Geometry, 2(3):169–186, 1992.
24 Jiří Matoušek, Raimund Seidel, and Emo Welzl. How to net a lot with little: Small ε-nets

for disks and halfspaces. In Proceedings of the 6th Symposium on Computational Geometry
(SoCG), pages 16–22, 1990.

25 Nabil H. Mustafa. Computing optimal epsilon-nets is as easy as finding an unhit set. In
Proceedings of the 46th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 87:1–87:12, 2019. doi:10.4230/LIPIcs.ICALP.2019.87.

26 Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Quasi-polynomial time approximation
scheme for weighted geometric set cover on pseudodisks and halfspaces. SIAM J. Comput.,
44(6):1650–1669, 2015. doi:10.1137/14099317X.

27 Nabil H. Mustafa and Saurabh Ray. PTAS for geometric hitting set problems via local search.
In Proceedings of the 25th Symposium on Computational Geometry (SoCG), pages 17–22, 2009.

28 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In Proceedings
of the 27th Symposium on Computational Geometry (SoCG), pages 458–463, 2011. doi:
10.1145/1998196.1998271.

29 Evangelia Pyrga and Saurabh Ray. New existence proofs for ε-nets. In Proceedings of the
24th Symposium on Computational Geometry (SoCG), pages 199–207, 2008. doi:10.1145/
1377676.1377708.

30 Edgar A. Ramos. On range reporting, ray shooting and k-level construction. In Proceedings
of the 15th Symposium on Computational Geometry (SoCG), pages 390–399, 1999.

31 Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceedings
of the 42nd ACM Symposium on Theory of Computing (STOC), pages 641–648, 2010.

32 Kasturi R. Varadarajan. Epsilon nets and union complexity. In Proceedings of the 25th
Symposium on Computational Geometry (SoCG), pages 11–16, 2009. doi:10.1145/1542362.
1542366.

33 Neal E. Young. Sequential and parallel algorithms for mixed packing and covering. In
Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 538–546, 2001. doi:10.1109/SFCS.2001.959930.

https://doi.org/10.4230/LIPIcs.ICALP.2019.87
https://doi.org/10.1137/14099317X
https://doi.org/10.1145/1998196.1998271
https://doi.org/10.1145/1998196.1998271
https://doi.org/10.1145/1377676.1377708
https://doi.org/10.1145/1377676.1377708
https://doi.org/10.1145/1542362.1542366
https://doi.org/10.1145/1542362.1542366
https://doi.org/10.1109/SFCS.2001.959930

Further Results on Colored Range Searching
Timothy M. Chan
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
tmc@illinois.edu

Qizheng He
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
qizheng6@illinois.edu

Yakov Nekrich
Department of Computer Science, Michigan Technological University, Houghton, MI, USA
yakov.nekrich@googlemail.com

Abstract
We present a number of new results about range searching for colored (or “categorical”) data:

1. For a set of n colored points in three dimensions, we describe randomized data structures
with O(n polylog n) space that can report the distinct colors in any query orthogonal range
(axis-aligned box) in O(k polyloglog n) expected time, where k is the number of distinct colors
in the range, assuming that coordinates are in {1, . . . , n}. Previous data structures require
O(log n

log log n
+ k) query time. Our result also implies improvements in higher constant dimensions.

2. Our data structures can be adapted to halfspace ranges in three dimensions (or circular ranges
in two dimensions), achieving O(k log n) expected query time. Previous data structures require
O(k log2 n) query time.

3. For a set of n colored points in two dimensions, we describe a data structure with O(n polylog n)
space that can answer colored “type-2” range counting queries: report the number of occurrences
of every distinct color in a query orthogonal range. The query time is O(log n

log log n
+ k log log n),

where k is the number of distinct colors in the range. Naively performing k uncolored range
counting queries would require O(k log n

log log n
) time.

Our data structures are designed using a variety of techniques, including colored variants of
randomized incremental construction (which may be of independent interest), colored variants of
shallow cuttings, and bit-packing tricks.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Data structures design and analysis

Keywords and phrases Range searching, geometric data structures, randomized incremental con-
struction, random sampling, word RAM

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.28

Related Version A full version of this paper is available at http://arxiv.org/abs/2003.11604.

Funding Timothy M. Chan: Supported in part by NSF Grant CCF-1814026.

1 Introduction

Colored range searching (also known as “categorical range searching”, or “generalized range
searching”) have been extensively studied in computational geometry since the 1990s. For
example, see the papers [5, 11, 18, 19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 34, 36, 37,
38, 40, 46] and the survey by Gupta et al. [22]. Given a set of n colored data points (where
the color of a point represents its “category”), the objective is to build data structures that
can provide statistics or some kind of summary about the colors of the points inside a query
range. The most basic types of queries include:

© Timothy M. Chan, Qizheng He, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8093-0675
mailto:tmc@illinois.edu
mailto:qizheng6@illinois.edu
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.28
http://arxiv.org/abs/2003.11604
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Further Results on Colored Range Searching

colored range reporting: report all the distinct colors in the query range.
colored “type-1” range counting: find the number of distinct colors in the query range.
colored “type-2” range counting: report the number of points of color χ in the query
range, for every color χ in the range.

In this paper, we focus on colored range reporting and type-2 colored range counting. Note
that the output size in both instances is equal to the number k of distinct colors in the range,
and we aim for query time bounds that depend linearly on k, of the form O(f(n) + kg(n)).
Naively using an uncolored range reporting data structure and looping through all points in
the range would be too costly, since the number of points in the range can be significantly
larger than k.

1.1 Colored orthogonal range reporting

The most basic version of the problem is perhaps colored orthogonal range reporting: report
the k distinct colors inside an orthogonal range (an axis-aligned box). It is not difficult to
obtain an O(npolylogn)-space data structure with O(k polylogn) query time [22] for any
constant dimension d: one approach is to directly modify the d-dimensional range tree [15, 43],
and another approach is to reduce colored range reporting to uncolored range emptiness [26]
(by building a one-dimensional range tree over the colors and storing a range emptiness
structure at each node). Both approaches require O(k polylogn) query time rather than
O(polylogn+ k) as in traditional (uncolored) orthogonal range searching: the reason is that
in the first approach, each color may be discovered polylogarithmically many times, whereas
in the second approach, each discovered color costs us O(logn) range emptiness queries, each
of which requires polylogarithmic time.

Even the 2D case remains open, if one is interested in optimizing logarithmic factors. For
example, Larsen and van Walderveen [32] and Nekrich [37] independently presented data
structures with O(n logn) space and O(log logU + k) query time in the standard word-RAM
model, assuming that coordinates are integers bounded by U . The query bound is optimal,
but the space bound is not. Recently, Chan and Nekrich [11] have improved the space bound
to O(n log3/4+ε n) for an arbitrarily small constant ε > 0, while keeping O(log logU + k)
query time.

In 3D, the best result to date is by Chan and Nekrich [11], who obtained a data structure
with O(n log9/5+ε n) space and O(log n

log log n + k) query time. The first step is a data structure
for the case of 3D dominance (i.e., 3-sided) ranges: as they noted, this case can be solved in
O(n) space and O(log n

log log n + k) time by a known reduction [44, Section 3.1] to 3D 5-sided box
stabbing [12]. For 3D 5-sided box stabbing (or more simply, 2D 4-sided rectangle stabbing),
a matching lower bound of Ω(log n

log log n + k) is known for O(n polylogn)-space structures, due
to Pătraşcu [42]. A natural question then arises: is O(log n

log log n + k) query time also tight for
3D colored dominance range reporting?

We show that the answer is no – the O(log n
log log n) term can in fact be improved when k is

small. Specifically, we present a randomized data structure for 3D colored dominance range
reporting with O(n logn) space and O(log logU + k log logn) expected time in the standard
word-RAM model. (We use only Las Vegas randomization, i.e., the query algorithm is always
correct; an oblivious adversary is assumed, i.e., the query range should be independent of the
random choices made by the preprocessing algorithm.) Combining with Chan and Nekrich’s
method [11], we can then obtain a data structure for 3D colored orthogonal range reporting
with O(n log2+ε n) space and O(log logU + k log logn) expected query time.

T.M. Chan, Q. He, and Y. Nekrich 28:3

An improved solution in 3D automatically implies improvements in any constant dimension
d > 3, by using standard range trees [15, 43] to reduce the dimension, at a cost of about
one logarithmic factor (ignoring log log factors) per dimension. This way, we obtain a data
structure in d dimensions with O(n logd−1+ε n) space and O(k(log n

log log n)d−3 log logn) query
time.1 (Note that O((log n

log log n)d−3 log logn) is the current best query time bound for standard
(uncolored) range emptiness [9] for O(n polylogn)-space structures on the word RAM.)

1.2 Colored 3D halfspace range reporting
An equally fundamental problem is colored halfspace range reporting. In 2D, an O(n)-space
data structure with O(logn+ k) query time is known [2, 22]. In 3D, the current best result
is obtained by applying a general reduction of colored range reporting to uncolored range
emptiness [26], which yields O(n logn) space and O(k log2 n) query time [22]. (An alternative
solution with O(n) space and O(n2/3+ε + k) time is also known, by reduction to simplex
range searching.) The 3D case is especially important, as 2D colored circular range reporting
reduces to 3D colored halfspace range reporting by the standard lifting transformation.

We describe a randomized data structure with O(n logn) space and O(k logn) expected
query time for 3D halfspace ranges (and thus 2D circular ranges). This is a logarithmic-factor
improvement over the previous query time bound.

1.3 Colored 2D orthogonal type-2 range counting
Finally, we consider colored orthogonal “type-2” range counting: compute the number of
occurrences of every color in a given orthogonal range. Despite the nondescript name, colored
type-2 counting is quite natural, providing more information than colored reporting, as
we are generating an entire histogram. The problem was introduced by Gupta et al. [23]
(and more recently revisited by Ganguly et al. [20] in external memory). An old paper by
Bozanis et al. [5] gave a solution in the 1D case with O(n) space and O(logn + k) query
time, which implies a solution in 2D with O(n logn) space and O(log2 n + k logn) query
time. Alternatively, to answer a colored type-2 counting query, we can first answer a colored
range reporting query, followed by k standard (uncolored) range counting queries, if we store
each color class in a standard range counting data structure; by known results on colored
range reporting [11] and standard range counting [27], this then yields O(n log3/4+ε n) space
and O(k log n

log log n) query time. Thus, in some sense, a type-2 counting query corresponds to
“simultaneous” range counting queries on multiple point sets.2

We present a data structure for the problem in 2D withO(n log1+ε n) space andO(log n
log log n +

k log logn) query time in the standard word-RAM model. As 2D standard (uncolored) range
counting has an Ω(log n

log log n) time lower bound for O(npolylogn)-space structures [41], our
result shows, surprisingly, that answering multiple range counting queries “simultaneously”
are cheaper than answering one by one – we only have to pay O(log logn) cost per color!

1.4 Techniques
Our solutions for colored 3D dominance range reporting and 3D halfspace range reporting
are based on similar ideas. We in fact propose two different methods.

1 In all reported bounds, we implicitly assume k > 0. The k = 0 case can be handled by answering one
initial uncolored range emptiness query.

2 See [1] for a different notion of “concurrent” range reporting.

SoCG 2020

28:4 Further Results on Colored Range Searching

In the first method (Section 2), we solve the k = 1 case (testing whether a range contains
only one color) by introducing a colored variant of randomized incremental construction; we
then extend the solution to the general case by a randomized one-dimensional range tree over
the colors. Along the way, we prove a combinatorial lemma which may be of independent
interest: in a colored point set in 3D, if we randomly permute the color classes and randomly
permute the points within each color classes, and if we insert the points in the resulting
order, then the convex hull undergoes O(n logn) structural changes in expectation. (It is a
well known fact, by Clarkson and Shor [14], that in the uncolored setting, if we insert points
in a random order, the 3D convex hull undergoes O(n) structural changes in expectation.)

In the second method (Section 3), which is slightly more efficient, we solve the k = 1 case
differently, by adapting known techniques for uncolored 3D halfspace range reporting [6]
based on random sampling (namely, conflict lists of lower envelopes of random subsets).
The approach guarantees only Ω(1) success probability per query (in the uncolored setting,
shallow cuttings can fix the problem, but they do not seem easily generalizable to the 3D
colored setting). Fortunately, we show that a solution for the k = 1 case with constant
success probability is sufficient to complete the solution for the general case.

Our method for colored 2D type-2 orthogonal range counting (Section 5) is technically
the most involved. It is obtained by a nontrivial combination of several techniques, including
the recursive grid approach of Alstrup, Brodal, and Rauhe [3], bit packing tricks, and 2D
shallow cuttings. Our work demonstrates yet again the power of the recursive grid approach
(see [9, 11, 12] for other recent examples).

2 Colored 3D Halfspace Range Reporting: First Method

In this and the next section, we describe our two methods for 3D halfspace ranges. The case
of 3D dominance ranges is similar and will be addressed later in Section 4.

2.1 Combinatorial lemmas on colored randomized incremental
construction

Our first method relies on a simple combinatorial lemma related to a colored version of
randomized incremental construction of 3D convex hulls (the uncolored version of the lemma,
where all points are assigned different colors, is well known in computational geometry, from
the seminal work by Clarkson and Shor [14]):

I Lemma 1. Given a set S of n colored points in R3, if we first randomly permute the color
classes, then for each color according to this order we simultaneously insert all points with
that color, then the expected total number of structural changes to the convex hull is O(n).

Proof. Consider a random permutation of the colors. Let Ci be the i-th color class, i.e., the
set of all points with the i-th color in the permutation. Let m be the number of color classes.
Let Vi =

⋃i
j=1 Cj contain all points with the first i colors. Let CH(Vi) denote the convex

hull of Vi. Let ∆+
i be the set of all facets in CH(Vi) that are not in CH(Vi−1), i.e., all hull

facets created when we insert the i-th color class Ci.
For each i, we have E[|Ci|] = n

m and E[|Vi|] = in
m . We use backwards analysis [45]. Observe

that |∆+
i | is bounded by the total degree of all points of Ci in CH(Vi). The total degree

over all points in CH(Vi) is O(|Vi|). Conditioned on a fixed Vi, we have E[|∆+
i |] = O(|Vi|

i).
So, unconditionally, E[|∆+

i |] = O(n
m). Therefore, the expected total number of hull facets

created is E[
∑m

i=1 |∆
+
i |] = O(n). J

T.M. Chan, Q. He, and Y. Nekrich 28:5

The following refinement of the lemma further bounds the total amount of changes to
the convex hull when we additionally insert points one by one in a random order within each
color class. The proof is slightly trickier. (The first lemma is already sufficient to bound
the space of our new data structure, but the refined lemma will be useful in bounding the
preprocessing time.)
I Lemma 2. Given a set S of n colored points in R3, if we first randomly permute the color
classes, then randomly permute the points in each color class, and insert the points one by
one according to this order, then the expected total number of structural changes of the convex
hull is O(n logn).
Proof. Continuing the earlier proof, let ∆−i be the set of all facets in CH(Vi−1) that
are not in CH(Vi), i.e., all hull facets destroyed when we insert the i-th color class Ci.
Since the total number of facets destroyed is at most the total number of facets created,
E[
∑m

i=1 |∆
−
i |] ≤ E[

∑m
i=1 |∆

+
i |] = O(n).

Now, consider a random permutation of the points in Ci. Let Vi,j contain all points
in Vi−1 and also the first j points of Ci. Let Gi,j be the subgraph formed by all edges of
CH(Vi,j) that are incident to the vertices of Ci. Then every vertex v in Gi,j is either in Ci or
is incident to a facet of ∆−i (because if v 6∈ Ci, then v must be a vertex of CH(Vi−1), and at
least one of its incident facets in CH(Vi−1) will be destroyed when Ci is inserted). Thus, Gi,j

has O(|Ci|+ |∆−i |) vertices, and since Gi,j is a planar graph, it has O(|Ci|+ |∆−i |) edges.
Let ∆+

i,j be the set of all facets in CH(Vi,j) that are not in CH(Vi,j−1), i.e., all hull facets
created when we insert the j-th point in Ci. We use backwards analysis again. Observe that
|∆+

i,j | is bounded by the degree of the j-th point in Ci in CH(Vi,j). The total degree over all
points of Ci in CH(Vi,j) is at most twice the number of edges in Gi,j . Conditioned on a fixed
Ci and a fixed Vi,j , we thus have E[|∆+

i,j |] = O
(
|Ci|+|∆−

i
|

j

)
. As the right-hand side does not

depend on the local permutation of the color class Ci, the expectation holds conditioned
only on the global permutation of the colors. Unconditionally, the expected total number of
hull facets created is

O

E

 m∑
i=1

|Ci|∑
j=1

|Ci|+ |∆−i |
j

 = O

(
E

[
m∑

i=1
(|Ci|+ |∆−i |) logn

])
= O(n logn). J

Remarks.

1. The O(n logn) bound in the refined lemma is tight: Consider n
2 points lying on the

xy-plane in convex position, each assigned a different color. In addition, add n
2 points on

the z-axis above the xy-plane, all with a common color χ0. When we insert the color
class for χ0, there are already Ω(n) points on the xy-plane with probability Ω(1). In an
iteration where the next point we insert with color χ0 has larger z-coordinate than all
previous points, the insertion would create Ω(n) new hull edges in expectation. By a well
known analysis, the expected number of such iterations is given by the Harmonic number,
which is Θ(logn). This shows an Ω(n logn) lower bound.

2. The same argument holds for other geometric structures besides 3D convex hulls, e.g.,
Voronoi diagrams of 2D points and trapezoidal decompositions of 2D disjoint line segments.

3. We can generalize the refined lemma to the setting when we have a hierarchy of color classes
with ` levels, and we randomly permute the child subclasses of each color class. (The
refined lemma corresponds to the ` = 2 case.) The bound becomes O(n log`−1 n). This
result seems potentially relevant to implementing randomized incremental constructions
in a hierarchical external-memory model.

SoCG 2020

28:6 Further Results on Colored Range Searching

2.2 The k = 1 case
We now reveal how colored randomized incremental construction can help solve the colored
range reporting problem. We start with the case k = 1, i.e., we want to test whether there
is only one color in the query range. By an uncolored range search, we can find one point
in the range (in O(logn) time for 3D halfspace ranges) and identify its color χ. Thus, the
problem is to verify that all points in the range have the same color χ.

Fix a total ordering of the colors. It is easy to see that the problem reduces to two
subproblems: for a given query color χ, (i) decide whether there exists a point in the range
with color < χ, and (ii) decide whether there exists a point in the range with color > χ. By
symmetry, it suffices to solve subproblem (i). To this end, we imagine inserting the points in
increasing order of color, and maintaining a data structure for (uncolored) range emptiness
for the points. We can make this semi-dynamic data structure (which supports insertions
only) persistent. Then we can solve subproblem (i) by querying a past version of the range
emptiness data structure, right after all points with color < χ were inserted.

In the case of 3D upper halfspaces (lower halfspaces can be handled symmetrically), a
range emptiness query reduces to finding an extreme point on the upper hull along a query
direction, or equivalently, intersecting the lower envelope of the dual planes at a query vertical
line. By projection, this reduces to a planar point location query, answerable in O(logn) time
by a linear-space data structure [15, 43]. However, we need a data structure that supports
insertions, and in general this increases the query time (by an extra logarithmic factor via
the standard “logarithmic method” [4]).

The key is to observe that the above approach works regardless of which total ordering
of the colors we use. Our idea is simply to use a random ordering of the colors! (For
(ii), note that the reverse of a uniformly random ordering is still uniformly random.) By
Lemma 1, the upper hull undergoes O(n) expected number of structural changes. So is the
dual lower envelope. We can then apply a known dynamic planar point location method;
for example, the method by Chan and Nekrich [10] achieves O(logn(log logn)2) query time
and O(logn log logn) amortized update time per change to the envelope. The data structure
can be made persistent, for example, by applying Dietz’s technique [17], with a log logn
factor penalty (the space usage is related to the total update time). The final data structure
supports queries in O(logn(log logn)3) (worst-case) time and uses O(n logn(log logn)2)
expected space. (Note that the space bound can be made worst-case, by repeating O(1)
expected number of times until a “good” ordering is found.)

Remark on preprocessing time. It isn’t obvious how to efficiently insert an entire color
class to the 3D convex hull, even knowing that the total number of structural changes is
small. To get good preprocessing time, we propose inserting points one by one within each
color class, since Lemma 2 ensures that the number of changes to the convex hull is still near
linear (O(n logn)). Several implementation options can then yield O(npolylogn) expected
preprocessing time: (i) we can use a general-purpose dynamic convex hull data structure [7]
(in the insertion-only case, the cost per update is O(f log2 n) where f is the amount of
structural changes); (ii) we can adapt standard randomized incremental algorithms, e.g.,
handling the point location steps by using history DAGs [35] (this requires further randomized
analysis); or (iii) we can adapt standard randomized incremental algorithms, but handling
the point location steps by using a known dynamic planar point location method [10].
I Theorem 3. For n colored points in R3, there is a data structure with O(npolylogn)
expected preprocessing time and O(n logn(log logn)2) space that can test whether the number
of colors in a query halfspace is exactly 1 in O(logn(log logn)3) time.

T.M. Chan, Q. He, and Y. Nekrich 28:7

2.3 The general case

Previous papers [22, 26] (see also [13] in the uncolored case) have noted a straightforward
black-box reduction of colored range reporting to the k = 0 case (range emptiness), essentially
by using a one-dimensional range tree over the colors: More precisely, we split the color
classes into two halves. We build a data structure for k = 0, and recursively build a data
structure for the two halves. Space usage increases by a logarithmic factor. If the k = 0
structure has Q0(n) query time, the overall query time is O(kQ0(n) logn), since at each of
the O(logn) levels of recursion tree, O(k) nodes are examined.

We present a new black-box reduction of colored range reporting to the k ≤ 1 case, which
saves a logarithmic factor, by using a similar idea but with randomization.

I Theorem 4. Suppose that for n colored points, there is a data structure with P (n) (expected)
preprocessing time and S(n) space that can decide whether the number of colors in a query
range is exactly 1 in Q1(n) time. In addition, the data structure can decide whether the
range is empty, and if not, report one point, in Q0(n) time. Then there is a randomized Las
Vegas data structure with O(P (n) logn) expected preprocessing time and O(S(n) logn) space
that can report all k distinct colors in a query range in O(k(Q0(n) +Q1(n))) expected time,
assuming that P (n)/n and S(n)/n are nondecreasing.

Proof. We split the color classes into two parts, where each color is randomly assigned to
one of the two parts. We build the given k = 1 structure and range emptiness structure, and
recursively build a data structure for the two parts. Space usage increases by a logarithmic
factor (with high probability).

To answer a query, we test whether the range is empty or whether k = 1. If so, we are
done. Otherwise, we recursively query both parts.

Consider a query range that is independent of the random choices made by the data
structure. At the i-th level of the recursion tree, how many nodes are examined (in expecta-
tion)? This question is analogous to the following: place k balls randomly (independently)
into 2i bins; how many bins contain two or more balls? The number is upper-bounded by
the number of pairs of balls that are in the same bin. Since the probability that a fixed pair
of balls are placed in the same bin is 1/2i, the expected number of pairs is at most k2/2i.

Thus, the expected number of nodes examined at the i-th level is at most min{2i, k2/2i}.
The overall expected number of nodes examined is

O

(∑
i

min{2i, k2/2i}

)
= O

 ∑
i: 2i≤k

2i +
∑

i: 2i>k

k2/2i

 = O(k). J

Combining Theorems 3 and 4 yields:

I Theorem 5. For n colored points in R3, there is a randomized Las Vegas data structure
with O(n polylogn) expected preprocessing time and O(n log2 n(log logn)2) space that can
report all k distinct colors in a query halfspace in O(k logn(log logn)3) expected time.

SoCG 2020

28:8 Further Results on Colored Range Searching

3 Colored 3D Halfspace Range Reporting: Second Method

We next describe a slightly better (and simpler) method for colored 3D halfspace range
reporting.

3.1 The k = 1 case
The idea is to relax the k = 1 subproblem and allow the query algorithm to occasionally be
wrong (since we will be using randomization anyways for the general case). The algorithm
has constant error probability and can only make one-sided errors: if it returns “yes”, we
must have k = 1. We work in dual space: given a set of colored planes in R3, we want to
decide whether the number of colors among the planes below a query point is exactly 1.

Preprocessing. Take a random sample R of the planes, where each color class is included
independently with probability 1

2 . Take the lower envelope LE(R) of R, and consider the
vertical decomposition VD(R) of the region underneath LE(R). (The vertical decomposition
is defined as follows: we triangulate each face of LE(R) by joining each vertex to the bottom
vertex of the face; for each triangle, we form the unbounded prism containing all points
underneath the triangle.) For each cell ∆ ∈ VD(R), let L∆ denote the set of distinct colors
among all planes intersecting ∆ (the “color conflict list” of ∆). We store the list L∆ if
|L∆| ≤ c for a sufficiently large constant c; otherwise, we mark ∆ as “bad”.

Clearly, the space usage is O(n), since there are O(n) cells in VD(R) and each list stored
has constant size. To bound the preprocessing time, we can generate (up to c elements of)
each list L∆ by answering colored range reporting queries at the three vertices of ∆, since a
plane intersects ∆ iff it is below at least one of the vertices of ∆. By previous results, these
O(n) colored range reporting queries take O(npolylogn) time.

In addition, for each color class, we store an (uncolored) range emptiness structure (i.e., a
planar point location structure for the xy-projection of the lower envelope of the color class).
This takes O(n) space in total.

Querying. Given a query point q, we find the cell ∆(q) of VD(R) containing q in O(logn)
time by planar point location (on the xy-projection of VD(R)). If the cell does not exist
(i.e., q lies above LE(R)), or if the cell is bad, we return “no”. Otherwise, for each of the at
most c colors in the conflict list L∆(q), we test whether any plane below q has that color by
querying the corresponding range emptiness structure in O(logn) time. We return “yes” iff
exactly one color passes the test. The overall query time is O(logn).

The algorithm is clearly correct if it returns “yes”. Consider a fixed query point q, such
that there is just one color χ among all planes below q. The algorithm would erroneously
return “no” in two scenarios: (i) when q lies above LE(R), or (ii) when |L∆(q)| > c. The
probability of (i) is the probability that the color χ is chosen in the random sample R, which
is 1

2 . By the following lemma, and Markov’s inequality, the probability of (ii) is at most
0.1 (say) for a sufficiently large constant c. This lemma directly follows from Clarkson and
Shor’s technique [14] (see the full paper for a quick proof).

I Lemma 6. For a fixed point q, we have E[|L∆(q)|] = O(1).

We conclude:

I Theorem 7. For n colored points in R3, there is a randomized Monte Carlo data structure
with O(n polylogn) preprocessing time and O(n) space that decides whether the number of
colors in a query halfspace is exactly 1 in O(logn) time; if the actual answer is true, the
algorithm returns “yes” with probability Ω(1), else it always returns “no”.

T.M. Chan, Q. He, and Y. Nekrich 28:9

Remarks. The method can be viewed as a variant of Chan’s random-sampling-based
method for uncolored 3D halfspace range reporting [6]. In the uncolored setting, errors can
be completely avoided by replacing lower envelopes of samples with shallow cuttings [33],
but it is unclear how to do so in the colored setting.

3.2 The general case
Finally, to solve the general problem, we use a variant of Theorem 4 that tolerates one-sided
errors in the given k = 1 data structure.

I Theorem 8. Suppose that for n colored points, there is a randomized Monte Carlo data
structure with P (n) (expected) preprocessing time and S(n) space that decides whether the
number of colors in a query range is exactly 1 in Q1(n) time; if the actual answer is true, the
algorithm returns “yes” with probability Ω(1), else it always returns “no”. In addition, the
data structure can decide whether the range is empty, and if not, report one point, in Q0(n)
time (without errors). Then there is a randomized Las Vegas data structure with O(P (n) logn)
expected preprocessing time and O(S(n) logn) space that can report all k distinct colors in a
query range in O(k(Q0(n) +Q1(n))) expected time, assuming that P (n)/n and S(n)/n are
nondecreasing.

Proof. We use the same approach as in the proof of Theorem 4. In the query algorithm,
if the range is empty or the k = 1 structure returns “yes”, we are done; otherwise, we
recursively query both parts.

To analyze the query time, we say that a node in the recursion tree is bad if the number
of colors in the query range at the node is exactly 1. Our earlier analysis shows that the
expected total number of non-bad nodes visited is O(k). However, because of the possibility
of one-sided errors, the query algorithm may examine some bad nodes. For each bad node v
visited by the query algorithm, we charge v to its lowest ancestor u that is not bad. Then for
a fixed node u, we may have up to two paths of nodes charged to u. The expected number
of nodes charged to a fixed node u is at most O(

∑
i(1− Ω(1))i) = O(1). We conclude that

the expected total number of nodes visited is O(k). J

Combining Theorems 7 and 8 yields:

I Theorem 9. For n colored points in R3, there is a randomized Las Vegas data structure
with O(n polylogn) expected preprocessing time and O(n logn) space that can report all k
distinct colors in a query halfspace in O(k logn) expected time.

4 Colored 3D Dominance Range Reporting

Both methods can be adapted to solve the colored 3D dominance range reporting problem:
here, we want to report the distinct colors of all points inside a 3-sided range of the form
(−∞, q1]×(−∞, q2]×(−∞, q3]. Equivalently, we can map input points (p1, p2, p3) to orthants
[p1,∞)× [p2,∞)× [p3,∞), and the problem becomes reporting the distinct colors among all
orthants containing a query point q = (q1, q2, q3). By replacing values with their ranks, we
may assume that all coordinates are in {1, . . . , n} (in a query, an initial predecessor search
to reduce to rank space requires an additional O(log logU) cost by van Emde Boas trees).
We assume the standard word-RAM model.

In the first method, the combinatorial lemmas on colored randomized incremental con-
structions can be extended to the union of the orthants (a “staircase polyhedron”). In fact,
by a known transformation involving an exponentially spaced grid [9, 39], orthants can be

SoCG 2020

28:10 Further Results on Colored Range Searching

mapped to halfspaces and a union of orthants can be mapped to a halfspace intersection,
or in the dual, a 3D convex hull. For the k = 1 structure, we not only randomly permute
the color classes but also randomly permute the points inside each color class, and maintain
the union of the orthants as points are inserted one by one. Instead of using persistence,
we reduce to static 3D point location: we insert in reverse order, and as a new orthant is
inserted, we create a region for the newly added portion of the union (i.e., the new orthant
minus the old union). Identifying the smallest color of the orthants containing q (to solve
subproblem (i)) reduces to locating the region containing q. The expected total size of these
regions is O(n logn) by Lemma 2; we can further subdivide each of these regions into boxes
(by taking a vertical decomposition), without asymptotically increasing the total size. Known
results on orthogonal point location in a 3D subdivision of (space-filling) boxes [16, 12] then
give O((log logn)2) query time and space linear in the size of the subdivision. Thus, the
final data structure for the general case has O(n log2 n) space and O(log logU +k(log logn)2)
expected query time.

In the second method, we replace lower envelopes with unions of orthants. The only main
change is that planar point location queries for orthogonal subdivisions now cost O(log logn)
time by Chan’s result [8] instead of O(logn). Thus, the final data structure has O(n logn)
space and O(log logU + k log logn) expected time.

I Theorem 10. For n colored points in R3, there is a randomized Las Vegas data structure
with O(npolylogn) expected preprocessing time and O(n logn) space that can report all k
distinct colors in a query dominance range in O(log logU + k log logn) expected time.

We can extend the result of Theorem 10 to orthogonal ranges with more sides or to d > 3
dimensions. See the full paper for more details.

5 Colored 2D Orthogonal Type-2 Range Counting

Our solution for orthogonal type-2 range counting is described in stages. First we consider
the capped variant of type-2 range counting. A capped query returns the correct answer if
the number of colors k in the query range does not exceed log3 n. If k > log3 n, the answer to
the capped query is NULL. Capped queries in the case when the query range is bounded on
2 sides are considered in Section 5.1. We extend the solution to 3-sided and 4-sided queries,
as well as for the case when the number of colors can be arbitrarily large, in the full paper.

5.1 Capped 2-Sided Queries

With foresight, we will solve the more general weighted version of this problem. Each point in
S is also assigned a positive integer weight. For a 2-sided query range Q, we want to identify
all colors that occur in Q; for each color we report the total weight of all its occurrences in Q.

We will denote by n the total weight of all points in S; we will denote by m the total
number of points in S. We prove the following result:

I Lemma 11. Let S be the set of m points in R2 with total weight n ≥ m. There exists a
data structure that uses O(m(log logn)2) words of space and supports 2-sided capped type-2
counting queries in O(logn/ log logn+ k log logn) time.

Our data structure is based on the recursive grid approach [3]. The set of points is
recursively sub-divided into vertical slabs (or columns) and horizontal slabs (or rows).

T.M. Chan, Q. He, and Y. Nekrich 28:11

Data Structure. Let τ = log3 n0 where n0 is the total weight of all points in the global
data set (thus τ remains unchanged on all recursion levels). We divide the set of points
into

√
n/τ columns so that either the total weight of all points in a column is bounded by

O(
√
nτ) or a column contains only one point. This division can be obtained by scanning

the set of points in the left-to-right order. We add points to a column Ci for i = 1, 2, . . . by
repeating the following steps: (1) if the weight of the next point p exceeds

√
nτ , we increment

i, (2) we add p to Ci, and (3) if the total weight of Ci exceeds
√
nτ , we increment i.

Thus either the total weight of a column exceeds
√
nτ or the next column contains a

point of weight at least
√
nτ . Hence the number of columns is O(

√
n/τ). We also divide the

set of points into rows satisfying the same conditions. Let pij = (xi, yj) denote the point
where the upper boundary of the j-th row intersects the right boundary of the i-th column.
Let Dom(i, j) = [0, xi] × [0, yj], denote the range dominated by pij . If Dom(i, j) contains
at most τ distinct colors, we store the list Lij of colors that occur in Dom(i, j). For every
color in Lij we also keep the number of its occurrences in Dom(i, j). If the range Dom(i, j)
contains more than τ different colors, we set Lij = NULL. Thus Lij provides the answer to
a capped type-2 counting query on [0, xi]× [0, yj].

Every row/column of weight at least τ2 that contains more than one point is recursively
divided in the same way as explained above. If the total weight of all points is smaller than
τ2, we can answer a type-2 range counting query in O(k) time.

Slow Queries. A query [0, a]× [0, b] is answered as follows. We identify the column Ci+1
containing a and the row Rj+1 containing b. The query is then divided into the middle part
[0, xi]× [0, yj], the upper part [0, a]× [yj , b] and the right part [xi, a]× [0, yj]. The answer to
the middle query is stored in the pre-computed list Lij . The upper query is contained in
the row Rj+1 and the right query is contained in the column Ci+1. Hence we can answer
the upper and the right query using data structures on Rj+1 and Ci+1 respectively. If
Lij = NULL, we return NULL because the number of colors in the query range exceeds
log2 n; if the answer to a query on Ci+1 or Rj+1 is NULL, we also return NULL. Otherwise,
we merge the answers to the three queries. The resulting list L can contain up to three
items of the same color because the same color can occur in the left, right, and middle query.
Since the items in L are sorted by color, we can scan L and compute the total number of
occurrences for each color in time proportional to the length of L.

The total query time is given by the formula Q(n, k) = O(k) +Q(
√
nτ, k1) +Q(

√
nτ, k2)

where k is the number of colors in the query range and n is the total weight of all points.
We denote by k1 (resp. k2) the total number of colors reported by the query on Rj+1
(resp. Ci+1). There are at most 2i recursive calls at level i of recursion. The total
weight of points at recursion level i is bounded by n1/2i log3(1−1/2i) n. Hence the number
of recursion levels is bounded by ` = log logn − 2 log log logn and the total query time is∑`

i=1 2i · k = O(k · (logn/ log logn)).

Fast Queries. We can significantly speed-up queries using the following approach. We keep
colors of all points in a column/row in the rank space. Thus each point column or row
on the l-th level of recursion contains O(n1/2l) points. Hence for any list Lij on the l-th
recursion level we can keep each color and the number of its occurrences in Dom(i, j) using
O((1/2l) logn) bits.

As explained above, the query on recursion level l is answered by merging three lists: the
list Lij that contains the pre-computed answer to the middle query, the list of colors that occur
in the right query, and the list of colors that occur in the upper query. Every list occupies
O(k/2l) words of logn bits. Hence we can merge these lists in O(k/2l) time using table
look-ups. Hence the total query time is

∑`
i=1 2i · dk/2ie = O(logn/ log logn+ k · log logn).

SoCG 2020

28:12 Further Results on Colored Range Searching

Figure 1 Example of colored t-shallow cutting for t = 3.

Color Encoding. In order to merge lists efficiently we must be able to convert the color
encoding for the slab V l into color encoding for the slab V l−1 that contains V l. Moreover
the conversion should be performed in O(k/2l) time, i.e., in sub-constant time per color. For
this purpose we introduce the concept of colored t-shallow cutting that adapts the concept of
shallow cutting to the muti-color scenario. A colored t-shallow cutting for a set of points S
is the set of O(|S|/t) cells. Each cell is a rectangle with one corner in the point (0, 0). Each
cell contains points of at most 2t different colors. If some point q is not contained in any cell
of the t-shallow cutting, then q dominates points of at least t different colors.

A colored t-shallow cutting can be constructed using the staircase approach, see e.g., [47].
We start in the point (0, xmax + 1) where xmax is the largest x-coordinate of a point in S.
We move p in the +y direction until p dominates 2t different colors. Then we move p in
the −x direction until p dominates t different colors. We alternatingly move p in +y and
−x directions until the x-coordinate of p is 0 or the y-coordinate of p is ymax + 1 where
ymax is the largest y-coordinate of any point in S. Each point where we stopped moving p
in +y direction and started moving p in the −x direction is the upper right corner of some
cell. We can show that the number of cell does not exceed O(|S|/t): Let ci = (xi, yi) and
ci+1 = (xi+1, yi+1) denote two consecutive corners (in the left-to-right order) of a t-shallow
cutting. Consider all points p = (xp, yp) such that xi ≤ xp ≤ xi+1 and yp ≤ yi+1. By our
construction, points p that satisfy these conditions have t different colors. Hence there are at
least t such points p and we can assign t unique points to every corner of a colored t-shallow
cutting. Hence the number of corners is O(n/t).

For each slab V l on any recursion level l, we construct colored t-shallow cuttings for
t = 2, 4, . . ., τ . For every cell cj of each shallow cutting we create the list clist(cj) of colors
that occur in cj . Colors in clist(cj) are stored in increasing order. For each color we store its
rank in V l and its rank in the slab V l−1 that contains V l. Consider a 2-sided query to a
slab V l on recursion level l. The answer to this query is a sorted list LIST (q) of t colors in
the rank space of V l. If t < log2 n, then the 2-sided query range is contained in some cell cj

of the colored 2dlog te shallow cutting. Using clist(cj) we can convert colors in LIST (q) into
the rank space of V l−1 where V l−1 is the slab that contains V l. The conversion is based on
a universal look-up table and takes O(t/2l) time.

This result can be extended to 3-sided and 4-sided capped queries using divide-and-conquer
on range trees and the recursive grid approach. The space usage of the data structure for
capped 4-sided queries is O(m logε n). Finally the range tree on colors enables us to get
rid of the restriction on the number of colors, but the space usage of the data structure is
increased by O(logn) factor. The complete description can be found in the full paper.

T.M. Chan, Q. He, and Y. Nekrich 28:13

I Theorem 12. Let S be the set of m points in R2 with total weight n ≥ m. There exists a
data structure that uses O(m logm logε n) words of space and supports 4-sided type-2 range
counting queries in O(logn/ log logn+ k log logn) time.

References
1 Peyman Afshani, Cheng Sheng, Yufei Tao, and Bryan T. Wilkinson. Concurrent range

reporting in two-dimensional space. In Proc. 25th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 983–994, 2014. doi:10.1137/1.9781611973402.73.

2 Pankaj K. Agarwal, Siu-Wing Cheng, Yufei Tao, and Ke Yi. Indexing uncertain data. In
Proc. 28th ACM Symposium on Principles of Database Systems (PODS), pages 137–146, 2009.
doi:10.1145/1559795.1559816.

3 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal
range searching. In Proc. 41st IEEE Symposium on Foundations of Computer Science (FOCS),
pages 198–207, 2000. doi:10.1109/SFCS.2000.892088.

4 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980. doi:10.1016/0196-6774(80)90015-2.

5 Panayiotis Bozanis, Nectarios Kitsios, Christos Makris, and Athanasios K. Tsakalidis. New
upper bounds for generalized intersection searching problems. In Proc. 22nd International
Colloquium on Automata, Languages and Programming (ICALP), pages 464–474, 1995. doi:
10.1007/3-540-60084-1_97.

6 Timothy M. Chan. Random sampling, halfspace range reporting, and construction of
(≤ k)-levels in three dimensions. SIAM J. Comput., 30(2):561–575, 2000. doi:10.1137/
S0097539798349188.

7 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010. doi:10.1145/1706591.1706596.

8 Timothy M. Chan. Persistent predecessor search and orthogonal point location on the word
RAM. ACM Transactions on Algorithms, 9(3):22, 2013.

9 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on
the RAM, revisited. In Proc. 27th ACM Symposium on Computational Geometry (SoCG),
pages 1–10, 2011.

10 Timothy M. Chan and Yakov Nekrich. Towards an optimal method for dynamic planar point
location. SIAM Journal on Computing, 47(6):2337–2361, 2018.

11 Timothy M. Chan and Yakov Nekrich. Better data structures for colored orthogonal range
reporting. In Proc. 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
627–636, 2020.

12 Timothy M. Chan, Yakov Nekrich, Saladi Rahul, and Konstantinos Tsakalidis. Orthogonal
point location and rectangle stabbing queries in 3-d. In Proc. 45th International Colloquium
on Automata, Languages, and Programming (ICALP), pages 31:1–31:14, 2018. doi:10.4230/
LIPIcs.ICALP.2018.31.

13 Bernard Chazelle, Richard Cole, Franco P. Preparata, and Chee-Keng Yap. New upper
bounds for neighbor searching. Information and Control, 68(1-3):105–124, 1986. doi:10.1016/
S0019-9958(86)80030-4.

14 Kenneth L Clarkson and Peter W Shor. Applications of random sampling in computational
geometry, ii. Discrete & Computational Geometry, 4(5):387–421, 1989.

15 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

16 Mark de Berg, Marc van Kreveld, and Jack Snoeyink. Two-dimensional and three-dimensional
point location in rectangular subdivisions. Journal of Algorithms, 18(2):256–277, 1995.

17 Paul F. Dietz. Fully persistent arrays. In Proc. 1st Workshop on Algorithms and Data
Structures (WADS), pages 67–74, 1989. doi:10.1007/3-540-51542-9_8.

SoCG 2020

https://doi.org/10.1137/1.9781611973402.73
https://doi.org/10.1145/1559795.1559816
https://doi.org/10.1109/SFCS.2000.892088
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1007/3-540-60084-1_97
https://doi.org/10.1007/3-540-60084-1_97
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1137/S0097539798349188
https://doi.org/10.1145/1706591.1706596
https://doi.org/10.4230/LIPIcs.ICALP.2018.31
https://doi.org/10.4230/LIPIcs.ICALP.2018.31
https://doi.org/10.1016/S0019-9958(86)80030-4
https://doi.org/10.1016/S0019-9958(86)80030-4
https://doi.org/10.1007/3-540-51542-9_8

28:14 Further Results on Colored Range Searching

18 Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct color searching in one dimension.
In Proc. 28th International Symposium on Algorithms and Computation (ISAAC), pages
30:1–30:11, 2017. doi:10.4230/LIPIcs.ISAAC.2017.30.

19 Travis Gagie, Juha Kärkkäinen, Gonzalo Navarro, and Simon J. Puglisi. Colored range queries
and document retrieval. Theor. Comput. Sci., 483:36–50, 2013. doi:10.1016/j.tcs.2012.08.
004.

20 Arnab Ganguly, J. Ian Munro, Yakov Nekrich, Rahul Shah, and Sharma V. Thankachan.
Categorical range reporting with frequencies. In Proc. 22nd International Conference on
Database Theory (ICDT), pages 9:1–9:19, 2019. doi:10.4230/LIPIcs.ICDT.2019.9.

21 Roberto Grossi and Søren Vind. Colored range searching in linear space. In Proc. 14th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pages 229–240, 2014.
doi:10.1007/978-3-319-08404-6_20.

22 Prosenjit Gupta, Ravi Janardan, Saladi Rahul, and Michiel H. M. Smid. Computational
geometry: Generalized (or colored) intersection searching. In Handbook of Data Structures
and Applications, chapter 67, pages 1042–1057. CRC Press, 2nd edition, 2018. URL: https:
//www.csa.iisc.ac.in/~saladi/Papers/ds2-handbook.pdf.

23 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Further results on generalized
intersection searching problems: Counting, reporting, and dynamization. J. Algorithms,
19(2):282–317, 1995. doi:10.1006/jagm.1995.1038.

24 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Algorithms for generalized halfspace
range searching and other intersection searching problems. Comput. Geom., 6:1–19, 1996.
doi:10.1016/0925-7721(95)00012-7.

25 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. A technique for adding range
restrictions to generalized searching problems. Inf. Process. Lett., 64(5):263–269, 1997. doi:
10.1016/S0020-0190(97)00183-X.

26 Prosenjit Gupta, Ravi Janardan, and Michiel H. M. Smid. Algorithms for some intersec-
tion searching problems involving circular objects. International Journal of Mathematical
Algorithms, 1:35–52, 1999.

27 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In Proc. 15th In-
ternational Symposium on Algorithms and Computation (ISAAC), pages 558–568, 2004.
doi:10.1007/978-3-540-30551-4_49.

28 Ravi Janardan and Mario A. Lopez. Generalized intersection searching problems. International
Journal of Computational Geometry and Applications, 3(1):39–69, 1993.

29 Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient colored orthogonal
range counting. SIAM J. Comput., 38(3):982–1011, 2008. doi:10.1137/070684483.

30 Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching via sparse
rectangular matrix multiplication. In Proc. 22nd ACM Symposium on Computational Geometry
(SoCG), pages 52–60, 2006. doi:10.1145/1137856.1137866.

31 Kasper Green Larsen and Rasmus Pagh. I/O-efficient data structures for colored range and
prefix reporting. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
583–592, 2012. doi:10.1137/1.9781611973099.49.

32 Kasper Green Larsen and Freek van Walderveen. Near-optimal range reporting structures
for categorical data. In Proc. 24th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 256–276, 2013.

33 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom., 2:169–186, 1992. doi:
10.1016/0925-7721(92)90006-E.

34 Christian Worm Mortensen. Generalized static orthogonal range searching in less space.
Technical report, IT University Technical Report Series 2003-33, 2003.

35 Ketan Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice-Hall, 1994.

https://doi.org/10.4230/LIPIcs.ISAAC.2017.30
https://doi.org/10.1016/j.tcs.2012.08.004
https://doi.org/10.1016/j.tcs.2012.08.004
https://doi.org/10.4230/LIPIcs.ICDT.2019.9
https://doi.org/10.1007/978-3-319-08404-6_20
https://www.csa.iisc.ac.in/~saladi/Papers/ds2-handbook.pdf
https://www.csa.iisc.ac.in/~saladi/Papers/ds2-handbook.pdf
https://doi.org/10.1006/jagm.1995.1038
https://doi.org/10.1016/0925-7721(95)00012-7
https://doi.org/10.1016/S0020-0190(97)00183-X
https://doi.org/10.1016/S0020-0190(97)00183-X
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.1137/070684483
https://doi.org/10.1145/1137856.1137866
https://doi.org/10.1137/1.9781611973099.49
https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1016/0925-7721(92)90006-E

T.M. Chan, Q. He, and Y. Nekrich 28:15

36 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc. 13th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002. doi:10.1145/
545381.545469.

37 Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Trans. Database
Syst., 39(1):9, 2014. doi:10.1145/2543924.

38 Yakov Nekrich and Jeffrey Scott Vitter. Optimal color range reporting in one dimension. In
Proc. 21st European Symposium on Algorithms (ESA), pages 743–754, 2013. doi:10.1007/
978-3-642-40450-4_63.

39 János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. In Proc.
27th ACM Symposium on Computational Geometry (SoCG), pages 458–463, 2011. doi:
10.1145/1998196.1998271.

40 Manish Patil, Sharma V. Thankachan, Rahul Shah, Yakov Nekrich, and Jeffrey Scott Vitter.
Categorical range maxima queries. In Proc. 33rd ACM Symposium on Principles of Database
Systems (PODS), pages 266–277, 2014. doi:10.1145/2594538.2594557.

41 Mihai Patrascu. Lower bounds for 2-dimensional range counting. In Proc. 39th ACM Symposium
on Theory of Computing (STOC), pages 40–46, 2007. doi:10.1145/1250790.1250797.

42 Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011. doi:10.1137/09075336X.

43 F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer–Verlag,
1985.

44 Saladi Rahul. Approximate range counting revisited. In Proc. 33rd International Symposium
on Computational Geometry (SoCG), pages 55:1–55:15, 2017. doi:10.4230/LIPIcs.SoCG.
2017.55.

45 Raimund Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor,
New Trends in Discrete and Computational Geometry, pages 37–67. Springer-Verlag, 1993.

46 Qingmin Shi and Joseph JáJá. Optimal and near-optimal algorithms for generalized intersection
reporting on pointer machines. Inf. Process. Lett., 95(3):382–388, 2005. doi:10.1016/j.ipl.
2005.04.008.

47 Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-d range searching in external memory.
In Proc. 28th ACM Symposium on Theory of Computing (STOC), pages 192–201, 1996.

SoCG 2020

https://doi.org/10.1145/545381.545469
https://doi.org/10.1145/545381.545469
https://doi.org/10.1145/2543924
https://doi.org/10.1007/978-3-642-40450-4_63
https://doi.org/10.1007/978-3-642-40450-4_63
https://doi.org/10.1145/1998196.1998271
https://doi.org/10.1145/1998196.1998271
https://doi.org/10.1145/2594538.2594557
https://doi.org/10.1145/1250790.1250797
https://doi.org/10.1137/09075336X
https://doi.org/10.4230/LIPIcs.SoCG.2017.55
https://doi.org/10.4230/LIPIcs.SoCG.2017.55
https://doi.org/10.1016/j.ipl.2005.04.008
https://doi.org/10.1016/j.ipl.2005.04.008

A Generalization of Self-Improving Algorithms
Siu-Wing Cheng
HKUST, Hong Kong, China
scheng@cse.ust.hk

Man-Kwun Chiu
Institut für Informatik, Freie Universität Berlin, Germany
chiumk@zedat.fu-berlin.de

Kai Jin
HKUST, Hong Kong, China
cscjjk@gmail.com

Man Ting Wong
HKUST, Hong Kong, China
mtwongaf@connect.ust.hk

Abstract
Ailon et al. [SICOMP’11] proposed self-improving algorithms for sorting and Delaunay triangulation
(DT) when the input instances x1, · · · , xn follow some unknown product distribution. That is, xi

comes from a fixed unknown distribution Di, and the xi’s are drawn independently. After spending
O(n1+ε) time in a learning phase, the subsequent expected running time is O((n+H)/ε), where
H ∈ {HS, HDT}, and HS and HDT are the entropies of the distributions of the sorting and DT
output, respectively. In this paper, we allow dependence among the xi’s under the group product
distribution. There is a hidden partition of [1, n] into groups; the xi’s in the k-th group are fixed
unknown functions of the same hidden variable uk; and the uk’s are drawn from an unknown product
distribution. We describe self-improving algorithms for sorting and DT under this model when the
functions that map uk to xi’s are well-behaved. After an O(poly(n))-time training phase, we achieve
O(n+HS) and O(nα(n) +HDT) expected running times for sorting and DT, respectively, where
α(·) is the inverse Ackermann function.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases expected running time, entropy, sorting, Delaunay triangulation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.29

Related Version A full version of this paper is available at http://arxiv.org/abs/2003.08329.

Funding Siu-Wing Cheng: Research of Cheng is supported by Research Grants Council, Hong Kong,
China (project no. 16200317).
Man-Kwun Chiu: Research of Chiu is supported by ERC StG 757609.
Kai Jin: Research of Jin is supported by Research Grants Council, Hong Kong, China (project
no. 16200317).
Man Ting Wong: Research of Wong is supported by Research Grants Council, Hong Kong, China
(project no. 16200317).

1 Introduction

Ailon et al. [1] proposed self-improving algorithms for sorting and Delaunay triangulation
(DT). The setting is that the input is drawn from an unknown but fixed distribution D. The
goal is to automatically compute some auxiliary structures in a training phase, so that these
auxiliary structures allow an algorithm to achieve an expected running time better than the
worst-case optimum in the subsequent operation phase. The expected running time in the
operation phase is known as the limiting complexity.

© Siu-Wing Cheng, Man-Kwun Chiu, Kai Jin, and Man Ting Wong;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3557-9935
mailto:scheng@cse.ust.hk
mailto:chiumk@zedat.fu-berlin.de
https://orcid.org/0000-0003-3720-5117
mailto:cscjjk@gmail.com
mailto:mtwongaf@connect.ust.hk
https://doi.org/10.4230/LIPIcs.SoCG.2020.29
http://arxiv.org/abs/2003.08329
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A Generalization of Self-Improving Algorithms

This model is attractive for two reasons. First, it addresses the criticism that worst-case
time complexity alone may not be relevant because worst-case input may occur rarely, if
at all. Second, it is more general than some previous average-case analyses that deal with
distributions that have simple, compact formulations such as the uniform, Poisson, and
Gaussian distributions. There is still a constraint in the work of Ailon et al. [1], that is,
D must be a product distribution, meaning that the i-th input item follows a particular
distribution and two distinct input items are independently drawn from their respective
distributions.

Self-improving algorithms under product distributions have been proposed for sorting,
DT, 2D coordinatewise maxima, and 2D convex hull. For sorting, Ailon et al. showed that a
limiting complexity of O((n+HS)/ε) can be achieved for any ε ∈ (0, 1), where HS denotes the
entropy of the output permutations. This limiting complexity is optimal in the comparison-
based model by Shannon’s theory [11]. The training phase uses O(nε) input instances and
runs in O(n1+ε) time. The probability of achieving the stated limiting complexity is at least
1− 1/n. Ailon et al. [1] also proposed a self-improving algorithm for DT. The performance
of the training phase is the same. The limiting complexity is O((n+HDT)/ε), where HDT
denotes the entropy of the output Delaunay triangulations. Self-improving algorithms for 2D
coordinatewise maxima and convex hulls have been developed by Clarkson et al. [9]. The
limiting complexities for the 2D maxima and 2D convex hull problems are O(OptM + n)
and O(OptC + n log logn), where OptM and OptC are the expected depths of optimal linear
decision trees for the maxima and convex hull problems, respectively.

It is natural to allow dependence among input items. However, some restriction is
necessary because Ailon et al. showed that Ω(2n logn) bits of storage are necessary for
optimally sorting n numbers if there is no restriction on the input distribution. In [8], two
extensions are considered for sorting. The first extension assumes that there is a hidden
partition of [1, n] into groups Gk’s. The input items with indices in Gk are unknown
linear functions of a common parameter uk. The parameters u1, u2, · · · follow a product
distribution. A limiting complexity of O((n+HS)/ε) can be achieved after a training phase
that processes O(nε) instances in O(n2 log3 n) time and O(n2) space. The second extension
assumes that the input is a hidden mixture of product distributions, and that an upper
bound m is given on the number of distributions in the mixture. A limiting complexity of
O((n logm+HS)/ε) can be achieved after a training phase that processes O(mn log(mn))
instances in O(mn log2(mn) +mεn1+ε log(mn)) time and O(mn log(mn) +mεn1+ε) space.

In this paper, we revisit the problems of sorting and DT when there is a hidden partition
of [1, n] into G1, G2, · · · such that for each k, there is a hidden parameter uk such that for
all i ∈ Gk, xi = hi,k(uk) for some unknown function hi,k. For sorting, uk belongs to R; for
DT, uk belongs to R2; and u1, u2, · · · follow a product distribution. We call such an input
distribution a group product distribution. The groups Gk’s are not given and they have to be
learned in the training phase. Our generalization have the following features.

For sorting, we do not assume any specific formulation of the functions hi,k’s. Neither is
any oracle given for evaluating them. We only assume that the graph of each hi,k has at
most c0 extrema, where c0 is a known value, and the graphs of two distinct hi,k and hj,k
intersect in O(1) points. Our algorithm does not reconstruct or approximate the hi,k’s.
For DT, we assume that there are bivariate polynomials hxi,k and hyi,k in uk for i ∈ Gk
that give the x- and y-coordinates of the i-th input point. The degrees of the hxi,k’s and
hyi,k’s are no more than a fixed constant. No further information about these bivariate
polynomials are given. Depending on the distribution of uk, it may be impossible to
reconstruct the equations of hxi,k and hyi,k using the input data.

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:3

Let α(·) be the inverse Ackermann function. We prove that an optimal O(n+HS) limiting
complexity for sorting and a nearly optimal O(nα(n) +HDT) limiting complexity for DT
can be achieved with probability at least 1−O(1/n) after a polynomial-time training phase.
The training takes Õ(c0n3 + c20n

2) time for sorting and Õ(n10) time for DT.
We use several new techniques to obtain our results. To learn the hidden partition for

sorting, we need to test if two indices i and j are in the same group. By collecting xi’s and
xj ’s from some instances, we can reduce the test to finding the longest monotonic subsequence
(LMS) among the points (xi, xj)’s. We establish a threshold such that i and j are in the
same group with very high probability if and only if the LMS has length greater than or
equal to the threshold. In the operation phase, there are O(n) ordered intervals from left
to right, and we need to sort the subset of an input instance I within an interval. Under
the group product distribution, there can be a large subset I ′ ⊂ I from the same group that
reside in an interval, which does not happen in the case of product distribution. We do not
have enough time to sort I ′ from scratch. Instead, we need to recognize that I ′ gives a result
similar to what we have seen in the training phase. To this end, we must be able to “read
off” the answer from some precomputed information in the training phase in order to beat
the worst-case bound. We use a trie to compute and store Lehmer codes [18] in the training
phase. This trie structure is essential for achieving the optimal limiting complexity.

The hidden partition for DT seems harder to learn given the 2D nature of the problem.
We employ tools from algebraic geometry to do so, which is the reason for requiring the hxi,k’s
and hyi,k’s to be bivariate polynomials of fixed degree. In the operation phase, we need to
compute the Voronoi diagram of the subsets of I inside the triangles of a canonical Delaunay
triangulation. Under the group product distribution, a large subset I ′ ⊂ I may fall in to the
same triangle t, which does not happen in the case of product distribution. The big hurdle
is to decide what information to compute and store in the training phase so that we can
“read off” the Voronoi diagram needed. We need a structure that is equivalent to a Delaunay
triangulation or Voronoi diagram. Yet it should be “more combinatorial” in nature so that it
is not as sensitive to geometric perturbations. The split tree of a point set fits this role nicely
because the Delaunay triangulation can be computed from it in linear expected time [2]. We
can now expand the trie structure used for sorting to record different split trees that are
generated in the training phase to facilitate the DT computation in the operation phase.

2 Self-improving sorter

Let uk ∈ R denote the parameter that governs the group Gk. Let hi,k denote the function
that determines xi = hi,k(uk) for i ∈ Gk. We do not impose any particular formulation of
the hi,k’s as long as they satisfy the following properties:
∀k ∀ i, the graph of hi,k has at most c0 extrema for a known value c0.
∀k ∀ i 6= j, the graphs of hi,k and hj,k intersect at O(1) points.
∀k ∀ i ∀ c ∈ R, Pr

[
hi,k(uk) = c

]
= 0.

2.1 Hidden partition and V -list
We first learn the hidden partition of [1, n]. Given a sequence σ of real numbers, let LMS(σ)
be the length of the longest monotone subsequence of σ (either increasing or decreasing), and
let LIS(σ) be the length of the longest increasing subsequence of σ.

We describe how to test if the indices 1 and 2 belong to the same group. The other index
pairs can be handled in the same way. Let N = max

{
1003, (90 ln(4n3))2, (6c0 + 3)2}, where

c0 is the upper bound on the number of extrema of hi,k. Take N instances. Let I1, I2, · · · , IN

SoCG 2020

29:4 A Generalization of Self-Improving Algorithms

be these instances in increasing order of their first items. That is, x(1)
1 < · · · < x

(N)
1 , where

x
(i)
1 denotes the first item in Ii. Similarly, x(i)

2 denotes the second item in Ii. Then, compute
LIS
(
x

(1)
2 , . . . , x

(N)
2
)
and LIS

(
x

(N)
2 , . . . , x

(1)
2
)
in O(N logN) time. The larger of the two is

LMS
(
x

(1)
2 , . . . , x

(N)
2
)
. If LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1), report that 1 and 2 are in the

same group. Otherwise, report that 1 and 2 are in different groups.
We show that the above test works correctly with very high probability. The following

result is obtained by applying the first theorem in [17] and the setting that N ≥ 1003.

I Lemma 1 ([17]). If σ is a permutation of [1, N] drawn uniformly at random, then
Pr
[
LIS(σ) ≥ 3

√
N
]
≤ exp

(
−
√
N/90

)
= O(1/n3).

We are ready to show the correctness of our test procedure.

I Lemma 2. If the indices 1 and 2 belong to the same group, then LMS
(
x

(1)
2 , . . . , x

(N)
2
)
≥

N/(2c0 + 1); otherwise, Pr
[
LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1)

]
= O(1/n3).

Proof. Suppose that 1 and 2 belong to group Gk. Then, x1 = h1,k(uk) and x2 = h2,k(uk).
Let t1, . . . , tm, where m ≤ 2c0, be the values of uk at the extrema of h1,k and h2,k. Let
t0 = −∞ and let tm+1 = +∞. By the pigeonhole principle, there exists j ∈ [0,m] such
that

∣∣{x(1)
1 , . . . x

(N)
1
}
∩ [tj , tj+1)

∣∣ ≥ N/(m + 1) ≥ N/(2c0 + 1), and both h1,k and h2,k are
monotonic in [tj , tj+1). It follows that LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1).

Suppose that 1 and 2 belong to different groups. The distribution of x(1)
2 , · · · , x(N)

2 is the
same as the uniform distribution of the permutations of [1, N]. Lemma 1 implies that

Pr
[
LIS
(
x

(1)
2 , . . . , x

(N)
2
)
≥ 3
√
N
]
≤ O(1/n3).

Symmetrically,

Pr
[
LIS
(
x

(N)
2 , . . . , x

(1)
2
)
≥ 3
√
N
]
≤ O(1/n3).

As LMS
(
x

(1)
2 , . . . , x

(N)
2
)

= max
{

LIS
(
x

(1)
2 , . . . , x

(N)
2
)
,LIS

(
x

(N)
2 , . . . , x

(1)
2
)}

, by the union
bound, we get Pr

[
LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ 3
√
N
]
≤ O(1/n3). Since N ≥ (6c0 + 3)2, we have

3
√
N ≤ N/(2c0 + 1). Hence, Pr

[
LMS

(
x

(1)
2 , . . . , x

(N)
2
)
≥ N/(2c0 + 1)

]
= O(1/n3). J

There are O(n2) index pairs to check, each taking O(N logN) time. We conclude that:

I Corollary 3. The partition of [1, n] into groups can be learned in Õ(c20n2) time using
Õ(c20n2) instances. The probability of success is at least 1−O(1/n).

Following [1], we define a V -list, (v0, v1, · · · , vn+1), in the training phase as follows. Take
λ = n2 lnn instances. Let y1 < · · · < yλn be these numbers sorted in increasing order. Define
v0 = −∞, vr = yλr for all r ∈ [1, n], and vn+1 = +∞. We take [v0, v1) to be (−∞, v1).

I Lemma 4. It holds with probability at least 1− 1/n192 that for every r ∈ [0, n],

EI∼D[|I ∩ [vr, vr+1)|] = O(1).

Proof. Recall that y1 < · · · < yλn is the sorted list of the λ instances used to define the
V -list. Let y0 = −∞ and let yλn+1 =∞. Fix a pair (i, j) for some distinct i, j ∈ [0, λn+ 1]
such that yi < yj . Let mij be the number of instances among the λ instances that contain
neither yi nor yj . Denote them by I1, · · · , Imij

. Note that mij = λ− 2 or λ− 1.

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:5

For a ∈ [1,mij], define the random variable Y (i,j)
a =

∣∣Ia ∩ [yi, yj]
∣∣. Define Y (i,j) =

Y
(i,j)
1 + . . .+ Y

(i,j)
mij . We call (i, j) a good pair if E

[
Y (i,j)] ≤ 11λ or Y (i,j) > λ. We prove in

the following that (i, j) is a good pair with high probability.
For a ∈ [1,mij], let Xa = 1

nY
(i,j)
a . Let X = X1 + . . . + Xmij = 1

nY
(i,j). Note that

X1, . . . , Xmij
are independent and each lies in the range [0, 1]. By Hoeffding’s inequality [15],

Pr
[∣∣X − E[X]

∣∣ ≥ βmij

]
< 2e−2mijβ

2 for any β > 0. Setting β = 10E[X]/(11mij) gives
Pr
[∣∣X − E[X]

∣∣ ≥ 10E[X]/11
]
< 2e−2mij(10E[X])2/(11mij)2 . Thus, Pr

[
X < E[X]/11

]
<

2e−200E[X]2/(121mij). When E[X] > 11λ/n, we have Pr[X < λ/n] ≤ Pr
[
X < E[X]/11

]
<

2e−200×121λ2/(121n2mij) = 2e−200λ2/(n2mij) < 2e−200λ/n2 = 2n−200. In other words, it holds
that Pr

[
Y (i,j) < λ

]
< 2n−200 when E

[
Y (i,j)] > 11λ. Hence, for a fixed pair (i, j), it holds

with probability at least 1− n−199 that (i, j) is a good pair.
There are at most (λn+ 2)2 < n7 pairs of distinct indices. By the union bound, it holds

with probability at least 1− n−192 that all pairs of distinct indices from [0, λn+ 1] are good.
Assume that all distinct pairs of indices from [0, λn+ 1] are indeed good. Consider two

consecutive elements vr and vr+1 in the V -list. They correspond to yi and yj , respectively, for
some distinct i, j ∈ [0, λn+ 1]. By the construction of the V -list, the range (yi, yj) contains
fewer than λ points among y1 < · · · < yλn. There are mij instances used in defining V that
contain neither yi and yj . Therefore, fewer than λ points from these mij instances fall in
[yi, yj], that is, Y (i,j) < λ. Then, E

[
Y (i,j)] ≤ 11λ because (i, j) is a good pair by assumption.

Hence, E
[
|I ∩ [vr, vr+1]|

]
≤ E

[
Y (i,j)]/mij ≤ E

[
Y (i,j)]/(λ− 2) = O(1). J

Lemma 4 is more general than its counterparts in [1, 8] in that it does not make any
assumption on the distribution that generates the instances. The price to pay is that
O(n2 logn) instances are needed instead of O(logn) in [1, 8], but this cost will be dominated
by the trie construction cost in the training phase to be discussed in the next section.

2.2 Trie
In the operation phase, we distribute the numbers in an instance I to the intervals [vr, vr+1)’s,
sort numbers in each interval, and concatenate the results. We need an efficient method to
distribute the numbers. In [8], the functions hi,k’s are linear, so we can reformulate each
hi,k as a linear function in another input number, say x1. This gives an arrangement of
lines for each Gk (including the horizontal lines at each vr). Cutting vertically through each
arrangement vertex gives a sorted order of the xi’s and the vr’s within a range on x1.

We cannot compute such arrangements here because there is no assumption on the
formulations of the hi,k’s. We use a different method. Define:

bk : R|Gk| → [0, n]|Gk| such that for all |Gk|-tuple of numbers (z1, · · · , z|Gk|), we have
bk(z1, · · · , z|Gk|) = (r1, · · · , r|Gk|) such that for all m ∈

[
1, |Gk|

]
, zm ∈ [vrm

, vrm+1).

The output of bk tells us to which interval a number in I with index from Gk belongs. In
order to distribute these numbers quickly, we need another function defined as follows:

πk : R|Gk| → [0, n]|Gk| such that for all |Gk|-tuple of numbers (z1, · · · , z|Gk|), we
have πk(z1, · · · , z|Gk|) = (j1, · · · , j|Gk|) such that for all m ∈

[
1, |Gk|

]
, jm = 0 if

zm = mina∈[1,m] za; otherwise, jm is the index of the largest element in {z1, · · · , zm−1}
that is less than zm.

The output of πk is the Lehmer code of z1, · · · , z|Gk| [18]. For our purposes, (z1, · · · , z|Gk|)
is given as a doubly linked list L, and the output of πk is a list of pointers to entries in L.
Given πk(z1, · · · , z|Gk|), it is easy to sort z1, · · · , z|Gk| in increasing order in O(|Gk|) time.

SoCG 2020

29:6 A Generalization of Self-Improving Algorithms

Let I|Gk
denote the subsequence of I with indices from Gk. For any set S ⊆ R|Gk|, let

bk(S) = {bk(x) : x ∈ S} and let πk(S) = {πk(x) : x ∈ S}.

I Lemma 5. Let S = {I|Gk
: I ∼ D}. Then, |bk(S)| = O(c0n|Gk|) and |πk(S)| = O(|Gk|2).

Proof. Assume that Gk = [1,m]. The graph of each hi,k(uk) is a curve in R2. By assumption,
there are O(m2) intersections among the hi,k’s for i ∈ [1,m]. The vertical lines through these
intersections divide R2 into O(m2) slabs. Clearly, πk(x1, . . . , xm) is invariant when uk is
restricted to any one of these slabs. So there are O(m2) possible outcomes for πk(x1, . . . , xm).

Add horizontal lines y = vr for each r ∈ [1, n]. There are at most (c0 + 1)nm intersections
between these horizontal lines and the graphs of hi,k’s mentioned above. The vertical lines
through the intersections in the overlay of the graphs of hi,k’s and these horizontal lines
define O(c0nm) slabs. Clearly, bk(x1, . . . , xm) is invariant when uk is restricted to any one
of these slabs. So there are O(c0nm) possible outcomes for bk(x1, . . . , xm). J

We prove the main tool for achieving our results on sorting.

I Theorem 6. Let S = {I|Gk
: I ∼ D}. Let f ∈ {bk, πk}. Let n0 = max{n, |f(S)|}. Using

n0 lnn0(lnn+ ln c0) instances in the training phase, with probability at least 1− n−2
0 , we can

compute a data structure such that given I ∼ D, it returns f(I|Gk
) in O(|Gk|+Hf) expected

time, where Hf is the entropy of f(S). The data structure uses O(n0|Gk|) space, and it can
be constructed in Õ(n0n) time.

Proof. Let N = n0 lnn0(lnn+ ln c0). Take instances I1, · · · , IN in the training phase. Let
{β1, · · · , βM} be the set of distinct outcomes among f(I1|Gk

), · · · , f(IN |Gk
). Let ρ̃i be the

frequency of βi divided by N .
Store the βj ’s in a trie T . There is one leaf in T for each βj . Each edge in T has a label

from [0, n] so that for j ∈ [1,M], βj is equal to the string of symbols on the path from the
root to the leaf for βj .

Given an instance I in the operation phase, we show how to return f(I|Gk
). For simplicity,

let I|Gk
= (x1, · · · , x|Gk|). Let x0 be a dummy symbol to the left of x1. Then, repeat the

following starting at the root of T : when we are at xi−1 and a node u, find the child w of u
such that the label on uw is consistent with xi, and then move to xi and w. The existence of
a particular child w of u depends on whether there is an input instance in the training phase
that prompts the creation of w. If we reach a leaf, we return the corresponding βj . If we
cannot find an appropriate child to proceed at any point, we abort and compute f(I|Gk

) in
O(|Gk| logn) time using plain algorithms. We discuss how to find the correct child quickly.

If f = bk, we seek an edge label r such that xi ∈ [vr, vr+1). We use a nearly optimal
binary search tree Au to store the labels of edges to the children of u [19], which can be
constructed in linear time [13]. The weight of w in Au is the node weight that we assign to
all nodes of T recursively as follows. The weight of a leaf of T for βi is ρ̃i. The weight of
an internal node of T is the sum of the weights of its children. The search time of Au is
O(log(weight(u)/weight(w))). To build Au, in the training phase, we grow a balanced binary
search tree Lu from being initially empty to the final set of elements in Au. That is, as new
elements of Au are discovered, they are inserted into Lu in O(logn) each. Also, Lu provides
access to children of u in the trie in O(logn) time in the training phase. At the end of the
training phase, we build Au as a nearly optimal binary search tree of the elements in Lu. So
the construction of T for bk takes O(n0n logn) time.

Consider the case of f = πk. At the node u, inductively, we know γ : [1, i− 1]→ [1, i− 1]
such that xγ(a) is the a-th smallest number among x1, · · · , xi−1. We saw the same permutation
γ at u in the training phase. Thus, we organize a search tree Au with i leaves corresponding to

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:7

the i intervals ω0, ω1, . . . , ωi−1, where ω0 denotes the interval between −∞ and the smallest
number, ωa denotes the interval between the a-th and (a + 1)-th smallest numbers for
a ∈ [1, i−2], and ωi−1 denotes the interval between the largest number and∞. We store γ(a)
and a pointer to xγ(a) at the internal node in Au that separates the a-th smallest number
from the (a+ 1)-th smallest number, so that we can decide in O(1) time whether xi < xγ(a)
or xi > xγ(a). The search of Au terminates at a leaf representing the interval between xγ(c)
and xγ(c+1) for some c. Thus, γ(c) is the index of the largest element in {x1, · · · , xi−1} that
is less than xi. That leaf of Au also stores a pointer to the corresponding child of u.

We store each map γ as a persistent search tree [12] to facilitate an efficient construction
in the training phase. The a-th node in the symmetric order stores γ(a). When we create a
child w of u in the trie and label the trie edge uw by γ(c), we need to extend γ to a map
γ′ : [1, i]→ [1, i] at w such that γ′(a) = γ(a) for a ∈ [1, c], γ′(c+ 1) = i, and γ′(a+ 1) = γ(a)
for a ∈ [c+ 1, i− 1]. This can be done by a persistent insertion of a new node between the
c-th and (c + 1)-th nodes in γ. The new version of γ produced is γ′. This takes O(logn)
amortized time and O(1) amortized space.

We store Au as a nearly optimal binary search tree as in the case of f = bk. In the
operation phase, accessing a child w in Au takes O(log(weight(u)/weight(w))) time.

As a result, querying T takes O(|Gk|+ log(1/ρ̃i)) time if the search terminates at the
leaf of T for βi. Although the true probability of this event is not ρ̃i, the entropy of Hf is
approximated well by

∑
i ρ̃i log(1/ρ̃i), giving an expected time of O(|Gk|+Hf). If we are

stuck at some internal node of T , the query time is O(|Gk| logn) due to the total access time
of the Au’s before getting stuck and computing f(I|Gk

) (by plain algorithms) afterwards.
Nevertheless, the probability of this event is very low thanks to the training phase. Hence, the
overall expected query time is O(|Gk|+Hf). The details are given in the full version [7]. J

Fredman [14] obtained a special case of Theorem 6 when f = πk, πk(S) is given, and
every outcome in πk(S) is equally likely.

2.3 Operation phase
1. For r ∈ [0, n], initialize Zr := ∅.
2. Repeat the following steps for each group Gk.

a. Let I|Gk
= (xi1 , · · · , xi|Gk|). Compute πk(xi1 , · · · , xi|Gk|) and bk(xi1 , · · · , xi|Gk|) using

Theorem 6.
b. Use πk(xi1 , · · · , xi|Gk|) to sort (xi1 , · · · , xi|Gk|). Let xs1 < · · · < xs|Gk| denote the

sorting output. Using bk(xi1 , · · · , xi|Gk|), for all j ∈
[
1, |Gk|

]
, we can read off the

interval [vrj
, vrj+1) to which xsj

belongs.
c. By a left-to-right scan, break (xs1 , · · · , xs|Gk|) at the boundaries of the intervals

[vr, vr+1)’s into contiguous subsequences. Insert each contiguous subsequence σ as a
new element into Zr, where [vr, vr+1) is the interval that contains the numbers in σ.

3. For each r ∈ [0, n], merge the subsequences in Zr into one sorted list.
4. Concatenate the sorted lists of step 3 in the left-to-right order of the intervals. Return

the output.

I Theorem 7. Under the group product distribution setting, there is a self-improving sorter
with a limiting complexity of O(n+HS). The storage needed by the operation phase is O(c0n3).
The training phase processes Õ(c20n2) instances in Õ(c0n3 + c20n

2) time using Õ(c0n3 + c20n
2)

space. The success probability is at least 1−O(1/n).

SoCG 2020

29:8 A Generalization of Self-Improving Algorithms

Proof. Correctness is obvious. The training complexities and space used in the operation
phase follow from Corollary 3, Lemma 5, and Theorem 6. By Theorem 6, step 2(a) takes
O(n+

∑
kHbk

+
∑
kHπk

) time. By the result in [1, Lemma 2.3],
∑
kHbk

= O(n+HS) because
one can merge the sorted order of I with the V -list to obtain the outputs of all bk’s in O(n)
time. As there are O(|Gk|2) different outputs of πk by Lemma 5, Hπk

= O(ln |Gk|) = O(|Gk|)
and so

∑
kHπk

= O(n). Step 3 runs in O(
∑
r

∑
k |σk,r| log |Zr|) = O

(∑
r

∑
k |Zr||σk,r|

)
time, where σk,r = I|Gk

∩ [vr, vr+1). Let yk,r be number of groups other than Gk that
have elements in Zr. Then, |Zr| ≤ yk,r + 1. So E

[
|Zr||σk,r|

]
≤ E

[
(yk,r + 1)|σk,r|

]
=

E
[
|σk,r|

]
+ E

[
yk,r|σk,r|

]
= E

[
|σk,r|

]
+ E

[
yk,r

]
E
[
|σk,r|

]
= (1 + E

[
yk,r

]
)E
[
|σk,r|

]
, which is

O
(
E
[
|σk,r|

])
as Lemma 4 implies that E

[
yk,r

]
= O(1). Finally,

∑
k

∑
r E
[
|σk,r|

]
= O(n). J

3 Self-improving Delaunay triangulator

An input instance I consists of n points, (p1, · · · , pn), where pi = (pi,x, pi,y). We assume
that there is a hidden partition of [1, n] into disjoint groups G1, G2, For all k ≥ 1, Gk is
governed by a random variable uk ∈ R2. That is, there exist hxi,k, h

y
i,k : R2 → R such that

pi,x = hxi,k(uk) and pi,y = hyi,k(uk). The functions hxi,k and hyi,k are bivariate polynomials
with degree at most some known constant d0. We assume that the following properties hold.

For all non-zero bivariate polynomial f of degree at most d0d1, Pr[f(uk) = 0] = 0, where
d1 = 2(d2

0/2 + d0)16.
∀ i∀ k ∀c ∈ R, both Pr[hxi,k(uk) = c] and Pr[hyi,k(uk) = c] are zero.

We show in the full version [7] that G1, G2, · · · can be learned in O(n2) time almost surely
using O(n2) instances.

3.1 Auxiliary structures
Take a set S of λ = n2 lnn instances. Take a (1/n)-net V ′ of S with respect to disks, that is,
for any disk C, |C ∩ S| ≥ |S|/n⇒ C ∩ V ′ 6= ∅. It is known that |V ′| = O(n) [10]. Add to V ′
three special points that form a huge triangle τ such that any input point lies inside τ . Let
V be the union of V ′ and these three special points. The canonical Delaunay triangulation
Del(V) satisfies the following property with a proof analogous to that of Lemma 4.

I Lemma 8. It holds with probability at least 1− 1/n189 that for every triangle t ∈ Del(V),
EI∼D[|I ∩ Ct|] = O(1), where Ct is the circumscribing disk of t.

We will need the following function which is the counterpart of bk for self-improving
sorters. Let |Del(V)| denote the number of triangles in Del(V). Arbitrarily assign indices
from 1 to |Del(V)| to the triangles in Del(V); the triangle with index r is denoted by tr.

Bk : R2|Gk| →
[
1, |Del(V)|

]|Gk| such that for all |Gk|-tuple of points (q1, · · · , q|Gk|),
Bk(q1, · · · , q|Gk|) = (r1, · · · , r|Gk|) such that qi lies in the triangle tri ∈ Del(V).

We use a variant of the fair split tree in [3]. Let R̂ and R be the smallest axis-aligned
bounding square and the smallest axis-aligned bounding rectangle, respectively, of the given
input instance I. We initialize the split tree to be a single node u with R(u) = R and
R̂(u) = R̂. In general, for any internal node w, R(w) is the smallest axis-aligned rectangle of
the subset of points represented by w, and R̂(w) is an outer rectangle that encloses R(w).
To split w, take the bisecting line of R(w) that is perpendicular to a longest side of R(w).
This line splits the point set at w into two non-empty subsets, and it also splits R̂(w) into
the outer rectangles of the children of w. The expansion bottoms out at nodes that represent
only one point in I. This gives a split tree I which is a full binary tree with n leaves. Since
we bisect R(w) at each internal node w, we call the output split tree a halving split tree.

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:9

For every rectangle r, let `min(r) and `max(r) be the minimum and maximum side lengths
of r, respectively. The following property is satisfied [3, equation (1) in Lemma 4.1]:

For each node u of the split tree, `min(R̂(u)) ≥ 1
3`max(R(parent(u))). (1)

There are non-halving split trees that also satisfy (1), which are called fair split trees in
[3]. We use SplitT (I) to denote a fair split tree of I. Using (1), one can show that a fair split
tree can be used to produce a well-separated pair decomposition of O(n) size, which can then
be used to produce a Delaunay triangulation in O(n) expected time (see Lemma 12 below).

We will require the following function which is the counterpart of πk for self-improving
sorters. Let HST denote the set of halving split trees of all possible |Gk| points in R2.

Πk : R2|Gk| → [0, n]|Gk| × [0, n]|Gk| × HST such that for all |Gk|-tuple of points
q, Πk(q) = (πk(qx), πk(qy), the halving split tree of q), where q = (q1, · · · , q|Gk|),
qx = (q1,x, · · · , q|Gk|,x), and qy = (q1,y, · · · , q|Gk|,y).

We call the first output of Πk the x-order and the second output the y-order.

I Lemma 9. Given S = {I|Gk
: I ∼ D}, |Bk(S)| = O(n2|Gk|2) and |Πk(S)| = O(|Gk|8).

Proof. Assume that Gk = [1,m]. Recall that the functions hxi,k’s and h
y
i,k’s have degrees at

most d0. Consider the following equations for some possibly non-distinct indices i1, i2, i3, i4 ∈
[1,m]: hxi1,k = hxi2,k, h

y
i1,k

= hyi2,k, h
x
i1,k
− hxi2,k = hyi3,k − h

y
i4,k

, hxi1,k + hxi2,k = 2hxi3,k, and
hyi1,k + hyi2,k = 2hyi3,k. Each of these equations is an algebraic curve in R2 of degree at most
d0, so the arrangement A of these O(m4) curves has complexity O(m8). We argue that there
are no more combinatorially different halving split trees than the cells in A.

Take the coarser arrangement A0 formed by the curves hxi1,k = hxi2,k and hyi1,k = hyi2,k for
distinct indices i1, i2 ∈ [1,m]. Each cell of A0 gives a distinct combination of x-order and
y-order, so each cell may lead to a different split tree. Take a cell C of A0. Suppose that u is
the split tree root, R̂(u) has pi1 and pi2 on its vertical sides, and we split R̂(u) vertically. The
curves {hxi1,k + hxi2,k = 2hxi3,k : i3 ∈ [1,m] \ {i1, i2}} divide C into interior-disjoint regions.
Each region corresponds to a distinct partition of points into the children w1 and w2 of
u. Take one such region C ′. Suppose that the smallest bounding rectangle of points in w1
have pi′1 and pi′2 on its vertical sides and pi′3 , and pi′4 on its horizontal sides. The sign of
(hxi′1,k − h

x
i′2,k

)− (hyi′3,k − h
y
i′4,k

) determines whether R̂(w1) is split vertically or horizontally.
Similarly, the sign of (hxi′5,k − h

x
i′6,k

) − (hyi′7,k − h
y
i′8,k

) for some i′5, i′6, i′7, i′8 tells us if R̂(w2)
is split vertically or horizontally. So the two curves (hxi′1,k − h

x
i′2,k

) = (hyi′3,k − h
y
i′4,k

) and
(hxi′5,k − h

x
i′6,k

) = (hyi′7,k − h
y
i′8,k

) divide C ′ to subregions such that each subregion corresponds
to a combinatorial distinct splitting of w1 and w2. Continuing with the above argument
shows that there are no more halving split trees than the cells in A. So |Πk(S)| = O(m8).

Let L be the set of support lines of all edges in Del(V). Let the equations of these lines
be αjx+ βjy + γj = 0 for j ∈

[
1, |L|

]
. Consider the following algebraic curves in R2.

αjh
x
i,k(uk) + βjh

y
i,k(uk) + γj = 0 for i ∈ [1,m] and j ∈

[
1, |L|

]
.

Let A′ be the arrangement of these O(nm) curves. Since these curves have degrees no more
than d0, the complexity of A′ is O(n2m2). Inside any cell of A′, the signs of

αjh
x
i,k(uk) + βjh

y
i,k(uk) + γj for i ∈ [1,m] and j ∈

[
1, |L|

]
are invariant. These signs determine Bk(p1, . . . , pm). Hence, |Bk(S)| = O(n2m2). J

SoCG 2020

29:10 A Generalization of Self-Improving Algorithms

We can generalize Theorem 6 to work for Bk and Πk.

I Theorem 10. Theorem 6 holds for f ∈ {Bk,Πk}.

Proof. The input to Bk and Πk is the tuple q = I|Gk
. W.l.o.g., let q = (q1, · · · , q|Gk|).

For Bk, we build a trie T like the case of f = bk in the proof of Theorem 6. If we are
at qi−1 and a node u of T , we seek an edge uw for some child w of u such that qi lies in
tr ∈ Del(V), where r is the label of uw. Therefore, we build a distribution-sensitive planar
point location structure for the subset of triangles of Del(V) represented by the labels of
edges from u to its children [16]. For an edge uw with label r, the weight of tr in the point
location structure is equal to the weight of w in T , which is defined recursively as in the
proof of Theorem 6. So finding w takes O(log(weight(u)/weight(w))) time [16] as before.

Consider Πk. The top |Gk| levels of T is a trie T1 for determining πk(q1,x, · · · , q|Gk|,x).
So T1 is a copy of the trie for πk in the proof of Theorem 6. We expand each leaf u of T1
into a trie T2,u for determining πk(q1,y, · · · , q|Gk|,y). Let T2 be the composition of T1 and all
T2,u’s. Given an instance I, we know the x-order and y-order of I at a leaf in T2.

We expand each leaf v of T2 to a trie T3,v as follows. Let Pv = I. For i ∈ [1, n − 1],
v may have a child corresponding to a vertical cut between the i-th and (i+ 1)-th points
in the x-order of Pv. Similarly, for i ∈ [1, n − 1], v may have a child corresponding to a
horizontal cut between the i-th and (i+ 1)-th points in the y-order of Pv. So v has at most
2n− 2 children. The existence of a particular child w of v depends on whether some input
instance in the training phase prompts the creation of w. Each child w of v represents a
subset Pw ⊂ Pv. We recursively expand the children of v, and the recursion bottoms out
when we reach a node that represents only a single point. The trie T3,v models the sequence
of possible cuts deployed in the training phase in constructing a split tree for a point set
that has the same x-order and y-order represented by v. Hence, each leaf of T3,v represents
a split tree. Let T3 be the composition of T2 and all T3,v’s.

We need a fast way to locate a child in T3. We build a nearly optimal binary search trees at
each internal node of T1 and all T2,u’s as in the case of πk in the proof of Theorem 6. At each
internal node u of T3,v, we keep two nearly optimal binary search trees Au,0 and Au,1 organized
as follows. At the node u, inductively, we know two functions γx :

[
1, |Pu|

]
→
[
1, n
]
and

γy :
[
1, |Pu|

]
→
[
1, n
]
such that qγx(a) and qγy(a) has the a-th smallest x- and y-coordinates

in Pu, respectively. We discovered the same functions γx and γy at u in the training phase.
We organize a nearly optimal binary search tree Au,0 with |Pu| + 1 leaves corresponding
to the |Pu|+ 1 gaps among −∞, the x-coordinates of points in Pu in increasing order, and
∞. We store γx(a) at the internal node in Au,0 that separates the a-th and the (a+ 1)-th
smallest x-coordinates. By comparing qγx(|Pu|),x − qγx(1),x and qγy(|Pu|),y − qγy(1),y in O(1)
time, we can determine whether u should be split vertically or horizontally.

If the cutting line at u is vertical and has x-coordinate X, we can decide in O(1) time
whether X < qγx(a),x or X > qγx(a),x. The search of Au,0 terminates at a leaf representing
the gap between qγx(c),x and qγx(c+1),x for some c. It means that the cut at X should lead
us to the child w of u such that the label uw represents a vertical cut between the c-th and
(c + 1)-th smallest x-coordinates. The weight of the leaf Au,0 corresponding to child w is
weight(w). The search time of Au,0 is thus O(log(weight(u)/weight(w))).

The search tree Au,1 is symmetrically organized for the horizontal cuts using γy.
Since we preserve the time to descend from a node of the trie to its appropriate child as

in the proof of Theorem 6, the overall expected search time of the trie is still O(|Gk|+Hf).
The construction of T2 has been described in Theorem 6. The construction of T3,v for

each leaf v of T2 follows the procedure to construct a split tree [3]. The construction of the
auxiliary structures γx’, γy’s, Au,0’s. and Au,1’s in the training phase is also similar to the
construction of analogous structures in Theorem 6. J

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:11

Given a point set P and Q ⊆ P , we can construct SplitT (Q) from SplitT (P) as follows.
Make a copy T of SplitT (P). Remove all leaves of T that represent points in P \Q. Repeatedly
remove nodes in T with only one child until there is none. For each node u of SplitT (P) that
is inherited by SplitT(Q), the same cut that splits u in SplitT(P) is also used in splitting
u in SplitT(Q). So SplitT(Q) may not be a halving split tree. For every surviving node u
in SplitT(Q), R(u) may shrink due to point deletions, but R̂(u) may remain the same or
expand. For example, if parent of u is deleted but the grandparent of u survives, then R̂(u)
in SplitT (Q) is equal to R̂(parent(u)) in SplitT (P). Hence, (1) is still satisfied by SplitT (Q).

I Lemma 11. Suppose that we have constructed SplitT (P) for a point set P .
(i) For any Q ⊆ P , SplitT (Q) can be computed from SplitT (P) in O(|P |) time.
(ii) For any subsets Q1, · · · , Qm of P , if each Qi is ordered as in the preorder traversal

of SplitT(P), then SplitT(Q1), · · · ,SplitT(Qm) can be computed from SplitT(P) in
O
(
α(|P |) ·

(
|P |+

∑m
i=1 |Qi|

))
time, where α(·) is the inverse Ackermann function.

Proof. The correctness of (i) follows from our previous discussion. For (ii), the construction
of SplitT(Qi) boils down to O(|Qi|) nearest common ancestor queries in SplitT(P), which
can be solved in the time stated [20]. There are solutions without the factor α(·), but they
require table lookup which is incompatible with the comparison-based model here. J

We also need the following result that follows from the works in [3, 2]. The proof is in
the full version [7].

I Lemma 12. There is a randomized algorithm that constructs Del(P) from SplitT(P) in
O(|P |) expected time.

3.2 Operation phase
Let I = (p1, · · · , pn) be an input instance. The construction of Del(I) proceeds as follows.

1. For each k, compute Bk(I|Gk
) and Πk(I|Gk

) using Theorem 10.
2. For i ∈ Gk, Bk(I|Gk

) gives the triangle t′ ∈ Del(V) that contains pi, and a BFS in Del(V)
from t′ gives ∆i = {t ∈ Del(V) : pi ∈ Ct}, where Ct is the circumscribing disk of t.

3. For each k,
a. Πk(I|Gk

) gives SplitT (I|Gk
) (note that the halving split tree is also a fair split tree);

b. traverse SplitT (I|Gk
) in preorder to produce an ordered list Qk of points in I|Gk

;
c. initialize Qk,t = ∅ for all t ∈

⋃
i∈Gk

∆i;
d. for all pi ∈ Qk (in order) and t ∈ ∆i, append pi to Qk,t;

4. Compute SplitT (Qk,t) for all k and t ∈
⋃
i∈Gk

∆i from SplitT (I|Gk
) using Lemma 11(ii).

5. For all k and t ∈
⋃
i∈Gk

∆i, compute Del(Qk,t) from SplitT (Qk,t) using Lemma 12.
6. Compute Vor(V ∪ I) and hence Del(V ∪ I) from the Del(Qk,t)’s over all k and t.
7. Split Del(V ∪ I) to produce Del(I) and Del(V). Return Del(I).

By Lemma 9 and Theorem 10, the training phase takes Õ(n10) time. Most of time is
spent on constructing the tries for the groups G1, G2, . . . to support the retrieval of the
Bk(I|Gk

)’s and Πk(I|Gk
)’s.

By Theorem 10, step 1 takes O(n+
∑
kHBk

+
∑
kHΠk

) expected time. Observe that
|Qk,t| is the total number of pairs (pi, t), where pi ∈ I and t ∈ Del(V), such that i ∈ Gk
and pi ∈ Ct. Therefore,

∑
k,t |Qk,t| =

∑n
i=1 |∆i|. By Lemma 8, E

[∑n
i=1 |∆i|

]
= O(n),

and therefore, E
[∑

k |Qk,t|
]

= O(1). So steps 2 and 3 run in O(n) expected time. By
Lemma 11(ii), the expected running time of step 4 is O

(∑
k |Gk|α(n)+E

[∑
k,t |Qk,t|

]
α(n)

)
=

SoCG 2020

29:12 A Generalization of Self-Improving Algorithms

O
(
nα(n) + E

[∑n
i=1 |∆i|

]
α(n)

)
= O(nα(n)). By Lemma 12, the expected running time of

step 5 is O
(
E
[∑

k,t |Qk,t|
])

= O(n). For step 7, a randomized algorithm is given in [6]
that splits Del(V ∪ I ′) in O(|V | + |I ′|) = O(n) expected time. It remains to discuss the
implementation and running time of step 6.

Step 6 is decomposed into two tasks. Let Pt be subset of I that lie in Ct, i.e., Pt =
⋃
kQk,t.

First, for all t ∈ Del(V), compute Del(Pt) by merging the non-empty Del(Qk,t)’s over all k.
Second, construct Vor(V ∪ I) by merging the Vor(Pt)’s over all t ∈ Del(V).

The first task is equivalent to computing Vor(Pt) for all t ∈ Del(V). It is known how to
merge two Voronoi diagrams in linear time [4, 5]. So we can merge the non-empty Vor(Qk,t)’s
in O

(∑
k zt|Qk,t|

)
time, where zt is the number of groups Gk’s with points in Ct. The

expected running time of the first task is O
(
E
[∑

t

∑
k zt|Qk,t|

])
. We have seen the analysis

of the similar quantity O
(
E
[∑

r

∑
k |Zr||σk,r|

])
in the proof of Theorem 7, and the same

analysis gives E
[∑

t zt
∑
k |Qk,t|

]
= O

(∑
t

∑
k E
[
|Qk,t|

])
= O(n).

Consider the second task of merging the Vor(Pt)’s over all t ∈ Del(V). We use the same
strategy in [1]. For each t ∈ Del(V), let νt be the Voronoi vertex dual to t in Vor(V). For
each Voronoi cell C of Vor(V), pick the vertex νt of C such that |Pt| is smallest, breaking
ties by selecting t with the smallest id in Del(V), and then triangulate C by connecting νt to
other vertices of C. This gives the geode triangulation of Vor(V) with respect to I.

I Lemma 13 ([1]). For any geode triangle τ = νt1νt2νt3 , Vor(V ∪ I) ∩ τ = Vor
(
{vτ} ∪⋃3

i=1 Pti
)
∩ τ , where vτ is the point in V whose Voronoi cell contains τ .

By Lemma 13, we can compute Vor
(
{vτ} ∪

⋃3
i=1 Pti

)
∩ τ for all geode triangles τ ,

and stitch these fragments to form Vor(V ∪ I). The expected running time is domi-
nated by the expected construction time of Vor

(
{vτ} ∪

⋃3
i=1 Pti

)
for all τ ’s. We merge

Vor(Pt1),Vor(Pt1),Vor(Pt3), vτ to form Vor
(
{vτ} ∪

⋃3
i=1 Pti

)
in linear time [4, 5]. The

expected merging time is O
(
E
[
1 +
∑3
i=1 |Pti |

])
= O(1) because E

[
|Pti |

]
= O(1) by Lemma 8.

In summary, we conclude that step 6 runs in O(n) expected time.

I Theorem 14. Under the group product distribution setting, there is a self-improving
Delaunay triangulator with a limiting complexity of O(nα(n) +HDT). The storage needed by
the operation phase is O(n9). The training phase processes Õ(n9) instances in Õ(n10) time
using O(n9) space. The success probability is at least 1−O(1/n).

Proof. The training time complexity and the space complexities of the training and operation
phases follow from previous discussion. Moreover, as discussed earlier, the expected running
time in the operation phase is O(nα(n) +

∑
kHBk

+
∑
kHΠk

). Given I and Del(I), an
algorithm is given in [1, Section 4.2] for finding the triangles in Del(V) that contain the
points in I. The same algorithm also works in the group product distribution setting.
The expected running time of this algorithm is dominated by E

[∑n
i=1 |∆i|

]
, which is O(n)

as we argued previously. We can then apply the result in [1, Lemma 2.3] to conclude
that

∑
kHBk

= O(n + HDT). There are O(|Gk|8) different outputs of Πk, so
∑
kHΠk

=
O(
∑
k ln |Gk|) = O(n). J

References
1 N. Ailon, B. Chazelle, K. Clarkson, D. Liu, W. Mulzer, and C. Seshadhri. Self-improving

algorithms. SIAM Journal on Computing, 40(2):350–375, 2011. doi:10.1137/090766437.
2 K. Buchin and W. Mulzer. Delaunay triangulations in O(sort(N)) time and more. Journal of

the ACM, 58(2):6:1–6:27, 2011. doi:10.1145/1944345.1944347.

https://doi.org/10.1137/090766437
https://doi.org/10.1145/1944345.1944347

S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong 29:13

3 P.B. Callahan and S.R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42(1):67–
90, 1995. doi:10.1145/200836.200853.

4 T.M. Chan. A simpler linear-time algorithm for intersecting two convex polyhedra in
three dimensions. Discrete & Computational Geometry, 56(4):860–865, 2016. doi:10.1007/
s00454-016-9785-3.

5 B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM
Journal on Computing, 21(4):671–696, 1992. doi:10.1137/0221041.

6 B. Chazelle, O. Devillers, F. Hurtado, M. Mora, V. Sacristan, and M. Teillaud. Splitting
a delaunay triangulation in linear time. Algorithmica, 34(1):39–46, 2002. doi:10.1007/
s00453-002-0939-8.

7 S.-W. Cheng, M.-K. Chiu, K. Jin, and M.T. Wong. A generalization of self-improving
algorithms. CoRR, abs/2003.08329, 2020. arXiv:2003.08329.

8 S.-W. Cheng, K. Jin, and L. Yan. Extensions of self-improving sorters. Algorithmica, 82:88–106,
2020. doi:10.1007/s00453-019-00604-6.

9 K.L. Clarkson, W. Mulzer, and C. Seshadhri. Self-improving algorithms for coordinatewise
maxima and convex hulls. SIAM Journal on Computing, 43(2):617–653, 2014. doi:10.1137/
12089702X.

10 K.L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set cover.
Discrete and Computational Geometry, 37:43–58, 2007. doi:10.1007/s00454-006-1273-8.

11 T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-Interscience, New
York, 2 edition, 2006.

12 J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent.
Journal of Computer System and Sciences, 38:86–124, 1989. doi:10.1016/0022-0000(89)
90034-2.

13 M.L. Fredman. Two applications of a probabilistic search technique: sorting x+y and building
balanced search trees. In Proceedings of the 7th ACM Symposium on Theory of Computing,
pages 240–244, 1975. doi:10.1145/800116.803774.

14 M.L. Fredman. How good is the information theory bound in sorting? Theoretical Computer
Science, 1(4):355–361, 1976. doi:10.1016/0304-3975(76)90078-5.

15 W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963. URL: http://www.jstor.org/stable/
2282952.

16 J. Iacono. Expected asymptotically optimal planar point location. Computational Geometry:
Theory and Applications, 29:19–22, 2004. doi:10.1016/j.comgeo.2004.03.010.

17 J.H. Kim. On increasing subsequences of random permutations. Journal of Combinatorial
Theory, Series A, 76(1):148–155, 1996. doi:10.1006/jcta.1996.0095.

18 D.H. Lehmer. Teaching combinatorial tricks to a computer. In Proceedings of Symposia in Ap-
plied Mathematics, Combinatorial Analysis, volume 10, pages 179–193. American Mathematics
Society, 1960.

19 K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975. doi:
10.1007/BF00264563.

20 R.E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM,
26(4):690–715, 1979. doi:10.1145/322154.322161.

SoCG 2020

https://doi.org/10.1145/200836.200853
https://doi.org/10.1007/s00454-016-9785-3
https://doi.org/10.1007/s00454-016-9785-3
https://doi.org/10.1137/0221041
https://doi.org/10.1007/s00453-002-0939-8
https://doi.org/10.1007/s00453-002-0939-8
http://arxiv.org/abs/2003.08329
https://doi.org/10.1007/s00453-019-00604-6
https://doi.org/10.1137/12089702X
https://doi.org/10.1137/12089702X
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1016/0022-0000(89)90034-2
https://doi.org/10.1145/800116.803774
https://doi.org/10.1016/0304-3975(76)90078-5
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
https://doi.org/10.1016/j.comgeo.2004.03.010
https://doi.org/10.1006/jcta.1996.0095
https://doi.org/10.1007/BF00264563
https://doi.org/10.1007/BF00264563
https://doi.org/10.1145/322154.322161

Dynamic Distribution-Sensitive Point Location
Siu-Wing Cheng
Department of Computer Science and Engineering, HKUST, Hong Kong, China
scheng@cse.ust.hk

Man-Kit Lau
Department of Computer Science and Engineering, HKUST, Hong Kong, China
lmkaa@connect.ust.hk

Abstract
We propose a dynamic data structure for the distribution-sensitive point location problem. Suppose
that there is a fixed query distribution in R2, and we are given an oracle that can return in O(1)
time the probability of a query point falling into a polygonal region of constant complexity. We
can maintain a convex subdivision S with n vertices such that each query is answered in O(OPT)
expected time, where OPT is the minimum expected time of the best linear decision tree for point
location in S. The space and construction time are O(n log2 n). An update of S as a mixed sequence
of k edge insertions and deletions takes O(k log5 n) amortized time. As a corollary, the randomized
incremental construction of the Voronoi diagram of n sites can be performed in O(n log5 n) expected
time so that, during the incremental construction, a nearest neighbor query at any time can be
answered optimally with respect to the intermediate Voronoi diagram at that time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases dynamic planar point location, convex subdivision, linear decision tree

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.30

Related Version https://arxiv.org/abs/2003.08288

Funding Supported by Research Grants Council, Hong Kong, China (project no. 16201116).

1 Introduction

Planar point location is a classical problem in computational geometry. In the static
case, a subdivision is preprocessed into a data structure so that, given a query point, the
face containing it can be reported efficiently. In the dynamic case, the data structure
needs to accommodate edge insertions and deletions. It is assumed that every new edge
inserted does not cross any existing edge. There are well-known worst-case optimal results
in the static case [1, 19, 25, 29]. There has been a long series of results in the dynamic
case [3, 5, 8, 9, 14, 15, 21, 26, 27]. For a dynamic connected subdivision of n vertices, an
O(logn) query time and an O(log1+ε n) update time for any ε > 0 can be achieved [8].

When the faces have different probabilities of containing the query point, it is appropriate
to minimize the expected query time. Assume that these probabilities are given or accessible
via an oracle. Arya et al. [4] and Iacono [23] obtained optimal expected query time when
the faces have constant complexities. Later, Collete et al. [16] obtained the same result for
connected subdivisions. So did Afshani et al. [2] and Bose et al. [7] for general subdivisions.

In the case that no prior information about the queries is available, Iacono and Mulzer [24]
designed a method for triangulations that can process an online query sequence σ in time
proportional to n plus the entropy of σ. We developed solutions for convex and connected
subdivisions in a series of work [11, 10, 12]. For convex subdivisions, the processing time is
O(Topt+n), where Topt is the minimum time needed by a linear decision tree to process σ [10].
For connected subdivisions, the processing time is O(Topt + n+ |σ| log(log∗ n)) [12].

© Siu-Wing Cheng and Man-Kit Lau;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 30; pp. 30:1–30:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3557-9935
mailto:scheng@cse.ust.hk
mailto:lmkaa@connect.ust.hk
https://doi.org/10.4230/LIPIcs.SoCG.2020.30
https://arxiv.org/abs/2003.08288
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Dynamic Distribution-Sensitive Point Location

In this paper, we are interested in dynamic distribution-sensitive planar point location.
Such a problem arises when there are online demands for servers that open and close over
time, and a nearest server needs to be located for a demand. For example, walking tourists
may look for a facility nearby (e.g. convenience store) and search on their mobile phones.
The query distribution can be characterized using historical data. New convenience store
may open and existing ones may go out of business. If we use the Euclidean metric, then we
are locating a query point in a dynamic convex subdivision which is a Voronoi diagram. We
are interested in solutions with optimal expected query time.

We assume that there is an oracle that can return in O(1) time the probability of a query
point falling inside a polygonal region of constant complexity. We propose a data structure
for maintaining a convex subdivision S with n vertices such that each query is answered
in O(OPT) expected time, where OPT is the minimum expected time of the best point
location decision tree for S, i.e., the best linear decision tree for answering point location
queries in S. An update of S as a mixed sequence of k edge insertions and deletions can be
performed in O(k log5 n) amortized time. The space and construction time are O(n log2 n).
As a corollary, we can carry out the randomized incremental construction of the Voronoi
diagram of n sites so that, during the incremental construction, a nearest neighbor query at
any time can be answered optimally with respect to the intermediate Voronoi diagram at
that time. The expected total construction time is O(n log5 n) because each site insertion
incurs O(1) expected structural changes to the Voronoi diagram. A key ingredient in our
solution is a new data structure, slab tree, for maintaining a triangulation with a nearly
optimal expected point location time and polylogarithmic amortized update time. This data
structuring technique may find other applications. Omitted proofs and details are in [13].

2 Dynamic convex subdivision

Let S be a convex subdivision. Let ∂S be the outer boundary of S, which bounds a convex
polygon. A general-update sequence Φ is a mixed sequence of edge insertions and deletions in
S that produces a convex subdivision. The intermediate subdivision after each edge update is
only required to be connected, not necessarily convex. Vertices may be inserted into or deleted
from ∂S, but the shape of ∂S is never altered. We will present in Sections 3-5 a dynamic
point location structure for a DK-triangulation of S (to be defined below). Theorem 8
in Section 5 summarizes the performance of this data structure. We show how to apply
Theorem 8 to obtain a dynamic distribution-sensitive point location structure for S.

2.1 Dynamic DK-triangulation
Let P be a convex polygon. Find three vertices x, y and z that roughly trisect the boundary
of P . This gives a triangle xyz. Next, find a vertex w that roughly bisects the chain delimited
by x and y. This gives a triangle xyw adjacent to xyz. We recurse on the other chains
to produce a DK-triangulation of P [17]. It has the property that any line segment inside
P intersects O(log |P |) triangles. A DK-triangulation of S is obtained by computing the
DK-triangulations of its bounded faces. Goodrich and Tamassia [20] proposed a method
to maintain a balanced geodesic triangulation of a connected subdivision. We can use it
to maintain a DK-triangulation of S because a DK-triangulation is a balanced geodesic
triangulation. By their method, each edge insertion/deletion in S is transformed into O(logn)
edge insertions and deletions in the DK-triangulation of S, where n is the number of vertices
of S. Consequently, each edge insertion/deletion in S takes O(log2 n) time.

S.-W. Cheng and M.-K. Lau 30:3

2.2 Point location
We modify our adaptive point location structure for static convex subdivisions [10] to make
it work for the distribution-sensitive setting. Compute a DK-triangulation ∆1 of S. For each
triangle t ∈ ∆1, use the oracle to compute the probability Pr(t) of a query point falling into
t. This probability is the weight of that triangle. We call the triangles in ∆1 non-dummy
because we will introduce some dummy triangles later.

Construct a data structure D1 for ∆1 with two parts. The first part of D1 is a new
dynamic distribution-sensitve point location structure for triangulations (Theorem 8). The
query time of the first part of D1 is O(OPT+log logn), where OPT is the minimum expected
time of the best point location decision tree for ∆1. The second part can be any dynamic
point location structure with O(logn) query time, provided that its update time is O(log2 n)
and space is O(n log2 n) [3, 8, 15, 28].

For i ≥ 2, define ni = (log2 ni−1)4 inductively, where n1 = n. To construct ∆i from ∆i−1,
extract the non-dummy triangles in ∆i−1 whose probabilities of containing a query point
are among the top (log2 ni−1)4. For each subset of extracted triangles that lie inside the
same bounded face of S, compute their convex hull and its DK-triangulation. These convex
hulls are holes in the polygon Hi with ∂S as its outer boundary. Triangulate Hi. We call
the triangles used in triangulating Hi dummy and the triangles in the DK-triangulations of
the holes of Hi non-dummy. The dummy and non-dummy triangles form the triangulation
∆i. The size of ∆i is O(ni). For each non-dummy triangle t ∈ ∆i, set its weight to be
max{Pr(t),W ∗i /ni}, where W ∗i is the sum of Pr(t) over the non-dummy triangles t in ∆i.
Dummy triangles are given weightW ∗i /ni. The total weightWi of all triangles in ∆i is Θ(W ∗i).
Construct Di as the point location structure of Iacono [23] for ∆i, which can answer a query
in O

(
log Wi

wi

)
time, where wi is the weight of the triangle containing the query point. The

query time of Di is no worse than O(logni) in the worst case as wi ≥W ∗i /ni = Θ(Wi/ni).
A hierarchy (∆1, D1), . . . , (∆m, Dm) is obtained in the end, where the size of ∆m is less

than some predefined constant. So m = O(log∗ n).
For i ≥ 2, label every non-dummy triangle t ∈ ∆i with the id of the bounded face of

S that contains it. If t is located by a query, we can report the corresponding face of S.
The labelling of triangles in ∆1 is done differently in order to allow updates in ∆1 to be
performed efficiently. For each vertex p of S, its incident triangles in ∆1 are divided into
circularly consecutive groups by the incident edges of p in S. Thus, each group lies in a
distinct face of S incident to p. We store these groups in clockwise order in a biased search
tree Tp [6] associated with p. Each group is labelled by the bounded face of S that contains
it. The group weight is the maximum of 1/n and the total probability of a query point falling
into triangles in that group. The threshold of 1/n prevents the group weight from being
too small, allowing Tp to be updated in O(logn) time. The query time to locate a group is
O
(
log W

w

)
, where w is the weight of that group and W is the total weight in Tp. Suppose

that D1 returns a triangle t ∈ ∆1 incident to p. We find the group containing t which tells
us the face of S that contains t. If p is a boundary vertex of S, there are two edges in ∂S
incident to p, so we can check in O(1) time whether t lies in the exterior face. Otherwise, we
search Tp to find the group containing t in O

(
log W

w

)
= O

(
log 1

Pr(t)
)
time.

Given a query point q, we first query Dm with q. If a non-dummy triangle is reported by
Dm, we are done. Otherwise, we query Dm−1 and so on.

I Lemma 1. Let D = ((∆1, D1), . . . , (∆m, Dm)) be the data structure maintained for S.
The expected query time of D is O(OPT), where OPT is the minimum expected time of the
best point location decision tree for S.

SoCG 2020

30:4 Dynamic Distribution-Sensitive Point Location

2.3 General-update sequence
Let Φ be a general-update sequence with k ≤ n/2 edge updates. We call k the size of Φ. As
discussed in Section 2.1, each edge update in S is transformed into O(logn) edge updates in
∆1. Updating ∆1 takes O(k log2 n) time. We also update the biased search tree Tp at each
vertex p of S affected by the structural changes in ∆1. This step also takes O(k log2 n) time.

For i ≥ 2, we recompute ∆i from ∆i−1 and then Di from ∆i. By keeping the triangles of
∆1 in a max-heap according to the triangle probabilities, which can be updated in O(k log2 n)
time, we can extract the n2 = log4

2 n triangles to form ∆2 in O(n2 logn2) time. For i ≥ 3,
we scan ∆i−1 to extract the ni = log4

2 ni−1 triangles to form ∆i in O(ni−1 + ni logni) time.
For i ≥ 2, constructing Di takes O(ni) time [23]. The total update time of ∆i and Di for
i ≥ 2 is O

(∑
i≥2 log4 ni−1 log logni−1

)
, which telescopes to O(log4 n log logn).

Consider D1. The second part of D1 is a dynamic point location structure that admits an
edge insertion/deletion in ∆1 in O(log2 n) time, giving O(k log3 n) total time. By Theorem 8
in Section 5, the update time of the first part of D1 is O(k log5 n) amortized.

In the biased search tree Tp’s at the vertices p of S, there are different weight thresholds
of 1/n depending on when a threshold was computed. To keep these thresholds within a
constant factor of each other, we rebuild the entire data structure periodically. Let n′ be
the number of vertices in the last rebuild. Let c < 1/2 be a constant. We rebuild when the
total number of edge updates in S in all general-update sequences exceeds cn′ since the last
rebuild. Rebuilding the first part of D1 takes O(n log2 n) time by Theorem 8. The second
part of D1 can also be constructed in O(n log2 n) time. This results in an extra O(log2 n)
amortized time per edge update in S.

I Theorem 2. Suppose that there is a fixed but unknown query point distribution in R2, and
there is an oracle that returns in O(1) time the probability of a query point falling into a
polygonal region of constant complexity. There exists a dynamic point location structure for
maintaining a convex subdivision S of n vertices with the following guarantees.

Any query can be answered in O(OPT) expected time, where OPT is the minimum
expected query time of the best point location linear decision tree for S.
The data structure uses O(n log2 n) space, and it can be constructed in O(n log2 n) time.
A general-update sequence with size k ≤ n/2 takes O(k log5 n) amortized time.

3 Slab tree: fixed vertical lines

In this section, we present a static data structure for distribution-sensitive point location in
a triangulation. Its dynamization will be discussed in Sections 4 and 5.

For any region R ⊂ R2, let Pr(R) denote the probability of a query point falling into R.
Let ∆ be a triangulation with a convex outer boundary. The vertices of ∆ lie on a given set
L of vertical lines, but some line in L may not pass through any vertex of ∆. For simplicity,
we assume that no two vertices of ∆ lie on the same vertical line at any time.

Enclose ∆ with an axis-aligned bounding box B such that no vertex of ∆ lies on the
boundary of B. We assume that the left and right sides of B lie on the leftmost and rightmost
lines in L. Connect the highest vertex of ∆ to the upper left and upper right corners of
B, and then connect the lowest vertex of ∆ to the lower left and lower right corners of B.
This splits B \∆ into two triangles and two simple polygons. The two simple polygons are
triangulated using the method of Hershberger and Suri [22]. Let ∆B denote the triangle
tiling of B formed by ∆ and the triangulation of B \∆. Let n denote the number of triangles
in ∆B . Any line segment in B \∆ intersects O(logn) triangles in ∆B [22]. When we discuss
updates in ∆ later, the portion ∆B \∆ of the tiling will not change although new vertices
may be inserted into the outer boundary of ∆.

S.-W. Cheng and M.-K. Lau 30:5

3.1 Structure definition

Let (l1, l2, · · · , l|L|) be the vertical lines in L in left-to-right order. We build the slab tree
T as follows. The root of T represents the slab bounded by l1 and l|L|. The rest of T is
recursively defined by constructing at most three children for every node v of T .

We use slab(v) to denote the slab represented by v. Let (li, · · · , lk) be the subsequence
of lines that intersect slab(v). Choose j ∈ [i, k) such that both the probabilties of a query
point falling between li and lj and between lj+1 and lk are at most Pr(slab(v))/2. Create the
nodes vL, vM , and vR as the left, middle, and right children of v, respectively, where slab(vL)
is bounded by li and lj , slab(vM) is bounded by lj and lj+1, and slab(vR) is bounded by lj+1
and lk. No vertex of ∆B lies in the interior of vM .

The recursive expansion of T bottoms out at a node v if v is at depth log2 n or slab(v)
contains no vertex of ∆B in its interior. So the middle child of a node is always a leaf.

Every node v of T stores several secondary structures. A connected region R ⊂ R2 spans
v if there is a path ρ ⊂ R ∩ slab(v) that intersects both bounding lines of slab(v). The
triangulation ∆B induces a partition of slab(v) into three types of regions:

Free Gap: For all triangle t that spans v but not parent(v), t∩ slab(v) is a free gap of v.
Blocked Gap: Let E be the set of all edges and triangles in ∆B that intersect slab(v)
but do not span v. Every connected component in the intersection between slab(v) and
the union of edges and triangles in E is a blocked gap of v.
Shadow Gap: Take the union of the free gaps of all proper ancestors of v. Each connected
component in the intersection between this union and slab(v) is a shadow gap of v.

The upper boundary of a blocked gap g has at most two edges, and so does the lower
boundary of g. If not, there would be a triangle t outside g that touches g, intersects slab(v),
and does not span v. But then t should have been included in g, a contradiction.1

Two gaps of v are adjacent if the lower boundary of one is the other’s upper boundary.
The list of free and blocked gaps of v are stored in vertical order in a balanced search tree,

denoted by gaplist(v). Group the gaps in gaplist(v) into maximal contiguous subsequences.
Store each such subsequence in a biased search tree [6] which allows an item with weight w
to be accessed in O

(
log W

w

)
time, where W is the total weight of all items. The weight of a

gap g set to be Pr(g). We call each such biased search tree a gap tree of v.
For every internal node v of T , we set up some pointers from the gaps of v to the gap

trees of the children of v as follows. Let w be a child of v. The free gaps of v only give rise
to shadow gaps of w, so they do not induce any item in gaplist(w). Every blocked gap g of v
gives rise to a contiguous sequence σ of free and blocked gaps of w. Moreover, σ is maximal
in gaplist(w) because g is not adjacent to any other blocked gap of v. Therefore, σ is stored
as one gap tree Tσ of w. We keep a pointer from g to the root of Tσ.

Since we truncate the recursive expansion of the slab tree T at depth log2 n, we may not
be able to answer every query using T . We need a backup which is a dynamic point location
structure T ∗ [3, 8, 15, 28]. Any worst-case dynamic point location structure with O(logn)
query time suffices, provided that its update time is O(log2 n) and its space is O(n logn).

1 There is one exception: when a blocked gap boundary contains a boundary edge e of ∆, updates may
insert new vertices in the interior of e, splitting e into collinear boundary edges. However, the portion
∆B \ ∆ of the triangle tiling remains fixed. We ignore this exception to simplify the presentation.

SoCG 2020

30:6 Dynamic Distribution-Sensitive Point Location

3.2 Querying
Given a query point q, we start at the root r of T , and q must lie in a gap stored in the only
gap tree of r. In general, when we visit a node v of T , we also know a gap tree Tv of v such
that q lies in one of the gaps in Tv. We search Tv to locate the gap, say g, that contains q. If
g is a free gap, the search terminates because we have located a triangle in ∆B that contains
q. Suppose that g is a blocked gap. Then, we check in O(1) time which child w of v satisfies
q ∈ slab(w). By construction, g contains a pointer to the gap tree Tw of w that stores the
free and blocked gaps of w in g ∩ slab(w). We jump to Tw to continue the search. If the
search reaches a leaf of T without locating a triangle of ∆B , we answer the query using T ∗.

I Lemma 3. The expected query time of T is O(OPT+log logn), where OPT is the expected
query time of the best point location decision tree for ∆.

3.3 Construction
The children of a node v of T can be created in time linear in the number of lines in L that
intersect slab(v). Thus, constructing the primary tree of T takes O(|L| logn) time.

The gap lists and gap trees are constructed via a recursive traversal of T . In general,
when we come to a node v of T from parent(v), we maintain the following preconditions.

We have only those triangles in ∆B such that each intersects slab(v) and does not span
parent(v). These triangles form a directed acyclic graph Gv: triangles are graph vertices,
and two triangles sharing a side are connected by a graph edge directed from the triangle
above to the one below.2
The connected components of Gv are sorted in order from top to bottom. Note that each
connected component intersects both bounding lines of slab(v).

Each connected component C in Gv corresponds to a maximum contiguous subsequence
of free and blocked gaps in gaplist(v) (to be computed), so for each C, we will construct a
gap tree TC . We will return the roots of all such TC ’s to parent(v) in order to set up pointers
from the blocked gaps of parent(v) to the corresponding TC ’s.

Gap list. We construct gaplist(v) first. Process the connected components of Gv in vertical
order. Let C be the next one. The restriction of the upper boundary of C to slab(v) is the
upper gap boundary induced by C. Perform a topological sort of the triangles in C. We
pause whenever we visit a triangle t ∈ C that spans v. Let t′ denote the last triangle in C
encountered that spans v, or in the absence of such a triangle, the upper boundary of C. If
t ∩ t′ = ∅ or t ∩ t′ does not span v, the region in slab(v) between t′ and t is a blocked gap,
and we append it to gaplist(v). Then, we append slab(v) ∩ t as a newly discovered free gap
to gaplist(v). The construction of gaplist(v) takes O(|Gv|) time.

Recurse at the children. Let vL, vM and vR denote the left, middle and right children of v.
We scan the connected components of Gv in the vertical order to extract GvL

. A connected
component C in Gv may yield multiple components in GvL

because the triangles that span v
are omitted. The components in GvL

are ordered vertically by a topological sort of C. Thus,
GvL

and the vertical ordering of its connected components are produced in O(|Gv|) time.
The generation of GvM

, GvR
and the vertical orderings of their connected components is

similar. Then, we recurse at vL, vM and vR.

2 Refer to [19, Section 4] for a proof that this ordering is acyclic.

S.-W. Cheng and M.-K. Lau 30:7

Gap trees. After we have recursively handled the children of v, we construct a gap tree for
each maximal contiguous subsequence of gaps in gaplist(v). The construction takes linear
time [6]. The recursive call at vL returns a list, say X, of the roots of gap trees at vL, and X
is sorted in vertical order. There is a one-to-one correspondence between X and the blocked
gaps of v in vertical order. Therefore, in O(|gaplist(v)|) time, we can set up pointers from the
blocked gaps of v to the corresponding gap tree roots in X. The pointers from the blocked
gaps of v to the gap tree roots at vM and vR are set up in the same manner. Afterwards, if
v is not the root of T , we return the list of gap tree roots at v in vertical order.

Running time. We spend O(|Gv|) time at each node v. If a triangle t contributes to Gv for
some node v, then either slab(v)∩ t is a free gap of v, or slab(v)∩ t is incident to the leftmost
or rightmost vertex of t. Like storing segments in a segment tree, t contributes O(logn) free
gaps. The nodes of T whose slabs contain the leftmost (resp. rightmost) vertex of t form a
root-to-leaf path. Therefore, t contributes O(logn) triangles in the Gv’s over all nodes v in
T . The sum of |Gv| over all nodes v of T is O(n logn).

I Lemma 4. Given ∆B and L, the slab tree and its auxiliary structures, including gap lists
and gap trees, can be constructed in O(|L| logn) time and O(n logn) space.

4 Handling triangulation-updates: fixed vertical lines

We discuss how to update the slab tree when ∆B is updated such that every new vertex lies
on a vertical line in the given set L. This restriction will be removed later in Section 5. A
triangulation-update U has the following features:

It specifies some triangles in ∆ whose union is a polygon RU possibly with holes.
It specifies a new triangulation TU of RU . TU may contain vertices in the interior of
RU . TU does not have any new vertex in the boundary of RU , except possibly for the
boundary edges of RU that lie on the outer boundary of ∆.
The construction of TU takes O(|TU | log |TU |) time.
The size of U is the total number of triangles in ∆ ∩RU and TU .

Our update algorithm is a localized version of the construction algorithm in Section 3.3.
It is also based on a recursive traversal of the slab tree T . When we visit a node v of T , we
have a directed acyclic graph Hv that represents legal and illegal regions in TU ∩ slab(v):

For each triangle t ∈ TU that intersects the interior of slab(v) and does not span parent(v),
t ∩ slab(v) is a legal region in Hv.
Take the triangles in TU that span parent(v). Intersect their union with slab(v). Each
resulting connected component that has a boundary vertex in the interior of slab(v) is an
illegal region. Its upper and lower boundaries contain at most two edges each. Requiring
a boundary vertex inside slab(v) keeps the complexity of illegal regions low.
Store Hv as a directed acyclic graph: regions are graph vertices, and two regions sharing
a side are connected by an edge directed from the region above to the one below.

To update gaplist(v), we essentially merge it with a topologically sorted order of regions
in each component of Hv.

I Lemma 5. Updating gaplist(v) and the gap trees of v takes O(|Hv| logn) amortized time.

Let c < 1/2 be a constant. We rebuild T and its auxiliary structures with respect to L
and the current ∆B when the total size of triangulation-updates exceeds cn′ since the initial
construction or the last rebuild, where n′ was the number of triangles in ∆B then.

SoCG 2020

30:8 Dynamic Distribution-Sensitive Point Location

I Lemma 6. Let n denote the number of triangles in ∆B.
n = Θ(n′).
Any query can be answered in O(OPT + log logn) expected time, where OPT is the
minimum expected query time of the best point location decision tree for ∆.
The data structure uses O(n logn) space and can be constructed in O(|L| logn) time.
A triangulation-update of size k ≤ n/2 takes O(k log2 n+ (|L| logn)/n) amortized time.

5 Allowing arbitrary vertex location

In this section, we discuss how to allow a new vertex to appear anywhere instead of on one
of the fixed lines in L. This requires revising the slab tree structure. The main issue is how
to preserve the geometric decrease in the probability of a query point falling into the slabs of
internal nodes on every root-to-leaf path in T .

Initialize L to be the set of vertical lines through the vertices of the initial ∆B . Construct
the initial slab tree T for ∆B and L using the algorithm in Section 3.3. Whenever T is
rebuilt, we also rebuild L to be the set of vertical lines through the vertices of the current
∆B . Between two successive rebuilds, we grow L monotonically as triangulation-updates are
processed. Although every vertex of ∆B lies on a line in L, some line in L may not pass
through any vertex of ∆B between two rebuilds.

The free, blocked, and shadow gaps of a slab tree node are defined as in Section 3. So are
the gap trees of a slab tree node. However, gap weights are redefined in Section 5.1 in order
that they are robust against small geometric changes.

When a triangulation-update U is processed, we first process the vertical lines through
the vertices of TU before we process TU as specified in Section 4. For each vertical line `
through the vertices of TU , if ` 6∈ L, we insert ` into L and then into T . Sections 5.2 and 5.3
provide the details of this step. The processing of TU is discussed in Section 5.4.

Querying is essentially the same as in Section 3.2 except that we need a fast way to
descend the slab tree as some nodes have O(logn) children. This is described in Section 5.2.

5.1 Weights of gaps and more
Let n′ be the number of triangles in ∆B in the initial construction or the last rebuild,
whichever is more recent. Let N = 2(c+ 1)n′, where c is the constant in the threshold cn′
for triggering a rebuild of T .

For every free gap g, let tg denote the triangle in the current ∆B that contains g, and
the weight of g is wt(g) = max{Pr(tg), 1/N}. The alternative 1/N makes the access time of
g in a gap tree no worse than O(logN) = O(logn).

For every blocked gap g, every vertex p of ∆B , and every node v of T , define:
wt(p) = sum of max

{ 1
N , Pr(t)

}
over all triangles t ∈ ∆B incident to p.

vert(g) = {vertex p lying in g : ∃ triangle pqr ∈ ∆B s.t. interior(pqr) ∩ interior(g) 6= ∅}.
wt(g) =

∑
p∈vert(g) wt(p).

blocked-gaps(p) = {blocked gap g : p ∈ vert(g)}.
vert(v) = the subset of vertices of ∆B that lie in slab(v).
lines(v) = the subset of lines in L that intersect slab(v).

The set vert(g) is only used for notational convenience. The set blocked-gaps(p) is not
stored explicitly. We discuss how to retrieve blocked-gaps(p) in Section 5.2. The sets vert(v)
and lines(v) are stored as balanced search trees in increasing order of x-coordinates.

S.-W. Cheng and M.-K. Lau 30:9

5.2 Revised slab tree structure
Node types. A vertical line pierces a slab if the line intersects the interior of that slab. An
internal node v of T has children of two possible types.

Heavy-child: A child w of v is a heavy-child if Pr(slab(w)) > Pr(slab(v))/2.
The heavy-child w may be labelled active or inactive upon its creation. This label will
not change. If w was created in the initial construction or the last rebuild of T , then
w is inactive.
If w is inactive, gaplist(w) and the gap trees of w are represented as before. If w is
active, then w is a leaf, and gaplist(w) and the gap trees of w are stored as persistent
data structures using the technique of node copying [18].

Light-child: There are two sequences of light-children of v, denoted by left-light(v) and
right-light(v), which satisfy the following properties.

For each light child w of v, Pr(slab(w)) ≤ Pr(slab(v))/2.
For each light child w of v, gaplist(w) and the gap trees of w are represented as before.
Let left-light(v) = (w1, w2, · · · , wk) and let right-light(v) = (wk+1, wk+2, · · · , wm) in
the left-to-right order of the nodes.
∗ For i ∈ [1, k − 1] ∪ [k + 1,m− 1], slab(wi) and slab(wi+1) are interior-disjoint and

share a boundary.
∗ If v has an active heavy-child w, then slab(w) is bounded by the right and left

boundaries of slab(wk) and slab(wk+1), respectively. Otherwise, the right boundary
of slab(wk) is the left boundary of slab(wk+1).

∗ If v does not have an active heavy child, v has at most 2 log2 N + 2 children.
∗ If v has an active heavy-child, the following properties are satisfied.
(i) For r ≥ 1, a light-child w of v has rank r if the number of lines in L that intersect

slab(w) is in the range [2r, 2r+1). So r ≤ log2 N , where N = 2(c + 1)n′. We
denote r by rank(w).

(ii) We have rank(w1) > · · · > rank(wk) and rank(wk+1) < · · · < rank(wm). For
r ∈ [1, log2 N], there is at most one light-child of rank r in each of left-light(v)
and right-light(v) .

Node access. Each node v keeps a biased search tree children(v). The weight of a child w in
children(v) is max

{Pr(slab(v))
2 log2 N+2 , Pr(slab(w))

}
, whereN = 2(c+1)n′. Since n = Θ(n′), accessing

w takes O
(
min

{
log Pr(slab(v))

Pr(slab(w)) , log logn
})

time. For each blocked gap g of v, we use a biased
search tree Tg to store pointers to the gap trees induced by g at the children of v. The weight
of the node in Tg that represents a gap tree T at a child w is max

{Pr(slab(v))
2 log2 N+2 , Pr(slab(w))

}
.

Accessing T via Tg takes O
(
min

{
log Pr(slab(v))

Pr(slab(w)) , log logn
})

time. Given a vertex p of ∆B,
there are O(logn) blocked gaps in blocked-gaps(p) and we can find them as follows. Traverse
the path from the root of T to the leaf whose slab contains p, and for each node v encountered,
we search gaplist(v) to find the blocked gap of v that contains p. The time needed is O(log2 n).

5.3 Insertion of a vertical line into the slab tree
Let ` be a new vertical line. We first insert ` into L and then insert ` into T in a recursive
traversal towards the leaf whose slab is pierced by `.

SoCG 2020

30:10 Dynamic Distribution-Sensitive Point Location

Internal node. Suppose that we visit an internal node v. We first insert ` into lines(v). We
query children(v) to find the child slab pierced by `. If v does not have an active heavy-child,
recursively insert ` at the child found. Otherwise, we work on left-light(v) or right-light(v).

Case 1: ` pierces slab(wj) for some wj ∈ left-light(v). If slab(wj) intersects fewer than
2rank(wj)+1 lines in L, recursively insert ` into wj and no further action is needed.3
Otherwise, slab(wj) intersects 2rank(wj)+1 lines in L, violating the structural property of
a light-child. In this case, we merge some nodes in left-light(v) as follows.

Let left-light(v) = (w1, · · · , wj , · · ·). Find the largest i ≤ j such that the number
of lines in L that intersect slab(wi) ∪ · · · ∪ slab(wj) is in the range [2r, 2r+1) for some
rank(wi) ≤ r < rank(wi−1). Note that r > rank(wj). Let `L denote the left boundary of
slab(wi). Let `R denote the right boundary of slab(wj). Let S denote the slab bounded
by `L and `R. We rebuild the slab subtree rooted at wi and its auxiliary structures
to expand slab(wi) to S as follows. It also means that rank(wi) is updated to r. The
children wi+1, . . . , wj and their old subtrees are deleted afterwards.

Let V = vert(wi) ∪ · · · ∪ vert(wj). Let Λ = lines(wi) ∪ · · · ∪ lines(wj). First, we
construct a new slab subtree rooted at wi with respect to V and Λ as described in
Section 3.1. No auxiliary structure is computed yet. We control the construction so that
it does not produce any node at depth greater than log2 N = O(logn) with respect to
the whole slab tree. The construction time is O(|Λ| logn). Afterwards, slab(wi) becomes
S. Label all heavy-children in the new slab subtree rooted at wi as inactive.

Mark the triangles that are incident to the vertices in V , overlap with S, and do not
span S. Let Gwi

be the set of marked triangles. This takes O(|Gwi
|) time, assuming that

each vertex p has pointers to its incident triangle(s) intersected by a vertical line through
p. The old blocked gaps of wi will be affected by the rebuild at wi. The old free gaps
of wi contained in some triangles in Gwi will be absorbed into some blocked gaps. The
other old free gaps of wi are not affected because their containing triangles span S.

To update gaplist(wi), intersect Gwi with S to generate the directed acyclic graph
Hwi

and then update gaplist(wi) as in Section 4. This takes O(|Gwi
| logn) amortized

time. Only the blocked gaps of wi can induce gap lists and gap trees at the descendants
of wi. Therefore, as in the construction algorithm in Section 3.3, we can take the subset
of Gwi

that induce the blocked gaps of wi and recursively construct the gap lists and gap
trees at the descendants of wi. This takes O(|Gwi | log2 n) time by an analysis analogous
to the one for Lemma 4.4 For each blocked gap g of wi, we create a biased search tree of
pointers to the gap trees induced by g at the children of wi.

The update of gaplist(wi) preserves the old shadow gaps of wi, and it does not generate
any new shadow gap. Therefore, no two gap trees of wi can be merged and no gap tree
of wi can be split, although the content of a gap tree may be updated. A gap tree of
wi is updated only when some free gaps in it are merged into some blocked gaps. Thus,
updating the gap trees of wi takes O(|Gwi | logn) time.

Finally, vert(wi) := V , lines(wi) := Λ, and the recursive insertion of ` terminates.
Case 2: ` pierces slab(wj) for some wj ∈ right-light(v). Symmetric to Case 1.
Case 3: ` pierces the active heavy-child of v. An active heavy-child is a leaf of the slab
tree. We discuss how to insert a vertical line at a leaf next.

3 The line ` has already been inserted into L.
4 Since wi has O(log n) instead of O(1) children, the construction time has an extra log factor.

S.-W. Cheng and M.-K. Lau 30:11

Leaf node. Suppose that we come to a leaf v. If depth(v) = log2 N , do nothing and return.
Otherwise, there are two cases. Note that gaplist(v) consists of free gaps only. The line `
divides slab(v) into slabs SL and SR on the left and right of `, respectively.

Case 1: v is not an active heavy-child of parent(v). Turn v into an internal node by
making two children wL and wR of v with slab(wL) = SL and slab(wR) = SR. If
Pr(slab(wL)) > Pr(slab(v))/2, then wL is the heavy-child of v, label wL active, and set
left-light(v) := ∅. If not, wL is a light-child of rank one and set left-light(v) := (wL). The
handling of wR is symmetric. As gaplist(v) consists of free gaps only, gaplist(wL) and
gaplist(wR) are empty. So wL and wR have no gap tree. The initializations of vert(wL),
vert(wR), lines(wL), and lines(wR) are trivial.
Case 2: v is an active heavy-child of parent(v). We expand left-light(parent(v)) and/or
right-light(parent(v)) as follows. W.l.o.g., assume that Pr(SL) ≤ Pr(slab(v))/2. Update
slab(v) := SR, which does not change gaplist(v) or any gap tree of v combinatorially. The
weights of gaps in gaplist(v) are also unaffected.

Case 2.1: Pr(SR) ≤ Pr(slab(parent(v)))/2. Then, parent(v) has no heavy-child af-
terwards. Note that parent(v) has at most 2 log2 N + 1 children before this update,
where N = 2(c+ 1)n′. Create a light-child wL of parent(v) with slab(wL) = SL. Note
that gaplist(wL) and the gap trees of wL are combinatorially identical to those of v,
which are stored as persistent search trees. We copy them to form gaplist(wL) and
the gap trees of wL, each taking O(1) amortized space and time. Append wL to
left-light(parent(v)). Add v to right-light(parent(v)) as its leftmost element. Therefore,
parent(v) has at most 2 log2 N + 2 children afterwards.
Case 2.2: Pr(SR) > Pr(slab(parent(v)))/2. Then, v remains the active heavy-child of
parent(v). We handle SL as follows.
∗ If left-light(parent(v)) contains no light-child of rank one, then create a light-child
wL with slab(wL) = SL as in Case 2.1 above, and append wL to left-light(parent(v)).

∗ Otherwise, let left-light(parent(v)) = (w1, · · · , wk), i.e., rank(wk) = 1. Find the
largest i ≤ k such that the number of lines in L that intersect slab(wi) ∪ · · · ∪
slab(wk) ∪ SL is in the range [2r, 2r+1) for some rank(wi) ≤ r < rank(wi−1).
Expand slab(wi) to the slab bounded by the left boundary of slab(wi) and the
right boundary of SL as in Case 1 of the insertion of a vertical line at an internal
node. Rebuild the slab subtree rooted at wi and its auxiliary structures. Label all
heavy-children in the new slab subtree rooted at wi as inactive.

I Lemma 7. Let T be the slab tree constructed for a set L′ of vertical lines and ∆B in
the initial construction or the last rebuild, whichever is more recent. For any L ⊃ L′, the
insertion time of lines in L \ L′ into T is O(|L \ L′| log4 n) plus some charges on edges of
∆B such that every edge gains at most O(log4 n) charge since the initial construction or the
last rebuild, whichever is more recent.

5.4 Handling triangulation-updates
Let U be a triangulation-update of size k ≤ n/2. Let n′ be the number of triangles in ∆B in
the initial construction or the last rebuild, whichever is more recent. Let c be a constant less
than 1/2. If the threshold cn′ has been exceeded by the total size of triangulation-updates
(including U) since the initial construction or the last rebuild, we rebuild T and its auxiliary
structures. It takes O(n log2 n) time and space. If U does not trigger a rebuild, we proceed
as follows instead.

SoCG 2020

30:12 Dynamic Distribution-Sensitive Point Location

Step 1. Check the O(k) vertical lines through the vertices of TU . For each line that does
not appear in L, we insert it into L and then into T as discussed in Section 5.3.

Step 2. The weights of O(k) vertices may change and O(k) vertices may be inserted or
deleted. It is straightforward to update the weights of existing vertices, set the weights of
new vertices, and delete vertices in O(k) time. For every vertex p of the old triangulation,
let wt′(p) be its weight in the old triangulation. For every vertex p of the new triangulation,
let wt(p) be its weight in the new triangulation. We perform the following action.

Action-I: for every vertex p of the old triangulation that lies in RU ,
for every gap g ∈ blocked-gaps(p), update wt(g) := wt(g)− wt′(p);
if p does not lie in the boundary of RU , then for each slab tree node v such that
p ∈ vert(v), delete p from vert(v).

Action-I runs in O(k log2 n) time.

Step 3. For every vertex p of TU that lies strictly inside RU , and every ancestor v of the
leaf node of T whose slab contains p, insert p into vert(v). This step takes O(k log2 n) time.

Step 4. To update the gap lists and the gap trees, traverse T as in Section 4. For each
node v of T visited, form a directed acyclic graph Hv of regions to update v as in Section 4.
This step takes O(

∑
v |Hv| logn) amortized time.

Step 5. The weight of a free gap does not change as long as its defining triangle is preserved.
The weights of some blocked gaps may not be updated completely yet, and we fix them by
performing Action-II below. Assume that a zero weight is assigned initially to every blocked
gap that is created by the triangulation-update and contains vertices in TU only.

Action-II: for each vertex p of TU and every gap g ∈ blocked-gaps(p), update wt(g) :=
wt(g) + wt(p).

Action-II runs in O(k log2 n) time.

I Theorem 8. Let n denote the number of triangles in ∆B.
Any query can be answered in O(OPT + log logn) expected time, where OPT is the
minimum expected query time of the best point location decision tree for ∆.
The data structure uses O(n log2 n) space, and it can be constructed in O(n log2 n) time.
A triangulation-update of size k ≤ n/2 takes O(k log4 n) amortized time.

References
1 U. Adamy and R. Seidel. On the exact worst case query complexity of planar point location.

Journal of Algorithms, 27(1):189–217, 2000.
2 P. Afshani, J. Barbay, and T. Chan. Instance-optimal geometric algorithms. Journal of the

ACM, 64(1):3:1–3:38, 2017.
3 L. Arge, G.S. Brodal, and L Georgiadis. Improved dynamic planar point location. In Proceedings

of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 305–314,
2006.

4 S. Arya, T. Malamatos, D. Mount, and K. Wong. Optimal expected-case planar point location.
SIAM Journal on Computing, 37(2):584–610, 2007.

5 H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdivisions.
Journal of Algorithms, 17(3):342–380, 1994.

S.-W. Cheng and M.-K. Lau 30:13

6 S.W. Bent, D.D. Sleator, and R.E. Tarjan. Biased search trees. SIAM Journal on Computing,
14(3):545–568, 1985.

7 Prosenjit Bose, Luc Devroye, Karim Douieb, Vida Dujmovic, James King, and Pat Morin.
Odds-on trees, 2010. arXiv:1002.1092.

8 T. Chan and Y. Nekrich. Towards an optimal method for dynamic planar point location.
SIAM Journal on Computing, 47(6):2337–2361, 2018.

9 S.-W. Cheng and R. Janardan. New results on dynamic planar point location. SIAM Journal
on Computing, 21(5):972–999, 1992.

10 S.-W. Cheng and M.-K. Lau. Adaptive planar point location. In Proceedings of the 33rd
International Symposium of Computational Geometry, pages 30:1–30:15, 2017.

11 S.-W. Cheng and M.-K. Lau. Adaptive point location in planar convex subdivisions. Interna-
tional Journal of Computational Geometry and Applications, 27(1–2):3–12, 2017.

12 S.-W. Cheng and M.-K. Lau. Adaptive planar point location, 2018. arXiv:1810.00715.
13 S.-W. Cheng and M.-K. Lau. Dynamic distribution-sensitive point location, 2020. arXiv:

2003.08288.
14 Y.-J. Chiang, F.P. Preparata, and R. Tamassia. A unified approach to dynamic point location,

ray shooting, and shortest paths in planar maps. SIAM Journal on Computing, 25(1):207–233,
1996.

15 Y.-J. Chiang and R. Tamassia. Dynamization of the trapezoid method for planar point
location in monotone subdivisions. Internatational Journal of Computational Geometry and
Applications, 2(3):311–333, 1992.

16 S. Collette, V. Dujmović, J. Iacono, S. Langerman, and P. Morin. Entropy, triangulation, and
point location in planar subdivisions. ACM Transactions on Algorithms, 8(3):29:1–29:18, 2012.

17 D.P. Dobkin and D.G. Kirkpatrick. Determining the separation of preprocessed polyhedra—a
unified approach. In Proceedings of the 17th International Colloquium on Automata, Languages
and Programming, pages 400–413, 1990.

18 J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38(1):86–124, 1989.

19 H. Edelsbrunner, L. J Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317–340, 1986.

20 M.T. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar subdivi-
sions via balanced geodesic triangulations. Journal of Algorithms, 23(1):51–73, 1997.

21 M.T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. SIAM Journal
on Computing, 28(2):612–636, 1998.

22 J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk.
Journal of Algorithms, 18(3):403–431, 1995.

23 J. Iacono. Expected asymptotically optimal planar point location. Computational Geometry:
Theory and Applications, 29(1):19–22, 2004.

24 J. Iacono and W. Mulzer. A static optimality transformation with applications to planar point
location. International Journal of Computational Geometry and Applications, 22(4):327–340,
2012.

25 D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12(1):28–35, 1983.

26 E. Oh. Point location in incremental planar subdivisions. In Proceedings of the 29th Interna-
tional Symposium on Algorithms and Computation, pages 51:1–51:12, 2018.

27 E. Oh and H.-K. Ahn. Point location in dynamic planar subdivision. In Proceedings of the
34th International Symposium on Computational Geometry, pages 63:1–53:14, 2018.

28 F.P. Preparata and R. Tamassia. Fully dynamic point location in a monotone subdivision.
SIAM Journal on Computing, 18(4):811–830, 1989.

29 N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communica-
tions of ACM, 29(7):669–679, 1986.

SoCG 2020

http://arxiv.org/abs/1002.1092
http://arxiv.org/abs/1810.00715
http://arxiv.org/abs/2003.08288
http://arxiv.org/abs/2003.08288

No-Dimensional Tverberg Theorems and
Algorithms
Aruni Choudhary
Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
arunich@inf.fu-berlin.de

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract
Tverberg’s theorem states that for any k ≥ 2 and any set P ⊂ Rd of at least (d + 1)(k − 1) + 1
points, we can partition P into k subsets whose convex hulls have a non-empty intersection. The
associated search problem lies in the complexity class PPAD ∩ PLS, but no hardness results are
known. In the colorful Tverberg theorem, the points in P have colors, and under certain conditions,
P can be partitioned into colorful sets, in which each color appears exactly once and whose convex
hulls intersect. To date, the complexity of the associated search problem is unresolved. Recently,
Adiprasito, Bárány, and Mustafa [SODA 2019] gave a no-dimensional Tverberg theorem, in which
the convex hulls may intersect in an approximate fashion. This relaxes the requirement on the
cardinality of P . The argument is constructive, but does not result in a polynomial-time algorithm.

We present a deterministic algorithm that finds for any n-point set P ⊂ Rd and any k ∈ {2, . . . , n}
in O(nddlog ke) time a k-partition of P such that there is a ball of radius O

(
k√
n

diam(P)
)

that
intersects the convex hull of each set. Given that this problem is not known to be solvable exactly
in polynomial time, and that there are no approximation algorithms that are truly polynomial in
any dimension, our result provides a remarkably efficient and simple new notion of approximation.

Our main contribution is to generalize Sarkaria’s method [Israel Journal Math., 1992] to reduce
the Tverberg problem to the Colorful Carathéodory problem (in the simplified tensor product
interpretation of Bárány and Onn) and to apply it algorithmically. It turns out that this not only
leads to an alternative algorithmic proof of a no-dimensional Tverberg theorem, but it also generalizes
to other settings such as the colorful variant of the problem.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Graph algorithms analysis

Keywords and phrases Tverberg’s theorem, Colorful Carathéodory Theorem, Tensor lifting

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.31

Related Version A full version is available on the arXiv (https://arxiv.org/abs/1907.04284).

Funding Supported in part by ERC StG 757609.

Acknowledgements We would like to thank Frédéric Meunier for stimulating discussions about the
Colorful Carathéodory theorem and related problems and for hosting us during a research stay at
his lab. We would also like to thank Sergey Bereg for helpful comments on a previous version of this
manuscript.

1 Introduction

In 1921, Radon [19] proved a seminal theorem in convex geometry: given a set P of at
least d + 2 points in Rd, one can always split P into two non-empty sets whose convex
hulls intersect. In 1966, Tverberg [25] generalized Radon’s theorem to allow for more sets

© Aruni Choudhary and Wolfgang Mulzer;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9225-0829
mailto:arunich@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:mulzer@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.31
https://arxiv.org/abs/1907.04284
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 No-Dimensional Tverberg Theorems and Algorithms

in the partition. Specifically, he showed that any point set P ⊂ Rd of cardinality at least
(d+ 1)(k−1) + 1 can be split into k sets T1, . . . , Tk ⊂ P whose convex hulls have a non-empty
intersection, i.e., conv(T1) ∩ · · · ∩ conv(Tk) 6= ∅, where conv(·) denotes the convex hull.

By now, several alternative proofs of Tverberg’s theorem are known, e.g., [3, 6, 15, 20,
21, 26, 27]. Perhaps the most elegant proof is due to Sarkaria [21], with simplifications by
Bárány and Onn [6] and by Aroch et al. [3]. In this paper, all further references to Sarkaria’s
method refer to the simplified version. This proof proceeds by a reduction to the Colorful
Carathéodory Theorem, another celebrated result in convex geometry: given r ≥ d+ 1 point
sets P1, . . . , Pr ⊂ Rd that have a common point y in their convex hulls conv(P1), . . . , conv(Pr),
there is a traversal x1 ∈ P1, . . . , xr ∈ Pr, such that conv({x1, . . . , xr}) contains y. Sarkaria’s
proof [21] uses a Tensor product to lift the original points of the Tverberg instance into
higher dimensions, and then uses the Colorful Carathéodory traversal to obtain a Tverberg
partition for the original point set.

From a computational point of view, a Radon partition is easy to find by solving d+ 1
linear equations. On the other hand, finding Tverberg partitions is not straightforward.
Since a Tverberg partition must exist if P is large enough, finding such a partition is a total
search problem. In fact, the problem of computing a Colorful Carathéodory traversal lies
in the complexity class PPAD ∩ PLS [14, 16], but no better upper bound is known. Since
Sarkaria’s proof gives a polynomial-time reduction from the problem of finding a Tverberg
partition to the problem of finding a colorful traversal, the same complexity applies to
Tverberg partitions. Again, as of now we do not know better upper bounds for the general
problem. Miller and Sheehy [15] and Mulzer and Werner [17] provided algorithms for finding
approximate Tverberg partitions, computing a partition into fewer sets than is guaranteed by
Tverberg’s theorem in time that is linear in n, but quasi-polynomial in the dimension. These
algorithms were motivated by applications in mesh generation and statistics that require
finding a point that lies “deep” in P . A point in the common intersection of the convex hulls
of a Tverberg partition has this property, with the partition serving as a certificate of depth.

Tverberg’s theorem also admits a colorful variant, first conjectured by Bárány and
Larman [5]. The setup consists of d+ 1 point sets P1, . . . , Pd+1 ⊂ Rd, each set interpreted
as a different color and having size t. For a given k, the goal is to find k pairwise-disjoint
colorful sets (i.e., each set contains at most one point from each Pi) A1, . . . , Ak such that
∩ki=1conv(Ai) 6= ∅. The problem is to determine the optimal value for t such that such a
colorful partition always exists. Bárány and Larman [5] conjectured that t = k suffices and
they proved the conjecture for d = 2 and arbitrary k, and for k = 2 and arbitrary d. The
first result for the general case was given by Živaljević and Vrećica [29] through topological
arguments. Using another topological argument, Blagojevič, Matschke, and Ziegler [7] showed
that (i) if k + 1 is prime, then t = k; and (ii) if k + 1 is not prime, then k ≤ t ≤ 2k − 2.
These are the best known bounds for arbitrary k. Later Matoušek, Tancer, and Wagner [13]
gave a geometric proof that is inspired by the proof of Blagojevič, Matschke, and Ziegler [7].

More recently, Soberón [22] showed that if more color classes are available, then the
conjecture holds for any k. More precisely, for P1, . . . , Pn ⊂ Rd with n = (k − 1)d+ 1, each
of size k, there exist k colorful sets whose convex hulls intersect. Moreover, there is a point
in the common intersection so that the coefficients of its convex combination are the same
for each colorful set in the partition. The proof uses Sarkaria’s tensor product construction.

Recently Adiprasito, Bárány, and Mustafa [1] established a relaxed version of the Colorful
Carathéodory Theorem and some of its descendants [4]. For the Colorful Carathéodory
theorem, this allows for a (relaxed) traversal of arbitrary size, with a guarantee that the
convex hull of the traversal is close to the common point y. For the Colorful Tverberg

A. Choudhary and W. Mulzer 31:3

problem, they prove a version of the conjecture where the convex hulls of the colorful sets
intersect approximately. This also gives a relaxation for Tverberg’s theorem [25] that allows
arbitrary-sized partitions, again with an approximation notion of intersection. Adiprasito et
al. refer to these results as no-dimensional versions of the respective classic theorems, since
the dependence on the ambient dimension is relaxed. The proofs use averaging arguments.
The argument for the no-dimensional Colorful Carathéodory also gives an efficient algorithm
to find a suitable traversal. However, the arguments for the no-dimensional Tverberg results
do not give a polynomial-time algorithm for finding the partitions.

Our contributions. We prove no-dimensional variants of the Tverberg theorem and its
colorful counterpart that allow for efficient algorithms. Our proofs are inspired by Sarkaria’s
method [21] and the averaging technique by Adiprasito, Bárány, and Mustafa [1]. For the
colorful version, we additionally make use of ideas of Soberón [22]. Furthermore, we also
give a no-dimensional generalized ham-sandwich theorem that interpolates [28] between the
centerpoint theorem and the ham-sandwich theorem [24], again with an efficient algorithm.

Algorithmically, Tverberg’s theorem is useful for finding centerpoints of high-dimensional
point sets, which in turn has applications in statistics and mesh generation [15]. In fact,
most algorithms for finding centerpoints are Monte-Carlo, returning some point p and a
probabilistic guarantee that p is indeed a centerpoint [9, 11]. However, this is coNP-hard to
verify. On the other hand, a (possibly approximate) Tverberg partition immediately gives a
certificate of depth [15,17]. Unfortunately, there are no polynomial-time algorithms for finding
optimal Tverberg partitions, and the approximation algorithms are not truly polynomial in
the dimension. In this context, our result provides a fresh notion of approximation that also
leads to very fast polynomial-time algorithms.

Furthermore, the Tverberg problem is intriguing from a complexity theoretic point of
view, because it constitutes a total search problem that is not known to be solvable in
polynomial time, but which is also unlikely to be NP-hard. So far, such problems have
mostly been studied in the context of algorithmic game theory [18], and only very recently
a similar line of investigation has been launched for problems in high-dimensional discrete
geometry [10, 12, 14, 16]. Thus, we show that the no-dimensional variant of Tverberg’s
theorem is easy from this point of view. Our main results are as follows:

Sarkaria’s method uses a specific set of k vectors in Rk−1 to lift the points in the Tverberg
instance to a Colorful Carathéodory instance. We refine this method to vectors that are
defined with the help of a given graph. The choice of this graph is important in proving
good bounds for the partition and in the algorithm. We believe that this generalization
is of independent interest and may prove useful in other scenarios that rely on the tensor
product construction.
We prove an efficient no-dimensional Tverberg result:
I Theorem 1.1 (efficient no-dimensional Tverberg theorem). Let P ⊂ Rd be a set of n
points, and let k ∈ {2, . . . , n} be an integer. Let D(·) denote the diameter.

For any choice of positive integers r1, . . . , rk that satisfy
∑k
i=1 ri = n, there is a

partition T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk| = rk, and a ball B of radius
nD(P)
mini ri

√
10dlog4 ke
n−1 = O

(√
n log k

mini ri
D(P)

)
that intersects the convex hull of each Ti.

The bound is better for the case n = rk and r1 = · · · = rk = r. There exists a
partition T1, . . . , Tk of P with |T1| = · · · = |Tk| = r and a d-dimensional ball of radius√

k(k−1)
n−1 D(P) = O

(
k√
n
D(P)

)
that intersects the convex hull of each Ti.

In either case, we can compute the partition in deterministic time O(nddlog ke).

SoCG 2020

31:4 No-Dimensional Tverberg Theorems and Algorithms

Figure 1 Left: a point set on three colors and four points of each color. Right: a colorful partition
with a ball containing the centroids (squares) of the sets of the partition.

and a colorful counterpart (for a simple example, see Figure 1):
I Theorem 1.2 (efficient no-dimensional Colorful Tverberg). Let P1, . . . , Pn ⊂ Rd be n
point sets, each of size k, with k being a positive integer, so that the total number of
points is N = nk. Then, there are k pairwise-disjoint colorful sets A1, . . . , Ak and a ball
of radius

√
2k(k−1)

N maxiD(Pi) = O
(

k√
N

maxiD(Pi)
)
that intersects conv(Ai) for each

i ∈ [k]. We can find the Ais in deterministic time O(Ndk).
For any sets P, x ⊂ Rd, the depth of x with respect to P is the largest positive integer k
such that every half-space that contains x also contains at least k points of P .
I Theorem 1.3 (no-dimensional Generalized Ham-Sandwich Theorem). Let P1, . . . , Pk be
k ≤ d finite point sets in Rd. Then there is a (d− k + 1)-dimensional ball B and k − 1
lines `1, . . . , `k−1 such that the d-dimensional Cartesian product B× `k−1× `k−2×· · ·× `1
has depth at least

⌈
|Pi|
mi

⌉
with respect to Pi, for i ∈ [k]. Here, {2 ≤ mi ≤ |Pi|, i ∈ [k]} is

any set of chosen integer parameters. The ball B has radius (2 + 2
√

2) maxi D(Pi)√
mi

and
the lines `1, . . . , `k−1 can be determined in O(dk2 +

∑
i |Pi|d) time.

The colorful Tverberg result is similar in spirit to the regular version, but from a
computational viewpoint, it does not make sense to use the colorful algorithm to solve
the regular Tverberg problem. Due to space constraints, the colorful Tverberg and the
Generalized Ham-Sandwich results have been deferred to an extended version in [8].

Compared to the results of Adiprasito et al. [1], our radius bounds are slightly worse.
More precisely, they show that both in the colorful and the non-colorful case, there is a ball of

radius O
(√

k
nD(P)

)
that intersects the convex hulls of the sets of the partition. They also

show this bound is close to optimal. In contrast, our result is off by a factor of O(
√
k), but

derandomizing the proof of Adiprasito et al. [1] gives only a brute-force 2O(n)-time algorithm.
In contrast, our approach gives almost linear time algorithms for both cases, with a linear
dependence on the dimension.

Techniques. Adiprasito et al. first prove the colorful no-dimensional Tverberg theorem
using an averaging argument over an exponential number of possible partitions. Then, they
specialize their result for the non-colorful case, obtaining a bound that is asymptotically
optimal. Unfortunately, it is not clear how to derandomize the averaging argument efficiently.
The method of conditional expectations applied to their averaging argument leads to a
runtime of 2O(n). To get around this, we follow an alternate approach towards both versions
of the Tverberg theorem. Instead of a direct averaging argument, we use a reduction to the
Colorful Carathéodory theorem that is inspired by Sarkaria’s proof, with some additional

A. Choudhary and W. Mulzer 31:5

twists. We will see that this reduction also works in the no-dimensional setting, i.e., by a
reduction to the no-dimensional Colorful Carathéodory theorem of Adiprasito et al., we obtain
a no-dimensional Tverberg theorem, with slightly weaker radius bounds, as stated above.
This approach has the advantage that their Colorful Carathéodory theorem is based on an
averaging argument that permits an efficient derandomization using the method of conditional
expectations [2]. In fact, we will see that the special structure of the no-dimensional Colorful
Carathéodory instance that we create allows for a very fast evaluation of the conditional
expectations, as we fix the next part of the solution. This results in an algorithm whose
running time is O(nddlog ke) instead of O(ndk), as given by a naive application of the method.
With a few interesting modifications, this idea also works in the colorful setting. This seems
to be the first instance of using Sarkaria’s method with special lifting vectors, and we hope
that this will prove useful for further studies on Tverberg’s theorem and related problems.

Outline of the paper. We describe our extension of Sarkaria’s technique in Section 2 and
then use it in combination with a result from Section 3 to prove the no-dimensional Tverberg
result. In Section 3, we expand upon the details of an averaging argument that is useful
for the Tverberg result. Section 4 is devoted to the algorithm for computing the Tverberg
partition. We conclude in Section 5 with some observations and open questions. The results
for the colorful setting and the generalized ham-sandwich theorem are presented in the
extended version [8].

2 Tensor product and no-dimensional Tverberg Theorem

In this section, we prove a no-dimensional Tverberg result. Let D(·) denote the diameter of
any point set in Rd. Let P ⊂ Rd be our given set of n points. We assume for simplicity that
the centroid of P , that we denote by c(P), coincides with the origin 0, so that

∑
x∈P x = 0.

For ease of presentation, we denote the origin by 0 in all dimensions, as long as there is no
danger of confusion. Also, we write 〈·, ·〉 for the usual scalar product between two vectors in
the appropriate dimension, and [n] for the set {1, . . . , n}.

Tensor product. Let x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , ym) ∈ Rm be any two vectors.
The tensor product ⊗ is the operation that takes x and y to the dm-dimensional vector x⊗ y
whose ij-th component is xiyj . Easy calculations show that for any x, x′ ∈ Rd, y, y′ ∈ Rm,
the operator ⊗ satisfies: (i) x⊗y+x′⊗y = (x+x′)⊗y; (ii) x⊗y+x⊗y′ = x⊗ (y+y′); and
(iii) 〈x⊗ y, x′ ⊗ y′〉 = 〈x, x′〉〈y, y′〉. By (iii), the L2-norm ‖x⊗ y‖ of the tensor product x⊗ y
is exactly ‖x‖‖y‖. For any set of vectors X = {x1, x2, . . . } in Rd and any m-dimensional
vector q ∈ Rm, we denote by X ⊗ q the set of tensor products {x1 ⊗ q, x2 ⊗ q, . . . } ⊂ Rdm.
Throughout this paper, all distances will be in the L2-norm.

A set of lifting vectors. We generalize the tensor construction that was used by Sarkaria
to prove the Tverberg theorem [21]. For this, we provide a way to construct a set of k vectors
{q1, . . . , qk} that we use to create tensor products. The motivation behind the precise choice
of these vectors will be explained a little later in this section. Let G be an (undirected)
simple, connected graph of k nodes. Let ‖G‖ denote the number of edges in G, ∆(G) denote
the maximum degree of any node in G, and diam(G) denote the diameter of G, i.e., the
maximum length of a shortest path between a pair of vertices in G.

We orient the edges of G in an arbitrary manner to obtain a directed graph. We use
this directed version of G to define a set of k vectors {q1, . . . , qk} in ‖G‖ dimensions. This
is done as follows: each vector qi corresponds to a unique node vi of G. Each coordinate

SoCG 2020

31:6 No-Dimensional Tverberg Theorems and Algorithms

position of the vectors corresponds to a unique edge of G. If vivj is a directed edge of G,
then qi contains a 1 and qj contains a −1 in the corresponding coordinate position. The
remaining co-ordinates are zero. That means, the vectors {q1, . . . , qk} are in R‖G‖. Also,∑k
i=1 qi = 0. It can be verified that this is the unique linear dependence (up to scaling)

between the vectors for any choice of edge orientations of G. This means that the rank of
the matrix with the qis as the rows is k − 1. It can be verified that:

B Claim 2.1. For each vertex vi, the squared norm ‖qi‖2 is the degree of vi. For i 6= j, the
dot product 〈qi, qj〉 is −1 if vivj is an edge in G, and 0 otherwise.

An immediate application of Claim 2.1 and property (iii) of the tensor product is that for
any set of k vectors {u1, . . . , uk}, each of the same dimension, the following relation holds:∥∥∥∥∥

k∑
i=1

ui ⊗ qi

∥∥∥∥∥
2

=
k∑
i=1

k∑
j=1
〈ui ⊗ qi, uj ⊗ qj〉 =

k∑
i=1

k∑
j=1
〈ui, uj〉〈qi, qj〉

=
k∑
i=1
〈ui, ui〉〈qi, qi〉+ 2

k∑
1≤i<j≤k

〈ui, uj〉〈qi, qj〉 =
k∑
i=1
‖ui‖2‖qi‖2 − 2

∑
vivj∈E

〈ui, uj〉

=
∑

vivj∈E
‖ui − uj‖2, (1)

where E is the set of edges of G.1
As an example, such a set of vectors can be formed by taking G as a balanced binary tree

with k nodes, and orienting the edges away from the root. Let q1 correspond to the root. A
simple instance of the vectors is shown below:

q1

q2

q4 q5

q3

q6 . . .

The vectors in the figure above can be represented as the matrix

q1
q2
q3
q4
q5
. . .

=

1 1 0 0 0 0 0 0 . . .

−1 0 1 1 0 0 0 0 . . .

0 −1 0 0 1 1 0 0 . . .

0 0 −1 0 0 0 1 1 . . .

0 0 0 −1 0 0 0 0 . . .

. . .

where the i-th row of the matrix corresponds to vector qi. As ‖G‖ = k − 1, each vector is
in Rk−1. The norm ‖qi‖ is one of

√
2,
√

3, or 1, depending on whether vi is the root, an
internal node with two children, or a leaf, respectively. The height of G is dlog ke and the
maximum degree is ∆(G) = 3.

1 We note that this identity is very similar to the Laplacian quadratic form that is used in spectral graph
theory; see, e.g., the lecture notes by Spielman [23] for more information.

A. Choudhary and W. Mulzer 31:7

Lifting the point set. Let P = {p1, . . . , pn} ⊂ Rd. Our goal is to find a (relaxed) Tverberg
partition of P into k sets. For this, we first pick a graph G with k vertices, as in the
previous paragraph, and we derive a set of k lifting vectors {q1, . . . , qk} from G. Then, we lift
each point of P to a set of vectors in d‖G‖ dimensions, by taking tensor products with the
vectors {q1, . . . , qk}. More precisely, for a ∈ [n] and j = 1, . . . , k, let pa,j = pa ⊗ qj ∈ Rd‖G‖.
For a ∈ [n], we let Pa = {pa,1, . . . , pa,k} be the lifted points obtained from pa. We have,
‖pa,j‖ = ‖qj‖‖pa‖ ≤

√
∆(G)‖pa‖. By the bi-linear properties of the tensor product, we have

c(Pa) = 1
k

k∑
j=1

(pa ⊗ qj) = 1
k

pa ⊗
 k∑
j=1

qj

 = 1
k

(pa ⊗ 0) = 0,

so the centroid c(Pa) coincides with the origin, for a ∈ [n].
The next lemma contains the technical core of our argument. It shows how to use the

lifted point sets to derive a useful partition of P into k subsets of prescribed sizes. We defer
its proof to Section 3.

I Lemma 2.2. Let P = {p1, . . . , pn} be a set of n points in Rd satisfying
∑p
i=1 pi = 0. Let

P1, . . . , Pn denote the point sets obtained by lifting each p ∈ P using the vectors {q1, . . . , qk}.
For any choice of positive integers r1, . . . , rk that satisfy

∑k
i=1 ri = n, there is a partition

T1, . . . , Tk of P with |T1| = r1, |T2| = r2, . . . , |Tk| = rk such that the centroid of the set of
lifted points T := {T1 ⊗ q1 ∪ · · · ∪ Tk ⊗ qk} (this set is also a traversal of P1, . . . , Pn) has
distance less than δ =

√
∆(G)

2(n−1)D(P) from the origin 0.
The bound is better for the case n = rk and r1 = · · · = rk = n

k . There exists a
partition T1, . . . , Tk of P with |T1| = |T2| = · · · = |Tk| = r such that the centroid of
T := {T1 ⊗ q1 ∪ · · · ∪ Tk ⊗ qk} has distance less than γ =

√
‖G‖

k(n−1)D(P) from the origin 0.

Using Lemma 2.2, we show that there is a ball of bounded radius that intersects the
convex hull of each Ti. Let α1 = r1

n , . . . , αk = rk

n be positive real numbers. The centroid of
T , c(T), can be written as

c(T) = 1
n

k∑
i=1

∑
x∈Ti

x⊗ qi =
k∑
i=1

1
n

(∑
x∈Ti

x

)
⊗ qi =

k∑
i=1

ri
n

(
1
ri

∑
x∈Ti

x

)
⊗ qi =

k∑
i=1

αici ⊗ qi,

where ci = c(Ti) denotes the centroid of Ti, for i ∈ [k]. Using Equation (1),

‖c(T)‖2 =

∥∥∥∥∥
k∑
i=1

αici ⊗ qi

∥∥∥∥∥
2

=
∑

vivj∈E
‖αici − αjcj‖2. (2)

Let x1 = α1c1, x2 = α2c2, . . . , xk = αkck. Then

k∑
i=1

xi =
k∑
i=1

αici =
k∑
i=1

ri
n

 1
ri

∑
p∈Ti

p

 = 1
n

n∑
j=1

pj = 0,

so the centroid of {x1, . . . , xk} coincides with the origin. Using ‖c(T)‖ < δ and Equation (2),∑
vivj∈E

‖xi − xj‖2 =
∑

vivj∈E
‖αici − αjcj‖2 < δ2.

SoCG 2020

31:8 No-Dimensional Tverberg Theorems and Algorithms

We bound the distance from x1 to every other xj . For each i ∈ [k], we associate to xi the
node vi in G. Let the shortest path from v1 to vj in G be denoted by (v1, vi1 , vi2 , . . . , viz , vj).
This path has length at most diam(G). Using the triangle inequality and the Cauchy-Schwarz
inequality,

‖x1 − xj‖ ≤ ‖x1 − xi1‖+ ‖xi1 − xi2‖+ · · ·+ ‖xiz − xj‖

≤
√

diam(G)
√
‖x1 − xi1‖2 + ‖xi1 − xi2‖2 + · · ·+ ‖xiz − xj‖2

≤
√

diam(G)
√ ∑
vivj∈E

‖xi − xj‖2 <
√

diam(G)δ. (3)

Therefore, the ball of radius β :=
√

diam(G)δ centered at x1 covers the set {x1, . . . , xk}. That
means, the ball covers the convex hull of {x1, . . . , xk} and in particular contains the origin.
Using triangle inequality, the ball of radius 2β centered at the origin contains {x1, . . . , xk}.
Then the norm of each xi is at most 2β which implies that the norm of each ci is at most
2β/αi. Therefore, the ball of radius 2β

miniαi
= 2n

√
diam(G)δ

miniri
centered at 0 contains the set

{c1, . . . , ck}. Substituting the value of δ from Lemma 2.2, the ball of radius

2n
√

diam(G)
miniri

√
∆(G)

2(n− 1)D(P) = nD(P)
miniri

√
2diam(G)∆(G)

n− 1

centered at 0 covers the set {c1, . . . , ck}.

Optimizing the choice of G. The radius of the ball has a term
√

diam(G)∆(G) that depends
on the choice of G. For a path graph this term has value

√
(k − 1)2. For a star graph, that

is, a tree with one root and k − 1 children, this is
√
k − 1. If G is a balanced s-ary tree, then

the Cauchy-Schwarz inequality in Equation (3) can be modified to replace diam(G) by the
height of the tree. Then the term is

√
dlogs ke(s+ 1) which is minimized for s = 4. The

radius bound for this choice of G is nD(P)
miniri

√
10dlog4 ke
n−1 as claimed in Theorem 1.1.

Balanced partition. For the case n = rk and r1 = · · · = rk = r, we give a better
bound for the radius of the ball containing the centroids c1, . . . , ck. In this case we have
α1 = α2 = · · · = αk = r

n = 1
k . Then Equation (2) is

‖c(T)‖2 =
∑

vivj∈E
‖αici − αjcj‖2 = 1

k2

∑
vivj∈E

‖ci − cj‖2.

Since ‖c(T)‖ < γ, we get∑
vivj∈E

‖ci − cj‖2 < k2γ2. (4)

Similar to the general case, we bound the distance from c1 to any other centroid cj . For each
i, we associate to ci the node vi in G. There is a path of length at most diam(G) from v1 to
any other node. Using the Cauchy-Schwarz inequality and substituting the value of γ, we get

‖c1 − cj‖ ≤
√

diam(G)
√ ∑
vivj∈E

‖ci − cj‖2 <
√

diam(G)kγ =

√
diam(G)‖G‖
k(n− 1) kD(P)

=
√

k

n− 1
√

diam(G)‖G‖D(P). (5)

A. Choudhary and W. Mulzer 31:9

Therefore, a ball of radius
√

k
n−1

√
diam(G)‖G‖D(P) centered at c1 contains the set c1, . . . , ck.

The factor
√

diam(G)‖G‖ is minimized when G is a star graph, which is a tree. We can
replace the term diam(G) by the height of the tree. Then the ball containing c1, . . . , ck has
radius

√
k(k−1)
n−1 D(P), as claimed in Theorem 1.1.

As balanced as possible. When k does not divide n, but we still want a balanced partition,
we take any subset of n0 = kbnk c points of P and get a balanced Tverberg partition on the
subset. Then we add the removed points one by one to the sets of the partition, adding at
most one point to each set.

As shown above, there is a ball of radius less than
√

k(k−1)
n0−1 D(P) that intersects the

convex hull of each set in the partition. Noting that 1√
n0−1 ≤

√
k+2
k

1√
n−1 , a ball of radius

less than
√

(k+2)(k−1)
(n−1) D(P) intersects the convex hull of each set of the partition.

3 Existence of a desired partition

This section is dedicated to the proof of Lemma 2.2. Like Adiprasito et al. [1], we use an
averaging argument. More precisely, we bound the average norm δ of the centroid of the
lifted points {T1⊗ q1 ∪ · · · ∪Tk⊗ qk} over all partitions of P of the form T1, . . . , Tk, for which
the sets in the partition have sizes r1, . . . , rk respectively, with

∑k
i=1 ri = n.

Each such partition can be interpreted as a traversal of the lifted point sets P1, . . . , Pn
that contains ri points lifted with qi for i ∈ [k]. Thus, consider any traversal of this
type X = {x1, . . . , xn} of P1, . . . , Pn, where xa ∈ Pa, for a ∈ [n]. The centroid of X is
c(X) =

∑n

a=1
xa

n . We bound the expectation n2E
(
‖c(X)‖2

)
= E

(
‖
∑n
a=1 xa‖

2
)
, over all

possible traversals X. By the linearity of expectation, E
(
‖
∑n
a=1 xa‖

2
)
can be written as

E

 n∑
a=1
‖xa‖2 +

∑
a,b∈[n]
a<b

2〈xa, xb〉

 = E

(
n∑
a=1
‖xa‖2

)
+ 2E

 ∑
a,b∈[n]
a<b

〈xa, xb〉

 .

We next find the coefficient of each term of the form ‖xa‖2 and 〈xa, xb〉 in the expectation.

Using the multinomial coefficient, the total number of traversals X is
(

n

r1, r2, . . . , rk

)
=

n!
r1!r2!·····rk! . Furthermore, for any lifted point xa = pa,j , the number of traversals X with

pa,j ∈ X is
(

n− 1
r1, . . . , rj − 1, . . . , rk

)
= (n−1)!

r1!·····(rj−1)!·····rk! . So the coefficient of ‖pa,j‖2 is
(n−1)!

r1!·····(rj −1)!·····rk
n!

r1!·····rk!
= rj

n . Similarly, for any pair of points (xa, xb) = (pa,i, pb,j), there are two
cases in which they appear in the same traversal: first, if i = j, the number of traversals is

(n−2)!
r1!·····(ri−2)!·····rk! . The coefficient of 〈pa,i, pb,j〉 in the expectation is hence ri(ri−1)

n(n−1) . Second, if
i 6= j, the number of traversals is calculated to be (n−2)!

r1!·····(ri−1)!·····(rj−1)!·····rk! . The coefficient
of 〈pa,i, pb,j〉 is rirj

n(n−1) . Substituting the coefficients, we bound the expectation as

SoCG 2020

31:10 No-Dimensional Tverberg Theorems and Algorithms

E

(
n∑
a=1
‖xa‖2

)
+ 2E

 ∑
a,b∈[n]
a<b

〈xa, xb〉

 =
n∑
a=1

k∑
j=1
‖pa,j‖2

rj
n

+ 2
∑

a,b∈[n]
a<b

 k∑
j=1
〈pa,j , pb,j〉

rj(rj − 1)
n(n− 1) +

∑
i,j∈[k]
i6=j

〈pa,i, pb,j〉
rirj

n(n− 1)

=

k∑
j=1

rj
n

n∑
a=1
‖pa,j‖2 + 2

n(n− 1)
∑

a,b∈[n]
a<b

 ∑
i,j∈[k]

〈pa,i, pb,j〉rirj −
k∑
j=1
〈pa,j , pb,j〉rj

=

k∑
j=1

rj

(
1
n

n∑
a=1
‖pa,j‖2

)
+
∑

a,b∈[n]
a<b

∑
i,j∈[k]

2〈pa,i, pb,j〉rirj
n(n− 1) −

∑
a,b∈[n]
a<b

k∑
j=1

2〈pa,j , pb,j〉rj
n(n− 1) .

We bound the value of each of the three terms individually to get an upper bound on the
value of the expression. The first term can be bounded as

k∑
j=1

rj

(
1
n

n∑
a=1
‖pa,j‖2

)
= 1
n

k∑
j=1

rj

(
n∑
a=1
‖pa‖2‖qj‖2

)
= 1
n

 k∑
j=1

rj‖qj‖2
 n∑
a=1
‖pa‖2

≤ 1
n

∆(G)
k∑
j=1

rj

 n∑
a=1
‖pa‖2 = 1

n
(∆(G)n)

n∑
a=1
‖pa‖2 < ∆(G)

(
nD(P)2

2

)
,

where we have made use of Claim 2.1 and the fact that
∑n
a=1 ‖pa‖2 < nD(P)2

2 (see [1,
Lemma 4.1]). The second term can be re-written as

∑
a,b∈[n]
a<b

∑
i,j∈[k]

2〈pa,i, pb,j〉rirj
n(n− 1) =

∑
i,j∈[k]

2rirj
n(n− 1)

 ∑
a,b∈[n]
a<b

〈pa,i, pb,j〉

=
∑
i,j∈[k]

2rirj
n(n− 1)

 ∑
a,b∈[n]
a<b

〈pa ⊗ qi, pb ⊗ qj〉

 =
∑
i,j∈[k]

2rirj
n(n− 1)

 ∑
a,b∈[n]
a<b

〈pa, pb〉 〈qi, qj〉

=

 ∑
i,j∈[k]

2〈qi, qj〉rirj
n(n− 1)

 · ∑
a,b∈[n]
a<b

〈pa, pb〉 =

 ∑
(vi,vj)∈E

2(ri − rj)2

n(n− 1)

 · ∑
a,b∈[n]
a<b

〈pa, pb〉 ≤ 0,

where we have again made use of Claim 2.1. We also used c(P) = 0 to bound the term∑
a,b,∈[n],a<b〈pa, pb〉 = − 1

2
∑n
a=1 ‖pa‖2 < 0. The second term is non-positive and therefore

can be removed since the total expectation is always non-negative. The third term is

A. Choudhary and W. Mulzer 31:11

∑
a,b∈[n]
a<b

k∑
j=1

−2〈pa,j , pb,j〉rj
n(n− 1) =

∑
a,b∈[n]
a<b

k∑
j=1

−2 〈pa ⊗ qj , pb ⊗ qj〉 rj
n(n− 1)

=
∑

a,b∈[n]
a<b

k∑
j=1

−2〈pa, pb〉‖qj‖2rj
n(n− 1) =

 k∑
j=1
‖qj‖2rj

 ∑
a,b∈[n]
a<b

−2〈pa, pb〉
n(n− 1)

<

 k∑
j=1
‖qj‖2rj

(nD(P)2

2n(n− 1)

)
=

 k∑
j=1
‖qj‖2rj

 D(P)2

2(n− 1) <
n∆(G)D(P)2

2(n− 1) .

Collecting the three terms, the expression is upper bounded by

D(P)2∆(G)n
2 + D(P)2∆(G)n

2(n− 1) = D(P)2∆(G)n
2

(
1 + 1

n− 1

)
= D(P)2∆(G)n2

2(n− 1) ,

which bounds the expectation by 1
n2

(
D(P)2∆(G)n2

2(n−1)

)
= D(P)2∆(G)

2(n−1) . This shows that there is a

traversal such that its centroid has norm less than D(P)
√

∆(G)
2(n−1) , as claimed in Lemma 2.2.

Balanced case. For the case that n is a multiple of k, and r1 = · · · = rk = n
k = r, the

upper bound can be improved: the first term in the expectation is

k∑
j=1

rj

(
1
n

n∑
a=1
‖pa,j‖2

)
= r

n

k∑
j=1

n∑
a=1
‖pa,j‖2 = r

n

k∑
j=1

n∑
a=1
‖pa‖2‖qj‖2

= r

n

 k∑
j=1
‖qj‖2

 n∑
a=1
‖pa‖2 = r

n
2‖G‖

n∑
a=1
‖pa‖2 <

r

n
2‖G‖

(
nD(P)2

2

)
≤ r‖G‖D(P)2,

The second term is zero, and the third term is less than k∑
j=1
‖qj‖2rj

 D(P)2

2(n− 1) = r

 k∑
j=1
‖qj‖2

 D(P)2

2(n− 1) = 2r‖G‖ D(P)2

2(n− 1) = r‖G‖D(P)2

(n− 1) .

The expectation is upper bounded as

n2E
(
‖c(X)‖2

)
< r‖G‖D(P)2 + r‖G‖D(P)2

(n− 1)

=⇒ E
(
‖c(X)‖2

)
<
r‖G‖D(P)2

n2

(
1 + 1

n− 1

)
= r‖G‖D(P)2

n(n− 1) = ‖G‖D(P)2

k(n− 1) ,

which shows that there is at least one balanced traversal X whose centroid has norm less
than

√
‖G‖

k(n−1)D(P), as claimed in Lemma 2.2.

4 Computing the Tverberg partition

We now give a deterministic algorithm to compute no-dimensional Tverberg partitions. The
algorithm is based on the method of conditional expectations. First, in Section 4.1 we give
an algorithm for the general case when the sets in the partitions are constrained to have
given sizes r1, . . . , rk. The choice of G is crucial for the algorithm.

SoCG 2020

31:12 No-Dimensional Tverberg Theorems and Algorithms

The balanced case of r1 = · · · = rk has a better radius bound and uses a different graph G.
The algorithm for the general case also extends to the balanced case with a small modification,
that we discuss in Section 4.2. We get the same runtime in either case:

I Theorem 4.1. Given a set of n points P ⊂ Rd, and any choice of k positive integers
r1, . . . , rk that satisfy

∑k
i=1 ri = n, a no-dimensional Tverberg k-partition of P with the sets

of the partition having sizes r1, . . . , rk can be computed in time O(nddlog ke).

4.1 Algorithm for the general case
The input is a set of n points P ⊂ Rd and k positive integers r1, . . . , rk satisfying

∑k
i=1 ri = n.

We use the tensor product construction from Section 2 that are derived from a graph G. Each
point of P is lifted implicitly using the vectors {q1, . . . , qk} to get the set {P1, . . . , Pn}. We
then compute a traversal of {P1, . . . , Pn} using the method of conditional expectations [2],
the details of which can be found below. Grouping the points of the traversal according to
the lifting vectors used gives us the required partition. We remark that in our algorithm we
do not explicitly lift any vector using the tensor product, thereby avoiding costs associated
with working on vectors in d‖G‖ dimensions.

We now describe a procedure to find a traversal that corresponds to a desired partition of P .
We go over the points in {P1, . . . , Pn} iteratively in reverse order and find the traversal Y =
(y1 ∈ P1, . . . , yn ∈ Pn) point by point. More precisely, we determine yn in the first step, then
yn−1 in the second step, and so on. In the first step, we go over all points of Pn and select any
point yn ∈ Pn that satisfies E

(
c‖(x1, x2, . . . , xn−1, yn)‖2

)
≤ E

(
c‖(x1, x2, . . . , xn−1, xn)‖2

)
.

For the general step, suppose we have already selected the points {ys+1, ys+2, . . . , yn}. To
determine ys, we choose any point from Ps that achieves

E
(
‖c(x1, x2, . . . , xs−1, ys, ys+1, . . . , yn)‖2

)
≤ E

(
‖c(x1, x2, . . . , xs, ys+1, . . . , yn)‖2

)
. (6)

The last step gives the required traversal. We expand E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2) to

E

∥∥∥∥∥ 1
n

(
s−1∑
i=1

xi +
n∑
i=s

yi

)∥∥∥∥∥
2 = 1

n2E

∥∥∥∥∥
(
s−1∑
i=1

xi +
n∑

i=s+1
yi

)
+ ys

∥∥∥∥∥
2

= 1
n2

E

∥∥∥∥∥
s−1∑
i=1

xi +
n∑

i=s+1
yi

∥∥∥∥∥
2+ ‖ys‖2 + 2

〈
ys,E

(
s−1∑
i=1

xi +
n∑

i=s+1
yi

)〉
= 1
n2

E

∥∥∥∥∥
s−1∑
i=1

xi +
n∑

i=s+1
yi

∥∥∥∥∥
2+ ‖ys‖2 + 2

〈
ys,E

(
s−1∑
i=1

xi

)
+

n∑
i=s+1

yi

〉 .

We pick a ys for which E(‖c(x1, x2, . . . , xs−1, ys, . . . , yn)‖2) is at most the average over all

choices of ys ∈ Ps. As the term E
(∥∥∥∑s−1

i=1 xi +
∑n
i=s+1 yi

∥∥∥2
)

is constant over all choices of

ys, and the factor 1
n2 is constant, we can remove them from consideration. We are left with

‖ys‖2 + 2
〈
ys,E

(
s−1∑
i=1

xi

)
+

n∑
i=s+1

yi

〉
= ‖ys‖2 + 2

〈
ys,E

(
s−1∑
i=1

xi

)〉
+ 2〈ys,

n∑
i=s+1

yi〉. (7)

Let ys = ps ⊗ qi. The first term is ‖ys‖2 = ‖ps ⊗ qi‖2 = ‖ps‖2‖qi‖2. Let r′1, . . . , r′k be the
number of elements of T1, . . . , Tk that are yet to be determined. In the beginning, r′i = ri for
each i. Using the coefficients from Section 3, E

(∑s−1
i=1 xi

)
can be written as

A. Choudhary and W. Mulzer 31:13

E

(
s−1∑
i=1

xi

)
=

s−1∑
i=1

k∑
j=1

pi,j
r′j

s− 1 =
k∑
j=1

r′j
s− 1

s−1∑
i=1

pi,j =
k∑
j=1

r′j
s− 1

s−1∑
i=1

pi ⊗ qj

= 1
s− 1

k∑
j=1

r′j

(
s−1∑
i=1

pi

)
⊗ qj =

(
1

s− 1

s−1∑
i=1

pi

)
⊗

 k∑
j=1

r′jqj

 = cs−1 ⊗

 k∑
j=1

r′jqj

 ,

where cs−1 =
∑s−1

i=1
pi

s−1 is the centroid of the first (s− 1) points. Using this, the second term
can be simplified as

2
〈
ys,E

(
s−1∑
i=1

xi

)〉
= 2

〈
ps ⊗ qi, cs−1 ⊗

 k∑
j=1

r′jqj

〉 = 2 〈ps, cs−1〉

〈
qi,

k∑
j=1

r′jqj

〉

= 2〈ps, cs−1〉

r′i‖qi‖2 − ∑
vivj∈E

r′j

 = 〈ps, cs−1〉Ri,

where Ri = 2
(
r′i‖qi‖2 −

∑
vivj∈E r

′
j

)
. The third term is

2
〈
ys,

n∑
j=s+1

yj

〉
= 2

n∑
j=s+1

〈ys, yj〉 = 2
n∑

j=s+1

〈
ps ⊗ qi, pj ⊗ qij

〉
= 2

n∑
j=s+1

〈ps, pj〉〈qi, qij 〉 = 2
〈
ps,
∑
p∈Ti

p‖qi‖2 −
∑

j:vivj∈E

∑
p∈Tj

p

〉

=
〈
ps, 2

‖qi‖2 ∑
p∈Ti

p−
∑

j:vivj∈E

∑
p∈Tj

p

〉 = 〈ps, Ui〉,

where Ui = 2
(
‖qi‖2

∑
p∈Ti

p−
∑
j:vivj∈E

∑
p∈Tj

p
)
and Tj represents the set of points in

ps+1, . . . , pn that was lifted using qj in the traversal. Collecting the three terms, we get

‖ps‖2‖qi‖2 + 〈ps, cs−1〉Ri + 〈ps, Ui〉 = αsNi + βsRi + 〈ps, Ui〉, (8)

with Ni = ‖qi‖2, αs := ‖ps‖2, βs := 〈ps, cs−1〉. The terms αs, βs, ps are fixed for iteration s.

Algorithm. For each s ∈ [1, n], we pre-compute the prefix sums
∑s
a=1 pa, and αs and

βs. With this information, it is straightforward to compute a traversal in O(ndk) time by
evaluating the expression for each choice of ps. We describe a more careful method that
reduces this time to O(nddlog ke).

We assume that G is a balanced µ-ary tree. Recall that each node vi of G corresponds to
a vector qi. We augment G with the following additional information for each node vi:

Ni = ‖qi‖2: recall that this is the degree of vi.
Nst
i : this is the average of the Nj over all elements vj in the subtree rooted at vi.

r′i: as before, this is the number of elements of the set Ti of the partition that are yet to
be determined. We initialize each r′i := ri.
Ri = 2

(
r′iNi −

∑
vivj∈E r

′
j

)
, that is, r′iNi minus the r′j for each node vj that is a neighbor

of vi in G, times two. We initialize Ri := 0.

SoCG 2020

31:14 No-Dimensional Tverberg Theorems and Algorithms

Rsti : this is the average of the Rj values over all nodes vj in the subtree rooted at vi. We
initialize this to 0.
Ti, ui: as before, Ti is the set of vectors of the traversal that was lifted using qi. ui is the
sum of the vectors of Ti. We initialize Ti = ∅ and ui = 0.
Ui = 2

(
‖qi‖2

∑
p∈Ti

p−
∑
j:vivj∈E

∑
p∈Tj

p
)

= 2
(
uiNi −

∑
vivj∈E uj

)
, initially 0.

Usti : this is the average of the vectors Uj for all nodes vj in the subtree of vi. Ust is
initialized as 0 for each node.

Additionally, each node contains pointers to its children and parents. Nst, Rst are initialized
in one pass over G.

In step s, we find an i ∈ [k] for which Equation (8) has a value at most the average

As = 1
k

(
k∑
i=1

αsNi + βsRi + 〈ps, Ui〉
)

= αs
k

k∑
i=1

Ni + βs
k

k∑
i=1

Ri +
〈
ps,

1
k

k∑
i=1

Ui

〉
= αsN

st
1 + βsR

st
1 + 〈ps, Ust1 〉,

where v1 is the root of G. Then ys satisfies Equation (6).
To find such a node vi, we start at the root v1 ∈ G. We compute the average As and

evaluate Equation (8) at v1. If the value is at most As, we report success, setting i = 1. If
not, then for at least one child vm of v1, the average for the subtree is less than As, that is,
αsN

st
m + βsR

st
m + 〈ps, Ustm 〉 < As. We scan the children of v1 and compute the expression to

find such a node vm. We recursively repeat the procedure on the subtree rooted at vm, and
so on until we find a suitable node. There is at least one node in the subtree at vm for which
Equation (8) evaluates to less than As, so the procedure is guaranteed to find such a node.

Let vi be the chosen node. We update the information stored in the nodes of the tree for
the next iteration. We set

r′i := r′i − 1 and Ri := Ri − 2Ni. Similarly we update the Ri values for neighbors of vi.
We set Ti := Ti ∪ {ps}, ui := ui + ps and Ui := Ui + 2Nips. Similarly we update the Ui
values for the neighbors.
For each child of vi and each ancestor of vi on the path to v1, we update Rst and Ust.

After the last step of the algorithm, we get a partition T1, . . . , Tk of P . The set of points
{T1⊗q1, . . . , Tk⊗qk} is a traversal of {P1, . . . , Pn}, hence using Lemma 2.2 the sets T1, . . . , Tk
form the required partition of P . This completes the description of the algorithm.

Proof of Theorem 4.1 for the general case. Computing the prefix sums and αs, βs takes
O(nd) time in total. Creating and initializing the tree takes O(k) time. In step s, computing
the average As and evaluating Equation 8 takes O(d) time per node. Therefore, computing
Equation 8 for the children of a node takes O(dµ) time, as G is a µ-ary tree. In the worst
case, the search for vi starts at the root and goes to a leaf, exploring O(µdlogµ ke) nodes in
the process and hence takes O(dµdlogµ ke) time. For updating the tree, the information local
to vi and its neighbors can be updated in O(dµ) time. To update Rst and Ust we travel on
the path to the root, which can be of length O(dlogµ ke) in the worst case, and hence takes
O(dµdlogµ ke) time. There are n steps in the algorithm, each taking O(dµdlogµ ke) time.
Overall, the running time is O(ndµdlogµ ke) which is minimized for a 3-ary tree. J

4.2 Algorithm for the balanced case
In the case of balanced traversals, G is chosen to be a star graph as was done in Section 2.
Let q1 correspond to the root of the graph and q2, . . . , qk correspond to the leaves. In this
case the objective function αsNi + βsRi + 〈ps, Ui〉 from the general case can be simplified:

A. Choudhary and W. Mulzer 31:15

for i = 2, . . . , k, we have that Ri = 2
(
r′i‖qi‖2 −

∑
vivj∈E r

′
j

)
= 2 (r′i − r′1). Also, we have

Ui = 2
(∑

p∈Ti
p‖qi‖2 −

∑
p∈Tj∧vivj∈E p

)
= 2

(∑
p∈Ti

p−
∑
p∈T1

p
)
.

for the root v1, Ri = 2
(
r′i‖qi‖2 −

∑
vivj∈E r

′
j

)
= 2

(
(k − 1)r′1 −

∑k
j=2 r

′
j

)
. Also, we can

write Ui = 2
(
‖qi‖2

∑
p∈Ti

p−
∑
p∈Tj∧vivj∈E p

)
= 2

(
(k − 1)

∑
p∈Ti

p−
∑
p∈T2∪···∪Tk

p
)
.

We can augment G with information at the nodes just as in the general case, and use the
algorithm to compute the traversal. However, this would need time O(ndµdlogµ ke) = O(ndk)
since µ = (k − 1) and the height of the tree is 1. Instead, we use an auxiliary balanced
ternary rooted tree T for the algorithm. T contains k nodes, each associated to one of the
vectors q1, . . . , qk in an arbitrary fashion. We augment the tree with the same information
as in the general case, but with one difference: for each node vi, the values of Ri and Ui are
updated according to the adjacency in G and not using the edges of T . Then we can simply
use the algorithm for the general case to get a balanced partition. The modification does not
affect the complexity of the algorithm.

5 Conclusion and future work

We gave efficient algorithms for a no-dimensional version of Tverberg theorem and for a
colorful counterpart. To achieve this end, we presented a refinement of Sarkaria’s tensor
product construction by defining vectors using a graph. The choice of the graph was different
for the general- and the balanced-partition cases and also influenced the time complexity of
the algorithms. It would be a worthwhile exercise to look at more applications of this refined
tensor product method. Another option could be to look at non-geometric generalizations
based on similar ideas.

The radius bound that we obtain for the Tverberg partition is
√
k off the optimal bound

in [1]. This seems to be a limitation in handling Equation (4). It is not clear if this is an
artifact of using tensor product constructions. It would be interesting to explore if this factor
can be brought down without compromising on the algorithmic complexity. In the general
partition case, setting r1 = · · · = rk gives a bound that is

√
dlog ke worse than the balanced

case, so there is some scope for optimization. In the colorful case, the radius bound is again√
k off the optimal [1], but with a silver lining. The bound is proportional to maxiD(Pi) in

contrast to D(P1 ∪ · · · ∪ Pn) in [1], which is better when the colors are well-separated.
The algorithm for colorful Tverberg has a worse runtime than the regular case. The

challenge in improving the runtime lies a bit with selecting an optimal graph as well as
the nature of the problem itself. Each iteration in the algorithm looks at each of the
permutations π1, . . . , πk and computes the respective expectations. The two non-zero terms
in the expectation are both computed using the chosen permutation. The permutation that
minimizes the first term can be determined quickly if G is chosen as a path graph. This
worsens the radius bound by

√
k − 1. Further, computing the other (third) term of the

expectation still requires O(k) updates per permutation and therefore O(k2) updates per
iteration, thereby eliminating the utility of using an auxiliary tree to determine the best
permutation quickly. The optimal approach for this problem is unclear at the moment.

References
1 Karim Adiprasito, Imre Bárány, and Nabil Mustafa. Theorems of Carathéodory, Helly, and

Tverberg without dimension. In Proc. 30th Annu. ACM-SIAM Sympos. Discrete Algorithms
(SODA), pages 2350–2360, 2019.

2 Noga Alon and Joel H. Spencer. The Probalistic method. John Wiley & Sons, 2008.

SoCG 2020

31:16 No-Dimensional Tverberg Theorems and Algorithms

3 Jorge L. Arocha, Imre Bárány, Javier Bracho, Ruy Fabila Monroy, and Luis Montejano. Very
colorful theorems. Discrete Comput. Geom., 42(2):42–154, 2009.

4 Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Mathematics, 40(2-3):141–
152, 1982.

5 Imre Bárány and David G. Larman. A colored version of Tverberg’s theorem. Journal of the
London Mathematical Society, s2-45(2):314–320, 1992.

6 Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives. Mathematics
of Operations Research, 22(3):550–567, 1997.

7 Pavle Blagojević, Benjamin Matschke, and Günter Ziegler. Optimal bounds for the colored
Tverberg problem. Journal of the European Mathematical Society, 017(4):739–754, 2015.

8 Aruni Choudhary and Wolfgang Mulzer. No-dimensional tverberg theorems and algorithms.
CoRR, abs/1907.04284, 2019. arXiv:1907.04284.

9 Kenneth L. Clarkson, David Eppstein, Gary L. Miller, Carl Sturtivant, and Shang-Hua Teng.
Approximating center points with iterative radon points. Internat. J. Comput. Geom. Appl.,
6(3):357–377, 1996.

10 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
Ham sandwiches. In Proc. 51st Annu. ACM Sympos. Theory Comput. (STOC), pages 638–649,
2019.

11 Sariel Har-Peled and Mitchell Jones. Journey to the center of the point set. In Proc. 35th Int.
Sympos. Comput. Geom. (SoCG), pages 41:1–41:14, 2019.

12 Jesús De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil Mustafa. The discrete yet
ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bulletin of the
American Mathematical Society, 56(3):415–511, 2019.

13 Jiří Matoušek, Martin Tancer, and Uli Wagner. A geometric proof of the colored Tverberg
theorem. Discrete Comput. Geom., 47(2):245–265, 2012.

14 Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow
at the end of the line: A PPAD formulation of the Colorful Carathéodory theorem with
applications. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages
1342–1351, 2017.

15 Gary L. Miller and Donald R. Sheehy. Approximate centerpoints with proofs. Comput. Geom.
Theory Appl., 43(8):647–654, 2010.

16 Wolfgang Mulzer and Yannik Stein. Computational aspects of the Colorful Carathéodory
theorem. Discrete Comput. Geom., 60(3):720–755, 2018.

17 Wolfgang Mulzer and Daniel Werner. Approximating Tverberg points in linear time for any
fixed dimension. Discrete Comput. Geom., 50(2):520–535, 2013.

18 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Algorithmic
Game Theory. Cambridge University Press, 2007.

19 Johann Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Mathema-
tische Annalen, 83:113–115, 1921.

20 Jean-Pierre Roudneff. Partitions of points into simplices with k-dimensional intersection. I.
The conic Tverberg’s theorem. European Journal of Combinatorics, 22(5):733–743, 2001.

21 Karanbir S. Sarkaria. Tverberg’s theorem via number fields. Israel Journal of Mathematics,
79(2-3):317–320, 1992.

22 Pablo Soberón. Equal coefficients and tolerance in coloured Tverberg partitions. Combinatorica,
35(2):235–252, 2015.

23 Daniel Spielman. Spectral graph theory. URL: http://www.cs.yale.edu/homes/spielman/
561/.

24 Arthur H. Stone and John W. Tukey. Generalized “Sandwich” theorems. Duke Mathematical
Journal, 9(2):356–359, June 1942.

25 Helge Tverberg. A generalization of Radon’s theorem. Journal of the London Mathematical
Society, s1-41(1):123–128, 1966.

http://arxiv.org/abs/1907.04284
http://www.cs.yale.edu/homes/spielman/561/
http://www.cs.yale.edu/homes/spielman/561/

A. Choudhary and W. Mulzer 31:17

26 Helge Tverberg. A generalization of Radon’s theorem II. Journal of the Australian Mathematical
Society, 24(3):321–325, 1981.

27 Helge Tverberg and Siniša T. Vrećica. On generalizations of Radon’s theorem and the
Ham-sandwich theorem. European Journal of Combinatorics, 14(3):259–264, 1993.

28 Rade T. Zivaljević and Siniša T. Vrećica. An extension of the Ham sandwich theorem. Bulletin
of the London Mathematical Society, 22(2):183–186, 1990.

29 Rade T. Zivaljević and Siniša T. Vrećica. The colored Tverberg’s problem and complexes of
injective functions. Journal of Combinatorial Theory, Series A., 61:309–318, 1992.

SoCG 2020

Lexicographic Optimal Homologous Chains and
Applications to Point Cloud Triangulations
David Cohen-Steiner
Université Côte d’Azur, Sophia Antipolis, France
Inria Sophia Antipolis - Mediterranée, France
https://www-sop.inria.fr/members/David.Cohen-Steiner/
david.cohen-steiner@inria.fr

André Lieutier
Dassault Systèmes Provence, Aix-en-Provence, France
andre.lieutier@3ds.fr

Julien Vuillamy
Université Côte d’Azur, Sophia Antipolis, France
Inria Sophia Antipolis - Mediterranée, France
Dassault Systèmes Provence, Aix-en-Provence, France
julien.vuillamy@3ds.fr

Abstract
This paper considers a particular case of the Optimal Homologous Chain Problem (OHCP) for
integer modulo 2 coefficients, where optimality is meant as a minimal lexicographic order on chains
induced by a total order on simplices. The matrix reduction algorithm used for persistent homology
is used to derive polynomial algorithms solving this problem instance, whereas OHCP is NP-hard in
the general case. The complexity is further improved to a quasilinear algorithm by leveraging a dual
graph minimum cut formulation when the simplicial complex is a pseudomanifold. We then show
how this particular instance of the problem is relevant, by providing an application in the context of
point cloud triangulation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases OHCP, simplicial homology, triangulation, Delaunay

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.32

Related Version A full version of the paper is available at https://hal.archives-ouvertes.fr/
hal-02391240.

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments
and suggestions on the submitted version of this paper.

Figure 1 Open surface triangulations under imposed boundaries (red cycles).

© David Cohen-Steiner, André Lieutier, and Julien Vuillamy;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 32; pp. 32:1–32:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www-sop.inria.fr/members/David.Cohen-Steiner/
mailto:david.cohen-steiner@inria.fr
mailto:andre.lieutier@3ds.fr
mailto:julien.vuillamy@3ds.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.32
https://hal.archives-ouvertes.fr/hal-02391240
https://hal.archives-ouvertes.fr/hal-02391240
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Lex-OHCP and Applications to Point Cloud Triangulations

1 Introduction

1.1 Problem statement
The computation of minimal simplicial homology generators has been a wide subject of interest
for its numerous applications related to shape analysis, computer graphics or computer-aided
design. Coined in [22], we recall the Optimal Homologous Chain Problem (OHCP):

I Problem 1 (OHCP). Given a d-chain A in a simplicial complex K and a set of weights
given by a diagonal matrix W of appropriate dimension, find the L1-norm minimal chain
Γmin homologous to A:

Γmin = min
Γ,B
||W · Γ||1 such that Γ = A+ ∂d+1B and Γ ∈ Cd (K) , B ∈ Cd+1 (K)

It has been shown that OHCP is NP-hard in the general case when using coefficients in Z2
[15, 9]. However, we consider a specialization of this problem: the Lexicographic Optimal
Homologous Chain Problem (Lex-OHCP). Using coefficients in Z2, minimality is now meant
according to a lexicographic order on chains induced by a total order on simplices. Formulated
in the context of OHCP, this would require ordering the simplices using a total order and
taking a weight matrix W with generic term Wii = 2i, allowing the L1-norm minimization
to be equivalent to a minimization along the lexicographic order.

1.2 Contributions
After providing some required definitions and notations (Section 2), we show how an algorithm
based on the matrix reduction algorithm used for the computation of persistent homology [26]
allows to solve this particular instance of OHCP in O(n3) worst case complexity (Section 3).
Using a very similar process, we show that the problem of finding a minimal d-chain bounding
a given (d−1)-cycle admits a similar algorithm with the same algorithmic complexity (Section
4). Section 5 then considers Lex-OHCP in the case where the simplicial complex K is a
strongly connected (d+ 1)-pseudomanifold. By formulating it as a Lexicographic Minimum
Cut (LMC) dual problem, the algorithm can be improved to a quasilinear complexity: the
cost of sorting the dual edges and performing a O(Eα(E)) algorithm based on disjoint-sets,
where E is the number of dual edges and α is the inverse Ackermann function. Finally,
Section 6 legitimizes this restriction of OHCP by characterizing the quality of lexicographic
optimal homologous chains, namely in the context of point cloud triangulation. After defining
a total order closely related to the Delaunay triangulation, we provide details on an open
surface algorithm given a boundary as well as a watertight surface reconstruction algorithm
given an interior and exterior information.

1.3 Related work
Several authors have studied algorithm complexities for the computation of L1-norm optimal
cycles in homology classes [28, 13, 9, 10, 14, 38, 24, 15, 22, 23]. However, to the best
of our knowledge, considering lexicographic-minimal chains in their homology classes is a
new idea. When minimal cycles are of codimension 1 in a pseudo-manifold, the idea of
considering the minimal cut problem on the dual graph has been previously studied [36]. In
particular, Chambers et al. [9] have considered graph duality to derive complexity results for
the computation of optimal homologous cycles on 2-manifolds. Chen et al. [15] also use a
reduction to a minimum cut problem on a dual graph to compute minimal non-null homologous
cycles on d-complexes embedded in Rd. Their polynomial algorithm (Theorem 5.2.3 in [15]) for

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:3

computing a homology class representative of minimal radius is reminiscent of our algorithm
for computing lexicographic minimal representatives (Algorithm 4). In a recent work [23],
Dey et al. consider the dual graph of pseudo-manifolds in order to obtain polynomial
time algorithms for computing minimal persistent cycles. Since they consider arbitrary
weights, they obtain the O(n2) complexity of best known minimum cut/maximum flow
algorithms [35]. The lexicographic order introduced in our work can be derived from the idea
of a variational formulation of the Delaunay triangulation, first introduced in [16] and further
studied in [1, 17]. Finally, many methods have been proposed to answer the problem of surface
reconstruction in specific acquisition contexts [31, 32, 34]: [33] classifies a large number of
these methods according to the assumptions and information used in addition to geometry.
In the family of purely geometric reconstruction based on a Delaunay triangulation, one early
contribution is the sculpting algorithm by Boissonnat [6]. The crust algorithm by Amenta
et al. [2, 3] and an algorithm based on natural neighbors [7] were the first algorithms to
guarantee a triangulation of the manifold under sampling conditions. However, these general
approaches usually have difficulties far from these sampling conditions, in applications where
point clouds are noisy or under-sampled. This difficulty can be circumvented by providing
additional information on the nature of the surface [21, 25, 8]. Our contribution lies in this
category of approaches. We provide some topological information of the surface: a boundary
for the open surface reconstruction and interior and exterior regions for the closed surface
reconstruction.

2 Definitions

2.1 Simplicial complexes

Consider an independent family A = (a0, . . . , ad) of points of RN . We call a d-simplex σ

spanned by A the set of all points: x =
∑d

i=0 tiai, where ∀i ∈ [0, d], ti ≥ 0 and
∑d

i=0 ti = 1.
Any simplex spanned by a subset of A is called a face of σ.

A simplicial complex K is a collection of simplices such that every face of a simplex of
K is in K and the intersection of two simplices of K is either empty either a common face.

2.2 Simplicial chains

Let K be a simplicial complex of dimension at least d. The notion of chains can be defined
with coefficients in any ring but we restrict here the definition to coefficients in the field
Z2 = Z/2Z. A d-chain A with coefficients in Z2 is a formal sum of d-simplices :

A =
∑

i

xiσi, with xi ∈ Z2 and σi ∈ K (1)

We denote Cd (K) the vector space over the field Z2 of d-chains in the complexK. Interpreting
the coefficient xi ∈ Z2 = {0, 1} in front of simplex σi as indicating the existence of σi in the
chain A, we can view the d-chain A as a set of simplices : for a d-simplex σ and a d-chain A,
we write that σ ∈ A if the coefficient for σ in A is 1. With this convention, the sum of two
chains corresponds to the symmetric difference on their sets. In what follows, a d-simplex σ
can also be interpreted as the d-chain containing only the d-simplex σ.

SoCG 2020

32:4 Lex-OHCP and Applications to Point Cloud Triangulations

2.3 Boundary operator

For a d-simplex σ = [a0, . . . , ad], the boundary operator is defined as the operator:

∂d : Cd (K)→ Cd−1 (K)

∂dσ =
def.

d∑
i=0

[a0, . . . , âi, . . . , ad]

where the symbol âi means the vertex ai is deleted from the array. The kernel of the
boundary operator Zd = Ker ∂d is called the group of d-cycles and the image of the operator
Bd = Im ∂p+1 is the group of d-boundaries. We say two d-chains A and A′ are homologous
if A−A′ = ∂d+1B, for some (d+ 1)-chain B.

2.4 Lexicographic order

We assume now a total order on the d-simplices of K, σ1 < · · · < σn, where n = dim Cd (K).
From this order, we define a lexicographic total order on d-chains.

I Definition 2 (Lexicographic total order). For C1, C2 ∈ Cd (K):

C1 vlex C2 ⇐⇒
def.

C1 + C2 = 0
or
σmax = max {σ ∈ C1 + C2} ∈ C2

This total order naturally extends to a strict total order @lex on Cd (K).

3 Lexicographic optimal homologous chain

3.1 Problem statement

In this section, we define the Lexicographic Optimal Homologous Chain Problem (Lex-OHCP),
a particular instance of OHCP (Problem 1):

I Problem 3 (Lex-OHCP). Given a simplicial complex K with a total order on the d-simplices
and a d-chain A ∈ Cd (K), find the unique chain Γmin defined by :

Γmin = min
vlex

{Γ ∈ Cd (K) | ∃B ∈ Cd+1 (K) ,Γ−A = ∂d+1B}

I Definition 4. A d-chain A ∈ Cd (K) is said reducible if there is a d-chain Γ ∈ Cd (K)
(called reduction) and a (d+ 1)-chain B ∈ Cd+1 (K) such that:

Γ @lex A and Γ−A = ∂d+1B

If this property cannot be verified, the d-chain A is said irreducible. If A is reducible, we
call total reduction of A the unique irreducible reduction of A. If A is irreducible, A is
said to be its own total reduction.

Problem 3 can be reformulated as finding the total reduction of A.

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:5

3.2 Boundary matrix reduction
With m = dim Cd (K) and n = dim Cd+1 (K), we now consider the m-by-n boundary matrix
∂d+1 with entries in Z2. We enforce that rows of the matrix are ordered according to a given
strict total order on d-simplices σ1 < · · · < σm, where the d-simplex σi is the basis element
corresponding to the ith row of the boundary matrix. The order of columns, corresponding
to an order on (d+ 1)-simplices, is not relevant for this section and can be chosen arbitrarily.

For a matrix R, the index of the lowest (i.e. closest to the bottom) non-zero coefficient of
a non-zero column Rj is denoted by low(j), or sometimes low(Rj) when we want to explicit
the considered matrix.

Algorithm 1 is a slightly modified version of the boundary reduction algorithm presented
in [26]. Indeed, for our purpose, we do not need the boundary matrix storing all the simplices
of all dimensions and apply the algorithm to the sub-matrix ∂d+1 : Cd+1 (K) → Cd (K).
One checks easily that Algorithm 1 has O(mn2) time complexity.

Algorithm 1 Reduction algorithm for the ∂d+1 matrix.

R = ∂d+1
for j ← 1 to n do

while Rj 6= 0 and ∃j0 < j with low(j0) = low(j) do
Rj ← Rj +Rj0

end
end

We now introduce a few lemmas useful for solving Problem 3. We allow ourselves to
consider each column Rj of the matrix R, formally an element of Zm

2 , as the corresponding
d-chain in the basis (σ1, . . . , σm).

I Lemma 5. A d-chain A is reducible if and only if at least one of its d-simplices is reducible.

Proof. If there is a reducible d-simplex σ ∈ A, A is reducible by the d-chain A′ = A− σ +
Red(σ), where Red(σ) is a reduction for σ.
We suppose A to be reducible. Let Γ @lex A be a reduction for A and B the (d+ 1)-chain
such that Γ−A = ∂B. We denote σmax = max {σ ∈ A− Γ}. Note that σmax is homologous
to Γ − A + σmax. The chain Γ − A + σmax only contains simplices smaller than σmax, by
definition of the lexicographic order (Definition 2). We have thus shown that if A is reducible,
it contains at least one simplex that is reducible. J

I Lemma 6. After matrix reduction (Algorithm 1), a non-zero column Rj 6= 0 can be
described as

Rj = σlow(j) + Γ, where Γ is a reduction for σlow(j).

Proof. As all matrix operations performed on R by the reduction algorithm are linear, each
non-zero column Rj of R is in the image of ∂d+1. Therefore, there exist a (d+ 1)-chain B
such that Rj = σlow(j) + Γ = ∂d+1B, which, is equivalent in Z2 to Γ− σlow(j) = ∂d+1B. By
definition of the low of a column, we also have immediately: Γ @lex σlow(j). For each non-zero
column, the largest simplex is therefore reducible by the other d-simplices of the column. J

I Lemma 7. After matrix reduction (Algorithm 1), there is a one-to-one correspondence
between the reducible d-simplices and non-zero columns of R:

σi ∈ Cd (K) is reducible ⇐⇒ ∃j ∈ [1, n], Rj 6= 0 and low(j) = i

SoCG 2020

32:6 Lex-OHCP and Applications to Point Cloud Triangulations

Proof. Lemma 6 shows immediately that the simplex corresponding to the lowest index of a
non-zero column is reducible. Suppose now that a d-simplex σ̃ is reducible and let Γ̃ be a
reduction of it: σ̃ + Γ̃ = ∂d+1B and Γ̃ @lex σ̃. Algorithm 1 realizes the matrix factorization
R = ∂d+1 · V , where matrix V is invertible [26]. It follows that ImR = Im ∂d+1. Therefore,
non-zero columns of R span Im ∂d+1 and since σ̃ + Γ̃ = ∂d+1B ∈ Im ∂d+1, there is a family
(Rj)j∈J = (σlow(j),Γj)j∈J of columns of R such that :

σ̃ + Γ̃ =
∑
j∈J

σlow(j) + Γj

Every σlow(j) represents the largest simplex of a column, and Γj a reduction chain for σlow(j).
As observed in section VII.1 of [26], one can check that the low indexes in R are unique after
the reduction algorithm. Therefore, there is a jmax ∈ J such that for all j in J \ {jmax},
low(j) < low(jmax), which implies:

σjmax = max{σ ∈
∑
j∈J

σlow(j) + Γj} = max
{
σ ∈ σ̃ + Γ̃

}
= σ̃

We have shown that for the reducible simplex σ̃, there is a non-zero column Rjmax with
σ̃ = σlow(jmax) as its largest simplex. J

3.3 Total reduction algorithm
Combining the three previous lemmas give the intuition on how to construct the total
reduction solving Problem 3: Lemma 5 allows to consider each simplex individually, Lemma
7 characterizes the reducible nature of a simplex using the reduced boundary matrix and
Lemma 6 describes a column of the reduction boundary matrix as a simplex and its reduction.
We now present Algorithm 2, referred to as the total reduction algorithm. For a d-chain
Γ, Γ[i] ∈ Z2 denotes the coefficient of the ith simplex in the chain Γ.

Algorithm 2 Total reduction algorithm.

Inputs :A d-chain Γ, the reduced boundary matrix R
for i← m to 1 do

if Γ[i] 6= 0 and ∃j ∈ [1, n] with low(j) = i in R then
Γ← Γ +Rj

end
end

I Proposition 8. Algorithm 2 finds the total reduction of a given d-chain in O(m2) time
complexity.

Proof. In Algorithm 2, let Γi−1 be the value of the variable Γ after iteration i. Since
the iteration counter i decreases from m to 1, the input and output of the algorithm are
respectively Γm and Γ0. At each iteration, Γi−1 are either equal to Γi or Γi + Rj . Since
Rj ∈ Im ∂d+1, Γi−1 is in both cases homologous to Γi. Therefore, Γ0 is homologous to Γm.
We are left to show that Γ0 is irreducible. From Lemma 5, it is enough to check that it does
not contain any reducible simplex.
Let σi be a reducible simplex and let us show that σi /∈ Γ0. Two possibilities may occur:

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:7

if σi ∈ Γi, then Γi−1 = Γi + Rj . Since low(j) = i, we have σi ∈ Rj and therefore
σi /∈ Γi−1.
if σi /∈ Γi, then Γi−1 = Γi and again σi /∈ Γi−1.

Furthermore, from iterations i− 1 to 1, the added columns Rj contain only simplices smaller
than σi and therefore σi /∈ Γi−1 ⇒ σi /∈ Γ0.

Observe that using an auxiliary array allows to compute the correspondence low(j)→ i

in time O(1). The column addition nested inside the loop lead to a O(m2) time complexity
for Algorithm 2. J

It follows that Problem 3 can be solved in O(mn2) time complexity, by applying successively
Algorithms 1 and 2, or in O(N3) complexity if N is the size of the simplicial complex.

4 Lexicographic-minimal chain under imposed boundary

4.1 Problem statement
This section will study a variant of Lex-OHCP (Problem 9) in order to solve the subsequent
problem of finding a minimal d-chain bounding a given (d− 1)-cycle (Problem 10).

I Problem 9. Given a simplicial complex K with a total order on the d-simplices and a
d-chain Γ0 ∈ Cd (K), find :

Γmin = min
vlex

{Γ ∈ Cd (K) | ∂dΓ = ∂dΓ0}

I Problem 10. Given a simplicial complex K with a total order on the d-simplices and a
(d− 1)-cycle A, check if A is a boundary:

BA =
def.
{Γ ∈ Cd (K) | ∂dΓ = A} 6= ∅

If it is the case, find the minimal d-chain Γ bounded by A:

Γmin = min
vlex

BA

In Problem 10, finding a representative Γ0 in the set BA 6= ∅ such that ∂dΓ0 = A is
sufficient: we are then taken back to Problem 9 to find the minimal d-chain Γmin such that
∂dΓmin = ∂dΓ0 = A.

4.2 Boundary reduction transformation matrix
As in Section 3, we will derive an algorithmic solution to Problem 9 from the result of
the boundary matrix reduction algorithm. Note that, unlike Section 3 that used the ∂d+1
boundary operator, we are now considering ∂d, meaning the given total order on d-simplices
applies to the greater dimension of the matrix. An arbitrary order can be taken for the
(d− 1)-simplices to build the matrix ∂d. Indeed, if we see the performed reduction in matrix
notation as R = ∂d · V , the minimization steps in this section will be performed on the
transformation matrix V , whose rows do follow the given simplicial ordering. The number of
zero columns of R is the dimension of Zd = Ker ∂d [26]. Let’s denote it by nKer = dim(Zd).
By selecting all columns in V corresponding to zero columns in R, we obtain the matrix
V Ker, whose columns V Ker

1 , . . . , V Ker
nKer form a basis of Zd. We first show a useful property

on the matrix V Ker. Note that the low index for any column in V Ker is well defined, as V
is invertible.

SoCG 2020

32:8 Lex-OHCP and Applications to Point Cloud Triangulations

I Lemma 11. Indexes
{

low(V Ker
i)

}
i∈[1,nKer] are unique. If A ∈ Ker ∂d \ {0}, there exists a

unique column V Ker
max of V Ker with low(V Ker

max) = low(A).

Proof. Before the boundary matrix reduction algorithm, the initial matrix V is the identity:
the low indexes are therefore unique. During iterations of the algorithm, the matrix V is
right-multiplied by an column-adding elementary matrix Lj0,j , adding column j0 to j with
j0 < j.

Lj0,j =

j

1
1 1 j0

. . .
1

. . .
1

Therefore, the indexes {low(Vi), Vi ∈ V } stay on the diagonal during the reduction algorithm
and are therefore unique. The restriction of V to V Ker does not change this property.

If A ∈ Ker ∂d \ {0}, A can be written as a non-zero linear combination A =
∑

i∈I V
Ker

i of
columns of V Ker. By unicity of the lows of V Ker, the largest low of the combination - i.e.
maxi∈I{low(V Ker

i)} is in A and has to be the low of A. J

4.3 Total reduction with imposed boundary
We apply a similar total reduction algorithm as previously introduced in Section 3 but using
the matrix V Ker. In the following algorithm, m = dim Cd (K).

Algorithm 3 Total reduction variant.

Inputs :A d-chain Γ and V Ker

for i← m to 1 do
if Γ[i] 6= 0 and ∃j ∈ [1, nKer] with low(j) = i in V Ker then

Γ← Γ + V Ker
j

end
end

I Proposition 12. Algorithm 3 computes the solution for Problem 9 in O(m2) time com-
plexity.

The proof is very similar to the one of Proposition 8 and available in [19].

4.4 Finding a representative of BA

As previously mentioned, solving Problem 10 requires deciding if the set BA is empty
and in case it is not empty, finding an element of the set BA. Algorithm 3 can then
be used to minimize this element under imposed boundary. In the following algorithm,
m = dim Cd−1 (K) and n = dim Cd (K).

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:9

Algorithm 4 Finding a representative.

Inputs :A (d− 1)-chain A, a boundary matrix R reduced by V
Γ0 ← ∅
A0 ← A

for i← m to 1 do
if A0[i] 6= 0 then

if ∃j ∈ [1, n] with low(j) = i in R then
A0 ← A0 +Rj

Γ0 ← Γ0 + Vj

else
The set BA is empty.

end
end

end

I Proposition 13. Algorithm 4 decides if the set BA is non-empty, and in that case, finds a
representative Γ0 such that ∂Γ0 = A in O(m2) time complexity.

Proof. We start by two trivial observations from the definition of a reduction. First, A is a
boundary if and only if its total reduction is the null chain. Second, if a non-null chain is a
boundary, then its greatest simplex is reducible.

If, at iteration i, A0[i] 6= 0, then σi is the greatest simplex in A0. In the case R has no
column Rj such that low(j) = i, σi is not reducible by Lemma 7 and therefore A0 is not a
boundary. Since A and A0 differ by a boundary (added columns of R), A is not a boundary
either. This means the set BA is empty.
The main difference with the previous chain reduction is we keep track of the column
operations in Γ0. If the total reduction of A is null, we have found a linear combination
(Rj)j∈J such that A =

∑
j∈J Rj . We have also computed Γ0 as the sum of the corresponding

columns in V : Γ0 =
∑

j∈J Vj . As R = ∂d · V , we can now verify:

∂dΓ0 = ∂d

∑
j∈J

Vj

 =
∑
j∈J

Rj = A J

5 Efficient algorithm for codimension 1 (dual graph)

In this section we focus on Problem 17, a specialization of Problem 3, namely when K is a
subcomplex of a (d+ 1)-pseudomanifold.

5.1 Problem statement
Recall that a d-dimensional simplicial complex is said pure if it is of dimension d and any
simplex has at least one coface of dimension d.

I Definition 14. A d-pseudomanifold is a pure d-dimensional simplicial complex for
which each (d− 1)-face has exactly two d-dimensional cofaces.

I Definition 15. The dual graph of a d-pseudomanifoldM is the graph whose vertices are
in one-to-one correspondence with the d-simplices ofM and whose edges are in one-to-one
correspondence with (d− 1)-simplices ofM : an edge e connects two vertices v1 and v2 of the
graph if and only if e corresponds to the (d− 1)-face with cofaces corresponding to v1 and v2.

SoCG 2020

32:10 Lex-OHCP and Applications to Point Cloud Triangulations

I Definition 16. A strongly connected d-pseudomanifold is a d-pseudomanifold whose
dual graph is connected.

Given a strongly connected (d+ 1)-pseudomanifoldM and τ1 6= τ2 two (d+ 1)-simplices of
M, we consider a special case of Problem 3 where K =M\ {τ1, τ2} and A = ∂τ1:

I Problem 17. Given a strongly connected (d+ 1)-pseudomanifoldM with a total order on
the d-simplices and two distinct (d+ 1)-simplices (τ1, τ2) ofM, find:

Γmin = min
vlex

{Γ ∈ Cd (M) | ∃B ∈ Cd+1 (M\ {τ1, τ2}) ,Γ− ∂τ1 = ∂B}

I Definition 18. Seeing a graph G as a 1-dimensional simplicial complex, we define the
coboundary operator ∂0 : C0 (G)→ C1 (G) as the linear operator defined by the transpose
of the matrix of the boundary operator ∂1 : C1 (G) → C0 (G) in the canonical basis of
simplices.1

For a given graph G = (V, E), V and E respectively denote its vertex and edge sets. For a
d-chain α ∈ Cd (M) and a (d + 1)-chain β ∈ Cd+1 (M), α̃ and β̃ denote their respective
dual 1-chain and dual 0-chain in the dual graph G(M) ofM. We easily see that:

I Remark 19. For a set of vertices V0 ⊂ V, ∂0V0 is exactly the set of edges in G = (V, E)
that connect vertices in V0 with vertices in V \ V0.

I Remark 20. LetM be a (d+ 1)-pseudomanifold. If α ∈ Cd (M) and β ∈ Cd+1 (M), then
α̃ = ∂0β̃ ⇐⇒ α = ∂d+1β.

5.2 Codimension 1 and Lexicographic Min Cut (LMC)
The order on d-simplices of a (d+ 1)-pseudomanifoldM naturally defines a corresponding
order on the edges of the dual graph: τ1 < τ2 ⇐⇒ τ̃1 < τ̃2. This order extends similarly to
a lexicographic order vlex on sets of edges (or, equivalently, 1-chains) in the graph.

In what follows, we say a set of edges Γ̃ disconnects τ̃1 and τ̃2 in the graph (V, E) if τ̃1
and τ̃2 are not in the same connected component of the graph (V, E \ Γ̃).

Given a graph with weighted edges and two vertices, the min-cut/max-flow problem
[27, 35] consists in finding the minimum cut (i.e. set of edges) disconnecting the two vertices,
where minimum is meant as minimal sum of weights of cut edges. We consider a similar
problem where the minimum is meant in term of a lexicographic order: the Lexicographic
Min Cut (LMC).

I Problem 21 (LMC). Given a connected graph G = (V, E) with a total order on E and
two vertices τ̃1, τ̃2 ∈ V, find the set Γ̃LMC ⊂ E minimal for the lexicographic order vlex, that
disconnects τ̃1 and τ̃2 in G.

I Proposition 22. Γmin is solution of Problem 17 if and if only its dual 1-chain Γ̃min is
solution of Problem 21 on the dual graph G(M) ofM where τ̃1 and τ̃2 are respective dual
vertices of τ1 and τ2.

1 In order to avoid to introduce non essential formal definitions, the coboundary operator is defined over
chains since, for finite simplicial complexes, the canonical inner product defines a natural bijection
between chains and cochains.

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:11

Proof. Problem 17 can be equivalently formulated as:

Γmin = min
vlex

{∂d+1(τ1 +B) | B ∈ Cd+1 (M\ {τ1, τ2})} (2)

Using Observation 20, we see that Γmin is the minimum in Equation (2) if and only if its
dual 1-chain Γ̃min satisfies:

Γ̃min = min
vlex

{
∂0(τ̃1 + B̃) | B̃ ⊂ V \ {τ̃1, τ̃2}

}
(3)

Denoting Γ̃LMC the minimum of Problem 21, we need to show that Γ̃LMC = Γ̃min.
As Γ̃LMC disconnects τ̃1 and τ̃2 in G = (V, E), τ̃2 is not in the connected component of τ̃1
in (V, E \ Γ̃LMC). We define B̃ as the connected component of τ̃1 in (V, E \ Γ̃LMC) minus
τ̃1. We have that B̃ ⊂ V \ {τ̃1, τ̃2}. Consider an edge e ∈ ∂0(τ̃1 + B̃). From Observation 19,
e connects a vertex va ∈ {τ̃1} ∪ B̃ with a vertex vb /∈ {τ̃1} ∪ B̃. From the definition of B̃,
Γ̃LMC disconnects va and vb in G, which in turn implies e ∈ Γ̃LMC. We have therefore shown
that ∂0(τ̃1 + B̃) ⊂ Γ̃LMC. Using Equation (3), we get:

Γ̃min vlex ∂
0(τ̃1 + B̃) vlex Γ̃LMC (4)

Now we claim that if there is a C̃ ⊂ V \ {τ̃1, τ̃2} with Γ̃ = ∂0(τ̃1 + C̃), then Γ̃ disconnects τ̃1
and τ̃2 in (V, E). Consider a path in G from τ̃1 to τ̃2. Let va be the last vertex of the path
that belongs to {τ̃1} ∪ C̃ and vb the next vertex on the path (which exists since τ̃2 is not in
{τ̃1}∪ C̃). From Observation 19, we see that the edge (va, vb) must belong to Γ̃ = ∂0(τ̃1 + C̃).
We have shown that any path in G connecting τ̃1 and τ̃2 has to contain an edge in Γ̃ and the
claim is proved.
In particular, the minimum Γ̃min disconnects τ̃1 and τ̃2 in (V, E). As Γ̃LMC denotes the
minimum of Problem 21, Γ̃LMC vlex Γ̃min which, together with Equation (4), gives us
Γ̃LMC = Γ̃min. We have therefore shown the minimum defined by Equation (3) coincides
with the minimum defined in Problem 21. J

5.3 Algorithm for Lexicographic Min Cut
In light of the new problem equivalency, we will study an algorithm solving Problem 21. As
we will only consider the dual graph for this section, we leave behind the dual chain notation:
vertices τ̃1 and τ̃2 are replaced by α1 and α2, and the solution to the problem is simply noted
ΓLMC. The following lemma exposes a constructive property of the solution on subgraphs.

I Lemma 23. Consider ΓLMC solution of Problem 21 for the graph G = (V, E) and α1, α2 ∈ V.
Let e0 be an edge in V × V such that e0 < min{e ∈ E}. Then:
(a) The solution for (V, E ∪ {e0}) is either ΓLMC or ΓLMC ∪ {e0}.
(b) ΓLMC ∪ {e0} is solution for (V, E ∪ {e0}) if and only if α1 and α2 are connected in

(V, E ∪ {e0} \ ΓLMC).

Proof. Let’s call Γ′LMC the solution for (V, E ∪ {e0}). Since Γ′LMC ∩ E disconnects α1 and α2
in (V, E), one has ΓLMC vlex Γ′LMC. Since ΓLMC∪{e0} disconnects α1 and α2 in (V, E ∪{e0}),
we also have Γ′LMC vlex ΓLMC ∪ {e0}. Therefore, ΓLMC vlex Γ′LMC vlex ΓLMC ∪ {e0}.

As e0 < min{e ∈ E}, there is no set in E ∪ {e0} strictly between ΓLMC and ΓLMC ∪ {e0}
for the lexicographic order. It follows that Γ′LMC is either equal to ΓLMC or ΓLMC ∪ {e0}.
The choice for Γ′LMC is therefore ruled by the property that it should disconnect α1 and α2:
if α1 and α2 are connected in (V, E ∪ {e0} \ ΓLMC), ΓLMC does not disconnect α1 and α2 in
(V, E ∪ {e0}) and ΓLMC ∪ {e0} has to be the solution for (V, E ∪ {e0}). On the other hand,

SoCG 2020

32:12 Lex-OHCP and Applications to Point Cloud Triangulations

if α1 and α2 are not connected in (V, E ∪ {e0} \ ΓLMC), then both ΓLMC and ΓLMC ∪ {e0}
disconnect α1 and α2 in (V, E ∪ {e0}), but as ΓLMC @lex ΓLMC ∪ {e0}, ΓLMC ∪ {e0} is not
the solution for (V, E ∪ {e0}). J

Building an algorithm from Lemma 23 suggests a data structure able to check if vertices
α1 and α2 are connected in the graph: the disjoint-set data structure, introduced for finding
connected components [29], does exactly that. In this structure, each set of elements has a
different root value, called representative. Calling the operation MakeSet on an element
creates a new set containing this element. The FindSet operation, given an element of a
set, returns the representative of the set. For all elements of the same set, FindSet will of
course return the same representative. Finally, the structure allows merging two sets, by
using the UnionSet operation. After this operation, elements of both sets will have the
same representative.

We now describe Algorithm 5. The algorithm expects a set of edges sorted in decreasing
order according to the lexicographic order.

Algorithm 5 Lexicographic Min Cut.

Inputs :G = (V, E) and α1, α2 ∈ V, with E = {ei, i = 1, . . . , n} in decreasing order
Output : ΓLMC
ΓLMC ← ∅
for v ∈ V do

MakeSet(v)
end
for e ∈ E in decreasing order do

e = (v1, v2) ∈ V × V
r1 ← FindSet(v1), r2 ← FindSet(v2)
c1 ← FindSet(α1), c2 ← FindSet(α2)
if {r1, r2} = {c1, c2} then

ΓLMC ← ΓLMC ∪ e
else

UnionSet(r1, r2)
end

end

I Proposition 24. Algorithm 5 computes the solution of Problem 21 for a given graph (V, E)
and two vertices α1, α2 ∈ V. Assuming the input set of edges E are sorted, the algorithm
has O(nα(n)) time complexity, where n is the cardinal of E and α the inverse Ackermann
function.

Proof. We denote by ei the ith edge along the decreasing order and Γi
LMC the value of the

variable ΓLMC of the algorithm after iteration i. The algorithm works by incrementally
adding edges in decreasing order and tracking the growing connected components of the set
associated with α1 and α2 in (V, {e ∈ E , e ≥ ei} \ Γi

LMC), for i = 1, . . . , n.
At the beginning, no edges are inserted, and Γ0

LMC = ∅ is indeed solution for (V,∅). With
Lemma 23, we are guaranteed at each iteration i to find the solution for (V, {e ∈ E , e ≥ ei}) by
only adding to Γi−1

LMC the current edge ei if α1 and α2 are connected in {e ∈ E , e ≥ ei}\Γi−1
LMC,

which is done in the if-statement. If the edge is not added, we update the connectivity of the
graph (V, {e ∈ E , e ≥ ei} \ Γi

LMC) by merging the two sets represented by r1 and r2. After
each iteration, Γi

LMC is solution for (V, {e ∈ E , e ≥ ei}) and when all edges are processed,
Γn

LMC is solution for (V, E).

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:13

The complexity of the MakeSet, FindSet and UnionSet operations have been shown
to be respectively O(1), O(α(v)) and O(α(v)), where α(v) is the inverse Ackermann function
on the cardinal of the vertex set [37]. Assuming sorted edges as input of the algorithm –
which is performed in O(n ln(n)), the algorithm runs in O(nα(n)) time complexity. J

The similarity of Algorithm 5 with Kruskal’s algorithm for minimum spanning-tree
suggests an even better theoretical time complexity, by using Chazelle’s algorithm [12] for
minimum spanning-tree, running in O(nα(n)) complexity without requiring sorted edges.

6 Application to point cloud triangulation

In all that precedes, the order on simplices was not specified and one can wonder if choosing
such an ordering makes the specialization of OHCP too restrictive for it to be useful. In
this section, we give a concrete example where this restriction makes sense and provides a
simple and elegant application to the problem of point cloud triangulation. Whereas all that
preceded dealt with an abstract simplicial complex, we now consider a bijection between
vertices and a set of points in Euclidean space, allowing to compute geometric quantities on
simplices.

6.1 Simplicial ordering
Recent works have studied a characterization of the 2D Delaunay triangulation as a lexico-
graphic minimum over 2-chains. Denote by RB(σ) the radius of the smallest enclosing ball
and RC(σ) the radius of the circumcircle of a 2-simplex σ. Based on [20, 18], we define the
total order on 2-simplices:

σ1 ≤ σ2 ⇐⇒

RB(σ1) < RB(σ2)
or
RB(σ1) = RB(σ2) and RC(σ1) ≥ RC(σ2)

(5)

Under generic condition on the position of points, we can show this order is total. In what
follows, the lexicographic order vlex is induced by this order on simplices. The following
proposition from [20] shows a strong link between the simplex ordering and the 2D Delaunay
triangulation.

I Proposition 25 (Proposition 7.9 in [20]). Let P = {P1, . . . , PN} ⊂ R2 with N ≥ 3 be
in general position and let KP be any 2-dimensional complex containing the Delaunay
triangulation of P. Denote by βP ∈ C1(KP) the 1-chain made of edges belonging to the
boundary of convex hull CH(P). If Γmin = minvlex

{Γ ∈ C2 (KP) , ∂Γ = βP}, the simplicial
complex |Γmin| support of Γmin is the Delaunay triangulation of P.

As the 2D Delaunay triangulation has some well-known optimality properties, such as
maximizing the minimal angle, we can hope that using the same order to minimize 2-chains
in dimension 3 will keep some of those properties. In fact, it has been shown that for a
Čech or Vietoris-Rips complex, under strict conditions linking the point set sampling, the
parameter of the complex and the reach of the underlying manifold of Euclidean space,
the minimal lexicographic chain using the described simplex order is a triangulation of the
sampled manifold [18]. Experimental results (Figure 2) show that this property remains true
relatively far from these theoretical conditions.

SoCG 2020

32:14 Lex-OHCP and Applications to Point Cloud Triangulations

Figure 2 Watertight reconstructions under different perturbations. Under small perturbations
(first two images from the left), the reconstruction is a triangulation of the sampled manifold. A few
non-manifold configurations appear however under larger perturbations (Rightmost image).

6.2 Open surface triangulation

Given a point cloud sampling an open surface and a 1-cycle sampling the boundary of the
surface, we generate a Čech complex of the point cloud using the Phat library [5]. The
parameter of the complex should be sufficient to capture the homotopy type of the surface to
reconstruct and should contain the provided cycle. After constructing the 2-boundary matrix,
we apply the boundary reduction algorithm, slightly modified to store the transformation
matrix V (Section 4.2). We then apply Algorithm 4 to find out if a 2-chain bounded by the
cycle exists in the current Čech complex. In this case, we get a chain bounded by the provided
cycle and apply Algorithm 3 to minimize the chain under imposed boundary. Otherwise, we
might have to increase the Čech parameter to capture the homotopy type of the surface to
reconstruct [11, 4]. Figure 1 shows results of this method.

6.3 Closed surface triangulation

Using Algorithm 5 requires a strongly connected 3-pseudomanifold: we therefore use a 3D
Delaunay triangulation, for its efficiency and non-parametric nature, using the CGAL library
[30], and complete it into a topological 3-sphere by connecting, for any triangle on the convex
hull of the Delaunay triangulation, its dual edge to an “infinite” dual vertex.

Experimentally, sorting triangles does not require exact predicates: the RB and RC
quantities can simply be calculated in fixed precision. The quasilinear complexity of Algorithm
5 makes it competitive in large point cloud applications. Outliers are naturally ignored and,
being parameter free, the algorithm adapts to non uniform point densities, as seen in the
closeup of Figure 3.

The choice of α1 and α2 defines the location of the closed separating surface and are
chosen interactively. Although we could devise an algorithm where these inputs are not
required – the algorithm would simply merge regions until only two connected components
remain – this would only work for uniform and non-noisy point clouds but not make for a
robust algorithm. On the contrary, adding multiple interior and exterior regions can guide
the algorithm by providing better topological constraints, as depicted in Figure 4. Algorithm
5 requires to be slightly modified to take as input multiple α1, α2: after creating all sets with
MakeSet, we need to combine all α1 sets together, and all α2 sets together. The algorithm
remains unchanged for the rest.

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:15

Figure 3 Closed surface triangulation of 440K points in 7.33 seconds. Beside the point cloud,
the only user input is one inner tetrahedron. The closeup shows that small features are correctly
recovered.

IN

OUT

IN

OUT

OUT

Figure 4 Providing additional topological information can improve the result of the reconstruction.
Here, the lexicographic order on 1-chains is induced by edge length comparison.

SoCG 2020

32:16 Lex-OHCP and Applications to Point Cloud Triangulations

References
1 Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational

tetrahedral meshing. ACM Trans. Graph., 24(3):617–625, 2005. doi:10.1145/1073204.
1073238.

2 Nina Amenta, Marshall W. Bern, and Manolis Kamvysselis. A new voronoi-based surface
reconstruction algorithm. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH 1998, Orlando, FL, USA, July 19-24, 1998, pages
415–421, 1998. doi:10.1145/280814.280947.

3 Nina Amenta, Sunghee Choi, Tamal K. Dey, and N. Leekha. A simple algorithm for home-
omorphic surface reconstruction. Int. J. Comput. Geometry Appl., 12(1-2):125–141, 2002.
doi:10.1142/S0218195902000773.

4 Dominique Attali, André Lieutier, and David Salinas. Vietoris-rips complexes also provide
topologically correct reconstructions of sampled shapes. Comput. Geom., 46(4):448–465, 2013.
doi:10.1016/j.comgeo.2012.02.009.

5 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat – persistent
homology algorithms toolbox. Journal of Symbolic Computation, 78:76–90, 2017. Algorithms
and Software for Computational Topology. doi:10.1016/j.jsc.2016.03.008.

6 Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape representation.
ACM Trans. Graph., 3(4):266–286, 1984. doi:10.1145/357346.357349.

7 Jean-Daniel Boissonnat and Frédéric Cazals. Smooth surface reconstruction via natural
neighbour interpolation of distance functions. In Proceedings of the Sixteenth Annual Symposium
on Computational Geometry, Clear Water Bay, Hong Kong, China, June 12-14, 2000, pages
223–232, 2000. doi:10.1145/336154.336208.

8 J Frederico Carvalho, Mikael Vejdemo-Johansson, Danica Kragic, and Florian T Pokorny. An
algorithm for calculating top-dimensional bounding chains. PeerJ Computer Science, 4:e153,
2018.

9 Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. Minimum cuts and shortest homologous
cycles. In Proceedings of the 25th ACM Symposium on Computational Geometry, Aarhus,
Denmark, June 8-10, 2009, pages 377–385, 2009. doi:10.1145/1542362.1542426.

10 Erin Wolf Chambers and Mikael Vejdemo-Johansson. Computing minimum area homologies.
In Computer graphics forum, volume 34, pages 13–21. Wiley Online Library, 2015.

11 Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
sets in euclidean space. Discrete & Computational Geometry, 41(3):461–479, 2009. doi:
10.1007/s00454-009-9144-8.

12 Bernard Chazelle. A minimum spanning tree algorithm with inverse-ackermann type complexity.
Journal of the ACM (JACM), 47(6):1028–1047, 2000.

13 Chao Chen and Daniel Freedman. Quantifying homology classes. CoRR, abs/0802.2865, 2008.
arXiv:0802.2865.

14 Chao Chen and Daniel Freedman. Measuring and computing natural generators for homology
groups. Comput. Geom., 43(2):169–181, 2010. doi:10.1016/j.comgeo.2009.06.004.

15 Chao Chen and Daniel Freedman. Hardness results for homology localization. Discrete &
Computational Geometry, 45(3):425–448, 2011. doi:10.1007/s00454-010-9322-8.

16 Long Chen. Mesh smoothing schemes based on optimal delaunay triangulations. In Pro-
ceedings of the 13th International Meshing Roundtable, IMR 2004, Williamsburg, Virginia,
USA, September 19-22, 2004, pages 109–120, 2004. URL: http://imr.sandia.gov/papers/
abstracts/Ch317.html.

17 Long Chen and Michael Holst. Efficient mesh optimization schemes based on optimal delaunay
triangulations. Computer Methods in Applied Mechanics and Engineering, 200(9):967–984,
2011. doi:10.1016/j.cma.2010.11.007.

18 David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic optimal chains and
manifold triangulations. Research Report HAL: hal-02391190, 2019.

https://doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/280814.280947
https://doi.org/10.1142/S0218195902000773
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.1145/357346.357349
https://doi.org/10.1145/336154.336208
https://doi.org/10.1145/1542362.1542426
https://doi.org/10.1007/s00454-009-9144-8
https://doi.org/10.1007/s00454-009-9144-8
http://arxiv.org/abs/0802.2865
https://doi.org/10.1016/j.comgeo.2009.06.004
https://doi.org/10.1007/s00454-010-9322-8
http://imr.sandia.gov/papers/abstracts/Ch317.html
http://imr.sandia.gov/papers/abstracts/Ch317.html
https://doi.org/10.1016/j.cma.2010.11.007

D. Cohen-Steiner, A. Lieutier, and J. Vuillamy 32:17

19 David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Lexicographic optimal homologous
chains and applications to point cloud triangulations. Preprint HAL: hal-02391240, 2019.

20 David Cohen-Steiner, André Lieutier, and Julien Vuillamy. Regular triangulations as lexico-
graphic optimal chains. Preprint HAL: hal-02391285, 2019.

21 Tamal K. Dey and Samrat Goswami. Tight cocone: A water-tight surface reconstructor. J.
Comput. Inf. Sci. Eng., 3(4):302–307, 2003. doi:https://doi.org/10.1115/1.1633278.

22 Tamal K. Dey, Anil N. Hirani, and Bala Krishnamoorthy. Optimal homologous cycles,
total unimodularity, and linear programming. SIAM J. Comput., 40(4):1026–1044, 2011.
doi:10.1137/100800245.

23 Tamal K. Dey, Tao Hou, and Sayan Mandal. Computing minimal persistent cycles: Polynomial
and hard cases. CoRR, abs/1907.04889, 2019. arXiv:1907.04889.

24 Tamal K. Dey, Jian Sun, and Yusu Wang. Approximating loops in a shortest homology basis
from point data. In David G. Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings of
the 26th ACM Symposium on Computational Geometry, Snowbird, Utah, USA, June 13-16,
2010, pages 166–175. ACM, 2010. doi:10.1145/1810959.1810989.

25 Herbert Edelsbrunner. Surface Reconstruction by Wrapping Finite Sets in Space, pages 379–404.
Springer Berlin Heidelberg, 2003. doi:10.1007/978-3-642-55566-4_17.

26 Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American
Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.

27 Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2):248–264, 1972. doi:10.1145/321694.321699.

28 Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 1038–1046, 2005.
URL: http://dl.acm.org/citation.cfm?id=1070432.1070581.

29 Bernard A. Galler and Michael J. Fischer. An improved equivalence algorithm. Commun.
ACM, 7(5):301–303, 1964. doi:10.1145/364099.364331.

30 Clément Jamin, Sylvain Pion, and Monique Teillaud. 3D triangulations. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.
0/Manual/packages.html#PkgTriangulation3.

31 Michael M. Kazhdan and Hugues Hoppe. Screened poisson surface reconstruction. ACM
Trans. Graph., 32(3):29:1–29:13, 2013. doi:10.1145/2487228.2487237.

32 Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven. Robust and efficient surface
reconstruction from range data. Comput. Graph. Forum, 28(8):2275–2290, 2009. doi:10.
1111/j.1467-8659.2009.01530.x.

33 Sylvain Lefebvre and Michela Spagnuolo, editors. Eurographics 2014 - State of the Art
Reports, Strasbourg, France, April 7-11, 2014. Eurographics Association, 2014. URL: https:
//diglib.eg.org/handle/10.2312/7707.

34 Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei Sharf, Daniel Cohen-Or, and Niloy J.
Mitra. Globfit: consistently fitting primitives by discovering global relations. ACM Trans.
Graph., 30(4):52, 2011. doi:10.1145/2010324.1964947.

35 James B. Orlin. Max flows in o(nm) time, or better. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 765–774, 2013. doi:
10.1145/2488608.2488705.

36 John Matthew Sullivan. A Crystalline Approximation Theorem for Hypersurfaces. PhD thesis,
Princeton Univ., October 1990. URL: http://torus.math.uiuc.edu/jms/Papers/thesis/.

37 Robert Endre Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms. J.
ACM, 31(2):245–281, 1984. doi:10.1145/62.2160.

38 Pengxiang Wu, Chao Chen, Yusu Wang, Shaoting Zhang, Changhe Yuan, Zhen Qian, Dimitris
Metaxas, and Leon Axel. Optimal topological cycles and their application in cardiac trabeculae
restoration. In International Conference on Information Processing in Medical Imaging, pages
80–92. Springer, 2017.

SoCG 2020

https://doi.org/https://doi.org/10.1115/1.1633278
https://doi.org/10.1137/100800245
http://arxiv.org/abs/1907.04889
https://doi.org/10.1145/1810959.1810989
https://doi.org/10.1007/978-3-642-55566-4_17
http://www.ams.org/bookstore-getitem/item=MBK-69
https://doi.org/10.1145/321694.321699
http://dl.acm.org/citation.cfm?id=1070432.1070581
https://doi.org/10.1145/364099.364331
https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation3
https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation3
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1111/j.1467-8659.2009.01530.x
https://doi.org/10.1111/j.1467-8659.2009.01530.x
https://diglib.eg.org/handle/10.2312/7707
https://diglib.eg.org/handle/10.2312/7707
https://doi.org/10.1145/2010324.1964947
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
http://torus.math.uiuc.edu/jms/Papers/thesis/
https://doi.org/10.1145/62.2160

Finding Closed Quasigeodesics on Convex
Polyhedra
Erik D. Demaine
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
edemaine@mit.edu

Adam C. Hesterberg
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
achester@mit.edu

Jason S. Ku
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
jasonku@mit.edu

Abstract
A closed quasigeodesic is a closed loop on the surface of a polyhedron with at most 180◦ of surface
on both sides at all points; such loops can be locally unfolded straight. In 1949, Pogorelov proved
that every convex polyhedron has at least three (non-self-intersecting) closed quasigeodesics, but the
proof relies on a nonconstructive topological argument. We present the first finite algorithm to find
a closed quasigeodesic on a given convex polyhedron, which is the first positive progress on a 1990
open problem by O’Rourke and Wyman. The algorithm’s running time is pseudopolynomial, namely
O
(

n2

ε2
L
`
b
)
time, where ε is the minimum curvature of a vertex, L is the length of the longest edge, `

is the smallest distance within a face between a vertex and a nonincident edge (minimum feature size
of any face), and b is the maximum number of bits of an integer in a constant-size radical expression
of a real number representing the polyhedron. We take special care in the model of computation
and needed precision, showing that we can achieve the stated running time on a pointer machine
supporting constant-time w-bit arithmetic operations where w = Ω(lg b).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases polyhedra, geodesic, pseudopolynomial, geometric precision

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.33

Acknowledgements The authors thank Zachary Abel, Nadia Benbernou, Fae Charlton, Jayson
Lynch, Joseph O’Rourke, Diane Souvaine, and David Stalfa for discussions related to this paper.

1 Introduction

A geodesic on a surface is a path that is locally shortest at every point, i.e., cannot be
made shorter by modifying the path in a small neighborhood. A closed geodesic on a
surface is a loop (closed curve) with the same property; notably, the locally shortest property
must hold at all points, including the “wrap around” point where the curve meets itself. In
1905, Poincaré [20] conjectured that every convex surface has a non-self-intersecting closed
geodesic.1 In 1927, Birkhoff [5] proved this result, even in higher dimensions (for any smooth
metric on the n-sphere). In 1929, Lyusternik and Schnirelmann [17] claimed that every
smooth surface of genus 0 in fact has at least three non-self-intersecting closed geodesics.
Their argument “contains some gaps” [2], filled in later by Ballmann [1].

1 Non-self-intersecting (quasi)geodesics are often called simple (quasi)geodesics in the literature; we avoid
this term to avoid ambiguity with other notions of “simple”.

© Erik D. Demaine, Adam C. Hesterberg, and Jason S. Ku;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 33; pp. 33:1–33:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edemaine@mit.edu
mailto:achester@mit.edu
mailto:jasonku@mit.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Finding Closed Quasigeodesics on Convex Polyhedra

Figure 1 At a vertex of curvature κ, there is a κ-size interval of angles in which a segment of a
quasigeodesic can be extended: the segment of geodesic starting on the left can continue straight in
either of the pictured unfoldings, or any of the intermediate unfoldings in which the right pentagon
touches only at a vertex.

For non-smooth surfaces (such as polyhedra), an analog of a geodesic is a quasigeodesic –
a path with ≤ 180◦ of surface on both sides locally at every point along the path. Equivalently,
a quasigeodesic can be locally unfolded to a straight line: on a face, a quasigeodesic is a
straight line; at an edge, a quasigeodesic is a straight line after the faces meeting at that edge
are unfolded (developed) flat at that edge; and at a vertex of curvature κ (that is, a vertex
whose sum of incident face angles is 360◦ − κ), a quasigeodesic entering the vertex at a given
angle can exit it anywhere in an angular interval of length κ, as in Figure 1. Analogously,
a closed quasigeodesic is a loop which is quasigeodesic. In 1949, Pogorelov [19] proved
that every convex surface has at least three non-self-intersecting closed quasigeodesics, by
applying the theory of quasigeodesics on smooth surfaces to smooth approximations of
arbitrary convex surfaces and taking limits.

The existence proof of three closed quasigeodesics is nonconstructive, because the smooth
argument uses a nonconstructive topological argument (a homotopy version of the interme-
diate value theorem).2 In 1990, Joseph O’Rourke and Stacia Wyman posed the problem
of finding a polynomial-time algorithm to find any closed quasigeodesic on a given convex
polyhedron (aiming in particular for a non-self-intersecting closed quasigeodesic) [18]. This
open problem was stated during the open problem session at SoCG 2002 (by O’Rourke) and
finally appeared in print in 2007 [9, Open Problem 24.24]. Two negative results mentioned in
[9] are that an n-vertex polyhedron can have 2Ω(n) non-self-intersecting closed quasigeodesics
(an unpublished result by Aronov and O’Rourke) and that, for any k, there is a convex poly-
hedron whose shortest closed geodesic is not composed of k shortest paths (an unpublished
result from the discussion at SoCG 2002).

Even a finite algorithm is not known or obvious. One approach is to argue that there
is a closed quasigeodesic consisting of O(n) (or any function s(n)) segments on faces. It
seems plausible that the “short” closed quasigeodesics from the nonconstructive proofs satisfy

2 A proof sketch for the existence of one closed geodesic on a smooth convex surface is as follows. By
homotopy, there is a transformation of a small clockwise loop into its (counterclockwise) reversal that
avoids self-intersection throughout. Consider the transformation that minimizes the maximum arclength
of any loop during the transformation. By local cut-and-paste arguments, the maximum-arclength
intermediate loop is in fact a closed geodesic. The same argument can be made for the nonsmooth case.

E.D. Demaine, A. C. Hesterberg, and J. S. Ku 33:3

this property, but as far as we know the only proved property about them is that they are
non-self-intersecting, which does not obviously suffice. (A quasigeodesic could plausibly
wind many times around a curvature-bisecting loop, like the equator of a cube, somehow
turn around, and symmetrically unwind, all without collisions.) If true, there are O(n)s(n)

combinatorial types of quasigeodesics to consider, and each can be checked via the existential
theory of the reals (in exponential time), resulting in an exponential-time algorithm. But
we do not know how to bound s(n); even the results of this paper give no upper bound on
the number of segments constituting a closed quasigeodesic. In general, polyhedra such as
isosceles tetrahedra have arbitrarily long non-self-intersecting closed geodesics (and even
infinitely long non-self-intersecting geodesics) [14], so the only hope is to find an upper bound
s(n) on some (fewest-edge) closed quasigeodesic.

1.1 Our Results

We develop an algorithm that finds at least one3 closed quasigeodesic on a given convex
polyhedron in O

(
n2

ε2
L
`

)
real operations, where n is the number of vertices of the polyhedron,

ε is the smallest curvature at a vertex, L is the length of the longest edge, and ` is the
smallest distance within a face between a vertex and a nonincident edge (minimum feature
size of any face). In the model described below in Section 1.2, these real operations take
O
(
n2

ε2
L
` b
)
time if the input numbers are constant-size radical expressions over b-bit integers.

This running time is pseudopolynomial, so this does not yet resolve the open problem
of a polynomial-time algorithm. The closed quasigeodesic output by our algorithm may be
self-intersecting, even though a non-self-intersecting closed quasigeodesic is guaranteed to
exist. Furthermore, the quasigeodesic path is output implicitly (in a format detailed below),
as we lack a bound on the number s(n) of needed segments. In Section 3, we discuss some of
the difficulties involved in resolving either of these issues.

1.2 Models of Computation

Our results hold in several standard models of computation, which we pay careful attention
to. While much work has been done on computational geometry in bounded-precision
computational models [7, 8, 23], we are not aware of a single reference that describes all the
relevant models, or with models that can handle representing polyhedra and geodesic paths.
Thus we detail the possible model choices, distinguishing four aspects of the model:

1. Combinatorial model of computation. In combinatorial algorithms and data struc-
tures (without real numbers), there are two popular models of computation:

a. Pointer machine [3, 10, 13]: Memory is decomposed into m records, each with a
constant number of fields. Each field can store a w-bit integer or a pointer to another
record. One record represents the machine’s registers, and in constant time, the
machine can read and write fields within constant pointer distance from that record,
and create and/or destroy such a record.

3 Our algorithm may in fact produce a list of closed quasigeodesics, but there are some closed quasigeodesics
that it cannot find, including closed geodesics (not passing through a vertex) and possibly all non-self-
intersecting closed quasigeodesics.

SoCG 2020

33:4 Finding Closed Quasigeodesics on Convex Polyhedra

b. Word RAM [11]: Memory is an array of m words, each of which can store a w-bit
integer. The first O(1) words represent the machine’s registers. In constant time, the
machine can modify the register words or any word whose array index is given by a
register word. The word RAM can simulate the pointer machine.

In both cases, the machine can also do basic w-bit integer arithmetic (+,−,×,÷,
mod,and,or,not, <,>,=) in constant time, and we assume that w = Ω(lgn) (the
transdichotomous assumption, named for how it bridges the problem and machine [11]).

Our algorithm works in the pointer machine, and thus also in the word RAM.

2. Real model of computation. To deal with geometry (e.g., to represent the input),
we need to handle some form of real numbers. We define three models of increasing
generality that represent numbers in some binary format.

a. Integers (encoded in binary): Can be added, subtracted, multiplied, and compared
in O(b) time, where b is the total number of bits in the operands. Here we make the
transdichotomous assumption that w = Ω(lg b), in which case integer multiplication can
be done in O(b) time [16]. (Without this assumption, integer multiplication requires
O(b log b) bit operations [12], so we would just gain a log factor in our running times.)

b. Rationals (encoded as two integers, numerator and denominator, in binary): Same
performance as integers, plus real division in O(b) time.

c. Constant-size radical expressions over integers (encoded as a constant-size
expression tree with operators +,−,×,÷, k

√ and integer leaves): By known results in
root separation bounds [6], if b is the total number of bits in the integer leaves, then
the first O(b) bits can be computed in O(b) time; and if the expression is nonzero,
some of these O(b) bits will be nonzero, enabling exact comparison with 0. Thus, such
numbers can be compared in O(b) time, but when combining them arithmetically, we
need to take care that the expression never grows beyond constant size. Also, we can
compute the floor of such a number in O(b) time.

Our algorithm works in the last model, and therefore supports inputs in any of the
three models. Past work [7, 8] assumes O(w)-bit integer or rational inputs, which is less
suitable for inputs of polyhedra, as described below.

These models contrast the real RAM model [22], where the inputs are black-box real
numbers supporting radical operations +,−,×,÷, k

√ and comparisons in constant time.
While standard in computational geometry, this model is not very realistic for a digital
computer, because it does not bound the required precision, which can grow without
bound. For example, the real RAM model crucially does not support converting black-box
real numbers into integers (e.g., via the floor function), or else one can solve PSPACE [21]
and #SAT [4] in polynomial time. Our algorithm actually needs to use the floor function,
so it does not work on the “reasonable” real RAM model which lacks this operation.

3. Polyhedron format. The combinatorial structure of the polyhedron can be encoded as
a primal or dual graph, as usual, but which real numbers should represent the geometry?
Because the quasigeodesic problem is about the intrinsic geometry of the surface of a
polyhedron, the input geometry can be naturally represented intrinsically as well as
extrinsically, leading to three natural representations:

a. Extrinsic coordinates: 3D coordinates for each vertex.

E.D. Demaine, A. C. Hesterberg, and J. S. Ku 33:5

b. Intrinsic coordinates: For each face, for some isometric embedding of the face into
2D, the 2D coordinates of each vertex of the embedded face.

c. Intrinsic lengths: For each face, the lengths of the edges. This representation
assumes the faces have been combinatorially triangulated (so some edges may be flat).

In our real-number model of constant-size radical expressions over integers, extrinsic
coordinates can be converted into intrinsic coordinates which can be converted from/to
intrinsic lengths. Indeed, this feature is one of our motivations for this real-number model.
(The reverse direction, from intrinsic to extrinsic, is more difficult, as it involves solving
the Alexandrov problem [15].)

Our algorithm works in any of these input models.

4. Output format. Because we do not know any bounds on the number of segments
(faces) in a closed quasigeodesic, we need to allow an implicit representation of the output.
Specifically, we allow a quasigeodesic to be specified by a sequence of commands of the
following form:

follow a path R from vertex u to vertex v, traversing through some prefix of faces
in the periodic sequence

f1, f2, . . . , fm; f1, f2, . . . , fm;

We cannot specify the number of faces in the prefix, nor the length `(R) of the path,
but we can compute `(R) with any desired precision: specifically, we can compute Ω(k)
high-order bits of `(R) in O(k) time. We also cannot specify the direction that the path
leaves u with exact precision, but we can compute Ω(k) high-order bits of the coordinates
for a point p such that the direction of the path leaving u is toward p, again in O(k) time.
None of these quantities can be specified exactly, because the number of needed bits may
be arbitrarily large, again because the path may visit arbitrarily many faces. But we can
guarantee that such a path exists.

2 Algorithm

In this section, we give an algorithm to find a closed quasigeodesic on the surface of a convex
polyhedron P . First, a bit of terminology: we define a (quasi)geodesic ray/segment to
be a one/two-ended path that is (quasi)geodesic.

2.1 Outline
The idea of the algorithm is roughly as follows: first, we define a directed graph for which
each node4 is a pair (V, [ϕ1, ϕ2]) of a vertex V of P and a small interval of directions at it,
with an edge from one such node, (U, I), to another, (V, J), if a geodesic ray starting at the
polyhedron vertex U and somewhere in the interval of directions I can reach V and continue
quasigeodesically everywhere in J5. We show how to calculate at least one out-edge from
every node of that graph, so we can start anywhere and follow edges until hitting a node
twice, giving a closed quasigeodesic.

4 We use the word “node” and lower-case letters for vertices of the graph to distinguish them from vertices
of a polyhedron, for which we use capital letters and the word “vertex”.

5 Since we consider only geodesic rays that can continue quasigeodesically everywhere in J , there are some
closed quasigeodesics that we cannot find: those that leave a polyhedron vertex in a direction in an
interval J for which some directions are not quasigeodesic continuations. In particular, this algorithm is
unlikely to find closed quasigeodesics that turn maximally at a polyhedron vertex.

SoCG 2020

33:6 Finding Closed Quasigeodesics on Convex Polyhedra

Figure 2 A segment of a geodesic is a straight line in the unfolding of the sequence of faces
through which it passes, as in this unfolding of a regular dodecahedron.

The key part of this algorithm is to calculate, given a polyhedron vertex U and a range
of directions as above, another vertex V that can be reached starting from that vertex and
in that range of directions, even though reaching V may require crossing superpolynomially
many faces. First we prove some lemmas toward that goal.

I Definition 2.1. If X is a point on the surface of a polyhedron, ϕ is a direction at X, and
d > 0, then R(X,ϕ, d) is the geodesic segment starting at X in the direction ϕ and continuing
for a distance d or until it hits a polyhedron vertex, whichever comes first.6 We allow d =∞;
in that case, R(X,ϕ, d) is a geodesic ray.

IDefinition 2.2. If R(X,ϕ, d) is a geodesic segment or ray, the face sequence F (R(X,ϕ, d))
is the (possibly infinite) sequence of faces that R(X,ϕ, d) visits.

I Lemma 2.3. If R1 = R(X,ϕ1,∞) and R2 = R(X,ϕ2,∞) are two geodesic rays from a
common starting point X with an angle between them of θ ∈ (0, π), the face sequences F (R1)
and F (R2) are distinct, and the first difference between them occurs at most one face after a
geodesic distance of O(L/θ).

Proof. Given a (prefix of) F (Ri), the segment of Ri on it is a straight line, so while
F (R1) = F (R2), the two geodesics R1 and R2 form a wedge in a common unfolding, as in
Figure 2. The distance between the points on the rays at distance d from X is 2d sin θ

2 > dθ/π

(since θ
2 <

π
2), so at a distance of O(L/θ), that distance is at least L. So either F (R1) and

F (R2) differ before then, or the next edge that R1 and R2 cross is a different edge, in which
case F (R1) and F (R2) differ in the next face, as claimed. J

If we had defined L analogously to ` as not just the length of the longest edge but the
greatest distance within a face between a polyhedron vertex and an edge not containing it,
we could remove the “at most one face after” condition from Lemma 2.3.

6 This definition is purely geometric; we reserve calculating these paths for Lemma 2.4.

E.D. Demaine, A. C. Hesterberg, and J. S. Ku 33:7

Figure 3 Even a short geodesic path between two vertices u and v may cross many edges. Equally
colored faces represent copies of the same face being visited multiple times.

Figure 4 If a geodesic path encounters the same edge twice in nearly the same place and nearly
the same direction, as is the case for the thick quasigeodesic path through the center of this figure if
every fourth triangle is the same face, it may pass the same sequence of faces in the same order a
superpolynomial number of times. Equally colored faces represent copies of the same face being
visited multiple times.

2.2 Extending Quasigeodesic Rays

Although Lemma 2.3 gives a bound on the geodesic distance to the first difference in the
face sequences (or one face before it), this gives no bound on the number of faces traversed
before that difference, which might be large if the two paths come very close to a polyhedron
vertex of high curvature, as in Figure 3, or repeat the same sequence of edges many times, as
in Figure 4.

Nonetheless, in both of these cases, we can describe a geodesic ray’s path efficiently:

SoCG 2020

33:8 Finding Closed Quasigeodesics on Convex Polyhedra

I Lemma 2.4. Let R = (X,ϕ, d) be a geodesic segment with d < `. In O(nb) time, we can
calculate F (R), expressed as a sequence S1 of O(n) faces, followed by another sequence S2
of O(n) faces and a distance over which R visits the faces of S2 periodically7. Also, we can
calculate the face, location in the face, and direction of R at its far endpoint (the one other
than X).

Proof. First, we prove the geometric fact (without calculating anything) that R is periodic
from the first time it reenters any already-visited face. Second, we calculate, in O(nb) time,
the path of R through the non-periodic part, possibly detecting that R hits a vertex. Third,
we calculate the path of R through the periodic part, in two cases: either R reenters each
face at the same angle as its first entry, or not.

First, we claim that R is periodic from the first time it reenters a vertex: that is, if R
enters a face f on an edge e1 and exits8 at a point P2 on an edge e2, then we claim that
every time R enters f by e1, it must exit f by e2, and not any other edge e3

9. It must exit
by a different edge from the edge e1 by which it entered, so suppose for contradiction that in
some visit to f , it enters at a point P1 on the edge e1 and exits at a point P3 on another
edge e3, as shown in Figure 5. If any two of e1, e2, and e3 are nonincident, then R has gone
from a point on one edge to a point on a nonincident edge. By the definition of `, R cannot
do so without traveling a distance at least `, farther than the conditions under which this
lemma applies. Otherwise, e1, e2, and e3 are the three edges of a triangular face, and the
total geodesic distance is at least d(P1, P2) +d(P1, P3). Consider the reflection e4 of e3 across
e2 and the reflected point P4 on e4. The path from P4 to P2 via P1 is at least the distance
from P2 to P4, which is at least the shortest distance from a point on e4 to a point on e2,
which is attained at an endpoint of at least one of e2 and e4, say an endpoint of e4. The
path making that shortest distance (shown in gray) goes through e1, so R travels at least
the distance from e1 to the opposite vertex, which is at least `, farther than the conditions
under which this lemma applies. Hence each edge crossed determines the next edge crossed,
so F (R) is periodic after crossing each edge at most once. Also, there are only O(n) edges,
so after crossing at most O(n) edges, F (R) repeats periodically with period O(n).

Second, in total time O(nb), we calculate the path of R before it repeats periodically in
each face f it enters. Assume we start with an intrinsic representation of the polyhedron,
with an isometric embedding of each face. We will represent the direction of a ray in a face
by a pair of points, both with O(b) bits, on the ray in the local coordinate system of that
face; the points may or may not themselves be in the face.

Suppose that R enters f on an edge e′ from a face f ′. The isometry that takes the
instance of e′ in the embedding of f ′ to the instance of e′ in the embedding of f is a linear
transformation whose coefficients are O(b) bits, which we can apply in O(b) time to the pair
of points representing R in f ′ to get a pair of points (x0, y0) and (x1, y1) representing R in
f , again rounded to O(b) bits.

For each edge e of f with endpoints (a, b) and (c, d), the intersection of the extension of
R, which has equation (x− x1)(y0 − y1) = (x0 − x1)(y − y1), and the extension of e, which
has equation (x − c)(b − d) = (a − c)(y − d), is a point (x, y) where each of x and y is a
constant-depth arithmetic expressions in x0, y0, x1, y1, a, b, c, and d, so we can compute it
in O(b) time. Then we can check whether x is between a and c (or y is between b and d);

7 The length of the sequence of faces may be too large to even write down the number of repetitions.
8 If R hits a vertex of that polyhedron face f , we say that it exits on each of the two edges of f containing
that vertex.

9 In particular, R cannot exit by a vertex in any visit to f after the first.

E.D. Demaine, A. C. Hesterberg, and J. S. Ku 33:9

Figure 5 If a geodesic visits three edges of the same face, the total distance traveled is at least `.

Figure 6 When a quasigeodesic path passes through the same sequence of faces several times,
the unfolding of the faces it passes through repeats regularly.

having O(b) bits of each is enough to do so by Section 1.2. This tells us whether R crosses e,
and we have a pair of points in the embedding of f representing R, which is exactly what we
need to calculate the path of R through the next face.

There are O(n) pairs of a face and an edge of that face, so the total amount of computation
before the face sequence repeats periodically is O(nb). (If R ends at a polyhedron vertex
before then, we calculate so because R exits a face by two edges at the same time, and we
can compare the O(b)-bit leaving times in O(b) time.)

Third, we calculate the periodic part of the path. Consider the shape formed by the faces
f1, f2, . . . , fk of F (R) that repeat periodically, as in the bolded part of Figure 6. Copies of
this shape attach to each other on copies of a repeated edge e; that is, the entire shape is
translated and possibly rotated to identify the copies of e. The composition of the isometries
that take f1 to f2, f2 to f3, and so on is an isometry that takes one copy of e to the next.
By Section 1.2, we can check whether the slopes of two copies of e are equal (a case with no
rotation) or not.

In the case with no rotation, as in Figure 6, all copies of each edge e are translates of
each other by a constant amount, and we can describe all copies of e as line segments from
(x0 + k∆x, y0 + k∆y) to (x1 + k∆x, y1 + k∆y) for some x0, x1, y0, y1, ∆x, ∆y, and all k ∈ N.

SoCG 2020

33:10 Finding Closed Quasigeodesics on Convex Polyhedra

Then, given the equation (x− x1)(y0 − y1) = (x0 − x1)(y − y1) for R, we can calculate the
intersection of R with the lines (x− x0)∆y = (y − y0)∆x and (x− x1)∆y = (y − y1)∆x in a
constant number of arithmetic operations. One of those intersections is past the first copy of
e and one is before it; without loss of generality, suppose that the one past the first copy of e
is at (x0 + κ∆x, y0 + κ∆y) for some κ ∈ R+. Then the last copy of e that R intersects is the
one corresponding to k = bκc. We can calculate that for each edge in the repeated sequence
of faces (reusing the same calculated composition of isometries). The edge minimizing the
resulting values of k (with ties broken by the first edge in the sequence of edges of F (R)) is
the edge by which R leaves the periodic sequence of faces.

If there is rotation, all copies of each edge e are rotations around a consistent center point
C = (xC , yC). If the first three copies of one endpoint X of e are X0 = (x0, y0), X1 = (x1, y1),
and X2 = (x2, y2), then we can calculate the equations of the bisectors of X0X1 and X1X2
in O(1) arithmetic operations, so we can calculate their intersection, which is C. All copies
of X are of the form (xC , yC) +

√
(x0 − xC)2 + (y0 − yC)2(cos(θ0 + k∆θ), sin(θ0 + k∆θ)) for

some θ0 and θ1. (We calculate trig functions only precisely enough to take a floor: see below.)
Then all copies of X are on the circle (x − xC)2 + (y − yC)2 = (x0 − xC)2 + (y0 − yC)2.
We can calculate the (two) intersections of R with that circle in O(1) operations. For each
intersection (xC , yC) +

√
(x0 − xC)2 + (y0 − yC)2(cos(θ0 + κ∆θ), sin(θ0 + κ∆θ)), we can

calculate k = bκc by calculating the first few bits of those trig functions (say, by Taylor
expansions). Given such a k, the ray R intersects the kth copy of an edge e, then crosses the
circle on which all copies of one endpoint of that edge are. However, if that crossing goes
from outside to inside the circle, it may happen that R intersects both the kth and (k + 1)st
copies of e, even though it left the circle in between them. So, check whether R intersects
the (k + 1)st copy of e; if so, move on to the next-smallest value of k. There are at most
2n endpoints, so after O(n) such operations, we find the first edge on which R leaves the
periodic pattern of faces. J

I Corollary 2.5. A geodesic segment R(X,ϕ, d) can be implicitely representated by O
(
d
`

)
subpaths, each of which visits a prefix of a periodic sequence of O(n) faces, which can be
computed in O

(
nd` b

)
time.

Proof. Apply Lemma 2.4 to R = R
(
X,ϕ, `2

)
to generate a point X ′ and direction ϕ′ of

the endpoint of R other than X that is at least distance `
2 from X and traverses the prefix

of some periodic sequence of O(n) faces in O(nb) time. Repeatedly appling Lemma 2.4 to
R
(
X ′, ϕ′, `2

)
, and again at most 2d/` times proves the claim. J

2.3 Full Algorithm
We are now ready to state the algorithm for finding a closed quasigeodesic in quasipolynomial
time:

I Theorem 2.6. Let P be a convex polyhedron with n vertices all of curvature at least ε, let
L be the length of the longest edge, let ` be the smallest distance within a face between a vertex
and a nonincident edge, let b be the maximum number of bits of an integer in a constant-size
radical expression of a real number representing P . Then, in O

(
n2

ε2
L
` b
)
time, we can find a

closed quasigeodesic on P . The closed quasigeodesic can be implicitly represented by O
(
n
ε

)
vertex-to-vertex paths, where each path is composed of O

(
L
`ε

)
subpaths each of which visits

some prefix of a periodic sequence of O(n) faces.

E.D. Demaine, A. C. Hesterberg, and J. S. Ku 33:11

Proof. For each vertex V of P , divide the total angle at that vertex (that is, the angles at
that vertex in the faces that meet at that vertex) into arcs of size between ε/4 and ε/2 < π,
making O(1/ε) such arcs at each vertex.

Construct a directed graph G whose nodes are pairs of a vertex V from P and one of
its arcs I, giving the graph O(n/ε) nodes, with an edge from a node u = (U, I) to a node
v = (V, J) if there exists a direction in I such that a quasigeodesic ray starting in that
direction from the polyhedron vertex U hits the polyhedron vertex V and can continue from
every angle in J .

Let v = (V, I) be a node of G, with corresponding vertex V and arc I spanning angles
from ϕ1 to ϕ2. Compute face sequences for R1 = R(V, ϕ1, L/ε) and R2 = R(V, ϕ2, L/ε) and
compare their face sequences F (R1) and F (R2). By Lemma 2.3, face sequences F (R1) and
F (R2) differ somewhere, and their first difference determines a polyhedron vertex reachable
in the wedge between R1 and R2 via a geodesic from V n a direction between angles ϕ1
and ϕ2, which can be found by scanning the sequencing. Once we reach such a vertex U ,
a quasigeodesic can exit the vertex anywhere in an angle equal to that vertex’s curvature,
which is at least ε, so for at least one of the arcs J of size at most ε/2 at that vertex, the
quasigeodesic can exit anywhere in that arc, so we have found an outgoing edge from node v
to node u = (U, J).

The preceding algorithm computes an outgoing edge from any node in G, so we repeatedly
traverse outgoing edges of G until a node of G is repeated. This cycle in G exactly corresponds
to a closed quasigeodesic on the polyhedron, by the definition of the graph at the start of
Section 2.1.

This algorithm computes O(n/ε) edges of G (at most one for every graph node) before
finding a cycle. To find an edge, the algorithm computes two face sequences F (R1) and
F (R2), which by Corollary 2.5 can each be implicitly represented by O

(
L
`ε

)
subpaths, each

of which visits a prefix of a periodic sequence of O(n) faces and can be computed in O
(
n
ε
L
` b
)

time. Then the geodesic corresponding to each edge of G can be computed through the
longest common prefix of these face sequences in the same amount of time. Thus the whole
geodesic can be described by O(n/ε) such vertex-to-vertex paths, and can be constructed in
O
(
n2

ε2
L
` b
)
time, as desired. J

If D is the greatest diameter of a face, then a closed quasigeodesic found by Theorem 2.6
has length O

(
n
ε (Lε +D)

)
, because the quasigeodesic visits O(n/ε) graph nodes and, by

Lemma 2.3, goes a distance at most L/ε+D between each consecutive pair.

3 Conclusion

It has been known for seven decades [19] that every convex polyhedron has a closed quasi-
geodesic, but our algorithm is the first finite algorithm to find one. We end with some open
problems about extending our approach, though they all seem difficult.

I Open Problem 1. Theorem 2.6 does not necessarily find a non-self-intersecting closed
quasigeodesic, even though at least three are guaranteed to exist. Is there an algorithm to find
one? In particular, can we find the shortest closed quasigeodesic?

Any approach similar to Theorem 2.6 is unlikely to resolve this, for several reasons:
1. Parts of a quasigeodesic could enter a vertex at infinitely many angles. Theorem 2.6

makes this manageable by grouping similar angles of entry to a vertex, but if similar
angles of entry to a vertex are combined, extensions that would be valid for some of them

SoCG 2020

33:12 Finding Closed Quasigeodesics on Convex Polyhedra

but invalid for others are treated as invalid for all of them. For instance, a quasigeodesic
found by Theorem 2.6 will almost never turn by the maximum allowed at any vertex,
since exiting a vertex at the maximum possible turn from one entry angle to the vertex
may mean exiting it with more of a turn than allowed for another very close entry angle.
So there are some closed quasigeodesics not findable by Theorem 2.6, and those may
include non-self-intersecting ones.

2. Given a vertex and a wedge determined by a range of directions from it, we can find
one vertex in the wedge, but if we wish to find more than one, the problem becomes
more complicated. When we seek only one vertex, we only need consider one unfolding
of the faces, which the entire wedge stays in until it hits a vertex; when we pass a
vertex, the unfoldings on each side of it might be different, so we multiply the size of
the problem by 2 every time we pass a vertex. There may, in fact, be exponentially
many non-self-intersecting geodesic paths between two vertices: for instance, Aronov and
O’Rourke [9] give the example of a doubly covered regular polygon, in which a geodesic
path may visit every vertex in order around the cycle but may skip vertices.

I Open Problem 2. Theorem 2.6 is polynomial in not just n but the smallest curvature at a
vertex, the length of the longest edge, and the shortest distance within a face between a vertex
and an edge not containing it. Are all of those necessary? Can the last be simplified to the
length of the shortest side?

I Open Problem 3. Can the algorithm of Theorem 2.6 be extended to nonconvex polyhedra?

I Open Problem 4. Is there an algorithm to find a closed quasigeodesic passing through a
number of faces bounded by a polynomial function of n, ε, L, `, and perhaps the minimum
total angle of a polyhedron vertex? Does Theorem 2.6 already have such a bound?

A single quasigeodesic ray may pass through a number of faces not bounded by a function
of those parameters before ceasing to cycle periodically: for instance, the geodesic ray of
Figure 4 does. However, we have no example for which a whole geodesic wedge passes through
a number of faces not bounded by a function of those parameters before containing a vertex.

References
1 Hans Werner Ballmann. Der Satz von Lusternik und Schnirelmann. Bonner Mathematische

Schriften, 102:1–25, 1978.
2 Werner Ballmann, Gudlaugur Thorbergsson, and Wolfgang Ziller. On the existence of

short closed geodesics and their stability properties. In Seminar on Minimal Submani-
folds, pages 53–63. Princeton University Press, 1983. URL: https://www.researchgate.
net/profile/Wolfgang_Ziller/publication/268500145_On_the_existence_of_short_
closed_geodesics_and_their_stability_properties/links/58de87a7a6fdcc41bf8e987f/
On-the-existence-of-short-closed-geodesics-and-their-stability-properties.pdf.

3 Amir M. Ben-Amram. What is a “pointer machine”? SIGACT News, 26(2):88–95, June 1995.
doi:10.1145/202840.202846.

4 A. Bertoni, G. Mauri, and N. Sabadini. Simulations among classes of random access machines
and equivalence among numbers succinctly represented. Annals of Discrete Mathematics,
25:65–90, 1985.

5 George D. Birkhoff. Dynamical Systems, volume 9 of Colloquium Publications. American
Mathematical Society, 1927. URL: https://bookstore.ams.org/coll-9.

6 Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne Schmitt. A
separation bound for real algebraic expressions. In Proceedings of the 9th Annual European
Symposium on Algorithms, volume 2161 of Lecture Notes in Computer Science, pages 254–265,
Aarhus, Denmark, August 2001. URL: http://graphics.stanford.edu/~sfunke/Papers/
ESA01/sepbound01.pdf.

https://www.researchgate.net/profile/Wolfgang_Ziller/publication/268500145_On_the_existence_of_short_closed_geodesics_and_their_stability_properties/links/58de87a7a6fdcc41bf8e987f/On-the-existence-of-short-closed-geodesics-and-their-stability-properties.pdf
https://www.researchgate.net/profile/Wolfgang_Ziller/publication/268500145_On_the_existence_of_short_closed_geodesics_and_their_stability_properties/links/58de87a7a6fdcc41bf8e987f/On-the-existence-of-short-closed-geodesics-and-their-stability-properties.pdf
https://www.researchgate.net/profile/Wolfgang_Ziller/publication/268500145_On_the_existence_of_short_closed_geodesics_and_their_stability_properties/links/58de87a7a6fdcc41bf8e987f/On-the-existence-of-short-closed-geodesics-and-their-stability-properties.pdf
https://www.researchgate.net/profile/Wolfgang_Ziller/publication/268500145_On_the_existence_of_short_closed_geodesics_and_their_stability_properties/links/58de87a7a6fdcc41bf8e987f/On-the-existence-of-short-closed-geodesics-and-their-stability-properties.pdf
https://doi.org/10.1145/202840.202846
https://bookstore.ams.org/coll-9
http://graphics.stanford.edu/~sfunke/Papers/ESA01/sepbound01.pdf
http://graphics.stanford.edu/~sfunke/Papers/ESA01/sepbound01.pdf

E.D. Demaine, A. C. Hesterberg, and J. S. Ku 33:13

7 Timothy M. Chan and Mihai Pǎtraşcu. Transdichotomous results in computational geometry,
I: Point location in sublogarithmic time. SIAM Journal on Computing, 39(2):703–729, 2009.
doi:10.1137/07068669X.

8 Timothy M. Chan and Mihai Pǎtraşcu. Transdichotomous results in computational geometry,
II: Offline search, 2010. Originally published at STOC 2007. arXiv:1010.1948.

9 Erik D. Demaine and Joseph O’Rourke. Geodesics: Lyusternik-Schnirelmann. In Geometric
Folding Algorithms: Linkages, Origami, Polyhedra, section 24.4, pages 372–375. Cambridge
University Press, Cambridge, 2007.

10 James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making data
structures persistent. Journal of Computer and System Sciences, 38(1):86–124, 1989.

11 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. Journal of Computer and System Sciences, 47(3):424–436, 1993. doi:
10.1016/0022-0000(93)90040-4.

12 David Harvey and Joris van der Hoeven. Integer multiplication in time O(n logn). HAL
Preprint hal-02070778, 2019. URL: https://hal.archives-ouvertes.fr/hal-02070778.

13 Giuseppe F. Italiano and Rajeev Raman. Topics in data structures. In Mikhail J. Atallah
and Marina Blanton, editors, Algorithms and Theory of Computation Handbook, volume 1,
chapter 5, pages 5-1–5-29. CRC Press, second edition, 2010.

14 Jin-Ichi Itoh, Joël Rouyer, and Costin Vîlcu. Polyhedra with simple dense geodesics. Differential
Geometry and its Applications, 66:242–252, 2019. doi:10.1016/j.difgeo.2019.07.001.

15 Daniel Kane, Gregory N. Price, and Erik D. Demaine. A pseudopolynomial algorithm for
Alexandrov’s Theorem. In Proceedings of the 11th Algorithms and Data Structures Symposium,
volume 5664 of Lecture Notes in Computer Science, pages 435–446, Banff, Canada, August
2009.

16 Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 1969.
17 Lazar Lyusternik and Lev Schnirelmann. Sur le probléme de trois géodésiques fermées sur les

surfaces de genre 0. Comptes Rendus de l’Académie des Sciences de Paris, 189:269–271, 1929.
18 Joseph O’Rourke. Personal communication, 2020.
19 Aleksei Vasilevich Pogorelov. Quasi-geodesic lines on a convex surface. Matematicheskii Sbornik,

25(62):275–306, 1949. English translation in American Mathematical Society Translations 74,
1952.

20 Henri Poincaré. Sur les lignes géodésiques des surfaces convexes. Transactions of the American
Mathematical Society, 6(3):237–274, 1905.

21 Arnold Schönhage. On the power of random access machines. In Proceedings of the 6th
International Colloquium on Automata, Languages, and Programming, volume 71 of Lecture
Notes in Computer Science, pages 520–529, 1979.

22 Michael Ian Shamos. Computational Geometry. PhD thesis, Yale University, 1978.
23 Vikram Sharma and Chee K. Yap. Robust geometric computation. In Jacob E. Goodman,

Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 45, pages 1189–1223. CRC Press, third edition, 2018.

SoCG 2020

https://doi.org/10.1137/07068669X
http://arxiv.org/abs/1010.1948
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/0022-0000(93)90040-4
https://hal.archives-ouvertes.fr/hal-02070778
https://doi.org/10.1016/j.difgeo.2019.07.001

The Stretch Factor of Hexagon-Delaunay
Triangulations
Michael Dennis
Computer Science Division, University of California at Berkeley, Berkeley, CA, USA
michael_dennis@cs.berkeley.edu

Ljubomir Perković
School of Computing, DePaul University, Chicago, IL, USA
lperkovic@cs.depaul.edu

Duru Türkoğlu
School of Computing, DePaul University, Chicago, IL, USA
duru@cs.uchicago.edu

Abstract
The problem of computing the exact stretch factor (i.e., the tight bound on the worst case stretch
factor) of a Delaunay triangulation is one of the longstanding open problems in computational
geometry. Over the years, a series of upper and lower bounds on the exact stretch factor have
been obtained but the gap between them is still large. An alternative approach to solving the
problem is to develop techniques for computing the exact stretch factor of “easier” types of Delaunay
triangulations, in particular those defined using regular-polygons instead of a circle. Tight bounds
exist for Delaunay triangulations defined using an equilateral triangle and a square. In this paper,
we determine the exact stretch factor of Delaunay triangulations defined using a regular hexagon: It
is 2. We think that the main contribution of this paper are the two techniques we have developed to
compute tight upper bounds for the stretch factor of Hexagon-Delaunay triangulations.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Sparsification and spanners; Theory of computation → Shortest paths

Keywords and phrases Delaunay triangulation, geometric spanner, plane spanner, stretch factor,
spanning ratio

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.34

Related Version A full version of the paper is available at [7], https://arxiv.org/abs/1711.00068.

1 Introduction

In this paper we consider the problem of computing a tight bound on the worst case stretch
factor of a Delaunay triangulation. Given a set P of points on the plane, the Delaunay
triangulation T on P is a plane graph such that for every pair u, v ∈ P , (u, v) is an edge of T
if and only if there is a circle passing through u and v with no point of P in its interior. (This
definition assumes that points in P are in general position which we discuss in Section 2.)
In this paper, we refer to Delaunay triangulations defined using the circle as #-Delaunay
triangulations. The #-Delaunay triangulation T of P is a plane subgraph of the complete,
weighted Euclidean graph EP on P in which the weight of an edge is the Euclidean distance
between its endpoints. Graph T is also a spanner, defined as a subgraph of EP with the
property that the distance in the subgraph between any pair of points is no more than a
constant multiplicative ratio of the distance in EP between the points. The constant ratio is
referred to as the stretch factor (or spanning ratio) of the spanner.

The problem of computing a tight bound on the worst case stretch factor of the #-
Delaunay triangulation has been open for more than three decades. In the 1980s, when
#-Delaunay triangulations were not known to be spanners, Chew considered related, “easier”

© Michael Dennis, Ljubomir Perković, and Duru Türkoğlu;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael_dennis@cs.berkeley.edu
mailto:lperkovic@cs.depaul.edu
mailto:duru@cs.uchicago.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.34
https://arxiv.org/abs/1711.00068
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 The Stretch Factor of Hexagon-Delaunay Triangulations

Table 1 Key stretch factor upper bounds (tight bounds are bold).

Paper Graph Upper Bound
[8] #-Delaunay π(1 +

√
5)/2 ≈ 5.08

[9] #-Delaunay 4π/(3
√

3) ≈ 2.41
[10] #-Delaunay 1.998

[6] 4-Delaunay 2

[5] �-Delaunay
√

10 ≈ 3.16
[2] �-Delaunay

√
4 + 2

√
2 ≈ 2.61

[This paper] 9-Delaunay 2

structures. In 1986 [5], Chew proved that a �-Delaunay triangulation – defined using a
fixed-orientation square instead of a circle – is a spanner with stretch factor at most

√
10.

Following this, Chew proved that the 4-Delaunay triangulation – defined using a fixed-
orientation equilateral triangle – has a stretch factor of 2 [6]. Significantly, this bound is
tight: one can construct 4-Delaunay triangulations with stretch factor arbitrarily close to 2.
Finally, Dobkin et al. [8] showed that the #-Delaunay triangulation is a spanner as well. The
bound on the stretch factor they obtained was subsequently improved by Keil and Gutwin [9]
as shown in Table 1. The bound by Keil and Gutwin stood unchallenged for many years
until Xia recently improved the bound to below 2 [10].

On the lower bound side, some progress has been made on bounding the worst case
stretch factor of a #-Delaunay triangulation. The trivial lower bound of π/2 ≈ 1.5707 has
been improved to 1.5846 [4] and then to 1.5932 [11].

After three decades of research, we know that the worst case stretch factor of #-Delaunay
triangulations is somewhere between 1.5932 and 1.998. Unfortunately, the techniques that
have been developed so far seem inadequate for proving a tight stretch factor bound.

Rather than attempting to improve further the bounds on the stretch factor of #-Delaunay
triangulations, we follow an alternative approach. Just like Chew turned to 4- and �-
Delaunay triangulations to develop insights useful for showing that #-Delaunay triangulations
are spanners, we make use of Delaunay triangulations defined using regular polygons to
develop techniques for computing tight stretch factor bounds. Delaunay triangulations based
on regular polygons are known to be spanners (Bose et al. [3]). Tight bounds are known for
4-Delaunay triangulations [6] and also for �-Delaunay triangulations (Bonichon et al. [2])
as shown in Table 1.

In this paper, we show that the worst case stretch factor of 9-Delaunay triangulations
is 2. We present an overview of our proof in Section 3. The overview makes use of three
lemmas whose detailed proofs are omitted; the proofs (briefly discussed in Sections 4, 5, and
6) are in the full version of the paper [7]. We think that our main contribution consists of
two techniques that we use to compute tight upper bounds on the stretch factor of particular
types of 9-Delaunay triangulations. In Section 7 we review the role of the techniques in the
paper and explore their potential to be applied to other kinds of Delaunay triangulations.

2 Preliminaries

We consider a finite set P of points in the two-dimensional plane with an orthogonal coordinate
system. The x- and y-coordinates of a point p will be denoted by x(p) and y(p), respectively.
The Euclidean graph EP of P is the complete weighted graph embedded in the plane whose

M. Dennis, L. Perković, and D. Türkoğlu 34:3

nodes are identified with the points of P . For every pair of nodes p and q, the edge (p, q)
represents the segment [pq] and the weight of (p, q) is the Euclidean distance between p

and q which is d2(p, q) =
√

(x(p)− x(q))2 + (y(p)− y(q))2. Our arguments also use the
x-coordinate distance between p and q which we denote as dx(p, q) = |x(p)− x(q)|.

Let T be a subgraph of EP . The length of a path in T is the sum of the weights of the
edges of the path and the distance dT (p, q) in T between two points p and q is the length of
the shortest path in T between them. T is a t-spanner for some constant t > 0 if for every
pair of points p, q of P , dT (p, q) ≤ t · d2(p, q). The constant t is referred to as the stretch
factor of T .

We define a family of spanners to be a set of graphs TP , one for every finite set P of
points in the plane, such that for some constant t > 0, every TP is a t-spanner of EP . We say
that the stretch factor t is exact (tight) for the family (or that the worst case stretch factor is
t) if for every ε > 0 there exists a set of points P such that TP is not a (t− ε)-spanner of EP .

The families of spanners we consider are various types of Delaunay triangulations on a
set P of points in the plane. Given a set P of points on the plane, we say that a convex,
closed, simple curve in the plane is empty if it contains no point of P in its interior. The
#-Delaunay triangulation T on P is defined as follows: For every pair u, v ∈ P , (u, v) is an
edge of T if and only if there is an empty circle passing through u and v. (This definition
assumes that points are in general position which in the case of #-Delaunay triangulations
means that no four points of P are co-circular.) If, in the definition, circle is replaced by
fixed-orientation square (e.g., a square whose sides are axis-parallel) or by fixed-orientation
equilateral triangle then different triangulations are obtained: the �- and the 4-Delaunay
triangulations.

If, in the definition of the #-Delaunay triangulation, we change circle to fixed-orientation
regular hexagon, then a 9-Delaunay triangulation is obtained. In this paper we focus on such
triangulations. While any fixed orientation of the hexagon is possible, we choose w.l.o.g. the
orientation that has two sides of the hexagon parallel to the y-axis as shown in Fig. 1-(a).
In the remainder of the paper, hexagon will always refer to a regular hexagon with such an
orientation. We find it useful to label the vertices of the hexagon N , EN , ES , S, WS , and
WN , in clockwise order and starting with the top one. We also label the sides ne, e, se, sw,
w, and nw as shown in Fig. 1-(a); we will sometimes refer to the se and sw sides as the s
sides and to the ne and nw sides as the n sides.

The definition of the 9-Delaunay triangulation assumes that no four points lie on the
boundary of an empty hexagon. Our arguments also assume that no two points lie on a line
whose slope matches the slope of a side of the hexagon (i.e. slopes∞, 1√

3 ,−
1√
3). The general

position assumption we therefore make in this paper consists of the above two restrictions.
This assumption is made solely for the purpose of simplifying the presentation; the arguments
in the paper could be extended so the results apply to all 9-Delaunay triangulations. Finally,
we need to be aware that unlike the #-Delaunay triangulation on P , the 9-Delaunay (and
also the �- and 4-Delaunay) triangulation on P may not contain all edges on the convex
hull of P . To handle this and simplify our arguments, we add to P six additional points,
very close to but not exactly (in order to satisfy the above assumptions) at coordinates
(0,±M) and (±M cos(π/6),±M sin(π/6)) where M > 50 maxs,t∈P d2(s, t). The 9-Delaunay
triangulation on this modified set of points P , consisting of the original triangulation plus
additional edges between the new points and original points and also between the new points
themselves, includes the edges on the convex hull of P . Also, any path in this triangulation
between two points s and t from the original set P with length bounded by 2d2(s, t) cannot
possibly use the added points. Thus a proof of our main result for the modified triangulation
will also be a proof for the original one and so we assume that the 9-Delaunay triangulation
on P includes the edges on the convex hull of P .

SoCG 2020

34:4 The Stretch Factor of Hexagon-Delaunay Triangulations

N

WN

WS

S

ES

EN

nw

w

sw se

e

ne

H1

Hk

p = p0

q0

pk

q = qk

H1

p = p0

p1

p2

q0

q1

q2

(a) (b) (c)

Figure 1 (a) The hexagon orientation and the side and vertex labels that we use (b) A 9-Delaunay
triangulation with points p, q, pk, and q0 having coordinates (0, 0), (1, 1√

3), (δ, 2√
3 −
√

3δ), and
(1− δ,− 1√

3 +
√

3δ), respectively. For δ small enough, dT (p, q) ≥ (2− ε)d2(p, q). (c) A closer look at
the bottom faces of this triangulation.

We end this section with a lower bound, by Bonichon [1], on the worst case stretch factor
of 9-Delaunay triangulations. The lower bound construction is illustrated in Fig. 1-(b) and
Fig. 1-(c). The proof is omitted but appears in the full version of the paper [7].

I Lemma 1. For every ε > 0, there exists a set P of points in the plane such that the
9-Delaunay triangulation on P has stretch factor at least 2− ε.

3 Main result

In this section we state our main result and provide an overview of our proof. We start with
a technical lemma that is used to prove the two key lemmas needed for the main result.

3.1 Technical lemma
Let T be the 9-Delaunay triangulation on a set of points P in the plane.

I Definition 2. Let T1, T2, . . . , Tn be a sequence of triangles of T that a line st of finite
slope intersects. This sequence of triangles is said to be linear w.r.t. line st if for every
i = 1, . . . , n− 1:

triangles Ti and Ti+1 share an edge, and
line st intersects the interior of that shared edge (not an endpoint).

Our goal is to prove an upper bound on the length of the shortest path from the “leftmost”
point of T1 to the “rightmost” point of Tn, when certain conditions hold. We introduce some
notation and definitions, illustrated in Fig. 2, to make this more precise.

We consider the n−1 shared triangle edges intersected by line st from left to right (where
left and right are defined with respect to x-coordinates) and label the endpoints of the i-th
edge ui and li, with ui being above line st and li below. We note that points typically get
multiple labels and identify a point with its label(s). If line st goes through the vertex of
T1 other than u1 and l1, we assign that vertex both labels u0 and l0 (as shown in Fig. 4);
otherwise, we assign labels u0 and l0 to the endpoints of the edge of T1 intersected by line st
other than (u1, l1), with u0 being above line st (as shown in Fig. 2). Similarly, if line st goes
through the vertex of Tn other than un−1 and ln−1, we assign it both labels un and ln (as

M. Dennis, L. Perković, and D. Türkoğlu 34:5

shown in Fig. 4); otherwise, we assign labels un and ln to the endpoints of the other edge of
Tn intersected by line st, with un being above line st (as shown in Fig. 2). Note that for
1 ≤ i ≤ n:

either Ti = 4(ui, li, li−1), in which case we call li−1 and li the left and right vertices of Ti

or Ti = 4(ui−1, ui, li), in which case we call ui−1 and ui the left and right vertices of Ti.
Note that only one of the above holds, except for T1 if u0 = l0 (in which case both hold) or
for Tn if un = ln (in which case again both hold). For every i = 1, . . . , n, when ui = ui−1 or
li = li−1 we call the corresponding vertex of Ti the base vertex of Ti. Note that T1 has no
base vertex if u0 = l0 and Tn has no base vertex if un = ln (as is the case in Fig. 4). Let
U and L be the sets of all point labels ui and li, respectively, and let T1n be the union of
T1, T2, . . . , Tn which we will refer to as a linear sequence of triangles as well.

Let Hi, for 1 ≤ i ≤ n, be the (empty) hexagon passing through the vertices of Ti; note
that this hexagon is unique due to the general position assumption. A vertex of Ti is said to
be a w, e, n, or s vertex of Ti if it lies on the w side, e side, one of the n sides, or one of the
s sides, respectively, of Hi (see Fig. 2). A left vertex of Ti that is a w vertex of Ti is referred
to as a left induction vertex of Ti; similarly, a right vertex that is a e vertex is referred to as
a right induction vertex of Ti.

Note that a base vertex cannot be an induction vertex.

I Definition 3. We call an edge (ui, lj) gentle if its slope is between − 1√
3 and 1√

3 .

In Fig. 2 no edge (ui, lj) is gentle while in Fig. 4 (u0, l1) and (u8, l8) are gentle.

I Definition 4. The linear sequence of triangles T1n is regular if T1 has a left induction
vertex, Tn has a right induction vertex, and if, for every i = 1, . . . , n− 1:

ui is not a s vertex of Ti and Ti+1,
li is not a n vertex of Ti and Ti+1, and
(ui, li) is not gentle.

The linear sequence in Fig. 2 is regular while the one in Fig. 4 is not (because u8 lies on the
sw side of H9 – the red hexagon passing through the vertices of T9 = 4(u8, u9, l9) – and also
because edge (u8, l8) is gentle).

The proof of the following technical lemma is discussed in Section 5.

H1

T1

H2

T2

H3

T3

H4

T4

H5

T5

u0

u1

l0, l1, l2

u2, u3 u4

l3, l4, l5

u5

Figure 2 The dotted line (st) intersects the linear sequence of triangles T1, T2, . . . , T5. The
vertices of each triangle Ti (ui−1, ui, li−1, li, two of which are equal) lie on the boundary of the
hexagon Hi. Note that l2 is the left, l3 is the right, and u2 = u3 is the base vertex of T3, for example.
The linear sequence is regular since T1 has a left induction vertex, T5 has a right induction vertex,
and, for i = 1, . . . , 4, no ui is a s vertex of Ti or Ti+1, no li is a n vertex of Ti or Ti+1, and no (ui, li)
is gentle.

SoCG 2020

34:6 The Stretch Factor of Hexagon-Delaunay Triangulations

Hi

+

+

–

– Hi+

+

–

–

Hiui−1

ui
pN (ui−1, i)

pN (ui, i)

(a) (b) (c)

Figure 3 (a) The values of pN (o, i) are illustrated, for various points o lying on the boundary of
Hi, as signed hexagon arc lengths. (b) The values of pS(o, i) are illustrated similarly.

I Lemma 5 (The Technical Lemma). If T1n is a regular linear sequence of triangles then
there is a path in T1n from the left induction vertex p of T1 to the right induction vertex q of
Tn of length at most 4√

3dx(p, q).

Actually, what we show in Section 5 implies something stronger: If T1n is regular then
the lengths of the upper path p, u0, . . . , un, q and of the lower path p, l0, . . . , ln, q add up to
at most 8√

3dx(p, q). It is useful to informally describe now the techniques we use to do this.
For that purpose we introduce, for a point o on a side of Hi, functions pN (o, i) and pS(o, i)
as the signed shortest distances around the perimeter of Hi from o to the N vertex and S
vertex, respectively; the sign is positive if o lies on sides nw, w, or sw of Hi and negative
otherwise (see Fig. 3-(a) and Fig. 3-(b)).

Note that the length of each edge (ui−1, ui) (assuming ui−1 6= ui) can be bounded by
the distance from ui−1 to ui when traveling clockwise along the sides of Hi. This distance
is exactly pN (ui−1, i) − pN (ui, i) as illustrated in Fig. 3-(c). This motivates the following
discrete function, defined for i = 0, 1, . . . , n and, for convenience’s sake, 1) assuming that
p = u0 and q = un and 2) using an additional hexagon Hn+1 of radius 0 centered at point q:

Ū(i) =
i∑

j=1
(pN (uj−1, j)− pN (uj , j)) + pN (ui, i+ 1).

Function Ū(i) can be used to bound the length of upper path fragments; in particular,
Ū(n) bounds the length of the upper path from p to q. A function L̄(i) bounding the length
of the lower path can be defined similarly. In Section 5, we will compute an upper bound for
Ū + L̄ by 1) switching the analysis from a discrete one to a continuous one, with functions pN

and pS defined not in term of index i but in terms of coordinate x for every x between x(p)
and x(q) and 2) analyzing the growth rates, with respect to x, of the continuous functions
pN , pS , and Ū + L̄. We will show that (the continuous versions of) pN and pS are piecewise
linear functions with growth rates 2√

3 ,
4√
3 , or

6√
3 , and that Ū + L̄ is also piecewise linear

with growth rate equal to the growth rate of pN + pS which can be 4√
3 ,

6√
3 , or

8√
3 . Lemma 5

will follow from the last (largest) growth rate.
With the technical lemma in hand, we can now state the first of the two key lemmas that

we need to prove our main result.

3.2 The amortization lemma
The first of our two key lemmas is a strengthening of the (Technical) Lemma 5 under two
restrictions. The first restriction is that T1n is defined with respect to a line st whose slope
mst is restricted to 0 < mst <

1√
3 . With that restriction we get the following properties:

M. Dennis, L. Perković, and D. Türkoğlu 34:7

I Lemma 6. Let T1n be a linear sequence with respect to line st with slope mst such that
0 < mst <

1√
3 . For every i s.t. 1 ≤ i ≤ n:

If ui−1 lies on side sw of Hi or li lies on side ne of Hi then (ui−1, li) is gentle.
If li−1 lies on side nw of Hi or ui lies on the se side of Hi then (li−1, ui) is gentle.
None of the following can occur: ui−1 lies on side se of Hi, li lies on side nw of Hi, li−1
lies on side ne of Hi, and ui lies on the sw side of Hi.

Note, for example, that u8 lies on side sw of hexagon H9 in Fig. 4 and that edge (u8, l9)
is gentle.

Proof. If ui−1 lies on side sw of some hexagon Hi then, since 0 < mst <
1√
3 and by general

position assumptions, either ui−1 = ui and li−1 and li must lie on sides se and e of Hi,
respectively, or li−1 = li must lie on side se or e of Hi. Either way, the slope of the line
going through ui−1 and li must be between − 1√

3 and 1√
3 . Similar arguments can be used to

handle the remaining three cases in the first two bullet points.
Let the left and right intersection points of line st with hexagon Hi be hi−1 and hi. Note

that when traveling clockwise along the sides of Hi the points will be visited in this order:
hi−1, ui−1, ui, hi, li, li−1. If ui−1 lies on side se of Hi then i > 1 and, because 0 < mst <

1√
3 ,

either ui (if ui−1 6= ui) or li (if li−1 6= li) would have to lie on side se of Hi as well, which
violates our general position assumption for the set of points P. The remaining three cases
are handled similarly. J

By the above lemma, under the restriction 0 < mst <
1√
3 , if T1n has no gentle edge

then it is regular and (Technical) Lemma 5 applies. A narrower but much stronger version
of (Technical) Lemma 5 applies as well if another restriction is made. To state the second
restriction we need some additional terminology.

Let li ∈ L and uj ∈ U . If i ≤ j and x(li) < x(uj) then we say that li occurs before uj ,
and if j ≤ i and x(uj) < x(li) then we say that uj occurs before li.

I Definition 7. Given points li ∈ L and uj ∈ U such that one occurs before the other, a path
between them is gentle if the length of the path is not greater than

√
3dx(uj , li)−(y(uj)−y(li)).

See Fig. 4 for an illustration of a gentle path. Note that a gentle edge is a gentle path (e.g.,
(u0, l1) and (u8, l8 = l9) in Fig. 4).

The following is the key to our proof of the main result of this paper:

I Lemma 8 (The Amortization Lemma). Let T1n be a regular linear sequence with respect to
line st with slope mst. If 0 < mst <

1√
3 and if T1n contains no gentle path then there is a

path in T1n from the left induction vertex p of T1 to the right induction vertex q of Tn of
length at most (5√

3 − 1)dx(p, q).

We will discuss the proof of the Amortization Lemma in Section 6; the proof builds on
the analysis done in Section 5 to prove (Technical) Lemma 5. Instead of using function Ū ,
however, we consider the discrete function

U(i) = dT1i(p, ui) + pN (ui, i+ 1)

defined for i = 0, 1, . . . , n and, for convenience’s sake, 1) assuming that p = u0 and q = un

and 2) using additional hexagon Hn+1 of radius 0 centered at point q. An equivalent discrete
function L(i) using points li instead of ui can be defined. Note that U(n) + L(n) is exactly
twice the distance in T1n from p to q. To bound U + L, we will switch the analysis to a
continuous one just as we did for Ū + L̄. We will see that, except for a finite number of
discontinuities, the continuous version of U + L has the same growth rate as Ū + L̄, which

SoCG 2020

34:8 The Stretch Factor of Hexagon-Delaunay Triangulations

u0, l0, s

t, u12, l12

u1

l1, l2

u2, u3

u4

l3, l4, l5

u5, u6 u7, u8

l6, l7

l8, l9, l10

u9

u10, u11

l11

Figure 4 A gentle path from u2 to l11 is one whose length is at most
√

3dx(u2, l11)−(y(u2)−y(l11)),
i.e. the length of the red dashed piecewise linear curve from u2 to l11 (consisting of two vertical
segments and a third with slope − 1√

3). The path u2 = u3, u4, u5 = u6, u7 = u8, l8 = l9 = l10, l11,
easily seen to be bounded–in length–by the red dotted piecewise linear curve, is gentle. This path
can be extended with edge (l11, t) to a canonical gentle path from u2 to t; the proof of (Main)
Lemma 13, in this particular case, combines the bound on the length of this path together with the
bound on the length of a path from s to u2 obtained via induction.

is the growth rate of pN + pS . We will consider the intervals when the growth rate of (the
continuous version of) U + L is higher than 2(5√

3 − 1) (i.e., when its growth rate is 8√
3)

and we will amortize the extra 2− 2√
3 growth over intervals when its growth rate is smaller

than 2(5√
3 − 1) (i.e., when its growth rate is 4√

3 or 6√
3). The amortization can usually

be done because when the growth rate of U + L is large, the intervals must be relatively
short compared to intervals when its growth is smaller, otherwise a gentle path can be
shown to exist. To get our tight bound however, we will need to do more and show that at
certain points (which are points of discontinuity) we need to use “cross-edges” (li, ui). This
is because when the amortization is not possible there is a long enough interval, say from
hexagon Hi to hexagon Hj , when the growth rate of U + L is 8√

3 most of the time. It turns
out that in that case one of U or L has growth rate bounded by 2√

3 (say, U) and the other
(L) by 6√

3 . This means that path li, li+1, . . . , lj has relatively large length with respect to
∆(x) and that ui, ui+1, . . . , uj is a relatively short path that can be used to replace the long
subpath li, li+1, . . . , lj with the shorter subpath li, ui, ui+1, . . . , uj , lj in a path from p to q.
The 5√

3 − 1 stretch factor bound is the result of a min-max optimization between the two
subpaths from li to lj , and it is tight as we show in Section 7.

Next we turn to the case when the sequence of triangles T1n contains a gentle path.

3.3 The gentle path lemma

Just as in the previous subsection, we consider a linear sequence of triangles T1n defined
with respect to a line st with slope mst satisfying 0 < mst <

1√
3 . We now consider the case

when T1n contains a gentle path and state the other of our two key lemmas. We start with
two definitions:

M. Dennis, L. Perković, and D. Türkoğlu 34:9

I Definition 9. We say that linear sequence T1n is standard if T1 has a left induction vertex
or u0 = l0, Tn has a right induction vertex or un = ln, and neither the base vertex of T1 (if
any) nor the base vertex of Tn (if any) is the endpoint of a gentle path in T1n.

Note that if u0 = l0 and un = ln both hold (i.e., line st goes through those points) then T1n

is trivially standard because T1 and Tn cannot have base vertices.

I Definition 10. Let T1n be a standard linear sequence. A gentle path in T1n from p to q,
where p occurs before q, is canonical in T1n (or simply canonical if T1n is clear from the
context) if p is a right induction vertex of Ti for some i ≥ 1 or p is the left vertex of T1 and
if q is a left induction vertex of Tj for some j ≤ n or q is the right vertex of Tn.

For example, the gentle path u2 = u3, u4, u5 = u6, u7 = u8, l8 = l9 = l10, l11, l12 in Fig. 4 is
canonical.

The second key lemma, which we will use alongside (Amortization) Lemma 8 to prove
our main result, is stated next; its proof is discussed in Section 4.

I Lemma 11 (The Gentle Path Lemma). Let T1n be a linear sequence of triangles with respect
to a line st with slope mst such that 0 < mst <

1√
3 . If T1n is standard and contains a gentle

path then the path can be extended to a canonical gentle path in T1n.

The main idea behind the proof of this lemma is that a gentle path between ur ∈ U and
ls ∈ L (where, say, r ≤ s and x(ur) < x(us)) in T1n can be extended using edge (ur−1, ur),
unless r = 0 or ur is a right induction vertex of Tr, or using edge (ls, ls+1), unless s = n or
ls is a left induction vertex of Ts+1. In other words, a gentle path can be extended unless it
is canonical.

We are now ready to state our main result and provide a proof that uses the two key
lemmas.

3.4 The main result and the main lemma
I Theorem 12. The stretch factor of a 9-Delaunay triangulation is at most 2.

To prove Theorem 12 we need to show that between any two points s and t of a set of
points P there is, in the 9-Delaunay triangulation T on P , a path from s to t of length at
most 2d2(s, t). Let mst be the slope of the line st passing through s and t. Thanks to the
hexagon’s rotational and reflective symmetries as well as our general position assumptions,
we can rotate the plane around s and possibly reflect the plane with respect to the x-axis to
ensure that 0 < mst <

1√
3 . Given this assumption, our main theorem will follow from:

I Lemma 13 (The Main Lemma). For every pair of points s, t ∈ P with 0 < mst <
1√
3 :

dT (s, t) ≤ max
{ 5√

3
− 1,
√

3 +mst

}
dx(s, t). (1)

Before we prove this lemma, we show that it implies the main theorem.

Proof of Theorem 12. W.l.o.g., we assume that s has coordinates (0, 0), t lies in the positive
quadrant, mst <

1√
3 , and d2(s, t) = 1. With these assumptions it follows that

√
3

2 < x(t) =
dx(s, t) < 1 and we need to show that dT (s, t) ≤ 2.

By Lemma 13, either dT (s, t) ≤ (5√
3 − 1)dx(s, t) ≤ (5√

3 − 1) < 2 or

dT (s, t) ≤ (
√

3 +mst)dx(s, t) =
√

3dx(s, t) + dy(s, t) =
√

3dx(s, t) +
√

1− dx(s, t)2

which attains its maximum, over the interval [
√

3
2 , 1], at dx(s, t) =

√
3

2 giving dT (s, t) ≤ 2. J

SoCG 2020

34:10 The Stretch Factor of Hexagon-Delaunay Triangulations

We now turn to the proof of (Main) Lemma 13. We start by noting that if there is a
point p of P on the segment [st] then (1) would follow if (1) holds for the pairs of points s, p
and p, t; we can therefore assume that no point of P other than s and t lies on the segment
[st]. We can also assume, as argued in Section 2, that segment [st] does not intersect the
outer face of the triangulation T . We assume w.l.o.g. that s has coordinates (0, 0) and thus
t lies in the positive quadrant.

Let T1, T2, T3, . . . , Tn be the sequence of triangles of the triangulation T that line segment
[st] intersects when moving from s to t (refer to Fig. 4). (Recall that we assume that segment
[st] does not intersect the outer face of T .) Clearly, T1n is a linear sequence of triangles and
we assign labels ui and li to the points and define sets U and L as described in Subsection 3.1.
We note that all arguments in the rest of this paper use only points and edges of T1n.

Note that, since st must intersect the interior of H1, s can only lie on the nw, w, or sw

sides of H1; by Lemma 6, if s lies on the nw side of H1 then (s, u1) = (l0, u1) is gentle, and if
s lies on the sw side of H1 then (s, l1) = (u0, l1) is gentle. Similarly, t can only lie on the ne,
e, or se sides of Hn; if t lies on the sw side of Hn then (t, ln−1) = (un, ln−1) is gentle, and if
t lies on the nw side of Hn then (t, un−1) = (ln, un−1) is gentle. Note that this means that if
T1n has no gentle edge then it is regular.

We now informally describe the approach we use to prove (Main) Lemma 13. We first note
that (Amortization) Lemma 8 and (Gentle Path) Lemma 11 rely on (Technical) Lemma 5.
We will prove (Main) Lemma 13 that bounds the length of the shortest path in T1n from s to
t as follows. If T1n does not contain a gentle path then it is regular and the proof follows from
(Amortization) Lemma 8. If T1n contains a gentle path then by (Gentle Path) Lemma 11
it must contain a canonical gentle path G from, in general, a right induction vertex of Ti

to a left induction vertex of Tj , where 0 ≤ i < j ≤ n. We can assume, using (Gentle Path)
Lemma 11, that G is maximal in the sense that it is not a subpath of any other gentle path
in T1n. The maximality of G will guarantee that neither T1i nor Tjn contains a gentle path
whose endpoint is the base vertex of Ti or the base vertex of Tj , respectively. Therefore T1i

and Tjn are standard and we then proceed by induction to prove a “more general” version of
(Main) Lemma 13 for T1i and Tjn. The obtained bounds on the lengths of shortest paths
from s to the right induction vertex of Ti and from the left induction vertex of Tj to t are
combined with the bound on the length of gentle path G to complete the proof of (Main)
Lemma 13. Our reliance on induction means that we need to restate the Main Lemma so it
is amenable to an inductive proof:

I Lemma 14 (The Generalized Main Lemma). Let s, t ∈ P such that 0 < mst <
1√
3 and let

T1n be the linear sequence of triangles that segment [st] intersects. If Tij, for some i, j such
that 1 ≤ i ≤ j ≤ n, is standard, p is the left vertex of Ti, and q is the right vertex of Tj then

dTij (p, q) ≤ max{ 5√
3
− 1,
√

3 +mst}dx(p, q).

Note that (Main) Lemma 13 is a special case of this statement when i = 1 and j = n since
T1n is (trivially) standard, s is the left vertex of T1, and t is the right vertex of Tn.

Proof. We proceed by induction on j − i. If Tij is standard and there is no gentle path in
Tij (the base case) then, by Lemma 6, the linear sequence of triangles in Tij is regular and
thus, by (Amortization) Lemma 8, we have dT (p, q) ≤ (5√

3 − 1)dx(p, q).
If Tij is standard and there is a gentle path in Tij , then, by Lemma 11, there exist points

ui′ and lj′ in Tij such that there is a canonical gentle path between ui′ and lj′ in Tij . We also
assume that the canonical path between ui′ and lj′ is maximal in the sense that it is not a

M. Dennis, L. Perković, and D. Türkoğlu 34:11

proper subpath of a gentle path in Tij . W.l.o.g., we assume that ui′ occurs before lj′ , and so
i− 1 ≤ i′ ≤ j′ ≤ j, x(ui′) < x(lj′), and dT (ui′ , lj′) ≤

√
3dx(ui′ , lj′)− (y(ui′)− y(lj′)). Since

ui′ is either s or above st and lj′ is either t or below st, it follows that −(y(ui′)− y(lj′)) ≤
mstdx(ui′ , lj′). Therefore, dT (ui′ , lj′) ≤ (

√
3 +mst)dx(ui′ , lj′).

Since the gentle path from ui′ to lj′ is canonical, either ui′ is a right induction vertex of
Ti′ and i′ ≥ i or ui′ = ui−1. In the first case, because ui′ is on side e of Hi′ the base vertex
li′−1 = li′ of Ti′ must satisfy x(li′) < x(ui′). Suppose that li′ is the endpoint of a gentle path
in Tii′ from, say, point ui′′ then we would have

dTij (ui′′ , lj′) ≤ dTij (ui′′ , li′) + d2(li′ , ui′) + dTij
(ui′ , lj′)

≤
√

3dx(ui′′ , li′)− (y(ui′′)− y(li′)) +
√

3dx(li′ , ui′)− (y(li′)− y(ui′))

+
√

3dx(ui′ , lj′))− (y(ui′)− y(lj′))

≤
√

3dx(ui′′ , lj′)− (y(ui′′)− y(lj′).

This contradicts the maximality of the canonical gentle path from ui′ to lj′ . This means
that li′ is not the endpoint of a gentle path in Tii′ . Since ui′ is a right induction vertex
of Ti′ , it follows that Tii′ is standard, the inductive hypothesis applies, and dT (p, ui′) ≤
max{ 5√

3 − 1,
√

3 +mst}dx(p, ui′). In the second case, because Tij is standard, ui′ cannot be
the base vertex of Ti and so ui′ = p and the same inequality holds trivially.

Similarly, we can show that dT (lj′ , q) ≤ max{ 5√
3 − 1,

√
3 +mst}dx(lj′ , q). Thus:

dT (p, q) ≤ dT (p, ui′) + dT (ui′ , lj′) + dT (lj′ , q)

≤ max{ 5√
3
− 1,
√

3 +mst}(dx(p, ui′) + dx(lj′ , q)) + (
√

3 +mst)dx(ui′ , lj′)

≤ max{ 5√
3
− 1,
√

3 +mst}dx(p, q) J

4 Proof of (gentle path) lemma 11

The main idea behind the proof of the Gentle Path lemma is that a gentle path between
ur ∈ U and ls ∈ L (where, say, r ≤ s and x(ur) < x(us)) in T1n can be extended using edge
(ur−1, ur), unless r = 0 or ur is a right induction vertex of Tr, or using edge (ls, ls+1), unless
s = n or ls is a left induction vertex of Ts+1. In other words, a gentle path from r to s is
either canonical or can be extended to a canonical path from ur′ to ls′ as illustrated in Fig. 5.

5 Proof of (technical) lemma 5

We prove this lemma via a framework that uses continuous versions of the discrete functions
(pN , pS , etc.) informally introduced in Subsection 3.1. We start by defining functions H(x),
T (x), u(x), `(x), r(x), w(x), and e(x) for x(p) ≤ x ≤ x(q) as illustrated in Fig. 6. Let point
ci be the center of hexagon Hi, for i = 1, . . . , n. For x such that x(ci) ≤ x < x(ci+1), H(x)
is the hexagon whose center has abscissa x and that has points ui = u(x) and li = `(x) on
its boundary. Intuitively, function H(x) from x = x(ci) to x = x(ci+1) models the “pushing”
of hexagon Hi through ui and li up until it becomes Hi+1. Function r(x) is the minimum
radius of H(x) and w(x) = x− r(x) and e(x) = x+ r(x) are the abscissas of the w and e
sides, respectively, of H(x). Finally, we define T (x) = T1i when x(ci) ≤ x < x(ci+1).

SoCG 2020

34:12 The Stretch Factor of Hexagon-Delaunay Triangulations

p = ur′

ur′+1

ur−1 ur

ls

ls′ = q

Figure 5 Illustration of the proof of Lemma 11 in the case when the gentle path from ur to ls is
just a gentle edge. For every i such that r′ < i ≤ r and ui is the right vertex of Hi, hexagon Hi and
the edge (ui−1, ui) are shown in red. Each edge (ui−1, ui) has slope greater than − 1√

3 and therefore
has length bounded by

√
3dx(ui−1, ui)− (y(ui−1)− y(ui)), a value equal to the total length of the

two intersecting, red, dashed segments going north from ui−1 and north-west from ui. The total
length of the two dashed blue segments is an upper bound on the length of the edge (ur, ls) and the
total length of the dotted red line segments represent the upper bound

√
3dx(p, q)− (y(p)− y(q)) on

the length of the path p = ur′ , . . . , ur, ls, ls+1, . . . , ls′ = q.

For a point o on a side of H(x), we define functions pN (o, x) and pS(o, x) as the signed
shortest distances around the perimeter of H(x) to the N vertex and S vertex, respectively,
with sign sgn(x− x(o)). As Fig. 7-(a) and Fig. 7-(b) illustrate, these signs are positive for o
on the nw, w, or sw sides of H(x) and negative for o on ne, e, or se sides. We omit o and
use the shorthand notation pN (x) if o = u(x) and pS(x) if o = `(x).

Functions U(x) and L(x), used to bound the length of the shortest path from p to q and
illustrated in Fig. 8-(a), are defined as follows for x(p) ≤ x ≤ x(q):

U(x) = dT (x)(p, u(x)) + pN (x) L(x) = dT (x)(p, `(x)) + pS(x)

We note that U(x(q)) + L(x(q)) is exactly twice the distance in T1n from p to q. We will
compute an upper bound for function U + L by bounding its growth rate.

Hi

ci

Hi+1

ci+1

H(x)

xw(x) e(x)

r(x)

ui−1

`(x) = li

u(x) = ui

li+1

Figure 6 Intuitively, function H(x) from x = x(ci) to x = x(ci+1) models the “pushing” of
hexagon Hi through ui and li up until it becomes Hi+1.

M. Dennis, L. Perković, and D. Türkoğlu 34:13

H(x)

+

+

–

– H(x)
+

+

–

–

H(x) = Hiui−1

ui
pN (ui−1, x)

pN (ui, x)

(a) (b) (c)

Figure 7 (a) The values of pN (o, x) are shown, for various points o lying on the boundary of
H(x), as signed hexagon arc lengths. (b) The values of pS(o, x) are shown similarly.

p

t

xx(p)

`(x) = li

u(x) = ui

dT1i
(p, ui)

dT1i
(p, li)

pN (x)(−)

pS(x)(+)
p

t

xx(p)

`(x) = li

u(x) = ui

Ū(x)− pN (x)

L̄(x)− pS(x)
(a) (b)

Figure 8 (a) Definition of U(x) and L(x). For example, U(x) for x(ci) ≤ x < x(ci+1) is the
sum of the length of the shortest path from p to ui in T1i (illustrated as the red dashed path) and
pN (x) (of negative value and represented as a red arrow). (b) Definition of Ū(x) and L̄(x). When
x(ci) ≤ x < x(ci+1) for example, Ū(x)−pN (x) is an upper bound (equal to the length of the sequence
of red dashed hexagon arcs going from p to ui) on the length of the upper path p, u0, u1, . . . , ui−1, ui.

As Fig. 7-(c) illustrates, the length of each edge (ui−1, ui), with ui−1, ui lying on the
boundary of H(x) = Hi, is bounded by pN (ui−1, x)− pN (ui, x). This and a similar insight
about each (li−1, li) motivate functions Ū(x) and L̄(x) that bound the lengths of the upper
and lower paths in T1n and that are defined as follows for x(ci) ≤ x ≤ x(ci+1) (see Fig. 8-(b)):

Ū(x) =
i∑

j=1
(pN (uj−1, x(cj))− pN (uj , x(cj))) + pN (x)

L̄(x) =
i∑

j=1
(pS(lj−1), x(cj))− pS(lj , x(cj))) + pS(x)

When x(ci) < x < x(ci+1), functions Ū(x) and L̄(x) as well as U(x) and L(x) have rates
of growth that depend solely on the last term (pN (x) or pS(x)). We show that functions pN

and pS are monotonically increasing piecewise linear and bound the rate of growth of pN

and pS using elementary geometric arguments illustrated in Fig. 9. Figure 9-(c) illustrates a
case when the growth rate of pN + pS , and therefore also of Ū + L̄ and of U + L, is 8√

3 .

SoCG 2020

34:14 The Stretch Factor of Hexagon-Delaunay Triangulations

u

l

∆x = 1

∆pN (x) = 2√
3

∆y(N(x)) = − 1√
3

∆w(x) = 1

∆e(x) = 1

∆pS(x) = 2√
3

∆y(S(x)) = − 3√
3

u

l

∆x = 1

∆pN (x) = 2√
3

∆y(N(x)) = 1√
3

∆w(x) = 0

∆e(x) = 2

∆pS(x) = 4√
3 ∆y(S(x)) = − 3√

3

u

l

∆x = 1

∆pN (x) = 6√
3

∆y(N(x)) = − 1√
3

∆e(x) = 0

∆w(x) = 2

∆pS(x) = 2√
3∆y(S(x)) = − 3√

3

(a) (b) (c)

Figure 9 Constructions demonstrating growth rates, with respect to ∆x = 1, of pN , pS and other
functions for three different placements of u(x) = u and `(x) = l on the boundary of H(x).

ui

li

uj

lj

xl xr

+

−

pS(li, xl)

pN (ui, xl)

−

pS(lj , xr)

+
pN (uj , xr)ui+1

Figure 10 Illustrated is a situation in which the growth rate of pS(x) is 6√
3 between x = xl and

x = xr. In that case the growth rate of pN (x) is 2√
3 . For large enough such intervals [xl, xr], the

path li, ui, ui+1, . . . , uj , lj is a shortcut for li, li+1, . . . , lj and therefore L(xr) is smaller than what
the growth rate of pS(x) would indicate. The stretch factor bound we obtain is the result of a
min-max optimization between the two subpaths from li to lj , and it is tight as we show in Fig. 11.

6 Proof of (amortization) lemma 8

The proof of the lemma builds on the framework discussed in the previous section and on
a careful analysis of the growth rates of pN and pS when T1n contains no gentle path. We
show that in that case the average growth rate of U + L is at most 2

(
5√
3 − 1

)
.

Our main approach is to spread (i.e., amortize) the “extra” 2√
3 of the 8√

3 growth rate
over wider intervals of time that, as we show, include time intervals during which the growth
rate is smaller. To achieve our tight bound of 2

(
5√
3 − 1

)
, however, we need to do more and

also include “cross-edges” (li, ui) as illustrated in Fig. 10.

7 Conclusion

The approach we use to bound the length of the shortest path in a Delaunay triangulation T
between points s and t is to consider the linear sequence T1n of triangles of T that segment
[st] intersects. We show that, in general, T1n can be split into 1) disjoint linear sequences of
triangles Ti1j1 , Ti2j2 , . . . , Tik,jk

that contain no gentle path and 2) k − 1 gentle paths with a
gentle path connecting the right vertex of Tjl

with the left vertex of Til+1 for l = 1, . . . , k− 1.

M. Dennis, L. Perković, and D. Türkoğlu 34:15

H1 Hn

l1 ln−1

u1 un−1

1
√

3
2 + 1

2

2

1 + 1√
3

2√
3

s t

1

Figure 11 The Mickey Mouse 9-Delaunay triangulation. The inradii of H1 and Hn are both set
to 1. Edges that belong to a shortest path from s to t are in bold.

The worst case stretch factor for the Delaunay triangulation is then the maximum between
the worst case stretch factors for 1) a path connecting the leftmost and rightmost points in a
linear sequence Tij that contains no gentle path and 2) a gentle path.

(Main) Lemma 13 and Lemma 1 show that the worst case stretch factor for 9-Delaunay
triangulations comes from gentle path constructions. It turns out that similar conclusions
can also be made regarding 4- and �-Delaunay triangulations.

For #-Delaunay triangulations, the situation seems to be different. The lower bound
construction by Bose et al. [4] corresponds to a gentle path construction and has stretch
factor 1.5846. The lower bound construction by Xia and Zhang [11] corresponds to a linear
sequence that contains no gentle path and has stretch factor 1.5932. We think that the worst
case stretch factor for #-Delaunay triangulations will come from a construction similar to
the one by Xia and Zhang [11]. Therefore, to get a tight bound on the stretch factor of a
#-Delaunay triangulation one needs to develop techniques that give tight bounds on the
stretch factor of a linear sequence that contains no gentle path.

We have done so for 9-Delaunay triangulations. Our (Amortization) Lemma 8 implies
that for 9-Delaunay triangulations the worst case stretch factor for a linear sequence Tij

with no gentle paths is (5√
3 − 1). It turns out that our analysis is tight: Figure 11 shows

a construction–which we name the Mickey Mouse 9-Delaunay triangulation–that, for any
ε > 0, can be extended to a 9-Delaunay triangulation whose shortest path between s and t
is at least (5√

3 − 1)dx(s, t) − ε. Unsurprisingly, the construction corresponds to the lower
bound construction by Xia and Xhang [11] for #-Delaunay triangulations.

Based on this we think that the techniques we developed for obtaining the tight bound
in Lemma 8 will be useful in obtaining better upper bounds for the stretch factor of other
kinds of Delaunay triangulations.

References
1 Nicolas Bonichon, 2011. Personal communication.
2 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perković. Tight stretch

factors for L1- and L∞-Delaunay triangulations. Computational Geometry, 48(3):237–250,
2015. doi:10.1016/j.comgeo.2014.10.005.

3 Prosenjit Bose, Paz Carmi, Sebastien Collette, and Michiel Smid. On the stretch factor
of convex Delaunay graphs. Journal of Computational Geometry, 1(1):41–56, 2010. doi:
10.20382/jocg.v1i1a4.

SoCG 2020

https://doi.org/10.1016/j.comgeo.2014.10.005
https://doi.org/10.20382/jocg.v1i1a4
https://doi.org/10.20382/jocg.v1i1a4

34:16 The Stretch Factor of Hexagon-Delaunay Triangulations

4 Prosenjit Bose, Luc Devroye, Maarten Löffler, Jack Snoeyink, and Vishal Verma. Almost
all Delaunay triangulations have stretch factor greater than π/2. Computational Geometry,
44(2):121–127, 2011. doi:10.1016/j.comgeo.2010.09.009.

5 L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proceedings
of the 2nd Annual ACM Symposium on Computational Geometry (SoCG), pages 169–177,
1986. doi:10.1145/10515.10534.

6 L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal of
Computer and System Sciences, 39(2):205–219, 1989. doi:10.1016/0022-0000(89)90044-5.

7 Michael Dennis, Ljubomir Perković, and Duru Türkoğlu. The stretch factor of hexagon-
delaunay triangulations, 2017. arXiv:1711.00068.

8 David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are
almost as good as complete graphs. Discrete & Computational Geometry, 5(4):399–407, 1990.
doi:10.1007/BF02187801.

9 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete Euclidean
graph. Discrete & Computational Geometry, 7(1):13–28, 1992. doi:10.1007/BF02187821.

10 Ge Xia. The stretch factor of the Delaunay triangulation is less than 1.998. SIAM Journal on
Computing, 42(4):1620–1659, 2013. doi:10.1137/110832458.

11 Ge Xia and Liang Zhang. Toward the tight bound of the stretch factor of Delaunay triangula-
tions. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry
(CCCG), 2011. URL: http://www.cccg.ca/proceedings/2011/papers/paper57.pdf.

https://doi.org/10.1016/j.comgeo.2010.09.009
https://doi.org/10.1145/10515.10534
https://doi.org/10.1016/0022-0000(89)90044-5
http://arxiv.org/abs/1711.00068
https://doi.org/10.1007/BF02187801
https://doi.org/10.1007/BF02187821
https://doi.org/10.1137/110832458
http://www.cccg.ca/proceedings/2011/papers/paper57.pdf

Flipping Geometric Triangulations on Hyperbolic
Surfaces
Vincent Despré
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
vincent.despre@loria.fr

Jean-Marc Schlenker
Department of Mathematics, University of Luxembourg, Luxembourg
http://math.uni.lu/schlenker/
jean-marc.schlenker@uni.lu

Monique Teillaud
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
https://members.loria.fr/Monique.Teillaud/
monique.teillaud@inria.fr

Abstract
We consider geometric triangulations of surfaces, i.e., triangulations whose edges can be realized
by disjoint geodesic segments. We prove that the flip graph of geometric triangulations with fixed
vertices of a flat torus or a closed hyperbolic surface is connected. We give upper bounds on the
number of edge flips that are necessary to transform any geometric triangulation on such a surface
into a Delaunay triangulation.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Discrete mathematics; Mathematics of computing → Geometric topology

Keywords and phrases Hyperbolic surface, Topology, Delaunay triangulation, Algorithm, Flip graph

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.35

Funding The authors were partially supported by the grant(s) ANR-17-CE40-0033 of the French Na-
tional Research Agency ANR (project SoS) and INTER/ANR/16/11554412/SoS of the Luxembourg
National Research fund FNR (https://members.loria.fr/Monique.Teillaud/collab/SoS/).

1 Introduction

We investigate triangulations of two categories of surfaces: flat tori, i.e., surfaces of genus 1
with a locally Euclidean metric, and hyperbolic surfaces, i.e., surfaces of genus at least 2 with
a locally hyperbolic metric (these surfaces will be introduced more formally in Section 2.1).

Triangulations of surfaces can be considered in a purely topological manner: a triangulation
of a surface is a graph whose vertices, edges and faces partition the surface and whose faces
have three (non-necessarily distinct) vertices. However, when the surface is equipped with a
Euclidean or hyperbolic structure, it is possible to consider geometric triangulations, i.e.,
triangulations whose edges can be realized as geodesic segments that can only intersect at
common endpoints (Definition 2). Note that a geometric triangulation can still have loops
and multiple edges, but no contractible loop and no contractible cycle formed of two edges.
We will prove that any Delaunay triangulation (Definition 4) of the considered surfaces is
geometric (Proposition 8).

The flip graph of triangulations of the Euclidean plane is known to be connected; moreover
the number of edge flips that are needed to transform any given triangulation with n vertices
in the plane into the Delaunay triangulation has complexity Θ(n2) [14]. We are interested in
generalizations on this result to surfaces. Flips in triangulations of surfaces will be defined
precisely later (Definition 5), for now we can just think of them as similar to edge flips in

© Vincent Despré, Jean-Marc Schlenker, and Monique Teillaud;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincent.despre@loria.fr
http://math.uni.lu/schlenker/
mailto:jean-marc.schlenker@uni.lu
https://orcid.org/0000-0003-2568-7024
https://members.loria.fr/Monique.Teillaud/
mailto:monique.teillaud@inria.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.35
https://members.loria.fr/Monique.Teillaud/collab/SoS/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Flipping Geometric Triangulations on Hyperbolic Surfaces

triangulations of the Euclidean plane. Geodesics only locally minimize the length, so the
edges of a geometric triangulation are generally not shortest paths. We will prove that the
number of geometric triangulations on a set of points can be infinite, whereas the flip graph
of “shortest path” triangulations is small but not connected in most situations [8].

I Definition 1. Let (M2, h) be either a torus (T2, h) equipped with a Euclidean structure h
or a closed oriented surface (S, h) equipped with a hyperbolic structure h. Let V ⊂M2 be a
set of n points. The geometric flip graph FM2,h,V of (M2, h, V) is the graph whose vertices
are the geometric triangulations of (M2, h) with vertex set V and where two vertices are
connected by an edge if and only if the corresponding triangulations are related by a flip.

Our results are mainly interesting in the hyperbolic setting, which is richer than the flat
setting. However, to help the readers’ intuition, we also present them for flat tori, where they
are slightly simpler to prove and might even be considered as folklore. The geometric flip
graph is known to be connected for the special case of flat surfaces with conical singularities
and triangulations whose vertices are these singularities [19].

The main results of this paper are:
The geometric flip graph of (M2, h, V) is connected (Theorems 12 and 14).
The Delaunay triangulation can be reached from any geometric triangulation by a path
in the geometric flip graph FM2,h,V whose length is bounded by n2 times a quantity
measuring the quality of the input triangulation (Theorems 16 and 19).

If an initial triangulation of the surface only having one vertex is given, then the Delaunay
triangulation can thus be computed incrementally by inserting points one by one in a very
standard way: for each new point, the triangle containing it is split into three, then the
Delaunay property is restored by propagating flips. This approach, based on flips, can handle
triangulations of a surface with loops and multiarcs, which is not the case for the approach
based on Bowyer’s incremental algorithm [6, 5].

2 Background and notation

2.1 Surfaces

In this section, we first recall a few notions, then we illustrate them for the two classes of
surfaces (flat tori and hyperbolic surfaces) that we are interested in.

Let M2 be a closed oriented surface, i.e., a compact connected oriented 2-manifold
without boundary. There is a unique simply connected surface M̃2, called the universal cover
ofM2, equipped with a projection ρ : M̃2 →M2 that is a local diffeomorphism. There is
a natural action on M̃2 of the fundamental group π1(M2) ofM2 so that for all p ∈ M2,
ρ−1(p) is an orbit under the action of π1(M2). We will denote as p̃ a lift of p, i.e., one of
the elements of the orbit ρ−1(p). A fundamental domain in M̃2 for the action of π1(M2)
on M̃2 is a connected subset Ω of M̃2 that intersects each orbit in exactly one point, or,
equivalently, such that the restriction of ρ to Ω is a bijection from Ω toM2 [17]. The genus g
ofM2 is its number of handles. In this paper, we consider surfaces with constant curvature
(0 or −1). The value of the curvature is given by the Gauss-Bonnet Theorem and thus only
depends on the genus: a surface of genus 0 only admits spherical structures (not considered
here); a flat torus is a surface of genus 1 and admits Euclidean structures; a surface of genus
2 and above admits only hyperbolic structures (see below).

From now on,M2 will denote either a flat torus or a closed hyperbolic surface.

V. Despré, J.-M. Schlenker, and M. Teillaud 35:3

Flat tori

We denote by T2 the topological torus, that is, the product T2 = S1 × S1 of two copies
of the circle. Flat tori are obtained by taking the quotient of the Euclidean plane by an
Abelian group generated by two independent translations. There are in fact many different
Euclidean structures on T2; if one considers Euclidean structures up to homothety – which
is sufficient for our purposes here – a Euclidean structure is uniquely determined by a vector
u in the upper half-plane R× R>0: to such a vector u is associated the Euclidean structure
(T2, hu) ∼ R2/(Ze1 + Zu) , where e1 = (1, 0) and u = (ux, uy) ∈ R2 is linearly independent
from e1. The orbit of a point of the plane is a lattice. The area Ah of the surface is |uy|.
The plane R2, equipped with the Euclidean metric, is then isometric to the universal cover
of the corresponding quotient surface.

Hyperbolic surfaces

We now consider a closed oriented surface S (a compact oriented surface without boundary)
of genus g ≥ 2. Such a surface does not admit any Euclidean structure, but it admits many
hyperbolic structures, corresponding to metrics of constant curvature −1, locally modeled on
the hyperbolic plane H2. Given a hyperbolic structure h on S, the surface (S, h) is isometric
to the quotient H2/G, where G is a (non-Abelian) discrete subgroup of the isometry group
PSL(2,R) of H2 isomorphic to the fundamental group π1(S). The universal cover S̃ is
isometric to the hyperbolic plane H2.

2.2 The Poincaré disk model of the hyperbolic plane

In the Poincaré disk model [1], the hyperbolic plane is represented as the open unit disk D2

of R2. The geodesic lines consist of circular arcs contained in the disk D2 and that are
orthogonal to its boundary (Figure 1 (left)). The model is conformal, i.e., the Euclidean
angles measured in the plane are equal to the hyperbolic angles.

We won’t need the exact expression of the hyperbolic metric here. However, the notion
of a hyperbolic circle is relevant to us. Three non-collinear points in the hyperbolic plane H2

determine a circle, which is the restriction to the Poincaré disk of a Euclidean circle or line.
If C is a Euclidean circle or line and φ : D2 → D2 is an isometry of the hyperbolic plane,
then φ(C ∩ D2) is still the intersection with D2 of a Euclidean circle or a line.

A key difference with the Euclidean case is that the “circle” defined by 3 non-collinear
points in H2 is generally not compact (i.e., it is not included in the Poincaré disk). The
compact circles are sets of points at constant (hyperbolic) distance from a point. Non-
compact circles are either hypercycles, i.e., connected components of the set of points at
constant (hyperbolic) distance from a hyperbolic line, or horocycles (Figure 1 (right)) [13].1
Therefore, the relatively elementary tools that can be used for flat tori must be refined for
hyperbolic surfaces. Still, some basic properties of circles still hold for non-compact circles.
A non-compact circle splits the hyperbolic plane into two connected regions; we will call a
disk the region of the Poincaré disk that is convex, in the hyperbolic sense (Figure 2).

Triangulations of hyperbolic spaces have been studied [3] and implemented in cgal in
2D [4]. Note that that previous work was not considering non-compact circles as circles.

1 A synthetic presentation can be found at http://en.wikipedia.org/wiki/Hypercycle_(geometry)

SoCG 2020

http://en.wikipedia.org/wiki/Hypercycle_(geometry)

35:4 Flipping Geometric Triangulations on Hyperbolic Surfaces

D

Oω

D

Figure 1 The Poincaré disk. Left: Geodesic lines (black) and compact circles (red) centered at
point ω. Right: A horocycle (green). A hypercycle (blue), whose points have constant distance from
the black geodesic line.

D D

Figure 2 Shaded: Two (convex) non-compact disks.

2.3 Triangulations on surfaces
Let (M2, h) be either a torus (T2, h) equipped with a Euclidean structure h or a closed
surface (S, h) equipped with a hyperbolic structure h.

For a given finite set of points V ⊂M2, we will consider any two topological triangulations
T and T ′ ofM2 with vertex set V as equivalent if for any two vertices u and v in V , the
edges of T with vertices u and v are in one-to-one correspondence with the edges of T ′ with
the same vertices u and v through homotopies with fixed points.

Recall that given two distinct points v, w ∈M2, any homotopy class of paths onM2 with
endpoints v and w contains a unique geodesic segment [10, Chapter 1]. So, any triangulation
is equivalent to a unique geodesic triangulation, i.e., a triangulation whose edges are geodesic
segments. Note that the edges of a geodesic triangulation can intersect in their interiors.

I Definition 2. A triangulation T on M2 is said to be geometric for h if the edges of its
equivalent geodesic triangulation do not intersect except at common endpoints.

If T is a triangulation ofM2, its inverse image ρ−1(T) is the (infinite) triangulation of
M̃2 whose vertices, edges and faces are the lifted images by ρ−1 of those of T .

I Definition 3. The diameter ∆(T) of a geodesic T is the smallest diameter of a fundamental
domain that is the union of lifts of the triangles of T in M̃2.

V. Despré, J.-M. Schlenker, and M. Teillaud 35:5

The diameter ∆(T) is not smaller than the diameter of (S, h). It is unclear how to compute
∆(T) algorithmically and the problem looks difficult. However bounds are easy to obtain:
∆(T) is at least equal to the maximum of the diameters of the triangles of ρ−1(T) in M̃2
and is at most the sum of the diameters of these triangles.

I Definition 4. We say that a triangulation T of M2 is a Delaunay triangulation if for
each face f of T and any face f̃ of ρ−1(T), the open disk in M̃2 that is bounded by the circle
passing through the three vertices of f̃ is empty, i.e., it contains no vertex of ρ−1(T).

It follows that if T is a geodesic Delaunay triangulation ofM2 with vertex set V , then ρ−1(T)
is the Delaunay triangulation in M̃2 of ρ−1(V). So, for a non-degenerate set of points on
M2, since the Delaunay triangulation of their lifts in M̃2 is unique, there is also a unique
geodesic Delaunay triangulation onM2. However its edges may a priori intersect.

For a degenerate set V of points, at least two adjacent triangles in the possible Delaunay
triangulations of ρ−1(V) in M̃2 have cocircular vertices. Any triangulation of the subset
C of ρ−1(V) consisting of c cocircular points is a Delaunay triangulation. Any of these
triangulations can be transformed in any other by O(c) flips [14]. From now on, we can thus
assume that the set of points V on the surfaces that we consider is always non-degenerate.

We will see in Section 3 that any Delaunay triangulation ofM2 is in fact geometric.
Remark that, even for a hyperbolic surface, the closure of every empty disk in the

universal cover H2 is compact. Indeed, any non-compact disk contains at least one disk of
any diameter, so, at least one disk of diameter ∆(T), thus it contains a fundamental domain
(actually, infinitely many fundamental domains) and its interior cannot be empty.

Let us now give a natural definition for flips in triangulations of surfaces.

I Definition 5. Let T be a geometric triangulation of M2. Let (v1, v2, v3) and (v2, v1, v4)
be two adjacent triangles in T , sharing the edge e = (v1, v2). Let us lift the quadrilateral
(v1, v2, v3, v4) to a quadrilateral (ṽ1, ṽ2, ṽ3, ṽ4) in M̃2 so that (ṽ1, ṽ2, ṽ3) and (ṽ2, ṽ1, ṽ4) form
two adjacent triangles of ρ−1(T) sharing the edge ẽ = (ṽ1, ṽ2).

Flipping e in T consists of replacing the diagonal ẽ in the quadrilateral (ṽ1, ṽ2, ṽ3, ṽ4)
(which lies in M̃2, i.e., R2 or H2) by the geodesic segment (ṽ3, ṽ4), then projecting the two
new triangles (ṽ3, ṽ4, ṽ2) and (ṽ4, ṽ3, ṽ1) toM2 by ρ.

We say that the flip of T along e is Delaunay if the triangulation is locally Delaunay in
the quadrilateral after the flip, i.e., the disk inscribing (ṽ3, ṽ4, ṽ2) does not contain ṽ1 (and
the disk inscribing (ṽ4, ṽ3, ṽ1) does not contain ṽ2).

An edge e is said to be Delaunay flippable if the flip along e is Delaunay.

Note that even though T is geometric in this definition, the triangulation after a flip is not
necessarily geometric. We will prove later (Lemma 9) that a Delaunay flip transforms a
geometric triangulation into a geometric triangulation.

Triangulations and polyhedral surfaces

The Euclidean plane can be identified with the plane (z = 1) in R3, while the Poincaré model
of the hyperbolic plane can be identified with the unit disk in that plane. We can now use
the stereographic projection σ : S2 \ {s0} → R2 to send the unit sphere S2 to this plane
(z = 1), where s0 = (0, 0,−1) is the pole. In this projection, each point p 6= s0 on the sphere
is sent to the unique intersection with the plane (z = 1) of the line going through s0 and
p. The inverse image of the plane (z = 1) is S2 \ {s0}, while the inverse image of the disk
containing the Poincaré model of the hyperbolic plane is a disk, which is the set of points of
S2 above a horizontal plane.

SoCG 2020

35:6 Flipping Geometric Triangulations on Hyperbolic Surfaces

Let T ? be a triangulation of the Euclidean or the hyperbolic plane – for instance, T ?
could be the inverse image ρ−1(T) of a triangulation T of a surface (M2, h), in which case T ?
has infinitely many vertices. We associate to T ? a polyhedral surface Σ in R3, constructed
as follows. The construction is similar to the classic duality originally presented with a
paraboloid in the case of (finite) triangulations in a Euclidean space [9]. It can also be seen as
a simpler version, sufficient for our purpose, of the construction presented for triangulations
in hyperbolic spaces using the space of spheres [3].

The vertices of Σ are the inverse images on S2 by σ of the vertices of T ?.
The edges of Σ are line segments in R3 corresponding to the edges of T ? and the faces of
Σ are triangles in R3 corresponding to the faces of T ?.

Note that Σ is not necessarily convex. We can make the following well-known remarks. Let
t1 and t2 be two triangles of T ? sharing an edge e, and let tΣ1 and tΣ2 be the corresponding
faces of the polyhedral surface Σ, sharing the edge eΣ. Then Σ is concave at eΣ if and only
if e is Delaunay flippable. Flipping e in the triangulation T ? in the plane corresponds to
replacing the two faces tΣ1 and tΣ2 of Σ by the two other faces of the tetrahedron formed by
their vertices. That tetrahedron lies between Σ and S2. We obtain a new edge eΣ′ at which
the new polyhedral surface Σ′ is convex, and which is strictly closer to S2 than Σ. By an
abuse of language, we will say that Σ′ contains Σ, which we will denote as Σ ⊂ Σ′.

As a consequence, Σ is convex if and only if T ? is Delaunay.
There is a direct corollary of this statement: Given a (non-degenerate, see above) discrete

set V of points in R2 or H2, there is a unique Delaunay triangulation with this set of vertices.
However we are going to see in the next two sections that there can be infinitely many

geometric (non-Delaunay) triangulations on a surface, with the same given finite vertex set.

3 Geometric triangulations of surfaces

We consider now Dehn twists, which are usually considered as acting on the space of metrics
on a surface [7], but are defined here equivalently, for simplicity, as acting on triangulations
of a closed oriented surface (M2, h) equipped with a fixed Euclidean or hyperbolic structure
(figures in this section illustrate the flat case, but the results are proved for both flat and
hyperbolic cases). Let T be a triangulation of (M2, h), with vertex set V , and let c be
an oriented homotopically non-trivial simple closed curve on M2 \ V . We define a new
triangulation τc(T) of M2 by performing a Dehn twist along c: whenever an edge e of T
intersects c at a point p, we orient e so that the unit vectors of the tangent plane along e and
c form a positively oriented basis (see Figure 3 (left)), and then replace e by the oriented
path following e until p, then following c until it comes back to p, then following e until its
endpoint (see Figure 3 (right)). This defines a map τc from the space of triangulations of T2

with vertex set V to itself. Note that, even if T is a geometric triangulation, τc(T) is not
necessarily geometric. If we denote by −c the curve c with the opposite orientation, then
one easily checks that τ−c = τ−1

c .

I Lemma 6. There exists a geometric triangulation T of (M2, h) and a simple closed curve
c ⊂M2 such that for all k ∈ Z, τkc (T) is geometric.

Proof. Let us focus on the hyperbolic case (the construction is easier in the flat case).
Consider a pants decomposition ofM2 and denote as C the set of its boundary curves, which
are simple closed geodesics. Let us choose c in C and ε > 0. We denote by c−, c+ the two
hypercycles at distance ε from c on both sides of c. The value of ε must be sufficiently small
so that the region between c− and c+ is an annulus drawn onM2 that does not intersect

V. Despré, J.-M. Schlenker, and M. Teillaud 35:7

ce
p

Figure 3 Transformation of an edge e by the Dehn twist along c on a flat torus T2. Here the
black parallelepiped is a fundamental domain, and the gray one, used for the construction of the
image of e by τc, is another fundamental domain, image through an element of the the group Γ of
isometries.

any curve in C \ {c}. Each curve in C \ {c} is split into two geodesic segments by putting
two points on it; let us add the two segments as edges of T . Let us put two points on c−
(resp. c+) and add as edges of T the two geodesic segments between them, whose union
forms a curve homotopic to c. Each pair of pants not bounded by c, as well as the two
“shortened pants” bounded by c− and c+, can be decomposed into two hexagons, which can
easily been triangulated with geodesic edges. All these edges are left unchanged by τc (or
τ−c) as they do not intersect c. The annulus between c− and c+ can be triangulated with
four edges intersecting c exactly once. We realize the image by τc of each of these four edges
as a geodesic segment – there is a unique choice in the homotopy class of the path described
above (Figure 4). The annulus is convex, as the projection ontoM2 of the intersection of
two (convex) disks (Figure 2), so, the geodesic segment is completely contained in it. Let

c
c+ c−

e

Figure 4 Image of e by a Dehn twist (middle), realized as a geodesic edge (right).

e, e′ be two edges of T . If either e or e′ does not intersect c, then their images by τc (or τ−c)
remain disjoint, as they lie in different regions separated by c− and c+. If e and e′ intersect
c, then again their images by τc (or τ−c) remain disjoint, as their endpoints appear in the
same order on c− and c+ and two geodesic lines cannot intersect more than once (Figure 5).
As a consequence, τc(T) and τ−c(T) are geometric. They are not equivalent as each edge e

c

Figure 5 The Dehn twist of two edges along c for two edges intersecting c.

crossing c is replaced by an edge that does not lie in the same homotopy class as e. The
same result follows by induction for τkc (T) for any k ∈ Z. J

I Corollary 7. For any closed oriented surface (M2, h), there exists a finite set of points
V ⊂M2 such that the graph of geometric triangulations with vertex set V is infinite.

SoCG 2020

35:8 Flipping Geometric Triangulations on Hyperbolic Surfaces

I Proposition 8. Any Delaunay triangulation of a closed oriented surface (M2, h) is geo-
metric.

Proof. Let V be a finite set of points on M2, and let T be a Delaunay triangulation of
(M2, h) with vertex set V . Realize every edge of T as a the unique geodesic segment in its
homotopy class, so that T is geodesic. We argue by contradiction and suppose that T is not
geometric, so that there are two edges e1 and e2 that intersect in their interiors. We then lift
e1 and e2 to edges ẽ1 and ẽ2 of ρ−1(T) whose interiors still intersect.

We can find two distincts faces f̃1 and f̃2 of ρ−1(T) such that ẽ1 is an edge of f̃1 and ẽ2 is
an edge of f̃2. Let C̃1 and C̃2 be the circles inscribing f̃1 and f̃2, respectively. Since ρ−1(T)
is Delaunay, C̃1 and C̃2 bound empty disks D̃1 and D̃2, i.e., open disks not containing any
point of ρ−1(V). Recall that, as mentioned in Section 2.3, the closures of empty disks are
compact even in the hyperbolic case, and that ẽ1 ⊂ D̃1 and ẽ2 ⊂ D̃2 (edges are considered
as open). The two circles C̃1 and C̃2 intersect twice as the intersection point of ẽ1 and ẽ2
lies in D̃1 ∩ D̃2. Let L̃ be the geodesic line through the intersection points. The endpoints
of ẽ1 are on C̃1 \ D̃2 and those of ẽ2 are on C̃2 \ D̃1, so the two pairs of endpoints are on
opposite sides of L̃. As a consequence, ẽ1 and ẽ2 are on opposite sides of L̃, so they cannot
intersect. This leads to a contradiction. J

4 The flip algorithm

Let us consider a closed oriented surface (M2, h). The flip algorithm consists of performing
Delaunay flips in any order, starting from a given input geometric triangulation ofM2, until
there is no more Delaunay flippable edge.

In this section, we first define a data structure that supports this algorithm, then we
prove the correctness of the algorithm.

4.1 Data structure
In both cases of a flat or hyperbolic surface, the group of isometries defining the surface is
denoted as G. We assume that a fundamental domain Ω0 is given. By definition (Section 2.1),
M̃2 is the union G(Ω0) of the images of Ω0 under the action of G.

To represent a triangulation on the surface, we propose a data structure generalizing the
data structure previously introduced for triangulations of flat orbifolds [6] and triangulations
of the Bolza surface [15]. The combinatorics of the triangulation is given by the set of its
vertices V on the surface and the set of its triangles, where each triangle gives access to its
three vertices in V and its three adjacent triangles, and each vertex gives access to one of
its incident triangles. The geometry of the triangulation is given by the set Ṽ 0 of the lifts
of its vertices that lie in the fundamental domain Ω0 and one lift t̃ 0 in M̃2 of each triangle
t = (v0,t; v1,t; v2,t) of the triangulation, chosen among the (one, two, or three) lifts of t in M̃2
having at least one vertex in Ω0: t̃ 0 has at least one of its vertices ṽi,t 0 in Ω0 (i = 0, 1, or
2); then the other vertices of t̃ 0 are images gi+1,t · ṽi+1,t

0 and gi+2,t · ṽi+2,t
0 of two vertices

in Ṽ 0, where gi+1,t and gi+2,t are elements of G (indices are taken modulo 3). In the data
structure, each vertex v on the surface has access to its representative ṽ 0, and each triangle t
on the surface has access to the isometries g0,t, g1,t, and g2,t allowing to construct t̃ 0, at least
one of the isometries being the identity 1G. Note that two triangles t and t′ of T that are
adjacent on the surface are represented by two triangles t̃ 0 and t̃′

0
, which are not necessarily

adjacent in M̃2 (Figure 6 (left)). However, there is an isometry g in G such that t̃ 0 and
g · t̃′

0
are adjacent.

V. Despré, J.-M. Schlenker, and M. Teillaud 35:9

Let T be an input triangulation given as such a data structure. Figure 6 illustrates a
Delaunay flip performed on two adjacent triangles t and t′ on the surface. The triangle
t̃′

0
is first moved so that the vertices of the edge to be flipped coincide. Then the edge is

flipped. The isometries in the two triangles created by the flip are easy to compute from the
isometries stored in t and t′. Note that the order in which isometries are composed is crucial
in the hyperbolic case, as they do not commute. We have shown that the data structure can
be maintained through flips.

Ω0

t̃0
gi = 1Γ

gi+1

gi+2

gi+1g
′−1
j · t̃′

0

gi+1

gi+2

g′j

g′j+1

g′j+2

1Γ

1Γ

g′j+1gi+1g
′−1
j

t̃′
0

flip

Figure 6 A flip. Here (hyperbolic) triangles are represented schematically with straight edges.
Left: the two triangles t̃ 0 and t̃′

0
before the flip. Here gi = 1G. Right: the isometries in the two

triangles created by the flip.

4.2 Correctness of the algorithm
The following statement is a key starting point.

I Lemma 9. Let T be a geometric triangulation of (M2, h), and let T ′ be obtained from T

by a Delaunay flip. Then T ′ is still geometric.

Proof. Let e be a Delaunay flippable edge and ẽ a lift in M̃2. Denote the vertices of ẽ by ṽ
and ṽ′. Let t̃1 and t̃2 be the triangles of ρ−1(T) incident to ẽ. To prove that T ′ is geometric,
it is sufficient to prove that t̃1 ∪ t̃2 is a strictly convex quadrilateral.

Let C̃1 (resp. C̃2) be the circle through the three vertices of t̃1 (resp. t̃2). Note that
C̃1 and C̃2 may be non-compact. Let D̃1 and D̃2 be the corresponding disks (as defined
in Section 2.2 on case of non-compact circles). The disk D̃1 (resp. D̃2) is convex (in the
Euclidean plane if M2 is a flat torus, or in the sense of hyperbolic geometry if M2 is a
hyperbolic surface) and contains t̃1 (resp. t̃2). The fact that e is Delaunay flippable then
implies that t̃1 and t̃2 are contained in D̃1 ∩ D̃2 (see Figure 7). As a consequence, the sum of
angles of t̃1 and t̃2 at ṽ is smaller than the interior angle at ṽ of D̃1 ∩ D̃2, which is at most
π, and similarly at ṽ′. As a consequence, the quadrilateral t̃1 ∪ t̃2 is strictly convex at ṽ and
ṽ′. Since it is strictly convex at its other two vertices (as each of these vertices is a vertex of
a triangle), it is strictly convex, and the statement follows. J

The following lemma, using the diameter of the triangulation (Definition 3), is central in
the proof of the termination of the algorithm (Theorem 14) for hyperbolic surfaces and in its
analysis for both flat tori and hyperbolic surfaces (Section 5).

SoCG 2020

35:10 Flipping Geometric Triangulations on Hyperbolic Surfaces

ẽ

D̃1

D̃2

t̃1 t̃2

ṽ

ṽ′

Figure 7 The quadrilateral is convex (edges are represented schematicaly as straight line segments).

I Lemma 10. Let T be a geometric triangulation of (M2, h). Then, the flip algorithm
starting from T will never insert an edge longer than 2∆(T).

Note that the length of an edge can be measured on any of its lifts in the universal covering
space M̃2.

Proof. Let Tk be the triangulation obtained from T = T0 after k flips and let Σk be the
corresponding polyhedral surface of R3 as defined in Section 2.3. Since we perform only
Delaunay flips, Σ0 ⊂ . . . ⊂ Σk ⊂ Σk+1 (with the abuse of language mentioned in Section 2.3).

We will prove the result by contradiction. Let us assume that Tk has an edge e of length
larger than 2∆(T). Let Ω be a fundamental domain ofM2 having diameter ∆(T), given as
the union of lifts of triangles of T = T0 (it is not clear how to compute such a fundamental
domain efficiently but its existence is clear). Let v be the midpoint of e and ṽ its lift in Ω.
Let ẽ = (ṽ1, ṽ2) be the unique lift of e whose midpoint is ṽ. The domain Ω is strictly included
in the disk D̃ of radius ∆(T) and centered at ṽ, by definition of ∆(T) (see Figure 8 (left)).

Let PD denote the plane in R3 containing the circle on S2 that is the boundary of σ−1(D)
(recall that σ denotes the stereographic projection, see Section 2.3), and let p denote the
point σ−1(ṽ) on S2. As p ∈ σ−1(Ω) ⊂ σ−1(D̃), the projection pΣ0 of p onto Σ0 lies above
PD (Figure 8 (right)).

Now, denote the edge σ−1(ẽ) on S2 as (p1, p2). The points p1 and p2 lie outside σ−1(D).
So, the corresponding edge eΣ = [p1, p2] of Σk lies below the plane PC , thus the projection
pΣk ∈ [p1, p2] of p onto Σk lies below PC .

From what we have shown, pΣk is a point of Σk that lies strictly between the pole s0 and
the point pΣ0 of Σ0, which contradicts the inclusion Σ0 ⊂ Σk. J

We will now show that, for any order, the flip algorithm terminates and returns the
Delaunay triangulation of the surface. The proof given for the hyperbolic case would also
work for the flat case. However we propose a more elementary proof for the flat case.

Flat tori

The case of flat tori is easy, and might be considered as folklore. However, as we have not
found a reference, we give the details here for completeness.

We define the weight of a triangle t of a geometric triangulation T of T2 as the number
of vertices of ρ−1(T) that lie in the open circumdisk of a lift of t. The weight w(T) of T is
defined as the sum of the weights of its triangles.

V. Despré, J.-M. Schlenker, and M. Teillaud 35:11

S2

s0

R2
D ṽ1 ṽ2

p1

p2

D̃ ṽ

pΣk

p
pΣ0

Ω

D

ṽ

ṽ2

ṽ1

D̃

Ω

ẽ

PD

Figure 8 Illustration for the proof of Lemma 10 (for a hyperbolic surface). Left: notation in H2.
Right: contradiction seen in a cutting plane in R3.

I Lemma 11. The weight w(T) of a triangulation T of a flat torus (T2, h) is finite. Let T ′
be the triangulation obtained from a geometric triangulation T after performing a Delaunay
flip. Then w(T ′) ≤ w(T)− 2.

Proof. The closed circumdisk of any triangle in R2 is compact, so, it can only contain a
finite number of vertices of ρ−1(T). The sum w(T) of these numbers over triangles of T is
clearly finite as the number of triangles of T is finite. Let us now focus on a quadrilateral
in R2 that is a lift of the quadrilateral on T2 whose diagonal e is flipped. Let D̃1 and D̃2
denote the two open circumdisks in R2 before the flip and D̃′1 and D̃′2 denote the two open
circumdisks after the flip, then D̃′1 ∪ D̃′2 ⊂ D̃1 ∪ D̃2 and D̃′1 ∩ D̃′2 ⊂ D̃1 ∩ D̃2 (see Figure 9).
Moreover, by definition of a Delaunay flip, the union D̃′1 ∪ D̃′2 contains at least two fewer

ẽ

D̃1

D̃2

D̃′
1

D̃′
2

Figure 9 Circumdisks D̃1 and D̃2 before flipping ẽ and D̃1 and D̃′
2 after the Delaunay flip.

vertices of ρ−1(T) than D̃1 ∪ D̃2, which are the two vertices of the quadrilateral that are not
vertices of ẽ. This concludes the proof. J

SoCG 2020

35:12 Flipping Geometric Triangulations on Hyperbolic Surfaces

The result follows trivially:

I Theorem 12. Let T be a geometric triangulation of a flat torus with finite vertex set V .
The flip algorithm terminates and outputs the Delaunay triangulation of V .

I Corollary 13. The geometric flip graph FT2,h,V is connected.

Hyperbolic surfaces

To show that the flip algorithm terminates in the hyperbolic case, we cannot mimic the proof
presented for the flat tori since the circumcircle of a hyperbolic triangle can be non-compact
(see Section 2.2) and thus can have an infinite weight. Note also that the proof cannot use a
property on the angles of the Delaunay triangulation similar to what holds in the Euclidean
case: in H2, the locus of points seeing a segment with a given angle is not a circle arc, and
thus the Delaunay triangulation of a set of points in H2 does not maximize the smallest
angle of triangles. The proof relies on Lemma 10.

I Theorem 14. Let T be a geometric triangulation of a closed hyperbolic surface with finite
vertex set V . The flip algorithm terminates and outputs the Delaunay triangulation of V .

Proof. We use the same notation as in the proof Lemma 10. Once an edge of Tk is flipped, it
can never reappear in the triangulation, as the corresponding segment in R3 becomes interior
to the polyhedral surface Σk+1 (see Section 2.3) and further surfaces Σk′ , k′ ≥ k + 1. In
addition, all the introduced edges have length smaller than 2∆(T) by Lemma 10. Moreover,
there is only a finite number of edges with vertices in V that are shorter than 2∆(T) on
S, as a circle given by a center and a bounded radius is compact. So, the flip algorithm
terminates. The output does not have any Delaunay flippable edge, so, it is the Delaunay
triangulation. J

I Corollary 15. The geometric flip graph FS,h,V is connected.

5 Algorithm analysis

For a triangulation on n vertices in the Euclidean plane, counting the weights of triangulations
leads to the optimal O(n2) bound. However the same argument does not yield a bound even
for the flat torus, since points must be counted in the universal cover.

I Theorem 16. For any triangulation T with n vertices of a torus (T2, h), there is a sequence
of flips of length Ch ·∆(T)2 · n2 connecting T to a Delaunay triangulation of (T2, h), where
Ch only depends on h.

Proof. Let e = (v1, v2) be an edge appearing during the flip algorithm, and ṽ1 (resp. ṽ2) be a
lift of v1 (resp. v2), such that (ṽ1, ṽ2) is a lift ẽ of e. The point ṽ2 lies in a circle C of diameter
4∆(T) centered at ṽ1 by Lemma 10. LetM be the affine transformation that maps the lattice
of the lifts of v2 to the square lattice Z2. M(C) is a convex set and from Pick’s theorem [20],2
the number of points of Z2 in M(C) is smaller than area(M(C)) + 1/2 ·perimeter(M(C)) + 1,
which is also a bound on the number of possible points ṽ2 in C and thus the number of
possible edges e. The area of M(C) is 1/Ah · area(C) since det(M) = 1/Ah, but there is no
simple formula for its perimeter. As already mentioned in the proof of Theorem 14, an edge
can never reappear after it was flipped. Moreover, there are n2/2 sets of points {v1, v2} (v1
and v2 may be the same point), which yields the result. J

2 See also https://en.wikipedia.org/wiki/Pick’s_theorem#Inequality_for_convex_sets

https://en.wikipedia.org/wiki/Pick's_theorem#Inequality_for_convex_sets

V. Despré, J.-M. Schlenker, and M. Teillaud 35:13

The rest of this section is devoted to computing the number of edges not longer than
2∆(T) between two fixed points v1 and v2 on a hyperbolic surface (S, h). Counting the
number of points in a disk of fixed radius would give an exponential bound because the area
of a circle in H2 is exponential in its radius [16]. Note that we only consider geodesic edges,
so we only need to count homotopy classes of simple paths. The behavior of the number Nl
of simple closed curves smaller than a fixed length l is well understood: Nl/l6g−6 converges
to a positive constant depending “continuously” on the structure h [18]. However, we need a
result for geodesic segments instead of geodesic closed curves, and Mirzakhani’s proof is too
deep and relies on too sophisticated structures to easily be generalized. So, we will only prove
an upper bound on the number of segments. Such an upper bound could be derived from
the theory of measured laminations of Thurston, which is also quite intricate. Fortunately, a
more comprehensible proof, specific to simple closed geodesic curves on hyperbolic structures,
can be found in a book published by the French Mathematical Society [12, 4.III, p.61-67] [11].
While recalling the main steps of the proof, we show how to extend it to geodesic segments.

Let Γ = {γi, i = 1, . . . , 3g− 3} be a set of 3g− 3 simple disjoint closed geodesics on (S, h)
not containing v1 and v2 that forms a pants decomposition on S, where each γi belongs to
two different pairs of pants. A set {γi, i = 1, . . . , 3g − 3} of disjoint closed annuli is defined
on S, where each γi is a tubular neighborhood of γi containing none of v1, v2. This yields
a decomposition of S into 3g − 3 annuli γi (i = 1, . . . , 3g − 3) and 2g − 2 pairs of “short
pants” Pj (j = 1, . . . , 2g − 2). For i = 1, . . . , 3g − 3, let us denote as ∂γi any one of the two
curves bounding the annulus γi (this is an abuse of notation but should not introduce any
confusion). In each pair of pants Pj , j = 1, . . . , 2g − 2, for each boundary ∂γ, an arc Jγi is
drawn in Pi, going from the boundary of γ to itself that separates the other two boundaries
of Pi and that has minimal length.

Two curves γ′ and γ′′ are associated to each γ ∈ Γ in the following way (Figure 10).
The annulus γ is glued with the two pairs of pants Pi and Pj between which it is lying,
which yields a sphere with four boundaries: ∂γi,1 and ∂γi,2 bounding Pi and ∂γj,1 and ∂γj,2
bounding Pj . A curve γ′ is then defined: it coincides with Jγi in Pi and Jγj in Pj , it separates
∂γi,1 and ∂γj,1 from ∂γi,2 and ∂γj,2, and it has exactly 2 crossings with γ. The curve γ′′ is
defined in the same way, separating ∂γi,1 and ∂γj,2 from ∂γi,2 and ∂γj,1.

For each Pi and mi,1,mi,2,mi,3 ∈ N, a model of a multiarc is fixed in Pi, having mi,1,
mi,2 and mi,3 intersections with the three boundaries ∂γi,1, ∂γi,2 and ∂γi,3 of Pi (if one
exists). The model is chosen among all the possible multiarcs as the one that has a minimal
number of intersections with the three arcs Jγi,j

i (j = 1, 2, 3) of Pi. The model is unique, up
to homeomorphisms of the pair of pants, and those homeomorphisms are rather simple to
understand since they can be decomposed into three Dehn twists around curves homotopic
to the three boundaries of the pair of pants.

Let now f be a path between v1 and v2 on S. We decompose f into three parts: (v1, w1),
fw = (w1, w2) and (w2, v2) where w1 and w2 are the first and the last points of f on an
annulus boundary. We “push” all the twists of fw into the annuli γ, γ ∈ Γ, and obtain a
normal form homotopic to f , whose definition adapts the definition given in the book [12]
for closed curves:
1. It is simple.
2. It has a minimal number mi of intersections with each γi, i = 1, . . . , 3g − 3.
3. In each Pj , j = 1, . . . , 2g − 2, it is homotopic with fixed endpoints to the model that

corresponds to the number of intersections with its boundaries. For Pj1 (resp. Pj2)
containing v1 (resp. v2), only the intersections different from w1 (resp. w2) are counted.

SoCG 2020

35:14 Flipping Geometric Triangulations on Hyperbolic Surfaces

Pi

Pj

γγ

Jγi

∂γ

∂γ

Jγj

∂γi,1 ∂γi,2

∂γj,2

∂γj,1

γ′

γ′
γ′′

γ′′

Figure 10 Two adjacent pairs of pants Pi and Pj .

4. Between v1 and w1 (resp. w2 and v2), it has a minimal number of intersections with the
three arcs Jγj1,k

j1
(k = 1, 2, 3) in Pj1 containing v1 (resp. Jγj2,k

j2
in Pj2 containing v2).

5. It has a minimal number ti of intersections with γ′i inside γi, for any i = 1, . . . , 3g − 3.
6. It has a minimal number si of intersections with γ′′i inside γi, for any i = 1, . . . , 3g − 3.
The existence of a normal form is clear. The two forms of the path f are used to define
two notions of complexity: its geodesic form is used to define its length, which can be seen
as a geometric complexity, whereas its normal coordinates mi, si and ti can be seen as a
combinatorial complexity. Lemma 18 shows some equivalence between the two notions of
complexity. We first show that a fixed set of coordinates corresponds to a finite number of
possible non-homotopic paths.

I Lemma 17. For any set of coordinates mi, ti, si, i = 1, . . . , 3g − 3, there are at most
9(max{i=1,...,3g−3}(mi))2 non-homotopic normal forms.

Proof. Let f be a path, decomposed as above into (v1, w1), fw = (w1, w2) and (w2, v2). In
each pair of pants not containing any endpoint v1 or v2, fixing the mi, si and ti leads to a
unique homotopy class of models [12, Lemma 5, p.63]. For the two (not necessarily different)
pairs of pants Pj1 and Pj2 containing v1 and v2, w1 and w2 are in fact fixing unique models
(see Figure 11). There are three possible annulus boundaries ∂γj,i, i = 1, 2, 3 for w1 in the
pair of pants Pj that contains v1 (resp. γj,i for w2), so, at most 3 max{i}(mi) possibilities for
each of them. The choices for w1 and w2 are independent and the result follows. J

I Lemma 18. Let f be a geodesic segment of length l, then there exists a constant ch such
that the coordinates mi, ti and si, i = 1, . . . , 3g − 3 of the normal form of f are smaller than
ch · l.

Proof. For any simple closed geodesic δ on S, the geodesic form of f intersects δ in a
minimal number kδ of points, since they are both geodesics. If εδ is the width of a tubular
neighborhood of δ, then l ≥ εδ(kδ − 1) [2, Lemma 3.1]. Each coordinate mi, ti and si of f

V. Despré, J.-M. Schlenker, and M. Teillaud 35:15

v1

w1 w1

w1

v1 v1

Figure 11 Three possible choices for w1. The two left choices correspond to the same model,
but the orderings on the upper boundary lead to non-homotopic paths. The right choice leads to
different models.

corresponds to the minimal number of intersections with a curve. The numbermi corresponds
to γi. The number ti is actually not larger than the number of intersections of f with the
geodesic curve that is homotopic to γ′i (γ′i is generally not geodesic), and similarly si is not
larger than the number of intersections of f with the geodesic homotopic to γ′′i . These curves
γi, γ

′
i, γ
′′
i only depend on (S, h), so, we can take εh to be the largest of all the 9g − 9 widths

εγi
, εγ′

i
, εγ′′

i
and we obtain l ≥ εh ·max(mi, ti, si) and thus max(mi, ti, si) ≤ 1/εh · l. J

I Theorem 19. For any hyperbolic structure h on S and any triangulation T of (S, h),
there is a sequence of flips of length at most Ch ·∆(T)6g−4 · n2 in the geometric flip graph
connecting T to a Delaunay triangulation of (S, h).

Proof. Let Nv1,v2 be the number of segments from v1 to v2 shorter than l = 2 · ∆(T).
From the previous lemma, we obtain that the 9g − 9 coordinates mi, ti, and si of any such
segment f are smaller than ch · 2∆(T). It appears that, ∀i,m1 = ti + si, ti = mi + si or
si = mi + ti [12, Lemma 6, p.64 & Fig.5, p.65]. So, if we fix mi and ti there are at most 3
possible si. Lemma 17 and 18 proves that there are 9(ch ·2∆(T))2 potential segments for each
coordinate set. We obtain a bound for Nv1,v2 : Nv1,v2 ≤ 9(ch · 2∆(T))2 · 3(ch · 2∆(T))6g−6

and thus, there is a constant C ′h such that Nv1,v2 ≤ C ′h ·∆(T)6g−4. Since there are 1/2 · n2

possible sets {v1, v2}, we obtain the bound on the number of edges. J

References
1 Marcel Berger. Geometry. Springer, 1996.
2 Joan S Birman and Caroline Series. Geodesics with bounded intersection number on surfaces

are sparsely distributed. Topology, 24(2):217–225, 1985.
3 Mikhail Bogdanov, Olivier Devillers, and Monique Teillaud. Hyperbolic Delaunay complexes

and Voronoi diagrams made practical. Journal of Computational Geometry, 5:56–85, 2014.
doi:10.20382/jocg.v5i1a4.

4 Mikhail Bogdanov, Iordan Iordanov, and Monique Teillaud. 2D hyperbolic Delaunay triangula-
tions. In CGAL User and Reference Manual. CGAL Editorial Board, 4.14 edition, 2019. URL:
https://doc.cgal.org/latest/Manual/packages.html#PkgHyperbolicTriangulation2.

5 Mikhail Bogdanov, Monique Teillaud, and Gert Vegter. Delaunay triangulations on orientable
surfaces of low genus. In Proceedings of the Thirty-second International Symposium on
Computational Geometry, pages 20:1–20:17, 2016. doi:10.4230/LIPIcs.SoCG.2016.20.

6 Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean d-orbifolds.
Discrete & Computational Geometry, 55(4):827–853, 2016. URL: http://hal.inria.fr/
hal-01294409, doi:10.1007/s00454-016-9782-6.

7 Andrew J. Casson and Steven A. Bleiler. Automorphisms of surfaces after Nielsen and
Thurston, volume 9 of London Mathematical Society Student Texts. Cambridge University
Press, Cambridge, 1988. doi:10.1017/CBO9780511623912.

SoCG 2020

https://doi.org/10.20382/jocg.v5i1a4
https://doc.cgal.org/latest/Manual/packages.html#PkgHyperbolicTriangulation2
https://doi.org/10.4230/LIPIcs.SoCG.2016.20
http://hal.inria.fr/hal-01294409
http://hal.inria.fr/hal-01294409
https://doi.org/10.1007/s00454-016-9782-6
https://doi.org/10.1017/CBO9780511623912

35:16 Flipping Geometric Triangulations on Hyperbolic Surfaces

8 Carmen Cortés, Clara I Grima, Ferran Hurtado, Alberto Márquez, Francisco Santos, and Jesus
Valenzuela. Transforming triangulations on nonplanar surfaces. SIAM Journal on Discrete
Mathematics, 24(3):821–840, 2010. doi:10.1137/070697987.

9 H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Discrete & Computational
Geometry, 1(1):25–44, 1986. doi:10.1007/BF02187681.

10 Benson Farb and Dan Margalit. A Primer on Mapping Class Groups (PMS-49). Princeton
University Press, 2012. URL: http://www.jstor.org/stable/j.ctt7rkjw.

11 Albert Fathi, François Laudenbach, and Valentin Poénaru. Thurston’s Work on Surfaces
(MN-48). Princeton University Press, 2012.

12 Albert Fathi, François Laudenbach, Valentin Poénaru, et al. Travaux de Thurston sur les
surfaces, volume 66–67 of Astérisque. Société Mathématique de France, Paris, 1979.

13 Martin Gardner. Chapter 19: Non-Euclidean geometry. In The Last Recreations. Springer,
1997.

14 F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete & Computational
Geometry, 3(22):333–346, 1999. doi:10.1007/PL00009464.

15 Iordan Iordanov and Monique Teillaud. Implementing Delaunay triangulations of the Bolza sur-
face. In Proceedings of the Thirty-third International Symposium on Computational Geometry,
pages 44:1–44:15, 2017. doi:10.4230/LIPIcs.SoCG.2017.44.

16 Gregorii A Margulis. Applications of ergodic theory to the investigation of manifolds of
negative curvature. Functional analysis and its applications, 3(4):335–336, 1969.

17 William S. Massey. A basic course in algebraic topology, volume 127 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1991.

18 Maryam Mirzakhani. Growth of the number of simple closed geodesics on hyperbolic surfaces.
Annals of Mathematics, 168(1):97–125, 2008.

19 Guillaume Tahar. Geometric triangulations and flips. C. R. Acad. Sci. Paris, Ser. I,
357:620–623, 2019.

20 J. Trainin. An elementary proof of Pick’s theorem. Mathematical Gazette, 91(522):536–540,
2007.

https://doi.org/10.1137/070697987
https://doi.org/10.1007/BF02187681
http://www.jstor.org/stable/j.ctt7rkjw
https://doi.org/10.1007/PL00009464
https://doi.org/10.4230/LIPIcs.SoCG.2017.44

An Efficient Algorithm for 1-Dimensional
(Persistent) Path Homology
Tamal K. Dey
Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, 43210, USA
tamaldey@cse.ohio-state.edu

Tianqi Li
Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, 43210, USA
li.6108@osu.edu

Yusu Wang
Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH, 43210, USA
yusu@cse.ohio-state.edu

Abstract
This paper focuses on developing an efficient algorithm for analyzing a directed network (graph) from
a topological viewpoint. A prevalent technique for such topological analysis involves computation
of homology groups and their persistence. These concepts are well suited for spaces that are not
directed. As a result, one needs a concept of homology that accommodates orientations in input
space. Path-homology developed for directed graphs by Grigoryan, Lin, Muranov and Yau has
been effectively adapted for this purpose recently by Chowdhury and Mémoli. They also give an
algorithm to compute this path-homology. Our main contribution in this paper is an algorithm that
computes this path-homology and its persistence more efficiently for the 1-dimensional (H1) case.
In developing such an algorithm, we discover various structures and their efficient computations
that aid computing the 1-dimensional path-homology. We implement our algorithm and present
some preliminary experimental results.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases computational topology, directed graph, path homology, persistent path
homology

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.36

Related Version A full version of this paper is available at https://arxiv.org/abs/2001.09549.

Funding This work is in part supported by National Science Foundation under grants CCF1740761,
DMS-1547357, and RI-1815697.

1 Introduction

When it comes to graphs, traditional topological data analysis has focused mostly on
undirected ones. However, applications in social networks [1,15], brain networks [16], and
others require processing directed graphs. Consequently, topological data analysis for these
applications needs to be adapted accordingly to account for directedness. Recently, some
work [4,14] have initiated to address this important but so far neglected issue.

Since topological data analysis uses persistent homology as a main tool, one needs a notion
of homology for directed graphs. Of course, one can forget the directedness and consider
the underlying undirected graph as a simplicial 1-complex and use a standard persistent
homology pipeline for the analysis. However, this is less than desirable because the important
information involving directions is lost. Currently, there are two main approaches that have

© Tamal K. Dey, Tianqi Li, and Yusu Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tamaldey@cse.ohio-state.edu
mailto:li.6108@osu.edu
mailto:yusu@cse.ohio-state.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.36
https://arxiv.org/abs/2001.09549
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

been proposed for dealing with directed graphs. One uses directed clique complexes [8, 14]
and the other uses the concept of path homology [10]. In the first approach, a k-clique in
the input directed graph is turned into a (k − 1)-simplex if the clique has a single source
and a single sink. The resulting simplicial complex is subsequently analyzed with the usual
persistent homology pipeline. One issue with this approach is that there could be very
few cliques with the required condition and thus accommodating only a very few higher
dimensional simplices. In the worst case, only the undirected graph can be returned as the
directed clique complex if each 3-clique is a directed cycle. The second approach based on
path homology alleviates this deficiency. Furthermore, certain natural functorial properties,
such as Künneth formula, do not hold for the clique complex [10].

The path homology, originally proposed by Grigoryan, Lin, Muranov and Yau in 2012 [10]
and later studied by [5,11,12], has several properties that make it a richer mathematical
structure. For example, there is a concept of homotopy under which the path homology is
preserved; it accommodates Künneth formula; and the path homology theory is dual to the
cohomology theory of digraphs introduced in [12]. Furthermore, persistent path homology
developed in [5] is shown to respect a stability property for its persistent diagrams.

To use path homologies effectively in practice, one needs efficient algorithms to compute
them. In particular, we are interested in developing efficient algorithms for computing
1-dimensional path homology and its persistent version because even for this case the current
state of the art is far from satisfactory: Given a directed graph G with n vertices, the
most efficient algorithm proposed in [5] has a time complexity O(n9) (more precisely, their
algorithm takes O(n3+3d) to compute the (d− 1)-dimensional persistent path-homology).

The main contribution of this paper is stated in Theorem 1. The reduced time complexity
of our algorithm can be attributed to the fact that we compute the boundary groups more
efficiently. In particular, it turns out that for 1-dimensional path homology, the boundary
group is determined by bigons, certain triangles, and certain quadrangles in the input directed
graph. The bigons and triangles can be determined relatively easily. It is the boundary
quadrangles whose computation and size determine the time complexity. The authors in [5]
compute a basis of these boundary quadrangles by constructing a certain generating set for
the 2-dimensional chain group by a nice column reduction algorithm (being different from
the standard simplicial homology, it is non-trivial to do reduction for path homology). We
take advantage of the concept of arboricity and related results in graph theory, together
with other efficient strategies, to enumerate a much smaller set generating the boundary
quadrangles. Computing the cycle and boundary groups efficiently both for non-persistent
and persistent homology groups is the key to our improved time complexity.

I Theorem 1. Given a directed graph G with n vertices and m edges, set r = min{a(G)m,∑
(u,v)∈E(din(u) + dout(v))}, where a(G) is the so-called arboricity of G (with a(G) = O(n)),

and din(u) and dout(u) are the in-degree and out-degree of u, respectively. There is an
O(rmω−1 +mα(n)) time algorithm for computing the 1-dimensional persistent path homology
for G where ω < 2.373 is the exponent for matrix multiplication1, and α(·) is the inverse
Ackermann function.

This also gives an O(rmω−1 +mα(n)) time algorithm for computing the 1-dimensional
path homology H1 of G.

In particular, for a planar graph G, a(G) = O(1) and the time complexity becomes O(nω).

1 That is, the fastest algorithm to multiply two r × r matrices takes time O(rω).

T.K. Dey, T. Li, and Y. Wang 36:3

The arboricity a(G) of a graph G mentioned in Theorem 1 denotes the minimum number
of edge-disjoint spanning forests into which G can be decomposed [13]. It is known that in
general, a(G) = O(n), but it can be much smaller. For example, a(G) = O(1) for planar
graphs and a(G) = O(g) for a graph embedded on a genus-g surface [3]. Hence, for planar
graphs, we can compute 1-dimensional persistent path homology in O(nω) time whereas the
algorithm in [5] takes O(n5) time2.

In the full version, we develop an algorithm to compute 1-dimensional minimal path
homology basis [7, 9], and also show experiments demonstrating the efficiency of our new
algorithms.

Organization of the paper. After characterizing the 1-dimensional path homology group
H1 in Section 3, we first propose a simple algorithm to compute it. In Section 4, we consider
its persistent version and present an improved and more efficient algorithm.

2 Background

We briefly introduce some necessary background for path homology. Interested readers can
refer to [10] for more details. The original definition can be applied to structures beyond
directed graphs; but for simplicity, we use directed graphs to introduce the notations.

Given a directed graph G = (V,E), we denote (u, v) as the directed edge from u to v. A
self-loop is defined to be the edge (u, u) from u to itself. Throughout this paper, we assume
that G does not have self-loops. We also assume that G does not have multi-edges, i.e.
for every ordered pair u, v, there is at most one directed edge from u to v. For notational
simplicity, we sometimes use index i to refer to vertex vi ∈ V = {v1, . . . , vn}.

Let F be a field with 0 and 1 being the additive and multiplicative identities respectively.
We use −a to denote the additive inverse of a in F. An elementary d-path on V is simply
a sequence i0, i1, · · · , id of d + 1 vertices in V . We denote this path by ei0,i1,··· ,id . Let
Λd = Λd(G,F) denote the F-linear space of all linear combinations of elementary d-paths
with coefficients from F. It is easy to check that the set {ei0,··· ,id | i0, · · · , id ∈ V } is a basis
for Λd. Each element p of Λd is called a d-path, and it can be written as

p =
∑

i0,··· ,id∈V
ai0···idei0···id , where ai0···id ∈ F.

Similar to simplicial complexes, there is a well-defined boundary operator ∂ : Λd → Λd−1:

∂ei0···id =
∑

i0,··· ,id∈V
(−1)jei0···̂ij ···id ,

where îk means the omission of index ik. The boundary of a path p =
∑
i0,··· ,id∈V ai0···id ·

ei0···id , is thus ∂p =
∑
i0,··· ,id∈V ai0···id · ∂ei0···id . We set Λ−1 = 0 and note that Λ0 is the set

of F-linear combinations of vertices in V . Lemma 2.4 in [10] shows that ∂2 = 0.
Next, we restrict to real paths in directed graphs. Specifically, given a directed graph

G = (V,E), call an elementary d-path ei0,··· ,id allowed if there is an edge from ik to ik+1
for all k. Define Ad as the space of all allowed d-paths, that is, Ad := span{ei0···id :
ei0···id is allowed}. An elementary d-path i0 · · · id is called regular if ik 6= ik+1 for all k, and is
irregular otherwise. Clearly, every allowed path is regular since there is no self-loop. However,

2 The original time complexity stated in the paper is O(n9) for 1-dimensional case. However, one can
improve it to O(n5) by a more refined analysis for planar graphs.

SoCG 2020

36:4 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

(a) Bigon. (b) Boundary triangle. (c) Boundary quadrangle.

Figure 1 Examples of 1-boundaries.

the boundary map ∂ on Λd may create a term resulting into an irregular path. For example,
∂euvu = evu − euu + euv is irregular because of the term euu. To deal with this case, the
term containing consecutive repeated vertices is identified with 0 [10]. Thus, for the previous
example, we get ∂euvu = evu − 0 + euv = evu + euv. The boundary map ∂ on Ad is taken to
be the boundary map for Λd restricted on Ad with this modification: where all terms with
consecutive repeated vertices created by the boundary map ∂ are replaced with 0’s.

Unfortunately, after restricting to the space of allowed paths A∗, the inclusion that
∂Ad ⊂ Ad−1 may not hold any more; that is, the boundary of an allowed d-path is not
necessarily an allowed (d− 1)-path. To this end, we adopt a stronger notion of allowed paths:
an allowed path p is ∂-invariant if ∂p is also allowed. Let Ωd := {p ∈ Ad | ∂p ∈ Ad−1} be
the space generated by all ∂-invariant paths. We then have ∂Ωd ⊂ Ωd−1 (as ∂2 = 0). This
gives rise to the following chain complex of ∂-invariant allowed paths:

· · ·Ωd
∂−→ Ωd−1

∂−→ · · ·Ωd
∂−→ Ω0

∂−→ 0.

We can now define the homology groups of this chain complex. The d-th cycle group is
defined as Zd = Ker ∂|Ωd , and elements in Zd are called d-cycles. The d-th boundary group
is defined as Bd = Im ∂|Ωd+1 , with elements of Bd being called d-boundary cycles (or simply
d-boundaries). The resulting d-dimensional path homology group is Hd(G,F) = Zd/Bd.

2.1 Examples of 1-boundaries
Below we give three examples of 1-boundaries; see Figure 1.

Bi-gon. A bi-gon is a 1-cycle euv + evu consisting of two edges (u, v) and (v, u) from
E; see Figure 1(a). Consider the 2-path euvu. We have that its boundary is ∂(euvu) =
evu − euu + euv = evu + euv. Since both evu and euv are allowed 1-paths, it follows that any
bi-gon evu + euv of G is necessarily a 1-boundary.

Boundary triangle. Consider the 1-cycle C = evw − euw + euv of G (it is easy to check that
∂ C = 0). Now consider the 2-path euvw: its boundary is then ∂(euvw) = evw−euw+euv = C.
Note that every summand in the boundary is allowed. Thus C is a 1-boundary. We call any
triangle in G isomorphic to C a boundary triangle. Note that a boundary triangle always has
one sink and one source; see the source u and sink w in Figure 1(b). In what follows, we use
(u,w | v) to denote a boundary triangle where u is the source and w is the sink.

Boundary quadrangle. Consider the 1-cycle C = euv + evw − euz − ezw from G. It is
easy to check that C is the boundary of the 2-path euvw − euzw, as ∂(euvw − euzw) =
evw − euw + euv − (ezw − euw + euz) = evw + euv − ezw − euz = C. We call any quadrangle
isomorphic to C a boundary quadrangle.

T.K. Dey, T. Li, and Y. Wang 36:5

In the remainder of the paper, we use R(u, v, w, z) to represent a quadrangle; i.e, a 1-cycle
consisting of 4 edges whose undirected version has the form (u, v) + (v, w) + (w, z) + (z, u).
(Note that a quadrangle may not be a boundary quadrangle). We denote a boundary
quadrangle euv + evw − euz − ezw by {u,w | v, z}, where u and w are the source and sink of
this boundary quadrangle respectively.

3 Computing 1-dimensional path homology H1

Note that the 1-dimensional ∂-invariant path space Ω1 = Ω1(G) is the space generated by all
edges [10] because the boundary of every edge is allowed by definition.

Now consider the 1-cycle group Z1 ⊆ Ω1; that is, Z1 is the kernel of ∂ applied to Ω1.
We show below that a basis of Z1 can be computed by considering a spanning tree of the
undirected version of G, which denoted by Gu. This is well known when F is Z2. It is easy
to see that this spanning tree based construction also works for arbitrary field F.

Specifically, let T be a rooted spanning tree of Gu with root r, and T̄ := Gu \ T . For
every edge e = (v1, v2) ∈ T̄ , let ce be the 1-cycle (under Z2) obtained by summing e and
all edges on the paths π1 and π2 between v1 and r, and v2 and r respectively. The cycles
{ce, e ∈ T̄} form a basis of 1-cycle group of Gu under Z2 coefficient. Now for every such cycle
ce in Gu, we also have a cycle in Ω1(G) containing same edges with ce which are assigned a
coefficient 1 or −1 depending on their orientations in G. We call this 1-cycle in Ω1(G) also
ce. Then we have the following proposition, whose proof is in the full version.

I Proposition 2. The cycles {ce|e ∈ T̄} in Ω1(G) form a basis for Z1 under any coefficient
field F.

Now, we show a relation between 1-dimensional homology, cycles, bigons, triangles and
quadrangles. Recall that bi-gons, boundary triangles and boundary quadrangles are specific
types of 1-dimensional boundaries with two, three or four vertices, respectively; see Section
2.1. The following theorem is similar to Proposition 2.9 from [11], where the statement there
is under coefficient ring Z. For completeness, we include the (rather similar) proof for our
case in the full version.

I Theorem 3. Let G = (V,E) be a directed graph. Let Q denote the space generated by all
boundary triangles, boundary quadrangles and bi-gons in G. Then we have B1 = Q.

I Corollary 4. The 1-dimensional path homology group satisfies that H1 = Z1/Q.

3.1 A simple algorithm
Theorem 3 and Corollary 4 provide us a simple framework to compute H1. Below we only
focus on the computation of the rank of H1; but the algorithm can easily be modified to output
a basis for H1 as well. Later in Section 4, we will develop a more efficient and sophisticated
algorithm for the 1-dimensional persistent path homology H1, which as a by-product, also
gives a more efficient algorithm to compute H1.

In the remaining of this paper, we represent each cycle in Z1 with a vector. Assume all
edges are indexed from 1 to m as e1, · · · , em where m is the number of edges. Then, each
1-cycle C is an m-dimensional vector, where C[i] ∈ F records the coefficient for edge ei in C.

(Step 1): cycle group Z1. By Proposition 2, rank(Z1) = |E| − |V |+ 1 for directed graph
G = (V,E). The computation of the rank takes O(1) time (or O(|V |2) time if we need to
output a basis of it explicitly).

SoCG 2020

36:6 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

Algorithm 1 A simple first algorithm to compute rank of H1.

1: procedure CompH1-Simple(G, t)
2: (Step 1): Compute rank of 1-cycle group Z1
3: (Step 2): Compute rank of 1-boundary group B1
4: (Step 2.a) Compute a generating set C of 1-boundary cycles that generates B1
5: (Step 2.b) From C compute a basis for B1
6: Return rank(H1) = rank(Z1)− rank(B1).
7: end procedure

(Step 2): boundary group B1. Note that by Theorem 3, we can compute the set of all
bigons, boundary triangles and boundary quadrangles as a generating set C of 1-boundary
cycles (meaning that it generates the boundary group B1) for (Step 2.a). However, such a
set C could have size Ω(n2) even for a planar graph, where n = |V |; see Figure 2. (For a
general graph, the number of boundary quadrangles could be Θ(n4).)

Figure 2 There are n vertices but ls ·lt = Θ(n2) quadrangles, ls = b(n−2)/2c and lt = d(n−2)/2e.

To make (Step 2.b) efficient, we wish to have a generating set C of 1-boundary cycles with
small cardinality. To this end, we leverage a classical result of [3] to reduce the size of C.

Given an undirected graph G, its arboricity a(G) is the minimum number of edge-disjoint
spanning forests which G can be decomposed into [13]. An alternative definition is

a(G) = max
H is a subgraph of G

|E(H)|
|V (H)| − 1 .

From this definition, it is easy to see (and well-known, see e.g, [3]) that:

I Observation 3.1.
(1) If G is a planar graph, or a graph with bounded vertex degrees, then a(G) = O(1).
(2) If G is a graph embedded on a genus g surface, then a(G) = O(g).
(3) In general, if G does not contain self-loops, then a(G) = O(n).
We will leverage some classical results from [3]. First, to represent quadrangles, we use the
following triple-list representation [13] : a triple-list (u, v, {w1, w2, · · · , wl}) means that for
each i, wi is adjacent to both u and v, where we say u′ and v′ are adjacent if either (u′, v′)
or (v′, u′) are in E (i.e, u′ and v′ are adjacent when disregarding directions). Given such a
triple-list ξ = (u, v, {w1, w2, · · · , wl}), it is easy to see that u,wi, v, wj form the consecutive
vertices of a quadrangle in the undirected version of graph G; and we also say that the
undirected quadrangle R(u,wi, v, wj) is covered by this triple-list. We say that a vertex z is
in a triple-list (u, v, {w1, w2, · · · , wl}) if it is in the set {w1, w2, · · · , wl}.

The size of a triple-list is the total number of vertices contained in it. This triple-list ξ
thus represents Θ(l2) number of undirected quadrangles in G succinctly with Θ(l) size.

T.K. Dey, T. Li, and Y. Wang 36:7

I Proposition 5 ([3]).
(1) Let G be a connected undirected graph with n vertices and m edges. There is an algorithm

listing all the triangles in G in O(a(G)m) time.
(2) There is an algorithm to compute a set of triple-lists which covers all quadrangles in

a connected graph G in O(a(G)m) time. The total size complexity of all triple-lists is
O(a(G)m).

Using the above result, we can have the following theorem, with proof in the full version.

I Theorem 6. Let G = (V,E) be a directed graph with n vertices and m edges. We can
compute a generating set C of 1-boundary cycles for B1 with cardinality O(a(G)m) in time
O(a(G)m).

It then follows from Theorem 3 that (Step 2.a) can be implemented in O(a(G)m) time,
producing a generating set of cardinality O(a(G)m). Finally, representing each boundary
cycle in C as a vector of dimension m = |E|, we can then compute the rank of cycles in C in
O(|C|mω−1) = O(a(G)mω),where ω < 2.373 is the exponent for matrix multiplication [2].

Putting everything together, we have that

I Theorem 7. Given a directed graph G = (V,E) with n = |V | and m = |E|, Algorithm 1
computes the rank of the 1-dimensional path homology group H1 in O(a(G)mω) time.

The algorithm can be extended to compute a basis for H1 with the same time complexity.

For example, by Observation 3.1, if G is a planar graph, then we can compute H1 in
O(nω). For a graph G embedded on a genus g surface, H1 can be computed in O(gnω) time.
In contrast, we note that the algorithm of [5] takes O(n5) time for planar graphs.

4 Computing persistent path homology H1

The concept of arboricity used in the previous section does not consider edge directions.
Indeed, our algorithm to compute a generating set C as given in the proof of Theorem 6
first computes a (succinct) representation of all quadrangles, whether they contribute to
boundary quadrangles or not. On the other hand, as Figure 3 illustrates, a graph G can have
no boundary quadrangle despite the fact that the graph is dense (with Θ(n2) edges and thus
a(G) = Θ(n) arboricity). Another way to view this is that the example has no allowed 2-path,
and thus no ∂-invariant 2-paths and consequently no 1-boundary cycles. Our algorithm will
be more efficient if it can also respect the number of allowed elementary 2-paths.

Figure 3 A dense graph with no boundary quadrangle.

In fact, a more standard and natural way to compute a basis for the 1-boundary group
proceeds by taking the boundary of ∂-invariant 2-paths. The complication is that unlike
in the simplicial homology case, it is not immediately evident how to compute a basis for
Ω2 (the space of ∂-invariant 2-paths). Nevertheless, Chowdhury and Mémoli presented

SoCG 2020

36:8 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

an elegant algorithm to show that a basis for B1 (and H1) can still be computed using
careful column-based matrix reductions [5]. The time complexity of their algorithm is
O((

∑
(u,v)∈E(din(u) + dout(v)))mn2) which depends on the number of elementary 2-paths3.

In this section, we present an algorithm that can take advantage of both of the previous
approaches (the algorithm of [5] and Algorithm 1). Similar to [5], we will now consider
the persistent path homology setting, where we will add directed edges in G one by one
incrementally. Hence our algorithm can compute the persistent H1 w.r.t. a filtration. However
different from [5], instead of reducing a matrix with columns corresponding to all elementary
allowed 2-paths, we will follow a similar idea as in Algorithm 1 and add a generating set of
boundary cycles each time we consider a new directed edge.

4.1 Persistent path homology
We now introduce the definition of the persistent path homology [5]. The persistent vector
space is a family of vector spaces together with linear maps {Uδ

µδ,δ′−−−→ Uδ
′

δ≤δ′∈R} so that: (1)
µδ,δ is the identity for every δ ∈ R; and (2) µδ,δ′′ = µδ,δ′ ◦ µδ′,δ′′ for each δ ≤ δ′ ≤ δ′′ ∈ R.

Let G = (V,E,w) be a weighted directed graph where V is the vertex set, E is the edge
set, and w is the weight function w : E → R+. For every δ ∈ R+, a directed graph Gδ can
be constructed as Gδ = (V δ = V,Eδ = {e ∈ E : w(e) ≤ δ}). This gives rise to a filtration of
graphs {Gδ ↪−→ Gδ

′}δ≤δ′∈R using the natural inclusion map iδ,δ′ : Gδ ↪−→ Gδ
′ .

I Definition 8 ([5]). The 1-dimensional persistent path homology of a weighted directed graph
G = (V,E,w) is defined as the persistent vector space H1 := {H1(Gδ)

iδ,δ′−−−→ H1(Gδ′)}δ≤δ′∈R.
The 1-dimensional path persistence diagram Dg(G) of G is the persistence diagram of H1.

To compute the path homology H1(G) of an unweighted directed graph G = (V,E), we
can order edges in E arbitrarily with the index of an edge in this order being its weight.
The rank of H1(G) can then be retrieved from the 1-dimensional persistent homology group
induced by this filtration by considering only those homology classes that “never die”.

4.2 A more efficient algorithm
In what follows, to simplify presentation, we assume that we are given a directed graph
G = (V,E), where edges are already sorted e1, . . . , em in increasing order of their weights.
Let G(i) = (V,E(i) = {e1, . . . , ei}) denote the subgraph of G spanned by the edges e1, . . . , ei;
and set G(0) = (V,∅). We now present an algorithm to compute the 1-dimensional persistent
path homology induced by the nesting sequence G(0) ⊆ G(1) ⊆ · · ·G(m). In particular, in
Algorithm 2, as we insert each new edge es, moving from G(s−1) to G(s), we maintain a basis
for Z1(s) := Z1(G(s)) and for B1(s) := B1(G(s)), updated from Z1(s− 1) and B1(s− 1) and
output new persistent pairs. On a high level, this algorithm follows the standard procedure
in [6]; details are in the full version.

4.2.1 Procedure GenSet(s)

Note that G(s) is obtained from G(s−1) by inserting a new edge es = (u, v) to G(s−1). At
this point, we have already maintained a basis B for B1(G(s−1)). Our goal is to compute a
set of generating boundary cycles Cs such that B ∪ Cs contains a basis for B1(G(s)).

3 The time complexity given in the paper [5] assumes that the input directed graph is complete, and takes
O(n9) to compute H1. However, a more refined analysis of their time complexity shows that it can be
improved to O((

∑
(u,v)∈E

din(u) + dout(v))mn2).

T.K. Dey, T. Li, and Y. Wang 36:9

Algorithm 2 Compute 1-D persistent path homology for a directed graph G = (V,E).

1: procedure Persistence(G)
2: Order the edges in non-decreasing order of their weights: e1, . . . , em.
3: Set G(0) = (V,∅), current basis for 1-boundary group is B = ∅.
4: for s = 1 to m do
5: Call GenSet(s) to compute a generating set Cs containing a basis for newly

generated 1-boundary cycles moving from G(s−1) to G(s).
6: Call FindPairs(s) to output new persistent pairs, and update the boundary basis
B for G(s).

7: end for
8: end procedure

We first inspect the effect of adding edge es = (u, v) to G(s). Two cases can happen:

Case-A: The endpoints u and v are in different connected components in (the undirected
version of) G(s−1), and after adding es, those two components are merged into a single
one in G(s). In this case, no cycle is created, nor does the boundary group change. Thus
Z1(G(s−1)) = Z1(G(s)) and B1(G(s−1)) = B1(G(s)). We say that edge es is negative in
this case (as it kills in H0).
The algorithm maintains the set of negative edges seen so far, which is known to form
a spanning forest Ts of V . (Here, we abuse the notation slightly and say that a set of
directed edges span a tree for a set of vertices if they do so when directions are ignored.)
The algorithm maintains Ts via a union-find data structure.

Figure 4 The insertion of edge (u, v) increases the rank of the boundary group by 3.

Case-B: The endpoints u and v are already in the same connected component in G(s−1).
After adding this edge es, new cycles are created in G(s). Hence es is positive in this case
(as it creates an element in Z1; although different from the standard simplicial homology,
it may not necessarily create an element in H1 as we will see later).
Whether es is positive or negative can be easily determined by performing two Find
operations in the union-find data structure representing Ts−1. A Union(u, v) operation is
performed to update Ts−1 to Ts if es is negative.

We now describe how to handle (Case-B). After adding edge es, multiple cycles containing
es can be created in G(s). Nevertheless, by Proposition 2, the dimension of Z1 increases only
by 1. On the other hand, the addition of es may create new boundary cycles. Interestingly,
it could increase the rank of B1 by more than 1. See Figure 4 for an example where rank(B1)
increases by 3; and note that this number can be made arbitrarily large.

SoCG 2020

36:10 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

As mentioned earlier, in this case, we wish to compute a set of generating boundary
cycles Cs such that B ∪ Cs contains a basis for B1(G(s)).

Similar to Algorithm 1, using Theorem 3, we choose some bigons, boundary triangles
and boundary quadrangles and add them to Cs. In particular, since Cs only accounts for
the newly created boundary cycles, we only need to consider bigons, boundary triangles and
boundary quadrangles that contain es. We now describe the construction of Cs, which is
initialized to be ∅.

(i) Bigons. At most one bigon can be created after adding es (namely, the one that contains
es). We add it to Cs if this bigon exists.

(a) (b) (c)

Figure 5 Three types of boundary triangles incident to es = (u, v).

(ii) Boundary triangles. There could be three types of newly created boundary triangles
containing es = (u, v). The first case is when u is the source and v is the sink; see
Figure 5(a). In this case multiple 2-paths may exist from u to v, euw1v, euw2v, · · · euwpv,
forming multiple boundary triangles of this type containing es. However, we only
need to add one triangle of them into Cs, say (u, v | w1) since every other triangle
(u, v | wj) can be written as a linear combination of (u, v | w1) and an existing boundary
quadrangle (u, v | w1, wj) in G(s−1).
For the second case (see Figure 5(b)) where u is the source but v is not the sink, we
include all such boundary triangles to Cs. We also add all boundary triangles of the
last type in which v is the sink but u is not the source to Cs; see Figure 5(c). It is easy
to see that Cs ∪B can generate all new boundary triangles containing es = (u, v).

(a) (b)

Figure 6 (a) Examples of new boundary quadrangles with u being the source. (b) Not all
boundary quadrangles in M will be added to the generating set Cs.

(iii) Boundary quadrangles. Given an edge es = (u, v), there are two types of the boundary
quadrangles incident to it: one has u as the source; the other has v as the sink. We
focus on the first case; see Figure 6(a). The second case can be handled symmetrically.

T.K. Dey, T. Li, and Y. Wang 36:11

In particular, we will first compute a set M and then select a subset of quadrangles from
M for adding to Cs.

Specifically, take any successor w of v, that is, there is an edge (v, w) ∈ G(s−1) forming
an allowed 2-path euvw in G(s). Before introducing the edge es, there may be multiple
allowed 2-paths euv1w, euv2w, · · · , euvlw in G(s−1); see Figure 6 (a). For each such 2-path
euvkw, 1 ≤ k ≤ l, a new boundary quadrangle (u,w | v, vk) containing es = (u, v) will be
created. However, among all such 2-paths euv1w, · · · , euvlw, we will pick just one 2-path, say
euv1w and only add the quadrangle (u,w | v, v1) formed by euvw and euv1w to M . Observe
that any other boundary quadrangle containing 2-path euvw, say (u,w | v, vk), can be written
as a linear combination of the quadrangle (u,w | v, v1) and boundary quadrangle (u,w | vk, v1)
which is already in G(s−1) (and in the span of B which is a basis for B1(G(s−1))). In other
words, (u,w | v, v1) ∪B generates any other boundary quadrangle containing 2-path euvw.

We perform this for each successor w of v. Hence this step adds at most dG(s−1)

out (v)
number of boundary quadrangles to the set M .

Not all quadrangles inM will be added to Cs. In particular, suppose we have p quadrangles
A = {(u,wj | v, z) : 1 ≤ j ≤ p} ⊆M incident to the newly inserted edge es = (u, v) as well
as another vertex z, i.e. there are edges (u, z), (wj , z) and (v, wj), 1 ≤ j ≤ p; see Figure 6 (b).
If there does not exist any other vertex u′ such that edges (u′, z), (u′, v) ∈ G(s−1), then we
add all quadrangles in A to Cs. If this is not the case, let u′ be another vertex such that
(u′, z) and (u′, v) are already in G(s−1); see Figure 6 (b). In this case, we only add one
quadrangle from set A, say, (u,w1|v, z) to the generating set Cs.

It is easy to check that any other quadrangle (u,wj | v, z), 1 < j ≤ p, can be written
as the combination of (u,w1 | v, z), (u′, w1 | v, z) and (u′, wj | v, z). As the latter two
quadrangles are boundary quadrangles from G(s−1), they can already be generated by B.
The entire process takes time O(|M |) = O(dG(s−1)

out (v)). It is also easy to see that B ∪ Cs can
generate any boundary quadrangle containing es = (u, v) and with u being its source.

The case when v is the sink of a boundary quadrangle is handled symmetrically in time
O(dG(s−1)

in (u)). Hence the total time to compute a generating set Cs is O(dG(s−1)

in (u)+dG(s)

out (v))
when inserting a single edge es = (u, v).

4.3 Analysis of Algorithm 2
Correctness of the algorithm. Notice that the invariant that B is a basis for G(s) at the
end of the for-loop (line-7 of Algorithm 2) is maintained. Furthermore, B is always in reduced
form which is maintained via left-to-right column additions only. Hence the algorithm
computes the 1-dimensional persistent path homology correctly [6].

Time complexity analysis. The remainder of this section is devoted to determining the
time complexity of Algorithm 2. Specifically, we first show the following theorem.

I Theorem 9. Across all stages s ∈ [1,m], the total cardinality of the generating set
C = ∪sCs is O(min{a(G)m,

∑
(u,v)∈E(din(u) + dout(v))}). The total time taken by procedure

NewBasis(s) for all s ∈ [1,m] is O(m+
∑

(u,v)∈E(din(u) + dout(v))}).

Proof. We will count separately the number of bigons, boundary triangles, and boundary
quadrangles added to any Cs. Set r = min{a(G)m,

∑
(u,v)∈E(din(u) + dout(v))}.

(i) Bigons: First, it is easy to see that for each edge es = (u, v) with s ∈ [1,m], at most
one bigon (incident to es) is added. Besides, if dout(v) = 0, there is no bigon incident to
es. Hence the total number ever added to C is O(min{m,

∑
(u,v)∈E(dout(v))}) = O(r)

and it takes O(m) time to compute them.

SoCG 2020

36:12 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

(ii) Boundary triangles: For boundary triangles, we know from Proposition 5 that there
are altogether O(a(G)m) triangles (thus at most O(a(G)m) boundary triangles) in a
graph G and they can all be enumerated in O(a(G)m) time. Obviously, the number of
boundary triangles ever added to C is at most O(a(G)m).
We now argue that the number of boundary triangles added to C is also bounded by
O(

∑
(u,v)∈E(din(u) + dout(v))). Note that, for every 2-path, at most one boundary

triangle is added to the set. Since the number of 2-paths is indeed Θ(
∑

(u,v)∈E(din(u) +
dout(v))), the number of triangles we add is O(

∑
(u,v)∈E(din(u) + dout(v))). Recall

that there are three cases for boundary triangles added; see Figure 5. The time spent
for the first case for every s is O(1)by recording any 2-path euwv, and O(din(u) +
dout(v)) for the last two cases. Thus the total time spent at adding boundary triangles
incident to es and identifying triangles to be added to Cs for all s ∈ [1,m] takes
O(m+

∑
(u,v)∈E(din(u) + dout(v))) time.

(iii) Boundary quadrangles: The situation here is somewhat opposite to that of the boundary
triangles: Specifically, it is easy to see that this step accesses at most O(din(u)+dout(v))
boundary quadrangles when handling edge es = (u, v). Hence the number of boundary
quadrangles it can add to Cs is at most O(din(u) + dout(v)). The total number
of boundary quadrangles ever added to C is thus bounded by O(

∑
(u,v)∈E(din(u) +

dout(v))).
We now prove that the number of boundary quadrangles ever added to C is also bounded
by O(a(G)m). We use the existence of a succinct representation of all quadrangles as
specified in Proposition 5 to help us argue this upper bound. Notice that our algorithm
does not compute this representation. It is only used to provide this complexity
analysis.

Specifically, by Proposition 5, we can compute a list L of triple-lists with O(a(G)m) total
size complexity, which generates all undirected quadrangles. Following the proof of Theorem
6(see the full version), we can further refine this list, where each triple-list ξ ∈ L further gives
rise to three lists that are of type-1, 2, or 3. Let L̂ denote this refinement of L, consisting of
lists of type-1, 2 or 3. From the proof of Theorem 6, we know that the total size complexity
for all lists in L̂ is still O(a(G)m). This also implies that the cardinality of L̂ is bounded by
|L̂| = O(a(G)m).

We now denote by R the set of all boundary quadrangles ever added to C = ∪sCs by
Algorithm 2. Furthermore, let

P := {(ξ, w) | ξ ∈ L̂, w ∈ ξ}.

Below we show that we can find an injective map π : R → P. But first, note that |P| is
proportional to the total size complexity of L̂ and thus is bounded by O(a(G)m).

We now establish the injective map π : R → P. Specifically, we process each boundary
quadrangle in the order that they are added to C. Consider a boundary quadrangle R =
R(u, v, w, z) added to Cs while processing edge es = (u, v). There are two cases: The first is
that R is of the form (u,w | v, z) in which u is the source of this quadrangle. The second is
that it has the form (w, v | u, z) in which v is the sink. We describe the map π(R) for the
first case, and the second one can be analyzed symmetrically.

By construction of L, there is at least one triple-list ξ ∈ L covering R = (u,w | v, z).
There are three possibilities:
Case-a: The triple-list ξ is of the form ξ = ξuw = (u,w, {· · · }). In this case, the boundary

quadrangle R = (u,w | v, z) is in a type-1 list ξ(1)
uw = (u,w, S) ∈ L̂, and both v, z ∈ S. We

now claim that the pair (ξ(1)
uw, v) ∈ P has not yet been mapped (i.e, there is no R′ ∈ C with

T.K. Dey, T. Li, and Y. Wang 36:13

π(R′) = (ξ(1)
uw, v) yet), and we can thus set π(R) = (ξ(1)

uw, v) ∈ P. Suppose on the contrary
there already exists R′ ∈ C that we processed earlier than R with π(R′) = (ξ(1)

uw, v). In
that case, R′ = (u,w | v, z′) must contain the 2-path euvw as well. Since R′ is processed
earlier than R, and edge es = (u, v) is the most recent edge added, R′ must be added when
we process es as well (as R′ contains es). However, Algorithm 2 in this case only adds
one quadrangle containing the 2-path euvw, meaning that R′ cannot exist (as otherwise,
we would not have added R to Cs; recall Figure 6 (a)). Hence, the map π so far remains
injective.

Case-b: The triple-list ξ is of the form ξ = ξwu = (w, u, {· · · }). In this case, this quadrangle
is covered by the type-2 list ξ(2)

wu ∈ L̂. We handle this in a manner symmetric to (Case-a)
and map π(R) = (ξ(2)

wu, v).
Case-c: The last case is that R is generated by triple-list ξ of the form ξvz = (v, z, {· · · }).

In this case, the quadrangle R = (u,w | v, z) will be covered by the type-3 list ξ(3)
vz =

(v, z, S1, S2) with u ∈ S1 and w ∈ S2; see Figure 7. We now argue that at least one of
(ξ(3)
vz , u) and (ξ(3)

vz , w) has not been mapped under π yet.

Figure 7 At least one of (ξ(3)
vz , u) and (ξ(3)

vz , w) has not been mapped yet.

Suppose this is not the case and we already have both π(Q1) = (ξ(3)
vz , u) and π(Q2) =

(ξ(3)
vz , w). Then Q1 is necessarily of the form (u,w′ | v, z) and Q2 is of the form (u′, w | v, z);

and both Q1 and Q2 are processed before R. See Figure 7. Furthermore, Q1 is only added
when we process edge es. However, in this case, once Q1 is added, Algorithm 2 will not add
further quadrangle containing edges (u, v) and (u, z) (recall the handling of Figure 6 (b)).
Hence R cannot be added to Cs in this case.

In other words, it cannot be that both Q1 and Q2 already exist, and hence we can set
π(R) to be one of (ξ(3)

vz , u) and (ξ(3)
vz , w) that is not yet mapped. Consequently, the map π

we construct remains injective.
We process all quadrangles in C in order. The final π : R → P is injective, meaning that

|R| ≤ |P| and thus |R| = O(a(G)m).
Putting everything together, we have that the total number of boundary quadrangles

added to C is bounded by O(min{a(G)m,
∑

(u,v)∈E(din(u) + dout(v))}).
Finally, Algorithm 2 spends O(m+

∑
(u,v)∈E(din(u) +dout(v))) time to handle both cases

in Figure 6. The theorem then follows. J

Combined with some standard matrix operations, the above theorem gives Theorem 1. The
details of the proof are given in the full version of the paper.

SoCG 2020

36:14 An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology

I Remark 10. We note that neither term in r = min{a(G)m,
∑

(u,v)∈E(din(u) + dout(v))}
always dominates. In particular, it is easy to find examples where one term is significantly
smaller (asymptotically) than the other. For example, for any planar graph G, a(G)m = O(n).
However, it is easy to have a planar graph where the second term

∑
(u,v)∈E(din(u)+dout(v)) =

Ω(n2); see e.g, Figure 2.
On the other hand, it is also easy to have a graph G where

∑
(u,v)∈E(din(u) + dout(v)) =

O(1) yet a(G)m = Θ(n3). Indeed, consider the bipartite graph in Figure 3, where for each
edge (u, v) ∈ E, din(u) + dout(v) = 0. However, this graph has a(G) = Θ(n), m = Θ(n2) and
thus a(G)m = Θ(n3).

I Remark 11. We note that the time complexity of the algorithm proposed by Chowdhury
and Mémoli in [5] to compute the (d − 1)-dimensional persistence path homology takes
O(n3+3d) time. However, for the case d = 2, a more refined analysis shows that in fact, their
algorithm takes only O((

∑
(u,v)∈E(din(u) + dout(v)))mn2) time.

Compared with our algorithm, which takes time O(rmω−1) with r = min{a(G)m,∑
(u,v)∈E(din(u) + dout(v))} and ω < 2.373, observe that our algorithm can be significantly

faster (when a(G)m is much smaller than
∑

(u,v)∈E(din(u)+dout(v)). For example, for planar
graphs, our algorithm takes O(nω) time, whereas the algorithm of [5] takes O(n5) time.

Finally, in the full version of the paper, we extend our algorithm to compute the so-called
minimal path homology basis efficiently, and provide some preliminary experimental results,
including showing the efficiency of our algorithm compared to the previous best algorithm
over several datasets.

5 Concluding remarks

A natural question is whether it is possible to have a more efficient algorithm for computing
(persistent) path homology of higher dimensions improving the work of [5]. Another question
is whether we can compute a minimal path homology basis faster improving our current time
bound O(mωn) (see the full version of the paper).

References
1 Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks.

In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 199–208. ACM, 2009.

2 Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and
applications. Journal of the ACM (JACM), 60(5):31, 2013.

3 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on Computing, 14(1):210–223, 1985.

4 Samir Chowdhury and Facundo Mémoli. A functorial dowker theorem and persistent homology
of asymmetric networks. Journal of Applied and Computational Topology, 2(1-2):115–175,
2018.

5 Samir Chowdhury and Facundo Mémoli. Persistent path homology of directed networks. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1152–1169. SIAM, 2018.

6 David Cohen-Steiner, Herbert Edelsbrunner, and Dmitriy Morozov. Vines and vineyards by
updating persistence in linear time. In Proceedings of the twenty-second annual symposium on
Computational geometry, pages 119–126. ACM, 2006.

7 Tamal K Dey, Tianqi Li, and Yusu Wang. Efficient algorithms for computing a minimal
homology basis. In Latin American Symposium on Theoretical Informatics, pages 376–398,
2018.

T.K. Dey, T. Li, and Y. Wang 36:15

8 Pawel Dlotko, Kathryn Hess, Ran Levi, Max Nolte, Michael Reimann, Martina Scolamiero,
Katharine Turner, Eilif Muller, and Henry Markram. Topological analysis of the connectome
of digital reconstructions of neural microcircuits. arXiv preprint arXiv:1601.01580, 2016.

9 Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1038–1046. Society for Industrial and Applied Mathematics, 2005.

10 Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homologies of path
complexes and digraphs. arXiv preprint arXiv:1207.2834, 2012.

11 Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Homotopy theory for
digraphs. arXiv preprint arXiv:1407.0234, 2014.

12 Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. Cohomology of digraphs
and (undirected) graphs. Asian J. Math, 19(5):887–931, 2015.

13 F. Harary. Graph Theory. Addison Wesley series in mathematics. Addison-Wesley, 1971. URL:
https://books.google.com/books?id=q8OWtwEACAAJ.

14 Paolo Masulli and Alessandro EP Villa. The topology of the directed clique complex as a
network invariant. SpringerPlus, 5(1):388, 2016.

15 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

16 Lav R Varshney, Beth L Chen, Eric Paniagua, David H Hall, and Dmitri B Chklovskii.
Structural properties of the caenorhabditis elegans neuronal network. PLoS computational
biology, 7(2):e1001066, 2011.

SoCG 2020

https://books.google.com/books?id=q8OWtwEACAAJ

Persistence of the Conley Index in Combinatorial
Dynamical Systems
Tamal K. Dey
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
http://www.cse.ohio-state.edu/~dey.8
dey.8@osu.edu

Marian Mrozek
Division of Computational Mathematics, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
http://ww2.ii.uj.edu.pl/~mrozek
marian.mrozek@uj.edu.pl

Ryan Slechta
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
http://www.cse.ohio-state.edu/~slechta.3
slechta.3@osu.edu

Abstract
A combinatorial framework for dynamical systems provides an avenue for connecting classical
dynamics with data-oriented, algorithmic methods. Combinatorial vector fields introduced by
Forman [6, 7] and their recent generalization to multivector fields [15] have provided a starting point
for building such a connection. In this work, we strengthen this relationship by placing the Conley
index in the persistent homology setting. Conley indices are homological features associated with
so-called isolated invariant sets, so a change in the Conley index is a response to perturbation in an
underlying multivector field. We show how one can use zigzag persistence to summarize changes to
the Conley index, and we develop techniques to capture such changes in the presence of noise. We
conclude by developing an algorithm to “track” features in a changing multivector field.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases Dynamical systems, combinatorial vector field, multivector, Conley index,
persistence

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.37

Related Version https://arxiv.org/abs/2003.05579

Funding Tamal K. Dey: Partially supported by NSF grants CCF-1740761 and DMS-1547357.
Marian Mrozek: Partially supported by the Polish National Science Center under Maestro Grant
No. 2014/14/A/ST1/00453.
Ryan Slechta: Supported by NSF grant DMS-1547357.

1 Introduction

At the end of the 19th century, scientists became aware that the very fruitful theory of
differential equations cannot provide a description of the asymptotic behavior of solutions in
situations when no analytic formulas for solutions are available. This observation affected
Poincaré’s study on the stability of our celestial system [17] and prompted him to use the
methods of dynamical systems theory. The fundamental observation of the theory is that
solutions limit in invariant sets. Examples of invariant sets include stationary solutions,
periodic orbits, connecting orbits, and many more complicated sets such as chaotic invariant
sets discovered in the second half of the 20th century [11]. Today, the Conley index [4, 12] is

© Tamal K. Dey, Marian Mrozek, and Ryan Slechta;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 37; pp. 37:1–37:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cse.ohio-state.edu/~dey.8
mailto:dey.8@osu.edu
https://orcid.org/0000-0002-0619-6417
http://ww2.ii.uj.edu.pl/~mrozek
mailto:marian.mrozek@uj.edu.pl
https://orcid.org/0000-0002-3641-3072
http://www.cse.ohio-state.edu/~slechta.3
mailto:slechta.3@osu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.37
https://arxiv.org/abs/2003.05579
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Persistence of the Conley Index

among the most fundamental topological descriptors that are used for analyzing invariant sets.
The Conley index is defined for isolated invariant sets which are maximal invariant sets in
some neighborhood. It characterizes whether isolated invariant sets are attracting, repelling
or saddle-like. It is used to detect stationary points, periodic solutions and connections
between them. Moreover, it provides methods to detect and characterize different chaotic
invariant sets. In particular, it was used to prove that the system discovered by Lorenz
[11] actually contains a chaotic invariant set [14]. The technique of multivalued maps used
in this proof may be adapted to dynamical systems known only from finite samples [13].
Unfortunately, unlike the case when an analytic description of the dynamical system is
available, the approach proposed in [13] lacks a validation method. This restricts possible
applications in today’s data-driven world. In order to use topological persistence as a
validation tool, we need an analog of dynamical systems for discrete data. In the case of a
dynamical system with continuous time, the idea comes from the fundamental work of R.
Forman on discrete Morse theory [7] and combinatorial vector fields [6]. This notion of a
combinatorial vector field was recently generalized to that of a combinatorial multivector
field [15]. Since then, the Conley index has been constructed in the setting of combinatorial
multivector fields [10, 15]. The aim of this research is to incorporate the ideas of topological
persistence into the study of the Conley index.

Figure 1 Three multivector fields. In each field, there is a periodic attractor in blue. Such an
attractor is an example of an invariant set. The reader will notice that all flows which enter the
periodic attractor can ultimately be traced back to simplices marked with circles. These simplices
are individually invariant sets, and they correspond to the notion of fixed points. In each multivector
field, the gold triangle corresponds to the notion of a repelling fixed point, while the triangles
and edges with magenta circles are spurious. Notice that in the third multivector field there is a
spurious periodic attractor. However, despite spurious invariant sets, in all three multivector fields
the predominant feature is a repelling triangle, from which most emanating flow terminates in the
periodic attractor. We aim to develop a quantitative summary of this behavior.

Given a simplicial complex K, Forman defined a combinatorial vector field V as a partition
of K into three sets L t U t C where a bijective map µ : L → U pairs a p-simplex σ ∈ L
with a (p+ 1)-simplex τ = µ(σ). This pair can be thought of as a vector originating in σ and
terminating in τ . Using these vectors, Forman defined a notion of flow for discrete vector
fields called a V -path. These paths correspond to the classical notion of integral lines in
smooth vector fields. Multivector fields proposed in [15] generalize this concept by allowing
a vector to have multiple simplices (dubbed multivectors) and more complicated dynamics.

An extension to the idea of the V -path from Forman’s theory is called a solution for a
multivector field V . A solution in V is a possibly infinite sequence of simplices {σi} such that
σi+1 is either a face of σi or in the same multivector as σi. Solutions may be doubly infinite
(or bi-infinite), right infinite, left infinite, or finite. Solutions that are not doubly infinite are
partial. Bi-infinite solutions correspond to invariant sets in the combinatorial setting.

T.K. Dey, M. Mrozek, and R. Slechta 37:3

In Figure 1, one can see a sequence of multivector fields, each of which contains multiple
isolated invariant sets. In principle, one would like to choose an isolated invariant set from
each of the multivector fields and obtain a description of how the Conley index of these sets
changes. Obtaining such a description is highly nontrivial, and it is the main contribution of
this paper. Given a sequence of isolated invariant sets, we use the theory of zigzag persistence
[3] to extract such a description. In [5], the authors studied the persistence of the Morse
decomposition of multivector fields, but this is the first time that the Conley index has been
placed in a persistence framework. We also provide schemes to automatically select isolated
invariant sets and to limit the effects of noise on the persistence of the Conley index.

2 Preliminaries

Throughout this paper, we will assume that the reader has a basic understanding of both
point set and algebraic topology. In particular, we assume that the reader is well-versed in
homology. For more information on these topics, we encourage the reader to consult [9, 16].

2.1 Multivectors and Combinatorial Dynamics

In this subsection, we briefly recall the fundamentals of multivector fields as established in
[5, 10, 15]. Let K be a finite simplicial complex with face relation ≤, that is, σ ≤ σ′ if and
only if σ is a face of σ′. Equivalently, σ ≤ σ′ if V (σ) ⊆ V (σ′), where V (σ) denotes the vertex
set of σ. For a simplex σ ∈ K, we let cl(σ) := {τ ∈ K | τ ≤ σ} and for a set A ⊆ K, we let
cl(A) := {τ ≤ σ |σ ∈ A}. We say that A ⊆ K is closed if cl(A) = A. The reader familiar
with the Alexandrov topology [1, Section 1.1] will immediately notice that this notation and
terminology is aligned with the topology induced on K by the relation ≤.

I Definition 1 (Multivector, Multivector Field). A subset A ⊆ K is called a multivector if
for all σ, σ′ ∈ A, τ ∈ K satisfying σ ≤ τ ≤ σ′, we have that τ ∈ A. A multivector field over
K is a partition of K into multivectors.

Every multivector is said to be either regular or critical. To define critical multivectors,
we define the mouth of a set as m(A) := cl(A)\A. The multivector V is critical if the relative
homology Hp(cl(V),m(V)) 6= 0 in some dimension p. Otherwise, V is regular. Simplices in
critical multivectors are marked with circles in Figures 1, 2, and 3. Throughout this paper,
all references to homology are references to simplicial homology. Note that Hp (cl(V),m(V))
is thus well defined because m(S) ⊆ cl(S) ⊆ K. Intuitively, a multivector V is regular if
cl(V) can be collapsed onto m(V). In Figure 2, the red triangle with its two edges is a
critical multivector V because H1(cl(V),m(V)) is nontrivial. Similarly, the gold colored
triangles (denoted τ) and the green edge (denoted σ) are critical because H2(cl(τ), ∂τ) and
H1(cl(σ), ∂σ) are nontrivial, where we use ∂σ to denote the boundary of a simplex σ.

A multivector field over K induces a notion of dynamics. For σ ∈ K, we denote the
multivector containing σ as [σ]. If the multivector field V is not clear from context, we will
use the notation [σ]V . We now use a multivector field V on K to define a multivalued map
FV : K (K. In particular, we let FV(σ) := cl(σ) ∪ [σ]. Such a multivalued map induces
a notion of flow on K. In the interest of brevity, for a, b ∈ Z, we set Z[a,b] = [a, b] ∩ Z and
define Z(a,b], Z[a,b), Z(a,b) as expected. A path from σ to σ′ is a map ρ : Z[a,b] → K, where
ρ(a) = σ, ρ(b) = σ′, and for all i ∈ Z(a,b], we have that ρ(i) ∈ FV(ρ(i − 1)). Similarly, a
solution to a multivector field over K is a map ρ : Z→ K where ρ(i) ∈ FV(ρ(i− 1)).

SoCG 2020

37:4 Persistence of the Conley Index

I Definition 2 (Essential Solution). A solution ρ : Z → K is an essential solution of
multivector field V on K if for each i ∈ Z where [ρ(i)] is regular, there exists an i−, i+ ∈ Z
where i− < i < i+ and [ρ(i−)] 6= [ρ(i)] 6= [ρ(i+)].

For a set A ⊆ K, let eSol(A) denote the set of essential solutions ρ such that ρ(Z) ⊆ A.
If the relevant multivector field is not clear from context, we use the notation eSolV(A). We
define the invariant part of A as Inv(A) = {σ ∈ A | ∃ρ ∈ eSol(A), ρ(0) = σ}. We say that
A is invariant or an invariant set if Inv(A) = A. If the multivector field is not clear from
context, we use the notation InvV(A).

Solutions and invariant sets are defined in accordance to their counterparts in the classical
setting. For more information on the classical counterparts of these concepts, see [2]. As in
the classical setting, we have a notion of isolation for combinatorial invariant sets.

I Definition 3 (Isolated Invariant Set, Isolating Neighborhood). An invariant set A ⊆ N ,
N closed, is isolated by N if all paths ρ : Z[a,b] → N for which ρ(a), ρ(b) ∈ A satisfy
ρ(Z[a,b]) ⊆ A. The closed set N is said to be an isolating neighborhood for S.

Figure 2 A multivector field with several invariant sets, isolated by the entire rectangle, N . Note
that for each colored triangle σ, since [σ] is critical, there is an essential solution ρ : Z → N where
ρ(i) = σ for all i. Likewise for the green edge. Since the periodic attractor is composed of regular
vectors, there is no such essential solution for any given simplex in the periodic attractor. However,
by following the arrows in the periodic attractor we still get an essential solution.

2.2 Conley Indices
The Conley index of an isolated invariant set is a topological invariant used to characterize
features of dynamical systems [4, 12]. In both the classical and the combinatorial settings,
the Conley index is determined by index pairs.

I Definition 4. Let S be an isolated invariant set. The pair of closed sets (P,E) subject to
E ⊆ P ⊆ K is an index pair for S if all of the following hold:
1. FV(E) ∩ P ⊆ E
2. FV(P \ E) ⊆ P
3. S = Inv(P \ E)
In addition, an index pair is said to be a saturated index pair if S = P \ E. In Figure 3,
the gold, critical triangle σ is an isolated invariant set. The reader can easily verify that
(cl(σ), cl(σ) \ {σ}) is an index pair for σ. In fact, this technique is a canonical way of picking
an index pair for an isolated invariant set. This is formalized in the following proposition.

I Proposition 5 ([10, Proposition 4.3]). Let S be an isolated invariant set. The pair
(cl(S),m(S)) is a saturated index pair for S.

T.K. Dey, M. Mrozek, and R. Slechta 37:5

However, there are several other natural ways to find index pairs. Figure 3 shows another
index pair for the same gold triangle σ. By letting P := cl(σ) ∪ SP and E := m(σ) ∪ SE ,
where SP and SE are the set of simplices reachable from paths originating in cl(S), m(S)
respectively, we obtain a much larger index pair. In Figure 3, P is the set of all colored
simplices, while E is the set of all colored simplices which are not gold.

In principle, it is important that the Conley index be independent of the choice of index
pair. Fortunately, it is also known that the relative homology given by an index pair for an
isolated invariant set S is independent of the choice of index pair.

I Theorem 6 ([10, Theorem 4.15]). Let (P1, E1) and (P2, E2) be index pairs for the isolated
invariant set S. Then Hp(P1, E1) ∼= Hp(P2, E2) for all p.

The Conley Index of an isolated invariant set S in dimension p is then given by the relative
homology group Hp(P,E) for any index pair of S denoted (P,E).

Figure 3 Two index pairs for the gold triangle, denoted σ. The first is given by (cl(σ),m(σ))
where m(σ) is in green and cl(σ) \ m(σ) is exactly the gold triangle. The second index pair is
(pf(cl(σ)), pf(m(σ))), where pf(m(σ)) consists of those simplices which are colored pink, green, and
blue, while pf(cl(σ)) consists of all colored simplices. Note that the second index pair is also an
index pair in N , where N is taken to be the entire rectangle.

3 Conley Index Persistence

We move to establishing the foundations for persistence of the Conley Index. Given a
sequence of multivector fields V1,V2, . . . ,Vn on a simplicial complex K, one may want to
quantify the changing behavior of the vector fields. One such approach is to compute a
sequence of isolated invariant sets S1, S2, . . . , Sn under each multivector field, and then to
compute an index pair for each isolated invariant set. By Proposition 5, a canonical way to
do this is to take the closure and mouth of each isolated invariant set to obtain a sequence
of index pairs (cl(S1),m(S1)), (cl(S2),m(S2)), . . . , (cl(Sn),m(Sn)). A first idea is to take the
element-wise intersection of consecutive index pairs, which results in the zigzag filtration:

(cl(S1),m(S1)) ⊇ (cl(S1) ∩ cl(S2),m(S1) ∩m(S2)) ⊆ (cl(S2),m(S2)) · · · (cl(Sn),m(Sn))

Taking the relative homology groups of the pairs in the zigzag sequence, we obtain a zigzag
persistence module. We can extract a barcode corresponding to a decomposition of this
module:

Hp(cl(S1),m(S1)) Hp(cl(S1) ∩ cl(S2),m(S1) ∩m(S2)) Hp(cl(S2),m(S2)) · · · Hp(cl(Sn),m(Sn)).

However, the chance that this approach works in practice is low. In general, two isolated
invariant sets S1, S2 need not overlap, and hence their corresponding index pairs need not
intersect. For example, if one were to take the blue periodic solutions in the multivector

SoCG 2020

37:6 Persistence of the Conley Index

fields in Figure 1 to be S1, S2, S3, by using Proposition 5 one gets the index pairs (S1, ∅),
(S2, ∅), and (S3, ∅) (since cl(Si) = Si). Note that in such a case, the intermediate pairs are
(S1 ∩ S2, ∅) and (S2 ∩ S3, ∅). But S1 ∩ S2 and S2 ∩ S3 intersect only at vertices, so none of
the 1-cycles persist beyond their multivector field. This is problematic in computing the
persistence, because intuitively there should be an H1 generator that persists through all
three multivector fields. To increase the likelihood that two index pairs intersect, we consider
a special type of index pair called an index pair in N .

I Definition 7. Let S be an invariant set isolated by N under V. The pair of closed sets
(P,E) satisfying E ⊆ P ⊆ N is an index pair for S in N if all of the following conditions
are met:
1. FV(P) ∩N ⊆ P
2. FV(E) ∩N ⊆ E
3. FV(P \ E) ⊆ N , and
4. S = Inv(P \ E).
As is expected, such index pairs in N are index pairs.

I Theorem 8. Let (P,E) be an index pair in N for S. The pair (P,E) is an index pair for
S in the sense of Definition 4.

Proof. Note that by condition three of Definition 7, if σ ∈ P \E, then FV(σ) ⊆ N . Condition
one of Definition 7 implies that FV(σ)∩N = FV(σ) ⊆ P , which is condition two of Definition
4. Likewise, by condition two of Definition 7, if σ ∈ E, then FV(σ) ∩ N ⊆ E. Note that
P ⊆ N , so it follows that FV(σ) ∩ P ⊆ FV(σ) ∩N ⊆ E, which is condition one of Definition
4. Finally, condition four of Definition 7 directly implies condition three of Definition 4. J

An additional advantage to considering index pairs in N is that the intersection of index
pairs in N is an index pair in N . In general, (cl(S1) ∩ cl(S2),m(S1) ∩m(S2)) is not an index
pair. However, for index pairs in N , we get the next two results which involve the notion of
a new multivector field obtained by intersection. Given two multivector fields V1, V2, we
define V1∩V2 := {V1 ∩ V2 | V1 ∈ V1, V2 ∈ V2}.

I Theorem 9. Let (P1, E1), (P2, E2) be index pairs in N for S1, S2 under V1,V2. The set
Inv((P1 ∩ P2) \ (E1 ∩ E2)) is isolated by N under V1∩V2.

Proof. To contradict, we assume that there exists a path ρ : Z[a,b] → N under V1∩V2
where ρ(a), ρ(b) ∈ Inv((P1 ∩P2) \ (E1 ∩E2)) and there exists some i ∈ (a, b)∩Z where ρ(i) 6∈
Inv((P1 ∩ P2) \ (E1 ∩E2)). Note that by the the definition of an index pair, FV(P) ∩N ⊆ P .
Hence, it follows by an easy induction argument that since FV1∩V2(σ) ⊆ FV1(σ), FV2(σ), we
have that ρ(Z[a,b]) ⊆ P1, P2. This directly implies that ρ(Z[a,b]) ⊆ P1 ∩ P2. In addition, it
is easy to see that ρ can be extended to an essential solution in P1 ∩ P2, which we denote
ρ′ : Z→ N , by some simple surgery on essential solutions. This is because there must be
essential solutions ρ1, ρ2 : Z→ (P1 ∩ P2) \ (E1 ∩ E2) where ρ1(a) = ρ(a) and ρ2(b) = ρ(b),
as ρ(a) and ρ(b) are both in essential solutions. Hence, ρ′(x) = ρ1(x) if x ≤ a, ρ′(x) = ρ(x)
if a ≤ x ≤ b, and ρ′(x) = ρ2(x) if b ≤ x. Since ρ′ is an essential solution, we have that
ρ(Z[a,b]) ⊆ Inv(P1 ∩ P2), but also that ρ(Z[a,b]) 6⊆ Inv((P1 ∩ P2) \ (E1 ∩ E2)). Therefore,
we must have that ρ(i) ∈ E1 ∩ E2. But by the same reasoning as before, it follows that
ρ(Z[i,b]) ⊆ E1 ∩ E2. Hence, b 6∈ (P1 ∩ P2) \ (E1 ∩ E2), a contradiction. J

I Theorem 10. Let (P1, E1) and (P2, E2) be index pairs in N under V1,V2. The tuple
(P1 ∩ P2, E1 ∩ E2) is an index pair for Inv((P1 ∩ P2) \ (E1 ∩ E2)) in N under V1∩V2.

T.K. Dey, M. Mrozek, and R. Slechta 37:7

Proof. We proceed by using the conditions in Definition 7 to show that (P1 ∩ P2, E1 ∩ E2)
is an index pair in N . Note that FV1∩V2(P1 ∩ P2) ∩ N ⊆ FV1(P1) ∩ FV2(P2) ∩ N , which
is immediate by the definition of F and considering V1∩V2. Note that since (P1, E1) and
(P2, E2) are index pairs in N , we know from Definition 7 that FV1(P1) ∩ N ⊆ P1 and
FV2(P2)∩N ⊆ P2. Therefore FV1∩V2(P1∩P2)∩N ⊆ P1∩P2. This implies the first condition
in Definition 7. This argument also implies the second condition by replacing P with E.

Now, we aim to show that (P1 ∩ P2, E1 ∩ E2) satisfies condition three in Definition
7. Consider σ ∈ (P1 ∩ P2) \ (E1 ∩ E2). Without loss of generality, we assume σ 6∈ E1.
Therefore, σ ∈ P1 \E1, so FV1(σ) ⊆ N by the definition of an index pair in N . Hence, since
FV1∩V2(σ) ⊆ FV1(σ), condition three is satisfied.

Finally, note that Inv((P1∩P2)\ (E1∩E2)) is obviously equal to Inv((P1∩P2)\ (E1∩E2)),
so condition four holds as well. J

Hence, if (Pi, Ei) are index pairs in N , these theorems gives a meaningful notion of persistence
of Conley index through the decomposition of the following zigzag persistence module:

Hp(P1, E1) Hp(P1 ∩ P2, E1 ∩ E2) Hp(P2, E2) · · · Hp(Pn, En). (1)

Because of the previous two theorems, when one decomposes the above zigzag module, one is
actually capturing a changing Conley index. This contrasts the case where one only considers
index pairs of the form (cl(Si),m(Si)), because (cl(Si) ∩ cl(Si+1),m(Si) ∩m(Si+1)) need not
be an index pair for any invariant set.

As has been established, the pair (cl(S),m(S)) is an index pair, but it need not be an
index pair in N . We introduce a canonical approach to transform (cl(S),m(S)) to an index
pair in N by using the push forward.

I Definition 11. The push forward pf(S) of a set S in N , N closed, is the set of all simplices
in S together with those σ ∈ N such that there exists a path ρ : Z[a,b] → N where ρ(a) ∈ S
and ρ(b) = σ.

If N is not clear from context, we use the notation pfN (S). The next series of results
imply that an index pair in N can be obtained by taking the push forward of (cl(S),m(S)).

I Proposition 12. If S ⊆ K is an isolated invariant set with isolating neighborhood N under
V, then pf(m(S)) ∩ cl(S) = m(S).

I Proposition 13. If S ⊆ K is an isolated invariant set with isolating neighborhood N under
V, then pf(m(S)) ∪ cl(S) = pf(cl(S)).

I Proposition 14. If S ⊆ K is an isolated invariant set with isolating neighborhood N , then
pf(cl(S)) \ pf(m(S)) = cl(S) \m(S) = S.

Proofs for Propositions 12, 13, and 14 are included in the full version. Crucially, from these
propositions we get the following.

I Theorem 15. If S is an isolated invariant set then (pf(cl(S)), pf(m(S))) is an index pair
in N for S.

Proof. First, we note that since the index pair (cl(S),m(S)) is saturated, it follows that S =
Inv(cl(S)\m(S)) = cl(S)\m(S). But since by Proposition 14 cl(S)\m(S) = pf(cl(S))\pf(m(S)),
it follows that S = pf(cl(S)) \ pf(m(S)) = Inv(pf(cl(S)) \ pf(m(S))), which satisfies condition
four of being an index pair in N .

SoCG 2020

37:8 Persistence of the Conley Index

We show that FV(pf(cl(S))) ∩ N ⊆ pf(cl(S)). Let x ∈ pf(cl(S)), and assume that
y ∈ FV(x)∩N . There must be a path ρ : Z[a,b] → N where ρ(a) ∈ cl(S) and ρ(b) = x, by the
definition of the push forward. Thus, we can construct an analogous path ρ′ : Z[a,b+1] → N

where ρ′(i) = ρ(i) for i ∈ Z[a,b] and ρ′(b+1) = y. Hence, y ∈ pf(cl(S)) by definition. Identical
reasoning can be used to show that FV(pf(m(S))) ∩N ⊆ pf(m(S)), so (pf(cl(S)), pf(m(S)))
also meets the first two conditions required to be an index pair.

Finally, we show that FV(pf(cl(S)) \ pf(m(S))) ⊆ N . By Proposition 14, this is equivalent
to showing that FV(cl(S) \m(S)) ⊆ N . Since (cl(S),m(S)) is an index pair for S, it follows
that FV(cl(S) \m(S)) ⊆ cl(S). Note that since N ⊇ S is closed, it follows that cl(S) ⊆ N .
Hence, FV(pf(cl(S)) \ pf(m(S))) ⊆ N , and all conditions for an index pair in N are met. J

An example of an index pair induced by the push forward can be seen in Figure 3. Hence,
instead of considering a zigzag filtration given by a sequence of index pairs (cl(S1),m(S1)),
(cl(S2),m(S2)), . . . , (cl(Sn),m(Sn)), a canonical choice is to instead consider the zigzag filtra-
tion given by the the sequence of index pairs (pf(cl(S1)), pf(m(S1))), (pf(cl(S2)), pf(m(S2))),
. . . , (pf(cl(Sn)), pf(m(Sn))).

Choosing Si is highly application specific, so in our implementation we choose Si :=
InvVi

(N). This decision together with the previous theorems gives Algorithm 1 for computing
the persistence of the Conley Index. Index pairs and barcodes computed by Algorithm 1 can
be seen in Figure 4.

Algorithm 1 Scheme for computing the persistence of the Conley Index, fixed N .

Input: Sequence of multivector fields V1,V2, . . . ,Vn, closed set N ⊆ K.
Output: Barcodes corresponding to persistence of Conley Index
i← 1
while i <= n do

Si ← InvVi
(N)

(Pi, Ei)← (pf (cl (Si)) , pf (m (Si)))
i← i+ 1

end
return zigzagPers ((P1, E1) ⊇ (P1 ∩ P2, E1 ∩ E2) ⊆ (P2, E2) ⊇ . . . ⊆ (Pn, En))

3.1 Noise-Resilient Index Pairs
The strategy given for producing index pairs in N produces saturated index pairs. Equival-
ently, the cardinality of P \ E is minimized. This is problematic in the presence of noise,
where if V2 is a slight perturbation of V1 we frequently have that InvV1(N) 6= InvV2(N). This
gives a perturbation in our generated index pairs and in particular a perturbation in P \ E.
As the Conley Index is obtained by taking relative homology, taking the intersection of
index pairs (P1, E2) and (P2, E2) where Pi \ Ei = InvVi(N) can result in a “breaking” of
bars in the barcode. An example can be seen in Figure 5, where because of noise, the two
P \ E do not overlap, and hence a 2-dimensional homology class which intuitively should
persist throughout the interval does not. In Figure 5, the Conley indices of the invariant sets
consisting of the singleton critical triangles in V1 and V2 (the left and right multivector fields)
have rank 1 in dimension 2 because the homology group H2 of P (which is the entire complex
in both cases) relative to E (which is all pink simplices) has rank 1. However, the generators
for H2(P1, E1) and H2(P2, E2) are both in the intersection field V1∩V2. Hence, rather than

T.K. Dey, M. Mrozek, and R. Slechta 37:9

Figure 4 Examples of index pairs computed by using the push forward on multivector fields
induced by a differential equation. A sequence of multivector fields was generated from a λ-
parametrized differential equation undergoing supercritical Hopf bifurcation [8, Section 11.2]. The
consecutive images (from left to right) present a selection from this sequence: the case when λ < 0
and there is only an attracting fixed point inside N ; the case when λ > 0 is small and N contains a
repelling fixed point, a small attracting periodic trajectory and all connecting trajectories; the case
when λ > 0 is large and the periodic trajectory is no longer contained in N . In all three images, we
depict N in green, E in red, and P \ E in blue. Note that in the leftmost image, the only invariant
set is a triangle which represents an attracting fixed point. For this invariant set in this N , the only
relative homology group which is nontrivial is H0(P,E), which has a single homology generator.
In the middle image, the invariant sets represent a repelling fixed point, a periodic attractor, and
heteroclinic orbits which connect the repelling fixed point with the periodic attractor. Note that
the relative homology has not changed from the leftmost case, so the only nontrivial homology
group is H0(P,E). In the rightmost image, the periodic attractor is no longer entirely contained
within N , so the only invariant set corresponds to a repelling fixed point. Here, the only nontrivial
homology group is H2(P,E), which has one generator, so the Conley index has changed. Algorithm
1 captures this change. The persistence barcode output by Algorithm 1 is below index pairs, where
a H0 generator (red bar) lasts until the periodic trajectory leaves N , at which point it is replaced by
an H2 generator (blue bar).

one generator persisting through all three multivector fields, we get two bars that overlap
at the intersection field. The difficulty is rooted in the fact that the sets W1 = P1 \ E1,
W2 = P2 \ E2, and W12 = (P1 ∩ P2) \ (E1 ∩ E2) do not have a common intersection.

To address this problem, we propose an algorithm to expand the size of P \ E. It is
important to note that a balance is needed to ensure a large E as well as a large P \E. If E1
and E2 are too small, then it is easy to see that E1 and E2 may not intersect as expected
even though consecutive vector fields are very similar. The following proposition is very
useful for computing a balanced index pair.

I Proposition 16. Let (P,E) be an index pair for S in N under V. If V ⊆ E is a regular
multivector where E′ := E \ V is closed, then (P,E′) is an index pair for S in N .

We include the proof for Proposition 16 in the full version. Figure 6 illustrates how
enlarging P \ E by removing regular vectors as Proposition 16 suggests can help mitigate
the effects of noise on computing Conley index persistence. Contrast this example with the
example in Figure 5. Denoting Wi = Pi \ Ei for i = 1, 2 and W12 = (P1 ∩ P2) \ (E1 ∩ E2) in
both figures, we see that W1 ∩W12 ∩W2 is empty in Figure 5 while in Figure 6 it consists
of three critical simplices each marked with a circle. Hence, in Figure 6 a single generator
persists throughout the interval, unlike in Figure 5.

SoCG 2020

37:10 Persistence of the Conley Index

Figure 5 Infeasibilty of the index pair (pf(cl(S)), pf(m(S))): The sets E = pf(m(S)) are colored
pink in all three images, while the invariant sets which equal P \ E are golden in all three images.
(left) V1 : P1 \E1 consists of a single golden triangle; (right) V2: P2 \E2 consists of the single golden
triangle; (middle) (P1 ∩ P2) \ (E1 ∩E2) consists of two golden triangles (excluding the edge between
them) in the intersection field V1∩V2. The barcode for index pairs is depicted by two blue bars, each
of which represents a 2-dimensional homology generator. Ideally, these would be a single bar.

Figure 6 Enlarging P \ E which is gold in all three pictures while E is colored pink. (left) V1;
(right) V2; (middle) V1∩V2. Note that there is one bar in the barcode, in contrast with Figure 5.

3.2 Computing a Noise-Resilient Index Pair

We give a method for computing a noise-resilient index pair by using techniques demonstrated
in the previous subsection. Note that by Theorem 15, we have that (pf(cl(S)), pf(m(S))) is
an index pair for invariant set S in N . Hence, we adopt the strategy of taking P = pf(cl(S))
and E = pf(m(S)), and we aim to find some collection R ⊆ E so that (P,E \ R) remains
an index pair in N . Finding an appropriate R is a difficult balancing act: one wants to
find an R so that P \ (E \ R) is sufficiently large, so as to capture perturbations in the
isolated invariant set as described in the previous section, but not so large that E is small
and perturbations in E are not captured. If R is chosen to be as large as possible, then a
small shift in E may results in (E \R) ∩ (E′ \R′) having a different topology than E or E′
leading to a “breaking” of barcodes analogous to the case described in the previous section.

Before we give an algorithm for outputting such an R, we first define a δ-collar.

I Definition 17. We define the δ-collar of an invariant set S ⊆ K recursively:
1. The 0-collar of S is cl(S).
2. For δ > 0, the δ-collar of S is the set of simplices σ in the (δ − 1)-collar of S together

with those simplices τ where τ is a face of some σ with a face τ ′ in the (δ− 1)-collar of S.
For an isolated invariant set S, we will let Cδ(S) denote the δ-collar of S. Together with
Proposition 16, δ-collars give a natural algorithm for finding an R to enlarge P \ E.

In particular, we use Algorithm 2 for this purpose.

T.K. Dey, M. Mrozek, and R. Slechta 37:11

Algorithm 2 findR(S, P,E,V, δ).

Input: Isolated invariant set S with respect to V contained in some closed set N ,
Index pair (P,E) in N with respect to V, δ ∈ Z

Output: List of simplices R such that (P,E \R) is an index pair for S in N .
R← new ; set()
vecSet← {[σ] ∈ V | [σ] ⊆ E ∩ Cδ(S) ∧ [σ] ∩ ∂(E) 6= ∅ ∧ [σ] ∩ ∂(P) = ∅}
vec← new ; queue()
appendAll(vec, vecSet)
while size(vec) > 0 do

[σ]← pop(vec)
if isClosed((E \R) \ [σ]) and [σ] ⊆ E \R and isRegular ([σ]) then

R← R ∪ [σ]
mouthV ecs← {[τ] | τ ∈ m ([σ]) ∧ [τ] ⊆ Cδ(S)}
appendAll(vec,mouthV ecs)

end
end
return R

Figure 7 Index pairs on two slightly perturbed multivector fields (left, right) and their intersection
(middle). As before, the isolating neighborhood N is in green, E is in red, and P \ E is in blue.
Note that we have the same difficulty as in Figure 5, where there are two homology generators in
the intersection multivector field, so we get a broken bar code.

I Theorem 18. Let R be the output of Algorithm 2 applied to index pair (P,E) in N for
isolated invariant set S. The pair (P,E \R) is an index pair for S in N .

The proof for Theorem 18 can be found in the full version. Hence, Algorithm 2 provides
a means by which the user may enlarge P \ E. As this algorithm is parameterized, a
robust choice of δ may be application specific. We also include some demonstrations on the
effectiveness of using this technique. A real instance of the difficulty can be seen in Figure 7,
while the application of Algorithm 2 with δ = 5 to solve the problem is found in Figure 8.

4 Tracking Invariant Sets

In the previous section, we established the persistence of the Conley index of invariant sets
in consecutive multivector fields which are isolated by a single isolating neighborhood. In
this section, we develop an algorithm to “track” an invariant set over a sequence of isolating
neighborhoods. A classic example is a hurricane, where if one were to sample wind velocity
at times t0, t1, . . . , tn, there may be no fixed N which captures the eye of the hurricane at all
ti without also capturing additional, undesired invariant sets at some tj .

SoCG 2020

37:12 Persistence of the Conley Index

Figure 8 The same index pairs as in Figure 7 with the same color scheme, but after applying
Algorithm 2 to reduce the size of E. This forces a 2-dimensional homology generator to persist
across both multivector fields (left, right) and their intersection (middle).

4.1 Changing the Isolating Neighborhood

Thus far, we have defined a notion of persistence of the Conley Index for some fixed isolating
neighborhood N and simplicial complex K. This setting is very inflexible – one may want to
incorporate domain knowledge to change N so as to capture changing features of a sequence
of sampled dynamics. We now extend the results in Section 3 to a setting where N need
not be fixed. Throughout this section, we consider multivector fields V1,V2, . . . ,Vn with
corresponding isolated invariant sets S1, S2, . . . , Sn. In addition, we assume that there exist
isolating neighborhoods N1, N2, . . . , Nn−1 where Ni isolates both Si and Si+1. We will also
require that if 1 < i < n, the invariant set Si is isolated by Ni ∪Ni+1. Note that for each i
where 1 < i < n, there exist two index pairs for Si: one index pair (P (i−1)

i , E
(i−1)
i) in Ni−1

and another index pair (P (i)
i , E

(i)
i) in Ni. In the case of i = 1, there is only one index pair

(P (1)
1 , E

(1)
1) for Si. Likewise, in the case of i = n, there is a single index pair (P (n−1)

n , E
(n−1)
n).

By applying the techniques of Section 3, we obtain a sequence of persistence modules:

Hp

(
P

(1)
1 , E

(1)
1

)
Hp

(
P

(1)
1 ∩ P (1)

2 , E
(1)
1 ∩ E(1)

2

)
Hp

(
P

(1)
2 , E

(1)
2

)

Hp

(
P

(2)
2 , E

(2)
2

)
Hp

(
P

(2)
2 ∩ P (2)

3 , E
(2)
2 ∩ E(2)

3

)
Hp

(
P

(2)
3 , E

(2)
3

)

Hp

(
P

(3)
3 , E

(3)
3

)
Hp

(
P

(3)
3 ∩ P (3)

4 , E
(3)
3 ∩ E(3)

4

)
Hp

(
P

(3)
4 , E

(3)
4

)

...

Hp

(
P

(n−1)
n−1 , E

(n−1)
n−1

)
Hp

(
P

(n−1)
n−1 ∩ P (n−1)

n , E
(n−1)
n−1 ∩ E(n−1)

n

)
Hp

(
P

(n−1)
n , E

(n−1)
n

)
.

(2)

In the remainder of this subsection, we develop the theory necessary to combine these modules
into a single module. Without any loss of generality, we will combine the first modules into
a single module, which will imply a method to combine all of the modules into one.

T.K. Dey, M. Mrozek, and R. Slechta 37:13

First, we note that by Theorem 6, we have that Hp(P (1)
2 , E

(1)
2) ∼= Hp(P (2)

2 , E
(2)
2). To

combine the persistence modules

Hp(P (1)
1 , E

(1)
1) Hp(P (1)

1 ∩ P (1)
2 , E

(1)
1 ∩ E(1)

2) Hp(P (1)
2 , E

(1)
2)

Hp(P (2)
2 , E

(2)
2) Hp(P (2)

2 ∩ P (2)
3 , E

(2)
2 ∩ E(2)

3) Hp(P (2)
3 , E

(2)
3).

(3)

into a single module, it is either necessary to explicitly find a simplicial map which induces an
isomorphism φ : Hp(P (1)

2 , E
(1)
2)→ Hp(P (2)

2 , E
(2)
2), or to construct some other index pair for

S2 denoted (P,E) such that P (1)
2 , P

(2)
2 ⊂ P and E(1)

2 , E
(2)
2 ⊂ E. This would allow substituting

both occurrences of (P (1)
2 , E

(1)
2) or (P (2)

2 , E
(2)
2) for (P,E), and allow the combining of all the

modules in Equation 2 into a single module. Since constructing the isomorphism given by
Theorem 6 is fairly complicated, we opt for the second approach. First, we define a special
type of index pair that is sufficient for our approach.

I Definition 19 (Strong Index Pair). Let (P,E) be an index pair for S under V. The index
pair (P,E) is a strong index pair for S if for each τ ∈ E, there exists a σ ∈ S such that
there is a path ρ : Z[a,b] → P where ρ(a) = σ and ρ(b) = τ .

Intuitively, a strong index pair (P,E) for S is an index pair for S where each simplex τ ∈ E is
reachable from a path originating in S. Strong index pairs have the following useful property.

I Theorem 20. Let S denote an invariant set isolated by N , N ′, and N ∪ N ′ under
V. If (P,E) and (P ′, E′) are strong index pairs for S in N , N ′ under V, then the pair
(pfN∪N ′ (P ∪ P ′) , pfN∪N ′ (E ∪ E′)) is a strong index pair for S in N ∪N ′ under V.

The proof for Theorem 20 can be found in the full version. Crucially, this theorem gives
a persistence module

Hp(P (1)
2 , E

(1)
2) Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
Hp(P (2)

2 , E
(2)
2) (4)

where the arrows are given by the inclusion. Note that since these are all index pairs for the
same S, it follows that we have Hp

(
P

(1)
2 , E

(1)
2

)
∼= Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
∼=

Hp

(
P

(2)
2 , E

(2)
2

)
. Hence, we will substitute Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
into the

persistence module. By using the modules in Equation 2, we get a new sequnece of persistence
modules

Hp

(
P

(1)
1 , E

(1)
1

)
Hp

(
P

(1)
1 ∩ P (1)

2 , E
(1)
1 ∩ E(1)

2

)
Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))

Hp

(
pf

(
P

(1)
2 ∪ P (2)

2

)
, pf

(
E

(1)
2 ∪ E(2)

2

))
Hp

(
P

(2)
2 ∩ P (2)

3 , E
(2)
2 ∩ E(2)

3

)
Hp

(
pf

(
P

(2)
3 ∪ P (3)

3

)
, pf

(
E

(2)
3 ∪ E(3)

3

))

Hp

(
pf

(
P

(2)
3 ∪ P (3)

3

)
, pf

(
E

(2)
3 ∪ E(3)

3

))
Hp

(
P

(3)
3 ∩ P (3)

4 , E
(3)
3 ∩ E(3)

4

)
Hp

(
pf

(
P

(3)
4 ∪ P (4)

4

)
, pf

(
E

(3)
4 ∪ E(4)

4

))

...

Hp

(
pf

(
P

(n−2)
n−1 ∪ P (n−1)

n−1

)
, pf

(
E

(n−2)
n−1 ∪ E(n−1)

n−1

))
Hp

(
P

(n−1)
n−1 ∩ P (n−1)

n , E
(n−1)
n−1 ∩ E(n−1)

n

)
Hp

(
P

(n−1)
n , E

(n−1)
n

)
.

(5)

which can immediately be combined into a single persistence module.

SoCG 2020

37:14 Persistence of the Conley Index

This approach is not without it’s disadvantages, however. Namely, if (P,E) and (P ′, E′)
are index pairs for S in N and N ′, it requires that (P,E) and (P ′, E′) are strong index pairs
and that S is isolated by N ∪N ′. Fortunately, the push forward approach to computing an
index pair in N gives a strong index pair.

I Theorem 21. Let S be an isolated invariant set where N is an isolating neighborhood for
S. The pair (pf (cl (S)) , pf (m (S))) is a strong index pair in N for S.

Proof. We note that by Theorem 20, the pair (pf (cl (S)) , pf (m (S))) is an index pair for S
in N . Hence, it is sufficient to show that the index pair is strong. Note that by definition,
for all σ ∈ m(S), there exists a τ ∈ S such that σ is a face of τ . Hence, σ ∈ FV(τ). Note
that pf(m(S)) is precisely the set of simplices σ′ for which there exists a path originating
in m(S) and terminating at σ′, so it is immediate that there is a path originating in S and
terminating at σ. Hence, the pair (pf (cl (S)) , pf (m (S))) is a strong index pair. J

Our enlarging scheme given in Algorithm 2 does not affect the strongness of an index pair.

I Theorem 22. Let R be the output of applying Algorithm 2 to the strong index pair (P,E)
in N for S with some parameter δ. The pair (P,E \R) is a strong index pair for S in N .

Proof. Theorem 18 gives that (P,E \R) is an index pair for S in N , so it is sufficient to
show that such an index pair is strong. Note that P does not change, but the strongness
of index pairs only requires paths to be in P . Since all paths in (P,E) are also paths in
(P,E \R), it follows that (P,E \R) is a strong index pair in N . J

These theorems give us a canonical scheme for choosing invariant sets from a sequence of
multivector fields and then computing the barcode of persistence module given in Equation (5).
We give our exact scheme in Algorithm 3.

The astute reader will notice an important detail about Algorithm 3. Namely, the find
function is parameterized by a nonnegative integer δ, and the function has not yet been
defined. In particular, said function must output a closed Ni ⊇ Si such that Si is isolated
by Ni−1 ∪Ni. An obvious choice is to let Ni := Ni−1, but such an approach does not allow
one to capture essential solutions that “move” outisde of Ni−1 = Ni as the multivector fields
change. We give a nontrivial find function in the next subsection that can be used to capture
such changes in an essential solution.

4.2 Finding Isolating Neighborhoods
Given an invariant set S isolated by N with respect to V, we now propose a method to find
a closed, nontrivial N ′ ⊆ K such that N ∪N ′ isolates S. Our method relies heavily on the
concept of δ-collar introduced in Section 3. In fact, we will let N ′ = Cδ(S) \ R such that
N ∪N ′ isolates S. Hence, it is sufficient to devise an algorithm to find Cδ(S) \R. Before we
give and prove the correctness of the algorithm, we briefly introduce the notion of the push
backward of some set S in N , denoted pbN (S). We let pbN (S) = {x ∈ N | ∃ ρ : Z[a,b] →
N, ρ(a) = x, ρ(b) ∈ S}. Essentially, the push backward of S in N is the set of simplices
σ ∈ N for which there exists a path in N from σ to S.

We now prove that N ∪ (Cδ(S)) \R isolates S. Note that since S ⊆ Cδ(S) \R, this also
implies that Cδ(S) \R isolates S.

I Theorem 23. Let S denote an invariant set isolated by N ⊆ K under V. If Cδ(S) \R is
the output of Algorithm 4 on inputs S,N,V, δ, then the closed set N ∪ (Cδ(S) \R) isolates S.

T.K. Dey, M. Mrozek, and R. Slechta 37:15

Algorithm 3 Scheme for computing the persistence of the Conley Index, variable N .

Input: Sequence of multivector fields V1,V2, . . . ,Vn, closed set N0 ⊂ K, δ ∈ Z.
Output: Barcodes corresponding to persistence of Conley Index
i← 1
while i <= n do

Si ← InvVi(Ni−1)(
P ′i,1, E

′
i,1

)
←

(
pfNi−1 (cl (Si)) , pfNi−1 (m (Si))

)
Ri,1 ← findR(Si, P ′i,1, E′i,1,V, δ)(
P

(1)
i , E

(1)
i

)
←

(
P ′i,1, E

′
i,1 \Ri,1

)
Ni ← find(Si, Ni−1,V, δ)(
P ′i,2, E

′
i,2

)
←

(
pfNi

(cl (Si)) , pfNi
(m (Si))

)
Ri,2 ← findR(Si, P ′i,2, E′i,2,V, δ)(
P

(2)
i , E

(2)
i

)
←

(
P ′i,2, E

′
i,2 \Ri,2

)
if i = 1 then

(Pi, Ei)←
(
P

(2)
i , E

(2)
i

)
else if i = n then

(Pi, Ei)←
(
P

(1)
i , E

(1)
i

)
else

(Pi, Ei)←
(

pfNi−1∪Ni

(
P

(1)
i ∪ P (2)

i

)
, pfNi−1∪Ni

(
E

(1)
i ∪ E

(2)
i

))
end
i← i+ 1

end
return zzPers

(
(P1, E1) ⊇

(
P

(2)
1 ∩ P (1)

2 , E
(2)
1 ∩ E(1)

2

)
⊆ (P2, E2) ⊇ . . . ⊆ (Pn, En)

)

Proof. For a contradiction, assume that there exists a path ρ : Z[a,b] → N ∪ (Cδ(S) \R) so
that ρ(a), ρ(b) ∈ S where there is an i satisfying a < i < b with ρ(i) 6∈ S. Note that since N
isolates S, if N ∪ Cδ(S) \R does not isolate S, then there must exist a first k ∈ Z[a,b] such
that ρ(k) ∈ Cδ(S) \N and FV(ρ(k)) ∩ pbN (S) 6= ∅. If this were not the case, then N would
not isolate S. Without loss of generality, we assume that for all a < j < k, we have that
ρ(j) 6∈ S. Note that for all j ∈ Z[a+1,k−1], when ρ(j) is removed from the stack V , if ρ(j + 1)
has not been visited, then ρ(j + 1) is added to the stack. Hence, this implies that if any ρ(j)
is visited, then ρ(k) will be added to R. If this were not the case, there would exist some
ρ(j) such that when ρ(j) was removed from the stack, ρ(j + 1) was not visited and was not
added to the stack. This implies that FV(ρ(j)) ∩ pbN (S) 6= ∅, which contradicts ρ(k) being
the first such simplex in the path.

Hence, since ρ(a + 1) is added to the stack, it follows that ρ(k) is added to R, which
implies that ρ

(
Z[a,b]

)
6⊂ N ∪ (Cδ(S) \R). Note too that N ∪Cδ(S) \R must be closed, as if

there is a σ ∈ N such that ρ(k) ≤ σ, then ρ(k) ∈ N because N is closed, a contradiction.
But when ρ(k) is removed from Cδ(S), any of its cofaces which are in Cδ(S) are also removed.
Hence, N is closed, Cδ(S) \R is closed, so their union must be closed. J

Hence, we use Algorithm 4 as the find function in our scheme given in Algorithm 3. We
give an example of our implementation of Algorithm 3 using the find function in Figure 9.

SoCG 2020

37:16 Persistence of the Conley Index

Algorithm 4 find(S,N,V, δ).

Input: Invariant set S isolated by N under V, δ ∈ Z
Output: Closed set N ′ ⊇ S such that N ∪N ′ isolates S under V
V ← new ; stack()
R← new ; set()
pb← pbN (S)
foreach σ ∈ Cδ(S) ∪N do

setUnvisited(σ)
end
foreach σ ∈ S do

adj ← cl(σ) ∪ [v]V
foreach τ ∈ adj do

if τ 6∈ S and τ ∈ Cδ(S) ∪N then
push(V, τ)

end
end

end
while size(V) > 0 do

v ← pop(V)
if !hasBeenVisited(v) then

setVisited(v)
if (cl (v) ∪ [v]V) ∩ pb 6= ∅ then

add(R, v)
cf ← cofaces(v)
addAll(R, cf)

else
foreach σ ∈ (cl (v) ∪ [σ]V) ∩ (Cδ(S) ∪N) do

push(V, σ)
end

end
end

end
return Cδ(S) \R

Figure 9 Three different index pairs generated from our scheme in Algorithm 3. The isolating
neighborhood is in green, E is in red, and P \ E is in blue. Note how the isolating neighborhood
changes by defining a collar around the invariant sets (which are exactly equal to P \ E). Between
the left and middle multivector fields, the periodic attractor partially leaves K, so the maximal
invariant set in N is reduced to just a triangle. Hence, the size of N drastically shrinks between the
middle and right multivector fields.

T.K. Dey, M. Mrozek, and R. Slechta 37:17

5 Conclusion

In this paper, we focused on computing the persistence of Conley indices of isolated invariant
sets. Our preliminary experiments show that the algorithm can effectively compute this
persistence in the presence of noise. It will be interesting to derive a stability theory for this
persistence. Toward that direction, we have included a promising result on the stability of
isolated invariant sets in the full version. In designing the tracking algorithm, we have made
certain choices about the isolated neighborhoods and the invariant sets. Are there better
choices? Which ones work better in practice? A thorough investigation with data sets in
practice is perhaps necessary to settle this issue.

References
1 J. A. Barmak. Algebraic Topology of Finite Topological Spaces and Applications. Lecture Notes

in Mathematics 2032. Springer Verlag, Berlin - Heidelberg - New York, 2011.
2 N. P. Bhatia and G. P. Szegö. Dynamical Systems: Stability Theory and Applications. Lecture

Notes in Mathematics 35. Springer Verlag, Berlin - Heidelberg - New York, 1967.
3 Gunnar Carlsson and Vin de Silva. Zigzag persistence. Foundations of Computational

Mathematics, 10(4):367–405, August 2010. doi:10.1007/s10208-010-9066-0.
4 C. Conley. Isolated invariant sets and the Morse index. In CBMS Regional Conference Series

38, American Mathematical Society, 1978.
5 Tamal K. Dey, Mateusz Juda, Tomasz Kapela, Jacek Kubica, Michal Lipinski, and Marian

Mrozek. Persistent homology of Morse decompositions in combinatorial dynamics. SIAM
Journal on Applied Dynamical Systems, 18(1):510–530, 2019. doi:10.1137/18M1198946.

6 R. Forman. Combinatorial vector fields and dynamical systems. Mathematische Zeitschrift,
228:629–681, 1998. doi:10.1007/PL00004638.

7 R. Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145, 1998.
doi:10.1006/aima.1997.1650.

8 J. Hale and H. Koçak. Dynamics and Bifurcations. Texts in Applied Mathematics 3. Springer-
Verlag, 1991.

9 Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.
10 Michał Lipiński, Jacek Kubica, Marian Mrozek, and Thomas Wanner. Conley-Morse-

Forman theory for generalized combinatorial multivector fields on finite topological spaces.
arXiv:1911.12698 [math.DS], 2019. arXiv:1911.12698.

11 Edward N. Lorenz. Deterministic Nonperiodic Flow, pages 25–36. Springer New York, New
York, NY, 2004. doi:10.1007/978-0-387-21830-4_2.

12 K. Mischaikow and M. Mrozek. The Conley Index. Handbook of Dynamical Systems II:
Towards Applications. (B. Fiedler, ed.) North-Holland, 2002.

13 K. Mischaikow, M. Mrozek, J. Reiss, and A. Szymczak. Construction of symbolic dynamics
from experimental time series. Physical Review Letters, 82:1144–1147, February 1999. doi:
10.1103/PhysRevLett.82.1144.

14 Konstantin Mischaikow and Marian Mrozek. Chaos in the Lorenz equations: a computer-
assisted proof. Bulletin of the American Mathematical Society, 33:66–72, 1995. doi:10.1090/
S0273-0979-1995-00558-6.

15 Marian Mrozek. Conley–Morse–Forman theory for combinatorial multivector fields on Lefschetz
complexes. Foundations of Computational Mathematics, 17(6):1585–1633, December 2017.
doi:10.1007/s10208-016-9330-z.

16 J.R. Munkres. Topology. Featured Titles for Topology Series. Prentice Hall, Incorporated,
2000.

17 H.J. Poincaré. Sur le probleme des trois corps et les équations de la dynamique. Acta
Mathematica, 13:1–270, 1890.

SoCG 2020

https://doi.org/10.1007/s10208-010-9066-0
https://doi.org/10.1137/18M1198946
https://doi.org/10.1007/PL00004638
https://doi.org/10.1006/aima.1997.1650
http://arxiv.org/abs/1911.12698
https://doi.org/10.1007/978-0-387-21830-4_2
https://doi.org/10.1103/PhysRevLett.82.1144
https://doi.org/10.1103/PhysRevLett.82.1144
https://doi.org/10.1090/S0273-0979-1995-00558-6
https://doi.org/10.1090/S0273-0979-1995-00558-6
https://doi.org/10.1007/s10208-016-9330-z

On Implementing Straight Skeletons:
Challenges and Experiences
Günther Eder
Universität Salzburg, FB Computerwissenschaften, Austria
geder@cs.sbg.ac.at

Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Peter Palfrader
Universität Salzburg, FB Computerwissenschaften, Austria
palfrader@cs.sbg.ac.at

Abstract
We present Cgal implementations of two algorithms for computing straight skeletons in the plane,
based on exact arithmetic. One code, named Surfer2, can handle multiplicatively weighted planar
straight-line graphs (PSLGs) while our second code, Monos, is specifically targeted at monotone
polygons. Both codes are available on GitHub. We discuss algorithmic as well as implementational
and engineering details of both codes. Furthermore, we present the results of an extensive performance
evaluation in which we compared Surfer2 and Monos to the straight-skeleton package included
in Cgal. It is not surprising that our special-purpose code Monos outperforms Cgal’s straight-
skeleton implementation. But our tests provide ample evidence that also Surfer2 can be expected
to be faster and to consume significantly less memory than the Cgal code. And, of course, Surfer2
is more versatile because it can handle multiplicative weights and general PSLGs as input. Thus,
Surfer2 currently is the fastest and most general straight-skeleton code available.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases weighted straight skeleton, implementation, algorithm engineering, experi-
ments, Cgal, Core

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.38

Supplementary Material Our source codes are provided on GitHub and can be used freely under the
GPL(v3) license: https://github.com/cgalab/monos and https://github.com/cgalab/surfer2.

Funding Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

1 Introduction

Straight skeletons were introduced to computational geometry by Aichholzer et al. [2].
Suppose that the edges of a simple polygon P move inwards with unit speed in a self-parallel
manner, thus generating mitered offsets inside of P . Then the (unweighted) straight skeleton
of P is the geometric graph whose edges are given by the traces of the vertices of the shrinking
mitered offset curves of P ; see Figure 1, left. The process of simulating the shrinking offsets
is called wavefront propagation. Straight skeletons are known to have applications in diverse
fields, with the modeling of roof-like structures being one of the more prominent ones
[19, 15, 16] We refer to Huber [17] for a detailed discussion of typical applications.

As a first generalization of straight skeletons, the multiplicatively weighted straight skeleton
was introduced early on by Aichholzer and Aurenhammer [1] and then by Eppstein and
Erickson [13]. In the presence of multiplicative weights, wavefront edges no longer move

© Günther Eder, Martin Held, and Peter Palfrader;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 38; pp. 38:1–38:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4676-591X
mailto:geder@cs.sbg.ac.at
https://orcid.org/0000-0003-0728-7545
mailto:held@cs.sbg.ac.at
https://orcid.org/0000-0002-5796-6362
mailto:palfrader@cs.sbg.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.38
https://github.com/cgalab
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab/monos
https://github.com/cgalab/surfer2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 On Implementing Straight Skeletons: Challenges and Experiences

at unit speed. Rather, they move at different speeds: Every edge of P is assigned its
own constant speed; see Figure 1. Although weighted straight skeletons have been used in
applications for years, their characteristics were studied only recently by Biedl et al. [5, 6].

∗ ∗

∗
∗

O O

Figure 1 Left: The (unweighted) straight skeleton (in blue) plus a family of wavefronts (dashed)
for the green polygon. Right: The weighted straight skeleton for the case that edges marked with ∗
have twice the weight and edges marked with O have half the weight of the unmarked edges.

Held and Palfrader [15] define an additively weighted straight skeleton as the geometric
graph whose edges are the traces of vertices of the wavefronts over the propagation period,
with additive weights being assigned to the edges of P . The presence of additive weights
means that the edges of P start to move at different points in time. In [15, 16] they study
straight skeletons of planar straight-line graphs (PSLGs) with a combination of both additive
and multiplicative weights. (A PSLG is an embedding of a planar graph such that all edges
are straight-line segments that do not intersect pairwise except at common end-points.)

The straight-skeleton algorithms with the best worst-case bounds are due to Eppstein
and Erickson [13] and Vigneron et al. [10, 23]. These algorithms seem difficult to implement.
Indeed, progress on implementations has been rather limited so far. Felkel and Obdržálek [14]
describe a simple straight-skeleton algorithm but it turned out to be flawed [24]. The first
comprehensive code for computing straight skeletons was implemented by Cacciola [9] and is
shipped with CGAL [22]. It is based on the algorithm by Felkel and Obdržálek [14], but was
modified significantly to make it work correctly [8]. It handles polygons with holes as input.

The straight-skeleton code Bone by Huber and Held [18] handles PSLGs as input and
runs in O(n log n) time and O(n) space in practice. However, it is not capable of handling
weighted skeletons. As a first step to extend Bone to weighted skeletons, Eder and Held [12]
generalize motorcycle graphs to weighted motorcycle graphs. Still, while this is a fascinating
research area of its own, this does not yet provide an avenue for an actual implementation.

2 Contribution

Palfrader et al. [21] describe a prototype implementation of a straight-skeleton code named
Surfer. Since Surfer is the fastest implementation of unweighted straight skeletons known
to us, it was the natural candidate for a re-implementation and extension to multiplicative
weights. As the handling of degenerate cases had been fairly tricky for unweighted input,
we decided to base the new implementation, Surfer2, on exact arithmetic. (However,
Surfer2 has an option to run it on conventional floating-point arithmetic.) In order to be
able to compare Surfer2 to a special-purpose algorithm for computing straight skeletons of
monotone polygons, which is known to have an O(n log n) worst-case complexity, we also
implemented the algorithm by Biedl et al. [4]. This implementation was named Monos.

We subjected our implementations to extensive practical tests. Summarizing, Surfer2
is slower than Cgal’s straight-skeleton code for small data sets, of about the same speed for
polygons that contain 1000 vertices, and 100 times faster for polygons with 10 000 vertices.
The memory footprint of Surfer2 is linear while Cgal’s code consumes a quadratic amount

G. Eder, M. Held, and P. Palfrader 38:3

of memory. For monotone polygons, our code Monos achieves a speed-up of about 1.5
compared to Surfer2. Our tests showed clearly that engineering considerations do yield
practical speed-ups and that there is a significant price to pay for the use of exact arithmetic.

3 Straight skeleton and wavefront propagation

While every input edge of a polygon emanates a wavefront edge only to one side, namely
to the interior of the polygon, PSLG edges emanate wavefront edges on both sides. As in
the case of polygons, all wavefront edges are joined-up along angular bisectors of the input
edges. In order to handle input vertices of degree one, at each such vertex v one additional
wavefront edge is created that moves away from v and its corresponding PSLG edge e in
a direction orthogonal to e; see the left-most vertical segment in Figure 2a. This way, the
wavefronts form closed polygons even in the presence of degree-one input vertices.

(a) initial wavefront. (b) edge event. (c) split event.

Figure 2 Wavefronts (dashed) at specific times for a PSLG (green), straight skeleton (blue).

Initially, the wavefront coincides with the input edges. If sufficiently little time has
elapsed after the start of the wavefront propagation such that no event has occurred yet,
then the wavefront forms a mitered offset of the PSLG. The polygons of this mitered offset
partition the plane into two (possibly disconnected or multiply-connected) areas: one area
that has been swept by the wavefront and another area that has not yet been reached. As
time increases and the propagation continues, the area swept by the wavefront gets larger
and larger, and wavefront edges will shrink to zero length, thus collapsing in edge events; see
Figure 2b. Furthermore, vertices may move into the interior of non-incident wavefront edges
in split events; see Figure 2c. Every split event splits one wavefront edge. Depending on the
topology of the not-yet swept region affected, such an event will also split the region into
two polygons or reduce the number of holes of the region.

This wavefront-propagation process continues until no more events happen. Then the
straight skeleton is the planar graph whose edges are the traces of wavefront vertices during
the propagation. Note that some wavefront vertices on the outer region will continue to
escape to infinity; these vertices trace out rays that form unbounded arcs of the skeleton.

Simulating the wavefront propagation is a common building block of several straight-
skeleton algorithms. These algorithms differ primarily in how they find the next event. All
future events already known are usually maintained in a priority queue of event times. It is
standard to use a min-heap to store the times of those future events.

SoCG 2020

38:4 On Implementing Straight Skeletons: Challenges and Experiences

4 Straight skeleton of a monotone polygon

4.1 Monotone algorithm
Biedl et al. [4] describe an O(n log n) time algorithm to compute the straight skeleton of
a simple n-vertex monotone polygon P. Without loss of generality we assume P to be
x-monotone. Their algorithm consists of two steps: (i) The polygon P is split into an upper
and lower monotone chain, and the straight skeleton of each chain is computed individually.
(ii) The final straight skeleton S(P) is obtained by merging these two straight skeletons.

We employ a classical wavefront propagation to obtain the straight skeleton of a monotone
chain in O(n log n) time [4]. The monotonicity of the chains guarantees that every change of
the wavefront topology is witnessed by an edge event. That is, split events cannot occur.

In the second step, the skeletons of the upper and lower chains are merged to form
S(P). This merge is based on a left-to-right traversal of the two chains and their respective
straight-skeleton faces. Starting at the leftmost vertex of both chains, the angular bisector
between the incident edges is constructed. It intersects arcs of both the top and bottom
straight skeleton. We stop at the first intersection reached and modify the respective straight
skeleton locally by creating a node. Then the next bisector is constructed between the two
edges that induce the faces of the upper and lower skeleton we are currently in. This process
is repeated until the rightmost vertex of P is reached, thus obtaining the final skeleton S(P).

4.2 Implementational details
Monos uses Cgal’s Exact_predicates_exact_constructions_kernel_with_sqrt alge-
braic kernel, which is backed by Core’s Core::Expr exact number type.

Intersection computations. A major part of the merge step are intersection tests and
intersection computations between bisectors and skeleton arcs: Careful engineering resulted
in substantial performance improvements for these intersection tests. Initially, we applied
Cgal’s do_intersect and intersection rather naively to an arc segment (seen as a
straight-line segment) and a bisector. However, explicitly deciding whether the end-points of
an arc segment lie on different sides of the supporting line of a merge bisector is sufficient
to decide whether an intersection occurs. Once we know that an intersection occurs then
we apply Cgal’s intersection routine to the supporting lines of the arc and the bisector.
A test on more than one thousand input polygons with at least 10 000 vertices each shows
average runtime savings of about 9 % when using the latter method.

Collinear edges. Input that contains collinear edges needs special care. The crux is that no
“direction” need be implied by a wavefront vertex that traces out a bisector. Assume that two
collinear wavefront edges become adjacent during the computation of the straight skeleton of
a monotone chain. At the time of the event we have a straight-skeleton node p at which the
event occurs. Hence we define the bisector of the two collinear edges to be perpendicular to
them and to start at p, thereby moving into the same direction as the wavefront edges.

During the merge step, it is less obvious how to proceed in such a case. In Figure 3, left,
we see that the left-to-right merge has arrived at the point p. The next bisector, b, is defined
by the input edges ei and ej . If the merge had progressed from right to left, then b would
be horizontal and it would start at the point p′′, in analogy to how this situation would be
handled if it occurred during the construction of the straight skeleton of a monotone chain.
See the horizontal red dotted segment, b, in Figure 3, left: This bisector need not intersect p

G. Eder, M. Held, and P. Palfrader 38:5

but can arrive anywhere along the boundary of the face of ei or the face of ej . Hence, we need
to look ahead and find the point p′ where it intersects one of the two boundaries. Note that
this “look ahead” does not break the algorithm’s complexity as we only have to walk along
the boundaries of the two faces we stepped into. At some point, the boundaries intersect,
which is the end-point of b. If b is not incident to p, then we need to add the start node p′ of
b as well; see Figure 3, right. Afterwards we can proceed with the standard merge.

M
p

ei

ej

p′′

b
M

ei

ej

p′ p′′

Figure 3 Left: Constructing the merge chainM at a specific point p where collinearities have to
be handled. Right: Looking ahead lets us identify p′ as start of the next horizontal bisector.

Min-heap. Initially, Monos employed C++’s std::set as a priority queue due to the
requirement to update elements. This structure tends to be implemented as a red-black tree
and provides all operations required at appropriate asymptotic costs. However, profiling
Monos showed that a significant amount of time was spent in queuing operations. Therefore,
we switched to a self-developed binary min-heap already in use in Surfer2. Performance
tests showed an average performance gain of 5 %.

5 Weighted straight skeleton of a PSLG

5.1 Triangulation-based algorithm
Aichholzer and Aurenhammer [1] describe an algorithm for computing the straight skeleton
of general PSLGs in the plane. It carries over to multiplicatively weighted input in a
natural way, provided that all weights are positive. (Biedl et al. [5] show that most of the
theory falls apart if negative weights are allowed.) Their approach constructs the straight
skeleton by simulating the wavefront propagation. As the wavefront sweeps the plane, they
maintain a kinetic triangulation of that part of the plane which has not yet been swept. This
triangulation is obtained by triangulating the area inside the convex hull of all wavefronts.
Furthermore, all edges of this convex hull are linked with a dummy vertex at infinity.

The area of each triangle of this kinetic triangulation changes over time as its vertices,
which are vertices of the wavefront, move along angular (straight-line) bisectors of the input
edges. Since each vertex moves at constant velocity, the area of each triangle is a quadratic
function in time. As long as no triangle collapses to zero area these triangles serve as
certificates for the validity of the kinetic triangulation: The wavefront does not change
combinatorially while no triangle collapses. Every change in the topology of the wavefront,
i.e., every edge event and every split event, is witnessed by a triangle collapse. Of course,
the roots of the quadratic functions give the collapse times of the triangles.

SoCG 2020

38:6 On Implementing Straight Skeletons: Challenges and Experiences

Note that not all triangle collapses witness a corresponding event of the wavefront. Some
triangle collapses correspond to internal events only, where the triangulation changes as a
wavefront vertex moves over a triangulation diagonal. Aichholzer and Aurenhammer [1] call
this type of event a flip event because it merely requires the flip of a triangulation diagonal.

The number of edge and split events is linear because the straight skeleton has a linear
combinatorial complexity. However, no better bound than O(n3) is known for the maximum
number of flip events for an n-vertex PSLG, with a theoretical worst-case lower bound of
Ω(n2) [17]. Consequently, the algorithm’s worst-case runtime is bounded by Ω(n2 log n) and
by O(n3 log n). Our previous work [21] showed that this algorithm runs in O(n log n) time
in practice when using IEEE 754 arithmetic. In the sequel we present our implementation,
Surfer2, of this algorithm based on exact arithmetic, and with support for weighted input.

5.2 Implementational details
Surfer2 uses some of Cgal’s geometric primitives, such as Points and Segments. It defaults
to using Cgal’s Exact_predicates_exact_constructions_kernel_with_sqrt algebraic
kernel, which is backed by Core’s Core::Expr exact number type. Surfer2 uses none
of Cgal’s advanced data structures, with the exception of Cgal’s DCEL arrangement [20],
which is used for the purpose of presenting the straight skeleton to the user. In addition to
a library API, Surfer2, like Monos, provides both a command line interface and a GUI.
GraphML [7] is our input and output format, as it allows weighted input.

Data structures. To represent the wavefront and the area not yet swept by the wavefront,
our implementation explicitly has objects of kinetic triangles, wavefront edges, and wavefront
vertices. For each kinetic triangle, we store pointers to the three incident wavefront vertices,
and on each side we either have a pointer to the neighboring triangle or a pointer to the
incident wavefront edge. Every wavefront edge has references to its two incident wavefront
vertices as well as a pointer to the incident kinetic triangle. Wavefront vertices trace out
straight skeleton arcs during the propagation period, moving along the bisector of input edges.
Every vertex stores pointers to its incident wavefront edges, i.e., the edges that emanate
from the input edges defining the bisector along which the vertex moves. Furthermore, it
stores the time when it came into existence, and, if it has already been stopped by an event,
the time when it was stopped. Additionally, each vertex caches its velocity (as a function of
its incident edges), its start location, and also its stop location (if applicable).

We start out by constructing a constrained Delaunay triangulation of the input graph
using Cgal’s 2D-Triangulation package [25]. From this initially static triangulation we
construct the kinetic triangulation just outlined: Neighborhood relations between triangles
from the initial triangulation are copied to the kinetic triangulation for triangles that are
not split by a constraint. At each constraint, we initialize two wavefront edges, one moving
in each direction, that are incident to one kinetic triangle each. Lastly, we initialize the
wavefront vertices and compute their velocities based on their incident wavefront edges.

Event types and event queue. The event queue is a binary min-heap whose elements
are kinetic triangles, with an order imposed by the next event each triangle witnesses. An
unbounded triangle, which is defined by the vertex at infinity and one edge of the convex
hull, serves not only as a witness for its edge collapsing but also for one of its vertices leaving
the convex hull. For each bounded triangle, we store the time of its next collapse.

Finding the collapse time of a triangle is straightforward in theory. (Recall that it is a
root of a second-degree polynomial given by the signed determinant of its moving vertices.)
Checking when a vertex leaves the convex hull can be achieved by considering triangles of

G. Eder, M. Held, and P. Palfrader 38:7

three subsequent convex-hull vertices. In practice we would like to know not only the time but
also the type of event. This helps to ensure we make progress with the wavefront propagation.
Progress is guaranteed if we process an event that is a split event or an edge event: There is
only a linear number of such “real” events because each event effectively causes a collapsed
triangle to be removed from the triangulation. The crux comes to light when investigating
flip events. A flip event happens when a wavefront vertex becomes incident on a triangulation
diagonal. We consider the quadrilateral formed by the two triangles along this diagonal, and
flip the diagonal within this quadrilateral. If the other triangle also collapsed at precisely
the same time, then after this flip we still have two triangles that collapse right now, and we
might do another flip that re-establishes the previous configuration; cf. Figure 4.

v3

v1 v2
v4

v3

v1 v2
v4

T1 T2

Figure 4 Potential flip-event loop when, at time t, the vertices v1 through v4 all become collinear.

To handle multiple events that occur at the same time we apply a twofold strategy: First,
we always prioritize “real” events over flip events. (This can be done with no additional
cost by using a secondary key for the priority queue.) Second, we need to impose an order
on flip events. Consider a maximal set T of neighboring triangles that all collapse at the
same time to line segments on the same supporting line, without any triangulation diagonal
shrinking to zero length. Note that a flip in a triangle will always cause its longest edge to
be flipped. Let T be the triangle that has the longest edge e among the triangles of T . If
the other triangle, T ′, that is incident at e does not belong to T , then it has positive area,
and performing the flip will reduce the number of elements in T and we have made progress.
If, however, T ′ ∈ T then performing the flip will cause the longest edge within T to become
strictly smaller. Hence, a monotonicity argument implies that we make progress, too.

Another type of event that shows up in practice if the input need not be in general
position is given by non-incident vertices that coincide at some point in time. Topologically,
this is equivalent to a split event as previously non-incident wavefront portions become
incident. From the viewpoint of a kinetic triangulation this event looks more like an edge
event, with the exception that it is not a wavefront edge that collapsed but a triangulation
diagonal. Handling this event is thus similar to handling two edge events, with one event per
triangle incident at the collapsed diagonal. Figure 5, left, shows such an event.

When parallel wavefront elements move into each other, events happen as triangles
collapse. The wavefront edges that comprise these parallel wavefront elements are incident
to different kinetic triangles. As we process these collapsed triangles, one after the other, we
want to leave the kinetic triangulation in a consistent state between events. Generally, this
means creating new kinetic vertices to replace old ones as edges collapse and splits happen,
which involves computing the velocity of the new kinetic vertex. The velocity is such that
the wavefront vertex remains on the intersection of the wavefront edges as they propagate,
i.e., it points along the angular bisector of the incident edges and has the appropriate speed.
However, what is the velocity of a wavefront vertex between opposing wavefront edges that

SoCG 2020

38:8 On Implementing Straight Skeletons: Challenges and Experiences

p
v1v2

v3 v4

t1t2

Figure 5 Left: The two shaded triangles are witnesses for an event at p, where two reflex vertices
move into each other. Right: Infinitely fast vertices get created when the triangles collapse. If t1

is processed first, an infinitely fast vertex is created at the locus of v1 moving to the left, and one
at the locus of v2 and v3 moving to the right, both incident to t2. If t2 is processed first, only one
infinitely fast vertex is created at the locus of v2 and v3 moving to the right.

overlap and span an angle of zero? The limit, as the angle approaches zero, is infinite speed
with a direction along the wavefront edges. Therefore, in our implementation we have the
concept of infinitely fast vertices. These get created when opposing wavefront edges become
incident and share a vertex; cf. Figure 5, right. Whenever we create an infinitely fast vertex,
the triangle that is incident to this vertex is processed next as we consider it to have an event
immediately. If more than one triangle is incident to an infinitely fast wavefront vertex v,
then we pick the one that has the shorter constraint incident to v.

During the wavefront propagation, instances may occur where three or more wavefront
vertices become collinear and remain so in the course of the propagation. If these vertices
are adjacent on the convex hull, then the determinant check for whether a vertex leaves the
convex hull would show a zero at all times. When encountering an always-zero determinant,
depending on the specific configuration, scheduling an event for “right now” may resolve
the issue, e.g., by flipping a triangulation diagonal such that the three vertices involved no
longer are incident to the same kinetic triangles. If three vertices on the convex hull are
collinear, then such a flip would not be advisable because removing the middle vertex from
the convex hull (and keeping it on the books as a non-convex-hull vertex) would cause a
bounded triangle with an always-zero determinant.

Collapse time and order of events. While the actual collapse time is one of the roots of
a quadratic polynomial, solving quadratics is not always necessary. Avoiding root finding
for quadratic polynomials will increase accuracy when working with limited-precision data
types, and it will result in less complex expression trees when working with exact numbers
as provided by Core’s CORE::Expr. In particular, it will avoid the computation of another
square root. Hence, we try to employ geometric knowledge derived from local combinatoric
properties as much as this is possible. For instance, a triangle with two incident wavefront
edges will never see a flip event: If it sees an event at all, it will be the collapse of either one
or both of its wavefront edges. (In the latter case the entire triangle collapses.)

Triangles with exactly one incident wavefront edge can encounter all three types of events
– edge, split, and flip events – but we can determine each such event without computing
the roots of a determinant: The times of split and flip events can be found by considering
the distance between the vertex opposite the wavefront edge to the supporting line of the

G. Eder, M. Held, and P. Palfrader 38:9

wavefront edge. This distance is linear in time and when it passes through zero, we either
have a flip or split event as the vertex comes to lie on the supporting line of the wavefront
edge. Likewise, an unbounded triangle witnessing a wavefront edge collapse needs to consider
only the linear function that models the wavefront edge’s length. Unbounded triangles will
not need to witness collapses of a triangulation diagonal because this event will be witnessed
by the neighboring (bounded) triangle. Finding the time when a vertex leaves the convex
hull may require determining the roots of a quadratic polynomial if no incident wavefront
edge is on the convex hull. Otherwise, we employ the distance-to-supporting-line method
again. The only bounded triangles for which we need to consider quadratic polynomials are
triangles not incident to a wavefront edge: These triangles can cause flip events.

We process the events in order of their event times, breaking ties based on the event
type: Events with infinitely fast vertices come first, then the other real events, and finally
we process flip events and convex-hull-update events. Ties among flip events are broken
by handling the event with the longest edge first. Since our implementation uses exact
arithmetic provided by Core, all these comparisons can be done exactly. Event handling
generally is straightforward and consists of updating the kinetic triangulation to remain valid
after the event, for real events dropping collapsed triangles, and stopping kinetic vertices
and creating new ones. (Recall that we know the type of event.)

Once no event is left in the queue with a finite event time, the list of kinetic vertices
with their start and stop times and positions yield the arcs of the final straight skeleton.
As post processing, we construct a Cgal dcel (doubly-connected edge list) structure from
the kinetic vertices. Each kinetic vertex and each input segment corresponds to two dcel
half-edges, and each dcel face is incident to one input segment or terminal input vertex.

Pre-emptive flips. Flip events are internal events of the kinetic triangulation, and as such
they are not directly needed for the wavefront propagation process. They are always the
result of a reflex vertex moving over the opposite diagonal in a triangle. As already outlined,
flip events can lead to loops and thus require special handling. We tested whether we can
reduce the number of flip events by restructuring triangles as soon as they are created, either
initially or as the result of another event, rather than wait for a triangle to collapse before
we do a flip. The very simple approach that we chose was to immediately flip a triangulation
diagonal that is incident to two convex vertices if the flip would make it incident to a reflex
vertex, in the assumption that this reflex vertex is then less likely to cause a flip event later.

We benchmarked this approach and found that it results in fewer flip events for about
98 % of our test runs. In the worst example we got 4 % more flip events, and in the best case
flip events were reduced by slightly more than 10 %, with a median change of 3 % fewer flips.
The benefit is less clear-cut when looking at runtime improvements, though. We noticed an
improvement of about 1 % in the median and a surprising 50 % in the best case, but also a
30 % slowdown in the worst case. Still, pre-emptive flips are the default set-up for Surfer2.

Component-based priority queues. Closed input loops partition the plane into connected
components. (And in practice many PSLGs contain such loops.) The basic algorithm deals
with events, witnessed by triangle collapses, without any consideration of the component
the triangle is in. But the straight skeleton within one component is entirely independent of
the straight skeleton within any other component: The different wavefronts never interact
during their respective propagation processes. Hence, it would suffice to ensure that events
are ordered correctly within each component but we could handle events from different
components independently. Of course, in the perfect world of the Real RAM model it does
not matter whether k items are to be stored in one or a few comparison-based priority queues,
since handling k items takes Θ(k log k) time one way or the other.

SoCG 2020

38:10 On Implementing Straight Skeletons: Challenges and Experiences

Once we talk about an implementation the Real RAM model is no longer applicable,
though. Our implementation uses Core’s CORE::Expr number type as shipped with Cgal.
This gives us the luxury of actually having exact arithmetic, thus making it easy to know
which events happen simultaneously. The significant price to be paid is that comparisons
are no longer unit-cost: Each Core expression variable carries with it its expression tree as
the entire history of how it was derived, as well as a numerical approximation with error
bounds. Whenever we need to compare two numbers, Core can calculate more digits should
this be needed to ascertain the exact relationship. This takes extra time and memory. In
general, such comparisons are near-instantaneous when the values are (sufficiently) different.
However, they can take a very long time if the numbers are actually equal. (Profiling showed
that one such comparison may even take many seconds.)

To avoid comparing event times from different components we assign an integer identi-
fication number to each component and use this number as a secondary key for the event
ordering in the priority queue. We added instrumentation to our implementation to count
how often we actually compare equal event times during the wavefront propagation process.
For random input in general position, the likelihood of events in different parts of the plane
to happen at the same time is zero. Our tests confirmed that for random input there is
nothing to gain by per-component event ordering. However, avoiding comparing event times
from different components may yield substantial savings for some input classes: A reduction
of the number of simultaneous events by a quarter may result in a reduction of the runtime
by a factor of five in extreme cases! Savings can be expected to occur for inputs with vertices
on integer grids, or, e.g., if two components both contain tight polygonal approximations of
circular arcs with the same radius.

6 Results

Setup. All runtime tests were carried out on a 2015 Intel Core i7-6700 CPU. For most
of our tests, memory consumption was limited to 10 GiB. The codes were compiled with
clang++, version 7.0.1, against Cgal 5.0 except where stated otherwise.

The default setting for Cgal’s straight-skeleton package [9] is to use the exact predicates
but inexact constructions kernel that ships with Cgal. The use of this kernel ensures that the
straight skeleton computed is combinatorially correct, even if the locations of the nodes need
not be correct. Cgal’s straight skeleton package can also be run with the exact predicates
and exact constructions kernel. However this causes the runtimes to increase by a factor of
roughly 100. Our codes, Monos and Surfer2, use the Cgal exact predicates and exact
constructions with square-root kernel by default, as we construct wavefront vertices with
velocities, and these computations involve square roots.

We tested both Cgal and Surfer2 on many different classes of polygons. Our test data
consists of real-world (multiply-connected) polygons as well as of synthetic data generated
by Rpg [3] and similar tools provided by the Salzburg Database [11]. For a polygon that
has holes we used Cgal’s straight-skeleton code that supports holes. Otherwise we used the
implementation which only supports simple polygons.

Additionally, we tested both of our codes, Monos and Surfer2, with large monotone
polygons, for up to 106 vertices. (We did not run Cgal on these inputs due to memory
constraints.) Given the lack of a sufficiently large number of monotone real-world inputs, we
used Rpg [3] to automatically generate thousands of monotone input polygons. We also ran
Surfer2 on hundreds of real-world PSLGs. Most of our data came from GIS sources and

G. Eder, M. Held, and P. Palfrader 38:11

represents road and river networks, contour lines and the like. The runtimes on those inputs
are quite comparable to the runtimes for polygons. That is, the test results presented here
are also representative for Surfer2’s performance on real-world data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●
●
●●●

●
●
●●●

●
●

●

●●
●
●●

●●
●

●●

●
●●

●●
●●

●●
●
●●●

●●
●●●●●

●
●

●●

●

●

●

●

●●
●●●●●

●
●
●

●
●

●
●
●●●

●●
●

●
●
●

●
●
●

●

●●

●
●
●

●●●●●●
●

●●
●●
●

●

●

●
●
●●●
●
●●
●
●

●

●

●
●●

●

●

●
●
●
●

●
●●

●

●

●●

●

●

●

●●

●
●
●

●

●●

●●

●

●

●

●●●

●

●

●
●●

●

●
●●
●
●

●

●

●●

●

●
●●

●
●
●
●●
●

●
●
●●●●

●
●
●

●

●●

●

●

●
●
●●●

●

●

●

●

●●●●

●

●
●●
●

●●

●●
●
●●●●

●

●

●●
●

●

●

●

●●●
●●

●

●

●●●

●●
●●
●

●

●
●
●●
●

●

● ●

●●

●

●●

●

●
●

●

●

●

●

●●●●
●

●●
●
●

●

●
●●
●
●●
●●
●
●

●

●●
●●●
●

●

●●
●●
●

●

●

●
●
●
●
●
●

●
●
●●●●●●
●
●
●
●

●
●●●
●
●
●●●

●
●●●

●
●
●●

●●
●
●
●●
●●

●●●

●●●
●
●●
●
●
●

●
●

●

●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●
●
●

●
●●
●
●
●●
●
●●●●●
●

●

●●

●

●
●

●
●
●
●●
●●

●
●
●

●●
●

●●

●

●
●●●

●

●

●

●

●

●
●

●
●
●●
●

●●●
●●●●

●

●
●

●●

●

●
●●

●

●

●●
●

●
●
●

●
●●●●●●
●●●●
●

●
●●
●

●

●
●

●●

●

●

●

●●
●●●
●

●
●●●●

●
●

●

●
●
●●●●

●●

●●●

●●●
●

●●
●
●

●
●

●

●

●●
●
●●
●
●

●
●●

●

●

●

●
●●
●●

●

●●●
●
●
●●●

●

●

●
●
●
●●●
●●●
●●
●●●
●

●

●
●
●
●●
●●

●

●
●

●
●
●

●●
●
●
●
●

●

●●●

●

●

●
●
●●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●●●●
●

●
●●●●●●
●●●
●
●
●●
●
●
●
●●
●

●●
●●●●●

●

●
●●
●
●●

●

●●

●●
●●

●
●
●●
●

●
●●
●
●
●●
●

●

●●

●●

●

●
●
●●●●
●

●

●
●
●
●●
●

●

●
●
●
●
●●

●
●
●●●●
●
●
●
●

●
●
●
●

●
●

●
●●●

●●

●
●●
●

●
●

●

●●●
●
●●●
●●

●

●
●●●
●
●

●

●●
●●●
●●●●●
●
●
●
●●●●
●
●

●
●●●●●

●

●

●
●
●
●●●●●
●

●
●

●

●●
●
●●
●●
●
●
●
●●
●
●
●●
●●
●●

●
●

●

●●
●●●
●●

●

●

●

●●

●●●
●

●
●

●
●
●●●●
●●●●

●
●●
●
●
●

●

●
●●
●
●
●●●●●
●●
●
●●
●●
●●

●
●●
●

●

●
●●
●●
●
●●
●●●●●

●●

●●
●●●

●
●
●●
●
●
●
●

●●
●
●●●
●●

●

●
●
●●●
●
●
●
●
●●
●
●
●●●
●
●●●
●
●
●
●
●

●
●●●

●
●●
●
●

●
●●
●

●

●
●●●●●
●●
●
●●●●●
●●
●

●

●

●●

●
●
●

●
●●●
●
●●
●
●●●●●●
●●●●
●●●●
●●●●
●
●●
●●
●●●
●
●

●●
●
●
●
●
●●
●
●
●●
●
●●

●
●

●

●
●●●
●
●
●
●●●●

●
●●
●●●
●
●●
●

●
●

●
●
●
●
●
●
●
●●

●

●●

●

●
●●●●
●●●
●●●
●●●
●●●
●

●

●●
●●
●
●●
●●●
●
●
●
●●
●
●
●
●

●

●

●●●●●●
●
●
●
●●●

●●

●●●
●

●

●
●

●●●
●
●

●●
●●
●
●●
●
●
●
●
●●●●●●●
●●●●●
●
●
●
●
●
●
●●
●
●

●

●●
●●●
●●
●
●
●●●●
●
●
●

●●
●
●●

●
●

●

●●●

●

●
●
●
●●●●
●●
●
●

●●●

●
●●●●
●●●

●●

●
●●
●
●
●
●●●●●
●●●
●

●
●●

●

●
●●
●
●●●●
●●
●
●●
●
●
●
●●

●

●

●●
●

●●
●
●●
●
●
●
●
●

●

●●
●●●
●
●●
●●●

●

●
●
●●
●●●
●●

●

●
●
●

●●●
●●●

●

●●

●

●

●

●

●

●●
●
●
●
●
●
●
●●●●●

●
●●

●
●
●●●●●
●●
●●
●●
●●●
●

●

●
●
●
●

●●
●

●

●
●●●

●

●●●
●
●

●

●●

●

●
●●
●●●●●●

●

●
●
●

●
●●

●

●
●●●

●
●
●●●●
●●●●●

●●
●
●

●
●
●
●
●●●
●●●●
●
●●
●●
●

●
●
●
●●

●

●

●●●
●

●
●
●●

●

●
●
●●●

●

●●
●
●
●●●

●
●
●

●●

●●●●
●
●
●●●●

●
●
●

●

●●
●

●

●●
●●●●
●●●●
●●●
●
●●
●

●
●
●
●

●

●●
●●

●
●●●
●
●

●●

●

●
●
●
●
●●

●
●
●●

●●

●

●

●
●
●

●

●●●●

●
●

●
●●

●

●
●
●

●
●
●
●

●
●●●●

●
●●●
●●
●

●

●●
●
●
●

●

●
●
●●●

●

●
●●●

●●
●●

●

●●●

●

●

●
●
●●

●

●●●
●●●

●
●●

●●

●

●●●

●
●
●
●

●

●
●●●●

●

●●●●●

●

●

●●●
●
●
●●

●●

●
●
●
●●
●●●●●●
●
●

●

●
●●
●●●
●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●
●●●●●●
●
●●●●●

●●

●●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●

●●●
●●●●●●
●

●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●

●

●

●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●

●

●

●

●

●●

●●

●
●
●

●●
●

●
●
●

●
●●●

●

●●●
●●●●●●

●●

●
●●●
●

●

●
●

●●
●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●
●●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●●

●●
●●●●

● ●●●
● ●

●

●
●●●

●●

●

●
●

●
●
●
● ● ●

●

●

●

●

●
●●●

●●

●

●●
●

● ●

●●
●

●

●
●
●
●

●

●●●
●●

●●
●●●

●

●

●
●
●●●

●
●●
●●
●
●
●●●●

●●

●

●●●●●
●

●●
●

●●

●

●●

●

●

●●●●
●
●●

●
●
●
●●

●

●●

●

●●
●

●

●●●
●

●●
●

●
●

●

●

●

●
●

●

●

●●●
●
●

●

●

●●
●
●●●

●
●●

●●

●

●●●
●

●

●

●●
●●

●

●

●

●
●

●
●●
●●●●●

●
●
●
●●

●

●

●
●

●●

●

●
●

●

●●
●●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●
●●●

●●●●

●●

●

●●
●
●
●●

●

●●
●

●
●
●●●●

●

●
●

●

●●

●
●
●

●
●
●●

●●

●

●
●●

●

●

●●
●
●

●

●
●

●

●
●
●●

●

●
●

●

●●
●

●

●●

●

●●●
●●●

●

●●

●

●●●
●

●

●●
●●●

●

●●
●
●
●●

●

●

●

●

●●

●

●
●●●
●
●

●

●

●
●

●●

●

●
●
●

●
●

●

●●●●
●

●
●●
●●
●●●

●

●

●

●

●

●
●
●●

●

●

●
●

●●●

●

●
●●
●●

●

●

●●●●
●
●

●

●
●●

●

●

●

●
●
●

●

●
●

●
●●

●
●
●
●

●

●
●

●

●

●

●●●
●

●
●

●

●

●●●

●
●

●
●

●

●●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●●

●

●●

●

●●●

●

●
●

●

●

●
●●

●

●●
●
●

●

●
●

●

●

●
●

●

●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●●

●
●

●●
●
●●

●

●

●●

●

●
●●●

●

●

●●

●
●●●

●

●

●
●

●●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●●●

●

●

●
●

●

●
●●
●●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●
●●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●●
●●

●
●
●

●●

●

●●

●

●●

●

●●●

●

●

●●●

●●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●

●●●●

●●●

●

●
●
●

●

●
●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●
●
●

●●
●●●

●
●●●

●

●●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

10−3

10−2

10−1

100

101

102

103

102 103 104 105
Vertices

R
un

tim
e

[s
]

●CGAL (interior−only) Surfer2 (plane) Surfer2 (interior−only) Surfer2 (plane, IEEE 754)

Figure 6 Runtimes of Cgal’s code and different variants of Surfer2.

Runtimes and memory consumption. While Cgal’s code computes the straight skeleton
either in the interior or the exterior of a polygon, Surfer2 can do both in one run because
it treats a polygon as a PSLG. But Surfer2 can also be restricted to just the interior or the
exterior of a polygon. Hence, for the plot in Figure 6 we ran Surfer2 twice, once applied
to the entire plane and once for just the interiors of the polygons that were also handled
by Cgal. Our tests make it evident that Surfer2 is significantly faster than Cgal for a
large fraction of the inputs. In particular, its runtime seems to exhibit an n log n growth,
compared to the clearly quadratic increase of the runtime of Cgal’s code. Figure 7 shows
that Surfer2’s memory consumption grows (mostly) linearly while Cgal’s code requires a
clearly quadratic amount of memory.

The results for Cgal’s straight skeleton package were to be expected because (at least
back in 2010) it computed potential split events for each pair of reflex vertex and wavefront
edge [17, Section 2.5.4]. Indeed, tests carried out in 2010 indicated that it requires O(n2 log n)
time and Θ(n2) space for n-vertex polygons, as discussed in [18]. Our test results suggest
that the same algorithm and implementation are applied in the current Cgal 5.0, which is
the version used in our tests. The theoretical upper bound on the runtime complexity of
Surfer2 is given by O(n3 log n). Thus, its very decent practical performance is noteworthy.

SoCG 2020

38:12 On Implementing Straight Skeletons: Challenges and Experiences

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●●●
●●●●●

●●
●
●●●●●
●●●●●
●●
●●●●●●
●●●●

●
●●●●●●
●
●
●
●●●

●●●●
●●●●●

●●●●
●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●
●●●
●●●●

●●●●●●●
●●
●●●●●

●●●●
●●●●●●

●●●
●●●●●
●●●●
●

●●●●
●
●
●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●●●

●●●●●●●●●
●●●●●
●●●

●●●●●●●●
●●
●●●●●●
●●●●●●●●●

●●●●●●●
●●●●
●●●●●●
●●●●●●●●●

●●●●●
●●●●●●
●●●●

●●●●●●
●●●●●

●●●●
●●●●
●●●●●
●
●●
●●●●●●●

●●●
●●●●●
●●●●●●
●●
●
●●
●●●
●●
●●●●●●
●●●●
●●
●●●●●

●●●●●●●
●●●●●
●●●●●

●●●●●
●●●●●●
●●●
●●

●●●●
●●●●●
●●●●●●●●
●●●●
●●●

●●●●●●●●●●●
●●
●●●
●●●●●●●

●●●●
●●●●●●●

●●●●●●
●●●●
●●●●
●●●●●●
●●●●●●●●
●●●●
●●●●
●●
●●●●●
●●●
●●●●

●●●●●
●●
●●●●●●●●●●
●●●●●
●●●●●●●
●●●●
●●●
●●●●●

●●●●●●
●●●●●●
●●●●●

●●●●
●●●●
●●●●●●●●●●●●
●●
●
●●●●●●●
●●●
●●●●

●●●●●●●●●
●●●●
●●●●●

●●●●●
●●●●
●●●●●●●●
●●●●●
●●
●●●●●●
●●●●●
●●●●
●●●●●
●●●●
●
●●●
●●●
●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●
●●●
●●●
●●●●
●●●●●

●●●●●
●●●●●●●

●●●●
●●●
●●●●●●
●
●●●
●●●●●●●

●●●
●●●●●●

●●●
●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●
●●●●●
●●
●●●
●●●●●
●●●●
●●●
●●●●●●●●
●●●
●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●
●●●●●

●
●●●●●●
●●●●●

●●●
●●●●●
●●●

●●●●
●●●●
●●
●●●●●

●●●●●●
●●●●●
●●●
●●●●●●
●●●●●●●
●●●●
●●●●●

●●●
●●●●●
●●●●●●●●

●●●
●●●

●●●●●●
●●●
●●●●●●
●●●●●
●●●●
●●●
●●●●
●●●●
●●●●●●
●●●●●●

●●●●
●●
●●●●
●●●

●●
●●●
●●●●●●●●

●●●●
●●●●●
●●●●●●

●●
●●
●●●●●
●●●●●
●●●●●●●

●●●●●●
●●
●●●
●●●●●●●
●●●●●●

●●●●
●●
●●●●●
●●●●●

●●●●●●
●●●

●●●
●●●●●
●●●●●●●●

●●
●●●●●●

●
●●
●●

●●
●●●●●●●
●●●
●●●●●

●●●●●●●●●
●●●●●
●●●●●
●●●
●●
●●●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●

●

●

●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●
●

●
●
●
●
●●
●
●●●●●

●
●

●●●●
●●●
●
●●●●●

●
●
●
●●●
●
●
●
●
●●

●

●●●●
●
●

●

●
●●
●●●

●
●
●
●●●
●●●●

●
●
●
●
●
●
●●●●
●

●

●
●
●
●
●

●
●
●
●
●
●
●
●

●
●
●
●●●●●
●●●●●

●●●●●●●
●

●●
●

●
●●
●●

●

●

●●●●●
●

●
●

●
●
●
●
●
●
●

●
●

●●
●

●●
●●
●
●●●

●●
●●

●●●●
●
●●●●

●●
●●●●

●

●

●
●●
●
●●
●
●●●●●●
●●
●

●

●●
●
●
●●
●●●
●●
●
●●

●
●●●
●
●

●●

●●●
●
●

●

●●●
●●●

●
●

●
●●●
●
●●●
●●

●
●●
●●●

●
●

●
●
●●
●●
●●

●●●
●●

●
●
●
●●
●●
●
●●●
●

●
●●
●●●
●●●●
●

●

●●
●●
●
●●●●

●
●●●●●

●
●●
●

●

●

●●
●●
●●●

●
●
●

●●
●●
●●●●●●

●
●

●●●●●
●●
●●●

●
●●
●

●
●
●
●●
●●

●

●
●
●
●●●●

●
●●●
●●●●●

●●
●
●
●●
●
●●●

●
● ●●

●
●
●●●

●
●
●●
●
●
●
●
●●

●●
●
●

●

●
●●●●

●
●

●●
●

●

●
●●●
●●
●●

●

●
●
●
●●
●●●●
● ●

●
●

●
●●

●

●
●

●
●
●●
●●
●

●●
●●
●

●●●●●
●

●

●
●

●

●

●●●●●
●

●●
●
●
●●
●
●●●

●●●●
●●
●●●●

●
●

●●
●
●

●●
●●●●

●
●
●
●
●
●
●
●

●●
●●

●

●
●

●
●●●
●

●●
●●

●
●
●
●●
●

●

●
●●

●
●●

102

103

104

102 103 104 105
Vertices

M
em

or
y

U
se

 [M
iB

]

●CGAL (interior−only) Surfer2 (plane) Surfer2 (interior−only) Monos Surfer2 (plane, IEEE 754)

Figure 7 Memory use of Cgal, Surfer2 variants, and Monos.

We also ran Surfer2 with IEEE 754 double as a number type instead of Core’s
CORE::Expr. We admit, though, that Surfer2 is not (yet) fully prepared to deal with
finite-precision arithmetic as it assumes that the order of the events is given reliably. With
sufficient engineering effort, however, such requirements can be relaxed and the code could
be made to run reliably even with finite-precision arithmetic. Hence, the current version of
Surfer2 with the IEEE 754 backend works well on input in general position, but fails for
some inputs when several events happen at exactly the same time and position. Nevertheless,
we wanted to see the runtime and memory characteristics in order to get a better impression
of the practical costs of using CORE::Expr: Therefore the plots in Figures 6 and 7 also show
results for Surfer2 with IEEE 754 arithmetic.

The O(n log n) bound for the complexity of Monos is apparent in Figure 8, left. Given
that Monos is a special-purpose code designed specifically for handling monotone polygons,
it had to be expected that it outperforms Surfer2 consistently for such input.

Dependence on input characteristics. There are outliers both in the runtime as well as in
the memory consumption of Surfer2 which are clearly visible in Figures 6 and 7. (To a
lesser extent this noise is visible for Cgal, too.) Given the fact that such outliers do not
show up for the IEEE 754-based version of Surfer2, there is reason to assume that this
behavior is not intrinsic to Surfer2’s algorithm but that it has its roots in the use of exact
arithmetic. To probe this issue further we investigated which input classes trigger these
outliers. Figure 9 shows the runtimes of both codes for three different inputs classes.

G. Eder, M. Held, and P. Palfrader 38:13

●

●

●

●

●
●

●

● ● ●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●
●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●●●●
●●

●

●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●
●

●

●
●●●
●●

●

●
● ●

●
●

●●

●●
●

●

101

102

103

104 105 106

Vertices

R
un

tim
e

[s
]

● Surfer2 (interior−only)
Monos

100

101

102

103 104 105

Vertices

R
un

tim
e

[s
]

Monos CGAL 4.13
Monos CGAL 5.0

Figure 8 Monos vs. Surfer2 on monotone inputs, and Monos with Cgal 4 vs. Cgal 5.

The class of input that was most time-consuming to handle for all implementations were
our random octagonal polygons. All polygons out of this group have interior angles that
are multiples of 45°. We were surprised to see that axis-parallel input is not troublesome
per se. The key difference between both groups of polygons is given by the fact that all
octagonal polygons have their vertices on an integer grid while the vertices of the orthogonal
polygons are (random) real numbers. Hence, for the octagonal polygons many events tend
to happen at exactly the same time when opposite edges become incident in different parts
of the polygon. It is apparent that the proper time-wise ordering of these events incurs a
significant cost if CORE::Expr is used. The presence of parallel edges does not automatically
increase the runtime of Surfer2, though. The likely explanation is that many events cause
infinitely-fast vertices, which are then, in turn, easy to sort as they are handled immediately.
For comparison purposes we ran the code on random simple polygons as a third class of
input, with random vertex coordinates. Having any kind of co-temporal event is highly
unlikely for those inputs, as are infinitely-fast vertices.

The excessive amounts of time consumed by ordering simultaneous events became even
more apparent when we studied the impact of multiplicative weights on Surfer2’s runtime.
As expected, a difference in the timings for weighted and unweighted random polygons was
hardly noticeable. For our randomly weighted octagonal polygons we expected reduced run-
times and fewer outliers even when using exact arithmetic, due to very few truly simultaneous
events. And, indeed, this was confirmed impressively by our tests; see Figure 9.

Experiences with CGAL. While running our tests, we also compared Cgal versions 4.13
and 5.0, as the latter was released only recently. We witnessed an improvement in the
performance of our codes for the newer version; see Figure 8, right.

We also spent a considerable amount of time on debugging Surfer2, just to find out in
the end that some of our inputs trigger a bug in the CORE::Expr number type. This bug
occurs for both Cgal 4.13 and Cgal 5.0. In specific reproducible cases the floating-point
filter fails. As a result predicates are evaluated incorrectly, such as Cgal/Core claiming
that 0.49770 < 0.01047. We have reported this bug to the Cgal project (Bug#4296).

SoCG 2020

https://github.com/CGAL/cgal/issues/4296

38:14 On Implementing Straight Skeletons: Challenges and Experiences

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

CGAL

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●●

●

●

●

●

●

●
●●

●

●●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●●●
●
●●

●

●
●

●
●

●

●

●

●●
●
●

●●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●●

●
●

●●●

●
●

●
●

●

●

●
●

●

●●

● ●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●
●
●

●

●
●●
●●
●
●
●

●
●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● rpg_octa
rpg_rnd
rpg_iso

Surfer2

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

103

102 103 104 105

Vertices

R
un

tim
e

[s
]

● unweighted rpg_octa
randomly weighted rpg_octa

Figure 9 Top: The effect of different input classes on the runtime of Surfer2 and on Cgal.
Bottom-left: Samples for different input classes (left to right, top to bottom): Octagonal input (on
integer grid), random polygon, orthogonal polygon not on integer grid, and weighted octagonal
input. Bottom-right: Surfer2 runtimes for unweighted and randomly weighted octagonal input.

7 Discussion and conclusion

Our implementations Monos and Surfer2 show that an O(n log n) runtime can be achieved
for the computation of straight skeletons of n-vertex monotone polygons and PSLGs, even
if the edges of the PSLG are weighted by positive multiplicative weights. Engineering
considerations do not improve the asymptotic behavior but help to improve the practical
efficiency. Hence, our implementational efforts can be regarded as successful.

But our tests also make it evident that the use of the CORE::Expr number type forces one
to abandon the concept of unit-cost comparisons: Multiple events that occur simultaneously
have a significant impact on the practical runtime of Surfer2 if the CORE::Expr number
type is used, while no impact is visible for the standard IEEE 754 arithmetic. It is obvious
that it would pay off to detect groups of simultaneous events in a way that does not involve
comparing the event times, as it is done by our current implementation. As discussed, a
per-component ordering of the events in different priority queues reduces the burden that
simultaneous events put on the efficiency. In our current version, we apply per-component
computations only for different components induced by the input PSLG. If we could cheaply
detect the splitting of a wavefront into two components and afterwards use new component

G. Eder, M. Held, and P. Palfrader 38:15

numbers in future updates of the priority queue, then we might be able to exploit this idea
even further. How to carry out a dynamic maintenance of the component information with
little computational overhead is on our agenda for future R&D work.

A second avenue for practical improvements is given by a fine tuning of the priority queue
used for storing future events. It does not come as a surprise that not all real events computed
and registered in the priority queue do indeed correspond to topological changes of the actual
wavefront at the times when they are predicted to occur. As a consequence, we spend time
on ordering future events even if only a fraction of them will actually happen. Hence, our
tests suggest that it might be better to use some form of lazy priority queue. (Standard lazy
binomial heaps or Fibonacci heaps still would result in O(log n) many comparisons for a
delete-min operation.) After all, we do not really require a proper min-heap that obeys the
heap property on every layer. Rather, all we need to know is the next event.

An alternative to constructing collapse times and then comparing them is developing
predicates for ordering triangle collapses. However, this might be more involved than it
appears at first glance: A triangle consists of kinetic vertices that move along the (weighted)
bisectors of pairs of input edges, which, in general, uniquely define the position of their
wavefront vertex as a function of time. However, in the case of parallel, collinear wavefront
edges stemming from one or more parallel, collinear input edges, their bisector is not a uniquely
defined one-dimensional line. Rather, the exact trajectory of the kinetic vertex depends on
the wavefront propagation that has happened so far; see Figure 10. Nevertheless, having and
using exact predicates and resorting to explicit exact computations and comparisons of the
collapse times only in degenerate cases might speed up computing the straight skeleton.

a

e1

e2

e1

e2

a

e1

e2

a

e1

e2

a

Figure 10 The (supporting line of) straight skeleton arc a (dashed, purple) depends not only on
e1, e2 but also on the weights (e.g., •), positions, and orientations of other, non-incident input edges.

8 Source code

Our source codes are provided on GitHub and can be used freely under the GPL(v3) license:
https://github.com/cgalab/monos and https://github.com/cgalab/surfer2.

References
1 Oswin Aichholzer and Franz Aurenhammer. Straight Skeletons for General Polygonal

Figures in the Plane. In Voronoi’s Impact on Modern Sciences II, volume 21, pages
7–21. Institute of Mathematics of the National Academy of Sciences of Ukraine, 1998.
doi:10.1007/3-540-61332-3_144.

2 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A Novel Type
of Skeleton for Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.
doi:10.1007/978-3-642-80350-5_65.

SoCG 2020

https://github.com/cgalab
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab/monos
https://github.com/cgalab/surfer2
https://doi.org/10.1007/3-540-61332-3_144
https://doi.org/10.1007/978-3-642-80350-5_65

38:16 On Implementing Straight Skeletons: Challenges and Experiences

3 Thomas Auer and Martin Held. Heuristics for the Generation of Random Polygons. In
Proceedings of the 8th Canadian Conference on Computational Geometry (CCCG), pages
38–44, 1996.

4 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. A Simple
Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.
Information Processing Letters, 115(2):243–247, 2015. doi:10.1016/j.ipl.2014.09.021.

5 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. Weighted
Straight Skeletons in the Plane. Computational Geometry: Theory and Applications, 48(2):120–
133, 2015. doi:10.1016/j.comgeo.2014.08.006.

6 Therese Biedl, Stefan Huber, and Peter Palfrader. Planar Matchings for Weighted Straight
Skeletons. In Proceedings of the 25th International Symposium on Algorithms and Computation
(ISAAC), pages 117–127, 2014. doi:10.1007/978-3-319-13075-0_10.

7 Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and M. Scott Marshall.
GraphML Progress Report Structural Layer Proposal. In Proceedings of the 9th International
Symposium on Graph Drawing, pages 501–512, 2001. URL: http://graphml.graphdrawing.
org/.

8 Fernando Cacciola. Private email correspondence, 2010.
9 Fernando Cacciola. 2D Straight Skeleton and Polygon Offsetting. In CGAL User and Reference

Manual. CGAL Editorial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.0/Manual/
packages.html#PkgStraightSkeleton2.

10 Siu-Wing Cheng, Liam Mencel, and Antoine Vigneron. A Faster Algorithm for Computing
Straight Skeletons. ACM Transactions on Algorithms, 12(3):44:1–44:21, 2016. doi:10.1145/
2898961.

11 Günther Eder, Martin Held, SteinÞór Jasonarson, Philipp Mayer, and Peter Palfrader. On
Generating Polygons: Introducing the Salzburg Database. In Proceedings of the 36th European
Workshop on Computational Geometry, pages 75:1–7, 2020.

12 Günther Eder and Martin Held. Computing Positively Weighted Straight Skeletons of Simple
Polygons based on Bisector Arrangement. Information Processing Letters, 132:28–32, 2018.
doi:10.1016/j.ipl.2017.12.001.

13 David Eppstein and Jeff Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Ap-
plications of a Data Structure for Finding Pairwise Interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999. doi:10.1145/276884.276891.

14 Petr Felkel and Š. Obdržálek. Straight Skeleton Implementation. In Proceedings of the 14th
Spring Conference on Computer Graphics (SCCG), pages 210–218, 1998.

15 Martin Held and Peter Palfrader. Straight Skeletons with Additive and Multiplicative Weights
and Their Application to the Algorithmic Generation of Roofs and Terrains. Computer-Aided
Design, 92(1):33–41, 2017. doi:10.1016/j.cad.2017.07.003.

16 Martin Held and Peter Palfrader. Skeletal Structures for Modeling Generalized Chamfers
and Fillets in the Presence of Complex Miters. Computer-Aided Design and Applications,
16(4):620–627, 2019. doi:10.14733/cadaps.2019.620-627.

17 Stefan Huber. Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice.
Shaker Verlag, 2012. ISBN 978-3-8440-0938-5.

18 Stefan Huber and Martin Held. Theoretical and Practical Results on Straight Skeletons
of Planar Straight-line Graphs. In SoCG ’11: Proceedings of the twenty-seventh Annual
Symposium on Computational Geometry, 2011. doi:10.1145/1998196.1998223.

19 Tom Kelly and Peter Wonka. Interactive Architectural Modeling with Procedural Extrusions.
ACM Transactions on Graphics, 30(2):14:1–14:15, April 2011. doi:10.1145/1944846.1944854.

20 Lutz Kettner. Halfedge Data Structures. In CGAL User and Reference Manual. CGAL Edi-
torial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.0/Manual/packages.html#
PkgHalfedgeDS.

https://doi.org/10.1016/j.ipl.2014.09.021
https://doi.org/10.1016/j.comgeo.2014.08.006
https://doi.org/10.1007/978-3-319-13075-0_10
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
https://doc.cgal.org/5.0/Manual/packages.html#PkgStraightSkeleton2
https://doc.cgal.org/5.0/Manual/packages.html#PkgStraightSkeleton2
https://doi.org/10.1145/2898961
https://doi.org/10.1145/2898961
https://doi.org/10.1016/j.ipl.2017.12.001
https://doi.org/10.1145/276884.276891
https://doi.org/10.1016/j.cad.2017.07.003
https://doi.org/10.14733/cadaps.2019.620-627
https://doi.org/10.1145/1998196.1998223
https://doi.org/10.1145/1944846.1944854
https://doc.cgal.org/5.0/Manual/packages.html#PkgHalfedgeDS
https://doc.cgal.org/5.0/Manual/packages.html#PkgHalfedgeDS

G. Eder, M. Held, and P. Palfrader 38:17

21 Peter Palfrader, Martin Held, and Stefan Huber. On Computing Straight Skeletons by Means of
Kinetic Triangulations. In Proceedings of the 20th Annual European Symposium on Algorithms
(ESA), pages 766–777, 2012. doi:10.1007/978-3-642-33090-2_66.

22 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0 edition,
2019. URL: https://doc.cgal.org/5.0/Manual/packages.html.

23 Antoine Vigneron and Lie Yan. A Faster Algorithm for Computing Motorcycle Graphs.
Discrete & Computational Geometry, 52(3):492–514, 2014. doi:10.1007/00454-014-9625-2.

24 Evgeny Yakersberg. Morphing Between Geometric Shapes Using Straight-Skeleton-Based
Interpolation. MSc thesis, CS Dept., Technion, Haifa, Israel, 2004.

25 Mariette Yvinec. 2D Triangulation. In CGAL User and Reference Manual. CGAL Edito-
rial Board, 5.0 edition, 2019. URL: https://doc.cgal.org/5.0/Manual/packages.html#
PkgTriangulation2.

SoCG 2020

https://doi.org/10.1007/978-3-642-33090-2_66
https://doc.cgal.org/5.0/Manual/packages.html
https://doi.org/10.1007/00454-014-9625-2
https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation2
https://doc.cgal.org/5.0/Manual/packages.html#PkgTriangulation2

Removing Connected Obstacles in the Plane Is
FPT
Eduard Eiben
Department of Computer Science, Royal Holloway, University of London, UK
eduard.eiben@rhul.ac.uk

Daniel Lokshtanov
Department of Computer Science, UC Santa Barbara, CA, USA
daniello@ucsb.edu

Abstract
Given two points in the plane, a set of obstacles defined by closed curves, and an integer k, does
there exist a path between the two designated points intersecting at most k of the obstacles? This
is a fundamental and well-studied problem arising naturally in computational geometry, graph
theory, wireless computing, and motion planning. It remains NP-hard even when the obstacles are
very simple geometric shapes (e.g., unit-length line segments). In this paper, we show that the
problem is fixed-parameter tractable (FPT) parameterized by k, by giving an algorithm with running
time kO(k3)nO(1). Here n is the number connected areas in the plane drawing of all the obstacles.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Computational geometry; Theory of computation → Design
and analysis of algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases parameterized complexity and algorithms, planar graphs, motion planning,
barrier coverage, barrier resilience, colored path, minimum constraint removal

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.39

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.01218.

1 Introduction

In the Connected Obstacle Removal problem we are given as input a source point s
and a target point t in the plane, and our goal is to move from the source to the target along
a continuous curve. The catch is that the plane is also littered with obstacles – each obstacle
is represented by a bounded closed connected subset of the plane, and the goal is to get from
the source to the target while intersecting as few of the obstacles as possible. Equivalently
we can ask for the minimum number of obstacles that have to be removed so that one can
move from s to t without touching any of the remaining one. The problem has a wealth
of applications, and has been studied under different names, such as Barrier Coverage
or Barrier Resilience in networking and wirless computing [1, 3, 15, 16, 17, 18], or
Minimum Constraint Removal in planning [7, 10, 13, 14]. The problem is NP-hard even
when the obstacles are restricted to simple geometric shapes, such as line segments (e.g.,
see [1, 17, 18]). On the other hand, for unit-disk obstacles in a restricted setting, the problem
can be solved in polynomial time [16]. Whether Connected Obstacle Removal can be
solved in polynomial time for unit-disk obstacles remains open. The problem is known to be
APX-hard [2], and also no factor o(n)-approximation is known. For restricted inputs (such
as unit disc or rectangle obstacles) better approximation algorithms are known [2, 3].

In this paper we approach the general Connected Obstacle Removal problem from
the perspective of parameterized algorithms (see [4] for an introduction). In particular it is
easy to see that the problem is solvable in time nk+O(1) if the solution curve is to intersect
at most k obstacles. Here n is the number of connected regions in the plane defined by

© Eduard Eiben and Daniel Lokshtanov;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 39; pp. 39:1–39:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@rhul.ac.uk
mailto:daniello@ucsb.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.39
https://arxiv.org/abs/2002.01218
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Removing Connected Obstacles in the Plane Is FPT

the simultaneous drawing of all the obstacles. If k is considered a constant then this is
polynomial time, however the exponent of the polynomial grows with the parameter k. A
natural problem is whether the algorithm can be improved to a Fixed Parameter Tractable
(FPT) one, that is an algorithm with running time f(k)nO(1). In this paper we give the first
FPT algorithm for the problem. Our algorithm substantially generalizes previous work by
Kumar et al. [16] as well as the first author and Kanj [8].

I Theorem 1.1. There is an algorithm for Connected Obstacle Removal with running
time kO(k3)nO(1).

Our arguments and the relation between our results and previous work are more conve-
niently stated in terms of an equivalent graph problem, which we now discuss. Given a graph
G, a set C ⊂ N (interpreted as a set of colors), and a function χ : V (G)→ 2C that assigns a
set of colors to every vertex of v, a vertex set S uses the color set

⋃
v∈S χ(v). In the Colored

Path problem input consists of G, s, t, χ and k, and the goal is to find an s− t path P that
uses at most k colors. Note, that to obtain computational results for the problem, we assume
that the regions and intersections formed by the obstacles can be computed and enumerated
in polynomial time. We do not assume that the obstacles are simply-connected, however
we assume that the boundary of each obstacle is union of finite number of disjoint simple
closed curves. We may also assume that s and t are not on a boundary of any obstacle. It is
easy to see that Connected Obstacle Removal reduces to Colored Path (see also
Figure 1). In particular, we let the vertices of G be the connected components, called regions,
of the plane minus the union of the boundaries of the obstacles and we put an edge between
two vertices if their boundaries have a curve of positive length in common. The color set is
exactly the set of obstacles and the color set of a vertex is the set of obstacles containing the
region associated with the vertex. The equivalence of the instances is rather straightforward.
One way, the sequence of (closures of) regions a path in the plane intersects when traversing
it from s to t, determines an s-t walk in G. On the other hand, we can easily define an s-t
path in plane from a path in the graph that intersects precisely the regions associated with
the vertices of the path and crosses between consecutive regions in the common boundary.
Of course, reducing from Connected Obstacle Removal in this way can not produce
all possible instances of Colored Path: the graph G is always a planar graph, and for
every color c ∈ C the set χ−1(c) = {v ∈ V (G) : c ∈ χ(v)} induces a connected subgraph of
G. We shall denote the Colored Path problem restricted to instances that satisfy the two
properties above by Colored Path?. With these additional restrictions it is easy to reduce
back (we can just take the dual of G and let each obstacle be the closure of the union of the
faces containing the associated color), and therefore Connected Obstacle Removal and
Colored Path? are, for all practical purposes, different formulations of the same problem.

Related Work in Parameterized Algorithms, and Barriers to Generalization. Korman
et al. [15] initiated the study of Connected Obstacle Removal from the perspective
of parameterized complexity. They show that Connected Obstacle Removal is FPT
parameterized by k for unit-disk obstacles, and extended this result to similar-size fat-region
obstacles with a constant overlapping number, which is the maximum number of obstacles
having nonempty intersection. Eiben and Kanj [8] generalize the results of Korman et al. [15]
by giving algorithms for Colored Path? with running time f(k, t)nO(1) and g(k, `)nO(1)

where t is the treewidth of the input graph G, and ` is an upper bound on the number of
vertices on the shortest solution path P .

E. Eiben and D. Lokshtanov 39:3

s

t

Figure 1 The figure shows an instance of Connected Obstacle Removal and the graph G of
an equivalent instance of Colored Path. Every obstacle corresponds to a color, and the color set
of a vertex are the obstacles that contain the vertex in their interior.

Eiben and Kanj [8] leave open the existence of an FPT algorithm for Colored Path? -
Theorem 1.1 provides such an algorithm. Interestingly, Eiben and Kanj [8] also show that if an
FPT algorithm for Colored Path? were to exist, then in many ways it would be the best one
can hope for. More concretely, for each of the most natural ways to generalize Thoerem 1.1,
Eiben and Kanj [8] provide evidence of hardness. Specifically, the Colored Path? problem
imposes two constraints on the input – the graph G has to be planar and the color sets need
to be connected. Eiben and Kanj [8] show that lifting either one of these constraints results
in a W[1]-hard problem (i.e. one that is not FPT assuming plausible complexity theoretic
hypotheses) even if the treewidth of the input graph G is a small constant, and the length of
the a solution path (if one exists) is promised to be a function of k.

Algorithms that determine the existence of a path can often be adapted to algorithms
that find the shortest such path. Eiben and Kanj [8] show that for Colored Path?, this
can not be the case. Indeed, they show that an algorithm with running time f(k)nO(1) that
given a graph G, color function χ and integers k and ` determines whether there exists an
s− t path of length at most ` using at most k colors, would imply that FPT = W[1]. Thus,
unless FPT = W[1] the algorithm of Theorem 1.1 can not be adapted to an FPT algorithm
that finds a shortest path through k obstacles.

1.1 Overview of the Algorithm
The naive nk+O(1) time algorithm enumerates all choices of a set S on at most k colors in
the graph, and then decides in polynomial time whether S is a feasible color set, in other
words whether there exists a solution path that only uses colors from S. At a very high level
our algorithm does the same thing, but it only computes sets S that can be obtained as a
union of colors of at most k vertices and additionally it performs a pruning step so that not
all nk choices for S are enumerated.

In FPT algorithms such a pruning step is often done by clever branching: when choosing
the i’th vertex defining S one would show that there are only f(k) viable choices that could
possibly lead to a solution. We are not able to implement a pruning step in this way. Instead,
our pruning step is inspired by algorithms based on representative sets [12].

SoCG 2020

39:4 Removing Connected Obstacles in the Plane Is FPT

In particular, our algorithm proceeds in k rounds. In each round we make a family Pi of
color sets of size at most i, with the following properties. First, |Pi| ≤ kO(k3)nO(1). Second,
if there exists a solution path, then there exists a solution such that the set containing the
first i visited colors is in Pi.

In each round i the algorithm does two things: first it extends the already computed
families P0, . . .Pi−1 by going over every set S ∈

⋃i−1
j=0 Pj and every vertex v ∈ V (G) and

inserting S ∪ χ(v) into the new family P̂i if |S ∪ χ(v)| = i. It is quite easy to see that P̂i
satisfies the second property - however it is a factor of n larger than the union of previous
Pj ’s. If we keep extending P̂i in this way then after a super-constant number of steps we
will break the first requirement that the family size should be at most kO(k3)nO(1). For this
reason the algorithm also performs an irrelevant set step: as long as P̂i is “too large” we
show that one can identify a set S ∈ P̂i that can be removed from P̂i without breaking the
second property. We repeat this irrelevant set step until P̂i is sufficiently small. At this point
we declare that this is our i’th family Pi and proceed to step i+ 1.

The most technically involved part of our argument is the proof of correctness for the
irrelevant set step, see Section 3.3. This argument crucially exploits the structure of a large
set of paths in a planar graph that start and end in the same vertex.

2 Preliminaries

For integers n,m with n ≤ m, we let [n,m] := {n, n+ 1, . . . ,m} and [n] := [1, n]. Let F be
a family of subsets of a universe U . A sunflower in F is a subset F ′ ⊆ F such that all pairs
of elements in F ′ have the same intersection.

I Lemma 2.1 ([9, 11]). Let F be a family of subsets of a universe U , each of cardinality
exactly b, and let a ∈ N. If |F| ≥ b!(a− 1)b, then F contains a sunflower F ′ of cardinality at
least a. Moreover, F ′ can be computed in time polynomial in |F|.

We assume familiarity with the basic notations and terminologies in graph theory and
parameterized complexity. We refer the reader to the standard books [4, 5, 6] for more
information on these subjects.

Graphs. All graphs in this paper are simple (i.e., loop-less and with no multiple edges). Let
G be an undirected graph. For an edge e = uv in G, contracting e means removing the two
vertices u and v from G, replacing them with a new vertex w, and for every vertex y in the
neighborhood of v or u in G, adding an edge wy in the new graph, not allowing multiple
edges. Given a connected vertex-set S ⊆ V (G), contracting S means contracting the edges
between the vertices in S to obtain a single vertex at the end. For a set of edges E′ ⊆ E(G),
the subgraph of G induced by E′ is the graph whose vertex-set is the set of endpoints of the
edges in E′, and whose edge-set is E′.

A graph is planar if it can be drawn in the plane without edge intersections (except at the
endpoints). A plane graph is a planar graph together with a fixed drawing. Each maximal
connected region of the plane minus the drawing is an open set; these are the faces.

Let W1 = (u1, . . . , up) and W2 = (v1, . . . , vq), p, q ∈ N, be two walks such that up = v1.
Define the gluing operation ◦ that when applied toW1 andW2 produces that walkW1 ◦W2 =
(u1, . . . , up, v2, . . . , vq). For a path P = (v1, . . . , vq), q ∈ N and i ∈ [q], we let pre(P, vi) be
the prefix of the P ending at vi, that is the path (v1, v2, . . . vi). Similarly, we let suf(P, vi)
be the suffix of the P starting at vi, that is the path (vi, vi+1, . . . vq).

For a graph G and two vertices u, v ∈ V (G), we denote by dG(u, v) the distance between
u and v in G, which is the length (number of edges) of a shortest path between u and v in G.

E. Eiben and D. Lokshtanov 39:5

Parameterized Complexity. A parameterized problem Q is a subset of Ω∗×N, where Ω is a
fixed alphabet. Each instance of the parameterized problem Q is a pair (x, k), where k ∈ N is
called the parameter. We say that the parameterized problem Q is fixed-parameter tractable
(FPT) [6], if there is a (parameterized) algorithm, also called an FPT-algorithm, that decides
whether an input (x, k) is a member of Q in time f(k) · |x|O(1), where f is a computable
function. Let FPT denote the class of all fixed-parameter tractable parameterized problems.
By FPT-time we denote time of the form f(k) · |x|O(1), where f is a computable function
and |x| is the input instance size.

Colored Path and Colored Path?. For a set S, we denote by 2S the power set of S. Let
G = (V,E) be a graph, let C ⊂ N be a finite set of colors, and let χ : V −→ 2C . A vertex v
in V is empty if χ(v) = ∅. A color c appears on, or is contained in, a subset S of vertices if
c ∈

⋃
v∈S χ(v). For u, v ∈ V (G), ` ∈ N, a u-v walk W = (u = v0, . . . , vr = v) in G is `-valid

if |
⋃r
i=0 χ(vi)| ≤ `; i.e., if the total number of colors appearing on the vertices of W is at

most `. A color c is connected in G, or simply connected, if
⋃
c∈χ(v){v} induces a connected

subgraph of G. The graph G is color-connected, if for every c ∈ C, c is connected in G.
For an instance (G,C, χ, s, t, k) of Colored Path?, if s and t are nonempty vertices, we

can remove their colors and decrement k by |χ(s)∪χ(t)| because their colors appear on every
s-t path. If afterwards k becomes negative, then there is no k-valid s-t path in G. Moreover,
if s and t are adjacent, then the path (s, t) is a path with the minimum number of colors
among all s-t paths in G. Therefore, we will assume:

I Assumption 2.2. For an instance (G,C, χ, s, t, k) of Colored Path or Colored Path?,
we can assume that s and t are nonadjacent empty vertices.

I Definition 2.3. Let s, t be two designated vertices in G, and let x, y be two adjacent
vertices in G such that χ(x) = χ(y). We define the following operation to x and y, referred
to as a color contraction operation, that results in a graph G′, a color function χ′, and two
designated vertices s′, t′ in G′, obtained as follows:

G′ is the graph obtained from G by contracting the edge xy, which results in a new vertex z;
s′ = s (resp. t′ = t) if s /∈ {x, y} (resp. t /∈ {x, y}), and s′ = z (resp. t′ = z) otherwise;
χ′ : V (G′) −→ 2C is defined as χ′(w) = χ(w) if w 6= z, and χ′(z) = χ(x) = χ(y).

G is irreducible if there does not exist two vertices in G to which the color contraction
operation is applicable.

I Observation 2.4. Let G be a color-connected plane graph, C a color set, χ : V −→ 2C ,
s, t ∈ V (G), and k ∈ N. Suppose that the color contraction operation is applied to two
vertices x, y in G to obtain G′, χ′, s′, t′, as described in Definition 2.3. For any two vertices
u, v ∈ V (G) and p ⊆ C there is a u-v walk W with χ(W) = p in G if and only if there is a
u′-v′ walk W ′ with χ(W ′) = p, where u′ = u (resp. v′ = v) if u /∈ {x, y} (resp. v /∈ {x, y}),
and u′ = z (resp. v′ = z) otherwise.

3 FPT algorithm for Colored Path?

Given an instance (G,C, χ, s, t, k) and a vertex v ∈ V (G), we say that a vertex u is reachable
from a vertex v by a color set p ⊆ C if there exists a v-u path p with χ(P) ⊆ p. Furthermore,
we say that a color set p ⊆ C is v-opening if there is a vertex u ∈ V (G) such that u is
reachable from v by p, but not by any proper subset of p. Note that necessarily χ(v) ⊆ p. A
set of colors p completes a v-t walk Q if there is an s-v path P with χ(P) = p, |p∪χ(Q)| ≤ k,
and v is the only vertex on Q reachable from s by p. We say p minimally completes a v-t

SoCG 2020

39:6 Removing Connected Obstacles in the Plane Is FPT

walk Q, if p completes Q and there is no s-v path P ′ with χ(P ′) (p. We say that an s-t
path P is nice, if for every prefix pre(P, u) of P ending at the vertex u ∈ V (G) there is no
s-u path P ′ with χ(P ′) (χ(pre(P, u)).

I Observation 3.1. There is a k-valid s-t path if and only if there is a nice k-valid s-t path.

I Definition 3.2 (k-representation). Given an instance (G,C, χ, s, t, k) of Colored Path?,
a vertex v ∈ V (G), and two families P and P ′ of s-opening subsets of C of size ` ≤ k, we
say that P ′ k-represents P w.r.t. v if for every p ∈ P and every v-t walk Q such that p
minimally completes Q, there is a set p′ ∈ P ′ such that |p′ ∪χ(Q)| ≤ k, p′ ∩χ(Q) ⊇ p∩χ(Q),
and there is an s-v path P ′ with χ(P ′) = p′.

The main technical result of this paper is then the following theorem stating that if a
family P of color sets is large, then we can find an irrelevant color set in P.

I Lemma 3.3. Let (G,C, χ, s, t, k) be an instance of Colored Path?. Given a family P of
s-opening color sets of set of size ` ≤ k and a vertex v ∈ V (G), if |P| > f(k), f(k) = kO(k3),
then we can in time polynomial in |P|+ |V (G)| find a set p ∈ P such that P \{p} k-represents
P w.r.t. v.

3.1 Algorithm assuming Lemma 3.3
In this subsection, we show how to get an FPT-algorithm for Colored Path? assuming
Lemma 3.3 is true. The whole algorithm is relatively simple and is given in Algorithm 1. The
main goal of the subsection is to show that the algorithm is correct and runs in FPT-time.

While the definition of k-representation is not the most intuitive definition of representation
(for example it is not transitive), we show that it is sufficient to preserve a path of some
specific form. Let P be a k-valid s-t path. For i ∈ [0, k] let vi(P) be the last vertex on P such
that |χ(pre(P, vi(P)))| ≤ i and let `i(P) be the length, i.e., number of edges, of suf(P, vi(P)).
If the path P is clear from the context, we write vi and `i instead of vi(P) and `i(P). For
example, we write pre(P, vi) instead of pre(P, vi(P)). Note that for a k-valid s-t path P ,
`k(P) = 0 and since G is irreducible w.r.t. color contraction, `0(P) is precisely the length of
P . For two vectors (a0, a1, a2, . . . , ak), (b0, b1, b2, . . . , bk) we say (a0, . . . , ak) < (b0, . . . , bk) if
there exists i ∈ [0, k] such that ai < bi and for all j > i aj = bj . For a k-valid s-t path, we
call the vector ~̀(P) = (`0(P), . . . , `k(P)) the characteristic vector of P (see also Figure 2).

s
v5(P)

{} {1} {} {1} {} {2, 3} {2} {4} {2, 4} {3, 5} {}

v1(P)
v2(P)

v3(P) v4(P)v0(P)
t

v6(P)

Figure 2 Figure depicting the definition of vi(P) for k = 6 and a path using 5 colors. The
characteristic vector ~̀(P) = (`0(P), . . . , `6(P)) is (10, 6, 6, 4, 2, 0, 0).

I Lemma 3.4. Let P be a k-valid s-t path with characteristic vector ~̀(P), then there exists
a nice k-valid s-t path P ′ with characteristic vector ~̀(P ′) such that ~̀(P ′) ≤ ~̀(P).

The following technical lemma will help us later show that replacing a prefix of a path P
with χ(pre(P, vi)) ∈ P by its representative will always lead to a path P ′ with ~̀(P ′) ≤ ~̀(P).

I Lemma 3.5. Let P be an s-t path, w ∈ V (P), let pre = pre(P,w), suf = suf(P,w), and let
pre′ be an s-w path such that |χ(pre′)∪ (χ(pre)∩χ(suf))| ≤ |χ(pre)| and |χ(pre′)| < |χ(pre)|.
Then ~̀(pre′ ◦ suf) < ~̀(P).

E. Eiben and D. Lokshtanov 39:7

Algorithm 1 The algorithm for Colored Path?.

Data: An instance (G,C, χ, s, t, k) of Colored Path?
Result: A k-valid s-t path or NO, if such a path does not exists

1 P0 = {∅};
2 for i ∈ [k] do
3 P̂i = ∅
4 for v ∈ V (G) do
5 for p ∈

⋃
j∈[0,i−1] Pj do

6 if |χ(v) ∪ p| = i then
7 if there is a k-valid s-t path P with χ(P) ⊆ χ(v) ∪ p then
8 Output P and stop
9 end

10 P̂i = P̂i ∪ {χ(v) ∪ p}
11 end
12 end
13 end
14 for v ∈ V (G) do
15 Pvi = P̂i
16 while |Pvi | > f(k) do
17 Compute p ∈ Pvi such that Pvi \ {p} k-represents Pvi w.r.t. v (by

Lemma 3.3)
18 Pvi = Pvi \ {p}
19 end
20 end
21 Pi =

⋃
v∈V (G) Pvi

22 end
23 Output NO

Next, we show that k-representativity preserve in a sense a representation of a k-valid
paths with minimal characteristic vector. Before we state the next lemma we introduce the
following notation. We say that a set of colors p i-captures a s-t path P if |χ(pre(P, vi)| = |p|,
p completes suf(P, vi), and p contains χ(pre(P, vi)) ∩ χ(suf(P, vi)).

I Lemma 3.6. Let (G,C, χ, s, t, k) be a YES-instance, P a nice k-valid path minimizing ~̀(P),
and P ′ and P two families of s-opening subsets of C of size i ≤ k. If |χ(pre(P, vi))| = i, P ′
k-represents P w.r.t. vi = vi(P), and there is p ∈ P such that p i-captures P . Then there is
p′ ∈ P ′ such that p′ i-captures P .

Proof. Since |p| = |pre(P, vi)| = i and p completes suf Pvi, it follows from the choice of
P and Lemma 3.5 that p minimally completes P . Because, P ′ k-represents P w.r.t. vi, it
follows that there exists p′ ∈ P ′ such that |p′ ∪ χ(suf Pvi)|, there is a s-vi path P ′ with
χ(P ′) = p′ and p′ ∩χ(suf(P, vi)) ⊇ p∩χ(suf(P, vi)) ⊇ χ(pre(P, vi))∩χ(suf(P, vi)). Where
the second containment follows, because p i-captures P . Therefore p′ contains χ(pre(P, vi))∩
χ(suf(P, vi)). To finish the proof it only remains to show that no vertex on suf(P, vi) other
than vi is reachable from s by p′. Assume otherwise and let w ∈ V (suf(P, vi)) \ {vi} be
the last vertex that is reachable by p′. We show that |p′ ∪ (χ(pre(P,w)) ∩ χ(suf(P,w)))| ≤
|χ(pre(P,w))|. Since clearly |p′| = i < |χ(pre(P,w))|, the lemma then follows by applying
Lemma 3.5 and from the choice of P . J

SoCG 2020

39:8 Removing Connected Obstacles in the Plane Is FPT

I Lemma 3.7. Let (G,C, χ, s, t, k) be a YES-instance, P a nice k-valid s-t path minimizing
the vector ~̀(P). Moreover, let P0 = ∅ and P1, . . . ,Pk the color sets created in the step on
line 21 of Algorithm 1. Then for all i ∈ [0, k] such that |χ(pre(P, vi))| = i, there is pi ∈ Pi
such that pi i-captures P .

Proof. We will prove the lemma by induction. Since P0 contains ∅ and χ(s) = ∅, it is easy
to see that the lemma is true for i = 0 and that χ(pre(P, v0)) = 0. Let us assume that
the lemma is true for all j < i. If vi = vi−1,1 then the statement is true for i, because
|χ(pre(P, vi))| ≤ i − 1. Hence, we assume for the rest of the proof that vi 6= vi−1. Let
j ∈ [0, i−1] be such that vj−1 6= vi−1 but vj = vi−1 and let u be the vertex on P just after vj .
It follows from definition of vj−1, vj , and vi−1 that |χ(pre(P, vj))| = j and |χ(pre(P, u))| = i.
By the induction hypothesis there is pj ∈ Pj such that pj i-captures P . In particular vj is
the last vertex on suf(P, vj) reachable from s by pj and pj ⊇ χ(pre(P, vj))∩ χ(suf(P, vj)).

B Claim 3.8. |pj ∪ χ(u)| = i and pj ∪ χ(u) minimally completes suf(P, vi).

From the above claim, it follows that P̂i contains a color set p̂ = pj ∪ χ(u) such that |p̂| = i

minimally completes suf(P, vi). Moreover, p̂ ⊇ χ(pre(P, vi))∩χ(suf(P, vi)) and p̂ i-captures
P . The rest of the proof follows by applying Lemma 3.6 in every loop between the steps on
lines 16 and 19 for v = vi. J

Now, if the nice k-valid s-t path P minimizing the vector ~̀(P) contains i ≤ k colors, then
vi(P) is a singleton path (t). Since by Lemma 3.7 there is p ∈ Pi that i-captures P , it means
that t is reachable from s by p and Algorithm 1 outputs a s-t path using only the colors
in p. Moreover, whenever it outputs a path it check whether it is k-valid. Therefore after
analyzing the running time of Algorithm 1 we obtain the following theorem.

I Theorem 3.9. There is an algorithm that given an instance (G,C, χ, s, t, k) of Colored
Path? either outputs k-valid s-t path or decides that no such path exists, in time O(kO(k3) ·
|V (G)|O(1)).

Note that by the reduction from Connected Obstacle Removal to Colored Path?
discussed in the introduction, Theorem 3.9 implies also an algorithm for Connected
Obstacle Removal with the asymptotically same running time and hence Theorem 1.1.

3.2 Proof of Lemma 3.3

I Observation 3.10. Let P be a family of s-opening subsets of C of size ` ≤ k, v ∈ V (G),
and p ∈ P. If there is an s-v path P with χ(P) (p, then P \ {p} k-represents P.

For the rest of the section we will fix v ∈ V (G), ` ∈ [k], and we let P be a family of
s-opening color sets of size ` such that, for every p ∈ P , v is reachable from s by p but is not
reachable from s by any proper subset of p. Our goal in the remainder of the section is to
show that if |P| > f(k), f(k) = kO(k3), then we can find in FPT-time a color set p ∈ P such
that P \ {p} k-represents P w.r.t. v. We refer to such p also as an irrelevant color set.

1 Throughout the proof, to improve readability we write vi instead of vi(P).

E. Eiben and D. Lokshtanov 39:9

3.2.1 Sketch of the Proof

The main idea is to show that if the family P is large, in our case of size at least kO(k3),
then we can find a subfamily of P that is structured and this structure makes it easier to
find an irrelevant color set that can be always represented within the structured subfamily.
We can first apply sunflower lemma and restrict our search to a subfamily of size at least
kO(k2) whose color sets pairwise intersect in the same color sets c, but are otherwise pairwise
color-disjoint. Now we can remove colors in c from the graph and apply the color contraction
operation to newly created neighbors with the same color (see Subsection 3.2.3).

In the rest of the proof, we can restrict our search for an irrelevant color set to a family
P whose color sets are pairwise color disjoint. Moreover, we assume the graph is irreducible
w.r.t. color contraction. Now for each pi ∈ P we compute an s-v path Pi such that χ(Pi) = pi,
by Observation 3.10 this is simply done by finding an s-v path in the subgraph induced on
vertices with colors in pi. The goal is to further restrict the search for an irrelevant path to a
set of paths P such that there is a small set of vertices U , |U | ≤ 2k, such that all the paths in
P visit all vertices of U in the same order, but every vertex in V (G) \ (U ∪{s, v}) appears on
at most |P|f(k) paths. This is simply done by finding a vertex that appear on the most paths in
P, including the vertex in U if the vertex appears on at least |P|

|U |!·f(k) paths, and restricting
P to the paths containing the vertex. Otherwise, we stop. We show in Lemma 3.13 that
because each path in P has at most k colors, we stop after including at most 2k vertices into
U . To get the paths that visit U in the same order, we just go through all |U |! orderings of
U and pick the one most paths adhere to. To finish the proof, we show that thanks to the
structure of paths in P, for any two consecutive vertices in U , there is a large set of paths
that are pairwise vertex disjoint between the two consecutive vertices of U (Lemma 3.16).
Hence, we get into the situation similar to the one in Figure 3. Any v-t path (walk) that
contains at most k colors and does not contain vertices in U can only interact with a few of
these paths between the two consecutive vertices. Hence, because P was large and because
of the structure of paths in P, we find a path that cannot share a color with any v-t walk
with at most k colors (Lemma 3.17). But the color set of such a path is then represented by
any other color set in P, as they have the same size.

s

u1 u2

v

t

w

Figure 3 A set of pairwise color-disjoint paths that intersects exactly in u1 and u2 in the same
order. If a path P from v to t do not contain s, u1, nor u2 but it shares a color with some vertex w

on the part of the red. Then P has to cross at least 4 of the color-disjoint path and hence it has to
contain at least 3 colors. For example for the blue path are vertices outside of the orange region,
inside the purple region, and the region between red and green path pairwise color-disjoint. In each
of these regions the blue path contains at least 2 consecutive vertices, hence at least one is not empty.

SoCG 2020

39:10 Removing Connected Obstacles in the Plane Is FPT

3.2.2 The Color-Disjoint Case
The goal of this subsection is to show that Lemma 3.3 is true for a special case when the
color sets in P are pairwise color-disjoint and the input graph is irreducible w.r.t. color
contraction. This is the most difficult and technical part of the proof. For the rest of the
subsection we will have the following assumption:

I Assumption 3.11. For an instance (G,C, χ, s, t, k) of Colored Path? and family P of
color sets each of size ` ≤ k, we assume that G is irreducible w.r.t. color contraction and the
sets in P are pairwise color-disjoint.

In this subsection, it will be more convenient to work with a set of paths instead of a
set of color sets. Given a set P = {p1, . . . , p|P|} of color-disjoint color sets such that v is
reachable by each p ∈ P from s but not by any proper subset of p, we will construct a set
of paths P = {P1, . . . , P|P|} such that χ(Pi) = pi for all i ∈ [|P|]. Note that, since v is not
reachable from s by any proper subset of pi, this can be simply done by finding a shortest
s-v path in the graph obtained from G by removing all vertices containing a color not in pi.

Now we restrict our attention to a subset of paths Q constructed by Algorithm 2.

Algorithm 2 Refining the set of important s-v paths.

Data: A set of pairwise color-disjoint paths P in a graph G
Result: A subset Q of P and U ⊆ V (G) such that |Q| > |P|

((|U |+1)!·(8k2+8k+2))|U| , all
paths in Q contains all the vertices in U , and for every vertex w ∈ V (G) \U
at most |Q|

(|U |+1)!·(8k2+8k+2) paths in Q contains w.
1 U = ∅ and Q = P
2 let u be a vertex in V (G) \ U contained by the highest number of paths in Q
3 if u is contained in more than |Q|

(|U |+1)!·(8k2+8k+3) paths then
4 U = U ∪ {u}
5 restrict Q to contain only the paths containing u
6 go to the step on line 2
7 end

I Lemma 3.12. Let G a color-connected plane graph that is irreducible w.r.t. color contrac-
tion, s, u1, u2, u3, v be vertices in G and let P = {P1, . . . , P|P|} be pairwise color-disjoint s-v
paths all going through the vertices u1, u2, and u3 in the same order. Then there are at most
two paths Pi ∈ P such that if wij , j ∈ [3], denotes the vertex on Pi immediately after uj then
χ(wi1) ∩ χ(wi3) 6= ∅.

Now we can show that if |U | ≥ 2k + 1, then at the point when Algorithm 2 adds 2k + 1-st
element to U , we can find k2 + k + 1 paths in Q that visit the first 2k + 1 vertices of
U in the same order. Lemma 3.12 then implies that there is a path Pi ∈ P such that
χ(wij) ∩ χ(wij′) = ∅ for all j 6= j′, j, j′ ∈ {1, 3, 5, . . . , 2k + 1}, where wij denotes the vertex on
Pi immediately after uj . Then |χ(Pi)| ≥ k + 1 which contradicts definition of P.

I Lemma 3.13. If |P| ≥ f(k), f(k) = kO(k2), then when Algorithm 2 terminates, it holds
that |U | < 2k + 1.

We can now fix an ordering τ = (u1, u2, . . . , u|U |) of vertices in U which maximizes the
number of paths in Q that visit U in the same order as τ and let Q′ be the restriction of Q

E. Eiben and D. Lokshtanov 39:11

to the paths that are consistent with this ordering. Clearly |Q| ≤ |Q′| · (2k)! and it suffice to
show that we can find an irrelevant path in Q′ if |Q′| is large. The agenda for the rest of the
proof is as follows. Because |U | ≤ 2k and intersection number of each vertex outside |U | is
small compared to the size of Q′, only “few” paths can share a color with any k-valid v-t
walk that do not contain a vertex in U hence we can find an irrelevant path. The color set of
this irrelevant path is then the irrelevant color set in P.

Recall that due to Assumption 3.11, we assume that the graph G is color contracted and
no two neighbors have the same color set. Moreover, the paths in Q′ are color-disjoint, so
the vertices in U ∪ {s, v} are all empty and each neighbor of these vertices belongs to at
most one path in Q′. The goal in the following few technical lemmas is to show that for any
two consecutive vertices ui and ui+1 in U we can find a large (of size at least 4k + 1) subsets
of paths in Q′ that pairwise do not intersect between ui and ui+1.

u

w1

w2

w3

w4

w5

w6

w7

v

Figure 4 Situation in Lemma 3.14. On the picture are seven u-v paths, no 3 of them intersecting
in the same vertex. The red w2-w6 path on the picture intersects the three paths containing w3, w4,
and w5, respectively. Any such path has to contain at least 2 vertices, else the only vertex on the
path would be the intersection of 3 u-v paths.

I Lemma 3.14. Given an instance (G,C, χ, s, t, k) which is irreducible w.r.t. color contrac-
tion, two vertices u, v, b ∈ N and a set P of k-valid u-v paths such that no b paths intersect
in the same vertex. Let w1, . . . , wr be the neighbors of u, each the second vertex of a different
path in P, in counterclockwise order. For i ∈ [r] let Pi denote the path in P containing wi.
Let 1 ≤ i < j ≤ r, then the shortest curve σ from wi to wj that intersects G only in vertices
of V (G) \ {u, v} contains at least min{j−i,r+i−j}−1

b vertices on paths in P \ {Pi, Pj}.

Proof. See an example of the situation in Figure 4. Given a curve σ, we can easily find a
closed curve σ′ that intersect G in u, wi, wj and the vertices that are intersected by σ. The
vertices on σ′ are then the vertex separator separating v from either wi+1, . . . , wj−1 or from
w1, . . . , wi−1 and wj+1, . . . , wr. If the vertices on σ′ are the vertex separator separating v
from wi+1, . . . , wj−1, then all the paths Pi+1, . . . , Pj−1 has to pass a vertex on σ different
than wi or wj . Since no b paths intersect in the same vertex, we get that σ contains at
least j−i−1

b vertices in this case. The case when the vertices on σ′ are the vertex separator
separating v from w1, . . . , wi−1 and wj+1, . . . , wr is symmetric and the lemma follows. J

I Lemma 3.15. Let (G,C, χ, s, t, k) be an instance of Colored Path? such that G is
irreducible w.r.t. color contraction, H a subgraph of G, and P a k-valid u-v path with
u, v ∈ V (H) and χ(P) ∩ χ(H) = ∅. Then P intersects at most k faces of H.

The combination of the two above lemmas immediately yields the following:

SoCG 2020

39:12 Removing Connected Obstacles in the Plane Is FPT

I Lemma 3.16. Given an instance (G,C, χ, s, t, k) which is irreducible w.r.t. color con-
traction, two vertices u, v, an integer b ∈ N and a set P of k-valid pairwise color-disjoint
u-v paths such that no b paths intersect in the same vertex. Let w1, . . . , wr be the neigh-
bors of u, each the second vertex of a different path in P, in counterclockwise order. Let
1 ≤ i < j ≤ r and let Pi and Pj be the two paths in P containing wi and wj , respectively. If
min{j − i, r + i− j} > 2k · b, then Pi and Pj do not intersect.

I Lemma 3.17. If no b paths in Q′ intersect in the same vertex in V (G) \ (U ∪ {s, v}) and
|Q′| > (8k2 + 8k + 2) · (|U |+ 1) · b, then we can in polynomial time find a path P ∈ Q′ such
that for every k-valid v-t walk Q that does not contain a vertex in U holds χ(P) ∩ χ(Q) = ∅.

Proof. For the convenience let us denote s by u0 and v by u|U |+1. We will show that for
every i ∈ {0, . . . , |U |}, every k-valid v-t walk can intersect at most (8k2 + 8k + 2) · b paths in
a vertex on the path between ui and ui+1. For a path P ∈ Q′ let P i denote the subpath
between ui and ui+1 and let Qi = {P i | P ∈ Q′}. Clearly, the paths in Qi are color-disjoint
ui-ui+1 each containing at most ` ≤ k colors and no b paths in Qi intersect in the same
vertex beside ui and ui+1. Now let Hi be the subgraph of G induced by the edges on paths
in Qi. Since G is color contracted, ui is an empty vertex, and the paths in Qi are colored
disjoint, each neighbor of ui appears on a unique path in Qi. Let w1, w2, . . . , w|Qi| be the
neighbors of ui in Hi in counterclockwise order and let P ij be the path in Qi that contains
wj . Clearly, t is in the interior of some face f of Hi and there is at least one path that
contains an edge incident on f in Hi. Without loss of generality let P i1 be such path (note
that we can always choose a counterclockwise order around ui for which this is true).

ui ui+1

t

Figure 5 Any path that starts in a face incident on the red path and finishes in a face incident
on the green path that does not contain ui nor ui+1 has to appear in at least 4 different faces. Since
the paths are color-disjoint, only the consecutive faces can share colors and hence any such path
contains at least 2 colors.

B Claim 3.18. Let j ∈ [|Qi|]. If (2k + 1)(2k + 1) · b < j < |Qi| − (2k + 1)(2k + 1) · b, k-valid
v-t walk Q that does not contain ui nor ui+1 in the interior holds χ(P ij) ∩ χ(Q) = ∅.

Proof. Consider the following set of paths: P i1, P
i
2k+2, P

i
4k+3, . . . , P4k2+4k+1, P

i
j , P ij+2k+1,

P ij+4k+2, . . . , P ij+4k2+4k. By Lemma 3.16, these paths are pairwise non-intersecting. Hence,
we are in the situation as depicted in Figure 5. Since the paths in Qi are pairwise color-disjoint,
the colors of P ij are only on vertices of G inside the region bounded by P2k2+k+1 and P ij+2k+1.
Therefore, if χ(Q)∩P ij 6= ∅ for some v-t walk Q, then Q contains a vertex w inside the region
bounded by P2k2+k+1 and P ij+2k+1. Moreover, Q does not contain ui nor ui+1 as an inner
vertex then it either crosses all the paths in P1 = {P i2k+2, P

i
4k+3, . . . , P4k2+4k+1} or all the

E. Eiben and D. Lokshtanov 39:13

paths in P2 = {P ij+2k+1, P
i
j+4k+2, . . . , P

i
j+4k2+2k}. Without loss of generality, let us assume

that Q crosses all the paths in P1. The other case is symmetric. As G is color contracted, no
two consecutive vertices of P are empty. Hence, Q either crosses a path in P1 in a colored
vertex or there is a colored vertex on Q between two consecutive paths in P1 (resp. P2). Let
us partition the paths in P1 ∪ {P1, Pj} into k + 1 group of two consecutive pairs. that is we
partition P1 into groups {P1, P2k+2}, {P4k+3, P6k+4},. . .,{P4k2−1, P4k2+2k},{P4k2+4k+1, Pj}.
If the walk Q crosses all paths in P1, it has to contains a colored vertex in each of the k + 1
groups. However, each two groups are separated by color-disjoint paths. Therefore, two
colored vertices in two different groups have to be color-disjoint. But then χ(Q) contains at
least k + 1 colors, this is however not possible, because Q is k-valid. C

The lemma then follows by marking for each of |U |+ 1 consecutive pairs 2(2k + 1)2 · b paths
that can share a color with some Q and outputting any non-marked path. J

Since χ(P) ∩ χ(Q) = ∅, χ(P) can be replaced by any other color set of |χ(P)| colors
and we can safely remove it from P. Since we chose Q′ such that no |Q|

(|U |+1)!·(8k2+8k+3) =
|Q′|

(|U |+1)·(8k2+8k+3) paths intersect in Q′, we get the following main result of this subsection.

I Lemma 3.19. Let (G,C, χ, s, t, k) be an instance of Colored Path? such that G is
irreducible w.r.t. color contraction. Given a family P of pairwise color-disjoint s-reachable
color sets of set of size ` ≤ k and a vertex v ∈ V (G), if |P| > 2O(k2 log(k)), then we can in
time polynomial in |P|+ |V (G)|find a set p ∈ P such that P \ {p} k-represents P w.r.t. v.

3.2.3 Finishing the Proof
Proof of Lemma 3.3. Since each set in P has precisely ` ≤ k colors, if |P| > `! · (g(k))`+1,
g(k) = kO(k2) then, by Lemma 2.1 we can, in time polynomial in |P|, find a set Q of g(k) + 1
sets in P such that there is a color set c ⊆ C and for any two distinct sets p1, p2 in Q it
holds p1 ∩ p2 = c. Now let (G,C ′, χ′, s, t, k − |c|) be the instance of Colored Path? such
that C ′ = C \ c and for every v ∈ V (G), χ′(v) = χ(v) \ c and let Q′ = {p \ c | p ∈ Q}.

B Claim 3.20. For all p ∈ Q, Q′\{p\c} (k−|c|)-represents Q′ w.r.t. v in (G,C ′, χ′, s, t, k−|c|)
if and only if Qv \ {p} k-represents Qv w.r.t. v in (G,C, χ, s, t, k).

Removing the colors in c from G can result in an instance that is not irreducible w.r.t.
color contraction. However, in our algorithm for color-disjoint case, we crucially rely on
the fact that G is irreducible w.r.t. color contraction. Now let G0 = G, χ0 = χ′, s0 = s,
t0 = t, v0 = v and for i ≥ 1 let (Gi, C, χi, si, ti, k − |c|) be an instance we obtain from
(Gi−1, C, χi−1, si−1, ti−1, k − |c|) by a single color contraction of vertices xi and yi into a
vertex zi and let vi = zi if vi−1 ∈ {xi, yi} and vi = vi−1 otherwise.

B Claim 3.21. For all p ∈ P, if the set P \ p (k − |c|)-represents P w.r.t. vi in (Gi, C,
χi, si, ti, k−|c|), then P \p (k−|c|)-represents P w.r.t. v in (Gi+1, C, χi+1, si+1, ti+1, k−|c|).

Let (Gi, C, χi, si, ti, k−|c|) be the instance obtained from (G,C ′, χ′, s, t, k−|c|) by repeating
color contraction operation until Gi is irreducible w.r.t. color contraction and let vi be
the image of v. Since Gi is irreducible w.r.t. color contraction, the sets in Q′ are pairwise
color-disjoint, and |Q′| = g(k) + 1 > g(k − |c|), we can use Lemma 3.19 to find in time
polynomial in |Q′|+ |V (G)| a set p ∈ Q′ such that Q′ \ {p} (k−|c|)-represents Q′ w.r.t. vi in
(Gi, C, χi, si, ti, k − |c|). By Claim 3.21, it follows that Q′ \ {p} (k − |c|)-represents Q′ w.r.t.
v in (G,C ′, χ′, s, t, k − |c|) and by Claim 3.20 Q \ {p ∪ c} k-represents Q in (G,C, χ, s, t, k).
Finally, since for all p′ ∈ P \Q is p′ ∈ P \{p∪c} it follows that P \{p∪c} k-represents P . J

SoCG 2020

39:14 Removing Connected Obstacles in the Plane Is FPT

References
1 H. Alt, S. Cabello, P. Giannopoulos, and C. Knauer. Minimum cell connection in line

segment arrangements. International Journal of Computational Geometry and Applications,
27(3):159–176, 2017.

2 Sayan Bandyapadhyay, Neeraj Kumar, Subhash Suri, and Kasturi R. Varadarajan. Improved
approximation bounds for the minimum constraint removal problem. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX-
/RANDOM 2018, August 20-22, 2018 - Princeton, NJ, USA, pages 2:1–2:19, 2018.

3 S. Bereg and D. Kirkpatrick. Approximating barrier resilience in wireless sensor networks. In
Proceedings of ALGOSENSORS, pages 29–40, 2009.

4 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

5 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

6 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

7 Eduard Eiben, Jonathan Gemmell, Iyad A. Kanj, and Andrew Youngdahl. Improved results
for minimum constraint removal. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 6477–6484. AAAI Press, 2018.

8 Eduard Eiben and Iyad A. Kanj. How to navigate through obstacles? In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International
Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic, volume 107 of LIPIcs, pages 48:1–48:13. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018. Full version avaiable at arXiv:1712.04043v1.

9 Paul Erdös and Richard Rado. Intersection theorems for systems of sets. Journal of the
London Mathematical Society, 1(1):85–90, 1960.

10 L. Erickson and S. LaValle. A simple, but NP-hard, motion planning problem. In Proceedings
of AAAI. AAAI Press, 2013.

11 Jörg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of Texts in
Theoretical Computer Science. An EATCS Series. Springer, Berlin, 2006.

12 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016.

13 A. Gorbenko and V. Popov. The discrete minimum constraint removal motion planning
problem. In Proceedings of the American Institute of Physics, volume 1648. AIP Press, 2015.

14 K. Hauser. The minimum constraint removal problem with three robotics applications.
International Journal of Robotics Research, 33(1):5–17, 2014.

15 M. Korman, M. Löffler, R. Silveira, and D. Strash. On the complexity of barrier resilience for
fat regions and bounded ply. Computational Geometry, 72:34–51, 2018.

16 S. Kumar, T. Lai, and A. Arora. Barrier coverage with wireless sensors. Wireless Networks,
13(6):817–834, 2007.

17 K. Tseng and D. Kirkpatrick. On barrier resilience of sensor networks. In Proceedings of
ALGOSENSORS, pages 130–144, 2012.

18 S. Yang. Some Path Planning Algorithms in Computational Geometry and Air Traf-
fic Management. PhD thesis, University of New Yort at Stony Brook. Available at:
https://dspace.sunyconnect.suny.edu/handle/1951/59927, 2012.

https://arxiv.org/abs/1712.04043v1

A Toroidal Maxwell-Cremona-Delaunay
Correspondence
Jeff Erickson
University of Illinois, Urbana-Champaign, IL, USA
jeffe@illinois.edu

Patrick Lin
University of Illinois, Urbana-Champaign, IL, USA
plin15@illinois.edu

Abstract
We consider three classes of geodesic embeddings of graphs on Euclidean flat tori:

A torus graph G is equilibrium if it is possible to place positive weights on the edges, such that
the weighted edge vectors incident to each vertex of G sum to zero.
A torus graph G is reciprocal if there is a geodesic embedding of the dual graph G∗ on the same
flat torus, where each edge of G is orthogonal to the corresponding dual edge in G∗.
A torus graph G is coherent if it is possible to assign weights to the vertices, so that G is the
(intrinsic) weighted Delaunay graph of its vertices.

The classical Maxwell-Cremona correspondence and the well-known correspondence between convex
hulls and weighted Delaunay triangulations imply that the analogous concepts for plane graphs
(with convex outer faces) are equivalent. Indeed, all three conditions are equivalent to G being
the projection of the 1-skeleton of the lower convex hull of points in R3. However, this three-way
equivalence does not extend directly to geodesic graphs on flat tori. On any flat torus, reciprocal and
coherent graphs are equivalent, and every reciprocal graph is equilibrium, but not every equilibrium
graph is reciprocal. We establish a weaker correspondence: Every equilibrium graph on any flat
torus is affinely equivalent to a reciprocal/coherent graph on some flat torus.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces

Keywords and phrases combinatorial topology, geometric graphs, homology, flat torus, spring
embedding, intrinsic Delaunay

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.40

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.10057
[33].

Funding Portions of this work were supported by NSF grant CCF-1408763.

Acknowledgements We thank the anonymous reviewers for their helpful comments and suggestions.

1 Introduction

The Maxwell-Cremona correspondence is a fundamental theorem establishing an equivalence
between three different structures on straight-line graphs G in the plane:

An equilibrium stress on G is an assignment of non-zero weights to the edges of G, such
that the weighted edge vectors around every interior vertex p sum to zero:

∑
p : pq∈E

ωpq(p− q) =
(

0
0

)

A reciprocal diagram for G is a straight-line drawing of the dual graph G∗, in which every
edge e∗ is orthogonal to the corresponding primal edge e.

© Jeff Erickson and Patrick Lin;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 40; pp. 40:1–40:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5253-2282
mailto:jeffe@illinois.edu
https://orcid.org/0000-0003-4215-2443
mailto:plin15@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.40
https://arxiv.org/abs/2003.10057
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 A Toroidal Maxwell-Cremona-Delaunay Correspondence

A polyhedral lifting of G assigns z-coordinates to the vertices of G, so that the resulting
lifted vertices in R3 are not all coplanar, but the lifted vertices of each face of G are
coplanar.

Building on earlier seminal work of Varignon [76], Rankine [62, 61], and others, Maxwell
[52, 51, 50] proved that any straight-line planar graph G with an equilibrium stress has both
a reciprocal diagram and a polyhedral lifting. In particular, positive and negative stresses
correspond to convex and concave edges in the polyhedral lifting, respectively. Moreover,
for any equilibrium stress ω on G, the vector 1/ω is an equilibrium stress for the reciprocal
diagram G∗. Finally, for any polyhedral liftings of G, one can obtain a polyhedral lifting of
the reciprocal diagram G∗ via projective duality. Maxwell’s analysis was later extended and
popularized by Cremona [25, 26] and others; the correspondence has since been rediscovered
several times in other contexts [3, 39]. More recently, Whiteley [77] proved the converse
of Maxwell’s theorem: every reciprocal diagram and every polyhedral lift corresponds to
an equilibrium stress; see also Crapo and Whiteley [24]. For modern expositions of the
Maxwell-Cremona correspondence aimed at computational geometers, see Hopcroft and Kahn
[38], Richter-Gebert [64, Chapter 13], or Rote, Santos, and Streinu [66].

If the outer face of G is convex, the Maxwell-Cremona correspondence implies an equi-
valence between equilibrium stresses in G that are positive on every interior edge, convex
polyhedral liftings of G, and reciprocal embeddings of G∗. Moreover, as Whiteley et al. [78]
and Aurenhammer [3] observed, the well-known equivalence between convex liftings and
weighted Delaunay complexes [5, 4, 13, 32] implies that all three of these structures are
equivalent to a fourth:

A Delaunay weighting of G is an assignment of weights to the vertices of G, so that G is
the (power-)weighted Delaunay graph [4, 7] of its vertices.

Among many other consequences, combining the Maxwell-Cremona correspondence [77]
with Tutte’s spring-embedding theorem [75] yields an elegant geometric proof of Steinitz’s
theorem [70, 69] that every 3-connected planar graph is the 1-skeleton of a 3-dimensional
convex polytope. The Maxwell-Cremona correspondence has been used for scene analysis
of planar drawings [24, 74, 3, 5, 39], finding small grid embeddings of planar graphs and
polyhedra [31, 15, 59, 64, 63, 67, 30, 40], and several linkage reconfiguration problems
[22, 29, 73, 72, 60].

It is natural to ask how or whether these correspondences extend to graphs on surfaces
other than the Euclidean plane. Lovász [47, Lemma 4] describes a spherical analogue of
Maxwell’s polyhedral lifting in terms of Colin de Verdière matrices [17, 20]; see also [44].
Izmestiev [42] provides a self-contained proof of the correspondence for planar frameworks,
along with natural extensions to frameworks in the sphere and the hyperbolic plane. Finally,
and most closely related to the present work, Borcea and Streinu [11], building on their
earlier study of rigidity in infinite periodic frameworks [10, 9], develop an extension of the
Maxwell-Cremona correspondence to infinite periodic graphs in the plane, or equivalently,
to geodesic graphs on the Euclidean flat torus. Specifically, Borcea and Streinu prove
that periodic polyhedral liftings correspond to periodic stresses satisfying an additional
homological constraint.1

1 Phrased in terms of toroidal frameworks, Borcea and Streinu consider only equilibrium stresses for
which the corresponding reciprocal toroidal framework contains no essential cycles.

J. Erickson and P. Lin 40:3

1.1 Our Results
In this paper, we develop a different generalization of the Maxwell-Cremona-Delaunay
correspondence to geodesic embeddings of graphs on Euclidean flat tori. Our work is inspired
by and uses Borcea and Streinu’s recent results [11], but considers a different aim. Stated
in terms of infinite periodic planar graphs, Borcea and Streinu study periodic equilibrium
stresses, which necessarily include both positive and negative stress coefficients, that include
periodic polyhedral lifts; whereas, we are interested in periodic positive equilibrium stresses
that induce periodic reciprocal embeddings and periodic Delaunay weights. This distinction
is aptly illustrated in Figures 8–10 of Borcea and Streinu’s paper [11].

Recall that a Euclidean flat torus T is the metric space obtained by identifying opposite
sides of an arbitrary parallelogram in the Euclidean plane. A geodesic graph G in the flat
torus T is an embedded graph where each edge is represented by a “line segment”. Equilibrium
stresses, reciprocal embeddings, and weighted Delaunay graphs are all well-defined in the
intrinsic metric of the flat torus. We prove the following correspondences for any geodesic
graph G on any flat torus T.

Any equilibrium stress for G is also an equilibrium stress for the affine image of G on
any other flat torus T′ (Lemma 2.2). Equilibrium depends only on the common affine
structure of all flat tori.
Any reciprocal embedding G∗ on T – that is, any geodesic embedding of the dual graph
such that corresponding edges are orthogonal – defines unique equilibrium stresses in
both G and G∗ (Lemma 3.1).
G has a reciprocal embedding if and only if G is coherent. Specifically, each reciprocal
diagram for G induces an essentially unique set of Delaunay weights for the vertices of G
(Theorem 4.5). Conversely, each set of Delaunay weights for G induces a unique reciprocal
diagram G∗, namely the corresponding weighted Voronoi diagram (Lemma 4.1). Thus, a
reciprocal diagram G∗ may not be a weighted Voronoi diagram of the vertices of G, but
some unique translation of G∗ is.
Unlike in the plane, G may have equilibrium stresses that are not induced by reciprocal
embeddings; more generally, not every equilibrium graph on T is reciprocal (Theorem 3.2).
Unlike equilibrium, reciprocality depends on the conformal structure of T, which is
determined by the shape of its fundamental parallelogram. We derive a simple geometric
condition that characterizes which equilibrium stresses are reciprocal on T (Lemma 5.4).
More generally, we show that for any equilibrium stress on G, there is a flat torus T′,
unique up to rotation and scaling of its fundamental parallelogram, such that the same
equilibrium stress is reciprocal for the affine image of G on T′ (Theorem 5.7). In short,
every equilibrium stress for G is reciprocal on some flat torus. This result implies a natural
toroidal analogue of Steinitz’s theorem (Theorem 6.1): Every essentially 3-connected
torus graph G is homotopic to a weighted Delaunay graph on some flat torus.

Due to space limitations, we defer several proofs to the full version of the paper [33].

1.2 Other Related Results
Our results rely on a natural generalization (Theorem 2.3) of Tutte’s spring-embedding
theorem to the torus, first proved (in much greater generality) by Colin de Verdière [18], and
later proved again, in different forms, by Delgado-Friedrichs [28], Lovász [48, Theorem 7.1][49,
Theorem 7.4], and Gortler, Gotsman, and Thurston [36]. Steiner and Fischer [68] and
Gortler et al. [36] observed that this toroidal spring embedding can be computed by solving
the Laplacian linear system defining the equilibrium conditions. We describe this result

SoCG 2020

40:4 A Toroidal Maxwell-Cremona-Delaunay Correspondence

and the necessary calculation in more detail in Section 2. Equilibrium and reciprocal
graph embeddings can also be viewed as discrete analogues of harmonic and holomorphic
functions [49, 48].

Our weighted Delaunay graphs are (the duals of) power diagrams [4, 6] in the intrinsic
metric of the flat torus. Toroidal Delaunay triangulations are commonly used to generate
finite-element meshes for simulations with periodic boundary conditions, and several efficient
algorithms for constructing these triangulations are known [53, 37, 14, 8]. Building on earlier
work of Rivin [65] and Indermitte et al. [41], Bobenko and Springborn [7] proved that on any
piecewise-linear surface, intrinsic Delaunay triangulations can be constructed by an intrinsic
incremental flipping algorithm, mirroring the classical planar algorithm of Lawson [46]; their
analysis extends easily to intrinsic weighted Delaunay graphs. Weighted Delaunay complexes
are also known as regular or coherent subdivisions [79, 27].

Finally, equilibrium and reciprocal embeddings are closely related to the celebrated
Koebe-Andreev circle-packing theorem: Every planar graph is the contact graph of a set of
interior-disjoint circular disks [43, 1, 2]; see Felsner and Rote [34] for a simple proof, based in
part on earlier work of Brightwell and Scheinerman [12] and Mohar [54]. The circle-packing
theorem has been generalized to higher-genus surfaces by Colin de Verdière [16, 19] and
Mohar [55, 56]. In particular, Mohar proves that any well-connected graph G on the torus is
homotopic to an essentially unique circle packing for a unique Euclidean metric on the torus.
This disk-packing representation immediately yields a weighted Delaunay graph, where the
areas of the disks are the vertex weights. We revisit this result in Section 6.

Discrete harmonic and holomorphic functions, circle packings, and intrinsic Delaunay
triangulations have numerous applications in discrete differential geometry; we refer the
reader to monographs by Crane [23], Lovász [49], and Stephenson [71].

2 Background and Definitions

2.1 Flat Tori
A flat torus is the metric surface obtained by identifying opposite sides of a parallelogram in
the Euclidean plane. Specifically, for any nonsingular 2× 2 matrix M =

(
a b
c d

)
, let TM denote

the flat torus obtained by identifying opposite edges of the fundamental parallelogram ♦M
with vertex coordinates

(0
0
)
,
(
a
c

)
,
(
b
d

)
, and

(
a+b
c+d
)
. In particular, the square flat torus T� = TI

is obtained by identifying opposite sides of the Euclidean unit square � = ♦I = [0, 1]2. The
linear map M : R2 → R2 naturally induces a homeomorphism from T� to TM .

Equivalently, TM is the quotient space of the plane R2 with respect to the lattice ΓM of
translations generated by the columns ofM ; in particular, the square flat torus is the quotient
space R2/Z2. The quotient map πM : R2 → TM is called a covering map or projection. A
lift of a point p ∈ TM is any point in the preimage π−1

M (p) ⊂ R2. A geodesic in TM is
the projection of any line segment in R2; we emphasize that geodesics are not necessarily
shortest paths.

2.2 Graphs and Embeddings
We regard each edge of an undirected graph G as a pair of opposing darts, each directed
from one endpoint, called the tail of the dart, to the other endpoint, called its head. For
each edge e, we arbitrarily label the darts e+ and e−; we call e+ the reference dart of e.
We explicitly allow graphs with loops and parallel edges. At the risk of confusing the reader,
we often write p�q to denote an arbitrary dart with tail p and head q, and q�p for the
reversal of p�q.

J. Erickson and P. Lin 40:5

A drawing of a graph G on a torus T is any continuous function from G (as a topological
space) to T. An embedding is an injective drawing, which maps vertices of G to distinct
points and edges to interior-disjoint simple paths between their endpoints. The faces of an
embedding are the components of the complement of the image of the graph; we consider
only cellular embeddings, in which all faces are open disks. (Cellular graph embeddings are
also called maps.) We typically do not distinguish between vertices and edges of G and their
images in any embedding; we will informally refer to any embedded graph on any flat torus
as a torus graph.

In any embedded graph, left(d) and right(d) denote the faces immediately to the left and
right of any dart d. (These are possibly the same face.)

The universal cover G̃ of an embedded graph G on any flat torus TM is the unique
infinite periodic graph in R2 such that πM (G̃) = G; in particular, each vertex, edge, or face
of G̃ projects to a vertex, edge, or face of G, respectively. A torus graph G is essentially
simple if its universal cover G̃ is simple, and essentially 3-connected if G̃ is 3-connected
[55, 56, 57, 58, 35]. We emphasize that essential simplicity and essential 3-connectedness are
features of embeddings; see Figure 1.

w

v

u
[0,
0]→

←[–1,0]

[0,–1]→

[1,–1]→

v v

u

v

u

v

u

w

v

w

v

u

w

v

u

v

u

w

v

w

v

u

w

v

u

v

u

w

v

w

v

w

v v

w

v

u

Figure 1 An essentially simple, essentially 3-connected geodesic graph on the square flat torus
(showing the homology vectors of all four darts from u to v), a small portion of its universal cover,
and its dual graph.

2.3 Homology, Homotopy, and Circulations

For any embedding of a graph G on the square flat torus T�, we associate a homology
vector [d] ∈ Z2 with each dart d, which records how the dart crosses the boundary edges
of the unit square. Specifically, the first coordinate of [d] is the number of times d crosses
the vertical boundary rightward, minus the number of times d crosses the vertical boundary
leftward; and the second coordinate of [d] is the number of times d crosses the horizontal
boundary upward, minus the number of times d crosses the horizontal boundary downward.
In particular, reversing a dart negates its homology vector: [e+] = −[e−]. Again, see Figure 1.
For graphs on any other flat torus TM , homology vectors of darts are similarly defined by
how they crosses the edges of the fundamental parallelogram ♦M .

The (integer) homology class [γ] of a directed cycle γ in G is the sum of the homology
vectors of its forward darts. A cycle is contractible if its homology class is

(0
0
)
and essential

otherwise. In particular, the boundary cycle of each face of G is contractible.

SoCG 2020

40:6 A Toroidal Maxwell-Cremona-Delaunay Correspondence

Two cycles on a torus T are homotopic if one can be continuously deformed into the
other, or equivalently, if they have the same integer homology class. Similarly, two drawings
of the same graph G on the same flat torus T are homotopic if one can be continuously
deformed into the other. Two drawings of the same graph G on the same flat torus T are
homotopic if and only if every cycle has the same homology class in both embeddings [45, 21].

A circulation φ in G is a function from the darts of G to the reals, such that φ(p�q) =
−φ(q�p) for every dart p�q and

∑
p�q φ(p�q) = 0 for every vertex p. We represent

circulations by column vectors in RE , indexed by the edges of G, where φe = φ(e+). Let
Λ denote the 2× E matrix whose columns are the homology vectors of the reference darts
in G. The homology class of a circulation is the matrix-vector product

[φ] = Λφ =
∑
e∈E

φ(e+) · [e+].

(This identity directly generalizes our earlier definition of the homology class [γ] of a cycle γ.)

2.4 Geodesic Drawings and Embeddings
A geodesic drawing of G on any flat torus TM is a drawing that maps edges to geodesics;
similarly, a geodesic embedding is an embedding that maps edges to geodesics. Equival-
ently, an embedding is geodesic if its universal cover G̃ is a straight-line plane graph.

A geodesic drawing of G in TM is uniquely determined by its coordinate representa-
tion, which consists of a coordinate vector 〈p〉 ∈ ♦M for each vertex p, together with the
homology vector [e+] ∈ Z2 of each edge e.

The displacement vector ∆d of any dart d is the difference between the head and tail
coordinates of any lift of d in the universal cover G̃. Displacement vectors can be equivalently
defined in terms of vertex coordinates, homology vectors, and the shape matrix M as follows:

∆p�q := 〈q〉 − 〈p〉+M [p�q].

Reversing a dart negates its displacement: ∆q�p = −∆p�q. We sometimes write ∆xd and
∆yd to denote the first and second coordinates of ∆d. The displacement matrix ∆ of a
geodesic drawing is the 2 × E matrix whose columns are the displacement vectors of the
reference darts of G. Every geodesic drawing on TM is determined up to translation by its
displacement matrix.

On the square flat torus, the integer homology class of any directed cycle is also equal to
the sum of the displacement vectors of its darts:

[γ] =
∑
p�q∈γ

[p�q] =
∑
p�q∈γ

∆p�q.

In particular, the total displacement of any contractible cycle is zero, as expected. Extending
this identity to circulations by linearity gives us the following useful lemma:

I Lemma 2.1. Fix a geodesic drawing of a graph G on T� with displacement matrix ∆. For
any circulation φ in G, we have ∆φ = Λφ = [φ].

2.5 Equilibrium Stresses and Spring Embeddings
A stress in a geodesic torus graph G is a real vector ω ∈ RE indexed by the edges of G.
Unlike circulations, homology vectors, and displacement vectors, stresses can be viewed as
symmetric functions on the darts of G. An equilibrium stress in G is a stress ω that
satisfies the following identity at every vertex p:∑

p�q

ωpq∆p�q =
(

0
0

)
.

J. Erickson and P. Lin 40:7

Unlike Borcea and Streinu [11, 10, 9], we consider only positive equilibrium stresses, where
ωe > 0 for every edge e. It may be helpful to imagine each stress coefficient ωe as a linear
spring constant; intuitively, each edge pulls its endpoints inward, with a force equal to the
length of e times the stress coefficient ωe.

Recall that the linear map M : R2 × R2 associated with any nonsingular 2 × 2 matrix
induces a homeomorphism M : T� → TM . In particular, applying this homeomorphism to
a geodesic graph in T� with displacement matrix ∆ yields a geodesic graph on TM with
displacement matrix M∆. Routine definition-chasing now implies the following lemma.

I Lemma 2.2. Let G be a geodesic graph on the square flat torus T�. If ω is an equilibrium
stress for G, then ω is also an equilibrium stress for the image of G on any other flat
torus TM .

Our results rely on the following natural generalization of Tutte’s spring embedding
theorem to flat torus graphs.

I Theorem 2.3 (Colin de Verdiére [18]; see also [28, 48, 36]). Let G be any essentially simple,
essentially 3-connected embedded graph on any flat torus T, and let ω be any positive stress
on the edges of G. Then G is homotopic to a geodesic embedding in T that is in equilibrium
with respect to ω; moreover, this equilibrium embedding is unique up to translation.

Theorem 2.3 implies the following sufficient condition for a displacement matrix to
describe a geodesic embedding on the square torus.

I Lemma 2.4. Fix an essentially simple, essentially 3-connected graph G on T�, a 2× E
matrix ∆, and a positive stress vector ω. Suppose for every directed cycle (and therefore
any circulation) φ in G, we have ∆φ = Λφ = [φ]. Then ∆ is the displacement matrix of a
geodesic drawing on T� that is homotopic to G. If in addition ω is an equilibrium stress
for that drawing, the drawing is an embedding.

Proof. A result of Ladegaillerie [45] implies that two embeddings of a graph on the same
surface are homotopic if the images of each directed cycle are homotopic. Since homology
and homotopy coincide on the torus, the assumption ∆φ = Λφ = [φ] for every directed
cycle immediately implies that ∆ is the displacement matrix of a geodesic drawing that is
homotopic to G.

If ω is an equilibrium stress for that drawing, then the uniqueness clause in Theorem 2.3
implies that the drawing is in fact an embedding. J

Following Steiner and Fischer [68] and Gortler, Gotsman, and Thurston [36], given the
coordinate representation of any geodesic graph G on the square flat torus, with any positive
stress vector ω > 0, we can compute an isotopic equilibrium embedding of G by solving the
linear system

∑
p�q

ωpq
(
〈q〉 − 〈p〉+ [p�q]

)
=
(

0
0

)
for every vertex q

for the vertex locations 〈p〉, treating the homology vectors [p�q] as constants. Alternatively,
Lemma 2.4 implies that we can compute the displacement vectors of every isotopic equilibrium
embedding directly, by solving the linear system

SoCG 2020

40:8 A Toroidal Maxwell-Cremona-Delaunay Correspondence

∑
p�q

ωpq∆p�q =
(

0
0

)
for every vertex q

∑
left(d)=f

∆d =
(

0
0

)
for every face f

∑
d∈γ1

∆d = [γ1]

∑
d∈γ2

∆d = [γ2]

where γ1 and γ2 are any two directed cycles with independent non-zero homology classes.

2.6 Duality and Reciprocality
Every embedded torus graph G defines a dual graph G∗ whose vertices correspond to the
faces of G, where two vertices in G are connected by an edge for each edge separating the
corresponding pair of faces in G. This dual graph G∗ has a natural embedding in which
each vertex f∗ of G∗ lies in the interior of the corresponding face f of G, each edge e∗ of G∗
crosses only the corresponding edge e of G, and each face p∗ of G∗ contains exactly one
vertex p of G in its interior. We regard any embedding of G∗ to be dual to G if and only if
it is homotopic to this natural embedding. Each dart d in G has a corresponding dart d∗
in G∗, defined by setting head(d∗) = left(d)∗ and tail(d∗) = right(d∗); intuitively, the dual of
a dart in G is obtained by rotating the dart counterclockwise.

It will prove convenient to treat vertex coordinates, displacement vectors, homology
vectors, and circulations in any dual graph G∗ as row vectors. For any vector v ∈ R2 we
define v⊥ := (Jv)T , where J :=

(0 −1
1 0

)
is the matrix for a 90◦ counterclockwise rotation.

Similarly, for any 2× n matrix A, we define A⊥ := (JA)T = −ATJ .
Two dual geodesic graphs G and G∗ on the same flat torus T are reciprocal if every

edge e in G is orthogonal to its dual edge e∗ in G∗.
A cocirculation in G a row vector θ ∈ RE whose transpose describes a circulation in G∗.

The cohomology class [θ]∗ of any cocirculation is the transpose of the homology class of the
circulation θT in G∗. Recall that Λ is the 2×E matrix whose columns are homology vectors
of edges in G. Let λ1 and λ2 denote the first and second rows of Λ. The following lemma is
illustrated in Figure 2; we defer the proof to the full version of the paper [33].

I Lemma 2.5. The row vectors λ1 and λ2 describe cocirculations in G with cohomology
classes [λ1]∗ = (0 1) and [λ2]∗ = (−1 0).

2.7 Coherent Subdivisions
Let G be a geodesic graph in TM , and fix arbitrary real weights πp for every vertex p of G.
Let p�q, p�r, and p�s be three consecutive darts around a common tail p in clockwise
order. Thus, left(p�q) = right(p�r) and left(p�r) = right(p�s). We call the edge pr locally
Delaunay if the following determinant is positive:∣∣∣∣∣∣∣

∆xp�q ∆yp�q 1
2 |∆p�q|2 + πp − πq

∆xp�r ∆yp�r 1
2 |∆p�r|2 + πp − πr

∆xp�s ∆yp�s 1
2 |∆p�s|2 + πp − πs

∣∣∣∣∣∣∣ > 0. (2.1)

J. Erickson and P. Lin 40:9

G G* G G*

Figure 2 Proof of Lemma 2.5: The darts in G crossing either boundary edge of the fundamental
square dualize to a closed walk in G∗ parallel to that boundary edge.

This inequality follows by elementary row operations and cofactor expansion from the
standard determinant test for appropriate lifts of the vertices p, q, r, s to the universal cover:∣∣∣∣∣∣∣∣∣

1 xp yp
1
2 (x2

p + y2
p)− πp

1 xq yq
1
2 (x2

q + y2
q)− πq

1 xr yr
1
2 (x2

r + y2
r)− πr

1 xs ys
1
2 (x2

s + y2
s)− πs

∣∣∣∣∣∣∣∣∣ > 0. (2.2)

(The factor 1/2 simplifies our later calculations, and is consistent with Maxwell’s construction
of polyhedral liftings and reciprocal diagrams.) Similarly, we say that an edge is locally flat
if the corresponding determinant is zero. Finally, G is the weighted Delaunay graph of
its vertices if every edge of G is locally Delaunay and every diagonal of every non-triangular
face is locally flat.

One can easily verify that this condition is equivalent to G being the projection of the
weighted Delaunay graph of the lift π−1

M (V) of its vertices V to the universal cover. Results
of Bobenko and Springborn [7] imply that any finite set of weighted points on any flat torus
has a unique weighted Delaunay graph. We emphasize that weighted Delaunay graphs are
not necessarily either simple or triangulations; however, every weighted Delaunay graphs on
any flat torus is both essentially simple and essentially 3-connected. The dual weighted
Voronoi graph of P , also known as its power diagram [4, 6], can be defined similarly by
projection from the universal cover.

Finally, a geodesic torus graph is coherent if it is the weighted Delaunay graph of its
vertices, with respect to some vector of weights.

3 Reciprocal Implies Equilibrium

I Lemma 3.1. Let G and G∗ be reciprocal geodesic graphs on some flat torus TM . The
vector ω defined by ωe = |e∗|/|e| is an equilibrium stress for G; symmetrically, the vector ω∗
defined by ω∗e∗ = 1/ωe = |e|/|e∗| is an equilibrium stress for G∗.

Proof. Let ωe = |e∗|/|e| and ω∗e∗ = 1/ωe = |e|/|e∗| for each edge e. Let ∆ denote the
displacement matrix of G, and let ∆∗ denote the (transposed) displacement matrix of G∗.
We immediately have ∆∗e∗ = ωe∆⊥e for every edge e of G. The darts leaving each vertex p
of G dualize to a facial cycle around the corresponding face p∗ of G∗, and thus ∑

q : pq∈E
ωpq∆p�q

⊥ =
∑

q : pq∈E
ωpq∆⊥p�q =

∑
q : pq∈E

∆∗(p�q)∗ = (0 0) .

We conclude that ω is an equilibrium stress for G, and thus (by swapping the roles of G
and G∗) that ω∗ is an equilibrium stress for G∗. J

SoCG 2020

40:10 A Toroidal Maxwell-Cremona-Delaunay Correspondence

A stress vector ω is a reciprocal stress for G if there is a reciprocal graph G∗ on the
same flat torus such that ωe = |e∗|/|e| for each edge e. Thus, a geodesic torus graph is
reciprocal if and only if it has a reciprocal stress.

I Theorem 3.2. Not every positive equilibrium stress for G is a reciprocal stress. More
generally, not every equilibrium graph on T is reciprocal/coherent on T.

Proof. Let G1 be the geodesic triangulation in the flat square torus T� with a single vertex p
and three edges, whose reference darts have displacement vectors

(1
0
)
,
(1

1
)
, and

(2
1
)
. Every

stress ω in G is an equilibrium stress, because the forces applied by each edge cancel out.
The weighted Delaunay graph of a single point is identical for all weights, so it suffices to
verify that G1 is not an intrinsic Delaunay triangulation. We easily observe that the longest
edge of G1 is not Delaunay. See Figure 3.

Figure 3 A one-vertex triangulation G1 on the square flat torus, and a lift of its faces to the
universal cover. Every stress in G1 is an equilibrium stress, but G1 is not a (weighted) intrinsic
Delaunay triangulation.

More generally, for any positive integer k, let Gk denote the k × k covering of G1. The
vertices of Gk form a regular k× k square toroidal lattice, and the edges of Gk fall into three
parallel families, with displacement vectors

(1/k
1/k
)
,
(2/k

1/k
)
, and

(1/k
0
)
. Every positive stress

vector where all parallel edges have equal stress coefficients is an equilibrium stress.
For the sake of argument, suppose Gk is coherent. Let p�r be any dart with displacement

vector
(2/k

1/k
)
, and let q and s be the vertices before and after r in clockwise order around p.

The local Delaunay determinant test implies that the weights of these four vertices satisfy
the inequality πp + πr + 1 < πq + πs. Every vertex of Gk appears in exactly four inequalities
of this form – twice on the left and twice on the right – so summing all k2 such inequalities
and canceling equal terms yields the obvious contradiction 1 < 0. J

Every equilibrium stress on any graph G on any flat torus induces an equilibrium stress
on the universal cover G̃, which in turn induces a reciprocal diagram (G̃)∗, which is periodic.
Typically, however, for almost all equilibrium stresses, (G̃)∗ is periodic with respect to a
different lattice than G̃. We describe a simple necessary and sufficient condition for an
equilibrium stress to be reciprocal in Section 5.

4 Coherent iff Reciprocal

Unlike in the previous and following sections, the equivalence between coherent graphs and
graphs with reciprocal diagrams generalizes fully from the plane to the torus.

4.1 Notation
In this section we fix a non-singular matrix M = (u v) where u, v ∈ R2 are column vectors
and detM > 0. We primarily work with the universal cover G̃ of G; if we are given a
reciprocal embedding G∗, we also work with its universal cover G̃∗ (which is reciprocal
to G̃). Vertices in G̃ are denoted by the letters p and q and treated as column vectors

J. Erickson and P. Lin 40:11

in R2. A generic face in G̃ is denoted by the letter f ; the corresponding dual vertex in G̃∗
is denoted f∗ and interpreted as a row vector. To avoid nested subscripts when edges are
indexed, we write ∆i = ∆ei

and ωi = ωei
, and therefore by Lemma 3.1, ∆∗i = ωi∆⊥i . For

any integers a and b, the translation p+ au+ bv of any vertex p of G̃ is another vertex of G̃,
and the translation f + au+ bv of any face f of G̃ is another face of G̃.

4.2 Results
The following lemma follows directly from the definitions of weighted Delaunay graphs and
their dual weighted Voronoi diagrams; see, for example, Aurenhammer [4, 6].

I Lemma 4.1. Let G be a weighted Delaunay graph on some flat torus T, and let G∗ be the
corresponding weighted Voronoi diagram on T. Every edge e of G is orthogonal to its dual e∗.
In short, every coherent torus graph is reciprocal.

Maxwell’s theorem implies a convex polyhedral lifting z : R2 → R of the universal cover G̃
of G, where the gradient vector ∇z|f within any face f is equal to the coordinate vector of
the dual vertex f∗ in G̃∗. To make this lifting unique, we fix a vertex o of G̃ to lie at the
origin

(0
0
)
, and we require z(o) = 0.

Define the weight of each vertex p ∈ G̃ as πp := 1
2 |p|

2 − z(p). The determinant conditions
(2.1) and (2.2) for an edge to be locally Delaunay are both equivalent to interpreting
1
2 |p|

2 − πp as a z-coordinate and requiring that the induced lifting be locally convex at said
edge. Because z is a convex polyhedral lifting, G̃ is the intrinsic weighted Delaunay graph of
its vertex set with respect to these weights.

To compute z(q) for any point q ∈ R2, we choose an arbtirary face f containing q and
identify the equation of the plane through the lift of f , that is, z|f (q) = ηq + c where η is a
row vector and c ∈ R. Borcea and Streinu [11] give a calculation for η and c, which for our
setting can be written as follows:

I Lemma 4.2 ([11, Eq. 7]). For q ∈ R2, let f be a face containing q. The function z|f can
be explicitly computed as follows:

Pick an arbitrary root face f0 incident to o.
Pick an arbitrary path from f∗0 to f∗ in G̃∗, and let e∗1, . . . , e∗` be the dual edges along
this path. By definition, f∗ = f∗0 +

∑`
i=1 ∆∗i . Set C(f) = z(o) +

∑`
i=1 ωi |pi qi|, where

ei = pi�qi and |pi qi| = det (pi qi).
Set η = f∗ and c = C(f), implying that z|f (q) = f∗q + C(f). In particular, C(f) is the
intersection of this plane with the z-axis.

Reciprocality of G̃∗ implies that the actual choice of root face f∗0 and the path to f∗ do
not matter. We use this explicit computation to establish the existence of a translation of G∗
such that πo = πu = πv = 0. We then show that after this translation, every lift of the same
vertex of G has the same Delaunay weight.

I Lemma 4.3. There is a unique translation of G̃∗ such that πu = πv = 0. Specifically, this
translation places the dual vertex of the root face f0 at the point

f∗0 =
(
− 1

2
(
|u|2 |v|2

)
− (C(f0 + u) C(f0 + v))

)
M−1.

Proof. Lemma 4.2 implies that

z(u) = (f0 + u)∗u+ C(f0 + u) = f∗0u+ |u|2 + C(f0 + u),

and by definition, πu = 0 if and only if z(u) = 1
2 |u|

2. Thus, πu = 0 if and only if
f∗0u = − 1

2 |u|
2 − C(f0 + u). A symmetric argument implies πv = 0 if and only if f∗0 v =

− 1
2 |v|

2 − C(f0 + v). J

SoCG 2020

40:12 A Toroidal Maxwell-Cremona-Delaunay Correspondence

We defer the proof of the following lemma to the full version of the paper [33].

I Lemma 4.4. If πo = πu = πv = 0, then πp = πp+u = πp+v for all p ∈ V (G̃). In other
words, all lifts of any vertex of G have equal weight.

The previous two lemmas establish the existence of a set of periodic weights with respect
to which G̃ is the weighted Delaunay complex of its point set, and a unique translation of G̃∗
that is the corresponding intrinsic weighted Voronoi diagram. Projecting from the universal
cover back to the torus, we conclude:

I Theorem 4.5. Let G and G∗ be reciprocal geodesic graphs on some flat torus TM . G is a
weighted Delaunay complex, and a unique translation of G∗ is the corresponding weighted
Voronoi diagram. In short, every reciprocal torus graph is coherent.

5 Equilibrium Implies Reciprocal, Sort Of

In this section, we will fix a positive equilibrium stress ω. It will be convenient to represent ω
as the E × E diagonal stress matrix Ω whose diagonal entries are Ωe,e = ωe.

Let G be an essentially simple, essentially 3-connected geodesic graph on the square flat
torus T�, and let ∆ be its 2× E displacement matrix. Our results are phrased in terms of
the covariance matrix ∆Ω∆T =

(
α γ
γ β

)
, where

α =
∑
e

ωe∆x2
e, β =

∑
e

ωe∆y2
e , γ =

∑
e

ωe∆xe∆ye. (5.1)

Recall that A⊥ = (JA)T .

5.1 The Square Flat Torus
Before considering arbitrary flat tori, as a warmup we first establish necessary and sufficient
conditions for ω to be a reciprocal stress for G on the square flat torus T�, in terms of the
parameters α, β, and γ.

I Lemma 5.1. If ω is a reciprocal stress for G on T�, then ∆Ω∆T =
(1 0

0 1
)
.

Proof. Suppose ω is a reciprocal stress for G on T�. Then there is a geodesic embedding
of the dual graph G∗ on T� where e ⊥ e∗ and |e∗| = ωe|e| for every edge e of G. Let
∆∗ = (∆Ω)⊥ denote the E × 2 matrix whose rows are the displacement row vectors of G∗.

Recall from Lemma 2.5 that the first and second rows of Λ describe cocirculations of G
with cohomology classes (0 1) and (−1 0), respectively. Applying Lemma 2.1 to G∗ implies
θ∆∗ = [θ]∗ for any cocirculation θ in G. It follows immediately that Λ∆∗ =

(0 1
−1 0

)
= −J .

Because the rows of ∆∗ are displacement vectors of G∗, for every vertex p of G we have∑
q : pq∈E

∆∗(p�q)∗ =
∑

d : tail(d)=p

∆∗d∗ =
∑

d : left(d∗)=p∗

∆∗d∗ = (0 0) . (5.2)

It follows that the columns of ∆∗ describe circulations in G. Lemma 2.1 now implies that
∆∆∗ = −J . We conclude that ∆Ω∆T = ∆∆∗J =

(1 0
0 1
)
. J

I Lemma 5.2. Fix an E × 2 matrix ∆∗. If Λ∆∗ = −J , then ∆∗ is the displacement matrix
of a geodesic drawing on T� that is dual to G. Moreover, if that drawing has an equilibrium
stress, it is actually an embedding.

J. Erickson and P. Lin 40:13

Proof. Let λ1 and λ2 denote the rows of Λ. Rewriting the identity Λ∆∗ = −J in terms of these
row vectors gives us

∑
e ∆∗eλ1,e = (0 1) = [λ1]∗ and

∑
e ∆∗eλ2,e = (−1 0) = [λ2]∗. Because

[λ1]∗ and [λ2]∗ are linearly independent, we have
∑
e ∆∗eθe = [θ]∗ for any cocirculation θ

in G∗. The result follows from Lemma 2.4. J

I Lemma 5.3. If ∆Ω∆T =
(1 0

0 1
)
, then ω is a reciprocal stress for G on T�.

Proof. Set ∆∗ = (∆Ω)⊥. Because ω is an equilibrium stress in G, for every vertex p of G
we have∑

q : pq∈E
∆∗(p�q)∗ =

∑
q : pq∈E

ωpq∆p�q =
(

0
0

)
. (5.3)

It follows that the columns of ∆∗ describe circulations in G, and therefore Lemma 2.1 implies
Λ∆∗ = ∆∆∗ = ∆(∆Ω)⊥ = ∆Ω∆TJT = −J .

Lemma 5.2 now implies that ∆∗ is the displacement matrix of an drawing G∗ dual to G.
Moreover, the stress vector ω∗ defined by ω∗e∗ = 1/ωe is an equilibrium stress for G∗: under
this stress vector, the darts leaving any dual vertex f∗ are dual to the clockwise boundary
cycle of face f in G. Thus G∗ is in fact an embedding. By construction, each edge of G∗ is
orthogonal to the corresponding edge of G. J

5.2 Arbitrary Flat Tori

In the full version of the paper [33], we generalize our previous analysis to graphs on the flat
torus TM defined by an arbitrary non-singular matrix M =

(
a b
c d

)
. These results are stated in

terms of the covariance parameters α, β, and γ, which are still defined in terms of T�.

I Lemma 5.4. If ω is a reciprocal stress for the affine image of G on TM , then αβ− γ2 = 1;
in particular, if M =

(
a b
c d

)
, then

α = b2 + d2

ad− bc
, β = a2 + c2

ad− bc
, γ = −(ab+ cd)

ad− bc
.

I Corollary 5.5. If ω is a reciprocal stress for the image of G on TM , then M = σR
(
β −γ
0 1

)
for some 2× 2 rotation matrix R and some real number σ > 0.

I Lemma 5.6. If αβ − γ2 = 1 and M = σR
(
β −γ
0 1

)
for any 2× 2 rotation matrix R and any

real number σ > 0, then ω is a reciprocal stress for the image G on TM .

I Theorem 5.7. Let G be a geodesic graph on T� with positive equilibrium stress ω. Let α,
β, and γ be defined as in Equation (5.1). If αβ − γ2 = 1, then ω is a reciprocal stress for
the image of G on the flat torus TM if and only if M = σR

(
β −γ
0 1

)
for some (in fact any)

rotation matrix R and real number σ > 0. On the other hand, if αβ − γ2 6= 1, then ω is not
a reciprocal stress for G on any flat torus TM .

Theorem 5.7 immediately implies that every equilibrium graph on any flat torus has
a coherent affine image on some flat torus. The requirement αβ − γ2 = 1 is a necessary
scaling condition: Given any equilibrium stress ω, the scaled equilibrium stress ω/

√
αβ − γ2

satisfies the requirement.

SoCG 2020

40:14 A Toroidal Maxwell-Cremona-Delaunay Correspondence

6 A Toroidal Steinitz Theorem

Finally, Theorem 2.3 and Theorem 5.7 immediately imply a natural generalization of Steinitz’s
theorem to graphs on the flat torus.

I Theorem 6.1. Let G be any essentially simple, essentially 3-connected embedded graph
on the square flat torus T�, and let ω be any positive stress on the edges of G. Then G is
homotopic to a geodesic embedding in T� whose image in some flat torus TM is coherent.

As we mentioned in the introduction, Mohar’s generalization [55] of the Koebe-Andreev
circle packing theorem already implies that every essentially simple, essentially 3-connected
torus graph G is homotopic to one coherent homotopic embedding on one flat torus. In
contrast, Lemma 3.1 and Theorem 6.1 characterize all coherent homotopic embeddings of G
on all flat tori; every positive vector ω ∈ RE corresponds to such an embedding.

References
1 E. M. Andreev. Convex polyhedra in Lobačevskĭı space. Mat. Sbornik, 10(3):413–440, 1970.

doi:10.1070/SM1970v010n03ABEH001677.
2 E. M. Andreev. On convex polyhedra of finite volume in Lobačevskĭı space. Mat. Sbornik,

12(2):270–259, 1970. doi:10.1070/SM1970v012n02ABEH000920.
3 Franz Aurenhammer. A criterion for the affine equivalence of cell complexes in Rd and convex

polyhedra in Rd+1. Discrete Comput. Geom., 2(1):49–64, 1987. doi:10.1007/BF02187870.
4 Franz Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM J.

Comput., 16(1):78–96, 1987. doi:10.1137/0216006.
5 Franz Aurenhammer. Recognising polytopical cell complexes and constructing projection

polyhedra. J. Symb. Comput., 3(3):249–255, 1987. doi:10.1016/S0747-7171(87)80003-2.
6 Franz Aurenhammer and Hiroshi Imai. Geometric relations among Voronoi diagrams. Geom.

Dedicata, 27(1):65–75, 1988. doi:10.1007/BF00181613.
7 Alexander I. Bobenko and Boris A. Springborn. A discrete Laplace-Beltrami operator

for simplicial surfaces. Discrete Comput. Geom., 38(4):740–756, 2007. doi:10.1007/
s00454-007-9006-1.

8 Mikhail Bogdanov, Monique Teillaud, and Gert Vegter. Delaunay triangulations on orientable
surfaces of low genus. In Sándor Fekete and Anna Lubiw, editors, Proc. 32nd Int. Symp.
Comput. Geom., number 51 in Leibniz Int. Proc. Informatics, pages 20:1–20:17, 2016. doi:
10.4230/LIPIcs.SoCG.2016.20.

9 Ciprian Borcea and Ileana Streinu. Periodic frameworks and flexibility. Proc. Royal Soc. A,
466(2121):2633–2649, 2010. doi:10.1098/rspa.2009.0676.

10 Ciprian Borcea and Ileana Streinu. Minimally rigid periodic graphs. Bull. London Math. Soc.,
43(6):1093–1103, 2011. doi:10.1112/blms/bdr044.

11 Ciprian Borcea and Ileana Streinu. Liftings and stresses for planar periodic frameworks.
Discrete Comput. Geom., 53(4):747–782, 2015. doi:10.1007/s00454-015-9689-7.

12 Graham R. Brightwell and Edward R. Scheinerman. Representations of planar graphs. SIAM
J. Discrete Math., 6(2):214–229, 1993. doi:10.1137/0406017.

13 Kevin Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett., 9(5):223–228,
1979. doi:10.1016/0020-0190(79)90074-7.

14 Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean d-orbifolds.
Discrete Comput. Geom., 55(4):827–853, 2016. doi:10.1007/s00454-016-9782-6.

15 Marek Chrobak, Michael T. Goodrich, and Roberto Tamassia. Convex drawings of graphs in
two and three dimensions (preliminary version). In Proc. 12th Ann. Symp. Comput. Geom.,
pages 319–328, 1996. doi:10.1145/237218.237401.

16 Yves Colin de Verdière. Empilements de cercles: Convergence d’une méthode de point fixe.
Forum Math., 1(1):395–402, 1989. doi:10.1515/form.1989.1.395.

https://doi.org/10.1070/SM1970v010n03ABEH001677
https://doi.org/10.1070/SM1970v012n02ABEH000920
https://doi.org/10.1007/BF02187870
https://doi.org/10.1137/0216006
https://doi.org/10.1016/S0747-7171(87)80003-2
https://doi.org/10.1007/BF00181613
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.4230/LIPIcs.SoCG.2016.20
https://doi.org/10.4230/LIPIcs.SoCG.2016.20
https://doi.org/10.1098/rspa.2009.0676
https://doi.org/10.1112/blms/bdr044
https://doi.org/10.1007/s00454-015-9689-7
https://doi.org/10.1137/0406017
https://doi.org/10.1016/0020-0190(79)90074-7
https://doi.org/10.1007/s00454-016-9782-6
https://doi.org/10.1145/237218.237401
https://doi.org/10.1515/form.1989.1.395

J. Erickson and P. Lin 40:15

17 Yves Colin de Verdière. Sur un nouvel invariant des graphes et un critère de planarité.
J. Comb. Theory Ser. B, 50(1):11–21, 1990. In French, English translation in [20]. doi:
10.1016/0095-8956(90)90093-F.

18 Yves Colin de Verdière. Comment rendre géodésique une triangulation d’une surface?
L’Enseignment Mathématique, 37:201–212, 1991. doi:10.5169/seals-58738.

19 Yves Colin de Verdière. Un principe variationnel pour les empilements de cercles. Invent.
Math., 104(1):655–669, 1991. doi:10.1007/BF01245096.

20 Yves Colin de Verdière. On a new graph invariant and a criterion for planarity. In Neil
Robertson and Paul Seymour, editors, Graph Structure Theory, number 147 in Contemporary
Mathematics, pages 137–147. Amer. Math. Soc., 1993. English translation of [17] by Neil
Calkin.

21 Éric Colin de Verdière and Arnaud de Mesmay. Testing graph isotopy on surfaces. Discrete
Comput. Geom., 51(1):171–206, 2014. doi:10.1007/s00454-013-9555-4.

22 Robert Connelly, Erik D. Demaine, and Günter Rote. Infinitesimally locked self-touching
linkages with applications to locked trees. In Jorge Calvo, Kenneth Millett, and Eric Rawdon,
editors, Physical Knots: Knotting, Linking, and Folding of Geometric Objects in R3, pages
287–311. Amer. Math. Soc., 2002.

23 Keenan Crane. Discrete differential geometry: An applied introduction, 2019. URL: http:
//www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf.

24 Henry Crapo and Walter Whiteley. Plane self stresses and projected polyhedra I: The
basic pattern. Topologie structurale / Structural Topology, 20:55–77, 1993. URL: http:
//hdl.handle.net/2099/1091.

25 Luigi Cremona. Le figure reciproche nella statica grafica. Tipografia di Giuseppe Bernardoni,
1872. English translation in [26]. URL: http://www.luigi-cremona.it/download/Scritti_
matematici/1872_statica_grafica.pdf.

26 Luigi Cremona. Graphical Statics. Oxford Univ. Press, 1890. English translation of [25] by
Thomas Hudson Beare. URL: https://archive.org/details/graphicalstatic02cremgoog.

27 Jesús De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms
and Applications. Number 25 in Algorithms and Computation in Mathematics. Springer, 2010.
doi:10.1007/978-3-642-12971-1.

28 Olaf Delgado-Friedrichs. Equilibrium placement of periodic graphs and convexity of plane
tilings. Discrete Comput. Geom., 33(1):67–81, 2004. doi:10.1007/s00454-004-1147-x.

29 Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami,
Polyhedra. Cambridge Univ. Press, 2007.

30 Erik D. Demaine and André Schulz. Embedding stacked polytopes on a polynomial-size grid.
Discrete Comput. Geom., 57(4):782–809, 2017. doi:10.1007/s00454-017-9887-6.

31 Peter Eades and Patrick Garvan. Drawing stressed planar graphs in three dimensions. In
Proc. 2nd Symp. Graph Drawing, number 1027 in Lecture Notes Comput. Sci., pages 212–223,
1995. doi:10.1007/BFb0021805.

32 Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discrete
Comput. Geom., 1(1):25–44, 1986. doi:10.1007/BF02187681.

33 Jeff Erickson and Patrick Lin. A toroidal Maxwell-Cremona-Delaunay correspondence. Prepint,
March 2020.

34 Stefan Felsner and Günter Rote. On Primal-Dual Circle Representations. In Proc. 2nd Symp.
Simplicity in Algorithms, volume 69 of OpenAccess Series in Informatics (OASIcs), pages
8:1–8:18. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/OASIcs.
SOSA.2019.8.

35 Daniel Gonçalves and Benjamin Lévêque. Toroidal maps: Schnyder woods, orthogonal
surfaces and straight-line representations. Discrete Comput. Geom., 51(1):67–131, 2014.
doi:10.1007/s00454-013-9552-7.

SoCG 2020

https://doi.org/10.1016/0095-8956(90)90093-F
https://doi.org/10.1016/0095-8956(90)90093-F
https://doi.org/10.5169/seals-58738
https://doi.org/10.1007/BF01245096
https://doi.org/10.1007/s00454-013-9555-4
http://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
http://hdl.handle.net/2099/1091
http://hdl.handle.net/2099/1091
http://www.luigi-cremona.it/download/Scritti_matematici/ 1872_statica_grafica.pdf
http://www.luigi-cremona.it/download/Scritti_matematici/ 1872_statica_grafica.pdf
https://archive.org/details/graphicalstatic02cremgoog
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/s00454-004-1147-x
https://doi.org/10.1007/s00454-017-9887-6
https://doi.org/10.1007/BFb0021805
https://doi.org/10.1007/BF02187681
https://doi.org/10.4230/OASIcs.SOSA.2019.8
https://doi.org/10.4230/OASIcs.SOSA.2019.8
https://doi.org/10.1007/s00454-013-9552-7

40:16 A Toroidal Maxwell-Cremona-Delaunay Correspondence

36 Steven J. Gortler, Craig Gotsman, and Dylan Thurston. Discrete one-forms on meshes and
applications to 3D mesh parameterization. Comput. Aided Geom. Design, 23(2):83–112, 2006.
doi:10.1016/j.cagd.2005.05.002.

37 Clara I. Grima and Alberto Márquez. Computational Geometry on Surfaces. Springer, 2001.
38 John E. Hopcroft and Peter J. Kahn. A paradigm for robust geometric algorithms. Algorithmica,

7(1–6):339–380, 1992. doi:10.1007/BF01758769.
39 David Huffman. A duality concept for the analysis of polyhedral scenes. In Edward W. Elcock

and Donald Michie, editors, Machine Intelligence, volume 8, pages 475–492. Ellis Horwood
Ltd. and John Wiley & Sons, 1977.

40 Alexander Igambardiev and André Schulz. A duality transform for constructing small grid
embeddings of 3d polytopes. Comput. Geom. Theory Appl., 56:19–36, 2016. doi:10.1016/j.
comgeo.2016.03.004.

41 Clause Indermitte, Thomas M. Liebling, Marc Troyanov, and Heinz Clemençon. Voronoi
diagrams on piecewise flat surfaces and an application to biological growth. Theoret. Comput.
Sci., 263(1–2):263–274, 2001. doi:10.1016/S0304-3975(00)00248-6.

42 Ivan Izmestiev. Statics and kinematics of frameworks in Euclidean and non-Euclidean geometry.
In Vincent Alberge and Athanase Papadopoulos, editors, Eighteen Essays in Non-Euclidean
Geometry, number 29 in IRMA Lectures in Mathematics and Theoretical Physics. Europ.
Math. Soc., 2019. doi:10.4171/196-1/12.

43 Paul Koebe. Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig,
Math.-Phys. Kl., 88:141–164, 1936.

44 Andrew Kotlov, László Lovász, and Santosh Vempala. The Colin de Verdière number and sphere
representations of a graph. Combinatorica, 17(4):483–521, 1997. doi:10.1007/BF01195002.

45 Yves Ladegaillerie. Classes d’isotopie de plongements de 1-complexes dans les surfaces. Topology,
23(3):303–311, 1984.

46 Charles L. Lawson. Transforming triangulations. Discrete Math., 3(4):365–372, 1972. doi:
10.1016/0012-365X(72)90093-3.

47 László Lovász. Representations of polyhedra and the Colin de Verdière number. J. Comb.
Theory Ser. B, 82(2):223–236, 2001. doi:10.1006/jctb.2000.2027.

48 László Lovász. Discrete analytic functions: An exposition. In Alexander Grigor’yan and Shing-
Tung Yau, editors, Eigenvalues of Laplacians and other geometric operators, volume 9 of Surveys
in Differential Geometry, pages 241–273. Int. Press, 2004. doi:10.4310/SDG.2004.v9.n1.a7.

49 László Lovász. Graphs and Geometry. Number 69 in Colloquium Publications. Amer. Math.
Soc., 2019.

50 James Clerk Maxwell. On reciprocal figures and diagrams of forces. Phil. Mag. (Ser. 4),
27(182):250–261, 1864. doi:10.1080/14786446408643663.

51 James Clerk Maxwell. On the application of the theory of reciprocal polar figures to the
construction of diagrams of forces. Engineer, 24:402, 1867.

52 James Clerk Maxwell. On reciprocal figures, frames, and diagrams of forces. Trans. Royal Soc.
Edinburgh, 26(1):1–40, 1870. doi:10.1017/S0080456800026351.

53 Maria Mazón and Tomás Recio. Voronoi diagrams on orbifolds. Comput. Geom. Theory Appl.,
8(5):219–230, 1997. doi:10.1016/S0925-7721(96)00017-X.

54 Bojan Mohar. A polynomial time circle packing algorithm. Discrete Math., 117(1–3):257–263,
1993. doi:10.1016/0012-365X(93)90340-Y.

55 Bojan Mohar. Circle packings of maps—The Euclidean case. Rend. Sem. Mat. Fis. Milano,
67(1):191–206, 1997. doi:10.1007/BF02930499.

56 Bojan Mohar. Circle packings of maps in polynomial time. Europ. J. Combin., 18(7):785–805,
1997. doi:10.1006/eujc.1996.0135.

57 Bojan Mohar and Pierre Rosenstiehl. Tessellation and visibility representations of maps on
the torus. Discrete Comput. Geom., 19(2):249–263, 1998. doi:10.1007/PL00009344.

58 Bojan Mohar and Alexander Schrijver. Blocking nonorientability of a surface. J. Comb. Theory
Ser. B, 87(1):2–16, 2003.

https://doi.org/10.1016/j.cagd.2005.05.002
https://doi.org/10.1007/BF01758769
https://doi.org/10.1016/j.comgeo.2016.03.004
https://doi.org/10.1016/j.comgeo.2016.03.004
https://doi.org/10.1016/S0304-3975(00)00248-6
https://doi.org/10.4171/196-1/12
https://doi.org/10.1007/BF01195002
https://doi.org/10.1016/0012-365X(72)90093-3
https://doi.org/10.1016/0012-365X(72)90093-3
https://doi.org/10.1006/jctb.2000.2027
https://doi.org/10.4310/SDG.2004.v9.n1.a7
https://doi.org/10.1080/14786446408643663
https://doi.org/10.1017/S0080456800026351
https://doi.org/10.1016/S0925-7721(96)00017-X
https://doi.org/10.1016/0012-365X(93)90340-Y
https://doi.org/10.1007/BF02930499
https://doi.org/10.1006/eujc.1996.0135
https://doi.org/10.1007/PL00009344

J. Erickson and P. Lin 40:17

59 Shmuel Onn and Bernd Sturmfels. A quantitative Steinitz’ theorem. Beitr. Algebra Geom.,
35(1):125–129, 1994. URL: https://www.emis.de/journals/BAG/vol.35/no.1/.

60 David Orden, Günter Rote, Fransisco Santos, Brigitte Servatius, Herman Servatius, and Walter
Whiteley. Non-crossing frameworks with non-crossing reciprocals. Discrete Comput. Geom.,
32(4):567–600, 2004. doi:10.1007/s00454-004-1139-x.

61 W. J. Macquorn Rankine. Principle of the equilibrium of polyhedral frams. London, Edinburgh,
and Dublin Phil. Mag J. Sci., 27(180):92, 1864. doi:10.1080/14786446408643629.

62 William John Macquorn Rankine. A Manual of Applied Mechanics. Richard Griffin and Co.,
1858. URL: https://archive.org/details/manualappmecha00rankrich.

63 Ares Ribó Mor, Günter Rote, and André Schulz. Small grid embeddings of 3-polytopes.
Discrete Comput. Geom., 45(1):65–87, 2011. doi:10.1007/s00454-010-9301-0.

64 Jürgen Richter-Gebert. Realization spaces of polytopes. Number 1643 in Lecture Notes Math.
Springer, 1996. doi:10.1007/BFb0093761.

65 Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math.,
139:553–580, 1994. doi:10.2307/2118572.

66 Günter Rote, Fransisco Santos, and Ileana Streinu. Pseudo-triangulations—a survey. In Jacob E.
Goodman, János Pach, and Richard Pollack, editors, Essays on Discrete and Computational
Geometry: Twenty Years Later, number 453 in Contemporary Mathematics, pages 343–410.
Amer. Math. Soc., 2008.

67 André Schulz. Drawing 3-polytopes with good vertex resolution. J. Graph Algorithms Appl.,
15(1):33–52, 2011. doi:10.7155/jgaa.00216.

68 Dvir Steiner and Anath Fischer. Planar parameterization for closed 2-manifold genus-1 meshes.
In Proc. 9th ACM Symp. Solid Modeling Appl., pages 83–91, 2004.

69 Ernst Steinitz. Polyeder und Raumeinteilungen. Enzyklopädie der mathematischen Wis-
senschaften mit Einschluss ihrer Anwendungen, III.AB(12):1–139, 1916.

70 Ernst Steinitz and Hans Rademacher. Vorlesungen über die Theorie der Polyeder: unter Einsch-
luß der Elemente der Topologie, volume 41 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1934. Reprinted 1976.

71 Kenneth Stephenson. Introduction to Circle Packing: The Theory of Discrete Analytic
Functions. Cambridge Univ. Press, 2005.

72 Ileana Streinu. Erratum to “Pseudo-triangulations, rigidity and motion planning”. Discrete
Comput. Geom., 35(2):358, 2006. doi:10.1007/s00454-006-3300-1.

73 Ileana Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom.,
34(4):587–635, 2006. Publisher’s erratum in [72]. doi:10.1007/s00454-005-1184-0.

74 Kokichi Sugihara. Realizability of polyhedrons from line drawings. In Godfried T. Toussaint,
editor, Computational Morphology: A Computational Geometric Approach to the Analysis Of
Form, number 6 in Machine Intelligence and Pattern Recognition, pages 177–206, 1988.

75 William T. Tutte. How to draw a graph. Proc. London Math. Soc., 13(3):743–768, 1963.
76 Pierre Varignon. Nouvelle mechanique ou statique, dont le projet fut donné en M.DC.LXXVII.

Claude Jombert, Paris, 1725. URL: https://gallica.bnf.fr/ark:/12148/bpt6k5652714w.
texteImage.

77 Walter Whiteley. Motion and stresses of projected polyhedra. Topologie structurale / Structural
Topology, 7:13–38, 1982. URL: http://hdl.handle.net/2099/989.

78 Walter Whiteley, Peter F. Ash, Ethan Poiker, and Henry Crapo. Convex polyhedra, Dirichlet
tesselations, and spider webs. In Marjorie Senechal, editor, Shaping Space: Exploring Polyhedra
in Nature, Art, and the Geometrical Imagination, chapter 18, pages 231–251. Springer, 2013.
doi:10.1007/978-0-387-92714-5_18.

79 Günter M. Ziegler. Lectures on Polytopes. Number 152 in Graduate Texts in Mathematics.
Springer, 1995.

SoCG 2020

https://www.emis.de/journals/BAG/vol.35/no.1/
https://doi.org/10.1007/s00454-004-1139-x
https://doi.org/10.1080/14786446408643629
https://archive.org/details/manualappmecha00rankrich
https://doi.org/10.1007/s00454-010-9301-0
https://doi.org/10.1007/BFb0093761
https://doi.org/10.2307/2118572
https://doi.org/10.7155/jgaa.00216
https://doi.org/10.1007/s00454-006-3300-1
https://doi.org/10.1007/s00454-005-1184-0
https://gallica.bnf.fr/ark:/12148/bpt6k5652714w.texteImage
https://gallica.bnf.fr/ark:/12148/bpt6k5652714w.texteImage
http://hdl.handle.net/2099/989
https://doi.org/10.1007/978-0-387-92714-5_18

Combinatorial Properties of Self-Overlapping
Curves and Interior Boundaries
Parker Evans
Department of Mathematics, Rice University, Houston, TX, USA
Parker.G.Evans@rice.edu

Brittany Terese Fasy
School of Computing and Department of Mathematical Sciences,
Montana State University, Bozeman, MT, USA
brittany@cs.montana.edu

Carola Wenk
Department of Computer Science, Tulane University, New Orleans, LA, USA
cwenk@tulane.edu

Abstract
We study the interplay between the recently-defined concept of minimum homotopy area and the
classical topic of self-overlapping curves. The latter are plane curves that are the image of the
boundary of an immersed disk. Our first contribution is to prove new sufficient combinatorial
conditions for a curve to be self-overlapping. We show that a curve γ with Whitney index 1
and without any self-overlapping subcurves is self-overlapping. As a corollary, we obtain sufficient
conditions for self-overlappingness solely in terms of the Whitney index of the curve and its subcurves.
These results follow from our second contribution, which shows that any plane curve γ, modulo a
basepoint condition, is transformed into an interior boundary by wrapping around γ with Jordan
curves. In fact, we show that n+ 1 wraps suffice, where γ has n vertices. Our third contribution is
to prove the equivalence of various definitions of self-overlapping curves and interior boundaries,
often implicit in the literature. We also introduce and characterize zero-obstinance curves, a further
generalization of interior boundaries defined by optimality in minimum homotopy area.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Self-overlapping curves, interior boundaries, minimum homotopy area, im-
mersion

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.41

Related Version This paper is based on the honors thesis of the first author [5]. A full version of
this paper [7] is available at https://arxiv.org/abs/2003.13595.

Supplementary Material An accompanying computer program that can determine whether a plane
curve is self-overlapping, compute its minimum homotopy area, and display the self-overlapping
decomposition associated with a minimum homotopy is available for download [6], http://www.cs.
tulane.edu/~carola/research/code.html. Figure 10 was created with this program.

Funding Parker Evans: Supported by NSF grant CCF-1618469 and by a Goldwater Scholarship
from the Goldwater Foundation.
Brittany Terese Fasy: Supported by NSF-CCF 1618605.
Carola Wenk: Supported by NSF grant CCF-1618469.

1 Introduction

Classically, a curve γ : S1 → R2 is called self-overlapping if there is an orientation-
preserving immersion F : D2 → R2 of the unit disk D2, a map of full rank on the entire unit
disk D2, such that F |∂D2 = γ. One can think of such an immersion as distorting a unit disk

© Parker Evans, Brittany Terese Fasy, and Carola Wenk;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 41; pp. 41:1–41:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Parker.G.Evans@rice.edu
https://orcid.org/0000-0003-1908-0154
mailto:brittany@cs.montana.edu
https://orcid.org/0000-0001-9275-5336
mailto:cwenk@tulane.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.41
https://arxiv.org/abs/2003.13595
http://www.cs.tulane.edu/~carola/research/code.html
http://www.cs.tulane.edu/~carola/research/code.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

Figure 1 A self-overlapping curve γ with winding numbers for the faces circled. The Blank cuts,
shown in red, slice γ into a collection of simple positively oriented (counterclockwise) Jordan curves.

that lies flat in the plane and stretching and pulling it continuously without leaving the
plane and without twisting or pinching it [15]. If the disk is painted blue on top and pink
on the bottom, then one only sees blue. If we also imagine the disk being semi-transparent,
then the blue will appear darker in the regions where it overlaps itself; see Figure 1. That
means, any self-overlapping curve γ must have non-negative winding numbers, wn(x, γ) ≥ 0
for every x ∈ R2. We call this condition positive consistent. Another simple and intuitive
view originates from Blank [1]: The curve is self-overlapping when we can cut it along simple
curves into simple positively oriented Jordan curves, i.e., a collection of blue topological disks.
Interior boundaries are generalizations of self-overlapping curves that are defined similarly,
except that F is an interior map which allows finitely many branch points [12]. Interior
boundaries are composed of multiple self-overlapping curves (of the same orientation); see
Figure 2 for an example. In this paper, all curves γ : [0, 1]→ R2 are assumed to be closed,
immersed, and generic, i.e., with only finitely many intersection points, each of which are
transverse double points. We also assume γ′(t) exists and is nonzero for all t ∈ [0, 1]. We
show new combinatorial properties of self-overlapping curves and interior boundaries by
revealing new connections to the minimum homotopy area of curves.

1.1 Related Work
Self-Overlapping Curves and Interior Boundaries. Self-overlapping curves and interior
boundaries have a rather rich history, and have been studied under the lenses of analysis,
topology, geometry, combinatorics, and graph theory [1, 4, 10, 12–15, 17, 19]. In the 1960s,
Titus [19] provided the first algorithm to test whether a curve is self-overlapping (or an
interior boundary), by defining a set of cuts that must cut the curve into smaller subcurves
that are self-overlapping (or interior boundaries). In a 1967 PhD thesis [1], Blank proved
that a curve is self-overlapping iff there is a sequence of cuts (different from Titus cuts)
that completely decompose the curve into simple pieces. He represents plane curves with
words and showed that one can determine the existence of a cut decomposition by looking
for algebraic decompositions of the word. In the 1970s, Marx [13] extended Blank’s work
to give an algorithm to test if a curve is an interior boundary. In the 1990s, Shor and Van
Wyk [17] expedited Blank’s algorithm to run in O(N3) time for a polygonal curve with N
line segments. Their dynamic programming algorithm is currently the fastest algorithm to
test for self-overlappingness. It is not known whether this runtime bound is tight or whether
a faster runtime might be achievable. In distantly related work, Eppstein and Mumford [4]
showed that it is NP-complete to determine whether a fixed self-overlapping curve γ is the 2D
projection of an immersed surface in R3 defined over a compact two-manifold with boundary.
Graver and Cargo [10] approached the problem from a graph-theoretical perspective using

P. Evans, B. T. Fasy, and C. Wenk 41:3

Figure 2 Example curves of different curve classes and inclusion relationships between the classes.
γSO is self-overlapping as indicated by the Blank cuts in red. γIB is an interior boundary consisting
of two self-overlapping curves (of the same orientation), one in blue the other in green. The bottom
row shows curve classes that are introduced in this paper: γSI is strongly irreducible as can be seen
from the non-positive Whitney indices (shown in gray) of its direct split subcurves. Similarly, γI is
irreducible; note that γv has Whitney index 1 but is not self-overlapping. Also note that γSO is
not irreducible since γu is self-overlapping. γZO also consists of two self-overlapping curves but of
different orientation and is therefore not an interior boundary, but it has zero obstinance.

so-called covering graphs. All of these algorithms also compute the number of inequivalent
immersions. Another fact we glean from Blank is that any self-overlapping curve γ necessarily
makes one full turn, i.e., it has Whitney index WHIT(γ) = 1. The necessity of Whitney
index 1 and positive consistency to be self-overlapping are well-known and date back to [19].

Minimum Homotopy Area. Theminimum homotopy area σ(γ) is the infimum of areas
swept out by nullhomotopies of a closed plane curve γ. The key link between minimum
area homotopies and self-overlapping curves arose in [8, 11], where the authors showed that
any curve γ has a minimum area homotopy realized by a sequence of nullhomotopies of
self-overlapping subcurves (direct split subcurves; see Section 3.1 for the definition). The
minimum homotopy area was introduced by Chambers and Wang [3] as a more robust metric
for curve comparison than homotopy width (i.e., Fréchet distance or one of its variants) or
homotopy height [2]. The minimum homotopy area can be computed in O(N2 logN) time for
consistent curves [3]. For general curves, Nie gave an algorithm to compute σ(γ) based on an
algebraic interpretation of the problem that runs in O(N6) time, while the self-overlapping
decomposition result of [8] yields an exponential-time algorithm.

The winding area W (γ) is the integral over all winding numbers in the plane. A
simple argument shows that σ(γ) ≥ W (γ); see [3]. Both self-overlapping curves and
interior boundaries are characterized by positive consistency and optimality in minimum
homotopy area, σ(γ) = W (γ). A curve possessing both of these properties is self-overlapping
when WHIT(γ) = 1 and an interior boundary when WHIT(γ) ≥ 1.

SoCG 2020

41:4 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

1.2 New Results
We ask the following question: what are the sufficient combinatorial conditions for a plane
curve to be self-overlapping? Such conditions provide novel mathematical foundations that
could pave the way for speeding up algorithms for related problems, such as deciding self-
overlappingness or computing the minimum homotopy area of a curve. The first contribution
of this paper is to answer this question in the affirmative (Theorems 16 and 17 in Section 4):
We show that a curve γ with Whitney index 1 and without any self-overlapping subcurves is
self-overlapping, and we obtain sufficient conditions for a curve to be self-overlapping solely
in terms of the Whitney index of the curve and its subcurves. Here, we only consider direct
split subcurves γv that traverse γ between the first and second appearance of vertex v in the
plane graph induced by γ. Our results apply to (strongly) irreducible curves; see Figure 2:
We call γ irreducible, if every (proper) direct split is not self-overlapping; if the Whitney
index of each such direct split is non-positive, then we call γ strongly irreducible.

These results follow from our second contribution (Theorems 13 and 14 in Section 4),
which shows that any plane curve γ is transformed into an interior boundary by wrapping
around γ with Jordan curves. Equivalently, this means that the minimum homotopy area of γ
is reduced to the minimal possible threshold, namely the winding area, through wrapping.
See Figure 3 for an example of wrapping. Of course, we can make a curve positive consistent
with repeated wrapping, since a single wrap increases the winding numbers of each face by
one. However, our result shows a new and non-trivial connection between wrapping and the
minimum homotopy area.

Figure 3 The curve γ is not self-overlapping, but its wrap Wr+(γ) is self-overlapping.

The final contribution of this paper (in Section 3) is to unite the various definitions and
perspectives on self-overlapping curves and interior boundaries. We prove the equivalence
of five definitions of self-overlapping curves and four of interior boundaries (Theorems 10
and 9). To this end, we define the new concept of obstinance of a curve γ as obs(γ) =
σ(γ) −W (γ) ≥ 0, and characterize zero-obstinance curves (Theorem 11), see Figure 2.
Rephrasing our earlier characterization, self-overlapping curves and interior boundaries are
positive-consistent curves with zero-obstinance and positive Whitney index.

2 Preliminaries

2.1 Regular and Generic Curves
We work with regular, generic, closed plane curves γ : [0, 1]→ R2 with basepoint γ(0) = γ(1).
Let C denote the set of such curves. A curve γ is regular if γ′(t) exists and is non-
zero for all t; a curve is generic (or normal) if the embedding has only a finite number
of intersection points, each of which are transverse crossings. Being generic is a weak
restriction, as normal curves are dense in the space of regular curves [20]. Viewing a generic

P. Evans, B. T. Fasy, and C. Wenk 41:5

curve γ by its image [γ] ⊆ R2, we can treat γ as a directed plane multigraph G(γ) =
(V (γ), E(γ)). Here, V (γ) = {p0, p1, . . . , pn} is the set of ordered vertices (points) of γ, with
basepoint p0 = γ(0) regarded as a vertex as well. An edge (pi, pj) corresponds to a simple
path along γ between pi and pj . The faces of G(γ) are the path-connected components
of R2 \ [γ]. Each γ ∈ C has exactly one unbounded face, the exterior face Fext. See Figure 4.
Two curves are combinatorially equivalent when their planar multigraphs are isomorphic.
We may therefore define a curve just by its image, orientation, and basepoint. A curve is
simple if it has no intersection points. We notate |γ|= |V (γ) \ {p0}| as the complexity of γ.

Figure 4 A curve γ that is self-overlapping. The winding numbers of each face are enclosed by
circles. The signed intersection sequence of γ is 0, 1+, 2−, 2+, 1−, 3+, 4−, 5 +, 6−, 4+, 5−, 6+, 3−, 0;
vertex labels are shown, and the sign of each vertex is indicated with green (positive) or red (negative).
The combinatorial relations are: p2 ⊂ p1; p4, p5, p6 ⊂ p3; p1, p2 S p3, p4, p5, p6; p4, p5 L p6; p4 L p5.

For any x ∈ R2 \ [γ], the winding number wn(x, γ) =
∑
i ai is defined using a simple

path P from x to Fext that avoids the intersection points of γ. Here, ai = +1 if P crosses γ
from left to right at the i-th intersection of P with γ, and ai = −1 otherwise. Since this
number is independent of the path chosen and is constant over each face F of of G(γ),
we write wn(F, γ). If wn(F, γ) ≥ 0 for every face F on G(γ), then we call γ positive
consistent. If wn(F, γ) ≤ 0 for every face, then γ is negative consistent. See Figure 4. The
winding area of a curve γ is given by W (γ) =

∫
R2 |wn(x, γ)| dx =

∑
F A(F) |wn(F, γ)|,

where A(F) is the area of the face F and wn(x, γ) = 0 for x ∈ [γ]. The Whitney
index WHIT(γ) is the winding number of the derivative γ′ about the origin. A curve γ is
positively oriented if WHIT(γ) > 0 and negatively oriented if WHIT(γ) < 0.

A basepoint p0 = γ(0) is a positive outer basepoint if p0 is incident to the two faces Fext
and F , and wn(F, γ) = 1. If wn(F, γ) = −1, then p0 is a negative outer basepoint. Several of
our results require γ to have a positive outer basepoint. A curve γ : S1 → R2 is (positive)
self-overlapping when there is an orientation-preserving immersion F : D2 → R2, a map of
full rank, extending γ to a map on the entire two-dimensional unit disk D2. If the reversal γ
of a curve is self-overlapping, then we call γ negative self-overlapping.

2.2 Combinatorial Relations and Intersection Sequences
Following Titus [18], we now describe how the intersection points of a curve γ ∈ C relate
to each other; see Figure 4. Let pi, pj ∈ V (γ) be two vertices such that pi = γ(ti) = γ(t∗i)
and pj = γ(tj) = γ(t∗j) with ti < t∗i and tj < t∗j . Then, one of the following must hold:

pi links pj , or pi L pj , iff ti < tj < t∗i < t∗j or tj < ti < t∗j < t∗i
pi is separate from pj , or pi S pj , iff ti < t∗i < tj < t∗j or tj < t∗j < ti < t∗i
pi is contained in pj , or pi ⊂ pj , iff tj ≤ ti < t∗i ≤ t∗j .

To define the intersection sequence of γ, the vertices are labeled in the order they appear
on γ, starting with 0 for the basepoint γ(0), and increasing by one each time an unlabeled
vertex is encountered. The signed intersection sequence consists of the sequence of all

SoCG 2020

41:6 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

vertex labels along γ starting at the basepoint; the first time vertex pi is visited, the label
is augmented with sgn(pi), and the second time with −sgn(pi). Here, sgn(pi) = sgn(pi, γ)
is the sign of vertex pi = γ(ti) = γ(t∗i), and is 1 if the vector γ′ rotates clockwise from ti
to t∗i , and −1 otherwise. Note that sgn(pi) depends on the basepoint of the curve. Interior
boundaryness is invariant with respect to signed intersection sequences [19].

2.3 Minimum Homotopies

A homotopy between two generic curves γ and γ′ is a continuous function H : [0, 1]2 → R2

such thatH(0, ·) = γ andH(1, ·) = γ′. In R2, any curve is null-homotopic, i.e., homotopic to a
constant map. Given a sequence of homotopies (Hi)ki=1, we notate the concatenation of these
homotopies in order as

∑k
i=1 Hi. We use the notation H for the reversal H(i, t) = H(1− i, t)

of a homotopy. If H(0, ·) = γ and H(1, ·) = γ′, we may write γ H
 γ′.

Homotopy moves are basic local alterations to a curve defined by their action on G(γ).
These moves come in three pairs [8]; see Figure 5: The I-moves destroy/create an empty loop,
II-moves destory/create a bigon, and III-moves flip a triangle. We denote the moves that
remove vertices as Ia and IIa, and moves that create vertices as Ib and IIb. See Figure 5. It
is well-known that any homotopy such that each intermediate curve is piecewise regular and
generic, or almost generic, can be achieved by a sequence of homotopy moves. Thus, without
loss of generality, we assume that each time the curve H(i, ·) combinatorially changes is
through a single homotopy move.

Figure 5 All three homotopy moves and their reversals. Figure from [8].

Let γ ∈ C and H be a nullhomotopty of γ. Define EH(x) as the number of connected
components of H−1(x). Intuitively, this counts the number of times that H sweeps over x.
The minimum homotopy area of γ is defined as σ(γ) = infH{

∫
R2 EH(x) dx | H is a

nullhomotopy of γ}. The following was shown in [3, 8]:

I Lemma 1 (Homotopy Area ≥ Winding Area). Let γ ∈ C . Then σ(γ) ≥W (γ).

We call a homotopy left (right) sense-preserving if H(i+ ε, t) lies on or to the left
(right) of the oriented curve H(i, ·) for any i, t ∈ [0, 1] and any ε > 0. The following two
lemmas provide useful properties about sense-preserving homotopies; the first was proven
in [3], the second in [8].

I Lemma 2 (Monotonicity of Winding Numbers). Let H be a homotopy. If H is left (right)
sense-preserving, then for any x ∈ R2 the function a(i) = wn(x,H(i, ·)) is monotonically
decreasing (increasing).

I Lemma 3 (Sense-Preserving Homotopies are Optimal). Let γ ∈ C be consistent. Then a
nullhomotopy H of γ is optimal if and only if it is sense-preserving.

P. Evans, B. T. Fasy, and C. Wenk 41:7

3 Equivalences

In this section, we show the equivalence of different characterizations of interior boundaries
(Theorem 9) and of self-overlapping curves (Theorem 10). Our analysis of curve classes
hinges around the concept of obstinance. In Theorem 11 we classify zero obstinance curves,
which are generalizations of interior boundaries and of self-overlapping curves.

3.1 Direct Splits
Let γ ∈ C and pi ∈ V (γ) with pi = γ(ti) = γ(t∗i) and ti < t∗i . Then, γ can be split into two
subcurves at pi: The direct split is the curve with image [γ|[ti,t∗i]] with basepoint pi, and
the indirect split is the curve with image [γ|[t∗

i
,1]]∪ [γ|[0,ti]] with basepoint γ(0). We endow

both of these curves with the same orientation as γ. Given a direct (or indirect) split γ̃ on a
curve γ, we write γ \ γ̃ for the indirect (or direct) split complementary to γ̃. We call a direct
split proper if it is not the entire curve γ. See Figure 6. If v = pi ∈ V (γ), we may notate
the direct split as γi or γv. When removing multiple splits iteratively, we write γ \ (∪ni=1γi),
where we require that γi is a direct split of γ \

(
∪i−1
j=1γj

)
. Being a direct split of a curve is a

transitive property. I.e., if γi is a direct split on γ, and γj is a direct split on γi, then γj is a
direct split on γ. The parallel statement on indirect splits, however, is false.

γ2

γ4

γ(0)

Ω

γ1

γ3

γ5

= γ1 γ2 γ3 γ4 γ5, , , , TΩ

v5

v2 v4

v3v1

()

Figure 6 A self-overlapping decomposition of a self-overlapping curve γ. Here, γ1 and γ3 are
(proper) direct splits of γ, while γ2, γ4, and γ5 are neither direct nor indirect splits of γ.

3.2 Decompositions and Loops
A curve γ ∈ C can be entirely decomposed by iteratively removing direct splits. For a sequence
of subcurves Ω = (γi)ki=1, define C0 = γ and inductively Ci = Ci−1\γi for i ≥ 1; the basepoint
of γi is vi = Ci ∩ γi. We call Ω a direct split decomposition if γi is a direct split of Ci−1,
for all i ∈ {1, 2, . . . , k}, and γk = Ck−1. Given a direct split decomposition Ω = (γi)ki=1, we
write V (Ω) for the set of basepoints of all γi ∈ Ω. See Figure 6. Observe that no two vertices
vi, vj ∈ V (Ω) may be linked. Hence, we obtain a partial order ≺ on V (Ω) by declaring
vi ≺ vj whenever vi ⊂ vj . We define TΩ to be the tree with vertex set V (TΩ) = V (Ω)
and edges e = (vi, vj) whenever vi ⊂ vj and there is no other vertex vk 6= vi, vj such
that vi ⊂ vk ⊂ vj . We consider two subcurve decompositions Ω,Γ equivalent, Ω ∼ Γ, when
TΩ = TΓ. This means that Ω and Γ contain the same set of subcurves, just in a different
order. If every γi is self-overlapping, we call Ω a self-overlapping decomposition; it may
contain self-overlapping subcurves of positive and negative orientations. We now observe that
the vertex set of a decomposition already determines the subcurves in the decomposition:

SoCG 2020

41:8 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

I Observation 4. Given a curve γ ∈ C and a subset S ⊂ V (γ) such that p0 ∈ S and no two
vertices in S are linked, there is a unique equivalence class E of direct split decompositions
with V (Ω) = S for all Ω ∈ E .

The observation below follows directly from the definition of winding numbers.

I Observation 5. Let Ω be a direct split decomposition of a curve γ ∈ C . Then for any face
F in the plane multigraph G(γ), wn(F, γ) =

∑
γi∈Ω wn(F, γi).

We define a loop as a simple direct split γv of a curve γ ∈ C . Intersection points of γ
may lie on γv, but none occur as intersections of γv with itself. Every non-simple plane curve
has a loop; e.g., the direct split γw, where w is the highest index vertex on γ in the signed
intersection sequence. A loop γv is empty if v links no vertex w ∈ V (γ). Let int(γv) denote
its interior. We call γv an outwards loop if the edges e1, e4, that are incident on v and lie
on γ \ γv, both lie outside int(γv). Otherwise γv is an inwards loop. See Figure 7.

Figure 7 An outwards loop (left) and an inwards loop (right).

The lemma below follows from [9,16] and is proven in [7].

I Lemma 6 (Whitney Index Through Decompositions). Let γ ∈ C and Ω be a direct split
decomposition of γ. Then WHIT(γ) =

∑
C∈Ω WHIT(C).

A consequence of Lemma 6 is that iteratively removing loops and summing ±1 for their
signs allows one to quickly compute Whitney indices. Assuming γ is given as a directed plane
multigraph, one can adapt a depth-first traversal to compute such a loop decomposition of γ
in O(|γ|) time, which yields the following corollary:

I Corollary 7 (Compute Whitney Index). Let γ ∈ C be of complexity n = |γ| = |V (γ)|. One
can compute a loop decomposition of γ, and WHIT(γ), in O(n) time.

Now, let H be a nullhomotopy of a curve γ, and consider all the points A = {vi}ki=1 of R2

such that H performs a Ia move to contract a loop to that point. All such points are called
anchor points of the homotopy H. Following [8] we call a homotopy H well-behaved
when the anchor points A of H satisfy A ⊆ V (γ), i.e., H only contracts loops to vertices of
the original curve. The theorem below from [8] shows that computing minimum homotopy
area is reduced to finding an optimal self-overlapping decomposition. The homotopy H

guaranteed in the following theorem is well-behaved.

I Theorem 8 (Minimum Homotopy Decompositions). Let γ ∈ C . Then there is a self-
overlapping decomposition Ω = (γi)ki=1 of γ as well as an associated minimum homotopy HΩ
of γ such that HΩ =

∑k
i=1Hi and each Hi is a nullhomotopy of γi. In particular, σ(γ) =

minΩ∈D(γ)
∑
C∈ΩW (C), where D(γ) is the set of all self-overlapping decompositions of γ.

3.3 Equivalence of Interior Boundaries
In this section, we unify different definitions and characterizations of interior boundaries by
showing their equivalence. We call a curve γ a k-interior boundary when (1) obs(γ) = 0,
(2) WHIT(γ) = k > 0, and (3) γ is positive consistent. We call γ a (−k)-interior boundary

P. Evans, B. T. Fasy, and C. Wenk 41:9

when its reversal γ is a k-interior boundary. In accordance with Titus [19], we call a
curve ζ : [0, 1] → R2 a Titus interior boundary if there exists a map F : D2 → R2

such that F is continuous, light (defined as: pre-images are totally disconnected), open,
orientation-preserving, and F |∂D2 = ζ. The map F is called properly interior.

I Theorem 9 (Equivalence of Interior Boundaries). Let γ ∈ C and suppose WHIT(γ) = k > 0.
Then, the following are equivalent:
1. γ is an interior boundary.
2. γ is a Titus interior boundary.
3. γ admits a self-overlapping decomposition Ω = (γi)ki=1, where each γi is positive self-

overlapping.
4. γ admits a well-behaved left sense-preserving nullhomotopy H with exactly k Ia-moves.

Proof.
1 ⇒ 3: Let γ be an interior boundary. By Theorem 8, we have an optimal self-overlapping

decomposition Ω = (γi)ji=1 of γ. Suppose, by contradiction, that there exists an l ≤ j

such that γl is negative self-overlapping. Let F be any face contained in the interior
int(γl). We know by Observation (5) that wn(F, γ) =

∑j
i=1 wn(F, γi), and since γ

is positive consistent wn(F, γ) ≥ 0. Thus there must exist a positive self-overlapping
curve γi ∈ Ω with F ⊆ int(γi). Consider the nullhomotopies Hl and Hi that are part of
the canonical optimal homotopy HΩ. Then Hl contracts γl and is right sense-preserving,
while Hi contracts Hi and is left sense-preserving. Thus by Lemma 2, Hl increases
the winding number on F and Hi decreases the winding number, which means F is
swept more than W (F) times, a contradiction. Thus, no negative self-overlapping
subcurve γl may exist in Ω. Since WHIT(C) = 1 for any positive self-overlapping subcurve
and WHIT(γ) =

∑k
i=1 WHIT(γi) by Lemma 6, we we must have k = j.

1 ⇔ 4: If γ has a well-behaved left sense-preserving nullhomotopy H with exactly k Ia-
moves, then H comes naturally with an associated self-overlapping decomposition Ω of γ
with |Ω| = k, and WHIT(γ) = k > 0 by Lemma 6. We now show that σ(γ) = W (γ).
Consider the reversal H from the constant curve γp0(t) = p0 to γ. Then, H is right
sense-preserving and by Lemma 2 the function a(i) = wn(x,H(i, ·)) is monotonically
increasing for any x ∈ R2. Since wn(x, γp0) = 0 for all x ∈ R2, we have that wn(x, γ) ≥ 0
for all x ∈ R2. Thus, γ is an interior boundary. Conversely, if γ is a positive interior
boundary, then obs(γ) = 0 and by Lemma 3, and since γ is positive, H is left sense-
preserving. Again, by Lemma 6, WHIT(γ) = j, where j is the number of Ia-moves in any
well-behaved nullhomotopy H of γ. Hence, we must have j = k. The remaining cases are
proved in [7]. J

3.4 Equivalences of Self-Overlapping Curves
In this section, we study different characterizations of self-overlapping curves and show their
equivalence. First we describe a geometric formulation of self-overlappingness, inspired by
the work of Blank and Marx [1, 13]. Let γ ∈ C be self-overlapping. Let P : [0, 1] → R2

be a simple path so that P (0) = q = γ(tq) and P (1) = p = γ(tp) lie on [γ] but are not
vertices of γ. Without loss of generality, assume tq < tp. Let P̃ = γ|[tq,tp], and suppose that
(1) P ∩ P̃ = {p, q}, (2) C = P̃ ∗ P is a simple closed curve, and (3) C is positively oriented;
see Figure 8. Then we call P a Blank cut of γ. By cutting along P , γ is split into two
curves of strictly smaller complexity, γ1 and C. We call a sequence (Pi)ki=1 of Blank cuts a
Blank cut decomposition if the final curve is a simple positively oriented curve.

SoCG 2020

41:10 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

P̃

p
q P

=⇒

γ

γ(0)
P

P̃

p

q
Blank Cut

P p

q

γ1

γ1(0)

C

Figure 8 A Blank cut on a small self-overlapping curve.

I Theorem 10 (Equivalent Characterizations of Self-Overlapping Curves). Let γ ∈ C . Then
the following are equivalent:
1. (Analysis) There is an immersion F : D2 → R2 so that F |∂D2 = γ.
2. (Geometry) γ admits a Blank cut decomposition.
3. (Geometry/Topology) γ is a (+1)-interior boundary, i.e., self-overlapping.
4. (Topology) γ admits a left-sense preserving nullhomotopy H with exactly one Ia-move.
5. (Analysis) γ is a Titus interior boundary with WHIT(γ) = 1.

Proof. By property 3 in Theorem 9, self-overlapping curves are 1-interior boundaries, since
any self-overlapping curve γ has the trivial self-overlapping decomposition Ω = (γ). Thus,
we have already established 1 ⇔ 3 ⇔ 4 ⇔ 5 in Theorem 9. We now prove 2 ⇔ 4. Any
Blank cut P can be performed by a left sense-preserving homotopy that deforms P̃ to P .
Hence the Blank cut decomposition corresponds to a left sense-preserving homotopy to a
simple positively oriented curve. Finally we perform a single Ia-move to complete a left sense-
preserving nullhomotopy of γ. Conversely, let γ have a left sense-preserving nullhomotopy
H. From 3⇔ 4 we know that every intermediary curve γi = H(i, ·) is self-overlapping since
the subhomotopy Hi = H|[i,1]×[0,1] is a left sense-preserving nullhomotopy of γi with one
Ia-move. As H ends with a Ia-move, we may select a subhomotopy H ′ such that γ H′

 C,
where C is a simple self-overlapping curve. Moreover, we see that H = H ′ +H ′′, where the
unique Ia-move of H occurs during H ′′. Thus, H ′ is regular, i.e., consists of a sequence of
homotopy moves only of types IIa, IIb, or III, which deform γ to C. Each of these homotopy
moves can be performed by a Blank cut, as shown in Figure 9. Since all of the intermediary
curves are self-overlapping, this induces a Blank cut decomposition. J

IIa7−→

p

q

P 7−→
IIbP

p

q
7−→III

P

p
q

Figure 9 Homotopy moves IIa, IIb, and III each correspond to a Blank cut (shown in blue).

3.5 Zero Obstinance Curves
In this section, we classify curves γ ∈ C with zero obstinance, obs(γ) = σ(γ)−W (γ) = 0.
See Figures 2 and 10 for examples of zero-obstinance curves. We show that just as interior
boundaries can be decomposed into self-overlapping curves, so too can zero-obstinance curves
be decomposed into interior boundaries.

P. Evans, B. T. Fasy, and C. Wenk 41:11

Figure 10 A zero obstinance curve, with its minimum homotopy decomposition, and winding
numbers shown. Each curve in the decomposition is self-overlapping and shown in a different color.
The vertices with labels 1, 2, 5, 8, 9 are sign-changing.

If a curve γ has zero obstinance, then there is a nullhomotopy H which sweeps each
face F on G(γ) exactly wn(F, γ) times. Note that such a homotopy H is necessarily
minimal by Lemma 1. Intuitively, this implies that the homotopy H should be locally sense-
preserving. We expect it to sweep leftwards on positive consistent regions and rightwards on
negative consistent regions. Hence, we might expect regions of the curve where the winding
numbers change from positive to negative to be especially problematic. Indeed, let v ∈ V (γ)
be incident to the faces {F1, F2, F3, F4}. We call v sign-changing when, as a multiset,
{wn(γ, F1), wn(γ, F2), wn(γ, F3), wn(γ, F4)} = {−1, 0, 0, 1}; see Figures 10 and 11.

Figure 11 A sign-changing vertex v. The winding numbers of the incident faces are −1, 0, 1, 0.

I Theorem 11 (Zero Obstinance Characterization). Let γ ∈ C and let S be the sign-changing
vertices of γ. Then obs(γ) = 0 iff no two vertices in S are linked and any direct split
subcurve decomposition Ω with vertex set V (Ω) = S ∪{p0} contains only interior boundaries.

The proof is available in [7].

4 Wraps and Irreducability

In this section, we show (Theorems 13 and 14) that wrapping around a curve γ until its
obstinance is reduced to zero results in an interior boundary. This key result is used to prove
sufficient combinatorial conditions for a curve to be self-overlapping based on the Whitney
index of the curve and its direct splits (Theorems 16 and 17).

4.1 Wraps
Let γ ∈ C , and let I be its signed intersection sequence. Form I ′ by incrementing each label
by one and removing the occurrences of 0 corresponding to the basepoint. If γ has a positive
outer basepoint γ(0), then its (positive) wrapWr+(γ) is the unique (class of) curve with

SoCG 2020

41:12 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

signed intersection sequence 0, 1+, I
′, 1−, 0. This corresponds to gluing a simple positively

oriented curve α to γ at γ(0), where the interior int(α) ⊇ [γ]; the new basepoint is on α. See
Figure 12. The negative wrap Wr−(γ) is defined analogously if γ has a negative outer
basepoint. We write Wrk+(γ) for the curve achieved from γ by wrapping k times.

Figure 12 A curve γ with positive outer basepoint and its positive wrap Wr+(γ).

To wrap a curve in the direction opposed to the sign of the basepoint, we must be more
careful. Without loss of generality, we describe the construction of Wr−(γ) when γ has a
positive outer basepoint. Perform a Ib-move to add a simple loop γ̃ of the opposite orientation
tangent to the basepoint γ(0). Let γ′ be the curve after the Ib-move, with a basepoint chosen
to lie on γ̃. We then define Wr−(γ) = Wr−(γ′). See Figure 13.

Figure 13 A curve γ with positive outer basepoint and its transformation into its negative wrap
Wr−(γ). First, we perform a Ib-move and then wrap normally on γ′.

4.2 Wrapping Resolves Obstinance
First, we prove a simple lemma:

I Lemma 12 (Existence of an Outwards Loop). Let γ ∈ C have an outer basepoint. Then,
if γ is non-simple, it has an outwards loop.

Proof. Let v be the first self-intersection of γ. Then γv is a loop. Write γ−1(v) = {t, t∗},
where t < t∗. Since γ(0) lies outside of int(γv), as an outer basepoint, we note that if γv
were inwards, the path P = γ[0,t1] would cross [γv] to get from outside the simple curve to

P. Evans, B. T. Fasy, and C. Wenk 41:13

inside it. This is then a contradiction, for if the crossing occurred at a point q on [γv], then q
would be the first self-intersection of γ. Indeed, we would reach q a second time before we
reach v a second time. Thus, γv is outwards. J

Now, let t1 < t∗1 ∈ [0, 1] be the smallest value so that γ1 = γ[t1,t∗1] is a loop. We call this
the first loop of γ. Since t∗1 is the first time that γ self-intersects, we know that such a loop
is outwards by the argument in Lemma 12.

I Theorem 13 (Wrapping Resolves Obstinance). Let γ ∈ C have positive outer basepoint.
Then there is a positive integer k so that obs(Wrk+(γ)) = 0. Moreover, Wrk+(γ) is a positive
interior boundary.

Proof. Let l be the number of negative vertices in V (γ). Set k = l+1. We claim that Wrk+(γ)
is an interior boundary. We will show this by iteratively constructing a left sense-preserving
nullhomotopy H for γ. By property 4 of Theorem 9 it then follows that γ is a positive
interior boundary and obs(γ) = 0.

Figure 14 The combinatorial structure necessary to apply balanced loop deletion: a wrapped
curve, with outer wrap α and a negatively oriented loop γ− as first loop of C.

We first introduce a trick that we call balanced loop deletion. See Figure 14, where
all of the following objects are shown. Suppose that C ∈ C is a curve that is positively
wrapped, C = Wr+(C ′) for some curve C ′ ∈ C , and suppose that the first loop γ−
of C, shown in red, is negatively oriented. Let b = C(tb) = C(t∗b), with tb < t∗b , be the
basepoint of γ−. Balanced loop deletion performs a left sense-preserving homotopy H so
that C H

 C \ (α ∪ γ−), where α, shown in purple, is the positive wrap on C. Let P , shown
in blue, be the simple subpath of C from a = C(ta) = C(t∗a) to b, where a is the unique outer
intersection point on [C], i.e., the basepoint of the wrap α, and ta < t∗a. For ε > 0 sufficiently
small, let a′ = C(t∗a + ε) and b′ = C(t∗b − ε) and let Pε, shown in dashed green, be a simple
path between a′ and b′ that is ε-close to P in Hausdorff distance. Let P̃ = C|[t∗a+ε,t∗

b
−ε]

(shown in thick beige) be the simple subpath of C from a′ to b′. Then, P̃ is the concatenation
of (i) the path from a′ to a along α, (ii) the path P from a to b, and (iii) the path from b

to b′ along γ−. The path P̃ is simple, because each of these subpaths are simple and none
of them intersect each other since b is the first self-intersection point of the curve. Observe
that P̃ ∗ Pε is a simple, positively oriented, closed curve. It follows that we can perform a
Blank cut along Pε that replaces P̃ on C with the path Pε. The effect of this cut on C is
that both the outer wrap α and the negatively oriented loop γ− are deleted, and the path P
is replaced by Pε. This Blank cut can be performed by a left sense-preserving homotopy, so
we have established the existence of left sense-preserving balanced loop deletion.

SoCG 2020

41:14 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

Now we construct a left sense-preserving nullhomotopy H of Wrk+(γ) = γ1 by iteratively
concatenating several left sense-preserving subhomotopies, so H =

∑
iHi. We proceed

inductively as follows. Suppose H1, . . . ,Hi−1 have been defined and γi is the current curve.
Consider the first loop Ci of γi. If Ci is positively oriented we let Hi be the left sense-
preserving nullhomotopy that contracts this loop. Otherwise Ci is negatively oriented and
we let Hi be the homotopy performing balanced loop deletion.

We claim that there is a wrap available to perform this balanced loop deletion. Each
homotopy Hj for j = 1 . . . i− 1 deletes one direct split and at most one indirect split of γj .
Therefore the signs of the remaining intersection points are not affected. Observe that if a
vertex v is the basepoint of an outwards loop γv, then sgn(v) = 1 iff γv is positively oriented,
and sgn(v) = −1 iff γv is negatively oriented; see Figure 15. By definition of l, we have

Figure 15 Two outwards loops; negatively oriented (left) and positively oriented (right).

ni ≤ l, where ni is the number of negative vertices on γi. Therefore there can be at most l
distinct integers i1, . . . , il such that the first loop on γiν is negatively oriented, by Lemma 12
the first loop is always outwards. Since k = l + 1, there is a wrap available on Wrk+(γ).

The process of constructing homotopies Hi never gets stuck, and |γi+1| < |γi|. Therefore
we must eventually reach a point when the current curve γm has |γm| = 0. We now show that
this final curve γm is positively oriented. Note that if γ is simple then Wrk+(γ) is trivially a
positive k-interior boundary. So, assume γ is not simple.

By definition, the intersection sequence of Wrk+(γ) has the form 0, 1+, 2+, . . . , k+, I ′,
k−, . . . , 1−, 0, where I ′ is obtained from the signed intersection sequence of γ by incrementing
each label by k and removing occurrences of 0. The basepoint of the first loop on γ1 = Wrk+(γ)
must be a vertex from γ. Then H1 modifies the intersection sequence by removing two labels
from I ′ corresponding to this loop. If the loop is negatively oriented, then balanced loop
deletion also removes a pair a+ . . . a− for the wrap. The same modification happens for each
homotopy Hi until I ′ is empty, and the homotopies after that contract wraps a+ . . . a− which
are all positively oriented loops. We know that γ has at most l = k − 1 negative vertices,
hence there can only be k − 1 balanced loop deletions, but there are k wraps. Thus, γm
must be a wrap that Wrk+(γ) added to γ, so γm is a positively oriented loop which can be
contracted to its basepoint using a final left sense-preserving homotopy Hm. This shows that
H =

∑m
i=1Hi is a left sense-preserving nullhomotopy of Wrk+(γ) as desired. J

The example in Figure 16 shows that the number of wraps used in Theorem 13 is nearly
tight. We now show that wrapping resolves obstinance in either direction of wrapping. The
proof is straight-forward and given in [7].

I Theorem 14 (Wrapping Resolves Obstinance (General)). Let γ ∈ C with outer basepoint and
set n = |γ|. Then there are constants k−, k+ ≤ n+2 so that obs(Wr

k−
− (γ)) = obs(Wrk+

+ (γ)) =
0, Wrk−− (γ) is a negative interior boundary, and Wrk+

+ (γ) is a positive interior boundary.

P. Evans, B. T. Fasy, and C. Wenk 41:15

γ Wr3+(γ)

Figure 16 An example of a family of curves that require k = l wraps to resolve obstinance, where
l is the number of negative vertices in V (γ). Here, k = l = 3.

Let us make a simple observation: once Wrk±(γ) is an interior boundary, so too is Wrj±(γ)
for any integer j ≥ k. This holds because we can simply add the extra j − k wraps to the
self-overlapping decomposition Ω of Wrk+(γ).

4.3 Irreducible and Strongly Irreducible Curves
We are now ready to apply Theorem 14 to prove sufficient combinatorial conditions for a
curve γ to be self-overlapping based on WHIT(γ) and properties of its direct splits. If γ ∈ C

has no proper positive self-overlapping direct splits, we call γ irreducible. A special case of
irreducibility is of particular interest to us: If WHIT(γv) ≤ 0 for all proper direct splits, we
call γ strongly irreducible. See Figures 4 and 6 for examples of strongly irreducible curves.
Note that a strongly irreducible curve is irreducible since any positive self-overlapping curve
γ has WHIT(γ) = 1.

I Lemma 15 (Existence of a Direct Split). Let γ ∈ C and Ω be a direct split decomposition
of γ, with |Ω| ≥ 2. Then Ω contains a proper direct split.

Proof. A leaf vi in the tree TΩ necessarily corresponds to the basepoint of a direct split γi
in the decomposition Ω. Since |Ω| ≥ 2, this direct split γi must be proper. J

I Theorem 16 (Irreducible Curves are Self-Overlapping). Assume γ has WHIT(γ) = 1 and
positive outer basepoint. If γ is irreducible, then it is self-overlapping.

Proof. Apply Theorem 13 to find a k ∈ Z such that Wrk+(γ) is a positive interior boundary.
We know from property 3 of Theorem 9 that there is a self-overlapping decomposition Ω of
Wrk+(γ) into positive self-overlapping subcurves. By Lemma 15 we know that Ω must have
a self-overlapping direct split of Wrk+(γ), and we will show that γ is the only direct split of
Wrk+(γ) that can be self-overlapping.

Let wi be the vertex created by the ith wrap. The intersection sequence of Wrk+(γ)
therefore has the prefix wk, wk−1, . . . , w1. Then the direct split Wrk+(γ)wi at wi on Wrk+(γ)
has WHIT(Wrk+(γ)wi) = 1 + (i− 1) = i by Lemma 6, and is therefore not self-overlapping
for i ≥ 2. And any direct split Wrk+(γ) at a vertex of γ which is also a proper direct split
on γ cannot be self-overlapping since γ is irreducible. Note that by our notation w1 is the
vertex corresponding to the original basepoint γ(0). And this is the only vertex at which
the direct split Wrk+(γ)w1 = γ could potentially be self-overlapping. Thus, it follows with
Lemma 15 that γ is self-overlapping. J

SoCG 2020

41:16 Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries

We now have a nice corollary: conditions on the Whitney indices of a curve and its
subcurves alone can be sufficient for self-overlappingness.

I Theorem 17 (Strongly Irreducible Curves are Self-Overlapping). Assume γ has WHIT(γ) = 1
and positive outer basepoint. If γ is strongly irreducible, then it is self-overlapping.

Note that strongly irreducible curves are a proper subset of irreducible curves; see γI in
Figure 2. And Theorem 17 is false without the basepoint assumption; see Figure 17.

Figure 17 This curve γ does not have an outer basepoint. It is not self-overlapping, yet γ is
strongly irreducible due to the empty positively oriented loop on the indirect split γ1∗ .

One can decide whether a piecewise linear curve γ is (strongly) irreducible by checking
the required condition for each direct split. Let N be the number of line segments of γ
and n = |γ| = |V (γ)| ∈ O(N2). Then irreducibility can be tested in O(nN3) time, using
Shor and Van Wyk’s algorithm to test for self-overlappingness in O(N3) time [17]. Strong
irreducibility can be decided in O(n2) time by applying Corollary 7 to each direct split of γ.

5 Discussion

We introduced new curve classes (zero-obstinance, irreducable, and strongly irreducable
curves; see Figure 2), which help us understand self-overlapping curves and interior boundaries.
We proved combinatorial results and showed that wrapping a curve resolves obstinance.
These new mathematical foundations for self-overlapping curves and interior boundaries could
pave the way for related algorithmic questions. For example, is it possible to decide whether
a curve is self-overlapping in o(N3) time? How fast can one decide self-overlappingness of a
curve on the sphere? Can one decide irreducability in o(n2) time, even in the presence of a
large number of linked subcurves?

References
1 Samuel J. Blank. Extending Immersions of the Circle. PhD thesis, Brandeis University, 1967.
2 Erin Chambers and David Letscher. On the height of a homotopy. In 21st Canadian Conference

on Computational Geometry, pages 103–106, 2009.
3 Erin Chambers and Yusu Wang. Measuring similarity between curves on 2-manifolds via

homotopy area. In Proc. Proc. 29th Symposium on Computational Geometry, pages 425–434,
2013.

4 David Eppstein and Elena Mumford. Self-overlapping curves revisited. SODA ’09 Proceedings
of the twentieth annual ACM-SIAM Symposium on Discrete Algorithms, 2009.

5 Parker Evans. On self-overlapping curves, interior boundaries, and minimum area homotopies.
Undergraduate Thesis, Tulane University, 2018.

P. Evans, B. T. Fasy, and C. Wenk 41:17

6 Parker Evans, Andrea Burns, and Carola Wenk. Homotopy visualizer. http://www.cs.tulane.
edu/~carola/research/code.html, 2016.

7 Parker Evans and Carola Wenk. Combinatorial properties of self-overlapping curves and
interior boundaries, 2020. arXiv:2003.13595.

8 Brittany Terese Fasy, Selcuk Karakoc, and Carola Wenk. On minimum area homotopies of
normal curves in the plane, 2017. arXiv:1707.02251.

9 Carl Friedrich Gauß. Zur Geometria Situs. In Nachlass. I. Teubner-Archiv zur Mathematik,
ca. 1900.

10 Jack Graver and Gerald Cargo. When does a curve bound a distorted disk? SIAM Journal
on Discrete Mathematics, 25(1):280–305, 2011.

11 Selcuk Karakoc. On Minimum Homotopy Areas. PhD thesis, Tulane University, 2017.
12 Morris Marx. The branch point structure of extensions of interior boundaries. Transactions

of the American Mathematical Society, 131(1):79–98, 1968.
13 Morris Marx. Extending immersions of S1 to R2. Transactions of the American Mathematical

Society, 187:309–326, 1974.
14 Uddipan Mukherjee. Self-overlapping curves: Analaysis and applications. 2013 SIAM Confer-

ence on Geometric and Physical Modeling, 2013.
15 Uddipan Mukherjee, M. Gopi, and Jarek Rossignac. Immersion and embedding of self-crossing

loops. Proc. ACM/Eurographics Symposium on Sketch-Based Interfaces and Modeling, pages
31–38, 2011.

16 Herbert Seifert. Konstruktion dreidimensionaler geschlossener Raume. PhD thesis, Saxon
Academy of Sciences Leipzig, 1931.

17 Peter W. Shor and Christopher Van Wyk. Detecting and decomposing self-overlapping curves.
Computational Geometry: Theory and Applications, 2(1):31–50, 1992.

18 Charles Titus. A theory of normal curves and some applications. Pacific J. Math, 10(3):1083–
1096, 1960.

19 Charles Titus. The combinatorial topology of analytic functions of the boundary of a disk.
Acta Mathematica, 106(1):45–64, 1961.

20 Hassler Whitney. On regular closed curves in the plane. Compositio Math. 4, pages 276–284,
1937.

SoCG 2020

http://www.cs.tulane.edu/~carola/research/code.html
http://www.cs.tulane.edu/~carola/research/code.html
http://arxiv.org/abs/2003.13595
http://arxiv.org/abs/1707.02251

Worst-Case Optimal Covering of Rectangles
by Disks
Sándor P. Fekete
Department of Computer Science, TU Braunschweig, Germany
s.fekete@tu-bs.de

Utkarsh Gupta
Department of Computer Science & Engineering, IIT Bombay, India
utkarshgupta149@gmail.com

Phillip Keldenich
Department of Computer Science, TU Braunschweig, Germany
p.keldenich@tu-bs.de

Christian Scheffer
Department of Computer Science, TU Braunschweig, Germany
scheffer@ibr.cs.tu-bs.de

Sahil Shah
Department of Computer Science & Engineering, IIT Bombay, India
sahilshah00199@gmail.com

Abstract
We provide the solution for a fundamental problem of geometric optimization by giving a complete
characterization of worst-case optimal disk coverings of rectangles: For any λ ≥ 1, the critical covering
area A∗(λ) is the minimum value for which any set of disks with total area at least A∗(λ) can cover
a rectangle of dimensions λ × 1. We show that there is a threshold value λ2 =

√√
7/2− 1/4 ≈

1.035797 . . ., such that for λ < λ2 the critical covering area A∗(λ) is A∗(λ) = 3π
(

λ2

16 + 5
32 + 9

256λ2

)
,

and for λ ≥ λ2, the critical area is A∗(λ) = π(λ2 + 2)/4; these values are tight. For the special case
λ = 1, i.e., for covering a unit square, the critical covering area is 195π

256 ≈ 2.39301 The proof uses
a careful combination of manual and automatic analysis, demonstrating the power of the employed
interval arithmetic technique.

2012 ACM Subject Classification Theory of computation→ Packing and covering problems; Theory
of computation → Computational geometry

Keywords and phrases Disk covering, critical density, covering coefficient, tight worst-case bound,
interval arithmetic, approximation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.42

Related Version A full version of this paper can be found at https://arxiv.org/abs/2003.08236
[18].

Supplementary Material The code of the automatic prover can be found at https://github.com/
phillip-keldenich/circlecover. Furthermore, there is a video contribution [20], video available at
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/Cover_full.mp4, illustrating the algorithm
and proof presented in this paper.

Acknowledgements We thank Sebastian Morr and Arne Schmidt for helpful discussions. Major
parts of the research by Utkarsh Gupta and Sahil Shah were carried out during a stay at TU
Braunschweig.

© Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 42; pp. 42:1–42:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-5324-6499
mailto:utkarshgupta149@gmail.com
https://orcid.org/0000-0002-6677-5090
mailto:p.keldenich@tu-bs.de
https://orcid.org/0000-0002-3471-2706
mailto:scheffer@ibr.cs.tu-bs.de
https://orcid.org/0000-0001-7854-1585
mailto:sahilshah00199@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.42
https://arxiv.org/abs/2003.08236
https://github.com/phillip-keldenich/circlecover
https://github.com/phillip-keldenich/circlecover
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/Cover_full.mp4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Worst-Case Optimal Covering of Rectangles by Disks

Figure 1 An incomplete covering of a rectangle by disks: Sprinklers on a soccer field during a
drought. (Source: dpa [16].)

1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that they
completely cover a given region, such as a square or a rectangle? Covering problems of this type
are of fundamental theoretical interest, but also have a variety of different applications, most
notably in sensor networks, communication networks, wireless communication, surveillance,
robotics, and even gardening and sports facility management, as shown in Fig. 1.

If the total area of the disks is small, it is clear that completely covering the region is
impossible. On the other hand, if the total disk area is sufficiently large, finding a covering
seems easy; however, for rectangles with large aspect ratio, a major fraction of the covering
disks may be useless, so a relatively large total disk area may be required. The same issue is
of clear importance for applications: What fraction of the total cost of disks can be put to
efficient use for covering? This motivates the question of characterizing a critical threshold:
For any given λ, find the minimum value A∗(λ) for which any collection of disks with total
area at least A∗(λ) can cover a rectangle of dimensions λ× 1. What is the critical covering
area of λ× 1 rectangles? In this paper we establish a complete and tight characterization.

1.1 Related Work
Like many other packing and covering problems, disk covering is typically quite difficult,
compounded by the geometric complications of dealing with irrational coordinates that arise
when arranging circular objects. This is reflected by the limitations of provably optimal
results for the largest disk, square or triangle that can be covered by n unit disks, and hence,
the “thinnest” disk covering, i.e., a covering of optimal density. As early as 1915, Neville [37]
computed the optimal arrangement for covering a disk by five unit disks, but reported a wrong
optimal value; much later, Bezdek[6, 7] gave the correct value for n = 5, 6. As recently as
2005, Fejes Tóth [45] established optimal values for n = 8, 9, 10. The question of incomplete
coverings was raised in 2008 by Connelly, who asked how one should place n small disks of
radius r to cover the largest possible area of a disk of radius R > r. Szalkai [44] gave an
optimal solution for n = 3. For covering rectangles by n unit disks, Heppes and Mellissen [28]
gave optimal solutions for n ≤ 5; Melissen and Schuur [34] extended this for n = 6, 7. See
Friedman [25] for the best known solutions for n ≤ 12. Covering equilateral triangles by
n unit disks has also been studied. Melissen [33] gave optimality results for n ≤ 10, and
conjectures for n ≤ 18; the difficulty of these seemingly small problems is illustrated by
the fact that Nurmela [38] gave conjectured optimal solutions for n ≤ 36, improving the
conjectured optimal covering for n = 13 of Melissen. Carmi et al. [11] considered algorithms

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:3

for covering point sets by unit disks at fixed locations. There are numerous other related
problems and results; for relevant surveys, see Fejes Tóth [17] (Section 8), Fejes Tóth [46]
(Chapter 2), Brass et al. [10] (Chapter 2) and the book by Böröczky [9].

Even less is known for covering by non-uniform disks, with most previous research focusing
on algorithmic aspects. Alt et al. [3] gave algorithmic results for minimum-cost covering of
point sets by disks, where the cost function is

∑
j r

α
j for some α > 1, which includes the case

of total disk area for α = 2. Agnetis et al. [2] discussed covering a line segment with variable
radius disks. Abu-Affash et al. [1] studied covering a polygon minimizing the sum of areas;
for recent improvements, see Bhowmick et al. [8]. Bánhelyi et al. [4] gave algorithmic results
for the covering of polygons by variable disks with prescribed centers.

For relevant applications, we mention the survey by Huang and Tseng [29] for wireless
sensor networks, the work by Johnson et al. [30] on covering density for sensor networks, the
algorithmic results for placing a given number of base stations to cover a square [13] and a
convex region by Das et al. [14]. For minimum-cost sensor coverage of planar regions, see
Xu et al. [47]; for wireless communication coverage of a square, see Singh and Sengupta [42],
and Palatinus and Bánhelyi [40] for the context of telecommunication networks.

The analogous question of packing unit disks into a square has also attracted attention.
For n = 13, the optimal value for the densest square covering was only established in
2003 [24], while the optimal value for 14 unit disks is still unproven; densest packings of n
disks in equilateral triangles are subject to a long-standing conjecture by Erdős and Oler
from 1961 [39] that is still open for n = 15. Other mathematical work on densely packing
relatively small numbers of identical disks includes [26, 32, 22, 23], and [41, 31, 27] for related
experimental work. The best known solutions for packing equal disks into squares, triangles
and other shapes are published on Specht’s website http://packomania.com [43].

Establishing the critical packing density for (not necessarily equal) disks in a square was
proposed by Demaine, Fekete, and Lang [15] and solved by Morr, Fekete and Scheffer [36, 21].
Using a recursive procedure for cutting the container into triangular pieces, they proved that
the critical packing density of disks in a square is π

3+2
√

2 ≈ 0.539. The critical density for
(not necessarily equal) disks in a disk was recently proven to be 1/2 by Fekete, Keldenich and
Scheffer [19]; see the video [5] for an overview and various animations. The critical packing
density of (not necessarily equal) squares was established in 1967 by Moon and Moser [35],
who used a shelf-packing approach to establish the value of 1/2 for packing into a square.

1.2 Our Contribution

We show that there is a threshold value λ2 =
√√

7/2− 1/4 ≈ 1.035797 . . ., such that for

λ < λ2 the critical covering area A∗(λ) is A∗(λ) = 3π
(
λ2

16 + 5
32 + 9

256λ2

)
, and for λ ≥ λ2, the

critical area is A∗(λ) = π(λ2 + 2)/4. These values are tight: For any λ, any collection of disks
of total area A∗(λ) can be arranged to cover a λ× 1-rectangle, and for any a(λ) < A∗(λ),
there is a collection of disks of total area a(λ) such that a λ× 1-rectangle cannot be covered.
(See Fig. 2 for a graph showing the (normalized) critical covering density, and Fig. 3 for
examples of worst-case configurations.) The point λ = λ2 is the unique real number greater
than 1 for which the two bounds 3π

(
λ2

16 + 5
32 + 9

256λ2

)
and π λ

2+2
4 coincide; see Fig. 2. At

this so-called threshold value, the worst case changes from three identical disks to two disks –
the circumcircle r2

1 = λ2+1
4 and a disk r2

2 = 1
4 ; see Fig. 3. For the special case λ = 1, i.e., for

covering a unit square, the critical covering area is 195π
256 ≈ 2.39301

The proof uses a careful combination of manual and automatic analysis, demonstrating
the power of the employed interval arithmetic technique.

SoCG 2020

http://packomania.com

42:4 Worst-Case Optimal Covering of Rectangles by Disks

1 1.2 1.4 1.6 1.8 2 2.2 2.4
2.2

2.3

2.4

2.5

2.6

λ2
√

2 λ = (195 +
√

5257)/128

195π
256

π√
2

√
469+182

√
7

1728 π

Skew λ

C
rit

ic
al

co
ve
rin

g
de

ns
ity

d
∗ (
λ

)=
A

∗
(λ

)
λ

Figure 2 The critical covering density d∗(λ) depending on λ and its values at the threshold value
λ2, the global minimum

√
2 and the skew λ at which the density becomes as bad as for the square.

h2 =
1
2

h3 =
1
2

r
r

r

r2 = λ2

16 +
5
32 +

9
256λ2

S1 =
√
4r2 − 1

r21 =
λ2+1
4

r22 =
1
4

x3

x2

x1
︷ ︸︸ ︷

Figure 3 Worst-case configurations for small λ ≤ λ2 (left) and for large skew λ ≥ λ2 (right).
Shrinking r or r1 by any ε > 0 in either configuration leads to an instance that cannot be covered.

2 Preliminaries

We are given a rectangular container R, which we assume w.l.o.g. to have height 1 and
some width λ ≥ 1, which is called the skew of R. For a collection D = {r1, . . . , rn} of radii
r1 ≥ r2 ≥ · · · ≥ rn, we want to decide whether there is a placement of n closed disks with
radii r1, . . . , rn on R, such that every point x ∈ R is covered by at least one disk. Because
we are only given radii and not center points, in a slight abuse of notation, we identify the
disks with their radii and use ri to refer to both the disk and the radius.

For any set D of disks, the total disk area is A(D) := π
∑
r∈D r

2. The weight of a disk of
radius r is r2, and W (D) := A(D)

π is the total weight of D. For any rectangle R, the critical
covering area A∗(R) of R is the minimum value for which any set D of disks with total area
at least A(D) ≥ A∗(R) can cover R. The critical covering weight of R is W ∗(R) := A∗(R)

π .
For λ ≥ 1, we define A∗(λ) := A∗(R) and W ∗(λ) := W ∗(R) for a λ× 1 rectangle R.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:5

For a placement P of the disks in D fully covering some area A, the covering coefficient
of P is the ratio W (D)

A . For λ ≥ 1, the amount E∗(λ) := W∗(λ)
λ of total disk weight per

unit of rectangle area that is necessary for guaranteeing a possible covering is the (critical)
covering coefficient of λ. Analogously, d∗(λ) := A∗(λ)

λ is the (critical) covering density of λ.
For proving our result, we use Greedy Splitting for partitioning a collection of disks

into two parts whose weight differs by at most the weight of the smallest disk in the heavier
part: After sorting the disks by decreasing radius, we start with two empty lists and continue
to place the next disk in the list with smaller total weight.

3 High-Level Description

Now we present and describe our main result: a theorem that characterizes the worst case
for covering rectangles with disks. This theorem gives a closed-form solution for the critical
covering area A∗(λ) for any λ ≥ 1; in other words, for any given rectangle R, we determine
the total disk area that is (1) sometimes necessary and (2) always sufficient to cover R.

I Theorem 1. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let

λ2 =

√√
7

2 −
1
4 ≈ 1.035797 . . . , and A∗(λ) =

3π
(
λ2

16 + 5
32 + 9

256λ2

)
, if λ < λ2,

π λ
2+2
4 , otherwise.

(1) For any a < A∗(λ), there is a set D− of disks with A(D−) = a that cannot cover R.
(2) Let D = {r1, . . . , rn} ⊂ R, r1 ≥ r2 ≥ . . . ≥ rn > 0 be any collection of disks identified by

their radii. If A(D) ≥ A∗(λ), then D can cover R.
The critical covering area does not depend linearly on the area λ of the rectangle; it also
depends on the rectangle’s skew. Fig. 2 shows a plot of the dependency of the covering
density d(λ) on λ. In the following, to simplify notation, we factor out π if possible; instead
of working with the areas A(D) or A∗(λ) of the disks, we use their weight, i.e., their area
divided by π. Similarly, we work with the covering coefficient E∗(λ) instead of the density
d∗(λ); a lower covering coefficient corresponds to a more efficient covering.

As shown in Fig. 2, the critical covering coefficient E∗(λ) is monotonically decreasing
from λ = 1 to

√
2 and monotonically increasing for λ >

√
2. For a square, E∗(1) = 195

256 ;
the point λ > 1 for which the covering coefficient becomes as bad as for the square is
λ := 195+

√
5257

128 ≈ 2.08988 . . .; for all λ ≤ λ, the covering coefficient is at most 195
256 .

3.1 Proof Components
The proof of Theorem 1 uses a number of components. First is a lemma that describes the
worst-case configurations and shows tightness, i.e., claim (1), of Theorem 1 for all λ.

I Lemma 2. Let λ ≥ 1 and let R be a rectangle of dimensions λ×1. (1) Two disks of weight
r2
1 = λ2+1

4 and r2
2 = 1

4 suffice to cover R. (2) For any ε > 0, two disks of weight r2
1 − ε and

r2
2 do not suffice to cover R. (3) Three identical disks of weight r2 = λ2

16 + 5
32 + 9

256λ2 suffice
to cover a rectangle R of dimensions λ× 1. (4) For λ ≤ λ2 and any ε > 0, three identical
disks of weight r2

− := r2 − ε do not suffice to cover R.

For large λ, the critical covering coefficient E∗(λ) of Theorem 1 becomes worse, as large
disks cannot be used to cover the rectangle efficiently. If the weight of each disk is bounded
by some σ ≥ r2

1, we provide the following lemma achieving a better covering coefficient E(σ)
with E∗(λ) ≤ E(σ) ≤ E∗(λ). This coefficient is independent of the skew of R.

SoCG 2020

42:6 Worst-Case Optimal Covering of Rectangles by Disks

Theorem 1
n disks n disks

Lemma 4

Strategies
from Sec. 4.1

Lemma 3
n disks

n disks

< n disks

Strategies
from Sec. 4.2

Theorem 1
Lemma 3
Lemma 4

Strategies
from Sec. 4.1

Strategies
from Sec. 4.2

Figure 4 The inductive structure of the proof; the blue parts are computer-aided.

I Lemma 3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1. Let

λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) =

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

Note that E(σ̂) = 195
256 , i.e. the best covering coefficient established by Lemma 3, coinciding

with the critical covering coefficient of the square established by Theorem 1. Thus, we can
cover any rectangle with covering coefficient 195

256 if the largest disk satisfies r2
1 ≤ σ̂.

The final component is the following Lemma 4, which also gives a better covering coefficient
if the size of the largest disk is bounded. The bound required for Lemma 4 is smaller than
for Lemma 3; in return, the covering coefficient that Lemma 4 yields is better. Note that the
result of Lemma 4 is not tight.

I Lemma 4. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let D = {r1, . . . , rn},
0.375 ≥ r1 ≥ . . . ≥ rn > 0 be a collection of disks. If W (D) ≥ 0.61λ, or equivalently
A(D) ≥ 0.61πλ ≈ 1.9164λ, then D suffices to cover R.

3.2 Proof Overview
The proofs of Theorem 1 and Lemmas 3 and 4 work by induction on the number of disks.
For proving Lemma 3 for n disks, we use Theorem 1 for n disks. For proving Theorem 1
for n disks, we use Lemma 4 for n disks; Lemma 3 is only used for fewer than n disks; see
Fig. 4. For proving Lemma 4 for n disks, we only use Theorem 1 and Lemma 3 for fewer
than n disks. Therefore, there are no cyclic dependencies in our argument; however, we have
to perform the induction for Theorem 1 and Lemmas 3 and 4 simultaneously.

Routines. The proofs of Theorem 1 and Lemma 4 are constructive; they are based on an
efficient recursive algorithm that uses a set of simple routines. We go through the list of
routines in some fixed order. For each routine, we check a sufficient criterion for the routine
to work. We call these criteria success criteria. They only depend on the total available
weight and a constant number of largest disks. If we cannot guarantee that a routine works

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:7

by its success criterion, we simply disregard the routine; this means that our algorithm does
not have to backtrack. We prove that, regardless of the distribution of the disks’ weight, at
least one success criterion is met, implying that we can always apply at least one routine.
The number of routines and thus success criteria is large; this is where the need for automatic
assistance comes from.

Recursion. Typical routines are recursive; they consist of splitting the collection of disks
into smaller parts, splitting the rectangle accordingly, and recursing, or recursing after fixing
the position of a constant number of large disks.

In the entire remaining proof, the criterion we use to guarantee that recursion works is as
follows. Given a collection D′ (D and a rectangular region R′ (R, we check whether the
preconditions of Theorem 1 or Lemma 3 or 4 are met after appropriately scaling and rotating
R′ and the disks. Note that, due to the scaling, the radius bounds of Lemmas 3 and 4
depend on the length of the shorter side of R′. In some cases where we apply recursion, we
have more weight than necessary to satisfy the weight requirement for recursion according to
Lemma 3 or 4, but these lemmas cannot be applied due to the radius bound. In that case,
we also check whether we can apply Lemma 3 or 4 after increasing the length of the shorter
side of R′ as far as the disk weight allows. This excludes the case that we cannot recurse on
R′ due to the radius bound, but there is some R′′ ⊃ R′ on which we could recurse.

3.3 Interval Arithmetic
We use interval arithmetic to prove that there always is a successful routine. In interval
arithmetic, operations like addition, multiplication or taking a square root are performed on
intervals [a, b] ⊂ R instead of numbers. Arithmetic operations on intervals are derived from
their real counterparts as follows. The result of an operation ◦ in interval arithmetic is

[a1, b1] ◦ [a2, b2] :=
[

min
x1∈[a1,b1],x2∈[a2,b2]

x1 ◦ x2, max
x1∈[a1,b1],x2∈[a2,b2]

x1 ◦ x2

]
.

Thus, the result of an operation is the smallest interval that contains all possible results of
x ◦ y for x ∈ [a1, b1], y ∈ [a2, b2]. Unary operations are defined analogously. For square roots,
division or other operations that are not defined on all of R, a result is undefined iff the
input interval(s) contain values for which the real counterpart of the operation is undefined.

Truth values. In interval arithmetic, inequalities such as [a1, b1] ≤ [a2, b2] can have three
possible truth values. An inequality can be definitely true; this means that the inequality
holds for any value of x ∈ [a1, b1], y ∈ [a2, b2]. In the example [a1, b1] ≤ [a2, b2], this is the
case if b1 ≤ a2. An inequality can be indeterminate; this means that there are some values
x, x′ ∈ [a1, b1], y, y′ ∈ [a2, b2] such that the inequality holds for x, y and does not hold for
x′, y′. In the example [a1, b1] ≤ [a2, b2], this is the case if a1 ≤ b2 and b1 > a2. Otherwise,
an inequality is definitely false. An inequality that is either definitely true or indeterminate
is called possibly true; an inequality that is either indeterminate or definitely false is called
possibly false. These truth values can also be interpreted as intervals [0, 0], [0, 1], [1, 1].

Using interval arithmetic. We apply interval arithmetic in our proof as follows. Recall
that for each routine, we have a success criterion. These criteria only consider λ ≥ 1 and
the largest k ∈ O(1) disks r1 ≥ · · · ≥ rk as well as the remaining weight Rk+1 :=

∑n
i=k+1 r

2
i ,

which can be computed from λ and r1, . . . , rk, assuming w.l.o.g. that the total disk weight
W (D) is exactly W ∗(λ).

SoCG 2020

42:8 Worst-Case Optimal Covering of Rectangles by Disks

If we can manually perform induction base and induction step of our result for all λ ≥ λ̂
for some finite value λ̂, we can also provide an upper bound r̂1 for r1 such that all cases that
remain to be considered (in our induction base and induction step) correspond to a point in
the (k + 1)-dimensional space Ψ given by

λ ∈ [1, λ̂], r1 ∈ [0, r̂1], r2 ∈ [0, r1], . . . , rk ∈ [0, rk−1],
k∑
i=1

r2
i ≤W ∗(λ).

This is due to the fact that there is nothing to prove if r1 can cover R on its own; r1 can have
no more than the total disk weight W (D) and rk ≤ · · · ≤ r2 ≤ r1. Furthermore, observe that
the induction base is just a special case with ri = ri+1 = · · · = 0 for some 1 < i ≤ k.

This allows subdividing (a superset of) Ψ into a large finite number of hypercuboids by
splitting the range of each of the variables λ, r1, . . . , rk into a number of smaller intervals.
For each hypercuboid, we then use interval arithmetic to verify that there is a routine whose
success criterion is met. If we find such a routine, we have eliminated all points in that
hypercuboid from further consideration. Hypercuboids for which this does not succeed
are called critical and must be resolved manually; note that, in particular, hypercuboids
containing (tight) worst-case configurations cannot be handled by interval arithmetic. The
restriction to critical hypercuboids makes the overall analysis feasible, while a manual analysis
of the entire space is impractical due to the large number of routines and variables.

Implementation. We implemented the subdivision outlined above and all success criteria
of our routines using interval arithmetic1. Because most of our success criteria use the
squared radii r2

i instead of the radii ri, we use λ and r2
i instead of ri as variables. Moreover,

for efficiency reasons, instead of the simple grid-like subdivision outlined above, we use a
search-tree-like subdivision strategy where we begin by subdividing the range of λ, continue
by subdividing r2

1, followed by r2
2, and so on. Whenever a success criterion only needs the

first i < k disks, we can check this criterion farther up in the tree, thus potentially avoiding
visits to large parts of the search tree; see Fig. 5 for a sketch of this procedure. Even with this
pruning in place, the number of hypercuboids that we have to consider is still very large; this
is a result of the fact that, depending on the claim at stake, we have 5 or even 8 dimensions.
Therefore, we implemented the checks for our success criteria on a CUDA-capable GPU to
perform them in a massively parallel fashion.

Moreover, to provide a finer subdivision where necessary, we run our search in several gen-
erations (our proof uses 11 generations). Each generation yields a set of critical hypercuboids
that could not be handled automatically. After each generation, for each subinterval of λ, we
collect all critical hypercuboids and merge those for which the r2

1-subintervals are overlapping
by taking the smallest hypercuboid containing all points in the merged hypercuboids. This
procedure typically yields only 1-3 hypercuboids per subinterval of λ. The next generation is
run on each of these, starting with the bounds given by these hypercuboids.

Numerical issues. When performing computations on a computer with limited-precision
floating-point numbers instead of real numbers, there can be rounding errors, underflow errors
and overflow errors. Our implementation of interval arithmetic performs all operations using
appropriate rounding modes; this technique is also used by the implementation of interval

1 The source code of the implementation is available online:
https://github.com/phillip-keldenich/circlecover .

https://github.com/phillip-keldenich/circlecover

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:9

· · ·

· · ·
· · ·

· · ·
· · ·

[0.615, 0.62]

λ ∈

r21 ∈

bounds

[1, 1.005] [1.005, 1.01] · · · [2.495, 2.5]· · ·

[0, 0.005] [0.005, 0.01]

r21 is small
Apply Lemma 4!

r21 is small
Apply Lemma 4!

· · · · · ·

[0.61, 0.615]

r1 can cover R

r22 ∈

r23 ∈

r24 ∈

· · · · · ·

[0, 0.00025]

[1.2, 1.205]

r22 is small
Use GreedySplitting
and recurse to cover rest

· · ·

[0.24975, 0.25] · · ·
· · ·

[0.253, 0.25325]

r1, r2 can cover R

[0, 0.00025]

[0, 0.00025]

Critical!

· · ·
· · ·

· · ·
· · ·

· · · · · ·

· · ·
· · ·

we may only have r1, r2

Figure 5 Sketch of our interval arithmetic-based search procedure. The red edges denote a path
leading to a critical cuboid containing a tight two-disk worst-case configuration. Green text indicates
that the children of the corresponding node do not have to be considered.

arithmetic in the well-known Computational Geometry Algorithms Library (CGAL) [12].
This means that any operation ◦ on two intervals A,B yields an interval I ⊇ A ◦B to ensure
that the result of any operation contains all values that are possible outcomes of x ◦ y for
x, y ∈ A,B. This guarantees soundness of our results in the presence of numerical errors.

4 Proof Structure

In this section, we give an overview of the structure of the proofs of Theorem 1 and
Lemmas 2, 3 and 4. For the proof of Lemma 2, we refer to the full version [18] of our paper.
Lemma 3 is proven in Section 4.3 using a simple recursive algorithm; basically, we show that
we can always split the disks using Greedy Splitting, split the rectangle accordingly, and
recurse using Theorem 1. The proofs of Theorem 1 and Lemma 4 involve a larger number of
routines and make use of an automatic prover based on interval arithmetic as described in
Section 3.3.

SoCG 2020

42:10 Worst-Case Optimal Covering of Rectangles by Disks

4.1 Proof Structure for Lemma 4
Proving Lemma 4 means proving that, for any skew λ, any collection D of disks of radius
r1 ≤ 0.375 and with total weight W (D) = Eλ suffices to cover R, where E = 0.61 is the
covering coefficient guaranteed by Lemma 4. We first reduce the number of cases that we
have to consider in our induction base and induction step to a finite number. As described
in Section 3.3, this requires handling the case of arbitrarily large skew λ. Finding a bound
λ̂ and reducing Lemma 4 for λ ≥ λ̂ to the case of λ < λ̂ yields bounds for λ and r1, . . . , rk
that allow a reduction to finitely many cases using interval arithmetic.

I Lemma 5. Let λ̂ = 2.5. Given disks D according to the preconditions of Lemma 4 and
λ ≥ λ̂, we can cover R using a simple recursive routine.

Proof. The routine works as follows. We build a list of disks D1 by adding disks in decreasing
order of radius until W (D1) ≥ E. Due to the radius bound, this procedure always stops
before all disks are used, i.e., D1 (D. Let D2 := D \D2 be the remaining disks. We then
place a vertical rectangular strip R1 of height 1 and width βR1 := W (D1)

E ≥ 1 at the left side
of R. By induction, we can recurse on R1 using Lemma 4 and the disks from D1, because
both side lengths are at least 1 and the efficiency we require is exactly E. Note that, due
to adapting the width βR1 according to the actual weight W (D1), we actually achieve an
efficiency of E; in other words, there is no waste of disk weight. This means that we also
require an efficiency of exactly E on the remaining rectangle R2 := R \ R1. Therefore,
provided that the largest disk in D2 satisfies the size bound of Lemma 4, we can inductively
apply Lemma 4 to R2 and D2 and are done. This can be guaranteed by proving that the
shorter side of R2 is at least 1 as well. We have W (D1) ≤ E+ r2

1 ≤ E+ 0.3752 which implies
βR1 ≤ 1 + 0.3752

E < 1.5; therefore, λ ≥ 2.5 ensures that the width of R2 is at least 1. J

As outlined in Section 3.3, the remainder of the proof of Lemma 4 is based on a list of
simple covering routines and their success criteria. We prove that there always is a working
routine in that list using an automatic prover based on interval arithmetic, as described
in Section 3.3. This automatic prover considers the 8-dimensional space spanned by the
variables λ and r2

1, . . . , r
2
7 and subdivides it into a total of more than 246 hypercuboids in

order to prove that there always is a working routine, i.e., no critical hypercuboids remain to
be analyzed manually; this only works because the result of Lemma 4 is not tight.

In the following, we give a brief description of the routines that we use. Due to space
constraints, for a detailed description of the routines, we refer to the full version of our
paper [18].

Recursive splitting. Routines (S-I.1) and (S-I.2) work by splittingD into two parts, splitting
R accordingly, and recursing on the two sub-rectangles. This split is either performed as
balanced as possible using Greedy Splitting, or in an unbalanced manner; in the latter
case, we choose an unbalanced split to accommodate large disks that violate the radius bound
of Lemma 4 w.r.t. a rectangle of half the width of R.

Building a strip. Routine (S-II.1) works by either covering the left or the bottom side of
a rectangular strip R; see Fig. 6. This strip uses a subset of the largest six disks and tries
several configurations for placing the disks. The remaining area is covered by recursion.

Wall building. Routines (S-III.1) and (S-IV.1) are based on the idea of covering a rectangular
strip of fixed length ` and variable width b with covering coefficient exactly E. We call
this wall building. To achieve this covering coefficient, we stack disks of similar size on top

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:11

S S S

r1

r2

r3

r4

r5

r1

r2

r4r3

r1

r2

r3 r4

r5 r6

S

r1 r4

r2 r3

r5r6R \ S

(a) (b) (c) (d)

Figure 6 Some placements considered by Routine S-II.1 to build a vertical strip; horizontal strips
are analogous. (a) Simply stacking a subset T of the six largest disks on top of each other. (b)
Stacking r1, r2 on top of each other, and placing r3, r4 horizontally next to each other on top. (c)
Same as (b), but with an additional row built from r5, r6. (d) Building two rows at the top and the
bottom consisting of r1, r4 and r2, r3, and covering the remaining region by r5, r6. The points on
the boundary defining the position of r5 and r6 are marked by squares. Note that r5 and r6 are not
big enough to cover the entire rectangular area between the top and the bottom row.

of (or horizontally next to) each other; each disk placed in this way covers a rectangle of
variable height, but width b. We provide sufficient conditions for this procedure to result in
a successful covering of a strip of length `. Routine (S-III.1) uses this idea to build a column
of stacked disks at the left side of R; see Fig. 7. Routine (S-IV.1) uses this idea by placing
r1 in the bottom-left corner of R and filling the area above r1 with horizontal rows of disks;
see Fig. 8. Intuitively speaking, these routines are necessary to handle cases in which there
are large disks that interfere with recursion, but small disks, for which we do not know the
weight distribution, significantly contribute to the total weight.

Using the two largest disks. Routine (S-V.1) places the two largest disks in diagonally
opposite corners, each disk covering its inscribed square; see Fig. 9. The remaining area is
subdivided into three rectangular regions; we cover these regions recursively, considering
several ways to split the remaining disks.

Using the three largest disks. Routines (S-VI.1) and (S-VI.2) consider two different place-
ments of the largest three disks as shown in Fig. 10.

Using the four largest disks. Routines (S-VII.1)–(S-VII.3) consider different placements
of the four largest disks and recursion to cover R; see Fig. 11.

Using the five largest disks. Routines (S-VIII.1) and (S-VIII.2) consider different place-
ments of the five largest disks and recursion to cover R; see Fig. 12.

Using the six largest disks. Routines (S-IX.1)–(S-IX.3) consider different placements of
the six largest disks and recursion to cover R; see Fig. 13.

Using the seven largest disks. Routines (S-X.1)–(S-X.8) consider different placements of
the seven largest disks, together with recursion, to cover R; see Figs. 14, 15 and 16.

SoCG 2020

42:12 Worst-Case Optimal Covering of Rectangles by Disks

`

`√
1+
√

1− 1
4E2

q1

q2

q3

q4

q5

q6

q2

q1

q3

q4

q5

q6

√
2q1

(b)(a)

`

`√
1+
√

1− 1
4E2

√
2q1

b

Figure 7 The wall-building procedure. (a) Using an initial guess of b =
√

2q1 as width, where q1

is the largest disk that we use, we stack disks until they exceed a certain fraction of the length `. (b)
We decrease b until the disks exactly cover a strip of length `.

r1√
2r

1

A

B

··
·
··
·

r2 r3

r6

Figure 8 Routine S-IV.1 places r1 in the bottom-left corner and tries to cover A using either
recursion or wall building. In the latter case, whenever the disk radius drops too much while building
a row of length ` =

√
2r1, we move the disks constituting this incomplete row to B (red). Otherwise,

a complete row is built (green) and we continue with the next row. This process stops once the
entire area A is covered, including some potential overhead (shaded green region). We compensate
for the overhead by the area gained by placing r1 covering a square. In case r2 does not fit into B
recursively, we try placing r2, r3 (or r2, r3, r4) at the bottom of B (dotted outline).

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:13

r1

r2A

B

C√
2r1

√
2r2

Cr3

r5 r6

C ′

r4

Figure 9 The routine S-V.1 places r1 and r2 in diagonally opposite corners, each covering a
square. We cover three remaining rectangular areas A,B, C using the remaining disks (left). Regions
A,B and C are covered by recursion; we also consider using disks r3, . . . , r6 to reduce C to C′ (light
gray) before recursing.

r2

r1
r3

r2

r1

(a) (b)

A

B

A

r3

r4

r5

r6

Figure 10 Two routines based on using the three largest disks. We use r1 and r2 to cover a
vertical strip of height 1 and maximal width. (a) In Routine S-VI.1, we place r3 to the right of
r1, covering its inscribed square at the lower left corner of the remaining rectangle; the remaining
region can be subdivided into two rectangles A,B in two ways (dashed and dotted line). (b) In
Routine S-VI.2, we cover a horizontal strip of the remaining rectangle using r3; we either recurse on
the remaining rectangle directly or place some of the disks r4, r5, r6 to cut off pieces of the longer
side of the remaining rectangle (dashed outlines).

SoCG 2020

42:14 Worst-Case Optimal Covering of Rectangles by Disks

A B

r1
r2

r3 r4
√
2
r 1

r1

r2
r3

A

r4

(a) (b)

r6

r5

(c)

r1

r2 r3

r4
r5

r6

A

(d)

r1

r2

r3 r4

A

Figure 11 Covering routines that mainly rely on the four largest disks to cover R. (a) In
Routine S-VII.1, we place r1 in the bottom-left corner, covering its inscribed square; use r2, r3 and
r4 to cover as much of the vertical strip remaining to the left of r1, and recurse on A and B. (b) In
Routine S-VII.2, in the first case, we cover a rectangular strip using r1, . . . , r4. Either use recursion
immediately on the remainder A, or recurse after placing r5 and possibly r6 covering a rectangle
at the bottom of A. (c) In Routine S-VII.2, in the second case, we cover a rectangular strip using
r1, . . . , r4 and place r5 at the bottom of the remainder as in (b); however, we change the placement
of r6 to cover the remaining part of the right side of R. The points that determine the position of
r6 are marked by black squares in the figure. We use recursion to cover the bounding box A of the
area that remains uncovered. (d) In Routine S-VII.3, we cover an L-shaped region of R using the
four largest disks, and recurse on the remaining region A.

r1 r2 r5

r3

r4 A

r1 r2

r5 r4

r3

AA

r1 r2 r3

r4

r5

(a) (b) (c)

Figure 12 Routines for covering R using the five largest disks and recursion. According to
Routine S-VIII.1, in (a) and (b), we first cover a horizontal strip of maximum height using three disks
(r1, r2, r3 or r1, r2, r5) and then cover a vertical strip using the other two disks. (c) Routine S-VIII.2
places the five largest disks such that everything but a small region A is covered. The points that
define the placement of r4 and r5 in are marked by boxes; those that define the placement of r3 are
marked ×. All three routines use recursion to cover A.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:15

r1 r2

r3r4

r5

r6

A
r1 r2

r3 r4

r6

r5

(a) (b)

r1

r2

r4

r5

r6

r3

(c)

A

Figure 13 (a) Routine S-IX.1 covers R using the six largest disks. (b) In Routine S-IX.2, we
also use recursion on the remaining disks to cover an additional rectangular region A. (c) In
Routine S-IX.3, we cover two vertical strips using r1, r2 and r4, r5, r6, using r3 and recursion to
cover the remaining strip.

r1r4

r2r3

r5 r6
A A

A

(a) (b) (c)

r7 r7 r7

Figure 14 Routine S-X.1 considers the following three configurations to cover a strip of maximal
width w. (a) Using any partition of r1, . . . , r6 into three groups of two disks, each covering a strip of
height 1 and maximal width, (b) using any partition of r1, . . . , r6 into two groups of three disks,
each covering a strip of height 1 and maximal width, or (c) using the disks r1, r4 and r2, r3 to cover
strips of width w and maximal height and covering the uncovered pockets using r5 and r6.

r6

A

B r7

r1

r2 r3

r4
r5

r6

r5

Figure 15 Routine S-X.2 covers as much width as possible using disks r1, . . . , r4, using r5, r6 and
r7 on the remaining strip.

SoCG 2020

42:16 Worst-Case Optimal Covering of Rectangles by Disks

r5

r4

r3

r1

r2

A

r5

r4

r3

r2

r1

A

r6

r7
r5

r4

r3

r2

r1 r6

A

t1 t2 t3

b1 b2

`1`2

A

(a) (a’) (a”)

(b)

r1

r2 r3 r4

r5 r6

A
B

(c)

√
2r

2

(d)

r5

r1 r2

r6 r7

A

r3 r4

(e)

r2 r1√
2r

2

r3r4

r5 r6

(e’) (f)

r7

A

B r2√
2r

2

r1

r4 r3

r5 r6 r7 AB

r2 r3 r4 r5

r1

r6

√
2r

1

A

B
r7

h

r7

r7

h
56
7

h
12

Figure 16 Routines S-X.3–S-X.8 using disks r1, . . . , r7 and recursion to cover R.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:17

4.2 Proof Structure for Theorem 1
Tightness of the result claimed by Theorem 1 is proved by Lemma 2. Therefore, proving
Theorem 1 means proving that, for any skew λ, any collection of disks D with A(D) = A∗(λ)
suffices to cover R. As in the proof of Lemma 4, we begin by reducing the number of cases we
have to consider to a finite number. Again, we begin by proving our result for all rectangles
with sufficiently large skew.

I Lemma 6. Let λ ≥ λ and let D be a collection of disks with W (D) = W ∗(λ). We can
cover R using the disks from D.

Due to space restrictions, for the full proof we refer to the full version [18] of our paper.
The proof is manual and uses the two simple routines Split Cover (W-I.1) and Large
Disk (W-I.2); see Fig. 17. Intuitively speaking, if r1 is small, we split D using Greedy
Splitting, split R accordingly, and recurse on the two resulting regions. On the other hand,
if r1 is big, we cover the left side of R using r1 and recurse on the remaining region.

The remainder of the proof of Theorem 1 is again based on a list of simple covering
routines, which our algorithm tries to apply until it finds a working routine. We prove that
there always is a working routine in the list using an automatic prover based on interval
arithmetic as described in Section 3.3. After automatic analysis, several critical cases remain.
We complete our proof by manually analyzing these critical cases. In the following, we give a
brief description of the routines we use. Due to space constraints, for details, we refer to the
full version of our paper [18].

Small disks. Because the covering coefficient guaranteed by Lemma 4 is always better than
E∗(λ), Routine (W-II.1) attempts to apply Lemma 4 directly; this works if the largest disk
is not too big.

Using the largest disk. Routines (W-III.1)–(W-III.3) try several placements for the largest
disk r1; see Fig. 18.

Using the two largest disks. Routines (W-IV.1) and (W-IV.2) try several placements for
the largest two disks r1, r2; see Fig. 19.

Using the three largest disks. Routines (W-V.1)–(W-V.5) consider several placements for
the largest three disks; see Figs. 20, 21, 22, and 23.

Using the four largest disks. Routines (W-VI.1)–(W-VI.3) consider several placements for
the largest four disks; see Fig. 24.

R1 R2

︷ ︸︸ ︷

︸ ︷︷ ︸

︷ ︸︸ ︷

r1

︷ ︸︸ ︷

R \ S1
S1

(a) (b)

ω1(maximal)

ω1(minimal) ≥ 1
λ x

Figure 17 (a) The routine Split Cover (W-I.1) applies Greedy Splitting to the input disks,
splits R into R1,R2 according to the split and recurses. The resulting split must not be too
unbalanced for this routine to succeed. (b) The routine Large Disk (W-I.2) places r1 covering a
rectangle S1 at the right border of R and recurses on the remaining rectangle.

SoCG 2020

42:18 Worst-Case Optimal Covering of Rectangles by Disks

r1

︸︷︷
︸

h
1
=

2 √
r
21
− (λ

−
S
12)

2

︸︷︷︸ S1

λ− S1

2

(c)(b)

r1

B

A

︸︷︷︸S1 =
√
4r21 − 1

r1

︸︷︷︸ √2r1

(a)

r2

r3

r4

A

Figure 18 (a) In Routine W-III.1, we place r1 covering a strip at the left side of R and try to
recurse on A. If that does not work, we also try to place r2, r3 and potentially r4 covering horizontal
strips at the bottom of the remaining rectangle before we try recursing. (b) In Routine W-III.2, we
place r1 covering its inscribed square at the bottom-left corner of R, covering the two remaining
regions A,B recursively. (c) In Routine W-III.3, we place r1 covering a strip at the left side of R; if
placed like this, r1 intersects the right border of R, only leaving two small uncovered pockets.

r1

r2

A Ar1 r2

r1

r2
A

B

(a) (b) (c)

Figure 19 (a) and (b) depict Routine W-IV.1. The two largest disks are used to cover as
wide a strip as possible at the left side of R; the remaining disks are used for recursion on A.
(c) Routine W-IV.2 places r1 covering its inscribed square and covers the remaining part of R’s left
boundary using r2. Two regions A and B remain. The shaded area can be added to either A or B;
we try both options.

r1 r2 r3
A

Figure 20 Routine W-V.1 places the three largest disks next to each other, each covering a
vertical strip of height 1. If this does not cover the entire rectangle, we recurse on the bounding box
A of the remaining area.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:19

r1

r2 r3 A

r1
r2

r3

(a) (b)

A

Figure 21 (a) Routine W-V.2 builds a strip of maximum possible width by placing r1 at the
bottom and r2 besides r3 on top. (b) Routine W-V.3 builds a vertical strip of maximum possible
width by placing r2, r3 on top of each other, and covers the remaining part of the lower boundary
using r1.

r3
√
2r3

r1

λ−
√
2r3

1−
√
2r3

r2

2 √
r
21
−

14 (λ
−
√
2
r
3)

2

2

√
r22 − 1

4

(
1−
√
2r3
)2

r3
√
2r3

r1

λ−
√
2r3

1−
√
2r3

2 √
r
22
−

14 (λ
−
√
2
r
3)

2

r2

2

√
r21 − 1

4

(
1−
√
2r3
)2

Figure 22 Routine W-V.4 covers the rectangle using the third-largest disk to cover a square at
the bottom-left corner. The remaining rectangle that we recurse on is drawn with dashed outline.
Left: Placing the largest disk to the right of the third-largest disk and the second-largest disk on
top of the third-largest disk. Right: Placing the largest disk on top of the third-largest disk and
the second-largest disk to the right of the third-largest disk.

SoCG 2020

42:20 Worst-Case Optimal Covering of Rectangles by Disks

r1

r2

r3

S1 λ− S1

h2

1− h2

S3

λ− S1 − S3

√
65
16

√
65
16

1
8

7
8

1
2

1
2

7
8

√
65
16

Figure 23 Left: Routine W-V.5 covers the rectangle using the largest disk to cover a strip of
width S1, using the second- and third-largest disks to cover the remaining corners. The bounding
box of the uncovered pocket between the largest and third-largest disk is drawn with dashed outline.
Right: The worst-case example for a square, consisting of three equal disks with radius

√
65

16 . The
covering of Routine W-V.5 converges to this covering for disks converging to this worst-case example.

r1

r4

r2

r3

r1

r4

r2

r3

A r1 r2

r3

r4

A

(a) (b) (c)

B1

B2

Figure 24 (a) Routine W-VI.1 covers R using only the four largest disks. The dashed outline
depicts the rectangle that r3 has to be able to cover. (b) Routine W-VI.2 covers a strip of
maximum possible width using two groups of two disks and recurses on the remaining rectangle A.
(c) Routine W-VI.3 covers R by placing the two largest disks besides each other, filling the gaps
between the disks using r3, r4. If this does not cover R, we either recurse on the remaining strip A
or on the bounding box of two pockets B1,B2 if r2 intersects R’s right border.

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:21

4.3 Proof of Lemma 3
In this section, we give a proof of Lemma 3.

I Lemma 3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1. Let

λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) =

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

Proof. In the following, let E := E(σ); we assume w.l.o.g. that W (D) = Eλ. First, we
observe that σ ≥ σ̂ implies E ≥ 195

256 = E∗(λ̄). Because E∗(λ) for λ ≥ λ̄ is continuous and
strictly monotonically increasing, there is a unique Λ(E) ≥ λ̄ such that E∗(Λ(E)) = E,
given by Λ(E) := 2E +

√
4E2 − 2. Similarly, we observe that σ(E) = E ·

(
Λ(E)− 2

Λ(E)

)
is

the inverse function of E(σ). If λ ≤ Λ(E), we have E ≥ E∗(λ) and the result immediately
follows from Theorem 1.

Otherwise, we apply Greedy Splitting to D. This yields a partition into two groups
D1, D2; w.l.o.g., let D1 be the heavier one. We split R into two rectangles R1,R2 such that
W (D1)
W (D2) = |R1|

|R2| by dividing the longer side (w.l.o.g., the width) of R in that ratio. After the
split, we have E = W (D)

|R| = W (D1)
|R1| = W (D2)

|R2| and |R2| = W (D2)
E .

If the resulting width of any Ri is greater than Λ(E), we use Di to inductively apply
Lemma 3 to it. Otherwise, we apply Theorem 1; in order to do so, we must show that the
skew of the narrower rectangle R2 is at most Λ(E), which means proving that its width is at
least 1

Λ(E) . Because of W (D1)−W (D2) ≤ r2
1 ≤ σ, we have W (D2) ≥ W (D)−σ

2 = Eλ−σ(E)
2 .

This implies that the area, and thus the width, of R2 is W (D2)
E ≥ Λ(E)−σ(E)/E

2 = 1
Λ(E) . J

5 Conclusion

We have given a tight characterization of the critical covering density for arbitrary rectangles.
This gives rise to numerous followup questions and extensions.

As discussed (and shown in Fig. 3), the worst-case values correspond to instances with
only 2 or 3 relatively large disks; if we have an upper bound R on the size of the largest
disk, this gives rise to the critical covering area A∗R(λ) for λ × 1-rectangles. Both from a
theoretical and a practical point of view, getting some tight bounds on A∗R(λ) would be
interesting and useful. Our results of Lemma 3 and Lemma 4 indicate possible progress in
that direction; just like for unit disks, tighter results will require considerably more effort.

Establishing the critical covering density for disks and triangles is also open. We are
optimistic that an approach similar to the one of this paper can be used for a solution.

Finally, computing optimal coverings by disks appears to be quite difficult. However,
while deciding whether a given collection of disks can be packed into a unit square is known
to be NP-hard [15], the complexity of deciding whether a given set of disks can be used to
cover a unit square is still open. Ironically, it is the higher practical difficulty of covering by
disks that makes it challenging to apply a similar idea in a straightforward manner.

References
1 A Karim Abu-Affash, Paz Carmi, Matthew J. Katz, and Gila Morgenstern. Multi cover of a

polygon minimizing the sum of areas. International Journal of Computational Geometry &
Applications, 21(06):685–698, 2011.

2 Alessandro Agnetis, Enrico Grande, Pitu B. Mirchandani, and Andrea Pacifici. Covering a line
segment with variable radius discs. Computers & Operations Research, 36(5):1423–1436, 2009.

SoCG 2020

42:22 Worst-Case Optimal Covering of Rectangles by Disks

3 Helmut Alt, Esther M. Arkin, Hervé Brönnimann, Jeff Erickson, Sándor P. Fekete, Christian
Knauer, Jonathan Lenchner, Joseph S. B. Mitchell, and Kim Whittlesey. Minimum-cost
coverage of point sets by disks. In Proc. 22nd Annu. ACM Sympos. Comput. Geom., pages
449–458, 2006. doi:10.1145/1137856.1137922.

4 Balázs Bánhelyi, Endre Palatinus, and Balázs L. Lévai. Optimal circle covering problems and
their applications. Central European Journal of Operations Research, 23(4):815–832, 2015.

5 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Sebastian Morr, and Christian Scheffer.
Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition).
In Proceedings 35th International Symposium on Computational Geometry (SoCG), pages
63:1–63:6, 2019. Video available at https://www.ibr.cs.tu-bs.de/users/fekete/Videos/
PackingCirclesInSquares.mp4. doi:10.4230/LIPIcs.SoCG.2019.63.

6 K. Bezdek. Körök optimális fedései (Optimal covering of circles). PhD thesis, Eötvös Lorand
University, 1979.

7 Käroly Bezdek. Über einige optimale Konfigurationen von Kreisen. Ann. Univ. Sci. Budapest
Rolando Eötvös Sect. Math, 27:143–151, 1984.

8 Santanu Bhowmick, Kasturi R. Varadarajan, and Shi-Ke Xue. A constant-factor approximation
for multi-covering with disks. JoCG, 6(1):220–234, 2015. doi:10.20382/jocg.v6i1a9.

9 Károly Böröczky Jr. Finite packing and covering, volume 154. Cambridge University Press,
2004.

10 Peter Brass, William O.J. Moser, and János Pach. Density problems for packings and coverings.
Research Problems in Discrete Geometry, pages 5–74, 2005.

11 Paz Carmi, Matthew J. Katz, and Nissan Lev-Tov. Covering points by unit disks of fixed
location. In Proc. International Symposium on Algorithms and Computation (ISAAC), pages
644–655. Springer, 2007.

12 Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
13 Gautam K. Das, Sandip Das, Subhas C. Nandy, and Bhabani P. Sinha. Efficient algorithm

for placing a given number of base stations to cover a convex region. Journal of Parallel and
Distributed Computing, 66(11):1353–1358, 2006.

14 Gautam K. Das, Sasanka Roy, Sandip Das, and Subhas C. Nandy. Variations of base-station
placement problem on the boundary of a convex region. International Journal of Foundations
of Computer Science, 19(02):405–427, 2008.

15 Erik D. Demaine, Sándor P. Fekete, and Robert J. Lang. Circle packing for origami design is
hard. In Origami5: 5th International Conference on Origami in Science, Mathematics and
Education, AK Peters/CRC Press, pages 609–626, 2011. arXiv:1105.0791.

16 dpa. Rasensprenger zeichnet Kreise auf Fußballfeld, 2018.
17 Gábor Fejes Tóth. Recent progress on packing and covering. Contemporary Mathematics,

223:145–162, 1999.
18 Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah.

Worst-case optimal covering of rectangles by disks. arXiv:2003.08236 [cs.CG], 2020. arXiv:
2003.08236.

19 Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Packing Disks into Disks with
Optimal Worst-Case Density. In Proceedings 35th International Symposium on Computational
Geometry (SoCG 2019), pages 35:1–35:19, 2019. doi:10.4230/LIPIcs.SoCG.2019.35.

20 Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Covering rectangles by disks:
The video. In Proceedings of the 36th International Symposium on Computational Geometry
(SoCG), 2020. To appear.

21 Sándor P. Fekete, Sebastian Morr, and Christian Scheffer. Split packing: Algorithms for
packing circles with optimal worst-case density. Discrete & Computational Geometry, 2018.
doi:10.1007/s00454-018-0020-2.

22 F. Fodor. The densest packing of 19 congruent circles in a circle. Geometriae Dedicata,
74:139–145, 1999.

https://doi.org/10.1145/1137856.1137922
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/PackingCirclesInSquares.mp4
https://www.ibr.cs.tu-bs.de/users/fekete/Videos/PackingCirclesInSquares.mp4
https://doi.org/10.4230/LIPIcs.SoCG.2019.63
https://doi.org/10.20382/jocg.v6i1a9
http://www.cgal.org
http://arxiv.org/abs/1105.0791
http://arxiv.org/abs/2003.08236
http://arxiv.org/abs/2003.08236
https://doi.org/10.4230/LIPIcs.SoCG.2019.35
https://doi.org/10.1007/s00454-018-0020-2

S. P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, and S. Shah 42:23

23 F. Fodor. The densest packing of 12 congruent circles in a circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 41:401–409, 2000.

24 F. Fodor. The densest packing of 13 congruent circles in a circle. Beiträge zur Algebra und
Geometrie (Contributions to Algebra and Geometry), 44:431–440, 2003.

25 E. Friedman. Circles covering squares web page, 2014. URL: http://www2.stetson.edu/
~efriedma/circovsqu/.

26 M. Goldberg. Packing of 14, 16, 17 and 20 circles in a circle. Mathematics Magazine, 44:134–139,
1971.

27 R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, and P.R.J. Östergøard. Dense packings of
congruent circles in a circle. Discrete Mathematics, 181:139–154, 1998.

28 Aladár Heppes and Hans Melissen. Covering a rectangle with equal circles. Periodica
Mathematica Hungarica, 34(1-2):65–81, 1997.

29 Chi-Fu Huang and Yu-Chee Tseng. A survey of solutions for the coverage problems in wireless
sensor networks. Journal of Internet Technology, 6(1):1–8, 2005.

30 Matthew P. Johnson, Deniz Sariöz, Amotz Bar-Noy, Theodore Brown, Dinesh Verma, and
Chai W. Wu. More is more: the benefits of denser sensor deployment. ACM Transactions on
Sensor Networks (TOSN), 8(3):22, 2012.

31 B.D. Lubachevsky and R.L. Graham. Curved hexagonal packings of equal disks in a circle.
Discrete & Computational Geometry, 18:179–194, 1997.

32 H. Melissen. Densest packing of eleven congruent circles in a circle. Geometriae Dedicata,
50:15–25, 1994.

33 Hans Melissen. Loosest circle coverings of an equilateral triangle. Mathematics Magazine,
70(2):118–124, 1997.

34 Johannes Bernardus Marinus Melissen and Peter Cornelis Schuur. Covering a rectangle with
six and seven circles. Discrete Applied Mathematics, 99(1-3):149–156, 2000.

35 John W. Moon and Leo Moser. Some packing and covering theorems. In Colloquium
Mathematicae, volume 17, pages 103–110. Institute of Mathematics, Polish Academy of
Sciences, 1967.

36 Sebastian Morr. Split packing: An algorithm for packing circles with optimal worst-case
density. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 99–109, 2017.

37 Eric H. Neville. On the solution of numerical functional equations. Proceedings of the London
Mathematical Society, 2(1):308–326, 1915.

38 Kari J. Nurmela. Conjecturally optimal coverings of an equilateral triangle with up to 36
equal circles. Experimental Mathematics, 9(2):241–250, 2000.

39 Norman Oler. A finite packing problem. Canadian Mathematical Bulletin, 4:153–155, 1961.
40 Endre Palatinus and Balázs Bánhelyi. Circle covering and its applications for telecommunication

networks. In 8 th International Conference on Applied Informatics, page 255, 2010.
41 G.E. Reis. Dense packing of equal circles within a circle. Mathematics Magazine, issue 48:33–37,

1975.
42 Williamjeet Singh and Jyotsna Sengupta. An efficient algorithm for optimizing base station site

selection to cover a convex square region in cell planning. Wireless personal communications,
72(2):823–841, 2013.

43 Eckard Specht. Packomania, 2015. URL: http://www.packomania.com/.
44 Balázs Szalkai. Optimal cover of a disk with three smaller congruent disks. Advances in

Geometry, 16(4):465–476, 2016.
45 Gábor Fejes Tóth. Thinnest covering of a circle by eight, nine, or ten congruent circles.

Combinatorial and computational geometry, 52(361):59, 2005.
46 Gábor Fejes Tóth. Packing and covering. In Handbook of Discrete and Computational Geometry,

Third Edition, pages 27–66. Chapman and Hall/CRC, 2017.
47 Xiaochun Xu, Sartaj Sahni, and Nageswara S.V. Rao. Minimum-cost sensor coverage of planar

regions. In FUSION, pages 1–8, 2008.

SoCG 2020

http://www2.stetson.edu/~efriedma/circovsqu/
http://www2.stetson.edu/~efriedma/circovsqu/
http://www.packomania.com/

Minimum Scan Cover
with Angular Transition Costs
Sándor P. Fekete
Department of Computer Science, TU Braunschweig, Germany
s.fekete@tu-bs.de

Linda Kleist
Department of Computer Science, TU Braunschweig, Germany
l.kleist@tu-bs.de

Dominik Krupke
Department of Computer Science, TU Braunschweig, Germany
d.krupke@tu-bs.de

Abstract

We provide a comprehensive study of a natural geometric optimization problem motivated by
questions in the context of satellite communication and astrophysics. In the problem Minimum
Scan Cover with Angular Costs (msc), we are given a graph G that is embedded in Euclidean
space. The edges of G need to be scanned, i.e., probed from both of their vertices. In order to scan
their edge, two vertices need to face each other; changing the heading of a vertex takes some time
proportional to the corresponding turn angle. Our goal is to minimize the time until all scans are
completed, i.e., to compute a schedule of minimum makespan.

We show that msc is closely related to both graph coloring and the minimum (directed and
undirected) cut cover problem; in particular, we show that the minimum scan time for instances in
1D and 2D lies in Θ(logχ(G)), while for 3D the minimum scan time is not upper bounded by χ(G).
We use this relationship to prove that the existence of a constant-factor approximation implies
P = NP , even for one-dimensional instances. In 2D, we show that it is NP-hard to approximate
a minimum scan cover within less than a factor of 3/2, even for bipartite graphs; conversely, we
present a 9/2-approximation algorithm for this scenario. Generally, we give an O(c)-approximation
for k-colored graphs with k ≤ χ(G)c. For general metric cost functions, we provide approximation
algorithms whose performance guarantee depend on the arboricity of the graph.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases Graph scanning, graph coloring, angular metric, complexity, approximation,
scheduling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.43

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.08816,
[15].

Acknowledgements We thank Phillip Keldenich, Irina Kostitsyna, Christian Rieck, and Arne
Schmidt for helpful algorithmic discourse, Kenny Cheung (NASA) and Christian Schurig (European
Space Agency) for joint work on intersatellite communication, and Karl-Heinz Glaßmeier for
discussions of astrophysical aspects.

© Sándor P. Fekete, Linda Kleist, and Dominik Krupke;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 43; pp. 43:1–43:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-3786-916X
mailto:l.kleist@tu-bs.de
https://orcid.org/0000-0003-1573-3496
mailto:d.krupke@tu-bs.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.43
https://arxiv.org/abs/2003.08816
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Minimum Scan Cover

1 Introduction

Many problems of geometric optimization arise from questions of communication, where
different locations need to be connected. For physical networks, the cost of a connection
corresponds to the geometric distance between the involved vertices, e.g., the length of an
electro-optic link. Often wireless transmissions may be used instead; however, for ultra-
long distances such as in space, this requires focused transmission, e.g., by communication
partners facing each other with directional, paraboloid antennas or laser beams. This makes
it impossible to exchange information with multiple partners at once; moreover, a change of
communication partner requires a change of heading, which is costly in the context of space
missions with limited resources, making it worthwhile to invest in a good schedule.

With the advent of satellite swarms of ever-growing size, problems of this type are of
increasingly practical importance for ensuring communication between spacecraft. They also
come into play when astro- and geophysical measurements are to be performed, in which
groups of spacecraft can determine physical quantities not just at their current locations,
but also along their common line of sight.

Figure 1 Artist’s rendition of the European Data Relay Satellite constellation architecture. Note
the intersatellite links shown in red. (Image credit: ESA).

We consider an optimization problem arising from this context: How can we schedule a
given set of intersatellite communications, such that the overall timetable is as efficient as
possible? In particular, we study the question of a Minimum Scan Cover with Angular
Costs (msc), in which we need to establish a collection of connections between a given set
of locations, described by a graph G = (V,E) that is embedded in space. For any connection
(or scan) of an edge, the two involved vertices need to face each other; changing the heading
of a vertex to cover a different connection takes an amount of time proportional to the
corresponding turn angle. Our goal is to minimize the time until all tasks are completed, i.e.,
compute a geometric schedule of minimum makespan.

In this paper, we provide a comprehensive study of this problem. We show that msc is
closely related to both graph coloring and the minimum (directed and undirected) cut cover
problem. We also provide a number of hardness results and approximation algorithms for a
variety of geometric scenarios; see Section 1.2 for an overview.

S. P. Fekete, L. Kleist, and D. Krupke 43:3

1.1 Problem definition: Minimum Scan Cover
In the abstract version of Minimum Scan Cover, denoted by a-msc, we are given a simple
graph G = (V,E) and a metric cost function α : {(e, e′) ∈ E × E | e ∩ e′ 6= ∅} → R+ that
describes the cost for switching between two incident edges uv, vw for the common vertex v.
A scan cover is an assignment S : E → R+, such that for every vertex v and every pair of
incident edges uv and vw it holds that

|S(uv)− S(vw)| ≥ α(uv, vw).

This condition provides sufficient time for the vertices to face each other. We seek a scan
cover that minimizes the scan time maxe∈E S(e). Note that a-msc generalizes the Path-TSP
(see Observation 8), so the problem becomes intractable if the cost function α is not metric.

Given the practical motivation, our main focus is the (geometric) Minimum Scan
Cover Problem (msc), for which every vertex v corresponds to a point in Rd, d ∈ {1, 2, 3},
the turn cost α(uv, vw) of v from uv and vw is the (smaller) angle at v between the segments
uv and vw. Figure 2 illustrates a minimum scan cover for a point set in the plane that can
be scanned in 300◦ with eleven discrete time steps.

0◦ 30◦ 60◦ 90◦ 120◦

150◦ 180◦ 240◦ 270◦ 300◦

Figure 2 (Left) A set of seven points in R2, for which the complete graph K7 needs to be
scanned. (Bottom) A sequence of edge scans; note how some edges can be scanned in parallel.

In fact, a scan cover is completely determined by an edge order: For each edge sequence
e1, . . . , em, the best scan cover that scans the edges in this order can be computed by

S(e1) = 0 and S(ei) = max{S(ej) + α(ei, ej)|j : j < i, ei ∩ ej 6= ∅)} for i > 1.

In some settings, we may be given an initial heading of each vertex. However, the cost
of changing from the initial heading to any other is usually negligible compared to the cost
of the remaining schedule. In fact, any C-approximation without initial headings yields
a (C + 1)-approximation for the variant with initial headings, as turning from the initial
heading to any edge via a smallest angle is not more expensive than the minimum makespan.

SoCG 2020

43:4 Minimum Scan Cover

1.2 Overview of results and organization

In Section 2, we show that the msc in 1D corresponds to a minimum directed cut cover and
has a strong correlation to the chromatic number. We provide an improved upper bound of
dlog2 χ(G) + 1

2 log2 log2 χ(G) + 1e (Theorem 1 and Corollary 2) for the minimum directed
cut cover number, which is essentially tight in general; even for directed acyclic graphs
corresponding to minimum scan covers (Lemma 1) this is in the right order of magnitude.
This implies that, unless P = NP , there exists no constant-factor approximation even in
1D (Theorem 3). Nevertheless, we show that instances in which the underlying graphs are
bipartite or complete graphs can be solved in polynomial time (Observations 3 and 4).

In Section 3, we consider the problem in 2D and show that it is NP-hard to approximate
minimum scan covers of bipartite graphs better than 3/2 (Theorem 4). Furthermore, we
provide absolute and relative bounds. On the one hand, every bipartite graph in 2D has a
scan cover of length 360◦ (Theorem 5). On the other hand, we present a 9/2-approximation
algorithm (Theorem 6). More generally, we present an O(c)-approximation for a k-colored
graph with k ≤ χ(G)c (Theorem 7). This has immediate consequences for several interesting
graph classes, e.g., the scan time of graphs in 1D and 2D lies in Θ(log2 χ(G)) and there exist
constant factor approximations (Corollaries 8 and 9).

In Section 4, we consider msc in 3D and the abstract version a-msc. We show that in
contrast to 2D, the length of a minimum scan cover in 3D may exceed O(log2 n) (Observa-
tion 11). Complementary to the fact that a-msc for stars is equivalent to path-TSP and
thus NP-hard, we provide a 2.5-approximation of a-msc for trees (Theorem 10). This yields
an O(A)-approximation for every graph with arboricity A (Theorem 11).

1.3 Related work

The use of directional antennas has introduced a number of geometric questions. Carmi
et al. [9] study the α-MST problem, which arises from finding orientations of directional
antennas with α-cones, such that the connectivity graph yields a spanning tree of minimum
weight, based on bidirectional communication. They prove that for α < π/3, a solution may
not exist, while α ≥ π/3 always suffices. See Aschner and Katz [7] for more recent hardness
proofs and constant-factor approximations for some specific values of α.

Many other geometric optimization problems deal with turn cost. Arkin et al. [5, 6] show
hardness of finding an optimal milling tour with turn cost, even in relatively constrained
settings, and give a 2.5-approximation algorithm for obtaining a cycle cover, yielding a
3.75-approximation algorithm for tours. The complexity of finding an optimal cycle cover in
a 2-dimensional grid graph was stated as Problem 53 in The Open Problems Project [11]
and shown to be NP-complete in [12], which also provides constant-factor approximations;
practical methods and results are given in [13], and visualized in the video [8].

Finding a fastest roundtrip for a set of points in the plane for which the travel time
depends only on the turn cost is called the Angular Metric Traveling Salesman Problem.
Aggarwal et al. [1] prove hardness and provide an O(logn) approximation algorithm for cycle
covers and tours that works even for distance costs and higher dimensions. For the abstract
version on graphs in which “turns” correspond to weighted changes between edges, Fellows
et al. [16] show that the problem is fixed-parameter tractable in the number of turns, the
treewidth, and the maximum degree. Fekete and Woeginger [14] consider the problem of
connecting a set of points by a tour in which the angles of successive edges are constrained.

S. P. Fekete, L. Kleist, and D. Krupke 43:5

Our paper also draws connections to other graph optimization problems. In particular,
for each point in time, the set of scanned edges induces a bipartite graph. Therefore, one
approach for scanning all edges of the given graph is to partition it into a small number of
bipartite graphs, each corresponding to the set of edges separated by the cut induced by a
partition of vertices into two non-trivial sets. This problem is also known as the Minimum
Cut Cover Problem: Find the minimum number of cuts to cover all edges of a graph.
Loulou [22] shows that for complete graphs, an optimal solution consists of dlog2 |V |e cuts.
Motwani and Naor [23] prove that, unless P = NP , the problem on general graphs is not
approximable within 1.5 of the optimum, or OPT +ε log |V | for some ε > 0 in absolute terms,
due to a direct relationship with graph coloring. Hoshino [18] considers practical methods
based on integer programming and heuristics for cut covers. Chuzhoy and Khanna [10] show
that the directed version of covering a directed graph by the minimum number of directed
cuts is also an NP-hard problem.

On the application side, Korth et al. [20] describe the use of tomography (i.e., determining
physical phenomena by measuring aggregated effects along a ray between two sensors) in
the context of astrophysics. Using multiple sensors (e.g., satellites) for performing efficient
measurements is one of the motivations for the algorithmic work in this paper. Scheduling
satellite communication has received a growing amount of attention, corresponding to the
increasing size of satellite swarms. See Krupke et al. [21] for a recent overview.

In the context of scheduling, Allahverdi et al. [2, 3, 4] provide a nice and comprehensive
survey on scheduling variants with sequence-dependent setup costs. Sotskov et al. [25]
consider a scheduling variant that can directly be expressed as vertex coloring.

2 One-dimensional point sets

In the one-dimensional case, all vertices lie on a single line L. Therefore, an instance can be
described by a graph G = (V,E) and a total order of the vertices <L on L. We assume this
line to be horizontal, so vertices face either left or right when scanning an edge. Moreover,
scan times can be restricted to discrete multiples of 180◦. This allows us to encode the
headings of a vertex v at these time steps by a 0-1-vector s(v), where a right heading is
denoted by 0, and a left one by 1; we denote by si(v) the ith bit of s(v). Then a scan cover
with N steps of (G,<L) is an assignment s : V → {0, 1}N , such that for every edge uv ∈ E,
u <L v, there exists an index i ∈ [N] with si(u) = 0 and si(v) = 1. The value of such a scan
cover is clearly 180◦(N − 1). For an example, consider Figure 3.

0
0
0

 1
0
0

 0
1
0

 1
0
1

 1
1
1

Figure 3 This instance can be scanned in three steps. However, two steps are not sufficient
because the edges of a monotone path would need to be scanned in alternating time steps; making it
impossible to scan the green edge.

SoCG 2020

43:6 Minimum Scan Cover

2.1 Bounds based on chromatic number and cut cover number
In the following, we establish a strong relationship between the length of a msc in 1D and
the chromatic number χ(G), which is closely linked to the cut cover number c(G) of the
involved graph G = (V,E), i.e., the size of a smallest partition of the edge set into bipartite
graphs. Motwani and Naor [23] show that

c(G) = dlog2 χ(G)e.

Because the scanned edges in each time step form a bipartite graph, a scan cover induces
a cut cover. However, the resulting bipartite graphs have the additional property that for
each vertex all neighbors are either smaller or larger with respect to <L. Thus, not every cut
cover corresponds to a scan cover. However, scan covers correspond to directed cut covers of
the directed graph, induced by orienting the edges from left to right. Watanabe et al. [26]
bound the directed cut cover number ~c(G) of a directed graph G:

~c(G) ≤ dlog2 χ(G)e+ dlog2dlog2 χ(G) + 1ee

We improve this bound by showing an upper bound for the size of a smallest scan cover in
terms of the chromatic number (and the cut cover number); this bound is best possible for
the directed cut cover number as we explain later.

I Theorem 1. For every graph G with χ(G) ≥ 2 and every ordering <L of the vertices,
there exists a scan cover of (G,<L) with N steps such that

N ≤ dlog2 χ(G) + 1
2 log2 log2 χ(G) + 1e

Proof. Consider a coloring of G with C := χ(G) colors and choose an N large enough such
that C ≤

(
N
bN/2c

)
. For k := bN2 c, we consider the set of vectors {0, 1}Nk of length N with

exactly k many 1’s. We define a scan cover s : V → {0, 1}Nk , such that for all vertices of
the same color, we assign the same vector, while vertices of different color obtain different
vectors. Such an assignment exists, because the number of vectors, i.e.,

(
N
bN/2c

)
, is at least as

large as the number of colors.
To see that s is a scan cover, consider a fixed but arbitrary edge uv of G. Because the

vectors s(u) and s(v) differ but have the same number of 1’s, they are incomparable, i.e., there
exist i and j such that si(u) = 0, si(v) = 1 and sj(u) = 1, sj(v) = 0. Therefore, depending
on the ordering of u and v on L, the edge uv is either scanned in step i or j.

It remains to show that defining N := dlog2 C + 1
2 log2 log2 C + 1e satisfies C ≤

(
N
bN/2c

)
.

By a variant of Stirling’s formula [24], it holds that

e1/(12n+1) ≤ n!√
2πn(n/e)n

≤ e1/(12n).

This implies that
(

N
bN/2c

)
≥
√

2
πN · 2

N · e
−1

4N−1 , so it suffices to guarantee

C ≤
√

2
πN
· 2N · e

−1
4N−1 ⇐⇒ log2 C ≤ N + 1

2(1− log2 π − log2 N)− 1
4N − 1 log2 e.

If C ≥ 3, this holds for N = dlog2 C + 1
2 log2 log2 C + 1e ≥ 3 ; in case of C = 2, it holds that

N = dlog2 C + 1
2 log2 log2 C + 1e = 2, and thus C ≤

(
N
bN/2c

)
. J

Note that the assigned vectors in the proof of Theorem 1 are pairwise incomparable.
Therefore, such an assignment yields a directed cut cover for all edge directions and thus a
general bound on the directed cut cover number.

S. P. Fekete, L. Kleist, and D. Krupke 43:7

I Corollary 2. For every directed graph G, the directed cut cover number is bounded by

~c(G) ≤ dlog2 χ(G) + 1
2 log2 log2 χ(G) + 1e.

In fact, the bound in Corollary 2 is best possible for general directed graphs, because a cut
cover of the complete bidirected graph corresponds to an assignment of pairwise incomparable
vectors (and Sperner’s theorem asserts that the used set of vectors is maximal).

Figure 3 illustrates an example of a graph G and an ordering <L showing that the bound
of Theorem 1 and Corollary 2 is also tight for some (directed acyclic) graphs with χ(G) = 3.
In the following, we show a general lower bound for our more special setting.

I Lemma 1. For every C, there exists a graph G and an ordering <L such that χ(G) > C

and the number N of steps in every scan cover of (G,<L) is at least

N ≥ dlog2 χ(G) + 1
4 log2 log2 χ(G)e.

Proof. Let ` ≥ 4 be an integer divisible by 4 and n := 2` such that 2n > C. We consider the
Turan graph G on n2n vertices partitioned into 2n independent sets of size n. Because G is
a complete 2n-partite graph, it holds that χ(G) = 2n. We place the vertices on the line, such
that for a fixed {1, . . . , 2n}-coloring of G, there exist n disjoint intervals in which the colors
appear in the order 1, . . . , 2n. For an illustration consider Figure 4.

. . .

1

..
.

2

2n

Figure 4 Illustration of G and the ordering <L of the vertices on L for n = 2 (` = 1).

For a contradiction, suppose that there exists a scan cover s : V → {0, 1}k of (G,<L)
with k := dlog2 χ(G) + 1

4 log2 log2 χ(G)e− 1 = n+ `
4 − 1 steps. Thus, the number of different

vectors is 2k = 2n−1n1/4.
Let t denote the number of different color classes in which some vector is used at least

n3/4 times. We show that t ≥ 1
2 2n. Clearly, each vector may only appear in one color class,

i.e., the color classes induce a partition of the set of vectors. Consider the 2n− t color classes
(and their assigned vectors) in which no vector is used n3/4 times. Let δ denote the average
usage of vectors in these classes. Note that δ is lower bounded by the ratio of the number of
vertices, namely (2n − t)n, and the maximum number of remaining vectors, namely 2k − t.
Consequently, δ ≥ n2n−tn

2k−t . Moreover, δ < n3/4, because otherwise there exists a further color
class for which some vector appears at least n3/4 times. Therefore, we obtain the following
chain of implications:

δ < n3/4 =⇒ n2n − tn
2k − t < n3/4 ⇐⇒ t > 2n · 1

2(1− n−1/4)
=⇒ t >

1
22n

SoCG 2020

43:8 Minimum Scan Cover

For each of these t color classes, we choose a vector with a maximal number of appearances
and introduce an interval on L from the first to the last occurrence. By the ordering of the
vertices, every two vertices of the same color have a distance of at least 2n, and hence the
interval spans at least d = 2nn3/4 vertices. On average, every vertex is contained in the
following number of intervals

t · d
|V |
≥

1
2 2n · 2nn3/4

n2n = 2n

2n1/4 = 2n−1n−1/4.

By the pigeonhole principle, there exists a set S of at least 2n−1n−1/4 vectors with mutually
intersecting intervals. We claim that any two vectors a and b of S are pairwise incomparable,
i.e., there exist two indices i, j such that ai = 0, bi = 1 and aj = 1, bj = 0: Because the
intervals intersect, among the four occurrences of a and b on <L, there exist three such that
they appear alternating. To scan the corresponding edges, the vectors must be incomparable.
Thus, there must exist 2n−1n−1/4 pairwise incomparable vectors.

However, by Sperner’s theorem, every set of vectors of length k contains at most
(

k
bk/2c

)
pairwise incomparable vectors and(

k

bk/2c

)
≤
√

2
kπ

2k(1 + 1
11) ≤ 2k 1√

k
.

It remains to show that the number of necessary incomparable vectors exceeds this:

2k · 1√
k
<

2n

2n1/4 ⇐⇒ n < k

This holds for ` > 4 and yields a contradiction. For ` = 4 it holds that k = n. Thus, each
color class has a unique vector, all of which need to be incomparable, a contradiction. J

2.2 No constant-factor approximation in 1D

Theorem 1 implies the following.

I Lemma 2. A C-approximation algorithm for msc implies a polynomial-time algorithm for
computing a coloring of graph G, k := χ(G), with 4C · kC ·

√
log2(k)C colors.

Proof. Let `∗ denote the length of a minimum scan cover of G. Then a C-approximation
algorithm computes a scan cover of length ` ≤ C · `∗. Theorem 1 implies that C · `∗ ≤
C · dlog2 k + 1

2 log2 log2 k + 1e, yielding a coloring with 2` colors. Thus,

2` ≤ 2C(dlog2 k+ 1
2 log2 log2 k+1e) ≤ 2C·log2 k · 2 1

2 ·C·log2 log2 k · 22C ≤ 4C · kC ·
√

log2(k)
C
. J

I Theorem 3. Even in 1D, a C-approximation for msc for any C ≥ 1 implies P = NP .

Proof. Suppose there is a C-approximation for some constant C > 1. By Lemma 2, a
C-approximation of msc in 1D implies that there is a polynomial-time algorithm for finding
for every k-colorable graph G a coloring with 4C · kC ·

√
log2(k)C colors. Khot [19] showed

that, for sufficiently large k, it is NP-hard to color a k-colorable graph with at most klog2(k)/25

colors. However, for every C we can find a k such that 4C ·kC ·
√

log2(k)C < klog2(k)/25. This
yields a polynomial-time algorithm for an NP -hard problem, implying that P = NP . J

S. P. Fekete, L. Kleist, and D. Krupke 43:9

2.3 Polynomially solvable cases
Even though there is no constant-factor approximation in general, we would like to note that
bipartite and complete graphs in 1D can be solved in polynomial time.

I Observation 3. For instances of msc in 1D for which the underlying graph G is bipartite,
there exists a polynomial-time algorithm for computing an optimal scan cover.

Proof. We assume that χ(G) = 2, otherwise there is no edge to scan. If for every vertex, all
its neighbors lie either before or after it, G can be scanned within one step, which is clearly
optimal. Otherwise, every scan cover needs at least two steps. By Theorem 1, there exists a
scan cover with 2 steps. Because bipartite graphs can be colored in polynomial time, the
proof of Theorem 1 provides a scan cover. J

I Observation 4. For instances of msc in 1D for which the underlying graph G is a complete
graph, there exists a polynomial-time algorithm for computing an optimal scan cover.

Proof. Because every scan cover induces a cut cover and c(G) = dlog2 ne, it suffices to
provide a scan cover with this number of steps. To this end, we recursively scan the bipartite
graphs induced by two vertex sets when split into halves with respect to <L. J

3 Two-dimensional point sets

For two-dimensional point sets, we show that even for bipartite graphs, it is hard to
approximate msc better than 3/2. Conversely, we present a 9/2-approximation algorithm for
these graphs and apply the gained insights to achieve approximations for k-colorable graphs.

3.1 Bipartite graphs
By Theorem 3, we cannot hope for a constant-factor approximation for general graphs.
However, bipartite graphs in 1D can be solved in polynomial time. We show that the added
geometry of 2D makes the msc hard to approximate even for bipartite graphs.

3.1.1 No approximation better than 1.5 for bipartite graphs in 2D
As a stepping stone for the geometric case, we establish the following.

I Lemma 5. It is NP-hard to approximate a-msc better than 3/2 even for bipartite graphs.

(x1 ∨ x2 ∨ x3) (x2 ∨ x3 ∨ x4)

x1 x1 x2 x2 x3 x3 x4 x4

(x1 ∨ x2 ∨ x3) φ2φ 0

Figure 5 Illustration of the graphGI for the instance I = (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3).

SoCG 2020

43:10 Minimum Scan Cover

Proof sketch. The proof is based on a reduction from the problem Not-All-Equal-3-Sat,
for which a satisfying assignment fulfills the property that each clause has a true and a
false literal. For every instance I of Not-All-Equal-3-Sat, we construct a graph GI
and a cost function α, such that there exists a scan cover with a scan time of 2φ only if I is
a satisfiable instance. Otherwise, every scan cover has at least a value of 3φ.

The graph GI , illustrated in Figure 5, is a special variant of a clause-variable-incidence
graph and has (blue) clause, (black) variable, and (orange) incidence edges. The transition
cost for any edge pair is φ if it contains a clause edge, 2φ if it contains a variable edge, and 0
otherwise. An example is depicted in Figure 6. For full details, see the long version [15]. J

(x1 ∨ x2 ∨ x3) (x2 ∨ x3 ∨ x4)

x1 x1 x2 x2 x3 x3 x4 x4

(x1 ∨ x2 ∨ x3) 1

3
2

Figure 6 Illustration of a scan cover of the graph GI . Green edges are scanned in the first, yellow
in the second, and red edges in the third step.

We now use Lemma 5 for showing hardness of bipartite graphs in the geometric version.

I Theorem 4. Even for bipartite graphs in 2D, a C-approximation for msc for any C < 3/2

implies P = NP.

Proof sketch. Suppose that there is a (3/2 − ε)-approximation for some ε > 0. For every
instance I of Not-All-Equal-3-Sat, we can construct a graph GI for msc in 2D such that
it has a scan time of 240◦ if I is satisfiable, and a scan time of at least 360◦ − ε otherwise.
We essentially use the same reduction as in the proof of Lemma 5. The idea is to embed the
constructed graph GI in the plane on a triangular grid such that the transition costs are
reflected by the angle differences. Figure 7 illustrates the gadgets.

clause gadget

incidence path

variable gadget

Figure 7 Embedding the graph GI into the plane by using φ = 120◦. Additional leaves are added
to force the usage of the larger angle of 240◦.

S. P. Fekete, L. Kleist, and D. Krupke 43:11

The clause and variable gadgets are connected by paths instead of edges (solid and dashed
orange edges). In order to enforce angles of 240◦, we insert additional edges and vertices
into the 240◦ angle with an angle difference of ε. If an incident vertex uses the shorter angle
of 120◦, it still needs to cover the additional edges resulting in an overall turning angle of at
least 360◦ − ε = 3φ− ε. For full details, see the long version [15]. J

3.1.2 4.5-approximation for bipartite graphs in 2D
Conversely, we give absolute and relative performance guarantees for bipartite graphs in 2D.

I Theorem 5. Let I = (P,E) be a bipartite instance of msc with vertex classes P = P1 ∪P2.
Then I has a scan cover of time 360◦. Moreover, if P1 and P2 are separated by a line, there
is a scan cover of time 180◦.

Proof. We show that the following strategy yields a scan cover of time 360◦: All points turn
in clockwise direction, with the points in P1 starting with heading north and the points in P2
with heading south; see Figure 8a for an example. Note that the connecting line between any
point p1 ∈ P1 and any point p2 ∈ P2 forms alternate angles with the parallel vertical lines
through p1 and p2, so both face each other when reaching this angle during their rotation;
see Figure 8b. In the case of separated point sets, a rotation of 180◦ suffices to sweep the
other set, as illustrated in Figure 8c. J

(a)

ϕ3

ϕ1

ϕ2

ϕ2

ϕ1

ϕ3

ϕ4

ϕ4

(b) (c)

Figure 8 (a) The vertices in P1 and P2 rotate clockwise and start by heading north and south,
respectively. (b) Due to alternate angles, vertices of different parts of the vertex partition face each
other at the same time. (c) When P1 and P2 are separated by a line, a scan time of 180◦ suffices.

Theorem 5 yields an absolute bound for bipartite graphs. Now we give a constant-factor
approximation even for small optimal values.

I Theorem 6. There is a 4.5-approximation algorithm for msc for bipartite graphs in 2D.

Proof. Consider an instance I of msc in 2D and let Λ denote the minimum angle such that
for every vertex some Λ-cone contains all its edges. Clearly, Λ is a lower bound on the value
OPT of a minimum scan cover of I. We use one of two strategies depending on Λ.

If Λ ≥ 90◦, we use the strategy of Theorem 5 which yields a scan cover of at most 360◦
and hence a 4-approximation.

If Λ < 90◦, we use an adaptive strategy as follows. For each vertex, we partition the set
of headings [0, 360◦) into 2s sectors of size Λ′ = 360◦

/2s, see Figure 9a. We choose s maximal
(and, thus, Λ′ minimal) such that Λ′ ≥ Λ. This implies that the edges of every vertex are
contained in at most two adjacent sectors, see Figure 9a. Note also that Λ′ < 3/2Λ, because
Λ > 360◦

/2(s+1) and s ≥ 2.

SoCG 2020

43:12 Minimum Scan Cover

≤ Λ′

(a)

v ϕ
ϕ

ci

cic′i

c′i w

(b)

Figure 9 (a) Dividing the headings into 2s sectors with angle Λ′ = 360◦
/2s by inserting s lines.

For every vertex, the incident edges lie in at most two adjacent sectors of size Λ′, because Λ ≤ Λ′.
(b) An edge e = vw that lies in ci for v, lies in c′i = ci+s for w. If v scans c1 and w scans c′1 (both
counterclockwise), they scan e at the same time ϕ due to the alternate angles in the parallelogram.

Let the sectors be ci = [(i ·Λ′, (i+1) ·Λ′), for i = 0, . . . , 2s−1. Moreover, c′i := ci+s mod 2s
is the sector opposite of ci. Note that an edge e = vw is in the sector ci of v if and only
if e is in the opposite sector c′i of w, see Figure 9b. Let Ceven be the set of sectors with
even indices, Codd the one with odd indices, and C ′even and C ′odd the set of opposite sectors,
respectively. Because the incident edges of each vertex are contained in at most two adjacent
sectors, every vertex has edges in (at most) one sector of Ceven and one sector of Codd.

This allows the following strategy. Denote the bipartition of the vertex set by P = P1∪P2.
In the first phase, the vertices in P1 scan the sector with edges in Ceven in clockwise direction,
while the vertices in P2 scan the sector in C ′even. In the second phase, vertices in P1 scan the
sector in Codd in counterclockwise direction, while the vertices in P2 scan the sector in C ′odd.

As in Theorem 5, every edge is scanned in the first or second scan phase due to the
alternate angles. Clearly, each scan phase needs Λ′. Between the two scan phases, every
vertex v needs to turn to change its heading from the end heading of the first scan phase
to the start heading of the second. Because both sectors of v are incident and due to the
reversed direction, the turning angle is at most Λ′; in particular, either the end heading of
the first sector is contained in the boundary of the second sector or the two start headings of
both phases coincide. Figure 10 depicts an example scan cover. The resulting scan time is
3Λ′ ≤ 3 · 3/2Λ ≤ 4.5 ·OPT. J

Figure 10 An example with Λ′ = 90◦. P1 and P2 are indicated by squares and circles, respectively.
The blue sectors are scanned in the first scan phase; the orange sectors in the second. Each scan
phase and the turning phase costs Λ′.

S. P. Fekete, L. Kleist, and D. Krupke 43:13

3.2 Graphs with bounded chromatic number
Like in 1D, the value of a minimum scan cover in 2D has a strong relation to the chromatic
number. More specifically, we show that the optimal scan time lies in Θ(log2 χ(G)) and that
for a given coloring of the graph G with χ(G)c colors, we can provide an O(c)-approximation.

I Lemma 6. Let I = (P,E) be an instance of msc in Rd, d > 1. If I has a scan cover of
length T > 0, then G has a cut cover of size d · d T90◦ e, i.e., c(G) ≤ d · d T90◦ e.

Proof. Partition the scan cover into d T90◦ e intervals of length at most 90◦. For each interval i,
we consider the set of edges that are scanned within this interval, inducing a graph Gi. We
show that each Gi is 2d-partite. Because c(Gi) = dlog2(χ(Gi))e ≤ d, this implies the claim.

We first consider the case d = 2. We classify the points of P into four sets, depending on
their turning behavior within the interval i. Each point has a quadrant [0, 90◦), [90◦, 180◦),
[180◦, 270◦), or [270◦, 360◦) to which it is heading at the time 45◦; we assign each point this
quadrant. Note that every point can only leave its assigned quadrant by less than ±45◦.
Two points that are assigned to the same quadrant are independent in Gi: When their edge
is scanned, the headings of the two points have to be opposite, i.e., they differ by exactly
180◦. Thus, the only case in which two point headings could differ by 180◦ is if one leaves its
quadrant by 45◦ in clockwise and the other by 45◦ in counterclockwise direction. However,
in this case, the points would not have been assigned to the same half-open sector. For an
illustration consider Figure 11.

> 45◦

≥ 45◦

Figure 11 Every vertex is assigned to the (orange) sector to which it is heading at time 45◦. The
boundary of the reachable headings within 90◦ is shown in red. Since the sector is half-open, two
vertices assigned to the same sector cannot reach opposing headings and thus cannot scan their edge.

For d ≥ 3, the idea is analogous. To simplify the argument we choose a coordinate system,
i.e., an orthonormal basis (ONB), such that, at time 45◦, no point heads in a direction that
lies on a lower-dimensional subspace spanned by the basis vectors. Let B denote the set of
all potential basis vectors in Rd, i.e., B = Rd. For every point, we delete the line spanned
by its heading h at time 45◦ and the (d− 1)-dimensional subspace orthogonal to h from B.
The remaining set B′ is a d-dimensional space minus a finite number of lower-dimensional
subspaces. It follows by induction that B′ contains an ONB.

The points of P are partitioned into 2d different sets, depending on the orthant in which
they are contained at time 45◦. Note that if two point headings of the same orthant differ by
180◦, their angle difference at time 45◦ is 90◦, i.e., they lie on a lower dimensional subspace
spanned by the basis vectors. This is a contradiction to the choice of the ONB. J

Because c(G) = dlog2 χ(G)e, Lemma 6 has the following implication.

I Lemma 7. Every instance I of msc in Rd needs a scan time T of at least Ω(log2 χ(GI)),
with GI denoting the underlying graph of I. More precisely, T ≥ dlog2 χ(G)e−d

d · 90◦.

Proof. Because c(G) = dlog2 χ(G)e, Lemma 6 implies that dlog2 χ(G)e ≤ dd T90◦ e. In
particular, it holds that dlog2 χ(G)e ≤ d T

90◦ + d ⇐⇒ dlog2 χ(G)e−d
d · 90◦ ≤ T. J

SoCG 2020

43:14 Minimum Scan Cover

These insights have the following implications.

I Theorem 7. For instances of msc in 2D with a k-coloring of the graph G = (V,E), such
that k ≤ χ(G)c for some function c, there is an O(c)-approximation.

Proof. Partition G into dlog2 ke bipartite graphs Gi. By Theorem 6, each Gi can be scanned
in time β · OPTi, with β = 4.5 and OPTi denoting the optimum of the instance induced
by Gi. Clearly, OPTi ≤ OPT , and turning from the last scan of one bipartite graph to
the next takes at most a time of OPT . Hence, this scan cover needs a time of at most
(β + 1)OPT dlog2 ke.

If χ(G) ≤ 4, then O(dlog2 ke) ≤ O(dc · log2(χ(G))e) ≤ O(dc · log2(4)e) ≤ O(d2ce) ∈ O(c).
If χ(G) ≥ 5, then Lemma 7 ensures that OPT ≥ Ω(log2(χ(G))) > 0. Therefore, the

performance guarantee is in O
(

log2 k
log2(χ(G))

)
= O

(
c log2(χ(G))
log2(χ(G))

)
= O(c). J

As a direct implication of Theorem 7, we get a spectrum of approximation algorithms for
interesting special cases.

I Corollary 8. msc in 2D allows the following approximation factors.
1. O(log2 n) for all graphs. Furthermore, the minimum scan time lies in Θ(log2 χ(G)).
2. O(1) for planar graphs.
3. O(log2 d) for d-degenerate graphs.
4. O(1) for graphs of bounded treewidth.
5. O(1) for complete graphs.
The following bound shows a refined approximation for complete graphs.

I Corollary 9. Consider the msc for complete graphs with n vertices in 2D. There is a
c-approximation algorithm with c→ 6 for n→∞.

Proof. We may assume without loss of generality that n > 4. By Lemma 7, the minimum
scan time is at least (dlog2(n)e − 2) · 45◦ > 0. For the upper bound, we partition the point
set recursively into dlog2(n)e bipartite graphs by lines (alternating horizontal and vertical).
Hence, Theorem 5 allows us to scan each bipartite graph within 180◦. The transition
between two scan phases is at most 90◦. Therefore, the scan time is upper bounded by
dlog2(n)e180◦ + (dlog2(n)e − 1)90◦. This yields a performance guarantee of

270◦(dlog2(n)e − 2) + 450◦

45◦(dlog2(n)e − 2) = 6 + 10
(dlog2(n)e − 2) . J

The factor in Corollary 9 is c ≤ 8 when n ≥ 27 and c ≤ 7 when n ≥ 212.

4 Three-dimensional point sets and abstract MSC

In the following, we observe that a-msc generalizes the Path-TSP.

I Observation 8. Let G = (V,E) be a star on n+ 1 vertices with center v and α a metric
transition cost function on E ×E. Then, an a-msc of (G,α) corresponds to a TSP-path of
the complete graph on V \ {v} with metric cost c(u1, u2) = α(vu1, vu2) and vice versa.

Observation 8 has two immediate consequences. Firstly, because the metric Path-TSP is
NP-hard, it follows that

I Observation 9. a-msc is NP-hard even for stars.

S. P. Fekete, L. Kleist, and D. Krupke 43:15

Secondly, the 1.5-approximation for metric Path-TSP by Zenklusen [27] can be applied.

I Observation 10. There exists a 1.5-approximation algorithm for a-msc for stars.

In contrast to 1D and 2D, we show that the chromatic number does not provide an upper
bound for msc in 3D and a-msc.

I Observation 11. There are instances of msc in 3D with χ(G) = 2 that need at least
Ω(
√
n). There are instances of msc in nD with χ(G) = 2 that need at least Ω(n).

Proof. For the first claim consider a geodesic triangular grid on a sphere and embed a star
graph such that its leaves are grid points and the center of the star lies in the center of the
sphere. The Ω(

√
n) can be achieved by increasing the resolution of the grid by subdivision,

see Figure 12: While the minimum turn cost between two consecutive edges approximately
halves, the number of vertices roughly quadruples, doubling the overall costs that is lower
bounded by (n− 1) · l if l is the minimum edge length.

Figure 12 The geodesic grid is refined by subdividing the edges. Because a triangulation with n
vertices has 3n− 6 edges, subdividing roughly quadruples the number of vertices.

The second claim follows from considering a star on n vertices for which each leaf is
placed on a different coordinate axis. Therefore, the turn cost between any two edges is 90◦
and it takes 90◦n to scan the graph. J

The approximation technique for bipartite graphs in 2D relies on alternate angles and
fails for 3D or a-msc. Nevertheless, we provide a 2.5-approximation for trees.

I Theorem 10. There exists a 2.5-approximation algorithm for a-msc for trees.

Proof. Let I = (G,α) be an instance of a-msc for which G is a tree, and let OPT be the
minimum scan time of I. For every vertex v, we approximate an ordering of minimum cost
over all its incident edges Ev. Let N(v) denote the set of neighbors of v. By Observation 8
such an ordering corresponds to a TSP-path. Consequently, we may use the 1.5-approximation
algorithm for metric Path-TSP by Zenklusen [27]. Moreover, we enhance the edge ordering
to a cyclic ordering by inserting an edge from the last to the first edge; because the cost
function is metric, the cost of the additional edge is upper bounded by the minimum cost
ordering of the incident edges. Therefore, the scan time `v of the computed cyclic edge
ordering of v is at most `v ≤ (1.5 + 1)OPT .

We construct a scan cover as follows: Every vertex follows its cyclic edge ordering. The
start headings of the vertices are chosen such that the scan time of each edge e = uv is
synchronized at the vertices u and v. To this end, we choose some vertex r as the root and
denote the parent of each vertex v by par(v) in the tree G with respect to the root r. We
scan the edges of r according to the cyclic edge orderings by starting with any heading,
see also Figure 13. We then determine the start headings by a tree traversal (e.g., DFS or
BFS): Let v be a vertex whose start heading has to be determined, and assume the start
heading of u := par(v) is already fixed. When uv is scanned at time t for u, then the cyclic
ordering of Ev is shifted, so that v sees uv also at time t. If this time lies between two scans,

SoCG 2020

43:16 Minimum Scan Cover

r

Figure 13 Root r can choose its schedule. The (cyclic) schedules of the children are synchronized
with the timing of its parent. Because the graph is a tree, there are no cyclic dependencies.

we simply start at the next incident edge and let the vertex wait for the appropriate time.
Because all vertices start at the same time, the resulting scan cover has a scan time of at
most maxv `v ≤ 2.5 ·OPT . J

Theorem 10 allows an approximation algorithm in terms of the arboricity of the underlying
graph. Recall that the arboricity of a graph denotes the minimum number of forests into
which its edges can be partitioned.

I Theorem 11. There is a 3.5A-approximation for the a-msc for graphs of arboricity A.

Proof. We compute a decomposition into A forests in polynomial time [17]. To obtain a scan
cover we use the approximation algorithm of Theorem 10 for each forest and concatenate
the resulting scan covers in any order. Because the transition cost between any two forests
is upper bounded by the minimum scan time OPT , the resulting scan cover has time of at
most (2.5 + 1)OPT ·A. Consequently, we obtain a 3.5A-approximation. J

5 Conclusion and open problems

We have presented several algorithmic results for the abstract and geometric version of
the minimum scan cover problem with a metric angular cost function, which has strong
connections to the chromatic number.

There is a spectrum of interesting directions for future work. How can we make use of
methods for solving graph coloring problems to compute practical solutions to real-world
instances? In many scenarios, this will involve considering satellites on different trajectories,
in the presence of a large obstacle: the earth. This gives rise to a variety of generalizations,
such as the presence of time windows for possible communication. Other variations of both
practical and theoretical interest arise from considering objective functions such as minimizing
the total energy of all satellites or minimizing the maximum energy per satellite.

References
1 Alok Aggarwal, Don Coppersmith, Sanjeev Khanna, Rajeev Motwani, and Baruch Schieber.

The angular-metric traveling salesman problem. SIAM J. Comp., 29(3):697–711, 1999.
2 Ali Allahverdi. The third comprehensive survey on scheduling problems with setup times/costs.

European Journal of Operational Research, 246(2):345–378, 2015.
3 Ali Allahverdi, Jatinder N.D. Gupta, and Tariq Aldowaisan. A review of scheduling research

involving setup considerations. Omega, 27(2):219–239, 1999.
4 Ali Allahverdi, C.T. Ng, T.C. Edwin Cheng, and Mikhail Y. Kovalyov. A survey of scheduling

problems with setup times or costs. European journal of operational research, 187(3):985–1032,
2008.

S. P. Fekete, L. Kleist, and D. Krupke 43:17

5 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S. B. Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. In Proc. 12th ACM-SIAM Symp.
Disc. Alg. (SODA), pages 138–147, 2001.

6 Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S. B. Mitchell,
and Saurabh Sethia. Optimal covering tours with turn costs. SIAM J. Comp., 35(3):531–566,
2005.

7 Rom Aschner and Matthew J. Katz. Bounded-angle spanning tree: modeling networks with
angular constraints. Algorithmica, 77(2):349–373, 2017.

8 Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke, and An Nguyen.
Zapping Zika with a Mosquito-Managing Drone: Computing Optimal Flight Patterns with
Minimum Turn Cost. In Proc. 33rd Symp. Comp. Geom. (SoCG), pages 62:1–62:5, 2017.

9 Paz Carmi, Matthew J. Katz, Zvi Lotker, and Adi Rosén. Connectivity guarantees for wireless
networks with directional antennas. Computational Geometry, 44(9):477–485, 2011.

10 Julia Chuzhoy and Sanjeev Khanna. Hardness of cut problems in directed graphs. In
Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC
’06, pages 527–536, New York, NY, USA, 2006. ACM.

11 Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke. The Open Problems Project.
URL: http://cs.smith.edu/~orourke/TOPP/.

12 Sándor P. Fekete and Dominik Krupke. Covering tours and cycle covers with turn costs:
Hardness and approximation. In Proceedings of the 11th International Conference on Algorithms
and Complexity (CIAC), pages 224–236, 2019.

13 Sándor P. Fekete and Dominik Krupke. Practical methods for computing large covering tours
and cycle covers with turn cost. In Proc. 21st SIAM Workshop Alg. Engin. Exp. (ALENEX),
pages 186–198, 2019.

14 Sándor P. Fekete and Gerhard J. Woeginger. Angle-restricted tours in the plane. Comp.
Geom., 8:195–218, 1997.

15 Sándor P. Fekete, Linda Kleist, and Dominik Krupke. Minimum scan cover with angular
transition costs, 2020. arXiv:2003.08816.

16 Mike Fellows, Panos Giannopoulos, Christian Knauer, Christophe Paul, Frances A. Rosamond,
Sue Whitesides, and Nathan Yu. Milling a graph with turn costs: A parameterized complexity
perspective. In Proc 36th Worksh. Graph Theo. Conc. Comp. Sci. (WG), pages 123–134, 2010.

17 Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: Algorithms for
matroid sums and applications. Algorithmica, 7(1):465, June 1992.

18 Edna Ayako Hoshino. The minimum cut cover problem. Electronic Notes in Discrete Mathe-
matics, 37:255–260, 2011. doi:10.1016/j.endm.2011.05.044.

19 Subhash Khot. Improved inapproximability results for maxclique, chromatic number and
approximate graph coloring. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pages 600–609. IEEE, 2001.

20 Haje Korth, Michelle F. Thomsen, Karl-Heinz Glassmeier, and W. Scott Phillips. Particle
tomography of the inner magnetosphere. Journal of Geophysical Research: Space Physics,
107(A9):SMP–5, 2002.

21 Dominik Krupke, Volker Schaus, Andreas Haas, Michael Perk, Jonas Dippel, Benjamin
Grzesik, Mohamed Khalil Ben Larbi, Enrico Stoll, Tom Haylock, Harald Konstanski, Kattia
Flores Pozzo, Mirue Choi, Christian Schurig, and Sándor P. Fekete. Automated data retrieval
from large-scale distributed satellite systems. In 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), pages 1789–1795. IEEE, 2019.

22 Richard Loulou. Minimal cut cover of a graph with an application to the testing of electronic
boards. Oper. Res. Lett., 12(5):301–305, November 1992.

23 Rajeev Motwani and Joseph (Seffi) Naor. On exact and approximate cut covers of graphs.
Technical report, Stanford University, Stanford, CA, USA, 1994.

24 Herbert Robbins. A remark on stirling’s formula. The American Mathematical Monthly,
62(1):26–29, 1955.

SoCG 2020

http://cs.smith.edu/~orourke/TOPP/
http://arxiv.org/abs/2003.08816
https://doi.org/10.1016/j.endm.2011.05.044

43:18 Minimum Scan Cover

25 Yuri N. Sotskov, Alexandre Dolgui, and Frank Werner. Mixed graph coloring for unit-time
job-shop scheduling. International Journal of Mathematical Algorithms, 2(4):289–323, 2001.

26 Kaoru Watanabe, Masakazu Sengoku, Hiroshi Tamura, and Shoji Shinoda. Cut cover problem
in directed graphs. In IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits
and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242), pages
703–706, 1998.

27 Rico Zenklusen. A 1.5-approximation for path tsp. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, pages 1539–1549, Philadelphia,
PA, USA, 2019. Society for Industrial and Applied Mathematics.

ETH-Tight Algorithms for Long Path and Cycle
on Unit Disk Graphs
Fedor V. Fomin
University of Bergen, Norway
fomin@ii.uib.no

Daniel Lokshtanov
University of California, Santa Barbara, CA, USA
daniello@ucsb.edu

Fahad Panolan
Department of Computer Science and Engineering, IIT Hyderabad, India
fahad@cse.iith.ac.in

Saket Saurabh
Department of Informatics, University of Bergen, Norway
The Institute of Mathematical Sciences, HBNI and IRL 2000 ReLaX, Chennai, India
saket@imsc.res.in

Meirav Zehavi
Ben-Gurion University of the Negev, Beer-Sheva, Israel
meiravze@bgu.ac.il

Abstract
We present an algorithm for the extensively studied Long Path and Long Cycle problems on
unit disk graphs that runs in time 2O(

√
k)(n + m). Under the Exponential Time Hypothesis, Long

Path and Long Cycle on unit disk graphs cannot be solved in time 2o(
√

k)(n + m)O(1) [de Berg et
al., STOC 2018], hence our algorithm is optimal. Besides the 2O(

√
k)(n + m)O(1)-time algorithm for

the (arguably) much simpler Vertex Cover problem by de Berg et al. [STOC 2018] (which easily
follows from the existence of a 2k-vertex kernel for the problem), this is the only known ETH-optimal
fixed-parameter tractable algorithm on UDGs. Previously, Long Path and Long Cycle on unit
disk graphs were only known to be solvable in time 2O(

√
k log k)(n + m). This algorithm involved the

introduction of a new type of a tree decomposition, entailing the design of a very tedious dynamic
programming procedure. Our algorithm is substantially simpler: we completely avoid the use of this
new type of tree decomposition. Instead, we use a marking procedure to reduce the problem to (a
weighted version of) itself on a standard tree decomposition of width O(

√
k).

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability; Theory
of computation → Computational geometry

Keywords and phrases Optimality Program, ETH, Unit Disk Graphs, Parameterized Complexity,
Long Path, Long Cycle

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.44

Related Version A full version of the paper is available at [34].

Funding Fedor V. Fomin: Research Council of Norway via the project MULTIVAL.
Daniel Lokshtanov: European Research Council (ERC) under the European Union’s Horizon 2020

 research and innovation programme (grant no. 715744), and United States - Israel Binational Science

Foundation grant no. 2018302.
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020 research

 and innovation programme (grant no. 819416), and Swarnajayanti Fellowship grant DST/SJF/MSA-

01/2017-18.
Meirav Zehavi: Israel Science Foundation grant no. 1176/18, and United States – Israel Binational
Science Foundation grant no. 2018302.

© Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
mailto:daniello@ucsb.edu
mailto:fahad@cse.iith.ac.in
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il
https://doi.org/10.4230/LIPIcs.SoCG.2020.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

1 Introduction

Unit disk graphs are the intersection graphs of disks of radius 1 in the Euclidean plane. That
is, given n disks of radius 1, we represent each disk by a vertex, and insert an edge between
two vertices if and only if their corresponding disks intersect. Unit disk graphs form one of
the best studied graph classes in computational geometry because of their use in modelling
optimal facility location [59] and broadcast networks such as wireless, ad-hoc and sensor
networks [37, 47, 61]. These applications have led to an extensive study of NP-complete
problems on unit disk graphs in the realms of computational complexity and approximation
algorithms. We refer the reader to [17, 25, 40] and the citations therein for these studies.
However, these problems remain hitherto unexplored in the light of parameterized complexity
with exceptions that are few and far between [1, 15, 35, 44, 57].

We study the Long Path (resp. Long Cycle) problem on unit disk graphs. Here, given
a graph G and an integer k, the objective is to decide whether G contains a path (resp. cycle)
on at least k vertices. To the best of our knowledge, the Long Path problem is among the
five most extensively studied problems in Parameterized Complexity [18, 24] (see Section
1.1). One of the best known open problems in Parameterized Complexity was to develop a
2O(k)nO(1)-time algorithm for Long Path on general graphs [55], that is, shaving the log k

factor in the exponent of the previously best 2O(k log k)nO(1)-time parameterized algorithm
for this problem on general graphs [52]. This was resolved in the positive in the seminal work
by Alon, Yuster and Zwick on color coding 25 years ago [5], which was recently awarded the
IPEC-NERODE prize for the most outstanding research in Parameterized Complexity. In
particular, the aforementioned 2O(k)nO(1)-time algorithm for Long Path on general graphs
is optimal under the Exponential Time Hypothesis (ETH).

Both Long Path and Long Cycle are NP-hard on unit disk graphs [42], and cannot
be solved in time 2o(

√
n) (hence neither in time 2o(

√
k)nO(1)) on unit disk graphs unless the

ETH fails [20]. Our contribution is an optimal parameterized algorithm for Long Path
(and Long Cycle) on unit disk graphs under the ETH. Specifically, we prove the following.

I Theorem 1. Long Path and Cycle are solvable in time 2O(
√

k)(n+m) on unit disk graphs.

Two years ago, a celebrated work by de Berg et al. [20] presented (non-parameterized)
algorithms with running time 2O(

√
n) for a number of problems on intersection graphs of so

called “fat”, “similarly-sized” geometric objects, accompanied by matching lower bounds of
2Ω(
√

n) under the ETH. Only for the Vertex Cover problem this work implies an ETH-tight
parameterized algorithm. More precisely, Vertex Cover admits a 2k-vertex kernel on
general graphs [53, 18], hence the 2O(

√
n)-time algorithm for Vertex Cover by de Berg et

al. [20] is trivially a 2O(
√

k)nO(1)-time fixed-parameter tractable algorithm for this problem.
None of the other problems in [20] is known to admit a linear-vertex kernel, and we know of
no other work that presents a 2O(

√
k)nO(1)-time algorithm for any basic problem on unit disk

graphs. Thus, we present the second known ETH-tight fixed-parameter tractable algorithm
for a basic problem on unit disk graphs, or, in fact, on any family of geometric intersection
graphs of fat objects. In a sense, our work is the first time where tight ETH-optimality of
fixed-parameter tractable algorithms on unit disk graphs is explicitly answered. (The work of
de Berg et al. [20] primarily concerned non-parameterized algorithms.) We believe that our
work will open a door to the realm to an ETH-tight optimality program for fixed-parameter
tractable algorithms on intersection graphs of fat geometric objects.

Prior to our work, Long Path and Long Cycle were known to be solvable in time
2O(
√

k log k)(n+m) on unit disk graphs [33]. Thus, we shave the log k factor in the exponent in
the running time, and thereby, in particular, achieve optimality. Our algorithm is substantially

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:3

simpler, both conceptually and technically, than the previous algorithm as we explain below.
The main tool in the previous algorithm (of [33]) for Long Path (and Long Cycle) on
unit disk graphs was a new (or rather refined) type of a tree decomposition. The width of
the tree decomposition constructed in [33] is kO(1), which on its own does not enable to
design a subexponential (or even single-exponential) time algorithm. However, each of its
bags (of size kO(1)) is equipped with a partition into O(

√
k) sets such that each of them

induces a clique. By establishing a property that asserts the existence of a solution (if at
least one solution exists) that crosses these cliques “few” times, the tree decomposition
can be exploited. Specifically, this exploitation requires to design a very tedious dynamic
programming algorithm (significantly more technical than algorithms over “standard” tree
decompositions, that is, tree decompositions of small width) to keep track of the interactions
between the cliques in the partitions.

We completely avoid the use of the new type of tree decomposition of [33]. Instead, we
use a simple marking procedure to reduce the problem to (a weighted version of) itself on
a tree decomposition of width O(

√
k). Then, the new problem can be solved by known

algorithms as black boxes by employing either an essentially trivial twO(tw)n-time algorithm,
or a more sophisticated 2O(tw)n-time algorithm (of [10] or [29]). On a high level, we are able
to mark few vertices in certain cliques (which become the cliques in the above mentioned
partitions of bags in [33]), so that there exists a solution (if at least one solution exists) that
uses only marked vertices as “portals” – namely, it crosses cliques only via edges whose both
endpoints are marked. Then, in each clique, we can just replace all unmarked vertices by
a single weighted vertex. This reduces the size of each clique to be constant, and yields a
tree decomposition of width O(

√
k). We believe that our idea of identification of portals and

replacement of all non-portals by few weighted vertices will find further applications in the
design of ETH-tight parameterized algorithms on intersection graphs of fat geometric objects.

Before we turn to briefly survey some additional related works, we would like to stress that
shaving off logarithmic factors in the exponent of running times of parameterized algorithms
is a major issue in this field. Indeed, when they appear in the exponent, logarithmic
factors have a critical effect on efficiency that can render algorithms impractical even on
small instances. Over the past two decades, most fundamental techniques in Parameterized
Complexity targeted not only the objective of eliminating the logarithmic factors, but even
improving the base c in running times of the form cknO(1). For example, this includes
the aforementioned color coding technique [5] that was developed to shave off the log k

in a previous 2O(k log k)nO(1)-time algorithm, which further entailed a flurry of research on
techniques to improve the base of the exponent (see Section 1.1), and the cut-and-count
technique to design parameterized algorithms in time 2O(t)nO(1) rather than 2O(t log t)nO(1)

(in fact, for connectivity problems such as Long Path) on graphs of treewidth t [19].
Accompanying this active line of research, much efforts were devoted to prove that problems
that have long resisted the design of algorithms without logarithmic factors in the exponent
are actually unlikely to admit such algorithms [51].

1.1 Related Works on Long Path and Long Cycle
We now briefly survey some known results in Parameterized Complexity on Long Path and
Long Cycle. Clearly, this survey is illustrative rather than comprehensive. The standard
parameterization of Long Path and Long Cycle is by the solution size k, and here we
will survey only results that concern this parameterization.

Long Path (parameterized by the solution size k) is arguably one of the problems with the
richest history in Parameterized Complexity, having parameterized algorithms continuously
developed since the early days of the field and until this day. The algorithms developed along

SoCG 2020

44:4 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

the way gave rise to some of the most central techniques in the field, such as color-coding [5]
and its incarnation as divide-and-color [16], techniques based on the polynomial method
[49, 50, 60, 8], and matroid based techniques [30]. The first parameterized algorithm for
this problem was an 2O(k log k)nO(1)-time given in 1985 by Monien [52], even before the term
“parameterized algorithm” was in known use. Originally in 1994, the logarithmic factor was
shaved off [5], resulting in an algorithm with running time cknO(1) for c = 2e. After that, a
long line of works presenting improvements over c followed [49, 50, 60, 8, 30, 62, 39, 56, 16, 58],
where the algorithm with the current best running time is a randomized algorithm whose
time complexity is 1.66knO(1) [8]. Unless the ETH fails, Long Path (as well as Long
Cycle) does not admit any algorithm with running time 2o(k)nO(1) [41].

For a long time, the Long Cycle problem was considered to be significantly harder
than Long Path due to the following reason: while the existence of a path of size at least k

implies the existence of a path of size exactly k, the existence of a cycle of size at least k does
not imply the existence of a cycle of size exactly k – in fact, the only cycle of size at least k in
the input graph might be a Hamiltonian cycle. Thus, for this problem, the first parameterized
algorithm appeared (originally) only in 2004 [36], and the first parameterized algorithm with
running time 2O(k)nO(1) appeared (originally) only in 2014 [30]. Further improvements on
the base of the exponent in the running time were given in [63, 31]. Lastly, we remark that
due to their importance, over the past two decades there has been extensive research of
Long Path and Long Cycle parameterized by k above some guarantee [7, 27, 45, 28],
and the (approximate) counting versions of these problems [26, 6, 2, 4, 3, 13, 9]. Both Long
Path and Long Cycle are unlikely to admit a polynomial kernel [11], and in fact, are even
conjectured not to admit Turing kernels [38, 46].

While Long Path and Long Cycle remain NP-complete on planar graphs, they admit
2O(
√

k)nO(1)-time algorithms: By combining the bidimensionality theory of Demaine et al.
[21] with efficient algorithms on graphs of bounded treewidth [23], Long Path and Long
Cycle, can be solved in time 2O(

√
k)nO(1) on planar graphs. Moreover, the parameterized

subexponential “tractability” of Long Path/Cycle can be extended to graphs excluding
some fixed graph as a minor [22]. Unfortunately, unit disk graphs are somewhat different than
planar graphs and H-minor free graphs – in particular, unlike planar graphs and H-minor
free graphs where the maximum clique size is bounded by 5 (for planar graphs) or some other
fixed constant (for H-minor free graphs), unit disk graphs can contain cliques of arbitrarily
large size and are therefore “highly non-planar”. Nevertheless, Fomin et al. [35] were able to
obtain subexponential parameterized algorithms of running time 2O(k0.75 log k)nO(1) on unit
disk graphs for Long Path, Long Cycle, Feedback Vertex Set and Cycle Packing.
None of these four problems can be solved in time 2o(

√
n)(and hence also in time 2o(

√
k)nO(1))

on unit disk graphs unless the ETH fails [20]. Afterwards (originally in 2017), Fomin et
al. [33] obtained improved, yet technically quite tedious, 2O(

√
k log k)nO(1)-time algorithms for

Long Path, Long Cycle and Feedback Vertex Set and Cycle Packing. Recall that
this work was discussed earlier in the introduction. Later, the same set of authors designed
2O(
√

k log k)nO(1) time algorithm for the aforementioned problems on map graphs [32]. We
also remark that recently, Panolan et al. [54] proved a contraction decomposition theorem on
unit disk graphs and as an application of the theorem, they proved that Min-Bisection on
unit disk graphs can be solved in time 2O(k)nO(1).

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:5

•

•

•

••
•

•

•

••

•

•

•

••

•
•

•

•

•
• •

•
•• •

•

Figure 1 A clique-grid graph G. Marked vertices are colored black. Good and bad edges are
colored blue and red, respectively (see Definition 8). For the sake of illustration only, we use the
threshold 5 instead of 121 – that is, in phase II of marking let Mark2(v, (i′, j′)) denote a set of 5
vertices in f−1(i′, j′) that are adjacent to v in G, where if no 5 vertices with this property exist,
then let Mark2(v, (i′, j′)) denote the set of all vertices with this property.

2 Preliminaries

For ` ∈ N, let [`] = {1, . . . , `}. See [34] for standard graph theoretic terms.

Unit disk graphs. Let P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)} be a set of
points in the Euclidean plane. Let D = {d1, d2, . . . , dn} where for every i ∈ [n], di is the
disk of radius 1 whose centre is pi. Then, the unit disk graph of D is the graph G such
that V (G) = D and E(G) = {{di, dj} | di, dj ∈ D, i 6= j,

√
(xi − xj)2 + (yi − yj)2 ≤ 2}.

Throughout the paper, we suppose that any given UDG G is accompanied by a corresponding
set of disks D, which is critical to our algorithm. We also remark that, given a graph G

(without D), the decision of whether G is a UDG is NP-hard [14] (in fact, even ∃R-hard [48]).

Clique-Grids. Intuitively, a clique-grid is a graph whose vertices can be embedded in grid
cells (where multiple vertices can be embedded in each cell), so that the each cell induces
a clique and “interacts” (via edges incident to its vertices) only with cells at “distance” at
most 2 (see Fig. 1).

I Definition 2 (Clique-Grid). A graph G is a clique-grid if there exists a function f : V (G)→
[t]× [t] for some t ∈ N, called a representation, satisfying the following conditions.
1. For all (i, j) ∈ [t]× [t], G[f−1(i, j)] is a clique.
2. For all {u, v} ∈ E(G), |i− i′| ≤ 2 and |j − j′| ≤ 2 where f(u) = (i, j) and f(v) = (i′, j′).
We call a pair (i, j) ∈ [t]× [t] a cell. It is easy to see that a unit disk graph is a clique-grid,
and a representation of it, can be computed in linear time. A formal proof can be found in
[33] (also see [43] for a similar result). Specifically, we will refer to the following proposition.

SoCG 2020

44:6 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

I Proposition 3 ([43, 33]). Let G be the unit disk graph of a set of unit disks D. Then, G

is a clique-grid, and a representation of G can be computed in linear time.

Treewidth. The treewidth of a graph is a standard measure of its “closeness” to a tree,
whose formal definition is not explicitly used in this paper and therefore omitted. The
treewidth of a graph can be approximated within a constant factor efficiently as follows.

I Proposition 4 ([12]). Given a graph G and a positive integer k, in time 2O(k) · n, we can
either decide that tw(G) > k or output a tree decomposition of G of width 5k.

We will need the following proposition to argue that a unit disk graph of bounded degree
contains a grid minor of dimension linear in its treewidth.

I Proposition 5 ([35]). Let G be a unit disk graph with maximum degree ∆ and treewidth
tw. Then, G contains a tw

100∆3 ×
tw

100∆3 grid as a minor.

3 Marking Scheme

In this section, we present a marking scheme whose purpose is to mark a constant number
of vertices in each cell of a clique-grid G so that, if G has a path (resp. cycle) on at least k

vertices, then it also has a path (resp. cycle) on at least k vertices that “crosses” cells only at
marked vertices. Then, we further argue that unmarked vertices in a cell can be thought of,
in a sense, as a “unit” representable by one weighted vertex. We note that we did not make
any attempt to optimize the number of vertices marked, but only make the proof simple.

Marking Scheme. Let G be a clique-grid graph with representation f : V (G) → [t]× [t].
Then, the marking scheme consists of two phases defined as follows.

Phase I. For each pair of distinct cells (i, j), (i′, j′) ∈ [t]× [t] with |i− i′| ≤ 2 and |j− j′| ≤ 2,
let M be a maximal matching where each edge has one endpoint in f−1(i, j) and the
other endpoint in f−1(i′, j′); if |M | ≤ 241, then denote Mark1({(i, j), (i′, j′)}) = M , and
otherwise choose a subset M ′ of M of size 241 and let Mark1({(i, j), (i′, j′)}) = M ′.
For each cell (i, j) ∈ [t]× [t], let Mark1(i, j) denote the set of all vertices in f−1(i, j) that
are endpoints of edges in

⋃
(i′,j′) Mark1({(i, j), (i′, j′)}) where (i′, j′) ranges over all cells

such that |i− i′| ≤ 2 and |j − j′| ≤ 2; the vertices belonging to this set are called marked
vertices.

Phase II. For each ordered pair of distinct cells (i, j), (i′, j′) ∈ [t]× [t] with |i− i′| ≤ 2 and
|j − j′| ≤ 2 and vertex v ∈ Mark1(i, j), let Mark2(v, (i′, j′)) denote a set of 121 vertices in
f−1(i′, j′) that are adjacent to v in G, where if no 121 vertices with this property exist,
then let Mark2(v, (i′, j′)) denote the set of all vertices with this property; the vertices
that belong to this set are also called marked vertices.

Altogether. For each cell (i, j) ∈ [t]× [t], let Mark?(i, j) denote the set of all marked vertices
in f−1(i, j).

Clearly, given G and f , Mark?(i, j) is not uniquely defined. Whenever we write Mark?(i, j),
we refer to an arbitrary set that can be the result of the scheme above. We remark that
“guessing” the endpoints of the sought path and marking them can simplify some arguments
ahead, but this will lead to worse time complexity. We have the following simple observation
regarding the size of Mark?(i, j) and the computation time.

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:7

I Observation 6. Let G be a clique-grid with representation f : V (G)→ [t]× [t]. For each
cell (i, j) ∈ [t]× [t],|Mark?(i, j)| ≤ 1010. Moreover, the computation of all the sets Mark?(i, j)
together can be done in linear time.

Proof. Consider a cell (i, j) ∈ [t]× [t]. In the first phase, at most 24 · 241 vertices in f−1(i, j)
are marked. In the second phase, for each of the 24 cells (i′, j′) such that |i− i′| ≤ 2 and
|j − j′| ≤ 2, and each of the at most 24 · 241 marked vertices in f−1(i′, j′), at most 121 new
vertices in f−1(i, j) are marked. Therefore, in total at most 24 ·241+24 · (24 ·241) ·121 ≤ 1010

vertices in f−1(i, j) are marked. The claim regarding the computation time is immediate. J

As part of the proof that our marking scheme has the property informally stated earlier,
we will use the following proposition.

I Proposition 7 ([33]). Let G be a clique-grid with representation f that has a path
(resp. cycle) on at least k vertices. Then, G also has a path (resp. cycle) P on at least k

vertices with the following property: for every two distinct cells (i, j) and (i′, j′), there exist
at most 5 edges {u, v} ∈ E(P) such that f(u) = (i, j) and f(v) = (i′, j′).

We now formally state and prove the property achieved by our marking scheme. For this
purpose, we have the following definition (see Fig. 1) and lemma.

I Definition 8. Let G be a clique-grid with representation f . An edge {u, v} ∈ E(G) where
f(u) 6= f(v) is a good edge if u ∈ Mark?(i, j) and v ∈ Mark?(i′, j′) where f(u) = (i, j) and
f(v) = (i′, j′); otherwise, it is bad.

Intuitively, the following lemma asserts the existence of a solution (if any solution exists)
that crosses different cells only via good edges, that is, via marked vertices.

I Lemma 9. Let G be a clique-grid with representation f that has a path (resp. cycle) on
at least k vertices. Then, G also has a path (resp. cycle) P on at least k vertices with the
following property: every edge {u, v} ∈ E(P) where f(u) 6= f(v) is a good edge.

Proof. By Proposition 7, G has a path (resp. cycle) on at least k vertices with the following
property: for every two distinct cells (i, j) and (i′, j′), there exist at most 5 edges {u, v} ∈ E(P)
such that f(u) = (i, j) and f(v) = (i′, j′). Among all such paths (resp. cycles), let P be one
that minimizes the number of bad edges. The following claim follows immediately from the
choice of P and Property 2 in Definition 2.

B Claim 10. For each cell (i, j) ∈ [t] × [t], there are at most 24 · 5 = 120 vertices in
f−1(i, j) ∩ V (P) that are adjacent in P to at least one vertex that does not belong to
f−1(i, j).

Next, we show that P has no bad edge, which will complete the proof. Targeting a
contradiction, suppose that P has some bad edge {u, v}. By Definition 8, u /∈ Mark?(i, j) or
v /∈ Mark?(i′, j′) (or both) where f(u) = (i, j) and f(v) = (i′, j′). Without loss of generality,
suppose that u /∈ Mark?(i, j). We consider two cases as follows.

Case I. First, suppose that v ∈ Mark1(i′, j′). Because u is adjacent to v but it is not marked
in the second phase, it must hold that |Mark2(v, (i, j))| ≥ 121. By Claim 10, this means
that there exists a vertex û ∈ Mark2(v, (i, j)) such the vertices incident to it on P – which
might be 0 if û does not belong to P , 1 if it is an endpoint of P or 2 if it is an internal
vertex of P – also belong to f−1(i, j) (see Fig. 2). In case û /∈ V (P), denote P1 = P .
Else, by Property 1 in Definition 2, by removing û from P , and if û has two neighbors

SoCG 2020

44:8 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

(i, j) (i′, j′)

u •

•û

• •

v•

(a) The case when û /∈ V (P).

(i, j) (i′, j′)

u •

•

• •

û

v•

(b) Rerouting when û /∈ V (P).

(i, j) (i′, j′)

u •

•

• •

û

v•

(c) The case when dP (û) = 1.

(i, j) (i′, j′)

u •

•

• •

û

v•

(d) Rerouting when dP (û) = 1.

(i, j) (i′, j′)

u •

•

• •

û

v•

(e) The case when dP (û) = 2.

(i, j) (i′, j′)

u •

•

• •

û

v•

(f) Rerouting when dP (û) = 2.

Figure 2 Case I in the proof of Lemma 9. Vertices colored black and red are marked and
unmarked, respectively. Vertices colored blue are either marked or unmarked. Good and bad edges
are colored blue and red, respectively. Curves colored green are part of the path P . Dashed lines
are part of the path P2.

on P , then also making these two neighbors adjacent,1 we still have a path (resp. cycle)
in G; we denote this path by P1. Note that |V (P1)| ≥ |V (P)| − 1 and u /∈ V (P1). Now,
note that because û ∈ Mark2(v, (i, j)), we have that û is adjacent to v in G and also
û ∈ f−1(i, j). Because u ∈ f−1(i, j), Property 1 in Definition 2 implies that û is also
adjacent to u. Thus, by inserting û between u and v in P1 and making it adjacent to
both, we still have a path (resp. cycle) in G, which we denote by P2 (see Fig. 2). Note
that |V (P2)| = |V (P1)|+ 1 ≥ |V (P)| ≥ k. Moreover, the only edges that appear only in
one among P2 and P are as follows.
1. If û has two neighbors in P , then the edges between û and these two neighbors might

belong only to P , and the edge between these two neighbors belongs only to P2. As
û and its neighbors in P belong to the same cell (by the choice of û), none of these
edges is bad, and also none of these edges crosses different cells.

2. If û has only one neighbor in P , then the edge between û and this neighbor might
belong only to P .

1 If û is an endpoint of P , then only the removal of û is performed.

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:9

(i, j) (i′, j′)

u •

•û

• •

• v̂

• •

v•

(a) The case when û, v̂ /∈ V (P).

(i, j) (i′, j′)

u •

•

• •

û

v•

• v̂

• •

(b) Rerouting when û, v̂ /∈ V (P).

(i, j) (i′, j′)

u •

•

• •

û

v•

• v̂

• •

(c) The case when dP (û) = dP (v̂) = 2.

(i, j) (i′, j′)

u •

•

• •

û

v•

• v̂

• •

(d) Rerouting when dP (û) = dP (v̂) = 2.

Figure 3 Two subcases of Case II in the proof of Lemma 9. Other subcases are handled similarly
to the subcases depicted here. Vertices colored black and red are marked and unmarked, respectively.
Vertices colored blue are either marked or unmarked. Good and bad edges are colored blue and red,
respectively. Curves colored green are part of the path P . Dashed lines are part of the path P2.

3. {u, v} ∈ E(P) \ E(P2) is a bad edge that crosses different cells by its initial choice.
4. {u, û} might belong only to P2, and it is a neither a bad edge nor an edge that crosses

different cells because u and û belong to the same cell.
5. {û, v} ∈ E(P2) \ E(P) is a not a bad edge because both û and v are marked (since

v ∈ Mark1(i′, j′) and û ∈ Mark2(v, (i, j))), but it crosses different cells.
Thus, P2 has no bad edge that does not belong to P , and P has at least one bad edge
that does not belong to P2 (specifically, {u, v}), and therefore P2 has fewer bad edges
than P . Moreover, notice that the items above also imply that P2 has at most one edge
that crosses different cells and does not belong to P (specifically, {û, v}), and P has at
least one edge that crosses the same cells and does not belong to P2 (specifically, {u, v}).
Therefore, P2 also has the property of P that for every two distinct cells (̃i, j̃) and (̃i′, j̃′),
there exist at most 5 edges {ũ, ṽ} ∈ E(P2) such that f(ũ) = (̃i, j̃) and f(ṽ) = (̃i′, j̃′).
Therefore, we have reached a contradiction to the minimality of the number of bad edges
in our choice of P .

Case II. Second, suppose that v /∈ Mark?(i′, j′). Then, the addition of {u, v} to Mark1({(i, j),
(i′, j′)}) maintains the property that it is a matching. Therefore, because this edge was
not marked in the first phase, it must hold that |Mark1({(i, j), (i′, j′)})| = 241. By Claim
10, there are at most 120 vertices in f−1(i, j) ∩ V (P) that are adjacent in P to at least
one vertex that does not belong to f−1(i, j), and notice that u (which is unmarked) is one
of them. Similarly, there are at most 120 vertices in f−1(i′, j′) ∩ V (P) that are adjacent
in P to at least one vertex that does not belong to f−1(i′, j′), and notice that v (which
is unmarked) is one of them. Therefore, because Mark1({(i, j), (i′, j′)}) is a matching, it
must contain at least one edge {û, v̂} such that neither û nor v̂ has a neighbor in P that
belongs to a different cell than itself (see Fig. 3) – either because û (and in the same way

SoCG 2020

44:10 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

v̂) does not belong to P , or it does and all its (one or two) neighbors belong to the same
cell as itself. Define P ′1 as follows: if û does not belong to P , then P ′1 = P , and otherwise
let it be the graph obtained by removing û from P and making its two neighbors (if
both exist) adjacent. Because these two neighbors (if they exist) belong to the same cell,
Property 1 in Definition 2 implies that P ′1 is a path (resp. cycle) in G. Similarly, let P1 be
the path (resp. cycle) obtained by the same operation with respect to P ′1 and v̂. Now, let
P2 be the graph obtained from P1 by inserting û and v̂ between u and v with the edges
{u, û}, {û, v̂} and {v̂, v} (see Fig. 3). Because of Property 1 in Definition 2, and since u

and û belong to the same cell, they are adjacent in G. Similarly, v and v̂ are adjacent in
G. Moreover, because {û, v̂} ∈ Mark1({(i, j), (i′, j′)}), it is an edge in G. Thus, P2 is a
path (resp. cycle) in G. Additionally, V (P) ⊆ V (P2), and therefore |V (P2)| ≥ k. The
only edges that appear only in one among P2 and P are as follows.
1. If û belongs to P and has two neighbors in P , then the edges between û and these two

neighbors might belong only to P , and the edge between these two neighbors belongs
only to P2. As û and its neighbors in P belong to the same cell (by the choice of û),
none of these edges is bad, and none of them crosses different cells. The same holds
for v̂.

2. If û belongs to P and has only one neighbor in P , the edge between û and this neighbor
might belong only to P . The same holds for v̂.

3. {u, v} ∈ E(P) \ E(P2) is a bad edge that crosses different cells by its initial choice.
4. {u, û} might belong only to P2, and it is a neither a bad edge nor it crosses different

cells because u and û belong to the same cell. The same holds for {v, v̂}.
5. {û, v̂} ∈ E(P2) \ E(P) is a not a bad edge because both û and v̂ are marked (since
{û, v̂} ∈ Mark1({(i, j), (i′, j′)})), but it crosses different cells.

Thus, P2 has no bad edge that does not belong to P , and P has at least one bad edge
that does not belong to P2 (specifically, {u, v}), and therefore P2 has fewer bad edges
than P . Moreover, notice that the items above also imply that P2 has at most one edge
that crosses different cells and does not belong to P (specifically, {û, v̂}), and P has at
least one edge that crosses the same cells and does not belong to P2 (specifically, {u, v}).
Therefore, P2 also has the property of P that for every two distinct cells (̃i, j̃) and (̃i′, j̃′),
there exist at most 5 edges {ũ, ṽ} ∈ E(P2) such that f(ũ) = (̃i, j̃) and f(ṽ) = (̃i′, j̃′).
Therefore, we have reached a contradiction to the minimality of the number of bad edges
in our choice of P .

In both cases we have reached a contradiction, and therefore the proof is complete. J

Next, we further strengthen Lemma 9 with the following definition and Lemma 14.
Intuitively, the following definition says that a cell is good with respect to some path if
either none of its unmarked vertices is traversed by that path, or all of its unmarked vertices
are traversed by that path consecutively and can be “flanked” only by marked vertices (see
Fig. 4).

I Definition 11. Let G be a clique-grid with representation f . Let P be a path (resp. cycle)
in G with endpoints x, y (resp. no endpoints). We say that a cell (i, j) ∈ [t]× [t] is good if
(i) V (P) = f−1(i, j) \Mark?(i, j), or (ii) V (P)∩ (f−1(i, j) \Mark?(i, j)) = ∅, or (iii) there
exist distinct u, v ∈ (V (P) ∩Mark?(i, j)) ∪ ({x, y} ∩ f−1(i, j)) (resp. not necessarily distinct
u, v ∈ V (P) ∩Mark?(i, j)) such that the set I of internal vertices of the (resp. a) subpath of
P between u and v is precisely f−1(i, j) \ (Mark?(i, j) ∪ {u, v});2 otherwise, it is bad.

2 In other words, I ⊆ f−1(i, j) \Mark?(i, j) and (f−1(i, j) \Mark?(i, j)) \ I can only include endpoints of

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:11

•

•

• ••

• • •

•

• ••

• • •

•

• ••

• • •

•

• ••

• •

Figure 4 Illustration of good cells. Vertices colored black and red are marked and unmarked
vertices, respectively. The green curve represents the path/cycle P .

•

•

• ••

• •

Figure 5 A nice cell which is not good. Vertices colored black and red are marked and unmarked
vertices, respectively. The green curve represents the path P .

It will be convenient to have, as an intermediate step, a definition and lemma that are
weaker than Definition 11 and Lemma 14. Intuitively, this definition drops the requirement
that none or all the unmarked vertices of a cell should be visited by the path at hand, but
only requires that those unmarked vertices that are visited, are visited consecutively and can
be “flanked” only by marked vertices (see Fig. 5).

I Definition 12. Let G be a clique-grid with representation f . Let P be a path (resp. cycle)
in G with endpoints x, y (resp. no endpoints). We say that a cell (i, j) ∈ [t]× [t] is nice if
(i) V (P) ⊆ f−1(i, j) \Mark?(i, j), or (ii) V (P)∩ (f−1(i, j) \Mark?(i, j)) = ∅, or (iii) there
exist distinct u, v ∈ (V (P) ∩Mark?(i, j)) ∪ ({x, y} ∩ f−1(i, j)) (resp. not necessarily distinct
u, v ∈ V (P) ∩Mark?(i, j)) such that the set of internal vertices of the (resp. a) subpath of P

between u and v is precisely (V (P) ∩ f−1(i, j)) \ (Mark?(i, j) ∪ {u, v}).

I Lemma 13. Let G be a clique-grid with representation f that has a path (resp. cycle) on
at least k vertices. Then, G also has a path (resp. cycle) P on at least k vertices with the
following property: every cell (i, j) ∈ [t]× [t] is nice.

Proof. Given a path (resp. cycle) P with endpoints x, y (resp. no endpoints) and a cell
(i, j) ∈ [t]× [t], we say that a subpath of P is (i, j)-nice if it has distinct endpoints u, v ∈
(V (P) ∩ Mark?(i, j)) ∪ ({x, y} ∩ f−1(i, j)) (resp. u, v ∈ V (P) ∩ Mark?(i, j)) and its set of
internal vertices is a subset I of f−1(i, j)\Mark?(i, j) such that if this subset I is empty, then
the subpath has an endpoint in f−1(i, j) \Mark?(i, j) (which implies that P is a path and
{u, v}∩{x, y}∩(f−1(i, j)\Mark?(i, j)) 6= ∅); we further say that a subpath of P is nice if it is
(i, j)-nice for some (i, j). By Lemma 9, G has a path (resp. cycle) on at least k vertices with
the following property: every edge {u, v} of that path where f(u) 6= f(v) is good. Among
all such paths (resp. cycles), let P be one with minimum number of nice subpaths, and

this subpath, in which case P is a path and any included endpoint is an endpoint of P as well.

SoCG 2020

44:12 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

•

• •

• ••

• •

• •

Q

Q′

•

• •

• ••

• •

• •

x

y

•

• •

• ••

• •

• •

Q

Q′

x

y

•

• •

• ••

• •

• •

Figure 6 The proof of Lemma 13. Vertices colored black and red are the marked and unmarked
vertices in the cell, respectively. In the first figure the union of internal vertices of Q and Q′ is the
set of unmarked vertices in the cell, and the second figure depicts how to reroute to make the cell
nice. The third figure illustrate the case when both the endpoints x and y of the path P are in the
cell, and the fourth figure depicts how to reroute to make the cell nice.

let x, y be its endpoints (resp. no endpoints). (Notice that if x is unmarked, then because
every edge {u, v} of P where f(u) 6= f(v) is good, it must be that x is an endpoint of a
nice subpath. The same holds for y.) We next show that for every cell (i, j) ∈ [t]× [t], P

has at most one nice (i, j)-subpath. Because either V (P) ⊆ f−1(i, j) or every vertex in
(V (P) ∩ f−1(i, j)) \ (Mark?(i, j) ∪ {x, y}) (resp. (V (P) ∩ f−1(i, j)) \ Mark?(i, j)) must be
an internal vertex of a nice subpath (since every edge {u, v} of P where f(u) 6= f(v) is
good), this would imply that every cell (i, j) ∈ [t]× [t] is nice, which will complete the proof.
Targeting a contradiction, suppose that P yields some cell (i, j) such that there exist two
distinct subpaths Q, Q′ of P that are (i, j)-nice (see Fig. 6), that is, each of them has both
endpoints in Mark?(i, j) ∪ ({x, y} ∩ f−1(i, j)) (resp. Mark?(i, j)) and the set of its internal
vertices is a subset of f−1(i, j)\Mark?(i, j) that is either non-empty or some endpoint belongs
to {x, y} ∩ (f−1(i, j) \Mark?(i, j)).

Note that if Q and Q′ intersect, then they intersect only at their endpoints. Define P̂ by
removing from P all the internal vertices of Q′ as well as its endpoint in f−1(i, j)\Mark?(i, j)
if such an endpoint exists (in which case P is a path and this endpoint it is also an endpoint
of P), and inserting them arbitrarily between the vertices of Q (where multiple vertices
can be inserted between two vertices); see Fig. 6. By Property 1 in Definition 2, we have
that P̂ is also a path (resp. cycle). Clearly, |V (P̂)| = |V (P)| ≥ k, and it is also directly
implied by the construction that P̂ also has the property that every edge {u, v} ∈ E(P̂)
where f(u) 6= f(v) is good (since we did not make any change with respect to the set of
edges that cross different cells). Notice that each subpath that is nice with respect to P̂ is
either the subpath obtained by merging Q and Q′ or a subpath that also exists in P and is
therefore also a nice subpath with respect to P . Therefore, P̂ has one fewer nice subpath
than P , which contradicts the minimality of P . J

We now state the main lemma of this section, whose proof is given in the full version [34].

I Lemma 14. Let G be a clique-grid with representation f that has a path (resp. cycle) on
at least k vertices. Then, G also has a path (resp. cycle) P on at least k vertices with the
following property: every cell (i, j) ∈ [t]× [t] is good.

4 The Algorithm

Our algorithm is based on a reduction of Long Path (resp. Long Cycle) on unit disk graphs
to the weighted version of the problem, called Weighted Long Path (resp. Weighted
Long Cycle), on unit disk graphs of treewidth O(

√
k). In Weighted Long Path

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:13

•
•

•

•• •
•

•

••

•
•

•

••

y•

•

•• ••
••x

• •
•

•

•• •
•

•

••

•
•

•

••

•

•

•• ••
••

y

x

•

Figure 7 The graphs G′ and G? constructed from the graph G in Figure 1 are depicted on the
left side and right side figures, respectively. Here, w(x) = 2, w(y) = 3, and for all z ∈ V (G′) \ {x, y},
w(z) = 1.

(resp. Weighted Long Cycle), we are given a graph G with a weight function w : V (G)→
N and an integer k ∈ N, and the objective is to determine whether G has a path (resp. cycle)
whose weight, defined as the sum of the weights of its vertices, is at least k.

The following proposition will be immediately used in our algorithm.

I Proposition 15 ([10, 29]). Weighted Long Path and Weighted Long Cycle are
solvable in time 2O(tw)n where tw is the treewidth of the input graph.

Algorithm Specification. We call our algorithm ALG. Given an instance (G, k) of Long
Path (resp. Long Cycle) on unit disk graphs, it works as follows.
1. Use Proposition 3 to obtain a representation f : V (G)→ [t]× [t] of G.
2. Use Observation 6 to compute Mark?(i, j) for every cell (i, j) ∈ [t] × [t]. Let Mark? =⋃

(i,j)∈[t]×[t] Mark?(i, j).
3. Let G′ be the graph defined as follows (see Fig. 7). For any cell (i, j) ∈ [t]× [t], let c(i,j)

denote a vertex in f−1(i, j) \Mark?(i, j) (chosen arbitrarily), where if no such vertex
exists, let c(i,j) = nil. Then, V (G′) = Mark? ∪ ({c(i,j) : (i, j) ∈ [t] × [t]} \ {nil}) and
E(G′) = E(G[V (G′)]). Because G′ is an induced subgraph of G, it is a unit disk graph.

4. Define w : V (G′)→ N as follows. For every v ∈ V (G′), if v = c(i,j) for some (i, j) ∈ [t]×[t]
then w(v) = |f−1(i, j) \Mark?(i, j)|, and otherwise w(v) = 1.

5. Let G? be the graph defined as follows (see Fig. 7): V (G?) = V (G′) and E(G?) =
E(G′) \ {{c(i,j), v} ∈ E(G′) : (i, j) ∈ [t]× [t], v /∈ f−1(i, j)}.

6. Let ∆ be the maximum degree of G?. Use Proposition 4 to decide either tw(G?) >

100∆3
√

2k or tw(G?) ≤ 500∆3
√

2k.
7. If it was decided that tw(G?) > 100∆3

√
2k, then return Yes and terminate.

8. Use Proposition 15 to determine whether (G?, w, k) is a Yes-instance of Weighted Long
Path (resp. Weighted Long Cycle). If the answer is positive, then return Yes, and
otherwise return No.

Analysis. We first analyze the running time of the algorithm.

I Lemma 16. The time complexity of ALG is upper bounded by 2O(
√

k)(n + m).

Proof. By Proposition 3 and Observation 6, Steps 1 and 2 are performed in time O(n + m).
By the definition of G′, w and G?, they can clearly be computed in time O(n + m) as well
(Steps 3, 4 and 5). Moreover, Step 7 is done in time O(1). By Proposition 4, Step 6 is

SoCG 2020

44:14 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

performed in time 2O(100∆3√2k)n = 2O(∆3√k)n. Thus, because we reach Step 8 only if we
do not terminate in Step 7, we have that by Proposition 15, Step 8 is performed in time
2O(tw(G?))n = 2O(500∆3√2k) = 2O(∆3√k)n.

Thus, to conclude the proof, it remains to show that ∆ = O(1). Let ∆′ be the maximum
degree of G′. Since G? is a subgraph of G′, ∆ ≤ ∆′. Thus, to prove ∆ = O(1), it is
enough to prove that ∆′ = O(1). To this end, let M = max(i,j)∈[t]×[t] |(f−1(i, j) ∩ V (G′)) ∪
({c(i,j)} \ {nil})|. Since G′ is a clique-grid, by Property 2 in Definition 2, we have that
∆′ ≤ M25, hence it suffices to show that M = O(1). The definition of G′ yields that
M ≤ max(i,j)∈[t]×[t] |Mark?(i, j)|+ 1. By Observation 6, max(i,j)∈[t]×[t] |Mark?(i, j)| = O(1),
and therefore indeed M = O(1). J

Finally, we prove that the algorithm is correct.

I Lemma 17. ALG solves Long Path and Long Cycle on unit disk graphs correctly.

Proof. Let (G, k) be an instance of Long Path or Long Cycle on unit disk graphs. By
the specification of the algorithm, to prove that it solves (G, k) correctly, it suffices to prove
that the two following conditions are satisfied.
1. If tw(G?) > 100∆3

√
2k, then (G, k) is a Yes-instance of Long Path and Long Cycle.

2. (G, k) is a Yes-instance of Long Path (resp. Long Cycle) if and only if (G?, w, k) is a
Yes-instance of Weighted Long Path (resp. Weighted Long Cycle).

The proof of satisfaction of the first condition is simple and can be found in [34].
Now, we turn to prove the second condition. In one direction, suppose that (G, k) is

a Yes-instance of Long Path (resp. Long Cycle). Then, by Lemma 14, G has a path
(resp. cycle) P on at least k vertices with the following property: every cell (i, j) ∈ [t]× [t] is
good. Notice that every maximal subpath Q of P that consists only of unmarked vertices
satisfies (i) V (Q) = f−1(iQ, jQ) \Mark?(iQ, jQ) for some cell (iQ, jQ) ∈ [t] × [t], and (ii)
the endpoints of Q are adjacent in P to vertices in f−1(iQ, jQ) (unless Q = P). Obtain P ?

from P as follows: every maximal subpath Q of P that consists only of unmarked vertices is
replaced by c(iQ,jQ). (Notice that c(iQ,jQ) 6= nil because V (Q) 6= ∅.) Because of Property
(ii) above and Property 1 in Definition 2, we immediately have that P ? is a path (resp. cycle)
in G?. Moreover, by Property (i) above and the definition of the weight function w (in Step
4), each subpath Q is replaced by a vertex c(iQ,jQ) whose weight equals |V (Q)|. Because
|V (P)| ≥ k, we have that P ? is a path (resp. cycle) of weight at least k in G?. Thus,
(G?, w, k) is a Yes-instance of Weighted Long Path (resp. Weighted Long Cycle).

In the other direction, suppose that (G?, w, k) is a Yes-instance of Weighted Long
Path (resp. Weighted Long Cycle). Then, G? has a path (resp. cycle) P ? of weight
at least k. Obtain P from P ? by replacing each vertex of the form c(i,j) ∈ V (P) for some
(i, j) ∈ [t]× [t] by a path Q whose vertex set is f−1(i, j) \Mark?(i, j) (the precise ordering
of the vertices on this path is arbitrary). Notice that because all edges in {{c(i,j), v} ∈
E(G′) : (i, j) ∈ [t] × [t], v /∈ f−1(i, j)} were removed from G′ to derive G?, each vertex
of the form c(i,j) ∈ V (P) for some (i, j) ∈ [t] × [t] is adjacent in P ? only to vertices in
Mark?(i, j). Therefore, by Property 1 in Definition 2, we have that P is a path (resp. cycle)
in G. Moreover, by the definition of the weight function w (in Step 4), each vertex c(i,j) was
replaced by w(c(i,j)) vertices. Because the weight of P ? is at least k, we have that P is a
path (resp. cycle) on at least k vertices in G. Thus, (G, k) is a Yes-instance of Long Path
(resp. Long Cycle). J

Thus, Theorem 1 follows from Lemmas 16 and 17.

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:15

References
1 Jochen Alber and Jiří Fiala. Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. In Foundations of Information Technology in the
Era of Network and Mobile Computing, pages 26–37. Springer, 2002.

2 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Süleyman Cenk
Sahinalp. Biomolecular network motif counting and discovery by color coding. In Proceedings
16th International Conference on Intelligent Systems for Molecular Biology (ISMB), Toronto,
Canada, July 19-23, 2008, pages 241–249, 2008. doi:10.1093/bioinformatics/btn163.

3 Noga Alon and Shai Gutner. Balanced hashing, color coding and approximate count-
ing. In Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009,
Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, pages 1–16, 2009.
doi:10.1007/978-3-642-11269-0_1.

4 Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications.
ACM Trans. Algorithms, 6(3):54:1–54:12, 2010. doi:10.1145/1798596.1798607.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. Assoc. Comput. Mach., 42(4):844–
856, 1995.

6 Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized
counting problems. In Algorithms and Computation, 13th International Symposium, ISAAC
2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 453–464, 2002.
doi:10.1007/3-540-36136-7_40.

7 Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding detours is
fixed-parameter tractable. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, pages 54:1–54:14, 2017.

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. J. Comput. Syst. Sci., 87:119–139, 2017.

9 Andreas Björklund, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Approximate
counting of k-paths: Deterministic and in polynomial space. In 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,
pages 24:1–24:15, 2019.

10 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

11 Hans L Bodlaender, Rodney G Downey, Michael R Fellows, and Danny Hermelin. On problems
without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009.

12 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016.

13 Cornelius Brand, Holger Dell, and Thore Husfeldt. Extensor-coding. In Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, June 25-29, 2018, pages 151–164, 2018. doi:10.1145/3188745.3188902.

14 Heinz Breu and David G Kirkpatrick. Unit disk graph recognition is np-hard. Computational
Geometry, 9(1-2):3–24, 1998.

15 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

16 Jianer Chen, Joachim Kneis, Songjian Lu, Daniel Mölle, Stefan Richter, Peter Rossmanith,
Sing-Hoi Sze, and Fenghui Zhang. Randomized divide-and-conquer: Improved path, matching,
and packing algorithms. SIAM Journal on Computing, 38(6):2526–2547, 2009.

17 Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs. Discrete
Mathematics, 86(1-3):165–177, 1990.

18 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

SoCG 2020

https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1007/978-3-642-11269-0_1
https://doi.org/10.1145/1798596.1798607
https://doi.org/10.1007/3-540-36136-7_40
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1145/3188745.3188902
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1007/978-3-319-21275-3

44:16 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

19 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 150–159, 2011.

20 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for eth-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 574–586, 2018.

21 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. jacm, 52(6):866–893, 2005.

22 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. Comput. J., 51(3):292–302, 2008. doi:10.1093/comjnl/bxm033.

23 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient exact
algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica, 58(3):790–
810, 2010. doi:10.1007/s00453-009-9296-1.

24 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

25 Adrian Dumitrescu and János Pach. Minimum clique partition in unit disk graphs. Graphs
and Combinatorics, 27(3):399–411, 2011.

26 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004.

27 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi. Going far from degeneracy. In 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, pages 47:1–47:14, 2019.

28 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi. Parameterization above a multiplicative guarantee. In 11th Innovations in
Theoretical Computer Science, ITCS 2020 (To Appear), 2020.

29 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016.

30 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. jacm,
63(4):29, 2016. doi:10.1145/2886094.

31 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Long
directed (s, t)-path: FPT algorithm. Inf. Process. Lett., 140:8–12, 2018.

32 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Decomposition of map graphs with applications. In 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece., pages 60:1–60:15,
2019.

33 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discrete &
Computational Geometry, 62(4):879–911, 2019.

34 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Eth-tight algorithms for long path and cycle on unit disk graphs. CoRR, abs/2003.00938,
2020. arXiv:2003.00938.

35 Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Bidimensionality and geometric
graphs. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1563–1575, 2012.

36 Harold N Gabow and Shuxin Nie. Finding a long directed cycle. ACM Transactions on
Algorithms (TALG), 4(1):7, 2008.

https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1007/s00453-009-9296-1
https://doi.org/10.1145/2886094
http://arxiv.org/abs/2003.00938

F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, and M. Zehavi 44:17

37 William K Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68(12):1497–1514, 1980.

38 Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (turing) kernelization. Algorithmica, 71(3):702–730, 2015.
doi:10.1007/s00453-014-9910-8.

39 Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-coding
with applications to signaling pathway detection. Algorithmica, 52(2):114–132, 2008.

40 Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S. S. Ravi, Daniel J.
Rosenkrantz, and Richard Edwin Stearns. NC-approximation schemes for NP- and PSPACE-
hard problems for geometric graphs. J. Algorithms, 26(2):238–274, 1998.

41 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. Journal of Computer and System Sciences, 63(4):512–530, 2001.

42 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM J. Comput., 11(4):676–686, 1982. doi:10.1137/0211056.

43 Hiro Ito and Masakazu Kadoshita. Tractability and intractability of problems on unit disk
graphs parameterized by domain area. In Proceedings of the 9th International Symposium on
Operations Research and Its Applications (ISORA10), pages 120–127, 2010.

44 Bart M. P. Jansen. Polynomial kernels for hard problems on disk graphs. In Proceedings of the
12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 6139,
pages 310–321. Springer, 2010.

45 Bart M. P. Jansen, László Kozma, and Jesper Nederlof. Hamiltonicity below dirac’s condition.
In Graph-Theoretic Concepts in Computer Science - 45th International Workshop, WG 2019,
Vall de Núria, Spain, June 19-21, 2019, Revised Papers, pages 27–39, 2019.

46 Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna. Turing kernelization for finding
long paths in graph classes excluding a topological minor. Algorithmica, 81(10):3936–3967,
2019.

47 Karl Kammerlander. C 900-an advanced mobile radio telephone system with optimum
frequency utilization. IEEE journal on selected areas in communications, 2(4):589–597, 1984.

48 Ross J. Kang and Tobias Müller. Sphere and dot product representations of graphs. Discrete
& Computational Geometry, 47(3):548–568, 2012. doi:10.1007/s00454-012-9394-8.

49 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings of
the 35th International Colloquium on Automata, Languages and Programming (ICALP 2008),
volume 5125 of Lecture Notes in Computer Science, pages 575–586, 2008.

50 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98–105, 2016. doi:10.1145/2742544.

51 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018.

52 Burkhard Monien. How to find long paths efficiently. In North-Holland Mathematics Studies,
volume 109, pages 239–254. Elsevier, 1985.

53 George L Nemhauser and Leslie Earl Trotter. Vertex packings: structural properties and
algorithms. Mathematical Programming, 8(1):232–248, 1975.

54 Fahad Panolan, Saket Saurabh, and Meirav Zehavi. Contraction decomposition in unit
disk graphs and algorithmic applications in parameterized complexity. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1035–1054, 2019.

55 Christos H. Papadimitriou and Mihalis Yannakakis. On limited nondeterminism and the
complexity of the V.C dimension (extended abstract). In Proceedings of the Eigth Annual
Structure in Complexity Theory Conference, San Diego, CA, USA, May 18-21, 1993, pages
12–18, 1993.

56 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
J. Comput. Syst. Sci., 82(3):488–502, 2016.

SoCG 2020

https://doi.org/10.1007/s00453-014-9910-8
https://doi.org/10.1137/0211056
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1145/2742544

44:18 ETH-Tight Algorithms for Long Path and Cycle on Unit Disk Graphs

57 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS),
pages 232–243. IEEE Computer Society, 1998.

58 Dekel Tsur. Faster deterministic parameterized algorithm for k-path. Theor. Comput. Sci.,
790:96–104, 2019.

59 DW Wang and Yue-Sun Kuo. A study on two geometric location problems. Information
processing letters, 28(6):281–286, 1988.

60 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,
2009.

61 Yu-Shuan Yeh, J Wilson, and S Schwartz. Outage probability in mobile telephony with
directive antennas and macrodiversity. IEEE journal on selected areas in communications,
2(4):507–511, 1984.

62 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms - ESA 2015 - 23rd
Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
1037–1049, 2015. doi:10.1007/978-3-662-48350-3_86.

63 Meirav Zehavi. A randomized algorithm for long directed cycle. Inf. Process. Lett., 116(6):419–
422, 2016.

https://doi.org/10.1007/978-3-662-48350-3_86

A Near-Linear Time Approximation Scheme for
Geometric Transportation with Arbitrary Supplies
and Spread
Kyle Fox
Department of Computer Science, The University of Texas at Dallas, TX, USA
kyle.fox@utdallas.edu

Jiashuai Lu
Department of Computer Science, The University of Texas at Dallas, TX, USA
jiashuai.lu@utdallas.edu

Abstract
The geometric transportation problem takes as input a set of points P in d-dimensional Euclidean
space and a supply function µ : P → R. The goal is to find a transportation map, a non-negative
assignment τ : P × P → R≥0 to pairs of points, so the total assignment leaving each point is equal
to its supply, i.e.,

∑
r∈P

τ(q, r)−
∑

p∈P
τ(p, q) = µ(q) for all points q ∈ P . The goal is to minimize

the weighted sum of Euclidean distances for the pairs,
∑

(p,q)∈P×P
τ(p, q) · ||q − p||2.

We describe the first algorithm for this problem that returns, with high probability, a (1 + ε)-
approximation to the optimal transportation map in O(npoly(1/ε) polylogn) time. In contrast to
the previous best algorithms for this problem, our near-linear running time bound is independent of
the spread of P and the magnitude of its real-valued supplies.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Network flows

Keywords and phrases Transportation map, earth mover’s distance, shape matching, approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.45

Related Version The full version of the paper is available at https://arxiv.org/abs/1907.04426.

Acknowledgements The authors would like to thank Hsien-Chih Chang for some helpful discussions
that took place with the first author at Dagstuhl seminar 19181 “Computational Geometry”. We
would also like to thank the anonymous reviewers for many helpful comments and suggestions.

1 Introduction

We consider the geometric transportation problem in d-dimensional Euclidean space
for any constant d. In this problem, we are given a set P ⊂ Rd of n points. Each point
is assigned a real supply µ : P → R where

∑
p∈P µ(p) = 0. A transportation map is a

non-negative assignment τ : P × P → R≥0 to pairs of points such that for all q ∈ P we have∑
r∈P τ(q, r) −

∑
p∈P τ(p, q) = µ(q). The cost of the transportation map is the weighted

sum of Euclidean distances across all pairs, i.e.
∑

(p,q)∈P×P τ(p, q) · ||q − p||2. Our goal is to
find a transportation map of minimum cost, and we denote this minimum cost as Cost(P, µ).

One may imagine the points with positive supply as piles of earth and those with negative
supplies as holes in the ground. A transportation map describes how to transfer the earth
to the holes without overfilling any hole, and its cost is the total number of “earth-miles”
used to do the transfer. Consequently, Cost(P, µ) is often referred to as the earth mover’s
distance, although it can also be called the 1-Wasserstein distance between measures over
the positively and negatively supplied points. The continuous version of the problem is

© Kyle Fox and Jiashuai Lu;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 45; pp. 45:1–45:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kyle.fox@utdallas.edu
mailto:jiashuai.lu@utdallas.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.45
https://arxiv.org/abs/1907.04426
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 A Near-Linear Time Approximation Scheme for Geometric Transportation

sometimes called the optimal transport or Monge-Kantorovich problem, and it has been
studied extensively by various mathematics communities [22]. The discrete version we study
here has applications in shape matching, image retrieval, and graphics [5, 7–9,16,21].

Computing an optimal transportation map is easily done in polynomial time by reduction
to the uncapacitated minimum cost flow problem in a complete bipartite graph between
points with positive supply and those with negative supply. The graph has as many as
Ω(n2) edges, so this approach takes O(n3 polylogn) time using a combinatorial minimum
cost flow algorithm of Orlin [15]. Assuming integral supplies with absolute values summing
to U , we can use an algorithm of Lee and Sidford [14] instead to reduce the running time to
O(n2.5 polylog (n,U)). Taking advantage of the geometry inherent in the problem, Agarwal
et al. [1] describe how to implement Orlin’s algorithm for arbitrary supplies to find the
optimal transportation map in O(n2 polylogn) time, but only for d = 2.

We can significantly reduce these running times by accepting a small loss in optimality.
Many results along this line focus on estimating just the earth mover’s distance without
actually computing the associated transportation map. Indyk [11] describes an O(npolylogn)
time algorithm that estimates the earth mover’s distance within a constant factor assuming
unit supplies. Andoni et al. [3] describe an O(n1+o(1)) time algorithm for arbitrary supplies
that estimates the cost within a 1 + ε factor (the dependency on ε is hiding in the o(1)).
As pointed out by Khesin, Nikolov, and Paramonov [12], a 1 + ε factor estimation of the
distance is possible in O(n1+o(1)ε−O(d)) time (without the o(1) hiding dependencies on ε) by
running an approximation algorithm for minimum cost flow by Sherman [19] on a sparse
Euclidean spanner over the input points. However, it is not clear how to extract a nearly
optimal transportation map using the spanner’s flow.

Finding an actual transportation map may be more difficult. Sharathkumar and Agar-
wal [17] describe a (1 + ε)-approximation algorithm for the integral supply case (i.e., an
algorithm returning a map of cost at most (1 + ε) ·Cost(P, µ)) in O(n

√
U polylog (U, ε, n))

time. Agarwal et al. [1] describe a randomized algorithm with expected O(log2(1/ε))-
approximation ratio running in O(n1+ε) expected time for the arbitrary supply case and a
deterministic O(n3/2ε−d polylog (U, n)) time (1+ε)-approximation algorithm for the bounded
integral supply case. Lahn et al. [13] describe a O(n(Cδ)2 polylog (U, n)) (C = maxp∈P |µ(p)|)
time algorithm computing a map of cost at most Cost(P, µ) + δU . In last year’s SoCG
proceedings, Khesin et al. [12] described a randomized (1 + ε)-approximation algorithm for
the arbitrary supply case running in O(nε−O(d) logO(d)(Sp(P)) log(n)) time, where Sp(P) is
the spread of the point set P .1 The spread (also called aspect ratio) of P is the ratio of the di-
ameter of P to the smallest pairwise distance between points in P . As Khesin et al. point out,
one can reduce an instance with unbounded spread but bounded integral supplies to the case
of bounded spread to get a (1 + ε)-approximation running in O(nε−O(d) logO(d)(U) log2(n))
time, generalizing a near-linear time (1 + ε)-approximation algorithm by Sharathkumar and
Agarwal [18] for the unit supply case. The unit supply case is sometimes referred to as
the geometric bipartite matching problem. Agarwal and Sharathkumar [2] also describe a
deterministic (1/ε)-approximation algorithm for geometric bipartite matching that runs in
O(n1+ε logn) time.

Despite these successes, prior work still does not include a near-linear time (1 + ε)-
approximation algorithm for the general case of arbitrary spread and real valued supplies.
Often, an algorithm designed for bounded spread cases can be extended to work with cases of

1 Khesin et al. [12] and Agarwal et al. [1] present geometric transportation with integer supplies, but their
unbounded supply algorithms work without modification when presented with real valued supplies.

K. Fox and J. Lu 45:3

arbitrary spread. For example, one might substitute in compressed quadtrees [10, Chapter 2]
in places where the bounded spread algorithm uses standard (uncompressed) quadtrees.
This straightforward approach does not appear to work for the geometric transportation
problem, however. As detailed below, Khesin et al. [12] use a quadtree to build a sparse
graph as part of a reduction to the minimum cost flow problem. Both their running time
and approximation analysis rely heavily on the tree having low depth when the spread is
bounded. Unfortunately, a compressed quadtree is only guaranteed to have small size; the
depth can still be linear in the number of leaves. One may also try the strategy of separating
out groups of points P ′ that are much closer to each other than to the rest of the point
set P , routing as much supply as possible within P ′, and then satisfying what remains of
the supplies in P ′ by treating P ′ as a single point. In fact, the result described below does
employ a variant of this strategy (see Section 2.3). However, the simplified instances of the
problem one gets using this strategy still yield compressed quadtrees of very high depth.

1.1 Our results and approach
We describe a randomized (1 + ε)-approximation algorithm for the geometric transportation
problem that runs in near-linear time irrespective of the spread of P or the supplies of its
points. Our specific result is spelled out in the following theorem. We say an event occurs
with high probability if it occurs with probability at least 1− 1/nc for some constant c.

I Theorem 1.1. There exists a randomized algorithm that, given a set of n points P ∈ Rd
and a supply function µ : P → R, runs in time O(nε−O(d) logO(d) n) and with high probability
returns a transportation map with cost at most (1 + ε) ·Cost(P, µ).

At a high level, our algorithm follows the approach laid out by Khesin et al. [12] for
the bounded spread case. However, removing the running time’s dependency on the spread
introduces fundamental and technical issues to nearly every step in their approach.

Let ε0 be a function of ε and P to be specified later. Taking a cue from prior work on
geometric transportation and its specializations [3,18], Khesin et al.’s algorithm begins by
building a random sparse graph over O(nε−O(d)

0 log Sp(P)) vertices including the points in
P . In expectation, the shortest path distance between any pair of points in P is maintained
up to an O(ε0 log Sp(P)) factor, so computing a transportation map is done by setting ε0 to
O(ε/(log Sp(P)) and running a minimum cost flow algorithm on the sparse graph.

The graph is constructed by first building a randomly shifted quadtree over P . The
quadtree is constructed by surrounding P with an axis-aligned box called a cell, partitioning it
into 2d equal sized child cells, and recursively building a quadtree in each child cell; the whole
tree has depth log Sp(P). After building the quadtree, they add εd0 Steiner vertices within
each cell along with a carefully selected set of edges. While other methods are known for
constructing such a sparse graph even without Steiner vertices [6], the hierarchical structure
of Khesin et al.’s construction is necessary for extracting the transportation map after a
minimum cost flow is computed. Observe that not only is the quadtree’s size dependent on
Sp(P), but so is the number of Steiner vertices added to each cell.

As suggested earlier, the natural approach for reducing the quadtree’s size is to remove
subtrees containing no members of P and to compress the tree by replacing each maximal
path of cells with exactly one non-empty child each with a single link to the lowest cell in
the path. This approach does result in a quadtree of size O(n), but its depth could also be
as large as Ω(n). This large depth introduces many issues, the worst of which is that we
can only claim shortest path distances to be maintained up to an O(ε0n) factor. We cannot
afford to set ε0 to ε/n, because the sparse graph would have O(nd) vertices!

SoCG 2020

45:4 A Near-Linear Time Approximation Scheme for Geometric Transportation

The solution to avoiding such a large increase in expected distances is to use the idea of
moats around the points as done in the almost-linear time constant factor approximation
algorithm of Agarwal et al. [1]. In short, we modify the quadtree construction so that, with
high probability, all points are sufficiently far away from the boundary of every quadtree cell
they appear in. Assuming this condition holds, there are only a limited number of quadtree
“levels” at which a pair of points can be separated, and we use this fact to show distances
increase by only an O(ε0 logn) factor in expectation. It turns out modifying the quadtree
construction correctly is a surprisingly subtle task. Guaranteeing the moats are avoided
potentially requires us to perform independent random shifts at several places throughout
the quadtree. However, we need to be selective with where the independent shifts occur so
that we can successfully analyze the expected distances between points in the sparse graph.

The second stage of Khesin et al.’s [12] algorithm solves the minimum cost flow problem
in the sparse graph using a framework of Sherman [19]. First, they encode the minimum cost
flow problem as finding a flow vector f of minimum cost subject to linear constraints Af = b

where A is the vertex-edge incidence matrix and b is a supply vector (not necessarily equal
to µ). Sherman’s framework involves repeatedly finding flows f of approximately optimal
cost that approximately satisfy such constraints. Each iteration of this algorithm requires
an application of A and AT to a pair of vectors, and the number of iterations needed in
this approach is polynomial in the condition number of A. Unfortunately, A may not be
well-conditioned, so Khesin et al. describe a preconditioner matrix B such that BA has low
condition number and is still sparse. They proceed to use Sherman’s framework under the
equivalent constraints BAf = Bb.

One interpretation of Khesin et al.’s [12] preconditioner is that it describes a way to
charge each Steiner vertex an amount based on the supply of “descendent” vertices below
it so that the sum of charges bound the cost of an optimal flow from below. Consequently,
both the number of non-zero entries in each column of B and the condition number of B are
proportional to the quadtree’s depth.

The high depth of our quadtree again appears to cause issues. However, our use of
moats implies additional structure to the sparse graph that we can take advantage of. Our
preconditioner B is based on essentially the same charging scheme as Khesin et al., but
thanks to the moats, we prove the condition number remains proportional to O(ε−1

0 log(n/ε0))
instead of the quadtree depth. This charging scheme still results in a precondition B that is
not sparse, so a naive implementation of Sherman’s [19] framework may take quadratic time
per iteration. To address this issue, we describe a pair of algorithms based on the hierarchical
structure of the graph that let us apply both BA and its transpose in only linear time.

The final stage of the algorithm is the extraction of an approximately minimum cost
transportation map from an approximately minimum cost flow in the sparse graph. Khesin
et al.’s [12]’s original procedure modifies the graph’s flow by iteratively reassigning flow to
travel directly from input points to each of their many ancestor Steiner vertices or vice versa.
We use binary search tree based data structures in a novel way to do flow reassignments in
bulk, allowing us to extract the transportation map in time near-linear in the graph size.

Our result relies on a computation model where powers of 2, base 2 logarithms, floors,
and the first non-zero bit of arbitrary real numbers can be computed in constant (or at least
polylogarithmic) time. These are standard operations when working with quadtrees (see
Bern et al. [4] and Har-Peled [10, Chapter 2]) and are only used so we may quickly compute
the location of points within arbitrary grids. In particular, we perform only additions and
multiplications when working with values derived from distances and supplies. Our results
(and those of Khesin et al. [12]) can be extended to work with any Lp metric instead of just

K. Fox and J. Lu 45:5

Euclidean distance. The rest of the paper proceeds as follows. We describe our sparse graph
construction and describe the reduction to minimum cost flow in Section 2. We describe our
preconditioner and its use Section 3. Finally, we describe how to extract the approximately
optimal transportation map from a flow on the sparse graph in Section 4.

2 Reduction to minimum cost flow in a sparse graph

In this section, we present a way to build a sparse graph G∗ = (V ∗, E∗) based on P and reduce
the transportation problem to finding a minimum cost flow in this sparse graph. Similar to
the one presented by Khesin et al. [12], our sparse graph G∗ is based on a randomly shifted
quadtree whose cells have been subdivided into smaller subcells. However, the quadtree
we use is compressed under certain conditions to guarantee the number of nodes in it is
nearly linear in n. Also, we independently shift certain subtrees to guarantee a low expected
distortion for point-to-point distances.

2.1 Construction of the sparse graph
Given a point set P ∈ Rd of size n, we say two disjoint subsets A and B of P are s-well
separated for some s > 0 if A and B can be enclosed within two Euclidean balls of radius
r such that the distance between these two balls are at least sr. For any constant s, we
can compute a collection of O(n) distinct pairs of subsets of P called an s-well separated
pair decomposition(s-WSPD) of P such that, every pair of subsets in this collection is s-well
separated and every pair of points in P × P is separated in some unique pair of subsets in
this s-WSPD [6]. The time to compute the s-WSPD is O(n logn).

Our sparse graph construction begins by computing a 2−WSPD for P containing ` = O(n)
s-well separated pairs. Let Z = 〈z1, z2, . . . , z`〉 be a sequence of distances sorted in decreasing
order so that the ith well separated pair (A,B) contains two points p ∈ A, q ∈ B such
that zi = ||q − p||2. By definition, the distance between any pair of points separated by
the ith pair (A,B) is in [zi

3 , 3zi]. To avoid having to handle boundary conditions later,
we append z`+1 = 0 to the end of this sequence. Also, we compute a sub-sequence Z ′ of
sufficiently far apart distances where Z ′ includes all zi, 1 ≤ i ≤ ` such that zi > 18

√
dn4

ε0
zi+1.

We now build a variant of the compressed quadtree on P we call a conditionally-
compressed quadtree. Let T ∗ denote this tree. Let �P be the minimum bounding square
of P . We fix an ε0 = O(ε/ logn) such that 1/ε0 is a power of 2. Suppose the side length of
�P is ∆∗. Let � be a square of side length 3∆∗ such that �P and � are concentric. We
shift � by a vector chosen uniformly at random from [0,∆∗)d. See Figure 1, left.

Each node of T ∗ is a square cell in Rd. Set � to be the root of T ∗, and let z be the first
element in Z ′. We recursively process each cell C as follows. Suppose C has side length ∆
and the subset of P in C is P ′. Let ∆P ′ be the side length of the minimum bounding square
�P ′ of P ′.

1) If |P ′| = 1, then C is a leaf node.
2) If |P ′| > 1 and ∆P ′ <

zε0
3
√
d
, we find the minimum bounding square �P ′ of P ′. Let ∆P ′ be

the side length of �P ′ . We recursively build a conditionally-compressed quadtree over P ′
with an independently shifted root square �′ with side length 3∆P ′ that is concentric
to �P ′ before the shift. We connect the root of this sub-quadtree to T ∗ as a child of
C. We update the value of z for this recursive construction to largest z′ ∈ Z ′ such that
z′ ≤ 3

√
d∆P ′ . This value can be found via binary search over Z ′.

SoCG 2020

45:6 A Near-Linear Time Approximation Scheme for Geometric Transportation

P

∆∗

3∆∗

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 1 Left: Randomly shifting a box around P . Right: The quadtree cells form a hierarchy.
Each cell is partitioned into ε−d

0 sub cells, and each subcell has a single net point at its center.

3) If |P ′| > 1 and ∆P ′ ≥ zε0
3
√
d
, we do the following. Let x be the largest integer such that

the grid with cell side length ∆ · 2−x aligned with C contains P ′ within a single cell C ′.
Let ∆′ be the side length of C ′.
a) If ∆′ < ∆ε0

n2 , we connect C ′ as the sole child of C.
b) Otherwise, we evenly divide C into 2d squares in Rd each of side length ∆

2 , and make
each square that contains at least one point of P ′ a child cell of C.

Conditionally-compressed quadtree T ∗ can be constructed efficiently using standard
techniques. See Appendix C for details.

I Lemma 2.1. Let m be an upper bound on the number of nodes in T ∗. Conditionally-
compressed quadtree T ∗ can be constructed in O(m+ n logn) time.

We define two types of sub-quadtrees of T ∗. A singly-shifted sub-quadtree is a
sub-quadtree consisting of a cell C that either is the root of T ∗ or is randomly shifted
independently of its parent along with a maximal set of descendent cells of C that were not
shifted independently of C (i.e., Rule 2 was never applied to create descendent cells of C in
the sub-quadtree). A simple sub-quadtree is a sub-quadtree consisting of a cell C that
either is the root of T ∗, is randomly shifted independently of its parent, or is added as the
sole child of its parent via Rule 3a along with a maximal set of descendent cells of C created
by neither Rule 2 nor Rule 3a. Observe every singly-shifted sub-quadtree consists of one or
more complete simple sub-quadtrees.

For every cell C in T ∗, we perform a secondary subdivision on C. Let ∆C denote the
side length of C. We divide C into ε−d0 square sub-regions with equal side length ε0∆C . If
a sub-region of C contains a point p ∈ P , we say it is a subcell C̃ of C and we use C+ to
denote the set of subcells of C. Again, see Figure 1.

Utilizing an idea of Agarwal et al. [1], we define the moat of size h around a point p as
an axis-parallel square of side length h around p. Consider a randomly shifted grid with cells
of side length ∆. The probability of any of the grid lines hitting a moat of size 2∆

n4 around
any point p ∈ P is at most 2∆

n4 · n · d∆ = O(1
n3).

K. Fox and J. Lu 45:7

I Lemma 2.2. With probability at least 1−O((1/n) log(n/ε0)), the conditionally-compressed
quadtree T ∗ has the following properties:
1. The total number of cells is O(n log (n/ε0)).
2. Suppose cell C with side length ∆C contains p ∈ P and let C̃ be the subcell of C that

contains p. Then, p is at least ∆C

n4 distance away from any side of C and is at least ε0∆C

n4

distance away from any side of C̃. In other words, the moats of p with respect to the
uniform grids containing C and C̃ as cells do not touch the grid lines.

3. Let T ′ be any singly-shifted sub-quadtree of T ∗ constructed with a distance parameter z.
Every leaf cell of T ′ contains at most one point from any pair p, q ∈ P where ||q−p||2 ≥ z

3 ,
and no leaf cell of T ′ contains exactly one point from any pair p, q ∈ P where ||q−p||2 < z

3 .
4. Let T ′ be any simple sub-quadtree of T ∗, and let C ′ be a child cell of some leaf C of T ′.

Cell C ′ lies entirely within a subcell of C.

In the proof of Lemma 2.2, we observe from Rule 2 in T ∗’s construction that every cell of
the root singly-shifted sub-quadtree T0 comes from a set of O(n log(n/ε0)) grids. Therefore,
we can do a union bound over the probability that any one of these grids causes a violation
of Property 2. The remaining properties concerning cells of T0 and the simple sub-quadtrees
hanging immediately from its leaves either follow immediately from construction or as a
consequence of Property 2. The sub-quadtrees making up the remainder of T ∗ use their own
independent random shifts, so we can proceed with the proof inductively and take a union
bound over the failure probabilities of the sub-quadtrees. See Appendix C for details.

We assume from here on that the properties described above do hold, but T ∗ is still
randomly constructed conditional on those properties. We now build the sparse graph G∗
based on the decomposition.

For every cell C, we add a net point ν at the center of every subcell of C, and use NC̃
to denote the net point of a subcell C̃. We add O(ε−2d

0) edges to build a clique among net
points of subcells in C+. Furthermore, if C has a parent cell Cp, for each C̃ ∈ C+, there
exists a C̃p ∈ Cp+ such that C̃ is totally contained in C̃p, because 1/ε0 is power of 2. We
add an edge connecting NC̃p with NC̃ . We say C̃p is the parent subcell of C̃ and NC̃p is
the parent net point of NC̃ . Children subcells and children net points are defined
analogously. Edges are weighted by the Euclidean distance of their endpoints. Let C̃(p)
denote the smallest subcell containing p. As a last step, for every point p ∈ P , we add an
edge connecting p to NC̃(p).

Let V ∗ be the union of P and the set of all net points we just added, and let E∗ be the set
of edges we added above. In short, V ∗ = ∪C∈T {NC̃ : C̃ ∈ C+} ∪ P and E∗ = ∪C∈T∗{{uv :
u, v ∈ {NC̃ : C̃ ∈ C+}, u 6= v} ∪ {NC̃NC̃p , C̃ ∈ C+}} ∪

{
pNC̃(p), p ∈ P

}
. The sparse graph

upon which we solve minimum cost flow is denoted G∗ = (V ∗, E∗).

I Lemma 2.3. The expected distance between any pair p, q ∈ P in G∗ is at most
(1 +O(ε0 logn))||p− q||2.

Proof. Let distG∗(p, q) be the distance between p and q in G∗. Points p and q must be con-
nected through the net points of some cell containing both of them. Let C(p, q) be the lowest
common ancestor cell of p and q. Let NC(p,q)(p) and NC(p,q)(q) be the net points of subcells
of C(p, q) that contains p and q, respectively. Then distG∗(p, q) = distG∗(p,NC(p,q)(p)) +
distG∗(NC(p,q)(p), NC(p,q)(q)) + distG∗(q,NC(p,q)(q)). Value distG∗(p,NC(p,q)(p)) is the dis-
tance from NC(p,q)(p) to p through its descendant net points. The upper bound of it
is
∑
i≥1 2−i

√
dε0∆C(p,q) ≤

√
dε0∆C(p,q), because subcell side lengths at least halve every

level down in T ∗. Similarly,distG∗(q,NC(p,q)(q)) ≤
√
dε0∆C(p,q). By the triangle inequal-

ity, distG∗(NC(p,q)(p), NC(p,q)(q)) ≤ ||p − q||2 + ||p − NC(p,q)(p)||2 + ||q − NC(p,q)(q)||2 ≤
||p− q||2 +

√
dε0∆C(p,q). Then we have distG∗(p, q) ≤ ||p− q||2 + 3

√
dε0∆C(p,q).

SoCG 2020

45:8 A Near-Linear Time Approximation Scheme for Geometric Transportation

We define the extra cost to be Φp,q = distG∗(p, q)− ||p− q||2. Then Φp,q ≤ 3
√
dε0∆C(p,q),

and the expectation of the extra cost E(Φp,q) ≤ E(3
√
dε0∆C(p,q)) ≤ 3

√
dε0E(∆C(p,q)).

Assuming the properties from Lemma 2.2, we may infer that the subset of P defining the
singly-shifted sub-quadtree containing C(p, q) is determined only by P itself. In particular, the
set of possible shifts of the sub-quadtree’s root that don’t result in clipping any moats by its
cells are all equally likely. Let T be this singly-shifted sub-quadtree. Let ∆∗ be the side length
of the root cell of T and let λ = ||p− q||2. From Property 2 of Lemma 2.2, ∆C(p,q) ≤ n4λ,
because the grid of side length > n4λ

2 cannot separate p and q without clipping a moat.
Also, ∆C(p,q) ≥ λ√

d
so that p and q can fit in the same cell. Let x = argmaxi{2−i∆∗ : 2−i∆∗

≤ n4λ, i ∈ N} and y = argmini{2−i∆∗ : 2−i∆∗ ≥ λ√
d
, i ∈ N}. Possible values of ∆C(p,q) are

in {2−i∆∗ : x ≤ i ≤ y, i ∈ N}. We see p and q are separated by a grid with side length ∆
containing cells of T with probability at most

d · ∆∗

∆ · λ · 1
(1−O((1/n) log(n/ε0)))∆∗ = O

(
λ

∆

)
.

Let ei be the event that p and q are separated by the grid of size 2−i∆∗, we have

E(∆C(p,q)) =
∑

x≤i≤y,i∈N
P[ēi ∩ ei+1] · 2−i∆∗

≤
∑

x≤i≤y,i∈N
P[ei+1] · 2−i∆∗

≤
∑

x≤i≤y,i∈N
O

(
λ

2−i−1∆∗ · 2
−i∆∗

)
≤ O(logn) · λ

We conclude

E(distG∗(p, q)) = ||p− q||2 + E(Φp,q)

≤ ||p− q||2 + 3
√
dε0E(∆C(p,q))

≤ (1 +O(ε0 logn)) · ||p− q||2. J

2.2 Reduction to minimum cost flow
Having built our sparse graph, we now reduce to a minimum cost flow problem in G∗. We
model the minimum cost flow problem as follows to simplify later discussions.

Let G = (V,E) be an arbitrary undirected graph with V ∈ Rd. Let ~E be the set of edges
in E oriented arbitrarily. We call f ∈ R~E a flow vector or more simple, a flow. Let A be a
|V |× | ~E| vertex-edge incidence matrix where ∀(u, (v, w)) ∈ V × ~E, Au,(v,w) = 1 if u = v,
Au,(v,w) = −1 if u = w, and Au,(v,w) = 0 otherwise. Given f , we define the divergence
of a vertex v as (Af)v =

∑
(v,w) f(v,w) −

∑
(u,v) f(u,v). For simplicity of exposition, we may

sometimes refer to f(v,u) even though (u, v) ∈ ~E. In such cases, it is assumed f(v,u) = −f(u,v).
Let || · ||~E be a norm on R~E such that ||f ||~E =

∑
(u,v)∈~E |f(u,v)| · ||v − u||2. Let b ∈ RV

denote a set of divergences for all v ∈ V . We define an instance of uncapacitated minimum
cost flow as the pair (G, b). We seek a flow vector f minimizing ||f ||~E subject to Af = b.

In particular, set b∗ ∈ RV such that b∗p = µ(p),∀p ∈ P and b∗v = 0,∀v ∈ V \P . Ultimately,
we will find an approximate solution to the instance (G∗, b∗). Let Cost(G∗, b∗) := ||f∗||~E
for some optimal solution f∗ of this instance. From construction of G∗ and Lemma 2.3,
Cost(P, µ) ≤ Cost(G∗, b∗) and E(Cost(G∗, b∗)) ≤ (1 +O(ε0 logn))Cost(P, µ). In partic-
ular, E(Cost(G∗, b∗)−Cost(P, µ)) ≤ O(ε0 logn)Cost(P, µ). We can guarantee that bound
holds with high probability by doubling the constant in the big-Oh and taking the best result
from O(logn) runs of our algorithm.

K. Fox and J. Lu 45:9

2.3 Decomposition into simpler subproblems
In the sequel, we apply Sherman’s generalized preconditioning framework [12, 19] to find
an approximate solution to the minimum cost flow instance (G∗, b∗). For technical reasons,
however, we cannot afford to run the framework on the entire sparse graph G∗ at once. In
Appendix A, we describe a reduction from minimum cost flow instance (G∗, b∗) to several
simpler minimum cost flow instances each on the induced subgraph of the net points of one
simple sub-quadtree. The reduction is based on the observation that each simple sub-quadtree
subgraph has very small diameter compared to the cost of moving one unit of flow to its one
parent net point and back down again to its cousin sub-quadtrees. Therefore, any reasonable
method of moving the sub-quadtree’s net divergence to the parent net point is sufficient for
an approximately optimal solution. We must emphasize that simple sub-quadtrees may still
have linear depth, so we still need to apply our own techniques to make Sherman’s framework
run within the desired time bounds.

3 Approximating the minimum cost flow

Let G = (V,E) be an induced subgraph of sparse graph G∗ where V is the subset of net
points for one simple sub-quadtree T as defined above. Let m = |E|, and let A be the
vertex-edge incidence matrix for G. We now describe the ingredients we need to provide to
efficiently approximate the minimum cost flow problem in G using Sherman’s generalized
preconditioning framework [12, 19]. We then provide those ingredients one-by-one to achieve
a near-linear time (1 +O(ε))-approximate solution for the minimum cost flow instance.

3.1 The preconditioning framework
Consider an instance of the minimum cost flow problem in G with an arbitrary divergence
vector b̃ ∈ RV , and let f∗

b̃
:= argminf∈R~E ,Af=b̃ ||f ||~E . A flow vector f ∈ R~E is an (α, β)

solution to the problem if

||f ||~E ≤ α||f
∗
b̃
||~E

||Af − b̃||1 ≤ β||A|| ||f∗b̃ ||~E

where ||A|| is the norm of the linear map represented by A. An algorithm yielding an
(α, β)-solution is called an (α, β)-solver.

By arguments in [12], we seek a preconditioner B ∈ RV×V of full column rank such that,
for any b̃ ∈ RV with

∑
v∈V b̃v = 0, it satisfies

||Bb̃||1 ≤ min{||f ||~E : f ∈ R~E , Af = b̃} ≤ κ||Bb̃||1 (1)

for some sufficiently small function κ of n, ε, and d.
Let M be the time it takes to multiply BA and (BA)T by a vector. Then there

exists a (1 + ε, β)-solver for any ε, β > 0 for this problem with running time bounded by
O(κ2(|V | + | ~E| + M) log | ~E|(ε−2 + log β−1) [19]. Moreover, if a feasible flow f ∈ R~E with
cost ||f ||~E ≤ κBb̃ can be found in time K, there is a (κ, 0)-solver with running time K. By
setting β = εκ−2 [12], the composition of these two solvers is a (1 + 2ε, 0)-solver with running
time bounded by

O(κ2(|V |+ | ~E|+M) log | ~E|(ε−2 + log κ) +K).

SoCG 2020

45:10 A Near-Linear Time Approximation Scheme for Geometric Transportation

3.2 Preconditioning the minimum cost flow
We present a way to construct such a preconditioner B similar to the one of Khesin et al. [12]
that guarantees κ in (1) is sufficiently small for our performance objective. Our algorithm
does not compute B directly, because B is not sparse. However, the time for individual
applications of BA or (BA)T is O(|V |+ | ~E|).

Let C̃ denote the set of all subcells defining the net points of G. For any subcell C̃ ∈ C̃,
let NC̃ denote its net point and let ∆C̃ denote its side length.

Let B be a matrix indexed by (u, v) ∈ V × V such that, for every net point ν in V where
ν is the net point of some subcell C̃, we set Bν,v = ∆C̃

Λ for all descendent net points v of ν,
where Λ = 22 lg(nε0

).2 Bν,v = 0 for all other v. Matrix B has full column rank, because each
column specifies exactly which ancestor net points each vertex has in G.

Now, fix any b̃ ∈ RV such that
∑
v∈V b̃v = 0. Observe,

||Bb̃||1 =
∑
C̃∈C̃

∆C̃

Λ |
∑
v∈C̃

b̃v|. (2)

I Lemma 3.1. We have ||Bb̃||1 ≤ min{||f ||~E : f ∈ R~E , Af = b̃}.

Lemma 3.1 is analogous to Claim 14 of Khesin et al. [12]. Their proof can be interpreted
as charging each of the summands in Λ · ||Bb̃||1 to the cost of the optimal flow where they
overcharge by a factor equal to the depth of their tree. For our proof, we consider a path
decomposition of the flow and charge to the cost of the flow one path at a time. Cell sides do
not intersect moats of points in P , so only O(log(n/ε0)) charges made to a single path flow
are comparable to its cost. The remaining charges are negligible. See Appendix C for details.

I Lemma 3.2. We have min{||f ||~E : f ∈ R~E , Af = b̃} ≤ κ||Bb̃||1 for some
κ = O(ε−1

0 log (n/ε0)). Moreover, a flow vector f satisfying Af = b̃ of cost at most κ||Bb̃||1
can be computed in O(m) time.

The proof of Lemma 3.2 describes a similar greedy algorithm as the one used to prove Claim
15 of Khesin et al. [12]. See Appendix C for details.

I Lemma 3.3. Applications of BA and (BA)T to arbitrary vectors f ∈ R~E and b̃ ∈ RV ,
respectively, can be done in O(m) time.

Proof. Both applications can be performed using dynamic programming algorithms.

Computing BAf

Let A′ = Af . Recall, ∀v ∈ V , A′v is the divergence of v given flow f . Matrix A has m
non-zero entries, so A′ can be computed in O(m) time.

We compute BAf by computing BA′. Let ν be any net point of G, and let C̃ be
its subcell. From the definition of B, we have (BA′)ν = ∆C̃

Λ
∑
v∈C̃ A

′
v. Now, let C̃+

be the (possibly empty) set of all child subcells of C̃ with net points in G. We have∑
v∈C̃ A

′
v = A′ν +

∑
C̃′∈C̃+

∑
v∈C̃′ A

′
v. Thus, we can use dynamic programming to compute

BA′ in O(m) time. Each entry is filled in during a postorder traversal of the quadtree cells.

2 We use lg to denote the logarithm with base 2.

K. Fox and J. Lu 45:11

Computing (BA)T b̃

Recall, (BA)T = ATBT . Let b′ = BT b̃. We begin by computing b′. Let C̃ be any subcell
with a net point in G, and let ν = NC̃ . Let C̃− be the set of all ancestor subcells of C̃ with
net points in G including C̃. We have b′ν =

∑
C̃′∈C̃−

∆C̃′
Λ b̃NC̃′

= ∆C̃

Λ b̃ν + b′NC̃p
. Therefore,

we can use dynamic programming to compute b′ in O(m) time. Each entry is filled in
during a preorder traversal of the quadtree cells. Finally, AT has m non-zero entries, so
ATBT b̃ = AT b′ can be computed in O(m) time as well. J

We have shown there exists a (1 + 2ε, 0)-solver for the minimum cost flow problem on G.
Plugging in all the pieces, we get a running time bounded by

O(mε−2
0 log3 (n/ε0)(ε−2 + log (n/ε0))).

Recall, ε0 = O(ε/ logn). We run the preconditioning framework algorithm in each graph
G induced by a simple sub-quadtree’s net points as described in Section 2.3. The final
running time to compute a flow in G∗ of cost at most (1 + ε)Cost(P, µ) is

O(nε−O(d) logO(d) n).

4 Recovering a transportation map from the minimum cost flow

We now describe how to recover a transportation map of P using the approximately minimum
cost flow f̂ ∈ ~E we computed for G∗. Unlike f̂ , the transportation map τ contains only
weighted pairs of points in P . We will implicitly maintain a flow f of cost at most ||f̂ || ~E∗ that
will eventually describe our transportation map. Abusing notation, we extend the definition
of f(u,v) to include any pair of vertices in G∗. Value f(u,v) is initially 0 for all uv /∈ E∗. We
follow the strategy of Khesin et al. [12] of iteratively rerouting flow going through each net
point ν to instead go directly between vertices receiving from or sending flow to ν, eventually
resulting in no flow going through any net point. Nearly every pair containing a point p ∈ P
and an ancestor net point may at some moment carry flow during this procedure. Because
quadtree T ∗ has such high depth, we must take additional care.

To quickly maintain these flow assignments with points in P , we store two data structures
pt(ν) and nt(ν) for each net point ν ∈ V ∗ \P . We call these data structures the prefix split
trees of ν. The prefix split tree is stored as an ordered binary tree data structure where each
node has a weight. We let w(x) denote the weight of node x in a tree S and w(S) denote the
total weight of all nodes in S. These trees support the standard operations of insertion and
deletion. They support changing the weight of a single node. They support the Merge(S, S′)
operation which takes two trees S and S′ and combines them into one tree with all members
of S appearing in order before S′. Finally, they support the PrefixSplit(S, t) operation
defined as follows. Given a target value t and a prefix split tree S, PrefixSplit finds a
maximal prefix of S’s nodes in order where the sum of node weights in the subset is less than
or equal to t. If the sum is less than t, it splits the next node x into two nodes x1 and x2
where w(x1) + w(x2) = w(x). The split makes sure adding x1 to the maximal prefix subset
makes the sum weight of the subset exactly equal to t. The operation then splits off all
members of this subset, including x1 if a node x was split, into their own tree S′ and returns
it, leaving S with only the remaining nodes. We emphasize that the order of nodes within
the data structure is important for defining PrefixSplit, but the nodes are not “sorted”
in any meaningful sense; in particular, any two trees can be merged as defined above. All
those operations can be done in amortized O(logm) time, where m is the number of nodes
in the tree, by applying simple modifications to the splay tree data structure of Sleator and
Tarjan [20]. We provide details on how to implement a prefix split tree in Appendix B.

SoCG 2020

45:12 A Near-Linear Time Approximation Scheme for Geometric Transportation

In our setting, every node in pt(ν) and nt(ν) represents a point p ∈ P . Thanks to our use
of the PrefixSplit procedure, some points may be represented multiple times in a single
tree. We use pt(ν)[p] to denote the set nodes representing p in pt(ν), and define nt(ν)[p]
similarly. Our algorithm implicitly maintains the invariant that for all net points ν and
points p ∈ P ,

∑
x∈pt(ν)[p] w(x)−

∑
x∈nt(ν)[p] w(x) = f(ν,p). We proceed with Algorithm 1.

Algorithm 1 Recovering a transportation map from an approximately minimum cost flow in G∗.

〈〈Initialize data structures.〉〉
For all net points v ∈ V ∗ \ P and p ∈ P where f(p,v) > 0

Insert a node of weight f(p,v) into nt(v) representing p
For all net points v ∈ V ∗ \ P and p ∈ P where f(v,p) > 0

Insert a node of weight f(v,p) into pt(v) representing p
Let C be the set of all cells
For C ∈ C in postorder

Let NC = {NC̃ : C̃ ∈ C}, N ′C = {parent of v : v ∈ NC}
For each v ∈ NC

〈〈Cancel flow to/from other net points.〉〉
While ∃u,w ∈ NC ∪N ′C : f(v,w) > 0 > f(v,u)

δ ← min{f(u,v), f(v,w)}
f(u,w) ← f(u,w) + δ

f(u,v) ← f(u,v) − δ
f(v,w) ← f(v,w) − δ

〈〈Now, either all other net points send flow to v or all get flow from v.〉〉
While ∃u ∈ NC ∪N ′C : f(u,v) > 0

〈〈Implicitly reduce f(v, p) and increase f(u, p) for several p ∈ P 〉〉
pt′ ← PrefixSplit(pt(v), f(u,v))
Merge(pt′, pt(u))

While ∃w ∈ NC ∪N ′C : f(v,w) > 0
〈〈Implicitly reduce f(p, v) and increase f(p,w) for several p ∈ P 〉〉
nt′ ← PrefixSplit(nt(v), f(v,w))
Merge(nt′, nt(w))

〈〈Now, all flow to/from v involves points p ∈ P .〉〉
While pt(v) and nt(v) are not empty

Let x ∈ nt(v)[p], y ∈ pt(v)[q] for some p, q ∈ P
δ ← min{w(x), w(y)}
f(p,q) ← f(p,q) + δ

w(x)← w(x)− δ; if w(x) = 0, delete x from nt(v)
w(y)← w(y)− δ; if w(y) = 0, delete y from pt(v)

For all (p, q) ∈ P × P where f(p,q) > 0
τ(p, q)← f(p,q)

I Lemma 4.1. Our algorithm results in a transportation map of cost at most ||f̂ || ~E∗ , and it
can be implemented to run in O(nε−2d

0 log2(n/ε0)) time.

As in Khesin et al. [12], we prove Lemma 4.1 by arguing that we remove all flow passing
through each net point encountered during our postorder traversal of T ∗. Each change in
the flow reduces its cost, and the number of changes involving two or more net points is
nearly bounded by the size of T ∗. To account for the time spend moving flow to or from
points p ∈ P in the forth while loop, we charge such operations to the moving of flow directly
between net points. See Appendix C for details.

K. Fox and J. Lu 45:13

References

1 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen Xiao.
Faster algorithms for the geometric transportation problem. In Proc. 33rd Intern. Symp.
Comput. Geom., pages 7:1–7:16, 2017. doi:10.4230/LIPIcs.SoCG.2017.7.

2 Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In Proc. 46th Symp. Theory Comput., pages 555–564. ACM,
2014. doi:10.1145/2591796.2591844.

3 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In Proc. 46th Symp. Theory Comput., pages 574–583,
2014. doi:10.1145/2591796.2591805.

4 Marshall W. Bern, David Eppstein, and Shang-Hua Teng. Parallel construction of quadtrees
and quality triangulations. Int. J. Comput. Geometry Appl., 9(6):517–532, 1999. doi:
10.1142/S0218195999000303.

5 Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
interpolation using Lagrangian mass transport. ACM Trans. Graph., 30(6):158, 2011. doi:
10.1145/2070781.2024192.

6 Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph problems
in higher dimensions. In Proc. 4th Ann. ACM/SIGACT-SIAM Symp. Discrete Algorithms,
pages 291–300, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313777.

7 Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. In Proc.
31st Intern. Conf. Machine Learning, pages 685–693, 2014. URL: http://proceedings.mlr.
press/v32/cuturi14.html.

8 Panos Giannopoulos and Remco C. Veltkamp. A pseudo-metric for weighted point sets. In Proc.
7th Europ. Conf. Comput. Vision, pages 715–730, 2002. doi:10.1007/3-540-47977-5_47.

9 Kristen Grauman and Trevor Darrell. Fast contour matching using approximate earth mover’s
distance. In Proc. 24th IEEE Conf. Comput. Vision and Pattern Recog., pages I:220–I:227,
2004. doi:10.1109/CVPR.2004.104.

10 Sariel Har-Peled. Geometric approximation algorithms, volume 173. American Mathematical
Soc., 2011.

11 Piotr Indyk. A near linear time constant factor approximation for Euclidean bichromatic
matching (cost). In Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 39–42,
2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283388.

12 Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for
the geometric transportation problem. In Proc. 35th Intern. Symp. Comput. Geom., pages
15:1–15:14, 2019. doi:10.4230/LIPIcs.SoCG.2019.15.

13 Nathaniel Lahn, Deepika Mulchandani, and Sharath Raghvendra. A graph the-
oretic additive approximation of optimal transport. In Proc 32nd Adv. Neur.
Info. Proces. Sys., pages 13813–13823, 2019. URL: http://papers.nips.cc/paper/
9533-a-graph-theoretic-additive-approximation-of-optimal-transport.

14 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in õ(vrank) iterations and faster algorithms for maximum flow. In Proc. 55th IEEE
Ann. Symp. Found. Comput. Sci., pages 424–433, 2014. doi:10.1109/FOCS.2014.52.

15 James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41(2):338–350, 1993. doi:10.1287/opre.41.2.338.

16 Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s distance as a
metric for image retrieval. Intern. J. Comput. Vision, 40(2):99–121, 2000. doi:10.1023/A:
1026543900054.

17 R. Sharathkumar and Pankaj K. Agarwal. Algorithms for the transportation problem in
geometric settings. In Proc. 23rd Ann. ACM-SIAM Symp. Discrete Algorithms, pages 306–317,
2012. doi:10.1137/1.9781611973099.29.

SoCG 2020

https://doi.org/10.4230/LIPIcs.SoCG.2017.7
https://doi.org/10.1145/2591796.2591844
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1142/S0218195999000303
https://doi.org/10.1142/S0218195999000303
https://doi.org/10.1145/2070781.2024192
https://doi.org/10.1145/2070781.2024192
http://dl.acm.org/citation.cfm?id=313559.313777
http://proceedings.mlr.press/v32/cuturi14.html
http://proceedings.mlr.press/v32/cuturi14.html
https://doi.org/10.1007/3-540-47977-5_47
https://doi.org/10.1109/CVPR.2004.104
http://dl.acm.org/citation.cfm?id=1283383.1283388
https://doi.org/10.4230/LIPIcs.SoCG.2019.15
http://papers.nips.cc/paper/9533-a-graph-theoretic-additive-approximation-of-optimal-transport
http://papers.nips.cc/paper/9533-a-graph-theoretic-additive-approximation-of-optimal-transport
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1287/opre.41.2.338
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1137/1.9781611973099.29

45:14 A Near-Linear Time Approximation Scheme for Geometric Transportation

18 R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm for
geometric bipartite matching. In Proc. 44th Symp. Theory Comput., pages 385–394, 2012.
doi:10.1145/2213977.2214014.

19 Jonah Sherman. Generalized preconditioning and undirected minimum-cost flow. In Proc.
28th Ann. ACM-SIAM Symp. Discrete Algorithms, pages 772–780, 2017. doi:10.1137/1.
9781611974782.49.

20 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985. doi:10.1145/3828.3835.

21 Justin Solomon, Raif M. Rustamov, Leonidas J. Guibas, and Adrian Butscher. Earth mover’s
distances on discrete surfaces. ACM Trans. Graph., 33(4):67:1–67:12, 2014. doi:10.1145/
2601097.2601175.

22 Cédric Villani. Optimal Transport: Old and New. Springer Science & Business Media, 2008.

A Decomposing minimum cost flow into simpler subproblems

Here, we reduce finding an approximately optimal flow for minimum cost flow instance
(G∗, b∗) to finding O(n) approximately optimal flows, each within an induced subgraph
defined by the net points within a single simple sub-quadtree.

Recall, for each point p ∈ P , C̃(p) denotes the smallest subcell containing p, and NC̃
denotes the net point of subcell C̃. Let f be the flow such that f(p,NC̃(p)) = b∗p for all p ∈ P .
Let G′ = (V ′, E′) and A′ be the restriction of G∗ and its vertex-edge incidence matrix A
after removing all vertices p ∈ P . Let b′ be the restriction of b−Af to vertices of G′. Every
vertex p ∈ P of G∗ has exactly one incident edge, so an optimal solution to our original
minimum cost flow instance consists of f along with an optimal solution to the instance
defined on A′ and b′. From here one, we focus on finding an approximately minimum cost
flow in G′.

Suppose there are multiple simple sub-quadtrees. Let G0 = (V0, E0) be the subgraph
induced by the m net point vertices of a single simple sub-quadtree with no descendent
sub-quadtrees. Let C be the root cell of the simple sub-quadtree for G0, let u be a net point
for an arbitrary subcell of C, and let v be the parent net point of u in G′. In O(m) time, we
compute B =

∑
w∈V0

b′w, the total divergence of vertices within G0. We then let f ′ be the
flow in G′ that is 0 everywhere except for f(u,v) := B. Finally, let b′′ = b′ −A′f ′.

Notice that at least B units of flow in G0 needs to leave or enter C by edge at least the
side length of (̃C). Given ∆(C) ≤ O(1/n2)∆C̃ , we can lazily assign the flow between net
points of C and v with increasing the cost by at most 2

√
d∆(C)B ≤ O(1/n2)∆C̃B. This

suggests the following lemma.

I Lemma A.1. There exists a flow f ′′ in G′ such that f ′′(w,x) = 0 for all w ∈ V0, x /∈ V0;
Af ′′ = b′′; and ||f ′′ + f ′|| ~E′ ≤ (1 +O(1/n2)) ·Cost(G′, b′).

Proof. Let C̃ be the subcell for which v is a net point. Let ∆C̃ be the side length of C̃. By
construction of G′, at least B units of flow must travel to or from vertex v from G0 at a
cost of ∆C̃ . Specifically, G0 is totally inside C̃, v is the only vertex in C̃ incident to some
edge crossing the side of C̃, and the nearest vertex x /∈ V0 is at least ∆C̃ far from v. So
Cost(G′, b′) ≥ ∆C̃B.

Suppose f ′∗ is a flow in G′ with cost Cost(G′, b′). Let NC be the set of net points of
subcells of C. We may assume there is no pair y, z ∈ NC such that f(y,v) > 0 and f(v,z) > 0,
because we could send the flow directly between y and z more cheaply. We create flow f ′′′ as
follows starting with f ′′ = f

′∗. While there exists some vertex u′ ∈ NC\{u} with f ′′′(u′,v) 6= 0,

https://doi.org/10.1145/2213977.2214014
https://doi.org/10.1137/1.9781611974782.49
https://doi.org/10.1137/1.9781611974782.49
https://doi.org/10.1145/3828.3835
https://doi.org/10.1145/2601097.2601175
https://doi.org/10.1145/2601097.2601175

K. Fox and J. Lu 45:15

let δ = f ′′′(u′,v). We divert flow by setting f ′′′(u,v) ← f ′′′(u,v) + δ, f ′′′(u′,u) ← f ′′′(u′,u) + δ, and
f ′′′(u′,v) ← 0. This increases the cost by at most twice of the length of the diagonal of C per
diverted unit of flow. Overall, we divert at most B units. The total cost increase is at most
2
√
d∆CB ≤ O(1/n2)Cost(G′, b′) where ∆C is side length of C, because ∆C ≤ O(1/n2)∆C̃ .

We have ||f ′′′||~E ≤ (1 +O(1/n2)) ·Cost(G′, b′). Finally, let f ′′ = f ′′′ − f ′. J

The above lemma implies we can use the following strategy for approximating a minimum
cost flow in G′: Let b0 be the restriction of b′′ to V0. We find a flow in G0 with divergences
b0 of cost at most (1 +O(ε)) ·Cost(G0, b0) using the algorithm described in the next section.
Then, we recursively apply our algorithm on G′′ = (V ′′, E′′), the induced subgraph over
V ′′ = V ′ \V0. The depth of recursion is O(n), so the total cost from combining our separately
computed flows is (1 +O(ε))(1 +O(1/n)) ·Cost(G′, b′) = (1 +O(ε))Cost(G′, b′).

B Prefix split trees

We implement our prefix split trees by modifying the splay tree data structure of Sleator and
Tarjan [20]. Let S be a prefix split tree. We store the weight w(x) of each node x directly
with the node itself. Moreover, every node x keeps another value W (x) equal to the sum
weight of all the descendants of x including x itself.

A splay of a node x in S is a sequence of double rotations (possibly followed by a
standard single rotation) that move x to the root of S. Only those nodes on the path from
the root to x have their children pointers updated by a splay. We can update W (y) for every
such node y with only a constant factor overhead in the time to perform a splay. Let s(x)
denote the number of descendents of x in its prefix split tree, and let r(x) = blg s(x)c. Let
Φ(S) =

∑
x∈S r(x). The amortized time for an operation on S can be defined as the real

time spent on the operation plus the net change to Φ(S) after the operation. The amortized
time for a splay in an m-node tree is O(logm) [20].

Recall, the order of nodes within a tree is largely irrelevant outside the definition of the
PrefixSplit operation. To insert a node x in S, we add x as the child of an arbitrary
leaf of S and splay x to the root. The number of operations in the splay dominates, so the
amortized cost of insertion is O(logm). To delete a node x, we splay x to the root and delete
it, resulting in two disconnected subtrees S1 and S2. We then perform a Merge(S1, S2)
in O(logm) amortized time as described below, so the whole deletion has amortized cost
O(logm). To update the weight of a node x, we splay x to the root and update w(x) and
W (x) in constant time each. The splay once again dominates, so the total amortized cost is
O(logm).

The operation Merge(S1, S2) is implemented as follows. Let x be the rightmost leaf of
S1. We splay x to the root so it has exactly one child. We then make the root of S2 the
other child of x. Let m be the total number of nodes in S1 and S2. Adding S2 as a child
increases Φ(S1) + Φ(S2) by O(logm), so the amortized time for the Merge is O(logm).

Finally, we discuss the implementation of PrefixSplit(S, t). We assume t > 0. We use
the values W (·) to find the prefix of nodes desired. Let y be the next node in order after
the prefix. We splay y to the root of S. Let x be the left child of y (if it exists). Suppose
W (x) < t. We delete y, creating two trees S1 and S2 where S1 contains the nodes in the
prefix. We create a new node y1 of weight t−W (y) and make the root of S1 its child so that
y1 is the new root. We create a node y2 of weight w(y)− w(y1) and make the root of S2 its
child. Now, suppose instead W (x) = t. In this case, we simply remove the edge between x
and y to create a subtree S1 with x as its root. Let S2 be the remainder of S. Whether or
not W (x) = t, we return S1 and set S = S2. The amortized time for the PrefixSplit is
the amortized time for a single splay and a constant number of edge changes, implying the
PrefixSplit takes O(logm) amortized time total.

SoCG 2020

45:16 A Near-Linear Time Approximation Scheme for Geometric Transportation

C Omitted Proofs

Proof of Lemma 2.1. Suppose we are processing a cell C containing point subset P ′. Fol-
lowing standard practice [6], we assume access to d doubly-linked lists containing the points
of P ′. The points in each list are sorted by distinct choices of one of their d coordinates.

We now describe how to process C. We determine if |P ′| = 1 in constant time. If
so, we stop processing C and discard its data structures. Otherwise, we use the lists to
determine ∆P ′ and �P ′ in O(1) time. If ∆P ′ <

zε0
3
√
d
, we follow Rule 2 by doing the search for

the new value of z in O(logn) time. We pass along the lists for C to the recursive quadtree
construction.

Suppose ∆P ′ ≥ zε0
3
√
d
. We can compute C ′ and ∆′ as defined in Rule 3 in constant time by

building a standard compressed quadtree over the 2d extreme points of P ′ in each dimension
that respects the grid containing C and examining its root [10, Chapter 2]. If ∆′ < ∆ε0

n2 , we
simply recurse with the same lists as described above.

Suppose all other tests fail and Rule 3b applies. We compute the point subsets and their
lists going into each child cell by splitting P ′ one dimension at a time. For each dimension,
for each subset of points we already know go into different cells, we search the relevant linked
list for that dimension from both ends simultaneously, so we know where to split the list in
time proportional to the number of points in the less populated side of the split. In time
proportional to the number of points going to the less populated side of the split, we also
perform individual deletions and insertions to make the d− 1 new linked lists for the points
on the less populated side. We pass along the lists we construct when computing subtrees
for each child of C.

We spend O(logn) time per node in addition to the time spent searching, inserting, and
deleting points from lists when applying Rule 3b. However, every time a point moves to
a new data structure, the number of points in its cell drops by a factor of at least 2. We
spend O(m+ n logn) = O(m logn) time total implementing Rule 3b. J

Proof of Lemma 2.2. The condition to trigger Rule 3a guarantees every path of descendent
cells with one child each has length O(log(n/ε0)). We immediately get Property 1.

Let T0 be the singly-shifted sub-quadtree containing the root cell of T ∗. By construction
of Z ′, the smallest cells of T0 lie O(n log (n/ε0)) (uncompressed) quadtree levels down.
Therefore, at most O(n log (n/ε0)) shifted grids in Rd determine the boundaries of T0’s
(sub)cells. We see Property 2 is violated for at least one cell in T0 with probability at most
c · nn3 · log n

ε0
for some constant c.

Assume from here on that Property 2 holds for all cells in T0. The first part of Property
3 is guaranteed for T0 by construction. Similarly, Property 4 is guaranteed for any simple
sub-quadtree within T0 by construction. Finally, let p, q ∈ P be any pair of points where
||q − p||2 < z

3 . By definition of z, we have ||q − p||2 ≤ 3 · zε0
18
√
dn4 = zε0

6
√
dn4 . Both points are

distance at least zε0
6
√
dn4 from the side of any subcell, so they are not separated by any subcell

of T0, implying the second part of Property 3. Finally, Property 3 holds for all pairs of
points, including the ones defining the bounding boxes for simple sub-quadtrees whose roots
are children of leaves in T0. The points are far enough away from the subcell boundaries
that even the random shift of these simple sub-quadtrees will keep them inside their subcells.
Property 4 holds for simple sub-quadtrees whose roots are the children of leaves in T0.

Now, let {T1, T2, . . .} denote the distinct sub-quadtrees, each consisting of a child of a leaf
in T0 and all of the child’s descendants in T ∗. For each Ti, let ni be the number of points over
which Ti is built. We have ni ≤ n− 1 and

∑
i ni ≤ n. We may inductively assume Properties

K. Fox and J. Lu 45:17

2 through 4 fail to hold for Ti with probability at most c · n
2
i

n3 · log n
ε0
≤ c · (n−1)ni

n3 · log n
ε0
.

Taking a union bound, the probability of Properties 2 through 4 failing to hold for either T0
or any Ti is at most c · n

2

n3 · log n
ε0

= c · 1
n · log n

ε0
. J

Proof of Lemma 3.1. Let f∗
b̃

:= argminf∈R~E ,Af=b̃ ||f ||~E . We arbitrarily decompose f∗
b̃
into

a set of flows F =
{
f1, f2, . . .

}
with the following properties: 1) each flow follows a simple path

between two vertices u and v; 2) for each flow f i ∈ F and edge (u, v) ∈ ~E either f i(u, v) = 0 or
its sign is equal to the sign of f∗

b̃
(u, v); 3) for each flow f i ∈ F and vertex v, either (Af i)v = 0

or its sign is equal to b̃v; and 4) for each edge (u, v) ∈ ~E, we have f∗
b̃

(u, v) =
∑
fi∈F f

i(u, v).
The existence of such a decomposition is a standard part of network flow theory and one can
be computed in a simple greedy manner (however, our algorithm does not actually need to
compute one). From construction, we have

∑
fi∈F ||f i||~E = ||f∗

b̃
||~E . We describe a way to

charge summands of
∑
C̃∈C̃ ∆C̃ |

∑
v∈C̃ b̃v| to the summands of

∑
fi∈F ||f i||~E . Our charges

will cover each of the former and exceed each of the latter by at most a Λ factor. Consider
a subcell C̃. For each vertex u ∈ C̃, for each flow f i sending flow to or from u, we charge
∆C̃ |(Af i)u|. Clearly, we charge at least ∆C̃ |

∑
v∈C̃ b̃v| for each subcell C̃.

It remains to prove we did not overcharge by too large a factor. Consider an arbitrary
flow f i ∈ F sending flow from some vertex u to some vertex v. Let C(u, v) be the lowest
common ancestor cell containing u and v. Let ∆C(u,v) be its side length, and let C(û, v) be
the child cell of C(u, v) that includes u. Let ∆ be the side length of C(û, v).

Suppose there exists a descendant cell C ′ of C(û, v) containing u that is at least 5 lgn
levels down from C(û, v). Its side length ∆C′ is at most ∆

n5 . Because C ′ contains at least
one point u′ ∈ P , and from Property 2 of Lemma 2.2, u is at least ∆

n4 − ∆
n5 ≥ ∆

2n4 distance
away from any side of C(û, v) and therefore v as well. Therefore, we charge at most an ε0

2n
fraction of ||f i||~E to cover u’s subcell in C ′. The amounts charged by similar subcells of
smaller side length containing u form a decreasing geometric series evaluating to at most
that value, so all these small subcells charge at most an ε0

n fraction total.
Now, consider the cells with larger side length. Suppose there exists an ancestor cell

C ′′ of C(û, v) at least lg ε−1
0 + 1 levels up from C(û, v), and let C̃ ′′ be the subcell of C ′′

containing u. Then the side length of C̃ ′′ is at least ∆C(u,v) and all points in C(u, v) will be
included in C̃ ′′ also. Therefore, we do not charge to ||f i||~E for subcell C̃ ′′, and there are at
most 5 lgn + lg ε−1

0 ≤ 5 lg n
ε0

subcells in addition to those handled above for which we do
charge to ||f i||~E . Consider any such subcell C̃. The path carrying f i leaves C̃ through an
edge of length at least ∆C̃/2, so we charge at most 2 · ||f i||~E to cover C̃. Summing over all
5 lg n

ε0
choices of C̃ and accounting for the tiny cells as discussed above, we charge at most

(10 lg n
ε0

+ ε0/n)||f i||~E ≤ 11 lg (nε0
) · ||f i||~E to cover subcells containing u. We also charge to

||f i||~E to cover subcells containing v, so we overcharge by a factor of at most 22 lg (nε0
) = Λ.

The lemma follows. J

Proof of Lemma 3.2. We describe a greedy algorithm based on one by Khesin et al. [12]
to iteratively construct a feasible flow f satisfying Af = b̃ with a cost ||f ||~E ≤ κBb̃ in
O(m) time. At any point during f ’s construction, we say the surplus of vertex u ∈ V is
π(u, f) = (Af)u − b̃u, the difference between the current and desired divergences of u.

1. For every cell C in a postorder traversal of G’s simple sub-quadtree, for every subcell C̃
of C, we do the following. Let ν = NC̃ . We choose any two child net points v, w of ν such
that π(v, f) > 0 > π(w, f). We then add min{|π(v, f)|, |π(w, f)|} to f(w,v). In doing so,
we make the surplus of at least one child net point of ν equal to 0, and we decrease the
absolute values of surpluses of both v and w. Therefore, after at most a number of steps
equal to the number of child net points of ν, either all child net points have non-negative

SoCG 2020

45:18 A Near-Linear Time Approximation Scheme for Geometric Transportation

surplus or all child net points have non-positive surplus. Finally, for each vertex v among
child net points with non-zero surplus, we set f(ν,v) = π(v, f). Afterward, every child net
point of ν has surplus 0. In other words, the unbalance among those child net points is
collected into ν. Each net point ν has at most 2d child net points. Therefore, the total
running time for this step is O(m).

2. After performing step 1), all net points with parents have a surplus of 0. We pick up
any two net points u, v of subcells of T ’s root cell with two different surplus signs as
described in step 2 and add min{|π(u, f)|, |π(v, f)|} to f(v,u). After O(ε−d0) = O(m) steps,
all points v ∈ V will have surplus 0, and f is a feasible flow satisfying Af = b̃.

We now analyze ||f ||~E . Consider a subcell C̃ of some cell C with net point ν. Flow does
not leave or enter C̃ until we move flow between ν and either another net point in C or ν’s
parent net point. Therefore, π(ν, f) = −

∑
v∈C̃ b̃v immediately after moving flow from ν’s

children to ν in step 1) above. All subsequent steps moving flow to or from ν involve an edge
of length at most ε−1

0
√
d∆C̃ and only serve to reduce |π(ν, f)|.

Summing over all subcells, we get

||f ||~E ≤
∑
C̃∈C̃

ε−1
0
√
d∆C̃ |

∑
v∈C̃

b̃v| ≤ ε−1
0
√
dΛ||Bb̃||1.

Therefore, ||f∗
b̃
||~E ≤ ||f ||~E ≤ κ||Bb̃||1, where κ = O(ε−1

0 log (n/ε0)). J

Proof of Lemma 4.1. As stated, our algorithm implicitly maintains a flow f such that for
all net points ν and points p ∈ P ,

∑
x∈pt(ν)[p] w(x) −

∑
x∈nt(ν)[p] w(x) = f(ν,p). One can

easily verify that after every iteration of any of the while loops, the divergences among
all vertices in G∗ remain the same. Further, after processing any net point v in the inner
for loop, there are no other vertices u in V ∗ such that f(u,v) 6= 0. Observe the algorithm
never changes the flow coming into or out of a net point v unless f(u,v) 6= 0 for some vertex
u. Therefore, after v is processed, it never has flow going into or out of it again (Khesin
et al. [12] refer to this property as v having uniform flow parity). Because we eventually
process every net point in G∗, we eventually end up with a flow f such that f(p,q) 6= 0 only if
p, q ∈ P . We immediately see τ is a transportation map.

To analyze the cost of τ , observe that after every iteration of a while loop, we replace
some δ units of flow passing through v, possibly between multiple sources and one destination
or vice versa, with δ units going directly from the source(s) to the destination(s). By the
triangle inequality, this new way to route flow is cheaper, so the final flow f , and subsequently
τ has smaller cost than f̂ .

To implement our algorithm quickly, we only explicitly store new flow values whenever we
have a line “f(u,w) ← _” for some pair of vertices (u,w). Observe that every time we finish
processing a cell, every one of its net points is also processed. By the above discussion, flow
no longer passes through those net points. Therefore, as we process the net points for a cell
C, we never send flow from a net point v ∈ NC to a net point outside NC ∪N ′C . Every time
we change flow going through another net point while processing a net point v, we decrease
the number net points u such that f(u,v) 6= 0 by one. There are O(nε−d0 log(n/ε0)) net points,
and O(ε−d0) other net points in each NC ∪ N ′C , so the number of iterations total in the
first three while loops is O(nε−2d

0 log(n/ε0)). Finally, observe that we only do PrefixSplit
operations during these while loops, implying we create a total of O(nε−2d

0 log(n/ε0)) nodes
throughout all prefix split trees. Every iteration of the fourth while loop results in deleting
a node from at least one of nt(v) or pt(v), so the number of iterations of this while loop is
O(nε−2d

0 log(n/ε0)) as well. Finally, every while loop iteration consists of a constant number
of operations in addition to a constant number of prefix split tree operations, each of which
can be done in O(log(n/ε0)) amortized time. J

Bounded VC-Dimension Implies the Schur-Erdős
Conjecture
Jacob Fox
Department of Mathematics, Stanford University, Stanford, CA, USA
jacobfox@stanford.edu

János Pach
Alfréd Rényi Institute of Mathematics, Budapest, Hungary
IST, Vienna, Austria
MIPT, Moscow, Russia
pach@cims.nyu.edu

Andrew Suk
Department of Mathematics, University of California San Diego, La Jolla, CA, USA
asuk@ucsd.edu

Abstract
In 1916, Schur introduced the Ramsey number r(3; m), which is the minimum integer n > 1 such
that for any m-coloring of the edges of the complete graph Kn, there is a monochromatic copy of
K3. He showed that r(3; m) ≤ O(m!), and a simple construction demonstrates that r(3; m) ≥ 2Ω(m).
An old conjecture of Erdős states that r(3; m) = 2Θ(m). In this note, we prove the conjecture for
m-colorings with bounded VC-dimension, that is, for m-colorings with the property that the set
system induced by the neighborhoods of the vertices with respect to each color class has bounded
VC-dimension.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases Ramsey theory, VC-dimension, Multicolor Ramsey numbers

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.46

Funding Jacob Fox: Supported by a Packard Fellowship and by NSF award DMS-1855635.
János Pach: Supported by Austrian Science Fund (FWF) grant Z 342-N31 and by the Ministry of
Education and Science of the Russian Federation in the framework of MegaGrant no 075-15-2019-
1926.
Andrew Suk: Supported by NSF CAREER award DMS-1800746 and an Alfred Sloan Fellowship.

1 Introduction

Given n points and n lines in the plane, their incidence graph is a bipartite graph G that
contains no K2,2 as a subgraph. By a theorem of Erdős [5] and Kővári-Sós-Turán [15], this
implies that the number of incidences between the points and the lines is O(n3/2). However, a
celebrated theorem of Szemerédi and Trotter [20] states that the actual number of incidences
is much smaller, only O(n4/3), and this bound is tight. There are many similar examples,
where extremal graph theory is applicable, but does not yield optimal results. What is behind
this curious phenomenon? In the above and in many other examples, the vertices of G are,
or can be associated with, points in a Euclidean space, and the fact whether two vertices are
connected by an edge can be determined by evaluating a bounded number of polynomials
in the coordinates of the corresponding points. In other words, G is a semi-algebraic graph
of bounded complexity. As was proved by the authors, in collaboration with Sheffer and
Zahl [8], for semi-algebraic graphs, one can explore the geometric properties of the polynomial
surfaces, including separator theorems and the so-called polynomial method [12], to obtain

© Jacob Fox, János Pach, and Andrew Suk;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 46; pp. 46:1–46:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacobfox@stanford.edu
mailto:pach@cims.nyu.edu
mailto:asuk@ucsd.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.46
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Bounded VC-Dimension Implies the Schur-Erdős Conjecture

much stronger results for the extremal graph-theoretic problems in question. In particular,
every K2,2-free semi-algebraic graph of n vertices with the complexity parameters associated
with the point-line incidence problem has O(n4/3) edges. This implies the Szemerédi-Trotter
theorem.

There is a fast growing body of literature demonstrating that many important results in
extremal combinatorics can be substantially improved, and several interesting conjectures
proved, if we restrict our attention to semi-algebraic graphs and hypergraphs; see, e.g., [1, 7, 9].
It is a major unsolved problem to decide whether this partly algebraic and partly geometric
assumption can be relaxed and replaced by a purely combinatorial condition. A natural
candidate is that the graph has bounded Vapnik-Chervonenkis dimension (in short, VC-
dimension). The VC-dimension of a set system (hypergraph) F on the ground set V is the
largest integer d for which there exists a d-element set S ⊂ V such that for every subset B ⊂ S,
one can find a member A ∈ F with A ∩ S = B. The VC-dimension of a graph G = (V,E)
is the VC-dimension of the set system formed by the neighborhoods of the vertices, where
the neighborhood of v ∈ V is N(v) = {u ∈ v : uv ∈ E}. The VC-dimension, introduced
by Vapnik and Chervonenkis [21], is one of the most useful combinatorial parameters that
measures the complexity of graphs and hypergraphs. It proved to be relevant in many
branches of pure and applied mathematics, including statistics, logic, learning theory, and
real algebraic geometry. It has completely transformed combinatorial and computational
geometry after its introduction to the subject by Haussler and Welzl [14] in 1987. But can it
be applied to extremal graph theory problems?

At first glance, this looks rather unlikely. Returning to our initial example, it is easy
to verify that the Vapnik-Chervonenkis dimension of every K2,2-free graph is at most 2.
Therefore, we cannot possibly improve the O(n3/2) upper bound on the number of edges of
K2,2-free graphs by restricting our attention to graphs of bounded VC-dimension. Yet the
goal of the present note is to solve the Schur-Erdős problem, one of the oldest open questions
in Ramsey theory, by placing this restriction.

To describe the problem, we need some notation. For integers k ≥ 3 and m ≥ 2, the
Ramsey number r(k;m) is the smallest integer n such that any m-coloring of the edges of
the complete n-vertex graph contains a monochromatic copy of Kk. For the special case
when k = 3, Issai Schur [19] showed that

Ω(2m) ≤ r(3;m) ≤ O(m!).

While the form of the upper bound has remained unchanged over the last century, the lower
bound was successively improved. The current record is due to Xiaodong et al. [22] who
showed that r(3;m) ≥ Ω(3.199m). It is a major open problem in Ramsey theory to close
the gap between the lower and upper bounds for r(3;m). Erdős [3] offered cash prizes for
solutions to the following problems.

I Conjecture 1 ($100). We have lim
m→∞

(r(3;m))1/m <∞.

It was shown by Chung [4] that r(3;m) is supermultiplicative, so that the above limit
exists.

I Problem 2 ($250). Determine lim
m→∞

(r(3;m))1/m.

It will be more convenient to work with the dual VC-dimension. The dual of a set system
F is the set system F∗ obtained by interchanging the roles of V and F . That is, the ground
set of F∗ is F , and

F∗ = {{A ∈ F : v ∈ A} : v ∈ V }.

J. Fox, J. Pach, and A. Suk 46:3

We say that F has dual VC-dimension d if F∗ has VC-dimension d. Notice that (F∗)∗ = F ,
and it is known that if F has VC-dimension d, then F∗ has VC-dimension at most 2d+1−1 (see
[16]). In particular, the VC-dimension of F is bounded if and only if the dual VC-dimension is.

Let χ be an m-coloring of the edges of the complete graph Kn with colors q1, . . . , qm, and
let V be the vertex set of Kn. For v ∈ V and i ∈ [m], let Nqi

(v) ⊂ V denote the neighborhood
of v with respect to the edges colored with color qi. We say that χ has VC-dimension (or
dual VC-dimension) d if the set system F = {Nqi

(v) : i ∈ [m], v ∈ V } has VC-dimension
(resp., dual VC-dimension) d.

For k ≥ 3, m ≥ 2, and d ≥ 2, let rd(k;m) be the smallest integer n such that any m-
coloring χ of the edges of Kn with dual VC-dimension at most d contains a monochromatic
clique of size k. Even for m-colorings with dual VC-dimension 2, we have r2(3;m) = 2Ω(m).
Indeed, recursively take two disjoint copies of K2m−1 , each of which is (m− 1)-colored with
dual VC-dimension at most 2 and no monochromatic copy of K3. Color all edges between
these complete graphs with the mth color, to obtain an m-colored complete graph K2m with
the desired properties. Our main result shows that, apart from a constant factor in the
exponent, this construction is tight.

I Theorem 3. For every k ≥ 3 and d ≥ 2, there is a constant c = c(k, d) such that
rd(k;m) ≤ 2cm. In other words, for every m-coloring of the edges of a complete graph of 2cm
vertices with dual VC-dimension d, there is a monochromatic complete subgraph of k vertices.

It follows from the Milnor-Thom theorem [17] (proved 15 years earlier by Petrovskĭı and
Olĕınik [18]) that every m-coloring of the

(
n
2
)
pairs induced by n points in Rd, which is

semi-algebraic with bounded complexity, has bounded VC-dimension and, hence, bounded
dual VC-dimension.

In a recent paper [11], we proved Conjecture 1 for semi-algebraic m-colorings of bounded
complexity. Our proof heavily relied on the topology of Euclidean spaces: it was based on the
cutting lemma of Chazelle et al. [2] and vertical decomposition. These arguments break down
in the combinatorial setting, for m-colorings of bounded VC-dimension. In what follows,
instead of using “regular” space decompositions with respect to a set of polynomials, our
main tool will be a partition result for abstract hypergraphs, which can be easily deduced
from the dual of Haussler’s packing lemma [13]. The proof of this partition result will be
given in Section 2, while Section 3 contains the proof of Theorem 3.

Overview of the proof. We briefly sketch the idea of the proof of the main theorem. Let χ
be an m-coloring of the edges of the complete graph Kn with colors q1, . . . , qm, and let V
be the vertex set of Kn. Set F = {Nqi(v) : i ∈ [m], v ∈ V }. Assuming that F has bounded
VC-dimension, we apply a partition lemma to F discussed in the next section to obtain a
vertex partition V = S1 ∪ · · · ∪ Sr such that for any pair of vertices {u, v} that lies in the
same part, very few sets in F will cross {u, v}, that is, contain one vertex but not the other.
As a consequence, if any part St contains a monochromatic Kk−1 in color qi, and there is
a vertex v ∈ St with large degree with respect to color qi, then a vertex u ∈ Nqi(v) can be
added to Kk−1 to produce a monochromatic Kk in color qi and we are done. Moreover, if
there is a “large” part St which does not contain a monochromatic Kk−1 with respect to
many of the colors in {q1, . . . , qm}, then we are also done, by induction. If there is no large
part with the above property, then the colors of nearly all edges can be “recovered” by much
fewer sets in F . Now we can repeat the argument above on this smaller collection of sets
F ′ ⊂ F .

To simplify the presentation, throughout this paper we omit the floor and ceiling signs
whenever they are not crucial. All logarithms are in base 2.

SoCG 2020

46:4 Bounded VC-Dimension Implies the Schur-Erdős Conjecture

2 A partition lemma

Let F be a set system with dual VC-dimension d and with ground set V . Given two points
u, v ∈ V , we say that a set A ∈ F crosses the pair {u, v} if A contains at least one member
of {u, v}, but not both. We say that the set X ⊂ V is δ-separated if for any two points
u, v ∈ X, there are at least δ sets in F that cross the pair {u, v}. The following packing
lemma was proved by Haussler in [13].

I Lemma 4. Let F be a set system on a ground set V such that F has dual VC-dimension
d. If X ⊂ V is δ-separated, then |X| ≤ c1(|F|/δ)d where c1 = c1(d).

As an application of Lemma 4, we obtain the following partition lemma.

I Lemma 5. Let F be a set system on a ground set V such that |V | = n and F has
dual VC-dimension d. Then there is a constant c2 = c2(d) such that for any δ satisfying
1 ≤ δ ≤ |F|, there is a partition V = S1 ∪ · · · ∪ Sr of V into r ≤ c2(|F|/δ)d parts, each of
size at most 2n

c1(|F|/δ)d , such that any pair of vertices from the same part St is crossed by at
most 2δ members of F . (Here c1 = c1(d) is the same constant as in Lemma 4.

Proof. Let X = {x1, . . . , xr′} be a maximal subset of V that is δ-separated with respect to
F . By Lemma 4, |X| = r′ ≤ c1(|F|/δ)d. We define a partition V = S′1 ∪ · · · ∪ S′r′ of the
vertex set such that xi ∈ S′i, and for v ∈ V \X, v ∈ S′i if i is the smallest index such that
the number of sets from F that cross the pair {v, xi} is at most δ. Such an i always exists
since X is maximal. By the triangle inequality, for any two vertices u, v ∈ S′i, there are at
most 2δ sets in F that cross the pair {u, v}.

If a part S′i has size more than 2n
c1(|F|/δ)d , we partition S′i (arbitrarily) into parts of size⌊

2n
c1(|F|/δ)d

⌋
and possibly one additional part of size less than

⌊
2n

c1(|F|/δ)d

⌋
. Let P : V =

S1∪· · ·∪Sr be the resulting partition, where r ≤ c2(|F|/δ)d and c2 = c2(d). Then P satisfies
the above properties. J

3 Proof of Theorem 3

Let d, k1, . . . , km be positive integers. We define the Ramsey number rd(k1, . . . , km) to be the
smallest integer n with the following property. For any m-coloring χ of the edges of Kn with
colors {q1, . . . , qm} such that χ has dual VC-dimension at most d, there is a monochromatic
copy of Kki

in color qi for some 1 ≤ i ≤ m. We now prove the following theorem, from which
Theorem 3 immediately follows.

I Theorem 6. For fixed integers d, k ≥ 1, if k1, . . . , km ≤ k, then rd(k1, . . . , km) ≤ 2cm
where c = c(d, k).

Proof. Let c = c(d, k) be a large constant that will be determined later. We will show that
rd(k1, . . . , km) ≤ 2c

∑m

i=1
ki by induction on s =

∑m
i=1 ki. The base case s ≤ k216dk follows

by setting c to be sufficiently large.
For the inductive step, assume that s > k216dk and that the statement holds for all s′ < s.

Thus, we have m ≥ 216dk. Set n = 2cs and Q = {q1, . . . , qm}, and let χ : E(Kn)→ Q be an
m-coloring of the edges of Kn with colors q1, . . . , qm such that the set system

F = {Nqi(v) : v ∈ V (Kn), qi ∈ Q}

has dual VC dimension at most d.

J. Fox, J. Pach, and A. Suk 46:5

Let log(j)m denote the j-fold iterated logarithm function, where log(0)m = m and
log(j)m = log(log(j−1)m). For convenience, we will set log(−1)m =∞. Suppose that there
is no color qi such that χ produces a monochromatic Kki

whose every edge is of color qi.
Otherwise we are done. Then, for every j ≥ 0 such that log(j−1)m > 28dk, we recursively
construct
1. a set Vj ⊂ V with |Vj | ≥ n(1− 1

log(j−1) m
), and

2. an assignment of colors χj : Vj → 2Q to each vertex in Vj with the property that the set
system Fj = {Nqi

(v)∩Vj : v ∈ Vj , qi ∈ χj(v)} covers all but at most 8n2/ log(j−1)m edges
of Kn. Here, uv is said to be covered by Fj if χ(uv) = qi implies that qi ∈ χj(u) ∩ χj(v).
Moreover, |χj(v)| ≤ log(j)m for all v ∈ Vj .

We start by setting V0 = V , χ0(v) = Q for all v ∈ V , and therefore we have F0 = F .
Suppose we have Vj , χj , and Fj with the properties described above. Before defining
the set Vj+1 and the assignment of colors χj+1 : Vj+1 → 2Q, we introduce Bj ⊂ E(Kn)
to be the set of edges that are not covered by Fj . Hence, |Bj | ≤ 8n2

log(j−1) m
. We apply

Lemma 5 to Fj , whose ground set is Vj , with parameter δ = |Fj |
(log(j) m)4 , and obtain a partition

P : Vj = S1 ∪ · · · ∪ Sr, where r ≤ c2(log(j)m)4d and c2 is defined in Lemma 5, such that P
has the properties described in Lemma 5. For each part St ∈ P, let Qt ⊂ {q1, . . . , qm} be
the set of colors such that qi ∈ Qt if there is a vertex v ∈ St such that

|{u ∈ Vj : χ(uv) = qi, uv 6∈ Bj}| ≥
n

(log(j)m)2
.

Let Q′t ⊂ {q1, . . . , qm} be the set of colors such that qi ∈ Q′t if the vertex set St contains a
monochromatic copy of Kki−1 in color qi.

I Observation 7. If there is a color qi ∈ Qt ∩Q′t, then χ produces a monochromatic copy of
Kki in color qi.

Proof. Suppose qi ∈ Qt ∩ Q′t and let X = {x1, . . . , xki−1} ⊂ St be the vertex set of a
monochromatic clique of order ki − 1 in color qi. Fix v ∈ St such that for U = {u ∈
Vj : χ(uv) = qi, uv 6∈ Bj}, we have |U | ≥ n

(log(j) m)2 . Notice that if X 6⊂ (Nqi(u) ∩ Vj),
where u ∈ U , then the set (Nqi(u) ∩ Vj) crosses the pair {x, v} for some x ∈ X. Moreover,
(Nqi

(u) ∩ Vj) ∈ Fj since uv 6∈ Bj . Since there are at most 2δ = 2|Fj |
(log(j) m)4 sets in Fj that

cross {x, v}, there are at most 2k|Fj |
(log(j) m)4 sets in {Nqi(u) ∩ Vj : u ∈ U} ⊂ Fj that do not

contain X. On the other hand,

|U | − ki ≥
n

(log(j)m)2
− ki >

2k|Fj |
(log(j)m)4

,

where the last inequality follows from the fact that |Fj | ≤ n log(j)m and log(j)m > 28dk.
Hence, there must be a neighborhood (Nqi

(u) ∩ Vj) that contains X, which implies that
X ∪ {u} induces a monochromatic copy of Kki in color qi. J

By the observation above, we can assume that Qt ∩Q′t = ∅ for every t, since otherwise
we would be done.

I Observation 8. If there is a part St ∈ P such that |St| ≥ n/(log(j)m)6d and |Qt| ≥
log(j+1)m, then St contains a monochromatic copy of Kki

in color qi where qi ∈ Q′t.

SoCG 2020

46:6 Bounded VC-Dimension Implies the Schur-Erdős Conjecture

Proof. For sake of contradiction, suppose St ∈ P does not contain a monochromatic copy
of Kki

in color qi ∈ Q′t. Since Qt ∩Q′t = ∅, St also does not contain a monochromatic copy
of Kki−1 in color qi ∈ Qt. So if |Qt| ≥ log(j+1)m, we have |Q′t| ≤ m − log(j+1)m. By the
induction hypothesis, we have

n

(log(j)m)6d
≤ |St| < 2c(s−log(j+1) m).

Since c = c(d, k) is sufficiently large, we have n < 2cs which is a contradiction. J

Hence, we can assume that for each part St ∈ P such that |St| ≥ n/(log(j)m)6d, we have
|Qt| < log(j+1)m.

We now define the set Vj+1 and the color assignment χj+1 as follows. Let Vj+1 ⊂ Vj be
the set of vertices v ∈ Vj such that v does not lie in a part St such that |St| < n/(log(j)m)6d.
Hence,

|Vj+1| ≥ |Vj | − c2(log(j)m)4d n
(log(j) m)6d

≥ n− n
log(j−1) m

− c2n
(log(j) m)2d

≥ n− n
log(j) m

.

For each vertex v ∈ Vj+1, v lies in a part St ∈ P with |St| ≥ n/(log(j)m)6d. We set
χj+1(v) = Qt, and by the observation above, |χj+1(v)| ≤ log(j+1)m. Thus, we have the set
system Fj+1 = {Nqi

(v) ∩ Vj+1 : v ∈ Vj+1, qi ∈ χj+1(v)} such that |Fj+1| ≤ n log(j+1)m.

Finally, it remains to show that Fj+1 covers at least
(
n
2
)
− 8n2

log(j) m
edges of Kn. Let

Bj+1 ⊂ E(Kn) denote the set of edges that are not covered by Fj+1. If uv ∈ Bj+1, then either
1. uv ∈ Bj , or
2. u (or v) lies inside a part St ∈ P such that |St| ≤ n

(log(j) m)6d , or
3. both u and v lie inside the same part St ∈ P, or
4. uv is covered by Fj , but is not covered by Fj+1 since v ∈ St ∈ P and χ(u, v) 6∈ Qt.
By assumption,

|Bj | ≤
8n2

log(j−1)m
. (1)

The number of edges of the second type is at most

n2

(log(j)m)6d
. (2)

The number of edges of the third type is at most

r∑
i=1

(
|St|
2

)
≤ c2(log(j)m)4d

(
2n

c1(log(j)m)4d

)2

= 4c2n2

(c1)2(log(j)m)4d
, (3)

where c1 is defined in Lemma 4. Finally, let us bound the number of edges of the fourth type.
Fix v ∈ St ∈ P such that |St| > n

(log(j) m)6d , and let us consider all edges incident to v that
are covered by Fj . Since v contributed at most log(j)m sets in Fj , there are at most log(j)m

distinct colors among these edges. Fix such a color qi such that qi 6∈ Qt, and consider the set
of vertices

U = {u ∈ Vj+1 : χ(uv) = qi, uv 6∈ Bj}.

J. Fox, J. Pach, and A. Suk 46:7

By definition of Qt, we have |U | < n
(log(j) m)2 . Therefore, the number of edges incident to v

of the fourth type is at most

log(j)m
n

(log(j)m)2
= n

log(j)m
.

Hence, the total number of edges of the fourth type is at most

n2

log(j)m
. (4)

Thus by summing (1), (2), (3), (4), and using the fact that log(j−1)m > 28dk, we have

|Bj+1| ≤
8n2

log(j−1)m
+ n2

(log(j)m)6d
+ 4c2n2

(c1)2(log(j)m)4d
+ n2

log(j)m
<

8n2

log(j)m
.

Hence, Fj+1 covers at least
(
n
2
)
− 8n2

log(j) m
edges of Kn.

Let w be the minimum integer such that log(w)m ≤ 28dk. Then we have Vw, χw,Fw with
the properties described above. Just as before, let Bw ⊂ E(Kn) be the set of edges not
covered by Fw. This implies |Bw| ≤ n2/28dk < n2/8 and |Vw| ≥ 7n/8. Since(

7n/8
2

)
− n2

8 ≥
n2

4 ,

an averaging argument shows that there is a vertex v ∈ Vw that is incident to at least n/2
edges that are covered by Fw. Since v contributes at most log(w)m < 28dk sets in Fw, there
is a color qi such that

|Nqi(v)| ≥ n

2 · 28dk = 2cs

2 · 28dk ≥ 2c(s−1),

where the second inequality follows from the fact that c = c(d, k) is sufficiently large.
Therefore, by induction, the set Nqi(v) ⊂ V contains a monochromatic copy of Kk`

in color
q` ∈ {q1, . . . , qm} \ qi, in which case we are done, or contains a monochromatic copy of Kki−1
in color qi. In the latter case, we obtain a monochromatic Kki

in color qi by including vertex
v. This completes the proof of Theorem 6. J

4 Concluding remarks

We have established tight bounds for multicolor Ramsey numbers for graphs with bounded VC-
dimension. It would be interesting to prove other well-known conjectures in extremal graph
theory for graphs and hypergraphs with bounded VC-dimension, especially the notorious
Erdős-Hajnal conjecture.

An old result of Erdős and Hajnal [6] states that for every hereditary property P which
is not satisfied by all graphs, there exists a constant ε(P) > 0 such that every graph of n
vertices with property P has a clique or an independent set of size at least eε(P)

√
logn. They

conjectured that this bound can be improved to nε(P). Thus, every graph G on n vertices
with bounded VC-dimension contains a clique or an independent set of size eΩ(

√
logn). In

[10], the authors improved this bound to e(logn)1−o(1) . However, the following conjecture
remains open.

I Conjecture 9. For d ≥ 2, there exists a constant ε(d) such that every graph on n vertices
with VC-dimension at most d contains a clique or an independent set of size nε(d).

SoCG 2020

46:8 Bounded VC-Dimension Implies the Schur-Erdős Conjecture

References
1 N. Alon, J. Pach, R. Pinchasi, R. Radoičić, and M. Sharir. Crossing patterns of semi-algebraic

sets. J. Comb. Theory, Ser. A, 111:310–326, 2005. doi:10.1016/j.jcta.2004.12.008.
2 B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. A singly exponential stratification

scheme for real semi-algebraic varieties and its applications. Theor. Comput. Sci., 84:77–105,
1991. doi:10.1016/0304-3975(91)90261-Y.

3 F. Chung and R. Graham. Erdős on Graphs: His Legacy of Unsolved Problems. A K Peters
Series. Taylor & Francis, 1998. URL: https://books.google.com/books?id=Doc_ErUTDcAC.

4 F. R. K. Chung. On the ramsey numbers n(3, 3, ...3; 2). Discret. Math., 5:317–321, 1973.
doi:10.1016/0012-365X(73)90125-8.

5 Paul Erdős. On sequences of integers no one of which divides the product of two others and
on some related problems. Inst. Math. Mech. Univ. Tomsk, 2:74–82, 1938.

6 P. Erdős and A. Hajnal. Ramsey-type theorems. Discret. Appl. Math., 25:37–52, 1989.
doi:10.1016/0166-218X(89)90045-0.

7 J. Fox, M. Gromov, V. Lafforgue, A. Naor, and J. Pach. Overlap properties of geometric
expanders. Reine Angew. Math. (Crelle’s Journal), 2012:49–83, 2010. doi:10.1515/CRELLE.
2011.157.

8 J. Fox, J. Pach, A. Sheffer, A. Suk, and J. Zahl. A semi-algebraic version of Zarankiewicz’s
problem. J. Eur. Math. Soc. (JEMS), 19:1785–1810, 2014. doi:10.4171/JEMS/705.

9 J. Fox, J. Pach, and A. Suk. A polynomial regularity lemma for semialgebraic hypergraphs
and its applications in geometry and property testing. SIAM J. Computing, 45:2199–2223,
2015. doi:10.1137/15M1007355.

10 J. Fox, J. Pach, and A. Suk. Erdős-Hajnal conjecture for graphs with bounded VC-dimension.
Discret. Comput. Geom., 61:809–829, 2019. doi:10.1007/s00454-018-0046-5.

11 J. Fox, J. Pach, and A. Suk. The Schur-Erdős problem for semi-algebraic colorings. Israel
J. Mathematics, to appear.

12 L. Guth. Polynomial Methods in Combinatorics. University Lecture Series. Amer. Math. Soc.,
2016.

13 D. Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded
Vapnik-Chervonenkis dimension. J. Comb. Theory, Ser. A, 69:217–232, 1995.

14 D. Haussler and E. Welzl. epsilon-nets and simplex range queries. Discret. Comput. Geom.,
2:127–151, 1987. doi:10.1007/BF02187876.

15 T. Kóvari, V. Sós, and P. Turán. On a problem of K. Zarankiewicz. Colloq. Math., 3:50–57,
1954. URL: http://eudml.org/doc/210011.

16 J. Matouvsek. Lectures on discrete geometry, volume 212 of Graduate texts in mathematics.
Springer, 2002.

17 J. Milnor. On the betti numbers of real varieties. Proc. Amer. Math. Soc., 15:257–280, 1964.
18 I. G. Petrovskĭı and O. A. Olĕınik. On the topology of real algebraic surfaces (russian).

Izv. Akad. Nauk SSSR Ser. Mat., 13:389–402, 1949.
19 I. Schur. Über die Kongruenz xm +ym = zm(mod p). Jber. Deutsch. Math. Verein., 25:114–116,

1917. URL: http://eudml.org/doc/145475.
20 E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica,

3:381–392, 1983. doi:10.1007/BF02579194.
21 V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of

events to their probabilities. Theory Probab. Appl., 16:264–280, 1971. doi:10.1137/1116025.
22 X. Xu, X. Zheng, G. Exoo, and S. P. Radziszowski. Constructive lower bounds on classical

multicolor ramsey numbers. Electr. J. Comb., 11, 2004. URL: http://www.combinatorics.
org/Volume_11/Abstracts/v11i1r35.html.

https://doi.org/10.1016/j.jcta.2004.12.008
https://doi.org/10.1016/0304-3975(91)90261-Y
https://books.google.com/books?id=Doc_ErUTDcAC
https://doi.org/10.1016/0012-365X(73)90125-8
https://doi.org/10.1016/0166-218X(89)90045-0
https://doi.org/10.1515/CRELLE.2011.157
https://doi.org/10.1515/CRELLE.2011.157
https://doi.org/10.4171/JEMS/705
https://doi.org/10.1137/15M1007355
https://doi.org/10.1007/s00454-018-0046-5
https://doi.org/10.1007/BF02187876
http://eudml.org/doc/210011
http://eudml.org/doc/145475
https://doi.org/10.1007/BF02579194
https://doi.org/10.1137/1116025
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r35.html
http://www.combinatorics.org/Volume_11/Abstracts/v11i1r35.html

Almost-Monochromatic Sets and the Chromatic
Number of the Plane
Nóra Frankl
Department of Mathematics, London School of Economics and Political Science, UK
Laboratory of Combinatorial and Geometric Structures at MIPT, Moscow, Russia
n.frankl@lse.ac.uk

Tamás Hubai
MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Mathematics,
Eötvös Loránd University (ELTE), Budapest, Hungary
htamas@cs.elte.hu

Dömötör Pálvölgyi
MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Mathematics,
Eötvös Loránd University (ELTE), Budapest, Hungary
dom@cs.elte.hu

Abstract

In a colouring of Rd a pair (S, s0) with S ⊆ Rd and with s0 ∈ S is almost-monochromatic if S \ {s0}
is monochromatic but S is not. We consider questions about finding almost-monochromatic similar
copies of pairs (S, s0) in colourings of Rd, Zd, and of Q under some restrictions on the colouring.

Among other results, we characterise those (S, s0) with S ⊆ Z for which every finite colouring
of R without an infinite monochromatic arithmetic progression contains an almost-monochromatic
similar copy of (S, s0). We also show that if S ⊆ Zd and s0 is outside of the convex hull of
S \ {s0}, then every finite colouring of Rd without a monochromatic similar copy of Zd contains an
almost-monochromatic similar copy of (S, s0). Further, we propose an approach based on finding
almost-monochromatic sets that might lead to a human-verifiable proof of χ(R2) ≥ 5.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of compu-
tation → Computational geometry

Keywords and phrases discrete geometry, Hadwiger-Nelson problem, Euclidean Ramsey theory

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.47

Related Version A full version of this paper is available at [6] https://arxiv.org/abs/1912.02604.

Funding Nóra Frankl: Research was part of project 2018-2.1.1-UK_GYAK-2018-00024 of the sum-
mer internship for Hungarian students studying in the UK, supported by the National Research,
Development and Innovation Office. She also acknowledges the financial support from the Ministry
of Education and Science of the Russian Federation in the framework of MegaGrant no 075-15-
2019-1926. The research was also partially supported by the National Research, Development, and
Innovation Office, NKFIH Grant K119670.
Tamás Hubai: Research supported by the Lendület program of the Hungarian Academy of Sciences
(MTA), under grant number LP2017-19/2017.
Dömötör Pálvölgyi: Research supported by the Lendület program of the Hungarian Academy of
Sciences (MTA), under grant number LP2017-19/2017.

Acknowledgements We thank Konrad Swanepoel and the anonymous referees for helpful suggestions
on improving the presentation of the paper. We also thank the participants of the Polymath16
project for discussions and consent to publish these related results that were obtained “offline” and
separately from the main project.

© Nóra Frankl, Tamás Hubai, and Dömötör Pálvölgyi;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.frankl@lse.ac.uk
mailto:htamas@cs.elte.hu
https://orcid.org/0000-0003-2970-0943
mailto:dom@cs.elte.hu
https://doi.org/10.4230/LIPIcs.SoCG.2020.47
https://arxiv.org/abs/1912.02604
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Almost-Monochromatic Sets

1 Introduction

A colouring ϕ : R2 → [k] is a (unit-distance-avoiding) proper k-colouring of the plane, if
‖p− q‖ = 1 implies ϕ(p) 6= ϕ(q). The chromatic number χ(R2) of the plane is the smallest
k for which there exists a proper k-colouring of the plane. Determining the exact value of
χ(R2), also known as the Hadwiger-Nelson problem, is a difficult problem. In 2018 Aubrey de
Grey [1] showed that χ(R2) ≥ 5, improving the long standing previous lower bound χ(R2) ≥ 4
which was first noted by Nelson (see [13]). The best known upper bound χ(R2) ≤ 7 was first
observed by Isbell (see [13]), and it is widely conjectured that χ(R2) = 7. For history and
related results we refer the reader to Soifer’s book [13].

A graph G = (V,E) is a unit-distance graph in the plane if V ⊆ R2 such that if (v, w) ∈ E
then ‖v − w‖ = 1. De Grey constructed a unit-distance graph G with 1581 vertices, and
checked that χ(G) ≥ 5 by a computer program. Following his breakthrough, a polymath
project, Polymath16 [2] was launched with the main goal of finding a human-verifiable proof
of χ(R2) ≥ 5. Following ideas proposed in Polymath16 by the third author [10], we present
an approach that might lead to a human-verifiable proof of χ(R2) ≥ 5.

We call a collection of unit circles C = C1 ∪ · · · ∪Cn having a common point O a bouquet
through O. For a given colouring of R2, the bouquet C is smiling if there is a colour, say
blue, such that every circle Ci has a blue point, but O is not blue.

I Conjecture 1. For every bouquet C, every colouring of the plane with finitely many but at
least two colours contains a smiling congruent copy of C.

In Section 4 we show that the statement of Conjecture 1 would provide a human-verifiable
proof of χ(R2) ≥ 5. We prove the conjecture for a specific family of bouquets.

I Theorem 2. Let C = C1 ∪ · · · ∪ Cn be a bouquet through O and for every i let Oi be the
centre of Ci. If O and O1, . . . , On are contained in Q2, further O is an extreme point of
{O,O1, . . . , On}, then Conjecture 1 is true for C for every proper colouring.

In Section 4.2 we prove a more general statement which implies Theorem 2. We also
prove a statement similar to that of Conjecture 1 for concurrent lines. We call a collection of
lines L = L1 ∪ · · · ∪ Ln with a common point O a pencil through O. The pencil L is smiling
if there is a colour, say blue, such that every line Li has a blue point, but O is not blue.

I Theorem 3. For every pencil L, every colouring of the plane with finitely many but at
least two colours contains a smiling congruent copy of L.

1.1 Almost-monochromatic sets
Let S ⊆ Rd be a finite set with |S| ≥ 3, and let s0 ∈ S. In a colouring of Rd we call S
monochromatic, if every point of S has the same colour. A pair (S, s0) is almost-monochromatic
if S \ {s0} is monochromatic but S is not.

We call a colouring a finite colouring, if it uses finitely many colours. An infinite arithmetic
progression in Rd is a similar copy of N. A colouring is arithmetic progression-free if it does
not contain a monochromatic infinite arithmetic progression. Motivated by its connections
to the chromatic number of the plane,1 we propose to study the following problem.

1 The connection is described in details in the the proof of Theorem 24.

N. Frankl, T. Hubai, and D. Pálvölgyi 47:3

I Problem 4. Characterise those pairs (S, s0) with S ⊆ Rd and with s0 ∈ S for which
it is true that every arithmetic progression-free finite colouring of Rd contains an almost-
monochromatic similar copy of (S, s0).

Note that finding an almost-monochromatic congruent copy of a given pair (S, s0) was
studied by Erdős, Graham, Montgomery, Rothschild, Spencer, and Strauss [4]. We solve
Problem 4 in the case when S ⊆ Zd. A point s0 ∈ S is called an extreme point of S if
s0 /∈ conv(S\{s0}). From now on we will use the abbreviations AM for almost-monochromatic
and AP for arithmetic progression.

I Theorem 5. Let S ⊆ Zd and s0 ∈ S. Then there is an AP-free colouring of Rd without
an AM similar copy of (S, s0) if and only if |S| > 3 and s0 is not an extreme point of S.

We prove Theorem 5 in full generality in Section 3.1. The ‘only if’ direction follows from
a stronger statement, Theorem 16. In Section 2 we consider the 1-dimensional case. We
prove some statements similar to Theorem 5 for d = 1, and illustrate the ideas that are used
to prove the theorem in general.

Problem 4 is related to and motivated by Euclidean Ramsey theory, a topic introduced
by Erdős, Graham, Montgomery, Rothschild, Spencer, and Strauss [3]. Its central question
asks for finding those finite sets S ⊆ Rd for which the following is true. For every k if d is
sufficiently large, then every colouring of Rd using at most k colours contains a monochromatic
congruent copy of S. Characterising sets having the property described above is a well-studied
difficult question, and is in general wide open. For a comprehensive overview see Graham’s
survey [7].

The nature of the problem significantly changes if instead of a monochromatic congruent
copy we ask for a monochromatic similar copy, or a monochromatic homothetic copy. A
(positive) homothetic copy (or (positive) homothet) of a set H ⊆ Rd is a set c + λH =
{c+ λh : h ∈ H} for some c ∈ Rd and some (positive) λ ∈ R \ {0}. Gallai proved that
if S ⊆ Rd is a finite set, then every colouring of Rd using finitely many colours contains
a monochromatic positive homothetic copy of S. This statement first appeared in the
mentioned form in the book of Graham, Rothschild, and Spencer [8].

A direct analogue of Gallai’s theorem for AM sets is not true: there is no AM similar
copy of any (S, s0) if the whole space is coloured with one colour only. However, there are
pairs (S, s0) for which a direct analogue of Gallai’s theorem is true for colourings of Q with
more than one colour. In particular, we prove the following result in the full version of the
paper [6]. (This result is not used elsewhere in the paper.)

I Theorem 6. Let S = {0, 1, 2} and s0 = 0. Then every finite colouring of Q with more
than one colour contains an AM positive homothet of (S, s0).

In general, we could ask whether every non-monochromatic colouring of Rd with finitely
many colours contains an AM similar copy of every (S, s0). This, however, is false, as shown
by the following example from [4]. Let S = {1, 2, 3} and s0 = 2. If R>0 is coloured red
and R≤0 is coloured blue, we obtain a colouring of R without an AM similar copy of (S, s0).
Restricting the colouring to N, using the set of colours {0, 1, 2} and colouring every n ∈ N
with n modulo 3, we obtain a colouring without an AM similar copy of (S, s0). However,
notice that in both examples each colour class contains an infinite monochromatic AP.

Therefore, our reason, apart from its connections to the Hadwiger-Nelson problem, for
finding AM similar copies of (S, s0) in AP-free colourings was to impose a meaningful
condition to exclude “trivial” colourings.

SoCG 2020

47:4 Almost-Monochromatic Sets

2 The line

In this section we prove a statement slightly weaker than Theorem 5 for d = 1. The main
goal of this section to illustrate some of the ideas that we use to prove Theorem 5, but in a
simpler case. Note that in R the notion of similar copy and homothetic copy is the same.

I Theorem 7. Let S ⊆ Z and s0 ∈ S. Then there is an AP-free colouring of N and of R
without an AM positive homothetic copy of (S, s0) if and only if |S| > 3 and s0 is not an
extreme point of S.

To prove Theorem 7 it is sufficient to prove the “if” direction only for R and the “only if”
direction only for N. Thus it follows from the three lemmas below, that consider cases of
Theorem 7 depending on the cardinality of S and on the position of s0.

I Lemma 8. If s0 is an extreme point of S, then every finite AP-free colouring of N contains
an AM positive homothetic copy of (S, s0).

I Lemma 9. If |S| = 3, then every AP-free finite colouring of N contains an AM positive
homothetic copy of (S, s0).

I Lemma 10. If S ⊆ R, |S| > 3 and s0 is not an extreme point of S, then there is an
AP-free finite colouring of R without an AM positive homothetic copy of (S, s0).

Before turning to the proofs, recall Van der Waerden’s theorem [14] and a corollary of it.
A colouring is a k-colouring if it uses at most k colours.

I Theorem 11 (Van der Waerden [14]). For every k, l ∈ N there is an N(k, l) ∈ N such that
every k-colouring of {1, . . . , N(k, l)} contains an l-term monochromatic AP.

I Corollary 12 (Van der Waerden [14]). For every k, l ∈ N and for every k-colouring of N
there is a t ≤ N(k, l) such that there are infinitely many monochromatic l-term AP of the
same colour with difference t.

Proof of Lemma 8. Let S = {p1, . . . , pn} with 1 < p1 < · · · < pn and ϕ be an AP-free
colouring of N. If s0 is an extreme point of S, then either s0 = p1 or s0 = pn.

Case 1: s0 = pn. By Theorem 11 ϕ contains a monochromatic positive homothet
M + λ([1, pn) ∩ N) of [1, pn) ∩ N of colour, say, blue. Observe that since ϕ is AP-free there
is a q ∈M + λ([pn,∞) ∩ N) which is not blue. Let M + qλ be the smallest non-blue element
in M + λ([pn,∞) ∩ N). Then (λ(q − pn) +M + λS,M + λq) is an AM homothet of (S, s0).

Case 2: s0 = p1. By Corollary 12 there is a λ ∈ N such that ϕ contains infinitely
many monochromatic congruent copies of λ((1, pn] ∩ N), say of colour blue. Without loss of
generality, we may assume that infinitely many of these monochromatic copies are contained
in λN. Since ϕ is AP-free, λN is not monochromatic, and thus there is an i such that iλ
and (i+ 1)λ are of different colours. Consider a blue interval M + λ((1, pn] ∩ N) such that
M + λ > iλ, and let q be the largest non-blue element of [1,M + λ) ∩ λN. This largest
element exists since λi and λ(i+ 1) are of different colour. Then (q − λp1 + λS, q) is an AM
homothet of (S, s0). J

Proof of Lemma 9. Let S = {p1, p2, p3} with 1 < p1 < p2 < p3 and ϕ be an AP-free
colouring of N. We may assume that s0 = p2, otherwise we are done by Lemma 8.

There is an r ∈ Q>0 such that {q1, q2, q3} is a positive homothet of S if and only if
q2 = rq1 + (1− r)q3. Fix an M ∈ N for which Mr ∈ N. We say that I is an interval of c+λN
of length ` if there is an interval J ⊆ R such that I = J ∩ (c+ λN) and |I| = `.

N. Frankl, T. Hubai, and D. Pálvölgyi 47:5

I Proposition 13. Let I1 and I3 be intervals of λN of length 2M and M respectively
such that max I1 < min I3. Then there is an interval I2 ⊆ λN of length M such that
max I1 < max I2 < max I3, and for every q2 ∈ I2 there are q1 ∈ I1 and q3 ∈ I3 such that
{q1, q2, q3} is a positive homothetic copy of S.

Proof. Without loss of generality we may assume that λ = 1. Let IL1 be the set of the M
smallest elements of I1. By the choice of M for any q3 ∈ N the interval rIL1 + (1 − r)q3
contains at least one natural number. Let q3 be the smallest element of I3 and q1 ∈ IL1 such
that rq1 + (1− r)q3 ∈ N. Then I2 = {r(q1 + i) + (1− r)(q3 + i) : 0 ≤ i < M} is an interval
of N of length M satisfying the requirements, since q1 + i ∈ I1 and q3 + i ∈ I3. J

We now return to the proof of Lemma 9. Let I be an interval of N of length 2M . By
Theorem 12 there is a λ ∈ N such that ϕ contains infinitely many monochromatic copies of
λI of the same colour, say of blue. Moreover, by the pigeonhole principle there is a c ∈ N
such that infinitely many of these blue copies are contained in c+ λN, and without loss of
generality we may assume that c = 0.

Consider a blue interval [aλ, aλ + 2Mλ − λ] of λN of length 2M . Since ϕ is AP-free,
[aλ+ 2Mλ,∞)∩ λN is not completely blue. Let qλ be its smallest element which is not blue
and let I1 = [qλ− 2Mλ, (q − 1)λ] ∩ λN. Let I3 be the blue interval of length M in λN with
the smallest possible min I3 for which max I1 < min I3. Then Proposition 13 provides an
AM positive homothet of (S, s0).

Indeed, consider the interval I2 given by the proposition. There exists a q2 ∈ I2 which is
not blue, otherwise every point of I2 is blue, contradicting the minimality of min I3. But then
there are q1 ∈ I1, q3 ∈ I3 such that ({q1, q2, q3}, q2) is an AM homothet copy of (S, s0). J

Proof of Lemma 10. S contains a set S′ of 4 points with s0 ∈ S′ such that s0 is not an
extreme point of S′. Thus we may assume that S = {p1, p2, p3, p4} with p1 < p2 < p3 < p4
and that s0 = p2 or s0 = p3. We construct the colouring for these two cases separately. First
we construct a colouring ϕ1 of R>0 for the case of s0 = p3, and a colouring ϕ2 of R≥0 for
the case of s0 = p2. Then we extend the colouring in both cases to R.

Construction of ϕ1 (s0 = p3): Fix K such that K > p4−p2
p2−p1

+ 1 and let {0, 1, 2} be the
set of colours. We define ϕ1 as follows. Colour (0, 1) with colour 2, and for every i ∈ N∪ {0}
colour [Ki,Ki+1) with i modulo 2. It is not hard to check that ϕ1 defined this way is AP-free.
Thus we only have to show that it does not contain an AM positive homothet of (S, s0).

Consider a positive homothet c + λS = {r1, r2, r3, r4} of S with r1 < r2 < r3 < r3. If
{r1, r2, r3, r4} ∩ [0, 1) 6= ∅, then {r1, r2, r3, r4} cannot be AM. Thus we may assume that
{r1, r2, r3, r4} ∩ [0, 1) = ∅.

Note that by the choice of K we have

Kr2 > r2 + p4 − p2

p2 − p1
r2 = r2 + p4 − p2

p2 − p1
(λ(p2 − p1) + r1) ≥ r2 + λ(p4 − p2) = r4.

Hence {r2, r3, r4} is contained in the union of two consecutive intervals of the form [Ki,Ki+1).
This means that ({r1, . . . , r4}, r3) cannot be AM since either {r2, r3, r4} is monochromatic,
or r2 and r4 have different colours.

Construction of ϕ2 (s0 = p2): Fix K such that K > p4−p2
p2−p1

+ 1, let L = K ·
⌈
p3−p1
p4−p3

⌉
and let {0, . . . , 2L} be the set of colours. We define ϕ2 as follows. For each odd i ∈ N ∪ {0},
divide the interval [L ·Ki, L ·Ki+1) into L equal half-closed intervals, and colour the j-th of
them with colour j. For even i ∈ N ∪ {0} divide the interval [L ·Ki, L ·Ki+1) into L equal

SoCG 2020

47:6 Almost-Monochromatic Sets

half-closed intervals, and colour the j-th of them with colour L+ j. That is, for j = 1, . . . , L
we colour [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki)) with colour j if i is odd, and
with colour j + L if i is even. Finally, colour the points in [0, L) with colour 0.

It is not hard to check that ϕ2 defined this way is AP-free, thus we only have to show it
does not contain an AM positive homothetic copy of (S, s0).

Consider a positive homothet c + λS = {r1, r2, r3, r4} of S with r1 < r2 < r3 < r4. If
{r1, r2, r3, r4} ∩ [0, L) 6= ∅, then ({r1, r2, r3, r4}, r2) cannot be AM, thus we may assume that
{r1, r2, r3, r4} ∩ [0, L) = ∅. Note that by the choice of K we again have

Kr2 > r2 + p4 − p2

p2 − p1
r2 = r2 + p4 − p2

p2 − p1
(λ(p2 − p1) + r1) ≥ r2 + λ(p4 − p2) = r4.

This means that {r2, r3, r4} is contained in the union of two consecutive intervals of the form
[L ·Ki, L ·Ki+1), which implies that if ({r1, r2, r3, r4}, r2) is AM, then {r3, r4} is contained in
an interval [L ·Ki+ (j−1)(Ki+1−Ki), L ·Ki+ j(Ki+1−Ki)) for some 1 ≤ j ≤ L. However,
then by the choice of L we have that r1 is either contained in the interval [L ·Ki, L ·Ki+1)
or in the interval [L ·Ki−1, L ·Ki). Indeed,

r3 − r1 ≤
⌈
r3 − r1

r4 − r3

⌉
(r4 − r3) ≤

⌈
r3 − r1

r4 − r3

⌉
(Ki+1 −Ki)

=
⌈
p3 − p1

p4 − p3

⌉
(Ki+1 −Ki) = L(Ki −Ki−1).

Thus, if r1 has the same colour as r3 and r4, then r1 is also contained in the interval
[L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki)), implying that ({r1, r2, r3, r4}, r2) is
monochromatic.

We now extend the colouring to R in the case of s0 = p3. Let ϕ′2 be a colouring of R≥0
isometric to the reflection of ϕ2 over 0. Then ϕ′2 contains no AM positive homothet of (S, s0).
If further we assume that ϕ1 and ϕ′2 use disjoint sets of colours, it is not hard to check that
the union of ϕ1 and ϕ′2 is an AP-free colouring of R containing no AM positive homothet of
(S, s0). We can extend the colouring similarly in the case of s0 = p2. J

3 Higher dimensions

In this section we prove Theorem 5.

3.1 Proof of “if” direction of Theorem 5
Let S ⊆ Rd such that |S| > 3 and s0 is not an extreme point of S. To prove the ‘if’ direction
of Theorem 5, we prove that there is an AP-free colouring of Rd without an AM similar copy
of (S, s0). (Note that for the proof of Theorem 5, it would be sufficient to prove this for
S ⊆ Zd.)

Recall that C ⊆ Rd is a convex cone if for every x, y ∈ C and α, β ≥ 0, the vector αx+βy

is also in C. The angle of C is supx,y∈C\{o}∠(x, y).
We partition Rd into finitely many convex cones C1 ∪ · · · ∪ Cm, each of angle at most

α = α(d, S), where α(d, S) will be set later. We colour the cones with pairwise disjoint sets
of colours as follows. First, we describe a colouring ϕ of the closed circular cone C = C(α) of
angle α around the line x1 = · · · = xd. Then for each i we define a colouring ϕi of Ci using
pairwise disjoint sets of colours in a similar way. More precisely, let fi be an isometry with
fi(Ci) ⊆ C, and define ϕi such that it is isometric to ϕ on fi(Ci).

N. Frankl, T. Hubai, and D. Pálvölgyi 47:7

It is not hard to see that it is sufficient to find an AP-free colouring ϕ of C without an
AM similar copy of (S, s0). Indeed, since the cones Ci are coloured with pairwise disjoint
sets of colours, any AP or AM similar copy of (S, s0) is contained in one single Ci.

We now turn to describing the colouring ϕ of C. Note that by choosing α sufficiently
small we may assume that C ⊆ Rd≥0. For x ∈ Rd let ‖x‖1 = |x1|+ · · ·+ |xd|. Then for any
x ∈ Rd we have

‖x‖ ≤ ‖x‖1 ≤
√
d‖x‖. (1)

Let S = {p1, . . . , pn} and fix K such that

K > 1 + 2
√
d max
pi,pj ,pl,p`∈S,pi 6=pj

‖pk − p`‖
‖pi − pj‖

.

For a sufficiently large L, to be specified later, we define ϕ : C → {0, 1, . . . , 2L} as

ϕ(x) =

0 if ‖x‖1 < L

j if for some even i ∈ N and j ∈ [L] we have
‖x‖1 ∈ [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki))

L+ j if for some odd i ∈ N and j ∈ [L] we have
‖x‖1 ∈ [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki)).

It is not hard to check that ϕ is AP-free. Thus we only have to show that it does not
contain an AM similar copy of (S, s0). Let ({r1, . . . , rn}, q0) be a similar copy of (S, s0), with

‖r1‖1 ≤ ‖r2‖1 ≤ · · · ≤ ‖rn‖1. (2)

B Claim 14. {‖r2‖1, . . . , ‖rn‖1} is contained in the union of two consecutive intervals of the
form [L ·Kj , L ·Kj+1).

Proof. For any ri with i ≥ 2 we have

‖ri‖1 ≤ ‖r2‖1 + ‖ri − r2‖1

≤ ‖r2‖1 +
√
d‖ri − r2‖ by (1)

= ‖r2‖1 +
√
d
‖ri − r2‖
‖r2 − r1‖

‖r2 − r1‖

< ‖r2‖1 + K − 1
2 · ‖r2 − r1‖ by the definition of K

≤ ‖r2‖1 + K − 1
2 (‖r2‖+ ‖r1‖) by the triangle inequality

≤ ‖r2‖1 + K − 1
2 (‖r2‖1 + ‖r1‖1) by (1)

≤ K‖r2‖1 by (2).

C

Assume now that ({r1, . . . , rn}, q0) is AM. Note that ‖x‖1 is
√
d times the length of the

projection of x on the x1 = · · · = xd line for x ∈ Rd≥0. Thus for any similar copy ψ(S) of S we
have ‖ψ(s0)‖1 ∈ conv {‖p‖1 : p ∈ ψ(S \ {s0})}, and we may assume that q0 6= r1, rn. This
means that ϕ(r1) = ϕ(rn), and there is exactly one i ∈ {2, . . . , n − 1} with ϕ(ri) 6= ϕ(r1).
This, by Claim 14 and by the definition of ϕ, is only possible if i = 2 and there are i ∈ N
and j ∈ [L] such that

‖r3‖1, . . . , ‖rn−1‖1 ∈ [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki)).

The following claim finishes the proof.

SoCG 2020

47:8 Almost-Monochromatic Sets

B Claim 15. If L is sufficiently large and α is sufficiently small, then ‖r1‖1 is contained in
[L ·Ki−1, L ·Ki) ∪ [L ·Ki, L ·Ki+1).

The claim indeed finishes the proof. By the definition of ϕ then ϕ(r1) = ϕ(rn) implies

‖r1‖1 ∈ [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki)).

But then we have

‖r2‖1 ∈ [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki + j(Ki+1 −Ki))

as well, contradicting ϕ(r2) 6= ϕ(r1).

Proof of Claim 15. It is sufficient to show that ‖rn−1‖1 − ‖r1‖1 < LKi − LKi−1. We have

‖rn−1‖1 − ‖r1‖1 ≤
√
d‖rn−1 − r1‖ =

√
d‖rn − rn−1‖

‖rn−1 − rn‖
‖rn − rn−1‖

< ‖rn−1 − rn‖
K − 1

2 ,

by (1) and by the definition of K. Let H1 and H2 be the hyperplanes orthogonal to the line
x1 = · · · = xd at distance 1√

d
(L ·Ki + (j − 1)(Ki+1 −Ki)) and 1√

d
(L ·Ki + j(Ki+1 −Ki))

from the origin respectively. Since ‖rn‖1, ‖rn−1‖1 ∈ [L ·Ki + (j − 1)(Ki+1 −Ki), L ·Ki +
j(Ki+1 −Ki)) we have that rn and rn−1 are contained in the intersection T of C(α) and
the slab bounded by the hyperplanes H1 and H2.

Thus ‖rn−1 − rn‖ is bounded by the length of the diagonal of the trapezoid which is
obtained as the intersection of T and the 2-plane through rn, rn−1 and the origin. Scaled by√
d, this is shown in Figure 1.

α

√
dH2

√
dH1

K i+1 −K i

LK i + (j + 1)(K i+1 −K i)

2(sinα)
(
LK i + (j + 1)(K i+1 −K i)

)

Figure 1 T ∩ C(α).

From this, by the triangle inequality we obtain

‖rn−1 − rn‖ ≤
1√
d

(
Ki+1 −Ki + 2(sinα)

(
LKi + (j + 1)(Ki+1 −Ki)

))
≤ 1√

d

(
Ki+1 −Ki + 2 sinα · LKi+1) ≤ 2√

d

(
Ki+1 −Ki

)
,

where the last inequality holds if α is sufficiently small. Combining these inequalities and
choosing L = K2

√
d
we obtain the desired bound ‖rn−1‖1 − ‖rn‖1 < LKi − LKi−1, finishing

the proof of the claim. C

N. Frankl, T. Hubai, and D. Pálvölgyi 47:9

3.2 Proof of “only if” direction of Theorem 5

The “only if” direction follows from Theorem 7 in the case of d = 1, and from the following
stronger statement for d ≥ 2 (since in this case s0 is an extreme point of S).

I Theorem 16. Let S ⊆ Zd and s0 ∈ S be an extreme point of S. Then for every k there is
a constant Λ = Λ(d, S, k) such that the following is true. Every k-colouring of Zd contains
either an AM similar copy of (S, s0) or a monochromatic similar copy of Zd with an integer
scaling ratio 1 ≤ λ ≤ Λ.

Before the proof we need some preparation.

I Lemma 17. There is an R > 0 such that for any ball D of radius at least R the following
is true. For every p ∈ Zd at distance at most 1 from D there is a similar copy (S′, s′0) of
(S, s0) in Zd such that s′0 = p and S′ \ {s′0} ⊂ D.

Let QN =
{
a
b : a, b ∈ Z, b ≤ N

}
⊆ Q. Lemma 17 follows from the next lemma.

I Lemma 18. There is an ε > 0 and an N ∈ N such that for any ball D of radius 1 the
following is true. For all p ∈ QdN at distance at most ε from D there is a similar copy (S′, s′0)
of (S, s0) in QdN such that s′0 = p and S′ \ {s′0} ⊂ D.

Proof. Let D be a ball of radius 1. Since s0 is an extreme point of S, there is a hyperplane
that separates s0 from S \ {s0}. With this it is not hard to see that there are δ, ε > 0 with
the following property. If p is ε close to D, then there is a congruent copy (S′′, s′′0) of δ(S, s0)
with s′′0 = p and such that every point of S′′ \ {s′′0} is contained in D at distance at least
ε from the boundary of D. Now we use the fact that O(Rn) ∩ Qn×n, the set of rational
rotations, is dense in O(Rn) (see for example [12]). By this and the compactness of O(R)n,
we can find an N = N(δ, ε) ∈ N and (S′, s′0) in QdN which is a rotation of (S′′, s′′0) around
p, ε-close to (S′′, s′′0). With this S′ \ {s′0} is contained in D. Therefore N and ε satisfy the
requirements. J

The proof of the following variant of Gallai’s theorem can be found in the Appendix of
the full version of the paper [6].

I Theorem 19 (Gallai). Let S ⊆ Zd be finite. Then there is a λ(d, S, k) ∈ Z such that every
k-colouring of Zd contains a monochromatic positive homothet of S with an integer scaling
ratio bounded by λ(d, S, k).

Proof of Theorem 16. Let R be as in Lemma 17 and let H be the set of points of Zd
contained in a ball of radius R. By Theorem 19 there is a monochromatic, say blue,
homothetic copy H0 = c + λH of H for some integer λ ≤ λ(d,H, k). Without loss of
generality we may assume that H0 = B(O, λR) ∩ λZd for some O ∈ Zd, where B(O, λR) is
the ball of radius λR centred at O.

Consider a point p ∈ λZd \H being at distance at most λ from H0. If p is not blue then
using Lemma 17 we can find an AM similar copy of (S, s0). Thus we may assume that any
point p ∈ λZd \H0 which is λ close to H0 is blue as well.

By repeating a similar procedure, we obtain that there is either an AM similar copy of
(S, s0), or every point of Hi = B(O, λR + iλ) ∩ λZd is blue for every i ∈ N. But the latter
means λZd is monochromatic, which finishes the proof. J

SoCG 2020

47:10 Almost-Monochromatic Sets

Figure 2 A 4-colouring avoiding AM homothets of (S, s0).

3.3 Finding an AM positive homothet

The following statement shows that it is not possible to replace an AM similar copy of (S, s0)
with a positive homothet of (S, s0) in the “only if” direction of Theorem 5.

I Proposition 20. Let S ⊆ Zd such that S is not contained in a line and s0 ∈ S. Then there
is an AP-free colouring of Rd without an AM positive homothet of (S, s0).

Proof. We may assume that |S| = 3 and thus S ⊆ R2. Since the problem is affine invariant,
we may further assume that S = {(0, 1), (1, 1), (1, 0)} with s0 = (1, 1), s1 = (0, 1) and
s2 = (1, 0). First we describe a colouring of R2 and then we extend it to Rd.

For every i ∈ N let Qi be the square [−4i, 4i−1]× [−4i, 4i−1], and Q0 = ∅. Further let H+
be the open half plane x < y and H− be the closed half plane x ≥ y. We colour R2 using
four colours, green, blue, red and yellow as follows (see also Figure 2).

Green: For every odd i ∈ N colour (Qi \Qi−1) ∩H+ with red.
Blue: For every even i ∈ N colour (Qi \Qi−1) ∩H+ with yellow.
Red: For every odd i ∈ N colour (Qi \Qi−1) ∩H− with green.
Yellow: For every even i ∈ N colour (Qi \Qi−1) ∩H− with blue.

It is not hard to see that this colouring ϕ1 is AP-free. Thus we only have to check that it
contains no AM positive homothet of (S, s0). Let S′ be a positive homothet of S. First note
that we may assume that S′ is contained in one of the half planes bounded by the x = y line,
otherwise it is easy to see that it cannot be AM. Thus by symmetry we may assume that
s′0 ∈ Qi \Qi−1 ∩H+ for some i ∈ N.

If the y-coordinate of s′0 is smaller than −4i−1, then s′1 ∈ Qi \Qi−1, and hence S′ cannot
be AM. On the other hand, if the y-coordinate of s′0 is at least −4i−1, then ‖s′0−s′1‖ ≤ 2 ·4i−1.
This means that the y-coordinate of s′2 is at least −(4i−1 + 2 · 4i−1) > −4i. Thus, in this
case s′2 is contained in s′1 ∈ Qi \Qi−1, and hence S′ cannot be monochromatic.

N. Frankl, T. Hubai, and D. Pálvölgyi 47:11

To finish the proof, we extend the colouring to Rd. Let T ∼= Rd−2 be the orthogonal
complement of R2. Fix an AP-free colouring ϕ of T using the colour set {1, 2}. Further let
ϕ2 be a colouring of R2 isometric to ϕ1, but using a disjoint set of colours. For every t ∈ T
colour R2 + t by translating ϕi if ϕ(t) = i. It is not hard to check that this colouring is
AP-free and does not contain any AM positive homothet of (S, s0). J

4 Smiling bouquets and the chromatic number of the plane

For a graph G = (V,E) with a given origin (distinguished vertex) v0 ∈ V a colouring ϕ with
ϕ : V \ {v0} →

([k]
1
)
and ϕ(v0) ∈

([k]
2
)
is a proper k-colouring with bichromatic origin v0,

if (v, w) ∈ E implies ϕ(v) ∩ ϕ(w) = ∅. There are unit-distance graphs with not too many
vertices that do not have a 4-colouring with a certain bichromatic origin. Figure 3 shows such
an example, the 34-vertex graph G34, posted by the second author [9] in Polymath16. It is
the first example found whose chromatic number can be verified quickly without relying on a
computer. Finding such graphs has been motivated by an approach to find a human-verifiable
proof of χ(R5) ≥ 5, proposed by the third author [10] in Polymath16.

Figure 3 A 34 vertex graph without a 4-colouring if the origin is bichromatic.

Theorem 21 with G = G34 shows that a human-verifiable proof of Conjecture 1 for k = 4
would provide a human-verifiable proof of χ(R2) ≥ 5. Note that G34 was found by a computer
search, and for finding other similar graphs one might rely on a computer program. Thus,
the approach we propose, is human-verifiable, however it might be computer-assisted.

For a graph G with origin v0 let {C1, . . . , Cn} be the set of unit circles whose centres are
the neighbours of v0, and let C(G, v0) = C1 ∪ · · · ∪ Cn be the bouquet through v0.

I Theorem 21. If there is a unit-distance graph G = (V,E) with v0 ∈ V which does not
have a proper k-colouring with bichromatic origin v0, and Conjecture 1 is true for C(G, v0),
then χ(R2) ≥ k + 1.

Proof of Theorem 21. Assume for a contradiction that there is a proper k-colouring ϕ of
the plane. Using ϕ we construct a proper k-colouring of G with bichromatic origin v0 ∈ V .

Let v1, . . . , vn be the neighbours of the origin v0, and Cj be the unit circle centred at
vj . Then C = C1 ∪ · · · ∪ Cn is a bouquet through v0. If Conjecture 1 is true for ϕ, then
there is a smiling congruent copy C ′ = C ′1 ∪ . . . C ′n of C through v′0. That is, there are points
p1 ∈ C ′1, . . . , pn ∈ C ′n with ` = ϕ(p1) = · · · = ϕ(pn) 6= ϕ(v′0).

SoCG 2020

47:12 Almost-Monochromatic Sets

For i ∈ [n] let v′i be the centre of C ′i. We define a colouring ϕ′ of G as ϕ′(v0) = {ϕ(v′0), `}
and ϕ′(vi) = ϕ(v′i) for v ∈ V \ {v0}. We claim that ϕ′ is a proper k-colouring of G with a
bichromatic origin v0, contradicting our assumption.

Indeed, if vi 6= v0 6= vj then for (vi, vj) ∈ E we have ϕ′(vi) 6= ϕ′(vj) because ϕ(v′i) 6= ϕ(v′j).
For (v0, vi) ∈ E, we have ϕ′(vi) 6= ϕ(v0) because ϕ(v′i) 6= ϕ(v′0), and ϕ′(vi) 6= ` because
ϕ(v′i) 6= ` since ‖v′i − pi‖ = 1. This finishes the proof of Theorem 21. J

4.1 Smiling pencils

In this section we prove Theorem 3. We start with the following simple claim.

B Claim 22. For every pencil L through O there is an ε > 0 for which the following is true.
For any circle C or radius R if a point p is at distance at most εR from C, then there is a
congruent copy L′ of L through p such that every line of L′ intersects C.

Proof. It is sufficient to prove the following. If C is a unit circle and p is sufficiently close to
C, then there is a congruent copy L′ of L through p such that every line of L′ intersects C.

Note that if p is contained in the disc bounded by C, clearly every line of every congruent
copy L′ of L through p intersects C. Thus we may assume that p is outside the disc.

Let 0 < α < π be the largest angle spanned by lines in L. If p is sufficiently close to C,
then the angle spanned by the tangent lines of C through p is larger than α. Thus, any
congruent copy L′ of L through p can be rotated around p so that every line of the pencil
intersects C. C

Proof of Theorem 3. Assume for contradiction that ϕ is a colouring using at least two
colours, but there is a pencil L such that there is no congruent smiling copy of L.

First we obtain a contradiction assuming that there is a monochromatic, say red, circle
C of radius r. We claim that then every point p inside the disc bounded by C is red. Indeed,
translating L to a copy L′ through p, each line L′i will intersect C, and so have a red point.
Thus p must be red.

A similar argument together with Claim 22 shows that if there is a non-red point at
distance at most εr from C, we would find a congruent smiling copy of L through p. Thus
there is a circle C ′ of radius (1 + ε)r concentric with C, such that every point of the disc
bounded by C ′ is red. Repeating this argument, we obtain that every point of R2 is red
contradicting the assumption that ϕ uses at least 2 colours.

To obtain a contradiction, we prove that there exists a monochromatic circle. For
1 ≤ i ≤ n let αi be the angle of Li and Li+1. Fix a circle C, and let a1, . . . , an ∈ C be points
such that if c ∈ C \ {a1, . . . , an}, then the angle of the lines connecting c with ai and c with
ai+1 is αi. By Gallai’s theorem there is a monochromatic (say red) set {a′1, . . . , a′n} similar
to {a1, . . . , an}. Let C ′ be the circle that contains {a′1, . . . , a′n}. Then C ′ is monochromatic.
Indeed, if there is a point p on C ′ for which ϕ(p) is not red, then by choosing L′j to be the
line connecting p with a′j we obtain L′ = L′1 ∪ · · · ∪ L′n, a smiling congruent copy of L. J

4.2 Conjecture 1 for lattice-like bouquets

Using the ideas from the proof of Theorem 16, we prove Conjecture 1 for a broader family of
bouquets.

N. Frankl, T. Hubai, and D. Pálvölgyi 47:13

4.2.1 Lattices
A lattice L generated by linearly independent vectors v1 and v2 is the set L = L(v1, v2) =
{n1v1 + n2v2 : n1, n2 ∈ Z}. We call a lattice L rotatable if for every 0 ≤ α1 < α2 ≤ π there
is an angle α1 < α < α2 and scaling factor λ = λ(α2, α1) such that λα(L) ⊂ L, where α(L) is
the rotated image of L by angle α around the origin. For example, Z2, the triangular grid, and{
n1(1, 0) + n2(0,

√
2) : n1, n2 ∈ Z

}
are rotatable, but L = {n1(1, 0) + n2(0, π) : n1, n2 ∈ Z}

is not.2
The rotatability of L allows us to extend Lemma 17 from Z2 to L. This leads to an

extension of Theorem 16 to rotatable lattices.

I Theorem 23. Let L be a rotatable lattice, S ⊆ L be finite and s0 be an extreme point of S.
Then for every k ∈ N there exists a constant Λ = Λ(L, S, k) such that the following is true.
In every k-colouring of L there is either an AM similar copy of (S, s0) with a positive scaling
factor bounded by Λ, or a monochromatic positive homothetic copy of L with an integer
scaling factor 1 ≤ λ ≤ Λ.

The proof of extending Lemma 17 to rotatable lattices is analogous to the original one,
so is the proof of Theorem 23 to the proof of Theorem 16. Therefore, we omit the details.

4.2.2 Lattice-like bouquets
Let C = C1 ∪ · · · ∪Cn be a bouquet through O, and for i ∈ [n] let Oi be the centre of Ci. We
call C lattice-like if O is an extreme point of {O,O1, . . . , On} and there is a rotatable lattice
L such that {O,O1, . . . , On} ⊆ L. Similarly, we call a unit-distance graph G = (V,E) with
an origin v0 ∈ V lattice-like if there is a rotatable lattice L such that v0 and its neighbours
are contained in L, and v0 is not in the convex hull of its neighbours.

Since Z2 is a rotatable lattice, Theorem 2 is a direct corollary of the result below.

I Theorem 24. If C is a lattice-like bouquet, then every proper k-colouring of R2 contains
a smiling congruent copy of C.

This implies the following, similarly as Conjecture 1 implied Theorem 21.

I Theorem 25. If there exists a lattice-like unit-distance graph G = (V,E) with an origin
v0 that does not admit a proper k-colouring with bichromatic origin v0, then χ(R2) ≥ k + 1.

In the proof of Theorem 24, we need a simple geometric statement.

I Proposition 26. Let C = C1 ∪ · · · ∪Cn be a bouquet through O, and let O = {O1, . . . , On},
where Oj is the center of Cj. Then for every 0 < λ ≤ 2 there are n points P1, . . . , Pn such
that Pj ∈ Cj and {P1, . . . , Pn} is congruent to λO.

Proof. For λ = 2 let Pj be the image of O reflected in Oj . Then Pj ∈ Cj , and {P1, . . . , Pn}
can be obtained by enlarging O from O with a factor of 2. For λ < 2, scale {P1, . . . , Pn} by
λ
2 from O obtaining {P ′1, . . . , P ′n}. Then there is an angle α such that rotating {P ′1, . . . , P ′n}
around O by α, the rotated image of each P ′j is on Cj . J

Proof of Theorem 24. Let C = C1 ∪ · · · ∪ Cn be the lattice-like bouquet through O, Oi be
the centre of Ci for i ∈ [k], and L be the rotatable lattice containing S = {O,O1, . . . , On}.
Consider a proper k-colouring ϕ of R2 and let δ ∈ Q to be chosen later.

2 For another characterization of rotatable lattices, see https://mathoverflow.net/a/319030/955.

SoCG 2020

https://mathoverflow.net/a/319030/955

47:14 Almost-Monochromatic Sets

By Theorem 23, the colouring ϕ either contains an AM similar copy of δ(S, s0) with a
positive scaling factor bounded by λ(L, S, k), or a monochromatic similar copy of δL with
an integer scaling factor bounded by λ(L, S, k).

If the first case holds and δ is chosen so that δλ(L, S, k) ≤ 2, Proposition 26 provides
a smiling congruent copy of C. Now assume for contradiction that the first case does not
hold. Then there is a monochromatic similar copy L′ of δL with an integer scaling factor λ
bounded by λ(L, S, k). However, if we choose δ = 1

λ(L,S,k)! , then for any 1 ≤ λ ≤ λ(L, S, k)
we have δλ = 1

Nλ
for some Nλ ∈ N. But this would imply that there are two points in the

infinite lattice λδL at distance 1, contradicting that ϕ is a proper colouring R2. J

5 Further problems and concluding remarks

Problems in the main focus of this paper are about finding AM sets similar to a given one.
However, it is also interesting to find AM sets congruent to a given one. In this direction,
Erdős, Graham, Montgomery, Rothschild, Spencer and Straus made the following conjecture.

I Conjecture 27 (Erdős et al. [4]). Let s0 ∈ S ⊂ R2, |S| = 3. There is a non-monochromatic
colouring of R2 that contains no AM congruent copy of (S, s0) if and only if S is collinear
and s0 is not an extreme point of S.

As noted in [4], the “if” part is easy; colour (x, y) ∈ R2 red if y > 0 and blue if y ≤ 0. In
fact, this colouring also avoids AM similar copies of such S.

Conjecture 27 was proved in [4] for the vertex set S of a triangle with angles 120◦, 30◦,
and 30◦ with any s0 ∈ S. It was also proved for any isosceles triangle in the case when s0 is
one of the vertices on the base, and for an infinite family of right-angled triangles.

Much later, the same question was asked independently in a more general form by the
third author [11]. In a comment to this question on the MathOverflow site, a counterexample
(to both the MathOverflow question and Conjecture 27) was pointed out by user “fedja” [5],
which we sketch in the full version of the paper [6].

Straightforward generalisations of our arguments from Section 4 would also imply lower
bounds for the chromatic number of other spaces. For example, if C is a lattice-like bouquet
of spheres, then every proper k-colouring of Rd contains a smiling congruent copy of C. This
implies that if one can find a lattice-like unit-distance graph with an origin v0 that does not
admit a proper k-colouring with bichromatic origin v0, then χ(Rd) ≥ k+ 1. Possibly one can
even strengthen this further; in Rd it could be even true that there is a d-smiling congruent
copy of any bouquet C, meaning that there are d colours that appear on each sphere of C.
This would imply χ(Rd) ≥ k + d− 1 if we could find a lattice-like unit-distance graph with
an origin v0 that does not admit a proper k-colouring with d-chromatic origin v0.

On of our main questions is about characterising those pairs (S, s0) for which in every
colouring of Rd we either find an AM similar copy of (S, s0) or an infinite monochromatic
AP. However, regarding applications to the Hadwiger-Nelson problem the following, weaker
version would also be interesting to consider: Determine those (S, s0) with S ⊆ Rd and
s0 ∈ S for which there is a D = D(k, S) such that the following is true. For every n in every
k-colouring of RD there is an AM similar copy of (S, s0) or an n-term monochromatic AP
with difference t ∈ N bounded by D. Note that there are pairs for which the property above
does not hold when colouring Z. For example let S = {−2,−1, 0, 1, 2}, s0 = 0, and colour
i ∈ Z red if bi/Dc ≡ 0 mod 2 and blue if bi/Dc ≡ 1 mod 2.

N. Frankl, T. Hubai, and D. Pálvölgyi 47:15

References
1 A. D.N.J. de Grey. The chromatic number of the plane is at least 5. Geombinatorics, 28:18–31,

2018.
2 A. D.N.J. de Grey. Polymath proposal: finding simpler unit distance graphs of chromatic

number 5. https://polymathprojects.org/2018/04/10/polymath-proposal-finding-
simpler-unit-distance-graphs-of-chromatic-number-5/, 2018.

3 P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus.
Euclidean Ramsey theorems. I. Journal of Combinatorial Theory, Series A, 14(3):341–363,
1973. doi:10.1016/0097-3165(73)90011-3.

4 P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus.
Euclidean Ramsey theorems. III. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated
to P. Erdős on his 60th birthday), Vol. I, pages 559–583. North-Holland, Amsterdam, 1975.

5 [fedja]. Comment on to the problem “Almost monochromatic point set” on MathOverflow.
https://mathoverflow.net/q/300604, 2018.

6 N. Frankl, T Hubai, and D. Pálvölgyi. Almost-monochromatic sets and the chromatic number
of the plane, 2019. arXiv:1912.02604.

7 R. L. Graham. Euclidean Ramsey theory. In Joseph O’Rourke Jacob E. Goodman and
Csaba D. Tóth, editors, Handbook of Discrete and Computational Geometry, Third Edition,
pages 281–297. Chapman and Hall/CRC, 2017. doi:10.1201/9781420035315.ch11.

8 R. L. Graham, B. L. Rothschild, and J.H. Spencer. Ramsey theory. Wiley-Interscience Series
in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New York, 1990.

9 T. Hubai. Comment in “polymath16, fourth thread: Applying the probabilistic method”. https:
//dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-
probabilistic-method/#comment-4391, 2018.

10 D. Pálvölgyi [domotorp]. Comment in “polymath16, fourth thread: Applying the probabilistic
method”. https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-
applying-the-probabilistic-method/#comment-4306, 2018.

11 D. Pálvölgyi [domotorp]. Proposing the problem “Almost monochromatic point sets” on
MathOverflow. https://mathoverflow.net/q/300604, 2018.

12 I. Rivin. Answer to the question “Existence of rational orthogonal matrices” on MathOverflow.
https://mathoverflow.net/q/90070, 2012.

13 A. Soifer. The Mathematical Coloring Book. Springer-Verlag New York, 2009. doi:10.1007/
978-0-387-74642-5.

14 B. L. van der Waerden. Beweis einer baudetschen Vermutung. Nieuw Arch. Wiskunde,
15:212–216, 1927. URL: https://ci.nii.ac.jp/naid/10004588776/en/.

SoCG 2020

 https://polymathprojects.org/2018/04/10/polymath-proposal-finding-
simpler-unit-distance-graphs-of-chromatic-number-5/
https://doi.org/10.1016/0097-3165(73)90011-3
https://mathoverflow.net/q/300604
http://arxiv.org/abs/1912.02604
https://doi.org/10.1201/9781420035315.ch11
https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-
https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-
probabilistic-method/#comment-4391
https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-probabilistic-method/#comment-4306
https://dustingmixon.wordpress.com/2018/05/05/polymath16-fourth-thread-applying-the-probabilistic-method/#comment-4306
https://mathoverflow.net/q/300604
https://mathoverflow.net/q/90070
https://doi.org/10.1007/978-0-387-74642-5
https://doi.org/10.1007/978-0-387-74642-5
https://ci.nii.ac.jp/naid/10004588776/en/

Almost Sharp Bounds on the Number of Discrete
Chains in the Plane
Nóra Frankl
Department of Mathematics, London School of Economics and Political Science, UK
Laboratory of Combinatorial and Geometric Structures at MIPT, Moscow, Russia
n.frankl@lse.ac.uk

Andrey Kupavskii
Moscow Institute of Physics and Technology, Moscow, Russia
Institute for Advanced Study, Princeton, NJ, US
G-SCOP, CNRS, Grenoble, France
kupavskii@yandex.ru

Abstract
The following generalisation of the Erdős unit distance problem was recently suggested by Palsson,
Senger and Sheffer. For a sequence δ = (δ1, . . . , δk) of k distances, a (k + 1)-tuple (p1, . . . , pk+1)
of distinct points in Rd is called a (k, δ)-chain if ‖pj − pj+1‖ = δj for every 1 ≤ j ≤ k. What is
the maximum number Cd

k(n) of (k, δ)-chains in a set of n points in Rd, where the maximum is
taken over all δ? Improving the results of Palsson, Senger and Sheffer, we essentially determine this
maximum for all k in the planar case. It is only for k ≡ 1 (mod 3) that the answer depends on the
maximum number of unit distances in a set of n points. We also obtain almost sharp results for
even k in dimension 3.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems

Keywords and phrases unit distance problem, unit distance graphs, discrete chains

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.48

Related Version A related version of this paper is available at https://arxiv.org/abs/1912.00224.

Funding The authors acknowledge the financial support from the Ministry of Education and Science
of the Russian Federation in the framework of MegaGrant no. 075-15-2019-1926.
Nóra Frankl: Research was partially supported by the National Research, Development, and
Innovation Office, NKFIH Grant K119670.
Andrey Kupavskii: Research supported by the Russian Foundation for Basic Research (grant no.
18-01-00355) and the Council for the Support of Leading Scientific Schools of the President of the
Russian Federation (grant no. HW-6760.2018.1). Research was directly supported by the IAS Fund
for Math, the Director’s Fund and indirectly supported by the National Science Foundation Grant
No. CCF-1900460. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

Acknowledgements We thank Konrad Swanepoel and the referees for helpful comments on the
manuscript.

1 Introduction

Determining the maximum possible number of pairs ud(n) at distance 1 apart in a set of n
points in Rd for d = 2, 3 is one of the central questions in combinatorial geometry. The planar
version, determining u2(n) is also known as the Erdős unit distances problem. The question
dates back to 1946, and despite much effort, the best known upper and lower bounds are
still very far apart. For some constants C, c > 0, we have

n1+c/ log logn ≤ u2(n) ≤ Cn4/3,

where the lower bound is due to Erdős [3] and the upper bound is due to Spencer, Szemerédi
and Trotter [9].

© Nóra Frankl and Andrey Kupavskii;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.frankl@lse.ac.uk
mailto:kupavskii@yandex.ru
https://doi.org/10.4230/LIPIcs.SoCG.2020.48
https://arxiv.org/abs/1912.00224
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Almost Sharp Bounds on the Number of Discrete Chains

As in the planar case, the best known upper and lower bounds in the 3-dimensional case
are also far apart. For some c, C > 0, we have

cn4/3 log logn ≤ u3(n) ≤ Cn295/137+ε, (1)

where the lower bound is due to Erdős [4], and the upper bound is due to Zahl [10]. The latter
is a recent improvement upon the upper bound O(n3/2) by Kaplan, Matoušek, Safernová,
and Sharir [5], and Zahl [11]. In contrast, for d ≥ 4 we have ud(n) = Θ(n2).

Palsson, Senger and Sheffer [8] suggested the following generalisation of the unit distance
problem. Let δ = (δ1, . . . , δk) be a sequence of k positive reals. A (k+ 1)-tuple (p1, . . . , pk+1)
of distinct points in Rd is called a (k, δ)-chain if ‖pi − pi+1‖ = δi for all i = 1, . . . , k. For
every fixed k determine Cdk(n), the maximum number of (k, δ)-chains that can be spanned
by a set of n points in Rd, where the maximum is taken over all δ. In the planar case, the
following upper bounds were found in [8] in terms of the maximum number of unit distances.

I Proposition 1 (Palsson, Senger, and Sheffer [8]).

C2
k(n) =

O
(
n · u2(n)k/3

)
if k ≡ 0 (mod 3),

O
(
u2(n)(k+2)/3) if k ≡ 1 (mod 3),

O
(
n2 · u2(n)(k−2)/3) if k ≡ 2 (mod 3).

If u2(n) = O(n1+ε) for any ε > 0, which is conjectured to hold, then the upper bounds in
the proposition above almost match the lower bounds given in Theorem 2. However, as we
have already mentioned, determining the order of magnitude of u2(n) is very far from being
done, and in general it proved to be a very hard problem. Thus, it is interesting to obtain
“unconditional” bounds, that depend on the value of u2(n) as little as possible. In [8], the
following “unconditional” upper bounds were proved in the planar case.

I Theorem 2 (Palsson, Senger, and Sheffer [8]). C2
2 (n) = Θ(n2), and for every k ≥ 3 we

have

C2
k(n) = Ω

(
nb(k+1)/3c+1

)
and

C2
k(n) = O

(
n2k/5+1+γ(k)

)
,

where γk ≤ 1
12 , and γk →

4
75 as k →∞.

In our main result, in two-third of the cases we almost determine the value of C2
k(n), no

matter what the value of u2(n) is, by matching the lower bounds given in Theorem 2. Further,
we show that in the remaining cases determining C2

k(n) essentially reduces to determining
the maximum number of unit distances.

I Theorem 3. For every integer k ≥ 1 we have

C2
k(n) = Θ̃

(
nb(k+1)/3c+1

)
if k ≡ 0, 2 (mod 3),

and for any ε > 0 we have

C2
k(n) = Ω

(
n(k−1)/3u2(n)

)
and C2

k(n) = O
(
n(k−1)/3+εu2(n)

)
if k ≡ 1 (mod 3).

N. Frankl and A. Kupavskii 48:3

Here and in what follows f(n) = Õ(g(n)) means that there exist positive constants c, C
such that f(n)/g(n) ≤ C logc n for every n. We write f(n) = Ω̃(g(n)) if g(n) = Õ(f(n)), and
f(n) = Θ̃(g(n)) if f(n) = Õ(g(n)) and g(n) = Õ(f(n)).

Let us turn our attention to the 3-dimensional case. The following was proved in [8].

I Theorem 4 (Palsson, Senger, and Sheffer [8]). For any integer k ≥ 2, we have

C3
k(n) = Ω

(
nbk/2c+1

)
,

and

C3
k(n) =

O
(
n2k/3+1) if k ≡ 0 (mod 3),

O
(
n2k/3+23/33+ε) if k ≡ 1 (mod 3),

O
(
n2k/3+2/3) if k ≡ 2 (mod 3).

We improve their upper bound and essentially settle the problem for even k.

I Theorem 5. For any integer k ≥ 2 we have

C3
k(n) = Õ

(
nk/2+1

)
.

In particular, for even k we have

C3
k(n) = Θ̃

(
nk/2+1

)
.

We also improve the lower bound from Theorem 4 for odd k. Let us3(n) be the maximum
number of pairs at unit distance apart between a set of n points in R3 and a set of n points
on a sphere in R3.

I Proposition 6. Let k ≥ 3 odd. Then we have

C3
k(n) = Ω

(
max

{
u3(n)k

nk−1 , us3(n)n(k−1)/2
})

.

Note that us3(n) equals the maximum number of incidences between a set of n points
and a set of n circles (not necessarily of the same radii) in the plane. Thus we have

cn4/3 ≤ us3(n) = Õ
(
n15/11

)
(see [1, 2, 6, 7]). Therefore, in general we cannot tell which of the two bounds in Proposition 6
is better. However, for large k the second term is larger than the first due to (1).

Finally, we note that for d ≥ 4 we have Cdk(n) = Θ(nk+1). Indeed, we clearly have
Cdk(n) = O(nk+1). To see that Cdk(n) = Ω(nk+1), take two orthogonal circles of radius 1/

√
2

centred at the origin and choose n/2 points on each of them.

SoCG 2020

48:4 Almost Sharp Bounds on the Number of Discrete Chains

2 Preliminaries

We denote by ud(m,n) the maximum number of incidences between a set of m points and n
spheres1 of fixed radius in Rd. In other words, ud(m,n) is the maximum number of red-blue
pairs spanning a given distance in a set of m red and n blue points in Rd. By the result of
Spencer, Szemerédi and Trotter [9], we have

u2(m,n) = O
(
m

2
3n

2
3 +m+ n

)
. (2)

We say that a point p is nα-rich with respect to a set P ⊆ Rd and to a distance δ, if
the sphere of radius δ around p contains at least nα points of P . If P ⊆ R2 and |P | = nx,
then (2) implies that the number of points that are nα-rich with respect to P and to a given
distance δ is

O
(
n2x−3α + nx−α

)
. (3)

The bound

u3(m,n) = O
(
m

3
4n

3
4 +m+ n

)
(4)

is due to Zahl [10] and Kaplan, Matoušek, Safernová, and Sharir [5]. It implies that for
P ⊆ R3 with |P | = nx the number of points that are nα-rich with respect to P and to a
given distance δ is

O
(
n3x−4α + nx−α

)
. (5)

3 Bounds in R2

For δ = (δ1, . . . , δk) and P1 . . . , Pk+1 ⊆ R2 we denote by Cδk (P1, . . . , Pk) the family of (k+ 1)-
tuples (p1, . . . , pk+1) with pi ∈ Pi for all i ∈ [k + 1], ‖pi − pi+1‖ = δi for all i ∈ [k] and with
pi 6= pj for i 6= j. Let Cδk (P1, . . . , Pk+1) = |Cδk (P1, . . . , Pk+1)| and

Ck(n1, . . . , nk+1) = maxCδk (P1, . . . , Pk+1),

where the maximum is taken over all choices of δ and sets P1, . . . , Pk+1 subject to |Pi| ≤ ni
for all i ∈ [k + 1].

It is easy to see that C2
k(n) ≤ Ck(n, . . . , n) ≤ C2

k ((k + 1)n). Since we are only interested
in the order of magnitude of C2

k(n) for fixed k, we are going to bound Ck(n, . . . , n) instead
of C2

k(n).
In Section 3.1, we are going to prove the lower bounds from Theorem 3. In Section 3.2,

we are going to prove an upper bound on Ck(n, . . . , n), which is almost tight for k ≡ 0, 2
(mod 3). The case k ≡ 1 (mod 3) is significantly more complicated. We will the case k = 4
case separately in Section 3.3, and then the general case in Section 3.4.

3.1 Lower bounds
For completeness, we present constructions for all congruence classes modulo 3. For k ≡ 0, 2
they were described in [8].

1 circles, if d = 2

N. Frankl and A. Kupavskii 48:5

First, note that C0(n) = n and C1(n, n) = u2(n, n) = Θ(u2(n)). For k = 2, let P2 = {x}
for some point x, and let P1, P3 be disjoint sets of n points on the unit circle around x.
It is not hard to see that Cδ2 (P1, P2, P3) = n2 with δ = (1, 1), implying the lower bound
C2(n, n, n) = Ω(n2). To obtain lower bounds in Theorem 3, it is thus sufficient to show that

Ck+3(n, . . . , n) ≥ nCk(n, . . . , n).

To see this take, a construction with k + 1 parts P1, . . . , Pk+1 of size n that contains
Ck(n, . . . , n) (k, δ)-chains for some δ = (δ1, . . . , δk). Next, fix an arbitrary point x on the
plane and choose distances δk+1, δk+2 to be sufficiently large so that x can be connected
to each of the points in Pk+1 by a 2-chain with distances δk+2 and δk+1. Set Pk+3 = {x}
and let Pk+2 be the set of intermediate points of the 2-chains described above. Finally, let
δk+3 = 1, and Pk+4 be a set of n points (disjoint from Pk+2) on the unit circle around x. It
is easy to see that the number of (k + 3, δ)-chains with δ = (δ1, . . . , δk+3) in P1 × · · · × Pk+4
is at least nCk(n).

Note that it is not hard to modify this construction to show that for any given δ there is
a set of n points with Ω(nk/3+1) many (k, δ)-chains if k ≡ 0 (mod 3) and with Ω(n(k+4)/3)
many (k, δ)-chains if k ≡ 2 (mod 3). However, for k ≡ 1 (mod 3), our construction to find
sets of n points with Ω(n(k−1)/3u2(n)) many (k, δ)-chains only works if δ1 is much smaller
than δ2 and δ3.

3.2 Upper bound for k ≡0, 2 (mod 3)
We fix δ = (δ1, . . . , δk) throughout the remainder of Section 3 and leave δ out of the notation.
All logs are base 2.

I Theorem 7. For any fixed integer k ≥ 0 and x, y ∈ [0, 1], we have

Ck(nx, n, . . . , n, ny) = Õ
(
n
f(k)+x+y

3

)
,

where f(k) = k + 2 if k ≡ 2 (mod 3) and f(k) = k + 1 otherwise.

Theorem 7 implies the upper bounds in Theorem 3 for k ≡ 0, 2 (mod 3) by taking
x = y = 1. It is easier, however, to prove this more general statement than the upper bounds
in Theorem 3 directly. Having varied sizes of the first and the last groups of points allows
for a seamless use of induction.

Proof of Theorem 7. The proof is by induction on k. Let us first verify the statement for
k ≤ 2. (Note that, for k = 0, we should have x = y.) We have

C0(nx) ≤ nx = O
(
n

1+x+y
3

)
,

C1(nx, ny) ≤ u2(nx, ny) = O
(
n

2
3 (x+y) + nx + ny

)
= O

(
n

2+x+y
3

)
, (6)

C2(nx, n, ny) ≤ nxny = O
(
n

4+x+y
3

)
, (7)

where (6) follows from (2) and (7) follows from the fact that each pair (p1, p3) can be extended
to a 2-chain (p1, p2, p3) in at most 2 different ways.

Next, let k ≥ 3. Take P1, . . . , Pk+1 ⊆ R2 with |P1| = nx, |Pk+1| = ny, and |Pi| = n for
2 ≤ i ≤ k. Denote by Pα2 ⊆ P2 the set of those points in P2 that are at least nα-rich but at
most 2nα-rich with respect to P1 and δ1. Similarly, we denote by P βk ⊆ Pk the set of those
points in Pk that are at least nβ-rich but at most 2nβ-rich with respect to Pk+1 and δk.

SoCG 2020

48:6 Almost Sharp Bounds on the Number of Discrete Chains

It is not hard to see that

Ck(P1, P2 . . . , Pk, Pk+1) ⊆
⋃
α,β

Ck(P1, P
α
2 , P3, . . . , Pk−1, P

β
k , Pk+1),

where the union is taken over all α, β ∈ { i
logn : i = 0, . . . , dlogne}. Since the cardinality of

the latter set is at most logn+ 2, it is sufficient to prove that for every α and β we have

Ck(P1, P
α
2 , P3, . . . , Pk−1, P

β
k , Pk+1) = Õ

(
n
f(k)+x+y

3

)
. (8)

To prove this, we consider three cases.

Case 1: α ≥ x
2 . By (3) we have |Pα2 | = O(nx−α). Therefore the number of pairs

(p1, p2) ∈ P1 × Pα2 with ‖p1 − p2‖ = δ1 is at most O(nx). Since every pair (p1, p2) ∈
P1 × Pα2 and every (k − 3)-chain (p4, . . . , pk+1) ∈ P4 × · · · × P βk × Pk+1 can be extended
to a k-chain (p1, . . . , pk+1) ∈ P1 × · · · × Pk+1 in at most two different ways, we obtain

Ck(P1, P
α
2 , . . . , P

β
k , Pk+1) ≤ 4O(nx)Ck−3(P4, . . . , P

β
k , Pk+1).

By induction we have

Ck−3(P4, . . . , P
β
k , Pk+1) = Õ

(
n
f(k−3)+1+y

3

)
.

These two displayed formulas and the fact that f(k − 3) = f(k)− 3 imply (8).

Case 2: β ≥ y
2 . By symmetry, this case can be treated in the same way as Case 1.

Case 3: α ≤ x
2 and β ≤ y

2 . By (3) we have |Pα2 | = O
(
n2x−3α) and |P βk | = O

(
n2y−3β).

The number of (k−2)-chains in Pα2 ×P3×· · ·×Pk−1×P βk is Ck−2(Pα2 , P3, . . . , Pk−1, P
β
k),

and every (k − 2)-chain (p2, . . . , pk) ∈ Pα2 × P3 × · · · × Pk−1 × P βk can be extended at
most 4nα+β ways to a k-chain in P1 × Pα2 × · · · × P

β
k × Pk+1. Thus

Ck(P1, P
α
2 , . . . , P

β
k , Pk+1) ≤ 4nα+βCk−2(Pα2 , . . . , P

β
k).

By induction we have

Ck−2(Pα2 , . . . , P
β
k) = Õ

(
n
f(k−2)+2x−3α+2y−3β

3

)
.

For k ≡ 0, 2 (mod 3) we have f(k) ≥ f(k − 2) + 2, and thus

Ck(P1, P
α
2 , . . . , P

β
k , Pk+1) = Õ

(
nα+βn

f(k−2)+2x−3α+2y−3β
3

)
= Õ

(
n
f(k)−2+2x+2y

3

)
= Õ

(
n
f(k)+x+y

3

)
.

If k ≡ 1 (mod 3) then f(k) < f(k − 2) + 2, and thus the argument above does not work.
However, we then have f(k) = f(k − 1) + 1, and we can use the bound

Ck(P1, P
α
2 , . . . , P

β
k , Pk+1) ≤ 2nαCk−1(Pα2 , P3, . . . , Pk+1),

obtained in an analogous way. This gives

Ck(P1, P
α
2 , P3, . . . , Pk+1) = Õ

(
nαn

f(k−1)+2x−3α+y
3

)
= Õ

(
n
f(k)−1+2x+y

3

)
= Õ

(
n
f(k)+x+y

3

)
.

J

N. Frankl and A. Kupavskii 48:7

I Remark 8. The proof above is not sufficient to obtain an almost sharp bound in the k ≡ 1
(mod 3) case for two reasons. First, for these k any analogue of Theorem 7 would involve
taking maximums of two expressions, where one contains u2(nx, n) and the other contains
u2(ny, n). However, due to our lack of good understanding of how u2(nx, n) changes as x is
increasing, this is difficult to work with.

Second, on a more technical side, while Case 1 and Case 2 in the above proof would
go through with any reasonable inductive statement, Case 3 would fail. The main reason
for this is that Ck as a function of k makes jumps at every third value of k, and remains
essentially the same, or changes by u(n, n)/n for the other values of k. Thus one would need
to remove three vertices from the path to make the induction work. However, the path has
only two ends, and removing vertices other than the endpoints turns out to be intractable.

3.3 Upper bound for k = 4
In this section we prove the upper bound in Theorem 3 for k = 4. Let P1, . . . , P5 be five sets
of n points. We will show that C4(P1, . . . , P5) = Õ(u2(n)n), which is slightly stronger than
what is stated in Theorem 3.

Instead of (3) we need the following more general bound on the number of rich points.

I Observation 9 (Richness bound). Let ny be the maximum possible number of points that
are nα-rich with respect to a set of nx points and some distance δ. Then we have

ny+α ≤ u2(nx, ny), (9)

or, equivalently

nα ≤ u2(nx, ny)
ny

.

The proof of (9) follows immediately from the definition of nα richness and u2(nx, ny).

Let Λ :=
{

i
logn : i = 0, . . . , dlogne

}4. For any α = (α2, α3, α4, α5) ∈ Λ let Qα1 = P1 and
for i = 2, . . . , 5 define recursively Qαi to be the set of those points in Pi that are at least
nαi-rich but at most 2nαi-rich with respect to Qi−1 and δi.

It is not difficult to see that

C4(P1, . . . , P5) =
⋃
α∈Λ

C4 (Qα1 , . . . , Qα5) .

We have |Λ| = Õ(1) and thus, in order to prove the theorem, it is sufficient to show that for
every α ∈ Λ we have

C4 (Qα1 , . . . , Qα5) = O (n · u2(n, n)) .

From now on, fix α = (α2, . . . , α5), and denote Qi = Qαi . Choose xi ∈ [0, 1] so that
|Qi| = nxi . Then we have

C4(Q1, . . . , Q5) = O
(
nx5+α5+α4+α3+α2

)
. (10)

Indeed, each chain (p1, . . . , p5) with pi ∈ Qi can be obtained in the following five steps.
Step 1: Pick p5 ∈ Q5.
Step i (2 ≤ i ≤ 5): Pick a point p6−i ∈ Q6−i at distance δ6−i from p7−i.

SoCG 2020

48:8 Almost Sharp Bounds on the Number of Discrete Chains

In the first step we have nx5 choices, and for i ≥ 2 in the i-th step we have at most 2nα6−i

choices. Further, by Observation 9, for each i ≥ 2 we have

nαi ≤ u2(nxi−1 , nxi)
nxi

. (11)

Combining (10) and (11), we obtain

C4(Q1, . . . , Q5) = O

(
u2(nx4 , nx5)u2(nx3 , nx4)

nx4

u2(nx2 , nx3)
nx3

u2(nx1 , nx2)
nx2

)
. (12)

By (2) we have

u2(nxi−1 , nxi) = O
(

max
{
n

2
3 (xi+xi−1), nxi , nxi−1

})
.

Note that the maximum is attained on the second (third) term iff xi−1 ≤ xi
2 (xi ≤ xi−1

2).
To bound C4(Q1, . . . , Q5) we consider several cases depending on which of these three terms
the maximum above is attained on for different i.

Case 1: For all 2 ≤ i ≤ 5 we have u2(nxi−1 , nxi) = O
(
n

2
3 (xi+xi−1)

)
. Then

u2(nx4 , nx5)u2(nx3 , nx4)u2(nx2 , nx3)
nx2+x3+x4

= O
(
n

2
3x5+ 1

3x4+ 1
3x3− 1

3x2
)

and

u2(nx3 , nx4)u2(nx2 , nx3)u2(nx1 , nx2)
nx2+x3+x4

= O
(
n−

1
3x4+ 1

3x3+ 1
3x2+ 2

3x1
)
.

Substituting each of these two displayed formulas into (12) and taking their product, we
obtain

C4(Q1, . . . , Q5)2 = O
(
u2(nx1 , nx2)u2(nx4 , nx5) · n 2

3x1+ 2
3x3+ 2

3x5
)

= O
(
u2(n, n)2 · n2) ,

which concludes the proof in this case.

Case 2: There is an 2 ≤ i ≤ 5 such that

min{xi−1, xi} ≤
1
2 max{xi−1, xi} and thus u2(nxi−1 , nxi) = O (max{nxi−1 , nxi}) . (13)

We distinguish three cases based on for which i holds.

Case 2.1: (13) holds for i = 2 or 5. In particular, this implies that u2(nx1 , nx2) = O(n) or
u2(nx4 , nx5) = O(n). The following lemma finishes the proof in this case.

I Lemma 10. Let R1, . . . , R5 ⊆ R2 such that |Ri| ≤ n for every i ∈ [5]. If u2(R1, R2) = O(n)
or u2(R4, R5) = O(n) holds, then C4(R1, . . . , R5) = O (n · u2(n, n)).

Proof. We have

C4(R1, . . . , R5) ≤ 2u2(R1, R2)u2(R4, R5) = O (n · u2(n, n)) .

Indeed, every 4-tuple (r1, r2, r4, r5) with ri ∈ Ri can be extended in at most two different
ways to a 4-chain (r1, . . . , r5) ∈ R1 × · · · × R5. At the same time, the number of 4-tuples
with ‖r1 − r2‖ = δ1, ‖r4 − r5‖ = δ4 is at most u2(R1, R2)u2(R4, R5). J

N. Frankl and A. Kupavskii 48:9

Case 2.2: (13) holds for i = 4. Note that if x4 ≤ x3
2 ≤

1
2 , then u2(nx5 , nx4) = O(n), and we

can apply Lemma 10 to conclude the proof in this case. Thus we may assume that x3 ≤ x4
2 ,

and hence u2(nx4 , nx3) = O(nx4). This means that nα4 = O(1) by Observation 9. Thus to
finish the proof of this case, it is sufficient to prove the following claim.

I Claim 11. Let R1, . . . , R5 ⊆ R2 such that |Ri| ≤ n for all i ∈ [5] and every point of R4 is
O(1) rich with respect to R3 and δ3. Then C4(R1, . . . , R5) = O (n · u2(n, n)).

Proof. Every 4-chain (r1, . . . , r5) can be obtained in the following steps.
Pick a pair (r4, r5) ∈ R4 ×R5 with ‖r4 − r5‖ = δ4.
Choose r3 ∈ R3 at distance δ3 from r4.
Pick a point r1 ∈ R1.
Extend (r1, r3, r4, r5) to a 4-chain.

In the first step, we have at most u2(n, n) choices, in the third at most n choices, and in
the other two steps at most O(1). J

Case 2.3: (13) holds for i = 3 only. Arguing as in Case 2.2, we may assume that
u2(nx3 , nx2) = O(nx2). Then we have

C4(Q1, . . . , Q5) = O

(
u2(nx4 , nx5)u2(nx3 , nx4)

nx4

u2(nx2 , nx3)
nx3

u2(nx1 , nx2)
nx2

)

= O
(
u2(nx1 , nx2) · n 2

3 (x4+x5)+ 2
3 (x3+x4)−x4−x3

)
= O (u2(n, n) · n) ,

which finishes the proof.

3.4 Upper bound for k ≡ 1 (mod 3)
We will prove the upper bound in Theorem 3 for k ≡ 1 by induction. The k = 1 case follows
from the definition of u2(n, n), thus we may assume that k ≥ 4. For the rest of the section
fix ε′ > 0, and sets P1, . . . , Pk+1 ⊆ R2 of size n, further let ε = ε′

4k . We are going to show
that Ck(P1, . . . , Pk+1) = O(n(k−1)/3+ε′u2(n)).

The first step of the proof is to find a certain covering of P1×· · ·×Pk+1, which resembles
the one used for the k = 4 case, although is more elaborate.2 (The goal of this covering is to
make the corresponding graph between each of the two consecutive parts “regular in both
directions” in a certain sense.)

Let

Λ =
{
iε : i = 0, . . . ,

⌊1
ε

⌋}k+1
.

We cover the product P = P1 × · · · × Pk+1 by fine-grained classes Pγ1 × . . .× P
γ
k+1 encoded

by the sequence γ = (γ1,γ2, . . .) of length at most (k + 1)ε−1 + 1 with γj ∈ Λ for each
j = 1, 2, One property that we shall have is

P1 × · · · × Pk+1 =
⋃
γ

Pγ1 × . . .× P
γ
k+1.

To find the covering, first we define a function D that receives a parity digit j ∈ {0, 1}, a
product set R := R1 × . . .×Rk+1 and an α ∈ Λ, and outputs a product set D(j,R,α) =
R(α) = R1(α)× . . .×Rk+1(α).

2 This covering brings in the ε-error term in the exponent, that we could avoid in the k = 4 case.

SoCG 2020

48:10 Almost Sharp Bounds on the Number of Discrete Chains

Definition of D.
If j = 1 then let R1(α) := R1 and for i = 2, . . . , k + 1 define Ri(α) iteratively to be the
set of points in Ri that are at least nαi , but at most nαi+ε-rich with respect to Ri−1(α)
and δi−1.

If j = 0 then apply the same procedure, but in reverse order. That is, let Rk+1(α) = Rk+1
and for i = k, k − 1, . . . , 1 define Ri(α) iteratively to be the set of points in Ri that are
at least nαi but at most nαi+ε-rich with respect to Ri+1(α) and δi.

Note that

R =
⋃
α∈Λ

R(α). (14)

For a sequence γ = (γ1,γ2, . . .) with γj ∈ Λ, we define Pγ recursively as follows. Let
P∅ := P, and for each j ≥ 1 let

P(γ1,...,γj) = D(j (mod 2),P(γ1,...,γj−1),γj).

We say that a sequence γ is stable at j if∣∣P(γ1,...,γj)∣∣ ≥ ∣∣P(γ1,...,γj−1)∣∣ · n−ε.
Otherwise γ is unstable at j.

I Definition 12. Let Υ be the set of those sequences γ that are stable at their last coordinate,
but are not stable for any previous coordinate, and for which Pγ is non-empty.

The set Υ has several useful properties, some of which are summarised in the following
lemma.

I Lemma 13.
1. Any γ ∈ Υ has length at most (k + 1)ε−1 + 1.
2. |Υ| = Oε(1).
3. P =

⋃
γ∈Υ Pγ .

Proof.
1. If γ is unstable at j then

|P(γ1,...,γj)| ≤ |P(γ1,...,γj−1)| · n−ε.

Since |P| = nk+1 and |Pγ | ≥ 1, we conclude that γ is unstable at at most (k + 1)ε−1

indices j.
2. It follows from part 1 by counting all possible sequences of length at most (k + 1)ε−1 + 1

of elements from the set Λ. (Note that |Λ| = Oε(1).)
3. For a nonnegative integer j let Λ≤j be the set of all sequences of length at most j of

elements from Λ. Let

Υj :=
(
Υ ∩ Λ≤j

)
∪Ψj , where Ψj :=

{
γ ∈ Λj : γ is not stable for any ` ≤ j

}
.

By part 1 of the lemma, Υj = Υ for j > (k + 1)ε−1. We prove by induction on j that
P =

⋃
γ∈Υj Pγ .

Υ0 consists of an empty sequence, thus the statement is clear for j = 0. Next, assume
that the statement holds for j. We have

P =
⋃
γ∈Υj

Pγ =
⋃

γ∈Λ≤j
Pγ ∪

⋃
γ∈Ψj

Pγ .

N. Frankl and A. Kupavskii 48:11

By (14) we have that Pγ =
⋃
γ′ P

γ′ holds for any γ ∈ Ψj , where the union is taken over
the sequences from Λj+1 that coincide with γ on the first j entries. This, together with
γ′ ∈

(
Υ ∩ Λj+1) ∪Ψj+1 when Pγ

′
is nonempty finishes the proof. J

Parts 2 and 3 of Lemma 13 imply that in order to complete the proof of the k ≡ 1 (mod 3)
case, it is sufficient to show that for any γ ∈ Υ we have

Ck(Pγ1 , . . . , P
γ
k+1) = O

(
u2(n) · n

k−1
3 +4kε

)
. (15)

From now on fix γ ∈ Υ. For each i = 1, . . . , k + 1 let Ri := Pγi and Qi := Pγ
′

i , where γ′

is obtained from γ by removing the last element of the sequence. Without loss of generality,
assume that the length ` of γ is even. For each i = 1, . . . , k + 1, choose xi, yi such that

|Qi| = nxi , |Ri| = nyi .

Let αi := γ`−1
i and βi := γ`i . By the definition of Pγ we have that each point in Qi is at

least nαi -rich but at most nαi+ε-rich with respect to Qi−1 and δi−1, and each point in Ri is
at least nβi -rich but at most nβi+ε-rich with respect to Ri+1 and δi.

By Observation 9, we have

nαi ≤ u2(nxi−1 , nxi)
nxi

and nβi ≤ u2(nyi , nyi+1)
nyi

≤ u2(nxi , nxi+1)
nxi−ε

. (16)

The last inequality follows from two facts: first u2(nyi , nyi+1) ≤ u2(nxi , nxi+1) and, second,
since γ is stable at its last coordinate3, we have nyi = |Ri| ≥ |Qi| · n−ε = nxi−ε.

In the same fashion as in the beginning of Section 3.3, we can show that

Ck(R1, . . . , Rk+1) ≤ny1nβ1+···+βk+kε, and

Ck(R1, . . . , Rk+1) ≤ Ck(Q1, . . . , Qk+1) ≤nxk+1nαk+1+αk+···+α2+kε.

Combining the first of these displayed inequalities with (16), we have

Ck(R1, . . . , Rk+1) ≤ u2(nx1 , nx2)
∏

2≤i≤k

u2 (nxi , nxi+1)
nxi

n2kε.

Recall that

u2(nxi , nxi+1) = O
(

max{n 2
3 (xi+xi+1), nxi , nxi+1}

)
. (17)

To bound Ck(R1, . . . , Rk+1), we consider several cases based on which of these three terms
can be used to bound u2(nxi , nxi+1) for different values of i.

Case 1: Either u2(nx1 , nx2) = O(n) or u2(nxk , nxk+1) = O(n) holds. As in the proof of
Lemma 10, we have

Ck(R1, . . . , Rk+1)

≤ min
{

2u2(ny1 , ny2)Ck−3(R4, . . . , Rk+1), 2u2(nyk , nyk+1)Ck−3(R1, . . . , Rk−2)
}
.

By induction we obtain Ck−3(R4, . . . , Rk+1), Ck−3(R1, . . . , Rk−2) = O
(
n
k−4

3 +ε · u2(n)
)
. To-

gether with the assumption of Case 1, and the fact that u2(ny1 , ny2) ≤ u2(nx1 , nx2) and
u2(nyk , nyk+1) ≤ u2(nxk , nxk+1), this implies (15) and finishes the proof.

3 This is essentially the only place where we use the stability of γ.

SoCG 2020

48:12 Almost Sharp Bounds on the Number of Discrete Chains

Case 2: For some i = 1, . . . , (k − 1)/3, one of the following holds:
u2(nx3i+1 , nx3i+2) = O(max{nx3i+1 , nx3i+2});
u2(nx3i−1 , nx3i) = O(nx3i−1);
u2(nx3i , nx3i+1) = O(nx3i+1).

We will show how to conclude in the first case. The other cases are very similar and we
omit the details of their proofs. If u2(nx3i+1 , nx3i+2) = O(nx3i+2) then nα3i+2 = O(1) by (16).
Every chain (r1, . . . , rk+1) ∈ Ck(Q1, . . . , Qk+1) can be obtained as follows.
1. Pick a (3i− 2)-chain (r1, . . . , r3i−1) with rj ∈ Qj for every j.
2. Pick a (k − 3i− 1)-chain (r3i+2, r3i+3, . . . , rk+1) with rj ∈ Qj for every j.
3. Extend (r3i+2, r3i+3, . . . , rk+1) to a (k − 3i− 2) chain (r3i+1, r3i+2, . . . , rk+1).
4. Connect (r1, . . . , r3i−1) and (r3i+1, r3i+2, . . . , rk+1) to obtain a k-chain.

In the first step, we have O
(
n

3i−3
3 +ε · u2(n)

)
choices by induction on k. In the second

step, we have Õ
(
n
k−3i+2

3

)
choices by the k ≡ 0 (mod 3) case of Theorem 3. In the third

step, we have at most nα3i+2+ε = O(nε) choices. Finally, in the fourth step we have at most
2 choices. Thus the number of k-chains is at most

O
(
n

3i−3
3 +ε · u2(n)

)
· Õ
(
n
k−3i+2

3

)
·O (nε) · 2 = O

(
n
k−1

3 +3ε · u2(n)
)
,

finishing the proof of the first case.
If u2(nx3i+1 , nx3i+2) = O(nx3i+1) then nβ3i+1 = O(nε) by (16).4 We proceed similarly in

this case, but we count the k-chains now in R1 × . . .×Rk+1 instead in Q1 × . . .×Qk+1 (and
get an extra factor of nε in the bound). In all cases, we obtain (15).

Case 3: Neither the assumptions of Case 1 nor that of Case 2 hold. We define four sets S′,
S′+, S′++, and S′− of indices in {2, . . . , k} as follows. Let

S′ :=
{
i : u2(nxi , nxi−1) = O(n 2

3 (xi+xi−1)) and u2(nxi+1 , nxi) = O(n 2
3 (xi+1+xi))

}
,

S′+ :=
{
i : u2(nxi , nxi−1) = O(n 2

3 (xi+xi−1)) and u2(nxi+1 , nxi) = O(nxi), or

u2(nxi , nxi−1) = O(nxi) and u2(nxi+1 , nxi) = O(n 2
3 (xi+1+xi))

}
,

S′++ :=
{
i : u2(nxi , nxi−1) = O(nxi) and u2(nxi+1 , nxi) = O(nxi)

}
, and

S′− :=
{
i : u2(nxi , nxi−1) = O(n 2

3 (xi+xi−1)) and u2(nxi+1 , nxi) = O(nxi+1), or

u2(nxi , nxi−1) = O(nxi−1) and u2(nxi+1 , nxi) = O(n 2
3 (xi+1+xi))

}
.

Since the conditions of Case 2 are not satisfied, we have

{2, . . . , k} ⊆ S′ ∪ S′+ ∪ S′++ ∪ S′−.

Indeed, for each i ∈ {2, . . . , k}, there are 9 possible pairs of maxima in (17) with i, i+ 1. The
four sets above encompass 6 possibilities. In total, there are 4 possible pairs of maxima with

4 This is the key application of (16), and the reason why we needed a decomposition with regularity in
both directions between the consecutive parts.

N. Frankl and A. Kupavskii 48:13

only the two last terms from (17) used. For i ≡ 1, 2 (mod 3), any of those 4 are excluded
due to the first condition in Case 2 (in fact, then i ∈ S′ ∪ S′−). If i ≡ 0 (mod 3), then the
second and the third condition in Case 2 rule out all possibilities but the one defining S′++.

From these, it is also easy to see that if i ∈ S′++, then i− 1, i+ 1 ∈ S′−, while if i ∈ S′+
then one of i− 1, i+ 1 is in S′−. (Recall that i ∈ S′+ ∪ S′++ only if i ≡ 0 (mod 3).) These
together imply

|S′+|+ 2|S′++| ≤ |S′−|. (18)

We partition {2, . . . , k} using these sets as follows: let S− = S′−, S = S′ \ S′−, S+ =
S′+ \ (S′− ∪ S′) and S++ = {2, . . . , k} \ S′− ∪ S′ ∪ S′+. Note that the analogue of (18) holds
for the new sets. That is, we have

|S+|+ 2|S++| ≤ |S−|.

Recall that

Ck(R1, . . . , Rk+1) ≤ u2(nx1 , nx2)
∏

2≤i≤k

u2 (nxi , nxi+1)
nxi

n2kε. (19)

Since the assumptions of Case 1 and 2 do not hold, we have 2, k ∈ S. Indeed, 2, k 6= 0
(mod 3) and thus 2, k /∈ S+, S++. Further, if say k ∈ S− = S′− then by the definition of S′−
we either have u2(nxk+1 , nxk) = O(n), or u2(nxk , nxk−1) = O(nxk−1). The first case cannot
hold since the assumption of Case 1 does not hold. Further, the second case cannot hold
either, since it would imply xk ≤ xk−1

2 ≤ 1
2 , meaning u2(nxk+1 , nxk) = O(n). Using 2, k ∈ S

and expanding (19), we obtain

Ck(R1, . . . , Rk+1) ≤ n2kεu2(nx1 , nx2)n−
1
3 x2n

2
3 xk+1

∏
i∈S,
i 6=2

n
1
3 xi

∏
i∈S+

n
2
3 xi

∏
i∈S++

nxi
∏

i∈S−

n−
1
3 xi , (20)

and

Ck(R1, . . . , Rk+1) ≤ n2kεu2(nxk , nxk+1)n−
1
3 xkn

2
3 x1
∏
i∈S,
i 6=k

n
1
3 xi

∏
i∈S+

n
2
3 xi

∏
i∈S++

nxi
∏

i∈S−

n−
1
3 xi . (21)

Taking the product of (20) and (21) we obtain

Ck(R1, . . . , Rk+1)2 ≤

n4kε·u2(nx1 , nx2)u2(nxk , nxk+1)n 2
3 (x1+xk+1)

 ∏
i∈S,
i 6=2,k

n
1
3xi

∏
i∈S+

n
2
3xi

∏
i∈S++

nxi
∏
i∈S−

n−
1
3xi

2

≤ n4kε · u2(n, n)2 · n2(2
3 + 1

3 |S\{2,k}|+
2
3 |S+|+|S++|) = u2(n, n)2 · n

2(k−1)
3 +4kε.

The last equality follows from |S+|+ 2|S++| ≤ |S−|, which is equivalent to 2
3 |S+|+ |S++| ≤

1
3 (|S+|+ |S++|+ |S−|), and from the fact that S, S+,S++, and S− partition {2, . . . , k}. This
finishes the proof.

SoCG 2020

48:14 Almost Sharp Bounds on the Number of Discrete Chains

4 Bounds in R3

Similarly as in the planar case, for δ = (δ1, . . . , δk) and P1 . . . , Pk+1 ⊆ R3 we denote by
C3,δ
k (P1, . . . , Pk) the family of (k+ 1)-tuples (p1, . . . , pk+1) with pi ∈ Pi for all i ∈ [k+ 1] and

with ‖pi − pi+1‖ = δi for all i ∈ [k]. Let C3,δ
k (P1, . . . , Pk+1) = |C3,δ

k (P1, . . . , Pk+1)| and

C3
k(n1, . . . , nk+1) = maxC3,δ

k (P1, . . . , Pk+1),

where the maximum is taken over all choices of δ and sets P1, . . . , Pk+1 subject to |Pi| ≤ ni
for all i ∈ [k + 1].

It is easy to see that C3
k(n) ≤ C3

k(n, . . . , n) ≤ C3
k ((k + 1)n). Since we are only interested

in the order of magnitude of C3
k(n) for fixed k, sometimes we are going to work with

C3
k(n, . . . , n) instead of C3

k(n).

4.1 Lower bounds
For completeness, we recall the constructions from [8] for even k ≥ 2. For every even
2 ≤ i ≤ k, let Pi = {pi} be a single point such that the unit spheres centred at pi and pi+2
intersect in a circle. Further, let P1 and Pk+1 be a set of n points contained in the unit
sphere centred at p2 and pk respectively. Finally, for every odd 3 ≤ i ≤ k − 1, let Pi be a set
of n points contained in the intersection of the unit spheres centred at pi−1 and pi+1. Then
it is not hard to see that P1× · · · ×Pk+1 contains n k2 +1 many (k, δ)-chains for δ = (1, . . . , 1).

Next, we prove the lower bounds for odd k ≥ 3 given in Proposition 6.

Proof of Proposition 6. First we show that C3
k(n) = Ω

(
u3(n)k
nk−1

)
. Take a set P ′ ⊂ R3 of

size n that contains u3(n) point pairs at unit distance apart. It is a standard exercise in
graph theory to show that there is P ⊂ P ′ such that n

2 ≤ |P | ≤ n and for every p ∈ P there
are at least u3(n)

4n points p′ ∈ P at distance 1 from p. Then P contains Ω
(
u3(n)k
nk−1

)
many

(k, δ)-chains with δ = (1, . . . , 1).
To prove C3

k(n) = Ω
(
us3(n)nk−2), we modify and extend the construction used for k − 1

as follows. Let P1, . . . , Pk−1 be as in the construction for (k− 1)-chains (from the even case).
Further, let Pk be a set of n points on the unit sphere around pk−1, and Pk+1 be a set of n
points such that u3(Pk, Pk+1) = us3(n). It is not hard to see that P1 × · · · × Pk+1 contains
Ω
(
us3(n)nk−2) many (k, δ)-chains with δ = (1, . . . , 1). J

4.2 Upper bound
We again fix δ = (δ1, . . . , δk) throughout the section and, omit it from the notation. The
following result with x = 1 implies the upper bound in Theorem 5.

I Theorem 14. For any fixed integer k ≥ 0 and x ∈ [0, 1], we have

C3
k(nx, n, . . . , n) = Õ

(
n
k+1+x

2

)
.

Proof. The proof is by induction on k. For k = 0 the bound is trivial, and for k = 1 it
follows from (4).

For k ≥ 2 let P1, . . . , Pk+1 ⊆ R3 be sets of points satisfying |P1| = nx, and |Pi| = n for
2 ≤ n ≤ k+ 1. Denote by Pα2 ⊆ P2 the set of those points in P2 that are at least nα-rich but
at most 2nα-rich with respect to P1 and δ1.

N. Frankl and A. Kupavskii 48:15

It is not hard to see that

C3
k(P1, P2 . . . , Pk+1) ⊆

⋃
α∈Λ

C3
k(P1, P

α
2 , P3, . . . , Pk+1),

where Λ := { i
logn : i = 0, 1, . . . , blognc}. Since |Λ| = Õ(1), it is sufficient to prove that, for

every α ∈ Λ, we have

C3
k(P1, P

α
2 , P3, . . . , Pk+1) = Õ

(
n
k+1+x

2

)
.

Assume that |Pα2 | = ny. The number of (k− 1)-chains in Pα2 ×P3× · · · ×Pk+1 is at most
C3
k−1(ny, n, . . . , n), and each of them may be extended in 2nα ways. By induction, we get

C3
k(P1, P

α
2 , P3, . . . , Pk+1) = Õ

(
nα · n

k+y
2

)
,

and we are done as long as

2α+ k + y ≤ k + 1 + x. (22)

To show this, we need to consider several cases depending on the value of α. Note that α ≤ x.
If α ≥ 2x

3 , then by (5) we have y ≤ x−α, and the LHS of (22) is at most α+k+x ≤ 1+k+x.
If x2 ≤ α ≤

2x
3 then by (5) we have y ≤ 3x−4α. The LHS of (22) is at most k+3x−2α ≤

k + 2x ≤ k + 1 + x.
If α ≤ x

2 then we use a trivial bound y ≤ 1. The LHS of (22) is at most 2α + k + 1 ≤
x+ k + 1. J

References
1 P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky. Lenses in

arrangements of pseudo-circles and their applications. J. ACM, 51(2):139–186, 2004.
2 B. Aronov and M. Sharir. Cutting circles into pseudo-segments and improved bounds for

incidences. Discrete Comput. Geom., 28(4):475–490, 2002.
3 P. Erdős. On sets of distances of n points. Amer. Math. Monthly, 53(5):248–250, 1946.
4 P. Erdős. On sets of distances of n points in euclidean space. Magyar Tud. Akad. Mat. Kutato

Int. Közl., 5:165–169, 1960.
5 H. Kaplan, J. Matoušek, Z. Safernová, and M. Sharir. Unit distances in three dimensions.

Comb. Probab. Comput., 21(4):597–610, 2012.
6 A. Marcus and G. Tardos. Intersection reverse sequences and geometric applications. J.

Combin. Theory Ser. A, 113(4):675–691, 2006.
7 J. Pach and M. Sharir. Geometric incidences. In Towards a theory of geometric graphs, volume

342 of Contemp. Math., pages 185–223. Amer. Math. Soc., Providence, RI, 2004.
8 E. A. Palsson, S. Senger, and A. Sheffer. On the number of discrete chains, 2019. arXiv:

1902.08259.
9 J. Spencer, E. Szemerédi, and W. T Trotter. Unit distances in the Euclidean plane. In Graph

theory and combinatorics, pages 294–304. Academic Press, 1984.
10 J. Zahl. An improved bound on the number of point-surface incidences in three dimensions.

Contrib. Discrete Math., 8(1):100–121, 2013.
11 J. Zahl. Breaking the 3/2 barrier for unit distances in three dimensions. Int. Math. Res.

Notices, 2019(20):6235–6284, 2019.

SoCG 2020

http://arxiv.org/abs/1902.08259
http://arxiv.org/abs/1902.08259

Convex Hulls of Random Order Types
Xavier Goaoc
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
xavier.goaoc@loria.fr

Emo Welzl
Department of Computer Science, ETH Zürich, Switzerland
emo@inf.ethz.ch

Abstract
We establish the following two main results on order types of points in general position in the plane
(realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3):
(a) The number of extreme points in an n-point order type, chosen uniformly at random from all

such order types, is on average 4 + o(1). For labeled order types, this number has average
4− 8

n2−n+2 and variance at most 3.
(b) The (labeled) order types read off a set of n points sampled independently from the uniform

measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are
concentrated, i.e., such sampling typically encounters only a vanishingly small fraction of all
order types of the given size.

Result (a) generalizes to arbitrary dimension d for labeled order types with the average number
of extreme points 2d + o(1) and constant variance. We also discuss to what extent our methods
generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods
allow to show the following relative of the Erdős-Szekeres theorem: for any fixed k, as n → ∞,
a proportion 1 − O(1/n) of the n-point simple order types contain a triangle enclosing a convex
k-chain over an edge.

For the unlabeled case in (a), we prove that for any antipodal, finite subset of the 2-dimensional
sphere, the group of orientation preserving bijections is cyclic, dihedral or one of A4, S4 or A5 (and
each case is possible). These are the finite subgroups of SO(3) and our proof follows the lines of
their characterization by Felix Klein.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases order type, oriented matroid, Sylvester’s Four-Point Problem, random convex
hull, projective plane, excluded pattern, Hadwiger’s transversal theorem, hairy ball theorem

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.49

Related Version A full version is available at [17], https://arxiv.org/abs/2003.08456.

Funding Xavier Goaoc: Supported by grant ANR-17-CE40-0017 of the French National Research
Agency (ANR project ASPAG) and Institut Universitaire de France.
Emo Welzl: Supported by the Swiss National Science Foundation within the collaborative DACH
project Arrangements and Drawings as SNSF Project 200021E-171681.

Acknowledgements This research started at the Banff Workshop “Helly and Tverberg Type Theo-
rems”, October 6-11, 2019, at the Casa Matemática Oaxaca (CMO), Mexico. The authors thank
Boris Aronov for helpful discussions, Gernot Stroth for help on the group theoretic aspects of the
paper, and Pierre Calka for help on questions involving probabilistic geometry.

1 Introduction

Two finite subsets P and Q of the plane are said to have the same order type if there exists a
bijection f : P → Q that preserves orientations: for any three points p, q, r in P , r is to the
left (resp. to the right) of the line (pq) oriented from p to q if and only if f(r) is to the left

© Xavier Goaoc and Emo Welzl;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 49; pp. 49:1–49:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xavier.goaoc@loria.fr
mailto:emo@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.SoCG.2020.49
https://arxiv.org/abs/2003.08456
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Convex Hulls of Random Order Types

(resp. to the right) of the line (f(p)f(q)) oriented from f(p) to f(q). To have the same order
type is an equivalence relation, and an order type is an equivalence class for that relation.
For each n, properties that depend solely on orientations can be established for the infinitely
many n-point sets by proving it for (one representative of) each of the finitely many order
types of size n. This even allows proofs by automated case analysis, see for instance [2] for
an application to crossing numbers and asymptotic estimates on numbers of triangulations.
This notion was studied in discrete and computational geometry as a higher-dimensional
analogue of ordering on a line, but also as a geometric relative of oriented matroids, see e.g.,
[18, 26, 9, 13].

In this paper, we investigate the expected number of extreme points in a typical order
type. (Since the number of extreme points is the same for all representatives of an order
type, we speak of the number of extreme points of the order type; we do the same for every
notion independent of the choice of representative, e.g., the size.) Here we consider only
simple order types, i.e., with no three points on a line; by “typical” we mean an order type
chosen equiprobably among all simple order types of a given size n. As an illustration, for
n = 4, the only two simple order types are the convex quadrilateral and the triangle with
an interior point, so the quantity we are after is 4+3

2 = 7
2 . For n = 5, it is 5+4+3

3 = 4, see
Figure 1.

Figure 1 Left: The two simple 4-point order types. Right: The three simple 5-point order types.

1.1 Motivations
Let us say a word on our motivations.

Testing. We are interested in statistics of the uniform distribution on the space of order
types. Broadly speaking, this distribution is relevant whenever one wants to test a property
of finite point sets. Consider the two following examples:
(a) The largest point set in general position with no empty hexagon is known to have size

between 29 and 1716 [32, 16], and it is tempting to try and improve the lower bound by
testing order types of size 30 or so.

(b) The CGAL library [38] stresses the need, when implementing geometric algorithms, to
rely solely on predicates that depend on the input of the algorithm, so as to encapsulate
the numerical issues (critical for robustness [25]) into the correct evaluation of signs of
polynomials. Thus, the implementation of an algorithm that depends only on orientation
predicates can be assessed by running it on a realization of each possible order type.

In both cases, we want to avoid repeating the same order type, as this is redundant compu-
tation, and to be able in principle to reach every existing order type without uncontrolled
bias. The uniform distribution is natural to consider for that purpose.

Random polytopes. Counting extreme points relates to the study of face vectors of random
polytopes, a classical line of research in stochastic geometry initiated by Sylvester in 1865,
who asked for “the probability that 4 points in the plane are in convex position”. A standard

X. Goaoc and E. Welzl 49:3

model of random polytope Kn is the convex hull of n random points chosen uniformly and
independently in some fixed convex body K. In this setting, the number of extreme points,
i.e., the vertices of Kn, is well understood. Its average is asymptotically proportional to
n

d−1
d+1 + o

(
n

d−1
d+1

)
if K is smooth and to logd−1 n+ o

(
logd−1 n

)
if K is a polytope [34, 35]

(see [33, §2.2.2]), and up to multiplicative constant these are the two extremes [6, Theorems 1–
3]. There are also estimates on the variance, concentration inequalities, central limit theorems,
and large deviation inequalities. We refer the interested reader to the survey of Reitzner [33].

This model of random polytope naturally generalizes to arbitrary probability measures µ,
or even to the convex hull of random non-independent point sets such as determinantal
point processes. Much less is known in this direction, aside from the occasional extensively-
studied model such as Gaussian polytopes (see [33, §2.3]). In a sense, what we investigate is
the average number of extreme points in a random polytope for a combinatorially defined
probability distribution on point sets.

Exploration of order types. The space of order types is generally not well understood.
Already, its size is not known precisely, not even asymptotically. The most precise bounds
are given for labeled order types, which declare two point sequences P = (p1, p2, . . .) and
Q = (q1, q2, . . .) equivalent if the monotone map pi 7→ qi preserves orientations: there
are n4nφ(n) labeled order types, where 2−cn ≤ φ(n) ≤ 2c′n for some positive constants
c, c′ [19, 3]; factoring out the labelling is not immediate as the number of labeled order types
corresponding to a given unlabeled one depends on the symmetries of the latter. We show
that in the plane, every unlabeled order type corresponds to at least (n− 1)! (and clearly
at most n!) different labeled ones. Order types have been tabulated up to size 11 [1, 2], for
which they are already counted in billions.

Random sampling of order types is also quite unsatisfactory. First, the standard methods
in discrete random generation such as Boltzmann samplers are unlikely to work here, as they
require structural results (such as recursive decompositions) that usually make counting a
routine task. It is of course easy to produce a random order type by merely reading off the
order type of n random points; standard models include points chosen independently from
the uniform distribution in a square or a disk, from a Gaussian distribution, as well as points
obtained as a random 2-dimensional projection of a n-dimensional simplex1. There are no
results, however, on how well or badly distributed the order types of such random point
sets are. More generally, no random generation method is known to be both efficient (say,
taking polynomial time per sample) and with controlled bias. This sad state of affairs can
perhaps be explained by two fundamental issues: when working with order types symbolically
(say as orientation maps to {−1, 0, 1}, see Section 1.4 below), one has to work around the
NP-hardness (actually, ∃R-completeness) of membership testing [37, 29, 36]. When working
with explicit point sets, one has to account for the exponential growth of the worst-case
number of coordinate bits required to realize an order type of size n [20]. It turns out that
our bounds on the expected number of extreme points in an order type imply that several
standard models of random point sets typically explore only a vanishingly small fraction of
the space of order types (Theorem 3).

Order types with forbidden patterns. Given two order types ω and τ , we say that ω
contains τ if any point set that realizes ω contains a subset that realizes τ . (Of course this
needs only be checked for a single realization of ω.) By the Erdös-Szekeres theorem [14],

1 This is called the Goodman-Pollack model and is statistically equivalent to points chosen independently
from a Gaussian distribution [7, Theorem 1].

SoCG 2020

49:4 Convex Hulls of Random Order Types

almost all order types contain the order type of k points in convex position. Similarly,
Carathéodory’s theorem implies that almost all order types contain the order type of a
triangle with one interior point. Could it be that for any fixed order type τ , the number of
order types of size n that do not contain τ is vanishingly small as n→∞? This question
may seem quite bold given the limited number of observations, but it is also motivated by
an analogous phenomenon for permutations: the Marcus-Tardos theorem [27] asserts that
for every fixed permutation π, the number of size-n permutations that do not contain π is
at most exponential in n (see [27] for the definition of containment). We are not aware of
any result on such a Marcus-Tardos phenomenon for order types besides the two simple
cases mentioned above. It turns out that along the way, we prove some new results in this
direction as well (Theorem 4).

1.2 Results
Our first result is on labeled order types. Two affine point sequences (p1, p2, . . . , pn) and
(q1, q2, . . . , qn) are defined to be of the same labeled order type if the map pi 7→ qi preserves
orientations: for any indices 1 ≤ i, j, k ≤ n, pk is to the left (resp. to the right) of the line
(pipj) oriented from pi to pj if and only if qk is to the left (resp. to the right) of the line
(qiqj) oriented from qi to qj . The labeled order type of a point sequence is simple if no three
points of that sequence are aligned.

I Theorem 1. For n ≥ 3, the number of extreme points in a random simple labeled order
type chosen uniformly among the simple, labeled order types of size n in the plane has average
4− 8

n2−n+2 and variance at most 3.

A set of n points gives rise to n! point sequences, but different sequences may have the same
labeled order type. The exact number of labeled order types corresponding to a given order
type actually depends on the number of order-preserving bijections, that is symmetries, of
that order type. We show that the symmetries of a simple affine order type form a (possibly
trivial) cyclic group (Theorem 6) and we bound from above the number of simple affine order
types with many, but not too many, symmetries. We then prove a non-labeled analogue of
Theorem 1:

I Theorem 2. For n ≥ 3, the number of extreme points in a random simple order type chosen
uniformly among the simple order types of size n in the plane has average 4 +O

(
n−3/4+ε)

for any ε > 0.

Our proof of Theorem 1 extends to arbitrary dimension, but not our proof of Theorem 2. A
large part of our methods and results extend to abstract order types, that is uniform oriented
matroids, where lines are replaced by pseudo-line arrangements. In particular, Theorem 1
holds in the abstract setting with the same bound, also in arbitrary dimension. The proof of
Theorem 2 does not completely carry over to the abstract setting, but our methods yield an
analogue statement with a bound of 10 + o(1).

Theorems 1 and 2 are in sharp contrast with the Ω(logn), and possibly polynomially
many, extreme points in a uniform random sample of a convex planar domain. Theorems 1
and 2 can actually be used to turn concentration bounds on the number of extreme points in
a random point set into concentration results on the distribution of order types produced by
these random point sets.

We need some definitions. Let (L)OTaff
n denote the set of simple (labeled) affine order

types. For n ≥ 3, let µn be a probability measure on (L)OTaff
n . We say that the family

{µn}n≥3 exhibits concentration if for every n ≥ 3 there exists An ⊆ (L)OTaff
n such that

X. Goaoc and E. Welzl 49:5

µn(An) → 1 and |An|/|(L)OTaff
n | → 0. In plain English, families of measures that exhibit

concentration typically explore a vanishingly small fraction of the space of simple (labeled)
order types. Devillers et al. [12] conjectured that the order types of points sampled uniformly
and independently from a unit square exhibit concentration. We prove this conjecture
and more:

I Theorem 3. Let µ be a probability measure on R2 given by one of the following: (a) the
uniform distribution on a smooth compact convex set, (b) the uniform distribution on a
convex compact polygon, (c) a Gaussian distribution. The family of probabilities on (L)OTaff

n

defined by the (labeled) order type of n random points chosen independently from µ exhibits
concentration.

Since the random projection of the vertices of a regular n-dimensional simplex, the Goodman-
Pollack model, is distributed like a set of points sampled independently from a Gaussian
distribution [7] (see also [33, §2.3.1]), the distribution on random order types it produces in
the plane also exhibits concentration.

As we explain in the next paragraphs, we prove Theorems 1 and 2 by recasting affine
order types in a projective setting, where we study so-called projective order types. This
relation between affine and projective order types reveals more examples of order types
difficult to avoid.

I Theorem 4. For any integer k ≥ 2, the proportion of order types of size n that contain a
triangle and k points forming a convex chain over one edge is 1−O(1/n).

Our final result is a classification of the symmetry groups of simple projective order types: we
prove that they are exactly the finite subgroups of SO(3), the group of rotations (Theorem 7).

1.3 Approach
Our proof of Theorems 1 and 2 divides up the simple planar order types into their orbits
under the action of projective transforms, and averages the number of extreme points inside
each orbit. Let us illustrate this “action” we consider with the two order types of Figure 2.
Starting with the left hand-side convex pentagon, any projective transform R2 → R2 that
maps the dashed line to the line at infinity yields the triangle with two interior points on
the right. Following up with any other projective transform that sends the dotted line back
to infinity will turn the triangle with two interior points back into a convex pentagon. We
invite the reader to check that all three simple order types of size 5 (Figure 1) form a single
orbit under projective transforms.

∞ ∞

Figure 2 Two projectively equivalent planar order types.

Here is a simple example of how such projective transforms may help:

I Lemma 5. Let A be a finite planar point set in general position and t : R2 → R2 a
projective transform with the line sent to infinity disjoint from A, and splitting A. Then
there are at most 4 extreme vertices of A whose images are also extreme in t(A).

SoCG 2020

49:6 Convex Hulls of Random Order Types

Proof. Let ` be the line sent by t to infinity. The extreme points of t(A) are exactly the
images of the points of A that ` can touch by moving continuously without crossing over a
point of A. It is the union of two convex chains, on either side of `, and each chain contains
at most 2 points extreme in A. J

This essentially allows to match order types of size n so that in every pair, the size of the
convex hulls add up to at most n+ 4. Assuming one dealt with issues such as symmetries,
this could provide an upper bound of n/2 + 2 on the average number of extreme points in
a typical order type. We do not formalize this matching idea further, but recast it into a
projective that makes it easier to analyze the action of projective transforms on order types.

1.4 Setting and terminology
We take all our points on the origin-centered unit sphere S2 in R3, except for occasional
mentions of the origin 0. Two points p and q on the sphere are called antipodal, if q = −p. A
great circle is the intersection of the sphere with a plane containing 0, an open hemisphere
is a connected component of the sphere in the complement of a great circle, and a closed
hemisphere is the closure of an open one. A finite subset P of the sphere is a projective set if
p ∈ P ⇔ −p ∈ P . We call a finite set of points on the sphere an affine set if it is contained
in an open hemisphere. An affine set is in general position if no three points are coplanar
with 0; a projective set P is in general position if whenever three points in P are coplanar
with 0, two of them are antipodal.

'

'

'

Figure 3 A projective set of size 10 (left) containing the three simple affine order types of size 5.

The sign, χ(p, q, r), of a triple (p, q, r) of points on the sphere is the sign, −1, 0, or 1,
of the determinant of the matrix (p, q, r) ∈ R3×3. A bijection f : S → S′ between finite
subsets of the sphere is orientation preserving if χ(f(p), f(q), f(r)) = χ(p, q, r) for every
triple of points in S. Two affine (resp. projective) sets have the same affine (resp. projective)
order type if there exists an orientation preserving bijection between them. An affine (resp.
projective) order type is the equivalence class of all affine (resp. projective) sets that have
the same affine (resp. projective) order type. The definitions of labeled affine and projective

X. Goaoc and E. Welzl 49:7

are similar: the labeling determines the bijection that is required to preserve orientations. It
will sometimes be convenient to write a point sequence as A[λ], where A is the point set and
λ : A→ [n], n = |A|, the bijection specifying the ordering.

The plane R2 together with its orientation function can be mapped to any open hemisphere
of S2 together with χ. For example, for the open hemisphere S2 ∩ {z > 0} this can be done
by the map

(
x

y

)
7→ 1

x2 + y2 + 1

 x

y

1

 .

Hence, the planar order types discussed so far coincide with the affine order types and we, in
fact, prove Theorems 1 and 2 for (labeled) affine order types. We study affine order types as
subsets of projective point sets as shown in Figure 3; this inclusion requires some care and is
formalized in Section 3.

Let S be a finite subset of the sphere. A permutation of S is a bijection S → S and a
symmetry of S is an orientation preserving permutation of S. The symmetries of S form a
group, which we call the symmetry group of S. This group determines the relations between
labeled and non-labeled affine order types: two orderings A[λ] and A[µ] of a point set A
determine the same labeled order type if and only if µ−1 ◦ λ is a symmetry of A. A crucial
ingredient in our proof of Theorem 2 is a classification of the symmetry groups of the affine
and projective sets. Here it is for affine sets. (The definitions of convex layers and lonely
point are given in Section 2.3.)

I Theorem 6. The symmetry group of any affine set A in general position is isomorphic to
the cyclic group Zk for some k ∈ N that divides the size of every layer of A other than its
lonely point (if A has one). In particular, k divides |A| (if A has no lonely point) or |A| − 1
(if A has a lonely point, which can happen for k odd only).

For all values of k and n satisfying the conditions of Theorem 6, with the exception of
(k, n) = (2, 4), there exists an affine order type of size n with Zk as symmetry group (see
Figure 4).

Figure 4 Left: For any even n ≥ 6, there exists an affine set of n points with symmetry group Z2:
take two sufficiently flat convex chains of n/2 points each, facing each other (so-called double chain,
[31]). Center and Right: For any 3 ≤ k ≤ n where k divides n or for any odd k where k divides
n− 1, there exists an affine set of n points with symmetry group Zk: just pile up regular polygons
inscribed in concentric circles.

We also prove that the symmetry groups of projective sets are finite subgroups of SO(3).

I Theorem 7. The symmetry group of any projective set of 2n points in general position is
a finite subgroup of SO(3). In particular, it is one of the following groups: Z1 (trivial group),
Zm (cyclic group), Dm (dihedral, with m | n or m | n − 1), S4 (octahedral = cubical), A4
(tetrahedral), and A5 (icosahedral).

We give examples of projective point sets with symmetry groups of each of the types identified
in Theorem 7.

SoCG 2020

49:8 Convex Hulls of Random Order Types

Notation. Let us introduce or recall some notation. For n ≥ 3 we write LOTaff
n for the set

of simple labeled affine order types of size n, OTaff
n for the set of simple affine order types of

size n, and OTproj
n for the set of simple projective order types of size 2n. For an affine point

set A with affine order type ω, we write LOTaff
A = LOTaff

ω for the set of the labeled affine order
types of the orderings of A.

1.5 Related work
Studying planar order types through their projective analogues is not a new idea, and appears
for instance in the tabulation of planar order types of size 11 [2]. We are not aware, however,
of an earlier analysis of how this relation is affected by symmetries.

Perhaps our most direct predecessor is the work of Miyata [28] on the classification of
symmetry groups of oriented matroids. These structures coincide with abstract order types,
and the affine order types we consider are special (“realizable”) cases. Miyata classifies
the symmetries of abstract order types in dimension 1 and 2. Our proof of Theorem 6
extends to the abstract setting and offers a more direct alternative to Miyata’s proof [28, §6].
Also related is the O(nd) time algorithm of Aloupis et al. [4, Theorem 4.1] for computing
the automorphisms of an order type (what we will call the symmetry group of orientation
preserving permutations) for a set of n points in Rd.

Several recent works have studied order types of random point sets [10, 12, 15, 21, 39],
but they do not address the equiprobable distribution on n-point order types. The recent
work of Chiu et al. [11] comes closer, as they have looked at the average size of the jth level
in a random planar arrangement of n lines, chosen by fixing a projective line arrangement of
size n and equiprobably choosing a random cell to contain the south-pole. This is similar to
what we do, but let us stress that they do not take symmetries into account, so the actual
distribution on planar arrangements they consider is not equiprobable (not even among those
contained in the projective arrangement).

Order types with forbidden patterns were previously investigated in two directions. On
the one hand, the Erdős-Szekeres theorem was strengthened for order types with certain
forbidden patterns [30, 23, 24]. On the other hand, Han et al. [21] studied the patterns
contained in random samples. We are not aware of previous results on the number of order
types with a forbidden pattern.

Finally, let us point out that the study of random polytopes raises other questions close
to classical questions in discrete and computational geometry. The analysis through floating
bodies [6] of f -vectors of random polytopes obtained from convex bodies is close to the ε-net
theory for halfspaces (see also [22] and [5, §3.2]). In another direction, Blaschke proved that
the probability that 4 points chosen uniformly in a convex domain are in convex position
is minimized when the domain is a triangle; for arbitrary planar probability measures, this
merely asks for the limit as n → ∞ of the rectilinear crossing number of the complete
graph Kn.

1.6 Paper organization
Due to space limitation, we had to make some choices as to what to keep here. We decided
to present a self-contained proof of Theorem 1 as it already gives a taste of our methods.
This is essentially a prefix of the full version [17].

From here, Section 2 recalls some background material. Then, Section 3 clarifies the
relation between affine and projective order types, between their symmetry groups, and
between the affine subsets of a projective set and the cells of its dual arrangement. Section 4

X. Goaoc and E. Welzl 49:9

then proves Theorem 1 by relating the number of extreme points in a random affine order
type to the number of edges in a random cell of an arrangement of great circles, and by
analyzing such arrangements via double counting and the zone theorem.

2 Background

We recall here some notions in finite group theory and in discrete geometry on S2 (duality,
arrangements, convexity).

2.1 Groups
The elements of group theory we use deal with a subgroup G of the group of permutations
of a finite set X. The identity map, the neutral element in G, is denoted by id or idX . We
will study such a group G through its action on X or some set of subsets of X. The orbit
G(x) of x ∈ X is the image of x under G, ie. G(x) def= {g(x) | g ∈ G}. Any two elements
have disjoint or equal orbits, so the orbits partition X. The stabilizer of an element x ∈ X
is the set of permutations in G having x as a fixed point, ie. Gx def= {g ∈ G | g(x) = x}.
By the orbit-stabilizer theorem, |G| = |G(x)| · |Gx| for any x ∈ X. We write ' for group
isomorphism.

2.2 Duality and arrangements on S2

On the sphere, the dual of a point p is the great circle p∗ contained in the plane through 0
and orthogonal to the line 0p. For any finite subset S of the sphere, we write S∗ for the
arrangement of the family of great circles {p∗ | p ∈ S}.

Let P be a projective set of 2n points. Since antipodal points have the same dual great
circle, P ∗ is an arrangement of n great circles. Observe that P is in general position if and
only if no three great circles in P ∗ have a point in common. Any two great circles intersect in
two points, so P ∗ has 2

(
n
2
)
vertices. Every vertex is incident to four edges; the total number

of edges is therefore 4
(
n
2
)
. By Euler’s formula, P ∗ has 2

(
n
2
)

+ 2 faces of dimension 2, which
we call cells.

Let us recall that many combinatorial quantities on arrangements of great circles on S2

are essentially twice their analogues for arrangements of lines in R2. Indeed, starting with an
arrangement P ∗ of n great circles in general position, we can add another great circle C∞,
chosen so that P ∗ ∪ {C∞} is also in general position, and consider the two open hemispheres
bounded by C∞. Each open hemisphere can be mapped to R2 so that the half-circles of
P ∗ are turned into lines, and the two line arrangements are combinatorially equivalent by
antipodality. In this way, we can for instance obtain the following version of the zone theorem
from the bound given in [8] for the zone of a line in an arrangement of lines2:

I Theorem 8 (Zone Theorem). Let P ∗ be an arrangement of n great circles on S2 and let
p∗ ∈ P ∗. Let Z(p∗) denote the zone of p∗, i.e., the set of cells of the arrangement incident
to p∗. For a cell c, let |c| denote the number of edges incident to c. Then

∑
c∈Z(p∗) |c| ≤

19(n− 1)− 10.

2 [8] shows that the cells in the zone of a line h0 in an arrangement of n + 1 lines in the plane has
edge-complexity at most b19n/2c − 1. For translating this bound to the zone of a great circle in an
arrangement of n great circles on S2, (i) we replace n by n− 1, (ii) we double for the two sides of C∞,
and (iii) we subtract 8 for the edges that get merged along C∞ (note that the infinite edges on h0 get
merged and contribute 1 on each of their sides).

SoCG 2020

49:10 Convex Hulls of Random Order Types

2.3 Convexity on the sphere
A point p ∈ A is extreme in an affine set A if there exists a great circle C that strictly
separates p from A \ {p}; that is, p and A \ {p} lie on two different connected components of
S2 \ C. An ordered pair (p, q) ∈ A2 is a positive extreme edge of A if for any r ∈ A \ {p, q}
we have χ(p, q, r) = +1. Assuming general position, a point p ∈ A is extreme in A if and
only if there exists q ∈ A such that (p, q) is a positive extreme edge; in that case, the point q
is unique.

A CCW order of the extreme points of A is an order (p0, p1, . . . , ph−1) of its extreme
points such that for all i = 0, 1, . . . , h − 1, (pi, pi+1) is a positive extreme edge (indices
mod h). The convex hull of A is

conv(A) def= {r ∈ S2 | ∀ positive extreme edges (p, q), χ(p, q, r) ≥ 0}.

An affine set A is in convex position if every point is extreme in A. The (onion) layer sequence
of A is a sequence (A0, A1, . . . , A`) of subsets of A, partitioning A, where A0 is the set of
extreme points in A, and (A1, A2, . . . , A`) is the layer sequence of A \A0. The Ai’s are called
the layers of A. If the innermost layer A` consists of a sole point, then that point is called
lonely (there is one or no lonely point).

3 Hemisets: relating affine and projective order types

Any affine set A naturally defines a projective set A ∪ −A, which we call its projective
completion. Going in the other direction, consider a projective set P . Any affine set whose
projective completion is P must be the intersection of P with some open hemisphere. Remark,
however, that the converse is not always true: the set P = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)},
the vertices of the cross polytope, intersects some open hemispheres in a single point. This
reveals that for an open hemisphere to cut out an affine set that completes to P , it must
be bounded by a great circle that avoids P . We therefore define a hemiset of P as the
intersection of P with a closed hemisphere, and call a hemiset of P an affine hemiset if it is
contained in an open hemisphere. With these definitions, we have:

B Claim 9. A projective set P is the completion of an affine set A if and only if A is an
affine hemiset of P .

Notation. For a projective point set P with projective order type π, we write OTproj
P = OTproj

π

for the set of affine order types of the affine hemisets of P .
To understand how affine order types relate to projective order types, an important idea

is that the symmetries of a projective point set P act on the (affine) hemisets of P :

I Proposition 10. Let g : P → P ′ be an orientation preserving bijection between two
projective sets in general position. If |P | = |P ′| ≥ 6, then g maps hemisets of P to hemisets
of P ′ and affine hemisets of P to affine hemisets of P ′.

The proof of Proposition 10 starts by a simple observation of independent interest.

I Lemma 11. Let g : S → S′ be an orientation preserving bijection between two subsets of
the sphere. If S contains two antipodal points {p,−p} such that g(−p) 6= −g(p), then S is
contained in a great circle.

Proof. If g(−p) and g(p) are not antipodal, then they are on a unique great circle, which
must contain S, as for every r ∈ S we have 0 = χ(p,−p, g−1(r)) = χ (g(p), g(−p), r). J

X. Goaoc and E. Welzl 49:11

Proof of Proposition 10. Let B be a hemiset of P and E = B ∩ −B. By general position,
|B| is 4, 2 or it is 0 (in which case B is an affine hemiset). Since |P | ≥ 6 and P is in
general position, P is not contained in a great circle and g therefore preserves antipodality
by Lemma 11. In particular, if g preserves hemisets, it also preserves affine hemisets.

If |E| = 4, then there are two points p, q ∈ E such that B = {r ∈ P | χ(p, q, r) ≥ 0}.
Since g preserves orientations and is bijective, it comes that

g(B) = {r ∈ P | χ(g(p), g(q), r) ≥ 0} = P ∩ {s ∈ S2 | χ(g(p), g(q), s) ≥ 0},

and g(B) is also a hemiset.
So assume that |E| ≤ 2 and fix some closed hemisphere Σ such that B = Σ ∩ P and B

intersects the boundary of Σ into E. We extend B into a set B′′ with |B′′ ∩ −B′′| = 4 as
follows:

If |E| = 2, then we set B′ def= B, Σ′ def= Σ and {q,−q} def= E. Otherwise, we fix a point p on
the boundary of Σ, rotate Σ about 0p until we first touch a point q ∈ P \B (at the same
moment, −q ∈ B moves from the interior to the boundary of the rotating hemisphere); we
let Σ′ denote the resulting hemisphere and put B′ def= B ∪ {q} (note B′ ∩−B′ = {q,−q}).
We now rotate Σ′ about 0q until we first touch a point r ∈ P \B′; we put B′′ def= B′ ∪{r}.

Now, E′′ def= B′′ ∩ −B′′ = {q,−q, r,−r} and there exists a closed hemisphere Σ∗ such that
g(B′′) = P ∩ Σ∗ (by our previous analysis above for case |E| = 4). The boundary of Σ∗
intersects P in precisely g(E′′) = {g(−q), g(q), g(−r), g(r)}, and two adequate rotations kick
only g(r), then g(q) out, witnessing that g(B) is also a hemiset. J

Given a projective set P with symmetry group G and a hemiset B of P , we write GB for
the stabilizer of B in the action of G on hemisets of P . We also write G(B) for the orbit of
B in that action.

I Lemma 12. Let P be a projective set of 2n points, n ≥ 3, in general position and A an
affine hemiset of P .
(a) The symmetry group of A, as an affine set, is isomorphic to GA.
(b) An affine hemiset of P has the same affine order type as A if and only if it is in G(A).

Proof. Let F denote the symmetry group of A as an affine set. Since P = A ∪ −A, we
can extend any f ∈ F into a permutation f̂ of P by setting f̂(p) def= f(p) for p ∈ A and
f̂(p) def= −f(−p) for p /∈ A. Let F̂ def= {f̂ : f ∈ F}. Remark that F̂ is isomorphic to F since
for any two symmetries f1, f2 of A, we have f̂1 ◦ f2 = f̂1 ◦ f̂2. Moreover, any element g ∈ F̂
fixes A and, conversely, any symmetry g : P → P that fixes A writes g = ĝ|A. Then, F̂ = GA
and statement (a) follows.

For statement (b), consider an affine hemiset A′ of P with the same affine order type
as A. There exists an orientation preserving bijection f : A → A′. The extension f̂ of f
to P also preserves orientations, and is therefore in G. It follows that A′ ∈ g(A). The reverse
inclusion follows from the fact that every symmetry of G preserves orientations. J

With Lemma 12, the orbit-stabilizer theorem readily implies:

I Corollary 13. Let P be a projective set of 2n points, n ≥ 3, in general position and A
an affine hemiset of P . Let F and G denote the symmetry groups of A and P , respectively.
There are |G|/|F| affine hemisets of P with same affine order type as A.

SoCG 2020

49:12 Convex Hulls of Random Order Types

4 Analysis of labeled affine order types

Perhaps surprisingly, Corollary 13 is all we need to prove Theorem 1.

4.1 The two roles of affine symmetries
The number of symmetries of an affine order type determines both its number of labelings, and
how often it occurs among the hemisets of a projective completion of one of its realizations.
These two roles happen to balance each other out nicely:

I Proposition 14. Let P be a projective set of 2n points, n ≥ 3, in general position. Let R
be a random affine hemiset chosen uniformly among all affine hemisets of P . Let λ be a
random permutation R→ [n] chosen uniformly among all such permutations. The labeled
affine order type of R[λ] is uniformly distributed in

⋃
ω∈OTaff

P

LOTaff
ω .

Proof. Let N denote the number of affine hemisets of P . Let ω1, ω2, . . . , ωk denote the order
types of the affine hemisets of P , without repetition (that is, the ωi are pairwise distinct).
Let G denote the symmetry group of P and let Fi, 1 ≤ i ≤ k, denote the symmetry group
of ωi. Let ρ denote the affine order type of R. By Corollary 13, we have

P [ρ = ωi] = |G|/|Fi|
N

.

Next, the number of distinct labelings of the order type of an affine set A is n!/|F|, since
two labelings A[λ] and A[µ] of A have the same labeled order type if and only if µ−1 ◦ λ is a
symmetry of A. Let ρ denote the labeled affine order type of R[λ]. For any σ ∈ LOTaff

ωi
, we

have

P [ρ = σ | ρ = ωi] = |Fi|
n! .

Altogether, for any σ ∈
k⋃
i=1

LOTaff
ωi

, we have P [ρ = σ] = |G|
Nn! and the distribution is uniform

as we claimed. J

4.2 Hemisets and duality
The following dualization will make counting easy.

I Lemma 15. There is a bijection φ between the affine hemisets of a projective point set P
and the cells of the dual arrangement P ∗, such that a point p is extreme in an affine hemiset A
if and only if the great circle p∗ supports an edge of φ(A).

Proof. For any point p we write p+ for the hemisphere centered in p, that is the closed
hemisphere containing p and bounded by p∗. For any closed hemisphere H we write H+ for
its center, that is the point q with H = q+. Now, a point p is in a closed hemisphere H if
and only if the scalar product 〈p,H+〉 is nonnegative. Thus, p lies in H if and only if H+

lies in p+. It follows that two hemispheres H0 and H1 intersect P in the same hemiset if
and only if H+

0 and H+
1 lie in the same cell of P ∗. Moreover, as H+ moves in the cell the

hemisphere H also moves while enclosing the same set of points; the boundary of H touches
a point p if and only if H+ touches p∗. J

X. Goaoc and E. Welzl 49:13

For example, we now see that a projective set of 2n points, n ≥ 3, in general position
has 2

(
n
2
)

+ 2 distinct affine hemisets. Also, it should be clear from the final computations of
the proof of Proposition 14 that if that projective point set has symmetry group G, then it
supports

(
2
(
n
2
)

+ 2
)
n!
|G| distinct labeled affine order types.

4.3 Counting extreme points: expectation and variance
We can now prove Theorem 1 on the expectation and variance of the number of extreme
points in a random labeled affine order type.

I Lemma 16. Let P be a projective set of 2n points, n ≥ 3, in general position. If XP

denotes the number of extreme points in a labeled affine order type chosen uniformly among
those supported by P , then

E [XP] = 4n(n− 1)
n(n− 1) + 2 = 4− 8

n2−n+2 and E
[
XP

2] ≤ 19n(n− 1)− 10n
n(n− 1) + 2 ≤ 19.

Proof. By Lemma 15, XP has the same distribution as the number of edges in a cell chosen
uniformly at random in P ∗. The arrangement P ∗ has 2

(
n
2
)

+ 2 cells and 4
(
n
2
)
edges. Since

every edge bounds exactly two cells, it comes that

E [XP] =
8
(
n
2
)

2
(
n
2
)

+ 2
= 4n(n− 1)
n(n− 1) + 2 = 4− 8

n2−n+2 .

Moreover, the random variable XP
2 has the same distribution as the square of the number

of edges in a random cell chosen uniformly in P ∗. Let F2(P ∗) denote the set of cells of P ∗
and for c ∈ F2(P ∗) let |c| denote its number of edges. We thus have(

2
(
n

2

)
+ 2
)
E
[
XP

2] =
∑

c∈F2(P∗)

|c|2.

In the right-hand term, every edge e of P ∗ is counted |c1|+ |c2| times, where c1 and c2 are
its two adjacent cells. For any point p ∈ P , the contribution of the edges supported by p∗ to
that sum equals

∑
c∈Z(p∗) |c| ≤ 19(n− 1)− 10 (following notation and bound in Theorem 8).

Altogether,(
2
(
n

2

)
+ 2
)
E
[
XP

2] ≤ n(19(n− 1)− 10)

and E
[
XP

2] ≤ 19n(n− 1)− 10n
n(n− 1) + 2 ≤ 19. J

Here comes the announced proof.

Proof of Theorem 1. Let ρ be a simple labeled order type chosen uniformly at random in
LOTaff

n . Let Xn denote the number of extreme points in ρ, where ρ denotes the unlabeling
of ρ and let π be the projective completion of ρ. By Lemma 16, we have for any π′ ∈ OTproj

n

E [Xn | π = π′] = 4n(n− 1)
n(n− 1) + 2 and E

[
Xn

2 | π = π′
]
≤ 19n(n− 1)− 10n

n(n− 1) + 2 .

The formula of total probability therefore yields

E [Xn] = 4n(n− 1)
n(n− 1) + 2 and E

[
Xn

2] ≤ 19n(n− 1)− 10n
n(n− 1) + 2 .

From there, Var [Xn] = E
[
Xn

2] − E [Xn]2 ≤ 3. (A bound of 3 + o(1) is readily seen from
E [Xn] = 4 + o(1) and E

[
Xn

2] = 19 + o(1); the bound of 3 holds exploiting n ≥ 3.) J

SoCG 2020

49:14 Convex Hulls of Random Order Types

As a consequence, we obtain for instance the following estimates.

I Corollary 17. The proportion of simple labeled affine n-point order types with h ≥ 6
vertices on the convex hull is at most 3/(h− 4)2.

Proof. By the Bienaymé-Chebyshev inequality, for any real t > 0 and any random variable X
with finite expected value and non-zero variance, we have

P
[
|X − E [X] | ≥ t

√
Var [X]

]
≤ 1
t2
.

Together with Theorem 1, this implies the statement. J

References
1 Oswin Aichholzer, Franz Aurenhammer, and Hannes Krasser. Enumerating order types

for small point sets with applications. Order, 19(3):265–281, 2002. doi:10.1023/A:
1021231927255.

2 Oswin Aichholzer and Hannes Krasser. Abstract order type extension and new results on the
rectilinear crossing number. Computational Geometry, 36(1):2–15, 2007. Special Issue on the
21st European Workshop on Computational Geometry. doi:10.1016/j.comgeo.2005.07.005.

3 Noga Alon. The number of polytopes, configurations and real matroids. Mathematika,
33(1):62–71, 1986.

4 Greg Aloupis, John Iacono, Stefan Langerman, Özgür Özkan, and Stefanie Wuhrer. The
complexity of order type isomorphism. In Chandra Chekuri, editor, Proceedings of the Twenty-
Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 405–415. SIAM, 2014. doi:10.1137/1.9781611973402.30.

5 Imre Bárány, Matthieu Fradelizi, Xavier Goaoc, Alfredo Hubard, and Günter Rote. Random
polytopes and the wet part for arbitrary probability distributions. arXiv preprint, 2019.
arXiv:1902.06519.

6 Imre Bárány and David G Larman. Convex bodies, economic cap coverings, random polytopes.
Mathematika, 35(2):274–291, 1988.

7 Yuliy M Baryshnikov and Richard A Vitale. Regular simplices and Gaussian samples. Discrete
& Computational Geometry, 11(2):141–147, 1994.

8 Marshall W. Bern, David Eppstein, Paul E. Plassmann, and F. Frances Yao. Horizon theorems
for lines and polygons. In Jacob E. Goodman, Richard Pollack, and William Steiger, editors,
Discrete and Computational Geometry: Papers from the DIMACS Special Year, volume 6 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 45–66.
DIMACS/AMS, 1990. doi:10.1090/dimacs/006/03.

9 Anders Bjorner, Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and
Gunter M Ziegler. Oriented matroids. Number 46 in Encyclopedia of Mathematics and its
Applications. Cambridge University Press, 1999 .

10 Jean Cardinal, Ruy Fabila-Monroy, and Carlos Hidalgo-Toscano. Chirotopes of random points
in space are realizable on a small integer grid. arXiv preprint, 2020. arXiv:2001.08062.

11 Man-Kwun Chiu, Stefan Felsner, Manfred Scheucher, Patrick Schnider, Raphael Steiner,
and Pavel Valtr. On the average complexity of the k-level. CoRR, abs/1911.02408, 2019.
arXiv:1911.02408.

12 Olivier Devillers, Philippe Duchon, Marc Glisse, and Xavier Goaoc. On order types of random
point sets, 2018. arXiv:1812.08525v2.

13 David Eppstein. Forbidden configurations in discrete geometry. Cambridge University Press,
2018.

14 Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio mathe-
matica, 2:463–470, 1935.

15 Ruy Fabila-Monroy and Clemens Huemer. Order types of random point sets can be realized
with small integer coordinates. In XVII Spanish Meeting on Computational Geometry: book
of abstracts, Alicante, June 26-28, pages 73–76, 2017.

https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1023/A:1021231927255
https://doi.org/10.1016/j.comgeo.2005.07.005
https://doi.org/10.1137/1.9781611973402.30
http://arxiv.org/abs/1902.06519
https://doi.org/10.1090/dimacs/006/03
http://arxiv.org/abs/2001.08062
http://arxiv.org/abs/1911.02408
http://arxiv.org/abs/1812.08525v2

X. Goaoc and E. Welzl 49:15

16 Tobias Gerken. Empty convex hexagons in planar point sets. Discrete & Computational
Geometry, 39(1-3):239–272, 2008.

17 Xavier Goaoc and Emo Welzl. Convex hulls of random order types. CoRR, abs/2003.08456,
2020. arXiv:2arXiv:2003.08456.

18 Jacob E Goodman and Richard Pollack. Multidimensional sorting. SIAM Journal on Com-
puting, 12(3):484–507, 1983.

19 Jacob E Goodman and Richard Pollack. Upper bounds for configurations and polytopes inr d.
Discrete & Computational Geometry, 1(3):219–227, 1986.

20 Jacob E Goodman, Richard Pollack, and Bernd Sturmfels. The intrinsic spread of a configura-
tion in Rd. Journal of the American Mathematical Society, pages 639–651, 1990.

21 Jie Han, Yoshiharu Kohayakawa, Marcelo T Sales, and Henrique Stagni. Extremal and
probabilistic results for order types. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 426–435. SIAM, 2019.

22 Sariel Har-Peled. On the expected complexity of random convex hulls. CoRR, abs/1111.5340,
2011. arXiv:1111.5340.

23 Gyula Károlyi and Jozsef Solymosi. Erdős–Szekeres theorem with forbidden order types.
Journal of Combinatorial Theory, Series A, 113(3):455–465, 2006.

24 Gyula Károlyi and Géza Tóth. Erdős–Szekeres theorem for point sets with forbidden subcon-
figurations. Discrete & Computational Geometry, 48(2):441–452, 2012.

25 Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap. Classroom examples
of robustness problems in geometric computations. Computational Geometry, 40(1):61–78,
2008.

26 Donald Ervin Knuth. Axioms and hulls, volume 606. Springer, 1992.
27 Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley–Wilf

conjecture. Journal of Combinatorial Theory, Series A, 107(1):153–160, 2004.
28 Hiroyuki Miyata. On symmetry groups of oriented matroids, 2013. arXiv:1301.6451.
29 Nicolai E. Mnëv. The universality theorem on the oriented matroid stratification of the

space of real matrices. In Jacob E. Goodman, Richard Pollack, and William Steiger, editors,
Discrete and Computational Geometry: Papers from the DIMACS Special Year, volume 6 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 237–244.
DIMACS/AMS, 1990. doi:10.1090/dimacs/006/16.

30 Jaroslav Nešetřil and Pavel Valtr. A Ramsey property of order types. Journal of Combinatorial
Theory, Series A, 81(1):88–107, 1998.

31 Alfredo García Olaverri, Marc Noy, and Javier Tejel. Lower bounds on the number of crossing-
free subgraphs of KN . Comput. Geom., 16(4):211–221, 2000. doi:10.1016/S0925-7721(00)
00010-9.

32 Mark Overmars. Finding sets of points without empty convex 6-gons. Discrete & Computational
Geometry, 29(1):153–158, 2002.

33 M. Reitzner. Random polytopes. In Wilfrid S. Kendall and Ilya Molchanov, editors, New
Perspectives in Stochastic Geometry, chapter 2, pages 45–75. Oxford University Press, 2009.

34 Alfréd Rényi and Rolf Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(1):75–84, 1963.

35 Alfréd Rényi and Rolf Sulanke. Über die konvexe Hülle von n zufällig gewählten Punkten. II.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 3(2):138–147, 1964.

36 Marcus Schaefer. Complexity of some geometric and topological problems. In David Eppstein
and Emden R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009,
Chicago, IL, USA, September 22-25, 2009. Revised Papers, volume 5849 of Lecture Notes in
Computer Science, pages 334–344. Springer, 2009. doi:10.1007/978-3-642-11805-0_32.

37 Peter Shor. Stretchability of pseudolines is NP-hard. Applied Geometry and Discrete
Mathematics-The Victor Klee Festschrift, 1991.

38 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.14 edition,
2019. URL: https://doc.cgal.org/4.14/Manual/packages.html.

39 Ivor van der Hoog, Tillmann Miltzow, and Martijn van Schaik. Smoothed analysis of order
types. arXiv preprint, 2019. arXiv:1907.04645.

SoCG 2020

http://arxiv.org/abs/2 arXiv:2003.08456
http://arxiv.org/abs/1111.5340
http://arxiv.org/abs/1301.6451
https://doi.org/10.1090/dimacs/006/16
https://doi.org/10.1016/S0925-7721(00)00010-9
https://doi.org/10.1016/S0925-7721(00)00010-9
https://doi.org/10.1007/978-3-642-11805-0_32
https://doc.cgal.org/4.14/Manual/packages.html
http://arxiv.org/abs/1907.04645

Fast Algorithms for Geometric Consensuses
Sariel Har-Peled
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
sariel@illinois.edu

Mitchell Jones
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
mfjones2@illinois.edu

Abstract
Let P be a set of n points in Rd in general position. A median hyperplane (roughly) splits the point
set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of
P . The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d

points of P .
We present exact algorithms for computing the yolk and the egg of a point set, both running

in expected time O(nd−1 log n). The running time of the new algorithm is a polynomial time
improvement over existing algorithms. We also present algorithms for several related problems, such
as computing the Tukey and center balls of a point set, among others.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric optimization, centerpoint, voting games

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.50

Related Version A full version of this paper is available at https://arxiv.org/abs/1912.01639.

Funding Sariel Har-Peled: Supported in part by NSF AF award CCF-1907400.
Mitchell Jones: Supported in part by NSF AF award CCF-1907400.

Acknowledgements The authors thank Joachim Gudmundsson for bringing the problem of computing
the yolk to our attention. The second author thanks Sampson Wong for discussions on computing
the yolk in higher dimensions. We also thank Timothy Chan for useful comments (in particular, the
improved algorithm for the yolk in 3D, see Remark 26).

1 Introduction

Voting games and the yolk. Suppose there is a collection of n voters in Rd, where each
dimension represents a specific ideology. In a fixed dimension, each voter maintains a value
along this continuum representing their stance on a given ideology. One can interpret Rd
as a policy space, and each point in Rd represents a single policy. In the Euclidean spatial
model, a voter p ∈ Rd always prefers policies which are closer to p under the Euclidean norm.
For two policies x, y ∈ Rd and a set of voters P ⊂ Rd, x beats y if more voters in P prefer
policy x compared to y. A plurality point is a policy which beats all other policies in Rd.
For d = 1, the plurality point is the median voter (when n is odd) [3]. However for d > 1,

© Sariel Har-Peled and Mitchell Jones;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 50; pp. 50:1–50:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sariel@illinois.edu
mailto:mfjones2@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.50
https://arxiv.org/abs/1912.01639
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Fast Algorithms for Geometric Consensuses

a plurality point is not always guaranteed to exist [18]. It is known that one can test if a
plurality point exists (and if so, compute it) in O(dn logn) time [10]. Note that the plurality
point is a point of Tukey depth dn/2e – in general this is the largest possible Tukey depth
any point can have; while the centerpoint is a point that guarantees a “respectable” minority
of size at least n/(d+ 1).

Since plurality points may not always exist, one generalization of a plurality point is the
yolk [17]. A hyperplane is a median hyperplane if the number of voters lying in each of
the two closed halfspaces is at least dn/2e. The yolk is the ball of smallest radius intersecting
all such median hyperplanes. Note that when a plurality point exists, the yolk has radius
zero (equivalently, all median hyperplanes intersect at a common point).

We also consider the following restricted problem. A hyperplane is extremal if and
only if it passes through d points, under the assumption that the points are in general
position. The extremal yolk is the ball of smallest radius intersecting all extremal median
hyperplanes. Importantly, the yolk and the extremal yolk are different problems – the radius
of the yolk and extremal yolk can differ [21].

The egg of a point set. A problem related to computing the yolk is the following: For a set
of n points P in Rd, compute the smallest radius ball intersecting all extremal hyperplanes
of P (i.e., all hyperplanes passing through d points of P). Such a ball is the egg of P . See
Figure 1.1 for an illustration of the yolk and egg of a point set.

Linear programs with many implicit constraints. The problem of computing the egg can
be written as a linear program (LP) with Θ(nd) constraints, defined implicitly by the point
set P . One can apply Seidel’s algorithm [19] (or any other linear time LP solver in constant
dimension) to obtain an O(nd) expected time algorithm for computing the egg (or the yolk,
with a bit more work). However, as each d-tuple of points forms a constraint, it is natural to
ask if one can obtain a faster algorithm in this setting. Specifically, we are interested in the
following problem: Let I be an instance of a d-dimensional LP specified via a set of n entities
P , where each k-tuple of P induces a linear constraint in I, for some (constant) integer k.
The problem is to efficiently solve I, assuming access to some additional subroutines.

1.1 Previous work
The yolk. Let P be a set of n points in Rd. Both the yolk and extremal yolk have been
studied in the literature. The first polynomial time exact algorithm for computing the yolk
in Rd was by Tovey in O

(
n(d+1)2) time – in the plane, the running time can be improved

to O(n4) [22]. Following Tovey, the majority of results have focused on computing the yolk
in the plane. In 2018, de Berg et al. [10] gave an O(n4/3 log1+ε n) time algorithm (for any
fixed ε > 0) for computing the yolk. Obtaining a faster exact algorithm remained an open
problem. Gudmundsson and Wong [12, 13] presented a (1 + ε)-approximation algorithm
with O(n log7 n log4 ε−1) running time. An unpublished result of de Berg et al. [8] achieves a
randomized (1 + ε)-approximation algorithm for the extremal yolk running in expected time
O(nε−3 log3 n).

The egg. The egg of a point set in Rd can be computed by solving a linear program with
Θ(nd) constraints. The egg is a natural extension to computing the yolk, and thus obtaining
faster exact algorithms is of interest. The authors are not aware of any previous work on
this specific problem. Bhattacharya et al. [2] gave an algorithm which computes the smallest
radius ball intersecting a set of m hyperplanes in O(m) time, when d = O(1), by formulating
the problem as an LP (see also Lemma 11). However we emphasize that in our problem the
set of hyperplanes are implicitly defined by the point set P , and is of size Θ(nd) in Rd.

S. Har-Peled and M. Jones 50:3

(A) (B)

(C) (D)

Figure 1.1 (A) Points. (B) Median lines and the extremal yolk. (C) All lines and the egg. (D)
Points with the extremal yolk and the egg.

SoCG 2020

50:4 Fast Algorithms for Geometric Consensuses

Table 1.1 Some previous work on the yolk and our results. Existing algorithms are deterministic,
while the running time of our algorithms holds in expectation.

d = 2 (1 + ε)-approx Exact Our results (Exact)

Extremal yolk O(nε−3 log3 n)
[8]

O(n4/3 log1+ε n)
[10]

O(n log n)
Theorem 16

Yolk O(n log7 n log4 ε−1)
[13]

O(n4/3 log1+ε n)
Variant of [10]

O(n log n)
Theorem 25

d = 3

Yolk ? O(n3)
Known techniques

O(n2)
Remark 26

d > 3

Extremal yolk ? O(nd)
Known techniques

O(nd−1 log n)
Theorem 16

Yolk ? O(nd)
Known techniques

O(nd−1 log n)
Theorem 25

Implicit LPs. In 2004, Chan [4] developed a framework for solving LPs with many implicit
constraints (the motivation was to obtain an efficient algorithm for computing the Tukey
depth of a point set). Informally, suppose that each input set P of entities maps to a set
H(P) of implicit constraints. For n entities P and a candidate solution, suppose one can
decide if the candidate solution violates any constraints of H(P) in D(n) time. Additionally,
assume that from P , one can construct r = O(1) sets P1, . . . , Pr, each of size at most n/c
(for some constant c > 1) with H(P) =

⋃r
i=1H(Pi). If this partition step can be performed

in D(n) time, then both assumptions imply that the resulting LP can be solved in O(D(n))
expected time.

1.2 Our results
Note. Due to space limitations, not all results discussed below are presented in the paper.
We refer the reader to the full version of the paper on arXiv [14].

In this paper we revisit Chan’s algorithm for solving LPs with many implicitly defined
constraints [4]. The technique leads to efficient algorithms for the following problems.
Throughout, let P ⊂ Rd be a set of n points in general position:

(A) The yolk (and extremal yolk) of P can be computed exactly in O(nd−1 logn) expected
time. Hence in the plane, the yolk can be computed exactly in O(n logn) expected time.
This improves all existing algorithms (both exact and approximate) [22, 10, 13, 12, 8]
for computing the yolk in the plane, and our algorithm easily generalizes to higher
dimensions. See Table 1.1 for a summary of our results and previous work.

(B) By a straight-forward modification of the above algorithm, see Lemma 17, implies that
the egg of P can be computed in O(nd−1 logn) expected time. The authors are not
aware of any previous work on this specific problem.

(C) Let Hk(P) be the collection of all open halfspaces which contain at least n− k points of
P . Consider the convex polygon Tk = ∩h∈Hk(P)h. Observe that T0 is the convex hull
of P , with T0 ⊇ T1 ⊇ · · · . The centerpoint theorem implies that Tn/(d+1) is non-empty
(and contains the centerpoint). The Tukey depth of a point q in the minimal k such
that q ∈ Tk \ Tk+1.

S. Har-Peled and M. Jones 50:5

When Tk is non-empty, the center ball of P is the ball of largest radius contained
inside Tk. For Tk empty, we define the Tukey ball of P as the smallest radius ball
intersecting all halfspaces of Hk(P).
In the full version of the paper [14] we show that the Tukey ball and center ball can both
be computed in Õ

(
kd−1[1 + (n/k)bd/2c]) expected time. Here, Õ hides polylogarithmic

factors in n. In particular when k is a (small) constant, a point of Tukey depth k can
be computed in time Õ(nbd/2c). This improves Chan’s O(nd−1 logn) expected time
algorithm for deciding if there is a point of Tukey depth at least k [4].

(D) For a set Q ⊆ Rd, let conv(Q) denote the convex hull of Q. For a given integer k
let C(P, k) =

{
conv(Q)

∣∣ Q ∈ (Pk)} , where (Pk) is the set of all k-tuples of points of P .
We define the k-ball of P as the smallest radius ball intersecting all convex bodies in
C(P, k).
While one may be tempted to apply the techniques discussed so far for implicit LPs,
there is a faster algorithm using (≤ k)-sets. When k is constant, in [14] we present an
algorithm for computing the k-ball in O(nbd/2c + n logn) expected time. As such, the
smallest ball intersecting all triangles induced by triples of a set of n points in R3 can
be computed in O(n logn) expected time.

In [14], we present another application of Chan’s technique for solving implicit LP-type
problems.

(E) Given a set L of n lines in the plane, the crossing distance between two points p, q ∈ R2

is the number of lines of L intersecting the segment pq. Given a point q ∈ R2 not lying
on any lines of L, the disk of smallest radius containing all vertices of A(L), within
crossing distance at most k from q, can be computed, in O(n logn) expected time.

2 Preliminaries

I Notation. Throughout, the O hides factors which depend (usually exponentially) on the
dimension d. Additionally, the Õ notation hides factors of the form logc n, where c may
depend on d.

2.1 LP-type problems
An LP-type problem, introduced by Sharir and Welzl [20], is a generalization of a linear
program. Let H be a set of constrains and f be an objective function. For any B ⊆ H,
let f(B) denote the value of the optimal solution for the constraints of B. The goal is to
compute f(H). If the problem is infeasible, let f(H) =∞. Similarly, define f(H) = −∞ if
the problem is unbounded.

I Definition 1. Let H be a set of constraints, and let f : 2H → R∪{∞,−∞} be an objective
function. The tuple (H, f) forms an LP-type problem if the following properties hold:
(A) Monotonicity. For any B ⊆ C ⊆ H, we have f(B) ≤ f(C).
(B) Locality. For any B ⊆ C ⊆ H with f(C) = f(B) > −∞, and for all s ∈ H,

f(C) < f(C + s) ⇐⇒ f(B) < f(B + s), where B + s = B ∪ {s}.

A basis of H is an inclusion-wise minimal subset b ⊆ H with f(b) = f(H). The
combinatorial dimension δ is the maximum size of any feasible basis of any subset of H.
Throughout, we consider δ to be constant. For a basis b ⊆ H, we say that h ∈ H violates
the current solution induced by b if f(b+ h) > f(b). LP-type problems with n constraints
can be solved in randomized time O(n), hiding constants depending (exponentially) on δ [7],
where the bound on the running time holds with high probability.

SoCG 2020

50:6 Fast Algorithms for Geometric Consensuses

2.2 Implicit LPs using Chan’s algorithm
Our algorithms will need the following result of Chan [4] on solving LPs with implicitly
defined constraints.

I Lemma 2 ([4]). Let (H, f) be an LP-type problem of constant combinatorial dimension δ,
and let cδ be a constant that depends only on δ. Let ψ, c > 1 be fixed constants, such that
cδ logδ ψ < c. For an input space Π, suppose that there is a function g : Π→ 2H which maps
inputs to constraints. Furthermore, assume that for any input P ∈ Π of size n, we have:

(I) When n = O(1), a basis for g(P) can be computed in constant time.
(II) For a basis b, one can decide if b satisfies g(P) in D(n) time.
(III) In D(n) time, one can construct sets P1, . . . , Pψ ∈ Π, each of size at most n/c, such

that g(P) =
⋃ψ
i=1 g(Pi).

Then a basis for g(P) can be computed in O(D(n)) expected time, assuming that D(n/k) =
O(D(n)/k), for all positive integers k ≤ n.

2.3 Duality, levels, and zones
2.3.1 Duality
I Definition 3 (Duality). The dual hyperplane of a point p = (p1, . . . , pd) ∈ Rd is the
hyperplane p? defined by the equation xd = −pd+

∑d−1
i=1 xipi. The dual point of a hyperplane

h defined by xd = ad +
∑d−1
i=1 aixi is the point h? = (a1, a2, . . . , ad−1,−ad).

I Fact 4. Let p be a point and let h be a hyperplane. Then p lies above h if and only if the
hyperplane p? lies below the point h?.

Given a set of objects T (e.g., points in Rd), we let T ? = {x? | x ∈ T} denote the dual
set of objects.

2.3.2 k-Levels
I Definition 5 (Levels). For a collection of hyperplanes H in Rd, the level of a point p ∈ Rd
is the number of hyperplanes of H lying on or below p. The k-level of H is the union of
points in Rd which have level equal to k. The (≤ k)-level of H is the union of points in Rd
which have level at most k.

By Fact 4, if h is a hyperplane which contains k points of P lying on or above it, then
the dual point h? is a member of the k-level of P ?.

2.3.3 Zones of surfaces
For a set of hyperplanes H, we let A(H) denote the arrangement of H and V(A(H)) denote
the vertices of the arrangement of H.

I Definition 6 (Zone of a surface). For a collection of hyperplanes H in Rd, the complexity
of a cell ψ in the arrangement A(H) is the number of faces (of all dimensions) which are
contained in the closure of ψ. For a (d− 1)-dimensional surface γ, the zone Z(γ,H) of γ is
the subset of cells of A(H) which intersect γ. The complexity of a zone is the sum of the
complexities of the cells in Z(γ,H).

The complexity of a zone of a hyperplane is known to be Θ(nd−1) [11]; for general
algebraic surfaces it is larger by a logarithmic factor. Furthermore, the cells in the zone of a
surface can be computed efficiently using lazy randomized incremental construction [9].

S. Har-Peled and M. Jones 50:7

I Lemma 7 ([1, 9]). Let H be a set of n hyperplanes in Rd and let γ be a (d−1)-dimensional
algebraic surface of degree δ. The complexity of the zone Z(γ,H) is O(nd−1 logn), where
the hidden constants depend on d and δ. The collection of cells in Z(γ,H) can be computed
in O(nd−1 logn) expected time.

3 Computing the extremal yolk

3.1 Background
I Definition 8. Let P ⊂ Rd be a set of n points in general position. A median hyperplane is
a hyperplane such that each of its two closed halfspaces contain at least dn/2e points of P . A
hyperplane is extremal if it passes through d points of P . The extremal yolk is the ball of
smallest radius interesting all extremal median hyperplanes of P .

We give an O(nd−1 logn) expected time exact algorithm computing the extremal yolk.
To do so, we focus on the more general problem.
I Problem 9. Let Ek(P) be the collection of extremal hyperplanes which contain exactly k
points of P on or above it. Here, k is not necessarily constant. The goal is to compute the
smallest radius ball intersecting all hyperplanes of Ek(P).

We observe that computing the extremal yolk can be reduced to the above problem.

I Lemma 10. The problem of computing the extremal yolk can be reduced to Problem 9.

Proof. Suppose that n is even, and define the set Seven = {n/2, n/2 + 1, . . . , n/2 + d}. A
case analysis shows that any extremal median hyperplane h must have exactly m points of P
above or on h, where m ∈ Seven. Thus, computing the extremal yolk reduces to computing
smallest radius ball intersecting all hyperplanes in the set

⋃
m∈Seven

Em(P).
When n is odd, a similar case analysis shows that any extremal median hyperplane must

have exactly m points above or on it, where m ∈ Sodd = {dn/2e , dn/2e+1, . . . , dn/2e+d−1}.
Analogously, computing the extremal yolk with n odd reduces to computing the smallest
radius ball intersecting all hyperplanes in the set

⋃
m∈Sodd

Em(P). J

To solve Problem 9, we apply Chan’s result for solving implicit LP-type problems [4],
stated in Lemma 2. We first prove that Problem 9 is an LP-type problem when the constraints
are explicitly given (the following Lemma was also observed by Bhattacharya et al. [2]).

I Lemma 11. Problem 9 when the constraints (i.e., hyperplanes) are explicitly given, is an
LP-type problem and has combinatorial dimension δ = d+ 1.

Proof. We prove something stronger, namely that the problem can be written as a linear
program, implying it is an LP-type problem. Let H be the set of n hyperplanes. For each
hyperplane h ∈ H, let 〈ah, x〉+bh = 0 be the equation describing h, where ah ∈ Rd, ‖ah‖ = 1,
and bh ∈ R. Because of the requirement that ‖ah‖ = 1, for a given point p ∈ Rd, the distance
from p to a hyperplane h is |〈ah, p〉+ bh|.

The linear program has d+ 1 variables and 2n constraints. The d+ 1 variables represent
the center p ∈ Rd and radius ν ≥ 0 of the egg. The resulting LP is

min ν

subject to ν ≥ 〈ah, p〉+ bh ∀h ∈ H
ν ≥ −

(
〈ah, p〉+ bh

)
∀h ∈ H

p ∈ Rd.

SoCG 2020

50:8 Fast Algorithms for Geometric Consensuses

Figure 3.1 A disk and its dual.

As for the combinatorial dimension, observe that any basic feasible solution for the above
linear program will be tight for at most d+ 1 of the above 2n constraints. Namely, these
d+ 1 planes are tangent to the optimal radius ball, and as such form a basis b ⊆ H. J

To apply Lemma 2 we need to:
(i) design an appropriate input space,
(ii) develop a decider, and
(iii) construct a constant number of subproblems which cover the constraint space.

3.2 Building the decider
The algorithm will work in the dual space. In the dual, the interior of a ball b corresponds
to a closed region b? which lies between two branches of a hyperboloid, see Figure 3.1.

I Lemma 12. The dual of the set of points in a ball is the set of hyperplanes whose union
forms the region enclosed between two branches of a hyperboloid.

Proof. In Rd the hyperplane h defined by xd = β +
∑d−1
i=1 αixi, or more compactly

〈x, (−α, 1)〉 = β, intersects a disk b centered at p = (p1, . . . , pd) with radius r ⇐⇒
the distance of h from p is at most r. That is, h intersects b if

|〈p, (−α, 1)〉 − β|
‖(−α, 1)‖ ≤ r ⇐⇒ (〈p, (−α, 1)〉 − β)2 ≤ r2 ‖(−α, 1)‖2

⇐⇒
(
pd − β −

d−1∑
i=1

αipi

)2
≤ r2(‖α‖2 + 1).

⇐⇒
(
pd − β −

∑d−1
i=1 αipi

)2

r2 − ‖α‖2 ≤ 1.

The boundary of the above inequality is a hyperboloid in the variables pd − β −
∑d−1
i=1 αipi

and α1, . . . , αd−1. This corresponds to an affine image of a hyperboloid in the dual space
α×−β. J

Throughout, we let b? denote the region between the two branches of the hyperboloid
dual to a ball b.

S. Har-Peled and M. Jones 50:9

∆′

∆′′

b?

∆ ∩ b?

Figure 3.2 The region ∆ ∩ (Rd \ b?) consists of (at most) two disjoint convex regions, ∆′ and ∆′′.

3.2.1 Algorithm
Given a candidate solution (i.e., a ball b in the primal) and a collection of points Q ⊆ P . Our
goal is to construct a decider which detects if there is a hyperplane of Ek(P), passing through
d points of Q, which avoids the interior of the ball b. In the dual setting, the problem is to
decide if there is a vertex of A(Q?) which is a member of the k-level, and is inside the region
Rd \ b?.

The input. The input to the algorithm is a simplex ∆, the set of hyperplanes

H = P ? ∩∆ = {h ∈ P ? | h ∩∆ 6= ∅}

(i.e., all hyperplanes of P ? that intersect ∆), a candidate solution b?, and a parameter u
which is the number of hyperplanes of P ? lying completely below ∆.

The task. Decide if there is a vertex of A(P ?) of the k-level in ∆∩ (Rd \ b?). That is, there
is a vertex of level k that is outside b? but inside ∆.

The decision procedure. Consider the set ∆ ∩ (Rd \ b?), where ∆ is a simplex, and notice
that the set is the union of at most two convex regions. Indeed, the set Rd \ b? consists of
two disjoint connected components, where each component is a convex body. Intersecting a
simplex ∆ with each component of Rd \ b? produces two (disjoint) convex bodies ∆′ and ∆′′
(it is possible that ∆′ or ∆′′ are empty). See Figure 3.2. Let ∆′ be one of these two regions
of interest. The algorithm will process ∆′′ in exactly the same way.

If ∆′ is empty, then no constraints are violated. Otherwise, we need to check for any
violated constraints inside ∆′. Let ∂∆′ denote the boundary of ∆′. Define H ′ ⊆ H to be the
subset of hyperplanes intersecting ∆′. Observe that it suffices to check if there is a vertex v
in the arrangement A(H ′) such that:
(i) v has level k in P ?,
(ii) v is a member of some cell in the zone Z(∂∆′, H ′), and
(iii) v is contained in ∆′.

The algorithm computes Z(∂∆′, H ′). Next, it chooses a vertex v of the arrangement
A(H ′) which lies inside ∆′ and computes its level in H ′ (adding u to the count). The
algorithm then walks around the vertices of the zone inside ∆′, computing the level of

SoCG 2020

50:10 Fast Algorithms for Geometric Consensuses

Figure 3.3 Left: A convex region ∆′. Let H ′ be the set of lines intersecting ∆′, with one line
lying completely below ∆′ (u = 1). The shaded regions are the cells of A(H ′) intersecting ∂∆′. The
vertices of the cells in the zone Z(∂∆′, H ′) are highlighted. Right: The vertices of Z(∂∆′, H ′) which
are part of the 3-level and contained inside ∆′.

each vertex along the walk. Note that the level between any two adjacent vertices in the
arrangement differ by at most a constant (depending on d). If at any point we find a vertex
of the desired level (such a vertex also lies inside ∆′), we report the corresponding median
hyperplane which violates the given ball b. See Figure 3.3 for an illustration.

3.2.2 Analysis
The running time of the algorithm is proportional to the complexity of the zone Z(∂∆′, H ′).
Because the boundary of ∆′ is constructed from d+ 1 hyperplanes and the boundary of the
hyperboloid, Lemma 7 implies that the zone complexity is no more than O(|H|d−1 log |H|).
As such, our decision procedure runs in time D(n) = O(nd−1 logn).

3.3 Constructing subproblems
To decompose a given input into smaller subproblems, we need the notion of cuttings.

I Definition 13 (Cuttings). Given n hyperplanes in Rd, a (1/c)-cutting is a collection
of interior disjoint simplices covering Rd, such that each simplex intersects at most n/c
hyperplanes. A (1/c)-cutting of size O(cd) can be constructed in O(ncd−1) time [6].

Given a simplex ∆ and the set of hyperplanes H = P ? ∩∆, we compute a (1/c)-cutting
of H into O(cd) simplices, and clip this cutting inside ∆. For each cell in this new cutting,
we compute the set of hyperplanes which intersect it, and the number of hyperplanes lying
completely below the cell naively in O(|H|) time. Repeating this process for the O(cd)
cells implies that this decomposition procedure can be completed in O(|H|) time (ignoring
dependencies on d), as (1/c)-cuttings can be constructed in deterministic linear time for
constant c [6].

The above shows that we can decompose a given input of size n into ψ = O(cd) sub-
problems, each of size at most n/c. Furthermore, this decomposition preserves all implicit
constraints of interest (vertices of A(H)). Choosing c to be a sufficiently large constant
(possibly depending on d), to meet the requirements of Lemma 2, finishes the construction.

S. Har-Peled and M. Jones 50:11

3.4 Putting it all together
The above discussions together with Lemma 2 and D(n) = O(nd−1 logn) implies the following.

I Lemma 14. Let P ⊂ Rd be a set of n points in general position. For a given integer k,
one can compute in O(nd−1 logn) expected time the smallest radius ball intersecting all of
the hyperplanes of Ek(P)

I Notation. For an integer n > 0, let JnK = {1, . . . , n}.

I Corollary 15. Let P ⊂ Rd be a set of n points in general position, and let S ⊆ JnK. One
can compute in O(nd−1 logn) expected time the smallest radius ball intersecting all of the
hyperplanes of

⋃
k∈S Ek(P)

Proof. The algorithm is a slight modification of Lemma 14. During the decision procedure,
for each vertex in the zone, we check if it is a member of the k-level for some k ∈ S. If S is
of non-constant size, membership in S can be checked in constant time using hashing. J

3.5 Computing the extremal yolk and the egg
I Theorem 16. Let P ⊂ Rd be a set of n points in general position. One can compute the
extremal yolk of P in O(nd−1 logn) expected time.

Proof. The result follows by applying Corollary 15 with the appropriate choice of S. When
n is even, Lemma 10 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we
set S = {dn/2e , dn/2e+ 1, . . . , dn/2e+ d− 1}. J

I Lemma 17. Let P ⊂ Rd be a set of n points in general position. One can compute the egg
of P in O(nd−1 logn) expected time.

Proof. Follows by Corollary 15 with S = JnK. (Alternatively, by directly modifying the
decision procedure to check if any vertex of the zone Z(∆′, H ′) lies inside ∆′.) J

3.6 An algorithm sensitive to k

Recall that to compute the extremal yolk, we reduced the problem to computing the smallest
ball intersecting all hyperplanes which contain a fixed number of points of P above or on
them (see Lemma 10). In particular, we developed an algorithm for Problem 9 and applied
it when k is proportional to n. It is natural to ask for an algorithm for Problem 9 which is
faster when k is small. The algorithm will work for all values of k. However when k is large,
the running time deteriorates to the running time of the algorithm of Lemma 14.

To develop an algorithm sensitive to k, we use the result of Lemma 14 as a black-box
and introduce the notion of shallow cuttings.

I Definition 18 (Shallow cuttings). Let H be a set of n hyperplanes in Rd. A k-shallow
cutting is a collection of simplices such that:
(i) the union of the simplices covers the (≤ k)-level of H (see Definition 5), and
(ii) each simplex intersects at most k hyperplanes of H.

Matoušek was the first to prove existence of k-shallow cuttings of size O((n/k)bd/2c) [15].
When d = 2, 3, a k-shallow cutting of size O(n/k) can be constructed in O(n logn) time [5].
For d ≥ 4, we sketch a randomized algorithm which computes a k-shallow cutting, based on
Matoušek’s original proof of existence [15].

SoCG 2020

50:12 Fast Algorithms for Geometric Consensuses

I Lemma 19 (Proof sketch in [14]). Let H be a set of n hyperplanes in Rd. A k-shallow
cutting of size O((n/k)bd/2c) can be constructed in O(k(n/k)bd/2c + n logn) expected time.
For each simplex ∆ in the cutting, the algorithm returns the set of hyperplanes intersecting
∆ and the number of hyperplanes lying below ∆.

Let P ⊂ Rd be a set of n points and let H = P ? be the set of dual hyperplanes. The
algorithm itself is a randomized incremental algorithm, mimicking Seidel’s algorithm for
solving LPs [19]. First, compute a k-shallow cutting for the set of hyperplanes H using
Lemma 19. Let ∆1, . . . ,∆`, where ` = O((n/k)bd/2c), be the collection of simplices in the
cutting. For each simplex ∆i, we have the subset H ∩∆i and the number of hyperplanes
lying completely below H (which is at most k). For each cell ∆i, let g(∆i) be the set of
vertices of A(H) which have level k and are contained in ∆i.

The algorithm. The input to the algorithm is a set of simplices and an initial ball b0. Such
a ball is uniquely defined by a subset of d+ 1 constraints, and this is a basis for the LP-type
problem.

Begin by randomly permuting the simplices ∆1, . . . ,∆`. At all times, the algorithm
maintains a ball bi of smallest radius which meets all the constraints defined by ∪ij=1g(∆i).
In the ith iteration, the algorithm performs a violation test: it decides if any constraint of
g(∆i) is violated by bi−1. If so, the algorithm executes a basis computation, in which it
computes the ball b′i of smallest radius which obeys the constraints of g(∆i) and the d+ 1
constraints defining bi−1. The algorithm then computes a ball bi by invoking itself recursively
on the subset of cells ∆1, . . . ,∆i with b′i as the initial basis.

I Lemma 20. Let P ⊂ Rd be a set of n points in general position. For a given integer k, one
can compute in Õ

(
kd−1(1 + (n/k)bd/2c)) expected time the smallest radius ball intersecting

all of the hyperplanes of Ek(P).

Proof. The algorithm is described above. As for the analysis, it is similar to any randomized
incremental algorithm for LP-type problems. The key difference is that we are not adding
a single constraint incrementally, but rather a collection of constraints in each iteration.
Fortunately, this does not change the analysis of the algorithm (for further details, see the
proof of Lemma 2 in [4] or the full version of our paper [14]).

It is well-known that in expectation, the algorithm performs O((n/k)bd/2c) violation
tests and O(logd+1(n/k)) basis computations [20]. Since each simplex ∆i intersects O(k)
hyperplanes of H, each of these subroutines can be implemented in O(kd−1 log k) time using
Lemma 14. Finally, we account for the time needed to construct the shallow cutting – by
Lemma 19 this can be done in O(k(n/k)bd/2c + n logn) expected time. J

4 Computing the (continuous) yolk

I Definition 21. Let P ⊂ Rd be a set of n points in general position. The continuous yolk
of P is the ball of smallest radius intersecting all median hyperplanes of P .

In contrast to Definition 8, we emphasize that the (continuous) yolk must intersect all
median hyperplanes defined by P (not just extremal median hyperplanes).

As before, the algorithm works in the dual space. For an integer k, let Hk(P) be the
collection of halfspaces containing exactly k points of P on or above it. Equivalently, P ? is
the collection of hyperplanes defined by P in the dual space, and

(
Hk(P)

)? is the k-level of
P ?. Our problem can be restated in the dual space as follows.

S. Har-Peled and M. Jones 50:13

Figure 4.1 Left: A set of lines and the cells of the 3-level. Middle: A simplex ∆, with the portion
of the 3-level inside ∆. Right: Triangulating the portion of the 3-level contained inside ∆. All red
triangles together with the lower dimensional faces of the 3-level form the set of constraints g(∆).

I Problem 22. Let P be a set of points in Rd in general position and let k be a given integer.
Compute the ball b of smallest radius so that all points in the k-level of P ? are contained
inside the region b?.

Let Lk(P) =
(
Hk(P)

)? denote the set of all points in the k-level of P ?. Note that Lk(P)
consists of points which are either contained in the interior of some `-dimensional flat, where
0 ≤ ` ≤ d− 1, or in the interior of some d-dimensional cell of A(P ?).

We take the same approach as the algorithm of Theorem 16 – building a decider subroutine,
and showing that the input space can be decomposed into subproblems efficiently. However
the problem is more subtle, as the collection of constraints (i.e., median hyperplanes) is no
longer a finite set.

The input space. The input consists of a simplex ∆. The algorithm, in addition to ∆,
maintains the set of hyperplanes

H = P ? ∩∆ = {h ∈ P ? | h ∩∆ 6= ∅} ,

and a parameter u which is equal to the number of hyperplanes of P ? lying completely
below ∆.

The implicit constraint space. Each input ∆ maps to a region R which is the portion of
the k-level Lk(P) contained inside ∆. For each d-dimensional cell in R, we compute its
bottom-vertex triangulation (see, e.g., [16, Section 6.5]), and collect all of these simplices,
and all lower dimensional faces of R, into a set g(∆), see Figure 4.1.

Let Ξ be the collection of all simplices formed from d + 1 vertices of the arrangement
A(P ?). We let H be the union of the sets g(∆) over all simplices ∆ ∈ Ξ. To see why this
suffices, each simplex in the input space is a simplex generated by a cutting algorithm. One
property of cutting algorithms [6] is that the simplices returned are induced by hyperplanes
of P ?. Indeed, each simplex has (at most) d+ 1 vertices, and upon inspection of the cutting
algorithm, each vertex is defined by d hyperplanes of P ?. There are a finite number of
simplices ∆ to consider, and each ∆ induces a fixed subset of constraints g(∆) ⊆ H.

As such, H forms our constraint set, where each constraint is of constant size (depending
on d). Clearly, a solution satisfies all constraints of H if and only if the solution intersects
all hyperplanes in the set Hk(P). For a given subset C ⊆ H, the objective function is the
minimum radius ball b such that all regions of C are contained inside the region b?. In
particular, the problem of computing the minimum radius ball b such that b? contains all
points of Lk(P) in its interior is an LP-type problem of constant combinatorial dimension.

SoCG 2020

50:14 Fast Algorithms for Geometric Consensuses

Constructing subproblems. For a given input simplex ∆ (along with the set H = P ? ∩∆
and the number u) a collection of subproblems ∆1, . . . ,∆ψ (with the corresponding sets Hi

and numbers ui for i = 1, . . . , ψ) can be constructed as described in Section 3.3, by computing
a cutting of the planes H and clipping this cutting inside ∆. In particular, we have that⋃
i g(∆i) = g(∆). Strictly speaking, we have not decomposed the constraints of g(∆) (as

required by Lemma 2), but rather have decomposed the region which is the union of the
constraints of g(∆). This step is valid, as a solution satisfies the constraints of

⋃
i g(∆i) if

and only if it satisfies the constraints of g(∆).

The decision procedure. Given a candidate solution b?, the problem is to decide if b?
contains g(∆) in its interior. The decision algorithm itself is similar as in the proof of
Theorem 16. Consider the set ∆ ∩ (Rd \ b?), where ∆ is a simplex, and notice that it is
the union of the most two convex regions. Let ∆′ be one of these two regions of interest.
Observe that it suffices to check if there is a point on the boundary of ∆′ which is part of
the k-level. Let H ′ ⊆ H be the subset of hyperplanes intersecting ∆′.

To this end, compute Z(∂∆′, H ′). For each (d−1)-dimensional face f of ∆′, the collection
of regions Ξ = {f ∩ s | s ∈ Z(∂∆′, H ′)} forms a (d− 1)-dimensional arrangement restricted
to f . Furthermore, the complexity of this arrangement lying on f is at most O(nd−1 logn).
Notice that the level of all points in the interior of a face of Ξ is constant, and two adjacent
faces (sharing a boundary) have their level differ by at most a constant. The algorithm
picks a face in Ξ, computes the level of an arbitrary point inside it (adding u to the count).
Then, the algorithm walks around the arrangement, exploring all faces, using the level of
neighboring faces to compute the level of the current face. If at any step a face has level k,
we report that the input (∆, H, u) violates the candidate solution b?.

Analysis of the decision procedure. We claim the running time of the algorithm is pro-
portional to the complexity of the zone Z(∂∆′, H ′). Indeed, for each (d − 1)-dimensional
face f of ∆′ (where f may either be part of a hyperplane or part of the boundary of b?), we
can compute the set {f ∩ s | s ∈ Z(∂∆′, H ′)} in time proportional to the total complexity
of Z(∂∆′, H ′) (assuming we can intersect a hyperplane with a portion of a constant degree
surface efficiently). The algorithm then computes the level of an initial face naively in O(|H ′|)
time, and computing the level of all other faces can be done in O(|Z(∂∆′, H ′)|) time by
performing a graph search on the arrangement.

Because the boundary of ∆′ is constructed from d+ 1 hyperplanes and the boundary of
the hyperboloid, Lemma 7 implies that the zone complexity is O(|H|d−1 log |H|). As such,
our decision procedure runs in time D(n) = O(nd−1 logn).

I Lemma 23. Problem 22 can be solved in O(nd−1 logn) expected time, where n = |P |.

Proof. Follows by plugging the above discussion into Lemma 2. J

By modifying the decision procedure appropriately, we also obtain a similar result to
Corollary 15.

I Corollary 24. Let P ⊂ Rd be a set of n points in general position, and let S ⊂ JnK. The
smallest ball intersecting all hyperplanes in

⋃
k∈S Hk(P) can be computed in O(nd−1 logn)

expected time.

I Theorem 25. Let P ⊂ Rd be a set of n points in general position. One can compute the
yolk of P in O(nd−1 logn) expected time.

S. Har-Peled and M. Jones 50:15

Proof. The result follows by applying Corollary 24 with the appropriate choice of S. When
n is even, Lemma 10 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we
set S = {dn/2e , dn/2e+ 1, . . . , dn/2e+ d− 1}. J

I Remark 26. In R3, one can shave the O(logn) factor to obtain an O(n2) expected time
algorithm for the yolk. We modify the decision procedure as follows, which avoids computing
the zone Z(∂∆′, H ′). For each 2D face f of ∆′, simply compute the arrangement of the
set of lines {f ∩ h | h ∈ H} on f in O(n2) time. As before, we perform a graph search on
this arrangement, computing the level of each face. If any time we discover a point on
the boundary of ∆′ of the desired level, we report that the given input violates the given
candidate solution.

5 Conclusion

The natural open problem is to improve the running times for computing the yolk (and
extremal yolk) even further. It seems believable, that for d > 3, the log factors in Theorem 16
and Theorem 25 might not be necessary. We leave this as an open problem for further
research.

References
1 Boris Aronov, Marco Pellegrini, and Micha Sharir. On the zone of a surface in a hyperplane

arrangement. Discrete Comp. Geom., 9:177–186, 1993. doi:10.1007/BF02189317.
2 Binay K. Bhattacharya, Shreesh Jadhav, Asish Mukhopadhyay, and Jean-Marc Robert.

Optimal algorithms for some intersection radius problems. Computing, 52(3):269–279, 1994.
doi:10.1007/BF02246508.

3 Duncan Black. On the rationale of group decision-making. Journal of Political Economy,
56(1):23–34, 1948. doi:10.1086/256633.

4 Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth. In J. Ian
Munro, editor, Proc. 15th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 430–436. SIAM,
2004. URL: http://dl.acm.org/citation.cfm?id=982792.982853.

5 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-
d and 3-d shallow cuttings. Discrete Comp. Geom., 56(4):866–881, 2016. doi:10.1007/
s00454-016-9784-4.

6 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comp. Geom.,
9:145–158, 1993. doi:10.1007/BF02189314.

7 Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the
dimension is small. J. ACM, 42(2):488–499, 1995. doi:10.1145/201019.201036.

8 Mark de Berg, Jonathan Chung, and Joachim Gudmundsson. Computing the yolk in spatial
voting games, 2019.

9 Mark de Berg, Katrin Dobrindt, and Otfried Schwarzkopf. On lazy randomized incremental
construction. Discrete Comp. Geom., 14(3):261–286, 1995. doi:10.1007/BF02570705.

10 Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing
plurality points. ACM Trans. Algorithms, 14(3):36:1–36:23, 2018. doi:10.1145/3186990.

11 Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir. On the zone theorem for hyperplane
arrangements. SIAM J. Comput., 22(2):418–429, 1993. doi:10.1137/0222031.

12 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games
without computing median lines. In 33th Conf. Artificial Intell. (AAAI), 2019.

13 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games
without computing median lines. CoRR, abs/1902.04735, 2019. arXiv:1902.04735.

14 Sariel Har-Peled and Mitchell Jones. Fast algorithms for geometric consensuses. CoRR,
abs/1912.01639, 2019. arXiv:1912.01639.

SoCG 2020

https://doi.org/10.1007/BF02189317
https://doi.org/10.1007/BF02246508
https://doi.org/10.1086/256633
http://dl.acm.org/citation.cfm?id=982792.982853
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/BF02189314
https://doi.org/10.1145/201019.201036
https://doi.org/10.1007/BF02570705
https://doi.org/10.1145/3186990
https://doi.org/10.1137/0222031
http://arxiv.org/abs/1902.04735
http://arxiv.org/abs/1912.01639

50:16 Fast Algorithms for Geometric Consensuses

15 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom., 2:169–186, 1992. doi:
10.1016/0925-7721(92)90006-E.

16 Jiří Matoušek. Lectures on Discrete Geometry, volume 212 of Grad. Text in Math. Springer,
2002. doi:10.1007/978-1-4613-0039-7/.

17 Richard D. McKelvey. Covering, dominance, and institution-free properties of social choice.
American Journal of Political Science, 30(2):283–314, 1986. doi:10.2307/2111098.

18 Ariel Rubinstein. A note about the “nowhere denseness” of societies having an equilibrium
under majority rule. Econometrica, 47(2):511–514, 1979. doi:10.2307/1914198.

19 Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete
Comp. Geom., 6:423–434, 1991. doi:10.1007/BF02574699.

20 Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related
problems. In 9th Symp. on Theoretical Aspects of Comput. Sci. (STACS), pages 569–579, 1992.
doi:10.1007/3-540-55210-3_213.

21 Richard E. Stone and Craig A. Tovey. Limiting median lines do not suffice to determine the
yolk. Social Choice and Welfare, 9(1):33–35, 1992. doi:10.1007/BF00177668.

22 Craig A. Tovey. A polynomial-time algorithm for computing the yolk in fixed dimension. Math.
Program., 57:259–277, 1992. doi:10.1007/BF01581084.

https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1007/978-1-4613-0039-7/
https://doi.org/10.2307/2111098
https://doi.org/10.2307/1914198
https://doi.org/10.1007/BF02574699
https://doi.org/10.1007/3-540-55210-3_213
https://doi.org/10.1007/BF00177668
https://doi.org/10.1007/BF01581084

Dynamic Approximate Maximum Independent Set
of Intervals, Hypercubes and Hyperrectangles
Monika Henzinger
Faculty of Computer Science, University of Vienna, Austria
monika.henzinger@univie.ac.at

Stefan Neumann
Faculty of Computer Science, University of Vienna, Austria
stefan.neumann@univie.ac.at

Andreas Wiese
Department of Industrial Engineering, Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
Independent set is a fundamental problem in combinatorial optimization. While in general graphs
the problem is essentially inapproximable, for many important graph classes there are approximation
algorithms known in the offline setting. These graph classes include interval graphs and geometric
intersection graphs, where vertices correspond to intervals/geometric objects and an edge indicates
that the two corresponding objects intersect.

We present dynamic approximation algorithms for independent set of intervals, hypercubes and
hyperrectangles in d dimensions. They work in the fully dynamic model where each update inserts
or deletes a geometric object. All our algorithms are deterministic and have worst-case update times
that are polylogarithmic for constant d and ε > 0, assuming that the coordinates of all input objects
are in [0, N]d and each of their edges has length at least 1. We obtain the following results:

For weighted intervals, we maintain a (1 + ε)-approximate solution.
For d-dimensional hypercubes we maintain a (1 + ε)2d-approximate solution in the unweighted
case and a O(2d)-approximate solution in the weighted case. Also, we show that for maintaining
an unweighted (1 + ε)-approximate solution one needs polynomial update time for d ≥ 2 if the
ETH holds.
For weighted d-dimensional hyperrectangles we present a dynamic algorithm with approximation
ratio (1 + ε) logd−1 N .

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Computational geometry

Keywords and phrases Dynamic algorithms, independent set, approximation algorithms, interval
graphs, geometric intersection graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.51

Related Version The full version of this paper is available on arXiv [23] under http://arxiv.org/
abs/2003.02605.

Funding Monika Henzinger : The research leading to these results has received funding from the
European Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement No. 340506.
Stefan Neumann: Part of this work was done while visiting Brown University. Stefan Neumann
gratefully acknowledges the financial support from the Doctoral Programme “Vienna Graduate
School on Computational Optimization” which is funded by the Austrian Science Fund (FWF,
project no. W1260-N35). The research leading to these results has received funding from the
European Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement No. 340506.
Andreas Wiese: Andreas Wiese was supported by the grant Fondecyt Regular 1170223.

Acknowledgements We are grateful to the anonymous reviewers for their helpful comments.
© Monika Henzinger, Stefan Neumann, and Andreas Wiese;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
mailto:stefan.neumann@univie.ac.at
mailto:awiese@dii.uchile.cl
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
http://arxiv.org/abs/2003.02605
http://arxiv.org/abs/2003.02605
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

1 Introduction

A fundamental problem in combinatorial optimization is the independent set (IS) problem.
Given an undirected graph G = (V,E) with n vertices and m edges, the goal is to select a set
of nodes V ′ ⊆ V of maximum cardinality such that no two vertices u, v ∈ V ′ are connected
by an edge in E. In general graphs, IS cannot be approximated within a factor of n1−ε for
any ε > 0, unless P = NP [31]. However, there are many approximation algorithms known
for special cases of IS where much better approximation ratios are possible or the problem
is even polynomial-time solvable. These cases include interval graphs and, more generally,
geometric intersection graphs.

In interval graphs each vertex corresponds to an interval on the real line and there is an
edge between two vertices if their corresponding intervals intersect. Thus, an IS corresponds
to a set of non-intersecting intervals on the real line; the optimal solution can be computed in
time O(n+m) [20] when the input is presented as an interval graph and in time O(n logn) [26,
Chapter 6.1] when the intervals themselves form the input (but not their corresponding
graph). Both algorithms work even in the weighted case where each interval has a weight
and the objective is to maximize the total weight of the selected intervals.

When generalizing this problem to higher dimensions, the input consists of axis-parallel
d-dimensional hypercubes or hyperrectangles and the goal is to find a set of non-intersecting
hypercubes or hyperrectangles of maximum cardinality or weight. This is equivalent to
solving IS in the geometric intersection graph of these objects which has one (weighted) vertex
for each input object and two vertices are adjacent if their corresponding objects intersect.
This problem is NP-hard already for unweighted unit squares [19], but if all input objects
are weighted hypercubes then it admits a PTAS for any constant dimension d [10, 18]. For
hyperrectangles there is a O((logn)d−2 log logn)-approximation algorithm in the unweighted
case [9] and a O((logn)d−1/ log logn)-approximation algorithm in the weighted case [12, 9].
IS of (hyper-)cubes and (hyper-)rectangles has many applications, e.g., in map labelling [2, 29],
chip manufacturing [24], or data mining [25]. Therefore, approximation algorithms for these
problems have been extensively studied, e.g., [12, 9, 2, 1, 11, 14].

All previously mentioned algorithms work in the static offline setting. However, it is a
natural question to study IS in the dynamic setting, i.e., where (hyper-)rectangles appear or
disappear, and one seeks to maintain a good IS while spending only little time after each
change of the graph. The algorithms above are not suitable for this purpose since they
are based on dynamic programs in which nΩ(1/ε) many sub-solutions might change after
an update or they solve linear programs for the entire input. For general graphs, there are
several results for maintaining a maximal IS dynamically [4, 5, 22, 15, 28, 13, 7], i.e., a set
V ′ ⊆ V such that V ′ ∪ {v} is not an IS for any v ∈ V \ V ′. However, these algorithms do not
imply good approximation ratios for the geometric setting we study: Already in unweighted
interval graphs, a maximal IS can be by a factor Ω(n) smaller than the maximum IS. For
dynamic IS of intervals, Gavruskin et al. [21] showed how to maintain an exact maximum IS
with polylogarithmic update time in the special case when no interval is fully contained in
any another interval.

Our contributions. In this paper, we present dynamic algorithms that maintain an approx-
imate IS in the geometric intersection graph for three different types of geometric objects:
intervals, hypercubes and hyperrectangles. We assume throughout the paper that the given
objects are axis-parallel and contained in the space [0, N]d, that we are given the value N in
advance, and that each edge of an input object has length at least 1 and at most N . We

M. Henzinger, S. Neumann, and A. Wiese 51:3

Table 1 Summary of our dynamic approximation algorithms and lower bounds. All algorithms
are deterministic and work in the fully dynamic setting where in each update one interval/hypercube
is inserted or deleted. We assume that all input objects are contained in [0, N]d and have weights in
[1, W]; we do not assume that the input objects have integer-coordinates. Here, we write Oε(1) and
Od,ε(1) to hide terms which only depend on d and ε.

Approximation Worst-case update time
ratio

Unweighted intervals 1 + ε Oε(1) log2 n log2 N

1 Ω(log N/ log log N)
Weighted intervals 1 + ε Oε(1) log2 n log5 N log W

Unweighted d-dimensional hypercubes (1 + ε)2d Od,ε(1) log2d+1 n log2d+1 N

1 + ε n(1/ε)Ω(1)

Weighted d-dimensional hypercubes (4 + ε)2d Od,ε(1) log2d−1 n log2d+1 N log W

Weighted d-dimensional hyperrectangles (1 + ε) logd−1 N Od,ε(1) log2 n log5 N log W

study the fully dynamic setting where in each update an input object is inserted or deleted.
Note that this corresponds to inserting and deleting vertices of the corresponding intersection
graph. In particular, when a vertex is inserted/deleted then potentially Ω(n) edges might be
inserted/deleted, i.e., there might be more edge changes per operation than in the standard
dynamic graph model in which each update can only insert or delete a single edge.

(1) For independent set in weighted interval graphs we present a dynamic (1 + ε)-approxi-
mation algorithm. For weighted d-dimensional hypercubes our dynamic algorithm
maintains a (4 + ε)2d-approximate solution; in the case of unweighted d-dimensional
hypercubes we obtain an approximation ratio of (1+ε)2d. Thus, for constant d we achieve
a constant approximation ratio. Furthermore, for weighted d-dimensional hyperrectangles
we obtain a dynamic algorithm with approximation ratio of (1 + ε) logd−1N .

Our algorithms are deterministic with worst-case update times that are polylogarithmic
in n, N , and W , where W is the maximum weight of any interval or hypercube, for
constant d and ε; we also show how to obtain faster update times using randomized
algorithms that compute good solutions with high probability. In each studied setting
our algorithms can return the computed IS I in time Od,ε(|I| · poly(logn, logN)), where
|I| denotes the cardinality of I and the Od,ε(·) notation hides factors which only depend
on d and ε. Up to a (1 + ε)-factor our approximation ratios match those of the best
known near-linear time offline approximation algorithms for the respective cases (with
ratios of 2d and O(2d) via greedy algorithms for unweighted and weighted hypercubes
and logd−1N for hyperrectangles [2]). See Table 1 for a summary of our algorithms.

(2) Apart from the comparison with the static algorithm we show two lower bounds: We
prove that one cannot maintain a (1 + ε)-approximate IS of unweighted hypercubes in
d ≥ 2 dimensions with update time nO((1/ε)1−δ) for any δ > 0 (so even with polynomial
instead of polylogarithmic update time), unless the Exponential Time Hypothesis fails.
Also, we show that maintaining a maximum weight IS in an interval graph requires
Ω(logN/ log logN) amortized update time.

Techniques. Our main obstacle is that the maximum IS is a global property, i.e., when the
input changes slightly, e.g., a single interval is inserted or deleted, then it can cause a change
of the optimal IS which propagates through the entire instance (see Figure 1). Even worse,
there are instances in which any solution with a non-trivial approximation guarantee requires
Ω(n) changes after an update (see Figure 2).

SoCG 2020

51:4 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

Figure 1 An instance of unweighted IS of intervals. Observe that before inserting the red interval
at the left, the solution consisting of the blue intervals in the bottom row is optimal. However, after
inserting the red interval, the optimal solution is unique and consists of the red interval together
with all black intervals in the top row.

Figure 2 An instance of weighted IS of intervals. Note that when the large black interval with
weight 1000000 is present, any solution with non-trivial approximation ratio must contain the black
interval. However, when the black interval is not present, the solution must contain many small blue
intervals. Thus, inserting or deleting the black interval requires Ω(n) changes to the solution.

To limit the propagation effects, our algorithms for intervals and hypercubes use a
hierarchical grid decomposition. We partition the space [0, N]d recursively into equally-sized
grid cells with logN levels, halving the edge length in each dimension of each cell when going
from one level to the next (similar to the quad-tree decomposition in [3]). Thus, each grid
cell Q has 2d children cells which are the cells of the respective next level that are contained
in Q. Also, each input object C (i.e., interval or hypercube) is contained in at most logN
grid cells and it is assigned to the grid level `(C) in which the size of the cells is “comparable”
to the size of C. When an object C is inserted or deleted, we recompute the solution for each
of the logN grid cells containing C, in a bottom-up manner. More precisely, for each such
cell Q we decide which of the hypercubes assigned to it we add to our solution, based on the
solutions of the children of Q. Thus, a change of the input does not propagate through our
entire solution but only affects logN grid cells and the hypercubes assigned to them.

Also, we do not store the computed solution explicitly as this might require Ω(n) changes
after each update. Instead, we store it implicitly. In particular, in each grid cell Q we store
a solution only consisting of objects assigned to Q and pointers to the solutions of children
cells. Finally, at query time we output only those objects that are contained in a solution of a
cell Q and which do not overlap with an object in the solution of a cell of higher level. In this
way, if a long interval with large weight appears or disappears, only the cell corresponding to
the interval needs to be updated, the other changes are done implicitly.

Another challenge is to design an algorithm that, given a cell Q and the solutions for the
children cells of Q, computes an approximate solution for Q in time poly(logn, logN). In
such a small running time, we cannot afford to iterate over all input objects assigned to Q.
We now explain in more detail how our algorithm overcome this obstacle.

M. Henzinger, S. Neumann, and A. Wiese 51:5

Weighted hypercubes. Let us first consider our (4 + ε)2d-approximation algorithm for
weighted hypercubes. Intuitively, we consider the hypercubes ordered non-decreasingly by
size and add a hypercube C to the IS if the weight of C is at least twice the total weight of
all hypercubes in the current IS overlapping with C. We then remove all hypercubes in the
solution that overlap with C.

To implement this algorithm in polylogarithmic time, we need to make multiple adjust-
ments. First, for each cell Q we maintain a range counting data structure P (Q) which
contains the (weighted) vertices of all hypercubes that were previously selected in the IS
solutions of children cells Q′ ⊆ Q. We will use P (Q) to estimate the weight of hypercubes
that a considered hypercube C overlaps with. Second, we use P (Q) to construct an auxiliary
grid within Q. The auxiliary grid is defined such that in each dimension the grid contains
Od,ε(polylogN) grid slices; thus, there are (logN)Od,ε(1) subcells of Q induced by the auxil-
iary grid. Third, we cannot afford to iterate over all hypercubes contained in Q to find the
smallest hypercube C that has at least twice the weight w′ of the hypercubes in the current
solution that overlap with C. Instead, we iterate over all subcells S ⊆ Q which are induced
by the auxiliary grid and look for a hypercube C of large weight within S; we show that the
total weight of the points in S ∩P (Q) is a sufficiently good approximation of w′. If we find a
hypercube C with these properties, we add C to the current solution for Q, add the vertices
of C to P (Q) and adjust the auxiliary grid accordingly. In this way, we need to check only
(logN)Od,ε(1) subcells of Q which we can do in polylogarithmic time, rather than iterating
over all hypercubes assigned to Q. We ensure that for each cell Q we need to repeat this
process only a polylogarithmic number of times. To show the approximation bound we use a
novel charging argument based on the points in P (Q). We show that the total weight of the
points stored in P (Q) estimates the weight of the optimal solution for Q up to a constant
factor. We use this to show that our computed solution is a (4 + ε)2d-approximation.

Weighted intervals. Next, we sketch our dynamic (1 + ε)-approximation algorithm for
weighted IS of intervals. A greedy approach would be to build the solution such that the
intervals are considered in increasing order of their lengths and then for each interval to
decide whether we want to select it and whether we want to remove some previously selected
intervals to make space for it. However, this cannot yield a (1 + ε)-approximate solution.
There are examples in which one can choose only one out of multiple overlapping short
intervals and the wrong choice implies that one cannot obtain a (1 + ε)-approximation
together with the long intervals that are considered later (see Figure 3). However, in these
examples the optimal solution (say for a cell Q) consists of only Oε(1) intervals. Therefore,
we show that in this case we can compute a (1 + ε)-approximate solution in time Oε(log2 n)
by guessing the rounded weights of the intervals in the optimal solution, guessing the order
of the intervals with these weights, and then selecting the intervals greedily according to this
order. On the other hand, if the optimal solution for a cell Q contains Ωε(1) many intervals
with similar weights then we can take the union of the previously computed solutions for the
two children cells of Q. This sacrifies at most one interval in the optimal solution for Q that
overlaps with both children cells of Q and we can charge this interval to the Ωε(1) intervals
in the solutions for the children cells of Q.

Our algorithm interpolates between these two extreme cases. To this end, we run the
previously described O(1)-approximation algorithm for hypercubes as a subroutine and use
it to split each cell Q into segments, guided by the set P (Q) above. Then we use that for
each set S ⊆ Q the weight of S ∩ P (Q) approximates the weight of the optimal solutions of
intervals contained in S within a constant factor. This is crucial for some of our charging

SoCG 2020

51:6 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

Figure 3 An instance of unweighted IS of intervals. Observe that the optimal solution has size 3
and consists of the small blue interval and the two large black intervals at the top. If an algorithm
decides to pick any of the small red intervals, its solution can have size at most 2.

arguments in which we show that the intervals contained in some sets S can be ignored. We
show that for each cell Q there is a (1 + ε)-approximate solution in which Q is partitioned
into segments such that each of them is either dense or sparse. Each dense segment contains
many intervals of the optimal solution and it is contained in one of the children cells of
Q. Therefore, we can copy the previously computed solution for the respective child of Q.
Each sparse segment only contains Oε(1) intervals and hence we can compute its solution
directly using guesses as described above. In each level, this incurs an error and we use
several involved charging arguments to ensure that this error does not accumulate over the
logN levels, but that instead it stays bounded by 1 + ε.

Other related work. Emek et al. [17], Cabello and Pérez-Lantero [8] and Bakshi et al. [6]
study IS of intervals in the streaming model and obtain algorithms with sublinear space
usage. In [17, 8] insertion-only streams of unweighted intervals are studied. They present
algorithms which are (3/2 + ε)-approximate for unit length intervals and (2 + ε)-approximate
for arbitrary-length intervals; they also provide matching lower bounds. Bakshi et al. [6] study
turnstile streams in which intervals can be inserted and deleted. They obtain algorithms
which are (2 + ε)-approximate for weighted unit length intervals and a O(logn)-approximate
for unweighted arbitrary length intervals; they also prove matching lower bounds.

In two dimensions, Agarwal et al. [2] presented a static algorithm which computes
O(logn) approximation of the maximum IS of n arbitrary axis-parallel rectangles in time
O(n logn). They also show how to compute a (1 + 1/k)-approximation of unit-height
rectangles in time O(n logn+ n2k−1) for any integer k ≥ 1.

Problem definition and notation. We assume that we obtain a set C = {C1, . . . , Cn} of
d-dimensional hyperrectangles in the space [0, N]d for some global value N ∈ R. Each
hyperrectangle Ci ∈ C is characterized by coordinates x(1)

i , y
(1)
i , . . . , x

(d)
i , y

(d)
i ∈ [0, N] such

that Ci := (x(1)
i , y

(1)
i)× · · · × (x(d)

i , y
(d)
i) and a weight wi ∈ [1,W] for some global value W ;

we do not assume that the coordinates of the input objects are integer-valued. We assume
that 1 ≤ y

(j)
i − x(j)

i ≤ N for each j ∈ [d]. If Ci is a hypercube then we define si such that
si = y

(j)
i −x

(j)
i for each dimension j. Two hypercubes Ci, Ci′ ∈ C with i 6= i′ are independent

if Ci ∩Ci′ = ∅. Note that we defined the hypercubes as open sets and, hence, two dependent
hypercubes cannot overlap in only a single point. A set of hyperrectangles C′ ⊆ C is an
independent set (IS) if each pair of hypercubes in C′ is independent. The maximum IS
problem is to find an IS C′ ⊆ C, that maximizes w(C′) :=

∑
Ci∈C′ wi.

Due to space constraints we present some results and missing proofs in the full version [23].

M. Henzinger, S. Neumann, and A. Wiese 51:7

2 Hierarchical Grid Decomposition

We describe a hierarchical grid decomposition that we use for all our algorithms for hypercubes
(for any d), that is similar to [3]. It is based on a hierarchical grid G over the space [0, N]d
where we assume w.l.o.g. that N is a power of 2 and N is an upper bound on the coordinates
of every object in each dimension. The grid G has logN levels. In each level, the space
[0, N]d is divided into cells; the union of the cells from each level spans the whole space.
There is one grid cell of level 0 that equals to the whole space [0, N]d. Essentially, each grid
cell of a level ` < logN contains 2d grid cells of level `+ 1. We assign the input hypercubes
to the grid cells. In particular, for a grid cell Q ∈ G we assign a set C′(Q) ⊆ C to Q which
are all input hypercubes that are contained in Q and whose side length is a Θ(ε/d)-fraction
of the side length of Q (we will make this formal later). This ensures the helpful property
that any IS consisting only of hypercubes in C′(Q) has size at most O

(
(d

ε)d
)
. For each cell

Q we define C(Q) :=
⋃

Q′:Q′⊆Q C′(Q) which are all hypercubes contained in Q. One subtlety
is that there can be input hypercubes that are not assigned to any grid cell, e.g., hypercubes
that are very small but overlap more than one very large grid cell. Thus, we shift the grid by
some offset a ∈ [0, N] in each dimension which ensures that those hypercubes are negligible.

Formally, let ε > 0 such that 1/ε is an integer and a power of 2. For each ` ∈ {0, . . . , logN}
let G` denote the set of grid cells of level ` defined as Q`,k := [0, N]d∩

∏d
j=1[a+k(j) ·N/2`−1, a+

(k(j) + 1) · N/2`−1] for each k = (k(1), . . . , k(d)) ∈ Zd. Then G0 consists of only one cell
[0, N]d =: Q∗.We define G :=

⋃log N
`=0 G`. For a grid cell Q ∈ G, we let `(Q) denote the level

of Q in G. Note that for each cell Q of level `(Q) < logN , there are at most 2d grid cells
Qi of level `(Qi) = `(Q) + 1 and that are contained in Q, i.e., such that Qi ⊆ Q. We call
the latter cells the children of Q and denote them by ch(Q). Informally, a hypercube Ci

has level ` if si is within a Θ(ε/d)-fraction of the side length of grid cells of level `; formally,
Ci has level ` if si ∈ [εN/(d2`−1), 2 · εN/(d2`−1)) for ` = 1, . . . , logN and si ∈ [εN/d,N]
for ` = 0. For each C ∈ C denote by `(C) the level of C. We assign a hypercube C to a
cell Q if Ci ⊆ Q and `(C) = `(Q); the set of all these hypercubes for a cell C is defined by
C′(Q) := {Ci ∈ C|Ci ⊆ Q ∧ `(C) = `(Q)}. For each grid cell Q we define C(Q) to be the set
of all hypercubes contained in Q that are assigned to Q or to grid cells contained in Q, i.e.,
C(Q) :=

⋃
Q′:Q′⊆Q C′(Q).

For each cell Q, we partition the hypercubes in C(Q) and C′(Q) based on their weights in
powers of 1 + ε. For each k ∈ Z we define Ck := {Ci ∈ C : wi ∈ [(1 + ε)k, (1 + ε)k+1)} and for
each grid cell Q we define Ck(Q) := Ck ∩ C(Q) and C′k(Q) := Ck ∩ C′(Q). Note that Ck = ∅ if
k < 0 or k > log1+ε W .

In the next lemma we prove that there is a value for the offset a such that there is a
(1 + ε)-approximate solution OPT′ that is grid-aligned, i.e., for each C ∈ OPT′ there is a
grid cell Q in the resulting grid for a such that C ∈ C′(Q).

I Lemma 1. In time (d/ε)O(1/ε) logN we can compute a set off(ε) with |off(ε)| ≤ (d/ε)O(1/ε)

that is independent of the input objects C and that contains an offset a ∈ off(ε) for the grid for
which the optimal grid-aligned solution OPT′ satisfies that w(OPT′) ≥ (1−O(ε))w(OPT). If
we draw the offset a uniformly at random from off(ε), then E[w(OPT′)] ≥ (1−O(ε))w(OPT)
and w(OPT′) ≥ (1−O(ε))w(OPT) with constant probability.

For the deterministic results in this paper we run our algorithms for each choice of a ∈ off(ε)
in parallel and at the end we output the solution with maximum weight over all choices of a.
For our randomized results we choose O(logN) offsets a ∈ off(ε) uniformly at random and
hence there exists a grid-aligned solution OPT′ with w(OPT′) ≥ (1 − O(ε))w(OPT) with
high probability (i.e., with probability at least 1− (1/N)O(1)).

SoCG 2020

51:8 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

I Lemma 2. Each grid cell Q ∈ G has a volume of (N/2`(Q)−1)d and can contain at most
(d/ε)d independent hypercubes from C′(Q). Also, each hypercube Ci ∈ C is contained in C′(Q′)
for at most one grid cell Q′ and in C(Q′) for at most logN cells Q′.

Data structures. We define a data structure which will allow us to access the hypercubes in
the sets C(Q), C′(Q), etc. for each cell Q efficiently. Roughly speaking, these data structures
let us insert and delete hypercubes and answer queries of the type: “Given a hyperrectangle B,
return a hypercube which is contained in B.” They are constructed using data structures for
range counting/reporting [27, 30, 16].

I Lemma 3. Let d ∈ N. There is a data structure that maintains a set C′ of weighted
hypercubes in Rd and allows the following operations:
1. Initialize the data structure, report whether C′ = ∅, both in worst-case time O(1).
2. Insert or delete a hypercube into (from) C′ in worst-case time O(log2d+1 |C′|).
3. For a hyperrectangle B ⊆ Rd, check whether there is a hypercube Ci ∈ C′ with Ci ⊆ B in

time O(log2d−1 |C′|). If yes, return one such hypercube in time O(log2d−1 |C′|) and the
smallest such hypercube (i.e., with smallest size si) in time O(log2d+1 |C′|).

4. If d = 1, given a value t ∈ R, return the element Ci = (x(1)
i , y

(1)
i) with minimum value

y
(1)
i among all elements Ci′ = (x(1)

i′ , y
(1)
i′) with t ≤ x(1)

i′ , in time O(log2 n).

Using Lemma 3 for each cell Q we define data structures D(Q), D′(Q), Dk(Q), and
D′k(Q) for maintaining the sets C(Q), C′(Q), Ck(Q), and C′k(Q) for each k = 1, . . . , log1+ε W ,
respectively, where W is an upper bound on the maximum weight of all hypercubes. The
grid G as defined above contains Ω(Nd) cells in total. However, there are only O(n logN)
cells in G such that C(Q) 6= ∅ (by Lemma 2), denote them by G′. We use a data structure
that maintains these cells G′ such that in worst-case time O(log |G′|) we can add and remove
a cell, get pointers to the data structures D(Q), D′(Q), Dk(Q), D′k(Q) for a cell Q, and get
and set pointers to a solution that we compute for a cell Q. See [23] for details.

Algorithmic framework. Now we sketch the framework for implementing our dynamic
algorithms. Due to space constraints we postpone its formal definition to the full version [23].

For each cell Q we maintain a solution DP(Q) ⊆ C(Q) that is near-optimal, i.e., with
w(OPT(Q)) ≤ α · w(DP(Q)) for the approximation ratio α of the respective setting. We
ensure that DP(Q) depends only on C(Q) and not on hypercubes C with C /∈ C(Q).

We implement update operations as follows. When a hypercube C is inserted or deleted,
we update only the solutions DP(Q) for the at most logN cells Q such that C ∈ C(Q). We
update the solutions DP(Q) in a bottom-up manner, i.e., we order the cells Q with C ∈ C(Q)
decreasingly by level and update their respective solutions DP(Q) in this order. To ensure a
total update time of (logn+ logN)Od,ε(1), we will define algorithms that update DP(Q) for
a cell Q in time (logn+ logN)Od,ε(1), given that we already updated the solutions DP(Q′)
for all cells Q′ Q. In fact, we will essentially re-compute the solution DP(Q) for a cell Q
from scratch, using only the solutions {DP(Q′)}Q′∈ch(Q) computed for the children of Q.

Finally, to implement query operations, i.e., to output an approximate solution for the
whole space [0, N]d, we return the solution DP(Q∗) (recall that Q∗ is the grid cell at level
0 which contains the whole space). We will show in the respective sections how we can
output the weight of DP(Q∗) in time Od,ε(1)poly(logn, logN) DP(Q∗) and how to output
all hypercubes in DP(Q∗) in time Od,ε(|DP(Q∗)|poly(logn, logN)).

M. Henzinger, S. Neumann, and A. Wiese 51:9

3 Weighted Hypercubes

We study now the weighted case for which we present a dynamic (4 + ε)2d-approximation
algorithm for d-dimensional hypercubes. Our strategy is to mimic a greedy algorithm that
sorts the hypercubes by size si and adds a hypercube Ci with weight wi if it does not overlap
with any previously selected hypercube or if the total weight of the previously selected
hypercube that Ci overlaps with is at most wi/2. Using a charging argument one can show
that this yields a 2d+2-approximate solution. The challenge is to implement this approach
such that we obtain polylogarithmic update time.

From a high-level point of view, our algorithm works as follows. In each cell Q, we
maintain a set of points P (Q) containing the vertices of all hypercubes which have been
added to independent sets DP(Q′) for cells Q′ ⊂ Q. The weight of each point is the weight
of the corresponding hypercube. Based on the points in P (Q), we construct an auxiliary
grid inside Q which allows to perform the following operation efficiently: “Given a set of
auxiliary grid cells A, find a hypercube C ∈ C′(Q) in A whose weight is at least twice the
weight of all points in P (Q) ∩A.” When we try to add a hypercube to Q we do not iterate
over all hypercubes contained in Q but instead enumerate a polylogarithmic number of sets
A and perform the mentioned query for each of them. Also, we do not maintain the current
independent set explicitly (which might change a lot after an update), but we update only
the weight of the points in P (Q) ∩A, which can be done efficiently. For each cell Q we add
only a polylogarithmic number of hypercubes to DP(Q). If a hypercube Ci ∈ DP(Q) overlaps
with a hypercube Ci′ ∈ DP(Q′) for some cell Q′ ⊂ Q then we exclude Ci′ from the solution
that we output, but do not delete Ci′ from DP(Q′). In this way, we obtain polylogarithmic
update time, even if our computed solution changes a lot.

Before we describe our algorithm in detail, let us first elaborate on how we maintain
the points P (Q). In the unweighted settings, for each cell Q we stored in DP(Q) a set of
hypercubes or pointers to such sets. Now, we define each set DP(Q) to be a pair (C̄(Q), P (Q)).
Here, C̄(Q) ⊆ C′(Q) is a set of hypercubes from C′(Q) that we selected for the independent
set (recall that C′(Q) contains the hypercubes C ⊆ Q with `(Ci) = `(Q)); and P (Q) is the
data structure for the range counting/reporting problem according to Lemma 4. We will
often identify P (Q) with the set of points stored in P (Q).

I Lemma 4 ([27, 30, 16]). There exists a data structure that maintains a set of weighted
points P ⊆ Rd and allows the following operations:

add or delete a point in P in worst-case time O(logd |P |),
report or change the weight of a point in P in worst-case time O(logd |P |),
given an open or closed hyperrectangle B ⊆ Rd, report the total weight of the points B∩P ,
in worst-case time O(logd−1 |P |).
given d′ ∈ [d] and an interval I = [x, z] ⊆ R, in worst-case time O(log |P |) report a
value y such that at most Γ :=

∣∣∣P ∩ (Rd′−1 × [x, z]× Rd−d′
)∣∣∣ /2 points are contained in

Rd′−1 × (x, y)× Rd−d′ and at most Γ points are contained in Rd′−1 × (y, z)× Rd−d′ .

Now we describe our algorithm in detail. Let again x(1)
Q , . . . , x

(d)
Q and y(1)

Q , . . . , y
(d)
Q be

such that Q = [x(1)
Q , y

(1)
Q]× · · · × [x(d)

Q , y
(d)
Q]. We construct a data structure P (Q) according

to Lemma 4 such that initially it contains the points
⋃

Q′∈ch(Q) P (Q′); this will ensure that
initially the points in P (Q) are the vertices of all hypercubes in C̄(Q′) for each Q′ ⊂ Q.
Constructing P (Q) might take more than polylogarithmic time since the sets P (Q′) with
Q′ ∈ ch(Q) might contain more than polylogarithmically many points. However, we show in
the full version [23] how to adjust our hierarchical grid decomposition and the algorithm to
obtain polylogarithmic update time.

SoCG 2020

51:10 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

We want to compute a set C̄(Q) ⊆ C′(Q) containing the hypercubes from C′(Q) that we add
to the independent set. At the beginning, we initialize C̄(Q) := ∅. We compute an auxiliary
grid (Z(1), . . . , Z(d)) in order to search for hypercubes to insert, similar to the unweighted
case. To define this auxiliary grid, we first compute the total weight W̃ = w(P (Q)) of all
points that are in P (Q) at the beginning of the algorithm in time O(logd−1 |P (Q)|), where we
define w(P) :=

∑
p∈P wp for any set of weighted points P . Then we define the auxiliary grid

within Q such that in the interior of each grid slice the points in P (Q) have a total weight
at most εd+2W̃/(dd+1 logN), where a grid slice is a set of the form Rd′−1 × (x, y)× Rd−d′

for some d′ ∈ [d]. We emphasize here that this property only holds for the interior of the
grid slices and that the sets in the first point of Lemma 5 are open.

I Lemma 5. Given a cell Q and the data structure P (Q), in O
((

d
ε

)d+2 · logd |P (Q)| · logN
)

time we can compute sets Z(1), . . . , Z(d) of coordinates with Z(d′) = {z(d′)
1 , z

(d′)
2 , . . . } for each

d′ such that
the total weight of the points in

(
Rd′−1 × (z(d′)

j , z
(d′)
j+1)× Rd−d′

)
∩ P (Q) is at most

εd+2W̃/(dd+1 logN) for each d′ ∈ [d] and each j ∈ {1, . . . , |Z(d′)| − 1},
Q =

∏d
d′=1[z(d′)

1 , z
(d′)
|Z(d′)|], and

|Z(d′)| ≤ dd+1 logN/εd+2 + 1 for each d′ ∈ [d].

To select hypercubes to add to C̄(Q) our algorithm runs in iterations, and in each iteration
we add one hypercube to C̄(Q). In each iteration we enumerate all hyperrectangles A ⊆ Q
that are aligned with Z(1), . . . , Z(d); note that there are only

(
dd+1 logN/εd+2 + 1

)2d such
hyperrectangles (by the third point of Lemma 5). For each such hyperrectangle A we use the
data structures {D′k(Q)}k∈N to determine whether there is a hypercube Ci ⊆ A contained
in C′k(Q) for some k such that (1 + ε)k ≥ 2w(P (Q) ∩ A) (recall that D′k(Q) maintains the
intervals in C′ which have weights in the range [(1 + ε)k, (1 + ε)k+1) and also recall that
D′k(Q) is contained in the input D(Q) of the algorithm as discussed in Section 2). We say
that such a hypercube Ci is addible. If there is no addible hypercube Ci then we stop and
return (C̄(Q), P (Q)). Otherwise, we determine the smallest addible hypercube Ci (i.e., with
minimum value si) and we add Ci to C̄(Q). We add to P (Q) the 2d vertices of Ci with
weight wi; if a vertex of Ci has been in P (Q) before then we increase its weight by wi. We
remove from C̄(Q) all hypercubes that Ci overlaps with. Intuitively, we remove also all other
previously selected hypercubes that Ci intersects; however, we do not do this explicitly since
this might require Ω(n) time, but we will ensure this implicitly via the query algorithm that
we use to output the solution and that we define below. Finally, we add the coordinates of
Ci to the coordinates of the grid Z(1), . . . , Z(d), i.e., we make the grid finer; formally, for
each d′ ∈ [d] we add to Z(d′) the coordinates {x(d′)

i , y
(d′)
i }. This completes one iteration.

I Lemma 6. The algorithm runs for at most
(

d
ε

)d logW iterations and computes C̄(Q) in
time O

((
d
ε

)2d2+5d+1 · logW · log2d−1 n log2d N
)
.

After the computation above, we define that our solution SOL(Q) for Q contains all
hypercubes in a set C̄(Q′) for some cell Q′ ⊆ Q that are not overlapped by a hypercube
in a set C̄(Q′′) for some cell Q′′ ⊃ Q′. So if two hypercubes Ci′ ∈ C̄(Q′), Ci′′ ∈ C̄(Q′′)
overlap and `(Q′) < `(Q′′), then we select Ci′ but not Ci′′ . We can output SOL(Q) in time
Od,ε(|SOL(Q)| logd+1N), see [23]. If we only want return the approximate weight of SOL(Q),
we can return w(P (Q)) which is a O(2d)-approximation by Lemma 7 below.

Finally, we bound our approximation ratio. Whenever we add a hypercube Ci to a set
C̄(Q) for some cell Q, then we explicitly or implicitly remove from our solution all hypercubes
Ci′ with Ci ∩ Ci′ 6= ∅ such that Ci′ ∈ C̄(Q′) for a cell Q′ ⊆ Q . However, the total weight of

M. Henzinger, S. Neumann, and A. Wiese 51:11

these removed hypercubes is bounded by wi/2 since in the iteration in which we selected a
hypercube Ci ∈ Ck there was a set A ⊇ Ci with (1 + ε)k ≥ 2w(p(Q)∩A) and by definition of
Ck, wi ≥ (1 + ε)k. Thus, we can bound our approximation ratio using a charging argument.

I Lemma 7. For each cell Q ∈ G′, we have that

w(SOL(Q)) ≤ w(OPT(Q)) ≤ (2 +O(ε))w(P (Q)) ≤ (4 +O(ε))2dw(SOL(Q))).

Before we prove Lemma 7, we prove three intermediate results. To this end, recall that
SOL(Q) consists of hypercubes in sets C̄(Q′) for cells Q′ ⊆ Q. First, we show via a token
argument that the total weight of all hypercubes of the latter type is at most 2w(SOL(Q)),
using that when we inserted a new hypercube in our solution then it overlapped with
previously selected hypercubes of weight at most wi/2.

I Lemma 8. We have that w(P (Q)) ≤ 2d+1w(SOL(Q)).

Proof. We assign to each hypercube Ci ∈ SOL(Q) a budget of 2wi. We define now an
operation that moves these budgets. Assume that a hypercube Ci′ ∈ C̄(Q′) for some cell Q′
now has a budget of 2wi units. For each hypercube Ci′′ ∈ C̄(Q′′) for some cell Q′′ (Q′ such
that one of the vertices of Ci′′ is overlapped by Ci′ , we move 2wi′′ units of the budget of Ci′

to the budget of Ci′′ . Note that a hypercube Ci′′ ∈ C′(Q′′) in a cell Q′′ (Q′ overlaps Ci′ if
and only if Ci′ overlaps a vertex of Ci′′ since si′′ < si′ . When we selected Ci′ ∈ Ck(Q′) then
there was a corresponding set A ⊆ Q′ such that wi ≥ (1 + ε)k ≥ 2w(p(Q′) ∩A). Therefore,
when we move the budget of Ci′ as defined then Ci′ keeps wi′ units of its budget. After this
operation, we say that Ci′ is processed. We continue with this operation until each hypercube
Ci′ with a positive budget is processed. At the end, each hypercube Ci′ such that Ci′ ∈ C̄(Q′)
for some cell Q′ has a budget of wi. Therefore,

∑
Q′⊆Q

∑
Ci∈C̄(Q′) wi ≤ 2w(SOL(Q)).

Given the previous inequality and since we insert 2d points for each Ci ∈ C̄(Q′), we
obtain that w(P (Q)) = 2d · 2

∑
Q′⊆Q

∑
Ci∈C̄(Q′) wi ≤ 2d+1w(SOL(Q)). J

We want to argue that w(OPT(Q)) ≤ (4 + O(ε)) · 2dw(SOL(Q)). To this end, we classify
the hypercubes in OPT(Q). For each Ci ∈ OPT(Q) such that Ci ∈ C′(Q′) for some grid cell
Q′ ⊆ Q we say that Ci is light if wi ≤ w(P (Q′))εd+1/(dd logN) and heavy otherwise (for the
set P (Q′) when the algorithm finishes).

Next, we show that the total weight of light hypercubes is εw(P (Q)). We do this
by observing that since each cell Q′ ⊆ Q contains at most (d/ε)d light hypercubes in
OPT(Q) ∩ C′(Q′) (by Lemma 2), we can charge their weights to w(P (Q)).

I Lemma 9. The total weight of light hypercubes is at most εw(P (Q)).

Proof. Let Q′ ⊆ Q. For each light hypercube Ci ∈ C′(Q′) ∩ OPT(Q) we charge wi ≤
w(P (Q′))εd+1/(dd logN) to the points p ∈ P (Q′), proportionally to their respective weight
wp. There are at most (d/ε)d light hypercubes in C′(Q′)∩OPT(Q) (by Lemma 2). Hence, the
total charge is at most w(P (Q′)) ·ε/ logN and each point p ∈ P (Q′) receives a total charge of
at most wp · ε/ logN for Q′. Each point p is contained in at most logN sets in {P (Q′)}Q′⊆Q.
Thus, the total weight of all light hypercubes in OPT(Q) is at most εw(P (Q)). J

For the heavy hypercubes, we pretend that we increase the weight of each point in P (Q)
by a factor 2 +O(ε). We show that then each heavy hypercube Ci ∈ OPT(Q) contains points
in P (Q) whose total weight is at least wi. Hence, after increasing the weight, the weight of
the points in P (Q) “pays” for all heavy hypercubes in OPT(Q).

SoCG 2020

51:12 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

Let β := 1/(1
2+2ε − 2ε) = 2 + O(ε). For each cell Q′ ⊆ Q and for each hypercube

Ci ∈ C̄(Q′) we place a weight of βwi essentially on each vertex of Ci. Since each hypercube
Ci is an open set, Ci does not contain any of its vertices. Therefore, we place the weight
βwi not exactly on the vertices of Ci, but on the vertices of Ci slightly perturbed towards
the center of Ci. Then, the weight we placed for the vertices of Ci contributes towards
“paying” for Ci. Formally, for a small value δ > 0 we place a weight of βwi on each point
of the form (x(1)

i + k(1)si + δ − k(1) · 2δ, . . . , x(d)
i + k(d)si + δ − k(d) · 2δ) with k(d′) ∈ {0, 1}

for each d′ ∈ [d]. We choose δ such that any input hypercube Ci′ overlaps each point
(x(1)

i + k(1)si + δ− k(1) · 2δ+, . . . , x(d)
i + k(d)si + δ− k(d) · 2δ) corresponding to Ci if and only

if Ci ∩Ci′ 6= ∅. We say that these points are the charge points of Ci. If on one of these points
we already placed some weight then we increase its weight by βwi. Let P̃ (Q′) denote the
points on which we placed a weight in the above procedure for Q′ or for a cell Q′′ ⊆ Q′. For
each point p ∈ P̃ (Q) let w̃p denote the total weight that we placed on p in this procedure.
Since for each point pi ∈ P (Q′) with weight wi we introduced a point p̃i ∈ P̃ (Q′) with weight
w̃i ≥ βwi ≥ wi, we have that

∑
p∈P (Q′) wp ≤

∑
p∈P̃ (Q′) w̃p.

I Lemma 10. The total weight of heavy hypercubes is at most (2 +O(ε))w(P (Q)).

Proof. Let Ci ∈ OPT(Q) be a heavy hypercube. We claim that for each heavy hyper-
cube Ci ∈ OPT(Q) it holds that

∑
p∈P̃ (Q)∩Ci

w̃p ≥ wi. This implies the claim since
(2 +O(ε))

∑
p∈P (Q)∩Ci

wp ≥
∑

p∈P̃ (Q)∩Ci
w̃p.

Let Q′ denote the cell such that Ci ∈ C′(Q′). Let C̃(Q′) denote the hypercubes that
are in the set C̄(Q′) at some point while the algorithm processes the cell Q′. If Ci ∈ C̃(Q′)
then the claim is true since we placed a weight of βwi on essentially each of its vertices
(slightly perturbed by δ towards the center of Ci). Assume that Ci /∈ C̃(Q′). Let k be such
that Ci ∈ Ck(Q′). Consider the first iteration when we processed Q′ such that we added a
hypercube Ci′ with size si′ > si or the final iteration if no hypercube with size larger si is
added. Let A ⊆ Q′ denote the smallest set that is aligned with the auxiliary grid Z(1), . . . , Z(d)

for the cell Q′ such that Ci ⊆ A. If (1 + ε)k ≥ 2w(P (Q′)∩A) then in this iteration we would
have added Ci instead of Ci′ which is a contradiction. If (1 + ε)k < 2w(P (Q′)∩A) for the set
P (Q′) at the beginning of this iteration then wi ≤ (1 + ε)k+1 < (1 + ε)2w(P (Q′) ∩A) and∑

p∈P̃ (Q)∩Ci

w̃p =
∑

p∈P̃ (Q)∩Ci

βwp

≥ β
(
w(P (Q′) ∩A)− 2dεd+2W̃/(dd+1 logN)

)
≥ β

(
w(P (Q′) ∩A)− 2εd+2w(P (Q′))/(dd logN)

)
≥ β (w(P (Q′) ∩A)− 2εwi)
≥ β (wi/(2 + 2ε)− 2εwi)
= wi.

To see that the first inequality holds, note that w(P (Q′) ∩A) ≤ w(P (Q′) ∩ Ci) + Y , where
Y is the weight of the points in the auxiliary grid slices of A which Ci does not fully overlap.
Since A is the smallest aligned hyperrectangle containing Ci, in each dimension there are
only two slices which are in A and which Ci partially overlaps (and none which are in A
and do not overlap with Ci at all). Thus, there are at most 2d such slices in total. Using
the definition of the auxiliary grid (Lemma 5), we obtain that Y ≤ 2d · εd+2W̃/(dd+1 logN),
where W̃ = w(P (Q′)). This provides the first inequality. The third inequality holds because
Ci is heavy, the fourth inequality uses the above condition on wi and the last equality is
simply the definition of β. J

M. Henzinger, S. Neumann, and A. Wiese 51:13

Proof of Lemma 7. We can bound the weight of all light and heavy hypercubes by (2 +
O(ε))w(P (Q)) by Lemmas 9 and 10. Then applying Lemma 8 yields that

(2 +O(ε))
∑

p∈P (Q)

wp ≤ (2 +O(ε)) · 2d+1w(SOL(Q))) = (4 +O(ε))2dw(SOL(Q))).

Thus, w(SOL(Q)) ≤ w(OPT(Q)) ≤ (2 +O(ε))w(P (Q)) ≤ (4 +O(ε))2dw(SOL(Q))). J

In [23] we describe how to adjust the hierarchical grid decomposition and the algorithm
slightly such that we obtain polylogarithmic update time overall. We output the solution
SOL := SOL(Q∗). Using the data structure P (Q∗), in time O(1) we can also output w(P (Q∗))
which is an estimate for w(SOL) due to Lemma 7. We obtain the following theorem.

I Theorem 11. For the weighted maximum independent set of hypercubes problem with
weights in [1,W] there are fully dynamic algorithms that maintain (4+O(ε))2d-approximate so-
lutions deterministically with worst-case update time (d/ε)O(d2+1/ε)·logW ·log2d−1 n log2d+1N

and with high probability with worst-case update time
(

d
ε

)O(d2) · logW · log2d−1 n log2d+2N .

References
1 Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for indepen-

dent set and sparse subsets of polygons. J. Assoc. Comput. Mach., 66(4):29:1–29:40, June
2019. doi:10.1145/3326122.

2 Pankaj K. Agarwal, Marc J. van Kreveld, and Subhash Suri. Label placement by maximum
independent set in rectangles. Comput. Geom., 11(3-4):209–218, 1998.

3 Sanjeev Arora. Polynomial time approximation schemes for euclidean tsp and other geometric
problems. In FOCS, pages 2–11, 1996.

4 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In STOC, pages 815–826, 2018.

5 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear in n update time. In SODA, pages 1919–1936. SIAM, 2019.

6 Ainesh Bakshi, Nadiia Chepurko, and David P. Woodruff. Weighted maximum independent set
of geometric objects in turnstile streams. CoRR, abs/1902.10328, 2019. arXiv:1902.10328.

7 Soheil Behnezhad, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In FOCS,
2019.

8 Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. Theor.
Comput. Sci., 702:77–96, 2017. doi:10.1016/j.tcs.2017.08.015.

9 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In SODA,
pages 892–901, 2009.

10 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003.

11 Timothy M Chan. A note on maximum independent sets in rectangle intersection graphs.
Information Processing Letters, 89(1):19–23, 2004.

12 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, September 2012.
doi:10.1007/s00454-012-9417-5.

13 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log
update time. In FOCS, 2019.

14 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles. In
FOCS, pages 820–829, 2016.

15 Yuhao Du and Hengjie Zhang. Improved algorithms for fully dynamic maximal independent
set. CoRR, abs/1804.08908, 2018. arXiv:1804.08908.

SoCG 2020

https://doi.org/10.1145/3326122
http://arxiv.org/abs/1902.10328
https://doi.org/10.1016/j.tcs.2017.08.015
https://doi.org/10.1007/s00454-012-9417-5
http://arxiv.org/abs/1804.08908

51:14 Dynamic Independent Set of Intervals, Hypercubes and Hyperrectangles

16 Herbert Edelsbrunner. A note on dynamic range searching. Bull. EATCS, 15(34-40):120, 1981.
17 Yuval Emek, Magnús M. Halldórsson, and Adi Rosén. Space-constrained interval selection.

ACM Trans. Algorithms, 12(4):51:1–51:32, 2016.
18 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for

geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.
19 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and

covering in the plane are np-complete. Information Processing Letters, 12(3):133–137, 1981.
doi:10.1016/0020-0190(81)90111-3.

20 András Frank. Some polynomial algorithms for certain graphs and hypergraphs. In Proceedings
of the 5th British Combinatorial Conference. Utilitas Mathematica, 1975.

21 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theor. Comput. Sci., 562:227–242,
2015.

22 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set
and other problems. CoRR, abs/1804.01823, 2018. arXiv:1804.01823.

23 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. CoRR, abs/2003.02605, 2020.
arXiv:2003.02605.

24 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. J. ACM, 32(1):130–136, 1985.

25 Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On approximating rectangle tiling
and packing. In SODA, pages 384–393, 1998.

26 Jon M. Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006.
27 D. T. Lee and Franco P. Preparata. Computational geometry - A survey. IEEE Trans.

Computers, 33(12):1072–1101, 1984.
28 Morteza Monemizadeh. Dynamic maximal independent set. CoRR, abs/1906.09595, 2019.

arXiv:1906.09595.
29 Bram Verweij and Karen Aardal. An optimisation algorithm for maximum independent set

with applications in map labelling. In ESA, pages 426–437, 1999.
30 Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic data

structures. J. ACM, 32(3):597–617, 1985.
31 D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic

number. Theory of Computing, 3:103–128, 2007.

https://doi.org/10.1016/0020-0190(81)90111-3
http://arxiv.org/abs/1804.01823
http://arxiv.org/abs/2003.02605
http://arxiv.org/abs/1906.09595

How to Find a Point in the Convex Hull Privately
Haim Kaplan
School of Computer Science, Tel Aviv University, Israel
Google, Tel Aviv, Israel
haimk@tau.ac.il

Micha Sharir
School of Computer Science, Tel Aviv University, Israel
michas@tau.ac.il

Uri Stemmer
Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel
Google, Tel Aviv, Israel
u@uri.co.il

Abstract
We study the question of how to compute a point in the convex hull of an input set S of n points in
Rd in a differentially private manner. This question, which is trivial without privacy requirements,
turns out to be quite deep when imposing differential privacy. In particular, it is known that the
input points must reside on a fixed finite subset G ⊆ Rd, and furthermore, the size of S must grow
with the size of G. Previous works [1, 2, 3, 4, 5, 11] focused on understanding how n needs to grow
with |G|, and showed that n = O

(
d2.5 · 8log∗ |G|) suffices (so n does not have to grow significantly

with |G|). However, the available constructions exhibit running time at least |G|d
2
, where typically

|G| = Xd for some (large) discretization parameter X, so the running time is in fact Ω(Xd3
).

In this paper we give a differentially private algorithm that runs in O(nd) time, assuming that
n = Ω(d4 logX). To get this result we study and exploit some structural properties of the Tukey
levels (the regions D≥k consisting of points whose Tukey depth is at least k, for k = 0, 1, . . .). In
particular, we derive lower bounds on their volumes for point sets S in general position, and develop
a rather subtle mechanism for handling point sets S in degenerate position (where the deep Tukey
regions have zero volume). A naive approach to the construction of the Tukey regions requires nO(d2)

time. To reduce the cost to O(nd), we use an approximation scheme for estimating the volumes
of the Tukey regions (within their affine spans in case of degeneracy), and for sampling a point
from such a region, a scheme that is based on the volume estimation framework of Lovász and
Vempala [14] and of Cousins and Vempala [7]. Making this framework differentially private raises a
set of technical challenges that we address.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Randomness, geometry and discrete structures; Security and privacy →
Formal methods and theory of security

Keywords and phrases Differential privacy, Tukey depth, Convex hull

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.52

Related Version A full version of the paper is available at http://arxiv.org/abs/2003.13192.

Funding Haim Kaplan: Partially supported by ISF grant 1595/19 and grant 1367/2016 from the
German-Israeli Science Foundation (GIF)
Micha Sharir : Partially supported by ISF Grant 260/18, by grant 1367/2016 from the German-
Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at Tel Aviv
University.
Uri Stemmer : Partially supported by ISF grant 1871/19.

Acknowledgements We thank Santosh Vempala for many helpful discussions.

© Haim Kaplan, Micha Sharir, and Uri Stemmer;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:haimk@tau.ac.il
mailto:michas@tau.ac.il
mailto:u@uri.co.il
https://doi.org/10.4230/LIPIcs.SoCG.2020.52
http://arxiv.org/abs/2003.13192
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 How to Find a Point in the Convex Hull Privately

1 Introduction

We often would like to analyze data while protecting the privacy of the individuals that
contributed to it. At first glance, one might hope to ensure privacy by simply deleting all
names and ID numbers from the data. However, such anonymization schemes are proven
time and again to violate privacy. This gave rise of a theoretically-rigorous line of work
that has placed private data analysis on firm foundations, centered around a mathematical
definition for privacy known as differential privacy [8].

Consider a database S containing personal information of individuals. Informally, an
algorithm operating on such a database is said to preserve differential privacy if its outcome
distribution is (almost) insensitive to any arbitrary change to the data of one individual
in the database. Intuitively, this means that an observer looking at the outcome of the
algorithm (almost) cannot distinguish between whether Alice’s information is x or y (or
whether Alice’s information is present in the database at all) because in any case it would
have (almost) no effect on the outcome distribution of the algorithm.

I Definition 1.1 (Dwork et al. [8]). Two databases (multisets) S and S′ are called neighboring
if they differ in a single entry. That is, S = S0 ∪ {x} and S′ = S0 ∪ {y} for some items x
and y. A randomized algorithm A is (ε, δ)-differentially private if for every two neighboring
databases S, S′ and for any event T we have

Pr[A(S) ∈ T] ≤ eε ·Pr[A(S′) ∈ T] + δ.

When δ = 0 this notion is referred to as pure differential privacy, and when δ > 0 it is
referred to as approximate differential privacy.

I Remark 1.2. Typically, ε is set to be a small constant, say ε = 0.1, and δ is set to be a
small function of the database size |S| (much smaller than 1/|S|). Note that to satisfy the
definition (in any meaningful way) algorithm A must be randomized.

Differential privacy is increasingly accepted as a standard for rigorous treatment of privacy.
However, even though the field has witnessed an explosion of research in the recent years,
much remains unknown and answers to fundamental questions are still missing. In this
work we study one such fundamental question, already studied in [1, 2, 3, 4, 5, 11]: Given a
database containing points in Rd (where every point is assumed to be the information of
one individual), how can we privately identify a point in the convex hull of the input points?
This question, which is trivial without privacy requirements, turns out to be quite deep when
imposing differential privacy. In particular, Bun et al. [5] showed that in order to be able to
solve it, we must assume that the input points reside on a fixed finite subset G ⊆ Rd, and
furthermore, the number of input points must grow with the size of G.

The Private Interior Point (PIP) Problem.
Let β, ε, δ,X be positive parameters where β, ε, δ are small and X is a large integer. Let
G ⊆ [0, 1]d be a finite uniform grid with side steps 1/X (so |G| = (X + 1)d). Design an
algorithm A such that for some n ∈ N (as small as possible as a function of β, ε, δ,X)
we have
1. Utility: For every database S containing at least n points from G it holds that

A(S) returns a point in the convex hull of S with probability at least 1− β. (The
outcome of A does not have to be in G.)

2. Privacy: For every pair of neighboring databases S, S′, each containing at least n
points from G, and for any event T , we have Pr[A(S) ∈ T] ≤ eε ·Pr[A(S′) ∈ T] + δ.

H. Kaplan, M. Sharir, and U. Stemmer 52:3

The parameter n is referred to as the sample complexity of the algorithm. It is the
smallest number of points on which we are guaranteed to succeed (not to be confused with
the actual size of the input). The PIP problem is very natural on its own. Furthermore,
as was observed in [2], an algorithm for solving the PIP problem can be used as a building
block in other applications with differential privacy, such as learning halfspaces and linear
regression. Previous works [1, 2, 3, 4, 5, 11] have focused on the task of minimizing the
sample complexity n while ignoring the runtime of the algorithm. In this work we seek an
efficient algorithm for the PIP problem, that still keeps the sample complexity n “reasonably
small” (where “reasonably small” will be made precise after we introduce some additional
notation).

1.1 Previous Work
Several papers studied the PIP problem for d = 1. In particular, three different constructions
with sample complexity 2O(log∗ |G|) were presented in [3, 4, 5] (for d = 1). Recently, Kaplan
et al. [11] presented a new construction with sample complexity O((log∗ |G|)1.5) (again, for
d = 1). Bun et al. [5] gave a lower bound showing that every differentially private algorithm
for this task must have sample complexity Ω(log∗ |G|). Beimel et al. [2] incorporated a
dependency in d to this lower bound, and showed that every differentially private algorithm
for the PIP problem must use at least n = Ω(d+ log∗ |G|) input points.

For the case of pure differential privacy (i.e., δ = 0), a lower bound of n = Ω(logX) on
the sample complexity follows from the results of Beimel et al. [1]. This lower bound is tight,
as an algorithm with sample complexity n = O(logX) (for d = 1) can be obtained using a
generic tool in the literature of differential privacy, called the exponential mechanism [16].
We sketch this application of the exponential mechanism here. (For a precise presentation of
the exponential mechanism see Section 2.1.) Let G = {0, 1

X ,
2
X , . . . , 1} be our (1-dimensional)

grid within the interval [0, 1], and let S be a multiset containing n points from G. The
algorithm is as follows.
1. For every y ∈ G define the score qS(y) = min {|{x ∈ S | x ≥ y}|, |{x ∈ S | x ≤ y}|} .
2. Output y ∈ G with probability proportional to eε·qS(y).

Intuitively, this algorithm satisfies differential privacy because changing one element of S
changes the score qS(y) by at most ±1, and thus changes the probabilities with which we
sample elements by roughly an eε factor. As for the utility analysis, observe that ∃y ∈ G
with qS(y) ≥ n

2 , and the probability of picking this point is (at least) proportional to eεn/2.
As this probability increases exponentially with n, by setting n to be big enough we can
ensure that points y′ outside of the convex hull (those with qS(y′) = 0) get picked with very
low probability.

Beimel et al. [2] observed that this algorithm extends to higher dimensions by replacing
qS(y) with the Tukey depth tdS(y) of the point y with respect to the input set S (the Tukey
depth of a point y is the minimal number of points that need to be removed from S to ensure
that y is not in the convex hull of the remaining input points). However, even though there
must exist a point y ∈ Rd with high Tukey depth (at least n/(d+ 1); see [15]), the finite grid
G ⊆ Rd might fail to contain such a point. Hence, Beimel et al. [2] first refined the grid G
into a grid G′ that contains a point with high Tukey depth, and then randomly picked a
point y from G′ with probability proportional to eε·tdS(y). To compute the probabilities with
which grid points are sampled, the algorithm in [2] explicitly computes the Tukey depth of
every point in G′, which, because of the way in which G′ is defined, results in running time of
at least Ω(|G|d2) = Ω(Xd3) and sample complexity n = O(d3 log |G|) = O(d4 logX). Beimel
et al. then presented an improvement of this algorithm with reduced sample complexity of
n = O(d2.5 · 8log∗ |G|), but the running time remained Ω(|G|d2) = Ω(Xd3).

SoCG 2020

52:4 How to Find a Point in the Convex Hull Privately

1.2 Our Construction

We give an approximate differentially private algorithm for the private interior point problem
that runs in O(nd) time,1 and succeeds with high probability when the size of its input is
Ω(d

4

ε log X
δ). Our algorithm is obtained by carefully implementing the exponential mechanism

and reducing its running time from Ω(|G|d2) = Ω(Xd3) to O(nd). We now give an informal
overview of this result.

To avoid the need to extend the grid and to calculate the Tukey depth of each point in
the extended grid, we sample our output directly from [0, 1]d. To compute the probabilities
with which we sample a point from [0, 1]d we compute, for each k in an appropriate range,
the volume of the Tukey region of depth k, which we denote as Dk. (That is, Dk is the region
in [0, 1]d containing all points with Tukey depth exactly k.) We then sample a value k ∈ [n]
with probability proportional to Vol(Dk) · eεk, and then sample a random point uniformly
from Dk.

Observe that this strategy picks a point with Tukey depth k with probability proportional
to Vol(Dk) · eεk. Hence, if for a “large enough” value of k (say k ≥ n

cd for a suitable absolute
constant c > 1) we have that Vol(Dk) is “large enough”, then a point with Tukey depth k
is picked with high probability. However, if Vol(Dk) = 0 (or too small) then a point with
Tukey depth k is picked with probability zero (or with too small a probability). Therefore,
to apply this strategy, we derive a lower bound on the volume of every non-degenerate Tukey
region, showing that if the volume is non-zero, then it is at least Ω

(
1/Xd3

)
.

There are two issues here. The first issue is that the best bound we know on the complexity
of a Tukey region is O(n(d−1)bd/2c), so we cannot compute these regions explicitly (in the
worst-case) in time O(nd) (which is our target runtime complexity). We avoid the need
to compute the Tukey regions explicitly by using an approximation scheme for estimating
the volume of each region and for sampling a point from such a region, a scheme that is
based on the volume estimation framework of Lovász and Vempala [14] and of Cousins and
Vempala [7]. The second issue is that it might be the case that all Tukey regions for large
values of k are degenerate, i.e., have volume 0, in which case this strategy might fail to
identify a point in the convex hull of the input points.

Handling degeneracies. We show that if the Tukey regions of high depth are degenerate,
then many of the input points must lie in a lower-dimensional affine subspace. This can
be used to handle degenerate inputs S as follows. We first (privately) check whether there
exists an affine proper subspace that contains many points of S. If we find such a subspace
f , we recursively continue the procedure within f , with respect to S ∩ f . Otherwise, if no
such subspace exists, then it must be the case that the Tukey regions of high depth are
full-dimensional (with respect to the subspace into which we have recursed so far), so we
can apply our algorithm for the non-degenerate case and obtain a point that lies, with high
probability, in the convex hull of the surviving subset of S, and thus of the full set S.

We remark that it is easy to construct algorithms with running time polynomial in the
input size n, when n grows exponentially in d. (In that case one can solve the problem using
a reduction to the 1-dimensional case.) In this work we aim to reduce the running time while
keeping the sample complexity n at most polynomial in d and in log |G|.

1 When we use O-notation for time complexity we hide logarithmic factors in X, 1/ε, 1/δ, and polynomial
factors in d. We assume operations on real numbers in O(1) time (the so-called real RAM model).

H. Kaplan, M. Sharir, and U. Stemmer 52:5

2 Preliminaries

We assume that our input set S consists of n points that lie in the intersection of a grid G
with the cube [0, 1]d in Rd. We assume that G is of side length 1/X for a given accuracy
integer parameter X, so it partitions the cube into Xd cells.

2.1 The exponential mechanism
Let G∗ denote the set of all finite databases over a grid G, and let F be a finite set. Given a
database S ∈ G∗, a quality (or scoring) function q : G∗ ×F → N assigns a number q(S, f) to
each element (S, f) ∈ G∗ ×F , identified as the “quality” of f with respect to S. We say that
the function q has sensitivity ∆ if for all neighboring databases S and S′ and for all f ∈ F
we have |q(S, f)− q(S′, f)| ≤ ∆.

The exponential mechanism of McSherry and Talwar [16] privately identifies an element
f ∈ F with large quality q(S, f). Specifically, it chooses an element f ∈ F randomly, with
probability proportional to exp (ε · q(S, f)/(2∆)). The privacy and utility of the mechanism
are:

I Theorem 2.1 (McSherry and Talwar [16]). The exponential mechanism is (ε, 0)-differentially
private. Let q be a quality function with sensitivity ∆. Fix a database S ∈ G∗ and let
OPT = maxf∈F {q(S, f)}. For any β ∈ (0, 1), with probability at least (1−β), the exponential
mechanism outputs a solution f with quality q(S, f) ≥ OPT− 2∆

ε ln |F |β .

2.2 Tukey depth
The Tukey depth [18] tdS(q) of a point q with respect to S is the minimum number of
points of S we need to remove to make q lie outside the convex hull of the remaining subset.
Equivalently, tdS(q) is the smallest number of points of S that lie in a closed halfspace
containing q. We will write td(q) for tdS(q) when the set S is clear from the context. It easily
follows from Helly’s theorem that there is always a point of Tukey depth at least n/(d+ 1)
(see, e.g., [15]). We denote the largest Tukey depth of a point by tdmax(S) (the maximum
Tukey depth is always at most n/2).

We define the regions D≥k(S) =
{
q ∈ [0, 1]d | tdS(q ≥ k

}
and Dk(S) = D≥k(S) \

D≥k+1(S) for k = 0, . . . , tdmax(S). Note that D≥1 is the convex hull of S and that
D≥0 = [0, 1]d. It is easy to show that D≥k is convex; D≥k is in fact the intersection
of all (closed) halfspaces containing at least n− k+ 1 points of S; see [17]. It is easy to show
that all this is true also when S is degenerate. See Figure 1 for an illustration. The following
lemma is easy to establish.

I Lemma 2.2. If D≥k is of dimension d (we refer to such a region as non-degenerate) then
Ck = ∂D≥k(S) is a convex polytope, each of whose facets is contained in a simplex σ spanned
by d points of S, such that one of the open halfspaces bounded by the hyperplane supporting
σ contains exactly k − 1 points of S.

3 The case of general position

As already said, we apply the exponential mechanism for privately identifying a point in
[0, 1]d with (hopefully) large Tukey depth with respect to the input set S. This satisfies (pure)
differential privacy since the sensitivity of the Tukey depth is 1. In this section we show
that when the input points are in general position, then this application of the exponential
mechanism succeeds (with high probability) in identifying a point that has positive Tukey
depth, that is, a point inside the convex hull of S.

SoCG 2020

52:6 How to Find a Point in the Convex Hull Privately

D≥2

Figure 1 The Tukey layers D≥2 and D≥1.

To implement the exponential mechanism (i.e., to sample a point from [0, 1]d appropri-
ately), we need to compute the Tukey regions D≥k and their volumes. In this section we
compute these regions explicitly in O

(
n1+(d−1)bd/2c) time. In Section 5 we will show that

the cost can be reduced to O(nd).

Computing D≥k. We pass to the dual space, and construct the arrangement A(S∗) of the
hyperplanes dual to the points of S. A point h∗ dual to a hyperplane h supporting D≥k
has at least n− k + 1 dual hypeplanes passing below h∗ or incident to h∗, or, alternatively,
passing above h∗ or incident to h∗. Furthermore, if we move h∗ slightly down in the first
case (resp., up in the second case), the number of hypeplanes below (resp., above) it becomes
smaller than n− k + 1.

When h∗ is a vertex of A(S∗) we refer to it as k-critical, or simply as critical. If D≥k is
non-degenerate then, by Lemma 2.2, each hyperplane h that supports a facet of D≥k must
be spanned by d affinely independent points of S. That is, all these hyperplanes are dual to
k-critical vertices of A(S∗).

We compute all critical dual vertices that have at least n−k+ 1 dual hyperplanes passing
below them or incident to them, or those with at least n− k + 1 dual hyperplanes passing
above them or incident to them. The intersection of the appropriate primal halfspaces that
are bounded by the hyperplanes corresponding to these dual vertices is D≥k. This gives an
algorithm for constructing D≥k when it is non-degenerate. Otherwise D≥k is degenerate and
its volume is 0, and we need additional techniques, detailed in the next subsection, to handle
such situations.

We compute the volume of each non-degenerate D≥k, for k = 1, . . . , tdmax(S). We do
that in brute force, by computing and triangulating D≥k and adding up the volumes of the
simplices in this triangulation. Then we subtract the volume of D≥k+1 from the volume of
D≥k to get the volume of Dk.

The sampling mechanism. We assign to each Dk the weight eεk/2 and sample a region Dk,
for k = 0, . . . , tdmax(S), with probability

µk = eεk/2Vol(Dk)∑
j≥0 e

εj/2Vol(Dj)
,

H. Kaplan, M. Sharir, and U. Stemmer 52:7

where Vol(Dk) denotes the volume of Dk. Then we sample a point uniformly at random
from Dk. We do this in brute force by computing Dk, triangulating it, computing the volume
of each simplex, drawing a simplex from this triangulation with probability proportional to
its volume, and then drawing a point uniformly at random from the chosen simplex.2

This is an instance of the exponential mechanism in which the score (namely the Tukey
depth) has sensitivity 1, i.e., |tdS(q)− tdS′(q)| ≤ 1 for any point q ∈ [0, 1]d, when S and S′
differ by only one element. It thus follows from the properties of the exponential mechanism
(Theorem 2.1) that this procedure is (purely) ε-differentially private.

Complexity. Computing the dual arrangement A(S∗) takes O(nd) time [10]. Assume that
D≥k is non-degenerate and let Mk denote the number of hyperplanes defining D≥k (i.e.,
the hyperplanes supporting its facets). It takes O(Mbd/2ck) time to construct D≥k, as the
intersection of Mk halfspaces, which is a dual version of constructing the convex hull (see [6]).
Within the same asymptotic bound we can triangulate D≥k and compute its volume. We
obviously have Mk = O(nd), but the number can be somewhat reduced. The following
lemma is known.

I Lemma 3.1 (Proposition 3 in [13]). The number of halfspaces needed to construct D≥k is
O(nd−1).

Proof. Fix a (d− 1)-tuple σ of points of S, and consider all the relevant (closed) halfspaces,
each of which is bounded by a hyperplane that is spanned by σ and another point of S, and
contains at least n− k + 1 points of S. It is easy to check that, as long as the intersection of
these halfspaces is full-dimensional, it is equal to the intersection of just two of them. J

Summing up, we get that computing the volume of all the non-degenerate regions D≥k,
for k = 1, . . . , tdmax(S), takes O

(∑
k≥1M

bd/2c
k

)
= O

(
n1+(d−1)bd/2c) time.

Utility. We continue to assume that D≥k is non-degenerate, and give a lower bound on
its volume. By Lemma 2.2, such a D≥k is the intersection of halfspaces, each bounded by
a hyperplane that is spanned by d points of S. Denote by H the set of these hyperplanes.
To obtain the lower bound, it suffices to consider the case where D≥k is a simplex, each of
whose vertices is the intersection point of d hyperplanes of H.

The equation of a hyperplane h that passes through d points, a1, . . . , ad, of S is∣∣∣∣∣∣∣∣∣
1 x1 · · · xd
1 a1,1 · · · a1,d

...
1 ad,1 · · · ad,d

∣∣∣∣∣∣∣∣∣ = 0,

where ai = (ai,1, . . . , ai,d), for i = 1, . . . , d. The coefficients of the xi’s in the equation of
h are d× d subdeterminants of this determinant, where each determinant has one column
of 1’s, and d − 1 other columns, each of whose entries is some ai,j , which is a rational of
the form m/X, with 0 ≤ m ≤ X (the same holds for the 1’s, with m = X). The value of
such a determinat (coefficient) is a rational number with denominator Xd. By Hadamard’s

2 A simple way to implement the last step is to draw uniformly and independently d points from [0, 1],
compute the lengths λ1, . . . , λd+1 of the intervals into which they partition [0, 1], and return

∑d+1
i=1 λivi,

where v1, . . . , vd+1 are the vertices of the simplex.

SoCG 2020

52:8 How to Find a Point in the Convex Hull Privately

inequality, its absolute value is at most the product of the Euclidean norms of its rows,
which is at most dd/2. That is, the numerator of the determinant is an integer of absolute
value at most dd/2Xd. The free term is a similar sub-determinant, but all its entries are the
ai,j ’s, so it too is a rational with denominator Xd, and with numerator of absolute value at
most dd/2Xd. Multiplying by Xd, all the coefficients become integers of absolute value at
most dd/2Xd.

Each vertex of any region Dk of Tukey depth k, for any k, is a solution of a linear
system of d hyperplane equations of the above form. It is therefore a rational number
whose denominator, by Cramer’s rule, is the determinant of all non-free coefficients of the d
hyperplanes. This is an integer whose absolute value, again by Hadamard’s inequality, is
at most(√

ddd/2Xd
)d
≤ dd(d+1)/2Xd2

.

Since the free terms are also integers, we conclude that the coordinates of the intersection point
are rationals with a common integral denominator of absolute value at most dd(d+1)/2Xd2 .

We can finally obtain a lower bound for the nonzero volume of a simplex spanned by any
d+ 1 linearly independent intersection points v1, . . . , vd+1. This volume is

1
d!

∣∣∣∣∣∣∣∣∣
1 v1,1 · · · v1,d
1 v2,1 · · · v2,d

...
1 vd+1,1 · · · vd+1,d

∣∣∣∣∣∣∣∣∣ ,

where again vi = (vi,1, . . . , vi,d), for i = 1, . . . , d+ 1. Note that all the entries in any fixed row
have the same denominator. The volume is therefore a rational number whose denominator
is d! times the product of these denominators, which is thus an integer with absolute value
at most

d! ·
(
dd(d+1)/2Xd2

)d
≤ (dX)d

3

(for d ≥ 2). That is, we get the following lemma.

I Lemma 3.2. If the volume of D≥k is not zero then it is at least 1/(dX)d3 .

Assume that the volume of D≥k is not zero for k = k0 := n/(4d). Since the score of a
point outside the convex hull is zero and the volume of D≥0 is at most 1, we get that the
probability to sample a point outside of the convex hull is at most

1
eεk0Vol(Dk0) ≤

(dX)d3

eεn/(4d) .

This inequality leads to the following theorem, which summarizes the utility that our instance
of the exponential mechanism provides.

I Theorem 3.3. If n ≥ 4d4 log(dX)
ε

+ 4d
ε

log 1
β

and D≥n/4d has non-zero volume then the
exponential mechanism, implemented as above, returns a point in the convex hull with
probability at least 1− β, in O

(
n1+(d−1)bd/2c) time.

H. Kaplan, M. Sharir, and U. Stemmer 52:9

4 Handling degeneracies

In general we have no guarantee that D≥n/4d has non-zero volume. In this section we show
how to overcome this and compute (with high probability) a point in the convex hull of any
input. We rely on the following lemma, which shows that if D≥k has zero volume then many
points of S are in a lower-dimensional affine subspace.

I Lemma 4.1. If D≥k spans an affine subspace f of dimension j then

|S ∩ f | ≥ n− (d− j + 1)(k − 1).

Proof. Recall that D≥k is the intersection of all closed halfspaces h that contain at least
n−k+1 points of S. Note that a halfspace that bounds D≥k and whose bounding hyperplane
properly crosses f , defines a proper halfspace within f , and, by assumption, the intersection
of these halfspaces has positive relative volume. This means that the intersection of these
halfspaces in Rd has positive volume too, and thus cannot confine D≥k to f . To get this
confinement, there must exist (at least) d− j + 1 halfspaces in the above collection, whose
intersection is f . Hence the union of their complements is Rd \ f . Since this union contains
at most (d− j + 1)(k − 1) points of S, the claim follows. J

In what follows, to simplify the expressions that we manipulate, we use the weaker lower
bound n− (d−j+1)k. In order for the lemma to be meaningful, we want k to be significantly
smaller than the centerpoint bound n/(d+ 1), so we set, as above, k = n/(4d).

We use Lemma 4.1 to handle degenerate inputs S, using the following high-level approach.
We first (privately) check whether there exists an affine proper subspace that contains many
points of S. If we find such a subspace f , we recursively continue the procedure within f ,
with respect to S ∩ f . Lemma 4.1 then implies that we do not lose too many points when
we recurse within f (that is, |S ∩ f | is large), using our choice k = n/(4d). Otherwise, if no
such subspace exists, Lemma 4.1 implies that D≥k is full-dimensional (with respect to the
subspace into which we have recursed so far), so we can apply the exponential mechanism, as
implemented in Section 3, and obtain a point that lies, with high probability, in the convex
hull of the surviving subset of S, and thus of the full set S. We refer to this application of the
exponential mechanism in the appropriate affine subspace as the base case of the recursion.

The points of S ∩ f are not on a standard grid within f . (They lie of course in the
standard uniform grid G of side length 1/X within the full-dimensional cube, but G ∩ f is
not a standard grid and in general has a different, coarser resolution.) We overcome this issue
by noting that there always exist j coordinates, which, without loss of generality, we assume
to be x1, . . . , xj , such that f can be expressed in parametric form by these coordinates. We
then project f (and S ∩ f) onto the x1x2 · · ·xj-coordinate subspace f ′. We recurse within
f ′, where the projected points of S ∩ f do lie in a standard grid (a cross-section of G), and
then lift the output point x′0, which lies, with high probability, in conv(S′0), back to a point
x′ ∈ f . It is straightforward to verify that if x′0 is in the convex hull of the projected points
then x′ is in the convex hull of S ∩ f .

4.1 Finding an affine subspace with many points privately
For every affine subspace f , of dimension 0 ≤ j ≤ d− 1, spanned by some subset of (at least)
j + 1 points of G, we denote by c(f) the number of points of S that f contains, and refer to
it as the size of f .

We start by computing c(f) for every subspace f spanned by points of S, as follows. We
construct the (potentially degenerate) arrangement A(S∗) of the set S∗ of the hyperplanes
dual to the points of S. During this construction, we also compute the multiplicity of each

SoCG 2020

52:10 How to Find a Point in the Convex Hull Privately

flat in this arrangement, namely, the number of dual hyperplanes that contain it. Each
intersection flat of the hyperplanes is dual to an affine subspace f defined by the corresponding
subset of the primal points of S (that it contains), and c(f) is the number of dual hyperplanes
containing the flat. In other words, as a standard byproduct of the construction of A(S∗),
we can compute the sizes of all the affine subspaces that are spanned by points of S, in O(nd)
overall time.

We define

Mi = Mi(S) = max{c(f) | f is spanned by a subset of S and is of dimension at most i},

and compute M ′i = Mi + Yi, where Yi is a random variable drawn (independently for each
i) from a Laplace distribution with parameter b := 1

ε centered at the origin. (That is, the
probability density function of Yi is 1

2be
−|x|/b = ε

2e
−ε|x|.)

Our algorithm now uses a given confidence parameter β ∈ (0, 1) and proceeds as follows.
If for every j = 0, . . . , d− 1

M ′j ≤ n− (d− j + 1)k − 1
ε

log 2
β
, (1)

we apply the base case. Otherwise, set j to be the smallest index such that

M ′j > n− (d− j + 1)k − 1
ε

log 2
β
. (2)

Having fixed j, we find (privately) a subspace f of dimension j that contains a large
number of points of S. To do so, let Zj be the collection of all j-dimensional subspaces that
are spanned by j + 1 affinely independent points of the grid G (not necessarily of S). We
apply the exponential mechanism to pick an element of Zj , by assigning a score s(f) to each
subspace of Zj , which we set to be

s(f) = max {0, c(f)−Mj−1} ,

if j ≥ 1, and s(f) = c(f) if j = 0. Note that by its definition, s(f) is zero if f is not spanned
by points of S. Indeed, in this case the c(f) points contained in f span some subspace of
dimension ` ≤ j − 1 and therefore Mj−1 must be at least as large as c(f). We will shortly
argue that s(f) has sensitivity at most 2 (Lemma 4.4), and thus conclude that this step
preserves the differential privacy of the procedure.

We would like to apply the exponential mechanism as stated above in time proportional
to the number of subspaces of non-zero score, because this number depends only on n (albeit
being exponential in d) and not on (the much larger) X. However, to normalize the scores to
probabilities, we need to know the number of elements of Zj with zero score, or alternatively
to obtain the total number of subspaces spanned by j+ 1 points of G (that is, the size of Zj).

We do not have a simple expression for |Zj | (although this is a quantity that can be
computed, for each j, independently of S, once and for all), but clearly |Zj | ≤ Xd(j+1). We
thus augment Zj (only for the purpose of analysis) with Xd(j+1) − |Zj | “dummy” subspaces,
and denote the augmented set by Z ′j , whose cardinality is now exactly Xd(j+1). We draw a
subspace f from Z ′j using the exponential mechanism. To do so we need to compute, for
each score s ≥ 0, the number Ns of elements of Z ′j that have score s, give each such element
weight eεs/4, choose the index s with probability proportional to Nseεs/4, and then choose
uniformly a subspace from those with score s. It is easy to check that this is indeed an
implementation of the exponential mechanism as described in Section 2.1.

H. Kaplan, M. Sharir, and U. Stemmer 52:11

If the drawing procedure decides to pick a subspace that is not spanned by points of S,
or more precisely decides to pick a subspace of score 0, we stop the whole procedure, with a
failure. If the selected score is positive, the subspace to be picked is spanned by j + 1 points
of S, and those subspaces are available (from the dual arrangement construction outlined
above). We thus obtain a selected subspace f (by randomly choosing an element from the
available list of these subspaces), and apply the algorithm recursively within f , restricting
the input to S ∩ f . (Strictly speaking, as noted above, we apply the algorithm to a projection
of f onto a suitable j-dimensional coordinate subspace.)

It follows that we can implement the exponential mechanism on all subspaces in Z ′j
in time proportional to the number of subspaces spanned by points of S, which is O(nd),
and therefore the running time of this subspace selection procedure (in each recursive call)
is O(nd).

4.1.1 Privacy analysis
I Lemma 4.2. Let S1 = S0 ∪ {x} and S2 = S0 ∪ {y} be two neighboring data sets. Then,
for every i = 0, . . . , d− 1, we have |Mi(S1)−Mi(S2)| ≤ 1.

Proof. Let f be a subspace of dimension at most i that is spanned by points of S1 and
contains Mi(S1) such points. If f does not contain x then f is also a candidate for Mi(S2),
so in this case Mi(S2) ≥Mi(S1). If f does contain x then S1∩f \{x} ⊆ S0 spans a subspace
f ′ of f which is of dimension at most i, so it is a candidate for Mi(S2). Since it does not
contain x (and may contain y) we have in this case that Mi(S2) ≥Mi(S1)− 1. Therefore
we can conclude that in anycase Mi(S2) ≥Mi(S1)− 1. A symmetric argument shows that
Mi(S1) ≥Mi(S2)− 1. Combining these two inequalities the lemma follows. J

I Lemma 4.3. The value of each M ′i , for i = 0, . . . , d− 1, is ε-differentially private.

Proof. This follows from standard arguments in differential privacy (e.g., see [9, 19]), since,
by Lemma 4.2, Mi is of sensitivity 1 (in the sense shown in the lemma). J

Since we choose j by comparing each of the M ′j ’s to a value which is the same for
neighboring data sets S1 and S2 (which have the same cardinality n), Lemma 4.3 implies
that the choice of the dimension j is differentially private.

The next step is to choose the actual subspace f in which to recurse. The following
lemma implies that this step too is differentially private.

I Lemma 4.4. Let S1 and S2 be as in Lemma 4.2. Then, for each j = 0, . . . , d− 1 and for
every subspace f ∈ Z ′j, we have |sS1(f)− sS2(f)| ≤ 2.

Proof. Fix j and f ∈ Z ′j . Clearly, |cS1(f)− cS2(f)| ≤ 1, and, by Lemma 4.2, Mj−1 is also
of sensitivity 1, and the claim follows. J

I Lemma 4.5. The subspace-selection procedure described in this section (with all its recursive
calls) is 2d2ε-differentially private.

Proof. By Lemma 4.3 the computation of each M ′i is ε-differentially private, and by
Lemma 4.4 the exponential mechanism on the scores s(f) is also ε-differentially private.
Since we compute at most d values M ′i at each step, and we recurse at most d times, the
claim follows by composition [9, 19]. J

I Remark 4.6. We can save a factor of d in Lemma 4.5 by using a framework called the
sparse vector technique, see e.g., [9].

SoCG 2020

52:12 How to Find a Point in the Convex Hull Privately

4.1.2 Utility analysis

The following lemma is the key for our utility analysis.

I Lemma 4.7. Let β ∈ (0, 1) be a given parameter. For k = n
4d and for every j = 0, . . . , d−1

the following properties hold.
(i) If Mj ≥ n− (d− j + 1)k then, with probability at least 1− β,

M ′j ≥ n− (d− j + 1)k − 1
ε

log 2
β
.

(ii) On the other hand, if Mj ≤ n− (d− j + 1)k − 2
ε log 2

β , then, with probability at least
1− β,

M ′j ≤ n− (d− j + 1)k − 1
ε

log 2
β
.

Proof. (i) follows since the probability of the Laplace noise Yj to be smaller than − 1
ε log 2

β

is at most β, and (ii) follows since the probability of Yj to be larger than 1
ε log 2

β is also at
most β. J

We say that (the present recursive step of) our algorithm fails if one of the complements
of the events specified in Lemma 4.7 happens, that is, the step fails if for some j, either (i)
Mj ≥ n−(d−j+1)k andM ′j < n−(d−j+1)k− 1

ε log 2
β , or (ii)Mj ≤ n−(d−j+1)k− 2

ε log 2
β

and M ′j > n − (d − j + 1)k − 1
ε log 2

β . Otherwise we say that (this step of) our algorithm
succeeds.3

It follows from Lemma 4.1 that if the algorithm succeeds and applies the base case then
D≥k is full dimensional. Furthermore, if the algorithm succeeds and decides to recurse
on a subspace of dimension j (according to the rule in (1) and (2)) then, for every ` < j,
M` ≤ n− (d− `+ 1)k and Mj ≥ n− (d− j + 1)k − 2

ε log 2
β . The following lemma is an easy

consequence of this reasoning.

I Lemma 4.8. If the algorithm succeeds, with dimension j, and applies the exponential
mechanism to pick a j-dimensional subspace, then there exists a j-dimensional subspace
f with score s(f) = Mj −Mj−1 ≥ k − 2

ε log 2
β . Furthermore, if k ≥ 8d2

ε logX + 8
ε log 1

β

then, with probability at least 1 − β, the exponential mechanism picks a subspace f with
s(f) ≥Mj −Mj−1 − k

2 ≥
k
2 −

2
ε log 2

β .

Proof. The first part of the lemma follows from the definition of success, as just argued. For
the second part notice that, since |Z ′j | ≤ Xd2 , the probability of drawing a subspace f ′ ∈ Z ′j
of score smaller than Mj −Mj−1 − k

2 is at most

Xd2
· e

ε(Mj−Mj−1−k/2)/4

eε(Mj−Mj−1)/4 = Xd2
· e−εk/8 .

This expression is at most β if k ≥ 8d2

ε logX + 8
ε log 1

β . J

3 Note that there is a “grey zone” of values of Mj between these two bounds, in which the step always
succeeds.

H. Kaplan, M. Sharir, and U. Stemmer 52:13

If follows that if our algorithm succeeds and recurses in a subspace f of dimension j then,
with probability at least 1− β,

c(f) ≥Mj−1 + s(f) ≥Mj −
k

2

≥ n− (d− j + 1)k − 2
ε

log 1
β
− k

2 ≥ n−
(
d− j + 3

2

)
k − 2

ε
log 1

β
.

That is, when we recurse in f of dimension j we lose at most
(
d− j + 3

2
)
k + 2

ε log 1
β

points. Denote by d0 = d, d1, . . . , dt the sequence of dimensions into which the procedure
recurses (reaching the base case at dimension dt ≥ 0). Hence, keeping k fixed throughout
the recursion, at the r-th recursive step we lose at most

(
dr − dr+1 + 3

2
)
k + 2

ε log 1
β points.

Summing up these losses over r = 0, . . . , t− 1, the total loss is at most

(d0 − dt)k + 3
2kt+ 2t

ε
log 1

β
≤ 5d

2 · k + 2d
ε

log 1
β
.

Substituting k = n
4d , we get that the total number of points that we loose is at most 2n

3

if n = Ω
(
d
ε log 1

β

)
, with a sufficiently large constant of proportionality.

Notice that we keep k fixed throughout the recursion and n may decrease. Consequently,
if n′ is the number of points in some recursive call in some dimension ` < d, then n′ ≥ n

3
and therefore k = n

4d ≤
3n′
4d which is still smaller than the centerpoint guarantee of n′

`+1 .
As described, our subspace-selection procedure (with all its recursive calls) is 2d2ε-

differentially private. Dividing ε by 2d2 we get that our subspace-selection procedure is
ε-differentially private, and that the total number of points we lose is much smaller than n if
n = Ω

(
d3

ε log 1
β

)
.

Recall Section 3, where we showed that we need n = Ω
(
d4 log dX

ε

)
for the (ε-differentially

private) base case to work correctly. (Recall also that the base case is actually applied in
a suitable projection of the terminal subspace onto some coordinate-frame subspace of the
same dimension, and that the above lower bound on n suffices for any such lower-dimensional
instance too.)

The following theorem summarizes the result of this section.

I Theorem 4.9. If n = Ω
(
d4 log dX

ε + d3 log 1
β

ε

)
, our algorithm (including all recursive calls

and the base case) is ε-differentially private, runs in O
(
n1+(d−1)bd/2c) time, and finds a

point of depth at least k = n
4d with probability at least 1− 2d2β.

Proof. The privacy statement follows by composition, using Lemma 4.5 and the privacy
properties of the exponential mechanism. The confidence bound follows since the probability
of failure of the recursive call in a subspace of dimension j is at most (j + 1)β. The running
time of the algorithm is dominated by the running time of the exponential mechanism that
we perform at the bottom (base case) of the recursion. J

5 An O(nd) algorithm via volume estimation

The upper bound on the running time in Theorem 4.9 is dominated by the running time of
the base case, in which we compute all the regions D≥` explicitly, which takes nO(d2) time.
To reduce this cost, we use instead a mechanism that (a) estimates the volume of Dk to a
sufficiently small relative error, and (b) samples a random point “almost” uniformly from Dk.

SoCG 2020

52:14 How to Find a Point in the Convex Hull Privately

We show how to accomplish (a) and (b) using the volume estimation mechanisms of Lovász
and Vempala [14] and later of Cousins and Vempala [7]. We also show how to use these
procedures to implement approximately the exponential mechanism described in Section 3.
These algorithms are Monte Carlo, so they fail with some probability, and when they fail we
may lose our ε-differential privacy guarantee. As a result, the modified algorithm will not be
purely differentially private, as the one in Section 3, and we will only be able to guarantee
that it is (ε, δ)-differentially private, for any prescribed δ > 0. The following theorem is our
main result. We prove it in the full version of this paper [12].

I Theorem 5.1. Given n = Ω
(
d4 log dX

δ

ε

)
points, our algorithm (including all recursive calls

and the base case) is (ε, δ)-differentially private, runs in O
(
nd
)
time, and finds a point of

depth at least k = n
4d with probability at least 1− δ.

6 Conclusions

We gave an O(nd)-time algorithm for privately computing a point in the convex hull of
Ω(d4 logX) points with coordinates that are multiples of 1/X in [0, 1]. Even though this gives
a huge improvement of what was previously known and requires some nontrivial technical
effort, and sophisticated sampling and volume estimation tools, this running time is still not
satisfactory for large values of d. The main hurdle in improving it further is the nonexistence
of efficient algorithms for computing Tukey depths and Tukey levels.

The main question that we leave open is whether there exists a differentially private
algorithm for this task which is polynomial in n and d? (when the input size, n, is still
polynomial in logX and d).

References
1 Amos Beimel, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample

complexity for private learning and private data release. In TCC, volume 5978 of LNCS, pages
437–454. Springer, 2010.

2 Amos Beimel, Shay Moran, Kobbi Nissim, and Uri Stemmer. Private center points and learning
of halfspaces. In Conference on Learning Theory (COLT), pages 269–282, 2019.

3 Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure
vs. approximate differential privacy. In APPROX-RANDOM, volume 8096 of LNCS, pages
363–378. Springer, 2013.

4 Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke. Composable and versatile
privacy via truncated cdp. In 50th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 74–86, 2018.

5 Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private release
and learning of threshold functions. In IEEE 56th Annual Symposium on Foundations of
Computer Science (FOCS), pages 634–649, 2015.

6 Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Comput.
Geom., 10:377–409, 1993.

7 Ben Cousins and Santosh S. Vempala. Gaussian cooling and O∗(n3) algorithms for volume
and gaussian volume. SIAM J. Comput., 47(3):1237–1273, 2018.

8 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, volume 3876 of LNCS, pages 265–284. Springer,
2006.

9 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4), 2014.

H. Kaplan, M. Sharir, and U. Stemmer 52:15

10 Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir. On the zone theorem for hyperplane
arrangements. SIAM J. Comput., 22(2):418–429, 1993.

11 Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. Privately
learning thresholds: Closing the exponential gap. CoRR, 2019. arXiv:1911.10137.

12 Haim Kaplan, Micha Sharir, and Uri Stemmer. How to find a point in the convex hull privately,
2020. arXiv:2003.13192.

13 Xiaohui Liu, Karl Mosler, and Pavlo Mozharovskyi. Fast computation of Tukey trimmed
regions and median in dimension p > 2. J. of Comput. and Graph. Stat., 28(3):682–697, 2019.

14 László Lovász and Santosh S. Vempala. Simulated annealing in convex bodies and an O∗(n4)
volume algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.

15 Jiří Matousek. Lectures on Discrete Geometry. Springer-Verlag, Berlin, Heidelberg, 2002.
16 Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual

IEEE Symposium on Foundations of Computer Science (FOCS), pages 94–103, 2007.
17 Peter J. Rousseeuw and Ida Ruts. Constructing the bivariate Tukey median. Statistica Sinica,

8(3):827–839, 1998.
18 John W. Tukey. Mathematics and the picturing of data. In Proc. of the International Congress

of Mathematicians, volume 2, page 523–531, 1975.
19 Salil Vadhan. The complexity of differential privacy. In Yehuda Lindell, editor, Tutorials on

the Foundations of Cryptography: Dedicated to Oded Goldreich, pages 347–450. Springer, 2017.

SoCG 2020

http://arxiv.org/abs/1911.10137
http://arxiv.org/abs/2003.13192

Efficient Approximation of the Matching Distance
for 2-Parameter Persistence
Michael Kerber
Graz University of Technology, Austria
kerber@tugraz.at

Arnur Nigmetov
Graz University of Technology, Austria
nigmetov@tugraz.at

Abstract
In topological data analysis, the matching distance is a computationally tractable metric on multi-
filtered simplicial complexes. We design efficient algorithms for approximating the matching distance
of two bi-filtered complexes to any desired precision ε > 0. Our approach is based on a quad-tree
refinement strategy introduced by Biasotti et al., but we recast their approach entirely in geometric
terms. This point of view leads to several novel observations resulting in a practically faster
algorithm. We demonstrate this speed-up by experimental comparison and provide our code in a
public repository which provides the first efficient publicly available implementation of the matching
distance.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases multi-parameter persistence, matching distance, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.53

Related Version A full version of the paper is availabe at [14], https://arxiv.org/abs/1912.05826.

Supplementary Material Our code is available as part of the Hera library https://bitbucket.org/
grey_narn/hera/src/master/matching/ and provides an efficient implementation for computing
the matching distance for bi-filtrations.

Funding Michael Kerber : Supported by Austrian Science Fund (FWF) grant number P 29984-N35.

1 Introduction

Persistent homology [10, 4, 9, 18] is one of the major concepts in the quickly evolving field of
topological data analysis. The concept is based on the idea that studying the topological
properties of a data set across various scales yields valuable information that is more robust
to noise than restricting to a fixed scale.

We distinguish the case of single-parameter persistence, where the scale is expressed by a
single real parameter, and the case of multi-parameter persistence, in which the scale consists
of two or more parameters that vary independently. The former case is the predominant
one in the literature. The entire homological multi-scale evolution of the data set can be
expressed by a multi-set of points in the plane, the so-called persistence diagram. Moreover,
the interleaving distance yields a distance measure between two data sets by measuring
the difference in their topological evolution. For a single parameter, this distance can be
rephrased as a combinatorial matching problem of the corresponding persistence diagrams
(known as the bottleneck distance) and computed efficiently [12]. These results are part of a
rich theory of single-parameter persistence, with many algorithmic results and applications.

The case of multi-parameter persistence received significantly less attention until recently.
One reason is the early result that a complete combinatorial structure such as the persistence
diagram does not exist for two or more parameters [5]. Moreover, while the interleaving
distance can be straight-forwardly generalized to several parameters, its computation becomes

© Michael Kerber and Arnur Nigmetov;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 53; pp. 53:1–53:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8030-9299
mailto:kerber@tugraz.at
https://orcid.org/0000-0003-4823-5311
mailto:nigmetov@tugraz.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.53
https://arxiv.org/abs/1912.05826
https://bitbucket.org/grey_narn/hera/src/master/matching/
https://bitbucket.org/grey_narn/hera/src/master/matching/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Matching Distance Approximations

NP-hard already for two parameters, as well as any approximation to a factor less than 3 [3].
On the other hand, data sets with several scale parameters appear naturally in applications,
and an efficiently computable distance measure is therefore highly important.

We focus on the matching distance [6, 2, 13] as a computationally tractable lower bound
on the interleaving distance [15]. It is based on the observation that when restricting the
multi-parameter space Rd to a one-dimensional affine subspace (that is, a line in Rd), we are
back in the case of single-parameter persistence. We can compute the bottleneck distance
between the two persistence diagrams restricted to the same subspace. The matching distance
is then defined as the supremum of all bottleneck distances over all subspaces (see Section 3
for the precise definition). The matching distance has been used in shape analysis [6, 2]
(where it is known as the matching distance between size functions), for virtual screening in
computational chemistry [11], and a recent algorithm [13] computes the distance exactly in
polynomial time (with a large exponent).

Our contribution is an improvement of an approximation algorithm by Biasotti et al. [2]
for the 2-parameter case which we summarize next. We parameterize the space of all lines of
interest as a bounded rectangle R ⊂ R2. To each point p in the rectangle, we assign f(p)
as the bottleneck distance between the two persistence diagrams when restricting the data
sets to the line parameterized by p. The matching distance is then equal to supp∈R f(p).
The major ingredient of the algorithm is a variation bound which tells how much f(p) varies
when p is perturbed by a fixed amount. For any subrectangle S ⊆ R with center c, f(c) and
the variation bound yield an upper bound of f within S. We then obtain an ε-approximation
with a simple branch-and-bound scheme, subdividing R with a quad-tree in BFS order and
stopping the subdivision of a rectangle when its upper bound is sufficiently small.

Our contributions. We aim for a fast implementation useful for practical applications of
multi-parameter persistent homology. Towards this goal, we make the following contributions:
1. We rephrase the approximation algorithm by Biasotti et al. entirely in elementary

geometric terms. We think that the geometric point of view complements their formulation
and makes the structure of the algorithm more accessible. Indeed, we are able to simplify
several arguments from [2] (see Appendix E in [14]).

2. We provide a simple yet crucial algorithmic improvement: instead of using the global
variation bound for all rectangles of the subdivision, we derive adaptive local variation
bounds for each rectangle individually. This results in much smaller upper bounds and
avoids many subdivisions in the approximation algorithm.

3. We experimentally compare our version of the global bound with the usage of the adaptive
bounds. We show that the speed-up factor of the sharpest adaptive bound is typically
between 3 and 8, depending on the input bi-filtrations (for some inputs the speed-up is
15).

4. Our code is available as part of Hera library1 and provides an efficient implementation
for computing the matching distance for bi-filtrations.

Outline. We start with a short introduction to filtrations and persistent homology in
Section 2. We define the matching distance in Section 3. The algorithm to approximate it
is described in Section 4, and our local variation bounds are derived in Section 5. We do
experiments in Section 6 and conclude in Section 7.

1 https://bitbucket.org/grey_narn/hera/src/master/matching/

https://bitbucket.org/grey_narn/hera/src/master/matching/

M. Kerber and A. Nigmetov 53:3

v=0.1 v=0.4 v=0.6 v=0.8 v=10

0.6
0.9

0.2

0.6 0.40.1

0.8

0.5

Figure 1 Left: Mono-filtration of a simplicial complex K of dimension 2. The critical value of
each simplex is displayed. Right: Examples of the complexes Kv for various values of v.

2 Background

Mono-Filtrations. Fixing a base set V , a k-simplex σ is a non-empty subset of V of
cardinality k + 1. A face τ of σ is a non-empty subset of σ. A simplicial complex K is
a collection of simplices such that whenever σ ∈ K, every face of σ is in K as well. The
dimension of a simplicial complex K is the maximal k such that K contains a k-simplex. As
an example, a graph is merely a simplicial complex of dimension 1. Following graph-theoretic
notations, we call 0-simplices of K vertices and 1-simplices of K edges. A subcomplex of K
is a subset L ⊆ K such that L is again a simplicial complex. We will henceforth assume that
the base set V is finite, which implies also that the simplicial complex K is finite.

A mono-filtration is a simplicial complex K equipped with a function ϕ : K 7→ R such
that for any simplex σ and any face τ of σ, it holds that ϕ(τ) 6 ϕ(σ). We call ϕ(σ) the
critical value of σ and define for any v ∈ R

Kv := {σ ∈ K | ϕ(σ) 6 v}.

By the condition on ϕ from above, Kv is a subcomplex of K for each v. Moreover, whenever
v 6 w, we have that Kv ⊆ Kw. Hence, the collection (Kv)v∈R yields a nested sequence of
simplicial complexes, which is entirely determined by the critical values of each simplex in
K. See Figure 1 for an illustration.

Persistence diagrams. We are interested in the topological changes of (Kv)v∈R when v

increases continuously. A persistence diagram is a multi-set of points in R× (R ∪ {∞}) with
all points strictly above the diagonal x = y. The general definition requires a digression
into representation theory and homological algebra (e.g., see [18]). Instead, we explain the
idea on the problem of tracking connected components of Kv within the filtration, which is
a special case of the general theory. Assume for simplicity that no two simplices have the
same critical value. Whenever we reach the critical value b of a vertex, a new connected
component comes into existence. We call this a birth. We say that the component born at b
dies at value d if there is an edge with critical value d that merges the connected component
with another connected component which was born before b. In that case, (b, d) is a point in
the persistence diagram, denoting that the corresponding connected component persisted
from scale b to scale d. Assuming that K is connected, each component gets assigned a
unique death value except the component born at the minimal critical value. We assign the
death value ∞ to this component, adding an infinite point to the diagram. The resulting
diagram is called the persistence diagram in (homological) dimension 0. See Figure 2 (left).
Similar diagrams can be defined for detecting tunnels, voids, and higher-dimensional holes in
the simplicial complex.

We define a distance on two persistence diagrams D1 and D2 next. Fixing a partial
matching between D1 and D2, we assign to each match of p ∈ D1 and q ∈ D2 the cost
‖p− q‖∞ = max{|px− qx|, |py − qy|}, with the understanding that ∞−∞ = 0. In particular,
the cost of matching a finite to an infinite point is∞. Every unmatched point p gets assigned

SoCG 2020

53:4 Matching Distance Approximations

0.1

0.1

0.4

0.7

0.4 0.7

0.125

0.05

0.05

0.1

0.1

0.1

0.1

0.4

0.7

0.4 0.7

Figure 2 Left: The persistence diagram in dimension 0 of the example from Figure 1 (plus the
point (0,∞) that is not drawn). Note that indeed, connected components are born at 0, 0.1, 0.4
and 0.5, and the latter three components die at 0.2, 0.6 and 0.8, respectively. Right: A partial
matching of two diagrams (depicted by circles and x-shapes). The cost of each match and of each
unmatched vertex is displayed. The cost of this matching is 0.125 which is in fact the optimal cost
in this example, so the bottleneck distance between the diagrams is 0.125.

the cost py−px

2 which corresponds to the L∞-distance from p to the diagonal. Taking the
maximum over all matched and unmatched points in D1 and D2 results in the cost of the
chosen partial matching. The bottleneck distance between D1 and D2 is then the minimum
cost over all possible partial matchings between D1 and D2. See Figure 2 (right) for an
example. Since filtrations give rise to persistence diagrams, we also talk about the bottleneck
distance between two filtrations and denote it by dB(·, ·) from now on.

We will need the following properties of the bottleneck distance. The proofs of the first
three of them follow directly from the definition.

dB satisfies the triangle inequality: dB(F,H) 6 dB(F,G) + dB(G, h) for three filtrations
F , G, H.
dB is shift-invariant: let F = (K,ϕ) be a filtration, define Fr be the filtration (K,ϕ+ r),
where the critical value of each simplex is shifted by r. Then dB(F,G) = dB(Fr, Gr).
dB is homogeneous: let F = (K,ϕ) be a filtration, λ be a positive number, define λF be
the filtration (K,λϕ).Then dB(λF, λG) = λdB(F,G).
dB is stable [7]: let F1 = (K,ϕ1) and F2 = (K,ϕ2) be two filtrations of the same complex
such that for each σ ∈ K, |ϕ1(σ)− ϕ2(σ)| 6 ε. Then, dB(F1, F2) 6 ε.

Bi-filtrations. Define the partial order 6 on R2 as p 6 q if and only if px 6 qx and py 6 qy.
Geometrically, p 6 q if and only if q lies in the upper-right quadrant with corner p. A
(1-critical) bi-filtration is a simplicial complex K together with a function ϕ : K → R2 such
that for every simplex σ and every face τ of σ, we have that ϕ(τ) 6 ϕ(σ). As before, ϕ(σ) is
called the critical value of σ. Our assumption that every simplex has a unique critical value
is just for the sake of simpler exposition; our ideas extend to the k-critical case where each σ
has up to k incomparable critical values (Appendix H, [14]). Fixing p ∈ R2, we define

Kp := {σ ∈ K | ϕ(σ) 6 p}.

Similar to the mono-filtration case, Kp is a subcomplex and Kp ⊆ Kq, whenever p 6 q.
It is worth visualizing the construction of Kp geometrically. We can represent the bi-

filtration as a multi-set of points in R2, where each point corresponds to a simplex and is
placed at the critical value of the simplex. The complex Kp then consists of all simplices
that are placed in the lower-left quadrant with p at its corner. See Figure 3 for an example.

M. Kerber and A. Nigmetov 53:5

p=(0.7,0.6)

(0.2,0.3)

(0.1,0.1) (0.4,0)(0.6,0.2)

(0.9,0.5)

(0.5,0.4)

(0,0.2)

(0.8,0.7)

(0.5,0.5)

Figure 3 Left: Bi-filtration of a simplicial complex K of dimension 2. Middle: Every point in
the plane denotes the critical value of a simplex. The shaded rectangle yields the simplices that
belong to Kp. Right: Illustration of Kp as a subcomplex of K.

0.2

0.4 0.8

1.2

0.12 0.46

0.6

0.69

1.04

Figure 4 Left: The slice parameterized by (π6 , 0.1). For two critical values of the bi-filtration
from above, we illustrate the construction of the point q (displayed by a cross shape). The push of
the critical value is simply the Euclidean distance to the point (0, 0.1), which is the origin of the
slice. Right: The non-weighted restriction on the slice. Each simplex gets its push as critical value.

3 The matching distance

Slices. Bi-filtrations are too wild to admit a simple combinatorial description such as a
persistence diagram. But we can obtain a persistence diagram when restricting to a one-
dimensional affine subspace. For all concepts in this subparagraph, see Figure 4 for an
illustration. We consider a non-vertical line L with positive slope, which we call a slice. For
every slice, we distinguish a point O, called the origin of the slice. We let L denote the set
of all slices. Since the slope is positive, for any two distinct points p, q on L either p 6 q or
q 6 p holds. Hence, 6 becomes a total order along L.

Given p ∈ R2, let q be the minimal point on L (with respect to 6) such that p 6 q.
Geometrically, q is the intersection of L with the boundary of the upper-right quadrant of
p, or equivalently, the horizontally-rightwards projection of p to L if p lies above L, or the
vertically-upwards projection of p to L if p lies below L. Since q lies on L, q can be written as

O + λp

(
cos γ
sin γ

)
where γ is the angle between L and x-axis, and λp ∈ R. We define λp as the push of p to L,
which can be formally written as a function push : R2 × L → R. Geometrically, the push is
simply the (signed) distance of the point q to the origin of the slice. Fixing a bi-filtration
F = (K,ϕ), the composition push(·, L) ◦ ϕ yields a function K → R, and it can be readily
checked that this function yields a mono-filtration, which we call the non-weighted restriction
of F onto L. See Figure 4 (right) for an example.

SoCG 2020

53:6 Matching Distance Approximations

Figure 5 Two points that are close to each other might have pushes far from each other. Note
that by making the slice more flat, the distance between the pushes can be made arbitrarily large.

Matching distance. Given two bi-filtrations F 1, F 2, we could try to define a distance
between them by taking the supremum of bottleneck distances between their non-weighted
restrictions on all slices. However, this does not yield a meaningful result. The reason is that
for almost horizontal and almost vertical slices, the pushes of two close-by points can move
very far away from each other – see Figure 5 for an example. As a result, the bottleneck
distance along such slices becomes arbitrarily large.

Instead, we introduce a weight for each slice. Let γ denote the angle between the slice L
and x-axis. We call L flat if γ 6 π

4 (i.e., if its slope is 6 1) and steep if γ > π
4 . Then we set

w(L) :=
{

sin γ if L is flat
cos γ if L is steep.

We define the matching distance between the bi-filtrations F 1 = (K1, ϕ1) and F 2 =
(K2, ϕ2) as

dM(F 1, F 2) := sup
L∈L

w(L) · dB(restr(F 1, L), restr(F 2, L)),

where restr(F i, L) denotes the non-weighted restriction of F i onto L. Note that while the
non-weighted restrictions depend on the choice of the origin, a different choice of origin for
a slice only results in a uniform translation of the critical values of both mono-filtrations.
Hence, the bottleneck distance does not change because of shift-invariance. This means that
the matching distance is independent of the choice of the origins.

Moreover, the shift-invariance of dB implies that if we alter ϕ1 and ϕ2 such that every
value is translated by the same vector v ∈ R2, the matching distance does not change.
Recalling that we can visualize bi-filtrations as finite multi-sets of points in R2, we can hence
assume without loss of generality that all these points are in the upper-right quadrant of the
plane, that is, ϕi(σ) ∈ [0,∞)× [0,∞).

Let us now define the weighted push of a point p to a slice L as wpush(p, L) =
w(L) push(p, L), and let FL denote the mono-filtration induced by σ 7→ wpush(ϕ(σ), L).
We call FL a weighted restriction of F onto L. Note that FL equals restr(F,L) except that
all critical values are scaled by the factor w(L). Using homogeneity of dB , we see that

dM(F 1, F 2) = sup
L∈L

dB(F 1
L, F

2
L). (1)

We will use this equivalent definition of the matching distance in the remaining part of the
paper, and “restriction” will always mean “weighted restriction”.

4 The approximation algorithm

The idea of the approximation algorithm for dM is to sample the set of slices through a
finite sample, and chose the maximal bottleneck distance between the (weighted) restriction
encountered as the approximation value. In order to execute this plan, we need to parameterize
the space of slices and need to compute the restriction of a parameterized slice efficiently.

M. Kerber and A. Nigmetov 53:7

(I)

(IV)

(III)

(II)

Figure 6 A steep y-slice (I), a flat y-slice (II), a steep x-slice(III) and a flat x-slice. The slopes
are 2 for the steep and 1

2 for the flat slices, and the origin is at (0, 2) for the y-slices and at (2, 0) for
the x-slices. Consequently, all four slices are parameterized by (1

2 , 2).

Slice Parameterization. Every slice has a unique point where the line enters the positive
quadrant of R2, which is either its intersection with the positive x-axis, the positive y-axis,
or the point (0, 0). From now on, we always use this point as the origin of the slice.

We call a slice an x-slice if its origin lies on the positive x-axis, and call it a y-slice if its
origin lies on the positive y-axis (slices through the origin are both x- and y-slices). Recall
also that a slice is flat if its slope is less than 1, and steep if it is larger than 1. Thus, a slice
belongs to one of the four types: flat x-slices, flat y-slices, steep x-slices and steep y-slices.
Every slice is represented as a point (λ, µ) ∈ (0, 1]× [0,∞) where the interpretation of the
parameters depends on the type of the slice as follows: Let O = (Ox,Oy) be the origin of L,
and recall that γ is the angle of the slice with the x-axis. Then

λ =
{

tan(γ), if L is flat
cot(γ), if L is steep

, µ =
{
Ox if L is x-slice
Oy if L is y-slice

.

In other words, λ is the slope of the line in the flat case, and the inverse of the slope in the
steep case, and µ contains the non-trivial coordinate of the origin. Note that the same pair of
parameters can parameterize different slices depending on the type. Figure 6 illustrates this.

Weighted pushes. We next show a simple formula for the value of wpush(p, L) depending
on the type of the slice.

I Lemma 1. With the chosen parameterization and choice of origin on L, wpush(p, L) is
computed according to the formulas given in Table 1.

Proof. The proof of the lemma is a series of elementary calculations. Let us consider, for
example, the case of a flat y-slice. In this case the slice L = (λ, µ) is given by{(

0
µ

)
+ ρ

(
cos γ
sin γ

)
| ρ ∈ R

}
,

If p = (px, py) is above L, we consider the point q = (qx, qy) which is the intersection of L
and the line y = py. Obviously, qy = py, and, since q lies on L, the second coordinate yields

ρ = qy − µ
sin γ = py − µ

sin γ .

By definition, ρ is the push of p to L and since L is flat, we have that w(L) = sin γ which
cancels with the denominator. The other 7 cases are proved analogously. J

SoCG 2020

53:8 Matching Distance Approximations

Table 1 Formulas for weighted push of (px, py) onto a slice L = (λ, µ).

y-slices x-slices

flat steep flat steep

p above L py − µ λ(py − µ) py λpy

p below L λpx px λ(px − µ) px − µ

Y

Figure 7 Illustration for the fact that slices with larger value of µ can be ignored.

All 8 expressions in Table 1 involve only addition and multiplication without trigonometric
functions. Hence we can extend them continuously to λ = 0, which corresponds to horizontal
lines (in the flat case) or vertical lines (in the steep case). With this interpretation, we can
extend L to a set L̄ in (1), containing these limit cases, without changing the supremum.

Next, we observe that we can restrict our attention to a bounded range of µ-parameters.
For that, let X denote the maximal x-coordinate and Y be the maximal y-coordinate among
all critical values of F 1 and of F 2. For a y-slice (steep or flat) L = (λ, µ) with µ > Y ,
let L′ = (λ, Y) be the parallel slice with origin at (0, Y). All critical values of F 1,2 are
below L and L′ by construction (recall that all critical points are assumed in the upper-right
quadrant), hence we obtain the push by projecting vertically upwards. Looking at the
second row in Table 1, we see that the weighted pushes are independent of µ, and therefore
equal for L and L′. Hence, the weighted bottleneck distances along L and L′ are equal:
dB(F 1

L, F
2
L) = dB(F 1

L′ , F 2
L′). See Figure 7 for an illustration. We conclude that for y-slices it

suffices to consider 0 6 µ 6 Y in (1) without changing the matching distance. An analogous
argument shows that for x-slices, it is only necessary to consider 0 6 µ 6 X.

To summarize the last two observations, we arrive at the following statement. There are
sets L1 of flat x-slices, L2 of steep x-slices, L3 of flat y-slices, and L4 of steep y-slices (with
each set containing some vertical/horizontal lines as limit case) such that

dM(F 1, F 2) = sup
L∈L1∪...∪L4

dB(F 1
L, F

2
L) (2)

and such that L1 and L2 are parameterized by [0, 1]× [0, X] and L3 and L4 by [0, 1]× [0, Y].

Approximation. We present an approximation algorithm that, given two bi-filtrations F 1

and F 2 and some ε > 0 returns a number δ such that

dM(F 1, F 2)− ε 6 δ 6 dM(F 1, F 2).

We assume that the two bi-filtrations are given as simplicial complexes, i.e., a list of simplices,
where each simplex is annotated with two real values denoting the critical value of the
simplex. In the description, we set T := {x-flat, x-steep, y-flat, y-steep} for the type of a slice.
The algorithm is based on the following two primitives:

M. Kerber and A. Nigmetov 53:9

Eval(F 1, F 2, L) Computes dB(F 1
L, F

2
L), where L is specified by the triple (λ, µ, t) where

(λ, µ) are the parameterization of L and t ∈ T denotes its type.
Bound(F 1, F 2, B, t) If B is an axis-parallel rectangle and t ∈ T , the pair (B, t) specifies a

set of slices L0. The primitive computes a number µ ∈ R such that, for every L ∈ L0,

dB(F 1
L, F

2
L) 6 µ.

With these two primitives, we can state our approximation algorithm: from now on,
we refer to axis-parallel rectangles as boxes for brevity. We start by computing maximal
coordinates X and Y of critical values of F 1 and F 2 and enqueueing the four initial items
([0, 1]×[0, Y], y-steep), ([0, 1]×[0, Y], y-flat), ([0, 1]×[0, X], x-steep), and ([0, 1]×[0, X], x-flat)
into a FIFO-queue. We also maintain a variable ρ storing the largest bottleneck distance
encountered so far, initialized to 0.

Now, we pop items from the queue and repeat the following steps: for an item (B, t), let
L denote the slice that corresponds to the center point of B. We call Eval(F 1,F 2,L) and
update ρ if the computed value is bigger than the current maximum. Then, we compute
µ ←Bound(F 1,F 2,B,t). If µ > ρ + ε, we split B into 4 sub-boxes B1, . . . , B4 of equal
dimensions (using the center as splitpoint) and enqueue (B1, t), . . . , (B4, t). When the queue
is empty, we return δ ← ρ. This ends the description of the algorithm.

Assuming that the above algorithm terminates (which is unclear at this point because
it depends on the implementation of the Bound primitive), the output is indeed an ε-
approximation. This can be derived directly from the termination condition of the subdivision
and the fact that ρ is non-decreasing during the algorithm. See Appendix A, [14] for details.

A variant of the above algorithm computes a relative approximation of the matching
distance, that is, a number δ such that

dM(F 1, F 2) 6 δ 6 (1 + ε) dM(F 1, F 2).

The algorithm is analogous to the above, with the difference that a box is subdivided if
µ > (1 + ε)ρ, and at the end of the algorithm (1 + ε)ρ is returned as δ. The correctness of
this variant follows similarly. However, the algorithm terminates only if dM(F 1, F 2) > 0,
and its complexity depends on the value of the matching distance.

What is needed to realize the Eval primitive? First, we compute the weighted pushes
of each critical value of F 1 and of F 2 in time proportional to the number of critical values
using Lemma 1. Then, we compute the persistence diagrams of F 1 and of F 2, and their
bottleneck distance. Both steps are well-studied standard tasks in persistent homology, and
several practically efficient algorithms have been studied. We use Phat [1] for computing
persistence diagrams and Hera [12] for the bottleneck computation.

5 The Bound primitive

Recall that the input of Bound is (F 1, F 2, B, t), where (B, t) specifies a collection of slices of
type t. In what follows, we will identify points in B with the parameterized slice, writing
L ∈ B to denote that L is obtained from a pair of parameters (λ, µ) ∈ B with respect to
type t (which we skip for notational convenience).

Let Lc be the slice corresponding to the center of B. The variation of a point p ∈ R2 for
B denotes how much the weighted push of p changes when the slice is changed within B:

v(p,B) := max
L∈B
|wpushp(L)− wpushp(Lc)|.

SoCG 2020

53:10 Matching Distance Approximations

For a bi-filtration F , we define

v(F,B) := max
p critical value of F

v(p,B).

The variation yields an upper bound for the bottleneck distance within a box:

I Lemma 2. With the notation as before, we have that for two filtrations F 1, F 2 that

sup
L∈B

dB(F 1
L, F

2
L) 6 v(F 1, B) + dB(F 1

Lc
, F 2

Lc
) + v(F 2, B)

Proof. By triangle inequality of the bottleneck distance,

dB(F 1
L, F

2
L) 6 dB(F 1

L, F
1
Lc

) + dB(F 1
Lc
, F 2

Lc
) + dB(F 2

Lc
, F 2

L).

Looking at the first term on the right, we have two filtrations of the same simplicial complex,
and every critical values changes by at most v(F 1, B) by definition of the variation. Hence,
by stability of the bottleneck distance, dB(F 1

L, F
1
Lc

) 6 v(F 1, B). The same argument applies
to the third term which proves the theorem. J

Note that the second term in the bound of Lemma 2 is the value at the center slice, which is
already computed in the algorithm. It remains to compute the variation of a bi-filtration
within B. This, in turn, we do by analyzing the variation of a point p within B. We show

I Theorem 3. For a box B, let L1, . . . , L4 be the four slices on the corners of B. Then

v(p,B) = max
i=1,...,4

|wpushp(Li)− wpushp(Lc)|

The theorem gives a direct algorithm to compute v(p,B), just by computing the weighted
pushes at the four corners (in constant time) and return the maximal difference to the weighted
push in the center. Doing so for every critical point of a bi-filtration F yields v(F,B), and
with Lemma 2 an algorithm for the Bound primitive that runs in time proportional to the
number of critical points of F 1 and F 2. We refer to this bound as local linear bound (where
the term “linear” refers to the computational complexity), or as L-bound.

The proof of the theorem is presented in Appendix B, [14]. The main idea is that the
expression |wpushp(Lλ,µ)−wpushp(Lc)| (with Lλ,µ the slice given by (λ, µ)) has no isolated
local maxima, even for a fixed λ or a fixed µ. That implies that from any (λ, µ) in the box,
there is rectilinear path to a corner on which the expression above is non-decreasing.

A coarser bound. We have derived a method to compute v(p,B) exactly which takes linear
time. Alternatively, we can derive an upper bound as follows:

I Theorem 4. Let B be a box [λmin, λmax]× [µmin, µmax] with center (λc, µc), width ∆λ =
λmax − λmin and height ∆µ = µmax − µmin. Then, for any point p ∈ [0, X]× [0, Y], v(p,B)
is at most

1
2 (∆µ+X∆λ) for flat y-slices
1
2 (λc∆µ+ (Y − µmin)∆λ)} for steep y-slices
1
2 (λc∆µ+ (X − µmin)∆λ) for flat x-slices
1
2 (∆µ+ Y∆λ) for steep x-slices.

Importantly, the bound is independent of p, and hence also an upper bound for v(F,B) that
can be computed in constant time; we refer to it as local constant bound or C-bound.

M. Kerber and A. Nigmetov 53:11

The proof of Theorem 4 is based on deriving a bound of how much wpushp(L) and
wpushp(L′) can differ for two slices L = (λ, µ) and L′ = (λ′, µ′) in dependence of |λ−λ′| and
|µ− µ′|. This bound, in turn, is derived separately for all four types of boxes and involves
an inner case distinction depending on whether p lies above both slices, below both slices, or
in-between. In either case, the claim of the statement follows from the bound by plugging in
the center slice of a box for either L or L′. See [14] for the detailed proof.

Termination and complexity. We show next that our absolute approximation algorithm
terminates when realized with either the local linear bound or the local constant bound. In
what follows, set C := max{X,Y }. In the subdivision process, each box B considered is
assigned a level, where the level of the four initial boxes is 0, and the four sub-boxes obtained
from a level-k-box have level k + 1. Since every box is subdivided by the center, we have
immediately that for a level-k-box, ∆λ = 2−k, and ∆µ 6 C2−k. Using these estimates in
Theorem 4, we obtain

v(F i, B) 6 1
2(C2−k + C2−k) = C2−k. (3)

for i = 1, 2 and every level-k-box B considered by the algorithm. Note that the local constant
bound yields a bound on v(F i, B) that is not worse, and so does the local linear bound
(which computes v(F i, B) exactly). Hence we have

I Lemma 5. Let B be a level-k-box considered in the algorithm. Then, µ, the result of the
Bound primitive in the algorithm, satisfies

µ 6 dB(F 1
Lc
, F 2

Lc
) + 2C2−k

both for the local linear and local constant bound.

It follows easily that if 2C2−k 6 ε, or equivalently 2k > 2C
ε , a box is not further subdivided

in the algorithm (see Lemma 9 in [14]). Moreover, if the maximal subdivision depth is k, the
algorithm visits O(4k) boxes, and requires O(n3) time per box because of the computation
of two persistence diagrams and their bottleneck distance. Combining these results leads to
the complexity bound.

I Theorem 6. Our algorithm to compute an absolute ε-approximation terminates in

O(n3
(
C

ε

)2
)

steps in the worst case (both for the linear and constant bound).

See again [14] for more details. In there, we also derive a similar bound for the variant of
computing a relative approximation.

I Theorem 7. Our algorithm to compute a relative (1 + ε)-approximation terminates in

O(n3
(

C(1 + ε)
εdM(F 1, F 2)

)2
)

steps in the worst case if dM(F 1, F 2) > 0.

SoCG 2020

53:12 Matching Distance Approximations

6 Experiments

Experimental setup. Our experiments were performed on a workstation with an Intel(R)
Xeon(R) CPU E5-1650 v3 CPU (6 cores, 3.5GHz) and 64 GB RAM, running GNU/Linux
(Ubuntu 16.04.5). The code was written in C++ and compiled with gcc-8.1.0.

We generated two datasets, which we call GH and ED, following [2] (unfortunately, we
were unable to get either the code or the data used by the authors). Each of the 70 files
in the datasets is a lower-star bi-filtration of a triangular mesh (2-dimensional complex),
representing a 3D shape. We also generated dataset RND of larger random bi-filtrations
with up to 2,000 vertices. A more detailed description of the datasets can be found in [14].
In all our experiments we used persistence diagrams in dimension 0. In the experiments with
the datasets GH and ED, we computed all pairwise distances; in the experiments with RND
we computed distances only between bi-filtration with the same number of vertices. We used
relative error threshold, which we call ε in this section throughout (i.e., we always compute
(1 + ε)-approximation).

Comparison of different bounds. First, we experimentally compare the performance of
our algorithm with the L-bound from Theorem 3 and with the C-bound from Theorem 4.
Obviously, the L-bound is sharper, so it allows us to subdivide fewer boxes and in this sense
is more efficient. However, it is not a priori clear that the L-bound is preferable, since its
computation takes O(n) time per box, in contrast to the constant bound.

Secondly, we compare the local bounds L and C with the bound provided by Equation (3),
which we call the global bound or G-bound because it only depends on the size of the box. A
bound of that sort (worse than Equation (3)) is used in [2].

Recall that the dominating step in the complexity analysis (and in practice) is the
computation of persistence, and we perform two such computations when we call the Eval
primitive. Therefore we are interested in the number of calls of Eval; for brevity, we refer to
this number simply as the number of calls.

In Table 2, we give the average number of calls and timings for different datasets and values
of ε. Actually, the variance behind the average in these tables is large, so we additionally
provide Table 3 and Table 4, where we report the average, maximal, and minimal ratios of
the number of calls and time that the algorithm needs with different bounds. For instance,
the third line of Table 3 shows that for all pairs from ED that we tested with relative error
ε = 0.5, switching from the local constant to the local linear bound reduces the number of
calls by a factor between 1.78 and 4.92.

Table 4 shows that, as expected, the C-bound always performs better than the G-bound,
with the average speed-up around 2. The L-bound brings an additional speed-up by a factor
of 1.5-2 in terms of the running time; the number of calls is reduced more significantly, by a
factor of 3. However, the second from the right column of Table 4 shows that the running
time can sometimes moderately increase, if we switch to the L-bound from the C-bound.
If we compare the G-bound with the L-bound directly (these numbers are not present in
Table 4), the best speed-up factor is 15.6, the worst one is 1.14, and the average is between 3
and 8, depending on the dataset.

Breadth-first search, depth-first search, and error decay. In the formulation of our al-
gorithm we used a FIFO-queue. This means that we traverse the quad-tree in breadth-first
order (i.e., level by level). Other traversal strategies are possible, for instance a depth-first
order, or a greedy algorithm where boxes with large bottleneck distance at the center are

M. Kerber and A. Nigmetov 53:13

Table 2 Average number of calls and average running time with the L-, C- and G-bounds for
different datasets and relative error ε.

#Calls Time (min)

L C G L C G

GH, ε = 0.5 938 2502 11082 2.08 3.67 18.78

ED, ε = 0.1 1455 3920 27529 2.58 3.26 25.96

ED, ε = 0.5 169 531 2112 0.28 0.42 1.67

Table 3 Comparison of number of calls between the global, local constant, and local linear
bounds. G / C denotes the ratio of the G-bound compared with the C-bound; C / L denotes the
ratio of the C-bound compared with the L-bound.

#Calls: G / C #Calls: C / L

Dataset, ε Avg Min Max Avg Min Max

GH, ε = 0.5 1.80 1.21 3.28 3.10 1.51 7.02

ED, ε = 0.1 2.93 1.43 5.07 3.00 1.88 6.82

ED, ε = 0.5 1.94 1.17 2.81 3.29 1.78 4.92

RND, ε = 0.1 6.06 2.76 10.58 2.08 1.91 2.47

Table 4 Comparison of running time between the global, local constant, and local linear bounds.

Time: G / C Time: C / L

Dataset, ε Avg Min Max Avg Min Max

GH, ε = 0.5 1.66 1.00 3.18 2.03 0.75 6.32

ED, ε = 0.1 3.12 1.44 5.21 1.64 0.81 3.40

ED, ε = 0.5 2.08 1.07 3.38 1.59 0.92 3.89

RND, ε = 0.1 5.73 2.83 10.67 1.93 1.66 2.20

SoCG 2020

53:14 Matching Distance Approximations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·105

0

0.2

0.4

0.6

0.8

1

Time (msec)

R
el
at
iv
e
er
ro
r
ε

ε, C-bound
ε, G-bound

Figure 8 Error decay with time for the C- and G-bounds.

picked first. We experimented with these variants and found no significant difference. The
explanation is that a good lower bound is achieved after a small number of iterations in
every variant, and the remaining part of the computations is mostly to certify the answer.

A variant of our algorithm is that instead of ε, we are given a time budget and want
to compute the best possible (relative) approximation in this time limit. In such a case,
we propose to traverse the quad-tree by always subdividing the box with the largest upper
bound (i.e., the output of the Bound primitive). When the time is over, it suffices to peek at
the top of the priority queue to get the current upper bound, and we can output the lower
bound ρ and the relative error that we can guarantee at this moment. It is instructive to plot
how the relative error decreases as the algorithm runs;see Figure 8. For instance, we can see
that it takes approximately 3.5 times longer to bring the relative error below 0.1 than below
0.2, if we use the constant bound. This agrees with the complexity estimate in Theorem 7.

One detail in this plot is relevant for the experiments of the previous subparagraph. If
we choose a relative error ε0 and draw a horizontal line ε = ε0 in Figure 8 until it intersects
the plotted curves, then the x-coordinate of the intersection is the time that our algorithm
needs to guarantee a 1 + ε0 approximation with the corresponding bound. We can see that
the difference between the time needed with the global bound and the time needed with
the constant bound is not large for some values of ε0, but a small change of ε0 can rapidly
increase it. Clearly, this is highly input-specific, and this partially explains the large variation
in the improvement ratios that we observed above, when we ran experiments with fixed ε.

We provide additional experimental results in [14]. It contains the reduction rate (the
measure used in [2]) for the experiments of this section, scaling results on the dataset RND,
and heatmap visualization of dB(F 1

L, F
2
L).

7 Conclusion

We presented an algorithm for the matching distance that keeps subdividing boxes until a
sufficiently close approximation of the matching distance can be guaranteed. This high-level
description also applies to the previous approach by Biasotti et al., which raises the question
of how the approaches compare in the details. Instead of pointing out similarities and
differences in the technical part, we give a detailed discussion on this topic in [14].

M. Kerber and A. Nigmetov 53:15

We have restricted to the case of bi-filtrations in this work. Generalizations in several
directions are possible. First of all, instead of bi-filtrations, our algorithm works the same
when the input is a pair of presentations of persistence modules [16, 13, 3]. Since a minimal
presentation of a bi-filtration can be of much smaller size than the bi-filtration itself, and its
computation is feasible [16, 8], switching to a minimal presentation will most likely increase
the performance further. We plan to investigate this in further work. Moreover, the case of
k-critical bi-filtrations can be handled with our methodology, just by defining the push of a
simplex as the minimal push over all its critical values (Appendix H in [14]). Our approach
can also be combined with barcode templates as introduced in the RIVET library [17]. Finally,
an extension of our approach to 3 and more parameters should be possible in principle, but
we point out that the space of affine lines through Rd is 2(d− 1) dimensional. Hence, already
the next case of tri-filtrations requires a subdivision in R4, and it is questionable whether
reasonably-sized instances could be handled by an extended algorithm.

As the experiments show, in some cases the cost of computing the L-bound makes the
variant with the C-bound faster. However, parallelization of the L-bound is trivial, and we
believe that on larger instances it will make the L-bound the best choice.

Finally, since the matching distance can be computed exactly in polynomial time [13], the
question is whether there is a practical algorithm for this exact computation. Our current
implementation can serve as a base-line for a comparison between exact and approximate
version of matching distance computations that hopefully lead to further improvements for
the computation of the matching distance.

References
1 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat - persistent

homology algorithms toolbox. J. Symb. Comput., 78:76–90, 2017. doi:10.1016/j.jsc.2016.
03.008.

2 Silvia Biasotti, Andrea Cerri, Patrizio Frosini, and Daniela Giorgi. A new algorithm for
computing the 2-dimensional matching distance between size functions. Pattern Recognition
Letters, 32(14):1735–1746, 2011.

3 Håvard Bjerkevik, Magnus Botnan, and Michael Kerber. Computing the interleaving distance
is NP-hard. arXiv:1811.09165.

4 G. Carlsson. Topology and data. Bulletin of the AMS, 46:255–308, 2009.
5 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &

Computational Geometry, 42(1):71–93, 2009. doi:10.1007/s00454-009-9176-0.
6 A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, and C. Landi. Betti numbers in multidimensional

persistent homology are stable functions. Mathematical Methods in the Applied Sciences,
36(12):1543–1557, 2013.

7 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete
& Computational Geometry, 37:103–120, 2007.

8 Tamal Dey and Cheng Xin. Generalized persistence algorithm for decomposing multi-parameter
persistence modules. arXiv:1904.03766.

9 H. Edelsbrunner and J. Harer. Computational Topology. An Introduction. American Mathem-
atical Society, 2010.

10 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.
Discrete & Computational Geometry, 28(4):511–533, 2002. doi:10.1007/s00454-002-2885-2.

11 Bryn Keller, Michael Lesnick, and Theodore L Willke. Persistent homology for virtual screening,
2018.

12 M. Kerber, D. Morozov, and A. Nigmetov. Geometry helps to compare persistence diagrams.
Journal of Experimental Algorithms, 22:1.4:1–1.4:20, September 2017.

SoCG 2020

https://doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.1016/j.jsc.2016.03.008
http://arxiv.org/abs/1811.09165
https://doi.org/10.1007/s00454-009-9176-0
http://arxiv.org/abs/1904.03766
https://doi.org/10.1007/s00454-002-2885-2

53:16 Matching Distance Approximations

13 Michael Kerber, Michael Lesnick, and Steve Oudot. Exact computation of the matching distance
on 2-parameter persistence modules. In 35th International Symposium on Computational
Geometry (SoCG 2019), pages 46:1–46:15, 2019.

14 Michael Kerber and Arnur Nigmetov. Efficient approximation of the matching distance for
2-parameter persistence. arXiv preprint, 2019. arXiv:1912.05826.

15 Claudia Landi. The rank invariant stability via interleavings. In Research in Computational
Topology, pages 1–10. Springer, 2018.

16 Michael Lesnick and Matthew Wright. Computing minimal presentations and bigraded betti
numbers of 2-parameter persistent homology. arXiv:1902.05708.

17 Michael Lesnick and Matthew Wright. Interactive visualization of 2-D persistence modules
persistence modules. arXiv, 2015. arXiv:1512.00180.

18 S. Oudot. Persistence theory: From Quiver Representation to Data Analysis, volume 209 of
Mathematical Surveys and Monographs. American Mathematical Society, 2015.

http://arxiv.org/abs/1912.05826
http://arxiv.org/abs/1902.05708
http://arxiv.org/abs/1512.00180

Homotopy Reconstruction via the Cech Complex
and the Vietoris-Rips Complex
Jisu Kim
Inria Saclay – Île-de-France, Palaiseau, France
http://pages.saclay.inria.fr/jisu.kim/
jisu.kim@inria.fr

Jaehyeok Shin
Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
http://www.stat.cmu.edu/~jaehyeos/
shinjaehyeok@cmu.edu

Frédéric Chazal
Inria Saclay – Île-de-France, Palaiseau, France
https://geometrica.saclay.inria.fr/team/Fred.Chazal/
frederic.chazal@inria.fr

Alessandro Rinaldo
Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
http://www.stat.cmu.edu/~arinaldo/
arinaldo@cmu.edu

Larry Wasserman
Department of Statistics & Data Science, Machine Learning Department, Carnegie Mellon
University, Pittsburgh, PA, USA
http://www.stat.cmu.edu/~larry/
larry@stat.cmu.edu

Abstract
We derive conditions under which the reconstruction of a target space is topologically correct via
the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data.
We provide two novel theoretical results. First, we describe sufficient conditions under which
any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set
is contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we
demonstrate the homotopy equivalence of a positive µ-reach set and its offsets. Applying these
results to the restricted Čech complex and using the interleaving relations with the Čech complex (or
the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy
equivalent to the Čech complex (or the Vietoris-Rips complex), in terms of the µ-reach. Our results
sharpen existing results.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology; Theory of
computation → Computational geometry

Keywords and phrases Computational topology, Homotopy reconstruction, Homotopy Equivalence,
Vietoris-Rips complex, Čech complex, Reach, µ-reach, Nerve Theorem, Offset, Double offset,
Consistency

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.54

Related Version The full version of the paper is available at https://arxiv.org/abs/1903.06955
and https://hal.archives-ouvertes.fr/hal-02425686.

Supplementary Material The code is available at https://github.com/jisuk1/nerveshape.

Funding Jisu Kim: Partially supported by Samsung Scholarship.

Acknowledgements We want to thank André Lieutier and Henry Adams for the thoughtful discus-
sions and comments.

© Jisu Kim, Jaehyeok Shin, Frédéric Chazal, Alessandro Rinaldo, and Larry Wasserman;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 54; pp. 54:1–54:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://pages.saclay.inria.fr/jisu.kim/
mailto:jisu.kim@inria.fr
http://www.stat.cmu.edu/~jaehyeos/
mailto:shinjaehyeok@cmu.edu
https://geometrica.saclay.inria.fr/team/Fred.Chazal/
mailto:frederic.chazal@inria.fr
http://www.stat.cmu.edu/~arinaldo/
mailto:arinaldo@cmu.edu
http://www.stat.cmu.edu/~larry/
mailto:larry@stat.cmu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.54
https://arxiv.org/abs/1903.06955
https://hal.archives-ouvertes.fr/hal-02425686
https://github.com/jisuk1/nerveshape
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

1 Introduction

A fundamental task in topological data analysis, geometric inference, and computational
geometry is that of estimating the topology of a set X ⊂ Rd based on a finite collection of data
points X that lie in it or in its proximity. This problem naturally occurs in many applications
area, such as cosmology [30], time series data [28], machine learning [17], and so on.

A natural way to approximate the target space is to consider an r-offset of the data
points, that is, to take the union of the open balls of radius r > 0 centered at the data points.
Under appropriate conditions, by the Nerve theorem [5] this offset is topologically equivalent
to the target space X via the Čech complex [7, 23]. For computational reasons, the Alpha
shape complex may be used instead, which is homotopy equivalent to the Čech complex
[20]. To further speed up calculations, and in particular if the data are high dimensional, the
Vietoris-Rips complex may be preferable as only the pairwise distances between the data
points are used.

To guarantee that the topological approximation based on the data points recovers
correctly the homotopy type of X, it is necessary that the data points are dense and close to
the target space, and that the radius parameter used for constructing the Čech complex or
the Vietoris-Rips complex be of appropriate size.

The conditions require the offset r to be lower bounded by a constant times the Hausdorff
distance between the target space and the data points, and upper bounded by another
constant times a measure of the size of the topological features of the target space. Originally,
the topological feature size was described as a sufficiently small number, for the Vietoris-Rips
complex in [24, 25]. Then, the topological feature size was expressed in terms of the reach
of X: see, for the Čech complex, in [12, 27]. Subsequently, the notion of µ-reach was put
forward to allow for more general target spaces: the condition for the Čech complex is
studied in [6, 8], and the condition for the Vietoris-Rips complex is studied in [6]. Also, the
radii parameters are allowed to vary across the data points in [12]. For the case when the
target space equals the data points, the conditions for the Čech complex or the Vietoris-Rips
complex is studied in [3, 4]. When the offset r is beyond the topological feature size so that
the homotopy equivalence does not hold, the homotopy type of the Vietoris-Rips complex
was studied for the circle in [2].

In this paper, we derive conditions under which the homotopy type of the target space
is correctly recovered via the Čech complex or the Vietoris-Rips complex, in terms of the
Hausdorff distance and the µ-reach of the target space. To tackle this problem, we provide
two novel theoretical results. First, we describe sufficient conditions under which any non-
empty intersection of finitely many Euclidean balls intersected with a set of positive reach is
contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we
demonstrate the homotopy equivalence of a positive µ-reach set and its offsets. These results
are new and of independent interest.

Overall, our new bounds offer significant improvements over the previous results in [27, 6]
and are sharp: in particular, they achieve the optimal upper bound for the parameter of
the Čech complex and the Vietoris-Rips complex under a positive reach condition. We will
provide a detailed comparison of our results with existing ones in Section 6.

2 Background

This section provides a brief introduction to simplicial complex, Nerve theorem, reach, and
µ-reach. We refer to Appendix A and [23, 19, 21, 1, 8, 13, 26, 18] for further definitions
and details. Throughout the paper, we let X and X be subsets of Rd. For x, y ∈ Rd, we
let d(x, y) := ‖x− y‖ be the Euclidean distance with ‖ · ‖ being the Euclidean norm. Let

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:3

d(x,X) = infy∈X d(x, y) denotes the distance from a point x to a set X, and let dX : Rd → R
be the distance function x 7→ d(x,X). For r > 0, we let BX(x, r) := {y ∈ X : d(x, y) < r}
be the open restricted ball centered at x ∈ Rd of radius r > 0. For r > 0, we let Xr be an
r-offset of a set X defined by the collection of all points that are within r distance to X, that
is, Xr :=

⋃
x∈X BRd(x, r). Finally, for two sets X,Y ⊂ Rd, we let dH(X,Y) := inf{r > 0 :

X ⊂ Y r and Y ⊂ Xr} be the Hausdorff distance between X and Y .

2.1 Simplicial complex and Nerve theorem
A natural way to approximate the target space X with the data points X is to take the union
of open balls centered at the data points. In detail, let r = {rx, x ∈ X} ∈ RX+ be pre-specified
radii and consider the union of restricted balls⋃

x∈X
BX(x, rx). (1)

Though we allow for the points in X to lie outside X, we will assume throughout that
BX(x, rx) 6= ∅ for all x ∈ X .

To infer the topological properties of the union of balls in (1), we rely on a simplicial
complex, which can be seen as a high dimensional generalization of a graph. Given a set V ,
an (abstract) simplicial complex is a collection K of finite subsets of V such that α ∈ K and
β ⊂ α implies β ∈ K. Each set α ∈ K is called its simplex, and each element of α is called a
vertex of α.

A simplicial complex encoding the topological properties of the union of balls in (1) is
the Čech complex.

I Definition 1 (Čech complex). Let X , X be two subsets and r ∈ RX+ . The (weighted) Čech
complex ČechX(X , r) is the simplicial complex

ČechX(X , r) :=

σ = {x1, . . . , xk} ⊂ X :
k⋂
j=1

BX(xj , rxj) 6= ∅

 . (2)

Computing the Čech complex requires computing all possible intersections of the balls.
To further speed up the calculation, we only check the pairwise distances between the data
points and instead build the Vietoris-Rips complex.

I Definition 2 (Vietoris-Rips complex). Let X , X be two subsets and r ∈ RX+ . The weighted
Vietoris-Rips complex Rips(X , r) is the simplicial complex defined as

Rips(X , r) :=
{
σ ⊂ X : d(xi, xj) < rxi + rxj , for all xi, xj ∈ σ

}
. (3)

The ambient Čech complex in (2) (that is, X = Rd) and the Vietoris-Rips complex in (3)
have the following interleaving relationship when all radii are equal (e.g., see Theorem 2.5
in [16]). That is, when rx = r > 0 for all x ∈ X , then

ČechRd(X , r) ⊂ Rips(X , r) ⊂ ČechRd
(
X ,
√

2d
d+ 1r

)
. (4)

This interleaving relation is extended to the case of different radii in Lemma 16.
The union of balls in (1) and the Čech complex in (2) are homotopy equivalent under

appropriate conditions. This remarkable result is precisely the renowned nerve theorem
[5, 7, 23], which we recall next. We first introduce the nerve, which is a more abstract notion
of the Čech complex.

SoCG 2020

54:4 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

I Definition 3 (Nerve). Let U = {Uα} be an open cover of a given topological space X. The
nerve of U , denoted by N (U), is the abstract simplicial complex defined as

N (U) =

{U1, . . . , Uk} ⊂ U :
k⋂
j=1

Uj 6= ∅

 .

The nerve theorem prescribes conditions under which the nerve of an open cover of X is
homotopy equivalent to X itself.

I Theorem 4 (Nerve theorem). Let X be a paracompact space and U be an open cover of X.
If every nonempty intersection of finitely many sets in U is contractible, then X is homotopy
equivalent to the nerve N (U).

Thus, in order to conclude that the ČechX(X , r) complex in (2) has the same homotopy
type as X, it is enough to show, by the nerve theorem, that the union of restricted balls⋃
x∈X BX(x, rx) covers the target space X and that any arbitrary non-empty intersection

of restricted balls is contractible. The difficulty in establishing the latter, more technical,
condition lies in the fact that it is not clear a priori what properties of X will imply it. If
X is a convex set, then the nerve theorem applies straightforwardly. But for more general
spaces, such as smooth lower-dimensional manifolds, it is not obvious how contractibility
may be guaranteed. One of the main results of this paper, given below in Theorem 9, asserts
that if X has positive reach and the radii of the restricted balls are small compared to the
reach, then any non-empty intersection of restricted balls is contractible.

2.2 The reach
First introduced by [21], the reach is a quantity expressing the degree of geometric regularity
of a set. In detail, given a closed subset X ⊂ Rd, the medial axis of X, denoted by Med(X),
is the subset of Rd consisting of all the points that have at least two nearest neighbors in X.
Formally,

Med(X) =
{
x ∈ Rd \ X : there exist q1 6= q2 ∈ X, ||q1 − x|| = ||q2 − x|| = d(x,X)

}
, (5)

The reach of X is then defined as the minimal distance from X to Med(X).

I Definition 5. The reach of a closed subset X ⊂ Rd is defined as

τX = inf
q∈X

d (q,Med(X)) = inf
q∈X,x∈Med(X)

||q − x||. (6)

Some authors [see, e.g. 27, 29] refer to τ−1
X as the condition number. From the definition

of the medial axis in (5), the projection πX(x) = arg minp∈X ‖p− x‖ onto X is well defined
(i.e. unique) outside Med(X). In fact, the reach is the largest distance ρ ≥ 0 such that πX is
well defined on the ρ-offset

{
x ∈ Rd : d(x,X) < ρ

}
. Hence, assuming the set X has positive

reach can be seen as a generalization or weakening of convexity, since a set X ⊂ Rd is convex
if and only if τX = ∞. In the next section, we describe how to use the reach condition to
ensure that the union of restricted balls is contractible, which in turn allows us to apply the
Nerve theorem to recover the homotopy type of the target space X.

For a non-smooth target space, the reach of the space can be zero. In this case, we can
deploy a more general notion of feature size, called µ-reach, introduced by [8]. For any point
x ∈ Rd \ X, let ΓX(x) be the set of points in X closest to x. Let ΘX(x) be the center of the

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:5

ΓX(x)

X

ΘX(x)

x

∇X(x) = x−ΘX(x)
dX(x)dX(x)

1

Figure 1 The graphical illustration for the generalized gradient ∇X(x), from [9, 8].

unique smallest closed ball enclosing ΓX(x). Then, for x ∈ Rd \ X, the generalized gradient
of the distance function dX is defined as

∇X(x) = x−ΘX(x)
dX(x) , (7)

and set ∇X(x) = 0 for x ∈ X. See Figure 1 for a graphical illustration. Then, for µ ∈ (0, 1],
the µ-medial axis of X is defined as

Medµ(X) =
{
x ∈ Rd \ X : ‖∇X(x)‖ < µ

}
, (8)

Finally, the µ-reach of X is defined as the minimal distance from X to Medµ(X).

I Definition 6. The µ-reach of a closed subset X ⊂ Rd is defined as

τµX = inf
q∈X

d (q,Medµ(X)) = inf
q∈X,x∈Medµ(X)

||q − x||. (9)

Note that if µ = 1, the corresponding µ-reach equals to the reach of X.
Two offsets Xr and Xs of the target space X are topologically equivalent if they are free

of critical points of the distance function dX in the sense specified below (see e.g., [22] or
Proposition 3.4 in [11]).

I Lemma 7 (Isotopy Lemma). Let X ⊂ Rd be a set, and for r, s > 0 with s ≤ r, let Xr and
Xs be two offsets of X. Suppose the distance function dX does not have a critical point on
Xr\Xs, that is, ∇X(x) 6= 0 for all x ∈ Xr\Xs where ∇X is from (7). Then Xr and Xs are
homeomorphic.

Note that requiring ∇X(x) 6= 0 for all x ∈ Xr\Xs is weaker than the µ-reach condition τµX > r

for any µ ∈ (0, 1]. One of the main results of the paper, given in Theorem 12, generalizes this
topological relation to the relation between the target space and its offset under a stronger
positive µ-reach condition.

SoCG 2020

54:6 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

x1 x2

Figure 2 An example in which the union of balls is different from the underlying space in terms
of the homotopy. In the figure, the union of balls deformation retracts to a circle, hence its homotopy
is different from the underlying semicircle.

2.3 Restricted versus Ambient balls
It is important to point out that the nerve theorem needs not to be applied to the Čech
complex built using ambient, as opposed, to restricted balls. In particular, the homotopy
type of X, may not be correctly recovered using unions of ambient balls even if the point
cloud is dense in X and the radii of the balls all vanish. We elucidate this point in the next
example. Below, BRd(x, r) denotes the open ambient ball in Rd centered at x and of radius
r > 0.

I Example 8. Let X = (∂BR2(0, 1)) ∩ {x ∈ R2 : x2 ≥ 0} be a semicircle in R2. Let
ε ∈ (0, 1) be fixed, and x1, x2 be points on X satisfying ‖x1 − x2‖ ∈

(
ε
√

4− ε2, 2ε
)
. Then,

BR2(x1, ε) ∩ BR2(x2, ε) is nonempty but has an empty intersection with X. Now, choose
ρ < d(X, BR2(x1, ε)∩BR2(x2, ε)) and choose X0 ⊂ X be dense enough so that

⋃
x∈X0

BR2(x, ρ)
covers X. Now, consider the union of ambient balls(

BR2(x1, ε)
⋃

BR2(x2, ε)
)⋃(⋃

x∈X0

BR2(x, ρ)
)
. (10)

Then from the fact ρ < d (X, BR2(x1, ε) ∩ BR2(x2, ε)) and
⋃
x∈X0

BR2(x, ρ) is a covering of X,
we have that the union of balls in (10) is homotopy equivalent to a circle, hence its homotopy
is different from the semicircle X. Note that the above construction holds for all choices of
ε ∈ (0, 1). Since ρ→ 0 as ε→ 0, X0 can be arbitrary dense in X. See Figure 2.

3 The nerve theorem for Euclidean sets of positive reach

In order to apply the nerve theorem to the Čech complex built on restricted balls, it is enough
to check whether any finite intersection of the restricted balls

⋂k
j=1 BX(xj , rxj) is contractible

(since X is a subset of Rd and is endowed with the subspace topology, it is paracompact.).
Theorem 9 is one of the main statements of this paper and shows that, if a subset X ⊂ Rd

has a positive reach τ > 0, any non-empty intersection of restricted balls is contractible if
the radii are small enough compared to τ .

I Theorem 9. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a set of points.
Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X . Then, if rx ≤

√
τ2 + (τ − dX(x))2

for all x ∈ X , any nonempty intersection of restricted balls
⋂
x∈I BX(x, rx) for I ⊂ X is

contractible.

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:7

√
1 + (1− ε)2

X

x1 x2

BX(x1, r) BX(x2, r)

0

1

r r1− ε

Figure 3 An example in which BX(x1, r)
⋃

BX(x2, r) is not homotopy equivalent to ČechX (X , r)
where X =

{
x ∈ R2 : ‖x‖2 = 1

}
, x1 = (−1 + ε, 0), x2 = (1 − ε, 0), X = {x1, x2}, and

r >
√

1 + (1− ε)2, for any ε > 0.

Therefore, by combining Theorem 9 and the Nerve Theorem (Theorem 4), we can establish
that the topology of the subspace X can be recovered by the corresponding restricted Čech
complex ČechX(X , r), provided the radii of the balls are not too large with respect to the
reach. This result is summarized in the following corollary.

I Corollary 10 (Nerve Theorem on the restricted balls). Under the same condition of The-
orem 9, suppose rx ≤

√
τ2 + (τ − dX(x))2 for all x ∈ X , then the union of restricted balls⋃

x∈X BX(x, rx) is homotopy equivalent to the restricted Čech complex ČechX(X , r). If, in
addition, the union of restricted balls covers the target space X, that is,

X ⊂
⋃
x∈X

BX(x, rx), (11)

then X is homotopy equivalent to the restricted Čech complex ČechX(X , r).

The reach condition rx ≤
√
τ2 + (τ − dX(x))2 is tight as the following example shows.

I Example 11. Let X be the unit Euclidean sphere in Rd, and fix ε > 0. Let x1 :=
(1− ε, 0, . . . , 0), x2 := (−1 + ε, 0, . . . , 0) ∈ Rd , and set X := {x1, x2}. For a unit Euclidean
sphere, the reach is equal to its radius 1. Therefore, if r = (r1, r2) ∈

(
0,
√

1 + (1− ε)2
]2

then
BX(x1, r1)

⋃
BX(x2, r2) is homotopy equivalent to ČechX (X , r) by Corollary 10. However,

if r1, r2 >
√

1 + (1− ε)2, BX(x1, r1)
⋃

BX(x2, r2) ' X but ČechX (X , r) ' 0. Figure 3
illustrates the 2-dimensional case.

4 Deformation retraction on positive µ-reach

The positive reach condition is critical for the nerve theorem on the restricted Čech complex.
However, it is not easily generalized to the positive µ-reach condition. Instead, we find a
positive reach set that approximates the positive µ-reach set. And to show their homotopy
equivalence, we discover the topological relation between the positive µ-reach set and its offset.

The homeomorphic relation between two offsets Xr and Xs of the target space X in
Lemma 7 does not hold in general between the target space and its offset, but a weakened
topological relation holds under a stronger condition on the target space. Theorem 12, which

SoCG 2020

54:8 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

Figure 4 An example where Xr does not deformation retracts to X. X is a topologist’s sine circle,
that is, X = X0 ∪ X1 ∪ X2, with X0 =

{(
x, sin π

x

)
∈ R2 : x ∈ [0, 1]

}
, X1 = {0} × [−1, 1], and X2 is a

sufficiently smooth curve joining (0, 1) and (1, 0) and meeting X0 ∪ X1 only at its endpoints.

is one of the main results in our paper, asserts that if the target space X has a positive
µ-reach, then the offset Xr deformation retracts to X when the offset size is not large, and in
particular, they are homotopy equivalent.

I Theorem 12. Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For r ≤ τµ, the
r-offset Xr deformation retracts to X. In particular, X and Xr are homotopy equivalent.

The positive µ-reach condition r ≤ τµ in Theorem 12 is critical and cannot be weakened
to ∇X(x) 6= 0 for all x ∈ Xr\X as in Lemma 7. Indeed, Example 13 shows that the offset
does not deformation retract to the target space although ∇X(x) 6= 0 for all x ∈ Rd.

I Example 13. Let X ⊂ R2 be a topologist’s sine circle, that is, X = X0 ∪ X1 ∪ X2, with
X0 =

{(
x, sin π

x

)
∈ R2 : x ∈ [0, 1]

}
, X1 = {0} × [−1, 1], and X2 is a sufficiently smooth curve

joining (0, 1) and (1, 0) and meets X0 ∪ X1 only at its endpoints. See Figure 4. Then,
τµX = 0 for any µ ∈ (0, 1] but ∇X is nonzero for all x ∈ R2\X. Now, H1(X) = 0, but for any
sufficiently small r > 0, Xr is homeomorphic to an annulus BR2(0, 2)\BR2(0, 1) and hence
H1(Xr) = Z. Hence Xr cannot deformation retract to X.

Using Theorem 12, we find a positive reach set that approximates the positive µ-reach
set. The set we will use is the double offset [9]. Recall that, for r > 0, an r-offset Xr of a set
X is the collection of all points that are within r distance to X, that is, Xr :=

⋃
x∈X BRd(x, r).

The double offset is to take offset, take complement, take offset, and take complement, that
is, for s ≥ t > 0, Xs,t := (((Xs){)t){. Roughly speaking, it is to inflate your set first, and
then deflate your set, so that sharp corners become smooth. See [9] for more details. To
set up the homotopy equivalence of the positive µ-reach set and its double offset, we need
another tool for finding the homotopy equivalence of the complement set. This is done in
the next lemma.

I Lemma 14. Let X ⊂ Rd be a subset with positive reach τ > 0. For r ≤ τ , X{ deformation
retracts to (Xr){. In particular, X{ and (Xr){ are homotopy equivalent.

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:9

Now, combining Theorem 12 and Lemma 14 gives the desired homotopy equivalence
between the target set of positive µ-reach and its double offset, where the double offset has a
positive reach.

I Corollary 15. Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For s, t > 0 with t ≤ s,
let Xs,t := (((Xs){)t){ be the double offset of X. If s < τµ and t < µs, then Xs,t and X are
homotopy equivalent, and the reach of Xs,t is greater than or equal to t, that is, τXs,t ≥ t.

5 Homotopy Reconstruction via Cech complex and Vietoris-Rips
complex

Next, we derive conditions under which the homotopy type of the target space is correctly
recovered via the Čech complex and the Vietoris-Rips complex. We first extend the inter-
leaving relationship of the ambient Čech complex and the Vietoris-Rips complex in (4) to
the different radii case in Lemma 16.

I Lemma 16. Let X ⊂ Rd be a set of points and r = {rx > 0 : x ∈ X} be a set of radii
indexed by x ∈ X . Then,

ČechRd(X , r) ⊂ Rips(X , r) ⊂ ČechRd
(
X ,
√

2d
d+ 1r

)
.

To recover the homotopy of the target set via the ambient Čech complex and the Vietoris-
Rips complex, we utilize the restricted Čech complex. Hence, we set up the interleaving
relationship between the restricted Čech complex and the ambient Čech complex in Lemma 17
and between the restricted Čech complex and the Vietoris-Rips complex in Corollary 18.

I Lemma 17. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a set of points.
Let r = {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X . Then,

ČechX(X , r) ⊂ ČechRd(X , r) ⊂ ČechX(X , r′),

where r′ = {r′x > 0 : x ∈ X} with

r′x =
√

2τ (r2
x + dX(x) (2τ − dX(x)))

τ +
√
τ2 − (r2

x + dX(x) (2τ − dX(x)))
− dX(x) (2τ − dX(x)).

Equivalently,

ČechRd(X , r′′) ⊂ ČechX(X , r) ⊂ ČechRd(X , r),

where r′′ = {r′′x > 0 : x ∈ X} with

r′′x =
√
τ2 − dX(x)(2τ − dX(x))− (2τ2 − r2

x − dX(x)(2τ − dX(x)))2

4τ2 .

I Corollary 18. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a set of points.
Let r = {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X . Then,

ČechX(X , r) ⊂ Rips(X , r) ⊂ ČechX(X , r′′′),

where r′′′ = {r′′′x > 0 : x ∈ X} with

r′′′x =

√√√√√√ 2τ
(

2d
d+1r

2
x + dX(x) (2τ − dX(x))

)
τ +

√
τ2 −

(
2d
d+1r

2
x + dX(x) (2τ − dX(x))

) − dX(x) (2τ − dX(x)).

SoCG 2020

54:10 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

Combining Nerve Theorem on the restricted balls (Corollary 10) with the covering
condition (11) and Lemma 17 or Corollary 18 gives the following commutative diagram:

X

yy
ČechX(X , r)

%%

// ČechX(X , r′′′′)

ee

S

99

, (12)

where S is either the ambient Čech complex ČechRd(X , r) or the Vietoris-Rips complex
Rips(X , r). Using this diagram, we develop the homotopy equivalence between the target
space and either the ambient Čech complex or the Vietoris-Rips complex. First, Theorem 19
asserts that when the target space of positive reach is densely covered by the data points
and if they are not too far apart, the ambient Čech complex can be used to recover the
homotopy type.

I Theorem 19. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a closed
discrete set of points. Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X with
rmin := minx∈X {rx} and rmax := maxx∈X {rx}, and let ε := max{dX(x) : x ∈ X}. Suppose
X is covered by the union of balls centered at x ∈ X and radius δ as

X ⊂
⋃
x∈X

BR(x, δ). (13)

Suppose that the maximum radius rmax is bounded as

rmax ≤ τ − ε. (14)

Also, suppose δ satisfies the following condition:

δ +

√√√√r2
max − l̃2 + ε(2τ − ε)− ((τ − ε)2 − r2

max + l̃2 + (τ − εl̃)2)
(

τ√
τ2 − r̃δ,c

− 1
)

≤ rmin,√
d

2(d+ 1)
rmax

rmin

√√√√√r̃2

b − (2τ2 − r̃2
b)

 τ√
τ2 − r̃2

δ,b

− 1

+ 2δ

 ≤ r′′min, (15)

l̃ := 1
2

(
rmin − τ +

√
(τ − ε)2 − r2

max − δ
)
, εl̃ := τ −

√
(τ − ε)2 − r2

max + l̃,

r̃2
δ,c := min

{
δ2 + ε(2τ − ε), 1

2(r2
max − l̃2 + ε(2τ − ε) + εl̃(2τ − εl̃))

}
,

r′′min :=
√
τ2 − ε(2τ − ε)− (2τ2 − r2

min − ε(2τ − ε))2

4τ2 ,

r̃2
b :=

2τ
(
(r′′min)2 + ε(2τ − ε)

)
τ +

√
τ2 − ((r′′min)2 + ε(2τ − ε))

, r̃2
δ,b := min

{
δ2 + ε(2β − ε), 1

2 r̃
2
b

}
.

Then X is homotopy equivalent to the ambient Čech complex ČechRd(X , r).

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:11

A similar approach also gives the homotopy equivalence between the target space and
the Vietoris-Rips complex when the target space has positive reach.

I Theorem 20. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a closed
discrete set of points. Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X with
rmin := minx∈X {rx} and rmax := maxx∈X {rx}, and let ε := max{dX(x) : x ∈ X}. Suppose
X is covered by the union of balls centered at x ∈ X and radius δ as

X ⊂
⋃
x∈X

BR(x, δ). (16)

Suppose that the maximum radius rmax is bounded as

rmax ≤
√
d+ 1

2d (τ − ε) . (17)

Also, suppose δ satisfies the following condition:√√√√√r̃2
b (rmax)− (2τ2 − r̃2

b (rmax))

 τ√
τ2 − r̃2

δ,b(rmax)
− 1

+ 2δ ≤ 2rmin,

√
d

2(d+ 1)

√√√√√r̃2

b (r′′min)− (2τ2 − r̃2
b (r′′min))

 τ√
τ2 − r̃2

δ,b(r′′min)
− 1

+ 2δ

 ≤ r′′min,

(18)

where

r′′min :=
√
τ2 − ε(2τ − ε)− (2τ2 − r2

min − ε(2τ − ε))2

4τ2 ,

r̃2
b (t) :=

2τ
(
t2 + ε(2τ − ε)

)
τ +

√
τ2 − (t2 + ε(2τ − ε))

, r̃2
δ,b(t) := min

{
δ2 + ε(2τ − ε), 1

2 r̃
2
b (t)

}
.

Then X is homotopy equivalent to the Vietoris-Rips complex Rips(X , r).

I Remark 21. Compared to the restricted Čech complex (Corollary 10), the covering condition
in (13) or (16) is more critical for the ambient Čech complex (Theorem 19) or the Vietoris-
Rips complex (Theorem 20). Although the restricted Čech complex ČechX(X , r) is still
homotopy equivalent to the union of restricted balls

⋃
x∈X BX(x, rx) without the covering

condition in (11), such homotopy equivalence does not hold for the ambient Čech complex or
the Vietoris-Rips complex. This is since the upper triangle of the diagram in (12) only holds
under the covering condition in (13) or (16). Furthermore, the covering condition in (13) or
(16) is denser in that δ < rx for all x ∈ X , to construct an additional homotopy equivalence
on the lower triangle of the diagram in (12).

The homotopy equivalences in Theorem 19 and 20 for the positive reach case is extended
to the positive µ-reach case by applying Corollary 15 with the double offset of the target
space. Corollary 22 shows that when the double offset of the target space of positive µ-reach
is densely covered by the data points and if they are not too far apart, either the ambient
Čech complex or the Vietoris-Rips complex can be used to recover the homotopy type of X.

SoCG 2020

54:12 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

I Corollary 22. Let X ⊂ Rd be a subset with positive µ-reach τµ > 0 and let X ⊂ Rd be
a closed discrete set of points. Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X
with rmin := minx∈X {rx} and rmax := maxx∈X {rx}. Let s, t, ε ≥ 0 with t

µ < s < τµ, and let
Y := (((Xs){)t){ be the double offset, with dY(x) ≤ ε for all x ∈ X . Suppose Y is covered by
the union of balls centered at x ∈ X and radius δ as

Y ⊂
⋃
x∈X

BR(x, δ).

(i) Suppose rmax ≤ t− ε, and δ satisfies the following condition:

δ +

√√√√r2
max − l̃2 + ε(2t− ε)− ((t− ε)2 − r2

max + l̃2 + (t− εl̃)2)
(

t√
t2 − r̃δ,c

− 1
)

≤ rmin,√
d

2(d+ 1)
rmax

rmin

√√√√√r̃2

b − (2t2 − r̃2
b)

 t√
t2 − r̃2

δ,b

− 1

+ 2δ

 ≤ r′′min,

where

l̃ := 1
2

(
rmin − t+

√
(t− ε)2 − r2

max − δ
)
, εl̃ := t−

√
(t− ε)2 − r2

max + l̃,

r̃2
δ,c := min

{
δ2 + ε(2t− ε), 1

2(r2
max − l̃2 + ε(2t− ε) + εl̃(2t− εl̃))

}
,

r′′min :=
√
t2 − ε(2t− ε)− (2t2 − r2

min − ε(2t− ε))2

4t2 ,

r̃2
b :=

2t
(
(r′′min)2 + ε(2t− ε)

)
t+
√
t2 − ((r′′min)2 + ε(2t− ε))

, r̃2
δ,b := min

{
δ2 + ε(2t− ε), 1

2 r̃
2
b

}
.

Then X is homotopy equivalent to the ambient Čech complex ČechRd(X , r).

(ii) Suppose rmax ≤
√

d+1
2d (t− ε), and δ satisfies the following condition:

√√√√√r̃2
b (rmax)− (2t2 − r̃2

b (rmax))

 t√
t2 − r̃2

δ,b(rmax)
− 1

+ 2δ ≤ 2rmin,

√
d

2(d+ 1)

√√√√√r̃2

b (r′′min)− (2t2 − r̃2
b (r′′min))

 t√
t2 − r̃2

δ,b(r′′min)
− 1

+ 2δ

 ≤ r′′min,

where

r′′min :=
√
t2 − ε(2t− ε)− (2t2 − r2

min − ε(2t− ε))2

4t2 ,

r̃2
b (t) :=

2t
(
t2 + ε(2t− ε)

)
t+
√
t2 − (t2 + ε(2t− ε))

, r̃2
δ,b(t) := min

{
δ2 + ε(2t− ε), 1

2 r̃
2
b (t)

}
.

Then X is homotopy equivalent to the Vietoris-Rips complex Rips(X , r).

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:13

We end this section by introducing a sampling condition in which we can guarantee the
covering conditions in Corollary 10 and Theorem 19, 20 are satisfied. Let P be the sampling
distribution on X. We assume that there exist positive constants a, b and ε0 such that, for
all x ∈ X, the following inequality holds:

P (BRd(x, ε)) ≥ aεb, for all ε ∈ (0, ε0). (19)

This condition on P is also known as the (a, b)-condition or the standard condition [15, 14, 10].
It is satisfied, for example, if X is a smooth manifold of dimension b and P has a density
with respect to the Hausdorff measure on it bounded from below by a.

Under this condition, we have the following covering lemma.

I Lemma 23. Let {X1, . . . , Xn} be an i.i.d. sample from the distribution P and let {rn =
(rn,1, . . . , rn,n)}n∈N be a triangular array of positive numbers such that, for each n,

2
(

logn
an

)1/b
≤ min

i
rn,i ≤ 2ε0. (20)

Then, the probability that the sample is a rn-covering of X is bounded as

P

(
X ⊂

n⋃
i=1

BRd(Xi, rn,i)
)
≥ 1− 1

2b logn. (21)

5.1 Conditions for homotopy reconstruction
In this subsection, we discuss the tightness of the conditions we have identified for guaranteeing
the homotopy equivalence of the target space and the Čech complex and the Vietoris-Rips
complex. We first argue that the maximum radius conditions in (14) and (17) are tight,
as Example 24 shows that the Čech complex fails to be homotopy equivalent to X when
rmax > τ − dX(x) and the Vietoris-Rips complex fails to be homotopy equivalent to X when
rmax >

√
d+1
2d (τ − dX(x)) and d ≤ 2.

I Example 24. Let ε ∈ [0, 1) be fixed. Let X ⊂ Rd be the unit sphere in Rd, and let
X = {x1, . . . , xn} ⊂ (1 − ε)X be a finite set of points on the sphere centered at 0 and of
radius 1 − ε. Suppose that for some δ > ε, X is covered by δ-balls centered at X , that is,
X ⊂

⋃
x∈X BR(x, δ). The reach of X equals to its radius 1.

For the ambient Čech complex, if r ∈ (0, 1− ε]n and condition (15) is satisfied, then X is
homotopy equivalent to ČechX (X , r) by Theorem 19. Now, suppose that rmin > 1− ε. Then
0 ∈ BRd(xi, rxi) for all i, hence for any y ∈

⋃n
i=1 BRd(xi, rxi), a line segment connecting 0

and y is contained in
⋃n
i=1 BRd(xi, rxi) as well. Hence

⋃n
i=1 BRd(xi, rxi) is contractible, and

then from the usual Nerve Theorem, ČechRd (X , r) '
⋃n
i=1 BRd(xi, rxi) ' 0. On the other

hand, the d − 1-th homology group of X is Hd−1(X) = Z, so X and ČechRd (X , r) are not
homotopy equivalent.

For the Vietoris-Rips complex, if r ∈
(

0,
√

d+1
2d (1− ε)

]d+1
and condition (18) is satisfied,

then X is homotopy equivalent to RipsX (X , r) by Theorem 20. Now, suppose each rxi is
equal to some r >

√
d+1
2d (1 − ε), and further suppose that d ≤ 2 and δ < 1

2(1−ε)r0 −
√

3
4 .

When d = 1, then the Vietoris-Rips complex equals the ambient Čech complex, hence from
the above argument, Rips (X , r) = ČechRd (X , r) ' 0. When d = 2, then Rips (X , r) ∼=
Rips

(
1

1−εX ,
1

1−εr0

)
and 1

1−εX ⊂ X ⊂
⋃n
i=1 BRd(1

1−εxi, δ) holds. Then 1
1−εr0 − 2δ >

√
3

2 ,

SoCG 2020

54:14 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

and hence from Proposition 3.8, Corollary 4.5, Proposition 5.2 of [2], either Rips (X , r) '
S2l+1 for some l ≥ 1 or Rips (X , r) ' ∨cS2l for some l ≥ 1 and c ≥ 0. In either case,
H1(Rips (X , r)) = 0. However, the d− 1-th homology group of X is Hd−1(X) = Z, so X and
Rips (X , r) are not homotopy equivalent.

We then rephrase the conditions on ε := max{dX(x) : x ∈ X} and the covering radius δ
in (15) and (18) in terms of the Hausdorff distance dH(X,X). For simplicity, we consider the
case when all the radii rx’s are equal, and we denote that common value as r. In general, the
Hausdorff distance dH(X,X) gives a bound for both ε and δ, that is, ε, δ ≤ dH(X,X). Let
ρ := dH(X,X)

τ . For the Čech complex, a sufficient condition for (15) is that for some r
τ ∈ (0, 1],

ρ+

√√√√√(r
τ

)2 − l̃2 + ρ(2− ρ)− ((1− ρ)2 − (r
τ

)2 + l̃2 + (1− ρl̃)2)

 1√
1− r̃2

δ,c

− 1

 ≤ r

τ
,

√
d

2(d+ 1)

√√√√√r̃2

b − (2− r̃2
b)

 1√
1− r̃2

δ,b

− 1

+ 2ρ

 ≤ r′′min, (22)

where

l̃ := 1
2

(
r

τ
− 1 +

√
(1− ρ)2 − (r

τ
)2 − ρ

)
, ρl̃ := 1−

√
(1− ρ)2 − (r

τ
)2 + l̃,

r̃2
δ,c := min

{
2ρ, 1

2((r
τ

)2 − l̃2 + ρ(2− ρ) + ρl̃(2− ρl̃))
}
,

r′′min :=
√

1− ρ(2− ρ)−
(2− (rτ)2 − ρ(2− ρ))2

4 ,

r̃2
b :=

2
(
(r′′min)2 + ρ(2− ρ)

)
1 +

√
1− ((r′′min)2 + ρ(2− ρ))

, r̃2
δ,b := min

{
2ρ, 1

2 r̃
2
b

}
.

And for the Vietoris-Rips complex, the sufficient condition for (18) is√√√√√r̃2
b (r0)− (2− r̃2

b (r0))

 1√
1− r̃2

δ,b(r0)
− 1

+ 2ρ ≤ 2r0,

√
d

2(d+ 1)

√√√√√r̃2

b (r′′min)− (2− r̃2
b (r′′min))

 1√
1− r̃2

δ,b(r′′min)
− 1

+ 2ρ

 ≤ r′′min, (23)

where

r0 :=
√
d+ 1

2d (1− ρ), r′′min :=

√
1− ρ(2− ρ)−

(2− d+1
2d (1− ρ)2 − ρ(2− ρ))2

4 ,

r̃2
b (t) :=

2
(
t2 + ρ(2− ρ)

)
1 +

√
1− (t2 + ρ(2− ρ))

, r̃2
δ,b(t) := min

{
2ρ, 1

2 r̃
2
b (t)

}
.

With the aid of a computer program, we can check that (22) is equivalent to ρ ≤ 0.01591 · · · ,
and (23) is equivalent to ρ ≤ 0.07856 · · · .

Now, we consider two specific cases. First, we consider the noiseless case X ⊂ X, that is,
the data points lie in the target space. For that case, ε = 0 and δ ≤ dH(X,X). For the Čech
complex, the sufficient condition for (15) is that for some r

τ ∈ (0, 1],

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:15

ρ+

√√√√√(r
τ

)2 − l̃2 − (1− (r
τ

)2 + l̃2 + (1− ρl̃)2)

 1√
1− r̃2

δ,c

− 1

 ≤ r

τ
,

√
d

2(d+ 1)

√√√√√r̃2

b − (2− r̃2
b)

 1√
1− r̃2

δ,b

− 1

+ 2ρ

 ≤ r′′min, (24)

where

l̃ := 1
2

(
r

τ
− 1 +

√
1− (r

τ
)2 − ρ

)
, ρl̃ := 1−

√
1− (r

τ
)2 + l̃,

r̃2
δ,c := min

{
ρ2,

1
2((r

τ
)2 − l̃2 + ρl̃(2− ρl̃))

}
,

r′′min :=
√

1−
(2− (rτ)2)2

4 , r̃2
b := 2(r′′min)2

1 +
√

1− (r′′min)2
, r̃2

δ,b := min
{
ρ2,

1
2 r̃

2
b

}
.

For the Vietoris-Rips complex, a sufficient condition for (18) is√√√√√r̃2
b (r0)− (2− r̃2

b (r0))

 1√
1− r̃2

δ,b(r0)
− 1

+ 2ρ ≤ 2r0,

√
d

2(d+ 1)

√√√√√r̃2

b (r′′min)− (2− r̃2
b (r′′min))

 1√
1− r̃2

δ,b(r′′min)
− 1

+ 2ρ

 ≤ r′′min, (25)

where

r0 :=
√
d+ 1

2d (1− ρ), r′′min :=

√
1−

(2− d+1
2d (1− ρ)2)2

4 ,

r̃2
b (t) := 2t2

1 +
√

1− t2
, r̃2

δ,b(t) := min
{
ρ2,

1
2 r̃

2
b (t)

}
.

With the aid of a computer program, we can check that (24) is equivalent to ρ ≤ 0.02994 · · · ,
and (25) is equivalent to ρ ≤ 0.1117 · · · .

Second, we consider the asymptotic case, where we sample more and more points and X
forms a dense cover of X, that is, supy∈X infx∈X ‖x− y‖ → 0. Still, we have a noisy sample
distribution, that is, supx∈X infy∈X ‖x− y‖9 0, so the Hausdorff distance dH(X,X) need
not go to 0. In this case, δ → 0 and ε ≤ dH(X,X). For the Čech complex, a sufficient
condition for (15) is that for some r

τ ∈ (0, 1],√√√√√(r
τ

)2 − l̃2 + ρ(2− ρ)− ((1− ρ)2 − (r
τ

)2 + l̃2 + (1− ρl̃)2)

 1√
1− r̃2

δ,c

− 1

 ≤ r

τ
,

√
d

2(d+ 1)

√√√√√r̃2
b − (2− r̃2

b)

 1√
1− r̃2

δ,b

− 1

 ≤ r′′min, (26)

SoCG 2020

54:16 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

where

l̃ := 1
2

(
r

τ
− 1 +

√
(1− ρ)2 − (r

τ
)2
)
, ρl̃ := 1−

√
(1− ρ)2 − (r

τ
)2 + l̃,

r̃2
δ,c := min

{
ρ(2− ρ), 1

2((r
τ

)2 − l̃2 + ρ(2− ρ) + ρl̃(2− ρl̃))
}
,

r′′min :=
√

1− ρ(2− ρ)−
(2− (rτ)2 − ρ(2− ρ))2

4 ,

r̃2
b :=

2
(
(r′′min)2 + ρ(2− ρ)

)
1 +

√
1− ((r′′min)2 + ρ(2− ρ))

, r̃2
δ,b := min

{
ρ(2− ρ), 1

2 r̃
2
b

}
.

And for the Vietoris-Rips complex, a sufficient condition for (18) is√√√√√r̃2
b (r0)− (2− r̃2

b (r0))

 1√
1− r̃2

δ,b(r0)
− 1

 ≤ 2r0,

√
d

2(d+ 1)

√√√√√r̃2
b (r′′min)− (2− r̃2

b (r′′min))

 1√
1− r̃2

δ,b(r′′min)
− 1

 ≤ r′′min, (27)

where

r0 :=
√
d+ 1

2d (1− ρ), r′′min :=

√
1− ρ(2− ρ)−

(2− d+1
2d (1− ρ)2 − ρ(2− ρ))2

4 ,

r̃2
b (t) :=

2
(
t2 + ρ(2− ρ)

)
1 +

√
1− (t2 + ρ(2− ρ))

, r̃2
δ,b(t) := min

{
ρ(2− ρ), 1

2 r̃
2
b (t)

}
.

With the aid of a computer program, we can check that (26) is equivalent to ρ ≤ 0.03440 · · · ,
and (27) is equivalent to ρ ≤ 0.07712 · · · .

6 Discussion and Conclusion

Above we have provided conditions under which the ambient Čech complex ČechRd(X , r)
and the Rips complex Rips(X , r) are homotopy equivalent to the target space X when the
target space X has positive µ-reach τµ and the data points X being contained in the ε-offset
Xε of X. In this section, we further discuss our results and compare them with existing ones.
For the comparison purpose, we consider the case when all the radii rx’s are equal, and
we denote the common value as r. In these settings, an analogous homotopy equivalence
between the ambient Čech complex ČechRd(X , r) and the target space X is presented in [6]
and [27].

First, we compare the upper bound for the maximum parameter value r in ČechRd(X , r) or
Rips(X , r). When µ = 1 so that τµ = τ , our result suggests that the homotopy equivalences
hold when r ≤ τ − ε for ČechRd(X , r) and r ≤

√
d+1
2d (τ − ε) for Rips(X , r). As we have seen

in Example 24, these bounds are optimal bounds. In [27], such a bound for ČechRd(X , r) is
(τ+ε)+

√
τ2+ε2−6τε
2 (see Proposition 7.1). Then our bound is strictly sharper than this when

ε > 0 since

(τ + ε) +
√
τ2 + ε2 − 6τε
2 <

(τ + ε) +
√
τ2 + 9ε2 − 6τε
2 = τ − ε.

In [6], a necessary condition for ČechRd(X , r) in Section 5.3 is r ≤ τ −3ε, so our upper bound
is strictly better when ε > 0.

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:17

Second, we compare the condition for the maximum possible ratio of the Hausdorff
distance dH(X,X) and the µ-reach τµ. For this case, as we have seen in Section 5.1, we can
check that ČechRd(X , r) is homotopy equivalent to X when dH(X,X)

τ ≤ 0.01591 · · · . This result
is worse than 3−

√
8 ≈ 0.1716 · · · in Proposition 7.1 in [27] or −3+

√
22

13 ≈ 0.1300 · · · in Section
5.3 in [6]. Again from Section 5.1, we can check that Rips(X , r) is homotopy equivalent
to X when dH(X,X)

τ ≤ 0.07856 · · · . This result is better than 2
√

2−
√

2−
√

2
2+
√

2 ≈ 0.03412 · · · in
Section 5.3 in [6].

Then we consider two specific cases. In the noiseless case X ⊂ X, the data points
lie in the target space. In this case, as we have seen in Section 5.1, we can verify that
ČechRd(X , r) is homotopy equivalent to X when dH(X,X)

τ ≤ 0.02994 · · · , and Rips(X , r) is
homotopy equivalent to X when dH(X,X)

τ ≤ 0.1117 · · · .
In the asymptotics case, as we sample more and more points from the target space, X

forms a dense cover on X, that is, supy∈X infx∈X ‖x− y‖ → 0. For this case, as we have seen
in Section 5.1, we can check that ČechRd(X , r) is homotopy equivalent to X when dH(X,X)

τ ≤
0.03440 · · · , and Rips(X , r) is homotopy equivalent to X when dH(X,X)

τ ≤ 0.07712 · · · .
Finally, we emphasize that our result also allows the radii {rx}x∈X to vary across the

points x ∈ X . Considering different radii is of practical interest if each data point has different
importance. For example, one might want to use large radii on the flat and sparse region,
while to use small radii on the spiky and dense region. However, there remain significant
technical difficulties to allow for a different radius per each data point. As it can be seen
in Figure 2, an uneven distribution of radii might lead to nonhomotopic between the Čech
complex (or the Vietoris-Rips complex) and the target space. This situation has been studied
in [12] for the union of balls under the reach condition, but not the Vietoris-Rips complex or
under the µ-reach case. Theorem 20 or Corollary 22 first tackles this homotopy reconstruction
problem with different radii for the Vietoris-Rips complex or under the µ-reach condition.

References
1 Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and Larry

Wasserman. Estimating the reach of a manifold. Electronic Journal of Statistics, 13(1):1359–
1399, 2019. doi:10.1214/19-EJS1551.

2 Michał Adamaszek and Henry Adams. The Vietoris-Rips complexes of a circle. Pacific Journal
of Mathematics, 290(1):1–40, 2017. doi:10.2140/pjm.2017.290.1.

3 Michał Adamaszek, Henry Adams, and Florian Frick. Metric reconstruction via optimal
transport. SIAM Journal on Applied Algebra and Geometry, 2(4):597–619, 2018. doi:10.
1137/17M1148025.

4 Henry Adams and Joshua Mirth. Metric thickenings of euclidean submanifolds. Topology and
its Applications, 254:69–84, 2019. doi:10.1016/j.topol.2018.12.014.

5 Paul Alexandroff. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur
elementaren geometrischen Anschauung. Mathematische Annalen, 98(1):617–635, 1928.
doi:10.1007/BF01451612.

6 Dominique Attali, André Lieutier, and David Salinas. Vietoris–rips complexes also provide
topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448–
465, 2013. 27th Annual Symposium on Computational Geometry (SoCG 2011). doi:10.1016/
j.comgeo.2012.02.009.

7 Anders Björner. Topological Methods, page 1819–1872. MIT Press, Cambridge, MA, USA,
1996.

8 Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
sets in euclidean space. Discrete & Computational Geometry, 41(3):461–479, 2009. doi:
10.1007/s00454-009-9144-8.

SoCG 2020

https://doi.org/10.1214/19-EJS1551
https://doi.org/10.2140/pjm.2017.290.1
https://doi.org/10.1137/17M1148025
https://doi.org/10.1137/17M1148025
https://doi.org/10.1016/j.topol.2018.12.014
https://doi.org/10.1007/BF01451612
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1007/s00454-009-9144-8
https://doi.org/10.1007/s00454-009-9144-8

54:18 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

9 Frédéric Chazal, David Cohen-Steiner, André Lieutier, and Boris Thibert. Shape smoothing
using double offsets. In Proceedings of the 2007 ACM Symposium on Solid and Physical
Modeling, SPM ’07, page 183–192, New York, NY, USA, 2007. Association for Computing
Machinery. doi:10.1145/1236246.1236273.

10 Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertr, Michel, Aless, ro Rinaldo, and Larry
Wasserman. Robust topological inference: Distance to a measure and kernel distance. Journal
of Machine Learning Research, 18(159):1–40, 2018. URL: http://jmlr.org/papers/v18/
15-484.html.

11 Frédéric Chazal and André Lieutier. Weak feature size and persistent homology: Computing
homology of solids in Rn from noisy data samples. In Proceedings of the Twenty-First Annual
Symposium on Computational Geometry, SCG ’05, page 255–262, New York, NY, USA, 2005.
Association for Computing Machinery. doi:10.1145/1064092.1064132.

12 Frédéric Chazal and André Lieutier. Smooth manifold reconstruction from noisy and non-
uniform approximation with guarantees. Computational Geometry, 40(2):156–170, 2008.
doi:10.1016/j.comgeo.2007.07.001.

13 Frédéric Chazal and Steve Yann Oudot. Towards persistence-based reconstruction in euclidean
spaces. In Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry,
SCG ’08, page 232–241, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1377676.1377719.

14 Antonio Cuevas. Set estimation: another bridge between statistics and geometry. Boletín de
Estadística e Investigación Operativa. BEIO, 25(2):71–85, 2009.

15 Antonio Cuevas and Alberto Rodríguez-Casal. On boundary estimation. Advances in Applied
Probability, 36(2):340–354, 2004. doi:10.1239/aap/1086957575.

16 Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebraic
& Geometric Topology, 7:339–358, 2007. doi:10.2140/agt.2007.7.339.

17 Tamal K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis.
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, 2006. doi:10.1017/CBO9780511546860.002.

18 Jürgen Eckhoff. Chapter 2.1 - Helly, Radon, and Carathéodory type theorems. In P.M.
GRUBER and J.M. WILLS, editors, Handbook of Convex Geometry, pages 389–448. North-
Holland, Amsterdam, 1993. doi:10.1016/B978-0-444-89596-7.50017-1.

19 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.

20 Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. ACM Transactions
on Graphics, 13(1):43–72, January 1994. doi:10.1145/174462.156635.

21 Herbert Federer. Curvature measures. Transactions of the American Mathematical Society,
93:418–491, 1959. doi:10.2307/1993504.

22 Karsten Grove. Critical point theory for distance functions. In Differential geometry: Rie-
mannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pages
357–385. Amer. Math. Soc., Providence, RI, 1993.

23 Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
24 Jean-Claude Hausmann. On the Vietoris-Rips complexes and a cohomology theory for metric

spaces. In Prospects in topology (Princeton, NJ, 1994), volume 138 of Annals of Mathematics
Studies, pages 175–188. Princeton Univ. Press, Princeton, NJ, 1995.

25 Janko Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold.
Archiv der Mathematik, 77(6):522–528, 2001. doi:10.1007/PL00000526.

26 John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics.
Springer, New York, second edition, 2013.

27 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–
441, 2008. doi:10.1007/s00454-008-9053-2.

https://doi.org/10.1145/1236246.1236273
http://jmlr.org/papers/v18/15-484.html
http://jmlr.org/papers/v18/15-484.html
https://doi.org/10.1145/1064092.1064132
https://doi.org/10.1016/j.comgeo.2007.07.001
https://doi.org/10.1145/1377676.1377719
https://doi.org/10.1239/aap/1086957575
https://doi.org/10.2140/agt.2007.7.339
https://doi.org/10.1017/CBO9780511546860.002
https://doi.org/10.1016/B978-0-444-89596-7.50017-1
http://www.ams.org/bookstore-getitem/item=MBK-69
https://doi.org/10.1145/174462.156635
https://doi.org/10.2307/1993504
https://doi.org/10.1007/PL00000526
https://doi.org/10.1007/s00454-008-9053-2

J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:19

28 Vanessa Robins, James D. Meiss, and Elizabeth Bradley. Computing connectedness: dis-
connectedness and discreteness. Physica D: Nonlinear Phenomena, 139(3):276–300, 2000.
doi:10.1016/S0167-2789(99)00228-6.

29 Amit Singer and Hau-Tieng Wu. Vector diffusion maps and the connection laplacian. Commu-
nications on Pure and Applied Mathematics, 65(8):1067–1144, 2012. doi:10.1002/cpa.21395.

30 Jean-Luc Starck, Vicent Martínez, D. Donoho, Ofer Levi, Philippe Querre, and Enn Saar.
Analysis of the spatial distribution of galaxies by multiscale methods. EURASIP Journal on
Applied Signal Processing, 2005(15):2455–2469, 2005. doi:10.1155/ASP.2005.2455.

SoCG 2020

https://doi.org/10.1016/S0167-2789(99)00228-6
https://doi.org/10.1002/cpa.21395
https://doi.org/10.1155/ASP.2005.2455

A Quasi-Polynomial Algorithm for Well-Spaced
Hyperbolic TSP
Sándor Kisfaludi-Bak
Max Planck Institute for Informatics, Saarbrücken, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Abstract
We study the traveling salesman problem in the hyperbolic plane of Gaussian curvature −1. Let α
denote the minimum distance between any two input points. Using a new separator theorem and a
new rerouting argument, we give an nO(log2 n) max(1,1/α) algorithm for Hyperbolic TSP. This is
quasi-polynomial time if α is at least some absolute constant, and it grows to nO(

√
n) as α decreases

to log2 n/
√
n. (For even smaller values of α, we can use a planarity-based algorithm of Hwang et al.

(1993), which gives a running time of nO(
√
n).)

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Computational geometry, Hyperbolic geometry, Traveling salesman

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.55

Related Version A full version of the paper is available at [19], https://arxiv.org/abs/2002.05414.

1 Introduction

The Traveling Salesman Problem (or TSP for short) is very widely studied in combinatorial
optimization and computer science in general, with a long history. In the general formulation,
we are given a complete graph G with positive weights on its edges. The task is to find
a cycle through all the vertices (i.e., a Hamiltonian cycle) of minimum weight. The first
non-trivial algorithm (with running time O(2nn2)) was given by Held and Karp [11], and
independently by Bellman [3]. The problem was among the first problems to be shown
NP-hard by Karp [16].

A very important case of TSP concerns metric weight functions, where the edge weights
satisfy the triangle inequality. The problem has a (3/2)-approximation due to Christofides [6],
which is still unbeaten. On the other hand, it is NP-hard to approximate Metric TSP
within a factor of 123/122 [17]. Fortunately, the problem is more tractable in low-dimensional
geometric spaces. Arora [1] and independently, Mitchell [21] gave the first polynomial time
approximation schemes (PTASes) for the low-dimensional Euclidean TSP problem, where
vertices correspond to points in Rd and the weights are defined by the Euclidean distance
between the given points. The PTAS was later improved by Rao and Smith [23], and after
two decades, several more general approximation schemes are known. In particular, there is
a PTAS in metric spaces of bounded doubling dimension by Bartal et al. [2], and in metric
spaces of negative curvature by Krauthgamer and Lee [20]. The PTAS of [20] applies in the
hyperbolic plane.

Turning to the exact version of the problem in the geometric setting, we can again get
significant improvements over the best known O(2n poly(n)) running time for the general
version. In the Euclidean case, the first set of improved algorithms were proposed in the
plane by Kann [15] and by Hwang et al. [12] with running time nO(

√
n). Later, an algorithm

in Rd with running time nO(n1−1/d) was given by Smith and Wormald [24]. The latest

© Sándor Kisfaludi-Bak;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.55
https://arxiv.org/abs/2002.05414
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

improvement to 2O(n1−1/d) by De Berg et al. [7] came with a matching lower bound under
the Exponential Time Hypothesis (ETH) [13]. To our knowledge, the exact version of the
problem in hyperbolic space has not been studied yet.

Given the history of the problem, the PTAS results and the Euclidean exact algorithm,
one might expect that the hyperbolic case is very similar to the Euclidean, and a good
hyperbolic TSP algorithm will have a running time of nO(nδ) for some constant δ. In this
paper, we show that we can often get significantly faster algorithms. Let H2 denote the
hyperbolic plane of Gaussian curvature −1. The first hopeful sign is that H2 exhibits
special properties when it comes to intersection graphs. Recently, the present author has
given quasi-polynomial algorithms for several classic graph problems in certain hyperbolic
intersection graphs of ball-like objects [18]. The studied problems include Independent
Set, Dominating Set, Steiner Tree, Hamiltonian Cycle and several other problems
that are NP-complete in general graphs. Interestingly, a polynomial time algorithm was
given for the Hamiltonian Cycle problem in hyperbolic unit disk graphs. The question
arises whether a quasi-polynomial algorithm is available for TSP in H2? Given that the best
running times for Hamiltonian Cycle in unit disk graphs in R2 and for Euclidean TSP
are identical, perhaps even polynomial time is achievable for Hyperbolic TSP?

Unfortunately, a quasi-polynomial algorithm is unlikely to exist for the general Hyper-
bolic TSP problem: the lower bound of [8] in grids can be carried over to H2, which rules
out a 2o(

√
n) algorithm under the Exponential Time Hypothesis (ETH) [13]. This however

relies on embedding a grid-like structure in H2 efficiently, which seems to be possible only if
the points are densely placed. Since H2 is locally Euclidean, it comes as no surprise that we
cannot beat the Euclidean running time for dense point sets.

For this reason, we use a parameter measuring the density of the input point set. We say
that the input point set P is α-spaced if for any pair of distinct points p, p′ ∈ P , we have
that dist(p, p′) > α. Our main contribution is the following theorem.

I Theorem 1. Let P ⊂ H2 be an α-spaced set of points. Then the shortest traveling salesman
tour of P can be computed in nO(log2 n)·max(1,1/α)) time.

Note that for α > 1, this is a quasi-polynomial algorithm. In the full version [19] we show
that for very dense inputs, it is unlikely that our running time can be improved significantly:
we prove that there is no 2o(

√
n) algorithm for point sets of spacing Θ(1/

√
n), unless the

Exponential Time Hypothesis (ETH) fails.

Adapting algorithms from the Euclidean plane

Most algorithms for Euclidean TSP are difficult to adapt to the hyperbolic setting. The
majority of known subexponential algorithms for Euclidean TSP (see [15, 24, 7]) are based
on some version of the so-called Packing Property [7], which roughly states that for any disk
δ of radius r, the number of segments in an optimal tour of length at least r that intersect δ
is at most some absolute constant. This starting point is not available to us, since a direct
adaptation of the Packing Property as stated above is false in H2. For example, we can
create a regular n-gon where the length of each side is c logn for some constant c, and the
inscribed circle has radius r < c logn. The boundary of the n-gon is an optimal tour of its
vertices, and the inscribed disk is intersected more than a constant times with tour segments
of length at least r.

The only exact Euclidean TSP algorithm that directly carries over to H2 is the algorithm
of Hwang, Chang and Lee [12], as it only relies on the fact that any optimal tour in the
plane is crossing-free. Unfortunately, this algorithm has a running time of nO(

√
n), which is

far from our goal. Nonetheless, we can use this algorithm for the case when the point set P
has close point pairs, that is, when α 6 log2 n/

√
n. This is discussed further in Section 2.

S. Kisfaludi-Bak 55:3

Our techniques

To get a quasi-polynomial algorithm for α = Ω(1), we need to prove our own separator
theorem. The separator itself is fairly simple: it is a line segment of length O(logn). Due to
the special properties of H2, optimal tours cannot go “around” this segment. The difficulty
is to show that the line segment is crossed only O(logn) times by an optimal tour. We show
that having a pair of “nearby”1 tour edges crossing a certain neighborhood R of the segment
can be ruled out with a rerouting argument that is reminiscent of the proof of the Packing
Property in R2. This limits the number of segments crossing both R and the segment to
O(logn). All other tour edges crossing the segment must have an endpoint in R. Since R is
“narrow”, it can contain at most O(logn) points from P , as P is α-spaced. These bounds
together limit the number of tour edges crossing our segment to O(logn). With the separator
at hand, we use a standard divide-and-conquer algorithm to prove Theorem 1. For values
α 6 log2 n/

√
n, we suggest using the algorithm of Hwang et al. [12].

Computational model

As our input, we get a list of points P with rational coordinates in the Poincaré disk model
(which we briefly introduce in Section 2) and a rational number x. The goal is to decide if
there is a tour of length at most x.

It is a common issue in computational geometry that one needs to be able to compare
sums of distances. In geometric variants of TSP, this directly impacts the output, and
unfortunately no method is known to tackle this in a satisfactory manner on a word-RAM
machine. For this reason, most work in the area assumes that the computation is done on
a real-RAM machine that can compute square roots exactly. Perhaps even less is known
about comparing sums of distances in hyperbolic space. For this article, we work in a
real-RAM that, in addition to taking square roots, is also capable of computing the natural
logarithm ln(.).

2 Preliminaries

The hyperbolic plane and the Poincaré disk model

Introducing the hyperbolic plane properly is well beyond the scope of this section, but we
list some important properties that we will be using. A detailed exposition can be found in
several textbooks [4, 26, 10, 22].

The hyperbolic plane H2 is a homogeneous metric space with the key property that
the area and circumference of disks grows exponentially with the radius, that is, a disk
of radius r has area 4π sinh2(r/2) and circumference 2π sinh(r). For r > 1, both the area
and circumference are Θ(er). On the other hand, a small neighborhood of any point in
the hyperbolic plane is very similar to a small neighborhood of a point in the Euclidean
plane. More precisely, the disk of radius ε around a point in H2 and R2 have a smooth
bijective mapping that preserve distances up to a multiplicative factor of 1 + f(ε), where
limε→0 f(ε) = 0.

The hyperbolic plane itself can be defined in many ways, but it is most convenient to
take some region of R2, and equip it with a custom metric. Such definitions are also called
models of the hyperbolic plane. In this article, we use the Poincaré disk model for all of the
figures, however, most of the claims and proofs are model-independent.

1 The absolute distance of crossing edges cannot be bounded; we use a special definition of “nearby”.

SoCG 2020

55:4 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

o

p

q

p′

`

`′

Figure 1 Left: lines in the Poincaré model. Right: the angle of parallelism for the length |pq|.

The Poincaré disk model is the open unit disk of R2 equipped with the distance function

dist(u, v) = cosh−1
(

1 + 2 ‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
,

where ‖.‖ is the Euclidean norm.2 The precise function here is irrelevant; we present the
formula just as an example of defining a custom metric space.3 We list some further properties
of H2 used in the article.

Lines, angles, and ideal points.
In the Poincaré disk model hyperbolic lines appear as Euclidean circular arcs that are
perpendicular to the unit circle, as illustrated on the left of Figure 1. In particular,
hyperbolic lines through the center of the disk are diametrical segments of the unit disk.
The model is conformal, that is, the angle of a pair of lines in H2 is the same as the angle
of the corresponding arcs in R2. The points on the boundary of the disk are called ideal
points.
Angle of parallelism.
Let p, q ∈ H2 and let ` be a line through p that is perpendicular to pq, and let p′ be an
ideal point of `, see the right hand side of Figure 1. Let `′ be the line through q and p′.
Note that ` and `′ are disjoint lines in the open disk; they are called limiting parallels.
The angle ^pqp′ is called the angle of parallelism, which only depends on the length of
the segment pq the following way [22].

tan(^pqp′) = 1
sinh(|pq|) (1)

Hypercycles or equidistant curves.
The set of points at a given distance % from a line ` is not a line, but it forms a hypercycle
in H2. A hypercycle has two arcs, one on each side of `. In the Poincaré model, a
hypercycle for a line ` consists of two circular arcs, ending at the same ideal points as `.

2 As cosh−1(x) = ln(x +
√
x2 − 1), the distance of two points in the Poincaré disk model with given

Euclidean coordinates can be computed on a real-RAM machine which is capable of taking square roots
and computing ln(.).

3 If we need to calculate angles, curve length, and area, we should define the metric tensor instead:
ds2 = 4 ‖dx‖2

(1−‖x‖2)2 [5].

S. Kisfaludi-Bak 55:5

Optimal tours in H2 and crossings.
An optimal traveling salesman tour will consist of geodesics between pairs of input points,
i.e., hyperbolic segments, just as in R2. Moreover, the triangle inequality implies that
any self-crossing tour (where two segments pp′ and qq′ cross) can be shortened. Thus,
optimal tours in H2 are non-crossing.

Getting a subexponential algorithm for all values of α

We can give the following more general formulation of the result of [12].

I Theorem 2 (Hwang, Chang and Lee [12], stated generally). Let P be a set of n points in
R2, and let w :

(
P
2
)
→ R be a weight function on the (straight) segments defined by the point

pairs. Suppose that the optimal TSP tour of P with respect to w is crossing-free. Then there
is an algorithm to compute this optimal tour in nO(

√
n) time.

We convert our initial point set P in the Poincaré model to the Beltrami-Klein model
of H2 to get a point set PBK . In the Beltrami-Klein model, Euclidean segments inside the
open unit disk are (geodesic) segments of H2. Since the optimal hyperbolic TSP tour is
crossing-free, the tour in the Beltrami-Klein model is a polygon with vertex set PBK . The
hyperbolic distances can be used as weights on all segments with endpoints from PBK , and
we can apply Theorem 2 to get an nO(

√
n) algorithm regardless of the value of α.

3 A separator for Hyperbolic TSP

Centerpoint and a separating line

It has already been observed in [18] that for any set P ⊂ H2 of n points there exists a point
q ∈ H2 such that for any line ` through q the two open half-planes with boundary ` both
contain at most 2

3n points from P , that is, the line ` is a 2/3-balanced separator of P . Such a
point q is called a centerpoint of P . It has been observed in [18] that given P , a centerpoint
of P can be computed using a Euclidean centerpoint algorithm, which takes linear time [14].

It is now easy to prove that we can find a balanced line separator that has a small
neighborhood empty of input points.

I Lemma 3. Given a point set P ⊂ H2, there exists a point q ∈ H2 and there exists a
line ` through q such that P is disjoint from the open double cone with center q, axis ` and
half-angle π

2n . Any such line ` is a 2/3-balanced separator of P , and given P , a suitable point
q and line ` can be found in linear time.

Proof. Let q be a centerpoint of P . For each point p ∈ P , let `p be the line through q and
p. Since we have defined n lines through q, there is a pair of consecutive lines `p, `p′ whose
acute angle is at least π/n. Let ` be the angle bisector of `p and `p′ . Then ` clearly has the
desired properties, and the centerpoint q, the lines `p, `p′ and the line ` can all be computed
in linear time. J

We can extend Lemma 3 to get balance with respect to a subset B ⊆ P , that is, both
half-planes bounded by ` would contain at most 2

3 |B| points of B. One only needs to set q
to be the centerpoint of B instead of P .

SoCG 2020

55:6 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

a

b

q `t

b′

a′

t′

π
2n

s

Figure 2 The empty double cone with axis `.

Defining a region around the separator

From this point onwards, q denotes a centerpoint of P , and ` is a line through q with the
properties from Lemma 3. Let C denote the double cone of center q, axis ` and half-angle
π

2n , see Figure 2. Note that by Lemma 3, we have that C ∩ P = ∅. Let s be an ideal point
of `, and let a, b be ideal points on the boundary of C, such that ^aqs = ^sqb = π

2n . Let
t = ab ∩ `. Notice that qta is a right-angle triangle with ideal point a, and it has angle π

2n at
q. Therefore, π

2n is the angle of parallelism for the distance |qt|, and it satisfies

sinh(|qt|) = 1
tan(π2n) . (2)

The line ab splits H2 into two open half-planes: the side Hq containing q, and the side
Hs that has s on its boundary. Note that Hs ⊂ C, therefore P ⊂ Hq. Consequently, all
segments of the tour are contained in Hq. We mirror a, b and t to the point q; let a′, b′
and t′ denote the resulting points respectively. By our earlier observation, the entire tour
is contained in the geodesically convex region between the lines ab and a′b′, and any tour
segment intersecting ` will intersect it somewhere on the segment tt′.

Let at and bt be the points on a′b′ at distance % from t, where % ∈ (0, α/2) is a suitable
number that will be defined later. Let a′t and b′t denote the analogous points on a′b′, see
Figure 3. Let R denote the region of the hyperbolic plane consisting of all points between ab
and a′b′ whose distance from tt′ is at most %. The resulting shape R is geodesically convex;
its boundary consists of two segments (atbt and a′tb′t), and two hypercycle arcs, denoted by
>
atb
′
t and

>
bta
′
t. In general, for two points u, v on one of these hypercycle arcs, let >uv denote

the arc between them, and let |>uv| be the length of this arc.
Note that any tour segment that connects points on two different sides of ` also intersects

R. A tour segment that intersects R can have 0, 1 or 2 endpoints in R. A segment with
exactly 1 endpoint in R is called entering. As R is geodesically convex, segments with both
endpoints in R are entirely contained in R. All other tour segments crossing ` must intersect
at least one of

>
atb
′
t and

>
bta
′
t. We say that a segment crosses R if it intersects both

>
atb
′
t and>

bta
′
t. (It is possible that a segment whose endpoints lie outside R on the same side of `

intersect one of these arcs twice. These segments are not relevant for our algorithm.)

S. Kisfaludi-Bak 55:7

%%

%

R

a

b

q` t

b′

a′

t′

at

bt

%

a′t

b′t

Figure 3 The construction of the region R.

The rest of this section focuses on the following main lemma.

I Lemma 4. The region R has the following properties:
(i) |R ∩ P | < nin

def= 1 + 2(lnn+1)
α−2%

(ii) There are less than scr
def= 2 + 2(lnn+1) cosh %

% tour segments that cross R.

The proof requires that we explore the geometry of R more thoroughly.

I Lemma 5. We have |qt| < lnn+ 1, and |
>
atb
′
t| = |

>
bta
′
t| < 2(lnn+ 1) cosh %.

Proof. We first prove our bound on |qt|. Note that sinh(.) is monotone increasing and
sinh(|qt|) = 1

tan(π2n) by (2), so it suffices to show that sinh(lnn+ 1) > 1
tan(π2n) . Indeed,

sinh(lnn+ 1) =
en− 1

en

2 > n and 1
tan(π2n) <

1
3

2n
< n.

The arc length of the equidistant hypercycle of base b and distance % is b cosh % according
to [25], therefore |

>
atb
′
t| = |tt′| cosh(%) = 2|qt| cosh(%) < 2(lnn+ 1) cosh %. J

Ruling out dense crossings

Our next ingredient for the proof is to show that if two segments cross R very close to each
other, then they cannot both be in an optimal tour.

I Lemma 6. Let p1p2 . . . pipi+1 . . . pn−1pn be an optimal tour on P where both p1p2 and
pipi+1 cross R, and where p1, pi and at lie on the same side of `. Let p′1 = p1p2 ∩

>
atb
′
t, and

define p′2, p′i and p′i+1 analogously. Then |
>
p′1p
′
i|+ |

>
p′2p
′
i+1| > 4%.

Proof. We can create a new tour by removing the segments p′1p′2 and p′ip′i+1, and replacing
them with p′1p′i and p′2p′i+1, see Figure 4. The resulting tour is

p1p
′
1p
′
ipipi−1pi−2 . . . p2p

′
2p
′
i+1pi+1pi+2 . . . pn.

SoCG 2020

55:8 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

%%

%

a

b

`

b′

a′

at

bt

%

a′t

b′t

p1

p2

pi

pi+1

p′1

p′2

p′i

p′i+1

%%

%

a

b

`

b′

a′

at

bt

%

a′t

b′t

p1

p2

pi

pi+1

p′1

p′2

p′i

p′i+1

Figure 4 Rerouting two crossing edges (p1p2 and pipi+1) into a different tour.

Note that this tour contains all the input points.4 Since the only difference between the
tours is that p′1p′2 and p′ip′i+1 are only present in the optimal tour and p′1p′i and p′2p′i+1 are
only present in the new tour, by the optimality of p1 . . . pn we have that

0 > |p′1p′2|+ |p′ip′i+1| − |p′1p′i| − |p′2p′i+1|.

Note that |p′1p′2| > 2% by the definition of R, and analogously |p′ip′i+1| > 2%. Therefore we
have

0 > |p′1p′2|+ |p′ip′i+1| − |p′1p′i| − |p′2p′i+1| > 4%− |
>
p′1p
′
i| − |

>
p′2p
′
i+1|,

which concludes the proof. J

We can now prove Lemma 4.

Proof of Lemma 4.
(i) For a point p ∈ P ∩R, let p` denote the point on ` for which pp` is perpendicular to

`. Let p, p′ ∈ P ∩ R be points such that p`, p′` are consecutive on ` (i.e., there is no
p′′ ∈ P ∩R such that p′′` ∈ p`p′`). By the triangle inequality, |pp`|+ |p`p′`|+ |p′`p′| > |pp′|,
and |pp′| > α since P is α-spaced. By the definition of R and %, we also have that
|pp`| 6 % and |p′`p′| 6 %. Consequently,

|p`p′`| > α− 2%. (3)

We can apply this inequality to all consecutive pairs p`p′`. Since all the points p` lie on
the segment tt′, the total length of the segments p`p′` cannot exceed |tt′|. It follows that

|P ∩R| 6 1 +
⌊
|tt′|

α− 2%

⌋
< 1 + 2(lnn+ 1)

α− 2% ,

where the second inequality uses our bound from Lemma 5.

4 This is generally not an optimal tour as it can be further shortened into
p1pipi−1pi−2 . . . p2pi+1pi+2 . . . pn.

S. Kisfaludi-Bak 55:9

(ii) Let p1 . . . , pn be an optimal tour, and let pipi+1 be an edge crossing R. (Indices are
defined modulo n.) Note that pipi+1 can cross R in two directions: either from the side
of a to the side of b or the other way around. By Lemma 6, consecutive crossings pipi+1

and pjpj+1 in the same direction use at least a total arc length of 4% on the arcs
>
atb
′
t

and
>
bta
′
t. Since the total length of these arcs is less than 4(lnn+ 1) cosh % by Lemma 5,

the number of crossings in one direction is less than

1 +
⌊

4(lnn+ 1) cosh %
4%

⌋
6 1 + (lnn+ 1) cosh %

%
.

Consequently, the total number of crossings (in both directions) is less than

2 + 2(lnn+ 1) cosh %
%

.

This concludes the proof. J

4 A divide-and-conquer algorithm

In order for a divide-and-conquer approach to work for Euclidean TSP, one should be
able to solve subproblems with partial tours. We follow the terminology and definitions of
De Berg et al. [7] here. Let M be a perfect matching on a set B ⊆ P of so-called boundary
points. We say that a collection P = {π1, . . . , π|B|/2} of paths realizes M on P if (i) for each
pair (p, q) ∈M there is a path πi ∈ P with p and q as endpoints, and (ii) the paths together
visit each point p ∈ P exactly once. We define the length of a path πi to be the sum of
the lengths of its edges, and we define the total length of P to be the sum of the lengths of
the paths πi ∈ P. The subproblems that arise in our divide-and-conquer algorithm can be
defined as follows.

Hyperbolic Path Cover
Input: A point set P ⊂ H2, a set of boundary points B ⊆ P , and a perfect matching
M on B.
Task: Find a collection of paths of minimum total length that realizes M on P .

Let PathTSP(P,B,M) be the optimal tour length for the instance (P,B,M). Note that we
can solve Hyperbolic TSP on a point set P by solving Hyperbolic Path Cover n− 1
times on P with B := {p, q} and M := {(p, q)} for each q ∈ P \ {p}, and answering

min
q∈P\{p}

(
PathTSP

(
P, {p, q}, {(p, q)}

)
+ |pq|

)
.

4.1 Algorithm
Our algorithm is a standard divide and conquer algorithm that is very similar to [24] and [7].
The algorithm requires knowledge of the initial value of α; we can compute this before the
first call in O(n2) time. We give a pseudocode and also explain the steps below. In the
explanation, we sometimes regard sets of segments with endpoints in P as subgraphs of the
complete graph with vertex set P .

As a first step, we run a brute-force algorithm (comparing all path covers of P) if the
input points set P has size at most the threshold t, where t will be a large constant. On
line 2, we check the size of the boundary. If it is less than max

(
40 ln |P |

α , 8 ln |P |
)
, then we

SoCG 2020

55:10 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

Algorithm 1 HyperbolicTSP(P,B,M,α).

Input: A set P ⊂ Rd, a subset B ⊆ P , a perfect matching M ⊆
(
B
2
)
, and initial spacing α

Output: The minimum length of a path cover of P realizing the matching M on B
1: if |P | 6 t then return BruteForceTSP(P,B,M)
2: if |B| < max

(
40 ln |P |

α , 8 ln |P |
)

then
3: Compute a centerpoint q of P , the line ` through q and the region R.
4: else
5: Compute a centerpoint q of B, the line ` through q and the region R.
6: Cr← {pp′ | p, p′ ∈ P, pp′ crosses R}, End← {pp′ | p ∈ R ∩ P, p′ ∈ P, pp′ intersects `}
7: mincost←∞
8: for all Scr ⊆ Cr, |Scr| 6 scr do
9: for all Send ⊆ End, the maximum degree of Send is at most 2 do
10: P1, P2 ← uncovered vertices on each side of `
11: B1, B2 ← boundary vertices of Scr ∪ Send and points of B in P1 (resp., P2).
12: for all perfect matchings M1 on B1 and M2 on B2 do
13: if M1 ∪M2 ∪ Scr ∪ Send realize M then
14: c1 ← HyperbolicTSP (P1, B1,M1, α)
15: c2 ← HyperbolicTSP (P2, B2,M2, α)
16: if c1 + c2 + length(Scr ∪ Send) < mincost then
17: mincost← c1 + c2 + length(Scr ∪ Send)
18: return mincost

compute the centerpoint of P , the line ` with the empty cone according to Lemma 3, and
the region R. Otherwise (similarly to [7]), we need to shrink the boundary, so we use a line
` through the centerpoint of B instead. Next, we define the segment set Cr as the set of
segments pp′ that cross R, and End as the set of segments intersecting ` that have at least
one endpoint in R. We initialize the returned value mincost to infinity.

On line 8, we iterate over all segment sets Scr ⊆ Cr with |Scr| 6 scr, where scr is our
bound on the number of crossing segments from Lemma 4. The algorithm considers Scr to
be the set of segments crossing R. Next, we iterate over all the sets Send ⊆ End where each
point of P has at most two incident segments from Send. The algorithm considers Send to
be the set of segments crossing ` with at least one endpoint in R.

Each point in B needs to have one adjacent segment in the optimum tour P, and each
point in P \ B needs two such points. We say that a point p ∈ B (resp., p ∈ P \ B) is
uncovered if its degree in Scr ∪ Send is less than 1 (resp., 2). We denote by P1 and P2 the set
of uncovered points on each side of `. A point p ∈ P1 is a boundary point if p ∈ B and p
is not an endpoint of Scr ∪ Send, or p ∈ P \B and it has degree 1 in Scr ∪ Send. We let B1
denote the boundary points in P1. Similarly, B2 is the set of boundary points in P2.

Line 13 proceeds by iterating over all perfect matchings M1 on B1 and M2 on B2. If the
graph on B1 ∪B2 ∪B formed by M1 ∪M2 ∪Scr ∪Send is a set of paths such that contracting
edges with an endpoint in (B1 ∪B2) \B results in M , then we say that M1 ∪M2 ∪Scr ∪Send
realize M . If this is the case for a particular choice M1,M2, then on lines 14 and 15 we
recurse on both P1 and P2. The resulting path covers together with Scr ∪ Send form a path
cover realizing M : if their length is shorter than mincost, then we update mincost. After
the loops have ended, we return mincost.

We can also compute the optimum tour itself with a small modification of the algorithm.

S. Kisfaludi-Bak 55:11

Correctness

The same algorithmic strategy has been used several times in the literature [24, 7], so we
only give a brief justification. Given an optimal path cover P, the set Scr of segments in P
crossing R has size at most scr by Lemma 4. The set of segments Send with one endpoint in
R has degree at most two at each point of R ∩ P . Consequently, both sets will be considered
in Line 8 and Line 9. The segments of P not in Scr ∪ Send form a path cover of P1 and P2
with boundary set B1 and B2. These path covers realize some perfect matchings M1 and
M2 on B1 and B2 respectively. The matchings M1 and M2 together with Scr ∪ Send realize
M , therefore M1 and M2 will be considered in the loop at line 13. These path covers must
be optimal by the optimality of P.

4.2 Analyzing the running time
All non-recursive steps can be handled in O(n2) time. The number of segment sets Scr to be
considered in line 8 is at most

(|Cr|
scr

)
= O(n2scr), since |Cr| = O(n2). The number of segment

sets Send to be considered is at most O(n2|R∩P |) 6 O(n2nin). By Lemma 4, the loop in line 8
has at most

O

(
n

2
(

1+ 2(lnn+1)
α−2% +2+ 2(lnn+1) cosh %

%

))
= O

(
n4(lnn+1)(1

α−2%+ cosh %
%)+O(1)

)
(4)

iterations. Instead of trying to minimize this expression by our choice of %, we settle for
something that is easy to handle. Let

%
def= min

(
3
10α,

12
10

)
.

The exponent of (4) can be bounded the following way. If α < 4, then % = 3
10α, and

cosh(%) < 1.82, so we get

2(scr + nin) = 4(lnn+ 1)
(

1
α− 2% + cosh %

%

)
+O(1)

< 4(lnn+ 1)
(

1
4

10α
+ 1.82

3
10α

)
+O(1)

< 4(lnn)
(

8.57
α

)
+O(1/α)

< 35 lnn
α
, (5)

where the last step uses that n is large enough, which we can ensure by setting the
threshold t in Line 1 large enough. If α > 4, then % = 1.2:

2(scr + nin) = 4(lnn+ 1)
(

1
α− 2% + cosh %

%

)
+O(1)

< 4(lnn+ 1)
(

1
α− 2.4 + 1.82

1.2

)
+O(1)

< 7 lnn. (6)

Next, we will analyze the loop at line 13, but this will require a bound on the size of the
boundary set B.

SoCG 2020

55:12 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

I Lemma 7. The size of the boundary set B is at most max(60 ln |P |
α , 12 ln |P |) at every

recursion level of HyperbolicTSP.

Proof. The statement holds for the initial call as we have |B| = 2 and |P | = n there.
Notice that if |B| < max(40 ln |P |

α , 8 ln |P |), then we use the branch on line 3. Consequently,
the boundary set B1 (and B2) in the new recursive call always has size at most |B|+(scr+nin).
So by induction and the bounds (5) and (6), we have that

|B1| 6 max
(

40 ln |P |
α

, 8 ln |P |
)

+ max
(

17.5 ln |P |
α

, 3.5 ln |P |
)

< max
(

57.5 ln |P |
α

, 11.5 ln |P |
)

< max
(

60 ln |P1|
α

, 12 ln |P1|
)
,

where we use |P1| > |P |/3⇒ ln(|P |) < ln(P1) + 1.1; therefore, the last inequality holds if we
set the threshold t large enough.

In case of |B| > max(40 ln |P |
α , 8 ln |P |), we use the branch on line 5. We have that

|B1| 6 2
3 |B|+ (scr + nin). By induction, we still have |B| < max(60 ln |P |

α , 12 ln |P |), so

|B1| 6
2
3 max

(
60 ln |P |

α
, 12 ln |P |

)
+ max

(
17.5 ln |P |

α
, 3.5 ln |P |

)
< max

(
60 ln |P1|

α
, 12 ln |P1|

)
. J

The number of perfect matchings on a boundary set B1 is at most |B1|O(|B1|). Let
b

def= max(60 ln |P |
α , 12 ln |P |) be the bound acquired above. The number of iterations of the loop

at line 13 is at most bO(b). If α > 4, then this is (ln |P |)O(ln |P |) = |P |O(ln ln |P |) < |P |ε ln |P |

for any ε > 0, as long as |P | is large enough. If α < 4, then we get

bO(b) =
(

lnn
α

)O(lnn
α)

= nO(1
α (ln lnn+ln(1/α)).

As long as 1/α = no(1), this term is insignificant compared to the iterations of the other loop.
Otherwise, we have 1

α 6
√
n, and therefore

bO(b) = nO(1
α (ln lnn+ln(1/α)) = nO(logn

α).

I Remark 8. If one wants to optimize the leading coefficient in the exponent of the eventual
running time, then it is possible to modify the algorithm to use only c|B1| matchings for
M1 as all other matchings lead to crossings. See for example the technique in [9]. As a
consequence, the leading coefficient will not be influenced by the second loop at all. However,
this effort would be in vain if there exists a significantly better algorithm for α 6 1, say
nO(logn·(1/α)) or even nO(1/α), which we cannot rule out yet.

The following lemma finishes the proof of Theorem 1.

I Lemma 9. The running time of HyperbolicTSP on our initial call is nO(log2 n) max(1,1/α).

Proof. By the analysis above, the running time for an instance (P,B,M,α) with |P | = n

satisfies the following recursion.

T (n) 6 nO(max(logn
α ,logn))T

(
2
3n

)

S. Kisfaludi-Bak 55:13

Therefore, there exists a constant c such that the running time is at most

T (n) 6 nmax(1,1/α)·c logn
(

2
3n

)max(1,1/α)·c(log(2
3n))
·
(

4
9n

)max(1,1/α)·c(log(4
9n))
· . . .

= nmax(1,1/α)·c(logn+log(2
3n)+log(4

9n)+...)

= nmax(1,1/α)·O(log2 n). J

5 Conclusion

We have devised a separator theorem in H2 that led to a quasi-polynomial algorithm for
Hyperbolic TSP on constant-spaced point sets. For α-spaced point sets with spacing
α > log2 n/

√
n our algorithm runs in nO(log2 n) max(1,1/α) time. When the point set has

spacing only Θ(log2 n/
√
n), the algorithm’s performance degrades to the point of reaching

(roughly) the performance of the Euclidean algorithm. If the point set has even closer point
pairs, then the algorithm of Hwang et al. [12] can be used to obtain a running time of nO(

√
n).

We have shown that our algorithm’s dependence on density is necessary and for spacing
1/
√
n, it cannot be significantly improved under ETH. There are several intriguing questions

that are left open. We list some of these questions below.
Improving the running time, lower bounds. There is a considerable gap between
the running time for Hamiltonian Cycle in hyperbolic unit disk graphs (which is
polynomial) and our Hyperbolic TSP algorithm, which for constant α runs in nO(log2(n))

time. Is there an nO(logn) or a polynomial algorithm for α > 1? Alternatively, can we
prove a (conditional) superpolynomial lower bound? Such a lower bound would have to
go beyond the quasi-polynomial lower bound for Independent Set seen in [18], as that
relies heavily on dense point sets which are not allowed for α = Ω(1). Another approach
would be to use the naïve grid embedding of [18] directly, but that does not lead to a
superpolynomial lower bound here.
Higher dimensions. The grid-based lower-bound framework of [8] can be used in Hd+1,
see [18]. In particular, the ETH-based lower bound of [7] for Euclidean TSP implies
that there is no 2o(n1−1/(d−1)) algorithm for Hyperbolic TSP in Hd under ETH. Can we
extend our algorithmic techniques to constant-spaced point sets in Hd and gain algorithms
with running time 2n1−1/(d−1) poly(logn)? What happens for denser point sets? As observed
in [7], the techniques of Hwang et al. [12] do not even seem to extend to Rd for d > 3. Is
a running time of 2n1−1/d poly(logn) possible for all point sets in Hd?
A less forgiving parameter. Our usage of the spacing parameter α may be too
restrictive. Is there a better algorithm that can handle more general inputs that can
contain a few close point pairs?

References
1 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. Journal of the ACM, 45(5):753–782, 1998. doi:10.1145/290179.
290180.

2 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563–1581, 2016. doi:10.1137/130913328.

3 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM, 9(1):61–63, 1962. doi:10.1145/321105.321111.

SoCG 2020

https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1137/130913328
https://doi.org/10.1145/321105.321111

55:14 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

4 Riccardo Benedetti and Carlo Petronio. Lectures on hyperbolic geometry. Springer Science &
Business Media, 2012.

5 James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic
geometry. Flavors of geometry, 31:59–115, 1997.

6 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie Mellon University,
1976.

7 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An ETH-tight
exact algorithm for Euclidean TSP. In Proceedings of FOCS 2018, pages 450–461. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00050.

8 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for ETH-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of STOC 2018, pages 574–586, 2018. doi:10.1145/3188745.3188854.

9 Vladimir G. Deineko, Bettina Klinz, and Gerhard J. Woeginger. Exact algorithms for the
Hamiltonian cycle problem in planar graphs. Operations Research Letters, 34(3):269–274, 2006.
doi:10.1016/j.orl.2005.04.013.

10 Marvin J Greenberg. Euclidean and non-Euclidean geometries: Development and history.
Macmillan, 1993.

11 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
In Proceedings of the 1961 16th ACM National Meeting, ACM ’61, pages 71.201–71.204, New
York, NY, USA, 1961. ACM.

12 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

14 Shreesh Jadhav and Asish Mukhopadhyay. Computing a centerpoint of a finite planar
set of points in linear time. Discrete & Computational Geometry, 12:291–312, 1994. doi:
10.1007/BF02574382.

15 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

16 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming, pages 219–241. Springer, 2010.

17 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds for
TSP. J. Comput. Syst. Sci., 81(8):1665–1677, 2015. doi:10.1016/j.jcss.2015.06.003.

18 Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In
Proceedings of SODA 2020, pages 1621–1638. SIAM, 2020. doi:10.1137/1.9781611975994.
100.

19 Sándor Kisfaludi-Bak. A quasi-polynomial algorithm for well-spaced hyperbolic TSP. CoRR,
abs/2002.05414, 2020. arXiv:2002.05414.

20 Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In Proceedings
of FOCS 2006, pages 119–132, 2006. doi:10.1109/FOCS.2006.9.

21 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

22 Arlan Ramsay, Robert Davis Richtmyer, and Robert D. Richtmyer. Introduction to hyperbolic
geometry. Universitext. Springer, New York, 1995.

23 Satish Rao and Warren D. Smith. Approximating geometrical graphs via "spanners" and
"banyans". In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
pages 540–550. ACM, 1998. doi:10.1145/276698.276868.

https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.1145/3188745.3188854
https://doi.org/10.1016/j.orl.2005.04.013
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/BF02574382
https://doi.org/10.1007/BF02574382
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1137/1.9781611975994.100
https://doi.org/10.1137/1.9781611975994.100
http://arxiv.org/abs/2002.05414
https://doi.org/10.1109/FOCS.2006.9
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1145/276698.276868

S. Kisfaludi-Bak 55:15

24 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications. In
Proceedings of FOCS 2018, pages 232–243. IEEE Computer Society, 1998. doi:10.1109/SFCS.
1998.743449.

25 Aleksandr S. Smogorževskij. Lobatschewskische Geometrie. Mathematische Schülerbücherei
96. Teubner, Leipzig, 1. aufl. edition, 1978.

26 William P. Thurston. Three-Dimensional Geometry and Topology, volume 1. Princeton
University Press, 1997.

SoCG 2020

https://doi.org/10.1109/SFCS.1998.743449
https://doi.org/10.1109/SFCS.1998.743449

Intrinsic Topological Transforms via the Distance
Kernel Embedding
Clément Maria
INRIA Sophia Antipolis-Méditerranée, Valbonne, France
clement.maria@inria.fr

Steve Oudot
INRIA Saclay, Palaiseau, France
steve.oudot@inria.fr

Elchanan Solomon
Department of Mathematics, Duke University, Durham, NC USA
yitzchak.solomon@duke.edu

Abstract
Topological transforms are parametrized families of topological invariants, which, by analogy with
transforms in signal processing, are much more discriminative than single measurements. The first
two topological transforms to be defined were the Persistent Homology Transform (PHT) and Euler
Characteristic Transform (ECT), both of which apply to shapes embedded in Euclidean space. The
contribution of this paper is to define topological transforms for abstract metric measure spaces.
Our proposed pipeline is to pre-compose the PHT or ECT with a Euclidean embedding derived
from the eigenfunctions and eigenvalues of an integral operator. To that end, we define and study an
integral operator called the distance kernel operator, and demonstrate that it gives rise to stable and
quasi-injective topological transforms. We conclude with some numerical experiments, wherein we
compute and compare the eigenfunctions and eigenvalues of our operator across a range of standard
2- and 3-manifolds.

2012 ACM Subject Classification Mathematics of computing → Algebraic topology

Keywords and phrases Topological Transforms, Persistent Homology, Inverse Problems, Spectral
Geometry, Algebraic Topology, Topological Data Analysis

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.56

Related Version https://arxiv.org/abs/1912.02225

1 Introduction

One way of viewing the success of convolutional neural networks in the classification and
analysis of large, multi-channel images is that these neural networks learn an optimal set
of coordinates for representing sets of images in Euclidean space. However, when the data
consist of shapes whose underlying topologies may vary, it becomes apparent that new tools
and techniques must be brought to bear. One approach is to use topological transforms to
represent these shapes as collections of topological summaries.

The topological summaries we use are persistence diagrams. Given a real-valued filter
function f on a space X, the associated persistence diagram Diag(f) describes how the
topology of the sublevel sets Xα = {f(x) ≤ α | x ∈ X} evolves as α increases. When the
filter-function f measures something about the geometry of X, such as its curvature, the
resulting persistence diagram contains both topological and geometric information. If we
use not one, but a family of filter functions, the resulting collection of persistence diagrams
is called a topological transform. Although the space of persistence diagrams (with the
Bottleneck of Wasserstein distances) is not an inner product space, there are many methods

© Clément Maria, Steve Oudot, and Elchanan Solomon;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clement.maria@inria.fr
mailto:steve.oudot@inria.fr
mailto:yitzchak.solomon@duke.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.56
https://arxiv.org/abs/1912.02225
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Intrinsic Topological Transforms via the Distance Kernel Embedding

for mapping persistence diagrams to a Hilbert space. The composition of any such map with
our topological transform results in a collection of vectors that can be concatenated and fed
into any standard machine learning model.

Turner et al. [20] first introduced topological transforms for shapes embedded in Euclidean
space. Their work, and the work in various subsequent papers, demonstrates that this
transform completely captures the geometric structure of its defining shape. Our goal in this
article is to extend these topological transforms to intrinsic metric spaces by pre-composing
them with a suitable Euclidean embedding. For this pipeline to be successful in practice, the
chosen Euclidean embedding must preserve the geometric structure of our metric spaces. In
this paper, we make the case that a particular integral operator, the distance kernel operator,
is well suited to this task. We show that the eigenfunctions and eigenvalues of this operator
are stable with respect to discretization and perturbations of the underlying shape, that they
define a Euclidean embedding which encodes the large-scale geometry of our metric space,
and that the resulting topological transforms enjoys favorable stability and quasi-injectivity
properties.

Related Work. In [20], Turner et al. defined the Persistent Homology Transform (PHT) and
Euler Characteristic Transform (ECT). These transforms take as input sufficiently regular
subsets S of Euclidean space Rd, and associate to every vector v ∈ Sd−1 of the sphere in
Rd the persistence diagram, or Euler characteristic curve, of the sublevel-set filtration of S
induced by the function fv : S → R: fv(x) = v · x. It was subsequently proven in [9] and [12]
that these topological transforms are injective in all dimensions1. Moreover, it was shown in
[5] and [9] that, for certain families of embedded shapes, these topological transforms can be
computed in finitely many steps2. Complimenting these theoretical results, Crawford et al.
[8] demonstrated how to use these topological transforms to build an improved classifier for
glioblastoma patient outcomes.

In [16], Oudot and Solomon defined a topological transform for intrinsic metric spaces
(X, dX). This transform associates to every basepoint x0 ∈ X the extended persistence
diagram of the function fx0 : X → R: fx0(x) = dX(x0, x). The resulting invariant, called the
Intrinsic Persistent Homology Transform (IPHT), is the collection of all persistence diagrams
arising from basepoints in X. By computing Euler characteristic curves instead of persistence
diagrams, one obtains the Intrinsic Euler Characteristic Transform (IECT). This invariant
was first studied, in the case of metric graphs, by Dey, Shi, and Wang in [10], where they
proved stability and computability results and ran some experiments. The main result of
[16] demonstrated that these invariants are injective3 on an appropriately generic subset of
the space of metric graphs. For a detailed survey on related problems in applied topology,
we refer the reader to [17]. Another line of research, at the intersection between persistent
homology and spectral geometry, can be found in the work of Polterovich et al. [18], where
they study and bound various functionals on persistence diagrams arising from Laplacian
eigenfunctions on compact surfaces.

As this paper is concerned with both applied topology and spectral geometry, let us now
consider some results, both classical and modern, in the latter field. To begin, the data
of a weighted graph can be encoded via its adjacency matrix, and the spectral theory of

1 By “injective”, we mean that two subsets of Euclidean space have the same transform if and only if
they are identical. Thus, the transform is injective on the space of admissible subsets.

2 That is, finitely many directions determine the entire transform, and these directions can be identified
with finitely many geometric computations.

3 As with the PHT and ECT, this means that two graphs having the same transform must be isometric.

C. Maria, S. Oudot, and E. Solomon 56:3

these matrices is deep and of great utility, seeing application in, e.g., graph clustering and
Google’s PageRank algorithm. Another matrix associated to a graph is its Laplacian, whose
eigendecomposition forms the basis for the Laplacian Eigenmaps technique studied by Belkin
and Niyogi in [2, 3, 4], as well as the diffusion maps of Coifman and Lafon [7]. Spectral
analysis of the Gram matrix of the distances gives rise to the classical Multi-Dimensional
Scaling embedding and its extension by Tenenbaum et al. [19] to non-linear embeddings:
IsoMap. Lastly, the X-ray transform of [14] takes as input a continuous, compactly supported
function f on Rd, and outputs a function on the space of lines in Rd that encodes the
corresponding line integral of f .

Contributions and Outline. The structure of this article is as follows. In Section 2, we
introduce a general framework for producing topological transforms on intrinsic metric objects
via embedding these shapes in Euclidean space, and then applying the extrinsic topological
transforms of [20]. To that end, we are charged with identifying a Euclidean embedding
whose associated topological transforms have desirable stability and inverse properties. We
observe that the eigenfunctions of the Laplacian are not well suited to this task, and so, in
Section 3, we define a new operator, called the distance kernel operator, which we prove
gives rise to a Euclidean embedding (which we call distance kernel embedding, or DKE).
In Section 4, we show that the DKE is sufficiently regular to allow for the computation of
topological invariants, in addition to being stable under discrete sampling and perturbation
of the metric. We also show that the regularity of the DKE implies stability results for its
associated topological transforms. In Section 5, we prove inverse results for the DKE and its
topological transforms. We conclude, in Section 6, with a range of experiments illustrating
the discriminative power of the DKE for discrete samples of various 2- and 3-manifolds.

2 Intrinsic Topological Transforms from Compact Operators

In this section we introduce a general framework for combining the existing extrinsic topolog-
ical transforms with Euclidean embeddings of intrinsic metric spaces via compact operators.

2.1 Extrinsic Topological Transforms

I Definition 1. Let f be a real-valued function on a topological space X. We write PH(X, f)
to denote the graded sublevel set persistence diagram of (X, f), which contains the sublevel
set persistence diagrams of (X, f) for each homological degree. We write GrDiag to refer
to the space of such graded persistence diagrams. For a fixed degree k, we write βk(X, f) to
denote the corresponding Betti curve, which is the sum of the indicator functions of intervals
in the persistence diagram. Lastly, we write χ(X, f) to denote the Euler curve, which is the
alternating sum of the Betti curves in all degrees.

I Definition 2. Let Sk be the k-dimensional sphere, and L(Rk+1,R) the space of linear
maps from Rk+1 to R. Define the map Θ : Sk → L(Rk+1,R) which sends v ∈ Sk to the map
x 7→ 〈x, v〉.

SoCG 2020

56:4 Intrinsic Topological Transforms via the Distance Kernel Embedding

I Definition 3 ([9]). Let X ⊂ Rd be a compact, definable set4. For every v ∈ Sd−1, the
sublevel set persistence diagram and Euler curve of the pair (X,Θ(v)) exist. The Persistent
Homology Transform is the map PHT (X) : Sd−1 → GrDiag defined by:

PHT (X)(v) = PH(X,Θ(v)).

If one computes Euler curves instead of persistence diagrams, one obtains the Euler Charac-
teristic Transform ECT (X).

Intuitively, the PHT and ECT probe an embedded subset of Euclidean space like a
multi-directional MRI scanner, recording how the topology evolves along each direction. The
following injectivity result demonstrates the rich geometric content of these transforms.

I Theorem 4 ([9, 12]). The PHT and ECT are injective for all k. That is, for any definable
sets X,Y ⊂ Rd, if PHT (X) = PHT (Y) or ECT (X) = ECT (Y), then X = Y as sets.

2.2 Compact Operators and their Embeddings
I Definition 5. Let H be a Hilbert space. A linear operator T : H → H is bounded if there
exists a constant M such that, for all v ∈ H, ‖Tv‖ ≤M‖v‖. A bounded operator is compact
if the image of any bounded subset of H under T is relatively compact. A bounded operator T
is self-adjoint if T is equal to its adjoint T ∗; equivalently, 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H.

The spectral theorem for compact, self-adjoint operators on a Hilbert space asserts that
these operators can be diagonalized.

I Theorem 6 (Spectral Theorem). Let T be a compact, self-adjoint operator on a Hilbert
space H. Then H admits a finite or countably infinite basis {φi} of eigenvectors of T with
real eigenvalues {λi}, where limi→∞ λi = 0.

Given a compact metric (Borel) measure space (X, dX , µX), we can consider compact,
self-adjoint operators on the Hilbert space L2(X). The eigenfunctions {φi} and eigenvalues
{λi} arising from the spectral theorem can then be used to define embeddings of X into
Euclidean space. This requires the adoption of various conventions and generic assumptions:
1. The spectral theorem asserts the existence of the eigenfunctions φi, but it does not

guarantee their uniqueness. Indeed, the choice is never unique. If the eigenvalue λi
has geometric multiplicity one, then there are two choices of unit norm eigenfunctions:
{φi,−φi}. If the eigenvalue has geometric multiplicity greater than one, then there are
infinitely many choices. In the rest of the paper, we make the generic assumption that all
the eigenvalues have multiplicity one5.

2. We adopt the convention of dropping the eigenfunctions in the zero-eigenspace, and, to
fix the choice of sign, we pick φi such that 〈φi, |φi|〉 > 0 for all i6.

3. We order the eigenvalues (and hence eigenfunctions) in decreasing order of absolute value,
|λ1| ≥ |λ2| ≥ |λ3| ≥ . . ., breaking the tie between positive-negative pairs by listing the
positive eigenvalue first.

4 The notion of definability is always understood to be relative to a choice of o-minimal structure on Rd,
which is an algebra of sets satisfying certain membership conditions. Examples include the collection of
semi-algebraic or analytic subsets of Rd. See [9] §2 for details.

5 We can always infinitesimally perturb our space to make this true.
6 We make the generic assumption that this dot product is nonzero.

C. Maria, S. Oudot, and E. Solomon 56:5

4. To take advantage of many useful results in operator theory, we restrict ourselves to
operators that are Hilbert-Schmidt, which means that

∑∞
i=1 λ

2
i < ∞. Every Hilbert-

Schmidt operator on L2(X) can be represented as an integral operator with square
integrable kernel K(·, ·)7, i.e., an operator of the form:

T : L2(X)→ L2(X) (Tf)(x) =
∫
X

K(x, y)f(y)dµX(y).

We thus assume our operators are of this form.

I Definition 7. Given a compact metric (Borel) measure space (X, dX , µX), let T be a
compact, self-adjoint operator on L2(X) with spectral decomposition {φi, λi}, following the
conventions above. We define coordinate functions on X as follows: αi(x) =

√
λiφi(x). Note

that the eigenvalue λi may be negative (we have not assumed that the operator is positive
definite), so the coordinate function takes values in C. When λi is negative, we adopt the
convention of taking the square root with positive imaginary part. By identifying C with R2,
we can also think of this coordinate function as taking a pair of real values.

Our rationale for scaling the eigenfunctions by the square root of their eigenvalues
is that, for an integral operator T with kernel K(·, ·), the sum

∑∞
k=1 λiφi(x)φi(x′) =∑∞

k=1(
√
λiφi(x))(

√
λiφi(x′)) =

∑∞
i=1 αi(x)αi(x′) converges to K(x, x′) in L2(X,X)8. Using

these coordinates, we define a kernel embedding9:

I Definition 8. Let (X,dX , µX), T , and {φi, λi} be as in Definition 7. For k ≥ 1, we define
Φk : X → Ck ∼= R2k to be the map sending a point x ∈ X to (α1(x), · · · , αk(x)) ∈ Ck ∼= R2k.
Setting k =∞ gives us a map Φ : X → C∞ ∼= R∞. When Φ is continuous and injective, the
image of Φ (resp. Φk) is called the kernel embedding (resp. truncated kernel embedding)
associated to T .

2.3 Topological Kernel Transforms
By post-composing this embedding with the PHT or the ECT, we obtain topological
transforms that are defined intrinsically on metric measure spaces10.

I Definition 9. Let X and Φ be as in Definition 8. For k finite, the embedded persistence
kernel transform e-PKTk(X) is the PHT applied to the image of the embedding Φk(X) ⊂ R2k,
which takes as input vectors in S2k−1 and takes values in GrDiag. Using Euler curves in
place of persistent diagrams gives rise to the embedded Euler kernel transform e-EKTk.

The following meta-theorem motivates the constructions and results to follow.

I Theorem 10. Fix a positive integer k. Let M be a class of metric measure spaces with
integral kernels {KM}M∈M, giving definable embeddings {ΦMk }M∈M. If ΦMk (M) 6= ΦM ′

k (M ′)
for any pair of non-isometric spaces M 6= M ′ ∈ M, then the e-PKTk and e-EKTk are
injective onM.

Proof. This is an immediate consequence of Theorem 4. J

7 This is the Hilbert-Schmidt Kernel Theorem. See Appendix B of [13], where the result is proven for
subsets of R. The proof for compact metric (Borel) measure spaces is identical.

8 This convergence is not necessarily uniform, unless K(·, ·) is positive semidefinite (Mercer’s theorem).
9 The use of the term embedding comes from the injectivity properties of this map, proved in §5.1
10We implicitly assume here that these persistence diagrams and Euler curves exist. Later on in this

article, we verify this explicitly for the integral operator of interest.

SoCG 2020

56:6 Intrinsic Topological Transforms via the Distance Kernel Embedding

For most classes M of interest, such as the set of Riemannian manifolds of a given
dimension, there are no known integral operators whose associated embeddings in finite
dimensions are injective in the sense of Theorem 10. However, if we relax the assertion of
injectivity, and ask only that ΦMk (M) = ΦM ′

k (M ′) implies a bound on the Gromov-Hausdorff
distance between M and M ′, we can construct such an integral operator. Before defining
this operator, which is the subject of the next section, we note that the diffusion operator,
which is related to the local geometry of a space, does not enjoy global guarantees of this
kind. Indeed, although one can recover the metric on a Riemannian manifold from the exact
knowledge of all its Laplacian eigenfunctions and eigenvalues (cf. [21]), this reconstruction is
asymptotic, cannot be approximated with finitely many eigenfunctions and eigenvalues, and
is unstable to noise.

3 The Distance Kernel Operator and its Embedding

We now define our proposed integral operator, and prove that it is compact and self-adjoint.
Recall that a compact metric measure space (X,dX , µX) has finite volume µX(X) < +∞.
We write Vol(X) := µX(X).

I Definition 11. Let (X,dX , µX) be a compact metric measure space11. We define the
following operator DX on L2(X), called the distance kernel operator (DKO):

(DXf)(x) =
∫
X

f(y) dX(x, y)dµX(y).

I Proposition 12. DX is a self-adjoint operator.

Proof. By convention, µX is Radon. Since X is compact, this implies that µX(X) < ∞,
and hence (X,µX) is σ-finite. We can thus apply Fubini’s theorem, and the symmetry of the
distance function dX , to observe that, for two integrable functions f and g,

〈DXf, g〉 =
∫
X

(∫
X

f(y) dX(x, y)dµX(y)
)
g(x)dµX(x)

=
∫
X

∫
X

f(y)g(x) dX(x, y)dµX(x)dµX(y)

=
∫
X

f(y)
(∫

X

g(x) dX(y, x)dµX(x)
)
dµX(y) = 〈f,DXg〉,

demonstrating self-adjointness. J

I Proposition 13. DX is a compact operator.

Proof. Let fn ∈ L2(X) be a bounded sequence of functions, ||fn||L2 ≤ C for all n.
For all dX(x, x′) ≤ ε and all n,

|DXfn(x)−DXfn(x′)| =
∣∣∣∣∫
X

(dX(x, y)fn(y)− dX(x′, y)fn(y)) dµX(y)
∣∣∣∣

≤
∫
X

|dX(x, y)− dX(x′, y)||fn(y)|dµX(y)

(Cauchy-Schwarz) ≤ ‖dX(x, y)− dX(x′, y)‖L2(y) · ‖fn(y)‖L2(y)

(triangle inequality) ≤ ‖ε‖L2(y) · ‖fn(y)‖L2(y)

≤ ε
√

Vol(X) · C,

11For the rest of the paper, we assume that µX is a Radon measure.

C. Maria, S. Oudot, and E. Solomon 56:7

where Vol(X) is finite. Thus, DXfn is an equicontinuous family of functions on X, so, by
the Arzelà-Ascoli theorem, it contains a uniformly convergent, and hence L2-convergent,
subsequence. This demonstrates compactness. J

Note that, as a consequence of the proof of this proposition, the eigenfunctions of the
distance kernel operator are always continuous. We can thus define an embedding as in
Definition 8, which we call the distance kernel embedding (DKE)12. From now on, we write
Φ and Φk to exclusively denote the distance kernel embedding, and the e-PKT and e-EKT
likewise refer exclusively to the resulting transforms. In the following sections, we study the
stability and inverse properties of these embeddings and transforms.

4 Stability for the DKE and its Topological Transforms

Let (X,dX , µX) be a compact metric (Borel) measure space. The eigenfunctions of the
distance kernel operator with nonzero eigenvalue are Lipschitz continuous, with the Lipschitz
constant being inversely proportional to the absolute value of the eigenvalue.

I Lemma 14. For every i ∈ N>0, The function λiφi is
√

Vol(X)-Lipschitz. Hence, if
λi 6= 0, φi is (

√
Vol(X)/|λi|)-Lipschitz. Note that X being compact, Vol(X) < +∞ and these

Lipschitz constants are indeed finite.

Proof. Let x, y ∈ X and ε = dX(x, y). By the fact that λiφi = DXφi, we have

|λiφi(x)− λiφi(y)|2 =
∣∣(DXφi)(x)− (DXφi)(y)

∣∣2
=
∣∣∣∣∫
X

(dX(x, z)− dX(y, z))φi(z)dµX(z)
∣∣∣∣2

(Cauchy-Schwarz) ≤
∫
X

(dX(x, z)− dX(y, z)︸ ︷︷ ︸
≤dX(x,y)=ε

)2dµX(z) ·
∫
X

φ2
i (z)dµX(z)︸ ︷︷ ︸

=1

≤ ε2 Vol(X).

Thus, |λiφi(x)− λiφi(y)| ≤ ε
√

Vol(X), so λiφi is
√

Vol(X)-Lipschitz. J

This regularity result on eigenfunctions has many implications for our topological trans-
forms, which are given below (the proofs can be found in the full version of the paper [15],
but are omitted here due to their complexity and length). The result implies in particular
that persistence diagrams exist and are well-defined (which is not the case for an arbitrary
continuous function on a compact topological space), and, under the additional assumption
that the space X implies bounded degree-q total persistence13, that Euler curves exist:

I Proposition 15. Let (X,dX , µX) be a compact metric measure space homeomorphic to
the geometric realization of a finite simplicial complex. Then, any finite linear combination
f =

∑n
i=1 ciφi of eigenfunctions of the distance kernel DX has a well-defined sublevel set

graded persistence diagram PH(X, f). Now, suppose further that X implies bounded degree-q
total persistence. Let p = 1/q. Then for any homological degree k, the sum defining βk(X, f)
converges in Lp. Moreover, the sum defining χ(X, f) is finite, so the Euler curve exists as a
function in Lp.

12The matter of injectivity will be established in Lemma 20.
13 Intuitively, this technical condition means that, for any graded persistence diagram PH(X, f), the sum

of the qth powers of the persistences of the points across all degrees is finite. The bilipschitz image of a
finite dimensional Euclidean simplicial complex has bounded degree-q total persistence for q sufficiently
large. See the full version of this paper for details.

SoCG 2020

56:8 Intrinsic Topological Transforms via the Distance Kernel Embedding

In addition, we obtain the following stability result for the resulting topological transforms:

I Theorem 16. Suppose X is homeomorphic to the geometric realization of a finite simplicial
complex. If we equip GrDiag with the graded bottleneck distance and the sphere S2k−1 with
the `1 distance, then the e-PKTk is Lipschitz continuous. Now suppose further that X implies
bounded degree-q total persistence for some q > 0, and that there is a uniform bound on the
number of points in the persistence diagrams obtained when evaluating the e-PKTk at an
arbitrary vector v ∈ S2k−1. If we equip the sphere S2k−1 with the `1 distance, and the space
of Euler curves with the L1/q distance, then the e-EKTk is q-Hölder continuous on S2k−1.

We also have two more stability results for the DKE, for which we do not yet have
analogues for the topological transforms. The first result asserts that the distance kernel
embedding of a discrete sample of a space converges almost surely to the distance kernel
embedding of the underlying space:

I Theorem 17. Let (X,dX , µX) be a compact metric measure space with (a, b)-standard
Borel measure14. For an i.i.d sample Xn of X of size n, call Φ̂k(Xn) the empirical DKE
defined on the metric measure space (Xn,dX , µn) with uniform measure µn(x̂) = µX(X)/n
for all x̂ ∈ Xn. Writing dL

2

H for the Hausdorff distance for the L2 norm in Ck, we have:

dL
2

H (Φk(X), Φ̂k(Xn)) a.s.−−→ 0 as n→ +∞.

In addition, the distance kernel embedding is stable on the space of Riemannian manifolds.
The following is a simplified version of the result contained in the full version of the paper,
which gives an explicit form for the function F .

I Theorem 18. Let (X,dX , µX) and (Y,dY , µY) be compact finite-dimensional Riemannian
manifolds equipped with their volume measures, such that µX(X) = µY (Y). Let ε =
dGP̄ (X,Y) be the modified Gromov-Prokhorov distance15 between X and Y , and let |λ1| >
. . . > |λk| > 0 and |ν1| > . . . > |νk| > 0 be the k largest (in absolute value) eigenvalues of the
distance kernel operators of X and Y respectively, all non-zero with distinct absolute values.
Let Φk(X) and Ψk(Y) be the induced DKE. If we write Λ for the set {λ1, · · · , λk, ν1, · · · νk},
then there is a function F (Λ, ε), depending on the magnitude of the elements of Λ and the
gaps |λ2

i − ν2
i | between corresponding eigenvalues, such that:

dL
2

H (Φk(X),Ψk(Y)) ≤ F (Λ, ε) and lim
ε→0

F (Λ, ε) = 0.

5 Injectivity for the DKE and its Topological Transforms

We now demonstrate some inverse results for the distance kernel embedding and transforms.
We stress that these results apply specifically when the integral kernel is taken to be dX(·, ·).

5.1 Injectivity of Φ
Our first result, in Corollary 21 below, is that, under the mild hypothesis of strict positivity
(defined below), the infinite-dimensional embedding Φ is a homeomorphism of the metric
measure space onto its image in C∞.

14This ensures a lower bound on the volume of metric balls. See the full paper for a precise definition.
15This is a slight modification of the Gromov-Prokhorov distance, introduced by Burago et al. in §8 of [6].

C. Maria, S. Oudot, and E. Solomon 56:9

I Definition 19. For a topological space X equipped with its Borel σ-algebra, we call a
measure µX strictly positive if the measure of any nonempty open set is strictly positive.

I Lemma 20. Let (X,dX , µX) be a compact, strictly positive metric measure space. Then
the map Φ : X → C∞ is injective.

Proof. Suppose that there are x 6= y ∈ X such that Φ(x) = Φ(y). This implies that
αi(x) = αi(y) and, in turn, λiφi(x) = λiφi(y) for all i. Let dx and dy be the distance
functions associated to x and y respectively. Using the L2-convergence of the eigenfunction
expansion, we know that:

‖dx−
n∑
i=1

λiφi(x)φi‖L2
n→∞−−−−→ 0 and ‖ dy −

n∑
i=1

λiφi(y)φi‖L2
n→∞−−−−→ 0.

Since
∑n
i=1 λiφi(x)φi =

∑n
i=1 λiφi(y)φi for all n, the triangle inequality implies that

‖dx− dy ‖L2 = 0. Let now r = dX(x, y)/3 > 0, and let U be the open neighborhood of
radius r around x. The function |dx−dy | is bounded below by r on U , and since U is not
empty (it contains x), it has strictly positive measure. This then implies ‖ dx−dy ‖L2 > 0, a
contradiction. Thus, Φ(x) 6= Φ(y) for x 6= y. J

I Corollary 21. By Lemma 14, every component of the map Φ is continuous. Meanwhile,
any metric on C∞ gives it a Hausdorff topological structure. Thus, for any such choice of
metric, Φ is a continuous injection from a compact space to a Hausdorff space. Hence, Φ is
a homeomorphism.

We also have the following injectivity result, where the domain of interest is the space of
compact metric measure spaces. As a consequence of Corollary 21, it suffices to consider
pairs of metric measure spaces that are defined on a common topological space.

I Theorem 22. Fix a compact topological space Z. Let µ and µ′ be strictly positive measures
for the Borel σ-algebra on Z, with µ absolutely continuous with respect to µ′, and d and
d′ metrics on X, both consistent with the topology on Z, making X = (Z,d, µ) and X ′ =
(Z,d′, µ′) metric measure spaces. If Φ(X) = Φ(X ′), then d = d′.

Proof. By assuming that both metric measure spaces induce the same topology, we can
work with a single σ-algebra: their common Borel σ-algebra. This will prove essential in
the following proof, where we take various unions and complements of measurable sets for
µ and µ′, respectively. Next, let D and D′ be the integral operators with kernels d and
d′, respectively. The equality Φ(X) = Φ(X ′) implies that D and D′ have the same scaled
eigenfunctions αi. The distance functions d,d′ thus have the same eigenfunction expansion:

(x1, x2) 7→
∞∑
i=1

αi(x1)αi(x2).

This converges to d in L2(µ⊗ µ) and to d′ in L2(µ′ ⊗ µ′) to d′. Let us denote by Sn the
partial sums of this expansion:

Sn =
n∑
i=1

αi(x1)αi(x2).

SoCG 2020

56:10 Intrinsic Topological Transforms via the Distance Kernel Embedding

It is a standard result in measure theory that any L2-convergent sequence admits a
subsequence that converges pointwise a.e.16 Thus, one can extract a subsequence Snk

that
converges to d pointwise on (Z × Z) \ N1, for some set N1 ⊂ Z such that (µ ⊗ µ)(N1) =
0. We can then extract a further subsequence Snkj

that converges pointwise to d′ on
((Z × Z) \N1) \N2, where (µ′ ⊗ µ′)(N2) = 0. Since µ is absolutely continuous to µ′, if we
set N = N1 ∪N2 then (µ⊗ µ)(N) = 0. Since µ is strictly positive, the set N cannot contain
any open sets, hence N c is dense in Z × Z. We see then that d = d′ on a dense subset of
Z × Z; since these functions are both continuous in the same topology Z, they are equal
everywhere. J

5.2 Quasi-Injectivity of Φk

While the truncated embedding Φk may not be injective, we can get control over the
diameter of its fibers (Corollary 26). The bounds are expressed in terms of the error of the
approximation of the metrics by its truncated expansion:

I Definition 23. For a compact metric measure space (X,dX , µX) and a positive integer k,
we define the error function EX,k, which measures the pointwise distance between dX and its
truncated eigenfunction expansion:

EX,k(x, x′) = |
k∑
i=1

αi(x)αi(x′)− dX(x, x′)|.

I Theorem 24. Let (X,dX , µX) and (Y,dY , µY) be compact metric measure spaces, with
eigenvalues {λi} and {νi}. Let k ∈ N>0 be and integer, and ε := dL

2

H (Φk(X),Φk(Y)). Then:

dGH(X,Y) ≤ 2εmin
{

max
x∈X
‖Φk(x)‖2,max

y∈Y
‖Φk(y)‖2

}
+ ‖EX,k‖∞ + ‖EY,k‖∞ + ε2.

In the special case where X and Y are finite metric measure spaces, Theorem 24 assumes a
more precise form:

I Theorem 25. Let (X,dX , µX) and (Y,dY , µY), with eigenvalues {λi} and {νi}, and let θ =
min{minx∈X µX(x),miny∈Y µX(y)}. Take k ≤ |X|, |Y |, and suppose that
dL

2

H (Φk(X),Φk(Y)) ≤ ε. Then,

dGH(X,Y) ≤ 2ε
min(

√
|λ1|,

√
|ν1|)

θ
+ ε2 + |λk+1|+ |νk+1|

θ
.

We thus obtain the following bound on the diameter of the fibers of the DKE.

I Corollary 26. Let (X,dX , µX) and (Y,dY , µY) be compact metric measure spaces, with
eigenvalues {λi} and {νi}. Let k ∈ N be a positive integer, and suppose that Φk(X) = Φk(Y).
Then, dGH(X,Y) ≤ ‖EX,k‖∞ + ‖EY,k‖∞. If X and Y are finite metric spaces, and we set
θ = min{minx∈X µX(x),miny∈Y µX(y)}, then dGH(X,Y) ≤ 1

θ (|λk+1|+ |νk+1|).

The effectiveness of these results depends on the magnitude of the quantities ‖EX,k‖∞ and
the decay of the eigenvalues λi. It remains to identify general metric and measure-theoretic
criteria that imply bounds on these spectral statistics. The rest of this section is devoted to

16Chebyshev’s inequality proves that L2 convergence implies convergence in measure. See Theorem 2.15(c)
in [11] for the implication that convergence in measure implies the existence of pointwise a.e. convergent
subsequence.

C. Maria, S. Oudot, and E. Solomon 56:11

the proof of Theorem 24. Theorem 25 follows from Theorem 24, and we refer the reader to
the full version of the paper for the details of this derivation [15]. The proof of Theorem 24
requires us to define the following algebraic operation, and to prove some technical lemmas
regarding it.

I Definition 27. For vectors v, w ∈ Ck, define the following bilinear form:

[v, w] =
k∑
i=1

viwi ∈ C.

This form is symmetric but not a dot product.

The utility of the bilinear form [·, ·] comes from the following equality:

[Φk(x),Φk(x′)] =
k∑
i=1

αi(x)αi(x′) =
k∑
i=1

(√
λiφi(x)

)(√
λiφi(x′)

)
=

k∑
i=1

λiφi(x)φi(x′).

That is, when applied to the distance kernel embedding, [·, ·] gives the first k terms of
the eigenfunction expansion of the distance function dX .

I Lemma 28. The bilinear form [·, ·] satisfies the following Cauchy-Schwarz inequality:

|[v, w]| ≤ ‖v‖2‖w‖2.

Proof Sketch. By the triangle inequality for complex numbers, we have |[v, w]| ≤ [ṽ, w̃] =
〈ṽ, w̃〉, where ṽ, w̃ are obtained from v and w by replacing each coordinate with its modulus.
The result then follows by applying the standard Cauchy-Schwarz inequality. J

The following lemma asserts that pairs of nearby vectors have similar bilinear products.

I Lemma 29. Let v1, v2, w1, w2 ∈ Ck be such that ‖v1−w1‖2 ≤ ε and ‖v2−w2‖2 ≤ ε. Then

|[v1, v2]− [w1, w2]| ≤ εmin {‖v1‖2 + ‖v2‖2, ‖w1‖2 + ‖w2‖2}+ ε2.

Proof. By bilinearity,

[w1, w2] = [v1, v2] + [v1, (w2 − v2)] + [(w1 − v1), v2] + [(w1 − v1), (w2 − v2)].

Thus,

|[v1, v2]− [w1, w2]| ≤ |[v1, (w2 − v2)]|+ |[(w1 − v1), v2]|+ |[(w1 − v1), (w2 − v2)]|.

By a symmetric argument, switching v1 and v2 with w1 and w2, one obtains:

|[v1, v2]− [w1, w2]| ≤ |[w1, (v2 − w2)]|+ |[(v1 − w1), w2]|+ |[(v1 − w1), (v2 − w2)]|.

The result then follows by applying the Cauchy-Schwarz inequality to each term on the
right-hand sides of both inequalities, and by taking the minimum of the two sums. J

We can now prove Theorem 24:

Proof. Let C be an optimal Hausdorff correspondence between Φk(X) and Φk(Y). Let
(x, x′) ∈ X ×X and (y, y′) ∈ Y × Y with (Φk(x),Φk(y)), (Φk(x′),Φk(y′)) ∈ C. Lemma 29,
together with the bounds ‖Φk(x)− Φk(y)‖L2 ≤ ε and ‖Φk(x′)− Φk(y′)‖L2 ≤ ε , gives

|[Φk(x),Φk(x′)]− [Φk(y),Φk(y′)]| ≤ 2εmin
{

max
x∈X
‖Φk(x)‖2,max

y∈Y
‖Φk(y)‖2

}
+ ε2.

SoCG 2020

56:12 Intrinsic Topological Transforms via the Distance Kernel Embedding

Using the triangle inequality, we can replace [Φk(x),Φk(x′)] with dX(x, x′) and
[Φk(y),Φk(y′)] with dY (y, y′), at the cost of adding an additive error of at most ‖EX,k‖∞
and ‖EY,k‖∞ respectively, giving the following inequality, from which the result follows:

|dX(x, x′)−dY (y, y′)| ≤ 2εmin
{

max
x∈X
‖Φk(x)‖2,max

y∈Y
‖Φk(y)‖2

}
+‖EX,k‖∞+‖EY,k‖∞+ε2.

J

5.3 Quasi-Injectivity of the e-P KTk and e-EKTk

Corollary 26, taken together with Theorem 4, implies the following result, which bounds
the diameter of the fibers of the topological transforms. For general metric measure spaces,
the diameter depends on the error functions EX,k and EY,k. As k goes to infinity, these
functions go to zero in the L2 norm, but we do not have any general guarantees that this
also holds in the L∞ norm17. For finite metric spaces, the diameter does indeed go to 0 as k
goes to infinity.

I Theorem 30. Let (X,dX , µX) and (Y,dY , µY) be compact metric measure spaces, with
eigenvalues {λi} and {νi} respectively, giving rise to definable distance kernel embeddings.
Let k ∈ N be a positive integer, and suppose that e-PKTk(X) = e-PKTk(Y) or e-EKTk(X)
= e-EKTk(Y). Then dGH(X,Y) ≤ ‖EX,k‖∞ + ‖EY,k‖∞. If X and Y are finite spaces, and
we set θ = min{minx∈X µX(x),miny∈Y µX(y)}, then dGH(X,Y) ≤ 1

θ (|λk+1|+ |νk+1|).

The condition that the DKEs be definable is always satisfied when the spaces are finite.
It remains to work out the correct hypotheses to ensure definability more generally; this is
work in progress.

6 Experiments

The goal of this section is to illustrate the results of Sections 4 and 5. In the following
experiments, we compute the DKE for a variety of discrete samples on the torus and 2-sphere,
with metric induced by their embedding in Euclidean space, on the 3-sphere, and on the
Lens spaces L(7, 1) and L(7, 4), with spherical geometry. The measures on these samples are
uniform. These spaces have distinct integer homology, except for the two Lens spaces that
have the same homotopy type but are not homeomorphic, and therefore not isometric. This
makes L(7, 1) and L(7, 4) difficult to distinguish by purely topological methods. We see that
the DKE (and, therefore, the resulting topological transforms) is capable of distinguishing
these Lens spaces.

Spectra of various manifolds. In Figure 1a, we have plotted the first 8 eigenvalues of
five discrete metric spaces, sampled from each of these five manifolds, normalized by the
number of points in each sample. We can observe the following: (1) the two Lens spaces
have relatively similar eigenvalues, (2) the 2- and 3-sphere have many similar eigenvalues,
but their first and fourth eigenvalues are significantly different, and (3) the torus has the
most distinct spectrum.

17However, experimental studies suggest that this is the case for a variety of manifolds [15].

C. Maria, S. Oudot, and E. Solomon 56:13

Spectra of Lens spaces for various samples. In Figure 1b, we compare the spectra of a
number of different random i.i.d. samples of the two Lens spaces L(7, 1) and L(7, 4). To be
precise, for each Lens space we compute the spectra of two distinct random samples with
2000 points, and a third sample with 5000 points. The spectra for the different samples of
the same Lens space are virtually impossible to distinguish, and only two curves – one for
the spectrum of L(7, 1), and one of the spectrum of L(7, 4) – are visible in Figure 1b. This
attests to the stability of the eigenvalues of the distance kernel operator under random i.i.d.
sampling, in line with Theorem 17. Notably, the two Lens spaces are distinguished by the
first, third, and fourth eigenvalues of their distance kernel operators. L(7, 1) and L(7, 4)
having same homotopy type, this illustrates the ability of the operator to capture geometric
information and distinguish between non-isometric spaces.

Hausdorff distance between DKEs. Finally, in Figure 1c, we compare the Hausdorff
distances between various pairs of distance kernel embeddings. We observe the following:
(1) The two samples of the same size coming from the L(7, 1) Lens space are the closest
in Hausdorff distance, and that distance is close to zero up to dimension k = 4. Indeed, if
we had taken samples of sufficiently high resolution, we would see the Hausdorff distances
going to zero for larger values of k, as proven in Theorem 17. (2) The second closest pair
of spaces are the Lens spaces L(7, 1) and L(7, 4), that have same homotopy type and have
both spherical geometry. (3) The third closest pair of spaces are the Lens space L(7, 1) and
the 3-Sphere, both with spherical geometry (Lens spaces are constructed as quotients of
3-Spheres). (4) The manifold that appears to be most distinct from the rest is the torus. (5)
For all pairs of manifolds, the Hausdorff distance stabilizes at around k = 10, after which
eigenvalues are close to 0.

In conclusion, these experiments illustrate that the spectra and embedding of the distance
kernel operator can be approximated by finite samples, as predicted by Theorem 17. Moreover,
by combining the DKE with the Hausdorff metric on Euclidean space, we obtain a pseudo-
metric on the space of compact metric measure spaces that succeeds in distinguishing a
variety of diverse manifolds.

7 Open Problems

This work introduces new techniques, at the crossroads of topological data analysis and
spectral geometry, to study general metric measure spaces. It also raises a number of
interdisciplinary questions in persistence theory, optimal transport, spectral geometry, and
o-minimal geometry, that, due to their specialized and technical nature, have not been
resolved in this article:

Using the sampling and stability results for the distance kernel operator (Theorems 17
and 18) to provide analogous results for the topological transforms.
Proving that the truncated distance kernel embedding is an injection for k sufficiently
large. This for example the case for Laplacian eigenfunctions on manifolds, as shown by
Bates [1], whose proof relies on deeper results in spectral geometry.
Providing general hypotheses that ensure the definability of the DKE.
Obtaining experimental results for these topological transforms in line with the distance
kernel embedding experiments of Section 6. These experiments will hinge on a principled
method for choosing which vector directions should be used for the computation of
topological invariants; this is a question of interest in the TDA community, and we expect
some heuristics and theoretical guarantees to emerge on this topic in the near future.

SoCG 2020

56:14 Intrinsic Topological Transforms via the Distance Kernel Embedding

(a) Eigenvalues of the DKO for a variety of
spaces, normalized by the number of points
in the sample.

(b) A comparison of the eigenvalues of various sam-
ples, at different resolutions, of these two Lens
spaces.

(c) A comparison of Hausdorff distances between various samples of 2- and 3-manifolds.

Figure 1 Spectra and DKE for samples of various manifolds. In subfigures (a) and (b), the
x-represents the index of the eigenvalues in the sorted sequence of eigenvalues. In subfigure (c), the
x-axis represents the embedding dimension (over C).

C. Maria, S. Oudot, and E. Solomon 56:15

References
1 Jonathan Bates. The embedding dimension of Laplacian eigenfunction maps. Applied and

Computational Harmonic Analysis, 37(3):516–530, 2014.
2 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding

and clustering. In Advances in neural information processing systems, pages 585–591, 2002.
3 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural computation, 15(6):1373–1396, 2003.
4 Mikhail Belkin and Partha Niyogi. Convergence of laplacian eigenmaps. In Advances in Neural

Information Processing Systems, pages 129–136, 2007.
5 Robin Lynne Belton, Brittany Terese Fasy, Rostik Mertz, Samuel Micka, David L Millman,

Daniel Salinas, Anna Schenfisch, Jordan Schupbach, and Lucia Williams. Learning simplicial
complexes from persistence diagrams. arXiv preprint, 2018. arXiv:1805.10716.

6 Dmitri Burago, Sergei Ivanov, and Yaroslav Kurylev. A graph discretization of the laplace-
beltrami operator. arXiv preprint, 2013. arXiv:1301.2222.

7 Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

8 Lorin Crawford, Anthea Monod, Andrew X Chen, Sayan Mukherjee, and Raúl Rabadán. Topo-
logical summaries of tumor images improve prediction of disease free survival in glioblastoma
multiforme. arXiv preprint, 2016. arXiv:1611.06818.

9 Justin Curry, Sayan Mukherjee, and Katharine Turner. How many directions determine
a shape and other sufficiency results for two topological transforms. arXiv preprint, 2018.
arXiv:1805.09782.

10 Tamal K Dey, Dayu Shi, and Yusu Wang. Comparing graphs via persistence distortion. arXiv
preprint, 2015. arXiv:1503.07414.

11 Gerald B Folland. A Guide to Advanced Real Analysis. Number 37 in Dolciani Mathematical
Expositions. MAA, 2009.

12 Robert Ghrist, Rachel Levanger, and Huy Mai. Persistent homology and euler integral
transforms. Journal of Applied and Computational Topology, 2(1-2):55–60, 2018.

13 Christopher Heil. Compact and hilbert–schmidt operators. In A Basis Theory Primer, pages
481–490. Springer, 2011.

14 Fritz John et al. The ultrahyperbolic differential equation with four independent variables.
Duke Mathematical Journal, 4(2):300–322, 1938.

15 Clément Maria, Steve Oudot, and Elchanan Solomon. Intrinsic topological transforms via the
distance kernel embedding. arXiv preprint, 2019. arXiv:submit/2957368.

16 Steve Oudot and Elchanan Solomon. Barcode embeddings for metric graphs. arXiv preprint,
2017. arXiv:1712.03630.

17 Steve Oudot and Elchanan Solomon. Inverse problems in topological persistence. arXiv
preprint, 2018. arXiv:1810.10813.

18 Iosif Polterovich, Leonid Polterovich, and Vukašin Stojisavljević. Persistence barcodes and
laplace eigenfunctions on surfaces. Geometriae Dedicata, 201(1):111–138, 2019.

19 Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

20 Katharine Turner, Sayan Mukherjee, and Doug M Boyer. Persistent homology transform for
modeling shapes and surfaces. Information and Inference: A Journal of the IMA, 3(4):310–344,
2014.

21 Sathamangalam R Srinivasa Varadhan. On the behavior of the fundamental solution of the
heat equation with variable coefficients. Communications on Pure and Applied Mathematics,
20(2):431–455, 1967.

SoCG 2020

http://arxiv.org/abs/1805.10716
http://arxiv.org/abs/1301.2222
http://arxiv.org/abs/1611.06818
http://arxiv.org/abs/1805.09782
http://arxiv.org/abs/1503.07414
http://arxiv.org/abs/submit/2957368
http://arxiv.org/abs/1712.03630
http://arxiv.org/abs/1810.10813

Long Alternating Paths Exist
Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin, Germany
mulzer@inf.fu-berlin.de

Pavel Valtr
Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic
valtr@kam.mff.cuni.cz

Abstract
Let P be a set of 2n points in convex position, such that n points are colored red and n points
are colored blue. A non-crossing alternating path on P of length ` is a sequence p1, . . . , p` of `

points from P so that (i) all points are pairwise distinct; (ii) any two consecutive points pi, pi+1

have different colors; and (iii) any two segments pipi+1 and pjpj+1 have disjoint relative interiors,
for i 6= j.

We show that there is an absolute constant ε > 0, independent of n and of the coloring, such that
P always admits a non-crossing alternating path of length at least (1 + ε)n. The result is obtained
through a slightly stronger statement: there always exists a non-crossing bichromatic separated
matching on at least (1 + ε)n points of P . This is a properly colored matching whose segments are
pairwise disjoint and intersected by common line. For both versions, this is the first improvement of
the easily obtained lower bound of n by an additive term linear in n. The best known published
upper bounds are asymptotically of order 4n/3 + o(n).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Non-crossing path, bichromatic point sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.57

Related Version A full version is available on the arXiv (https://arxiv.org/abs/2003.13291).

Funding Wolfgang Mulzer : Supported in part by ERC StG 757609 and by the German Research
Foundation within the collaborative DACH project Arrangements and Drawings as DFG Project
MU-3501/3-1.
Pavel Valtr : Supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR).

Acknowledgements This work was initiated at the second DACH workshop on Arrangements and
Drawings which took place 21.–25. January 2019 at Schloss St. Martin, Graz, Austria. We would like
to thank the organizers and all the participants of the workshop for creating a conducive research
atmosphere and for stimulating discussions. Part of this work was done on the Seventh Annual
Workshop on Geometry and Graphs, Bellairs Research Institute, Holetown, Barbados, 10.–15. March
2019. We also thank Zoltán Király for pointing out the reference [14] to us.

1 Introduction

We study a family of problems that were discovered independently in two different (but
essentially equivalent) settings. Researchers in discrete and computational geometry found a
geometric formulation, while researchers in computational biology and stringology studied
circular words. Around 1989, Erdős asked the following geometric question [4, p. 409]: given
a set P of n red and n blue points in convex position, how many points of P can always be
collected by a non-intersecting polygonal path π with vertices in P such that the vertex-color
along π alternates between red and blue. Taking every other segment of π, we obtain a
properly colored set of pairwise disjoint segments with endpoints in P . A closely related

© Wolfgang Mulzer and Pavel Valtr;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1948-5840
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-3102-4166
mailto:valtr@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.SoCG.2020.57
https://arxiv.org/abs/2003.13291
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Long Alternating Paths Exist

1

1
0

0

0

0

0

0

0

0

1
1

1

1

1

1

1

0

Figure 1 Left: a set P of 18 points in convex position, 9 of them red and 9 of them blue, with
an alternating path of length 15 (this is not a longest such path). Taking every other segment,
we obtain a properly colored disjoint matching on P . Middle: a separated matching on P , with a
dashed line that intersects all matching edges (this is not a maximum such matching). Right: an
antipalindromic subsequence on a circular word of 18 bits, 9 of them 0 and 9 of them 1.

problem asks for a large separated matching, a collection of such segments with the extra
property that all of them are intersected by a common line. This is equivalent to finding
a long antipalindromic subsequence in a circular sequence of 2n bits, where n bits are 0
and n bits are 1, see Figure 1. This formulation was stated in 1999 in a paper on protein
folding [10]. Similar questions were also studied for palindromic subsequences [14]. One such
question is equivalent to finding many disjoint monochromatic segments with endpoints in
P , a problem that was also studied by the geometry community.

An easy lower bound for alternating paths is n, and the best known lower bound is
n+ Ω(

√
n) [11]. We increase this to cn+ o(n), for a constant c > 1. Similarly, for the other

mentioned problems, we improve the lower bounds by an additive term of εn, for some fixed
ε > 0. Also here, this constitutes the first Ω(n) improvement over the trivial lower bounds.

The (geometric) setting. We have a set P of 2n points p0, p1, . . . , p2n−1 in convex position,
numbered in clockwise order. The points in P are colored red and blue, so that there are
exactly n red points and n blue points. The goal is to find a long non-crossing alternating
path in P . That is, a sequence π : q0, q1, . . . , q`−1 of points in P such that (i) each point
from P appears at most once in π; (ii) π is alternating, i.e., for i = 0, . . . , ` − 2, we have
that qi is red and qi+1 is blue or that qi is blue and qi+1 is red; (iii) π is non-crossing, i.e.,
for i, j ∈ {0, . . . , ` − 2}, i 6= j, the two segments qiqi+1 and qjqj+1 intersect only in their
endpoints and only if they are consecutive in π, see Figure 1(left). We will also just say
alternating path for π. Alternating paths for planar point sets in general (not just convex)
position have been studied in various previous papers, e.g., [1–3,5, 6].

For most of this work, we will focus on another, closely related, structure. A non-crossing
separated bichromatic matching M in P is a set {p1q1, p2q2, . . . , pkqk} of k pairs of points in
P , such that (i) all points p1, . . . , pk, q1, . . . , qk are pairwise distinct; (ii) the segments piqi
and pjqj are disjoint, for all 1 ≤ i < j ≤ k; (iii) for i = 1, . . . , k, the points pi and qi have
different colors; and (iv) there exists a line that intersects all segments p1q1, p2q2, . . . , pkqk,
see Figure 1(middle). Often, we will just use the term separated bichromatic matching or
simply separated matching for M .

Previous results. The following basic lemma says that a large separated matching immedi-
ately yields a long alternating path. The (very simple) proof was given by Kynčl, Pach, and
Tóth [9, Section 3].

W. Mulzer and P. Valtr 57:3

I Lemma 1. Suppose that a bichromatic convex point set P admits a separated matching
with k segments. Then, P has an alternating path of length 2k.

Let l(n) be the largest number such that for every set P of n red and n blue points in
convex position, there is an alternating path of length at least l(n). Around 1989, Erdős and
others [9] conjectured that limn→∞ l(n)/n = 3/2. Abellanas, García, Hurtado, and Tejel [1]
and, independently, Kynčl, Pach, and Tóth [9, Section 3] disproved this by showing the
upper bound l(n) ≤ 4n/3 +O(

√
n). Kynčl, Pach, and Tóth [9] also improved the (almost

trivial) lower bound l(n) ≥ n to l(n) ≥ n + Ω(
√
n/ logn). They conjectured that in fact

l(n) = 4n/3 + o(n). In her PhD thesis [11] (see also [8, 12, 13]), Mészáros improved the
lower bound to l(n) ≥ n+ Ω(

√
n), and she described a wide class of configurations where

every separated matching has at most 2n/3 + O(
√
n) edges. This also implies the upper

bound l(n) ≤ 4n/3 + O(
√
n) mentioned above [1, 9]. It was announced to us in personal

communication that E. Csóka, Z. Blázsik, Z. Király, and D. Lenger constructed configurations
with an upper bound of cn + o(n) on the size of the largest separated matching, where
c = 2−

√
2 ≈ 0.5858 [7].

Our results. We improve the almost trivial lower bound n/2 for separated matchings to
n/2 + εn.

I Theorem 2. There is a fixed ε > 0 such that any convex point set P with n red and n blue
points admits a separated matching with at least n/2 + εn edges.

By Lemma 1, we obtain the following corollary about long alternating paths.

I Theorem 3. There is a fixed ε > 0 such that any convex point set P with n red and n blue
points admits an alternating path with at least n+ εn vertices.

A variant of Theorem 2 also holds for the monochromatic case. The definition of a non-
crossing separated monochromatic matching, or simply separated monochromatic matching, is
obtained from the definition of a separated bichromatic matching by changing condition (iii)
to (iii’) for i = 1, . . . , k, the points pi and qi have the same color. Some of the upper bound
constructions for separated bichromatic matchings apply to the monochromatic setting, also
giving the upper bound 2n/3 +O(

√
n). Here is a monochromatic version of Theorem 2. Due

to space reasons, the proof of Theorem 4 has been omitted from this extened abstract. It
can be found in the full version of this paper.

I Theorem 4. There are constants ε > 0 and n0 ∈ N such any convex point set P with
n ≥ n0 points, colored red and blue, admits a separated monochromatic matching with at
least n/2 + εn vertices.

There are two differences between the statement of Theorem 2 and Theorem 4: we do
not require that the number of red and blue points in P is equal (and hence the size of the
matching is stated in terms of vertices instead of edges), and we need a lower bound on the
size of P . This is necessary, because Theorem 4 does not always hold for, e.g., n = 4. It was
announced to us in a personal communication that the construction of E. Csóka, Z. Blázsik,
Z. Király and D. Lenger from above also gives the upper bound cn+ o(n) on the size of a
largest separated monochromatic matching, where c = 2−

√
2 ≈ 0.5858 [7].

Our results in the setting of finite words. As we already said, the problems in this paper
were independently discovered by researchers in computational biology and stringology. In
a study on protein folding algorithms, Lyngsø and Pedersen [10] formulated a conjecture

SoCG 2020

57:4 Long Alternating Paths Exist

that is equivalent to saying that the bound in Theorem 2 can be improved to 2n/3 (for n
divisible by 3). Müllner and Ryzhikov [14, p. 461] write that this conjecture “has drawn
substantial attention from the combinatorics of words community”. For the convenience of
readers from this community, we rephrase our theorems for separated matchings in the finite
words setting. We use the terminology of Müllner and Ryzhikov [14], without introducing it
here. The following corresponds to Theorem 2.

I Theorem 5. There is a fixed ε > 0 such that for any even n ∈ N, every binary circular
word of length n with equal number of zeros and ones has an antipalindromic subsequence of
length at least n/2 + εn.

The following corresponds to Theorem 4.

I Theorem 6. There are constants ε > 0 and n0 ∈ N so that for any n ∈ N, n ≥ n0, every
binary circular word of length n has a palindromic subsequence of length at least n/2 + εn.

2 Existence of large separated bichromatic matchings

In this section, we prove our main result: large separated bichromatic matchings exist.

2.1 Runs and separated matchings
A run of P is a maximal sequence pi, pi+1, . . . , pi+` of consecutive points with the same
color.1 That is, for j = i, . . . , i + ` − 1, the color of pj and of pj+1 are the same, and the
colors of pi−1 and pi and the colors of pi+` and pi+`+1 are different. The number of runs is
always even. Kynčl, Pach, and Tóth showed that if P contains t runs, then P admits an
alternating path of length n+ Ω(t) [9, Lemma 3.2]. We will need the following analogous
result for separated matchings. The proof can be found in the full version.

I Theorem 7. Let c1 = 1/32 and t ≥ 4. Let P be a bichromatic convex point set with
2n points, n red and n blue, and suppose that P has t runs. Then, P admits a separated
matching with at least n/2 + c1t

2/n edges.

2.2 Chunks, partitions, and configurations
Let k ∈ {1, . . . , n}. A k-chunk is a sequence of consecutive points in P with exactly k points
of one color and less than k points of the other color. Hence, a k-chunk has at least k and
at most 2k − 1 points. A clockwise k-chunk with starting point pi is the shortest k-chunk
that starts from pi in clockwise order. A counterclockwise k-chunk with starting point pi is
defined analogously, going in the counterclockwise direction. For a k-chunk C, we denote by
r(C) the number of red points and by b(C) the number of blue points in C. We call C a red
chunk if r(C) = k (and hence b(C) < k) and a blue chunk if b(C) = k (and hence r(C) < k).
The index of C is b(C)/k for a red chunk and r(C)/k for a blue chunk. Thus, the index of C
lies between 0 and (k − 1)/k, and it measures how “mixed” C is.

Next, let k ∈ {1, . . . , n} and λ ∈ N ∪ {0}. We define a (k, λ)-partition. Suppose that k is
odd. First, we construct a maximum sequence C0, C1, . . . of clockwise disjoint k-chunks, as
follows: we begin with the clockwise k-chunk C0 with starting point p0, and we let `0 be
the number of points in C0. Next, we take the clockwise k-chunk C1 with starting point

1 When calculating with indices of points in P , we will always work modulo 2n.

W. Mulzer and P. Valtr 57:5

p0 p0

Figure 2 A set of 18 points and its (3, 0)-partition (left) and (3, 1)-partition (right). In the
(3, 0)-partition, the first chunk is red with index 2/3, the second chunk is blue with index 1/3, the
third chunk is blue with index 2/3, and the fourth chunk is red with index 0. The average red index
is 1/3, the average blue index is 1/2. The index of the (3, 0)-partition is 1/2. The (3, 1)-partition
has one clockwise 3-chunk and one counterclockwise 6-chunk. The 3-chunk is red with index 2/3,
the 6-chunk is red with index 5/6. The average red index is 3/4, the average blue index is 0 The
index of the (3, 1)-partition is 3/4.

p`0 , and let `1 be the number of points in C1. After that, we take the clockwise k-chunk C2
with starting point p`0+`1 , and so on. We stop once we reach the last k-chunk that does not
overlap with C0. Next, we construct a maximum sequence D0, D1, . . . of counterclockwise
(k+3)-chunks, starting with the point p2n−1, in an analogous manner. Let λ′ be the minimum
of λ and the number of (k + 3)-chunks Di. Now, to obtain the (k, λ)-partition, we take λ′
counterclockwise (k+3)-chunks D0, . . . , Dλ′−1 and a maximum number of clockwise k-chunks
C0, C1, . . . that do not overlap with D0, . . . , Dλ′−1. If k is even, the (k, λ)-partition is defined
analogously, switching the roles of the clockwise and the counterclockwise direction. There
may be some points that do not lie in any chunk of the (k, λ)-partition. We call these points
uncovered.

The average red index of Γ is the average index in a red chunk of Γ (0, if there are no red
chunks). The average blue index of Γ is defined analogously. The index of Γ is the maximum
of the average red index and the average blue index of Γ. The max-index color is the color
whose average index achieves the index of Γ, the other color is called the min-index color,
see Figure 2 for an illustration of the concepts so far. The following simple proposition helps
us bound the number of chunks. The (somewhat technical) proof can be found in the full
version.

I Proposition 8. Let P be a convex bichromatic point set with 2n points, n red and n blue,
and let Γ be a (k, λ)-partition of P . In Γ, there are at most 2k − 2 uncovered points, at most
k − 1 of them red and at most k − 1 of them blue. Furthermore, let R be the number of red
chunks and B the number of blue chunks in Γ, and let α be the index of Γ. Then,

R+B ≤ 2n
k

and max{R,B} ≤ n

k
. (1)

Furthermore, we have

R+B ≥
⌊

2n
2k + 5

⌋
>

2n
7k − 1, max{R,B} ≥ 1

2

⌊
2n

2k + 5

⌋
>

n

7k −
1
2 ,

and min{R,B} ≥ 1− α
2

⌊
2n

2k + 5

⌋
− k − 1
k + 3 > (1− α) n7k − 2. (2)

SoCG 2020

57:6 Long Alternating Paths Exist

p0

Figure 3 A set of 18 points and a 3-configuration for it. The chunk from p0 is red with index
2/3, the next clockwise chunk is blue with index 2/3, followed by another blue chunk of index 1/3
and a final red chunk of index 1/3. The average blue index and the average red index are both 1/2.
Note that the chunks are not minimal.

If λ = 0, the lower bounds improve to

R+B ≥
⌊

2n
2k − 1

⌋
≥ n

k
− 1, max{R,B} ≥ 1

2

⌊
2n

2k − 1

⌋
>

n

2k −
1
2 ,

and min{R,B} ≥ 1− α
2

⌊
2n

2k − 1

⌋
− k − 1

k
> (1− α) n2k − 2. (3)

The purpose of the (k, λ)-partitions is to transition smoothly between the (k, 0)-partition
and the (k + 3, 0)-partition. In our proof, this will enable us to gradually increase the
chunk-sizes, while keeping the index under control.

A k-configuration of P is a partition of P into k-chunks, leaving no uncovered points, see
Figure 3. In contrast to a (k, λ)-partition, the chunks in a k-configuration are not necessarily
minimal. Note that while P always has a (k, λ)-partition, it does not necessarily admit a
k-configuration. The average red index, the average blue index, etc. of a k-configuration are
defined as for a (k, λ)-partition. The following proposition helps us bound the number of
chunks in a k-configuration. The proof can be found in the full version.

I Proposition 9. Let P be a convex bichromatic point set with 2n points, n red and n blue,
and let Γ be a k-configuration of P . Let R be the number of red chunks, B the number of
blue chunks,α the average red index and β the average blue index of Γ. Then,

n = kR+ βkB = kB + αkR. (4)

Furthermore, R + B ≥ n/k, max{R,B} ≥ n/2k, and min{R,B} ≥ (1 − max{α, β})n/2k.
Finally, max{R,B} = R if and only if α ≥ β.

In our proof, the key challenge will be to analyze k-configurations with small constant
index (say, around 0.1).

2.3 From (k, λ)-partitions to k-configurations
Our first goal is to show that we can focus on (k, λ)-partitions with large k and constant,
but not too large index. We begin by noting that if the (k, 0)-partition of P for a constant k
has a large index, then we can find a long alternating path in P . The proof can be found in
the full version.

W. Mulzer and P. Valtr 57:7

I Lemma 10. Set c2 = 1/12800. Let k, n ∈ N with 8k2 ≤ n. Let P be a convex bichromatic
point set with 2n points, n red and n blue. If the (k, 0)-partition Γ of P has index at least
0.1, then P admits a separated matching of size at least (1/2 + c2/k

4)n.

Next, we show that if the (k, 0)-partition still has a small index for k = Ω(n), then we
can find a large separated matching. The proof, which is inspired by a simlar argument of
Kynčl, Pach, and Tóth [9, Lemma 3.1], can be found in the full version.

I Lemma 11. Set c3 = 1/81. Let k, n ∈ N with k ≤ n and 6480n ≤ k2. Let P be a convex
bichromatic point set with 2n points. If the (k, 0)-partition Γ of P has index at most 0.1,
then P admits a separated matching of size at least (1/2 + c3(k/n)2)n.

Our goal now is to show that we can focus on k-configurations with k neither too small
nor too large, and of index approximately 0.1. Here, we only sketch the argument, and we
will make it more precise below, once all the lemmas have been stated formally: we choose
k1 = O(1) and k2 = Ω(n) to satisfy the previous two lemmas, and we consider the sequence of
the (k1, 0)-partition, the (k1, 1)-partition, the (k1, 2)-partition, . . ., up to the (k2, 0)-partition
of P . By Lemma 10 and Lemma 11, we can assume that the first partition in the sequence
has index less than 0.1 and the last partition in the sequence has index larger than 0.1. Thus,
at some point the index has to jump over 0.1. Our definition of (k, λ)-partition ensures that
this jump is gradual. The proof can be found in the full version.

I Lemma 12. Let k, n ∈ N with n ≥ 210000k. Let P be a convex bichromatic point set with
2n points, n red and n blue. Let Γ1 be the (k, λ)-partition and Γ2 the (k, λ+ 1)-partition of
P . Suppose that the index of Γ1 is at most 0.1. Then, the average red index and the average
blue index of Γ1 and Γ2 each differ by at most 0.001.

It follows that we can assume that we are dealing with a (k, λ)-partition of index
approximately 0.1. Actually, we will see that it suffices to consider k-configurations of index
0.1. This will be the focus of the next section.

2.4 Random chunk-matchings in k-configurations
In this section, we will focus on convex bichromatic point sets P that admit a k-configuration
Γ with special properties. Later, we will see how to reduce to this case.

Let C0, C1, . . . , C`−1 be the chunks of the k-configuration Γ. We define a notion of
chunk-matching, as illustrated in Figures 4 and 5. A chunk matching pairs each of the `
chunks with another chunk (possibly itself). Our goal is to define chunk matchings in such
a way that we can easily derive from a chunk matching a separated matching between the
points in P .

Formally, we define ` matchings M0, . . . ,M`−1 by saying that for i, j = 0, . . . , `− 1, the
matching Mi pairs the chunks Cj and C(i−j) mod `. Again, refer to Figures 4 and 5 for
examples. The matching rule is symmetric, i.e., if Ca is matched to Cb then Cb is matched
to Ca. Note that if j ≡ (i − j) (mod `), the chunk Cj is matched to itself in Mi. If ` is
even, this happens only for even i, namely for j = i/2 and for j = i/2 + `/2. If ` is odd,
this happens in every matching, namely for j ≡ (` + 1)i/2 (mod `). By construction, for
every Mi, if we connect the matched chunks by straight line edges, we obtain a set of plane
segments such that there is one line that intersects all segments. Furthermore, every pair
Ci, Cj of chunks, 0 ≤ i ≤ j ≤ `− 1 appears in exactly one chunk matching. In essence, these
matchings correspond to partitioning the chunks of Γ with a line, where the line can possibly
pass through one or two chunks of Γ that are then matched to themselves.

SoCG 2020

57:8 Long Alternating Paths Exist

C0

C2

C3

C4

C5

C1

C0

C2

C3

C4

C5

C1

C0

C2

C3

C4

C5

C1

C0

C2

C3

C4

C5

C1

C0

C2

C3

C4

C5

C1

C0

C2

C3

C4

C5

C1

M0 M1 M2

M3M4M5

Figure 4 The six chunk matchings M0, . . . , M5 for a set of six chunks. If i is even, the chunks
Ci/2 and Ci/2+3 are matched to themselves. If i is odd, every chunk is matched to a different chunk.

C0

C1

C2

C3

C4

C0

C1

C2

C3

C4

C0

C1

C2

C3

C4

C0

C1

C2

C3

C4

C0

C1

C2

C3

C4

M1M0 M2

M3M4

Figure 5 The five chunk matchings M0, M1, . . . , M4 for a set of five chunks. In matching Mi, the
chunk C(3i mod 5) is matched to itself. Every other chunk is matched to a different chunk.

W. Mulzer and P. Valtr 57:9

red blue
blue red

red red red w/ itself

Figure 6 Going from a matched pair of chunks to a separated matching. If the two chunks have
different colors, we can match k edges. If the two colors are the same, there are two reasonable
options, matching the red points in one chunk with the blue points in the other chunk. We choose
the one that matches more edges. A special case occurs if a chunk is matched to itself. In this case,
we split the majority color into half and match between the halves.

Next, we describe how to derive from a given chunk matching M a separated matching
on P , see Figure 6 for an illustration. We look at every two chunks C and D paired my M
(possibly, C = D). If C is red and D blue, we match the k red points in C to the k blue points
in D, getting k matched edges. The case that C is blue and D is red is analogous. If C 6= D

and both C and D are red, we could match the k red points in C to the b(D) < k blue points
in D, or vice versa. We choose the option that gives more edges, yielding max{b(C), b(D)}
matched edges. The case that C 6= D and both are blue is similar. Finally, suppose that
C = D, and for concreteness, suppose that C is red. In this case, we split the points in C
into two parts, containing dk/2e red points each (if k is odd, the median point belongs to
both parts). In one part, we have at least db(C)/2e blue points, and we match these blue
points to the red points in the other part. This yields db(C)/2e ≥ b(C)/2 matched edges.
Thus, a chunk matching M gives a separated matching with at least

1
2

(∑
(C,D)∈M
C red,D red

max{b(C), b(D)}+
∑

(C,D)∈M
C red,D blue

k

+
∑

(C,D)∈M
C blue,D red

k +
∑

(C,D)∈M
C blue,D blue

max{r(C), r(D)}
)

(5)

matched edges, where the sums go over all ordered pairs of matched chunks in M , i.e.,
a matched pair (C,D) with C 6= D appears twice (which is compensated by the leading
factor of 1/2) and a matched pair (C,C) appears once. The next lemma shows that a chunk
matching that is chosen uniformly at random usually matches half the points of P .

I Lemma 13. Let Γ be a k-configuration of P and M a random chunk matching in Γ. The
expected number of matched edges in the corresponding separated matching is at least n/2.

SoCG 2020

57:10 Long Alternating Paths Exist

Proof. Let R be the number of red chunks in Γ and B the number of blue chunks in Γ.
Let α be the average index of the red chunks, and β the average index of the blue chunks.
We sum (5) over all R+B possible chunk matchings and take the average. This gives the
expected number of matched edges (the sums range over all ordered pairs of chunks in Γ).

1
2(R+B)

(∑
C red,D red

max{b(C), b(D)}+ 2
∑

C red,D blue
k

+
∑

C blue,D blue
max{r(C), r(D)}

)

Since there are R red chunks and B blue chunks, this is

= 1
2(R+B)

 ∑
C red,D red

max{b(C), b(D)}+ 2kRB +
∑

C blue,D blue
max{r(C), r(D)}

We lower bound the maximum by the average to estimate this as

≥ 1
2(R+B)

 ∑
C red,D red

b(C) + b(D)
2 + 2kRB +

∑
C blue,D blue

r(C) + r(D)
2

 (**)

Simplifying the sums, this is

= 1
2(R+B)

(
R
∑
C red

b(C) + 2kRB +B
∑
C blue

r(C)
)

Since the total number of blue points in red chunks is αkR and the total number of red
points in blue chunks is βkB, this equals

= αkR2 + 2kRB + βkB2

2(R+B)

Regrouping the terms and using (4), this becomes

= R(αkR+ kB) +B(βkB + kR)
2(R+B) = (R+B)n

2(R+B) = n

2 . J

2.5 Taking advantage of k-configurations
One inefficiency in the calculation in Lemma 13 is that we bound the maximum by the
average in inequality (**). If these two quantities often differ significantly, we can gain an
advantage over Lemma 13. This is made precise in the next lemma.

I Lemma 14. Set c4 = 1/40. Let δ > 0 and let P be a convex bichromatic point set with 2n
points, n red and n blue, and Γ a k-configuration for P with index at most 0.11 that contains
at least δ(n/k) red chunks or at least δ(n/k) blue chunks with index at least 0.22. Then, P
admits a separated matching of size at least (1/2 + c4δ

2)n.

Proof. Suppose without loss of generality that there are at least δ(n/k) red chunks with
index at least 0.2. Let R be the number of red chunks and B the number of blue chunks.
The average red index of Γ is at most 0.11. Thus, if writing γ1(n/k) for the number of red
chunks with index in (0.11, 0.22) and γ2(n/k) ≥ δ(n/k) for the number of red chunks with
index in [0.22, 1), we have

0.11R ≥ 0.11γ1
n

k
+ 0.22γ2

n

k
= 0.11(γ1 + 2γ2)n

k
.

W. Mulzer and P. Valtr 57:11

It follows that R ≥ (γ1 + 2γ2)(n/k), and there must be at least γ2(n/k) ≥ δ(n/k) red chunks
of index in [0, 0.11]. Now, consider the following sum over all ordered pairs (C,D) of red
chunks, where one chunk (C or D) has red index at most 0.11 and the other chunk (D or C)
has red index at least 0.22:

1
2(R+B)

(∑
C

∑
D

max{b(C), b(D)} − b(C) + b(D)
2

)

Since 2 max{a, b} − a− b = max{a, b} −min{a, b}, for all a, b ∈ R, this equals

= 1
4(R+B)

∑
C

∑
D

(max{b(C), b(D)} −min{b(C), b(D)})

One chunk in each summand contains at least 0.22k blue points, the other chunk contains at
most 0.11k blue points, so we can lower bound this as

≥ 1
4(R+B)

∑
C

∑
D

(0.22− 0.11)k

≥ 1
4(R+B)

∑
C

∑
D

k

10 ≥
δ2(n/k)2

R+B

k

20 ≥
δ2

40n,

since we are adding over at least 2δ2(n/k)2 ordered pairs (C,D) (recall that each ordered
pair (C,D) has a partner (D,C) in the sum) and since by (1), we have R+B ≤ 2n/k. Thus,
comparing with (**), the lemma follows. J

Lemma 14 shows that we can assume that few chunks in the k-configuration Γ of P have
index larger than 0.22. In fact, suppose now that Γ contains no chunk of index at least 0.3
(this will be justified below). From now on, we will also assume that k is divisible by 3. We
subdivide each chunk in our k-configuration Γ into three (k/3)-subchunks. Since all k-chunks
have index less than 0.3, the subchunks have the same color as the original chunk. Let C be
a k-chunk. The middle subchunk of C, denoted by CM , is the (k/3)-subchunk of C that lies
in the middle of the three subchunks. Now, we consider the middle subchunks. If the middle
subchunks of the max-index color contain many points of the min-index color, we can gain
an advantage by considering two cross-matchings between chunks of the max-index color.

I Lemma 15. Set c5 = 1/4. Let δ > 0 and let P be a convex bichromatic point set with 2n
points, n red and n blue. Let Γ be a k-configuration for P such that (i) k is divisible by 3;
(ii) every chunk in Γ has index less than 0.3; and (iii) the middle subchunks of the max-index
color contain in total at least δn points of the min-index color. Then P admits a separated
matching of size at least (1/2 + c5δ)n.

Proof. Suppose that the max-index color is red. We take a random chunk matching M
of Γ, and we derive a separated matching from M as described above. However, when
considering a pair (C,D) of two red chunks, we proceed slightly differently. First, suppose
that C 6= D, and let C1, C2, C3 be the three subchunks of C, and D1, D2, D3 be the three
subchunks of D (in clockwise order). We have r(Ci) = r(Di) = k/3, for i = 1, 2, 3; and
b(C1) + b(C2) + b(C3) < k/3 and b(D1) + b(D2) + b(D3) < k/3. We consider two separated
matchings between C and D (see Figure 7(left): (a) match all blue points in C1 and C2 to
red points in D3 and all blue points in D1 and D2 to red points in C3; and (b) match all blue

SoCG 2020

57:12 Long Alternating Paths Exist

C3

C2

C1

D3

D2

D1

C D

C3

C2

C1

D3

D2

D1

C D

C3

C2

C1

C3

C2

C1

CC

Figure 7 The two different separated matchings between two distinct red chunks (left) and the
same red chunk (right).

points in D2 and D3 to red points in C1 and all blue points in C2 and C3 to red points in
D1. We take the better of the two matchings. The number of matched edges matched(C,D)
is lower-bounded by the average, so

matched(C,D) ≥ 1
2 (b(C1) + b(C2) + b(D1) + b(D2) + b(D3) + b(D2) + b(C2) + b(C3))

= 1
2 (b(C) + b(D) + b(C2) + b(D2)) . (6)

Second, if C = D, we subdivide C into the three subchunks C1, C2, C3 with (C1) = r(C2) =
r(C3) = k/3 and b(C1) + b(C2) + b(C3) < k/3. Again, we consider two different matchings
for C (see Figure 7(right): (a) match the blue points in C1 and C2 to the red points in C3,
and (b) match the blue points in C2 and C3 to the red points in C1. Again, the number of
matched edges matched(C,C) is at least

matched(C,C) ≥ 1
2(b(C1) + b(C2) + b(C2) + b(C3)) = 1

2(b(C) + b(C2)). (7)

Now, we set R to the number of red chunks and B to the number of blue chunks in Γ. Then,
in a random chunk matching, the expected number of edges in the separated matchings
between the pairs (C,D) of red chunks is

1
2(R+B)

 ∑
C 6=D,C,D red

matched(C,D) +
∑
C red

2matched(C,C)

 . (8)

Note that in the first sum, each unordered pair {C,D} of distinct red chunks appears twice,
even though it appears once in a random chunk matching. This is compensated by the
leading factor of 1/2, which again leads to a coefficient of 2 for the expected number of edges
in the separated matching in a chunk that is paired with itself. Using (6, 7), we can write

(8) ≥ 1
2(R+B)

(∑
C red

∑
D red

b(C) + b(D) + b(CM) + b(DM)
2

)
,

W. Mulzer and P. Valtr 57:13

where we sum over all ordered pairs (C,D) of red chunks and CM and DM denote the middle
chunks of C and D. Now we compare with (**).

1
2(R+B)

(∑
C red

∑
D red

b(C) + b(D) + b(CM) + b(DM)
2 − b(C) + b(D)

2

)

= 1
2(R+B)

(∑
C red

∑
D red

b(CM) + b(DM)
2

)

In the sum, every middle chunk CM and every middle chunk DM appears exactly R times,
and by assumption, the total number of blue points in the red middle chunks is at least δn.
Thus, this is lower-bounded as

≥ 1
2(R+B)Rδn ≥

1
4RRδn = δ

4n,

since red is the max-index color and hence by Proposition 9, we have B ≤ R and R+B ≤ 2R.
Thus, the lemma follows. J

Finally, we consider the case that the middle subchunks of the max-index color contain
relatively few points. Since the index of Γ is relatively small, it means that the indices of the
middle subchunks of the max-index color have a large variance. As in Lemma 14, this leads
to a large separated matching. The proof is very similar to the proof of Lemma 14, and it
can be found in the full version.

I Lemma 16. Set δ = 10−4 and ε = 10−5. Let P be a convex bichromatic point set with 2n
points, n red and n blue, and let Γ be a k-configuration for P such that (i) k is divisible by 3;
(ii) Γ has index at least 0.09; and (iii) every chunk in Γ has index less than 0.3. Then, if the
middle subchunks of the max-index color contain in total at most δn points of the min-index
color, P admits a separated matching of size at least (1/2 + ε)n.

2.6 Putting it together
From Theorem 7, it follows that if P has at least four runs, there is always a separated
matching with strictly more than n/2 edges. Moreover, if P has two runs, then P has a
separated matching with n > n/2 edges. Therefore, the following theorem implies Theorem 2.

I Theorem 17. There exist constants ε∗ > 0 and n0 ∈ N with the following property: let P
be a convex bichromatic point set with 2n ≥ 2n0 points, n red and n blue. Then, P admits a
separated matching on at least (1 + ε∗)n vertices.

Proof. Set n0 = 10100 and ε = 10−5, as in Lemma 16. Let k1 the smallest integer larger than
103ε−3 = 1018 that is divisible by 3. Since n ≥ 10100 ≥ 8k2

1, Lemma 10 shows that if the
(k1, 0)-partition Γ1 of P has index at least 0.1, the theorem follows with ε∗ = Ω(1/k4

1) = Ω(1).
Thus, we may assume the following claim:

B Claim 18. The (k1, 0)-partition Γ1 of P has index less than 0.1, where k1 is a fixed
constant with k1 ≥ 103ε−3 = 1018.

Next, let k2 be the largest integer in the interval [10−4ε3n, 10−3ε3n] that is divisible by 3. Since
n ≥ 10100, it follows that k2 exists. Furthermore, since n ≥ k2 and 6480n ≤ 10−8ε6n2 ≤ k2

2,
Lemma 11 implies that if the (k2, 0)-partition Γ2 of P has index at most 0.1, the theorem
follows with ε∗ = Ω((k2/n)2) = Ω(1). Hence, we may assume the following claim:

SoCG 2020

57:14 Long Alternating Paths Exist

B Claim 19. The (k2, 0)-partition Γ2 of P has index more than 0.1, where k2 is the largest
integer in the interval [10−4ε3n, 10−3ε3n] that is divisible by 3.

We now interpolate between Γ1 and Γ2. Consider the sequence of (k, λ)-partitions of P
for the parameter pairs

(k1, 0), (k1, 1), . . . , (k1, λ(k1)), (k1 + 3, 0), (k1 + 3, 1), . . . ,
(k1 + 3, λ(k1 + 3)), (k1 + 6, 0), . . . , (k2, 0),

where λ(k) denotes the largest λ for which the (k, λ)-partition of P still contains a k-chunk.
Let (k∗, λ∗) be the first parameter pair for which the index of the (k∗, λ∗)-partition Γ3 of P
is larger than 0.1. This parameter pair exists, because (k2, 0) is a candidate.

B Claim 20. The (k∗, λ∗)-partition Γ3 of P has index in [0.1, 0.101]. Here, k∗ is divisible by
3 and lies in the interval [103ε−3, 10−3ε3n].

Proof. The claim on k∗ and the fact that Γ3 has index at least 0.1 follow by construction.
Furthermore, let (k∗∗, λ∗∗) be such that Γ3 is the (k∗∗, λ∗∗ + 1) partition of P (we either
have k∗∗ = k∗ and λ∗∗ = λ∗ − 1; or k∗∗ = k∗ − 1 and λ∗∗ = λ(k∗∗)). Since 210000k∗∗ ≤
106 · 10−3ε3n ≤ n, Lemma 12 implies that the index of Γ3 is at most 0.101. C

We rearrange P to turn Γ3 into a k∗-configuration Γ4 of a closely related point set P2.

B Claim 21. There exists a convex bichromatic point set P2 with 2n points, n red and n
blue, and a k∗-configuration Γ4 of P2 such that (i) P2 differs from P in at most 10−1ε3n

points; and (ii) the index of Γ4 lies in [0.097, 0.103].

Proof. We remove from P all the uncovered points of Γ3 as well as 3 points of the majority
color from each (k∗ + 3)-chunk of Γ3 (and, if necessary, up to 3 points of the minority color,
to keep chunk structure valid). If we consider a single red (k∗ + 3)-chunk C and denote
the original number of blue points in C by b(C) and the resulting number of blue points by
b′(C), then the index of C changes by at most∣∣∣∣ b(C)

k∗ + 3 −
b′(C)
k∗

∣∣∣∣ =
∣∣∣∣k∗b(C)− (k∗ + 3)b′(C)

k∗(k∗ + 3)

∣∣∣∣ ≤ |b(C)− b′(C)|
k∗ + 3 + 3b′(C)

k∗(k∗ + 3) ≤
6

k∗ + 3 ,

since |b(C)− b(C ′)| ≤ 3 and b′(C) ≤ k∗. A similar bound holds for a blue (k∗ + 3)-chunk.
By (1), there are at most 2n/k∗ ≤ 2 ·10−3ε3n many (k∗+3)-chunks, and by Proposition 8,

there at most 2k∗ − 1 ≤ 2 · 10−3 · ε3n uncovered points, so in total we remove at most
14 · 10−3ε3n ≤ 10−1ε3n points. We arrange these points into as many pure chunks of k∗ red
points or of k∗ blue points as possible. This creates at most 10−1ε3(n/k∗) new k∗-chunks,
all of which have index 0. Now, less than k∗ red points and less than k∗ blue points remain.
By (2), there are at least

(1− 0.101) n

7k∗
− 2 ≥ 10−1 · 103ε−3 − 2 ≥ 103

chunks of each color in Γ3. Thus, we can partition the remaining red points into at most 103

groups of size at most 10−3k∗ and add each group to a single blue chunk; and similarly for
the remaining blue points. This changes the index of each chunk by at most 10−3.

We call the resulting rearranged point set P2 and the resulting k∗-configuration Γ4. As
mentioned, P2 was obtained from P by moving at most 10−1 · ε3n points. We change the
index of any existing chunk by at most 6/(k∗ + 3) + 10−3 ≤ 2 · 10−3. Furthermore, we
create at most 10−1ε3(n/k∗) new k∗-chunks (all of index 0) and by (2), we have at least
(1− 0.101)n/(7k∗)− 2 ≥ (10−1 − 10−2 · ε3)(n/k∗) original chunks of each color in Γ3. Thus,

W. Mulzer and P. Valtr 57:15

if we denote by α the average index of the existing red chunks after the rearrangement, by R
the number of existing red chunks, and by R′ the number of new red chunks, the average red
index of Γ4 can differ from α by at most

α− R

R+R′
α = α

R′

R+R′
≤ αR

′

R
≤ 0.102 10−1ε3

10−1 − 10−2ε3 ≤ 10−3,

and similarly for the average blue index of Γ5. It follows that Γ4 has index in [0.097, 0.103].
C

Now, using Lemma 14 with δ = 10−1ε, we get that if the k∗-configuration Γ4 contains at
least δ(n/k∗) red chunks or at least δ(n/k∗) blue chunks with index at least 0.22, then the
rearranged point set P2 admits a separated matching of size at least(

1
2 + 1

40 · 10−2ε2
)
n ≥

(
1
2 + 10−4 · ε2

)
n.

By Claim 21, P2 differs from P by at most 10−1ε3n points. Since ε = 10−5, it follows that
after deleting all matching edges incident to a rearranged point, we obtain the theorem.
Thus, we may assume the following claim:

B Claim 22. At most 10−1 · ε(n/k∗) red chunks and at most 10−1 · ε(n/k∗) blue chunks in
Γ4 have index more than 0.22.

We again rearrange the point set P2 to obtain a point set P3 and a k∗-configuration Γ5
for P3 such that every k∗-chunk in Γ5 has index less than 0.3.

B Claim 23. There exists a convex bichromatic point set P3 with 2n points, n red and n
blue, and a k∗-configuration Γ5 of P3 such that (i) P3 differs from P2 in at most 2 · 10−1εn

points; (ii) the index of Γ5 is at least 0.096; (iii) all chunks in Γ5 have index less than 0.3;
and (iv) k∗ is divisible by 3.

Proof. We remove all the blue points from red chunks of index at least 0.22 and all the red
points from all blue chunks of index at least 0.22. These are at most 2 · 10−1 · εn points
in total. By removing these points, we decrease the index of at most 10−1ε(n/k∗) existing
chunks of each color to 0. By Proposition 9, there are at least

(1− 0.103) n

2k∗
≥ 10−1 · n

k∗
(9)

existing chunks of each color, so this step decreases the average index by at most ε.
We rearrange the deleted points into as many pure chunks with k∗ red points or with k∗

blue points as possible. Less than k∗ red points and less than k∗ blue points remain. By (9),
there are at least 10−1(n/k∗) ≥ 103 chunks of each color, so we group the remaining points
into blocks of size 10−3 · k∗ and distribute the blocks over the existing red and blue chunks.
This increases the average index of the existing chunks by at most 10−3.

Finally, we create at most 10−1 · ε(n/k∗) new chunks of each color (all with index 0), and
the existing number of chunks of the max-index color of Γ4 is at least n/2k∗, by Proposition 9.
Suppose for concreteness that the max-index color of Γ4 is red, and let R be the number of
existing red chunks, R′ the number of new red chunks, and α the average index of the existing
red chunks after the rearrangement. Then, the average red index after the rearrangement
differs from α be at most

α− R

R+R′
α ≤ αR

′

R
≤ 0.104 · 10−1ε

1/2 ≤ ε.

Thus, the red index in the resulting k∗-configuration Γ5 is at least 0.097− 2ε ≥ 0.096. This
implies that the index of Γ5 is at least 0.096. C

SoCG 2020

57:16 Long Alternating Paths Exist

Now, we consider the k∗-configuration Γ5. By Lemma 16, if in Γ5 the middle-chunks of
the max-index color contain in total at most 10−4n points of the min-index color, we get a
separated matching for P3 of size at least (1/2 + ε)n. By deleting all the matching edges that
are incident to the at most 2 · 10−1εn+ 10−1ε3n ≤ 0.3εn points that were moved to obtain
P3 from P , the theorem follows. Similarly, if in Γ5 the middle-chunks of the max-index color
contain in total more than 10−4n points of the min-index color, by Lemma 15, we get a
separated matching for P3 of size at least (1/2 + 104/4)n ≥ (1/2 + ε)n. Again, we obtain the
theorem after deleting edges that are incident to the rearranged points. J

References
1 Manuel Abellanas, Alfredo García, Ferran Hurtado, and Javier Tejel. Caminos alternantes. In

X Encuentros de Geometría Computational, pages 7–12, 2003.
2 Oswin Aichholzer, Carlos Alegría, Irene Parada, Alexander Pilz, Javier Tejel, Csaba D. Tóth,

Jorge Urrutia, and Birgit Vogtenhuber. Hamiltonian meander paths and cycles on bichromatic
point sets. In XVIII Spanish Meeting on Computational Geometry, pages 35–38, 2019.

3 Jin Akiyama and Jorge Urrutia. Simple alternating path problem. Discrete Mathematics,
84(1):101–103, 1990. doi:10.1016/0012-365X(90)90276-N.

4 Peter Brass, William O. J. Moser, and János Pach. Research problems in discrete geometry.
Springer, 2005.

5 Josef Cibulka, Jan Kynčl, Viola Mészáros, Rudolf Stolař, and Pavel Valtr. Universal Sets
for Straight-Line Embeddings of Bicolored Graphs. In János Pach, editor, Thirty Essays
on Geometric Graph Theory, pages 101–119, New York, NY, 2013. Springer New York.
doi:10.1007/978-1-4614-0110-0_8.

6 Merce Claverol, Delia Garijo, Ferran Hurtado, Dolores Lara, and Carlos Seara. The alternating
path problem revisited. In XV Spanish Meeting on Computational Geometry, pages 115–118,
2013.

7 Endre Csóka, Zoltán L. Blázsik, Zoltán Király, and Dániel Lenger. The necklace folding
problem. Manuscript in preparation, 2020.

8 Peter Hajnal and Viola Mészáros. Note on noncrossing path in colored convex sets. unpublished
preprint, 2010. URL: http://infoscience.epfl.ch/record/175677.

9 Jan Kynčl, János Pach, and Géza Tóth. Long alternating paths in bicolored point sets.
Discrete Mathematics, 308(19):4315–4321, 2008.

10 Rune Lyngsø and Christian Pedersen. Protein Folding in the 2D HP Model. BRICS Report
Series, 6(16), January 1999. doi:10.7146/brics.v6i16.20073.

11 Viola Mészáros. Extremal problems on planar point sets. PhD thesis, University of Szeged,
Bolyai Institute, 2011.

12 Viola Mészáros. Separated matchings and small discrepancy colorings. In Alberto Márquez,
Pedro Ramos, and Jorge Urrutia, editors, Computational Geometry - XIV Spanish Meeting
on Computational Geometry, EGC 2011, Dedicated to Ferran Hurtado on the Occasion of
His 60th Birthday, Alcalá de Henares, Spain, June 27-30, 2011, Revised Selected Papers,
volume 7579 of Lecture Notes in Computer Science, pages 236–248. Springer, 2011. doi:
10.1007/978-3-642-34191-5_23.

13 Viola Mészáros. An upper bound on the size of separated matchings. Electronic Notes in
Discrete Mathematics, 38:633–638, 2011. doi:10.1016/j.endm.2011.10.006.

14 Clemens Müllner and Andrew Ryzhikov. Palindromic subsequences in finite words. In Proc
13th Int. Conf. Language and Automata Theory and Applications (LATA), pages 460–468,
2019. doi:10.1007/978-3-030-13435-8_34.

https://doi.org/10.1016/0012-365X(90)90276-N
https://doi.org/10.1007/978-1-4614-0110-0_8
http://infoscience.epfl.ch/record/175677
https://doi.org/10.7146/brics.v6i16.20073
https://doi.org/10.1007/978-3-642-34191-5_23
https://doi.org/10.1007/978-3-642-34191-5_23
https://doi.org/10.1016/j.endm.2011.10.006
https://doi.org/10.1007/978-3-030-13435-8_34

k-Median Clustering Under Discrete Fréchet and
Hausdorff Distances
Abhinandan Nath1

Mentor Graphics, Fremont, CA, USA
abnath@mentor.com

Erin Taylor
Duke University, Durham, NC, USA
ect15@cs.duke.edu

Abstract
We give the first near-linear time (1+ε)-approximation algorithm for k-median clustering of polygonal
trajectories under the discrete Fréchet distance, and the first polynomial time (1 + ε)-approximation
algorithm for k-median clustering of finite point sets under the Hausdorff distance, provided the
cluster centers, ambient dimension, and k are bounded by a constant. The main technique is a
general framework for solving clustering problems where the cluster centers are restricted to come
from a simpler metric space. We precisely characterize conditions on the simpler metric space of the
cluster centers that allow faster (1 + ε)-approximations for the k-median problem. We also show
that the k-median problem under Hausdorff distance is NP-Hard.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Clustering, k-median, trajectories, point sets, discrete Fréchet distance,
Hausdorff distance

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.58

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.00722.

Funding Erin Taylor : Work on this paper was supported by NSF under grants CCF-15-13816,
CCF-15-46392, IIS-14-08846, and by an ARO grant W911NF-15-1-0408.

Acknowledgements The authors would like to thank Pankaj K. Agarwal, Kamesh Munagala, and
anonymous reviewers for helpful discussions and feedback.

1 Introduction

We study the k-median problem for an arbitrary metric space X = (X, d), where the cluster
centers are restricted to come from a (possibly infinite) subset C ⊆ X. We call it the
(k,C)-median problem. We prove general conditions on the structure of C that allow us
to get efficient (1 + ε)-approximation algorithms for the (k,C)-median problem for any
ε > 0. As applications of our framework, we give (1 + ε)-approximation algorithms for
the metric space defined over polygonal trajectories and finite point sets in Rd under the
discrete Fréchet and Hausdorff distance respectively, where the cluster centers have bounded
complexity. For trajectories, our algorithm runs in near-linear time in the number of input
points (Theorem 13) and is exponentially faster than the previous best algorithm ([10],
Theorem 11). For point sets, ours is the first (1 + ε)-approximation algorithm that runs in
time polynomial in the number of input points (Theorem 15) for bounded dimensions and
cluster complexity. Our results are summarized in Table 1. We also show that the k-median
problem under Hausdorff distance problem is NP-Hard.

1 Part of the work was done when the author was a graduate student at Duke University.
© Abhinandan Nath and Erin Taylor;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 58; pp. 58:1–58:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abnath@mentor.com
mailto:ect15@cs.duke.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.58
https://arxiv.org/abs/2004.00722
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Clustering Under Discrete Fréchet and Hausdorff Distances

Table 1 Our results for (1 + ε)-approximate k-median for n trajectories/point sets in Rd, each
having at most m points. Each cluster center can have at most l points. While stating running
times, we assume k, l, d are constants independent of n, m, and Õ hides logarithmic factors in n, m.

Metric space Our result Previous best

Polygonal traj., discrete Fréchet Õ (nm) Õ
(
ndkl+1m

)
[10]

Point sets, Hausdorff nmO(dl) –

Figure 1 The red, green and blue trajectories are similar to each other and form a single cluster.
If the cluster center trajectory is restricted to have four vertices, it will look like the black trajectory
at the bottom. However if the center is unrestricted, it will contain a lot of vertices inside the four
noticeable noisy clumps of vertices of the input trajectories, thereby overfitting to the input.

The k-median problem has been very widely studied. We are given a set P of n elements
from a metric space. The goal is now to select k centers so that the sum of the distances of
each point to the nearest cluster center is minimized. In the simplest setting, P ⊆ Rd under
the Euclidean metric. In this paper, each individual element of P is itself a collection of
points in Rd, e.g., a curve traced by a moving object, or a point cloud. Since the objective of
clustering is to group similar objects into the same cluster and to summarize each cluster
using its cluster center, it is important that a meaningful distance function is used to compare
two input elements. In our work, we look at the widely used discrete Fréchet and Hausdorff
distances for trajectories and point sets respectively.

Trajectories can model a variety of systems that change with time. As such, trajectory
data is being collected at enormous scales. As a first step, clustering is hugely important in
understanding and summarizing the data. It involves partitioning a set of trajectories into
clusters of similar trajectories, and computing a representative trajectory (a center) per cluster.
It can be viewed as a compression scheme for large trajectory datasets, effectively performing
non-linear dimension reduction. If the centers have low complexity, this representation can
reduce uncertainty and noise found in individual trajectories. Information provided by the set
of centers is useful for trajectory analysis applications such as similarity search and anomaly
detection [32]. The Hausdorff distance is another widely used shape-based distance [8, 23].
In shape matching applications, we may want to cluster similar shapes into one group (where
a shape is represented by a point cloud).

The k-median problem is hard to solve exactly, even in Euclidean space [16, 29]. There is
a long line of work on both constant factor and (1 + ε)-approximations, with varying running
time dependence on k and the ambient dimension (if applicable). Many of these algorithms
require the underlying metric space to have bounded doubling dimension (e.g., see [1]).
However, it can be shown that both the discrete Fréchet and Hausdorff distances do not have
doubling dimension bounded by a constant [30, Appendix A]. We circumvent this problem
by considering cluster centers from a somewhat simpler metric space compared to the input
metric space. For trajectories and point sets, we restrict the centers to have low complexity,

A. Nath and E. Taylor 58:3

i.e., a bounded number of points. This approach has been used before ([9, 10, 13]). It has
the added benefit of preventing the cluster center from overfitting to the elements of its
cluster. This is crucial, since real-life measurements are noisy and error-prone, and without
any restrictions the cluster center can inherit noise and high complexity from the input
(see Fig. 1). As another example, in clustering financial time-series data using Hausdorff
distance [6], frequent intra-day fluctuations may not be useful in capturing long-term trends,
and we want to avoid them by retricting the cluster centers’ complexity. However, our work
differs from previous approaches in that we precisely characterize general conditions on the
simpler metric space for the cluster centers, which leads to faster (1 + ε)-approximation
algorithms for the k-median problem for the discrete Fréchet and Hausdorff distances.

Problem definition. Ametric space X = (X, d) consists of a set X and a distance function
d : X × X → R≥0 that satisfies the following properties : (i) d(x, x) = 0 for all x ∈ X;
(ii) d(x, y) = d(y, x) for all x, y ∈ X; and (iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Given subsets P,C ⊆ X, the (k, C)-median problem is to compute a set C ′ ⊆ C of k
center points that minimizes∑

p∈P
d(p, C ′),

where d(p, C ′) = minc∈C′ d(p, c). Here P is finite, but C need not be.
Let T l (resp. U l) be the set of all trajectories (resp. point sets) in Rd, where each

trajectory (resp. point set) has at most l points. Thus, T =
⋃
l>0 T

l and U =
⋃
l>0 U

l

are the set of all trajectories and finite point sets in Rd respectively. As special cases of
the (k,C)-median problem, we discuss the (k, T l)-median and the (k, U l)-median problems
for the metric spaces T = (T, dF) and U = (U, dH) respectively, i.e., each center trajectory
or point set can have at most l points. Here, dF and dH denote the discrete Fréchet and
Hausdorff distances respectively.

Challenges and ideas. As mentioned before, both the discrete Fréchet and Hausdorff
metrics do not have low doubling dimension, so a number of previous techniques do not
directly apply to our setting to yield efficient algorithms. One approach would be to embed
these metrics into other metric spaces. Backurs and Sidiropoulos [4] give an embedding of
the Hausdorff metric over point sets of size s in d-dimensional Euclidean space, into lsO(s+d)

∞
with distortion sO(s+d). However, both the distortion and the resultant dimension are too
high for many applications. It is not known if the Fréchet distance can be embedded into an
lp space using finite dimension.

We circumvent the problem by restricting the cluster centers to come from a subset C of
the original space X, namely trajectories and point sets defined by a bounded number of
points each. We show that if every metric ball in C can be covered by a small number of
metric balls of a fixed smaller radius, then we can use a sampling-based algorithm similar to
the one in Ackermann et al. [1]; we make this precise by introducing the notion of coverability
of C. We crucially show that the centers of the balls in the cover can be arbitrary, and
need not come from C. This is more general than C having bounded doubling dimension.
This allows us to approximate the optimal (1, C)-median of P using the (1, C)-median of a
constant sized random sample of P , allowing us to use the framework of [1].

It is not known how to efficiently compute the optimal (1, C)-median under the discrete
Fréchet and Hausdorff distances. However, we show that all we need is to compute a constant
number of candidate centers in time independent of the size of the input, at least one of which

SoCG 2020

58:4 Clustering Under Discrete Fréchet and Hausdorff Distances

is a good approximation to the optimal (1, C)-median of the input. We show how to compute
these candidates for a coverable set C. Then, we can apply the sampling technique of [1] and
recursively use this property to find k centers that approximate the cost of the (k,C)-median
optimal solution. Although our work heavily relies on the framework of Ackermann et al. [1],
it is a significant improvement from existing work on clustering under the discrete Fréchet
distance, and the first such result for clustering under the Hausdorff distance.

Previous work. Trajectory clustering has a lot of applications, e.g., finding frequent move-
ment patterns in trajectory data. As such, there has been work on trajectory cluster-
ing [17, 22, 33], and possibly computing a representative trajectory for each cluster. Many
proposed algorithms and models have no provable performance gaurantees and are experi-
mental in nature.

Driemel et al. [13] started the rigorous study of clustering trajectories under the continuous
Fréchet distance under the classic k-clustering objectives. However, they only deal with
1D-trajectories. They introduce the (k, l)-clustering problem, i.e., clustering trajectories with
k cluster centers such that each center can have at most l points. For 1D-trajectories, they
give (1 + ε)-approximation algorithms for both the (k, l)-center and (k, l)-median problem
that run in near-linear time for constant ε, k, l. Buchin et al. [9] study the (k, l)-center
clustering problem for trajectories in Rd under the discrete and continuous Fréchet distances,
and give both upper and lower bounds. The most closely related work to ours is the one by
Buchin, Driemel and Struijs [10], where they give algorithms for the (k, l)-median problem
under discrete Fréchet; however their running times are much slower (see Table 1). They
also show that the 1-median problem under discrete Fréchet distance is NP-Hard, and
W[1]-Hard in the number of input trajectories.

On the other hand, clustering under Hausdorff distance has received much less atten-
tion. There is work on hierarchical clustering of financial time series data using Hausdorff
distance [6]. Chen et al. [11] use the DBSCAN algorithm [15] while Qu et al. [31] use
spectral clustering for trajectories and using the Hausdorff distance. We are not aware of
any theoretical analysis for k-median clustering of point sets under the Hausdorff distance.

In general metric spaces, a polynomial time (1 +
√

3 + ε)-approximation algorithm to
the k-median problem exists [28], whereas no polynomial time algorithm can achieve an
approximation ratio less than (1+2/e) unless NP ⊆ DTIME [nO(log logn)] [24]. For Euclidean
k-median in d dimensions, Guruswami and Indyk [18] showed that there is no PTAS if both
k and d are part of the input. Arora et al. [3] gave the first PTAS when d is fixed, whose
running time was subsequently improved in [25]. Kumar et al. [27] gave a (1+ε)-approximate
algorithm with runtime 2(k/ε)O(1)

dn, this was extended by Ackermann et al. [1] to those metric
spaces for which the optimal 1-median can be approximated using a constant-sized random
sample; this holds true for doubling metric spaces. There are coreset-based approaches with
running times linear in n and either exponential in d and polynomial in k [20, 19], or vice
versa [5]. Recently, Cohen-Addad et al. [12] gave a PTAS for k-median in low-dimensional
Euclidean and minor-free metrics using local search.

2 Preliminaries, definitions and an overview

We formally define the discrete Fréchet and Hausdorff distances. We also define two properties
on C and d which allow us to design efficient clustering algorithms. Finally we give an
overview of our algorithm.

A. Nath and E. Taylor 58:5

Discrete Fréchet and Hausdorff distance. Consider two finite sets ζ1 and ζ2. A corre-
spondence C between ζ1 and ζ2 is a subset of ζ1 × ζ2 such that every element of ζ1 and ζ2
appears in at least one pair in C. For ζ1, ζ2 ⊆ Rd, the Hausdorff distance [21] is defined as

dH(ζ1, ζ2) = min
C∈Ξ(ζ1,ζ2)

max
(p,q)∈C

‖p− q‖ ,

where ‖.‖ is the l2 norm, and Ξ(ζ1, ζ2) is the set of all correspondences between ζ1 and ζ2.
A trajectory γ is a finite sequence of points 〈p1, p2 . . .〉 in Rd. A correspodence can

be defined for a pair of trajectories γ1 = 〈p1, p2, . . .〉 and γ2 = 〈q1, q2, . . .〉 by treating
each trajectory as a point sequence; such a correspondence is said to be monotonic if it
also respects the ordering of points in the trajectories, i.e., if (pi1 , qj1), (pi2 , qj2) ∈ C, then
i2 ≥ i1 ⇒ j2 ≥ j1. The discrete Fréchet distance [14] between γ1 and γ2 is defined as

dF (γ1, γ2) = min
C∈ΞM (γ1,γ2)

max
(p,q)∈C

‖p− q‖ ,

where ΞM (γ1, γ2) is the set of all monotone correspondences between γ1 and γ2. Our
algorithms cluster in the metric space defined by the discrete Fréchet and Hausdorff distance.

Strong and weak sampling properties. We define two properties that make efficient cluster-
ing algorithms possible. These are generalizations of the strong and weak sampling properties
defined by Ackermann et al.(see Theorem 1.1 and Property 4.1 in [1]). The major difference
is that the cluster centers are restricted to a subset C of the metric space X. These properties
allow fast approximation of the (1, C)-median using only a constant sized random sample
of the input. We later show how to get an efficient (k,C)-median algorithm using the fast
(1, C)-median algorithm as a subroutine. We denote the optimal (1, C)-median of any set
P ⊆ X by cP .

I Definition 1 (Strong sampling property). Let 0 < ε, δ < 1 be arbitrary. (X,C, d) is said to
satisfy the strong sampling property for ε, δ iff
(i) For any finite P ⊆ X, cP can be computed in time depending only on |P |.
(ii) There exists a positive integer mδ,ε depending on δ, ε such that for any P ⊆ X, the

optimal (1, C)-median cS of a uniform random multiset S ⊆ P of size mδ,ε satisfies

Pr

∑
p∈P

d(p, cS) ≤ (1 + ε)
∑
p∈P

d(p, cP)

 ≥ 1− δ.

The strong sampling property characterizes those instances in which the optimal (1, C)-
median of a constant-sized random sample is a good approximation to the optimal (1, C)-
median of the whole set. However, in many cases it is impossible to efficiently solve the
(1, C)-median exactly (e.g., when C,X = Rd and d is the Euclidean metric). This is also
true for the discrete Fréchet and Hausdorff distances for polygonal trajectories and finite
point sets respectively. The following definition becomes helpful then.

I Definition 2 (Weak sampling property). Let 0 < ε, δ < 1 be arbitrary. (X,C, d) is said
to satisfy the weak sampling property for ε, δ iff there exist positive integers mδ,ε and tδ,ε
depending on δ, ε such that for any P ⊆ X and a uniform random multiset S ⊆ X of size
mδ,ε, there exists a set Γ(S) ⊆ C of size tδ,ε that satisfies

Pr

∃c ∈ Γ(S) |
∑
p∈P

d(p, c) ≤ (1 + ε)
∑
p∈P

d(p, cP)

 ≥ 1− δ.

Furthermore, Γ(S) can be computed in time depending on δ, ε, |S| but independent of |P |.

SoCG 2020

58:6 Clustering Under Discrete Fréchet and Hausdorff Distances

The weak sampling property characterizes those instances in which one can generate a
constant number of candidate centers in time independent of the size of the input set, and at
least one of which is guaranteed to be a good approximation to the optimal 1-center of the
input set. We later show that the discrete Fréchet and Hausdorff distances satisfy the weak
sampling property. We use mδ,ε to denote the size of the random sample for both the strong
and weak sampling properties.

Algorithm overview. We give an overview of our algorithm, denoted Cluster, in Algo-
rithm 1. It is similar to the algorithm Cluster from [1], which approximates the k-median
problem by recursively taking a random sample of constant size and solving the 1-median
problem on the sample. The small but crucial difference in our setting is that the set
of candidate cluster centers CS comes from C; this also changes how the candidates are
generated. We show that with a careful choice of C, our instance satisfies one of the sampling
properties (Definitions 1, 2), and we can apply the framework of Ackermann et al. [1].

The algorithm takes as input the set of points P ⊆ P that are yet to be assigned cluster
centers, the number of cluster centers k still to be computed, and the centers C ⊆ C already
computed. It returns the final set of cluster centers. To solve the (k,C)-median problem for
P , we call Cluster(P, k, {}) with values of α,mδ,ε, F that we will specify later.

Briefly, the algorithm has two phases. In the pruning phase no new centers are added.
Rather, the set N containing half of the points of P closest to C are removed from P , and
the algorithm is called recursively on P \N . In the sampling phase, new centers are added.
The algorithm first samples a uniformly random multiset S of P of size 2

αmδ,ε for some
constant α and mδ,ε to be defined later. Then for each subset S′ ⊂ S of size mδ,ε, a set of
candidate centers F (S′) is generated; the function F varies depending on certain conditions
satisfied by (X,C, d); in particular F (S′) = {cS′} for the strong sampling property, and
F (S′) = {Γ(S′)} for the weak sampling property. Each candidate center is in turn added to
C, and the algorithm is run recursively. Finally, the solution with the lowest cost is returned.

Algorithm 1 Algorithm Cluster computes a (k, C)-median clustering.

Cluster(P , k, C):

input: Point set P , remaining number of centers k, computed centers C
if k = 0: return C
else:

if k ≥ |P |: return C ∪ P
else:

/* Pruning phase */
N ← set of 1

2 |P | minimal points p ∈ P w.r.t d(p, C)
C∗ ← Cluster(P \N, k,C)
/* Sampling phase */
S ← uniform random multisubset of P of size 2

αmδ,ε

CS ←
⋃
S′⊂S,|S′|=mδ,ε F (S′)

for all c ∈ CS :
Cc ← Cluster(P , k − 1, C ∪ {c})

return Cc or C∗ with the lowest cost

The rest of the paper is organized as follows. In Section 3, we show that for (X,C, d)
satisfying the strong and weak sampling properties, the algorithm Cluster (using the
appropriate α,mδ,ε, F) computes a (1 + ε)-approximation to the optimal (k,C)-median.

A. Nath and E. Taylor 58:7

In Section 4, we prove sufficient conditions on C for the sampling properties to hold. In
Section 5, we give clustering algorithms for the discrete Fréchet and Hausdorff distances
using the framework developed in previous sections. In Section 6, we show that the k-median
problem for Hausdorff distance is NP-Hard.

3 Clustering via sampling

We show that the Cluster algorithm (Algorithm 1) computes an approximate (k,C)-median
for instances satisfying the sampling properties and for appropriate α,mδ,ε and F , i.e., if
we use F (S′) = {cS′} for the strong sampling property and F (S′) = Γ(S′) for the weak
sampling property. The analysis closely follows that of Ackermann et al. [1], and detailed
proofs are provided in the full version [30].

The superset sampling lemma [30, Lemma 17] shows how to draw a uniform random
multiset from P ′ ⊆ P while only knowing P (without explicitly knowing P ′), provided P ′
contains a constant fraction of the points of P . Using this lemma and the strong and weak
sampling properties, we have the following. See [30, Appendices B.1,B.2] for proofs of the
superset sampling lemma and the following lemma.

I Lemma 3. Let α < 1
4k be an arbitrary positive constant. Suppose (X,C, d) satisfies the

strong or weak sampling property (Definitions 1, 2) for some ε, δ ∈ (0, 1). Given P ⊆ X,
algorithm Cluster run with input (P, k, {}) and appropriate F computes a set C̃ ⊆ C of
size k such that

Pr

∑
p∈P

d(p, C̃) ≤ (1 + 8αk2)(1 + ε)
∑
p∈P

d(p, C∗)

 ≥ (1− δ
5

)k
,

where C∗ is an optimal solution to the (k,C)-median problem for P .

Running time. We characterize the running time of Cluster in terms of d, C and F . Let
h(C) denote the maximum time required to compute the nearest neighbor of x in C, i.e.,
arg miny∈C d(x, y), for any x ∈ X. Let t(C) denote the maximum time required to compute
d(x, y) for any x ∈ X, y ∈ C. Finally, let w(m) = maxS⊆X,|S|=m |F (S)|, and let f(m) be the
maximum number of operations needed to compute F (S) for any S ⊆ X of size m, where
computing d between points in X and C, and computing the closest point in C to any point
in X count as one operation each. The proof is similar to the running time analysis from [1],
and is given in [30, Appendix B.3].

I Lemma 4. Suppose (X,C, d) satisfies the strong or weak sampling properties (Definitions 1
and 2) for some ε, δ ∈ (0, 1). Given P ⊆ X containing n points, algorithm Cluster runs in
time

n · 2O(kmδ,ε log(1
αmδ,ε)) · (w(mδ,ε) · f(mδ,ε))O(k) · (h(C) + t(C)).

By setting α = ε
8k2 , the approximation factor in Lemma 3 becomes (1 + 3ε). Moreover,

the error probability can be made arbitrarily small by running the Cluster algorithm 2Θ(k)

times and taking the minimum cost solution, without changing the asymptotic running time.
We thus get the following. Note that w(mδ,ε) takes on values 1 and tδ,ε for the strong and
weak sampling properties respectively.

SoCG 2020

58:8 Clustering Under Discrete Fréchet and Hausdorff Distances

I Theorem 5. Suppose (X,C, d) satisfies the strong sampling property (Definition 1) for some
ε, δ ∈ (0, 1). Further, suppose cS can be computed in a(mδ,ε) operations, where computing d
between points in X and C, and computing the closest point in C to any point in X count as
one operation each. Given P ⊆ X having n points and k ∈ N, with probability ≥ 1 − δ, a
(1 + 3ε)-approximate solution to the (k,C)-median problem for P can be computed in time

n · 2O(kmδ,ε log(kεmδ,ε)) · a(mδ,ε)O(k) · (h(C) + t(C)).

I Theorem 6. Suppose (X,C, d) satisfies the weak sampling property (Definition 2) for some
ε, δ ∈ (0, 1). Further, suppose Γ(S) can be computed in b(mδ,ε) operations, where computing
d between points in X and C, and computing the closest point in C to any point in X count
as one operation each. Given P ⊆ X having n points and k ∈ N, with probability ≥ 1− δ, a
(1 + 3ε)-approximate solution to the (k,C)-median problem for P can be computed in time

n · 2O(kmδ,ε log(kεmδ,ε)) · (tδ,ε · b(mδ,ε))O(k) · (h(C) + t(C)).

4 Covering metric spaces

We specify sufficient conditions on C for the sampling properties to hold. These conditions
characterize how well can certain subsets of C be covered using a small number of sets.

Let X = (X, d) be a metric space. Given x ∈ X, let Bd(x, r) = {x′ ∈ X | d(x, x′) ≤ r}
denote the ball of radius r (under d) centered at x; we will drop the subscript d if it is clear
from the context. An r-cover of a subset X ′ ⊆ X for some r > 0 is a set Y ⊆ X such that
X ′ ⊆

⋃
y∈Y B(y, r). Note that the elements of Y need not be in X ′. Also note that if Y is

an r-cover for X ′, it is also an r-cover for any subset of X ′.
A subset Y ⊆ X is said to be g-coverable for some non-decreasing function g : R≥0 →

R≥0 iff for all y ∈ Y and r > r′ > 0, there exists an r′-cover of B(y, r) ∩ Y of size at most
g(r/r′). Note that if Y is g-coverable then any subset Y ′ ⊆ Y is also g-coverable.

Intuitively, if C has a small cover, then for any metric ball in C there exists a small set
of points (not necessarily from C), termed the cover, such that the distance from any point
in the ball to a point in the cover is smaller than the radius of the ball.

Sufficient conditions for the strong sampling property. The following theorem gives suffi-
cient conditions for the strong sampling property to hold in terms of coverability of C. The
proof is similar to Lemma 3.4 of [1] but has been adapted to our setting, see [30, Appendix
C] for more details.

I Theorem 7. If C is g-coverable, and for any P ⊆ X, cP can be computed in time
depending only on |P |, then (X,C, d) satisfies the strong sampling property (Definition 1)
for any ε, δ ∈ (0, 1). Here, the constant mδ,ε = mδ,ε,g also depends on g.

From Theorems 5 and 7, we get the following.

I Corollary 8. Suppose C is g-coverable and the optimal (1, C)-median of any subset of X
can be computed in time depending on the size of the subset. Let ε, δ ∈ (0, 1). Given P ⊆ X
having n points and k ∈ N, with probability ≥ 1− δ, a (1 + 3ε)-approximate solution to the
(k,C)-median problem for P can be computed in time

n · 2O(kmδ,ε,g log(kεmδ,ε)) · a(mδ,ε,g)O(k) · (h(C) + t(C)),

A. Nath and E. Taylor 58:9

where mδ,ε,g is a constant depending only on ε, δ, g, and a(m) is the number of operations
needed to compute the optimal (1, C)-median of m points in X, where computing d between
points in X and C, and computing the closest point in C to any point in X count as one
operation each.

Sufficient conditions for the weak sampling property. We give sufficient conditions for
the weak sampling property to hold in terms of coverability of C.

For Y ⊆ X, let θY
(
r
r′

)
be the number of operations required to compute an r′-cover of

B(y, r) ∩ Y for any y ∈ Y (if such a cover exists) where computing d between points in X
and C, and computing the closest point in C to any point in X count as one operation each
(we assume that the number of operations can be expressed in terms of r

r′).
The following lemma will be helpful, and states that if C has a small cover and if we

have a good estimate of the cost of the optimal (1, C)-median, then we can construct a small
set of points in C such that at least one of them is a good approximation to the optimal
(1, C)-median. Further, this can be done in time independent of |P |. Both of these properties
are necessary for the weak sampling property (Definition 2).

I Lemma 9. Let P ⊆ X. Suppose C is g-coverable. Then given a, b such that a ≤
1
|P |
∑
p∈P d(cP , p) ≤ b, we can compute a set Q ⊆ C of size O(g

(4b
εδa

)
) such that

Pr

∃q ∈ Q |∑
p∈P

d(p, q) ≤ (1 + ε)
∑
p∈P

d(p, cP)

 ≥ 1− δ.

Further, Q can be computed in O
(
θC
(4b
εδa

)
+ g

(4b
εδa

))
operations, where computing d between

points in X and C, and computing the closest point in C to any point in X count as one
operation each.

Proof. For any x ∈ X, we define x′ = arg miny∈C d(x, y). Consider a point q ∈ P chosen
uniformly at random. By Markov’s inequality, d(q, cP) ≤ 1

δ|P |
∑
p∈P d(p, cP) with probability

≥ 1− δ. In such a case,

d(q′, cP) ≤ d(q′, q) + d(q, cp) ≤ 2d(q, cP) ≤ 2
δ|P |

∑
p∈P

d(p, cP).

Thus, cP ∈ B(q′, 2b
δ) with probability at least 1− δ.

Let C ′ be an
(
εa
2
)
-cover of B(q′, 2b

δ) ∩ C. Since C is g-coverable, |C ′| = g
(4b
εδa

)
. We will

argue that Q = {q′} ∪ {c′ | c ∈ C ′} is the required solution. Let x = arg miny∈C′ d(y, cP).
Since C ′ is an

(
εa
2
)
-cover, d(x, cP) ≤ εa

2 . Also, d(x, x′) ≤ d(x, cP) ≤ εa
2 . Thus, d(x′, cP) ≤

d(x, x′) + d(x, cP) ≤ εa. We then have

∑
p∈P

d(p, x′) ≤
∑
p∈P

(d(p, cP) + d(x′, cP)) ≤

∑
p∈P

d(p, cP)

+ εa|P |

≤ (1 + ε)
∑
p∈P

d(p, cP).

Computing C ′ takes θC
(4b
εδa

)
operations. Computing the output set takes |C ′| + 1 =

O
(
g
(4b
εδa

))
operations. J

The next theorem shows that with a small random sample of P , one of two things can
happen. Either one of the samples is close to an approximate (1, C)-median, or we can
approximate the cost of the optimal (1, C)-median in time independent of |P |. This along

SoCG 2020

58:10 Clustering Under Discrete Fréchet and Hausdorff Distances

with Lemma 9 shows that the weak sampling property holds if C is g-coverable. The proof
is inspired by the proof of Theorem 1 in [26], and it also shows how to compute Γ for the
weak sampling property (Definition 2).

I Theorem 10. If C is g-coverable, then (X,C, d) satisfies the weak sampling property
(Definition 2) for 0 < ε < 4

9 and
(
1− 5

18ε
)
< δ < 1. Further, the constants mδ,ε =

1 + 4
ε and tδ,ε = O

(
g
(

2048
δ1ε5

))
, and the number of operations needed to compute Γ(S) is

O
(

1
ε + θC

(
2048
δ1ε5

)
+ g

(
2048
δ1ε5

))
, where δ1 = ε

2 −
9
5 (1− δ); and computing d between points in

X and C, and computing the closest point in C to any point in X count as one operation
each.

Proof. Let ε1 = ε
4 and r̄ = 1

|P |
∑
p∈P d(p, cP). Also, let x′ = arg miny∈C d(x, y) for any

x ∈ X.
Let Q ⊆ P be a uniform random multiset of size 1

ε1
, and q ∈ P be another point chosen

uniformly at random. We will show that Q ∪ {q} plays the role of S in Definition 2.
Using Markov’s inequality and union bound, we have

Pr
[
d(q, cP) > r̄

2ε2
1

]
< 2ε2

1 and Pr
[
∃p ∈ Q | d(p, cP) > r̄

2ε2
1

]
<
(

1
ε1

)
2ε2

1 = 2ε1.

Thus with probability ≥ 1 − 2ε1 − 2ε2
1, q and Q are in B

(
cP ,

r̄
2ε2

1

)
. We assume that this

event happens. Now, by definition of q′, we have d(q, q′) ≤ d(q, cP). Hence,

d(q′, cP) ≤ d(q, q′) + d(q, cP) ≤ 2d(q, cP) ≤ r̄

ε2
1
.

Let B1 = B
(
cP ,

r̄
ε2

1

)
, B2 = B (q′, ε1r̄) and P ′ = P ∩ B1. Then, q′ ∈ B1 and Q ⊆ P ′. We

consider two cases now.

Case 1: P ′ has at least 2ε1|P ′| points outside B2. For any p ∈ Q, the probability p is
outside B2 is 2ε1. Thus, with probability at least 2ε1, there exists p ∈ Q such that
d(p, q′) ≥ ε1r̄ and hence

∑
p∈Q d(p, q′) ≥ ε1r̄. Also, d(p, q′) ≤ 2r̄

ε2
1
for any p ∈ Q. Hence,∑

p∈Q d(p, q′) ≤ 2r̄
ε3

1
.

Let δ1 = 2ε1 − 9
5 (1 − δ). We can now use Lemma 9 with a = ε3

1
2
∑
p∈Q d(p, q′) and

b = 1
ε1

∑
p∈Q d(p, q′) to compute a set Q1 ⊆ C of O

(
g
(

4b
εδ1a

))
= O

(
g
(

2048
δ1ε5

))
candidate

centers, one of which is a (1 + ε)-approximate center with probability at least 1− δ1. The
total probability of getting a good set of candidate centers is (2ε1−δ1)(1−2ε1−2ε2

1) > 1−δ.
Case 2: P ′ has at most 2ε1|P ′| points putside B2. We further consider two cases.

Case 2(a): d(q′, cP) ≤ 4ε1r̄. Then∑
p∈P

d(p, q′) ≤
∑
p∈P

(
d(p, cp) + d(q′, cp)

)
≤ (1 + 4ε1)

∑
p∈P

d(p, cP) ≤ (1 + ε)
∑
p∈P

d(p, cP).

Case 2(b): d(q′, cP) > 4ε1r̄. Suppose we assign all points from cP to q′. By an averaging
argument, we have |P ′| ≥ (1 − ε2

1)|P |. Then, the number of points of P that are
outside B2 is at most

|P \ P ′|+ 2ε1|P ′| =|P | − (1− 2ε1)|P ′|
≤|P | − (1− 2ε1)(1− ε2

1)|P |
≤(ε2

1 + 2ε1(1− ε2
1))|P |.

A. Nath and E. Taylor 58:11

Thus, |P ∩B2| ≥ (1− ε2
1 − 2ε1(1− ε2

1))|P |. Now, for p ∈ P ∩B2, the decrease in cost
on switching from cP to q′ is at least

d(p, cP)− d(p, q′) ≥ d(p, cP)− ε1r̄ ≥ d(q′, cP)− 2ε1r̄.

For p ∈ P \B2, the increase in cost on switching from cP to q′ is at most

d(p, q′)− d(p, cP) ≤ d(q′, cP).

The overall decrease in cost is

|P ∩B2|(d(q′, cP)− 2ε1r̄)− |P \B2|d(q′, cP) > 0

for our choice of ε1 and d(q′, cP) > 4ε1r̄. But cP is the optimal (1, C)-median of P , a
contradiction. Hence case 2(b) cannot occur.

From the two cases above, we can see that Q1 ∪{q′} plays the role of Γ(S) in Definition 2.
Sampling Q, q takes time O(1

ε). Computing
∑
p∈P d(p, q′) involves O(1

ε) computations of
d between a pair of points from X, at least one of which comes from C. Computing the set
of candidates takes O

(
θC

(
2048
δ1ε5

)
+ g

(
2048
δ1ε5

))
operations. Thus, total number of operations

needed is O
(

1
ε + θC

(
2048
δ1ε5

)
+ g

(
2048
δ1ε5

))
. Moreover, mδ,ε = |Q ∪ {q}| = 1 + 1

ε1
= 1 + 4

ε , and

tδ,ε = |Q1 ∪ {q′}| = O
(
g
(

2048
δ1ε5

))
. J

From Theorems 6 and 10, we get the following.

I Corollary 11. Suppose C is g-coverable. Let ε ∈ (0, 4
9), δ ∈ (1− 5

18ε, 1). Given P ⊆ X of
size n and k ∈ N, with probability ≥ 1−δ, a (1+3ε)-approximate solution to the (k,C)-median
problem for P can be computed in time

n · 2O(kε log(kε)) · (b(mδ,ε) · tδ,ε)O(k) · (h(C) + t(C)),

where b(mδ,ε) = O
(

1
ε + θC

(
2048
δ1ε5

)
+ g

(
2048
δ1ε5

))
, tδ,ε = O

(
g
(

2048
δ1ε5

))
, and δ1 = ε

2 −
9
5 (1− δ).

5 Clustering discrete Fréchet and Hausdorff distances

In this section, we show how the results from the previous section can be used to cluster
trajectories and point sets under the discrete Fréchet and Hausdorff distances respectively.

Clustering under discrete Fréchet distance. Recall that T l is the set of all trajectories in
Rd having at most l points each; thus T =

⋃
l>0 T

l is the set of all trajectories in Rd. Given
T = (T, dF) and trajectories P ⊆ T , the (k, l)-median problem [13, 10] is equivalent to the
(k, T l)-median problem in our setting, i.e., the center trajectories contain at most l points.
We show that T l is g-coverable for some g that depends on l.

I Lemma 12. T l is g-coverable under dF for g(x) = l2l · xO(dl). Further, an r′-cover of
BdF (γ, r) ∩ T l for r > r′ > 0 and γ ∈ T l can be computed in l2l ·

(
r
r′

)O(dl) time.

Proof. Let r > r′ > 0 be arbitrary. Let γ = 〈p1, . . . , pl′〉 ∈ T l for some l′ ≤ l. Since the
Euclidean metric in Rd has doubling dimension O(d), for any p ∈ Rd there exist

(
r
r′

)O(d)

points in the Euclidean ball BE(p, r) centered at p such that any point in BE(p, r) is at most
r′ distance away from one of these points; denote these points by Bp(r, r′). Consider the set
of points

⋃l′
i=1Bpi(r, r′); this set has cardinality l′ ·

(
r
r′

)O(d).

SoCG 2020

58:12 Clustering Under Discrete Fréchet and Hausdorff Distances

Next, consider the set of all trajectories T ′ defined by at most 2l points from
⋃l′
i=1Bpi(r, r′)

and containing at least one point from Bpi(r, r′) for every i; further these points respect
the ordering of the sets that they belong to, i.e., if p ∈ Bpi(r, r′), q ∈ Bpj (r, r′), and i < j,
then p appears before q in the trajectory (for points coming from the same set Bpi(r, r′) all

possible orderings are considered). Note that |T ′| ≤
(
l′ ·
(
r
r′

)O(d)
)2l

. Further, dF (γ, γ′) ≤ r
for all γ′ ∈ T ′.

We will show that for any γ′′ ∈ BdF (γ, r)∩T l, there exists γ′ ∈ T ′ such that dF (γ′, γ′′) ≤ r′.
Thus T ′ is the desired cover, completing the first part of our proof. Let γ′′ = 〈q1, . . . , ql′′〉 for
some l′′ ≤ l. By definition of dF and the fact that dF (γ, γ′′) ≤ r, each qi has a corresponding
sequence of points 〈pji , pji+1, . . . , pj′

i
〉 each of which is at most r distance away from qi.

Moreover, for all 1 ≤ i < l′′ we have j′i ≤ ji+1 ≤ j′i + 1, and j1 = 1, j′l′′ = l′.
For each qi and j ∈ {ji, ji + 1, . . . , j′i}, let uj denote the point in Bpj (r, r′) that is

closest to qi. Note that qi ∈ BE(pj , r) and ‖qi − uj‖ ≤ r′. Consider the sequence of points
γ(qi) = 〈uji , uji+1, . . . , uj′

i
〉. Then, dF (〈qi〉, γ(qi)) ≤ r′. Let γ′ be the trajectory obtained

by concatenating γ(q1), . . . , γ(ql′′) in order. Then we get dF (γ′, γ′′) ≤ r′. Further, by
construction γ′′ ∈ T ′.

As far as running time is concerned, computing the set
⋃l′
i=1Bpi(r, r′) takes time l′ ·(

r
r′

)O(d). From this set, computing T ′ takes time l2l ·
(
r
r′

)O(dl). J

For a trajectory having m points, computing dF to any trajectory in T l takes time
O(ml) using the standard dynamic programming algorithm, whereas computing the closest
trajectory in T l under dF takes time O

(
lm logm log

(
m
l

))
time (see [7], Theorem 3). This,

along with Corollary 11 and Lemma 12 give the following.

I Theorem 13. Let ε ∈ (0, 4
9), δ ∈ (1 − 5

18ε, 1). Given a set of n trajectories P ⊆ T each
having at most m points and k ∈ N, with probability ≥ 1 − δ, the algorithm Cluster
(Algorithm 1) computes a (1 + 3ε)-approximate solution to the (k, T l)-median problem for P
under the discrete Fréchet distance in time

nm logm log
(m
l

)
· 2O(kε log(kε)) ·

(
l

δ1ε

)O(kdl)
,

where δ1 = ε
2 −

9
5 (1− δ).

Clustering under Hausdorff distance. Recall that U l is the set of all point sets in Rd
containing at most l points each. Thus, U =

⋃
l>0 U

l is the set of all finite point sets
of Rd. Given U = (U, dH) and subsets P ⊆ U , we show how to approximately solve the
(k, U l)-clustering problem for P and k, l > 0.

I Lemma 14. U l is g-coverable under dH for g(x) = ll · xO(dl). Further, an r′-cover of
BdH (ζ, r) ∩ U l for r > r′ > 0 and ζ ∈ U l can be computed in ll ·

(
r
r′

)O(dl) time.

Proof. Let r > r′ > 0 be arbitrary, and let ζ = {p1, p2, . . . , pl′} for some l′ ≤ l. Since the
Euclidean metric has doubling dimension O(d), there exist

(
r
r′

)O(d) points in the Euclidean
ball BE(p, r) such that any point in BE(p, r) is at most r′ distance away from one of these
points; denote these points by Bp(r, r′).

Consider all subsets of size l of the set
⋃l′
i=1Bpi(r, r′), denote this set by U ′. Note that

|U ′| =
(
l′ ·
(
r
r′

)O(d)
)l
.

A. Nath and E. Taylor 58:13

Next, consider any point set ζ ′ ∈ BdH (ζ, r) ∩ U l. By definition of Hausdorff distance, the
points of ζ ′ (there are at most l of them) must lie in

⋃l′
i=1 BE(pi, r). Thus, for each p ∈ ζ ′,

there is some i ∈ {1, . . . , l′} such that ‖p− q‖ ≤ r′ for some q ∈ Bpi(r, r′). Thus, there exists
ζ ′′ ∈ U ′ such that dH(ζ ′, ζ ′′) ≤ r′. Then, U ′ is the desired cover, completing the first part of
our proof.

Computing
⋃l′
i=1Bpi(r, r′) takes time l′ ·

(
r
r′

)O(d). Computing U ′ from it takes time(
l′ ·
(
r
r′

)O(d)
)l
. J

Computing dH between two point sets of size m1 and m2 in Rd takes time O(m1m2).
Given ζ ∈ U of size m, computing its nearest neighbor in U l (under dH) boils down to finding
l disks in Rd of minimum radius such that all the points of ζ lie in the union of these disks;
the centers of these disks give the desired set in U l. This is the l-center problem in Rd for
the Euclidean metric, which is NP-Hard when l is part of the input. Note that the total
number of subsets of ζ induced by disks in Rd is mO(d). By looking at l such subsets at a
time, we can pick the one that covers ζ and minimizes the radius of the largest disk; this
takes total time mO(dl). This along with Corollary 11 and Lemma 14 give the following.

I Theorem 15. Let ε ∈ (0, 4
9), δ ∈ (1− 5

18ε, 1). Given a set of n point sets P ⊆ U each having
at most m points and k ∈ N, with probability ≥ 1− δ, the algorithm Cluster (Algorithm 1)
computes a (1 + 3ε)-approximate solution to the (k, U l)-median problem for P under the
Hausdorff distance can be computed in time

nmO(dl) · 2O(kε log(kε)) ·
(

l

δ1ε

)O(kdl)
,

where δ1 = ε
2 −

9
5 (1− δ).

I Remark. The running time of Theorem 15 can be improved to be similar to that of
Theorem 13, since we believe a (1 +O(ε))-nearest neighbor in C for any x ∈ X should suffice.
For the Hausdorff case, this involves using a fast approximation for the l-center problem [2].

6 Hardness of k-median clustering under Hausdorff distance

I Theorem 16. The k-median clustering problem for finite point sets under the Hausdorff
distance is NP-Hard.

Proof. We reduce the Euclidean k-median problem, which is known to be NP-Hard [29].
The reduction is fairly straightforward – for each input point p of an instance of the Euclidean
k-median problem, we have a singleton set {p} as input to the Haudorff k-median problem.
Any solution to the Euclidean k-median problem is also a solution to the Hausdorff k-median
problem of the same cost – we replace cluster center c in the Euclidean version by the cluster
center {c} for the Haudorff version, and for each p assigned to c, we assign {p} to {c}.

On the other hand, consider a solution to the instance of Hausdorff k-median problem.
In particular, let S be a cluster center that is assigned the sets {{p1}, . . . , {pn}}. The cost of
this single cluster is

n∑
i=1

dH({pi}, S) =
n∑
i=1

max
s∈S
‖s− pi‖ ,

by the definition of dH . Thus, replacing S by a singleton set {s} for any s ∈ S does not
increase the cost of clustering. Hence we can assume that all cluster centers are singleton
sets. We can then construct a solution for the Euclidean k-median problem by assigning p
to s, where {s} is the cluster center that {p} was assigned to in the Hausdorff clustering
solution. This does not increase the cost of the clustering as well. J

SoCG 2020

58:14 Clustering Under Discrete Fréchet and Hausdorff Distances

7 Conclusion

We have given a framework for clustering where the cluster centers are restricted to belong
to a simpler metric space. We characterized general conditions on this simpler space that
allow us to obtain efficient (1 + ε)-approximation algorithms for the k-median problem. As
special cases, we gave efficient algorithms for clustering trajectories and point sets under the
discrete Fréchet and Hausdorff distances respectively.

It would be interesting to extend the general framework to other metric spaces, e.g., the
continuous Fréchet distance, and to non-metric distance measures such as dynamic time
warping. Another interesting next step is to provide other characterizations on the metric
space for the cluster centers (as alternatives to the notion of covering discussed in this paper)
that are amenable to efficient clustering algorithms.

References
1 Marcel R. Ackermann, Johannes Blömer, and Christian Sohler. Clustering for metric and

nonmetric distance measures. ACM Trans. Alg., 6(4):59:1–59:26, 2010.
2 Pankaj K Agarwal and Cecilia M Procopiuc. Exact and approximation algorithms for clustering.

Algorithmica, 33(2):201–226, 2002.
3 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean

k-medians and related problems. In Proc. ACM Symp. Th. Computing, volume 98, pages
106–113, 1998.

4 Arturs Backurs and Anastasios Sidiropoulos. Constant-distortion embeddings of hausdorff
metrics into constant-dimensional l_p spaces. In APPROX/RANDOM. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

5 Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proc. ACM Symp. Th. Computing, pages 250–257. ACM, 2002.

6 Nicolas Basalto, Roberto Bellotti, Francesco De Carlo, Paolo Facchi, Ester Pantaleo, and
Saverio Pascazio. Hausdorff clustering of financial time series. Physica A: Statistical Mechanics
Applications, 379(2):635–644, 2007.

7 Sergey Bereg, Minghui Jiang, Wencheng Wang, Boting Yang, and Binhai Zhu. Simplifying
3D polygonal chains under the discrete Fréchet distance. In Lat. Amer. Symp. Theoret.
Informatics, pages 630–641. Springer, 2008.

8 P. C. Besse, B. Guillouet, J. Loubes, and F. Royer. Review and perspective for distance-based
clustering of vehicle trajectories. IEEE Tran. Intell. Transportation Sys., 17(11):3306–3317,
2016.

9 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k,l)-center clustering for curves. In
Proc. ACM-SIAM Symp. Disc. Alg., pages 2922–2938. SIAM, 2019.

10 Kevin Buchin, Anne Driemel, and Martijn Struijs. On the hardness of computing an average
curve. arXiv preprint, 2019. arXiv:1902.08053.

11 Jinyang Chen, Rangding Wang, Liangxu Liu, and Jiatao Song. Clustering of trajectories based
on hausdorff distance. In Proc. Int. Conf. Electronics Comm. Control, pages 1940–1944. IEEE,
2011.

12 Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Computing,
48(2):644–667, 2019.

13 Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering time series under the Fréchet
distance. In Proc. ACM-SIAM Symp. Disc. Alg., pages 766–785. SIAM, 2016.

14 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical report,
Information Systems Dept., Technical University of Vienna, 1994.

http://arxiv.org/abs/1902.08053

A. Nath and E. Taylor 58:15

15 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proc. ACM Int. Conf. Know.
Disc. Data Mining, volume 96, pages 226–231, 1996.

16 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Proc.
ACM Symp. Th. Computing, pages 434–444. ACM, 1988.

17 Scott Gaffney and Padhraic Smyth. Trajectory clustering with mixtures of regression models.
In Proc. ACM Int. Conf. Know. Disc. Data Mining, volume 99, pages 63–72, 1999.

18 Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of geometric
problems. In Proc. ACM-SIAM Symp. Disc. Alg., volume 3, pages 537–538, 2003.

19 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Disc. Computat. Geom., 37(1):3–19, 2007.

20 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proc. ACM Symp. Th. Computing, pages 291–300. ACM, 2004.

21 Felix Hausdorff. Grundzuge der mengenlehre, volume 61. American Mathematical Society,
1978.

22 Chih-Chieh Hung, Wen-Chih Peng, and Wang-Chien Lee. Clustering and aggregating clues
of trajectories for mining trajectory patterns and routes. Int. J. Very Large Databases,
24(2):169–192, 2015.

23 Daniel P Huttenlocher, Gregory A Klanderman, and William J Rucklidge. Comparing images
using the hausdorff distance. IEEE Trans. Pattern Anal. Machine Intell., 15(9):850–863, 1993.

24 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proc. ACM Symp. Th. Computing, pages 731–740. ACM, 2002.

25 Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the
euclidean k-median problem. SIAM J. Computing, 37(3):757–782, 2007.

26 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear time algorithms for clustering
problems in any dimensions. In Int. Coll. Automata Lang. Programming, pages 1374–1385.
Springer, 2005.

27 Amit Kumar, Yogish Sabharwal, and Sandeep Sen. Linear-time approximation schemes for
clustering problems in any dimensions. J. ACM, 57(2):5, 2010.

28 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J.
Computing, 45(2):530–547, 2016.

29 Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric
location problems. SIAM J. Computing, 13(1):182–196, 1984.

30 Abhinandan Nath and Erin Taylor. k-Median clustering under discrete Fréchet and Hausdorff
distances. CoRR, 2020. arXiv:2004.00722.

31 Lin Qu, Fan Zhou, and YW Chen. Trajectory classification based on hausdorff distance for
visual surveillance system. J. Jilin University, 6:1618–1624, 2009.

32 Cynthia Sung, Dan Feldman, and Daniela Rus. Trajectory clustering for motion prediction.
In IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 1547–1552. IEEE, 2012.

33 Hongteng Xu, Yang Zhou, Weiyao Lin, and Hongyuan Zha. Unsupervised trajectory clustering
via adaptive multi-kernel-based shrinkage. In Proc. IEEE Int. Conf. Comp. Vision, pages
4328–4336, 2015.

SoCG 2020

http://arxiv.org/abs/2004.00722

Four-Dimensional Dominance Range Reporting in
Linear Space
Yakov Nekrich
Department of Computer Science, Michigan Technological University, Houghton, MI, USA
yakov.nekrich@googlemail.com

Abstract
In this paper we study the four-dimensional dominance range reporting problem and present data
structures with linear or almost-linear space usage. Our results can be also used to answer four-
dimensional queries that are bounded on five sides. The first data structure presented in this paper
uses linear space and answers queries in O(log1+ε n + k logε n) time, where k is the number of
reported points, n is the number of points in the data structure, and ε is an arbitrarily small positive
constant. Our second data structure uses O(n logε n) space and answers queries in O(logn+ k) time.

These are the first data structures for this problem that use linear (resp. O(n logε n)) space and
answer queries in poly-logarithmic time. For comparison the fastest previously known linear-space
or O(n logε n)-space data structure supports queries in O(nε + k) time (Bentley and Mauer, 1980).
Our results can be generalized to d ≥ 4 dimensions. For example, we can answer d-dimensional
dominance range reporting queries in O(log logn(logn/ log logn)d−3 +k) time using O(n logd−4+ε n)
space. Compared to the fastest previously known result (Chan, 2013), our data structure reduces
the space usage by O(logn) without increasing the query time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Data structures design and analysis

Keywords and phrases Range searching, geometric data structures, word RAM

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.59

Related Version A full version of this paper[30] is available at https://arxiv.org/abs/2003.06742.

1 Introduction

In the orthogonal range searching problem we keep a set S of multi-dimensional points in a
data structure so that for an arbitrary axis-parallel query rectangle Q some information about
points in Q∩ S can be computed efficiently. Range searching is one of the most fundamental
and widely studied problems in computational geometry. Typically we want to compute
some aggregate function on Q ∩ S (range aggregate queries), generate the list of points in S
(reporting queries) or determine whether Q ∩ S = ∅ (emptiness queries). In this paper we
study the complexity of four-dimensional orthogonal range reporting and orthogonal range
emptiness queries in the case of dominance queries and in the case when the query range is
bounded on five sides. We demonstrate for the first time that in this scenario both queries
can be answered in poly-logarithmic time using linear or almost-linear space.

Range trees, introduced by Lueker [23] in 1978 and Bentley [7] in 1980, provide a
solution for the range reporting problem in O(n logd n) space and O(logd n + k) time for
any constant dimension d. Henceforth k denotes the number of points in the answer to a
reporting query and n denotes the number of points in the data structure. A number of
improvements both in time and in space complexity were obtained in the following decades.
See e.g., [24, 12, 17, 18, 16, 13, 32, 14, 15, 34, 35, 5, 6, 26, 25, 27, 22, 31, 11, 10] for a selection
of previous works on range reporting and related problems. Surveys of previous results can be
found in [3, 4, 29]. We say that a range query is f -sided if the query range is bounded on f
sides, i.e., a query can be specified with f inequalities; see Fig. 1 on p. 2. Researchers noticed

© Yakov Nekrich;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 59; pp. 59:1–59:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.59
https://arxiv.org/abs/2003.06742
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Four-Dimensional Dominance Range Reporting in Linear Space

(a) (b) (c)

Figure 1 Examples of queries in two and three dimensions. (a) A two-dimensional 3-sided query
(b) A three-dimensional 3-sided (dominance) query (c) A three-dimensional 5-sided query.

that the space and time complexity of range reporting depends not only on the dimensionality:
the number of sides that bound the query range is also important. Priority search tree,
introduced by McCreight [24], provides an O(n) space and O(logn + k) time solution for
3-sided range reporting queries in two dimensions. In [16] Chazelle and Edelsbrunner have
demonstrated that three-dimensional 3-sided queries (aka three-dimensional dominance
queries) can be answered in O(log2 n + k) time using an O(n) space data structure. In
1985 Chazelle [13] described a compact version of the two-dimensional range tree that
uses O(n) space and supports general (4-sided) two-dimensional range reporting queries in
O(logn+ k logε n) time, where ε denotes an arbitrarily small positive constant. In [13] the
author also presented an O(n) space data structure that supports 5-sided three-dimensional
reporting queries in O(log1+ε n+ k logε n) time. Bentley and Mauer [8] described a linear-
space data structure that supports d-dimensional range reporting queries for any constant d;
however, their data structure has prohibitive query cost O(nε + k).

Summing up, we can answer range reporting queries in poly-logarithmic time using an
O(n) space data structure when the query is bounded on at most 5 sides and the query is in
two or three dimensions. Significant improvements were achieved on the query complexity of
this problem in each case; see Table 1. However, surprisingly, linear-space and polylog-time
data structures are known only for the above mentioned special cases of the range reporting.
For example, to answer four-dimensional 4-sided queries (four-dimensional dominance queries)
in polylogarithmic time using previously known solutions one would need Ω(n logn/ log logn)
space. This situation does not change when we increase the space usage to O(n logε n) words:
data structures with poly-logarithmic time are known for the above described special cases
only. See Table 2.

Previous results raise the question about low-dimensional range reporting. What de-
termines the complexity of range reporting data structures in d ≥ 4 dimensions: the
dimensionality or the number of sides in the query range? The lower bound of Patrascu [33]
resolves this question with respect to query complexity. It is shown in [33] that any data struc-
ture using O(npolylog(n)) space needs Ω(logn/ log logn) time to answer four-dimensional
dominance (4-sided) queries. On the other hand, two- and three-dimensional 4-sided queries
can be answered in O(log logn + k) time using O(npolylog(n)) space. In this paper we
address the same question with respect to space complexity.

We demonstrate that four-dimensional 5-sided queries can be answered in O(log1+ε n+
k logε n) time using an O(n) space data structure. Our data structure can also support
5-sided emptiness queries in O(log1+ε n) time. If the space usage is slightly increased to
O(n logε n), then we can answer reporting and emptiness queries in O(logn+k) and O(logn)

Y. Nekrich 59:3

time respectively. For comparison, the fastest previous method [9] requires O(n log1+ε n)
space and supports queries in O(logn+k) time. Since dominance queries are a special case of
5-sided queries, our results can be used to answer four-dimensional dominance queries within
the same time and space bounds. Using standard techniques, our results can be generalized
to d dimensions for any constant d ≥ 4: We can answer d-dimensional dominance queries
in O(log logn(logn/ log logn)d−3 + k) time and O(n logd−4+ε n) space. We can also answer
arbitrary (2d − 3)-sided d-dimensional range reporting queries within the same time and
space bounds.

Our base data structure is the range tree on the fourth coordinate and every tree node
contains a data structure that answers three-dimensional dominance queries. We design a
space-efficient representation of points stored in tree nodes, so that each point uses only
O(log logn) bits. Since each point is stored O(logn/ log logn) times in our range tree, the
total space usage is O(n logn) bits. Using our representation we can answer three-dimensional
queries on tree nodes in O(logε n) time; we can also “decode” each point, i.e., obtain the actual
point coordinates from its compact representation, in O(logε n) time. Efficient representation
of points is the core idea of our method: we keep a geometric construct called shallow
cutting in each tree node and exploit the relationship between shallow cuttings in different
nodes. Shallow cuttings were extensively used in previous works to decrease the query
time. But, to the best of our knowledge, this paper is the first that uses shallow cuttings
to reduce the space usage. The novel part of our construction is a combination of several
shallow cuttings that allows us to navigate between the nodes of the range tree and “decode”
points from their compact representations. We recall standard techniques used by our data
structure in Section 2. The linear-space data structure is described in Section 3. In Section 4
we show how the decoding cost can be reduced to O(1) by slightly increasing the space
usage. The data structure described in Section 4 supports queries in O(logn+ k) time and
uses O(n logε n) space. Previous and new results for 4-sided queries in four dimensions are
listed in Table 3. Compared to the only previous linear-space data structure [8], we achieve
exponential speed-up in query time. Compared to the fastest previous result [10], our data
structure reduces the space usage by O(logn) without increasing the query time.

The model of computation used in this paper is the standard RAM model. The space is
measured in words of logn bits and we can perform standard arithmetic operations, such as
addition and subtraction, in O(1) time. Our data structures rely on bit operations, such as
bitwise AND or bit shifts or identifying the most significant bit in a word. However such
operations are performed only on small integer values (i.e., on positive integers bounded by
n) and can be easily implemented using look-up tables. Thus our data structures can be
implemented on the RAM model with standard arithmetic operations and arrays.

We will assume in the rest of this paper that all point coordinates are bounded by n. The
general case can be reduced to this special case using the reduction to rank space, described
in Section 2. All results of this paper remain valid when the original point coordinates are
real numbers.

2 Preliminaries

In this paper ε will denote an arbitrarily small positive constant. We will consider four-
dimensional points in a space with coordinate axes denoted by x, y, z, and z′. The following
techniques belong to the standard repertoire of geometric data structures.

SoCG 2020

59:4 Four-Dimensional Dominance Range Reporting in Linear Space

Table 1 Linear-space data structures for different types of queries. The second column provides
the reference to the first data structure achieving linear space and the year of the first publication.
The third column contains the query time of the first data structure. The fourth and the fifth
columns contain the same information about the best (fastest) currently known data structure.
Result marked with E supports only emptiness queries. Data structures in rows 4 and 5 also support
4-sided queries.

Query First Best
Type Ref Query Time Ref Query Time
2-D 3-sided [24], 1985 O(logn+ k) [5], 2000 O(k + 1)
2-D 4-sided [13], 1985 O(logn+ k logε n) [11], 2011 O((k + 1) logε n)
3-D 3-sided [16], 1986 O(log2 n+ k) [9], 2011 O(log logn+ k)
3-D 5-sided [13], 1985 O(log1+ε n+ k logε n) [19], 2012 O(logn log logn)E

4-D 5-sided New O(log1+ε n+ k logε n)

Table 2 O(n logε n)-space data structures for orthogonal range reporting. The second and the
third columns contain the reference to and the query time of the first data structure. The fourth
and the fifth columns contain the reference to and the query time of the best (fastest) currently
known data structure. Data structures in rows 2 and 3 also support 4-sided queries.

Query First Best
Type Ref Query Time Ref Query Time
2-D 4-sided [13], 1985 O(logn+ k) [5], 2000 O(log logn+ k)
3-D 5-sided [13], 1985 O(logn+ k) [11], 2011 O(log logn+ k)
4-D 5-sided New O(logn+ k)

Shallow Cuttings. A point q dominates a point p if and only if every coordinate of q is
larger than or equal to the corresponding coordinate of p. The level of a point q in a set S is
the number of points p in S, such that q dominates p (the point q is not necessarily in S).
We will say that a cell C is a region of space dominated by a point qc and we will call qc the
apex point of C. A t-shallow cutting of a set S is a collection of cells C, such that (i) every
point in Rd with level at most t (with respect to S) is contained in some cell Ci of C and
(ii) if a point p is contained in some cell Cj of C, then the level of p in S does not exceed 2t.
The size of a shallow cutting is the number of its cells. We can uniquely identify a shallow
cutting C by listing its cells and every cell can be identified by its apex point. Since the level
of any point in a cell Cj does not exceed 2t, every cell Cj contains at most 2t points from S,
|Cj ∩ S| ≤ 2t for any Cj in C.

There exists a t-shallow cutting of size O(n/t) for d = 2 [35] or d = 3 dimensions [1].
Shallow cuttings and related concepts are frequently used in data structures for three-
dimensional dominance range reporting queries.

Consider a three-dimensional point q3 = (a, b, c) and the corresponding dominance range
Q3 = (−∞, a]×(−∞, b]×(−∞, c]. We can find a cell C of a t-shallow cutting C that contains
q3 (or report that there is no such C) by answering a point location query in a planar
rectangular subdivision of size O(n/t). Point location queries in a rectangular subdivision of
size n can be answered in O(log logn) time using an O(n)-space data structure [10].

Range Trees. A range tree is a data structure that reduces d-dimensional orthogonal range
reporting queries to a small number of (d− 1)-dimensional queries. Range trees provide a
general method to solve d-dimensional range reporting queries for any constant dimension d.

Y. Nekrich 59:5

Table 3 Previous and new results on dominance range reporting in four dimensions. Results in
lines 2, 3, and 7 can be modified so that space is decreased to O(n logn/ log logn) and the query
time is increased by O(logε n) factor.

Ref. Space Query Time
[8] O(n) O(nε + k)
[16] O(n logn) O(log2 n+ k)
[21] O(n logn) O(log2 n/ log logn+ k)
[25] O(n log2+ε n) O(logn log logn+ k)
[1] O(n log1+ε n) O(logn log logn+ k)
[9] O(n log1+ε n) O(logn+ k)
[9] O(n logn) O(logn log logn+ k)
New O(n logε n) O(logn+ k)
New O(n) O(log1+ε n+ k logε n)

`a `b

Figure 2 Example of a query in a range tree with node degree ρ = 3. Canonical nodes are shown
in red. Only nodes of πa ∪ πb and π′a ∪ π′b are shown.

In this paper we use this data structure to reduce four-dimensional 5-sided reporting queries
to three-dimensional 3-sided queries. A range tree for a set S is a balanced tree that holds
the points of S in the leaf nodes, sorted by their z′-coordinate. We associated a set S(u) with
every internal node u. S(u) contains all points p that are stored in the leaf descendants of u.
We assume that each internal node of T has ρ = logε n children. Thus every point is stored
in O(logn/ log logn) sets S(u). We keep a data structure that supports three-dimensional
reporting queries on S(u) for every node u of the range tree.

Consider a query Q = Q3 × [a, b], where Q3 denotes a 3-sided three-dimensional query
range. Let `a be the rightmost leaf that holds some z′-coordinate a′ < a and let `b be the
leftmost leaf that holds some b′ > b. Let vab denote the lowest common ancestor of `a and `b.
We denote by πa (resp. πb) the set of nodes on the path from `a (`b) to vab, excluding the
node vab. We will say that u is a left (right) sibling of v iff u and v have the same parent node
and u is to the left (respectively, to the right) of v. The set π′a consists of all nodes u that
have some left sibling v ∈ πa and π′b consists of all nodes u that have a right sibling v ∈ πb.
The set π′′a (π′′b) consists of all nodes in π′a (resp. in π′b) that are not children of vab. The set
π′ab consists of all children of vab that are in π′a ∩ π′b. For any point p ∈ S, a ≤ p.z′ ≤ b iff
p ∈ S(u) for some u in π′′a ∪ π′′b ∪ π′ab. Nodes u ∈ π′′a ∪ π′′b ∪ π′ab are called canonical nodes for
the range [a, b]. See an example on Fig. 2. In order to answer a four-dimensional query Q we
visit every canonical node u and report all points p ∈ S(u) ∩Q3.

Thus we can answer a four-dimensional 5-sided query by answering O(ρ · logn/ log logn)
three-dimensional 3-sided queries in canonical nodes.

SoCG 2020

59:6 Four-Dimensional Dominance Range Reporting in Linear Space

Rank Space. Let E be a set of numbers. The rank of a number x in E is the number
of elements in E that do not exceed x: rank(x,E) = |{ e ∈ E | e ≤ x }|. Let pred(x,E) =
max{ e ∈ E | e ≤ x } and succ(x,E) = min{ e ∈ E | e ≥ x }. An element e ∈ E is in the
range [a, b], a ≤ e ≤ b, iff its rank satisfies the inequality a′ ≤ rank(e, E) ≤ b′ where
a′ = rank(succ(a,E), E) and b′ = rank(b, E). Hence we can report all e ∈ E satisfying
a ≤ e ≤ b by finding all elements e satisfying a′ ≤ rank(e, E) ≤ b′.

The same approach can be also extended to multi-dimensional range reporting. A three-
dimensional transformation is implemented as follows. We say that a three-dimensional point
p ∈ S is reduced to rank space (or p is in the rank space) if each coordinate of p is replaced
by its rank in the set of corresponding coordinates. That is, each point p = (p.x, p.y, p.z)
is replaced with ξ(p) = (rank(p.x, Sx), rank(p.y, S.y), rank(p.z, Sz)), where Sx, Sy, and Sz
denote the sets of x-, y-, and z-coordinates of points in S. For a point p ∈ S we have

p ∈ [a, b]× [c, d]× [e, f]⇔ ξ(p) ∈ [a′, b′]× [c′, d′]× [e′, f ′]

where a′ = rank(succ(a, Sx), Sx), c′ = rank(succ(c, Sy), Sy), e′ = rank(succ(e, Sz), Sz), b′ =
rank(b, Sx), d′ = rank(d, Sy), and f ′ = rank(f, Sz). Thus we can reduce three-dimensional
queries on a set S to three-dimensional queries on a set { ξ(p) | p ∈ S }. Suppose that we
store the set ξ(S) in a data structure that answers queries in time t(n) and uses space s(n).
Suppose that we also keep data structures that answers predecessor queries on Sx, Sy, and
Sz. Then we can answer orthogonal range reporting queries on S in time t(n) +O(tpred(n))
using space s(n) + O(spred(n)). Here spred(n) and tpred(n) are the space usage and query
time of the predecessor data structure. Additionally we need a look-up table that computes
ξ−1(p), i.e., computes the coordinates of a point p from its coordinates in the rank space. As
we will show later, in some situations this table is not necessary. Summing up, reduction to
rank space enables us to reduce the range reporting problem on a set S ⊂ R3 to a special
case when all point coordinates are positive integers bounded by |S|.

The same rank reduction technique can be applied to range reporting in any constant
dimension d. In the rest of this paper we will assume for simplicity that all points of S are
in the rank space.

3 Five-Sided Range Reporting in Linear Space

Base Structure. We keep all points in a range tree that is built on the fourth coordinate.
Each tree node has ρ = logε n children; thus the tree height is O(logn/ log logn). Let S(u)
denote the set of points assigned to a node u. To simplify the notation, we will not distinguish
between points in S(u) and their projections onto (x, y, z)-space. We will say for example
that a point p is in a range Q = (−∞, a] × (−∞, b] × (−∞, c] if the projection of p onto
(x, y, z)-space is in Q.

Since we aim for a linear-space data structure, we cannot store sets S(u) in the nodes of
the range tree. We keep a t0-shallow cutting C(u) of S(u) where t0 = log2 n. For every cell
Ci(u) of the shallow cutting we store all points from S(u)∩Ci in a data structure supporting
three-dimensional dominance queries. We do not store the original (real) coordinates of
points1 in Ci. Instead we keep coordinates in the rank space of S(u) ∩ Ci. Since S(u) ∩ Ci
contains O(log2 n) points, we need only O(log logn) bits per point to answer three-dimensional
dominance queries in the rank space.

1 To avoid clumsy notation, we will sometimes omit the node specification when the node is clear from
the context. Thus we will sometimes write Ci instead of Ci(u) and C instead of C(u). The same
simplification will be used for other shallow cuttings.

Y. Nekrich 59:7

We can answer a 5-sided query (−∞, qx] × (−∞, qy] × (−∞, qz] × [z′l, z′r] by visiting
all canonical nodes that cover the range [z′l, z′r]. In every visited node we answer a three-
dimensional dominance query, i.e., report all points dominated by q3 = (qx, qy, qz) in two
steps: first, we search for some cell Ci(u) that contains q3. If such a cell Ci(u) exists, then
we answer the dominance query in the rank space of S(u) ∩ Ci(u) in O(1) time per point.
We describe the data structure for dominance queries on t0 rank-reduced points in the full
version of this paper [30].

We must address several issues in order to obtain a working solution: How can we
transform a three-dimensional query to the rank space of Ci(u)? A data structure for cell
Ci(u) reports points in the rank space of Ci(u). How can we obtain the original point
coordinates? Finally how do we answer a query on S(u) if q3 is not contained in any cell
Ci(u)? First, we will explain how to decode points from a cell C(u) and obtain their original
coordinates. We also show how to transform a query to the rank space of a cell. Next we
will describe a complete procedure for answering a query. Finally we will improve the query
time and achieve the main result of this section.

Decoding Points. This is the crucial component of our construction. We will need additional
structures to obtain the original coordinates of points from C(u). To this end we keep an
additional (4t0)-shallow cutting C′(u) in every node of the range tree. For each cell C ′i(u) of
C′(u) we create a separate (2t0)-shallow cutting of S(u) ∩ C ′i(u), called Di(u).

I Lemma 1. Let A be an f -shallow cutting for a set S and let B be an (f ′)-shallow cutting
for a set S′ ⊆ S so that f ′ ≥ 2f . Every cell Ai of A is contained in some cell Bj of B.

Proof. Consider an apex point ai of Ai (i.e., the point with maximum x- y-, and z-coordinates
in Ai). The level of ai in S is at most 2f by definition of a shallow cutting. Since S′ ⊆ S,
the level of ai in S′ does not exceed 2f . Hence there exists a cell Bj of B that contains
ai. The apex bj of Bj dominates ai. Hence bj also dominates all points from Ai and Bj
contains Ai. J

Lemma 1 will be extensively used in our decoding procedure. We will say that a point p
in C ′i(u) is interesting if p is contained in some Ck(w), where w is an ancestor of u. Each
interesting point p ∈ S(u) can be uniquely represented by (a) a cell C ′i(u) of C′(u) that
contains p and (b) coordinates of p in the rank space of C ′i(u). The following relationship
between shallow cuttings provides the key insight.

I Lemma 2.
(i) Every cell Ci(u) of C(u) is contained in some cell C ′j(u) of C′(u)
(ii) Let ur be a child of an internal node u. Every cell Dij(u) of every Di(u) is contained

in some cell C ′k(ur) of C′(ur).
(iii) Every interesting point from C ′i(u) is stored in some cell Dij(u) of Di(u).

Proof. (i) Immediately follows from Lemma 1.(ii) Consider the apex point pa of Dij(u). The
point pa dominates at most 4t0 points from S(u) and at most 4t0 points from S(ur) because
S(ur) ⊂ S(u). Hence both pa and Dij(u) are contained in some cell of C ′(ur). (iii) Suppose
that a point p ∈ S(w) is stored in some cell Ck(w) of C(w) where w is an ancestor of u. The
point p dominates at most 2t0 points from S(w). Since S(u) is a subset of S(w), p dominates
at most 2t0 points in S(u). Hence p is contained in some cell C ′i(u) of the shallow cutting
C′(u). Every point of C ′i(u) ∩ S(u) that dominates at most 2t0 points of S(u) is contained in
some cell Dij(u) of Di(u). J

SoCG 2020

59:8 Four-Dimensional Dominance Range Reporting in Linear Space

Consider an arbitrary point p in a cell Ci(u) of C(u). Our decoding procedure finds a
representation of p in C′(u). That is, we find the cell C ′j(u) of C′(u), such that p ∈ C ′j(u),
and the rank of p in C ′j(u). The key observation is that Ci(u) is contained in some C ′j(u)
(Lemma 2, item (i)) Therefore we need to store a pointer to C ′j(u) only once for all points
p in Ci(u). For every p from Ci(u), we can store its rank in C ′j(u) using O(log logn) bits.
Next, our decoding procedure moves from a node u to its child uf , such that p ∈ S(uf), and
computes a representation of p in C′(uf). This is done in two steps: First we examine the
shallow cutting Dj(u) and find the cell Djl(u) that contains p. By Lemma 2, item (iii), such
a cell always exists. The shallow cutting Djl(u) consists of O(1) cells. Therefore we can
store, for any interesting point p, the cell Djl(u) containing p and the rank of p in Djl(u)
using O(log logn) bits. Then we move from Djl(u) to C(uf): by Lemma 2, item (ii), Djl(u)
is contained in some C ′k(uf). Thus we need to store the pointer to C ′k(uf) only once for
all interesting points p in Djl(u). We can store the rank of p in C ′k(uf) using O(log logn)
bits. When the representation of p in C′(uf) is known, we move to the child ud of uf , such
that p ∈ S(ud) and compute a representation of p in C′(ud). We continue in the same way
until a leaf node is reached. Every leaf node ` contains original (real) coordinates of points
in S(`). Hence we can obtain the coordinates of p when a leaf is reached. Summing up,
shallow cuttings C′(u) and Di(u) allow us to move from a node u to a child of u using
only O(log logn) additional bits per point. A more detailed description of auxiliary data
structures needed for decoding is given in the next paragraph.

For each cell Ci(u) of C(u) we keep a pointer to the cell C ′cont(i)(u) of C′(u) that contains
Ci(u). For every cell Dij(u) ∈ Di(u) and for each child ur of u, we keep a pointer to the cell
C ′down(i,j,r)(ur) ∈ C′(ur), such that C ′down(i,j,r)(ur) contains Dij(u). We can identify a point
in each cell of a shallow cutting C(u) (resp. C′(u) or D′i(u)) with O(log logn) bits because
each cell contains a poly-logarithmic number of points. The x-rank of a point in a cell will
be used as its identifier. We keep a mapping from points in a cell Ci to the corresponding
points in a containing cell C ′cont(i). The array FX(Ci) maps x-ranks of points in Ci to their
x-ranks in C ′cont(i): if the x-rank of a point p ∈ Ci is equal to f , then FX [f] = g where g
is the x-rank of p in C ′cont(i). The array F ′′X,r for a cell Dij(u) and a child ur of u maps
x-ranks of points in Dij(u) to their x-ranks in C ′down(i,j,r). If the x-rank of a point p ∈ Ci
is equal to f , then F ′′X,r[f] = g where g is the x-rank of p in C ′down(i,j,r). We also keep a
mapping from C ′i(u) to cells of Di(u): for every point p ∈ Ci(u) we store the cell Dij that
contains p and the x-rank of p in Cij (or NULL if p is not in Cij). For every point p in each
cell Dij(u) of C′i(u), we store the index of the child ur such that p ∈ S(ur). Our method
requires O(log logn) bits per point. Each pointer from Ci(u) to C ′cont(i)(u) and from Dij(u)
to C ′down(i,j,r)(u) consumes O(logn) bits. We store O(log2ε n) pointers per cell and there are
O(n/(logn log logn)) cells in all shallow cuttings of the range tree. Hence the total space
used by all pointers is O(n log2ε n) bits.

I Lemma 3. For any interesting point p in a cell C ′i(u), we can find the representation of p
in C ′i(uf), where uf is the child of u that contains p.

Proof. First we identify the cell Dij(u) of Di(u) that contains p and compute the x-rank of
p in Dij(u). Since p is interesting, such a cell exists. Then we use the array F ′′X,k of this cell
and find the x-rank of p in the cell C ′down(i,j,k). J

For any point from Ci(u) we can obtain its position in some cell C ′cont(i)(u) in O(1) time.
Then we can move down and obtain its representation in a child of u in O(1) time. We can
access the original coordinates of p when a leaf node is reached. Thus we can “decode” a
point p if we know its position in a cell Ci(u) in O(logn/ log logn) time.

Y. Nekrich 59:9

We can reduce a three-dimensional query (−∞, a]×(−∞, b]×(−∞, c] to the rank space of
a cell by binary search. Let X(Ci) denote the list of points in a cell Ci sorted by x-coordinates.
To compare a with the x-coordinate of X(Ci)[g] for some index g, we decode the point
p = X(Ci)[g] as explained above. Hence we can find the predecessor of a in X(Ci) by binary
search in O(log logn) time. We can find the predecessor of b in Y (Ci) and the predecessor of
c in Z(Ci) using the same procedure, where Y (Ci) and Z(Ci) are the lists of points in Ci
sorted by their y- and z-coordinates respectively.

Queries. Consider a four-dimensional 5-sided query (−∞, a]× (−∞, b]× (−∞, c]× [z′l, z′r].
We visit all canonical nodes that cover the range [z′l, z′r]. In every visited node we answer a
three-dimensional query using the following procedure. We find a cell Ci(u) that contains
p. We transform (−∞, a] × (−∞, b] × (−∞, c] to the rank space of Ci(u) and answer the
transformed query on Ci(u) ∩ S(u). Every reported point is decoded using the procedure
described above. If there is no cell Ci(u) that contains p, then p dominates at least t0 points
from S(u). In this case we visit all children of u and recursively answer three-dimensional
dominance query in each child using the same procedure.

We need O(log logn) time to find the cell Ci(u) or determine that Ci(u) does not exist.
To answer a query on Ci(u) we need O(logn) time (ignoring the time to report points, but
taking into account the time that we need to transform a query to the rank space of Ci(u)).
Thus the total time spent in a node u is O(logn). The time spent in descendants of u can
be estimated as follows. Let Tu be the subtree of the range tree induced by u and its visited
descendants. Let T ′u denote the subtree of Tu obtained by removing all leaves of Tu. Every
leaf of T ′u is an internal node of Tu. Hence we report at least t0 points for every leaf in T ′u.
The height of T ′u is bounded by O(logn/ log logn). Let lu denote the number of leaves in T ′u.
The total number of nodes in T ′u is bounded by O(lu logn/ log logn). Every node of T ′u has
ρ children. Hence the total number of nodes in Tu does not exceed O(lu(log1+ε n/ log logn)).
The time spent in all nodes of Tu can be bounded by O(lu log2+ε n) (again, ignoring the
time to decode and report points). When we visit descendants of u we report at least
ku = Ω(lu · t0) points and each point is decoded in O(logn/ log logn) time. The total time
spent in descendants of u is O(lu log2+ε n+ku(logn/ log logn) = O(ku(logn/ log logn)). The
time spent in all canonical nodes and their descendants is O(log2+ε n+ k(logn/ log logn)).

Faster Decoding. We can speed-up the decoding procedure and thus the overall query time
without increasing the asymptotic space usage. Our approach is very similar to the method
used in compact two-dimensional range trees [13, 28, 11]. All nodes in the range tree are
classified according to their depth. A node u is an i-node if the depth hu of u divides ρi
where ρ = logε n, hu = x · ρi for some i ≥ 0, but hu does not divide ρj for j > i. We keep
an additional 4ti-shallow cutting Ci in every i-node u where ti = ρi · log2 n. As before for
each cell Cji of Cj we construct a 2tj-shallow cutting Dji . Let an i-descendant of a node u
denote the highest i-node v that is a descendant of u. If a node u is an i-node, then it has
ρi i-descendants. For every cell Dj

ik of each Dji and for every j-descendant ul of u, we keep
the index r = down(j, i, l) of the cell Cjr (ul) that contains Dj

ik(u). For each point in Dj
ik(u)

we keep the index l of the i-descendant that contains p and the x-rank of p in Cjr (ul) where
r = down(j, i, l).

Using these additional shallow cuttings, we can reduce the decoding time to O(logε n).
To decode a point p in S(u) we move down from a node u to its child u0,1 and find a
representation of p in C′(u0,1). Then we move to the child u0,2 of u0,1 and continue in the
same manner until a 1-node u1,1 is reached. Next we move from u1,1 to its 1-descendant u1,2,

SoCG 2020

59:10 Four-Dimensional Dominance Range Reporting in Linear Space

then to a 1-descendant u1,3 of u1,2, and so on until a 2-node is reached. During the j-th
iteration we move down along a sequence of j-nodes until a (j + 1)-node or a leaf node is
reached. During each iteration we visit O(logε n) nodes and spend O(1) time in every node.
There are at most logρ logn = O(1/ε) iterations. Hence the decoding time for a point is
O(logε n). The total query time is reduced to O(log1+2ε n+ k logε n). If we replace ε with
ε/2 in the above proof, we obtain our first result.

I Theorem 4. There exists a linear-space data structure that answers four-dimensional 5-
sided reporting queries in O(log1+ε n+ k logε n) time and four-dimensional 5-sided emptiness
queries in O(log1+ε n) time.

4 Faster Queries using More Space

In this section we will show how to reduce the decoding time to O(1) per point by increasing
the space usage. We make several modifications in the basic construction of Section 3.

For any i and j such that 1 ≤ i ≤ j ≤ ρ and for any internal node u of the range tree, we
store the set S(u, i, j). S(u, i, j) is the union of sets S(ui), S(ui+1), . . ., S(uj). For every set
S(u, i, j) we construct a t0-shallow cutting C(u, i, j). For each cell Cl of C(u, i, j) we store a
three-dimensional data structure that keeps points from Cl ∩ S(u, i, j) in the rank space and
answers three-dimensional dominance queries in O(k + 1) time.

The decoding procedure is implemented in the same way as in Section 3, but with different
parameter values. Recall that a node u is an i-node for some i ≥ 0 if the depth of u divides
ρi but does not divide ρi+1. We keep an additional 4ti+1-shallow cutting Ci(u, l, r) for every
i-node u and every pair 1 ≤ l ≤ r ≤ ρ. For every cell Cs of Ci(u, l, r) we keep a 2ti+1-shallow
cutting Ds. Consider a cell Dg of Ds. For every (i+ 1)-descendant v of u and for every pair
l, r satisfying 1 ≤ l ≤ r ≤ ρ, we keep the index x = down(Dg, v, l, r) such that the cell Cx
of Ci+1(v, l, r) contains Dg. We also store a mapping from C(u, l, r) to Ci(u, l, r) for every
i-node u. That is, for every cell Cf of C(u, l, r) we keep the index g = cont(f), such that
the cell Cg ∈ Ci(u, l, r) contains Cf ; for every point p ∈ S(u) ∩ Cf we keep its identifier in
Ccont(f). For every cell Cg of Ci(u, l, r) we keep a mapping from Cg to Dg. That is, for every
point p in Cg ∩ S(u, l, r) we store the cell Ds of Dg that contains p and the identifier of p in
Ds. Finally we also store a mapping from every cell Ds of each Dg to shallow cuttings in
(i+ 1)-descendants of u. For every point p ∈ Ds ∩ S(u, l, r) we store (i) the i-descendant v of
u such that p ∈ S(v) and (ii) the identifier of p in Cx where x = down(Ds, v, l, r).

Our modified data structure usesO(n log3ε n) words of space. The representation of a point
in C(u, i, j) takes O(log logn) bits per point and every point is stored in O(log1+2ε n/ log logn)
shallow cuttings C(u, i, j). The mapping from C(u, l, r) to Ci(u, l, r) in an i-node u takes
O(log(i+1)ε n) bits per point. We also need O(log(i+1)ε n) bits per point to store the mapping
from a cell Cg of Ci(u, l, r) to Dg. The mapping from a cell Ds of Dg to shallow cuttings in
(i+ 1)-descendants of u consumes the same space. The total number of points in all S(u)
where u is an i-node is O(n log1−iε n). The total number of points in all S(u, l, r) where
u is an i-node and 1 ≤ l ≤ r ≤ ρ is O(n log1+(2−i)ε n). Hence the total space used by all
mappings in all i-nodes is O(n log1+3ε n) bits or O(n log3ε n) words of logn bits.

Every point p in Ci ∩ S(u, l, r), where Ci is a cell of C(u, l, r), can be decoded in O(1)
time. Suppose that u is a j-node. Using the mapping from Ci to Cj(u, l, r), we can find the
representation of p in Cj(u, l, r), i.e., a cell Cs that contains p and the identifier of p in Cs.
If we know the identifier of p in Cs, we can find the representation of p in Ds. Using the
mapping from a cell of Ds to (j + 1)-descendants of u, we can compute the representation of
p in a cell Cv of Cj+1(v, l′, r′), where v is a direct (j + 1)-descendant of u. Thus we moved

Y. Nekrich 59:11

from a j-node to its (j + 1)-descendant in O(1) time. We continue in the same way and
move to a (j + 2)-descendant of u, then a (j + 3)-descendant of u, and so on. After at most
(1/ε) = O(1) iterations, we reach a leaf node and obtain the original coordinates of p.

We can translate a query (−∞, a]× (−∞, b]× (−∞, c] into the rank space of a cell Ci in
constant time. Let X(Ci) denote the list of x-coordinates of S(u, l, r) ∩ Ci. We keep X(Ci)
in the compact trie data structure of [20]. This data structure requires O(log logn) bits per
point. Elements of X(Ci) are not stored in the compact trie; we only store some auxiliary
information using O(log logn) bits per element. Compact trie supports predecessor queries
on X(Ci) in O(1) time, but the search procedure must access O(1) elements of X(Ci). Since
we can decode a point from Ci in O(1) time, we can also access an element of X(Ci) in O(1)
time. Hence, we can compute the predecessor of a in X(Ci) (and its rank) in O(1) time. We
can translate b and c to the rank space in the same way.

Queries. Consider a four-dimensional 5-sided query (−∞, a]× (−∞, b]× (−∞, c]× [z′1, z′2].
There are O(logn/ log logn) canonical sets S(ui, li, ri), such that p.z ∈ [z′1, z′2] iff p ∈
S(ui, li, ri) for some i. Canonical sets can be found as follows. Let `1 be the leaf that holds
the largest l1 < z′1 and `2 be the leaf that holds the smallest l2 > z′2. Let v denote the lowest
common ancestor of `1 and `2. Let π1 denote the path from `1 to v (excluding v) and let π2
denote the path from `2 to v (excluding v). For each node u ∈ π2, we consider a canonical
set S(u, l, r) such that ul, . . ., ur are left siblings of some node ur+1 ∈ π2. For each node
u ∈ π1, we consider a canonical set S(u, l, r) such that ul, . . ., ur are right siblings of some
node ul−1 ∈ π1. Finally we consider the set S(v, l, r) such that vl, . . ., vr have a left sibling
on π1 and a right sibling on π2. The fourth coordinate of a point p is in the interval [z′1, z′2] iff
p is stored in one of the canonical sets described above. Hence we need to visit all canonical
sets and answer a three-dimensional query (−∞, a]× (−∞, b]× (−∞, c] in each set.

There are O(logn/ log logn) canonical sets S(u, l, r). Each canonical set is processed as
follows. We find the cell Cu of C(u, l, r) that contains q3 = (a, b, c). Then we translate q3
into the rank space of Cu ∩ S(u, l, r) and answer the dominance query. Reported points
are decoded in O(1) time per point as explained above. We can also translate the query
into the rank space of Cu in O(1) time. If q3 is not contained in any cell of C(u, l, r), then
q3 dominates at least log2 n points of S(u, l, r). We visit all children ui of u for l ≤ i ≤ r

and recursively answer the dominance query in each child. Using the same arguments as in
Section 3, we can show that the total number of visited nodes does not exceed O(k/ logε n),
where k is the number of reported points.

If we replace ε with ε/3 in the above proof, we obtain the following result.

I Theorem 5. There exists an O(n logε n) space data structure that answers four-dimensional
5-sided reporting queries in O(logn+ k) time and four-dimensional 5-sided emptiness queries
in O(logn) time.

We can extend our result to support dominance queries (or any (2d− 3)-sided queries) in
d ≥ 4 dimensions using standard techniques.

I Theorem 6. There exists an O(n logd−4+ε n) space data structure that supports d-dimensio-
nal dominance range reporting queries in O(logd−3 n/(log logn)d−4 +k) time for any constant
d ≥ 4.
There exists an O(n logd−4+ε n) space data structure that supports d-dimensional (2d−3)-sided
range reporting queries in O(logd−3 n/(log logn)d−4 + k) time for any constant d ≥ 4.

SoCG 2020

59:12 Four-Dimensional Dominance Range Reporting in Linear Space

5 Conclusions

In this paper we described data structures with linear and almost-linear space usage that
answer four-dimensional range reporting queries in poly-logarithmic time provided that the
query range is bounded on 5 sides. This scenario includes an important special case of
dominance range reporting queries that was studied in a number of previous works [16, 35,
25, 1, 11, 10]; for instance, the offline variant of four-dimensional dominance reporting is
used to solve the rectangle enclosure problem [11, 2]. Our result immediately leads to better
data structures in d ≥ 4 dimensions. E.g., we can answer d-dimensional dominance range
reporting queries in O(n logd−4+ε n) space and O(log logn(logn/ log logn)d−3) time. We
expect that the methods of this paper can be applied to other geometric problems, such as
the offline rectangle enclosure problem.

Our result demonstrates that the space complexity of four-dimensional queries is deter-
mined by the number of sides, i.e., the number of inequalities that are needed to specify
the query range. This raises the question about the space complexity of dominance range
reporting in five dimensions. Is it possible to construct a linear-space data structure that
supports five-dimensional dominance range reporting queries in poly-logarithmic time?

Compared to the fastest previous solution for the four-dimensional dominance range
reporting problem [10], our method decreases the space usage by O(logn) factor without
increasing the query time. However, there is still a small gap between the O(logn+ k) query
time, achieved by the fastest data structures, and the lower bound of Ω(logn/ log logn),
proved in [33]. Closing this gap is another interesting open problem.

References

1 Peyman Afshani. On dominance reporting in 3d. In Proc. 16th Annual European Symposium
on Algorithms (ESA), pages 41–51, 2008.

2 Peyman Afshani, Timothy M. Chan, and Konstantinos Tsakalidis. Deterministic rectangle
enclosure and offline dominance reporting on the RAM. In Proceedings of 41st International
Colloquium on Automata, Languages, and Programming (ICALP), pages 77–88, 2014. doi:
10.1007/978-3-662-43948-7_7.

3 Pankaj K. Agarwal. Range searching. In Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of Discrete and Computational Geometry, Second Edition., pages 809–837. Chapman
and Hall/CRC, 2004. doi:10.1201/9781420035315.ch36.

4 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. Contempo-
rary Mathematics, 223:1–56, 1999.

5 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal
range searching. In Proc. 41st Annual Symposium on Foundations of Computer Science,
(FOCS), pages 198–207, 2000. doi:10.1109/SFCS.2000.892088.

6 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Optimal static range reporting
in one dimension. In Proc. 33rd Annual ACM Symposium on Theory of Computing (STOC),
pages 476–482, 2001. doi:10.1145/380752.380842.

7 Jon Louis Bentley. Multidimensional divide-and-conquer. Communications of the ACM,
23(4):214–229, 1980. doi:10.1145/358841.358850.

8 Jon Louis Bentley and Hermann A. Maurer. Efficient worst-case data structures for range
searching. Acta Inf., 13:155–168, 1980. doi:10.1007/BF00263991.

9 Timothy M. Chan. Persistent predecessor search and orthogonal point location on the word
RAM. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1131–1145, 2011. doi:10.1137/1.9781611973082.85.

https://doi.org/10.1007/978-3-662-43948-7_7
https://doi.org/10.1007/978-3-662-43948-7_7
https://doi.org/10.1201/9781420035315.ch36
https://doi.org/10.1109/SFCS.2000.892088
https://doi.org/10.1145/380752.380842
https://doi.org/10.1145/358841.358850
https://doi.org/10.1007/BF00263991
https://doi.org/10.1137/1.9781611973082.85

Y. Nekrich 59:13

10 Timothy M. Chan. Persistent predecessor search and orthogonal point location on the word
RAM. ACM Transactions on Algorithms, 9(3):22:1–22:22, 2013. doi:10.1145/2483699.
2483702.

11 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching on
the RAM, revisited. In Proc. 27th ACM Symposium on Computational Geometry, (SoCG),
pages 1–10, 2011.

12 Bernard Chazelle. Filtering search: a new approach to query-answering. SIAM Journal on
Computing, 15(3):703–724, 1986. doi:10.1137/0215051.

13 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427–462, 1988. Preliminary version in FOCS
1985.

14 Bernard Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. J.
ACM, 37(2):200–212, 1990. doi:10.1145/77600.77614.

15 Bernard Chazelle. Lower bounds for orthogonal range searching II. the arithmetic model. J.
ACM, 37(3):439–463, 1990. doi:10.1145/79147.79149.

16 Bernard Chazelle and Herbert Edelsbrunner. Linear space data structures for two types of
range search. Discrete & Computational Geometry, 2:113–126, 1987. Preliminary version in
SoCG 1986. doi:10.1007/BF02187875.

17 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1(2):133–162, 1986. doi:10.1007/BF01840440.

18 Bernard Chazelle and Leonidas J. Guibas. Fractional cascading: II. applications. Algorithmica,
1(2):163–191, 1986. doi:10.1007/BF01840441.

19 Arash Farzan, J. Ian Munro, and Rajeev Raman. Succinct indices for range queries with appli-
cations to orthogonal range maxima. In Proc. 39th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 327–338, 2012. doi:10.1007/978-3-642-31594-7_
28.

20 Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More haste, less
waste: Lowering the redundancy in fully indexable dictionaries. In Proc. 26th International
Symposium on Theoretical Aspects of Computer Science, (STACS), pages 517–528, 2009.
doi:10.4230/LIPIcs.STACS.2009.1847.

21 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In Proc. 15th In-
ternational Symposium on Algorithms and Computation (ISAAC), pages 558–568, 2004.
doi:10.1007/978-3-540-30551-4_49.

22 Marek Karpinski and Yakov Nekrich. Space efficient multi-dimensional range reporting. In
Proc. 15th Annual International Conference on Computing and Combinatorics (COCOON),
pages 215–224, 2009. doi:10.1007/978-3-642-02882-3_22.

23 George S. Lueker. A data structure for orthogonal range queries. In Proc. 19th Annual
Symposium on Foundations of Computer Science (FOCS), pages 28–34, 1978. doi:10.1109/
SFCS.1978.1.

24 Edward M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276,
1985. doi:10.1137/0214021.

25 Yakov Nekrich. A data structure for multi-dimensional range reporting. In Proc. 23rd ACM
Symposium on Computational Geometry (SoCG), pages 344–353, 2007. doi:10.1145/1247069.
1247130.

26 Yakov Nekrich. External memory range reporting on a grid. In Proc. 18th International
Symposium on Algorithms and Computation (ISAAC), pages 525–535, 2007. doi:10.1007/
978-3-540-77120-3_46.

27 Yakov Nekrich. Space efficient dynamic orthogonal range reporting. Algorithmica, 49(2):94–108,
2007. doi:10.1007/s00453-007-9030-9.

28 Yakov Nekrich. Orthogonal range searching in linear and almost-linear space. Computational
Geometry: Theory & Applications, 42(4):342–351, 2009. doi:10.1016/j.comgeo.2008.09.001.

SoCG 2020

https://doi.org/10.1145/2483699.2483702
https://doi.org/10.1145/2483699.2483702
https://doi.org/10.1137/0215051
https://doi.org/10.1145/77600.77614
https://doi.org/10.1145/79147.79149
https://doi.org/10.1007/BF02187875
https://doi.org/10.1007/BF01840440
https://doi.org/10.1007/BF01840441
https://doi.org/10.1007/978-3-642-31594-7_28
https://doi.org/10.1007/978-3-642-31594-7_28
https://doi.org/10.4230/LIPIcs.STACS.2009.1847
https://doi.org/10.1007/978-3-540-30551-4_49
https://doi.org/10.1007/978-3-642-02882-3_22
https://doi.org/10.1109/SFCS.1978.1
https://doi.org/10.1109/SFCS.1978.1
https://doi.org/10.1137/0214021
https://doi.org/10.1145/1247069.1247130
https://doi.org/10.1145/1247069.1247130
https://doi.org/10.1007/978-3-540-77120-3_46
https://doi.org/10.1007/978-3-540-77120-3_46
https://doi.org/10.1007/s00453-007-9030-9
https://doi.org/10.1016/j.comgeo.2008.09.001

59:14 Four-Dimensional Dominance Range Reporting in Linear Space

29 Yakov Nekrich. Orthogonal range searching on discrete grids. In Encyclopedia of Algorithms,
pages 1484–1489. Springer, New York, 2016. doi:10.1007/978-1-4939-2864-4_631.

30 Yakov Nekrich. Four-dimensional dominance range reporting in linear space. CoRR,
abs/2003.06742, 2020. arXiv:2003.06742.

31 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Proc. 13th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT), pages 271–282, 2012. doi:10.1007/
978-3-642-31155-0_24.

32 Mark H. Overmars. Efficient data structures for range searching on a grid. J. Algorithms,
9(2):254–275, 1988. doi:10.1016/0196-6774(88)90041-7.

33 Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011. doi:10.1137/09075336X.

34 Sairam Subramanian and Sridhar Ramaswamy. The P-range tree: A new data structure
for range searching in secondary memory. In Proc. 6th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 378–387, 1995.

35 Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-d range searching in external memory.
In Proc. 28th Annual ACM Symposium on the Theory of Computing (STOC), pages 192–201,
1996.

https://doi.org/10.1007/978-1-4939-2864-4_631
http://arxiv.org/abs/2003.06742
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1016/0196-6774(88)90041-7
https://doi.org/10.1137/09075336X

Radon Numbers Grow Linearly
Dömötör Pálvölgyi
MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Mathematics,
Eötvös Loránd University (ELTE), Budapest, Hungary
http://domotorp.web.elte.hu
dom@cs.elte.hu

Abstract
Define the k-th Radon number rk of a convexity space as the smallest number (if it exists) for which
any set of rk points can be partitioned into k parts whose convex hulls intersect. Combining the
recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods of Bukh, we prove
that rk grows linearly, i.e., rk ≤ c(r2) · k.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Theory of computa-
tion → Computational geometry

Keywords and phrases discrete geometry, convexity space, Radon number

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.60

Funding Dömötör Pálvölgyi: Research supported by the Lendület program of the Hungarian
Academy of Sciences (MTA), under grant number LP2017-19/2017.

Acknowledgements I would like to thank Boris Bukh and Narmada Varadarajan for discussions
on [6], Andreas Holmsen for calling my attention to the difference between restricted and multiset
Radon numbers, especially for confirming that Theorem 2 also holds for multisets, and Gábor
Damásdi, Balázs Keszegh, Padmini Mukkamala and Géza Tóth for feedback on earlier versions of
this manuscript, especially for fixing the computations in the proof of Lemma 3. I would also like to
thank my anonymous referees for several valuable suggestions.

1 Introduction

Define a convexity space as a pair (X, C), where X is any set of points and C, the collection
of convex sets, is any family over X that contains ∅, X, and is closed under (arbitrary)
intersection and under (arbitrary) union of nested sets. The convex hull, conv(S), of
some point set S ⊂ X is defined as the intersection of all convex sets containing S, i.e.,
conv(S) = ∩{C ∈ C | S ⊂ C}; since C is closed under intersection, conv(S) is the minimal
convex set containing C. This generalization of convex sets includes several examples; for
an overview, see the book by van de Vel [26] or for a more recent work, [20]. It is a natural
question what properties of convex sets of Rd are preserved, or what the relationships are
among them for general convexity spaces. A much investigated parameter is the Radon
number rk (sometimes also called partition number or Tverberg number), which is defined as
the smallest number (if it exists) for which any set of rk points can be partitioned into k
parts whose convex hulls intersect. For k = 2, we simply write r = r2.

In case of the convex sets of Rd, it was shown by Radon [23] that r = d + 2 and by
Tverberg [25] that rk = (d+ 1)(k − 1) + 1. Calder [7] and Eckhoff [11] raised the question
whether rk ≤ (r − 1)(k − 1) + 1 also holds for general convexity spaces (when r exists),
and this became known as Eckhoff’s conjecture. It was shown by Jamison [16] that the
conjecture is true if r = 3, and that the existence of r always implies that rk exists and
rk ≤ rdlog2 ke ≤ (2k)log2 r. His proof used the recursion rk` ≤ rkr` which was later improved
by Eckhoff [12] to r2k+1 ≤ (r − 1)(rk+1 − 1) + rk + 1, but this did not significantly change
the growth rate of the upper bound. Recently Bukh [6] disproved the conjectured bound

© Dömötör Pálvölgyi;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 60; pp. 60:1–60:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2970-0943
http://domotorp.web.elte.hu
mailto:dom@cs.elte.hu
https://doi.org/10.4230/LIPIcs.SoCG.2020.60
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Radon Numbers Grow Linearly

rk ≤ (r − 1)(k − 1) + 1 by showing an example where r = 4, but rk ≥ 3k − 1 (just one more
than the conjectured value), and also improved the upper bound to rk = O(k2 log2 k), where
the hidden constant depends on r. We improve this to rk = O(k), which is optimal up to a
constant factor and might lead to interesting applications.

I Theorem 1. If a convexity space (X, C) has Radon number r, then rk ≤ c(r) · k.

Our proof combines the methods of Bukh with recent results of Holmsen and Lee [15]. In
particular, we will use the following version of the classical fractional Helly theorem [17].

I Theorem 2 (Holmsen-Lee [15]). For any r ≥ 3 there is an f such that for any α > 0 there
is a β > 0 with the following property. If a convexity space (X, C) has Radon number r,
then for any finite family F of convex sets if at least an α fraction of the f -tuples of F are
intersecting, then a β fraction of F intersects.

There are several other connections between the parameters of a convexity space [26];
for example, earlier it was already shown [19] that in convexity spaces the Helly number is
always strictly less than r (if r is finite), while in [15] it was also shown that the colorful Helly
number [4] can be also bounded by some function of r (and this implied Theorem 2 combined
with a combinatorial result from [14]).1 It was also shown in [15] that it follows from the
work of Alon et al. [2] that weak ε-nets [1] of size c(ε, r) also exist and a (p, q)-theorem [3]
also holds, so understanding these parameters better might lead to improved ε-net bounds.
It remains an interesting challenge and a popular topic to find new connections among such
theorems; for some recent papers studying the Radon numbers or Tverberg theorems of
various convexity spaces, see [8, 9, 10, 13, 18, 22, 21, 24], while for a comprehensive survey,
see Bárány and Soberón [5].

Restricted vs. multiset

In case of general convexity spaces, there are two, slightly different definitions of Radon
numbers ([26]: 5.19). When we do not allow repetitions in the point set P to be partitioned,
i.e., P consist of different points, the parameter is called the restricted Radon number, which
we will denote by r(1)

k . If repetitions are also allowed, i.e., we want to partition a multiset,
the parameter is called the unrestricted or multiset Radon number, which we will denote by
r

(m)
k . The obvious connection between these parameters is r(1)

k ≤ r
(m)
k ≤ (k− 1)(r(1)

k − 1) + 1.
In the earlier papers multiset Radon numbers were preferred, while later papers usually
focused on restricted Radon numbers; we followed the spirit of the age, so the results in the
Introduction were written using the definition of r(1)

k , although some of the bounds (like
Jamison’s or Eckhoff’s) are valid for both definitions. The proof of Theorem 1, however, also
works for multisets, so we will in fact prove the stronger r(m)

k = O(k), and in the following
simply use rk for the multiset Radon number r(m)

k .
A similar issue arises in Theorem 2; is F allowed to be a multifamily? Though not

emphasized in [15], their proof also works in this case and we will use it for a multifamily.
Note that this could be avoided with some cumbersome tricks, like adding more points to the
convexity space without increasing the Radon number r to make all sets of a family different,
but we do not go into details, as Theorem 2 anyhow holds for multifamilies.

1 We would like to point out that a difficulty in proving these results is that the existence of a Carathéodory-
type theorem is not implied by the existence of r.

D. Pálvölgyi 60:3

2 Proof

Fix r, and a collection of points P with cardinality tk, where we allow repetitions and the
cardinality is understood as the sum of the multiplicities. We will treat all points of P as if
they were different even if they coincide in X, e.g., when taking subsets.

We need to show that if t ≥ c(r), then we can partition P into k sets whose convex hulls
intersect. For a fixed constant s, define F to be the family of convex sets that are the convex
hull of some s-element subset of P , i.e., F = {conv(S) | S ⊂ P, |S| = s}. Since we treat all
points of P as different, F will be a multifamily with |F| =

(
tk
s

)
. We will refer to the point

set S whose convex hull gave some F = conv(S) ∈ F as the vertices of F (despite that some
of the points might be in the convex hull of the remaining ones). Note that for some S 6= S′,
we might have conv(S) = conv(S′), but the vertices of conv(S) and conv(S′) will still be S
and S′; since P is a multiset, it is even possible that S ∩ S′ = ∅.

The constants t and s will be set to be large enough compared to some parameters
that we get from Theorem 2 when we apply it to a fixed α. (Our arguments work for any
0 < α < 1.) First we set s to be large enough depending on α and rf (where f is the
fractional Helly number from Theorem 2; recall that rf ≤ rlog f is a constant [16]), then
we set t to be large enough depending on s and β (which depends on our chosen α). In
particular, we can set s = log(1

1−α1
)rfffrf and t = max(s

2

β ; (fs)2

k(1−α2)), where 0 < α1, α2 < 1
are any two numbers such that α1 · α2 = α. Also, we note that the proof from [14, 15] gives
f ≤ rrlog r and β = Ω(αrf) for Theorem 2. Combining all these to get the best bound, note
that rf , frf ≤ R ≈ rr

rlog r

. Set α = 1 − 1
R with, e.g., α1 = α2 ≈ 1 − 1

2R . This keeps β
constant, and both s and t around R, so we get an upper bound of approximately rrrlog r

for
t. (The simpler α1 = α2 = 1

2 would give approximately 2rrrlog r

.)
Theorem 1 will be implied by the following lemma and Theorem 2.

I Lemma 3. An α fraction of the f -tuples of F are intersecting.

Proof. Since t is large enough, almost all f -tuples will be vertex-disjoint, thus it will be
enough to deal with such f -tuples. More precisely, the probability of an f -tuple being
vertex-disjoint is at least (1− fs

tk)fs ≥ 1− (fs)2

tk ≥ α2 by the choice of t. We need to prove
that at least an α1 fraction of these vertex-disjoint f -tuples will be intersecting.

Partition the vertex-disjoint f -tuples into groups depending on which (fs)-element subset
of P is the union of their vertices. We will show that for each group an α1 fraction of them
are intersecting. We do this by generating the f -tuples of a group uniformly at random
and show that such a random f -tuple will be intersecting with probability at least α1. For
technical reasons, suppose that m = s

rf
is an integer and partition the fs supporting points

of the group randomly into m subsets of size frf , denoted by V1, . . . , Vm. Call an f -tuple
type (V1, . . . , Vm) if each set of the f -tuple intersects each Vi in rf points. Since these Vi
were picked randomly, it is enough to show that the probability that a (V1, . . . , Vm)-type
f -tuple is intersecting is at least α1.

The (V1, . . . , Vm)-type f -tuples can be uniformly generated by partitioning each Vi into
f equal parts of size rf . Therefore, it is enough to show that such a random f -tuple will be
intersecting with probability at least α1. Since |Vi| ≥ rf , there is at least one partition of
the first rf points of Vi to f parts whose convex hulls intersect. Since we can distribute the
remaining (f − 1)rf points of Vi to make all f parts equal, we get that when we partition Vi
into f equal parts of size rf , the convex hulls of these parts will intersect with probability at
least

(
frf

rf ,rf ,...,rf

)−1 ≥ f−frf . Since these events are independent for each i, we get that the
final f -tuple will be intersecting with probability at least 1−(1−f−frf)m ≥ 1−e−mf

−frf ≥ α1
by the choice of s. J

SoCG 2020

60:4 Radon Numbers Grow Linearly

Therefore, if s is large enough, the conditions of Theorem 2 are met, so at least β
(
tk
s

)
members of F intersect. In other words, these intersecting sets form an s-uniform hypergraph
H on tk vertices that is β-dense. We need to show that H has k disjoint edges to obtain
the desired partition of P into k parts with intersecting convex hulls. For a contradiction,
suppose that H has only k − 1 disjoint edges. Then every other edge meets one of their
(k − 1)s vertices. There are at most (k − 1)s

(
tk
s−1

)
such edges, which is less than β

(
tk
s

)
if

(k−1)s < β tk−s+1
s , but this holds by the choice of t. This finishes the proof of Theorem 1. J

Concluding remarks

It is an interesting question to study how big f can be compared to r and the Helly number
h of (X, C). The current bound [15] gives f ≤ hrh ≤ rr

log r . We would like to point out
that the first inequality, f ≤ hrh , can be (almost) strict, as shown by the following example,
similar to Example 3 (cylinders) of [20]. Let X = {1, . . . , q}d be the points of a d-dimensional
grid, and let C consist of the intersections of the axis-parallel affine subspaces with X. (Note
that for q = 2, X will be the vertices of a d-dimensional cube, and C its faces.) It is easy to
check that h = 2, r = blog(d+ 1) + 2c and f = d+ 1; the last equality follows from that for
α = d!

dd we need β = 1
q when F consists of all qd axis-parallel affine hyperplanes (if q is large

enough).
It is tempting to assume that Theorem 1 would improve the second inequality, hrh ≤ rrlog r ,

as instead of rh ≤ rlogh we can use rh = O(h). Unfortunately, recall that the hidden constant
depended on r, in particular, it is around rrrlog r

. We have a suspicion that this might not
be entirely sharp, so a natural question is whether this dependence could be removed to
improve rk ≤ rr

rlog r

· k to rk ≤ c · r · k. This would truly lead to an improvement of the
upper bound on f in Theorem 2 and would lead to further applications [5].

References
1 N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. Point selections and weak ε-nets for convex

hulls. Comb. Prob. Comput., 1:189–200, 1992.
2 N. Alon, G. Kalai, J. Matoušek, and R. Meshulam. Transversal numbers for hypergraphs

arising in geometry. Adv. in Appl. Math., 29:79–101, 2002.
3 N. Alon and D. J. Kleitman. Piercing convex sets and the Hadwiger-Debrunner (p, q)-problem.

Adv. Math., 96:103–112, 1992.
4 I. Bárány. A generalization of Carathéodory’s theorem. Disc. Math., 40:141–152, 1982.
5 I. Bárány and P. Soberón. Tverberg’s theorem is 50 years old: a survey. Bull. Amer. Math.

Soc. (N.S.), 55(4):459–492, 2018.
6 B. Bukh. Radon partitions in convexity spaces. arXiv, 2010. arXiv:1009.2384.
7 J. R. Calder. Some elementary properties of interval convexities. J. London Math. Soc.,

2(3):422–428, 1971.
8 J. A. de Loera, R. N. La Haye, D. Rolnick, and P. Soberón. Quantitative combinatorial

geometry for continuous parameters. Discrete Comput. Geom., 57(2):318–334, 2017.
9 J. A. de Loera, R. N. La Haye, D. Rolnick, and P. Soberón. Quantitative Tverberg theorems

over lattices and other discrete sets. Discrete Comput. Geom., 58(2):435–448, 2017.
10 J. A. de Loera, T. A. Hogan, F. Meunier, and N. H. Mustafa. Tverberg theorems over discrete

sets of points. arXiv, 2018. arXiv:1803.01816.
11 J. Eckhoff. Radon’s theorem revisited. In Contributions to geometry (Proc. Geom. Sympos.,

Siegen, 1978), pages 164–185, Basel, 1979. Birkhäuser.
12 J. Eckhoff. The partition conjecture. Disc. Math., 221 (Selected papers in honor of Ludwig

Danzer):61–78, 2000.

http://arxiv.org/abs/1009.2384
http://arxiv.org/abs/1803.01816

D. Pálvölgyi 60:5

13 R. Fulek, B. Gärtner, A. Kupavskii, P. Valtr, and U. Wagner. The crossing Tverberg theorem.
In Symposium on Computational Geometry (SoCG 2019), pages 38:1–38:13, 2019.

14 A. F. Holmsen. Large cliques in hypergraphs with forbidden substructures. Combinatorica,
2019. accepted. arXiv:1903.00245.

15 A. F. Holmsen and D.-G. Lee. Radon numbers and the fractional Helly theorem. Israel J. of
Mathematics, 2019. accepted. arXiv:1903.01068.

16 R. E. Jamison-Waldner. Partition numbers for trees and ordered sets. Pacific J. Math.,
96(1):115–140, 1981.

17 M. Katchalski and A. Liu. A problem of geometry in Rn. Proc. Amer. Math. Soc, 75:284–288,
1979.

18 S. Letzter. Radon numbers for trees. Disc. Math., 340:333–344, 2017.
19 F. W. Levi. On Helly’s theorem and the axioms of convexity. J. Indian Math. Soc., 15:65–76,

1951.
20 S. Moran and A. Yehudayoff. On weak ε-nets and the Radon number. In Symposium on

Computational Geometry (SoCG 2019), pages 51:1–51:14, 2019.
21 Z. Paták. Properties of closure operators in the plane. arXiv, 2019. arXiv:1908.01677.
22 P. Patáková. Bounding Radon’s number via Betti numbers. arXiv, 2019. arXiv:1909.08489.
23 J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalte. Math. Ann.,

83:113–115, 1921.
24 P. Soberón. Tverberg partitions as weak ε-nets. Combinatorica, 39:447–458, 2019.
25 H. Tverberg. A generalization of Radon’s theorem. J. London Math. Soc., 41:123–128, 1966.
26 M. L. J. van de Vel. Theory of convex structures, volume 50. North-Holland Mathematical

Library, Amsterdam, 1993.

SoCG 2020

http://arxiv.org/abs/1903.00245
http://arxiv.org/abs/1903.01068
http://arxiv.org/abs/1908.01677
http://arxiv.org/abs/1909.08489

Bounding Radon Number via Betti Numbers
Zuzana Patáková
Computer Science Institute, Charles University, Prague, Czech Republic
IST Austria, Klosterneuburg, Austria
zuzka@kam.mff.cuni.cz

Abstract
We prove general topological Radon-type theorems for sets in Rd, smooth real manifolds or finite
dimensional simplicial complexes. Combined with a recent result of Holmsen and Lee, it gives
fractional Helly theorem, and consequently the existence of weak ε-nets as well as a (p, q)-theorem.

More precisely: Let X be either Rd, smooth real d-manifold, or a finite d-dimensional simplicial
complex. Then if F is a finite, intersection-closed family of sets in X such that the ith reduced Betti
number (with Z2 coefficients) of any set in F is at most b for every non-negative integer i less or
equal to k, then the Radon number of F is bounded in terms of b and X. Here k is the smallest
integer larger or equal to d/2− 1 if X = Rd; k = d− 1 if X is a smooth real d-manifold and not a
surface, k = 0 if X is a surface and k = d if X is a d-dimensional simplicial complex.

Using the recent result of the author and Kalai, we manage to prove the following optimal bound
on fractional Helly number for families of open sets in a surface: Let F be a finite family of open sets
in a surface S such that the intersection of any subfamily of F is either empty, or path-connected.
Then the fractional Helly number of F is at most three. This also settles a conjecture of Holmsen,
Kim, and Lee about an existence of a (p, q)-theorem for open subsets of a surface.

2012 ACM Subject Classification Mathematics of computing → Geometric topology; Theory of
computation → Computational geometry

Keywords and phrases Radon number, topological complexity, constrained chain maps, fractional
Helly theorem, convexity spaces

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.61

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.01677.

Funding The research stay of the author at IST Austria is funded by the project Improvement of
internationalization in the field of research and development at Charles University, through the
support of quality projects MSCA-IF (CZ.02.2.69/0.0/0.0/17_050/0008466).

Acknowledgements First and foremost, I am very grateful to Pavel Paták for numerous discussions,
helpful suggestions and a proofreading. Many thanks to Xavier Goaoc for his feedback and comments,
which have been very helpful in improving the overall presentation. I also thank Endre Makai for
pointers to relevant literature, especially to the book [17]. Finally, many thanks to Natan Rubin for
several discussions at the very beginning of the project.

1 Introduction

The classical Radon’s theorem [15] states that it is possible to split any d+ 2 points in Rd
into two disjoint parts whose convex hulls intersect. It is natural to ask what happens to the
statement, if one starts varying the notion of convexity.

Perhaps the most versatile generalization of the convex hull is the following. Let X be an
underlying set and let F be a finite family of subsets of X. Let S ⊆ X be a set. The convex
hull convF (S) of S relative to F is defined as the intersection of all sets from F that contain
S. If there is no such set, the convex hull is, by definition, X. If convF S = S, the set S is
called F-convex.

© Zuzana Patáková;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 61; pp. 61:1–61:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3975-1683
mailto:zuzka@kam.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.SoCG.2020.61
https://arxiv.org/abs/1908.01677
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Bounding Radon Number via Betti Numbers

This definition is closely related to so called convexity spaces1, as defined for example
in [18, 2, 17]. The only difference is that most authors require that in a convexity space
conv ∅ = ∅, which is not needed in any of our considerations. Moreover, it can be easily
forced by including ∅ to F .

In our examples we are also going to use the definition of convF for the family F of all
(standard) convex sets in Rd. We note that in this case convF coincides with the standard
convex hull.

We say that F has Radon number r(F) if r(F) is the smallest integer r such that any
set S ⊆ X of cardinality r can be split into two parts S = P1 t P2 satisfying convF (P1) ∩
convF (P2) 6= ∅. If no such r exists, we put r(F) = ∞. We note that Radon number is
anti-monotone in the sense that r(F) ≤ r(G) for G ⊆ F .

In this paper we show that very mild topological conditions are enough to force a bound
on Radon number for sets in Euclidean space (Theorem 1). A simple trick allows us to
give a version of the result for smooth manifolds or simplicial complexes, see Section 2.1.
Furthermore, the proof technique also works for surfaces (Theorem 2). In Section 2.2 we list
some important consequences, most notably a fractional Helly theorem (Theorem 3), which
allows us to solve a conjecture of Holmsen, Kim, and Lee (a special case of Theorem 6).

2 New results

One can observe that bounded Radon number is not a property of a standard convexity
since it is preserved by topological deformations of Rd. In fact, we can even show that if the
family F is “not too topologically complicated”, its Radon number is bounded. Let us first
explain what “not too topologically complicated” means.

Topological complexity. Let k ≥ 1 be an integer or∞ and F a family of sets in a topological
space X. We define the k-level topological complexity of F as:

sup
{
β̃i

(⋂
G;Z2

)
: G ⊆ F , 0 ≤ i < k

}
and denote it by TCk(F). We call the number TC∞(F) the (full) topological complexity.

Examples. Let us name few examples of families with bounded topological complexity:
family of convex sets in Rd, good covers2, families of spheres and pseudospheres in Rd, finite
families of semialgebraic sets in Rd defined by a constant number of polynomial inequalities,
where all polynomials have a constant degree, etc.

We can now state our main theorem.

I Theorem 1 (Bounded mid-level topological complexity implies Radon). For every non-
negative integers b and d there is a number r(b, d) such that the following holds: If F is a
finite family of sets in Rd with TCdd/2e(F) ≤ b, then r(F) ≤ r(b, d).

Qualitatively, Theorem 1 is sharp in the sense that all (reduced) Betti numbers β̃i,
0 ≤ i < dd/2e, need to be bounded in order to obtain a bounded Radon number, see [7,
Example 3].

1 A pair (X, C) is called a convexity space on X if C ⊂ 2X is a family of subsets of X such that ∅, X ∈ C
and C is closed under taking intersections; and unions of chains. The sets in C are called convex. Note
that the last condition is trivially satisfied whenever C is finite.

2 A family of sets in Rd where intersection of each subfamily is either empty or contractible.

Z. Patáková 61:3

2.1 Embeddability
We have seen that for a finite family of sets in Rd, in order to have a bounded Radon
number, it suffices to restrict the reduced Betti numbers up to dd/2e − 1. Which Betti
numbers do we need to restrict, if we replace Rd by some other topological space X? The
following paragraphs provide some simple bounds if X is a simplicial complex or a smooth
real manifold. The base for the statements is the following simple observation: Given a
topological space X embeddable into Rd, we may view any subset of X as a subset of Rd
and use Theorem 1.

Since any (finite) k-dimensional simplicial complex embeds into R2k+1, we have:

If K is a (finite) k-dimensional simplicial complex and F is a finite family of sets in
K with TCk+1(F) ≤ b, then r(F) ≤ r(b, 2k + 1).

Again, this bound is qualitatively sharp in the sense that all β̃i, 0 ≤ i ≤ k, need to be
bounded in order to have a bounded Radon number, see [7, Example 3].

Using the strong Whitney’s embedding theorem [19], stating that any smooth real
k-dimensional manifold embeds into R2k, we obtain the following:

If M is a smooth k-dimensional real manifold and F is a finite family of sets in M
with TCk(F) ≤ b, then r(F) ≤ r(b, 2k).

Unlike in the previous statements we do not know whether bounding all reduced Betti
numbers β̃i, 0 ≤ i ≤ k − 1, is necessary. The following result about surfaces indicates that it
possibly suffices to bound less. Let F be a finite family F of sets in a surface3 S. In order to
have a finite Radon number r(F), it is enough to require that TC1(F) is bounded, that is, it
only suffices to have a universal bound on the number of connected components.

I Theorem 2. For each surface S and each integer b ≥ 0 there is a number rS(b) such that
each finite family F of sets in S satisfying TC1(F) ≤ b has r(F) ≤ rS(b).

See Section 3.2 for the proof.
However, at the present time the author does not know how to generalize this result to

higher dimensional manifolds. Given a d-dimensional manifold M , it is an open question
whether r(F) is bounded for all families F ⊆M with bounded TCdd/2e(F).

2.2 Consequences and related results
We say that F has Helly number h(F), if h(F) is the smallest integer h with the following
property: If in a finite subfamily S ⊆ F each h members of S have a point in common,
then all the sets of S have a point in common. If no such h exists, we put h(F) =∞. By
older results, bounded Radon number implies bounded Helly number [12] as well as bounded
Tverberg numbers4 [10, (6)]. From these consequences only the fact that for sets in Rd
bounded TCdd/2e implies bounded Helly number has been shown earlier [7].

Due to recent results by Holmsen and Lee, bounded Radon number implies colorful Helly
theorem [9, Lemma 2.3] and bounded fractional Helly number [9, Theorem 1.1]. Thus, in
combination with Theorem 1 and the results from the previous section, we have obtained
the following fractional Helly theorem.

3 By a surface we mean a compact two-dimensional real manifold.
4 Given an integer k ≥ 3, we say that F has kth Tverberg number rk(F), if rk(F) is the smallest integer
r such that any set S ⊆ X of size rk can be split into k parts S = P1 t P2 t . . . t Pk satisfying⋂k

i=1 convF Pi 6= ∅. We set rk(F) =∞ if there is no such rk.

SoCG 2020

61:4 Bounding Radon Number via Betti Numbers

I Theorem 3. Let X be either Rd, in which case we set k = dd/2e, or a smooth real
d-dimensional manifold, d ≥ 3, in which case we set k = d, or a surface, in which case we set
k = 1, or a (finite) d-dimensional simplicial complex, in which case we set k = d+ 1. Then
for every integer b ≥ 0 there is a number hf = hf (b,X) such that the following holds. For
every α ∈ (0, 1] there exists β = β(α, b,X) > 0 with the following property. Let F be a family
of sets in X with TCk(F) ≤ b and G be a finite family of F-convex sets, having at least an α
fraction of the hf -tuples with non-empty intersection, then there is a point contained in at
least β|G| sets of G.

We note that Theorem 3 can be applied to many spaces X that are often encountered in
geometry. Let us mention Rd, Grassmanians, or flag manifolds.

We refer to the number hf from the theorem as the fractional Helly number. Bounded
fractional Helly number in turn provides a weak ε-net theorem [1] and a (p, q)-theorem [1].
The existence of a fractional Helly theorem for sets with bounded topological complexity
might be seen as the most important application of Theorem 1, not only because it implies
an existence of weak ε-nets and a (p, q)-theorem, but also in its own right. Its existence
answers positively a question by Matoušek (personal communication), also mentioned in [3,
Open Problem 3.6].

The bound on hf we obtain from the proof is not optimal. So what is the optimal bound?
The case of (d− 1)-flats in Rd in general position shows that we cannot hope for anything
better than d+ 1. In Section 4 we establish a reasonably small bound for a large class of
families F of open subsets of surfaces using a bootstrapping method based on the result of
the author and Kalai [11]. In particular, for families F of open sets with TC1(F) = 0, we
obtain the optimal bound.

I Theorem 4 (Fractional Helly for surfaces). Let b ≥ 0 be an integer. We set k = 3 for b = 0
and k = 2b + 4 for b ≥ 1, respectively. Then for any surface S and α ∈ (0, 1) there exists
β = β(α, b, S) > 0 with the following property. Let A be a family of n open subsets of a
surface S with TC1(A) ≤ b. If at least α

(
n
k

)
of the k-tuples of A are intersecting, then there

is intersecting subfamily of A of size at least βn.

We note that the statement holds also for a family of open sets in R2, since the plane
can be seen as an open subset of a 2-dimensional sphere.

The author conjectures that k in Theorem 4 is independent of b, more precisely, the
conjectured value is three. The author also conjectures that the fractional Helly number for
families in Rd is d+ 1.

I Conjecture 5. For any integers b ≥ 1, d ≥ 2 and α ∈ (0, 1) there exists β = β(α, b, d) > 0
with the following property. Let A be a family of n ≥ d+ 1 sets in Rd with TCdd/2e(A) ≤ b.
If at least α

(
n
d+1
)
of the (d+ 1)-tuples of A intersect, then there is an intersecting subfamily

of A of size at least βn.

The proof of Theorem 4 is given in Section 4. By the results in [1], the fractional Helly
theorem is the only ingredient needed to prove a (p, q)-theorem, hence combining Theorem 4
with results in [1] immediately gives Theorem 6. Let us recall that a family F of sets has the
(p, q)-property if among every p sets of F , some q have a point in common.

I Theorem 6. Let b ≥ 0 be an integer. Set k = 3 for b = 0 and k = 2b + 4 for b ≥ 1,
respectively. For any integers p ≥ q ≥ k and a surface S, there exists an integer C = C(p, q, S)
such that the following holds. Let F be a finite family of open subsets of S with TC1(F) ≤ b.
If F has the (p, q)-property, then there is a set X that intersects all sets from F and has at
most C elements.

Z. Patáková 61:5

The case b = 0 in Theorem 6 settles a conjecture by Holmsen, Kim, and Lee [8, Conj. 5.3].

We have seen that bounded topological complexity has many interesting consequences.
However, there is one parameter of F that cannot be bounded by the topological complexity
alone. We say that F has Carathéodory number c(F), if c is the smallest integer c with the
following property: For any set S ⊆ X and any point x ∈ convF (S), there is a subset S′ ⊆ S
of size at most c such that x ∈ convF (S′). If no such c exists, we put c(F) =∞.

It is easy to construct an example of a finite F of bounded full-level topological complexity
with arbitrarily high Carathéodory’s number.

I Theorem 7 (Bounded topological complexity does not imply Carathéodory). For every positive
integers c ≥ 2 and d ≥ 2 there is a finite family F of sets in Rd of full-level topological
complexity zero, satisfying c(F) = c.

Proof. Indeed, consider a star with c spines T1, T2, . . . , Tc each containing a point ti. Let
Ai :=

⋃
j 6=i Tj and F = {A1, A2, . . . , Ac}.

Then any intersection of the sets Ai is contractible, and hence topologically trivial. Let
S = {t1, . . . , tc}. Observe that convF S = Rd. Let x be any point in (convF S) \

⋃c
i=1Ai.

Then x ∈ convF S, and x /∈ convF S′ for any S′ (S. Thus c(A) = c.

t1

t2

t3
t4 t5

tc

tc−1

J

3 Technique

The introduction of relative convex hulls allows us to strengthen and polish the techniques
developed in [7]. Independently of these changes we also manage to separate the combinatorial
and topological part of the proof, which improves the overall exposition. We start with the
topological tools (Sections 3.1 and 3.2) including the proof of Theorem 1 modulo Proposition
13. We divide the proof of the main ingredient (Proposition 13) into two parts: Ramsey-type
result (Section 3.3) and induction (Section 3.4).

Notation & convention. For an integer n ≥ 1, let [n] = {1, . . . , n}. If P is a set, we use the
symbol 2P to denote the set of all its subsets and

(
P
n

)
to denote the family of all n-element

subsets of P . We denote by ∆n the standard n-dimensional simplex. If K is a simplicial
complex, V (K) stands for its set of vertices and K(k) stands for its k-dimensional skeleton,
i.e. the subcomplex formed by all its faces of dimension up to k. Unless stated otherwise, we
only work with abstract simplicial complexes.5 All chain groups and chain complexes are
considered with Z2-coefficients.

3.1 Homological almost embeddings
Homological almost embeddings are the first ingredient we need. Before defining them, let
us first recall (standard) almost embeddings. Let R be a topological space.

5 The definition of singular homology forces us to use the geometric standard simplex ∆n on some places.

SoCG 2020

61:6 Bounding Radon Number via Betti Numbers

v1 v2

v3

v4 v′4 v′′4

⇒

1 2

3

4

Figure 1 An example of a homological almost-embedding of K4 into the plane.

I Definition 8. Let K be an (abstract) simplicial complex with geometric realization |K|
and R a topological space. A continuous map f : |K| → R is an almost-embedding of K
into R, if the images of disjoint simplices are disjoint.

I Definition 9. Let K be a simplicial complex, and consider a chain map γ : C∗(K;Z2)→
C∗(R;Z2) from the simplicial chains in K to singular chains in R.

(i) The chain map γ is called nontrivial6 if the image of every vertex of K is a finite set
of points in R (a 0-chain) of odd cardinality.

(ii) The chain map γ is called a homological almost-embedding of K in R if it is nontrivial
and if, additionally, the following holds: whenever σ and τ are disjoint simplices of K,
their image chains γ(σ) and γ(τ) have disjoint supports, where the support of a chain
is the union of (the images of) the singular simplices with nonzero coefficient in that
chain.

In analogy to almost-embeddings, there is no homological almost-embedding of the
k-skeleton of (2k + 2)-dimensional simplex into R2k:

I Theorem 10 (Corollary 13 in [7]). For any k ≥ 0, the k-skeleton ∆(k)
2k+2 of the (2k + 2)-

dimensional simplex has no homological almost-embedding in R2k.

Let us say a few words about the proof. It is based on the standard cohomological proof
of the fact that ∆(k)

2k+2 does not “almost-embed” into R2k and combined with the fact that
cohomology “does not distinguish” between maps and non-trivial chain maps. For details
see [7].

3.2 Constrained chain maps
We continue developing the machinery from [7] in order to capture our more general setting.
To prove Theorem 1, we need one more definition (Definition 11). A curious reader may
compare our definition of constrained chain map with the definition from [7]. Let us just
remark that the definition presented here is more versatile. (Although it might not be
obvious on the first sight.) Unlike the previous definition, the current form allows us to prove
the bound on the Radon number. Nevertheless, both definitions are equivalent under some
special circumstances.

6 If we consider augmented chain complexes with chain groups also in dimension −1, then being nontrivial
is equivalent to requiring that the generator of C−1(K) ∼= Z2 (this generator corresponds to the empty
simplex in K) is mapped to the generator of C−1(R) ∼= Z2.

Z. Patáková 61:7

Let R be a topological space, let K be a simplicial complex and let γ : C∗(K)→ C∗(R)
be a chain map from the simplicial chains of K to the singular chains of R.

I Definition 11 (Constrained chain map). Let F be a finite family of sets in R and P be a
(multi-)set7 of points in R. Let γ : C∗(K)→ C∗(R) be the aforementioned chain map. We
say that γ is constrained by (F ,Φ) if:

(i) Φ is a map from K to 2P such that Φ(σ ∩ τ) = Φ(σ) ∩ Φ(τ) for all σ, τ ∈ K and
Φ(∅) = ∅.

(ii) For any simplex σ ∈ K, the support of γ(σ) is contained in convF Φ(σ).

If there is some Φ such that a chain map γ from K is constrained by (F ,Φ), we say that
γ is constrained by (F , P).

We can now prove an analogue of Lemma 26 from [7] and relate constrained maps and
homological almost embeddings.

I Lemma 12. Let γ : C∗(K)→ C∗(R) be a nontrivial chain map constrained by (F , P). If
convF S ∩ convF T = ∅ whenever S ⊆ P and T ⊆ P are disjoint, then γ is a homological
almost-embedding of K to R.

Proof. Let σ and τ be two disjoint simplices of K. The supports of γ(σ) and γ(τ) are
contained, respectively, in convF Φ(σ) and convF Φ(τ). By the definition of Φ, Φ(σ) and
Φ(τ) are disjoint. Thus, by the assumption

convF Φ(σ) ∩ convF Φ(τ) = ∅.

Therefore, γ is a homological almost-embedding of K. J

The most important ingredient for the proof of Theorem 1 is the following proposition:

I Proposition 13. For any finite simplicial complex K and a non-negative integer b there
exists a constant rK(b) such that the following holds. For any finite family F in R with
TCdimK(F) ≤ b and a set P of at least rK(b) points in R there exists a nontrivial chain
map γ : C∗(K)→ C∗(R) that is constrained by (F , P).

Furthermore, if dimK ≤ 1, one can even find such γ that is induced by some continuous
map f : |K| → R from the geometric realization |K| of K to R.

Before proving Theorems 1 and 2, let us relate Proposition 13 to the Radon number.

I Proposition 14. Let R be a topological space and K a simplicial complex that does not
homologically embed into R. Then for each integer b ≥ 0 and each finite family F of sets in
R satisfying TCdimK(F) ≤ b, one has r(F) ≤ rK(b), where rK(b) is as in Proposition 13.

Moreover, if dimK ≤ 1, it suffices to assume that K does not almost embed into R.

Proof. If r(F) > rK(b), then there is a set P of rK(b) points such that for any two disjoint
subsets P1, P2 ⊆ P we have convF (P1) ∩ convF (P2) = ∅. Let γ : C∗(K) → C∗(R) be a
nontrivial chain map constrained by (F , P) given by Proposition 13. By Lemma 12, γ is a
homological almost-embedding of K, a contradiction.

7 However, the switch to multisets requires some minor adjustments. If P = {pi | i ∈ I} is a multiset, one
needs to replace the multiset P by the index set I in all definitions and proofs; and if J ⊆ I consider
convF (J) as a shorthand notation for convF ({pi | i ∈ J}). However, we have decided not to clutter the
main exposition with such technical details.

SoCG 2020

61:8 Bounding Radon Number via Betti Numbers

If dimK ≤ 1, one can take γ to be induced by a continuous map f : |K| → R. However,
one can easily check that in that case γ is a homological almost embedding if and only if f is
an almost embedding. J

Theorems 1 and 2 are now immediate consequences of Proposition 14.

Proof of Theorem 1. Let k = dd/2e. By Theorem 10, ∆(k)
2k+2 does not homologically almost

embeds into Rd, so Proposition 14 applies and yields Theorem 1. J

Proof of Theorem 2. By results in [6], for each surface S there is a finite graph G that does
not almost embed8 into S, so Proposition 14 applies. J

3.3 Combinatorial part of the proof
The classical Ramsey theorem [16] states that for all positive integers k, n and c there is
a number Rk(n; c) such that the following holds. For each set X satisfying |X| ≥ Rk(n; c)
and each coloring9 ρ :

(
X
k

)
→ [c], there is a monochromatic subset Y ⊆ X of size n, where

a subset Y is monochromatic, if all k-tuples in Y have the same color. Note that the case
k = 1 corresponds to the pigeon hole principle and R1(n; c) = n(c− 1) + 1.

In order to perform the induction step in the proof of Proposition 13, we need the following
Ramsey type theorem.

I Proposition 15. For any positive integers k, m, n, c there is a constant Nk = Nk(n;m; c)
such that the following holds. Let X be a set and for every V ⊆ X let ρV :

(
V
k

)
→ [c] be a

coloring10 of the k-element subsets of V . If |X| ≥ Nk, then there always exists an n-element
subset Y ⊆ X and a map M(·) :

(
Y
m

)
→ 2X\Y such that all sets MZ for Z ∈

(
Y
m

)
are disjoint,

and each Z ∈
(
Y
m

)
is monochromatic in ρZ∪MZ

.

The fact that each k-tuple is colored by several different colorings ρV reflects the fact
that we are going to color a cycle z by the singular homology of γ(z) inside convF Φ(V) for
various different sets V . There, it may easily happen that z and z′ have the same color in V
but different in V ′.

Proof. Let r = Rk(m; c). We claim that it is enough to take

Nk = Rr

(
n+

(
n

m

)
· (r −m);

(
r

m

))
.

Suppose that |X| ≥ Nk and choose an arbitrary order of the elements of X.
By the choice of r, if V ∈

(
X
r

)
, then there is a subset A ⊆ V of size m such that ρV

assigns the same color to all k-tuples in A. Let us introduce another coloring, η :
(
X
r

)
→
([r]
m

)
,

that colors each V ∈
(
X
r

)
by the relative11 position of the first monochromatic A inside V

(with respect to the lexicographic ordering).
By the definition of Nk and the fact that |X| ≥ Nk, there is a subset U of size n+

(
n
m

)
·

(r −m), such that all r-tuples in U have the same color in η, say color Ω.

8 Compared to [6], recent works by Paták, Tancer [14], and Fulek, Kynčl [5] provide much smaller graphs
which are not almost-embeddable into S.

9 A coloring is just another name for a map. However, it is easier to say “the color of z”, instead of “the
image of z under ρ”.

10 If |V | < k, the coloring cV is, by definition, the empty map.
11For illustration: If V = {2, 4, 6, 8, . . . , 36} and A = {2, 4, 34, 36} we assign V the “color” {1, 2, 17, 18},

since the elements of A are on first, second, 17th and 18th position of V .

Z. Patáková 61:9

Consider the set Y ′ = {1, 2, . . . , n}. Since the rational numbers are dense, we can find an
assignment

N :
(
Y ′

m

)
→

(
Q \ Y ′

r −m

)
Z ′ 7→ NZ′

of mutually disjoint sets NZ′ such that Z ′ is on the position Ω inside Z ′ ∪NZ′ .
The unique order-preserving isomorphism from Y ′ ∪

⋃
NZ′ to U then carries Y ′ to the

desired set Y and NZ′ to the desired sets MZ . J

3.4 The induction
Proof of Proposition 13. We proceed by induction on dimK, similarly as in [7]. If the
reader finds the current exposition too fast, we encourage him/her to consult [7] which goes
slower and shows motivation and necessity of some ideas presented here. Note however, that
our current setup is much more general.

Induction basis. IfK is 0-dimensional with vertices V (K) = {v1, . . . , vm}, we set rK(b) = m.
If P = {x1, . . . , xn} is a point set in R with |P | ≥ m, we can take as Φ the map Φ(vi) = {xi}.
It remains to define γ. We want it to “map” vi to xi. However, γ should be a chain map
from simplicial chains of K to singular chains in Rd. Therefore for each vertex vi we define
γ(vi) as the unique map from12 ∆0 to xi; and extend this definition linearly to the whole
C0(K). By construction, γ is nontrivial and constrained by (F ,Φ).

Induction step. Let dimK = k ≥ 1. The aim is to find a chain map γ : C∗(K(k−1)) →
C∗(R) and a suitable map Φ such that γ is nontrivial, constrained by (F ,Φ) and γ(∂σ) has
trivial homology inside convF Φ(σ) for each k-simplex σ ∈ K. Extending such γ to the whole
complex K is then straightforward.

Let s ≥ 1 be some integer depending on K which we determine later. To construct γ we
will define three auxiliary chain maps

C∗

(
K(k−1)

)
α−−−→ C∗

(
(sdK)(k−1)

) β−−−−−→ C∗

(
∆(k−1)
s

) γ′−−−→ C∗(R),

where sdK is the barycentric subdivision13 of K.

Definition of α. We start with the easiest map, α. It maps each l-simplex σ from K(k−1)

to the sum of the l-simplices in the barycentric subdivision of σ.

Definition of γ′. The map γ′ is obtained from induction. Let the cardinality of P be large
enough. Since dim ∆(k−1)

s = k − 1, by induction hypothesis, there is a nontrivial chain map
γ′ : C∗(∆(k−1)

s)→ C∗(R) and a map Ψ: ∆(k−1)
s → 2P such that γ′ is constrained by (F ,Ψ).

In order to define Φ easily, we need to extend Ψ to ∆s, hence for σ ∈ ∆s we define

Ψ(σ) =
⋃

τ∈∆(k−1)
s ,τ⊆σ

Ψ(τ). (1)

12This is the only place where ∆n is considered to be a geometric simplex.
13The barycentric subdivision sdK of an abstract simplicial complex K is the complex formed by all the

chains contained in the partially ordered set (K \ {∅},⊆), so called the order complex of (K \ {∅},⊆).

SoCG 2020

61:10 Bounding Radon Number via Betti Numbers

If τ ⊆ σ ∈ ∆(k−1)
s , then Ψ(τ)∩Ψ(σ) was equal to Ψ(τ ∩σ) = Ψ(τ). Thus the equality (1)

does not change the value of Ψ(σ) if σ ∈ ∆(k−1)
s and it is indeed an extension of Ψ. Moreover,

easy calculation shows that Ψ(A) ∩Ψ(B) = Ψ(A ∩B) for any A,B ∈ ∆s.

Definition of β. With the help of Proposition 15 it is now easy to find the map β. Indeed,
for each simplex τ ∈ ∆s, let cτ be the coloring that assigns to each k-simplex σ ⊆ τ the
singular homology class of γ′(∂σ) inside convF (Ψ(τ)). Let m be the number of vertices of
sd ∆k, n the number of vertices of sdK and c the maximal number of elements in H̃k(

⋂
G;Z2),

where G ⊆ F . Clearly c ≤ 2b.
Thus if s ≥ Nk+1(n;m; c) from Proposition 15, the following holds.

(a) There is an inclusion j of (sdK)(k−1) to a simplex Y ⊆ ∆s. We let ϕ : K → 2V (∆s) be
the map that to each σ ∈ K assigns the set j(V (sdσ)).

(b) For each k-simplex µ in K there is a simplexMµ in ∆s with the following three properties:

(i) For all k-simplices τ inside sdµ, the singular homology class of γ′(j(∂τ)) inside
convF Ψ(Mµ ∪ ϕ(µ)) is the same,

(ii) each Mµ is disjoint from Y ,
(iii) all the simplices Mµ are mutually disjoint.

We define Mµ := ∅ for µ ∈ K a simplex of dimension at most k − 1. We set Φ(µ) :=
Ψ(Mµ ∪ ϕ(µ)). Note that for a simplex σ ∈ K(k−1), Φ(σ) reduces to Ψ(ϕ(σ)).

Let β be the chain map induced by j. Observe that Φ satisfies Φ(∅) = ∅ and Φ(A ∩B) =
Φ(A) ∩ Φ(B), A,B ∈ K. Indeed, the first claim is obvious and for the second one let σ, τ be
distinct simplices in K:

Φ(µ) ∩ Φ(τ) = Ψ (Mµ ∪ ϕ(µ)) ∩Ψ (Mτ ∪ ϕ(τ)) = Ψ ([Mµ ∪ ϕ(µ)] ∩ [Mτ ∪ ϕ(τ)])
= Ψ(ϕ(µ) ∩ ϕ(τ)),

where the the second equality express the fact that Ψ respects intersections and the last
equality uses both (bii) and (biii). Then

Φ(µ) ∩ Φ(τ) = Ψ(ϕ(µ) ∩ ϕ(τ)) = Ψ(ϕ(µ ∩ τ)) = Φ(µ ∩ τ)

since ϕ obviously respects intersections and dim(µ ∩ τ) ≤ k − 1.

We define γ on K(k−1) as the composition γ′ ◦ β ◦ α. Then, by the definition, γ is a
nontrivial chain map constrained by (F ,Φ). It remains to extend it to the whole complex K.

If σ is a k-simplex of K, all the k-simplices ζ in sdσ have the same value of γ′β(∂ζ)
inside convF Φ(σ). Since there is an even number of them and we work with Z2-coefficients,
γ(∂σ) has trivial homology inside convF Φ(σ). So for each such σ we may pick some
γσ ∈ Ck (convF Φ(σ);Z2) such that ∂γσ = γ(∂σ) and extend γ by setting γ(σ) := γσ. Then,
by definition, γ is a non-trivial chain map from C∗(K;Z2) to C∗(R;Z2) constrained by (F ,Φ)
and hence by (F , P).

It remains to show that if dimK ≤ 1, we can take γ that is induced by a continuous map
f : |K| → R. If dimK = 0, we map each point to a point, so the statement is obviously true.

If dimK = 1, we inspect the composition γ = γ′ ◦ β ◦ α. It maps points of K to points
in R in such a way that the homology class of γ(∂τ) inside convF (Ψ(τ)) is trivial for each
edge τ of K. But this means that the endpoints of τ get mapped to points in the same
path-component of convF (Ψ(τ)) and can be connected by an actual path. J

Z. Patáková 61:11

4 A fractional Helly theorem on surfaces

The aim is to bring the constant hf from Theorem 3 (applied to a surface S) down to three
for b = 0 and to 2b + 4 for b ≥ 1, respectively. This will give Theorem 4. The presented
method is based on the recent result of Kalai and the author [11] and allow us to significantly
decrease hf to a small value as soon as we have a finite upper bound on hf .

Before we perform the bootstrapping, we need few definitions. Let A = {A1, . . . , An}
be subsets of a surface S. Set AI =

⋂
i∈I Ai and let N(A) = {I ∈ [n] : AI 6= ∅} be the

nerve of A. We put fk(A) = |{I ∈ N(A) : |I| = k + 1}|. In words, fk counts the number if
intersecting (k + 1)-tuples from A.

The main tool for the bootstrapping is the following proposition.

I Proposition 16. Let b ≥ 0 and k ≥ 2 be integers satisfying that for b = 0, k ≥ 2 and for
b ≥ 1, k ≥ 2b+ 3, respectively. Let S be a surface. Then for every α1 ∈ (0, 1) there exists
α2 = α2(α1, b, k, S) > 0 such that for any sufficiently large family A of n open sets in S with
TC1(A) ≤ b the following holds:

fk(A) ≥ α1

(
n

k + 1

)
⇒ fk+1(A) ≥ α2

(
n

k + 2

)
.

Let b ≥ 0 and let k0 = k0(b) be an integer depending on b. Namely, we set k0(0) = 3 and
k0(b) = 2b+ 4 for b ≥ 1. Let k ≥ k0 + 1. By a successive application of the proposition we
get that if at least an α-fraction of all k0-tuples intersect, then also some α′-fraction of all
k-tuples intersect. By the (non-optimal) fractional Helly theorem (Theorem 3), we already
know that if some α′-fraction of all hf -tuples intersect, there is some β-fraction of all sets
that have a point in common. Putting k = hf proves Theorem 4.

As mentioned, the proof of Proposition 16 heavily relies on [11, Theorem 4], which can
be reformulated14, in terms of bounded topological complexity, as follows:

I Theorem 17 ([11]). Let S be a surface, b ≥ 0 an integer and let k = k(b) be an integer
depending on b, namely k(0) ≥ 2 and k(b) ≥ 2b + 3 for b ≥ 1. Let A be a finite family of
open sets in S with TC1(A) ≤ b. Then

fk+1(A) = 0 ⇒ fk(A) ≤ c1fk−1(A) + c2,

where c1 > 0, c2 ≥ 0 are constants depending only on k, b and the surface S.

Hypergraphs. A hypergraph is `-uniform if all its edges have size `. A hypergraph is
`-partite, if its vertex set V can be partitioned into ` subsets V1, . . . , V`, called classes, so
that each edge contains at most one point from each Vi. Let K`(t) denote the complete
`-partite `-uniform hypergraph with t vertices in each of its ` vertex classes.

We need the following theorem of Erdős and Simonovits [4] about super-saturated
hypergraphs (see also [13, Chapter 9.2]):

I Theorem 18 ([4]). For any positive integers ` and t and any ε > 0 there exists δ > 0 with
the following property: Let H be an `-uniform hypergraph on n vertices and with at least
ε
(
n
`

)
edges. Then H contains at least bδn`tc copies (not necessarily induced) of K`(t).

14We note that our reformulation is slightly weaker, however, we prefer a simpler exposition which is
moreover adapted to our notion of topological complexity.

SoCG 2020

61:12 Bounding Radon Number via Betti Numbers

Proof of Proposition 16. Let A = {A1, . . . , An} be a family of sets in S satisfying the
assumptions of the proposition. By Theorem 17, there exist constants c1 > 0, c2 ≥ 0
depending on b, k and S such that fk(A) ≤ c1fk−1(A) + c2 provided fk+1(A) = 0. Since
fk−1(A) ≤

(
n
k

)
, we have

fk+1(A) = 0 ⇒ fk(A) ≤ (c1 + c2)
(
n

k

)
. (2)

Let H be a (k + 1)-uniform hypergraph whose vertices and edges correspond to the
vertices and k-simplices of the nerve N of A. Set

t :=
⌈

(c1 + c2) · (k + 1)k

k!

⌉
By Erdős-Simonovits theorem (ε = α1, ` = k + 1), there is at least δn(k+1)t copies of

Kk+1(t) in H.
Since Kk+1(t) has (k + 1)t vertices and tk+1 edges, it follows by (2) that for every copy

of Kk+1(t) in H there is an intersecting subfamily of size k + 2 among the corresponding
members of A. Indeed, the implication (2) translates into checking that for k ≥ 2,

tk+1 > (c1 + c2)
(

(k + 1)t
k

)
.

On the other hand, each such intersecting (k+2)-tuple is contained in at most n(k+1)t−(k+2)

distinct copies of Kk+1(t) (this is the number of choices for the vertices not belonging to the
considered (k + 2)-tuple), and the result follows (i.e. fk+1(A) ≥ δnk+2 ≥ α2

(
n
k+2
)
). J

References
1 N. Alon, G. Kalai, J. Matoušek, and R. Meshulam. Transversal numbers for hypergraphs

arising in geometry. Adv. Appl. Math., 29:79–101, 2002.
2 D. C. Kay and E. W. Womble. Axiomatic convexity theory and relationships between the

Carathéodory, Helly, and Radon numbers. Pacific Journal of Mathematics, 38, August 1971.
doi:10.2140/pjm.1971.38.471.

3 J. De Loera, X. Goaoc, F. Meunier, and N. Mustafa. The discrete yet ubiquitous theorems of
Carathéodory, Helly, Sperner, Tucker, and Tverberg. Bulletin of the American Mathematical
Society, June 2017. doi:10.1090/bull/1653.

4 P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. Combinatorica,
3(2):181–192, 1983. doi:10.1007/BF02579292.

5 R. Fulek and J. Kynčl. The Z2-genus of Kuratowski minors. In 34th International Symposium
on Computational Geometry, volume 99 of LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2018.

6 X. Goaoc, I. Mabillard, P. Paták, Z. Patáková, M. Tancer, and U. Wagner. On generalized
Heawood inequalities for manifolds: a van Kampen–Flores-type nonembeddability result.
Israel J. Math., 222(2):841–866, 2017. doi:10.1007/s11856-017-1607-7.

7 X. Goaoc, P. Paták, Z. Patáková, M. Tancer, and U. Wagner. Bounding Helly numbers via
Betti numbers. In A journey through discrete mathematics, pages 407–447. Springer, Cham,
2017.

8 A. Holmsen, M. Kim, and S. Lee. Nerves, minors, and piercing numbers. Trans. Amer. Math.
Soc., 371:8755–8779, 2019.

9 A. Holmsen and D. Lee. Radon numbers and the fractional Helly theorem, 2019. arXiv:
1903.01068.

10 R. E. Jamison-Waldner. Partition numbers for trees and ordered sets. Pacific J. Math.,
96(1):115–140, 1981. URL: https://projecteuclid.org:443/euclid.pjm/1102734951.

https://doi.org/10.2140/pjm.1971.38.471
https://doi.org/10.1090/bull/1653
https://doi.org/10.1007/BF02579292
https://doi.org/10.1007/s11856-017-1607-7
http://arxiv.org/abs/1903.01068
http://arxiv.org/abs/1903.01068
https://projecteuclid.org:443/euclid.pjm/1102734951

Z. Patáková 61:13

11 G. Kalai and Z. Patáková. Intersection patterns of planar sets, 2019. arXiv:1907.00885.
12 F. W. Levi. On Helly’s theorem and the axioms of convexity. The Journal of the Indian Mathe-

matical Society, 15(0):65–76, 1951. URL: http://www.informaticsjournals.com/index.php/
jims/article/view/17070.

13 J. Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 2002. doi:10.1007/978-1-4613-0039-7.

14 P. Paták and M. Tancer. Embeddings of k-complexes into 2k-manifolds, 2019. arXiv:
1904.02404.

15 J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Mathematische
Annalen, 83(1):113–115, March 1921. doi:10.1007/BF01464231.

16 F. P. Ramsey. On a problem in formal logic. Proc. London Math. Soc., 30:264—-286, 1929.
17 V. P. Soltan. Vvedenie v aksiomaticheskuyu teoriyu vypuklosti. “Shtiintsa”, Kishinev, 1984. In

Russian, with English and French summaries.
18 M. L. J. van de Vel. Theory of convex structures, volume 50 of North-Holland Mathematical

Library. North-Holland Publishing Co., Amsterdam, 1993.
19 H. Whitney. The self-intersections of a smooth n-manifold in 2n-space. Annals of Mathematics,

45(2):220–246, 1944. URL: http://www.jstor.org/stable/1969265.

SoCG 2020

http://arxiv.org/abs/1907.00885
http://www.informaticsjournals.com/index.php/jims/article/view/17070
http://www.informaticsjournals.com/index.php/jims/article/view/17070
https://doi.org/10.1007/978-1-4613-0039-7
http://arxiv.org/abs/1904.02404
http://arxiv.org/abs/1904.02404
https://doi.org/10.1007/BF01464231
http://www.jstor.org/stable/1969265

Barycentric Cuts Through a Convex Body
Zuzana Patáková
Computer Science Institute, Charles University, Prague, Czech Republic
IST Austria, Klosterneuburg, Austria
zuzka@kam.mff.cuni.cz

Martin Tancer
Department of Applied Mathematics, Charles University, Prague, Czech Republic
ReplaceWithMySurname@kam.mff.cuni.cz

Uli Wagner
IST Austria, Klosterneuburg, Austria
uli@ist.ac.at

Abstract

Let K be a convex body in Rn (i.e., a compact convex set with nonempty interior). Given a point p
in the interior of K, a hyperplane h passing through p is called barycentric if p is the barycenter of
K ∩ h. In 1961, Grünbaum raised the question whether, for every K, there exists an interior point p
through which there are at least n+ 1 distinct barycentric hyperplanes. Two years later, this was
seemingly resolved affirmatively by showing that this is the case if p = p0 is the point of maximal
depth in K. However, while working on a related question, we noticed that one of the auxiliary
claims in the proof is incorrect. Here, we provide a counterexample; this re-opens Grünbaum’s
question.

It follows from known results that for n ≥ 2, there are always at least three distinct barycentric
cuts through the point p0 ∈ K of maximal depth. Using tools related to Morse theory we are able
to improve this bound: four distinct barycentric cuts through p0 are guaranteed if n ≥ 3.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases convex body, barycenter, Tukey depth, smooth manifold, critical points

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.62

Related Version A full version of this paper is available at [19], https://arxiv.org/abs/2003.
13536.

Funding Zuzana Patáková: The research stay at IST Austria is funded by the project Improvement
of internationalization (CZ.02.2.69/0.0/0.0/17_050/0008466) in the field of research and development
at Charles University, through the support of quality projects MSCA-IF.
Martin Tancer : Supported by the GAČR grant 19-04113Y and by the Charles University projects
PRIMUS/17/SCI/3 and UNCE/SCI/004.

Acknowledgements We thank Stanislav Nagy for introducing us to Grünbaum’s questions, for useful
discussions on the topic, for providing us with many references, and for comments on a preliminary
version of this paper. We thank Jan Kynčl and Pavel Valtr for letting us know about a more general
counterexample they found, and Roman Karasev for pointing us to related work [15, 1] and for
comments on a preliminary version of this paper. Finally, we thank an anonymous referee for many
comments on a preliminary version of the paper which, in particular, yielded an important correction
in Section 4.

© Zuzana Patáková, Martin Tancer, and Uli Wagner;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 62; pp. 62:1–62:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3975-1683
mailto:zuzka@kam.mff.cuni.cz
mailto:ReplaceWithMySurname@kam.mff.cuni.cz
https://orcid.org/0000-0002-1494-0568
mailto:uli@ist.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.62
https://arxiv.org/abs/2003.13536
https://arxiv.org/abs/2003.13536
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Barycentric Cuts Through a Convex Body

1 Introduction

Grünbaum’s questions. Let K be a convex body in Rn (i.e., compact convex set with
nonempty interior). Given an interior point p ∈ K, a hyperplane h passing through p is
called barycentric if p is the barycenter (also known as the centroid) of the intersection K ∩h.
In 1961, Grünbaum [11] raised the following questions (see also [12, §6.1.4]):

I Question 1. Does there always exist an interior point p ∈ K through which there are at
least n+ 1 distinct barycentric hyperplanes?

I Question 2. In particular, is this true if p is the barycenter of K?

Seemingly, Question 1 was answered affirmatively by Grünbaum himself [12, §6.2] two years
later, by using a variant of Helly’s theorem to show that there are at least n+ 1 barycentric
cuts through the point of K of maximal depth (we will recall the definition below). The
assertion that Question 1 is resolved has also been reiterated in other geometric literature [6,
A8]. However, when working on Question 2, which remains open, we identified a concrete
problem in Grünbaum’s argument for the affirmative answer for the point of the maximal
depth. The first aim of this paper is to point out this problem, which re-opens Question 1.

Depth, depth-realizing hyperplanes, and the point of maximum depth. In order to
describe the problem with Grünbaum’s argument, we need a few definitions. Let p be
a point in K. For a unit vector v in the unit sphere Sn−1 ⊆ Rn, let hv = hpv := {x ∈
Rn : 〈v, x − p〉 = 0} be the hyperplane orthogonal to v and passing through p, and let
Hv = Hp

v := {x ∈ Rn : 〈v, x− p〉 ≥ 0} be the half-space bounded by hv in the direction of v.
Given p, we define the depth function δp : Sn−1 → [0, 1] via δp(v) = λ(Hv∩K)/λ(K), where λ
is the Lebesgue measure (n-dimensional volume) in Rn. The depth of a point p in K is defined
as depth(p,K) := infv∈Sn−1 δp(v). It is easy to see1 that δp is a continuous function, therefore
the infimum in the definition is attained at some v ∈ Sn−1. Any hyperplane hv through p
such that depth(p,K) = δp(v) is said to realize the depth of p. Finally, a point of maximal
depth in K is a point p0 in the interior of K such that depth(p0,K) := max depth(p,K)
where the maximum is taken over all points in the interior of K.2 The point of maximal
depth always exists (by compactness of Sn−1) and it is unique (two such points would yield
a point of larger depth on the segment between them).

Many depth-realizing hyperplanes? Grünbaum’s argument has two ingredients. The first
is the following result, known as Dupin’s theorem [9], which dates back to 1822:

I Theorem 3 (Dupin’s Theorem). If a hyperplane h through p realizes the depth of p then it
is barycentric with respect to p.

1 Given v, v′ ∈ Sn−1, λ(Hv ∩K) and λ(Hv′ ∩K) differ by at most λ((Hv∆Hv′)∩K) where ∆ is the sym-
metric difference. For ε > 0 and v and v′ sufficiently close, λ((Hv∆Hv′)∩K) < ελ(K) as K is bounded.

2 We remark that our depth function slightly differs from the function f(H, p) used by Grünbaum [12,
§6.2]. However, the point of maximal depth coincides with the “critical point” in [12] and hyperplanes
realizing the depth for p0 coincide with the ‘hyperplanes through the critical point dividing the volume
of K in the ratio F2(K)’.

Z. Patáková, M. Tancer, and U. Wagner 62:3

Grünbaum refers to Blaschke [2] for a proof; for a more recent reference, see [22, Lemma 2].3
A stronger statement will be the content of Proposition 11 below.

The second ingredient in Grünbaum’s argument is the following assertion (which in [12,
§6.2] is deduced using a variant of Helly’s theorem, without providing the details).

I Postulate 4. If p0 is the point of K of maximal depth, then there are at least n+ 1 distinct
hyperplanes through p0 that realize the depth.

If correct, Postulate 4, in combination with Dupin’s theorem, would immediately imply an
affirmative answer to Question 1. However, it turns out that this step is problematic. Indeed,
there is a counterexample to Postulate 4:

I Proposition 5. Let K = T × I ⊆ R3 where T is an equilateral triangle and I is a line
segment (interval) orthogonal to T , and let p0 ∈ K be the point of maximal depth (which in
this case coincides with the barycenter of K). Then there are only 3 hyperplanes realizing the
depth of p0.

I Remark 6. We believe that Proposition 5 can be generalized to higher dimensions in the
sense that, for every n, there are only n depth-realizing hyperplanes through the point of
maximal depth in ∆× I ⊆ Rn, where ∆ is a regular (n− 1)-simplex. However, we did not
attempt to work out the details carefully, because Kynčl and Valtr [16] informed us about
stronger counterexamples: For every n, there exists a convex body K ∈ Rn such that there
are only 3 depth-realizing hyperplanes through the point of maximal depth in K. Therefore,
we prefer to keep the proof of Proposition 5 as simple as possible and focus on dimension 3.
I Remark 7. We emphasize that Proposition 5 does not preclude an affirmative answer to
Grünbaum’s Question 1 (nor to Question 2), since T × I contains infinitely many distinct
barycentric hyperplanes through p0. Thus Grünbaum’s questions remain open.

We also remark that a weakening of Postulate 4 is known to be true (see the ‘Inverse
Ray Basis Theorem [20], using the proof from [8]):4,5

I Proposition 8. Let U ⊆ Sn−1 be the set of vectors u such that δp0(u) = depth(p0,K).
Then 0 ∈ convU .

In the special case that U is in general position, the cardinality of U is at least n + 1
(otherwise dim convU < n and convU would not contain the origin, by general position),
which proves Postulate 4 in this special case. However, U need not be always in general
position. For example, in the case K = T × I in R3 = R2 × R of Proposition 5, the set U
contains three vectors in the plane through the origin parallel with T . This is also the way
we arrived at the counterexample from Proposition 5.

Inverse Ray Basis Theorem immediately implies that three barycentric hyperplanes are
guaranteed in dimension at least 2.

3 The idea of the proof is simple: For contradiction assume that h realizes the depth of p but that the
barycenter b of K ∩ h differs from p. Let v ∈ Sn−1 be such that h = hv and depth(p,K) = δp(v).
Consider the affine (d− 2)-space ρ in h passing through p and perpendicular to the segment bp. Then by
a small rotation of h along ρ we can get hv′ such that δp(v′) < δp(v) which contradicts that h realizes
the depth of p. Of course, it remains to check the details.

4 We remark that the second condition in the statement of the result in [20] is equivalent to the statement
that 0 ∈ convU , in our notation.

5 Sketch of the inverse ray basis theorem: if there is a closed hemisphere C ⊆ Sn−1 which does not
contain a point of U , let v be the center of C. Then a small shift of p0 in the direction of v yields a
point of larger depth, a contradiction.

SoCG 2020

62:4 Barycentric Cuts Through a Convex Body

I Corollary 9. Let K be a convex body in Rn where n ≥ 2 and p0 be the point of maximal
depth of K. Then there at least three distinct barycentric hyperplanes through p0.

Proof. Let U be the set from Proposition 8. Then, 0 ∈ convU and U ⊆ Sn−1 imply together
|U | ≥ 2. However, if |U | = 2, then U = {u,−u} for some u ∈ Sn−1. This necessarily
means depth(p0,K) = δp0(u) = δp0(−u) = 1/2 as δp0(u) + δp0(−u) = 1. Then for any other
v ∈ Sn−1 we get min{δp0(v), δp0(−v)} ≥ 1/2 which implies δp0(v) = δp0(−v) = 1/2 as well.
Therefore v ∈ U contradicting |U | = 2.) J

Four barycentric cuts via critical points of C1 functions. Using tools related to Morse
theory, we are able to obtain one more barycentric hyperplane, provided that n ≥ 3.

I Theorem 10. Let K be a convex body in Rn where n ≥ 3 and p0 be the point of maximal
depth of K. Then there are at least four distinct hyperplanes h such that p0 is the barycenter
of K ∩ h.

Here we should also mention related work of Blagojević and Karasev [15, Theorem 3.3]
and [1, Theorem 1.13]. They show that there are at least µ(n) barycentric hyperplanes
passing through some interior point of K (not necessarily the point of maximal depth),
where µ(n) := minf maxp∈Sn |f−1(p)| is the minimum multiplicity of any continuous map
f : RPn → Sn (here, RPn is the n-dimensional real projective space). By calculations with
Stiefel–Whitney classes, they obtain lower bounds for µ(n) that depend in a subtle (and
non-monotone) way on n (see [15, Remark 1.3]). For example, µ(n) ≥ n

2 + 1 if n = 2` − 2,
but for values of n of the form n = 2` − 1 (e.g., for n = 3) their methods only give a lower
bound of µ(n) ≥ 2.

Our argument in the proof of Theorem 10 is, in certain sense, tight. This is discussed in
the full version [19, Section 5].

In what follows, we view Sn−1 as a smooth manifold with its standard differential structure.
A key tool in the proof of Theorem 10 is the following close connection between barycentric
hyperplanes and the critical points of the depth function:

I Proposition 11. Let K ⊆ Rn be a convex body and p be a point in the interior of K. Then
the corresponding depth function δp : Sn−1 → R is a C1 function. In addition, v ∈ Sn−1 is
a critical point of δp (that is, Dδp(v) = 0, where Df(v) denotes the total derivative of a
function f at v) if and only if hv is barycentric.

As mentioned earlier, Proposition 11 generalizes Dupin’s theorem. Indeed, if h = hv
realizes the depth, then v is a global minimum of δp, hence h is barycentric by Proposition 11.

In the proof, we closely follow computations by Hassairi and Regaieg [13] who stated an
extension of Dupin’s theorem to absolutely continuous probability measures. As explained
in [18] (see Proposition 29, Example 7, and the surrounding text in [18]), the extension of
Dupin’s theorem does not hold in the full generality stated in [13], and it requires some
additional assumptions. However, a careful check of the computations of Hassairi and
Regiaeg [13] in the special case of uniform probability measures on convex bodies reveals not
only Dupin’s theorem but all items of Proposition 11.

Regarding the proof of Theorem 10, the Inverse Ray Basis Theorem (Proposition 8) and
Corollary 9 imply that δp0 has at least three global minima. This gives three barycentric
hyperplanes via Proposition 11. Furthermore, we also get three maxima of δ, as a maximum
appears at v, if and only if a minimum appears at −v (note that hv = h−v). However,
it should not happen for a C1 function on Sn−1 that it has only such critical points. We
will show that there is at least one more critical point, which yields another barycentric
hyperplane via Proposition 11. Namely, we show the following proposition.

Z. Patáková, M. Tancer, and U. Wagner 62:5

I Proposition 12. Let n ≥ 2 and let f : Sn → R be a C1 function. Let m1, . . . ,mk be (not
necessarily strict) local minima or maxima of f , where k ≥ 3. Then there exists u ∈ Sn,
different from m1, . . . ,mk, such that Df(u) = 0.

This finishes the proof of Theorem 10 modulo Propositions 11 and 12. (Proposition 12 is
applied with k = 6.) The main idea beyond the proof of Proposition 12 is that if we have
at least three local minima or maxima, then we should also expect a saddle point (unless
there are infinitely many local extrema). This would be an easy exercise for Morse functions
(which are in particular C2) via Morse theory (actually, the Morse inequalities would provide
even more critical points). Working with C1 functions adds a few difficulties, but all of them
can be overcome.

Relation to probability and statistics. The depth function, as we define it above is a
special case of the (Tukey) depth of a probability measure in Rd, a well-known notion
in statistics [23, 7, 8]. More precisely, given a probability measure P on Rd and p ∈ Rd,
we can define depth(p,P) := infv∈Sn−1 P(Hv). Then depth(p,K) is a special case of the
uniform probability measure on a convex body K, i.e., P(A) := λ(A)/λ(K) for A Lebesgue-
measurable. We refer to [18] for an extensive recent survey making many connections between
the depth function in statistics and geometric questions.

There is a vast amount of literature, both in computational geometry and statistics,
devoted to computing the depth function in various settings (which is not easy in general).
We refer, for example, to [21, 4, 3, 5, 10, 17] and the references therein. From this point of
view, understanding the minimal possible number of critical points of the depth function is
a quite fundamental property of the depth function. Via Proposition 11, this is essentially
equivalent to Grünbaum’s questions.

Organization. Proposition 5 is proved in Section 2; Proposition 11 is proved in Section 3;
and Proposition 12 is proved in Section 4.

2 Few hyperplanes realizing the depth

In this section we prove Proposition 5, assuming Proposition 11.

Preliminaries. Let us recall that given a bounded measurable set Y ⊆ Rn of positive
measure, the barycenter of Y is defined as

cenY =
∫
Rn xχY (x)dx∫
Rn χY (x)dx

= 1
λ(Y)

∫
Y

xdx (1)

where χY is the characteristic function and the integral is considered as a vector in Rn.
If Y splits as a disjoint union Y = Y1 t · · · t Y` of sets of positive measure then

cenY = 1
λ(Y)

(∑̀
i=1

λ(Yi) cenYi

)
(2)

which easily follows from (1). If h is a hyperplane, and Y ⊆ h has positive (n−1)-dimensional
Lebesgue measure inside h, then the formula for the barycenter is analogous to (1):

cenY =
∫
h
xχY (x)dλn−1(x)∫
h
χY (x)dλn−1(x)

= 1
λn−1(Y)

∫
Y

xdλn−1(x) (3)

where λn−1 denotes the (n− 1)-dimensional Lebesgue measure on h in this formula.

SoCG 2020

62:6 Barycentric Cuts Through a Convex Body

If h ⊆ Rn is a hyperplane whose orthogonal projection π(h) onto Rn−1 × {0} (the first
n− 1 coordinates) equals Rn−1 × {0}, then cen π(Y) = π(cenY).

Proof of Proposition 5. Let T ⊆ R2 be an equilateral triangle with cen(T) = 0 and I =
[−1, 1]. Then cen(K) = 0. In addition, because the point of maximal depth p0 is unique and
invariant under isometries of K, we get p0 = 0.

We will use the following notation: a, b, c are the vertices of T and α, β, and γ are lines
perpendicular to T passing through a, b, and c respectively.

Now let h be a hyperplane passing through 0. We want to find out whether h realizes the
depth. We will consider three cases:

(i) h is perpendicular to T ;
(ii) h is not perpendicular to T and all intersection points of h with α, β, and γ belong

to K;
(iii) h is not perpendicular to T and at least one of the intersection points of h with α, β,

and γ does not belong to K.

In case (i), we will find three candidates for hyperplanes realizing the depth. Then we
show that there is no hyperplane realizing the depth in cases (ii) and (iii), which shows that
only the three candidates from case (i) may realize the depth. They realize the depth because
we have at least three hyperplanes realizing the depth by the discussion in the introduction
above Theorem 10.

Let us focus on case (i). This is the same as considering the lines realizing the depth
in an equilateral triangle. It is easy to check and well known (see e.g. [20, §5.3]) that the
depth of the equilateral triangle is 4/9 and it is realized by lines parallel with the sides of
the triangle. It follows that we can reach depth 4/9 in K by hyperplanes perpendicular to
T and parallel with the three sides of T , and all other hyperplanes from case (i) bound a
portion of K strictly larger than 4/9 on each of their sides.

Case (ii) is very easy: It is easy to compute that each hyperplane of type (ii) splits K
into two parts of equal volume 1/2. Therefore, no such hyperplane realizes the depth.

Finally, we investigate case (iii). Here we show that no hyperplane h of case (iii) is
barycentric. Therefore, by Theorem 3, it cannot realize the depth either.

We aim to show that 0 is not the barycenter of h∩K. Let U be the orthogonal projection
of h ∩K to the triangle T . Equivalently, we want to show that 0 is not the barycenter of
U . We also realize that U = T ∩ S, where S is an infinite strip obtained as the orthogonal
projection of h ∩ (R2 × I) to R2 × {0}; see Figure 1.

Let s be the center line of S. This is the line where h meets the plane of T . We remark
that 0 belongs to s and in addition U is a proper subset of T (otherwise we would be in
case (ii)). We again distinguish three cases:

(a) none of the vertices a, b, c belongs to U ,
(b) one of the vertices a, b, c belongs to U ,
(c) two of the vertices a, b, c belong to U .

In all the cases we will show cenU 6= cenT . In case (a), s splits one of the vertices of T
from the other two. Without loss of generality, a is on one side of s and b and c are on the
other side. The center line s also splits U into two parts. Let W ′ be the (closed) part on the
side of a, W ′′ be the mirror image of W ′ along S and W := W ′ ∪W ′′. Note that W is a
proper subset of U ; indeed, since cenT = 0 and T is equilateral, the line s splits the segment
ab closer to b and the segment ac closer to c. By the symmetry of W , the barycenter cenW
belongs to the line s. However, this means that the barycenter of U is not on s; it is on the
bc side of s. Formally, this follows from (2) for the decomposition U = W t (U \W).

Z. Patáková, M. Tancer, and U. Wagner 62:7

a b

c

a b

c

a

W

S

T

s

Ta
Tb

S

U
κ

a
b

c

s

Ta

S

U

s

(a) (c)(b)

Figure 1 Three cases for the intersection U = T ∩ S.

In case (b), without loss of generality, U contains c. Then T \ U is the union of two
triangles Ta and Tb. Let κ be the line parallel with ab passing through 0. Without loss of
generality, up to rotating T , κ is the x-axis. From (2), we get 0 = cenT = 1

λ(T) (λ(U) cenU +
λ(Ta) cenTa + λ(Tb) cenTb). The barycenters cenTa and cenTb are below the line κ or on it.
At least one of these barycenters is strictly below (cenTa is on κ if and only if c belongs to
the closure of Ta, and similarly with Tb). Therefore, cenU must be strictly above κ if the
above equality is supposed to hold.

In case (c), it is even more obvious that cenU 6= cenT . Without loss of generality U
contains b and c. Then T \ U is a triangle Ta. Since both T and Ta are convex and Ta does
not contain cenT , we have cenTa 6= cenT . Therefore cenT 6= cenU follows from (2) for the
decomposition T = U t Ta. J

Bipyramid over a triangle. In R3, we have a candidate example of a convex body, namely
the regular bipyramid B over an equilateral triangle T , such that there are exactly four
barycentric hyperplanes (with respect to the barycenter of B, which coincides with the point
of maximal depth in this case). On the one hand, this is not surprising, because this is
n+ 1 hyperplanes, where n = 3 is the dimension of the ambient space. On the other hand,
if this is true, then it answers negatively, in dimension 3, a question from [6, A8], whether
2n − 1 barycentric hyperplanes always exist. More concretely, we conjecture that the only
barycentric hyperplanes are the following: three planes perpendicular to T which meet T
in lines realizing the depth of T (these would be the hyperplanes realizing the depth), and
the plane of T (this is the one extra plane). Unfortunately, in this case, it is not so easy to
analyze the depth function as in the case of T × I.

3 Critical points of the depth function

Here we prove Proposition 11. We follow [13] with a slightly adjusted notation and adding a
few more details here and there.

Proof of Proposition 11. Without loss of generality, we can assume that the point p coincides
with the origin and we suppress it from the notation. That is, we write δ for the depth
function instead of δp.

SoCG 2020

62:8 Barycentric Cuts Through a Convex Body

Let e1, . . . , en be the canonical basis of Rn and let

Sn−1
j+ = {u =

n∑
i=1

uiei ∈ Sn−1;uj > 0} and Sn−1
j− = {u =

n∑
i=1

uiei ∈ Sn−1;uj < 0}

be the relatively open hemispheres of Sn−1 with poles at ej and −ej , for j ∈ [n]. These sets
form an atlas on Sn−1.

Let us consider j ∈ [n]. Given x ∈ Rn and i ∈ [n], xi denotes the ith coordinate of x, that
is x =

∑n
i=1 xiei. With a slight abuse of the notation, we identify Rn−1 with the subspace of

Rn spanned by e1, . . . , ej−1, ej+1, . . . , en. Let x̂ :=
∑n
i=1,i6=j xiei ∈ Rn−1. Following [13] we

consider the diffeomorphisms u 7→ β(u) = − û
uj

between Sn−1
j+ and Rn−1 or between Sn−1

j−
and Rn−1. We will check the required properties of δ locally at each of the 2n hemispheres
Sn−1
j+ or Sn−1

j− (with respect to the aforementioned diffeomorphisms). Given that all cases are
symmetric, it is sufficient to focus only on the Sn−1

n+ case. That is, from now on, we assume
that j = n and Rn−1 is spanned by the first (n − 1) coordinates in the convention above.
Given a point x ∈ Rn, we also write it as x = (x̂;xn).

Now, for y ∈ Rn−1 we consider the hyperplane h′y in Rn containing the origin and
defined by h′y = {(x̂;xn) ∈ Rn : xn = 〈y, x̂〉}. Note that if u ∈ Sn−1

j+ , then h′β(u) =
{x ∈ Rn : 〈x, u〉 = 0}. In particular, since p is the origin, h′β(u) coincides with hu used
in the introduction for definition of the depth function. This also means that the map
y 7→ h′y provides a parametrization of a family of those hyperplanes containing the origin
which do not contain en. We also set H ′y to be the positive halfspace bounded by h′y:
H ′y = {(x̂;xn) ∈ Rn : xn ≥ 〈y, x̂〉}. Again, if u ∈ Sn−1

j+ , then H ′β(u) coincides with Hu from
the introduction (here we use un > 0).

Now, we consider the map f : Rn−1 → R defined by

f(y) = λ(H ′y ∩K) =
∫
Rn−1

∫ ∞
〈y,x̂〉

χK(x̂;xn)dxndx̂, (4)

where χK is the characteristic function of K. When y = β(u) for some u ∈ Sn−1
j+ , then

f(β(u)) = δ(u). Therefore, given that the map u→ β(u) is a diffeomorphism, it is sufficient
to prove that f is a C1 function and that β(v) ∈ Rn−1 is a critical point of f if and only if
h′β(v) = hv is barycentric.

The aim now is to differentiate f(y) with respect to y. We will show that the total
derivative equals

Df(y) = −
∫
Rn−1

x̂ · χK(x̂; 〈y, x̂〉)dx̂ (5)

considering the integral on the right-hand side as a vector. Deducing (5) is a quite routine
computation skipped in [13].6 However, this is the step in the proof of Theorem 3.1 in [13]
which reveals that some extra assumptions in [13] are necessary. Thus we carefully deduce (5)
at the end of this proof for completeness.

We will also see that all partial derivatives of f are continuous which means that f is a C1

function which is one of our required conditions. Now we want to show that Df(β(v)) = 0 if
and only if hv is barycentric.

6 When compared with formula (3.1) in [13], we obtain a different sign in front of the integral. This is
caused by integration over the opposite halfspace.

Z. Patáková, M. Tancer, and U. Wagner 62:9

First, assume that Df(β(v)) = 0. This gives

0 =
∫
Rn−1 x̂ · χK(x̂; 〈β(v), x̂〉)dx̂∫
Rn−1 χK(x̂; 〈β(v), x̂〉)dx̂

(6)

which means that 0 is the barycenter of K ∩ h′β(v) from the definition of h′β(v). On the other
hand, if 0 is the barycenter of K ∩ h′β(v), then we deduce (6) which implies Df(β(v)) = 0.

It remains to show (5). For this purpose, we compute partial derivatives ∂
∂yk

f(y),
1 ≤ k ≤ n− 1. In the following computations, recall that ek stands for the standard basis
vector for the kth coordinate and let

∫ b
a

:= −
∫ a
b

if a > b. We get

∂

∂yk
f(y) = lim

t→0

1
t

∫
Rn−1

(∫ ∞
〈y+tek,x̂〉

χK(x̂;xn)dxn −
∫ ∞
〈y,x̂〉

χK(x̂;xn)dxn

)
dx̂

= lim
t→0

∫
Rn−1

1
t

∫ 〈y,x̂〉
〈y,x̂〉+txk

χK(x̂;xn)dxndx̂.

Let y, x̂ ∈ Rd−1 be such that (x̂; 〈y, x̂〉) 6∈ ∂K. Then we get

lim
t→0

1
t

∫ 〈y,x̂〉
〈y,x̂〉+txk

χK(x̂;xn)dxn = −xkχK(x̂; 〈y, x̂〉),

because (x̂; 〈y, x̂〉) 6∈ ∂K implies that the function χK(x̂;xn) as a function of xn is constant
on the interval (〈y, x̂〉− |txk|, 〈y, x̂〉+ |txk|) for small enough |t|. Therefore, by the dominated
convergence theorem,

∂

∂yk
f(y) =

∫
Rn−1

−xkχK(x̂; 〈y, x̂〉)dx̂. (7)

For fixed y, the condition (x̂; 〈y, x̂〉) 6∈ ∂K holds for almost every x̂ because (x̂; 〈y, x̂〉) ∈ hy
and hy passes through the interior of K (through the origin). By another application of
dominated convergence theorem, we realize that the right hand side of (7) is continuous in y
(this time, we consider a sequence yi → y and we observe that χK(x̂; 〈yi, x̂〉)→ χK(x̂; 〈y, x̂〉)
for almost every x̂). Therefore the total derivative of f at any y exists and (7) gives the
formula (5). J

I Remark 13. In the last paragraph of the proof above we crucially use the convexity of K.
Without convexity, there is a compact nonconvex polygon K ′ ⊆ R2, with 0 in the interior,
such that there is y with the property that the set of those x̂ for which (x̂; 〈y, x̂〉) ∈ ∂K ′ has
positive measure; see Figure 2. In fact, even (5) does not hold for K ′. Here we took K ′ to be
the polygon from Example 7 of [18], and we refer the reader to that paper for more details.

4 One more critical point

In this section, we prove Proposition 12. Given a manifold M and a continuous function
f : M → R and s ∈ R we define the level set Ls := {w ∈ M : f(w) = s}. In the proof of
Proposition 12 we will need that the level sets are well-behaved in the neighborhoods of
points u for which the total derivative Df(u) is nonzero.

I Proposition 14. Let n ≥ 1, f : Rn → R be a C1 function and u ∈ Rn be such that
Df(u) 6= 0. Then there is a neighborhood N(u) of u such that for every v, w ∈ N(u) if
f(v) = f(w), then v and w can be connected with a path within the level set Lf(v). (It is
allowed that this path leaves N(u) provided that it stays in Lf(v).)

SoCG 2020

62:10 Barycentric Cuts Through a Convex Body

h′
y

0

K ′

Figure 2 A nonconvex polygon K′ and y such that the total derivative of f does not exist at y.

Proof. Without loss of generality assume that ∂f
∂xn

(u) > 0, otherwise we permute the
coordinates and/or swap xn and −xn. Consistently with the previous section, given x ∈ Rn,
we write x = (x̂, xn) where x̂ ∈ Rn−1 and xn ∈ R. Now we consider the C1 function
F : Rn−1 ×R×R→ R defined as F (x̂, t, xn) := f(x̂, xn)− t. Note that ∂F

∂xn
= ∂f

∂xn
. We also

observe that F (û, f(u), un) = 0. Therefore, by the implicit function theorem, there is an
open neighborhood N ′ of (û, f(u)) in Rn−1 × R such that there is a C1 function g : N ′ → R
with g(û, f(u)) = un and that F (v̂, t, g(v̂, t)) = 0 for any (v̂, t) ∈ N ′. From the definition of
F this gives

f(v̂, g(v̂, t)) = t. (8)

By possibly restricting the neighborhood to a smaller set, we can assume that N ′ is the
Cartesian product of a neighborhood N ′(û) of û in Rn−1 and N ′(f(u)) of f(u) in R, and that
both N ′(û) and N ′(f(u)) are open balls. Moreover, we can assume that ∂F

∂xn
(v̂, t, vn) > 0 for

any (v̂, t, vn) ∈ N ′ ×N ′′(un) where N ′′(un) is some neighborhood of un in R, again a ball.
Now we possibly further restrict N ′(û) and N ′(f(u)) so that g(v̂, t) belongs to N ′′(un) for
any (v̂, t) ∈ N ′.

The condition on the partial derivative of F implies that for every (v̂, t) ∈ N ′ the equation
F (v̂, t, xn) = 0 has at most one solution xn ∈ N ′′(un). Therefore it has a unique solution
xn = g(v̂, t). In other words we get:

If f(v̂, xn) = t, then xn = g(v̂, t). (9)

Now, we define N(u) := Ψ−1(N ′) where Ψ: Rn−1 × R → Rn−1 × R is defined as
Ψ(v) = (v̂, f(v)) for any v ∈ Rn−1 × R. In particular (v̂, f(v)) belongs to N ′ for any
v ∈ N(u).

Let t := f(v) = f(w). From (9) we get vn = g(v̂, t) and wn = g(ŵ, t). Let us consider an
arbitrary path P : [0, 1]→ N ′(û) connecting v̂ and ŵ. Let us “lift” P to a path Pt : [0, 1]→
Rn−1 × R given by Pt(s) := (P (s), g(P (s), t)). This is a path connecting v and w. We
will be done once we show Pt([0, 1]) ⊆ Lt. This means that we are supposed to show that
f(P (s), g(P (s), t)) = t for every s ∈ [0, 1] which follows from (8). J

Let x ∈ Rn and ρ > 0, by B(x, ρ) ⊆ Rn we denote the compact ball of radius ρ centered
in x with respect to the standard Euclidean metric.

I Lemma 15. Let f : Rn → R be a C1 function, let x ∈ Rn and let ζ, ρ > 0. Assume that
‖Df(u)‖ ≥ ζ for every u ∈ B(x, ρ). Then there is v ∈ B(x, ρ) such that f(v) ≥ f(x) + ζρ

2 .

The proof is given in the full version [19]; intuitively, we follow the gradient to find v.

Z. Patáková, M. Tancer, and U. Wagner 62:11

Figure 3 If we are in mountains and we want to hike from one peak to another without losing
too much altitude, then the best way is to pass through a saddle point (see the upper path in blue).
If we do not pass very close to a saddle point, then the positive gradient allows us to improve the
path (see the lower path in red).

Proof of Proposition 12. First, we can assume that all local extrema m1, . . . ,mk are strict.
Indeed, if some of them is not strict, saym1, then we can find u 6= m1, . . . ,mk with Df(u) = 0
in a neighborhood of m1.

Next, because k ≥ 3, there are at least two local maxima or two local minima among
m1, . . . ,mk. Without loss of generality, m1 and m2 are local maxima.

Now, let us consider a path γ : [0, 1] → Sn such that γ(0) = m1 and γ(1) = m2.
Let minf (γ) := min{f(γ(t)) : t ∈ [0, 1]} (the minimum exists by compactness) and let
s := sup(minf (γ)) where the supremum is taken over all γ as above.

Before we proceed with the formal proof, let us sketch the main idea of the proof; see
also Figure 3. For contradiction assume that Df(u) 6= 0 for every u ∈ Sn \ {m1, . . . ,mk}.
Consider γ such that minf (γ) is very close to s. We will be able to argue that we can
assume that such γ is not close to any of the other extrema m3, . . . ,mk. This guarantees
that ‖Df(γ(t))‖ is bounded from 0 for every t ∈ [0, 1] except the cases when γ(t) is close to
m1 or m2. Using Lemma 15, we will be able to modify γ to γ′ with minf (γ′) > s obtaining
a contradiction with the definition of s.

In further consideration, we consider the standard metric on Sn obtained by the standard
embedding of Sn into Rn+1 and restricting the Euclidean metric on Rn+1 to a metric on
Sn. For every i ∈ [k], we pick two closed metric7 balls Bi and B′i centered in mi. Namely,
Bi is chosen so that mi is a global extreme on Bi. We also assume that the balls Bi are
pairwise disjoint. Next, we distinguish whether mi is a local maximum or minimum. If
mi is a local maximum, let us define ai := max{f(x) : x ∈ ∂Bi}. Note that f(mi) > ai as
mi is a global maximum on Bi. Then we pick a closed ball B′i centered in mi inside Bi so
that f(x) > ai for every x ∈ B′i. If mi is a local minimum, we proceed analogously. We set
ai := min{f(x) : x ∈ ∂Bi} and we pick B′i so that f(x) < ai for every x ∈ B′i. For later use,
we also define a′i := min{f(x) : x ∈ B′i} for i ∈ {1, 2}. Note that a′i > ai.

Given a path γ connecting m1 and m2, we say that γ is avoiding if it does not pass
through the interior of any of the balls B′3, . . . , B′k.

7 By a metric ball we mean a ball with a given center and radius. This way, we distinguish a metric ball
from a general topological ball.

SoCG 2020

62:12 Barycentric Cuts Through a Convex Body

B Claim 16. Let γ be a path connecting m1 and m2. Then there is an avoiding path γ̄
connecting m1 and m2 such that minf (γ̄) ≥ minf (γ).

Proof. Assume that γ enters a ball B′i for i ∈ {3, . . . , k}. Let us distinguish whether mi is a
local maximum or minimum.

First assume that mi is a local maximum. Then minf (γ) ≤ ai because γ has to pass
through ∂Bi. By a homotopy, fixed outside the interior of B′i we can assume that γ avoids
mi (here we use n ≥ 2); see, e.g., the proof of Proposition 1.14 in [14] how to perform this
step.8 In addition, by further homotopy fixed outside the interior of B′i we can modify γ so
that it avoids the interior of B′i (the second homotopy pushes γ in direction away from mi).
This does not affect minf (γ) because f(x) > ai for every x ∈ B′i.

Next let us assume that mi is a local minimum. Then minf (γ) < ai because γ has to
pass through ∂B′i (this is not a symmetric argument when compared with the previous case).
Modify γ by analogous homotopies as above; however, this time with respect to Bi (so that γ
completely avoids the interior of Bi). Because minf (γ) < ai and f(x) ≥ ai for x ∈ ∂Bi, the
minimum of γ cannot decrease by these modifications. By performing these modifications
for all B′i when necessary, we get the required γ̄. C

Now, let us consider a diffeomorphism ψ : Sn \ {mk} → Rn given by the stereographic
projection (in particular, it maps closed balls avoiding mk to closed balls). Let g : Rn → R
be defined as g := f ◦ ψ−1. Let ni := ψ(mi) for i ∈ [k − 1]. Once we find v ∈ Rn,
v 6= n1, . . . , nk−1 such that Dg(v) = 0, then u := ψ−1(v) is the required point with
Df(u) = 0. Note that n1, n2 are still local maxima of g and n3, . . . , nk−1 are local maxima
or minima. We also set Di := ψ(Bi) and D′i := ψ(B′i) for i ∈ [k−1] and Ck := ψ(Bk \{mk}),
C ′k := ψ(B′k \ {mk}). The sets Di and D′i are closed (metric) balls centered in ni whereas Ck
and C ′k are complements of open (metric) balls in Rn. Let K be the compact set obtained
from Rn by removing the interiors of D′1, . . . , D′k−1, C

′
k. Let us fix small enough η > 0 such

that the closed η-neighborhood Kη of K avoids n1, . . . , nk−1. We will also use the notation
Kη/3 for the closed η

3 -neighborhood of K. See Figure 4.
Assume, for contradiction, that Kη does not contain v with Dg(v) = 0. Because Kη is

compact and g is C1, there is ζ > 0 such that ‖Dg(w)‖ ≥ ζ for every w ∈ Kη.
For every w ∈ Kη/3 let N(w) be the neighborhood given by Proposition 14 (the neigh-

borhood is considered in the whole Rn not only in Kη/3). By possibly restricting N(w) to
smaller sets, we can assume that each N(w) is open and fits into a ball of radius 2

3η. (In
particular, if w ∈ Kη/3, then N(w) ⊆ Kη.)

B Claim 17. There is ε > 0 such that for every x ∈ Kη/3 the metric ball B(x, ε) ⊆ Rn
centered in x of radius ε fits into N(w) for some w ∈ Kη/3.

This is a variant of the Lebesgue number lemma; see the full version [19] for a proof.
Let ε be the value obtained from Claim 17. Because some ball B(x, ε) fits into some

N(w) which fits into a ball of radius 2
3η, we get ε ≤ 2

3η.
Let γ be a path in Sn such that

(s1) s−minf (γ) < a′1 − a1;
(s2) s−minf (γ) < a′2 − a2; and
(s3) s−minf (γ) < ζε

4 .

8 We point out that the current online version of [14] contains a different proof of Proposition 1.14.
Therefore, here we refer to the printed version of the book.

Z. Patáková, M. Tancer, and U. Wagner 62:13

n1

n2

K

∂D1∂D′
1

∂D2

∂D′
2

∂Kη

∂Kη

∂Kη

∂Kη/3

∂C ′
k

∂Ck

K : +

Kη/3 : + +

Kη : + + +

α

Figure 4 The sets K, Kη/3 and Kη and some path α connecting n1 and n2 of the form α = ψ ◦ γ
where γ is avoiding. In the picture, k = 3.

[0, 1] Sn \ {mk} ⊆ Sn R

Rn

γ

α

f

ψ g

Figure 5 The maps α, γ, ψ, f and g. The two triangles are commutative.

By Claim 16, we can assume that γ is avoiding. We will start modifying γ to γ′ with
minf (γ′) > s, which will be the required contradiction. Let α := ψ ◦ γ; see the diagram at
Figure 5. Then α connects n1 and n2, and α avoids the interiors of D′3, . . . , D′k−1 and C ′k;
see Figure 4.

Because, α is a continuous function on the compact interval [0, 1], we get, by the Heine-
Cantor theorem, that α is uniformly continuous. In particular, there is δ > 0 such that
if t1, t2 ∈ [0, 1] with |t1 − t2| ≤ δ, then ‖α(t1) − α(t2)‖ ≤ ε

3 . Let us consider a positive
integer ` > 1

δ . We will be modifying α in two steps. First, we get α′′ such that α′′(t) > s if
t = j

` for some j ∈ {0, . . . , `}. Then we modify α′′ individually on the intervals (j` ,
j+1
`) for

j ∈ {0, . . . , `− 1} obtaining α′ with ming(α′) > s. (Given a path β : [0, 1]→ Rn connecting
n1 and n2, we define ming(β) := min{g(β(t)) : t ∈ [0, 1]} = minf (ψ−1 ◦ β).) The required γ′
will be obtained as ψ−1 ◦ α′.

For the first step, let us first say that an interval Ij = [j` ,
j+1
`] where j ∈ {0, . . . , `− 1}

requires a modification if g(α(t)) ≤ s for some t ∈ Ij . This in particular means that α(t) ∈ K
for this t: Indeed, this follows from (s1) and (s2). We already know that α avoids the interiors
of D′3, . . . , D′k−1 and C ′k. It remains to check that α(t) does not belong to the interiors of D′1
andD′2 as well. Because α has to meet ∂D1 and ∂D2, we get that minf (γ) = ming(α) ≤ a1, a2
from the definition of a1 and a2. By (s1) and (s2), we get s < a′1, a

′
2. Therefore, from the

definition of a′1 and a′2, we get that α(t) cannot belong neither to D′1 nor to D′2 as required.

SoCG 2020

62:14 Barycentric Cuts Through a Convex Body

α

α(j`)

α(j+1
`)

α(2j+1
2`)

α(2j−12`)

α(j−1`)

≤ ε
3

ε
ε

2
3ε

Uj

Uj−1 Vj

Figure 6 The sets Uj−1, Uj and Vj in the case that g(α(j
`
)) ≤ s.

By the uniform continuity, the fact that g(α(t)) ≤ s for some t ∈ Ij implies that
α(Ij) belongs to the closed ε

3 -neighborhood of K. In particular, α(Ij) belongs to Kη/3 as
ε ≤ 2

3η < η.
Now, for each Ij which requires a modification, consider the open ε-ball Uj ⊆ Rn centered

in α(2j+1
2`). (Note that, 2j+1

2` is the midpoint of Ij .) From the previous considerations, the
center of each Uj belongs to Kη/3 and the whole Uj is a subset of Kη.

Now we perform the first step. Consider t = j
` for some j ∈ {0, . . . , `}. If g(α(t)) > s,

then we do nothing. Note that this includes the cases j = 0 or j = `. If g(α(t)) ≤ s, then
both intervals Ij−1 and Ij require a modification. By the uniform continuity, the open ball
Vj ⊆ Rn centered in α(t) of radius 2ε

3 is a subset of both Uj−1 and Uj ; see Figure 6. We
observe that Vj is a subset of Kη as Vj ⊆ Uj . In particular, by the definition of ζ, we get
that ‖Dg(w)‖ ≥ ζ for every w ∈ Vj . By Lemma 15, used on a closed ball of a slightly smaller
radius ε

2 , there is a point v in Vj such that

g(v) ≥ g(α(t)) + ζε

4 ≥ ming(α) + ζε

4 = minf (γ) + ζε

4 .

Using (s3), we get g(v) > s. Now, by a homotopy, we modify α to α′′ so that it stays fixed
outside the interval (t− 1

4` , t+ 1
4`), the modification of α occurs only in Vj and α′′(t) = v; see

Figure 7. We perform these modifications simultaneously for every t = j
` with g(α(t)) ≤ s.

This is possible as the intervals [t− 1
4` , t+ 1

4`] are pairwise disjoint. This way, we obtain the
required α′′.

Finally, we perform the second step of the modification. Let Ij = [j` ,
j+1
`] be an interval

requiring a modification. We already know that g(α′′(j`)) > s and g(α′′(j+1
`)) > s. In

addition, we know that both α′′(j`) and α′′(j+1
`) belong to Uj as they belong to Vj or Vj+1.

We set α′(j`) := α′′(j`) and α′(j+1
`) := α′′(j+1

`). Next, we aim to define α′ on (j` ,
j+1
`),

which is the interior of Ij , so that min(g(α′(Ij))) > s. By Claim 17, Uj fits into some
N(w) for some w ∈ Kη/3. (Here we use that the center of Uj belongs to Kη/3.) Now,

Z. Patáková, M. Tancer, and U. Wagner 62:15

α

α(j`)

α(j+1
`)

Uj

Vj

Vj+1

Ls

α′′
Uj

Vj

Ls

α′′(j`)

α′′(j+1
`)

α′

Uj

Ls

α′(j`) α′(j+1
`)

x

P

Lg(x)

Figure 7 The first and the second step of modifications of α on an interval Ij requiring a
modification (the modification is shown only on this interval).

Proposition 14 implies that α′(j`) and α′(j+1
`) may be connected by a path P : [0, 1]→ Rn

such that g(P (t)) > s for every t ∈ [0, 1]: Indeed, let us assume that, without loss of
generality, g(α′(j`)) ≥ g(α

′(j+1
`)) > s. First, draw P as a straight line from α′(j`) towards

α′(j+1
`) until we reach a (first) point x ∈ Uj ⊆ N(w) with g(x) = g(α′(j+1

`)); of course, it
may happen that x = α′(j+1

`). Then by Proposition 14, x and α′(j`) can be connected within
the level set Lg(x); see Figure 7. (This may mean that P leaves N(w), or even Kη, but this
is not problem for the argument.) Altogether, we set α′ on Ij so that it follows the path
P , and this we do independently on each interval requiring a modification. Other intervals
remain unmodified.

From the construction, we get ming(α′) > s; therefore the path γ′ := ψ−1 ◦ α′ satisfies
minf (γ′) = ming(α′) > s which contradicts the definition of s. J

References
1 P. Blagojević and R. Karasev. Local multiplicity of continuous maps between manifolds, 2016.

Preprint. arXiv:1603.06723.
2 W. Blaschke. Über affine Geometrie IX: Verschiedene Bemerkungen und Aufgaben. Ber. Verh.

Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., 69:412–420, 1917.
3 D. Bremner, D. Chen, J. Iacono, S. Langerman, and P. Morin. Output-sensitive algorithms

for Tukey depth and related problems. Stat. Comput., 18(3):259–266, 2008. doi:10.1007/
s11222-008-9054-2.

4 T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In Proceedings of
the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 430–436. ACM,
New York, 2004.

5 D. Chen, P. Morin, and U. Wagner. Absolute approximation of Tukey depth: theory and
experiments. Comput. Geom., 46(5):566–573, 2013. doi:10.1016/j.comgeo.2012.03.001.

6 H. T. Croft, K. J. Falconer, and R. K. Guy. Unsolved problems in geometry. Problem Books
in Mathematics. Springer-Verlag, New York, 1994. Corrected reprint of the 1991 original,
Unsolved Problems in Intuitive Mathematics, II.

7 D. L. Donoho. Breakdown properties of multivariate location estimators, 1982. Unpublished
qualifying paper, Harvard University.

8 D. L. Donoho and M. Gasko. Breakdown properties of location estimates based on halfspace
depth and projected outlyingness. Ann. Statist., 20(4):1803–1827, 1992. doi:10.1214/aos/
1176348890.

9 C. Dupin. Applications de géométrie et de méchanique, a la marine, aux ponts et chaussées, etc.,
pour faire suite aux Développements de géométrie, par Charles Dupin. Bachelier, successeur
de Mme. Ve. Courcier, libraire, 1822.

SoCG 2020

http://arxiv.org/abs/1603.06723
https://doi.org/10.1007/s11222-008-9054-2
https://doi.org/10.1007/s11222-008-9054-2
https://doi.org/10.1016/j.comgeo.2012.03.001
https://doi.org/10.1214/aos/1176348890
https://doi.org/10.1214/aos/1176348890

62:16 Barycentric Cuts Through a Convex Body

10 R. Dyckerhoff and P. Mozharovskyi. Exact computation of the halfspace depth. Comput.
Statist. Data Anal., 98:19–30, 2016. doi:10.1016/j.csda.2015.12.011.

11 B. Grünbaum. On some properties of convex sets. Colloq. Math., 8:39–42, 1961. doi:
10.4064/cm-8-1-39-42.

12 B. Grünbaum. Measures of symmetry for convex sets. In Proc. Sympos. Pure Math., Vol. VII,
pages 233–270. Amer. Math. Soc., Providence, R.I., 1963.

13 A. Hassairi and O. Regaieg. On the Tukey depth of a continuous probability distribution.
Statist. Probab. Lett., 78(15):2308–2313, 2008.

14 A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
15 R. Karasev. Geometric coincidence results from multiplicity of continuous maps, 2011. Preprint.

arXiv:1106.6176.
16 J. Kynčl and P. Valtr, 2019. Personal communication.
17 X. Liu, K. Mosler, and P. Mozharovskyi. Fast computation of Tukey trimmed regions

and median in dimension p > 2. J. Comput. Graph. Statist., 28(3):682–697, 2019. doi:
10.1080/10618600.2018.1546595.

18 S. Nagy, C. Schütt, and E. M. Werner. Halfspace depth and floating body. Stat. Surv.,
13:52–118, 2019.

19 Z. Patáková, M. Tancer, and U. Wagner. Barycentric cuts through a convex body, 2020.
Preprint. arXiv:2003.13536.

20 P. J. Rousseeuw and I. Ruts. The depth function of a population distribution. Metrika,
49(3):213–244, 1999.

21 P. J. Rousseeuw and A. Struyf. Computing location depth and regression depth in higher
dimensions. Statistics and Computing, 8(3):193–203, 1998.

22 C. Schütt and E. Werner. Homothetic floating bodies. Geom. Dedicata, 49(3):335–348, 1994.
23 J. Tukey. Mathematics and the picturing of data. In Proceedings of the International Congress

of Mathematicians (Vancouver, B. C., 1974), Vol. 2, pages 523–531, 1975.

https://doi.org/10.1016/j.csda.2015.12.011
https://doi.org/10.4064/cm-8-1-39-42
https://doi.org/10.4064/cm-8-1-39-42
http://arxiv.org/abs/1106.6176
https://doi.org/10.1080/10618600.2018.1546595
https://doi.org/10.1080/10618600.2018.1546595
http://arxiv.org/abs/2003.13536

Sketched MinDist
Jeff M. Phillips
School of Computing, University of Utah, Salt Lake City, UT, USA
http://www.cs.utah.edu/~jeffp/
jeffp@cs.utah.edu

Pingfan Tang
School of Computing, University of Utah, Salt Lake City, UT, USA
https://my.eng.utah.edu/~pingfant/
tang1984@cs.utah.edu

Abstract
We sketch geometric objects J as vectors through the MinDist function, setting the ith coordinate

vi(J) = inf
p∈J
‖p− qi‖

for qi ∈ Q from a point set Q. Building a vector from these coordinate values induces a simple,
effective, and powerful distance: the Euclidean distance between these sketch vectors. This paper
shows how large this set Q needs to be under a variety of shapes and scenarios. For hyperplanes we
provide direct connection to the sensitivity sampling framework, so relative error can be preserved
in d dimensions using |Q| = O(d/ε2). However, for other shapes, we show we need to enforce a
minimum distance parameter ρ, and a domain size L. For d = 2 the sample size Q then can be
Õ((L/ρ) · 1/ε2). For objects (e.g., trajectories) with at most k pieces this can provide stronger for
all approximations with Õ((L/ρ) · k3/ε2) points. Moreover, with similar size bounds and restrictions,
such trajectories can be reconstructed exactly using only these sketch vectors. Cumulatively, these
results demonstrate that these MinDist sketch vectors provide an effective and efficient shape model,
a compact representation, and a precise representation of geometric objects.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases curve similarity, sensitivity sampling, sketching

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.63

Related Version available at https://arxiv.org/abs/1907.02171.

Funding Jeff M. Phillips: Thanks to NSF CCF-1350888, ACI-1443046, CNS- 1514520, CNS-1564287,
and IIS-1816149.

1 Introduction

In this paper we analyze a new sketch for geometric objects, which we introduced in a recent
more empirically-focused paper [23]. For an object J ∈ J, where J ⊂ Rd, this depends
on a set of landmarks Q ⊂ Rd; for now let n = |Q|. These landmarks induce a sketched
representation vQ(J) ∈ Rn where the ith coordinate vi(J) is defined via a MinDist operation

vi(J) = dist(qi, J) = inf
p∈J
‖p− qi‖,

using the ith landmark qi ∈ Q. When the object J is implicit, we simply use vi. The most
useful implication of this sketch is a simple new distance dQ between two objects J1, J2 ∈ J;
the Euclidean distance between the (normalized as v̄Q = 1√

|Q|
vQ) sketched representations

dQ(J1, J2) =
∥∥v̄Q(J1)− v̄Q(J2)

∥∥.
A second implication we will show, is that shapes J can often be recovered exactly from the
sketch vQ(J) – demonstrating the richness of information it captures.

© Jeff M. Phillips and Pingfan Tang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 63; pp. 63:1–63:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.utah.edu/~jeffp/
mailto:jeffp@cs.utah.edu
https://my.eng.utah.edu/~pingfant/
mailto:tang1984@cs.utah.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.63
https://arxiv.org/abs/1907.02171
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Sketched MinDist

Our recent paper [23] introduces other variants of this distance (using other norms or using
the arg minp∈J points on each J ∈ J). We focus on this version as it is the simplest, cleanest,
easiest to use, and was the best or competitive with the best on all empirical tasks. Indeed,
for the pressing case of measuring a distance between trajectories, this new distance measure
dominates a dozen other distance measures (including dynamic time warping, discrete Frechet
distance, edit distance for real sequences) in terms of classification performance. In practice
we find we only need |Q| = 20 landmarks to achieve high classification accuracy. It is
also considerably more efficient in clustering and nearest neighbor tasks [23]; since it uses
Euclidean distance, Lloyds algorithms works for k-means clustering and extremely efficient
nearest neighbor packages [1, 25] automatically work with no extra engineering.

The goal of this paper is to formally understand how many landmarks in Q are needed
for various error guarantees, and how to chose the locations of these points Q.

Our aims in the choice of Q are two-fold: first, we would like to approximate dQ with dQ̃,
and second we would like to recover J ∈ J exactly only using vQ(J). The specific results
vary depending on the initial set Q and the object class J. More precisely, the approximation
goal aims to preserve dQ for all objects J in some class J with a subset Q̃ ⊂ Q of landmarks.
Or possibly a weighted set of landmarks W, Q̃ with |Q̃| = N , so each qi is associated with a
weight wi and the weighted distance is defined

dQ̃,W (J1, J2) =

√√√√ N∑
i=1

wi · (vi(J1)− vi(J2))2 =
∥∥∥ṽQ̃(J1)− ṽQ̃(J2)

∥∥∥
where ṽQ̃ = (ṽ1, · · · , ṽN) with ṽi = √wivi. The set Q could also represent a continuous
measure ω, which replaces w, and an integral on domain Ω replaces the sum. Specifically, our
aim is an (ρ, ε, δ)-approximation of Q over J so when W, Q̃ is selected by a random process
that succeeds with probability at least 1− δ, then for a pair J1, J2 ∈ J with dQ(J1, J2) ≥ ρ

(1− ε)dQ(J1, J2) ≤ dQ̃,W (J1, J2) ≤ (1 + ε)dQ(J1, J2).

When this holds for all pairs in J, we say it is a strong (ρ, ε, δ)-approximation of Q over J. In
some cases we set to 0 either δ (the process is deterministic) or ρ (this preserves arbitrarily
small distances), and may be able to use uniform weights wi = 1

|Q̃| for all selected points.

1.1 Our Results
We begin with a special signed variant of the distance associated with the class J of (d− 1)-
dimensional hyperplanes (which for instance could model linear separators or linear regression
models). This has vi(J) as negative on one side of the separator. In this variant, we show
that if Q is full rank, then we can recover J from vQ(J), and a variant of sensitivity sampling
can be used to select O(d/(δε2)) points to provide a (0, ε, δ)-approximation W, Q̃. Or by
selecting O(dε2 (d log d+ log 1

δ)) results in a strong (0, ε, δ)-approximation (Theorem 2).
Next we consider the more general case where the objects are bounded geometric objects

S. For such objects it is useful to consider a bounded domain ΩL = [0, L]d (for d a fixed
constant), and consider the case where each S ∈ S and landmarks satisfy S,Q ⊂ ΩL. In this
case, the number of samples required for a (ρ, ε, δ)-approximation is SQ

1
ε2δ where

SQ = O

(L
ρ

) 2d
2+d

min
(

log L
η
, logn,

(
L

ρ

)2
) 2

2+d
 , (1)

J.M. Phillips and P. Tang 63:3

where η = minq,q′∈Q ‖q − q′‖∞. A few special cases are worth expanding upon. When
Q is continuous and uniform over ΩL then SQ = O((L/ρ)

2d
2+d), and this is tight in R2 at

SQ = Θ(L/ρ). That is, we can show that SQ = Θ(L/ρ) may be needed in general. When
d = 2 but not necessarily uniform on ΩL, then SQ = O(Lρ min{

√
logn,L/ρ}). And when

Q is on a grid over ΩL in R2 of resolution Θ(ρ), then SQ = O(Lρ
√

log L
ρ), just a

√
logL/ρ

factor more than the lower bound.
We conclude with some specific results for trajectories, represented as piecewise-linear

curves. When considering the class Tk with at most k segments, then O(1
ε2 SQ(k3 logSQ +

log 1
δ)) samples is sufficient for a strong (ρ, ε, δ)-approximation.
Also when considering trajectories Tτ where the critical points are at distance at least

τ apart from any non-adjacent part of the curve, we can exactly reconstruct the trajectory
from vQ as long as Q is a grid of side length Ω(τ). It is much cleaner to describe the results
for trajectories and Q precisely on a grid, but these results should extend for any object with
k piecewise-linear boundaries, and critical points sufficiently separated, or Q as having any
point in each sufficiently dense grid cell, as opposed to being exactly on the grid lattice.

1.2 Connections to other Domains, and Core Challenges
Before deriving these results, it is useful to lay out the connection to related techniques,
including ones that our results will build on, and the challenges in applying them.

Sensitivity sampling. Sensitivity sampling [20, 16, 18, 26] is an important technique for
our results. This typically considers a dataset X (a subset of a metric space), endowed with
a measure µ : X → R+, and a family of cost functions F . These cost functions are usually
related to the fitting of a data model or a shape S to X, and for instance on a single point
x ∈ X, for f ∈ F , where

f(x) = dist(x, S)2 = inf
p∈S
‖x− p‖2

is the squared distance from x to the closest point p on the shape S. And then f̄ =∫
X
f(x)dµ(x). The sensitivity [20] of x ∈ X w.r.t. (F,X, µ) is defined as σF,X,µ(x) :=

supf∈F
f(x)
f̄
, and the total sensitivity of F is defined as S(F) =

∫
X
σF,X,µ(x)dµ(x). This

concept is quite general, and has been widely used in applications ranging from various forms
of clustering [16, 18] to dimensionality reduction [17] to shape-fitting [26]. In particular,
this will allow us to draw N samples X̃ iid from X proportional to σF,X,µ(x), and weighted
w̃(x̃) = S(F)

N ·σF,X,µ(x̃) ; we call this σF,X,µ-sensitive sampling. Then X̃ is a (0, ε, δ)-coreset; that
is, with probability 1− δ for each f ∈ F

(1− ε)f̄ ≤
∫
X̃

f(x̃)dw̃(x̃) ≤ (1 + ε)f̄ ,

using N = O(S(F)
ε2δ) [20]. The same error bound holds for all f ∈ F (then it is called a

(0, ε, δ)-strong coreset) with N = O(S(F)
ε2 (sF logS(F) + log 1

δ)) where sF is the shattering
dimension of the range space (X, ranges(F)) [5]. Each range r ∈ (X, ranges(F)) is defined as
points in a sublevel set of a cost function r = {x ∈ X | µ(x)

S(F)
f(x)
f̄
≤ ξ} for some f ∈ F , ξ ∈ R.

It seems natural that a form of our results would follow directly from these approaches.
However, two significant and intertwined challenges remain. First, our goal is to approximate
the distance between a pair of sketches ‖vQ(J1)− vQ(J2)‖, whereas these results effectively
only preserve the norm of a single sketch ‖vQ(J1)‖; this prohibits many of the geometric

SoCG 2020

63:4 Sketched MinDist

arguments in the prior work on this subject. Second, the total sensitivity S(F) associated
with unrestricted Q and pairs J1, J2 ∈ J is in general unbounded (as we prove in Section 3.1).
Indeed, if the total sensitivity was bounded, it would imply a mapping to bounded vector
space [20], wherein the subtraction of the two sketches vQ(J1) − vQ(J2) would still be an
element of this space, and the norm bound would be sufficient.

We circumvent these challenges in two ways. First, we identify a special case in Section
2 (with negative distances, for hyperplanes) under which there is a mapping of the sketch
vQ(J1) to metric space independent of the size and structure of Q. This induces a bound for
total sensitivity related to a single object, and allows the subtraction of two sketches to be
handled within the same framework.

Second, we enforce a lower bound on the distance dQ(J1, J2) > ρ and an upper bound
on the domain ΩL = [0, L]d. This induces a restricted class of pairs JL/ρ where L/ρ is a
scaleless parameter, and it shows up in bounds we are then able to produce for the total
sensitivity with respect to JL/ρ and Q ⊂ ΩL.

Leverage scores, and large scales. The leverage score [14] of the ith column ai of matrix
A is defined as τi(A) := aTi (AAT)+ai, where (·)+ is the Moore-Penrose pseudoinverse. This
definition is more specific and linear-algebraic than sensitivity, but has received more attention
for scalable algorithm development and approximation [14, 4, 13, 10, 22, 11].

However, the full version shows that if F is the collection of some functions defined on a
set Q of n points (µ(qi) = 1

n for all qi ∈ Q), where each f ∈ F is the square of some function
v in a finite dimensional space V spanned by a basis {v(1), · · · , v(κ)}, then we can build a
κ× n matrix A where the ith column is 1√

n

(
v(1)(qi), · · · , v(κ)(qi)

)T , and then 1
n · σF,Q,µ(qi)

is precisely the leverage score of the ith column of the matrix A. A similar observation has
been made by Varadarajan and Xiao [26].

A concrete implication of this connection is that we can invoke an online row sampling
algorithm of Cohen et al. [11]. In our context, this algorithm would stream overQ, maintaining
(ridge) estimates of the sensitivity of each qi from a sample Q̃i−1, and retaining each qi in
that sample based on this estimate. This provides a streaming approximation bound not
much weaker than the sampling or gridding bounds we present; see full version.

MinDist and shape reconstruction. The fields of computational topology and surface
modeling have extensively explored [6, 24, 8] the distance function to a compact set J ⊂ Rd

dJ(x) = dist(x, J) = inf
p∈J
‖x− p‖,

their approximations, and the offsets Jr = d−1
J ([0, r]). For instance the Hausdorff distance

between two compact sets J, J ′ is dH(J, J ′) = ‖dJ−dJ′‖∞. The gradient of dJ implies stability
properties about the medial axis [9]. And most notably, this stability of dJ with respect
to a sample P ∼ J or P ∼ ∂J is closely tied to the development of shape reconstruction
(aka geometric and topological inference) through α-shapes [15], power crust [2], and the
like. The intuitive formulation through dJ (as opposed to Voronoi diagrams of P) has led to
more statistically robust variants [8, 24] which also provide guarantees in shape recovery up
to small feature size [7], essentially depending on the maximum curvature of ∂J .

Our formulation flips this around. Instead of considering samples P from J (or ∂J) we
consider samples Q from some domain Ω ⊂ Rd. This leads to new but similar sampling
theory, still depending on some feature size (represented by various scale parameters ρ, τ ,
and η), and still allowing recovery properties of the underlying objects. While the samples P

J.M. Phillips and P. Tang 63:5

from J can be used to estimate Hausdorff distance via an all-pairs O(|P |2)-time comparison,
our formulation requires only a O(|Q|)-time comparison to compute dQ. We leave as open
questions the recovering of topological information about an object J ∈ J from vQ(J).

2 The Distance Between Two Hyperplanes using Signed Sketches

A more detailed derivation of the results in this section are presented in the full version
where proofs and a few technical details require more careful notation to navigate.

Let H = {h | h is a hyperplane in Rd} represent the space of all hyperplanes. Each
hyperplane h can be represented by a vector u ∈ Rd+1 composed as a normal vector
ū = (u1, . . . , ud) ∈ Rd with ‖ū‖ = 1 and offset ud+1. Then the ith coordinate of a sketch
vector can be derived as a signed distance from qi as vi(h) = ud+1 + 〈ū, qi〉.

Recovery. Our recent paper [23] showed that if Q is full rank (there exist d+ 1 points in Q
not on a common hyperplane) then dQ(h1, h2) 6= 0 if h1 6= h2, and thus dQ is a metric. This
full rank condition on Q is also sufficient to recover h from vQ(h); e.g., using PCA.

Distance Preservation. Next we show that we can use a σ-sensitive sample Q̃,W as a
(0, ε, δ)-coreset for this formulation; that is dQ̃,W preserves relative error with respect to dQ.
We assume Q is full rank, and has uniform weight µ = 1

n on each point. Using X = Q we
need to define the family of functions F to complete the tuple (F,Q, µ). To this end, let V
be a (d + 1)-dimensional function space with each element vu is a linear function defined
vu(qi) = vi(h) = ud+1 + 〈ū, qi〉. Now each f ∈ F is defined as f(q) = v(q)2, and through its
representation u, each h ∈ H maps to a unique element of F .

However, we are interested in preserving dQ which requires a pair h1, h2 ∈ H, with
corresponding normals u(1), u(2). Since V is a linear function space, then using u = u(1)−u(2),
then fh1,h2(q) = vu(q)2, and dQ(h1, h2) = (1

n

∑
q∈Q fh1,h2(q)) 1

2 . Note that u will likely not
correspond to a single halfspace since the first d coordinates may not be a unit vector,
but that is not an issue for this framework. Using Langberg and Schulman [20], the total
sensitivity is d+ 1, and the sensitivities can be calculated (e.g., via leverage scores).

I Theorem 1. Consider full rank Q ⊂ Rd and halfspaces H with ε, δ ∈ (0, 1). A σ-
sensitive sample Q̃ of (Q,F) of size |Q̃| ≥ d+1

δε2 results in a (0, ε, δ)-coreset. It is an (0, ε, δ)-
approximation so with probability at least 1− δ, for each pair h1, h2 ∈ H

(1− ε)dQ(h1, h2) ≤ dQ̃,W (h1, h2) ≤ (1 + ε)dQ(h1, h2).

We can also achieve a strong coreset for this variant using results from Braverman et
al. [5]. For this we need to provide an additional bound about the shattering dimension
s = dim(Q,X) associated with each f ∈ F and a weight w : Q → R+. The range in the
range space associated with fh1,h2 is defined for some η as

Xh1,h2,η = {q ∈ Q | w(q)fh1,h2(q) ≤ η}.

For f ∈ F defined by a single halfspace, this is classically known to be O(d). For the more
general functions fh1,h2 ∈ F defined by two halfspaces h1, h2, the same asymptotic bound can
be shown using straight-forward decomposition properties of range spaces (see full version
for proof). Then we can obtain the following result.

SoCG 2020

63:6 Sketched MinDist

q0
<latexit sha1_base64="ujyrpmP/RNk2piwTi9zAdeCcm/s=">AAAEK3icdVPLbtQwFHUbHmV4tWXZTcQUiU1HyUAFQqo0EqrEAkFR6UOaRCPHuTNjje0Y2ymMrCxZskOwRGLP17ACseUP+ADsTEedB1hKdHPPOfeeG9uZZFSbKPqxshpcunzl6tq1xvUbN2/dXt/YPNZFqQgckYIV6jTDGhgVcGSoYXAqFWCeMTjJRk89fnIGStNCvDZjCSnHA0H7lGDjUodvelFvvRm1onqFy0F8HjQ7W3++fHyffj3obQSbSV6QkoMwhGGtu3EkTWqxMpQwqBpJqUFiMsID6LpQYA46tbXXKrznMnnYL5R7hAnrbCPR4JyLgRnaxMA785bmZri329qlopoD/Zj/BSVWVOTOVWUjzpcwPaKysu3Wbo1deLSYaz3mmfPGsRnqRcwn/4V1S9N/nFoqZGlAkCqcE0KpiaLSLLWqyzUSNwcpOMcitwlIXdnkDCsXUFaIBdiN5DdYu7kSaoC7cuFOW5p6KJB7O/EkNoWcQq6CgtkapOrGqeskdKnAW7DJfnlYO7TNuKqWBNmywL+zbEqfJY9yqCY7p4n1Hwt4VjLmCKKY7E+4XWfAbIf+r80xWV43dlE/THS/jzll49D3nCf6sz6x6CQ2eY7VADztQrQgINScV67PnM1YCY5tqBiH3WacLjZ4ebD/YtbzVKcgdzLf1DOeVKETNhruFsWLd2Y5OG634get9qu42XmIJmsNbaG76D6K0SPUQc/QATpCBA3QB/QJfQ6+Bd+Dn8GvCXV15VxzB82t4PdfBGZyFw==</latexit>

�1
<latexit sha1_base64="ByMoi+SWWvt8OnBst6AZiUeNHwE=">AAAEMHicdVPLbtQwFHUbHmV4tWXZjcUUiU2jZNq0BalSJVSJBYIi6EOaRJXj3JlaYztR7BRGVpb8AGIHEhKfwNfACrFlzQdgZzpqZ4ZaSnRzzzn3nhvbacGZ0kHwc27eu3b9xs2FW63bd+7eu7+4tHyo8qqkcEBznpfHKVHAmYQDzTSH46IEIlIOR+ngmcOPzqBULJdv9bCARJC+ZD1Gibap47hPhCAn4cliO/A3O0GwHeHAD9Y3o+iJDcIoXN/YwqEfNKu9u/L366cPybf9kyVvOc5yWgmQmnKiVDcMCp0YUmpGOdStuFJQEDogfejaUBIBKjGN4Ro/spkM9/LSPlLjJtuKFVj7sq9PTazhvX7HMn26E/kRk/UE6Ga9EixIyWRmXdUmEGIGUwNW1KbjRw124dEQodRQpNabIPpUTWMu+T+sW+nedmKYLCoNktZ4QgiVoiUr9EyrplwrtnPQ3G6AzEwMhapNfEZKGzCeyynYjuR2Wdm5YqZB2HJ4rVPoZigodtbCUazzYgzZCiVcrkHrbpjYTlJVJTgLJt6r3jQOTTus6xlBOitw7zQd0y+TBxnUo51T1LiPKTytOLcEmY/2B682GdCr2P21CSbPmsY26uFY9XpEMD7Eruck0R34kUUrMfELUvbB0S5EUwLK9Hnl5syZlFdg2ZrJIe62w2S6wav9vZeXPY91JWRW5po6xtMaW2GrZW/R+Krgq4PDjh+u+53XYXt3A43WAlpBD9FjFKIttIueo310gCji6CP6jL54370f3i/v94g6P3eueYAmlvfnHx9OdH4=</latexit>

�2
<latexit sha1_base64="0KRcqLNegN3y7CdKux1jJOIyxt4=">AAAEMHicdVNda9RAFJ02ftT1q62PfRncCr50SWLXilBYkIIPoivaD9iEMpnc3Q47Mxkyk+oy5NE/IL4pCP4Ef40+ia8++wOcJF3a3bUDCTf3nHPvuZmZRHGmje//XFr2rly9dn3lRuvmrdt37q6urR/orMgp7NOMZ/lRQjRwJmHfMMPhSOVARMLhMBk/q/DDU8g1y+RbM1EQCzKSbMgoMS51FI2IEOQ4PF5t+x2/XtjvdP3w8U6Im8x2gIMzqN3b+Pv104f4W/94zVuP0owWAqShnGg9CHxlYktywyiHshUVGhShYzKCgQslEaBjWxsu8QOXSfEwy90jDa6zrUiDsy9H5sRGBt6bdyw1J7vdTpfJcgasZr0UVCRnMnWuSusLsYDpMVOlDTvdGjv3aInQeiIS500Qc6LnsSr5P2xQmOGT2DKpCgOSlnhGCIWmOVNmoVVdrhW5OWjmNkCmNgKlSxudktwFjGdyDnYjVbus3VwRMyBcObwVKlMPBWp3K2hik6kp5CrkcLEGLQdB7DpJXeRQWbDRXvGmdmjbQVkuCJJFQfVOkin9InmcQtnsnKa2+pjDk4JzR5BZsz94s86A2cTVX5th8rRu7KIhjvRwSATjE1z1nCVWB76x6CQ2ekHyEVS0c9GcgDJzVrk+czbhBTi2YXKCB+0gnm/wqr/38qLnqS6H1MmqphXjaYmdsNVyt2h6VfDlwUHYCR51wtdBu7eNmrWCNtB99BAFaAf10HPUR/uIIo4+os/oi/fd++H98n431OWlM809NLO8P/8Ag9F0VA==</latexit>

Figure 1 Q is the set of blue points, γ1 is the red curve, γ2 is the green (dashed) curve, and they
coincide with each other on the boundary of the square.

I Theorem 2. Consider full rank Q ⊂ Rd and halfspaces H with ε, δ ∈ (0, 1). A σ-sensitive
sample Q̃ of (Q,F) of size |Q̃| = O(dε2 (d log d + log 1

δ)) results in a strong (0, ε, δ)-coreset.
And thus a strong (0, ε, δ)-approximation so with probability at least 1− δ, for all h1, h2 ∈ H

(1− ε)dQ(h1, h2) ≤ dQ̃,W (h1, h2) ≤ (1 + ε)dQ(h1, h2).

3 Sketched MinDist for Two Geometric Objects

In this section, we mildly restrict dQ to the distance between any two geometric objects, in
particular, bounded closed sets. Let S = {S ⊂ Rd | S is a bounded closed set} be the space
of objects J we consider.

As before define vi(S) = infp∈S ‖p − qi‖, and then for S1, S2 ∈ S define fS1,S2(qi) =
(vi(S1) − vi(S2))2. The associated function space is F (S) = {fS1,S2 | S1, S2 ∈ S}. Setting
µ(q) = 1

n for all q ∈ Q, then (dQ(S1, S2))2 = f̄S1,S2 :=
∑n
i=1 µ(qi)fS1,S2(qi). Using sensitivity

sampling to estimate dQ(S1, S2) requires a bound on the total sensitivity of F (S).
We show that while the total sensitivity S(F (S)) is unbounded in general, it is tied to

the ratio L/ρ between the diameter of the domain L, and the minimum allowed dQ distance
between objects ρ. In particular, it can be at least proportional to this, and in R2 in most
cases (e.g., for near-uniform Q) is at most proportional to L/ρ or not much larger for any Q.

3.1 Lower Bound on Total Sensitivity
Suppose Q is a set of n points in R2 and no two points are at the same location, then for any
q0 ∈ Q we can draw two curves γ1, γ2 as shown in Figure 1, where γ1 is composed by five line
segments and γ2 is composed by four line segments. The four line segments of the γ2 forms a
square, on its boundary γ1 and γ2 coincide with each other, and inside this square, q0 is the
endpoint of γ1. We can make this square small enough, such that all points q 6= q0 are outside
this square. So, we have dist(q0, γ1) = 0 and dist(q0, γ2) 6= 0, and dist(q, γ1) = dist(q, γ2) = 0
for all q 6= q0. Thus, we have fγ1,γ2(q0) > 0 and fγ1,γ2(q) = 0 for all q 6= q0, which implies

σF (S),Q,µ(q0) ≥ fγ1,γ2(q0)
f̄γ1,γ2

= fγ1,γ2(q0)
1
n

∑
q∈Q fγ1,γ2(q)

= nfγ1,γ2(q0)
fγ1,γ2(q0) = n.

Since this construction of two curves γ1, γ2 can be repeated around any point q ∈ Q,

S(F (S)) =
∑
q∈Q

µ(q)σF (S),Q,µ(q) ≥
∑
q∈Q

1
n
n = n.

J.M. Phillips and P. Tang 63:7

We can refine this bound by introducing two parameters L, ρ for S. Given L > ρ > 0 and
a set Q ⊂ Rd of n points, we define S(L) = {S ∈ S | S ⊂ [0, L]d} and F (S(L), ρ) = {fS1,S2 ∈
F (S) | S1, S2 ∈ S(L), dQ(S1, S2) ≥ ρ}. The following lowerbounds the total sensitivity of
F (S(L), ρ) for d = 2; it holds for any d ≥ 2 using the construction in a 2d subspace.

I Lemma 3. For d = 2 we can construct a set Q ⊂ [0, L]2 such that S(F (S(L), ρ)) = Ω(Lρ).

Proof. We uniformly partition [0, L]2 into n grid cells, such that C1
L
ρ ≤ n ≤ C2

L
ρ for

constants C1, C2 ∈ (0, 1). The side length of each grid is η = L√
n
. We take Q as the n grid

points, and for each point q ∈ Q we can choose two curves γ1 and γ2 (similar to curves in
Figure 1) such that dist(q, γ1) = 0, dist(q, γ2) ≥ C2η, and dist(q′, γ1) = dist(q′, γ2) = 0 for all
q′ ∈ Q \ {q} . Thus, dQ(γ1, γ2) ≥ C2

η√
n

= C2
L
n ≥ ρ. So, fγ1,γ2 ∈ F (S(L), ρ)) and σ(q) ≥ n

for all q ∈ Q and S(F (S(L), ρ)) ≥ n ≥ C1
L
ρ , which implies S(F (S(L), ρ)) = Ω(Lρ). J

3.2 Upper Bound on the Total Sensitivity
A simple upper bound of S(F (S(L), ρ) is O

(
L2

ρ2

)
; it follows from the L/ρ constraint. The

sensitivity of each point q ∈ Q is defined as supfS1,S2∈F (S(L),ρ)
fS1,S2 (q)
f̄S1,S2

, where fS1,S2(q) =
O(L2) for all S1, S2 ∈ S(L) and q ∈ Q ⊂ [0, L]d, and the denominator f̄S1,S2 ≥ ρ2 by
assumption for all fS1,S2 ∈ F (S(L), ρ). Hence, the sensitivity of each point in Q is O

(
L2

ρ2

)
,

and thus their average, the total sensitivity is O
(
L2

ρ2

)
. In this section we will improve and

refine this bound.
We introduce two variables that only depends on Q = {q1, · · · , qn} ⊂ [0, L]d:

Cq := max
0<r≤L

rd

Ld
n

|Q ∩B∞(q, r)| for q ∈ Q, and CQ := 1
n

∑
q∈Q

C
2

2+d
q . (2)

where B∞(q, r) := {x ∈ Rd | ‖x− q‖∞ ≤ r}. Intuitively, |Q∩B∞(q,r)|
rd

is proportional to the
point density in region B∞(q, r), and the value of rd

Ld
n

|Q∩B∞(q,r)| can be maximized, when
the region B∞(q, r) has smallest point density, which means r should be as large as possible
but the number of points contained in B∞(q, r) should be as small as possible. A trivial
bound of Cq is n, but if we make Cq0 = n for one point q0, then it implies the value of Cq
for other points will be small, so for CQ it is possible to obtain a bound better than n

2
d+2 .

Importantly, these quantities Cq and CQ will be directly related to the sensitivity of a
single point σ(q) and the total sensitivity of the point set SQ, respectively. We formalize
this in two technical lemmas: First (in Lemma 7) σ(q) ≤ O((Cq(L/ρ)d)

2
2+d) and hence

SQ = O(CQ · (L/ρ)
2d

2+d); and second (in Lemma 8) we show CQ ≤ O((min{log L
η , logn})

2
2+d)

for Q of size n and η = minq,q′∈Q, q 6=q′ ‖q − q′‖∞.
Since fS1,S2 ∈ F (S(L), ρ), we know fS1,S2(q) ≤ dL2 for all q ∈ Q and 1

n

∑
q′∈Q fS1,S2(q′) ≥

ρ2, so σ(q) ≤ dL2

ρ2 for all q ∈ Q. Thus, we can expand 1
|Q|
∑
q∈Q σ(q) using Lemma 7 and

factor out CQ using Lemma 8 to immediately obtain the following theorem.

I Theorem 4. Suppose L > ρ > 0, Q = {q1, · · · , qn} ⊂ [0, L]d and η = minq,q′∈Q, q 6=q′ ‖q −
q′‖∞. Then, we have

S(F (S(L), ρ)) ≤ SQ = O

(L
ρ

) 2d
2+d

min
(

log L
η
, logn,

(
L

ρ

)2
) 2

2+d
 .

From Lemma 7 and Theorem 4, using [20][Lemma 2.1] we can obtain the following.

SoCG 2020

63:8 Sketched MinDist

I Theorem 5. Let L > ρ > 0, Q = {q1, · · · , qn} ⊂ [0, L]d, S1, S2 ∈ S(L) and dQ(S1, S2) ≥ ρ.
Then for δ, ε ∈ (0, 1) a σ-sensitive sampling of size N ≥ SQ

δε2 provides Q̃, a (ρ, ε, δ)-coreset;
that is with probability at least 1− δ, we have

(1− ε)dQ(S1, S2) ≤ dQ̃,W (S1, S2) ≤ (1 + ε)dQ(S1, S2).

If Q describes a continuous uniform distribution in [0, L]d (or sufficiently close to one,
like points on a grid), then there exists an absolute constant C > 0 such that Cq ≤ C for all
q ∈ Q, then in Lemma 7 σ(q) ≤ Cd

(
L
ρ

) 2d
2+d for all q ∈ Q, and in Theorem 4 SQ ≤ Cd

(
L
ρ

) 2d
2+d .

So, for uniform distribution, the sample size of Q in Theorem 5 is independent from the size
of Q, and for d = 2 the bound SQ = O(L/ρ) matches the lower bound in Lemma 3.

I Corollary 6. If Q describes the continuous uniform distribution over [0, L]d, then the
sample size in Theorem 5 can be reduced to N = O

((
L
ρ

) 2d
2+d 1

δε2

)
.

Technical lemmas bounding σ(q) and CQ.

I Lemma 7. For function family F (S(L), ρ) the sensitivity for any q ∈ Q ⊂ [0, L]d is bounded

σ(q) ≤ CdC
2

2+d
q

(L
ρ

) 2d
2+d

,

where Cd = 4
2

2+d (8
√
d)

2d
2+d and Cq given by (2).

Proof. Recall σ(q) = supfS1,S2∈F (S(L),ρ)
fS1,S2 (q)

1
n

∑
q′∈Q

fS1,S2 (q′)
. For any fixed q ∈ Q, for now

suppose fS1,S2 ∈ F (S(L), ρ) satisfies this supremum σ(q) = fS1,S2 (q)
1
n

∑
q′∈Q

fS1,S2 (q′)
. We define

dist(q, S) = infp∈S ‖q − p‖ (so for qi ∈ Q then dist(qi, S) = vi(S)), and then use the
parameter M := |dist(q, S1)− dist(q, S2)|, where M2 = fS1,S2(q). If M = 0, then obviously
fS1,S2(q) = M2 = 0, and σ(q) = 0. So, without loss of generality, we assume M > 0 and
dist(q, S1) = τ and dist(q, S2) = τ +M . We first prove σ(q) ≤ CdCq L

d

Md . There are two cases
for the relationship between τ and M , as shown in Figure 2.

r

τ

M

q

q′

τ

M

qr

q′

τ

M

qr

q′

Figure 2 Left: Case 1, r = M
8 ≤ τ , and q′ ∈ B(q, r). Right: Case 2, r = M

8 > τ , and
q′ ∈ B(q, τ + r).

J.M. Phillips and P. Tang 63:9

Case 1: τ ≥ M
8 . For any q′ ∈ B(q, M8) := {q′ ∈ Rd | ‖q′ − qi‖ ≤ M

8 }, we have τ + M =
dist(q, S2) ≤ dist(q, q′) + dist(q′, S2) ≤ M

8 + dist(q′, S2), which implies for all q′ ∈ B(q, M8)

dist(q′, S2) ≥ τ +M − M

8 = τ + 7
8M.

Similarly dist(q′, S1) ≤ dist(q′, q) + dist(q, S1) ≤ M
8 + τ for all q′ ∈ B(q, M8). Thus for all

q′ ∈ B(q, M8)

|dist(q′, S2)− dist(q′, S1)| ≥ dist(q′, S2)− dist(q′, S1) ≥ τ + 7
8M − (τ + M

8) = 3
4M.

Case 2: 0 ≤ τ < M
8 . For any q′ ∈ B(q, τ + M

8) := {q′ ∈ Rd | dist(q′, q) ≤ τ + M
8 }, we

have τ +M = dist(q′, S2) ≤ dist(q, q′) + dist(q′, S2) ≤ τ + M
8 + dist(q′, S2), which implies for

all q′ ∈ B(q, τ + M
8)

dist(q′, S2) ≥ 7
8M.

Combined with τ < M
8 and dist(q′, S1) ≤ dist(q′, q)+dist(q, S1) ≤ τ+ M

8 +τ = M
8 + M

8 + M
8 ≤

3
8M for all q′ ∈ B(q, τ + M

8), we have

|dist(q′, S2)− dist(q′, S1)| ≥ dist(q′, S2)− dist(q′, S1) ≥ 7
8M −

3
8M = M

2 .

Combining these two cases on τ , for all q′ ∈ B(q, M8) |dist(q′, S2) − dist(q′, S1)| ≥ M
2 .

Then since B∞(q, r√
d
) ⊂ B(q, r) for all r ≥ 0, from

Cq = max
0<r≤L

rd

Ld
n

|Q ∩B∞(q, r)| ≥ (1
8
√
d

)dM
d

Ld
n

|Q ∩B∞(q, M
8
√
d
)|
,

we can bound the denominator in σ(q) as

1
n

∑
q′∈Q

fS1,S2 (q′) ≥ 1
n

∑
q′∈Q∩B∞(q, M

8
√
d

)

fS1,S2 (q′) = 1
n

∑
q′∈Q∩B∞(q, M

8
√
d

)

(dist(q′, S1)− dist(q′, S2))2

≥ 1
4

1
n
M2
∣∣∣Q ∩B∞(q, M

8
√
d

)
∣∣∣ ≥ 1

4(1
8
√
d

)dM
2

Cq

Md

Ld
= 1

4(1
8
√
d

)d 1
Cq

M2+d

Ld
,

which implies

σ(q) = M2

1
n

∑
q′∈Q fS1,S2(q′)

≤ 4(8
√
d)dM2Cq

Ld

M2+d = 4(8
√
d)dCq

Ld

Md
.

Combining this with σ(q) ≤ M2

ρ2 , we have σ(q) ≤ min
(
M2

ρ2 , 4(8
√
d)dCq L

d

Md

)
. If M2+d ≤

4(8
√
d)dCqρ2Ld, then M2

ρ2 ≤ 4(8
√
d)dCq L

d

Md , which means σ(q) ≤ min
(
M2

ρ2 , 4(8
√
d)dCq L

d

Md

)
=

M2

ρ2 ≤ 4
2

2+d (8
√
d)

2d
2+dC

2
2+d
q

(
L
ρ

) 2d
2+d . If M2+d ≥ 4(8

√
d)dCqρ2Ld, then 4(8

√
d)dCq L

d

Md ≤ M2

ρ2 ,

so σ(q) ≤ min
(
M2

ρ2 , 4(8
√
d)dCq L

d

Md

)
= 4(8

√
d)dCq L

d

Md ≤ 4
2

2+d (8
√
d)

2d
2+dC

2
2+d
q

(
L
ρ

) 2d
2+d . J

Hence, to bound the total sensitivity of F (S(L), ρ), we need a bound of CQ =
1
n

∑
q∈Q C

2
2+d
q .

SoCG 2020

63:10 Sketched MinDist

I Lemma 8. Suppose Q ⊂ [0, L]d of size n, η = minq,q′∈Q, q 6=q′ ‖q − q′‖∞, and CQ is given
by (2). Then using Cd = 2d+1 we have

CQ ≤ Cd min
((

log2
L

η

) 2
2+d ,

(1
d

log2 n
) 2

2+d
)
.

Proof. We define C̃Q := 1
n

∑
q∈Q Cq, and using Hölder inequality we have

CQ = 1
n

∑
q∈Q

C
2

2+d
q ≤ 1

n

(∑
q∈Q

Cq

) 2
2+d

n
d

2+d =
(1
n

∑
q∈Q

Cq

) 2
2+d = (C̃Q)

2
2+d .

So, we only need to bound C̃Q.
We define rq := arg max0<r≤L

rd

Ld
n

|Q∩B∞(q,r)| for all q ∈ Q, Qi := {q ∈ Q | L
2i+1 < rq ≤

L
2i }, and A := {i ≥ 0 | i is an integer and |Qi| > 0}.

For any fixed i ∈ A, we use li := L
2i+1 as the side length of grid cell to partition the

region [0, L]d into si = (Lli)
d = 2(i+1)d grid cells: Ω1. · · · ,Ωsi where each Ωj is a closed

set, and define Qi,j := Qi ∩ Ωj . Then, |Qi ∩ B̄∞(q, li)| ≥ |Qi,j | for all q ∈ Qi,j where
B̄∞(q, li) := {q′ ∈ Rd| ‖q′ − q‖∞ ≤ li}, and we have

∑
q∈Qi

rdq
Ld

1
|Qi ∩B∞(q, rq)|

≤
∑
q∈Q

Ld

2idLd
1

|Qi ∩B∞(q, rq)|
≤ 1

2id
∑
q∈Qi

1
|Qi ∩ B̄∞(q, li)|

≤ 1
2id

∑
j∈[si],|Qi,j |>0

∑
q∈Qi,j

1
|Qi ∩ B̄∞(q, li)|

≤ 1
2id

∑
j∈[si],|Qi,j |>0

∑
q∈Qi,j

1
|Qi,j |

= 1
2id

∑
j∈[si],|Qi,j |>0

|Qi,j |
|Qi,j |

≤ si
2id = 2(i+1)d

2id = 2d.

Then using the definitions of C̃Q and rq we have

C̃Q =
∑
q∈Q

max
0<r≤L

rd

Ld
1

|Q ∩B∞(q, r)| =
∑
q∈Q

rdq
Ld

1
|Q ∩B∞(q, rq)|

=
∑
i∈A

∑
q∈Qi

rdq
Ld

1
|Q ∩B∞(q, r)|

≤
∑
i∈A

∑
q∈Qi

rdq
Ld

1
|Qi ∩B∞(q, r)| ≤

∑
i∈A

2d = 2d|A|.

We assert rq ≥ Ln−
1
d for all q ∈ Q. This is because for any r ∈ (0, Ln− 1

d) we have

rd

Ld
n

|Q ∩B∞(q, r)| ≤
Ld

nLd
n

1 = 1 ≤ Ld

Ld
n

|Q ∩B∞(q, L)| ,

which implies the optimal rq ∈ [Ln− 1
d , L]. Moreover, since rq ≥ minq′∈Q, q′ 6=q ‖q − q′‖∞ ≥

η, we have rq ≥ max(Ln− 1
d , η) for all q ∈ Q. If i > min

(
log2

L
η ,

1
d log2 n

)
, then L

2i <

max(Ln− 1
d , η) ≤ rq, and from the definition of Qi and A we know i /∈ A, which implies

|A| ≤ 1 + min
(

log2
L
η ,

1
d log2 n

)
. Hence we obtain C̃Q ≤ 2d+1 min

(
log2

L
η ,

1
d log2 n

)
and

using CQ = (C̃Q)
2

2+d we prove the lemma. J

4 Strong Coresets for the Distance Between PL Curves

In this section, we study the distance dQ defined on a subset of S(L): the collection of
k-piecewise linear curves, and use the framework in [5] to construct a strong approximation
for Q. This requires a bound on the shattering dimension, not possible for unrestricted

J.M. Phillips and P. Tang 63:11

objects as in Section 3. We assume the multiset Q contains m distinct points q1, · · · , qm,
where each point qi appears mi times and

∑m
i=1mi = n. So, in this section Q will be viewed

as a set {q1, · · · , qm} (not a multiset) and each point q ∈ Q has a weight w(qi) = mi
n .

Suppose Tk := {γ = 〈c0, · · · , ck〉 | ci ∈ Rd} is the collection of all piecewise-linear curves
with k line segments in Rd. For γ = 〈c0, · · · , ck〉 ∈ Tk, 〈c0, · · · , ck〉 is the sequence of k + 1
critical points of γ. The value dist(q, γ) = infp∈γ ‖p−q‖, and function fγ1,γ2(q) = (dist(q, γ1)−
dist(q, γ2))2 are defined as before. We now use weights w(qi) = mi

n

(∑
q∈Q w(q) = 1

)
and

the resulting distance is dQ(γ1, γ2) =
(∑

q∈Q w(q)fγ1,γ2(q)
) 1

2 .
For L > ρ > 0, Q = {q1, · · · , qm} ⊂ Rd , we define

Xdk(L, ρ) := {(γ1, γ2) ∈ Tk × Tk | γ1, γ2 ∈ S(L), dQ(γ1, γ2) ≥ ρ} .

We next consider the sensitivity adjusted weights w′(q) = σ(q)
SQ

w(q) and cost function
gγ1,γ2(q) = 1

σ(q)
fγ1,γ2 (q)
f̄γ1,γ2

. These use the general bounds for sensitivity in Lemma 7 and
Theorem 4, with as usual f̄γ1,γ2 =

∑
q∈Q w(q)fγ1,γ2(q). These induce an adjusted range

space (Q,T′k,d) where each element is defined

Tγ1,γ2,η = {q ∈ Q | w′(q)gγ1,γ2(q) ≤ η, γ1, γ2 ∈ Xdk(L, ρ)}.

Now to apply the strong coreset construction of Braverman et al. [5][Theorem 5.5] we only
need to bound the shattering dimension of (Q,T′k,d).

Two recent results provide bounds on the VC dimension of range spaces related to
trajectories. Given a range space (X,R) with VC dimension ν and shattering dimension s,
it is known that s = O(ν log ν) and ν = O(s). So up to logarithmic factors these terms are
bounded by each other. First Driemel et al. [12] shows VC dimension for a ground set of
curves Xm of length m, with respect to metric balls around curves of length k, for various
distance between curves. The most relevant case is where m = 1 (so the ground set are
points like Q), and the Hausdorff distance is considered, where the VC dimension is bounded
O(d2k2 log(km)) = O(k2 log k) for d = 2, and is at least Ω(max{k, logm}) = Ω(k). Second,
Matheny et al. [21] considered ground sets Xk of trajectories of length k, and ranges defined
by geometric shapes which may intersect those trajectories anywhere to include them in a
subset, but this result is also not directly relevant. Neither of these cases directly imply the
results for our intended range space, since ours involves a pair of trajectories.

I Lemma 9. The shattering dimension of range space (Q,T′k,d) is O(k3), for constant d.

Proof. Suppose (γ1, γ2) ∈ Xdk(L, ρ) and η ≥ 0, where γ1 = 〈c1,0, · · · , c1,k〉 and γ2 =
〈c2,0, . . . , c2,k〉, then we can define the range Tγ1,γ2,η as

Tγ1,γ2,η := {q ∈ Q | w′(q)gγ1,γ2(q) ≤ η}
= {q ∈ Q | w(q)fγ1,γ2(q) ≤ SQf̄γ1,γ2η}
= {q ∈ Q | w(q)(dist(q, γ1)− dist(q, γ2))2 ≤ SQf̄γ1,γ2η}.

For a trajectory γ defined by critical points c0, c1, . . . , ck for j ∈ [k] define sj as the
segment between cj−1, cj and `j as the line extension of that segment. The distance between
q and a segment sj is illustrated in Figure 3 and defined

ξj := dist(q, sj) =

dist(q, cj−1), if 〈cj − cj−1, q − cj−1〉 ≤ 0
dist(q, cj), if 〈cj−1 − cj , q − cj〉 ≤ 0
dist(q, `j), otherwise

.

SoCG 2020

63:12 Sketched MinDist

cj�1
<latexit sha1_base64="+Bz6RhyTJSshs5MLt0pR8C3jub8=">AAAEL3icdVPLbhMxFHU7PEp4tWXJxiJFYtMoE1SBkCpFQpVYICiCPlAmqjyem9TE9li2pxAsfwRb+AokNnwJggViywewx560ah5gaUZ37jnn3nPHdq44M7bd/r60nFy4eOnyypXG1WvXb9xcXVvfN2WlKezRkpf6MCcGOJOwZ5nlcKg0EJFzOMhHjyN+cALasFK+smMFfUGGkg0YJTakDuiRe7OZ+qPVZrvVrhdeDNLToNnF7398/fP6y+7RWrKeFSWtBEhLOTGml7aV7TuiLaMcfCOrDChCR2QIvRBKIsD0Xe3X47shU+BBqcMjLa6zjcxAcC+H9thlFt7Zt6ywx9tbrS0m/QwYR/0vqIhmsgiuvGsLsYCZEVPedVpbNXbu0RFhzFjkwZsg9tjMYzH5L6xX2cHDvmNSVRYk9XhGCJWhmim70Kou18jCHLQUgsjCZaCMd9kJ0SFgvJRzcBgpbrIJc2XMggjl8GZH2XooUNub6SS2pTqDQgUN0zWo76X90EmaSkO04LKd6mXt0DVT7xcE+aIgvvP8jD5NHhXgJztnqIsfc3hecR4IspzsD96oM2A3cPxrM0xe1I1DNMCZGQyIYHyMY89ZYjzvE4tB4rKnRA8h0s5FcwLK7Gnl+sy5nFcQ2JbJMe410/58g+e7O8+mPZ/pNBRBFptGxiOPg7DRCLconb8zi8F+p5Xeb3VepM1uB03WCrqN7qB7KEUPUBc9QbtoD1E0Qh/QR/Qp+Zx8S34mvybU5aVTzS00s5LffwHPCXQo</latexit>

cj
<latexit sha1_base64="52TEysw4UEmvhKk47yNoGbAbI+s=">AAAEK3icdVPLbhMxFHU7PEp4tWXJxiJFYtMokyoCIVWqhCqxQFBU+kCZKPJ4bhIT22PZnkKw5hPYwlewY8N3sKJiyyewx54kapOApRndueece88d26nizNhm8+fKanTl6rXrazdqN2/dvnN3fWPz2OSFpnBEc57r05QY4EzCkWWWw6nSQETK4SQdPQv4yRlow3L5xo4VdAUZSNZnlFifOqS9d731erPRrBZeDuJpUN/DH8+//3n77aC3EW0mWU4LAdJSTozpxE1lu45oyyiHspYUBhShIzKAjg8lEWC6rvJa4oc+k+F+rv0jLa6ytcSAdy4HdugSCx/se5bZ4W670WaynAPDmP8FFdFMZt5V6ZpCLGFmxFTpWo12hV14dEQYMxap9yaIHZpFLCT/hXUK23/SdUyqwoKkJZ4TQmGoZsoutarK1RI/B82FIDJzCShTuuSMaB8wnssF2I8UNtj4uRJmQfhyeLulbDUUqN3teBLbXM0gX0HD5Rq07MRd30maQkOw4JL94rBy6OpxWS4J0mVBeKfpjH6ZPMqgnOycoS58LOBpwbknyHyyP3iryoDdwuGvzTF5VjX2UR8npt8ngvExDj3nieGsTyx6iUteED2AQLsQLQgos9PK1ZlzKS/Asy2TY9ypx93FBq8O9l9e9jzTaci8LDQNjKcl9sJazd+iePHOLAfHrUa802i9jut7LTRZa+g+eoAeoRg9RnvoOTpAR4iiAfqEPqMv0dfoR3Qe/ZpQV1emmntobkW//wIiI3Kq</latexit>

sj
<latexit sha1_base64="UyrKNj2QbxhCHlj6GIaAU+4/TDY=">AAAEK3icdVPLbhMxFHU7PEp4tWXJxiJFYtMokyoCIVWqhCqxQFBU+kCZKPJ4bhIT22PZnkKw5hPYwlewY8N3sKJiyyewx54kapOApRndueece88d26nizNhm8+fKanTl6rXrazdqN2/dvnN3fWPz2OSFpnBEc57r05QY4EzCkWWWw6nSQETK4SQdPQv4yRlow3L5xo4VdAUZSNZnlFifOjS9d731erPRrBZeDuJpUN/DH8+//3n77aC3EW0mWU4LAdJSTozpxE1lu45oyyiHspYUBhShIzKAjg8lEWC6rvJa4oc+k+F+rv0jLa6ytcSAdy4HdugSCx/se5bZ4W670WaynAPDmP8FFdFMZt5V6ZpCLGFmxFTpWo12hV14dEQYMxap9yaIHZpFLCT/hXUK23/SdUyqwoKkJZ4TQmGoZsoutarK1RI/B82FIDJzCShTuuSMaB8wnssF2I8UNtj4uRJmQfhyeLulbDUUqN3teBLbXM0gX0HD5Rq07MRd30maQkOw4JL94rBy6OpxWS4J0mVBeKfpjH6ZPMqgnOycoS58LOBpwbknyHyyP3iryoDdwuGvzTF5VjX2UR8npt8ngvExDj3nieGsTyx6iUteED2AQLsQLQgos9PK1ZlzKS/Asy2TY9ypx93FBq8O9l9e9jzTaci8LDQNjKcl9sJazd+iePHOLAfHrUa802i9jut7LTRZa+g+eoAeoRg9RnvoOTpAR4iiAfqEPqMv0dfoR3Qe/ZpQV1emmntobkW//wJek3K6</latexit>

q
<latexit sha1_base64="02oLuJC+arvj7p7y3NKLfb9WSXg=">AAAEKXicdVPLbhMxFHU7PEp4tWUHmxEpUjeNMkEVCKlSJFSJBYJWkLZSHFUez53Eiu0xtqcQWfMFLNjAV/AX/AE7YMs3sMeetGoeYGlGd+45595zx3aqODO23f65shpduXrt+tqNxs1bt+/cXd/YPDJFqSn0aMELfZISA5xJ6FlmOZwoDUSkHI7T8fOAH5+BNqyQb+1EwUCQoWQ5o8T61OG70/Vmu9WuV7wcJOdBs3sfb//59gkfnG5EmzgraClAWsqJMf2krezAEW0Z5VA1cGlAETomQ+j7UBIBZuBqp1X8yGeyOC+0f6SN62wDG/C+5dCOHLbwwb5nmR3t7bZ2mazmwDDkf0FFNJOZd1W5thBLmBkzVblOa7fGLj06IoyZiNR7E8SOzCIWkv/C+qXNnw4ck6q0IGkVzwmhNFQzZZda1eUa2M9BCyGIzBwGZSqHz4j2AeOFXID9SGF7jZ8LMwvCl4t3OsrWQ4Ha20mmsS3UBeQraJitQat+MvCdpCk1BAsO75dvaoeumVTVkiBdFoR3ml7QZ8njDKrpzhnqwscCnpace4IspvsTb9UZsFtx+GtzTJ7VjX2Ux9jkORGMT+LQc54YTvrUopc4/JLoIQTapWhBQJk9r1yfOZfyEjzbMjmJ+81ksNjg9cH+q1nPFzoNmZeFpoHxrIq9sNHwtyhZvDPLwVGnlTxudQ6TZreDpmsNPUAP0TZK0BPURS/QAeohigB9RJ/Rl+hr9D36Ef2aUldXzjX30NyKfv8FtVpw7A==</latexit>

cj�1
<latexit sha1_base64="+Bz6RhyTJSshs5MLt0pR8C3jub8=">AAAEL3icdVPLbhMxFHU7PEp4tWXJxiJFYtMoE1SBkCpFQpVYICiCPlAmqjyem9TE9li2pxAsfwRb+AokNnwJggViywewx560ah5gaUZ37jnn3nPHdq44M7bd/r60nFy4eOnyypXG1WvXb9xcXVvfN2WlKezRkpf6MCcGOJOwZ5nlcKg0EJFzOMhHjyN+cALasFK+smMFfUGGkg0YJTakDuiRe7OZ+qPVZrvVrhdeDNLToNnF7398/fP6y+7RWrKeFSWtBEhLOTGml7aV7TuiLaMcfCOrDChCR2QIvRBKIsD0Xe3X47shU+BBqcMjLa6zjcxAcC+H9thlFt7Zt6ywx9tbrS0m/QwYR/0vqIhmsgiuvGsLsYCZEVPedVpbNXbu0RFhzFjkwZsg9tjMYzH5L6xX2cHDvmNSVRYk9XhGCJWhmim70Kou18jCHLQUgsjCZaCMd9kJ0SFgvJRzcBgpbrIJc2XMggjl8GZH2XooUNub6SS2pTqDQgUN0zWo76X90EmaSkO04LKd6mXt0DVT7xcE+aIgvvP8jD5NHhXgJztnqIsfc3hecR4IspzsD96oM2A3cPxrM0xe1I1DNMCZGQyIYHyMY89ZYjzvE4tB4rKnRA8h0s5FcwLK7Gnl+sy5nFcQ2JbJMe410/58g+e7O8+mPZ/pNBRBFptGxiOPg7DRCLconb8zi8F+p5Xeb3VepM1uB03WCrqN7qB7KEUPUBc9QbtoD1E0Qh/QR/Qp+Zx8S34mvybU5aVTzS00s5LffwHPCXQo</latexit>

cj
<latexit sha1_base64="52TEysw4UEmvhKk47yNoGbAbI+s=">AAAEK3icdVPLbhMxFHU7PEp4tWXJxiJFYtMokyoCIVWqhCqxQFBU+kCZKPJ4bhIT22PZnkKw5hPYwlewY8N3sKJiyyewx54kapOApRndueece88d26nizNhm8+fKanTl6rXrazdqN2/dvnN3fWPz2OSFpnBEc57r05QY4EzCkWWWw6nSQETK4SQdPQv4yRlow3L5xo4VdAUZSNZnlFifOqS9d731erPRrBZeDuJpUN/DH8+//3n77aC3EW0mWU4LAdJSTozpxE1lu45oyyiHspYUBhShIzKAjg8lEWC6rvJa4oc+k+F+rv0jLa6ytcSAdy4HdugSCx/se5bZ4W670WaynAPDmP8FFdFMZt5V6ZpCLGFmxFTpWo12hV14dEQYMxap9yaIHZpFLCT/hXUK23/SdUyqwoKkJZ4TQmGoZsoutarK1RI/B82FIDJzCShTuuSMaB8wnssF2I8UNtj4uRJmQfhyeLulbDUUqN3teBLbXM0gX0HD5Rq07MRd30maQkOw4JL94rBy6OpxWS4J0mVBeKfpjH6ZPMqgnOycoS58LOBpwbknyHyyP3iryoDdwuGvzTF5VjX2UR8npt8ngvExDj3nieGsTyx6iUteED2AQLsQLQgos9PK1ZlzKS/Asy2TY9ypx93FBq8O9l9e9jzTaci8LDQNjKcl9sJazd+iePHOLAfHrUa802i9jut7LTRZa+g+eoAeoRg9RnvoOTpAR4iiAfqEPqMv0dfoR3Qe/ZpQV1emmntobkW//wIiI3Kq</latexit>

sj
<latexit sha1_base64="UyrKNj2QbxhCHlj6GIaAU+4/TDY=">AAAEK3icdVPLbhMxFHU7PEp4tWXJxiJFYtMokyoCIVWqhCqxQFBU+kCZKPJ4bhIT22PZnkKw5hPYwlewY8N3sKJiyyewx54kapOApRndueece88d26nizNhm8+fKanTl6rXrazdqN2/dvnN3fWPz2OSFpnBEc57r05QY4EzCkWWWw6nSQETK4SQdPQv4yRlow3L5xo4VdAUZSNZnlFifOjS9d731erPRrBZeDuJpUN/DH8+//3n77aC3EW0mWU4LAdJSTozpxE1lu45oyyiHspYUBhShIzKAjg8lEWC6rvJa4oc+k+F+rv0jLa6ytcSAdy4HdugSCx/se5bZ4W670WaynAPDmP8FFdFMZt5V6ZpCLGFmxFTpWo12hV14dEQYMxap9yaIHZpFLCT/hXUK23/SdUyqwoKkJZ4TQmGoZsoutarK1RI/B82FIDJzCShTuuSMaB8wnssF2I8UNtj4uRJmQfhyeLulbDUUqN3teBLbXM0gX0HD5Rq07MRd30maQkOw4JL94rBy6OpxWS4J0mVBeKfpjH6ZPMqgnOycoS58LOBpwbknyHyyP3iryoDdwuGvzTF5VjX2UR8npt8ngvExDj3nieGsTyx6iUteED2AQLsQLQgos9PK1ZlzKS/Asy2TY9ypx93FBq8O9l9e9jzTaci8LDQNjKcl9sJazd+iePHOLAfHrUa802i9jut7LTRZa+g+eoAeoRg9RnvoOTpAR4iiAfqEPqMv0dfoR3Qe/ZpQV1emmntobkW//wJek3K6</latexit>

q
<latexit sha1_base64="02oLuJC+arvj7p7y3NKLfb9WSXg=">AAAEKXicdVPLbhMxFHU7PEp4tWUHmxEpUjeNMkEVCKlSJFSJBYJWkLZSHFUez53Eiu0xtqcQWfMFLNjAV/AX/AE7YMs3sMeetGoeYGlGd+45595zx3aqODO23f65shpduXrt+tqNxs1bt+/cXd/YPDJFqSn0aMELfZISA5xJ6FlmOZwoDUSkHI7T8fOAH5+BNqyQb+1EwUCQoWQ5o8T61OG70/Vmu9WuV7wcJOdBs3sfb//59gkfnG5EmzgraClAWsqJMf2krezAEW0Z5VA1cGlAETomQ+j7UBIBZuBqp1X8yGeyOC+0f6SN62wDG/C+5dCOHLbwwb5nmR3t7bZ2mazmwDDkf0FFNJOZd1W5thBLmBkzVblOa7fGLj06IoyZiNR7E8SOzCIWkv/C+qXNnw4ck6q0IGkVzwmhNFQzZZda1eUa2M9BCyGIzBwGZSqHz4j2AeOFXID9SGF7jZ8LMwvCl4t3OsrWQ4Ha20mmsS3UBeQraJitQat+MvCdpCk1BAsO75dvaoeumVTVkiBdFoR3ml7QZ8njDKrpzhnqwscCnpace4IspvsTb9UZsFtx+GtzTJ7VjX2Ux9jkORGMT+LQc54YTvrUopc4/JLoIQTapWhBQJk9r1yfOZfyEjzbMjmJ+81ksNjg9cH+q1nPFzoNmZeFpoHxrIq9sNHwtyhZvDPLwVGnlTxudQ6TZreDpmsNPUAP0TZK0BPURS/QAeohigB9RJ/Rl+hr9D36Ef2aUldXzjX30NyKfv8FtVpw7A==</latexit>

cj�1
<latexit sha1_base64="+Bz6RhyTJSshs5MLt0pR8C3jub8=">AAAEL3icdVPLbhMxFHU7PEp4tWXJxiJFYtMoE1SBkCpFQpVYICiCPlAmqjyem9TE9li2pxAsfwRb+AokNnwJggViywewx560ah5gaUZ37jnn3nPHdq44M7bd/r60nFy4eOnyypXG1WvXb9xcXVvfN2WlKezRkpf6MCcGOJOwZ5nlcKg0EJFzOMhHjyN+cALasFK+smMFfUGGkg0YJTakDuiRe7OZ+qPVZrvVrhdeDNLToNnF7398/fP6y+7RWrKeFSWtBEhLOTGml7aV7TuiLaMcfCOrDChCR2QIvRBKIsD0Xe3X47shU+BBqcMjLa6zjcxAcC+H9thlFt7Zt6ywx9tbrS0m/QwYR/0vqIhmsgiuvGsLsYCZEVPedVpbNXbu0RFhzFjkwZsg9tjMYzH5L6xX2cHDvmNSVRYk9XhGCJWhmim70Kou18jCHLQUgsjCZaCMd9kJ0SFgvJRzcBgpbrIJc2XMggjl8GZH2XooUNub6SS2pTqDQgUN0zWo76X90EmaSkO04LKd6mXt0DVT7xcE+aIgvvP8jD5NHhXgJztnqIsfc3hecR4IspzsD96oM2A3cPxrM0xe1I1DNMCZGQyIYHyMY89ZYjzvE4tB4rKnRA8h0s5FcwLK7Gnl+sy5nFcQ2JbJMe410/58g+e7O8+mPZ/pNBRBFptGxiOPg7DRCLconb8zi8F+p5Xeb3VepM1uB03WCrqN7qB7KEUPUBc9QbtoD1E0Qh/QR/Qp+Zx8S34mvybU5aVTzS00s5LffwHPCXQo</latexit>

cj
<latexit sha1_base64="52TEysw4UEmvhKk47yNoGbAbI+s=">AAAEK3icdVPLbhMxFHU7PEp4tWXJxiJFYtMokyoCIVWqhCqxQFBU+kCZKPJ4bhIT22PZnkKw5hPYwlewY8N3sKJiyyewx54kapOApRndueece88d26nizNhm8+fKanTl6rXrazdqN2/dvnN3fWPz2OSFpnBEc57r05QY4EzCkWWWw6nSQETK4SQdPQv4yRlow3L5xo4VdAUZSNZnlFifOqS9d731erPRrBZeDuJpUN/DH8+//3n77aC3EW0mWU4LAdJSTozpxE1lu45oyyiHspYUBhShIzKAjg8lEWC6rvJa4oc+k+F+rv0jLa6ytcSAdy4HdugSCx/se5bZ4W670WaynAPDmP8FFdFMZt5V6ZpCLGFmxFTpWo12hV14dEQYMxap9yaIHZpFLCT/hXUK23/SdUyqwoKkJZ4TQmGoZsoutarK1RI/B82FIDJzCShTuuSMaB8wnssF2I8UNtj4uRJmQfhyeLulbDUUqN3teBLbXM0gX0HD5Rq07MRd30maQkOw4JL94rBy6OpxWS4J0mVBeKfpjH6ZPMqgnOycoS58LOBpwbknyHyyP3iryoDdwuGvzTF5VjX2UR8npt8ngvExDj3nieGsTyx6iUteED2AQLsQLQgos9PK1ZlzKS/Asy2TY9ypx93FBq8O9l9e9jzTaci8LDQNjKcl9sJazd+iePHOLAfHrUa802i9jut7LTRZa+g+eoAeoRg9RnvoOTpAR4iiAfqEPqMv0dfoR3Qe/ZpQV1emmntobkW//wIiI3Kq</latexit>

sj
<latexit sha1_base64="UyrKNj2QbxhCHlj6GIaAU+4/TDY=">AAAEK3icdVPLbhMxFHU7PEp4tWXJxiJFYtMokyoCIVWqhCqxQFBU+kCZKPJ4bhIT22PZnkKw5hPYwlewY8N3sKJiyyewx54kapOApRndueece88d26nizNhm8+fKanTl6rXrazdqN2/dvnN3fWPz2OSFpnBEc57r05QY4EzCkWWWw6nSQETK4SQdPQv4yRlow3L5xo4VdAUZSNZnlFifOjS9d731erPRrBZeDuJpUN/DH8+//3n77aC3EW0mWU4LAdJSTozpxE1lu45oyyiHspYUBhShIzKAjg8lEWC6rvJa4oc+k+F+rv0jLa6ytcSAdy4HdugSCx/se5bZ4W670WaynAPDmP8FFdFMZt5V6ZpCLGFmxFTpWo12hV14dEQYMxap9yaIHZpFLCT/hXUK23/SdUyqwoKkJZ4TQmGoZsoutarK1RI/B82FIDJzCShTuuSMaB8wnssF2I8UNtj4uRJmQfhyeLulbDUUqN3teBLbXM0gX0HD5Rq07MRd30maQkOw4JL94rBy6OpxWS4J0mVBeKfpjH6ZPMqgnOycoS58LOBpwbknyHyyP3iryoDdwuGvzTF5VjX2UR8npt8ngvExDj3nieGsTyx6iUteED2AQLsQLQgos9PK1ZlzKS/Asy2TY9ypx93FBq8O9l9e9jzTaci8LDQNjKcl9sJazd+iePHOLAfHrUa802i9jut7LTRZa+g+eoAeoRg9RnvoOTpAR4iiAfqEPqMv0dfoR3Qe/ZpQV1emmntobkW//wJek3K6</latexit>

q
<latexit sha1_base64="02oLuJC+arvj7p7y3NKLfb9WSXg=">AAAEKXicdVPLbhMxFHU7PEp4tWUHmxEpUjeNMkEVCKlSJFSJBYJWkLZSHFUez53Eiu0xtqcQWfMFLNjAV/AX/AE7YMs3sMeetGoeYGlGd+45595zx3aqODO23f65shpduXrt+tqNxs1bt+/cXd/YPDJFqSn0aMELfZISA5xJ6FlmOZwoDUSkHI7T8fOAH5+BNqyQb+1EwUCQoWQ5o8T61OG70/Vmu9WuV7wcJOdBs3sfb//59gkfnG5EmzgraClAWsqJMf2krezAEW0Z5VA1cGlAETomQ+j7UBIBZuBqp1X8yGeyOC+0f6SN62wDG/C+5dCOHLbwwb5nmR3t7bZ2mazmwDDkf0FFNJOZd1W5thBLmBkzVblOa7fGLj06IoyZiNR7E8SOzCIWkv/C+qXNnw4ck6q0IGkVzwmhNFQzZZda1eUa2M9BCyGIzBwGZSqHz4j2AeOFXID9SGF7jZ8LMwvCl4t3OsrWQ4Ha20mmsS3UBeQraJitQat+MvCdpCk1BAsO75dvaoeumVTVkiBdFoR3ml7QZ8njDKrpzhnqwscCnpace4IspvsTb9UZsFtx+GtzTJ7VjX2Ux9jkORGMT+LQc54YTvrUopc4/JLoIQTapWhBQJk9r1yfOZfyEjzbMjmJ+81ksNjg9cH+q1nPFzoNmZeFpoHxrIq9sNHwtyhZvDPLwVGnlTxudQ6TZreDpmsNPUAP0TZK0BPURS/QAeohigB9RJ/Rl+hr9D36Ef2aUldXzjX30NyKfv8FtVpw7A==</latexit>

Figure 3 Illustration of the dist(q, sj) from point q to segment sj .

Then dist(q, γ) = minj∈[k] ξj . For trajectories γ1 and γ2, specify these segment distances as
ξ

(1)
i and ξ(2)

i , respectively. Then the expression for Tγ1,γ2,η can be rewritten as

Tγ1,γ2,η = {q ∈ Q | w′(q)gγ1,γ2 (q) ≤ η}

= {q ∈ Q | w(q)(min
j∈[k]

ξ
(1)
j − min

j∈[k]
ξ

(2)
j)2 ≤ SQf̄γ1,γ2η}

= ∪j1,j2∈[k]{q ∈ Q | ξ(1)
j1
≤ ξ(1)

j , ξ
(2)
j2
≤ ξ(2)

j ∀j ∈ [k], w(q)(ξ(1)
j1
− ξ(2)

j2
)2 ≤ SQf̄γ1,γ2η}

=
⋃

j1,j2∈[k]

(
∩j∈[k],j 6=j1 {q ∈ Q | ξ

(1)
j1
≤ ξ(1)

j }
)

∩
(
∩j∈[k],j 6=j2 {q ∈ Q| ξ

(2)
j2
≤ ξ(2)

j }
)

∩ {q ∈ Q |
√
w(q)(ξ(1)

j1
− ξ(2)

j2
) ≤ (SQf̄γ1,γ2η) 1

2 }
∩ {q ∈ Q |

√
w(q)(ξ(2)

j2
− ξ(1)

j1
) ≤ (SQf̄γ1,γ2η) 1

2 }

 .

This means set Tγ1,γ2,η can be decomposed as the union and intersection of O(k3) simply-
defined subsets of Q. Specifically looking at the last line, this can be seen as the union over
O(k2) sets (the outer union), and the first two lines are the intersection of O(k) sets, and
the last two lines inside the union are the intersection with one set each.

Next we argue that each of these O(k3) simply defined subsets of Q can be characterized
as an element of a range space. By standard combinatorics [19, 3], the bound of the shattering
dimension of the entire range space is O(k3) times the shattering dimension of any of these
simple ranges spaces.

To get this simple range space shattering dimension bound, we can use a similar lin-
earization method (see full version). For any simple range space R determined by the set
decomposition of Tγ1,γ2,η, we can introduce new variables c0 ∈ R, z, c ∈ Rd′ , where z depends
only on q, and c0, ci depend only on γ1, γ2 and r, and d′ only depends on d. Here, Q
is a fixed set and thus SQ is a constant. By introducing new variables we can construct
an injective map ϕ : Q 7→ Rd′ , s.t. ϕ(q) = z. There is also an injective map from R to
{{z ∈ ϕ(Q) | c0 + zT c ≤ 0} | c0 ∈ R, c ∈ Rd′}. Since the shattering dimension of the range
space (Rd′ ,Hd′), where Hd′ = {h is a halfspace in Rd′}, is O(d′), we have the shattering
dimension of(Q,R) is O(d′) ≤ Cd where Cd is a positive constant depending only on d.
Piecing this all together we obtain Cdk3 bound for the shattering dimension of (Q,T′k,d). J

Now, we invoke Lemma 9 and [5][Theorem 5.5] to get a (ρ, ε, δ)-strong coreset for Xdk(L, ρ).

I Theorem 10. Let L > ρ > 0, Q ⊂ [0, L]d, and consider trajectory pairs Xdk(L, ρ). Suppose
σ(q) and SQ are defined in Lemma 7 and Theorem 4 respectively. Then for δ, ε ∈ (0, 1) a σ-
sensitive sampling of size N = O(SQε2 (k3 logS + log 1

δ)) provides Q̃, a strong (ρ, ε, δ)-coreset;
that is with probability at least 1− δ, for all pairs γ1, γ2 ∈ Xdk(L, ρ) we have

(1− ε)dQ(γ1, γ2) ≤ dQ̃,W (γ1, γ2) ≤ (1 + ε)dQ(γ1, γ2).

J.M. Phillips and P. Tang 63:13

5 Trajectory Reconstruction

Let T := {γ = 〈c0, · · · , ck〉 | ci ∈ R2, k ≥ 1} be the set of all piecewise-linear curves in R2.
Each curve in T is specified by a series of critical points 〈c0, c1, . . . , ck〉, and k line segments
s1, s2, . . . , sk, where si is the line segment ci−1ci. In this section we study how to recover γ
from Q and vQ(γ) for γ ∈ T.

Restrictions on curves and Q. For τ > 0 we define a family of curves Tτ ⊂ T s.t. each
γ ∈ Tτ has two restrictions:

(R1): Angles ∠[ci−1,ci,ci+1] at an internal critical point ci is non-zero (i.e., in (0, π)).
(R2): Each critical point ci is τ -separated, that is the disk B(ci, τ) = {x ∈ R2 | ‖x− ci‖ ≤
τ} only intersects the two adjacent segments si−1 and si of γ, or one adjacent segment
for endpoints (i.e., only the s1 for c0 and sk for ck).

We next restrict that all curves (and Q) lie in region Ω ⊂ R2. Let Tτ (Ω) be the subset of
Tτ where all curves γ have all critical points within Ω, and in particular, no ci ∈ γ is within
a distance τ of the boundary of Ω.

To define Q, for η > 0, define an infinite grid Gη = {gv ∈ R2 | gη = ηv for v =
(v1, v2) ∈ Z2}, where Z is all integers. Suppose η ≤ τ

32 , then Q = Gη ∩ Ω = {q1, · · · , qn},
γ ∈ Tτ (Ω), vi = minp∈γ ‖qi − p‖ and vQ(γ) = (v1, . . . , vn). We define some notations that
are used in this section for the implied circle Ci := {x ∈ R2| ‖x− qi‖ = vi}, the closed disk
Bi := {x ∈ R2| ‖x− qi‖ ≤ vi}, and the open disk Ḃi := {x ∈ R2| ‖x− qi‖ < vi} around each
qi or radius vi. When the radius is specified as r (with perhaps r 6= vi), then we, as follows,
denote the associated circle Ci,r, closed disk Bi,r, and open disk Ḃi,r around qi.

For Q, γ ∈ Tτ (Ω) and vQ(γ) we have the following three observations.
(O1): In any disk with radius less than τ , there is at most one critical point of γ; by (R2).
(O2): If a point moves along γ, it can only stop or change direction at critical points of γ.
(O3): For any qi ∈ Q, γ cannot go into Ḃi. Moreover, Ci must contain at least one point
of γ, and if this point is not a critical point, then γ must be tangent to Ci at this point.

The restriction (R2) only implies if there is a critical point of γ, then in its neighborhood
γ has at most two line segments. However, if there is no critical point in a region, then the
shape of γ can be very complicated in this region, so we need to first identify the regions
that contain a critical point.

These observations form the basis for the algorithm and its proof of correctness. We next
describe the algorithm, state the main results, and provide intuition for the proofs. For space,
some pseudocode and full proofs which rely heavily on case analysis are in the full version.

Recovery algorithm. The entire algorithm is overviewed in Algorithm 1. For each critical
point c ∈ γ, there exists q ∈ Q such that dist(q, c) < η. So to recover γ, we first traverse
{qi ∈ Q | vi < η} and use isCritical(qi) to solve the decision problem of if there is a critical
point in Bi,3η. Whenever there is a critical point in Bi,3η, we then use FindCritical(qi) to
find it – collectively, this finds all critical points of γ. Finally, we use DetermineOrder
(Algorithm 2) to determine the order of all critical points of γ, which recovers γ.

Existence of critical points. In isCritical(qi) we consider the common tangent line of Ci
and Cj for all qj in a neighborhood of qi. If no common tangent line can go through Bi,3η
without going into the interior of any other circle centered in Bi,3η, unlike Figure 4(Left),
then it implies there is a critical point of γ in Bi,3η. This can be confirmed checking the
possible tangent lines for circles centered at grid points in Bi,3η and around qi; cases for
endpoints and internal points are illustrated in Figure 4(Center,Right).

SoCG 2020

63:14 Sketched MinDist

Algorithm 1 Recover γ ∈ Tτ (L) from Q and vQ(γ).

Initialize Qη := {qi ∈ Q | vi < η}, close set Qr := ∅, endpoints E = ∅ and critical points
A := ∅.
for each qi ∈ Qη do

if qi ∈ Qr or isCritical(qi)=False then
continue

Let (c, S) := FindCritical(qi).
if |S| = 1 then
E := E ∪ {(c, S)}. // c is an endpoint of γ

Let A := A ∪ {(c, S)} and Qr := Qr ∪
(
Qη ∩Bc,16η

)
. // aggregate critical points

return γ := DetermineOrder(E,A)

qi

qj

ℓℓ′

Ci

Cj

qi

Ci

c

s

qi1qi2

qi3 qi4

qi5

qi6

pi5 pi6

qi

Ci

c

s1

s2

Ω(s1, s2)

qi1

qi2

qi3

qi4

pi3

pi4

Figure 4 Determining no critical point (Left), endpoint (Center), or internal critical point (Right).

I Lemma 11. Suppose qi ∈ Q and vi < η. If isCritical(qi) returns True, then there must
be a critical point of γ in Bi,3η. Moreover, for any critical point c ∈ γ there exists some
qi ∈ Q such that vi < η and isCritical(qi) returns True for the input qi.

Finding a critical point. If there is a critical point c in Bi,3η, then using (R2) we know in
the neighborhood of c, γ has a particular pattern: it either has one line segment, or two line
segments. We will need two straightforward subfunctions:

FCT (Find Common Tangents) takes in three grid points qi, qj , qk, and returns the all
common tangent lines of Cj and Ck which do not intersect the interior of disks Ḃl of
a disk associated with a point ql ∈ Qi,8η. This generates a feasible superset of possible
nearby line segments which may be part of γ.
MOS (Merge-Overlapping-Segments) takes a set of line segments, and returns a smaller
set, merging overlapping segments. This combines the just generated potential line
segments of γ.

Now in FindCritical(qi) for each pair qj , qk ∈ Bi,8η, we first use FCS to find the common
tangent line of Cj , Ck that could be segments of γ, and then use MOS to reduce this set
down to a minimal set of possibilities Sm. By definition, there must be a critical point c,
and thus can be at most 2 actual segments of γ within Bi,8η, so we can then refine Sm. We
first check if c is an endpoint, in which case there must be only one valid segment. If not,
then there must be 2, and we need to consider all pairs in Sm. This check can be done by
verifying that every Ck for qk ∈ Qi,8η is tangent to the associated ray ray(s) (for an endpoint)
or for the associated rays ray(s) and ray(s′) for their associated segment pairs (for an internal
critical point). Some of these cases are illustrated in Figure 5.

J.M. Phillips and P. Tang 63:15

qi

qi1

qi2

qi3

Ci1

Ci2

Ci3

c

s qi

qi1

qi2

qi3

Ci1

Ci2

Ci3

c

s

s′

qi

qi1

qi2

qi3

qi4

qk1

qk2

qk3

qj1

qj2
Ci1

Ci2

Ci3

Ci4

Ck1

Ck2

Ck3

Cj1

Cj2

c

s

s′

Figure 5 Illustration of how Q ∩Bi,8η is sufficient to recover a critical point c in Bi,3η for the c
and endpoint (Left), or an internal point with small angle (Center) or large angle (Right).

I Lemma 12. Suppose c′ ∈ Bi,3η is a critical point of γ, and (c, S) is the output of
FindCritical(qi), then c = c′. Moreover, |S| = 1 if and only if c is an endpoint of γ.

Using isCritical and FindCritical we can find all critical points (E,A) with associated
line segments of γ, so the final step is to use function DetermineOrder(E,A) (Algorithm
2) to determine their order, as we argue it will completely recover γ.

Algorithm 2 DetermineOrder(E,A): Determine the order of critical points.

Choose any (c0, S0) ∈ E, let k = |A| − 1, A := A \ {(c0, S0)}, s1 ∈ S0 and γ := 〈c0〉.
for i = 1 to k do
Find closest c from (c, S) ∈ A to ci−1 so c is on ray(si), and let A := A \ {(c, S)}.
Append ci = c to γ, and if i < k then let si+1 = s where s ∈ S is not parallel with si.

return γ

I Theorem 13. Suppose Q = Gη ∩ Ω, η ≤ τ
32 , and vQ(γ) is generated by Q and γ ∈ Tτ (Ω)

with k segments, then Algorithm 1 can recover γ from vQ(γ) in O(|Q|+ k2) time.

References
1 Ann Arbor Algorithms. K-graph. Technical report, https://github.com/aaalgo/kgraph,

2018.
2 Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust. In Proceedings of

the sixth ACM symposium on Solid modeling and applications, 2001.
3 Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 1999.
4 Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation

algorithm for the column subset selection problem. In Proceedings of the 20th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2009.

5 Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions, 2016. arXiv:1612.00889.

6 Frederic Chazal and David Cohen-Steiner. Geometric inference. URL: https://geometrica.
saclay.inria.fr/team/Fred.Chazal/papers/GeomInference5.pdf.

7 Frederic Chazal, David Cohen-Steiner, and Andre Lieutier. A sampling theory for compact
sets in euclidean space. DCG, 41:461–479, 2009.

8 Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for proba-
bility measures. Foundations of Computational Mathematics, pages 1–19, 2010.

SoCG 2020

https://github.com/aaalgo/kgraph
http://arxiv.org/abs/1612.00889
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/GeomInference5.pdf
https://geometrica.saclay.inria.fr/team/Fred.Chazal/papers/GeomInference5.pdf

63:16 Sketched MinDist

9 Frédéric Chazal and Andre Lieutier. The “λ-medial axis”. Graphical Models, 67:304–331, 2005.
10 Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank

approximation via ridge leverage score sampling. In ACM-SIAM Symposium on Discrete
Algorithms, 2017.

11 Michael B. Cohen, Cameron Musco, and Jakub Pachocki. Online row sampling. In International
Workshop on Approximation, Randomization, and Combinatorial Optimization, 2016.

12 Anne Driemel, Jeff M. Phillips, and Ioannis Psarros. On the vc dimension of metric balls under
frechet and hausdorff distances. In International Symposium on Computational Geometry,
2019.

13 Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast
approximation of statistical leverage. Journal of Machine Learning Research, 13:3475–3506,
2012.

14 Petros Drineas, Michael W. Mahoney, and S. Muthukrishnan. Relative-error CUR matrix
decompositions. SIAM Journal of MAtrix Analysis and Applications, 30:844–881, 2008.

15 Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. ACM Transactions
on Graphics, 13:43–72, 1994.

16 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings ACM Symposium on Theory of Computing, 2011.

17 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA, and projective clustering. In Proceedings 24th
ACM-SIAM Symposium on Discrete Algorithms, 2013.

18 Dan Feldman and Lenard J. Schulman. Data reduction for weighted and outlier-resistant
clustering. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 2012.

19 S. Har-Peled. Geometric Approximation Algorithms. Mathematical Surveys and Monographs.
American Mathematical Society, 2011.

20 Michael Langberg and Leonard J. Schulman. Universal ε-approximators for integrals. In
SODA, pages 598–607, 2010.

21 Michael Matheny, Dong Xie, and Jeff M. Phillips. Scalable spatial scan statistics for trajectories,
2019. arXiv:1906.01693.

22 Cameron Musco and Christopher Musco. Recursive sampling for the Nyström method. In
NIPS, 2017.

23 Jeff M. Phillips and Pingfan Tang. Simple distances for trajectories via landmarks. In
SIGSPATIAL. (long version: arXiv:1804.11284), 2019.

24 Jeff M. Phillips, Bei Wang, and Yan Zheng. Geomtric inference on kernel density estimates.
In SOCG, 2015.

25 Ilya Razenshteyn and Ludwig Schmidt. Falconn-fast lookups of cosine and other nearest
neighbors. https://falconn-lib.org, 2018.

26 Kasturi Varadarajan and Xin Xiao. On the sensitivity of shape fitting problems. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012),
pages 486–497, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.FSTTCS.2012.486.

http://arxiv.org/abs/1906.01693
https://arxiv.org/abs/1804.11284
https://falconn-lib.org
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.486

Fast Algorithms for Minimum Cycle Basis and
Minimum Homology Basis
Abhishek Rathod
Department of Mathematics, Technical University of Munich (TUM),
Boltzmannstr. 3, 85748 Garching b. München, Germany
abhishek.rathod@tum.de

Abstract
We study the problem of finding a minimum homology basis, that is, a shortest set of cycles that
generates the 1-dimensional homology classes with Z2 coefficients in a given simplicial complex K.
This problem has been extensively studied in the last few years. For general complexes, the current
best deterministic algorithm, by Dey et al. [8], runs in O(Nω + N2g) time, where N denotes the
number of simplices in K, g denotes the rank of the 1-homology group of K, and ω denotes the
exponent of matrix multiplication. In this paper, we present two conceptually simple randomized
algorithms that compute a minimum homology basis of a general simplicial complex K. The first
algorithm runs in Õ(mω) time, where m denotes the number of edges in K, whereas the second
algorithm runs in O(mω + Nmω−1) time.

We also study the problem of finding a minimum cycle basis in an undirected graph G with n

vertices and m edges. The best known algorithm for this problem runs in O(mω) time. Our algorithm,
which has a simpler high-level description, but is slightly more expensive, runs in Õ(mω) time.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Algebraic topology

Keywords and phrases Computational topology, Minimum homology basis, Minimum cycle basis,
Simplicial complexes, Matrix computations

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.64

Funding This research has been supported by the DFG Collaborative Research Center SFB/TRR
109 “Discretization in Geometry and Dynamics”.

Acknowledgements The author would like to thank Ulrich Bauer and Michael Lesnick for valuable
discussions, and anonymous reviewers for their useful comments.

1 Introduction

Minimum cycle bases in graphs have several applications, for instance, in analysis of elec-
trical networks, analysis of chemical and biological pathways, periodic scheduling, surface
reconstruction and graph drawing. Also, algorithms from diverse application domains like
electrical circuit theory and structural engineering require cycle basis computation as a
preprocessing step. Cycle bases of small size offer a compact description that is advantageous
from a mathematical as well as from an application viewpoint. For this reason, the problem
of computing a minimum cycle basis has received a lot of attention, both in its general setting
as well as in special classes of graphs such as planar graphs, sparse graphs, dense graphs,
network graphs, and so on. We refer the reader to [15] for a comprehensive survey.

In topological data analysis, “holes” of different dimensions in a geometric dataset
constitute “features” of the data. Algebraic topology offers a rigorous language to formalize
our intuitive picture of holes in these geometric objects. More precisely, a basis for the first
homology group H1 can be taken as a representative of the one-dimensional holes in the
geometric object. The advantages of using minimum homology bases are twofold: firstly,
one can bring geometry in picture by assigning appropriate weights to edges, and secondly,

© Abhishek Rathod;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 64; pp. 64:1–64:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2533-3699
mailto:abhishek.rathod@tum.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.64
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis

smaller cycles are easier to understand and analyze, especially visually. We focus solely
on the bases of the first homology group since the problem of computing a shortest basis
for higher homology groups with Z2 coefficients was shown to be NP-hard by Chen and
Freedman [5].

2 Background and Preliminaries

2.1 Cycle Basis
Let G = (V,E) be a connected graph. A subgraph of G which has even degree for each
vertex is called a cycle of G. A cycle is called elementary if the set of edges form a connected
subgraph in which each vertex has degree 2. We associate an incidence vector C, indexed on
E, to each cycle, so that Ce = 1 if e is an edge of the cycle, and Ce = 0 otherwise. The set of
incidence vectors of cycles forms a vector space over Z2, called the cycle space of G. It is a
well-known fact that for a connected graph G, the cycle space is of dimension |E| − |V |+ 1.
Throughout, we use ν to denote the dimension of the cycle space of a graph. A basis of the
cycle space, that is, a maximal linearly independent set of cycles is called a cycle basis.

Suppose that the edges of G have non-negative weights. Then, the weight of a cycle is the
sum of the weights of its edges, and the weight of a cycle basis is the sum of the weights of
the basis elements. The problem of computing a cycle basis of minimum weight is called the
minimum cycle basis problem. Since we assume all edge weights to be non-negative, there
always exists a minimum cycle basis of elementary cycles, allowing us to focus on minimum
cycle basis comprising entirely of elementary cycles.

A simple cycle C is tight if it contains a shortest path between every pair of points in
C. We denote the set of all tight cycles in the graph by T . Tight cycles are sometimes
also referred to as isometric cycles [1, 15]. Tight cycles play an important role in designing
algorithms for minimum cycle basis, owing to the following theorem by Horton.

I Theorem 1 (Horton [13]). A minimum cycle basisM consists only of tight cycles.

A key structural property about minimum cycle bases was proved by de Pina.

I Theorem 2 (de Pina [7]). Cycles C1 . . . , Cν form a minimum cycle basis if there are vectors
S1, . . . , Sν such that for all i, 1 ≤ i ≤ ν, the following hold:
Prefix Orthogonality: 〈Cj , Si〉 = 0 for all 1 ≤ j ≤ i.
Non-Orthogonality: 〈Ci, Si〉 = 1.
Shortness: Ci is a minimum weight cycle in T with 〈Ci, Si〉 = 1.

The vectors S1, . . . , Sν in Theorem 2 are called support vectors. The recent line of
algorithmic work [1, 7, 16, 17, 18] on the minimum cycle basis problem rely on Theorem 2.
In fact, these algorithms may all be seen as refinements of the algorithm by de Pina, see
Algorithm 1.

Algorithm 1 De Pina’s Algorithm for computing a minimum cycle basis.

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν
2: for i← 1, . . . , ν do
3: Compute a minimum weight cycle Ci with 〈Ci, Si〉 = 1.
4: for j ← i+ 1, . . . , ν do
5: Sj = Sj + 〈Ci, Sj〉Si
6: end for
7: end for
8: Return {C1, . . . , Cν}.

A. Rathod 64:3

Algorithm 1 works by inductively maintaining a set of support vectors {Si} so that the
conditions of Theorem 2 are satisfied when the algorithm terminates. In particular, Lines 4
and 5 of the algorithm ensure that the set of vectors Sj for j > i are orthogonal to vectors
C1, . . . , Ci. Updating the vectors Sj as outlined in Lines 4 and 5 of Algorithm 1 takes time
O(m3) time in total. Using a divide and conquer procedure for maintaining Sj , Kavitha et
al. [17] improved the cost of maintaining the support vectors to O(mω). See Algorithm 2.

Algorithm 2 Divide and conquer procedure for fast computation of support vectors by Kavitha
et al. [17].

1: Initialize Si to the i-th unit vector ei for 1 ≤ i ≤ ν.
2: MinCycleBasis(1, ν).

3: procedure MinCycleBasis(`, u)
4: if ` = u then
5: Compute a minimum weight cycle C` with 〈C`, S`〉 = 1.
6: else
7: q ← b(`+u)/2c.
8: MinCycleBasis(`, q).
9: C← [C`, . . . , Cq].
10: W← (CT [S`, . . . , Sq])−1CT [Sq+1, . . . , Su].
11: [Sq+1, . . . , Su]← [Sq+1, . . . , Su] + [S`,, Sq]W.
12: MinCycleBasis(q + 1, u).
13: end if
14: end procedure
15: Return {C1, . . . , Cν}.

I Lemma 3 (Lemma 5.6 in [15]). The total number of arithmetic operations performed in
lines 9 to 11 of Algorithm 2 is O(mω). That is, the support vectors satisfying conditions of
Theorem 2 can be maintained in O(mω) time.

Finally, in [1], Amaldi et al. designed an O(mω) time algorithm for computing a minimum
cycle basis by improving the complexity of Line 5 of Algorithm 2 to o(mω) (from O(m2n)
in [17]), while using the O(mω) time divide-and-conquer template for maintaining the support
vectors as presented in Algorithm 2. The o(mω) procedure for Line 3 is achieved by performing
a Monte Carlo binary search on the set of tight cycles (sorted by weight) to find a minimum
weight cycle Ci that satisfies 〈Ci, Si〉 = 1. An efficient binary search is made possible on
account of the following key structural property about tight cycles.

I Theorem 4 (Amaldi et al. [1]). The total length of the tight cycles is at most nν.

Amaldi et al. [1] also show that there exists an O(nm) algorithm to compute the set of
all the tight cycles of an undirected graph G. See Sections 2 and 3 of [1] for details about
Amaldi et al.’s algorithm.

2.2 Matrix operations
The column rank profile (respectively row rank profile) of an m× n matrix A with rank r, is
the lexicographically smallest sequence of r indices [i1, i2, . . . , ir] (respectively [j1, j2, . . . , jr])
of linearly independent columns (respectively rows) of A. Suppose that {a1, a2, . . . , an}
represent the columns of A. Then, following Busaryev et al. [3], we define the earliest basis
of A as the set of columns E(A) = {ai1 , ai2 , . . . , air}.

SoCG 2020

64:4 Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis

It is well-known that classical Gaussian elimination can be used to compute rank profile
in O(nmr) time. The current state-of-the-art deterministic matrix rank profile algorithms
run in O(mnrω−2) time.

I Theorem 5 ([10,14]). There is a deterministic O(mnrω−2) time algorithm to compute the
column rank profile of an m× n matrix A.

In case of randomized algorithms, Cheung, Kwok and Lau [6] presented a breakthrough
Monte Carlo algorithm for rank computation that runs in (nnz(A) + rω)1+o(1) time, where
o(1) in the exponent captures some missing multiplicative logn and logm factors, and nnz(A)
denotes the number of nonzero entries in A. Equivalently, the complexity for Cheung et al.’s
algorithm can also be written as Õ(nnz(A)+rω). The notation Õ(·) is often used in literature
to hide small polylogarithmic factors in time bounds. While the algorithm by Cheung et al.
also computes r linearly independent columns of A, the columns may not correspond to the
column rank profile. However, building upon Cheung et al.’s work, Storjohann and Yang
established the following result.

I Theorem 6 (Storjohann and Yang [19,20,21]). There exists a Monte Carlo algorithm for
computing row (resp. column) rank profile of a matrix A that runs in (nnz(A) + rω)1+o(1)

time. The failure probability of this algorithm is 1/2.

Once again, the o(1) in the exponent captures some missing multiplicative logn and
logm factors, see [19], and hence the complexity can also be written as Õ(nnz(A) + rω).

2.3 Homology
In this work, we restrict our attention to simplicial homology with Z2 coefficients. For a
general introduction to algebraic topology, we refer the reader to [12]. Below we give a brief
description of homology over Z2.

Let K be a connected simplicial complex. We will denote by K(p) the set of p-dimensional
simplices in K, and np the number of p-dimensional simplices in K. Also, the p-dimensional
skeleton ofK will be denoted byKp. In particular, the 1-skeleton ofK (which is an undirected
graph) will be denoted by K1.

We consider formal sums of simplices with Z2 coefficients, that is, sums of the form∑
σ∈K(p) aσσ, where each aσ ∈ {0, 1}. The expression

∑
σ∈K(p) aσσ is called a p-chain. Since

chains can be added to each other, they form an Abelian group, denoted by Cp(K). Since
we consider formal sums with coefficients coming from Z2, which is a field, Cp(K), in this
case, is a vector space of dimension np over Z2. The p-simplices in K form a (natural) basis
for Cp(K). This establishes a natural one-to-one correspondence between elements of Cp(K)
and subsets of K(p). Thus, associated with each chain is an incidence vector v, indexed on
K(p), where vσ = 1 if σ is a simplex of v, and vσ = 0 otherwise. The boundary of a p-simplex
is a (p− 1)-chain that corresponds to the set of its (p− 1)-faces. This map can be linearly
extended from p-simplices to p-chains, where the boundary of a chain is the Z2-sum of the
boundaries of its elements. Such an extension is known as the boundary homomorphism, and
denoted by ∂p : Cp(K)→ Cp−1(K). A chain ζ ∈ Cp(K) is called a p-cycle if ∂pζ = 0, that is,
ζ ∈ ker ∂p. The group of p-dimensional cycles is denoted by Zp(K). As before, since we are
working with Z2 coefficients, Zp(K) is a vector space over Z2. A chain η ∈ Cp(K) is said to
be a p-boundary if η = ∂p+1c for some chain c ∈ Cp+1(K), that is, η ∈ im ∂p+1. The group
of p-dimensional boundaries is denoted by Bp(K). In our case, Bp(K) is also a vector space,
and in fact a subspace of Cp(K).

A. Rathod 64:5

2

3

5 8

6

4

7

1

2

3

5 8

6

4

7

1

Complex LComplex K

Figure 1 Consider complexes K and L in the figure above with unit weights on the edges.
Since K has no 2-simplices, its 1-skeleton K1 is identical to K itself. The set of cycles C =
{{1, 2, 5}, {1, 4, 8}, {3, 4, 7}, {2, 3, 6}, {1, 2, 3, 4}} constitutes a minimum cycle basis for the respective
1-skeletons K1 and L1 (viewed as graphs). The set C also constitutes a minimum homology basis for
K. The set C′ = {{1, 2, 3, 4}, {3, 4, 7}} constitutes a minimum homology basis for L.

Thus, we can consider the quotient space Hp(K) = Zp(K)/Bp(K). The elements of the
vector space Hp(K), known as the p-th homology group of K, are equivalence classes of
p-cycles, where p-cycles are equivalent if their Z2-difference is a p-boundary. Equivalent cycles
are said to be homologous. For a p-cycle ζ, its corresponding homology class is denoted by
[ζ]. Bases of Bp(K), Zp(K) and Hp(K) are called boundary bases, cycle bases, and homology
bases respectively. The dimension of the p-th homology group of K is called the p-th Betti
number of K, denoted by βp(K). We are primarily interested in the first Betti number
β1(K). For notational convenience, let g = β1(K), and denote the dimension of B1(K) by b.

Using the natural bases for Cp(K) and Cp−1(K), the matrix [∂pσ1 ∂pσ2 · · · ∂pσnp] whose
column vectors are boundaries of p-simplices is called the p-th boundary matrix. Abusing
notation, we denote the p-th boundary matrix by ∂p. For the rest of the paper, we use n,m
and N to denote the number of vertices, edges and simplices in the complex respectively.

A set of p-cycles {ζ1, . . . , ζg} is called a homology cycle basis if the set of classes
{[ζ1], . . . , [ζg]} forms a homology basis. For brevity, we abuse notation by using the term
“homology basis” for {ζ1, . . . , ζg}. Assigning non-negative weights to the edges of K, the
weight of a cycle is the sum of the weights of its edges, and the weight of a homology basis is
the sum of the weights of the basis elements. The problem of computing a minimum weight
basis of H1(K) is called the minimum homology basis problem. Note that, when the input
simplicial complex is a graph, the notions of homology basis and cycle basis coincide. Please
refer to Figure 1 for an example.

For the special case when the input complex is a surface, Erickson and Whittlesey [11]
gave a O(N2 logN + gN2 + g3N)-time algorithm. Recently, Borradaile et al. [2] gave an
improved deterministic algorithm that runs in O((h+ c)3

n logn+m) where c denotes the
number of boundary components, and h denotes the genus of the surface. For small values
of c and h, the algorithm runs in nearly linear time.

For general complexes, Dey et al. [9] and Chen and Freedman [4] generalized the results
by Erickson and Whittlesey [11] to arbitrary complexes. Subsequently, introducing the
technique of annotations, Busaryev et al. [3] improved the complexity to O(Nω +N2gω−1).
More recently, Dey et al. [8] designed an O(Nω +N2g) time algorithm by adapting the divide
and conquer algorithm for computing a minimum cycle basis of Kavitha et al. [17] for the
purpose of computing a minimum homology basis. Dey et al. also designed a randomized
2-approximation algorithm for the same problem that runs in O(Nω

√
N logN) expected time.

SoCG 2020

64:6 Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis

3 An algorithm for computing minimum cycle basis

Given a graph G = (V,E), let {C1, . . . , C|T |} be the list of tight cycles in G sorted by
weight, and let MT (G) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its columns.
Using Theorem 4, since the total length of tight cycles is at most nν, and since each tight
cycle consists of at least three edges, we have that |T | ≤ nν

3 . Also, the rank of MT (G) is ν
and MT (G) is a sparse matrix with nnz(MT (G)) bounded by nν. This sparsity is implicitly
used in the design of the Monte Carlo binary search algorithm for computing minimum cycle
basis, as described in [1]. We now present a simple and fast algorithm for minimum cycle
basis that exploits the sparsity and the low rank of MT (G) more directly.

Algorithm 3 Algorithm for minimum cycle basis.

1: Compute the sorted list of tight cycles in G, and assemble the matrix MT (G).
2: Compute the column rank profile [i1, i2, . . . , iν] of MT (G) using Storjohann and Yang’s

algorithm described in [20].
3: Return E(MT (G)).

I Theorem 7. There is a Monte Carlo algorithm that computes the minimum cycle basis in
Õ(mω) time, with failure probability at most 1/2.

Proof. The correctness of the algorithm follows immediately from Theorem 1. For instance,
if E(MT (G)) is not a minimum cycle basis, then let k be the smallest integer such that
the k-th smallest cycle in a minimum cycle basis contained in MT (G) is smaller than the
k-th smallest cycle in E(MT (G)). Since the columns in MT (G) are sorted by weight, the
existence of such a k contradicts the fact that E(MT (G)) is the earliest basis of MT (G).

The list of tight cycles in G can be computed in O(nm) time using the algorithm described
in Section 2 of [1]. Hence, Step 1 of Algorithm 3 takes O(nm log(nm)) time (which in turn is
same as O(nm logn) time). Moreover, using Theorem 6, the complexity of Step 2 is bounded
by Õ(nν + νω). Since n, ν < m, the complexity of Algorithm 3 is bounded by Õ(mω). Using
Theorem 6, the failure probability of the algorithm is at most 1/2. J

4 Minimum homology basis, minimum cycle basis and tight cycles

To begin with, note that since every graph is a 1-dimensional simplicial complex, the minimum
cycle basis problem is a restriction of the minimum homology basis problem to instances
(simplicial complexes) that have no 2-simplices. In this section, we refine this observation by
deriving a closer relation between the two problems.

We assume that we are provided a complex K in which all edges are assigned non-negative
weights. Given a non-negative weight w(σ) for each edge σ, we define the weight of a cycle
z as the sum of the weights of the edges, w(z) =

∑
σ∈z w(σ). Let B = {η1, . . . , ηb} be a

basis for the boundary vector space B1(K) indexed so that w(ηi) ≤ w(ηi+1), 1 ≤ i < b

(with ties broken arbitrarily). Also, let H = {ζ1, . . . , ζg} be a minimum homology basis of
K indexed so that w(ζi) ≤ w(ζi+1), 1 ≤ i < g (with ties broken arbitrarily). Then, the
set C = {η1, . . . , ηb, ζ1, . . . , ζg} is a cycle basis for K1. LetM be a minimum cycle basis of
K1. Every element C ∈ M is homologous to a cycle

∑g
i=1 aiζi where ai ∈ {0, 1} for each

i. Then, for some fixed integers p and q,M = {B1, . . . , Bq, C1, . . . , Cp} is indexed so that
the elements B1, . . . , Bq are null-homologous and the elements C1, . . . , Cp are non-bounding
cycles. Also, we have w(Bj) ≤ w(Bj+1) for 1 ≤ j < q (with ties broken arbitrarily), and
w(Cj) ≤ w(Cj+1) for 1 ≤ j < p (with ties broken arbitrarily).

A. Rathod 64:7

I Lemma 8.
1. For every minimum homology basis, w(ζ1) = w(C1).
2. There exists a minimum homology basis H with ζ1 homologous to C1.

Proof. Suppose there exists a minimum homology basis with w(ζ1) < w(C1). Let ζ1 =∑p
i=1 aiCi +

∑q
j=1 bjBj , where ai ∈ {0, 1} for each i and bj ∈ {0, 1} for each j. Since

ζ1 is a non-bounding cycle, there exists at least one i with ai = 1. Let ` ∈ [1, p] be the
largest index in the above equation with a` = 1. Rewriting the equation, we obtain C` =∑`−1
i=1 aiCi +

∑q
j=1 bjBj + ζ1. Since w(ζ1) < w(C1) by assumption, we have w(ζ1) < w(C`)

because w(C`) ≥ w(C1) by indexing ofM. It follows that the basis obtained by exchanging
C` for ζ1, that is, {B1, . . . , Bq, ζ1, C1, . . . , C`−1, C`+1, . . . , Cp} gives a smaller cycle basis than
the minimum one, a contradiction.

Now, suppose there exists a minimum homology basis with w(ζ1) > w(C1). Let C1 =∑g
i=1 aiζi +

∑b
j=1 bjηj . As before, since C1 is not null-homologous, there exists at least one

i with ai = 1. Let ` ∈ [1, g] be the largest index in the above equation with a` = 1. Then,
ζ` =

∑`−1
i=1 aiζi +

∑b
j=1 bjηj + C1. Note that w(ζ`) ≥ w(ζ1) because of the indexing, and

w(ζ1) > w(C1) by assumption. Therefore, the set {C1, ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp} obtained by
exchanging ζ` for C1 gives a smaller homology basis than the minimum one, a contradiction.
This proves the first part of the lemma.

From the first part of the lemma, we have w(ζ1) = w(C1) for every minimum homology
basis. Let H be an arbitrary minimum homology basis. Then, if C1 is not homologous to
ζ1 ∈ H, by using basis exchange we can obtain H = {C1, ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp}, which is
the minimum homology basis with its first element homologous to C1, and having the same
weight as w(C1), proving the claim. J

We now prove a theorem which allows us to harness fast algorithms for minimum cycle
basis in service of improving time complexity of algorithms for minimum homology basis.

I Theorem 9. Given a simplicial complex K, and a minimum cycle basisM = {B1, . . . , Bq,

C1, . . . , Cp} of K1, there exists a minimum homology basis H of K, and a set {Ci1 , . . . , Cig} ⊂
{C1, . . . , Cp} ⊂ M such that, for every k ∈ [1, g], we have Cik homologous to a cycle spanned
by ζ1, . . . , ζk, and w(Cik) = w(ζk). Moreover, i1 = 1, and ik for k > 1 is the smallest index
for which Cik is not homologous to any cycle spanned by {Ci1 , . . . , Cik−1}. In particular, the
set {Ci1 , . . . , Cig} ⊂ M constitutes a minimum homology basis of K.

Proof. The key argument is essentially the same as for the proof of Lemma 8. Nonetheless,
we present it here for the sake of completeness. We shall prove the claim by induction.
Lemma 8 covers the base case. By induction hypothesis, there is an integer k, and a minimum
homology basis H = {ζ1, . . . , ζg}, for which, vectors {Ci1 , . . . , Cik} ⊆ {C1, . . . , Cp} are such
that, for every j ∈ [1, k], we have Cij homologous to a cycle spanned by ζ1, . . . , ζj , and
w(Cij) = w(ζj). Let ik+1 be the smallest index for which Cik+1 ∈ {C1, . . . , Cp} is not
homologous to any cycle spanned by {Ci1 , . . . , Cik}.

Suppose that w(ζk+1) < w(Cik+1). Let ζk+1 =
∑p
i=1 aiCi +

∑q
j=1 bjBj . Let ` ∈ [1, p] be

the largest index in the above equation with a` = 1. Then, C` =
∑`−1
i=1 aiCi +

∑q
j=1 bjBj +

ζk+1. From the induction hypothesis, we can infer that ` ≥ ik+1, and hence w(C`) ≥ w(Cik+1)
by indexing ofM. Thus, if w(ζk+1) < w(Cik+1), then we have w(ζk+1) < w(C`). It follows
that, {B1, . . . , Bq, ζk+1, C1, . . . , C`−1, C`+1, . . . , Cp} obtained by exchanging C` for ζk+1 gives
a smaller cycle basis than the minimum one, contradicting the minimality of H.

Now, suppose that w(ζk+1) > w(Cik+1). Let Cik+1 =
∑g
i=1 aiζi+

∑b
j=1 bjηj . Let ` ∈ [1, g]

be the largest index in the above equation with a` = 1. Rewriting the equation, we obtain
ζ` =

∑`−1
i=1 aiζi +

∑b
j=1 bjηj + Cik+1 . Again, using the induction hypothesis, ` ≥ k + 1, and

SoCG 2020

64:8 Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis

hence, w(ζ`) ≥ w(ζk+1) because of the indexing. Since we have assumed w(ζk+1) > w(Cik+1),
this gives us w(ζ`) > w(Cik+1). Hence, the set {Cik+1 , ζ1, . . . , ζ`−1, ζ`+1, . . . , ζp} obtained by
exchanging ζ` for Cik+1 gives a smaller homology basis than the minimum one, contradicting
the minimality of H.

From the first part of the proof, we have established that w(Cik+1) = w(ζk+1). So, if
Cik+1 is not homologous to ζk+1 ∈ H and w(ζk+1) = w(Cik+1), then H = {Cik+1 , ζ1, . . . ,

ζ`−1, ζ`+1, . . . , ζp} obtained by exchanging ζ` for Cik+1 is the desired minimum homology
basis, proving the induction claim. J

Previously, it was known from Erickson and Whittlesey [11] that H is contained in T .

I Theorem 10 (Erickson and Whittlesey [11]). With non-negative weights, every cycle in a
shortest basis of H1(K) is tight. That is, if H is any minimum homology basis of K, then
H ⊂ T .

Using Theorems 1 and 9, we can refine the above observation.

I Corollary 11. Let T denote the set of tight cycles of K1, and letM be a minimum cycle
basis of K1. Then, there exists a minimum homology basis H of K such that H ⊂M ⊂ T .

5 Algorithms for minimum homology basis

To begin with, note that since Cp(K),Zp(K),Bp(K) and Hp(K) are vector spaces, the problem
of computing a minimum homology basis can be couched in terms of matrix operations.

Given a complex K, let {C1, . . . , C|T |} be the list of tight cycles in K1 sorted by weight,
and let MT (K1) = [C1 C2 . . . C|T |] be the matrix formed with cycles Ci as its columns. Then,
the matrix Ẑ = [∂2 | MT (K1)] has O(N +nν) columns and O(N +nν) non-zero entries since
MT (K1) has O(nν) columns and O(nν) non-zero entries by Theorem 4, and ∂2 has O(N)
columns and O(N) non-zero entries. Since Ẑ has m rows, the rank of Ẑ is bounded by m.
This immediately suggests an algorithm for computing minimum homology basis analogous
to Algorithm 3.

Algorithm 4 Algorithm for minimum homology basis.

1: Compute the sorted list of tight cycles in MT (K1), and assemble matrix Ẑ.
2: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Ẑ using Storjohann and

Yang’s algorithm [20], where columns {Ẑjk
} and {Ẑi`} are linearly independent columns

of ∂2 and MT (K1) respectively.
3: Return Columns {Ẑi1 , Ẑi2 , . . . , Ẑig}.

I Theorem 12. Algorithm 4 is a Monte Carlo algorithm for computing a minimum homology
basis that runs in Õ(mω) time with failure probability at most 1

2 .

Proof. The correctness of the algorithm is an immediate consequence of Theorem 9 since,
by definition, ik is the smallest index for which Ẑik is not homologous to any cycle spanned
by {Ẑi1 , . . . , Ẑik−1}.

The list of tight cycles in G can be computed in O(nm) time using the algorithm described
in Section 2 of [1]. Hence, Step 1 of Algorithm 4 takes O(nm logn) time. Moreover, using
Theorem 6, the complexity of Step 2 is bounded by Õ(N + nν +mω), which is the same as
Õ(mω) since N and nν are both in Õ(mω), and the failure probability is at most 1/2. J

A. Rathod 64:9

When the number of 2-simplices in complex K is significantly smaller than the number
of edges, the complexity for minimum homology can be slightly improved by decoupling
the minimum homology basis computation from the minimum cycle basis computation, as
illustrated in Algorithm 5.

Algorithm 5 Algorithm for minimum homology basis.

1: Compute a minimum cycle basisM of K1 using the Monte Carlo algorithm by Amaldi
et al. [1]. Let BM be the matrix whose columns are cycle vectors inM sorted by weight.

2: Assemble the matrix Z̃ = [∂2 | BM].
3: Compute the column rank profile [j1, j2, . . . , jb, i1, i2, . . . , ig] of Z̃ using the determin-

istic algorithm by Jeannerod et al. [14], where columns {Z̃jk
} and {Z̃i`} are linearly

independent columns of ∂2 and BM respectively.
4: Return Columns {Z̃i1 , Z̃i2 , . . . , Z̃ig}.

I Theorem 13. Minimum homology basis can be computed in O(mω +Nmω−1) time using
the Monte Carlo algorithm described in Algorithm 5. The algorithm fails with probability at
most ν log(nm) 2−k, where k = m0.1.

Proof. As in Theorem 12, the correctness of the algorithm is an immediate consequence of
Theorem 9. The algorithm fails only when Step 1 returns an incorrect answer, the probability
of which is as low as ν log(nm) 2−k, where k = m0.1, see Theorem 3.2 of [1].

The minimum cycle basis algorithm by Amaldi et al. [1] runs in O(mω) time (assuming
the current exponent of matrix multiplication ω > 2). Furthermore, using Theorem 5, the
complexity of Line 3 is bounded by O(Nmω−1). So, the overall complexity of the algorithm
is O(mω +Nmω−1). J

Note that in Line 3 of Algorithm 5, it is possible to replace the deterministic algorithm by
Jeannerod et al. [14] with the Monte Carlo algorithm by Storjohann and Yang’s algorithm [20].
In that case, the complexity of the algorithm will once again be Õ(mω), and the failure
probability will be at most 1− 1

2 (1− ν log(nm)2−k).
We would like to point out that the complexities of Algorithm 4 and Algorithm 5 are,

in general, not comparable. For instance, for families of complexes with N1−ε = ω(m), for
some ε > 0, Algorithm 4 is faster than Algorithm 5. However, for families of complexes with
N = o(m), Algorithm 5 is faster than Algorithm 4. Moreover, for families of complexes with
g = Θ(N), where, as before, g denotes the rank of H1(K), Algorithms 4 and 5 are both faster
than Dey et al.’s algorithm [8] (which runs in O(Nω +N2g) time).

6 Discussion

In this paper, we show that questions about minimum cycle basis and minimum homology
basis can be naturally recast into the problem of computing rank profiles of matrices, leading
to fast algorithms with simple and elegant high-level descriptions. The column rank profile
(or the earliest basis) of a matrix has previously been used to compute the minimum homology
basis of a simplicial complex [3, 8]. Such a greedy approach that picks, at each step, an
independent cycle of the smallest index, works because of the matroid structure of homology
bases and cycle bases. What’s novel about our approach is that we point out that, for both
problems, independence can be efficiently checked owing to the sparsity of the matrices
comprising of candidate cycles.

SoCG 2020

64:10 Fast Algorithms for Minimum Cycle Basis and Minimum Homology Basis

It is also worth noting that for the algorithms presented in this paper, the simplicity of
high-level description doesn’t translate to simple algorithms that can be easily implemented
because the black-box subroutines employed by these algorithms are fairly complex.

Maintenance of support vectors has served as a key ingredient in designing algorithms for
minimum cycle basis since de Pina. Our algorithm, however, does not explicitly maintain
support vectors, and in that sense, is somewhat conceptually different from the recent
algorithms for computing minimum cycle bases.

References
1 Edoardo Amaldi, Claudio Iuliano, Tomasz Jurkiewicz, Kurt Mehlhorn, and Romeo Rizzi.

Breaking the O(m2n) barrier for minimum cycle bases. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, pages 301–312, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

2 Glencora Borradaile, Erin Wolf Chambers, Kyle Fox, and Amir Nayyeri. Minimum cycle and
homology bases of surface-embedded graphs. JoCG, 8(2):58–79, 2017. doi:10.20382/jocg.
v8i2a4.

3 Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotating
simplices with a homology basis and its applications. In Fedor V. Fomin and Petteri Kaski,
editors, Algorithm Theory – SWAT 2012, pages 189–200, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

4 Chao Chen and Daniel Freedman. Measuring and computing natural generators for homology
groups. Comput. Geom. Theory Appl., 43(2):169–181, February 2010. doi:10.1016/j.comgeo.
2009.06.004.

5 Chao Chen and Daniel Freedman. Hardness results for homology localization. Discrete &
Computational Geometry, 45(3):425–448, April 2011. doi:10.1007/s00454-010-9322-8.

6 Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and
applications. J. ACM, 60(5):31:1–31:25, October 2013. doi:10.1145/2528404.

7 José Coelho de Pina. Applications of shortest path methods. PhD thesis, Universiteit van
Amsterdam, 1995.

8 Tamal K. Dey, Tianqi Li, and Yusu Wang. Efficient algorithms for computing a minimal
homology basis. In Michael A. Bender, Martín Farach-Colton, and Miguel A. Mosteiro, editors,
LATIN 2018: Theoretical Informatics, pages 376–398, Cham, 2018. Springer International
Publishing.

9 Tamal K. Dey, Jian Sun, and Yusu Wang. Approximating loops in a shortest homology basis
from point data. In Proceedings of the Twenty-sixth Annual Symposium on Computational
Geometry, SoCG ’10, pages 166–175, New York, NY, USA, 2010. ACM. doi:10.1145/1810959.
1810989.

10 Jean-Guillaume Dumas, Clément Pernet, and Ziad Sultan. Simultaneous computation of the
row and column rank profiles. In Proceedings of the 38th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’13, pages 181–188, New York, NY, USA, 2013. ACM.
doi:10.1145/2465506.2465517.

11 Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’05, pages 1038–1046, Philadelphia, PA, USA, 2005. Society for Industrial and Applied
Mathematics.

12 Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
13 J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM

J. Comput., 16(2):358–366, April 1987. doi:10.1137/0216026.
14 Claude-Pierre Jeannerod, Clément Pernet, and Arne Storjohann. Rank-profile revealing

gaussian elimination and the cup matrix decomposition. Journal of Symbolic Computation,
56:46–68, 2013. doi:10.1016/j.jsc.2013.04.004.

https://doi.org/10.20382/jocg.v8i2a4
https://doi.org/10.20382/jocg.v8i2a4
https://doi.org/10.1016/j.comgeo.2009.06.004
https://doi.org/10.1016/j.comgeo.2009.06.004
https://doi.org/10.1007/s00454-010-9322-8
https://doi.org/10.1145/2528404
https://doi.org/10.1145/1810959.1810989
https://doi.org/10.1145/1810959.1810989
https://doi.org/10.1145/2465506.2465517
https://doi.org/10.1137/0216026
https://doi.org/10.1016/j.jsc.2013.04.004

A. Rathod 64:11

15 Telikepalli Kavitha, Christian Liebchen, Kurt Mehlhorn, Dimitrios Michail, Romeo Rizzi,
Torsten Ueckerdt, and Katharina A. Zweig. Cycle bases in graphs characterization, algorithms,
complexity, and applications. Computer Science Review, 3(4):199–243, 2009. doi:10.1016/j.
cosrev.2009.08.001.

16 Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios Michail. New approximation algorithms
for minimum cycle bases of graphs. Algorithmica, 59(4):471–488, April 2011. doi:10.1007/
s00453-009-9313-4.

17 Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and Katarzyna Paluch. A faster
algorithm for minimum cycle basis of graphs. In Josep Díaz, Juhani Karhumäki, Arto Lepistö,
and Donald Sannella, editors, Automata, Languages and Programming, pages 846–857, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

18 Kurt Mehlhorn and Dimitrios Michail. Minimum cycle bases: Faster and simpler. ACM Trans.
Algorithms, 6(1):8:1–8:13, December 2009. doi:10.1145/1644015.1644023.

19 Arne Storjohann and Shiyun Yang. Linear independence oracles and applications to rectangular
and low rank linear systems. In Proceedings of the 39th International Symposium on Symbolic
and Algebraic Computation, ISSAC ’14, pages 381–388, New York, NY, USA, 2014. ACM.
doi:10.1145/2608628.2608673.

20 Arne Storjohann and Shiyun Yang. A relaxed algorithm for online matrix inversion. In Proceed-
ings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation,
ISSAC ’15, pages 339–346, New York, NY, USA, 2015. ACM. doi:10.1145/2755996.2756672.

21 Shiyun Yang. Algorithms for fast linear system solving and rank profile computation. Master’s
thesis, University of Waterloo, 2014.

SoCG 2020

https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/10.1007/s00453-009-9313-4
https://doi.org/10.1007/s00453-009-9313-4
https://doi.org/10.1145/1644015.1644023
https://doi.org/10.1145/2608628.2608673
https://doi.org/10.1145/2755996.2756672

Dense Graphs Have Rigid Parts
Orit E. Raz
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Israel
oritraz@mail.huji.ac.il

József Solymosi
Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada
solymosi@math.ubc.ca

Abstract
While the problem of determining whether an embedding of a graph G in R2 is infinitesimally rigid
is well understood, specifying whether a given embedding of G is rigid or not is still a hard task that
usually requires ad hoc arguments. In this paper, we show that every embedding (not necessarily
generic) of a dense enough graph (concretely, a graph with at least C0n

3/2(logn)β edges, for some
absolute constants C0 > 0 and β), which satisfies some very mild general position requirements (no
three vertices of G are embedded to a common line), must have a subframework of size at least three
which is rigid. For the proof we use a connection, established in Raz [Discrete Comput. Geom.,
2017], between the notion of graph rigidity and configurations of lines in R3. This connection allows
us to use properties of line configurations established in Guth and Katz [Annals Math., 2015]. In
fact, our proof requires an extended version of Guth and Katz result; the extension we need is proved
by János Kollár in an Appendix to our paper.

We do not know whether our assumption on the number of edges being Ω(n3/2 logn) is tight,
and we provide a construction that shows that requiring Ω(n logn) edges is necessary.

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Mathe-
matics of computing → Graph theory

Keywords and phrases Graph rigidity, line configurations in 3D

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.65

Funding József Solymosi: The work of the second author has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 741420, 617747, 648017). His research is also supported by NSERC
and OTKA (K 119528) grants.

Acknowledgements The authors also thank Omer Angel and Ching Wong for several useful comments
regarding the paper.

1 Introduction

Let G = ([n], E) be a graph on n vertices and m edges, and let p = (p1, . . . , pn) be an
embedding of the vertices of G in R2. A pair (G,p) of a graph and an embedding is
called a framework. A pair of frameworks (G,p) and (G,q) are equivalent if for every edge
{i, j} ∈ E(G) we have ‖pi − pj‖ = ‖qi − qj‖, where ‖ · ‖ stands for the standard Euclidean
norm in R2. Two frameworks are congruent if there is a rigid motion of R2 that maps pi to qi
for every i; equivalently, if ‖pi − pj‖ = ‖qi − qj‖ for every pair i, j (not necessarily in E(G)).
We say a framework (G,p) is rigid if there exists a neighborhood B of p (in (R2)n), such
that, for every equivalent framework (G,p′), with p′ ∈ B, we have that the two frameworks
are in fact congruent.

For a given G, if there exists an embedding p0 of its vertices, such that the framework
(G,p0) is rigid, then it is known that in fact for every generic embedding p the framework
(G,p) is rigid (see [1]). In this sense one can define the notion of rigidity of an abstract graph

© Orit E. Raz and József Solymosi;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 65; pp. 65:1–65:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oritraz@mail.huji.ac.il
mailto:solymosi@math.ubc.ca
https://doi.org/10.4230/LIPIcs.SoCG.2020.65
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Dense Graphs Have Rigid Parts

G in R2, without specifying an embedding. That is, a graph G is rigid in R2 if a generic
embedding p of its vertices in R2 yields a rigid framework (G,p). A graph G is minimally
rigid if it is rigid and removing any of its edges results in a non-rigid graph. Graphs that are
minimally rigid in R2 have a simple combinatorial characterization, described by Geiringer [7]
and (later) by Laman [6]. Namely, a graph G with n vertices is minimally rigid in R2 if
and only if G has exactly 2n− 3 edges and every subgraph of G with k vertices has at most
2k − 3 edges. Every rigid graph has a minimally rigid subgraph.

To see that rigidity is indeed a generic notion, one defines the stricter notion of infinitesimal
rigidity. Given a graph G as above, consider the map fG : (R2)n → R|E|, given by

p 7→ (‖pi − pj‖){i,j}∈E ,

for some arbitrary (but fixed) ordering of the edges of G. Let MG be the Jacobian matrix of
fG (which is an |E| × 2n matrix). A framework (G,p) is called infinitesimally rigid if the
rank of MG at p is exactly 2n− 3. It is not hard to see that the rank of MG is always at
most 2n− 3. Combining this with the fact that a generic embedding p achieves the maximal
rank of MG, one concludes that being infinitesimally rigid is a generic property. As it turns
out (and not hard to prove), infinitesimal rigidity of (G,p) implies rigidity of (G,p), and
therefore it follows that rigidity is a generic notion too. Moreover, for rigid graphs G, it
is straightforward to describe a (measure zero) subset X of R2n where the rank of MG is
strictly smaller than 2n− 3, and thus for such embeddings p the framework (G,p) is not
infinitesimally rigid. However, for p ∈ X, (G,p) might be rigid or not. To tell whether a
given p ∈ X is rigid or not is a non-trivial task, and we are not aware of any general method
to test it, rather than ad-hoc arguments specific to the given graph.

Our results

In this paper, we show that every embedding (not necessarily generic) of a dense enough
graph, that satisfies some very mild general position requirements, must have a subframework
of size at least three which is rigid. Concretely, we prove the following theorem.

I Theorem 1. There exists an absolute constant C0 such that the following holds. Let G
be a graph on n vertices and C0n

3/2(logn)β edges. Let p = (p1, . . . , pn) be an (injective)
embedding of the vertices of G in R2 such that no three of the vertices are embedded to a
common line. Then there exists a subset S ⊂ [n] of size at least three, such that the framework
(G[S], PS), where PS := {pi | i ∈ S}, is rigid.

We do not know whether the assumption that G has Ω(n3/2 logn) edges in Theorem 1 is
necessary, and in fact we believe an analogue statement should hold for graphs with less edges.
The following theorem yields a lower bound on the number of edges, namely, Ω(n logn),
needed for the conclusion in Theorem 1 to hold.

I Theorem 2. For every d ≥ 2, there exists a graph Hd, with n = 2d vertices and 1
2n logn

edges, and an embedding p of Hd in R2, such that no three vertices of Hd are embedded to a
common line in R2 and every subframework of (Hd,p) of size at least three is non-rigid.

The paper is organized as follows. In Section 2, we review a connection established in [8]
between rigidity questions and certain line configurations in R3. In Section 3, we establish
some properties regarding embeddings of complete bipartite graphs in R2. In Section 4, we
review results from Guth and Katz [4] regarding point-line incidences in R3 and state a refined
incidence result (proved in an Appendix to our paper by János Kollár). In Section 5, we give
the proof of Theorem 1. In Section 6, we provide a construction that proves Theorem 2.

O. E. Raz and J. Solymosi 65:3

2 Rigidity in the plane and line configurations in R3

In this section we review some known facts that we need for our analysis. We review a
reduction, introduced first in Raz [8], to connect the notion of graph rigidity of planar
structures with line configurations in R3. The reduction uses the so called Elekes–Sharir
framework, see [3, 4]. Specifically, we represent each orientation-preserving rigid motion of
the plane (called a rotation in [3, 4]) as a point (c, cot(θ/2)) in R3, where c is the center of
rotation, and θ is the (counterclockwise) angle of rotation. (Note that pure translations are
mapped in this manner to points at infinity.) Given a pair of distinct points a, b ∈ R2, the
locus of all rotations that map a to b is a line `a,b in the above parametric 3-space, given by
the parametric equation

`a,b = {(ua,b + tva,b, t) | t ∈ R}, (1)

where ua,b = 1
2 (a+ b) is the midpoint of ab, and va,b = 1

2 (a− b)⊥ is a vector orthogonal to
~ab of length 1

2‖a− b‖, with ~ab, va,b positively oriented (i.e., va,b is obtained by turning ~ab

counterclockwise by π/2).
Note that every non-horizontal line ` in R3 can be written as `a,b, for a unique (ordered)

pair a, b ∈ R2. More precisely, if ` is also non-vertical, the resulting a and b are distinct. If `
is vertical, then a and b coincide, at the intersection of ` with the xy-plane, and ` represents
all rotations of the plane about this point.

A simple yet crucial property of this transformation is that, for any pair of pairs (a, b)
and (c, d) of points in the plane, ‖a− c‖ = ‖b− d‖ if and only if `a,b and `c,d intersect, at
(the point representing) the unique rotation τ that maps a to b and c to d. This also includes
the special case where `a,b and `c,d are parallel, corresponding to the situation where the
transformation that maps a to b and c to d is a pure translation (this is the case when ~ac

and ~bd are parallel and of equal length).
Note that no pair of lines `a,b, `a,c with b 6= c can intersect (or be parallel), because

such an intersection would represent a rotation that maps a both to b and to c, which is
impossible.

I Lemma 3 (Raz [8, Lemma 6.1]). Let L = {`ai,bi
| ai, bi ∈ R2, i = 1, . . . , r} be a collection

of r ≥ 3 (non-horizontal) lines in R3.
(a) If all the lines of L are concurrent, at some common point τ , then the sequences

A = (a1, . . . , ar) and B = (b1, . . . , br) are congruent, with equal orientations, and τ

(corresponds to a rotation that) maps ai to bi, for each i = 1, . . . , r.
(b) If all the lines of L are coplanar, within some common plane h, then the sequences

A = (a1, . . . , ar) and B = (b1, . . . , br) are congruent, with opposite orientations, and h
defines, in a unique manner, an orientation-reversing rigid motion h∗ that maps ai to bi,
for each i = 1, . . . , r.

(c) If all the lines of L are both concurrent and coplanar, then the points of A are collinear,
the points of B are collinear, and A and B are congruent.

The following corollary is now straightforward.

I Corollary 4. Let G be a graph, over n vertices, and let p be an embedding of G in the
plane. Assume that there exists an open neighborhood B of p (in (R2)n) with the following
property: For every p′ ∈ B, if (G,p′) is equivalent to (G,p), then the lines `i := `pi,p′i

, for
i = 1, . . . , n, are necessarily concurrent. Then the framework (G,p) is rigid.

Proof. This follows from Lemma 3(a) and the definition of rigidity of a framework. J

SoCG 2020

65:4 Dense Graphs Have Rigid Parts

3 Embeddings of complete bipartite graphs in R2

We first recall a lemma and some notation introduced in Raz [9]. For completeness, we give
all the details here. For p = (p1, . . . , pd+1),p′ = (p′1, . . . , p′d+1) ∈ (Rd)d+1, we define

Σp,p′ := {(q, q′) ∈ Rd × Rd | ‖pi − q‖ = ‖p′i − q′‖ i = 1, . . . , d+ 1},

and let σp,p′ (resp., σ′p,p′) denote the projection of Σp,p′ onto the first d (resp., last d)
coordinates of Rd × Rd.

We have the following lemma.

I Lemma 5. Let p,p′ be in general position. Then σp,p′ is a quadric surface, and there exists
an invertible affine transformation T : Rd → Rd, such that T (σp,p′) = σ′p,p′ and (q, q′) ∈ Σp,p′

if and only if q ∈ σp,p′ and q′ = T (q).

Proof. By definition, for (q, q′) ∈ Σp,p′ we have

‖pi − q‖2 = ‖p′i − q′‖2, i = 1, . . . , d+ 1, or
‖pi‖2 − 2pi · q + ‖q‖2 = ‖p′i‖2 − 2p′i · q′ + ‖q′‖2, i = 1, . . . , d+ 1.

Subtracting the (d+ 1)th equation from each of the other equations, we get the system

‖pi‖2 − ‖pd+1‖2 − 2(pi − pd+1) · q = ‖p′i‖2 − ‖p′d+1‖2 − 2(p′i − p′d+1) · q′, i = 1, . . . , d
‖pd+1‖2 − 2pd+1 · q + ‖q‖2 = ‖p′d+1‖2 − 2p′d+1 · q′ + ‖q′‖2.

The system can be rewritten as

1
2u−Aq = 1

2v −Bq
′,

‖pd+1‖2 − 2pd+1 · q + ‖q‖2 = ‖p′d+1‖2 − 2p′d+1 · q′ + ‖q′‖2,

where A (resp., B) is a d× d matrix whose ith row equals pi − pd+1 (resp., p′i − p′d+1), and

u =
(
‖p1‖2 − ‖pd+1‖2, ‖p2‖2 − ‖pd+1‖2, . . . , ‖pd‖2 − ‖pd+1‖2)

v =
(
‖p′1‖2 − ‖p′d+1‖2, ‖p′2‖2 − ‖p′d+1‖2, . . . , ‖p′d‖2 − ‖p′d+1‖2)

are vectors in Rd. Our assumption that each of p,p′ is in general position implies that each
of A,B is invertible. Hence we have

q′ = B−1Aq + w,

for w = 1
2B
−1(v−u) ∈ Rd. Let T (q) := B−1Aq+w. So (q, q′) ∈ Σp,p′ if and only if q′ = T (q)

and

‖pd+1‖2 − 2pd+1 · q + ‖q‖2 = ‖p′d+1‖2 − 2p′d+1 · T (q) + ‖T (q)‖2, (2)

where the latter constraint comes from considering the (d+ 1)st equation, using q′ = T (q).
We conclude that σp,p′ is the quadric given by (2). Moreover, (q, q′) ∈ Σp,p′ if and only if
q ∈ σp,p′ and q′ = T (q). Hence, T maps σp,p′ into σ′p,p′ . This completes the proof. J

We now apply Lemma 5 to describe the non-rigid frameworks of K3,m embedded in R2.

I Lemma 6. Let K3,m denote the 3×m complete bipartite graph and let p : [3]→ R2 and
q : [m] → R2 be an embedding of the vertices of K3,m in the plane. Suppose m ≥ 5. Then
the framework (K3,m,p ∪ q) is rigid, unless p ∪ q embeds the vertices of the graph to a pair
of two lines in R2.

O. E. Raz and J. Solymosi 65:5

Proof. By Bolker and Roth [2], a framework (K3,m,p,q) is infinitesimally rigid in R2 if and
only if p ∪ q embeds the vertices of the graph to a conic section in R2. (In fact, we only
need the property that if the embedding is not on a conic section, then the framework is
rigid.) Since infinitesimal rigidity implies rigidity, we only need to consider the case where
the image of p ∪ q is a conic section.

Assume first that the points p = (p1, p2, p3) lie on a common line in R2. In this case, the
conic section supporting p ∪ q is necessarily a pair of two lines. So in this case we are done.

Assume next that p = (p1, p2, p3) are not collinear, and that p ∪ q is irreducible. Let B
be a neighborhood of p ∪ q and let (p′,q′) ∈ B be an embedding of the vertices of K3,m to
this neighborhood. Taking B sufficiently small, we may assume that also p′ = (p′1, p′2, p′3)
are not collinear.

We apply Lemma 5 to the pair (p,p′). Then there exists an affine transformation
T : R2 → R2, and a quadric surface σp,p′ such that each of q,q′ lies on a conic section in
R2 (namely, the points of q lie on σp,p′ and the points of q′ lie on σ′p,p′ = T (σp,p′), and we
have q′j = T (qj) for every j = 1, . . . ,m.

Recall that p∪q also lies on a conic section. Since two distinct conic sections can share at
most four points, and using m ≥ 5, we conclude that σp,p′ and the conic section supporting
p ∪ q have a common irreducible component. But p ∪ q is supported by an irreducible conic
section, and therefore p ∪ q ⊂ σp,p′ .

By the properties of σp,p′ given by Lemma 5, we must have T (pi) = p′i, for each i = 1, 2, 3,
since 0 = ‖pi − pi‖ = ‖T (pi) − p′i‖. This implies that ‖pi − pj‖ = ‖p′i − p′j‖, for every
i, j = 1, 2, 3. That is, p,p′ are congruent configurations, and T (p∪q) = p′∪q′. We conclude
that T is a rigid motion of R2 and that p ∪ q, p′ ∪ q′ are congruent.

We showed that for some neighborhood B of (p,q), and for every (p′,q′) ∈ B, if the
frameworks (K3,m, (p,q) and (K3,m, (p′,q′) are equivalent, then they are also congruent. So
in this case, the framework (K3,m, (p,q) is rigd, by definition. This completes the proof of
the lemma. J

I Corollary 7. Let (p, q) be an embedding of some 3 +m vertices in R2, with m ≥ 5, p =
(p1, p2, p3), q = (q1, . . . , qm). Suppose that for every neighborhood B of (p, q) (in (R2)3+m),
there exists (p′, q′) ∈ B such that the following holds: The lines Lp,p′ := {`pi,p′i

| i = 1, 2, 3}
and Lq,q′ := {`qi,q′i

| i = 1, . . . ,m} lie on a (common) doubly ruled surface Q in R3. Assume
further that the lines of Lp,p′ lie on one ruling of the surface Q and the lines of Lq,q′ on the
other ruling of Q. Then the embedding (p, q) is supported by a pair of lines in R2.

Proof. Let (p,q) be an embedding of some 3+m vertices as in the statement. By assumption,
for every neighborhood B of (p,q) there exists (p′,q′) ∈ B and a doubly ruled surface Q,
such that the lines of Lp,p′ lie on one ruling of Q, and the lines of Lq,q′ on the other ruling
of Q. In particular, `pi,p′i

∩ `qj ,q′j
6= ∅, for every i ∈ [3], j ∈ [m].

By the definition of the lines `pi,p′i
, `qj ,q′j

, this implies that ‖pi− qj‖ = ‖p′i− p′j‖ for every
i ∈ [3], j ∈ [m]. In other words, regarding (p,q) and (p′,q′) as embeddings of the graph
K3,m, we see that the frameworks (K3,m, (p,q)) and (K3,m, (p′,q′)) are equivalent. Note
that these frameworks are not congruent, since the lines Lp,p′ ∪ Lq,q′ are neither concurrent
nor coplanar.

Since such an embedding (p′,q′) exists in every neighborhood B of (p,q), we conclude
that the framework (K3,m, (p,q)) is not rigid. By Lemma 6, (p,q) is supported by a pair of
lines in R2. This completes the proof. J

SoCG 2020

65:6 Dense Graphs Have Rigid Parts

4 Point-line incidences in R3

We recall the following theorem of Guth and Katz [4].

I Theorem 8 (Guth and Katz [4, Theorem 2.10]). Let L be a set of n lines in R3, such that
at most

√
n lines lie in any plane or any regulus. Then the number of 2-rich points in L is

at most O(n3/2).

I Theorem 9 (Guth and Katz [4, Theorem 4.5]). Let L be a set of n lines in R3, such that
at most

√
n lines lie in any plane. Let k ≥ 3. Then the number of points in R3 incident to

at least k lines of L is at most O
(
n3/2k−2 + nk−1) .

We need a slightly refined version of Theorem 8. We thank János Kollár for providing
us with a detailed proof of the required statement; his proof (of, in fact, a slightly stronger
statement) is given in the Appendix.

I Theorem 10. Let L be a set of n lines in R3, such that:
(i) Every plane in R3 contains at most dn1/2e lines of L.
(ii) Every regulus in R3 contains at most 2n pairs of intersecting lines.

Then the number of 2-rich points in L is at most O(n3/2). J

Combining Theorem 9 and Theorem 10, we conclude:

I Theorem 11. Let L be a set of n lines in R3, such that:
(i) Every plane in R3 contains at most dn1/2e lines of L.
(ii) Every regulus in R3 contains at most 2n pairs of intersecting lines.

Let 2 ≤ k ≤ n. Then the number of points in R3 incident to at least k lines of L is at most
O
(
n3/2k−2 + nk−1) .

5 Proof of Theorem 1

Consider an embedding p = (p1, . . . , pn) of the vertices of G in the plane, such that no three
of the points are collinear. We prove the theorem by induction on the number, n, of vertices
in G. We assume that G has Cnn3/2 edges, and later optimize Cn, and get Cn = C0 logn,
for some absolute constant C0, as in the statement of the theorem. For the induction’s base
cases, we take C3 ≤ · · · ≤ Cn0 to be large enough so that for every 3 ≤ k ≤ n0 we will have
Ckk

3/2 ≥
(
k
2
)
. This means that a graph G with k vertices and Ckk3/2 edges, for 3 ≤ k ≤ n0,

is necessarily the complete graph on k vertices. Since every framework of the complete graph
is rigid, this proves the base case.

Assume that the statement is true for every n′ with 3 ≤ n′ < n and we prove it for n.

An associated line configuration in R3

Let p′ = (p′1, . . . , p′n) be another embedding of the vertices of G, taken from a neighborhood
B of p, with the property that for every edge {i, j} of G, we have ‖pi−pj‖ = ‖p′i−p′j‖. That
is, we take p′ such that the frameworks (G,p) and (G,p′) are equivalent. Assume further
that each p′i is taken from a small neighborhood of pi so that in particular no three points
of p′ are collinear. Moreover, we may assume that no triple p′i, p′j , p′k is the reflection of
pi, pj , pk. Indeed, taking the neighborhoods of the points pi sufficiently small we can ensure
that the orientation (sign of the determinant of the vectors −−→pipj ,−−→pipk) is the same in p and
in p′ for every triple i, j, k.

O. E. Raz and J. Solymosi 65:7

For each i = 1, . . . , n put `i := `pi,p′i
and consider the set of lines L = {`1, . . . , `n}. Note

that for every edge {i, j} in G, the corresponding lines `i, `j necessarily intersect. The other
direction is not true; that is, the lines `i, `j may intersect even if {i, j} is not an edge in G.

Our assumptions on p and p′, combined with Lemma 3, imply that no three lines of L
lie on a common plane.

We claim that taking the neighborhood B of p to be sufficiently small, and taking p′ ∈ B,
we can guarantee that no eight lines of L lie on a common regulus R with at least three
lines on each of the rulings of R (note that this means in particular that, for any subset
L′ ⊂ L of size k ≥ 8, no regulus in R3 contains more than 2k pairs of intersecting lines of
L′). Indeed, fix any ordered 8-tuple π = (pi1 , . . . , pi8) (a subset of the points of p). Applying
Corollary 7 (with m = 5), and using our assumption that no three points of p are collinear,
we get that for some neighborhood Bπ of π, and for every π′ = (p′i1 , . . . , p

′
i8

) ∈ Bπ, the lines
{`pi1 ,p

′
i1
, . . . , `pi8 ,p

′
i8
} do not lie on a common regulus such that {`pi1 ,p

′
i1
, `pi2 ,p

′
i2
, `pi3 ,p

′
i3
} lie

on one ruling of the regulus and {`pi4 ,p
′
i4
, . . . , `pi8 ,p

′
i8
} on the other ruling of the regulus.

Repeating this for each ordered 8-tuples of p, we see that there exists a neighborhood B of
p such that the claim follows.

Note in addition that, by Corollary 4, if for every choice of p′, in any arbitrarily small
neighborhood of p, the lines of L are concurrent, this means that the framework (G,p) is
rigid, and we are done. We therefore assume that the lines of L are not concurrent.

No dense subgraphs of G

Note that, by our induction hypothesis, if G contains a subgraph with 3 ≤ n′ < n vertices
and Cn′(n′)3/2 edges, we are done. Therefore we assume that every subgraph of G with
3 ≤ n′ < n vertices has less than Cn′(n′)3/2 edges.

We call a point in R3 k-rich if it is incident to exactly k lines of L. Such a point
is the intersection point of exactly

(
k
2
)
pairs of lines, but possibly only a subset of those

pairs correspond to edges of G. Our assumption that G has no dense subgraphs implies in
particular, that for every k-rich point, with 3 ≤ k < n, the number of pairs of lines meeting
at that point that also form an edge in G is at most Ckk3/2.

Clearly, every 2-rich point, is the intersection of exactly one pair of lines and hence
corresponds to at most one edge of G. We set C2 to satisfy C223/2 ≥ 1.

For t = 2, . . . , logn, let Et ⊂ E be the subset of edges that meet at a k-rich point for
2t−1 ≤ k < 2t. Clearly, we have E =

⋃logn
t=2 Et. We apply Theorem 11 to upper bound∑log(n/d)

t=1 |Et|, for some parameter d, which we choose later. We split the sum into two
separate sums, according to which additive term in the bound from Theorem 11 dominates.

Edges meeting at a k-rich point, for 2 ≤ k ≤ n1/2

For 2 ≤ t < 1
2 logn, we have, by Theorem 11, that

|Et| ≤
ρn3/2

22(t−1) · C2t(2t)3/2 = 4ρC2tn3/2 1
2t/2 ,

where ρ is some absolute constant (given implicitly in Theorem 11). Thus

SoCG 2020

65:8 Dense Graphs Have Rigid Parts

b 1
2 lognc∑
t=2

|Et| ≤ 4ρCn1/2n3/2
b 1

2 lognc∑
t=2

1
2t/2

≤ 4ρCn1/2n3/2 ·
1
2 (1− 21/2

n1/4)
1− 2−1/2

≤ ρ′Cn1/2n3/2,

for some absolute constant ρ′.

Edges meeting at a k-rich point, for n1/2 ≤ k ≤ n/d

Similarly, for 1
2 logn ≤ t ≤ log(n/d), where d > 2 is a parameter, we have

|Et| ≤
ρn

2t−1 · C2t(2t)3/2 = 2ρC2tn2t/2,

for some absolute constant ρ. Thus

blog(n/d)c∑
t=d 1

2 logne

|Et| ≤ 2ρCn/dn
blog(n/d)c∑
t=d 1

2 logne

2t/2

≤ 2ρCn/dn ·
21/2n1/4

21/2 − 1

((
n1/2

d

)1/2

− 1
)

≤ ρ′′√
d
Cn/dn

3/2,

for some absolute constant ρ′′.
Combining the two inequalities above, we get

blog(n/d)c∑
t=2

|Et| ≤ B
(
Cn1/2 +

Cn/d√
d

)
n3/2, (3)

where B := max{ρ′, ρ′′} is an absolute constant. That is, (3) gives an upper bound on
the number of edges of G that correspond to pairs of lines meeting at a k-rich point, with
2 ≤ k ≤ n/d.

Recall our assumption that G has at least Cnn3/2 edges (and each edge corresponds to a
pair of meeting lines of L). We take Cn so that

Cn ≥ 2B
(
Cn1/2 +

Cn/d√
d

)
.

With this choice, and in view of (3), we get that

blog(n/d)c∑
t=2

|Et| ≤
1
2Cnn

3/2.

We conclude that at least half of the edges of G meet at a k-rich point, for k > n/d. In
particular, there exists a point which is k-rich, with k > n/d.

O. E. Raz and J. Solymosi 65:9

αn-rich point

Assume first that there exists a point which is αn-rich, with 1/d ≤ α ≤ 2/3. Let L1 denote
the subset of αn lines going through this point. If the number of edges meeting at that
point (i.e., the number of pairs of lines of L1 that correspond to an edge in G) is at least
Cαn(αn)3/2, then we are done by induction. Consider the subset of lines L2 := L \ L1 that
do not go through this αn-rich point. If the number of edges induced by L2 is at least
C(1−α)n((1 − α)n)3/2, we are again done by induction. Finally, note that every line of L2
intersects at most one line of L1. Otherwise, we would have three coplanar lines, contradicting
our assumption. Therefore, the total number of edges we have is at most

Cαn(αn)3/2 + C(1−α)n((1− α)n)3/2 + (1− α)n,

which must be at least Cnn3/2, by our assumption on the number of edges in G. Thus

Cαnα
3/2 + C(1−α)n(1− α)3/2 + (1− α)n−1/2 ≥ Cn.

Using Cαn, C(1−α)n ≤ Cn (by monotonicity of the sequence Cn), this implies

Cn(α3/2 + (1− α)3/2) + (1− α)n−1/2 ≥ Cn

or
1− α
Cnn1/2 ≥ 1− α3/2 − (1− α)3/2. (4)

Using 1/d ≤ α ≤ 2/3, we have

1− α
Cnn1/2 ≤

d− 1
dCnn1/2 .

Combined with (4), the last inequality implies

1− α3/2 − (1− α)3/2 ≤ d− 1
dCnn1/2 . (5)

Note that for every 0 < α < 1, the left-hand side of (5) is positive. Moreover, for every
closed interval [a, b] ⊂ [0, 1], with 0 < a < b < 1, the function f(α) = 1− α3/2 − (1− α)3/2

attains a minimum which is a positive number. Let δ0 > 0 denote the minimum of f over
[1/d, 2/3]. Taking n0 large enough (and recalling that n ≥ n0), the right-hand side of (5) can
be guaranteed to be smaller than δ0 (for any positive δ0). This yields a contradiction to (5).

k-rich point, with k > 2n/3

Assume next that there exists a k-rich point with k > 2n/3. Fix such a point, and denote by
m the number of lines not incident to this point. That is, we fix a (n−m)-rich point, with
m < n/3. Note that m ≥ 1, by our assumption that not all the lines of L are concurrent.

Similar to the analysis in the previous case above, if the number of edges meeting at the
given n−m rich point is at least Cn−m(n−m)3/2, then we are done by induction. Thus,
we assume this is not the case. Note that in this case, and if m = 2, we get that in this case
the total number of edges in G is at most

Cn−2(n− 2)3/2 + 1 + 2,

where here we used our assumption that no three lines of L lie on a common plane. So we
must have

SoCG 2020

65:10 Dense Graphs Have Rigid Parts

Cn−2(n− 2)3/2 + 1 + 2 ≥ Cnn3/2

which implies

3 ≥ Cn(n3/2 − (n− 2)3/2),

which yields a contradiction, taking Cn larger than some absolute constant. So we must have
m ≥ 3.

Next, if the number of edges among the m lines not incident to our (n−m)-rich point is
at least Cmm3/2, we are again done by induction. Otherwise, we have that the total number
of edges is at most

Cn−m(n−m)3/2 + Cmm
3/2 +m,

which, on the other hand, must be at least Cnn3/2, since this is the total number of edges in
G, by assumption. Using Cm, Cn−m ≤ Cn, this implies

Cn(n−m)3/2 + Cnm
3/2 +m ≥ Cnn3/2 or

(n−m)3/2 +m3/2 + 1
Cn

m ≥ n3/2 or

1
Cnm1/2 ≥

(n
m

)3/2
− 1−

(n
m
− 1
)3/2

,

which implies

1
Cn
≥
(n
m

)3/2
− 1−

(n
m
− 1
)3/2

. (6)

Consider the function f(x) = x3/2 − 1− (x− 1)3/2. Note that f is monotone increasing
in x, for x ∈ [1,∞). Thus, the inequality (6) implies

1
Cn
≥ min

{
f
(n
m

)
| 3 ≤ m ≤ n/3

}
= f(3),

which yields a contradiction if Cn is larger than some absolute constant.
To summarize, in at least one of the two cases analyzed above it must be possible to

apply the induction hypothesis; otherwise, in each of the two cases, we get a contradiction.
This completes the proof of the theorem, for any monotone increasing function Cn satisfying

Cn ≥ 2B
(
Cn1/2 +

Cn/d√
d

)
.

Solving the recurrence relation, one can take Cn = C0(logn)β , for β = log2(4B) and some
absolute value C0 > 0. Indeed, since we may choose d ≥ 4 arbitrarily (but independently
of n), we may assume that 2B√

d
≤ 1

2 . Thus, any choice of Cn monotone increasing in n, will
satisfy

1
2Cn ≥

2B√
d
Cn/d.

So we need to show that
1
2Cn ≥ 2BCn1/2 .

O. E. Raz and J. Solymosi 65:11

That is, we need to show

1
2C0(logn)β ≥ 2BC0(logn1/2)β

= 2BC0
1
2β (logn)β ,

which is equivalent to requiring 2β ≥ 4B or β ≥ log2(4B), as claimed.
This completes the proof of the theorem. J

6 Proof of Theorem 2

Let Hd be the graph induced by a hypercube in Rd. That is, each vertex corresponds
to a d-tuple in {0, 1}d, and a pair of vertices are connected by an edge if and only if the
corresponding d-tuples are different by exactly one entry. So Hd has 2d vertices and d2d−1

edges.
We now describe an embedding p of the vertices of Hd in R2. For this, we start with an

embedding p̄ of H in Rd. We take the standard embedding of the hypercube, namely, we
map a vertex with corresponding d-tuple (b1, . . . , bd), to the point (b1, . . . , bd) in Rd.

B Claim 12. No three vertices of Hd are embedded by p̄ to a common line in Rd.

Proof. Consider two distinct d-tuples (b1, . . . , bd) and (b′1, . . . , b′d). Assume without loss of
generality that b1 6= b′1. Then, for every t ∈ R \ {0, 1}, we have tb1 + (1− t)b′1 6∈ {0, 1}. Thus
no other point on the line connecting (b1, . . . , bd) and (b′1, . . . , b′d) is a vertex of Hd. C

Identify a point in R2d with a 2 × d matrix, regarded as a linear transformation from
Rd to R2. We define p := T ◦ p̄, where T : Rd → R2 is a linear transformation. We choose
T ∈ R2d so that with this choice no three distinct vertices of Hd are embedded by p to a
common line. To prove the existence of such T we need the following claim.

B Claim 13. Let q1, q2, q3 ∈ Rd be three distinct non-collinear points. Then there exists an
algebraic subvariety Z ⊂ R2d, of codimension at least one, such that for every T ∈ R2d \ Z,
the points Tq1, T q2, T q3 are not collinear.

Proof. There exists a polynomial, P , over 6 variables and with rational coefficients, such that,
for every p1, p2, p3 ∈ R2, P (p1, p2, p3) = 0 if and only if the points p1, p2, p3 are collinear.
Namely, P is just the determinant of the 2 × 2 matrix with columns p2 − p1 and p3 − p1.
Consider the equation

P (Tq1, T q2, T q3) = 0. (7)

Since q1, q2, q3 are given, this is an equation in the entries of T , which defines a subvariety
of R2d.

It is easy to see that (7) is not identically zero. Indeed, consider a linear transformation
T which maps the plane spanned by the vectors q2 − q1, q3 − q1 (this is a plane through the
origin) to R2 injectively. Such T does not satisfy (7). Thus (7) defines a subvariety Z of R2d

of codimension at least one. This proves the claim. C

For every triple u1, u2, u3 of vertices of Hd, we apply Claim 13 to the points qi := p̄(ui)
for i = 1, 2, 3. Let Z be the family of algebraic subvariety of R2d of “bad” choices of T , given
by applying Claim 13 to each triple of vertices. Since each element of Z is of codimension
at least one, and Z is finite, the union of the elements of Z does not cover R2d. Therefore,

SoCG 2020

65:12 Dense Graphs Have Rigid Parts

there exists a choice of T that does not lie on any of the elements of Z. Using such T in
the definition of p, we get that no three distinct vertices of Hd are embedded by p to a
common line.

Finally, we claim that the framework (Hd,p) does not have a rigid subframework of size
larger than two. In fact, we prove the following stronger property.

B Claim 14. Let x, y be any pair of distinct vertices of Hd, such that {x, y} is not an edge
of Hd. Consider a neighborhood, B, of p in R2 arbitrarily small. Then there exists an
embedding p′ ∈ B, such that p and p′ are equivalent, but ‖p(x)− p(y)‖ 6= ‖p′(x)− p′(y)‖.

Proof. We prove the claim by induction on d. The base case d = 2 is easy to see. Consider
d > 2. The vertices of Hd can be regarded as a disjoint union of two copies H(1)

d−1, H
(2)
d−1of

Hd−1. Note that each vertex u ∈ H(1)
d−1 can be associated with a vertex u′ ∈ H(2)

d−1, such that
{u, u′} is an edge in Hd. Moreover, note that by the definition of our embedding p, all the
edges of this form (edges between a vertex of H(1)

d−1 and a vertex of H(2)
d−1) have the same

length `.
Let x, y be a pair of distinct vertices of Hd such that {x, y} is not an edge in Hd. Assume

first that the pair x, y is in one of the copies of Hd−1, say in H(1)
d−1. Let q := p|

H
(1)
d−1

be the

embedding p of H, restricted the subgraph H(1)
d−1. By the induction hypothesis, for every

arbitrarily small neighborhood of q, there exists an embedding q′ in this neighborhood, such
that q,q′ are equivalent, but ‖q(x)− q(y)‖ 6= ‖q′(x)− q′(y)‖. By the symmetry of H(1)

d−1

and H
(2)
d−1 it is easy to see that this can be extended to an embedding p′ of Hd which is

congruent to p. This proves the claim in this case.
Assume next that, say, x ∈ H(1)

d−1, y ∈ H
(2)
d−1, and recall that {x, y} is not an edge in Hd.

Consider a neighborhood of p, arbitrarily small. For each vertex u ∈ H(1)
d−1, take a rotation

ru of the plane centered at u, with angle of rotation ε. We apply this rotation only to the
(unique) vertex u′ ∈ H(2)

d−1 with the property that {u, u′} is an edge in Hd. This induces a new
embedding p′ of Hd. Clearly, taking ε > 0 sufficiently small, p′ is in the given neighborhood
of p. Moreover, since p′ applied to the vertices of H(2)

d−1 is a translation of p′ applied to
H

(1)
d−1, it is clear that by construction that p and p′ are equivalent. Finally, we claim that

for ε sufficiently small, we have ‖p(x)− p(y)‖ 6= ‖p′(x)− p′(y)‖. To see this it is sufficient
to restrict our attention to the vertices x, y′ ∈ H(1)

d−1 and x′, y ∈ H(2)
d−1, where {x, x′} and

{y′, y} are edges in Hd. Note that since {x, y} is not an edge, x, x′, y, y′ are distinct. Also,
by construction, ‖p(x)− p(y′)‖ = ‖p′(x′)− p′(y)‖ and ‖p(x)− p(x′)‖ = ‖p′(y′)− p′(y)‖.
It is now easy to see, again by the construction of p′ that ‖p(x)− p(y)‖ 6= ‖p′(x)− p′(y)‖,
as claimed. C

References
1 L. Asimow and B. Roth. The rigidity of graphs. Trans. Amer. Math. Soc., 245:279–289, 1978.
2 E. D. Bolker and B. Roth. When is a bipartite graph a rigid framework? Pacific J. Math.,

90:27–44, 1980.
3 Gy. Elekes and M. Sharir. Incidences in three dimensions and distinct distances in the plane.

Combinat. Probab. Comput., 20:571–608, 2011.
4 L. Guth and N. H. Katz. On the Erdős distinct distances problem in the plane. Annals Math.,

18:155–190, 2015.
5 J. Kollár. Szemerédi-trotter-type theorems in dimension 3. Adv. Math., 271:30–61, 2015.
6 G. Laman. On graphs and rigidity of plane skeletal structures. J. Engrg. Math., 4:333–338,

1970.

O. E. Raz and J. Solymosi 65:13

7 H. Pollaczek-Geiringer. über die gliederung ebener fachwerke, zamm. Journal of Applied
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 7.1:58–72,
1927.

8 O. E. Raz. Configurations of lines in space and combinatorial rigidity. Discrete Comput. Geom.
(special issue), 58:986–1009, 2017.

9 O. E. Raz. Distinct distances for points lying on curves in Rd – the bipartite case. manuscript,
2020.

A Appendix for “Dense graphs have rigid parts” by János Kollár∗

Let L be a set of m distinct lines in C3. A weighted number of their intersection points is

I(L) :=
∑
p∈C3

(
r(p)− 1

)
,

where r(p) denotes the number of lines passing through a point p. Our aim is to outline
the proof of the following variant of [5, Theorem 6]. The difference is that, unlike in [5,
Theorem 6], we allow more than 2c

√
m lines on a regulus (that is, a smooth quadric surface),

but we restrict the number of intersections between them.

I Proposition 15. Let L be a set of m distinct lines in C3. Let c be a constant such that
every plane contains at most c

√
m of the lines and, for every regulus, the lines on it have at

most c2m intersection points with each other. Then

I(L) ≤
(
29.1 + c

2
)
·m3/2.

Proof. Following the method of [4], there is an algebraic surface S of degree ≤
√

6m − 2
that contains all the lines in L. We decompose S into its irreducible components S = ∪jSj .

Now we follow the count as in [5, Paragraph 24]. The bound for external intersections
(when a line not on Sj meets a line on Sj) is the same as in [5, Paragraph 18]. The remaining
internal intersections (when a line on Sj meets a line on the same Sj) is done one surface at
a time. The only change is with the count on a regulus, which is done in [5, Paragraph 19].

Thus let Qj be a regulus that contains nj lines. If nj ≤ 2c
√
m then we use the formula

on the bottom of p. 38: I(Lj) ≤ c
2nj
√
m. If nj ≥ 2c

√
m then we use that, by assumption

I(Lj) ≤ c2m = 2c
√
m c

2
√
m ≤ nj c2

√
m.

So I(Lj) ≤ c
2nj
√
m always holds for every regulus and this is the only information about lines

on a regulus that the proof in [5, Paragraph 24] uses. The rest of the proof is unchanged. J

∗Department of Mathematics, Princeton University, kollar@math.princeton.edu

SoCG 2020

mailto:kollar@math.princeton.edu

Incidences Between Points and Curves with
Almost Two Degrees of Freedom
Micha Sharir
School of Computer Science, Tel Aviv University, Israel
michas@tau.ac.il

Oleg Zlydenko
School of Computer Science, Tel Aviv University, Israel
zlydenko@gmail.com

Abstract
We study incidences between points and (constant-degree algebraic) curves in three dimensions,
taken from a family C of curves that have almost two degrees of freedom, meaning that (i) every pair
of curves of C intersect in O(1) points, (ii) for any pair of points p, q, there are only O(1) curves
of C that pass through both points, and (iii) a pair p, q of points admit a curve of C that passes
through both of them if and only if F (p, q) = 0 for some polynomial F of constant degree associated
with the problem. (As an example, the family of unit circles in R3 that pass through some fixed
point is such a family.)

We begin by studying two specific instances of this scenario. The first instance deals with the
case of unit circles in R3 that pass through some fixed point (so called anchored unit circles). In the
second case we consider tangencies between directed points and circles in the plane, where a directed
point is a pair (p, u), where p is a point in the plane and u is a direction, and (p, u) is tangent to
a circle γ if p ∈ γ and u is the direction of the tangent to γ at p. A lifting transformation due to
Ellenberg et al. maps these tangencies to incidences between points and curves (“lifted circles”)
in three dimensions. In both instances we have a family of curves in R3 with almost two degrees
of freedom.

We show that the number of incidences between m points and n anchored unit circles in R3, as
well as the number of tangencies between m directed points and n arbitrary circles in the plane, is
O(m3/5n3/5 +m+ n) in both cases.

We then derive a similar incidence bound, with a few additional terms, for more general families
of curves in R3 with almost two degrees of freedom, under a few additional natural assumptions.

The proofs follow standard techniques, based on polynomial partitioning, but they face a critical
novel issue involving the analysis of surfaces that are infinitely ruled by the respective family of
curves, as well as of surfaces in a dual three-dimensional space that are infinitely ruled by the
respective family of suitably defined dual curves. We either show that no such surfaces exist, or
develop and adapt techniques for handling incidences on such surfaces.

The general bound that we obtain is O(m3/5n3/5 +m+ n) plus additional terms that depend
on how many curves or dual curves can lie on an infinitely-ruled surface.

2012 ACM Subject Classification Mathematics of computing → Combinatorics

Keywords and phrases Incidences, Polynomial partition, Degrees of freedom, Infinitely-ruled surfaces,
Three dimensions

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.66

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.02190.

Funding Micha Sharir : Partially supported by ISF Grant 260/18, by grant 1367/2016 from the
German-Israeli Science Foundation (GIF), and by Blavatnik Research Fund in Computer Science at
Tel Aviv University.

Acknowledgements The authors would like to thank Noam Solomon for many helpful discussions
and for providing us with a copy of his ongoing work with Guth. Thanks are also due to the
anonymous reviewers for their helpful comments.

© Micha Sharir and Oleg Zlydenko;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 66; pp. 66:1–66:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michas@tau.ac.il
mailto:zlydenko@gmail.com
https://doi.org/10.4230/LIPIcs.SoCG.2020.66
https://arxiv.org/abs/2003.02190
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Incidences with Curves with Almost Two Degrees of Freedom

1 Introduction

Our results: An overview. In this paper we study several incidence problems involving
points and curves in three dimensions, where the curves are 3-parameterizable (each of them
can be defined by three real parameters) and have almost two degrees of freedom, a notion
that we discuss in detail below. We begin by deriving improved incidence bounds for two
specific classes of such curves, one of which (studied in Section 2) is the class of anchored unit
circles (unit circles that pass through some fixed point), and the other (studied in Section 3)
is a class of “lifted circles” that arise in the context of tangencies between so-called directed
points and circles in the plane. In both cases, the incidence bound, for m points and n

curves, is O(m3/5n3/5 +m+ n). We then study the problem for general curves that satisfy
the above properties (and a few other natural assumptions), and derive the same bound as
above, with additional terms that depend on various parameters associated with the problem.
See Section 4 and the full version [12] for full details.

We begin with a review of the setup and of several basic features that arise in the analysis.

Incidence problems. Let P be a set of m points, and let C be a set of n algebraic curves
of some bounded degree in R3. Let I(P,C) denote the number of incidences between
the points of P and the curves of C, i.e., I(P,C) = |{(p, c) | p ∈ P, c ∈ C, p ∈ c}|. The
incidence problem for P and C is to bound I(P,C). More precisely, we want to estimate
I(m,n) := max|P |=m,|C|=n I(P,C), where the maximum is over all sets P of m points and
C of n curves from some specific family of curves in R3 (such as lines, circles, etc.).

The simplest formulation of the incidence problem involves incidences between points
and lines in the plane, where we have

I Theorem 1 (Szemerédi and Trotter [13]). For sets P of m points and L of n lines in the
plane, we have I(P,L) = O(m2/3n2/3 +m+ n), and the bound is tight in the worst case.

The same asymptotic upper bound can be proven for unit circles as well, except that the
matching lower bound is not known to hold, and is strongly suspected to be only close to
linear. For general circles, of arbitrary radii, we have

I Theorem 2 (Agarwal et al. [1] and Marcus and Tardos [8]). For sets P of m points and C of
n (arbitrary) circles in the plane we have I(P,C) = O(m2/3n2/3 +m6/11n9/11 log2/11(m3/n)+
m+ n).

Another variant of the incidence problem, which has recently been studied in Ellenberg et
al. [3], and which is relevant to the study in this paper, is bounding the number of tangencies
between lines and circles in the plane. In more detail, let a directed point in the plane be
a pair (p, u), where p ∈ R2 and u is a direction (parameterized by its slope). A tangency
occurs between a circle c and a directed point (p, u) when p ∈ c and u is the direction of the
tangent to c at p; see Figure 1. Unlike the standard case of point-circle incidences, there can
be at most one circle that is tangent to a given pair of directed points (and in general there
is no such circle). Ellenberg et al. [3] showed:

I Theorem 3 (Ellenberg et al. [3]). For a set P of m directed points and a set C of n
(arbitrary) circles in the plane, there are O(n3/2) tangencies between the circles in C and the
directed points in P , assuming that each point of P is incident (i.e., tangent) to at least two
circles.

M. Sharir and O. Zlydenko 66:3

In fact, the bound in [3] also holds for more general sets of curves, and over fields other
than R. An immediate corollary of Theorem 3 is that the number of incidences between
m directed points and n circles is O(n3/2 + m). We will discuss this problem further in
Section 3, where we obtain the improved bound O(m3/5n3/5 +m+ n) mentioned above.

p

u

c

Figure 1 The tangent to circle c at point p
has direction u. We then say that the directed
point (p, u) is tangent (or incident) to c.

o

z

y

x

S(o, 1)

c

Figure 2 An anchored circle c. Its center is
on the unit sphere S(o, 1), and it passes through
the origin o.

As has been observed, time and again, the result of Theorem 1, including both the upper
and the lower bound, is applicable to point-line incidences R3 as well (and, in fact, in any
higher-dimensional space Rd), unless we impose some additional constraint on the number of
coplanar input lines. The following celebrated theorem of Guth and Katz [5] gives such an
improved bound1.

I Theorem 4 (Guth and Katz [5]). Let P be a set of m points and L be a set of n lines in
R3. Assume further that no plane in R3 contains more than q lines of L, for some parameter
q ≤ n. Then I(P,L) = O

(
m1/2n3/4 +m2/3n1/3q1/3 +m+ n

)
. Moreover, the bound is tight

in the worst case.

A similar argument can be made for point-circle incidences in R3 (or again in any
dimension ≥ 3) – here we need to constrain the number of input circles that can lie in any
common plane or sphere. The best known upper bound, due to Sharir and Solomon [11], is
(see also Sharir et al. [10] for an earlier, weaker bound).

I Theorem 5 (Sharir and Solomon [11]). Let P be a set of m points and let C be a set of n
circles in R3, and let q < n be an integer. If no sphere or plane contains more than q circles
of C, then

I(P,C) = O
(
m3/7n6/7 +m2/3n1/3q1/3 +m6/11n5/11q4/11 log2/11(m3/q) +m+ n

)
.

Polynomial partitioning. The polynomial partitioning technique is the most recently devel-
oped method for deriving incidence bounds (and many other results too), and it is due to
Guth and Katz [5], with an extended version given later by Guth [4]. We use the following
version (specialized to our needs), where Z(f) denotes the zero set {z ∈ R3 | f(z) = 0} of a
real (trivariate) polynomial f .

1 The theorem is not stated explicitly in [5], but it is an immediate consequence of the analysis in [5].

SoCG 2020

66:4 Incidences with Curves with Almost Two Degrees of Freedom

I Theorem 6 (Polynomial partitioning [4, 5]). Let P be a set of m points and C be a set of
n algebraic curves of some constant degree in R3. Then, for any 1 < D such that D3 < m

and D2 < n, there is a polynomial f of degree at most D such that each of the O(D3) (open)
connected components of R3 \ Z(f) contains at most O(m/D3) points of P , and is crossed
by at most O(n/D2) curves of C.

Note that the theorem has no guarantee regarding the number of points of P on Z(f), or
the number of curves of C that are contained in Z(f).

One of the main techniques for proving incidence bounds via polynomial partitioning
proceeds as follows. We first establish a simple (and weak) incidence bound (usually referred
to as a bootstrapping bound) by some other method. Then we apply Theorem 6, and use the
bootstrapping bound in every connected component (cell) of R3 \ Z(f). Incidences between
curves in C and points on Z(f) must be treated separately, using a different set of tools and
techniques, typically taken from algebraic geometry.

Degrees of freedom. We say that a family C of constant-degree irreducible algebraic curves
in R3 has s degrees of freedom (of multiplicity µ) if:
1. each pair of curves of C intersect in at most µ points; and
2. for each s-tuple p1, . . . , ps of distinct points in R3 there are at most µ curves of C that

pass through all these points.

The definition extends, verbatim, to curves in any other dimension or in the plane.
The notion of degrees of freedom can be defined for arbitrary families of curves (not

necessarily algebraic). However, for various technical reasons, mainly to be able to apply
Theorem 6, we confine ourselves to the case of constant-degree algebraic curves.

Many natural families of curves have a small number of degrees of freedom:
Lines have two degrees of freedom with multiplicity one (in any space Rd). Indeed, each
pair of lines intersect in at most one point, and through any pair of points only a single
line can be drawn.
Similarly, unit circles in the plane have two degrees of freedom as well, with multiplicity
two. (Note that unit circles in R3, or in any higher-dimensional space, do not have two
degrees of freedom, but they have three degrees of freedom, as follows from the next
example.)
Circles of arbitrary radii, in any space Rd, have three degrees of freedom.

The following theorem is a generalization of Theorem 1, and is due to Pach and Sharir [9].
The original bound applies to more general families of curves, but we stick to the algebraic
setup.

I Theorem 7 (Pach and Sharir [9]). Let P be a set of m points in the plane, and let C be a
set of n irreducible algebraic curves in the plane of degree at most k and with s degrees of
freedom (with multiplicity µ); here k, s and µ are assumed to be constants. Then:

I(P,C) = O
(
m

s
2s−1n

2s−2
2s−1 +m+ n

)
,

where the constant of proportionality depends on k, s and µ.

Note that this is the Szemerédi-Trotter bound for lines (for which s = 2), and also for unit
circles in the plane.
I Remark. If we apply Theorem 7 to the family of circles of arbitrary radii, in any dimension
(for which s = 3), we get the bound I(P,C) = O(m3/5n4/5 +m+ n), which is weaker than
the bound in Theorem 2.

M. Sharir and O. Zlydenko 66:5

Infinitely ruled surfaces. Extending the constraint that the parameter q imposes in The-
orem 4, we use the following concept, studied by Sharir and Solomon in [11], adapting a
similar reasoning from Guth and Zahl [6]. An algebraic surface V in R3 is infinitely ruled by
a family C of curves, if each point q ∈ V is incident to infinitely many curves of C that are
fully contained in V . For example, the only surfaces that are infinitely ruled by lines are
planes, and the only surfaces that are infinitely ruled by circles are planes and spheres; see
Lubbes [7]. Sharir and Solomon have considered this notion in [11] to show:

I Theorem 8 (Sharir and Solomon [11]). Let P be a set of m points and C a set of n
irreducible algebraic curves in R3, taken from a family C, so that the curves of C are algebraic
of constant degree, and with s degrees of freedom (of some multiplicity µ). If no surface
that is infinitely ruled by curves of C contains more than q curves of C, for a parameter
q < n, then I(P,C) = O

(
m

s
3s−2n

3s−3
3s−2 +m

s
2s−1n

s−1
2s−1 q

s−1
2s−1 +m+ n

)
, where the constant of

proportionality depends on s, µ, and the degree of the curves in C.

Note that Theorem 4 is a special case of this result, with s = 2, where the infinitely ruled
surfaces are planes.

An additional tool that we rely on is also due to Sharir and Solomon [11]. It is the
following theorem, which is part of Theorem 1.13 in [11], and is a generalization of a result
of Guth and Zahl [6] (that was stated there only for doubly ruled surfaces).

I Theorem 9 (Sharir and Solomon [11]). Let C be a family of algebraic curves in R3 of
constant degree E. Let f be a complex irreducible polynomial of degree D � E. If Z(f)
is not infinitely ruled by curves from C then there exist absolute constants c, t, such that,
except for at most cD2 exceptional curves, every curve in C that is fully contained in Z(f) is
incident to at most cD t-rich points, namely points that are incident to at least t curves in C
that are also fully contained in Z(f).

Almost two degrees of freedom. We introduce the following notion. A family C of algebraic
irreducible curves in R3 has almost s degrees of freedom (of multiplicity µ) if:

1. each pair of curves of C intersect in at most µ points;
2. for each s-tuple p1, . . . , ps of distinct points in R3 there are at most µ curves of C that

pass through all these points; and
3. there exists a curve of C that passes through p1, . . . , ps, if and only if F (p1, . . . , ps) = 0,

where F is some 3s-variate real polynomial of constant degree associated with C.

With this definition we want to capture families C of curves that have some s degrees
of freedom, but are such that for most s-tuples of points there is no curve of C that passes
through all of them. As we demonstrate in this work, this additional restriction helps us
improve the upper bound for incidences between points and curves from such a family.

As with the case of standard degrees of freedom, there are natural examples that fall
under this definition. One such example is the family of unit circles in R3 (or in any Rd, for
d ≥ 3), which, as is easily checked, has almost three degrees of freedom, with multiplicity two.

Our results. Although the above definition applies for general values of s and d, in this
paper we focus on the special case s = 2 and d = 3.

In Section 2, we study the incidence problem between points and unit circles in three
dimensions that pass through a fixed point (so-called anchored unit circles). With this
additional constraint, this family has almost two degrees of freedom. We use this property to

SoCG 2020

66:6 Incidences with Curves with Almost Two Degrees of Freedom

prove the bootstrapping bound I(m,n) = O(m3/2 + n), which improves the naive bootstrap-
ping bound I(m,n) = O(m2 + n) for general families of curves with two degrees of freedom.
We then prove that no surface is infinitely ruled by this family of curves. Combining this
with some additional arguments, most notably an argument that establishes the absence of
infinitely ruled surfaces in a suitably defined dual context (needed to establish our improved
bootstrapping bound), gives us the following incidence bound:

I(m,n) = O(m3/5n3/5 +m+ n).

We remark that Sharir et al. [10] have obtained the bound

I(m,n) = O∗(m5/11n9/11 +m2/3n1/2q1/6 +m+ n) (1)

for m points and n non-anchored unit circles in R3 (where O∗(·) hides small sub-polynomial
factors). While this bound applies to general families of unit circles, it does not imply our
bound for anchored circles (and it depends on the threshold parameter q, of which our bound
is independent).

In Section 3, we bound the number of tangencies between circles and directed points in
the plane. We transform this problem to an incidence problem between points and curves
with almost two degrees of freedom in R3, resulting from lifting the given circles to three
dimensions, using a method of Ellenberg et al.In this case as well, we prove the bootstrapping
bound2 I(m,n) = O(m3/2 + n), show that no surface is infinitely ruled by this family of
curves, and combine these statements (with some other considerations) to get the same
asymptotic bound I(m,n) = O(m3/5n3/5 +m+ n).

In Section 4, we extend the proofs from Sections 2 and 3, for more general families of
curves with almost two degrees of freedom in three dimensions. A large part of the analysis
can be generalized directly, but in general, there may exist surfaces that are infinitely ruled
by these families of curves. Additionally, as already noted, our analysis in Sections 2 and
3 also involves a stage where it studies the problem in a dual setting, and the existence
of infinitely ruled surfaces is an issue that has to be dealt with in this setting too. As in
Theorem 4, the bound depends on the maximum number of curves that can lie on a surface
that is infinitely ruled by the given family of curves, and on a similar threshold parameter in
the dual space. We also need to impose a few additional natural conditions on the family of
curves to obtain our result.

The bound that we obtain is O(m3/5n3/5 +m+ n) plus additional terms that depend on
the threshold parameters for infinitely ruled surfaces, both in the primal and in the dual
setups. These terms are subsumed in the bound just stated when the relevant parameters
are sufficiently small. See Section 4 and the full version [12] for the precise bound.

We exemplify (in [12]) the general bound for families of lines in R3 that have almost two
degrees of freedom, a problem that has also been looked at by Guth and Solomon (work in
progress).

We conclude the paper in Section 5 by listing some open problems and suggesting
directions for further research.

2 Note the difference between this bound and the bound in Ellenberg et al. noted earlier. It is this stronger version
that allows us to derive our bound, mentioned below.

M. Sharir and O. Zlydenko 66:7

2 Anchored unit circles in space

The setup. As stated in Section 1, unit circles in space have almost three degrees of freedom.
We reduce the setup to one with almost two degrees of freedom, by considering only circles
that pass through a fixed point, say the origin. We call such circles anchored (unit) circles.
An anchored circle c has radius 1 and center on the unit sphere S(o, 1) centered at o (see
Figure 2). The main result of this section is

I Theorem 10. The number of incidences between m points and n anchored circles in R3 is

I(P,C) = O(m3/5n3/5 +m+ n).

2.1 Proof of Theorem 10
We obtain the desired bound by following the general approach in [11]. Using special
properties of the underlying setup, we obtain the following improved bootstrapping bound
(over the simple “naive” bound O(m2 + n) used in [11]).

I Lemma 11. The number of incidences between a set P of m points and a set C of n
anchored unit circles in R3 is I(P,C) = O(m3/2 + n).

The proof of the lemma is given in Section 2.2 below. Assuming for now that the lemma
holds, we apply the technique of [11], with suitable modifications, to derive the incidence
bound in Theorem 10. We show, by induction on n, that I(P,C) ≤ A

(
m3/5n3/5 +m+ n

)
,

for a suitable constant A. It is trivial to verify that this bound holds for n smaller than some
constant threshold n0, by choosing A sufficiently large, so we focus on the induction step.

We first construct, using Theorem 6, a partitioning polynomial f in R3, of some specified
(maximum) degree D, so that each cell (connected component) of R3 \Z(f) contains at most
O(m/D3) points of P , and is crossed by at most O(n/D2) circles of C.

For each (open) cell τ of the partition, let Pτ denote the set of points of P inside τ , and
let Cτ denote the set of circles of C that cross τ ; we have mτ := |Pτ | = O(m/D3), and
nτ := |Cτ | = O(n/D2). We apply the bootstrapping bound of Lemma 11 within each cell τ ,
to obtain

I(Pτ , Cτ) = O
(
m3/2
τ + nτ

)
= O

(
(m/D3)3/2 + (n/D2)

)
= O

(
m3/2/D9/2 + n/D2

)
.

Multiplying by the number of cells, we get that the number of incidences within the cells is∑
τ

I(Pτ , Cτ) = O
(
D3 ·

(
m3/2/D9/2 + n/D2

))
= O

(
m3/2/D3/2 + nD

)
.

We choose D = am3/5/n2/5, for a sufficiently small constant a. For this to make sense,
we require that 1 ≤ D ≤ a′min{m1/3, n1/2}, for another sufficiently small constant a′ > 0,
which holds when b1n

2/3 ≤ m ≤ b2n
3/2, for suitable constants b1, b2 that depend on a and a′.

For m in this range, the incidence bound is O(m3/5n3/5). As we detail in the full version [12],
(i) when m < b1n

2/3, we apply Lemma 11 to the entire sets P and C, and get the bound
O(n), and (ii) when m > b2n

3/2, we choose D = a′n1/2, for the a′ used above, and get the
bound O(m). Combining all three cases, we obtain the overall within-cells bound

O
(
m3/5n3/5 +m+ n

)
. (2)

SoCG 2020

66:8 Incidences with Curves with Almost Two Degrees of Freedom

Consider next incidences involving points that lie on Z(f). A circle γ that is not fully
contained in Z(f) crosses it in at most O(D) points, which follows from Bézout’s theorem
(see, e.g., [2]). This yields a total of O(nD) = O(m3/5n3/5 + m) incidences, within the
asymptotic bound in (2). It therefore remains to bound the number of incidences between
the points of P on Z(f) and the anchored circles that are fully contained in Z(f).

We follow the proof of Theorem 1.4 in [11], which considers each irreducible component of
Z(f) separately, and distinguishes between components that are infinitely ruled by anchored
circles, and components that are not. Let C denote the infinite family of all possible anchored
(unit) circles. Fortunately for us, we have:

I Lemma 12. No algebraic surface is infinitely ruled by anchored unit circles.

Proof. Briefly, the only surfaces to consider are planes and spheres, and neither can be
infinitely ruled by anchored unit circles. See the full version [12] for details. J

Write m∗ = |P ∩Z(f)| and m0 = |P \Z(f)|, so m = m0 +m∗. The analysis in [11], which
we follow here, handles each irreducible component of Z(f) separately. Enumerate these
components as Z(f1), . . . , Z(fk), for suitable irreducible polynomials f1, . . . , fk, of respective
degrees D1, . . . , Dk, where

∑k
i=1 Di ≤ D. By Lemma 12, none of these components is

infinitely ruled by anchored circles.
Let Pi (resp., Ci) denote the set of all points of P (resp., anchored circles of C) that

are contained (resp., fully contained) in Z(fi), assigning each point and circle to the first
such component (in the above order), when it is contained in more than one component.
The “cross-incidences”, between points and circles assigned to different components, occur at
crossing points between circles and components that do not contain them, and their number
is therefore O(nD), which satisfies our asymptotic bound. It therefore suffices to bound the
number of incidences between points and circles assigned to the same component.

By Theorem 9, there exist absolute constants c, t, such that there are at most cD2
i

‘exceptional’ anchored circles in Ci, namely, anchored circles that contain more than cDi

t-rich points of P ∩ Z(fi), namely points that are incident to at least t circles from Ci.
Denote the number of t-rich points (resp., t-poor points, namely points that are not t-rich) as
mrich (resp., mpoor), so mrich +mpoor = m∗. By choosing a and a′ (in the definition of D)
sufficiently small, we can ensure, as is easily checked, that

∑
iD

2
i ≤ (

∑
iDi)2 ≤ D2 ≤ n/(2c).

The number of incidences on the non-exceptional circles, summed over all components
Z(fi), is O(mpoor + nD). Indeed, each non-exceptional circle contains at most cDi t-rich
points, for a total of O(nDi) incidences, and the sum of these bounds is O(nD). Any t-poor
point lies on at most t circles of Ci, for a total of tmpoor = O(mpoor) incidences (over all
sets Ci).

For the exceptional circles, we apply the induction hypothesis, as their overall number is
at most c

∑
iD

2
i ≤ cD2 ≤ n/2. Note that in this inductive step we only need to consider

the t-rich points, as the t-poor points have already been taken care of. By the induction
hypothesis, the corresponding incidence bound between the points and circles that were
assigned to (the same) fi is at most

A
(
m

3/5
i (cD2

i)3/5 +mi + cD2
i

)
,

where mi is the number of t-rich points assigned to fi. We now sum over i. Clearly,∑
imi = mrich. We also have

∑
i cD

2
i ≤ n/2. As for the first term, we use Hölder’s

inequality:

M. Sharir and O. Zlydenko 66:9

∑
i

m
3/5
i

(cD2
i)3/5 = c

3/5
∑

i

m
3/5
i

D
6/5
i
≤ c3/5

(∑
i

mi

)3/5(∑
i

D
3
i

)2/5

≤ c3/5
m

3/5

(∑
i

D
3
i

)2/5

.

Finally, using the fact that
∑
iD

3
i ≤ D3, we get the overall bound:

A
(
c3/5m3/5D6/5 +mrich + n/2

)
≤ A

(
m3/5n3/5

23/5 +mrich + n/2
)
,

since c3/5D6/5 ≤ (n/2)3/5, by construction.
We now add to this quantity the bound for incidences within the cells, as well as

the various other bounds involving points on Z(f). Together, we can upper bound these
bounds by B

(
m3/5n3/5 + n+m0 +mpoor

)
, for a suitable absolute constant B. By choosing

A sufficiently large, the sum of all the bounds encountered in the analysis is at most
A
(
m3/5n3/5 +m+ n

)
. This establishes the induction step, and thereby completes the proof

of Theorem 10, modulo the still missing proof of Lemma 11, presented next.

2.2 Proof of Lemma 11
The lemma improves upon the naive (and standard) bootstrapping bound, used in [11], which
is O(m2 + n), for m points and n anchored circles. We dualize the setup, exploiting the
underlying geometry, mapping each circle γ ∈ C to a suitable algebraic representation of the
point qγ = (αγ , βγ , φγ) in 3-space, where (αγ , βγ) represents the center of γ as a point on
S(o, 1), and φγ represents the angle by which the circle is rotated around the line connecting
o to its center. We denote by C∗ the infinite family of all these dual points qγ (over all
possible anchored unit circles γ).

We also map each point p ∈ P to the locus hp of all dual points qγ that represent anchored
circles γ that are incident to p, and argue (in [12]) that hp is a one-dimensional curve.

Let H denote the family of all dual curves hp for points p ∈ R3 (actually, only points in
the ball of radius 2 around o, with o excluded, are relevant). We show (see [12]) that H has
(almost) two degrees of freedom. Let C∗ ⊂ C∗ be the set of points qγ dual to the anchored
circles γ ∈ C, and let H ⊂ H be the set of curves hp dual to the points p ∈ P . We have
thus reduced our problem to that of bounding the number of incidences between C∗ and H,
to which we can apply Theorem 8, using the fact that the curves of H have two degrees of
freedom, to get the bound

I(P,C) = I(C∗, H) = O
(
n1/2m3/4 + n2/3m1/3q1/3 + n+m

)
, (3)

where q is the maximum number of curves from H that lie on a common surface that is
infinitely ruled by H. Fortunately again for us, we have:

I Lemma 13. No algebraic surface is infinitely ruled by H.

Proof. See the full version [12]. J

It thus follows that I(P,C) = I(C∗, H) = O
(
n1/2m3/4 + n+m

)
, which is upper bounded

by O(n+m3/2). This completes the proof of Lemma 11, and, consequently, also of Theo-
rem 10.

SoCG 2020

66:10 Incidences with Curves with Almost Two Degrees of Freedom

3 Point-circle tangencies in the plane

The setup. Let C be a set of n circles in the plane. A directed point in the plane is a pair
(p, u), where p ∈ R2 and u is a direction, which we parameterize by its slope. A circle c is
said to be incident (or tangent) to a directed point (p, u) if c passes through p, and c is
tangent to the line emanating from p in direction u. See Figure 1.

As stated in Theorem 3, Ellenberg et al. [3] (using a somewhat different notation) have
shown that the number of directed points that are incident to at least two circles of C is
O(n3/2). Using the main technical idea in [3], we represent directions by their slopes3, and
regard each directed point (p, u) as a point in R3, where the z-coordinate is the slope; from
now on, we let the parameter u denote the slope. We map each circle c in R2 to the curve
c∗ = {(p, u) | c is incident to (p, u)}, to which we refer as a lifted circle, or the lifted image
of c. As is easily checked, c∗ is an algebraic curve of degree 4.

Denote by C the infinite family of all possible lifted circles. It is easy to show that the
curves of C have almost two degrees of freedom; see the full version [12] for details.

The setup then becomes similar to what we have seen in Section 2, and we have

I Theorem 14. The number of incidences between m directed points and n circles in the
plane is O(m3/5n3/5 +m+ n).

3.1 Proof of Theorem 14
We only give a brief sketch of the proof. Details can be found in [12]. The high-level approach
in the proof of the theorem is very similar to the one presented in the previous section. We
establish the improved bootstrapping bound.

I Lemma 15. The number of incidences between m directed points and n circles in the plane
is O(m3/2 + n).

Assuming that the lemma holds, we prove, by induction on n that, for |P | = m and
|C| = n, I(P,C) ≤ A(m3/5n3/5 +m+n), for a suitable absolute constant A. Again, the case
of small n is trivial, with a suitable choice of A, and we only focus on the induction step.

As before, we first construct a partitioning polynomial f in R3, of the same maximum
degree as in the previous section, and bound the number of incidences within the partition
cells by O(m3/5n3/5 +m+ n). Consider then incidences involving points that lie on Z(f). A
lifted circle c∗ that is not fully contained in Z(f) crosses it in at most O(D) points, for an
overall O(nD) bound, which, as before, is asymptotically subsumed by the bound within the
cells. It therefore remains to bound the number of incidences between the points of P on
Z(f) and the lifted circles that are fully contained in Z(f).

Again, we handle each irreducible component of Z(f) separately, and make use of the
fortunate property in the following lemma. Its proof is given in the full version [12], and it
strongly exploits the geometry of this setup.

I Lemma 16. No algebraic surface is infinitely ruled by lifted circles.

We can now continue exactly as in Section 2 and establish the asserted bound. See [12]
for full details.

3 This excludes y-vertical directions from the analysis. We assume, without loss of generality, that no input
directed point has vertical direction (i.e., slope ±∞).

M. Sharir and O. Zlydenko 66:11

3.2 Proof of Lemma 15
We dualize the setup, exploiting the underlying geometry in the plane, by mapping each
circle c ∈ C, with center (ξ, η) and radius r, to the point qc = (ξ, η, ζ), where ζ = r2−ξ2−η2,
and by mapping each directed point (p, u) to the locus hp,u of all dual points that represent
circles that are incident to (p, u). It is easily seen that hp,u is the intersection of two planes,
and is therefore a line in R3. We have thus reduced the problem to that of incidences between
n points (those dual to the circles of C) and m lines (the lines hp,u, for (p, u) ∈ P) in three
dimensions. We can apply the result of Guth and Katz [5] (see Theorem 4) for estimating
the number of these incidences, and obtain

I(P,C) = I(C∗, H) = O
(
n1/2m3/4 + n2/3m1/3q1/3 + n+m

)
, (4)

where H is the set of the dual lines hp,u, and q is the maximum number of lines of H that
can lie in a common plane. This is a notable difference with the analysis in Section 2: There
we showed that no surface is infinitely ruled by the dual curves, whereas here every plane
is such a surface. Handling incidences on planes requires extra work, presented in the next
subsection.

3.3 Coplanar lines
The gist of the analysis in this subsection is to control the value of q. For this, we distinguish
between planes that contain at most q lines of H, for a suitable threshold value q that we
will set later, and those that contain more than q lines. We handle the latter type of planes
using a different technique that strongly exploits the geometry of the problem, and are then
left with a subproblem in which (4) can be used.

Recall that if a circle c has center q and radius r then the power of a point w with respect
to c is |wq|2− r2. As is well known, and easy to see, the duality transform that we have used
has the property that for each non-vertical plane π in R3 there exist a point w in R2 and a
power ρ, such that the point dual to a circle c lies on π if and only if w has power ρ with
respect to c.

Let π be any fixed non-vertical plane in R3, and let w and ρ be the corresponding point
and power (in R2). We show in the full version [12] that a line hp,u is fully contained in π if
and only if (a) p lies on the fixed circle γ(w,√ρ), with center w and radius √ρ, and (b) u is
the direction of the line connecting p and w. See Figure 3.

Let P+ = {(p, u)+ = (p,−1/u) | (p, u) ∈ P}, and let W denote the set of all possible
“power circles” γ(w,√ρ) as just defined. By construction, hp,u lies in a plane π(w,√ρ) if and
only if (p, u)+ is incident to the corresponding circle γ(w,√ρ).

We fix a threshold value q, to be determined shortly, and partition W into two subsets
W+, W−, where W+ (resp., W−) consists of those circles in W that are incident to more
than (resp., at most) q directed points of P+. We refer to circles in W+ (resp., in W−) as
being q-rich (resp., q-poor). The same notation carries over to the corresponding power
planes in 3-space.

The analysis, whose full details are given in the full version [12], then shows that
the number of incidences involving circles that are incident to at least one q-rich point,
namely a point that is incident to at least one q-rich circle, is O(m|W+| + n), and that
|W+| = O

(
m2

q3 + m
q

)
. Thus the number of these incidences is

O(m|W+|+ n) = O

(
m3

q3 + m2

q
+ n

)
.

SoCG 2020

66:12 Incidences with Curves with Almost Two Degrees of Freedom

p

w

u

γ

√
ρ

Figure 3 A circle γ = γ(w,√ρ) and a point p on γ with direction u to the center w of γ. Any circle
incident to (p, u) (such as the dashed circles) has power ρ with respect to w.

The same (in fact, a smaller) bound applies for vertical planes π.
The remaining incidences only involve the surviving circles and the q-poor points. By

construction, we now have that, in the dual 3-space, no plane contains more than q lines
hp,u, so by Guth and Katz’s bound [5], the number of surviving incidences is
O
(
n1/2m3/4 + n2/3m1/3q1/3 + n+m

)
, for a total number of incidences

O

(
n1/2m3/4 + n2/3m1/3q1/3 + n+ m3

q3 + m2

q

)
. By choosing the appropriate q (details in

the full version), this bound becomes O
(
n1/2m3/4 + n

)
= O

(
m3/2 + n

)
, thus completing

the proof of the lemma.

4 Generalizations

Due to lack of space, we only state the main result, and leave all details to the full version [12].

I Theorem 17. Let C be a set of n curves in R3 that are taken from a 3-parameterizable
family C with almost two degrees of freedom, and let P be a set of m points in R3 whose
duals (as defined in the previous sections) are all curves.4 Assume that no surface that is
infinitely ruled by the curves of C contains more than π curves from C. Let P∗ be the family
of curves in dual 3-space that are dual to the (suitable subset of) points of R3, with respect to
the curves of C, and assume that no surface that is infinitely ruled by curves of P∗ contains
more than δ curves dual to the points of P , and that not all pairs of curves of C intersect.
Then

I(P,C) = O
(
m3/5n3/5 + (m11/15n2/5 + n8/9)δ1/3 +m2/3n1/3π1/3 +m+ n

)
.

If π = O(n1/2) and δ = O(n1/3) then I(P,C) = O(m3/5n3/5 +m+ n).

4 In general, there might exist a lower-dimensional set of points whose duals are two-dimensional.

M. Sharir and O. Zlydenko 66:13

5 Conclusion

The elegant bound O(m3/5n3/5 +m+n) on the number of incidences, derived in Theorems 10
and 14 (and in the favorable subcase of Theorem 17), improves upon the best bounds for a
family of curves with standard two degrees of freedom. Comparing this bound with the more
cumbersome-looking general bound in Theorem 17, indicates that a major step in extending
the technique of this paper to other instances of the problem, is analyzing the structure, or
establishing the nonexistence, of surfaces that are infinitely ruled by the given curves or by
the dual curves. This seems to be a rich area of further research, which calls for sophisticated
tools from algebraic geometry.

Specific subproblems that are still not resolved, in their full generality, are: (a) Understand
and characterize the existence of dual curves. (b) As just mentioned, understand and
characterize the existence of surfaces that are infinitely ruled by the family of curves, as well
as of dual surfaces that are infinitely ruled by the family of dual curves. (c) Obtain improved
bounds, if at all possible, for the number of incidences between points and curves that lie on
such a surface, both in the primal and in the dual setups.

In particular, it would be interesting to investigate whether ideas similar to those used
in distinguishing between rich and poor points, given in Section 3.3, can be developed to
reduce the threshold on the number of primal or dual curves that lie on a surface that is
infinitely ruled by such curves.

A natural open problem, which we have yet to make progress on, is to generalize the
bounds and techniques from this paper to families of curves in three dimension with almost
s degrees of freedom, for larger constants s ≥ 3. For instance, the problem of bounding the
number of incidences between (non-anchored) unit circles and points in three dimensions falls
under this general setup for s = 3, since unit circles (in any dimension) have almost three
degrees of freedom. A specific goal here is to improve the bound (1) of [10] for non-anchored
unit circles.

A simple, albeit unsatisfactory, way of handling the case s ≥ 3 is to use anchoring. For
example, for the case of unit circles in R3, we fix a point p0 of P , consider the subfamily Cp0

of the unit circles that are incident to p0, apply the bound obtained in Theorem 10 to P and
the set Cp0 of the circles of C that are incident to p0, and then combine these bounds, over
all p0 ∈ P , to obtain the desired bound. We believe that this coarse (and weak) approach
can be considerably improved by replacing it by a direct approach that treats all the circles
of C together, and leave this as yet another interesting open problem for further research.

A final open question is whether the bound O(m3/5n3/5 +m+n) is tight, for any instance
of the setup considered in this paper. We strongly suspect that the bound is not tight.

References
1 Pankaj K. Agarwal, Eran Nevo, János Pach, Rom Pinchasi, Micha Sharir, and Shakhar

Smorodinsky. Lenses in arrangements of pseudo-circles and their applications. J. ACM,
51(2):139–186, 2004.

2 David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra. Springer-Verlag, Berlin,
Heidelberg, 2007.

3 Jordan S. Ellenberg, Jozsef Solymosi, and Joshua Zahl. New bounds on curve tangencies and
orthogonalities. Discrete Analysis, 22:1–22, 2016.

4 Larry Guth. Polynomial partitioning for a set of varieties. Mathematical Proceedings of the
Cambridge Philosophical Society, 159(3):459––469, 2015. doi:10.1017/S0305004115000468.

SoCG 2020

https://doi.org/10.1017/S0305004115000468

66:14 Incidences with Curves with Almost Two Degrees of Freedom

5 Larry Guth and Nets Hawk Katz. On the Erdős distinct distances problem in the plane.
Annals Math., 181:155––190, 2015.

6 Larry Guth and Joshua Zahl. Algebraic curves, rich points, and doubly-ruled surfaces.
American Journal of Mathematics, 140:1187––1229, March 2015.

7 Niels Lubbes. Families of circles on surfaces. arXiv preprint, 2013. arXiv:1302.6710.
8 Adam Marcus and Gábor Tardos. Intersection reverse sequences and geometric applications.

Journal of Combinatorial Theory, Series A, 113(4):675–691, 2006. doi:10.1016/j.jcta.2005.
07.002.

9 János Pach and Micha Sharir. On the number of incidences between points and curves.
Combinatorics, Probability and Computing, 7:121–127, 1998.

10 Micha Sharir, Adam Sheffer, and Joshua Zahl. Improved bounds for incidences between points
and circles. Combinatorics, Probability and Computing, 24(3):490––520, 2015.

11 Micha Sharir and Noam Solomon. Incidences with curves and surfaces in three dimensions,
with applications to distinct and repeated distances. In Proceedings 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’17, pages 2456–2475, 2017.

12 Micha Sharir and Oleg Zlydenko. Incidences between points and curves with almost two
degrees of freedom. arXiv preprint, 2020. arXiv:2003.02190.

13 E. Szemerédi and W. T. Trotter. Extremal problems in discrete geometry. Combinatorica,
3(3):381–392, September 1983.

http://arxiv.org/abs/1302.6710
https://doi.org/10.1016/j.jcta.2005.07.002
https://doi.org/10.1016/j.jcta.2005.07.002
http://arxiv.org/abs/2003.02190

Connectivity of Triangulation Flip Graphs in the
Plane (Part II: Bistellar Flips)
Uli Wagner
IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
uli@ist.ac.at

Emo Welzl
Department of Computer Science, ETH Zürich, Switzerland
emo@inf.ethz.ch

Abstract
Given a finite point set P in general position in the plane, a full triangulation is a maximal straight-
line embedded plane graph on P . A partial triangulation on P is a full triangulation of some subset
P ′ of P containing all extreme points in P . A bistellar flip on a partial triangulation either flips an
edge, removes a non-extreme point of degree 3, or adds a point in P \ P ′ as vertex of degree 3. The
bistellar flip graph has all partial triangulations as vertices, and a pair of partial triangulations is
adjacent if they can be obtained from one another by a bistellar flip. The goal of this paper is to
investigate the structure of this graph, with emphasis on its connectivity.

For sets P of n points in general position, we show that the bistellar flip graph is (n−3)-connected,
thereby answering, for sets in general position, an open questions raised in a book (by De Loera,
Rambau, and Santos) and a survey (by Lee and Santos) on triangulations. This matches the situation
for the subfamily of regular triangulations (i.e., partial triangulations obtained by lifting the points
and projecting the lower convex hull), where (n − 3)-connectivity has been known since the late
1980s through the secondary polytope (Gelfand, Kapranov, Zelevinsky) and Balinski’s Theorem.

Our methods also yield the following results (see the full version [13]): (i) The bistellar flip graph
can be covered by graphs of polytopes of dimension n− 3 (products of secondary polytopes). (ii) A
partial triangulation is regular, if it has distance n− 3 in the Hasse diagram of the partial order
of partial subdivisions from the trivial subdivision. (iii) All partial triangulations are regular iff
the trivial subdivision has height n− 3 in the partial order of partial subdivisions. (iv) There are
arbitrarily large sets P with non-regular partial triangulations, while every proper subset has only
regular triangulations, i.e., there are no small certificates for the existence of non-regular partial
triangulations (answering a question by F. Santos in the unexpected direction).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases triangulation, flip graph, graph connectivity, associahedron, subdivision,
convex decomposition, flippable edge, flip complex, regular triangulation, bistellar flip graph,
secondary polytope, polyhedral subdivision

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.67

Related Version A full version is available at [13], https://arxiv.org/abs/2003.13557.

Funding Research was supported by the Swiss National Science Foundation within the collaborative
DACH project Arrangements and Drawings as SNSF Project 200021E-171681, and by IST Austria
and Berlin Free University during a sabbatical stay of the second author.

Acknowledgements This research started at the 11th Gremo’s Workshop on Open Problems (GWOP),
Alp Sellamatt, Switzerland, June 24-28, 2013, motivated by a question posed by Filip Morić. We
thank Michael Joswig, Jesús De Loera, and Francisco Santos for helpful discussions on the topics of
this paper, and Daniel Bertschinger for carefully reading an earlier version and for many helpful
comments.

© Uli Wagner and Emo Welzl;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 67; pp. 67:1–67:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1494-0568
mailto:uli@ist.ac.at
mailto:emo@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.SoCG.2020.67
https://arxiv.org/abs/2003.13557
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Connectivity of Triangulation Flip Graphs in the Plane

1 Introduction

Throughout this paper we let P denote a finite planar point set in general position (no 3 points
on a line) with n ≥ 3 points. The set of extreme points of P (i.e., the vertices of the convex
hull of P) is denoted by xtrP , and P ◦ := P \ xtrP denotes the set of inner (i.e., non-extreme)
points in P . We consistently use h = h(P) := |xtrP | and n◦ = n◦(P) := |P ◦| = n− h. We let
Ehull = Ehull(P) ⊆

(
P
2
)
denote the h edges of the convex hull of P .

For graphs G = (P ′, E), P ′ ⊆ P , E ⊆
(

P ′

2
)
, on P ′ we often identify edges {p, q} with

their corresponding straight line segments pq. We let VG := P ′ and EG := E.

I Definition 1 (plane). A graph G on P is plane if no two straight line segments corresponding
to edges in EG cross (i.e., they are disjoint except for possibly sharing an endpoint).

I Definition 2 (full, partial triangulation). A full triangulation of P is a maximal plane
graph T = (P,E). A partial triangulation of P is a full triangulation T = (P ′, E) with
xtrP ⊆ P ′ ⊆ P (hence Ehull ⊆ ET). Points in V◦T := P ◦ ∩ VT are called inner points. Points
in P ◦ \V◦T are called skipped in T . Edges in E◦T := ET \ Ehull are called inner edges. Edges
in Ehull are called boundary edges. Tpart(P) denotes the set of all partial triangulations of P .

I Convention. From now on, we will mostly use “triangulation” for “partial triangulation”.

e
e

p p

Figure 1 Edge flips and point flips (point removal, left to right; point insertion, right to left).

I Definition 3 (bistellar flip). Let T be a triangulation of P . An edge e ∈ E◦T is called
flippable in T if removal of e in T creates a convex quadrilateral face Q, when T [e] is the
triangulation with the other diagonal e of Q added instead of e, i.e., VT [e] := VT and
ET [e] := ET \ {e} ∪ {e}; we call this an edge flip.

A point p ∈ P ◦ is called flippable in T if p ∈ P ◦ \ V◦T or if p ∈ V◦T , of degree 3 in T .
(a) If p ∈ P ◦ \ V◦T then T [p] is the triangulation with p added as a point of degree 3 (there
is a unique way to do so); we call this a point insertion flip. (b) If p ∈ V◦T of degree 3 in T
then T [p] is obtained by removing p and its incident edges; we call this a point removal flip.

Figure 2 Bistellar flip graphs for 5 points. Small crosses indicate skipped points in P .

Whenever we write T [x] for a triangulation T , then x is either a flippable point in P ◦ or a
flippable edge in E◦T , and we write T [x, y] short for (T [x])[y], etc. The bistellar flip graph of P
is the graph with vertex set Tpart(P) and edge set {{T, T [x]} |T ∈ Tpart(P), x flippable in T}.

U. Wagner and E. Welzl 67:3

Figure 3 Sets of 6 points with isomorphic bistellar flip graphs of triangulations. (Points indicated
by crosses are points in P skipped in the corresponding triangulation.)

The bistellar flip graph is connected (this follows easily from the connectedness of the edge
flip graph of full triangulations, as established by Lawson in 1972 [8]). Here, we investigate
how well connected the bistellar flip graph is. We refer to standard texts like [2, 6] for basics
like the definition of k-vertex connectivity and Menger’s Theorem. Our main result is:

I Theorem 4. Let P be a set of n ≥ 3 points in general position in the plane. Then the
bistellar flip graph of P is (n− 3)-vertex connected. (This is tight: Any triangulation of P
that skips all inner points has degree (n− 3) in the bistellar flip graph.)

This answers (for points in general position) a question by De Loera, Rambau, and Santos in
2010 [4, Exercise 3.23], and by Lee and Santos in 2017 [9, pg. 442]. A corresponding result,
dn

2 − 2e-connectedness of the edge flip graph of full triangulations, is proved in [14].
A particular way of obtaining a triangulation of a point set P is to vertically lift the

points to R3 such that no 4 points are coplanar, and then to project the lower convex hull of
the lifted points back into the plane. Triangulations obtained in this way are called regular
triangulations (e.g., [4]). It is well known that point sets may have non-regular triangulations.

Furthermore, we study the partially ordered set of subdivisions of P (see Def. 9 below,
and, e.g., [4]), in which triangulations are the minimal elements. We introduce the notions
of slack (Def. 10), perfect coarsenings (Def. 20), and perfect coarseners (Def. 21), and we
prove the so-called Coarsening Lemma 25. We consider these our main contributions besides
Thm. 4. As consequences, these yield several other results on the structure of the bistellar
flip graph and regular triangulations (see abstract); in particular, they allow us to settle, in

SoCG 2020

67:4 Connectivity of Triangulation Flip Graphs in the Plane

an unexpected direction, another question by Santos [12] regarding the size of certificates for
the existence of non-regular triangulations in the plane. Here, we focus on the proof of the
connectivity, and we refer to the full version [13] for these additional results.

If P is in convex position, full, partial, and regular triangulations coincide. It is well-known
that there is an (n − 3)-dimensional convex polytope, the associahedron, whose vertices
correspond to the triangulations of P and whose edges correspond to flips (Fig. 4, see [3]
for a historical account). A classical theorem of Balinski [1], which asserts that the graph
of any d-dimensional polytope is d-connected, immediately implies that the graph of the
associahedron is (n−3)-connected. More generally, for arbitrary sets in the plane, it is known
that there is an (n− 3)-dimensional polytope, the secondary polytope defined by Gelfand et
al. [7], whose vertices correspond to the regular triangulations of P and edges correspond to
bistellar flips; again, Balinski’s Theorem implies (n − 3)-connectivity. Our result extends
this to arbitrary triangulations of arbitrary sets in general position in the plane.

Figure 4 The flip graph of the convex hexagon, the graph of the order 5 associahedron.

Approach and Intuition

There is evidence that the bistellar flip graph of partial triangulations does not exhibit a
polytopal structure as we see it with regular triangulations [4]. Still, the intuition behind our
approach is to “pretend” that such a structure exists, at least locally for the small dimensional
features. This will become clearer below, and is made more explicit in the full version [13]
where it shown that the bistellar flip graph can be covered by polytopal structures.

2 Preliminaries, Terminology, and Notation

I Definition 5 (legal graph; region). For a graph G = (P ′, E), P ′ ⊆ P , we let VbyG be the
points in P ′ which are isolated in G, called bystanders in G. G is called legal if it is plane, if
Ehull(P) ⊆ EG (hence xtrP ⊆ P ′), and if the graph (VG \ VbyG,EG) is 2-edge connected.

Let G be a legal graph. Similar to triangulations, we define E◦G := EG \ Ehull and
V◦G := VG∩P ◦. Moreover, we let VinvG := V◦G \VbyG (the involved points). Bounded faces
of (VG \ VbyG,EG) are called regions of G, i.e., these are bounded connected components in
the complement of the straight line embedding of G, ignoring its bystanders.

Regions of legal graphs are bounded simply connected polygonal open sets, pairwise disjoint.
We state the following well-known facts for ease of reference.

I Lemma 6. For a full triangulation T of P , |ET | = |E◦T |+h = 3n−3−h = 3n◦−3+2h and
the number of regions (which does not include the unbounded face) is 2n−2−h = 2n◦−2 +h.

U. Wagner and E. Welzl 67:5

I Definition 7 (locked). In a legal graph G on P , an edge e ∈ EG is locked at endpoint p if
the angle obtained at p (between the edges adjacent to e at p) after removal of e exceeds π.

An edge in a triangulation is flippable iff it is locked by none of its endpoints. Edges locked
at a common endpoint p have to be consecutive around p. There can be at most 3 edges
locked at a given point p, and 3 edges can be locked at p only if p has degree 3.

Given a legal graph G, we consider partial orientations ~G: These assign orientations to
some (not all) of the edges in EG, with no edge oriented in both directions, and with the
boundary edges not oriented. We need the following [14, Lemma5.1(i)]:

I Lemma 8 (Unoriented Edges Lemma). Let G be a legal graph with VbyG = ∅, N := |VG|,
and D := 3N−3−h−|EG|, i.e., the number of edges missing in G towards a full triangulation
of VG. For ~G a partial orientation of G, let Ci be the number of inner points of ~G with
indegree i and suppose Ci = 0 for i ≥ 4. Then the number of unoriented inner edges is at
least N − 3− C3 −D.

To indicate, how this can be useful in our context, consider G = T , T a triangulation, i.e.,
D = 0. Orient every locked inner edge to the endpoint where it is locked. Then Ci = 0 for
i ≥ 4, C3 is exactly the number of inner points of degree 3, and the inner unoriented edges
are exactly the unlocked, i.e., flippable edges. It follows that there are C3 point removal flips,
at least N − 3− C3 edge flips, and obviously n−N point insertion flips. Altogether, there
are at least n− 3 flips.

3 Partial Subdivisions – Slack and Order

We now define partial subdivisions, which form a poset in which the partial triangulations of
P are the minimal elements.

I Definition 9 (full, partial subdivision). A partial subdivision S on P is a legal graph
with all of its regions convex. For a region r of S, let Vr := r ∩ VS (r the closure of r).
Striv = Striv(P) := (P,Ehull) is called the trivial subdivision of P . If VS = P and VbyS = ∅,
then S is called a full subdivision on P .

I Convention. From now on, we will mostly use “subdivision” for “partial subdivision”.

VS is essential in the definition of a subdivision, it is not simply the set of endpoints of
edges in S, there are also bystanders; e.g., for T a triangulation of P , all graphs (P ′,ET),
VT ⊆ P ′ ⊆ P , are subdivisions of P , all different. VS partitions into boundary points,
involved points, and bystanders, i.e., VS = xtrP ∪̇VinvS ∪̇VbyS. Moreover there are the
skipped points, P \ VS.

A first important example of a subdivision is obtained from a triangulation T and an
element x flippable in T , i.e., {T, T [x]} is an edge of the bistellar flip graph:

T±x := (VT ∪ VT [x],ET ∩ ET [x])

If x = e is a flippable edge, then T±e has one convex quadrilateral region Q; all other regions
are triangular. We obtain T and T [e] from T±e by adding one or the other of the 2 diagonals
of Q to T±e. If x = p is a flippable point, then T±p is almost a triangulation, all regions are
triangular, except that p ∈ VT±p is a bystander. We obtain T and T [p] by either removing
this point from T±p or by adding the 3 edges from p to the points of the triangular region in
which p lies. The subdivision T±x is close to a triangulation and, in a sense, represents the
flip between T and T [x]. To formalize and generalize this we introduce the following notion:

SoCG 2020

67:6 Connectivity of Triangulation Flip Graphs in the Plane

I Definition 10 (slack). Given a subdivision S of P , we call a region of S active if it is not
triangular or if it contains at least one point in VS (necessarily a bystander) in its interior.

For a region r of S, we define its slack slr := |Vr| − 3. The slack of S, slS, is the sum of
slacks of its regions.

I Lemma 11. For a subdivision S with s bystanders we have

slS = 3(|VS| − s)− 3− h− |ES|+ s = 3|VS| − 3− h− |ES| − 2s .

Proof. The slack of a region r equals the number of edges it takes to triangulate r (ignoring
bystanders) plus the number of bystanders. Thus, slS is the number of edges it takes to
triangulate (VS \ VbyS,ES) plus |VbyS|. Now the claim follows from Lemma6. J

I Observation 12. Let S be a subdivision. (i) slS = 0 iff S is a triangulation iff S has no
active region. (ii) slS = 1 iff S has exactly one active region of slack 1; this region is either
a convex quadrilateral, or a triangular region with one bystander in its interior. (iii) slS = 2
iff S has either (a) exactly 2 active regions, both of slack 1, or (b) exactly one active region
of slack 2, where this region is either a convex pentagon, or a convex quadrilateral with one
bystander in its interior, or a triangular region with 2 bystanders in its interior (Fig. 2).

Figure 5 Hasse diagram of the partial order � for a set of 5 points.

I Definition 13 (coarsening, refinement). For subdivisions S1 and S2 of P , S2 coarsens S1, in
symbols S2 � S1, if VS2 ⊇ VS1, and ES2 ⊆ ES1. We also say that S1 refines S2, (S1 � S2).

The example in Fig. 5 hides some of the intricacies of the partial order �; e.g., in general, it
is not true that all paths from a triangulation to Striv have the same length n− 3. Striv is the
unique coarsest (maximal) element. The triangulations (i.e., subdivisions of slack 0) are the
minimal elements.

I Definition 14 (set of refining triangulations). For a subdivision S of P we let Tpart〈S〉 :=
{T ∈ Tpart(P) |T � S}.

Note that Tpart〈Striv〉 = Tpart(P) and for x flippable in T , Tpart〈T±x〉 = {T, T [x]}.

I Observation 15. (i) Any subdivision S of slack 1 of P equals T±x for some triangulation
T � S and some x flippable in T . (ii) Let S be a subdivision of slack 2 of P . If there are
exactly 2 active regions in S (of slack 1 each), then Tpart〈S〉 has cardinality 4, spanning a
4-cycle in the bistellar flip graph of P (Fig. 6). If there is exactly 1 active region in S (of
slack 2), then Tpart〈S〉 has cardinality 5, spanning a 5-cycle (Fig. 2).

U. Wagner and E. Welzl 67:7

Figure 6 A subdivision S with 2 active regions of slack 1 each with Tpart〈S〉 spanning a 4-cycle.

I Lemma 16. Any proper refinement of a subdivision of slack 2 has slack at most 1.

Proof. Let slS′ = 2 and let S be a proper refinement of S′. For a refinement we add
m edges, thereby involving s′ bystanders, and we remove s′′ bystanders (some of these
parameters may be 0, but not all, since the refinement is assumed to be proper). We have
slS = slS′−(m−2s′+s′′) (easy consequence of Lemma 11) and want to show m−2s′+s′′ > 0.

Since slS′ = 2, S′ has at most 2 bystanders and thus s′ ≤ 2. If s′ = 0, thenm−2s′+s′′ > 0
holds, since some of the 3 parameters have to be positive. If s′ = 1, we observe that we need
at least 3 edges to involve a bystander and m− 2s′ ≥ 3− 2 · 1. If s′ = 2, we need at least 5
edges to involve 2 bystanders and m− 2s′ ≥ 5− 2 · 2. J

For D ≥ 3, a proper refinement of a subdivision of slack D can have slack D or even higher
(Fig. 7). The proof fails, since we can involve 3 bystanders with 6 edges.

1 1

2

2

0

Figure 7 8 points, with a subdivision of slack 6, a refinement of Striv of slack 8− 3 = 5.

Intuitively, as briefly alluded to at the end of Sec. 1, one can think of the subdivisions as
the faces of a higher-dimensional geometric structure behind the bistellar flip graph, with
the slack playing the role of dimension, somewhat analogous to the secondary polytope for
regular triangulations. (For the edge flip graph of full triangulations, an analogous higher-
dimensional flip complex is treated in [11, 10], and provides a similar geometric intuition for
the arguments in [14].) The following lemma shows that – for slack at most 2 – we have the
property corresponding to the fact that faces of dimension d are either equal, or intersect in
a common face of smaller dimension (possibly empty).

I Lemma 17.
(i) For subdivisions S1 and S2 of slack 2, Tpart〈S1〉 ∩ Tpart〈S2〉 is either (a) empty, (b)

equals {T} for some triangulation T , (c) equals {T, T [x]} for some triangulation T and
some flippable element x, or (d) S1 = S2.

(ii) Let x and y be two distinct flippable elements in triangulation T . If there is a subdivision
S of slack 2 with {T [x], T, T [y]} ⊆ Tpart〈S〉, then this S is unique.

SoCG 2020

67:8 Connectivity of Triangulation Flip Graphs in the Plane

Proof. If Tpart〈S1〉 ∩ Tpart〈S2〉 contains some triangulation, then we easily see that S1 ∧S2 :=
(VS1 ∩ VS2,ES1 ∪ ES2) is a subdivision, and Tpart〈S1 ∧ S2〉 = Tpart〈S1〉 ∩ Tpart〈S2〉.
(i) If (a) does not apply, let S := S1 ∧ S2, a subdivision with Tpart〈S〉 = Tpart〈S1〉 ∩ Tpart〈S2〉.
If slS = 0 we have property (b), if slS = 1 we have property (c). In the remaining case
slS ≥ 2, S is a refinement of S1 and of S2. Lemma16 tells us that S cannot be a proper
refinement of S1, hence S = S1; similarly, S = S2, hence S1 = S2.
(ii) Suppose S1 and S2 are subdivisions of slack 2 with {T [x], T, T [y]} ⊆ Tpart〈S1〉 ∩ Tpart〈S2〉.
Since options (a-c) above cannot apply, we are left with S1 = S2. J

Two edges incident to a vertex of a polytope may span a 2-face, or not; same here:

I Definition 18 (compatible elements). Two distinct flippable elements x, y ∈ V◦T ∪ E◦T are
called compatible in T , in symbols x � y, if there is a subdivision T±x,y � T of slack 2, s.t.
{T [x], T, T [y]} ⊆ Tpart〈T±x,y〉. (Note that T±x,y is unique, by Lemma17(ii).) Otherwise, x
and y are called incompatible in T , in symbols x6 � y.

This needs some time to digest. In particular, if two flippable edges e and f share a common
endpoint of degree 4, then they are compatible, see Fig. 8 (bottom left), quite contrary to
the situation for full triangulations as treated in [14]. The configurations of 2 flippable but
incompatible are shown in Fig. 8, rightmost examples: (a) Two flippable edges e and f whose
removal creates a nonconvex pentagon and whose common endpoint q has degree at least 5.
(b) A flippable edge e and a flippable point p of degree 3 whose removal creates a nonconvex
quadrilateral region whose reflex point q has degree at least 5 in the triangulation.

e � f

e � p

p � q

e
f

e f

e
p

e
p

e
p

p
q

p
q

e 6 � f e 6 � p

e
f

q

e
p

q

Figure 8 Compatible elements (with overlapping incident regions, all contained in a 5-cycle, see
Fig. 2 and incompatible elements (two rightmost, where q is assumed to have degree at least 5).
Shaded areas are unions of incident regions of flippable elements (not the active region in T±x,y!).

What is essential for us is that whenever x and y are compatible in a triangulation T ,
then there is a cycle of length 4 or 5 containing (T [x], T, T [y]), and therefore, apart from the
path (T [x], T, T [y]), there exists a T -avoiding T [x]-T [y]-path of length 2 or 3.

I Observation 19. Let T ∈ Tpart(P). (i) A skipped point p ∈ P ◦ \ V◦T is compatible with
every flippable element of T . (ii) Any two flippable points p, q ∈ P ◦ are compatible.

4 Coarsening Partial Subdivisions

As in [14] for full triangulations, the existence of many coarsenings is essential for our
connectivity result. In order to motivate the definitions below, note that for full subdivisions
(as employed in [14]), if S1 � S2, then (S1, S2) is an edge in the Hasse-diagram of the partial
order � iff slS2 = slS1 + 1. For partial subdivisions, this is not the case (Fig. 9).

U. Wagner and E. Welzl 67:9

S1 S2 S3

≺dir

≺1

≺dir

6≺1

Figure 9 slS1 = 2, slS2 = 3, slS3 = 3. Note that S2 ≺dir S3 but S2 6≺1 S3, and that S1 � S3

with slS3 = slS1 + 1 but S1 6≺1 S3.

q

p0

p1

p2

Figure 10 A subdivision, edges are oriented to endpoints where locked (not what we called a
partial orientation, since some edges are doubly oriented). Removing the 3 edges incident to p0 does
not yield a subdivision, since a reflex angle occurs at p1 and p2. The edges incident to {p0, p1, p2}
are not looked outside this set, but removing all incident edges creates a reflex angle at point q.

I Definition 20 (direct, perfect coarsening). Let S1 and S2 be subdivisions. (i) We call S2 a
direct coarsening of S1 (and S1 a direct refinement of S2), in symbols S1 ≺dir S2, if S1 � S2
and any subdivision S with S1 � S � S2 satisfies S ∈ {S1, S2} (equivalently, if (S1, S2) is
an edge in the Hasse diagram of �). (ii) We call S2 a perfect coarsening of S1 (S1 a perfect
refinement of S2), in symbols S1 ≺1 S2, if S1 ≺dir S2 and slS2 = slS1 + 1. (iii) ≺∗1 is the
reflexive transitive closure of ≺1.

The reflexive transitive closure of ≺dir is exactly �, while ≺∗1⊆� and, in general, the inclusion
is proper.

To motivate the upcoming definitions, let us discuss a few possibilities of coarsenings,
direct coarsenings and perfect coarsenings. There are the simple operations of removing an
unlocked edge, and of adding a point p ∈ P \ VS as a bystander. For a triangulation, we
can isolate a point of degree 3. How does this generalize to subdivisions? Removing the
edges incident to a point of degree 3 does not work if some incident edge might be locked at
its other endpoint (e.g., p0 in Fig. 10). If, however, no edge incident to a given point p (of
any degree) is locked at the respective other endpoint, then we can isolate this point for a
coarsening S′. Unless p has degree 3, S′ is not a direct coarsening of S, though. If p has
degree at least 4, one of the incident edges, say e, is not locked at p, thus not locked at all,
and therefore, S � S′′ � S′ for S′′ := (VS,ES \ {e}). Finally, suppose we want to isolate all
points in a set U of points for obtaining a coarsening S′. For this to work, it is necessary that
no edge e connecting U with the outside is locked at the endpoint of e not in U . However,
this is not a sufficient condition, because several edges connecting U with a point not in
U can collectively create a reflex vertex by their removal (e.g., U = {p0, p1, p2} in Fig. 10).
Moreover, for S ≺dir S

′ to hold, U cannot be incident to unlocked edges, and no nonempty
subset of U can be suitable for such an isolation operation.

I Definition 21 (prime, perfect coarsener; increment). Let S be a subdivision and let U ⊆
VS ∩ P ◦. (i) U is called a coarsener, if (a) U is incident to at least one edge in S, and (b)
removal of the set EU of all edges incident to U in S yields a subdivision. (ii) If U is a
coarsener, the increment of U , incU , is defined as |EU | − 2|U |. (iii) U is called a prime
coarsener, if (a) U is a coarsener, (b) U is a minimal coarsener, i.e., no proper subset of U is
a coarsener, and (c) all edges incident to U are locked. (iv) U is called a perfect coarsener, if
(a) U is a prime coarsener, and (b) incU = 1.

SoCG 2020

67:10 Connectivity of Triangulation Flip Graphs in the Plane

Figure 11 Prime coarseners, all perfect, except for the rightmost one (with inc = 0).

The following observation, a simple consequence of Lemma11, explains the term “incre-
ment”.

I Observation 22. Let S be a subdivision with coarsener U , and let S′ be the subdivision
obtained from S by removing all edges incident to U . Then slS′ = slS + incU .

I Observation 23.
(i) Every subdivision S with E◦S 6= ∅ has a coarsener (the set V◦S).
(ii) If U1 and U2 are coarseners, then U1 ∩ U2 is a coarsener, unless there is no edge of S

incident to U1 ∩ U2.
(iii) If U1 and U2 are prime coarseners, then U1 = U2 or U1 ∩ U2 = ∅.
(iv) If U is a prime coarsener, then the subgraph of S induced by U is connected.

The following observation lists all ways of obtaining direct and perfect coarsenings.

I Observation 24. Let S = (V,E) and S′ be subdivisions.
(i) S′ is a direct coarsening of S iff it is obtained from S by one of the following.

Adding a single point. For p ∈ P \ V , S′ = (V ∪ {p}, E) (with slS′ = slS + 1).
Removing a single unlocked edge. For e ∈ E, not locked by either of its two endpoints,
S′ = (V,E \ {e}) (with slS′ = slS + 1).

Isolating a prime coarsener. For U a prime coarsener in S, S′ is obtained from S by
removal of the set, EU , of all edges incident to points in U , i.e., S′ = (V,E \ EU)
(with slS′ = slS + incU).

(ii) S′ is a perfect coarsening of S iff it is obtained from S by adding a single point, removing
a single unlocked edge, or by isolating a perfect coarsener.

I Lemma 25 (Coarsening Lemma for Partial Subdivisions). Every subdivision of slack D has
at least n− 3−D perfect coarsenings (i.e., direct coarsenings of slack D + 1).

Proof. We start with the case D = 0, i.e., we have a triangulation T and we want to show
that there are at least n− 3 direct coarsenings of slack 1. Let N := |VT |. We orient inner
locked edges to their locking endpoints (recall that in a triangulation there is at most one
such endpoint for each inner edge). Let Ci, i ∈ N0, be the number of points p ∈ V◦T with
indegree i. The number of unoriented, thus unlocked edges is at least N − 3−C3 (Lemma 8).

There are n−N subdivisions obtained from T by adding a single point, there are at least
N − 3− C3 subdivisions obtained from T by removing a single unlocked edge, and there are
C3 direct coarsenings obtained from T by isolating an inner point of degree 3. Adding up
these numbers gives at least n− 3 perfect coarsenings of T .
We let S be a subdivision of slack D≥1 assuming the assertion holds for slack less than D.

U. Wagner and E. Welzl 67:11

Case 1. There is a bystander p0 ∈ VS ∩ P ◦. Then (VS \ {p0},ES) is a subdivision of slack
D − 1 of P \ {p0} with at least (n − 1) − 3 − (D − 1) = n − 3 −D perfect coarsenings of
slack D. For each such perfect coarsening S′, the subdivision (VS′ ∪ {p0},ES′) is a direct
coarsening of S of slack D + 1, thus a perfect coarsening.
Case 2. There is no bystander in S. Again we employ a partial orientation of S. The choice
of the orientation is somewhat more intricate and we will proceed in three phases (Fig. 12).
We keep the invariant that the unoriented inner edges are exactly the unlocked inner edges.

In a first phase, we orient all locked inner edges to all of their locking endpoints, i.e., we
temporarily allow edges to be directed to both ends (to be corrected in the third phase); edges
directed to both endpoints are called mutual edges. We can give the following interpretation
to an edge directed from p to q: If we decide to isolate p (i.e., remove all incident edges of p)
for a coarsening of S, then q becomes a reflex point of some region and we have to isolate q
as well (i.e., every coarsener containing p must contain q as well). In particular, if {p, q} is a
mutual edge, then either both or none of the points p and q will be isolated. In fact, if we
consider the graph G on V◦S with all mutual edges in the current orientation, then in any
coarsening of S either all points in a connected component of G are isolated, or none.

A connected component K of G is called a candidate component, (a) if all edges connecting
K with points outside are directed towards K, (b) no point in K is incident to an unoriented
edge, (c) all points in K have indegree 3, and (d) the mutual edges in K do not form any
cycle (i.e., they have to form a spanning tree of K). It follows that if K has k points then
the number of edges is 3k − (k − 1) = 2k + 1. The term “candidate” refers to the fact that
removing all edges incident to K seems like a direct coarsening step with incrementing the
slack by 1 (Lemma 11); however, while individual edges connecting K to the rest of the graph
are not locked at their endpoints outside K, some of these edges collectively may actually
create a reflex vertex in this way (see K and q in Fig. 12, left). So K is only a candidate for
a perfect coarsener.

Kq

Figure 12 Left: orientation after phase 1, with candidate components shaded; middle: after
phase 2, with the connected components of G∗; right: after phase 3, with unoriented edges bold
(each of these can be removed for a coarsening of slack 1 larger), and with the candidate components
with a leader shaded (perfect coarseners).

We start the second phase of orienting edges further. In the spirit of our remarks about
candidate components of G, suppose q is an inner point outside a candidate K of G (thus all
edges connecting q to K are directed from q to K), such that removing the edges connecting

SoCG 2020

67:12 Connectivity of Triangulation Flip Graphs in the Plane

q to K creates a reflex angle at q. Then we orient one (and only one) of the edges connecting
q to K, say {p, q}, also to q (thereby making this edge mutual). We call all the edges
connecting K to q, except for {p, q}, the witnesses of the extra new orientation of {p, q} from
p to q. We successively proceed orienting edges, with the graph G of mutual edges evolving
in this way (and candidate components growing or disappearing).1 The process will clearly
stop at some point when the second phase is completed. We freeze G and denote it by G∗.

Before we start the third phase, let us make a few crucial observations:
(i) If p, q are inner points in the same connected component of G∗, then any coarsener

contains both or none (i.e., if a connected component is a coarsener, then it is prime).
This holds after phase 1, and whenever we expand a connected component, it is
maintained.

(ii) During the second phase, an edge can be witness only once, and it is and will never be
directed to the endpoint where it witnesses. Why? (a) Before it becomes a witness, it
connects different connected components of G, after that it is and stays in a connected
component of G. (b) Before it becomes a witness, it is not directed to the endpoint to
which it witnesses an orientation, after that it is and stays in a connected component
of G and can therefore not get an extra direction. (An unoriented edge can never get
an orientation and it can never be a witness.)

(iii) If we remove, conceptually, for each incoming edge of a point q the witnesses (which
direct away from q) for the orientation of this edge to q, then among remaining incident
edges, all the incoming edges are locked at q (an incoming edge that was oriented
already in the first phase to q has no witness). In particular, the indegree of q cannot
exceed 3, and if q is incident to some not ingoing edge which is not a witness for any
edge incoming at q, then the indegree of q is at most 2. (We might generate incoming
edges to a point q that are not consecutive around q.)

(iv) If an unoriented edge e connects two points of the same connected component of G∗,
then both endpoints have indegree at most 2 (recall that this edge e cannot be a witness
at its endpoints). If an edge e is directed from a connected component K of G∗ to a
point outside K, then the tail of this edge e has indegree at most 2 (recall that e cannot
be a witness at all, since its endpoints are in different connected components if G∗).

(v) A candidate component K of G∗ is a perfect coarsener. It is a coarsener (otherwise, we
would have expanded it further), it is a prime coarsener (see (i) above) and incK = 1
(we have argued before that a candidate component increases the slack by exactly 1).

The third phase will make sure that each mutual edge loses exactly one direction. Our
goal is to have in every connected component K of G∗ at most one point with indegree 3. To
be more precise, only candidate components have exactly one point with indegree 3, others
don’t. Consider a connected component K.

(a) If the mutual edges form cycles in K, choose such a cycle c and keep for each edge
on c one orientation so that we have a directed cycle, counterclockwise, say. All other
mutual edges in K keep the direction in decreasing distance in G∗ to c, ties broken
arbitrarily. This completed, no point in K has indegree 3, since there is always a mutual
edge incident that decreases the distance to c and the incoming direction of this edge
will be removed.

1 The reader will correctly observe that our approach is very conservative towards prime coarseners, but
by what we observed and by what will follow, since we are interested only in perfect coarseners, we can
afford to leave alone connected components other than the candidate components.

U. Wagner and E. Welzl 67:13

(b) If K has points of indegree at most 2, choose one such point p with indegree at most 2,
orient all mutual edges in K in decreasing distance in G∗ to p, ties broken arbitrarily.
Again, this completed, no point in K will have indegree 3.

(c) If none of the above applies, the mutual edges of K form a spanning tree and all points
in K have indegree 3. Moreover, all edges connecting K with points outside are directed
towards K and no edge within K is unoriented (violation of these properties force a point
of indegree at most 2). So this is a candidate component. We choose an arbitrary point p
in K, call it the leader of K, and for all mutual edges keep the orientation of decreasing
distance in G∗ to p (ties cannot occur, mutual edges form a tree). Now the leader p is
the only point of K with indegree 3, all other points in K have indegree exactly 2.

Phase 3 is completed. Let us denote the obtained partial orientation on S as ~S∗. It has
identified certain connected components of G∗ which have a leader of indegree 3. In fact,
every point of indegree 3 after phase 3 is part of a perfect coarsener (probably of size 1).

We can now describe a sufficient supply of perfect coarsenings of S. Let N := |VS|
and let C3 be the number of points of indegree 3 in ~S∗. We know that there are at least
N − 3−D − C3 unoriented inner edges (Lemma8).
(I) There are n−N perfect coarsenings obtained by adding a single point p ∈ P \ VS.
(II) There are at least N − 3−D − C3 perfect coarsenings obtained by removing a single

unoriented inner edge in ~S∗.
(III) And there are C3 perfect coarsenings obtained by isolating all points in a candidate

component in G∗ (with a leader of indegree 3).
In this way we have identified at least n− 3−D perfect coarsenings. J

I Corollary 26. Let T be a triangulation. (i) T has at least n− 3 flippable elements. (ii) For
every x flippable in T there are at least n− 4 elements compatible with x.

Part (i) of the corollary was proved, without general position assumption, in [5, Thm. 2.1].

5 The Link of a Triangulation – Proof of (n − 3)-Connectivity

To complete the proof of the connectivity bound for the bistellar flip graph, we need two
further ingredients. The first is the following variant of Menger’s Theorem [14, Lemma3.1].

I Lemma 27 (Local Menger). Let k ≥ 2 be an integer and let G be a connected simple
undirected graph. Then G is k-vertex connected iff G has at least k + 1 vertices and for any
pair of vertices u and v at distance 2 there are k pairwise internally vertex disjoint u-v-paths.

The second ingredient are links of triangulations, which are graphs that represent the
compatibility relation among flippable elements (Def. 18). Recall that if x is a flippable
element in a triangulation T then T±x denotes the subdivision with Tpart〈T±x〉 = {T, T [x]},
and if y is compatible with x, denoted x � y, then T±x,y denotes the unique coarsening of
slack 2 of T with {T [x], T, T [y]} ⊆ Tpart〈T±x,y〉 (Def. 18).

I Definition 28 (link). For T ∈ Tpart(P), the link of T , denoted LkT , is the edge-weighted
graph with vertices FT := {x ∈ V◦T ∪ E◦T | x flippable in T} and edge set {{x, y} ∈

(FT
2

)
|

x � y}. The weight of an edge {x, y} is |Tpart〈T±x,y〉| − 2 (which is 2 or 3).

We will see that it is enough to prove (n − 4)-vertex connectivity of all links. Again, the
intuition can be explained for polytopes: Recall that for a vertex v in a d-polytope P, its
vertex figure is the (d− 1)-polytope P ′ obtained by intersecting P with a hyperplane that
separates v from the remaining vertices of the polytope. Vertices of P ′ correspond to edges

SoCG 2020

67:14 Connectivity of Triangulation Flip Graphs in the Plane

of P , edges in the graph of P ′ correspond to 2-faces of P . There is a natural way of mapping
paths in the graph of P ′ to paths in the graph of P. This can be easily made an inductive
proof of Balinski’s Theorem, as mentioned in Sec. 1 (using the Local Menger Lemma 27). We
follow exactly this line of thought in our setting, except that we will not need induction –
the link is a dense graph which directly yields (n− 4)-vertex connectivity.

Note that, indeed, the following lemma implies that the complement of the link is sparse,
hence the link is dense.

I Lemma 29. The complement of LkT has no cycle of length 4, i.e., if (x0, x1, x2, x3) are
flippable elements in T , then there exists i ∈ {0, 1, 2, 3} such that xi � xi+1 mod 3.

Proof. Recall that all p ∈ P ◦ \V◦T are flippable and compatible with every flippable element
(Obs. 19), hence let us assume {x0, x1, x2, x3} ⊆ V◦T ∪ E◦T . Moreover, if p, q ∈ V◦T are two
distinct points flippable in T , then p � q. Hence, we assume that no two consecutive elements
in the cyclic sequence (x0, x1, x2, x3) are points; w.l.o.g. let x0 = e and x2 = f be edges.

∅

f

e
f

e

e
f

e

f

Figure 13 Intersections of boundaries of territories of two flippable edges.

For an inner edge e in a triangulation T , we define its territory terre = terrT e, as the
interior of the closure of the union of the two regions in T incident to e. Obviously, e
is flippable in T iff the quadrilateral terrT e is convex. Note that for an element x to be
incompatible with edge e, x must appear on the boundary of terre, and analogously elements
incompatible with f must appear on the boundary of terrf .

We show that there is at most one flippable element in the intersection of the boundaries
of terre and terrf (Fig. 13). This is obvious, if terre ∩ terrf is empty or a single point (recall
that A denotes the closure of A ⊆ R2). If this intersection is an edge and its two endpoints,
we observe that among any edge and its two incident points, at most one element can be
flippable (inner degree 3 points cannot be adjacent and cannot be incident to a flippable
edge). This covers already all possibilties if terre and terrf are disjoint (since they are
convex). Finally, terre∩ terrf can be a triangle, in which case the common boundary consists
of the common endpoint of e and f , clearly not flippable, and an edge with its two endpoints;
again, only one of these three can be flippable. J

I Lemma 30. Given a triangulation T with x and y flippable elements, x 6= y, every x-y-path
of weight w in LkT induces a T -avoiding T [x]-T [y]-path of length w in the bistellar flip graph.
Interior vertex disjoint x-y-paths in the link induce interior vertex disjoint T [x]-T [y]-paths.

Proof. Given an x-y-path in LkT , we replace every edge {z′, z′′} on this path by
pathT (z′, z′′) = (T [z′], . . . , T [z′′]) (of length 2 or 3) which draws its (1 or 2) interior vertices
from Tpart〈T±z′,z′′〉 \ {T [z′], T, T [z′′]} (Fig. 14); these vertices must have distance 2 from T

in the flip graph, while T [z′] and T [z′′] have distance 1. In the resulting T [x]-T [y]-path,

U. Wagner and E. Welzl 67:15

z′

z′′

T

T [z′]

T [z′′]

Figure 14 From a path in the link to a path in the bistellar flip graph.

all interior vertices adjacent to T (i.e., of the form T [z]) are distinct from interior vertices
at other paths by assumption on the initial paths in the link. For vertices at distance
2, suppose T1 ∈ Tpart〈T±z′

1,z′′
1
〉 coincides with T2 ∈ Tpart〈T±z′

2,z′′
2
〉, both at distance 2 from

T . Since slT±z′
1,z′′

1
= slT±z′

2,z′′
2

= 2, we have that Tpart〈T±z′
1,z′′

1
〉 ∩ Tpart〈T±z′

2,z′′
2
〉 either (a)

equals {T}, (b) equals {T, T [z]} for some z, or (c) T±z′
1,z′′

1
= T±z′

2,z′′
2
(Lemma17). In (a-b)

T±z′
1,z′′

1
and T±z′

2,z′′
2
cannot possibly share a vertex at distance 2 from T . Thus (c) holds.

T±z′
1,z′′

1
= T±z′

2,z′′
2
implies {z′1, z′′1 } = {z′2, z′′2 }. J

I Lemma 31. The link LkT satisfies: (i) There are at least n− 3 vertices. (ii) Every vertex
has degree at least n−4. (iii) Every pair of non-adjacent vertices has at least n−4 connecting
interior vertex disjoint paths (all of length at most 3). (iv) It is (n− 4)-vertex connected.

Proof. (i) x is a vertex in LkT iff x is flippable in T iff T±x is a subdivision of slack 1,
a perfect coarsening of T . Lemma25 ensures the existence of at least n − 3 such perfect
coarsenings.
(ii) Let x be a vertex of LkT . T±x, a subdivision of slack 1, has at least n − 4 perfect
coarsenings of slack 2 (Lemma25). Each such coarsening equals T±x,y for some y � x, i.e., y
is a neighbor of x in LkT .
(iii) Let x and y be non-adjacent vertices of LkT , i.e., x 6 � y. Let z1, z2, . . . , z` be all flippable
elements in T compatible with both x and y. Each such element zi gives rise to a path (x, zi, y)
of length 2 in the link. If ` ≥ n − 4, we are done. Otherwise, there is an extra supply of
elements x1, x2, . . . , xn−4−` compatible with x but not with y, and elements y1, y2, . . . , yn−4−`

compatible with y but not with x. For all i = 1, 2, . . . , n− 4− `, yi 6 � x, x 6 � y, and y 6 � xi. By
Lemma 29, xi � yi, hence we have a path (x, xi, yi, y) of length 3 in the link. Obviously, these
paths of length 3 are pairwise internally vertex disjoint, and also internally vertex disjoint
from all x-y-paths of length 2 (interior vertices on length 2 paths are connected to x and y,
interior vertices on the constructed length 3 paths are not).
(iv) We apply the Local Menger Lemma27. Indeed, LkT has at least (n − 4) + 1 = n − 3
vertices (see (i)), and every pair of vertices at distance 2 has at least n− 4 internally vertex
disjoint paths (see (iii)). Hence, the link is (n− 4)-vertex connected. J

(n − 3)-Connectivity of the Bistellar Flip Graph – Proof of Thm. 4
Proof of Thm. 4. If n ≤ 4, (n− 3)-vertex connectivity can be easily checked according to
the definition of k-vertex connectivity. For n ≥ 5, we employ the Local Menger Lemma27.
Thus (apart from the presence of at least n − 2 vertices), we have to show that for any
triangulation T and flippable elements x and y, there are at least n − 3 internally vertex
disjoint T [x]-T [y]-paths in the bistellar flip graph. We know that in LkT has at least n− 4
internally vertex disjoint x-y-paths (Menger’s Theorem, [2, 6]). Therefore, there are at least
n− 4 interior vertex disjoint T [x]-T [y]-paths disjoint from T (Lemma 30). Together with the
path (T [x], T, T [y]), the claim is established. J

SoCG 2020

67:16 Connectivity of Triangulation Flip Graphs in the Plane

References
1 M. L. Balinski. On the graph structure of convex polyhedra in n-space. Pacific J. Math.,

11(2):431–434, 1961. URL: https://projecteuclid.org:443/euclid.pjm/1103037323.
2 Béla Bollobás. Modern graph theory (Graduate texts in mathematics). New York: Springer,

1998.
3 Cesar Ceballos, Francisco Santos, and Günter M. Ziegler. Many non-equivalent realiza-

tions of the associahedron. Combinatorica, 35(5):513–551, October 2015. doi:10.1007/
s00493-014-2959-9.

4 Jesús A De Loera, Jörg Rambau, and Francisco Santos. Triangulations Structures for algorithms
and applications. Springer, 2010.

5 Jesús A. De Loera, Francisco Santos, and Jorge Urrutia. The number of geometric bistellar
neighbors of a triangulation. Discrete & Computational Geometry, 21(1):131–142, 1999.
doi:10.1007/PL00009405.

6 Reinhard Diestel. Graph theory. Springer, 1997.
7 Israel M. Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky. Newton polyhedra and

principal A-determinants. Soviet Math. Dokl., 40:278–281, 1990.
8 Charles L. Lawson. Transforming triangulations. Discrete Math., 3(4):365–372, January 1972.

doi:10.1016/0012-365X(72)90093-3.
9 Carl W. Lee and Francisco Santos. Subdivisions and triangulations of polytopes. In Csaba

D. Toth, Jacob E. Goodman, and Joseph O’Rourke, editors, Handbook of Discrete and
Computational Geometry, 3rd Edition, pages 415–477. Chapman and Hall/CRC, New York,
USA, 2017.

10 Anna Lubiw, Zuzana Masárová, and Uli Wagner. A proof of the orbit conjecture for flipping
edge-labelled triangulations. Discrete & Computational Geometry, 61(4):880–898, June 2019.
doi:10.1007/s00454-018-0035-8.

11 David Orden and Francisco Santos. The polytope of non-crossing graphs on a planar point
set. Discrete & Computational Geometry, 33(2):275–305, February 2005. doi:10.1007/
s00454-004-1143-1.

12 Francisco Santos Leal, 2019. personal communication.
13 Uli Wagner and Emo Welzl. Connectivity of triangulation flip graphs in the plane. CoRR,

abs/2003.13557, 2020. arXiv:2003.13557.
14 Uli Wagner and Emo Welzl. Connectivity of triangulation flip graphs in the plane (Part I:

Edge flips). In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2823–2841. ACM-SIAM, 2020.

https://projecteuclid.org:443/euclid.pjm/1103037323
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1007/PL00009405
https://doi.org/10.1016/0012-365X(72)90093-3
https://doi.org/10.1007/s00454-018-0035-8
https://doi.org/10.1007/s00454-004-1143-1
https://doi.org/10.1007/s00454-004-1143-1
http://arxiv.org/abs/2003.13557

On the Planar Two-Center Problem and
Circular Hulls
Haitao Wang
Department of Computer Science, Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract
Given a set S of n points in the Euclidean plane, the two-center problem is to find two congruent
disks of smallest radius whose union covers all points of S. Previously, Eppstein [SODA’97] gave a
randomized algorithm of O(n log2 n) expected time and Chan [CGTA’99] presented a deterministic
algorithm of O(n log2 n log2 logn) time. In this paper, we propose an O(n log2 n) time deterministic
algorithm, which improves Chan’s deterministic algorithm and matches the randomized bound of
Eppstein. If S is in convex position, we solve the problem in O(n logn log logn) deterministic time.
Our results rely on new techniques for dynamically maintaining circular hulls under point insertions
and deletions, which are of independent interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases two-center, disk coverage, circular hulls, dynamic data structures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.68

Related Version A full version of this paper is available at https://arxiv.org/abs/2002.07945.

1 Introduction

Given a set S of n points in the Euclidean plane, we consider the planar 2-center problem
that is to find two congruent disks of smallest radius whose union covers all points of S.

The classical 1-center problem for a set of points is to find the smallest disk covering all
points, and the problem can be solved in linear time in any fixed dimensional space [9,13,24].
As a natural generalization, the 2-center problem has attracted much attention. Hershberger
and Suri [19] first solved the decision version of the problem in O(n2 logn) time, which was
later improved to O(n2) time [18]. Using this result and parametric search [23], Agarwal and
Sharir [2] gave an O(n2 log3 n) time algorithm for the 2-center problem. Katz and Sharir [21]
achieved the same running time by using expanders instead of parametric search. Eppstein [15]
presented a randomized algorithm of O(n2 log2 n log logn) expected time. Later, Jaromczyk
and Kowaluk [20] proposed an O(n2) time algorithm. A breakthrough was achieved by
Sharir [26], who proposed the first subquadratic algorithm for the problem, and the running
time is O(n log9 n). Afterwards, following Sharir’s algorithmic scheme, Eppstein [16] derived
a randomized algorithm of O(n log2 n) expected time, and then Chan [6] developed an
O(n log2 n log2 logn) time deterministic algorithm and a randomized algorithm of O(n log2 n)
time with high probability. Recently, Tan and Jiang [27] proposed a simple algorithm of
O(n log2 n) time based on binary search, but unfortunately, the algorithm is not correct (see
the full paper for details). The problem has an Ω(n logn) time lower bound in the algebraic
decision tree model [16], by a reduction from the max-gap problem.

In this paper, we present a new deterministic algorithm of O(n log2 n) time, which
improves the O(n log2 n log2 logn) time deterministic algorithm by Chan [6] and matches the
randomized bound of O(n log2 n) [6,16]. This is the first progress on the problem since Chan’s
work [6] was published twenty years ago. Further, if S is in convex position (i.e., the points

© Haitao Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8134-7409
mailto:haitao.wang@usu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.68
https://arxiv.org/abs/2002.07945
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 On the Planar Two-Center Problem and Circular Hulls

of S are all on the convex hull of S), our technique solves the problem in O(n logn log logn)
time. Previously, Kim and Shin [22] announced an O(n log2 n) time algorithm for this convex
position case, but Tan and Jiang [27] found errors in their time analysis.

Some variations of the 2-center problem have also been considered in the literature.
Agarwal et al. [3] studied the discrete 2-center problem where the centers of the two disks
must be in S, and they solved the problem in O(n4/3 log5 n) time. Agarwal and Phillips [1]
considered an outlier version of the problem where k points of S are allowed to be outside
the two disks, and they presented a randomized algorithm of O(nk7 log3 n) expected time.
In addition to the set S, the problem of Halperin et al. [17] also involves a set of pairwise
disjoint simple polygons, and the centers of the two disks are required to lie outside all
polygons. Both exact and approximation algorithms are given in [17]. Arkin et al. [4] studied
a bichromatic 2-center problem for a set of n pairs of points in the plane, and the goal is to
assign a red color to a point and a blue color to the other point for every pair, such that
max{r1, r2} is minimized, where r1 (resp., r2) is the radius of the smallest disk covering all
red (resp., blue) points. Arkin et al. [4] gave an O(n3 log2 n) time algorithm, which was
recently improved to O(n2 log2 n) time by Wang and Xue [28].

1.1 Our techniques
Let D∗1 and D∗2 be two congruent disks in an optimal solution such that the distance of their
centers is minimized. Let r∗ be their radius and δ∗ the distance of their centers. If δ∗ ≥ r∗,
we call it the distant case; otherwise, it is the nearby case.

Eppstein [16] already solved the distant case in O(n log2 n) deterministic time. Solving
the nearby case turns out to be the bottleneck in all previous three sub-quadratic time
algorithms [6, 16, 26]. Specifically, Sharir [26] first solved it in O(n log9 n) deterministic time.
Eppstein [16] gave a randomized algorithm of O(n logn log logn) expected time. Chan [16]
proposed a randomized algorithm of O(n logn) time with high probability and a deterministic
algorithm of O(n log2 n log2 logn) time. Our contribution is an O(n logn log logn) time
deterministic algorithm for the nearby case, which improves Chan’s algorithm by a factor of
logn log logn. Combining with the O(n log2 n) time deterministic algorithm of Eppstein [16]
for the distant case, the 2-center problem can now be solved in O(n log2 n) deterministic
time. Interestingly, solving the distant case now becomes the bottleneck of the problem.

Our algorithm (for the nearby case) is based on Chan’s framework [6]. Our improvement
is twofold. First, Chan [6] derived an O(n logn) time algorithm for the decision problem, i.e.,
given r, decide whether r∗ ≤ r. We improve the algorithm to O(n) time, after O(n logn) time
preprocessing. Second, Chan [6] solved the optimization problem (i.e., the original 2-center
problem) by parametric search. To this end, Chan developed a parallel algorithm for the
decision problem and the algorithm runs in O(logn log2 logn) parallel steps using O(n logn)
processors. By applying Cole’s parametric search [10] and using his O(n logn) time decision
algorithm, Chan solved the optimization problem in O(n log2 n log2 logn) time. We first
notice that simply replacing Chan’s O(n logn) time decision algorithm with our new O(n)
time algorithm does not lead to any improvement. Indeed, in Chan’s parallel algorithm, the
number of processors times the number of parallel steps is O(n log2 n log2 logn). We further
design another parallel algorithm for the decision problem, which runs in O(logn log logn)
parallel steps using O(n) processors. Consequently, by applying Cole’s parametric search with
our O(n) time decision algorithm, we solve the optimization problem in O(n logn log logn)
time. Note that although Cole’s parametric search is used, our algorithm mainly involves
independent binary searches and no sorting networks are needed.

In addition, we show that our algorithm can be easily applied to solving the convex
position case in O(n logn log logn) time.

H. Wang 68:3

Circular hulls. To obtain our algorithm for the decision problem, we develop new techniques
for circular hulls [19] (also known as α-hulls with α = 1 [14]). A circular hull of radius r
for a set Q of points is the common intersection of all disks of radius r containing Q (to
see how circular hulls are related to the two-center problem, notice that there exists a disk
of radius r covering all points of Q if and only if the circular hull of Q of radius r exists).
Although circular hulls have been studied before, our result needs more efficient algorithms
for certain operations. For example, two algorithms [14, 19] were known for constructing the
circular hull for a set of n points; both algorithms run in O(n logn) time, even if the points
are given sorted. We instead present a linear-time algorithm once the points are sorted.
Also, Hershberger and Suri [19] gave a linear-time algorithm to find the common tangents of
two circular hulls separated by a line, and we design a new algorithm of O(logn) time. We
also need to maintain a dynamic circular hull for a set of points under point insertions and
deletions. Hershberger and Suri [19] gave a semi-dynamic data structure that can support
deletions in O(logn) amortized time each. In our problem, we need to handle both insertions
and deletions but with the following special properties: the point in each insertion must be
to the right of all points of Q and the point in each deletion must be the leftmost point of
Q. Our data structure can handle each update in O(1) amortized time (which leads to the
linear time decision algorithm for the 2-center problem1). We believe that these results on
circular hulls are interesting in their own right.

Outline. We introduce notation and review some previous work in Section 2. In Section 3,
we present our decision algorithm, and the algorithm needs a data structure to maintain
circular hulls dynamically, which is given in the full paper. Section 4 solves the optimization
problem. The convex position case is discussed in Section 5.

2 Preliminaries

We begin with some notation. It suffices to solve the nearby case. Thus, we assume δ∗ < r∗

in the rest of the paper. In the nearby case, it is possible to find in O(n) time a constant
number of points such that at least one of them, denoted by o, is in D∗1 ∩D∗2 [16]. We assume
that o is the origin of the plane. We make a general position assumption: no two points of S
are collinear with o and no two points of S have the same x-coordinate. This assumption
does not affect the running time of the algorithm, but simplifies the presentation.

For any set P of points in the plane, let τ(P) denote the radius of the smallest enclosing
disk of P . For a connected region B in the plane, let ∂B denote the boundary of B.

The boundaries of the two disks D∗1 and D∗2 have exactly two intersections, and let ρ1
and ρ2 be the two rays through these intersections emanating from o (e.g., see Fig. 1). As
argued in [6], one of the two coordinate axes must separate ρ1 and ρ2 since the angle between
the two rays lies in [π/2, 3π/2], and without loss of generality, we assume it is the x-axis.

Let S+ denote the subset of points of S above the x-axis, and S− = S\S+. For notational
simplicity, let |S+| = |S−| = n. Let p1, p2, . . . , pn be the sorted list of S+ counterclockwise
around o, and q1, q2, . . . , qn the sorted list of S− also counterclockwise around o (e.g., see
Fig. 2). For each i = 0, 1, . . . , n and j = 0, 1, . . . , n, define Lij = {pi+1 . . . , pn, q1, . . . , qj} and
Rij = {qj+1, . . . , qn, p1, . . . , pi}. Note that if i = n, then Lij = {q1, . . . , qj}, and if j = n,
then Rij = {p1, . . . , pi}. In words, if we consider a ray emanating from o and between pi

and pi+1, and another ray emanating from o and between qj and qj+1, then Lij (resp., Rij)
consist of all points to the left (resp., right) of the two rays (e.g., see Fig. 2).

1 As will be clear later, the points involved in our dynamic circular hull problem are actually sorted
radially by a point; we can extend the result for the left-right sorted case to the radically sorted case.

SoCG 2020

68:4 On the Planar Two-Center Problem and Circular Hulls

xo

ρ1

ρ2

Figure 1 Illustrating the nearby case.

xo

p1

p2
pipi+1

pn

q1
q2

qj qj+1

qn

Lij
Rij

S+

S−

Figure 2 Illustrating the points of S+ and S−. Figure 3 The circular hull of a set of points.

Note that the partition of S by the two rays ρ1∪ρ2 is {Lij , Rij} for some i and j, and thus
r∗ = max{τ(Lij), τ(Rij)}. Define A[i, j] = τ(Lij) and B[i, j] = τ(Rij), for all 0 ≤ i, j ≤ n.
Then, r∗ = min0≤i,j≤n max{A[i, j], B[i, j]}. If we consider A and B as (n + 1) × (n + 1)
matrices, then each row of A (resp., B) is monotonically increasing (resp., decreasing) and
each column of A (resp., B) is monotonically decreasing (resp., increasing). For each i ∈ [0, n],
define r∗i = min0≤j≤n max{A[i, j], B[i, j]}. Thus, r∗ = min0≤i≤n r

∗
i .

2.1 Circular hulls

For any point c in the plane and a value r, we use Dr(c) to denote the disk centered at
c with radius r. For a set Q of points in the plane, define Ir(Q) =

⋂
c∈Q Dr(c), i.e., the

common intersection of the disks Dr(c) for all points c ∈ Q. Note that Ir(Q) is convex. A
dual concept of Ir(Q) is the circular hull [19] (also known as α-hull with α = 1 [14]; e.g., see
Fig 3), denoted by αr(Q), which is the common intersection of all disks of radius r containing
Q. αr(Q) is convex and unique. The vertices of αr(Q) is a subset of Q and the edges are
arcs of circles of radius r. Ir(Q) and αr(Q) are dual to each other: Every arc of αr(Q) is on
the circle of radius r centered at a vertex of Ir(Q) and every arc of Ir(Q) is on the circle
of radius r centered at a vertex of αr(Q). Note that αr(Q) exists if and only if Ir(Q) 6= ∅,
which is true if and only τ(Q) ≤ r. For brevity, we often drop the subscript r from Ir(Q)
and αr(Q) if it is clear from the context.

Circular hulls are critical to our algorithm. As discussed in [19], circular hulls have many
properties similar to convex hulls. However, circular hulls also have special properties that
convex hulls do not possess. For example, the circular hull for a set of points may not exist.
Also, the leftmost point of a set Q of points must be a vertex of the convex hull of Q, but
this may not be the case for the circular hull. Due to these special properties, extending
algorithms on convex hulls to circular hulls sometimes is not trivial, as will be seen later. In
the following, we introduce some concepts on circular hulls that will be needed later.

H. Wang 68:5

p q

cw(p, q)

ccw(p, q)

Figure 4 Illustrating two minor arcs of p and q.

p

a

b

Figure 5 Illustrating the two tangents
from p to α(Q): cw(a, p) and ccw(b, p).

We assume that r = 1 and thus a disk of radius r is a unit disk (whose boundary is a
unit circle). We use α(Q) to refer to αr(Q). We assume that α(Q) exists.

For any arc of a circle, the circle is called the supporting circle of the arc, and the disk
enclosed in the circle is called the supporting disk of the arc. If a disk D contains all points of
a set P , we say D covers P . We say that a set P of points in the plane is unit disk coverable
if there is a unit disk containing all points of P , which is true if and only if α(P) exists.

Consider two points p and q that are unit disk coverable. There must be a unit circle
with p and q on it, and we call the arc of the circle subtending an angle of at most 180◦ a
minor arc [19]. Note that there are two minor arcs connecting p and q, we use cw(p, q) to
refer to the one clockwise around the center of the supporting circle of the arc from p to q,
and use ccw(p, q) to refer to the other one (e.g., see Fig. 4). Note that cw(p, q) = ccw(q, p)
and ccw(p, q) = cw(q, p). For any minor arc w, we use D(w) to denote the supporting disk
of w, i.e., the disk whose boundary contains w. Note that all arcs of α(Q) are minor arcs.
We make a general position assumption that no point of Q is on a minor arc of two other
points of Q. The following observation has already been discovered previously [14,19].

I Observation 1 ([14,19]).
1. A point p of Q is a vertex of α(Q) iff there is a unit disk covering Q and with p on the

boundary.
2. A minor arc connecting two points of Q is an arc of α(Q) iff its supporting disk covers Q.
3. α(Q) is the common intersection of the supporting disks of all arcs of α(Q).
4. A unit disk covers Q iff it contains α(Q).
5. For any subset Q′ of Q, α(Q′) ⊆ α(Q).

For any vertex v of α(Q), we refer to the clockwise neighboring vertex of v on α(Q) the
clockwise neighbor of v, and the counterclockwise neighbor is defined analogously. We use
cw(v) and ccw(v) to denote v’s clockwise and counterclockwise neighbors, respectively.

Tangents. Consider a vertex v in the circular hull α(Q). Consider the arc cw(ccw(v), v) of
α(Q). Let D be the disk D(cw(ccw(v), v)). By Observation 1(2) and (4), D contains α(Q).
Observe that if we rotate D around v clockwise until ∂D contains the arc cw(v, cw(v)), D
always contains α(Q), and in fact, this continuum of disks D are the only unit disks that
contain α(Q) and have v on the boundaries. For each of such disk D, we say that D (and
any part of ∂D containing v) is tangent to α(Q) at v. We have the following observation.

I Observation 2. A unit disk D that contains a vertex v of α(Q) on its boundary is tangent
to α(Q) at v if and only if D contains both cw(v) and ccw(v).

Let p be a point outside α(Q). If there is a vertex a on α(Q) such that D(cw(a, p)) is
tangent to α(Q) at a, then the arc cw(a, p) is an upper tangent from p to α(Q); e.g., see
Fig 5. If there is a vertex b on α(Q) such that D(ccw(b, p)) is tangent to α(Q) at b, then

SoCG 2020

68:6 On the Planar Two-Center Problem and Circular Hulls

α(Q1)
α(Q2)

a1 a2

b1

b2

`

Figure 6 Illustrating the upper common tangent cw(a1, a2) and the lower common tangent
ccw(b1, b2) of α(Q1) and α(Q2).

the arc ccw(b, p) is a lower tangent from p to α(Q). By replacing the arcs of α(Q) clockwise
from a to b with the two tangents from p, we obtain α(Q ∪ {p}). This also shows that p has
tangents to α(Q) if and only if Q ∪ {p} is unit disk coverable and p is outside α(Q). Note
that a = b is possible, in which case α(Q ∪ {p}) = α({a, p}).

Common tangents of two circular hulls. Let Q1 and Q2 be two sets of points in the plane
such that all points of Q1 (resp., Q2) are to the left (resp., right) of a vertical line `. Let
Q = Q1 ∪Q2. A unit disk D that is tangent to α(Q1), say at a vertex a, and is also tangent
to α(Q2), say at a vertex b, is said to be commonly tangent to α(Q1) and α(Q2). The
minor arc of D connecting a and b is called a common tangent of the two circular hulls.
It is an upper (resp, lower) tangent if it is clockwise (resp., counterclockwise) from a to b
along the minor arc (e.g., see Fig. 6). The common tangents of α(Q1) and α(Q2) may not
exist. Indeed, if α(Q) does not exist, then the common tangents do not exist. Otherwise
the common tangents do not exist either if all points of Q2 are contained in α(Q1), which
happens only if Q2 is covered by D(w) for the rightmost arc w of α(Q1) and we call it the
Q1-dominating case, or if all points of Q1 are contained in α(Q2), which happens only if Q1
is covered by D(w′) for the leftmost arc w′ of α(Q2) and we call it the Q2-dominating case.
If none of the above cases happens, then there are exactly two common tangents between
the two hulls. Each tangent intersects the vertical line `, which separates Q1 and Q2, and
the upper tangent intersects ` higher than the lower tangent does.

3 The decision problem

This section is concerned with the decision problem: Given a value r, decide whether r∗ ≤ r.
Previously, Chan [6] solved the problem in O(n logn) time (Chan actually considered a
slightly different problem: decide whether r∗ < r, but the idea is similar). We present an
O(n) time algorithm, after O(n logn) time preprocessing to sort all points of S+ and S− to
obtain the sorted lists p1, . . . , pn and q1, . . . , qn.

Given r, we use the following algorithmic framework in Algorithm 1 from [6] (see
Theorem 3.3), which can decide whether r∗ ≤ r, and if yes, report all indices i with r∗i ≤ r.

The algorithm is simple, but the technical crux is in how to decide whether A[i, j+ 1] ≤ r
and whether B[i, j] ≤ r. Chan [6] built a data structure in O(n logn) time so that each
of these two steps can be done in O(logn) time, which leads to an overall O(n logn) time
for his decision algorithm. Our innovation is a new data structure that can perform each
of the two steps in O(1) amortized time, resulting in an O(n) time algorithm. Our idea is
motivated by the following observation.

H. Wang 68:7

Algorithm 1 The decision algorithm of Chan [6].

1 j ← −1;
2 for i← 0 to n do
3 while A[i, j + 1] ≤ r do j + + ;
4 if B[i, j] ≤ r then report i ;
5 end

I Observation 3. All such elements A[i, j + 1] that are checked in the algorithms (i.e.,
Line 3) are in a path of the matrix A from A[0, 0] to an element in the bottom row and the
path only goes rightwards or downwards. The same holds for the elements of B that are
checked in the algorithms (i.e., Line 4).

We call such a path in A as specified in the observation a monotone path, which has at most
2(n+ 1) elements of A. We show that we can determine in O(n) time whether A[i, j] ≤ r for
all elements A[i, j] in a monotone path of A. The same algorithm works for B as well.

Let π be a monotone path of A, starting from A[0, 0]. Consider any element A[i, j] on
π. Recall that A[i, j] = τ(Lij). The next value of π after A[i, j] is either A[i, j + 1] or
A[i+ 1, j], i.e., either τ(Li,j+1) or τ(Li+1,j). Note that Li,j+1 can be obtained from Lij by
inserting qj+1 and Li+1,j can be obtained from Lij by deleting pi+1. Because the points
p1, p2, . . . , pn, q1, q2 . . . , qn are ordered around o counterclockwise, our problem becomes the
following. Maintain a sublist Q of the above sorted list of S, with Q = S+ initially, to
determine whether τ(Q) ≤ r (or equivalently whether αr(Q) exists) under deletions and
insertions, such that a deletion operation deletes the first point of Q and an insertion
operation inserts the point of S following the last point of Q. Further, deletions only happen
to points of S+ (i.e., once pn is deleted from Q, no deletions will happen). We refer to the
problem as the dynamic circular hull problem. In the full paper we solve the problem in O(n)
time, i.e., each update takes O(1) amortized time. This leads to the following result.

I Theorem 4. Assume that points of S are sorted cyclically around o. Given any r, whether
r∗ ≤ r can be decided in O(n) time.

I Remark. For the nearby case, Chan proposed (in Theorem 3.4 [16]) a randomized algorithm
of O(n logn) time with high probability (i.e., 1− 2−Ω(n/ log12 n)) by using his O(n logn) time
decision algorithm. Applying our decision algorithm and following Chan’s algorithm (specifi-
cally, setting m to bn/ log7 nc instead of bn/ log6 nc in the algorithm of Theorem 3.4 in [16]),
we can obtain the following result: After O(n logn) deterministic time preprocessing, we can
compute r∗ for the nearby case in O(n) time with high probability (i.e., 1− 2−Ω(n/ log14 n)).

4 The optimization problem

With Theorem 4, we solve the optimization problem by parametric search [10, 23]. As
Chan’s algorithm [6], because our decision algorithm is inherently sequential, we need to
design a parallel decision algorithm. Chan [6] gave a parallel decision algorithm that runs
in O(logn log2 logn) parallel steps using O(n logn) processors. Consequently, by using his
O(n logn) time decision algorithm and applying Cole’s parametric search [10], Chan [6] solved
the optimization problem in O(n log2 n log2 logn) time. By following Chan’s algorithmic
scheme, we develop a new parallel decision algorithm that runs in O(logn log logn) parallel
steps using O(n) processors. Then, with the serial decision algorithm in Theorem 4 and
applying Cole’s parametric search [10] on our new parallel decision algorithm, we solve the
optimization problem in O(n logn log logn) time.

SoCG 2020

68:8 On the Planar Two-Center Problem and Circular Hulls

Our algorithm relies on Lemma 5, whose proof is quite independent of the remainder
of this section and is given in the full paper. Note that Hershberger and Suri [19] gave a
linear-time algorithm to achieve the same result as Lemma 5, which suffices for their purpose.

I Lemma 5. Given the circular hull (with respect to a radius r) of a set L of points and the
circular hull of another set R of points such that the points of L and R are separated by a
line, one can do the following in O(log(|L|+ |R|)) time (assuming that the vertices of each
circular hull are stored in a data structure that supports binary search): determine whether
the circular hull of L∪R (with respect to r) exists; if yes, either determine which dominating
case happens (i.e., all points of a set are contained in the circular hull of the other set) or
compute the two common tangents between the circular hulls of L and R.

For any 0 ≤ i ≤ j ≤ n, let S+[i, j] = {pi, pi+1, . . . , pj} and S−[i, j] = {qi, qi+1, . . . , qj}.
By using Lemma 5, we have the following lemma.

I Lemma 6. We can preprocess S and compute an interval (r1, r2] containing r∗ in O(n logn)
time so that given any r ∈ (r1, r2) and any pair (i, j) with 1 ≤ i ≤ j ≤ n, we can determine
whether αr(S+[i, j]) (resp., αr(S−[i, j])) exists, and if yes, return the root of a balanced
binary search tree representing the circular hull, in O(log k log log k) parallel steps using
O(log k) processors, or in O(log2 k) time using one processor, where k = j − i+ 1.

Proof. As in [6, 16], we use the following geometric transformation. For any point p = (a, b),
let h(p) denote the halfspace {(x, y, z) : z ≥ a2 + b2 − 2ax − aby}. Then, for any set P of
points in the plane, (τ(P))2 is the minimum of x2 + y2 + z over all points (x, y, z) in the
polyhedron H(P) =

⋂
p∈P h(p).

Preprocessing. We build a complete binary search tree T+ on the set S+ = {p1, p2, . . . , pn}
such that the leaves of T+ from left to right storing the points of S+ in their index order.
Each internal node v of T+ stores a hierarchical representation [11] of the polyhedron
H(P), where P is the set of points stored in the leaves of the subtree rooted at v (P is
called a canonical subset). Computing the polyhedrons of all internal nodes of T+ can be
done in O(n logn) time in a bottom-up manner using linear time polyhedra intersection
algorithms [7, 8]. Similarly, we build a tree T− on the set S− = {q1, q2, . . . , qn}.

Consider a vertex v = (x, y, z) of H(P) for a canonical subset P of T+. Define r(v) =√
x2 + y2 + z. Let C be the set of the values r(v) of all vertices v of H(P) for all canonical

subsets P of T+. Note that |C| = O(n logn). We find the smallest value r(v) ∈ C such that
r∗ ≤ r(v), and let r2 denote such r(v). The value r2 can be found in O(n logn) using our
linear time decision algorithm and doing binary search on C using the linear time selection
algorithm [5]. Next, we find the largest value in C that is smaller than r2, and let r1 denote
that value. By definition, r∗ ∈ (r1, r2] and (r1, r2) does not contain any element of C.

Consider a canonical subset P of T+ and any r ∈ (r1, r2). We construct Ir(P) for
each canonical subset P of T+ by intersecting the facets of H(P) with the paraboloid
W (r) = {(x, y, z) : x2 + y2 + z = r2} and projecting them vertically to the xy-plane. By the
definitions of r1 and r2, the paraboloid W (r) intersects the same set of edges of H(P) for all
r ∈ (r1, r2); this implies that Ir(P) is combinatorially the same for all r ∈ (r1, r2). Hence,
we can consider αr(P), which is the dual of Ir(P), as a parameterized circular hull of P . We
store the (parameterized) vertices of αr(P) in a balanced binary search tree. Since H(P) is
convex, we can obtain Ir(P) and thus the balanced binary search tree for αr(P) in O(|P |)
time; we associate the tree at the node of T+ for P . Because the total size of H(P) for all
canonical subsets P in T+ is O(n logn), we can obtain the balanced binary search trees for
αr(P) of all canonical subsets P in T+ in O(n logn) time.

H. Wang 68:9

We do the same for T− as above, which will obtain two values r′1 and r′2 correspondingly
as above r1 and r2. We update r1 = max{r1, r

′
1} and r2 = min{r2, r

′
2}; so r∗ ∈ (r1, r2] still

holds. This finishes our processing on S, which takes O(n logn) time and is independent of r.

Queries. Given any r ∈ (r1, r2) and any pair (i, j) with i < j, we determine whether
αr(S+[i, j]) exists, and if yes, return the root of a balanced binary search tree representing
it, as follows (the case for S−[i, j] is similar). Let k = j − i+ 1 and let P = S+[i, j].

By the standard method, we first find O(log k) canonical subsets of T+ whose union is
exactly S+[i, j]. Our following computation procedure can be described as a complete binary
tree T where the leaves corresponding to the above O(log k) canonical subsets. So T has
O(log k) leaves, and its height is O(log log k). For each leave of T , its circular hull is already
available due to the preprocessing. For each internal node v that is the parent of two leaves,
we compute the circular hull of the union of the two subsets P1 and P2 of the two leaves. As
the points of S+ are ordered radially by o, the two subsets are separated by a line through o.
Hence, we can find the common tangents (if exist) using Lemma 5 in O(log k) time because
the size of each subset is no more than k. Recall that the circular hull of each canonical
subset is represented by a balanced binary search tree. After having the common tangents,
we split and merge the two balanced binary search trees to obtain a balanced binary search
tree for αr(P1 ∪ P2). In addition, we keep unaltered the two original trees for αr(P1) and
αr(P2) respectively, and this can be done by using persistent data structures (e.g., using
the copy-path technique [12,25]) in O(log k) time. In this way, the original trees for αr(P1)
and αr(P2) can be used in parallel for other computations. If the algorithm detects that
αr(P1 ∪ P2) does not exist, then we halt the algorithm and report that αr(S+[i, j]) does not
exist. Also, if the algorithm finds that a dominating case happens, e.g., the P1-dominating
case, then αr(P1 ∪ P2) = αr(P1) and thus we simply return the root of the tree for αr(P1).

We do this for all internal nodes in the second level of T (i.e., the level above the leaves) in
parallel by assigning a processor for each node. As T has O(log k) leaves, we can compute the
circular hulls for the second level in O(log k) parallel steps using O(log k) processors. Then,
we proceed on the third level similarly. At the root of T , we will have the root of a balanced
binary search tree for αr(P). Using O(log k) processors, this takes O(log k log log k) parallel
steps because each level needs O(log k) parallel steps and the height of T is O(log log k).

Alternatively, if we only use one processor, then since T has O(log k) nodes and we spend
O(log k) time on each node, the total time is O(log2 k). J

Armed with Lemma 6, to determine whether r∗ ≤ r, we use the algorithm framework in
Theorem 4.2 of Chan [6], but we provide a more efficient implementation, as follows.

Recall the definitions of the matrices A and B in Section 2, and in particular, each row of
A (resp., B) is monotonically increasing while each column of A (resp., B) is monotonically
decreasing. For convenience, let A[i,−1] = 0 and A[i, n+ 1] = B[i,−1] =∞ for all 0 ≤ i ≤ n.
Let m = bn/ log6 nc. Let jt = t · bn/mc for t = 1, 2, . . . ,m − 1. Set j0 = −1 and jm = n.
For each t ∈ [0,m], find the largest it ∈ [0, n] with A[it, jt] ≥ B[it, jt] (set it = −1 if no such
index exists; note that i0 = −1). Observe that i0 ≤ i1 ≤ · · · ≤ im. Each it can be found in
O(log7 n) time by binary search using Lemma 7. Hence, computing all it’s takes O(n logn)
time. This is part of our preprocessing, independent of r.

I Lemma 7 ([6,16]). After O(n logn) time preprocessing, A[i, j] and B[i, j] can be computed
in O(log6 n) time for any given pair (i, j).

SoCG 2020

68:10 On the Planar Two-Center Problem and Circular Hulls

Given r > 0, our goal is to decide whether r∗ ≤ r. Let (r1, r2] be the interval obtained
by Lemma 6. Since r∗ ∈ (r1, r2], if r ≤ r1, then r∗ > r; if r ≥ r2, then r∗ ≤ r. It remains to
resolve the case r ∈ (r1, r2), as follows. In this case the result of Lemma 6 applies.

We will decide whether r∗i ≤ r for all i = 0, 1, . . . , n (recall that r∗ ≤ r iff some r∗i ≤ r).
Let t ∈ [0,m− 1] such that it < i ≤ it+1. If A[i, jt] > r, then return r∗i > r. Otherwise, find
(by binary search) the largest j ∈ [jt, jt+1] with A[i, j] ≤ r, and return r∗i ≤ r if and only if
B[i, j] ≤ r. See the pseudocode below. See Theorem 4.2 of [6] for the algorithm correctness.

Algorithm 2 The decision algorithm of Theorem 4.2 by Chan [6].

1 Let t ∈ [0,m− 1] such that it < i ≤ it+1;
2 if A[i, jt] > r then return r∗i > r ;
3 find the largest j ∈ [jt, jt+1] with A[i, j] ≤ r;
4 return r∗i ≤ r iff B[i, j] ≤ r;

Chan [6] implemented the algorithm in O(logn log2 logn) parallel steps using O(n logn)
processors. With Lemma 6, we provide a faster implementation of O(logn log logn) parallel
steps using O(n) processors. Line 1 can be done in O(n) time as part of the preprocessing,
independent of r. We first discuss how to implement Line 3 for all indices i, and we will
show later that Lines 2 and 4 can be implemented in a similar (and faster) way.

For each t = 0, 1, . . . ,m− 1, if it+1 − it ≤ log6 n, then we form a group of at most log6 n

indices: it + 1, it + 2, . . . , it+1. Otherwise, starting from it + 1, we form a group for every
consecutive log6 n indices until it+1, so every group has exactly log6 n indices except that the
last group may have less than log6 n indices. In this way, we have at most 2m groups, each
of which consists of at most log6 n consecutive indices in (it, it+1] for some t ∈ [0,m− 1].

Consider a group G = {a, a+ 1, . . . , a+ b} of indices in (it, it+1]. Note that b < log6 n.
For each i ∈ [a, a+ b] such that A[i, jt] ≤ r, we need to perform binary search on [jt, jt+1] to
find the largest index j with A[i, j] ≤ r. To this end, we do the following. We compute the
two circular hulls α(S+[a+ b, n]) and α(S−[1, jt]), in O(logn log logn) parallel steps using
O(logn) processors by Lemma 6. Note that by “compute the two circular hulls”, we mean that
the two circular hulls are computed implicitly in the sense that each of them is represented
by a balanced binary search tree and we have the access of its root. If α(S+[a+ b, n]) (resp.,
α(S−[1, jt])) does not exist, we set it to null. We do this for all 2m groups in parallel, which
takes O(logn log logn) parallel steps using O(m logn) ∈ O(n) processors.

Consider the group G defined above again. For each i ∈ [a, a+ b], we need to do binary
search on [jt, jt+1] for O(log(jt+1−jt)) = O(log logn) iterations. In each iteration, the goal is
to determine whether A[i, j] ≤ r for an index j ∈ [jt, jt+1]. To this end, it suffices to determine
whether α(Uij) exists. Notice that Uij = S+[i+1, a+b−1]∪S+[a+b, n]∪S−[1, jt]∪S−[jt+1, j].
α(S+[a+ b, n]) and α(S−[1, jt]) are already computed above. If one of them does not exist,
then α(Uij) does not exist and thus A[i, j] > r. Otherwise, we compute the circular hull
α(S+[i+1, a+b−1]), which can be done in O(log2 logn) time using one processor by Lemma 6
because a+ b− 1− i ≤ b− 1 ≤ log6 n. We also compute α(S−[jt + 1, j]) in O(log2 logn) time
using one processor. Then, we compute the common tangents of α(S+[i+ 1, a+ b− 1]) and
α(S+[a+ b, n]) by Lemma 5 (note that S+[i+ 1, a+ b−1] and S+[a+ b, n] are separated by a
line through o), in O(logn) time using one processor. Then, we merge the two hulls with the
two common tangents to obtain a balanced binary search tree for α(S+[i+ 1, n]). Because
we want to keep the tree for α(S+[a + b, n]) unaltered so that it can participate in other
computations in parallel, we use a persistent tree to represent it. Similarly, we obtain a tree
for α(S−[1, j]), in O(logn) time using one processor. If one of α(S+[i+ 1, n]) and α(S−[1, j])

H. Wang 68:11

does not exist, then we return A[i, j] > r. Note that S+[a+ b, n] and S−[1, j] are separated
by ` and Uij = S+[a+ b, n]∪S−[1, j]. By Lemma 5, we can determine whether α(Uij) exists
in O(logn) time using one processor and consequently determine whether A[i, j] ≤ r. Hence,
the above algorithm determines whether A[i, j] ≤ r in O(logn) time using one processor.

If we do the above for all i’s in parallel, then we can determine whether A[i, j] ≤ r in
O(logn) time using n+ 1 processors, for each iteration of the binary search. As there are
O(log logn) iterations, the binary search procedure (i.e., Line 3) for all i = 0, 1, . . . , n runs
in O(logn log logn) parallel steps using n+ 1 processors.

For implementing Line 2, we can use the same approach as above by grouping the indices
i into 2m groups. The difference is that now each i has a specific index j, i.e., j = jt, for
deciding whether A[i, j] ≤ r, and thus we do not have to do binary search. Hence, using
n+ 1 processors, we can implement Line 2 for all i = 0, 1, . . . , n in O(logn) parallel steps.
We can do the same for Line 4. As a summary, we have the following theorem.

I Theorem 8. After O(n logn) time preprocessing on S, given any r, we can decide whether
r∗ ≤ r in O(logn log logn) parallel steps using O(n) processors.

With the serial decision algorithm in Theorem 4 and applying Cole’s parametric search [10]
on the parallel decision algorithm in Theorem 8, the following result follows.

I Theorem 9. The value r∗ can be computed in O(n logn log logn) time.

Proof. Suppose there is a serial decision algorithm of time TS and another parallel decision
algorithm that runs in Tp parallel steps using P processors. Then, Megiddo’s parametric
search [23] can compute r∗ in O(PTp + TsTp logP) time by simulating the parallel decision
algorithm on r∗ and using the serial decision algorithm to resolve comparisons with r∗. If the
parallel decision algorithm has a “bounded fan-in or bounded fan-out” property, then Cole’s
technique [10] can reduce the time complexity to O(PTp + Ts(Tp + logP)). Like Chan’s
algorithm [6], our algorithm has this property because it mainly consists of O(log logn)
rounds of independent binary search (i.e., the algorithm of Lemma 5). In our case, Ts = O(n),
Tp = O(logn log logn), and P = O(n). Thus, applying Cole’s technique, r∗ can be computed
in O(n logn log logn) time. J

I Corollary 10. The planar two-center problem can be solved in O(n log2 n) time.

Proof. This follows by combining Theorem 9, which is for the nearby case, with the
O(n log2 n) time algorithm for the distant case [16]. J

5 The convex position case

In this section, we consider the case where S is in convex position (i.e., every point of S is a
vertex of the convex hull of S). We show that our above O(n logn log logn) time algorithm
can be applied to solving this case in the same time asymptotically.

We first compute the convex hull CH(S) of S and order all vertices clockwise as
p1, p2, . . . , pn. A key observation [22] is that there is an optimal solution with two con-
gruent disks D∗1 and D∗2 of radius r∗ such that D∗1 covers the points of S in a chain of ∂CH(S)
and D∗2 covers the rest of the points. In other words, the cyclic list of p1, p2, . . . , pn can be
cut into two lists such that one list is covered by D∗1 and the other list is covered by D∗2 .

Let o be any point in the interior of CH(S). By the above observation, there exists a pair
of rays ρ1 and ρ2 emanating from o such that D∗1 covers all points of S on one side of the two
rays and D∗2 covers the points of S in the other side. To apply our previous algorithm, we
need to find a line ` that separates the two rays. For this, we propose the following approach.

SoCG 2020

68:12 On the Planar Two-Center Problem and Circular Hulls

For any i, j ∈ [1, n], let Scw[i, j] denote the subset of vertices on CH(S) clockwise
from pi to pj , and Scw[i, j] = {pi} if i = j. Due to the above observation, r∗ =
mini,j∈[1,n] max{τ(Scw[i, j]), τ(Scw[j + 1, i− 1])}, with indices modulo n. For each i ∈ [1, n],
define r(i) = minh∈[i,i+n−1] max{τ(Scw[i, h]), τ(Scw[h+ 1, i− 1])}. Notice that as h increases
in [1, n−1], τ(Scw[1, h]) is monotonically increasing while τ(Scw[h+1, n]) is monotonically de-
creasing. Define k to be the largest index in [1, n−1] such that τ(Scw[1, k]) ≤ τ(Scw[k+1, n]).

I Lemma 11. r∗ is equal to the minimum of the following values: r(1), r(k+1), r(k+2), and
max{τ(Scw[i, j]), τ(Scw[j + 1, i− 1]) for all indices i and j with i ∈ [1, k] and j ∈ [k + 2, n].

Proof. Observe that r∗ = mini,j∈[1,n] max{τ(Scw[i, j]), τ(Scw[j+1, i−1])} = min1≤h≤n r(h).
Hence, r∗ is no larger than any of the values specified in the lemma statement.

Let i and j be two indices such that r∗ = max{τ(Scw[i, j]), τ(Scw[j + 1, i − 1])} with
1 ≤ i ≤ j ≤ n. We claim that r∗ = r(i). Indeed, since r∗ = min1≤h≤n r(h), we have r∗ ≤ r(i).
On the other hand, as r(i) ≤ max{τ(Scw[i, j]), τ(Scw[j+ 1, i− 1])} = r∗, we obtain r(i) = r∗.
By a similar argument, r∗ = r(j + 1) also holds.

Without loss of generality, we assume that r∗ = τ(Scw[i, j]) ≥ τ(Scw[j + 1, i− 1]).
If i ∈ [1, k] and j ∈ [k+2, n], then the lemma follows. Otherwise, one of the following four

cases must hold: i = k + 1, j = k + 1, [i, j] ⊆ [1, k], and [i, j] ⊆ [k + 2, n]. If i = k + 1, then
r∗ = r(k+ 1). If j = k+ 1, then r∗ = r(k+ 2). Below we show that r∗ = r(1) if [i, j] ⊆ [1, k]
and we also show that the case [i, j] ⊆ [k + 2, n] cannot happen, which will prove the lemma.

If [i, j] ⊆ [1, k], then τ(Scw[j+1, i−1]) ≥ τ(Scw[k+1, n]), for Scw[k+1, n] ⊆ Scw[j+1, i−1].
By the definition of k, we have τ(Scw[k + 1, n]) ≥ τ(Scw[1, k]). Because [i, j] ⊆ [1, k],
τ(Scw[1, k]) ≥ τ(Scw[i, j]). Combining the above three inequalities leads to the following:
τ(Scw[j+1, i−1]) ≥ τ(Scw[k+1, n]) ≥ τ(Scw[1, k]) ≥ τ(Scw[i, j]). Because r∗ = τ(Scw[i, j]) ≥
τ(Scw[j + 1, i− 1]), we obtain r∗ = τ(Scw[j + 1, i− 1]) = τ(Scw[k + 1, n]) = τ(Scw[1, k]) =
τ(Scw[i, j]). Notice that r(1) ≤ max{τ(Scw[1, k]), τ(Scw[k+1, n])}. Thus, we derive r(1) ≤ r∗.
Since r∗ ≤ r(1), we finally have r∗ = r(1).

If [i, j] ⊆ [k+2, n], then τ(Scw[j+1, i−1]) ≥ τ(Scw[1, k+1]). By the definition of k, we have
τ(Scw[1, k+1]) > τ(Scw[k+2, n]). Also, since [i, j] ⊆ [k+2, n], τ(Scw[k+2, n]) ≥ τ(Scw[i, j])
holds. Therefore, we obtain τ(Scw[j + 1, i − 1]) ≥ τ(Scw[1, k + 1]) > τ(Scw[k + 2, n]) ≥
τ(Scw[i, j]), which incurs contradiction since r∗ = τ(Scw[i, j]) ≥ τ(Scw[j + 1, i− 1]). Thus,
the case [i, j] ⊆ [k + 2, n] cannot happen. J

Based on the above lemma, our algorithm works as follows.
We first compute r(1) and the index k. This can be easily done in O(n logn) time. Indeed,

as h increases in [1, n− 1], τ(Scw[1, h]) is monotonically increasing while τ(Scw[h+ 1, n]) is
monotonically decreasing. Thus, r∗1 and k can be found by binary search on [1, n− 1]. As
both τ(Scw[1, h]) and τ(Scw[h+ 1, n]) can be computed in O(n) time, the binary search takes
O(n logn) time. Similarly, we can compute r(k + 1) and r(k + 2) in O(n logn) time.

If r∗ 6∈ {r(1), r(k + 1), r(k + 2)}, then r∗ = max{τ(Scw[i, j]), τ(Scw[j + 1, i− 1]) for two
indices i and j with i ∈ [1, k] and j ∈ [k+ 2, n]. We can compute it as follows. Let ` be a line
through vk+1 and intersecting the interior of pnp1. Let o be any point on ` in the interior of
CH(S). Lemma 11 implies ` and o satisfy the property discussed above, i.e., ` separates the
two rays ρ1 and ρ2. Consequently, we can apply our algorithm for Theorem 9 to compute r∗
in O(n logn log logn) time.

I Theorem 12. The planar two-center problem for a set of n points in convex position can
be solved in O(n logn log logn) time.

I Remark. The randomized result remarked after Theorem 4 also applies here: r∗ can be
computed in O(n) time with high probability after O(n logn) deterministic time preprocessing.

H. Wang 68:13

References
1 P.K. Agarwal and J.M. Phillips. An efficient algorithm for 2D Euclidean 2-center with outliers.

In Proceedings of the 16th Annual European Symposium on Algorithms (ESA), pages 64–75,
2008.

2 P.K. Agarwal and M. Sharir. Planar geometric location problems. Algorithmica, 11:185–195,
1994.

3 P.K. Agarwal, M. Sharir, and E. Welzl. The discrete 2-center problem. Discrete and Compu-
tational Geometry, 20:287–305, 1998.

4 E.M. Arkin, J.M. Díaz-Báñez, F. Hurtado, P. Kumar, J.S.B. Mitchell, B. Palop, P. Pérez-
Lantero, M. Saumell, and R.I. Silveira. Bichromatic 2-center of pairs of points. Computational
Geometry: Theory and Applications, 48:94–107, 2015.

5 M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7:448–461, 1973.

6 T.M. Chan. More planar two-center algorithms. Computational Geometry: Theory and
Applications, 13:189–198, 1999.

7 T.M. Chan. A simpler linear-time algorithm for intersecting two convex polyhedra in three
dimensions. Discrete and Computational Geometry, 56:860–865, 2016.

8 B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM
Journal on Computing, 21(4):671–696, 1992.

9 B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. Journal of Algorithms, 21:579–597, 1996.

10 R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. Journal of the
ACM, 34(1):200–208, 1987.

11 D.P. Dobkin and D.G. Kirkpatrick. Determining the separation of preprocessed polyhedra – A
unified approach. In Proceedings of the 17th International Colloquium on Automata, Languages
and Programming (ICALP), pages 400–413, 1990.

12 J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86–124, 1989.

13 M.E. Dyer. On a multidimensional search technique and its application to the Euclidean one
centre problem. SIAM Journal on Computing, 15(3):725–738, 1986.

14 H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane.
IEEE Transactions on Information Theory, 29:551–559, 1983.

15 D. Eppstein. Dynamic three-dimensional linear programming. ORSA Journal on Computing,
4:360–368, 1992.

16 D. Eppstein. Faster construction of planar two-centers. In Proc. of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 131–138, 1997.

17 D. Halperin, M. Sharir, and K. Goldberg. The 2-center problem with obstacles. Journal of
Algorithms, 42:109–134, 2002.

18 J. Hershberger. A faster algorithm for the two-center decision problem. Information Processing
Letters, 1:23–29, 1993.

19 J. Hershberger and S. Suri. Finding tailored partitions. Journal of Algorithms, 3:431–463,
1991.

20 J. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean two-center problem.
In Proceedings of the 10th Annual Symposium on Computational Geometry (SoCG), pages
303–311, 1994.

21 M. Katz and M. Sharir. An expander-based approach to geometric optimization. SIAM
Journal on Computing, 26(5):1384–1408, 1997.

22 S.K. Kim and C.-S. Shin. Efficient algorithms for two-center problems for a convex polygon.
In Proceedings of the 6th International Computing and Combinatorics Conference (COCOON),
pages 299–309, 2000.

23 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983.

SoCG 2020

68:14 On the Planar Two-Center Problem and Circular Hulls

24 N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM Journal on Computing, 12(4):759–776, 1983.

25 N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees. Communications
of the ACM, 29:669–679, 1986.

26 M. Sharir. A near-linear algorithm for the planar 2-center problem. Discrete and Computational
Geometry, 18:125–134, 1997.

27 X. Tan and B. Jiang. Simple O(n log2 n) algorithms for the planar 2-center problem. In
Proceedings of the 23rd International Computing and Combinatorics Conference (COCOON),
pages 481–491, 2017.

28 H. Wang and J. Xue. Improved algorithms for the bichromatic two-center problem for pairs of
points. In Proceedings of the 16th Algorithms and Data Structures Symposium (WADS), pages
578–591, 2019.

Algorithms for Subpath Convex Hull Queries and
Ray-Shooting Among Segments
Haitao Wang
Department of Computer Science, Utah State University, Logan, UT 84322, USA
haitao.wang@usu.edu

Abstract
In this paper, we first consider the subpath convex hull query problem: Given a simple path π of n
vertices, preprocess it so that the convex hull of any query subpath of π can be quickly obtained.
Previously, Guibas, Hershberger, and Snoeyink [SODA 90’] proposed a data structure of O(n)
space and O(logn log logn) query time; reducing the query time to O(logn) increases the space to
O(n log logn). We present an improved result that uses O(n) space while achieving O(logn) query
time. Like the previous work, our query algorithm returns a compact interval tree representing the
convex hull so that standard binary-search-based queries on the hull can be performed in O(logn)
time each. Our new result leads to improvements for several other problems.

In particular, with the help of the above result, we present new algorithms for the ray-shooting
problem among segments. Given a set of n (possibly intersecting) line segments in the plane,
preprocess it so that the first segment hit by a query ray can be quickly found. We give a data
structure of O(n logn) space that can answer each query in (

√
n logn) time. If the segments are

nonintersecting or if the segments are lines, then the space can be reduced to O(n). All these are
classical problems that have been studied extensively. Previously data structures of Õ(

√
n) query

time1 were known in early 1990s; nearly no progress has been made for over two decades. For all
problems, our results provide improvements by reducing the space of the data structures by at least
a logarithmic factor while the preprocessing and query times are the same as before or even better.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Computational geometry

Keywords and phrases subpath hull queries, convex hulls, compact interval trees, ray-shooting, data
structures

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.69

Related Version A full version of this paper is available at https://arxiv.org/abs/2002.10672.

1 Introduction

We first consider the subpath convex hull query problem. Let π be a simple path of n vertices
in the plane. A subpath hull query specifies two vertices of π and asks for the convex hull of
the subpath between the two vertices. The goal is to preprocess π so that the subpath hull
queries can be answered quickly. Ideally, the query should return a representation of the
convex hull so that standard queries on the hull can be performed in logarithmic time.

The problem has been studied by Guibas, Hershberger, and Snoeyink [18], who proposed
a method of using compact interval trees. After O(n logn) time preprocessing, Guibas et
al. [18] built a data structure of O(n) space that can answer each query in O(logn log logn)
time. Their query algorithm returns a compact interval tree that represents the convex hull
so that all binary-search-based queries on the hull can be performed in O(logn) time each.
The queries on the hull include (but are not limited to) the following: find the most extreme
vertex of the convex hull along a query direction; find the intersection between a query

1 The notation Õ suppresses a polylogarithmic factor.

© Haitao Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 69; pp. 69:1–69:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8134-7409
mailto:haitao.wang@usu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.69
https://arxiv.org/abs/2002.10672
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 Subpath Convex Hull Queries and Ray-Shooting

line and the convex hull; find the common tangents from a query point to the convex hull;
determine whether a query point is inside the convex hull, etc. Guibas et al. [18] reduced the
subpath hull query time to O(logn) but the space becomes O(n log logn). A trade-off was
also made with O(logn log∗ n) query time and O(n log∗ n) space [18].

As compact interval trees are quite amenable, the results of Guibas et al. [18] have found
many applications, e.g., [4,9–13,25]. Clearly, there is still some room for improvement on the
results of Guibas et al. [18]; the ultimate goal might be an O(n) space data structure with
O(logn) query time. We achieve this goal. The preprocessing time of our data structure is
O(n), after the vertices of π are sorted by x-coordinate. Like the results of Guibas et al. [18],
our query algorithm also returns a compact interval tree that can support logarithmic time
queries for all binary-search-based queries on the convex hull of the query subpath; the edges
of the convex hull can be retrieved in time linear in the number of vertices of the convex hull.
Note that like those in [18] our results are for the random access machine (RAM) model.

With our new result, previous applications that use the results of Guibas et al. [18]
can now be improved accordingly. These include the problem of enclosing polygons by two
minimum area rectangles [4, 5], computing a guarding set for simple polygons in wireless
location [12], computing optimal time-convex hulls [13], L1 top-k weighted sum aggregate
nearest and farthest neighbor searching [25], etc. For all these problems, we reduce the space
of their algorithms by a log logn factor while the time complexities are the same as before or
even better. See the full paper for the details of our improvements.

Wagener [24] proposed a parallel algorithm for computing a data structure, called bridge
tree, for representing the convex hull of a simple path π. If using one processor, for any query
subpath of π, Wagener [24] showed that the bridge tree can be used to answer decomposable
queries on the convex hull of the query subpath in logarithmic time each. Wagener [24]
claimed that some non-decomposable queries can also be handled; however no details were
provided. In contrast, our approach returns a compact interval tree that is more amenable
(indeed, the bridge trees [24] were mainly designed for parallel processing) and can support
both decomposable and non-decomposable queries. In addition, if one wants to output the
convex hull of the query subpath, our approach can do so in time linear in the number of the
vertices of the convex hull while the method of Wagener [24] needs O(n) time.

1.1 Ray-shooting

With the help of our above result and other new techniques, we present improved results for
several classical ray-shooting problems. Previously, data structures of Õ(

√
n) query time and

near-linear space were known in early 1990s; nearly no progress has been made for over two
decades. Our results reduce the space by at least a logarithmic factor while achieving the
same or better preprocessing and query times. In the following, we use O(T (n), S(n), Q(n))
to represent the complexity of a data structure, where T (n) is the preprocessing time, S(n) is
the space, and Q(n) is the query time. We will confine the discussion of the previous work to
data structures of linear or near-linear space. Refer to Table 1 for a summary. Throughout
the paper, we use δ to refer to an arbitrarily small positive constant.

Ray-shooting among lines. Given a set of n lines in the plane, the problem is to build a
data structure so that the first line hit by a query ray can be quickly found.

Bar-Yehuda and Fogel [3] gave a data structure of complexity O(n1.5, n log2 n,
√
n logn).

Cheng and Janardan [11] gave a data structure of complexity O(n1.5 log2 n, n logn,
√
n logn).

Agarwal and Sharir [2] developed a data structure of complexity O(n logn, n logn, n1/2+δ).

H. Wang 69:3

Table 1 Summary of the results. The big-O notation is omitted. δ can be any small positive
constant. The results marked with * hold with high probability (except that the result of Chan [6]
is expected).

Preprocessing time Space Query time Source

Ray-shooting
among lines

n1.5 n log2 n
√
n logn BF [3]

n1.5 log2 n n logn
√
n logn CJ [11]

n logn n logn n0.5+δ AS [2]
n1.5 n

√
n logn this paper

n logn n
√
n logn * this paper

Intersection
detection

n1.5 log2 n n logn
√
n logn CJ [11]

n1.5 n
√
n logn this paper

n logn n
√
n logn * this paper

Ray-shooting
among
intersecting
segments

nα(n) log3 n n log2 n n0.695 logn OSS [23]
nα(n) log3 n nα(n) n2/3+δ GOS [19]
n1.5 log4.33 n nα(n) log4 n

√
nα(n) log2 n A [1]

(nα(n))1.5 nα(n) log2 n
√
nα(n) logn BF [3]

n1.5 log2 n n log2 n
√
n logn CJ [11]

n log2 n n log2 n n0.5+δ AS [2]
n log3 n n log2 n

√
n log2 n * C [6]

n1.5 n logn
√
n logn this paper

n log2 n n logn
√
n logn * this paper

Ray-shooting
among
nonintersecting
segments

n logn n n0.695 logn OSS [23]
n1.5 log4.33 n nα(n) log3 n

√
n log2 n A [1]

n1.5 n logn
√
n logn BF [3]

n1.5 n
√
n logn this paper

n logn n
√
n logn * this paper

By using our subpath hull query data structure and a result from Chazelle and Guibas [7],
we present a new data structure of complexity O(n1.5, n,

√
n logn).

In addition, we also consider a more general first-k-hits query, i.e., given a query ray and
an integer k, report the first k lines hit by the ray. This problem was studied by Bar-Yehuda
and Fogel [3], who gave a data structure of complexity O(n1.5, n log2 n,

√
n logn+ k log2 n).

Our new result is a data structure of complexity O(n1.5, n,
√
n logn+ k logn).

Intersection detection. Given a set of n line segments in the plane, the problem is to
build a data structure to determine whether a query line intersects at least one segment.
Cheng and Janardan [11] gave a data structure of complexity O(n1.5 log2 n, n logn,

√
n logn).

By adapting the interval partition trees of Overmars et al. [23] to the partition trees of
Matoušek [20,21], we obtain a data structure of complexity O(n1.5, n,

√
n logn).

Ray-shooting among segments. Given a set of n (possibly intersecting) line segments in
the plane, we want to build a data structure to find the first segment hit by a query ray.

The result of Overmars et al. [23] has complexity O(nα(n) log3 n, n log2 n, n0.695 logn),
where α(n) is the inverse Ackermann’s function. Guibas et al. [19] presented a data structure
of complexity O(nα(n) log3 n, nα(n), n2/3+δ). Agarwal [1] gave a data structure of complexity
O(n1.5 log4.33 n, nα(n) log4 n,

√
nα(n) log2 n). Bar-Yehuda and Fogel [3] gave a data structure

SoCG 2020

69:4 Subpath Convex Hull Queries and Ray-Shooting

of complexity O((nα(n))1.5, nα(n) log2 n,
√
nα(n) logn). Cheng and Janardan [11] developed

a data structure of complexity O(n1.5 log2 n, n log2 n,
√
n logn). Agarwal and Sharir [2]

proposed a data structure of complexity O(n log2 n, n log2 n, n0.5+δ). Chan’s randomized
result [6] has complexity O(n log3 n, n log2 n,

√
n log2 n), where the query time is expected.

Cheng and Janardan’s algorithm [11] relies on their results for the ray-shooting problem
among lines and the intersection detection problem. Following their algorithmic scheme
and using our above new results for these two problems, we obtain a data structure for the
ray-shooting problem among segments with complexity O(n1.5, n logn,

√
n logn). This is the

first data structure of Õ(
√
n) query time that uses only O(n logn) space.

If the segments are nonintersecting, Overmars et al. [23] gave a data structure of com-
plexity O(n logn, n, n0.695 logn). Agarwal [1] presented a data structure of complexity
O(n1.5 log4.33 n, nα(n) log3 n,

√
n log2 n). Bar-Yehuda and Fogel [3] proposed a data struc-

ture of complexity O(n1.5, n logn,
√
n logn). Our result has complexity O(n1.5, n,

√
n logn).

Randomized results. Using Chan’s randomized techniques [6], the preprocessing time of all
our above results can be reduced to O(n logn) (except O(n log2 n) time for the ray-shooting
problem among intersecting segments), while the same query time complexities hold with
high probability (i.e., probability at least 1− 1/nc for any large constant c).

Outline. Section 2 reviews some previous work of the subpath hull queries; Section 3
presents our new data structure for the problem. Section 4 solves the ray-shooting problem.

2 Preliminaries

Let p1, . . . , pn be the vertices of a simple path π ordered along π. For any two indices i and
j with 1 ≤ i ≤ j ≤ n, we use π(i, j) to refer to the subpath of π from pi to pj . Given a pair
(i, j) of indices with 1 ≤ i ≤ j ≤ n, the subpath hull query asks for the convex hull of π(i, j).

The convex hull of a simple path can be found in linear time, e.g., [17, 22]. Note that the
convex hull of a simple path is the same as the convex hull of its vertices. For this reason, in
our discussion a subpath π′ of π actually refers to its vertex set. For each subpath π′ of π,
we use |π′| to denote the number of vertices of π′.

For any set P of points in the plane, let H(P) denote the convex hull of P . Denote by
HU (P) and HL(P) the upper and lower hulls, respectively.

Interval trees. Let S be a set of n points in the plane. The interval tree T (S) is a complete
binary tree whose leaves from left to right correspond to the points of S sorted from left to
right. Each internal node corresponds to the interval between the rightmost leaf in its left
subtree and the leftmost leaf in its right subtree. We say that a segment joining two points
of S spans an internal node v if the projection of the interval of v on the x-axis is contained
in the projection of the segment on the x-axis.

We store each edge e of the upper hull HU (S) at the highest node of T (S) that e spans
(e.g., see Fig. 1). By also storing the edges of the lower hull HL(S) in T (S) in the same way,
we can answer all standard binary-search-based queries on the convex hull H(S) in O(logn)
time, by following a path from the root of T (S) to a leaf (see Lemma 4.1 of [18] for details).

Compact interval trees. As the size of T (S) is Θ(n) while |H(S)| may be much smaller
than n, where |H(S)| is the number of edges of H(S), using T (S) to store H(S) may not be
space-efficient. Guibas et al. [18] proposed to use a compact interval tree TU (S) of O(|HU (S)|)

H. Wang 69:5

Figure 1 Illustrating an interval tree that stores upper hull edges.

size to store HU (S), as follows. In T (S), a node v is empty if it does not store an edge of
HU (S); otherwise it is full. It was shown in [18] that if two nodes of T (S) are full, then their
lowest common ancestor is also full. We remove empty nodes from T (S) by relinking the
tree to make each full node the child of its nearest full ancestor. Let TU (S) be the new tree
and we still use T (S) to refer to the original interval tree without storing any hull edges.
Each node of TU (S) stores exactly one edge of HU (S), and thus TU (S) has |HU (S)| nodes.
After O(n) time preprocessing on T (S), TU (S) can be computed from HU (S) in O(|HU (S)|)
time (see Lemma 4.4 in [18]). Similarly, we use a compact interval tree TL(S) of |HL(S)|
nodes to store HL(S). Then, using the three trees TU (S), TL(S), and T (S), all standard
binary-search-based queries on H(S) can be answered in O(logn) time. The main idea is
that the algorithm walks down through the compact interval trees while keeping track of the
corresponding position in T (S) (see Lemma 4.3 [18] for details). We call T (S) a reference
tree. In addition, using TU (S) and TL(S), H(S) can be output in O(|H(S)|) time.

As discussed above, to represent H(S), we need two compact interval trees, one for HU (S)
and the other for HL(S). To make our discussion more concise, we will simply say “the
compact interval tree” for S and use T+(S) to refer to it, which actually includes two trees.

Compact interval trees for π. Consider two consecutive subpaths π1 and π2 of π. Suppose
their compact interval trees T+(π1) and T+(π2) and the interval tree T (π) of π are available.
We know that H(π1) and H(π2) have at most two common tangents [7]. Using the path-
copying method of persistent data structures [14], Guibas et al. [18] obtained the following.

I Lemma 1 (Guibas et al. [18]). Without altering T+(π1) and T+(π2), the compact interval
tree T+(π1 ∪ π2) can be produced in O(logn) time and O(logn) additional space.

I Lemma 2 (Guibas et al. [18]). Given the interval tree T (π), with O(n) time preprocessing,
we can compute T+(π′) for any subpath π′ of π in O(|π′|) time.

3 Subpath convex hull queries

We present our new data structure for subpath hull queries. We first sort all vertices of π by
x-coordinate. The rest of the preprocessing of our data structure takes O(n) time in total.

3.1 A decomposition tree
After having the interval tree T (π), we construct a decomposition tree Ψ(π), which is a
segment tree on the vertices of π following their order along π. Specifically, Ψ(π) is a complete
binary tree with n leaves corresponding to the vertices of π in order along π. Each internal

SoCG 2020

69:6 Subpath Convex Hull Queries and Ray-Shooting

node v of Ψ(π) corresponds to the subpath π(av, bv), where av (resp., bv) is defined to be the
index of the vertex of π corresponding to the leftmost (resp., rightmost) leaf of the subtree
of Ψ(π) rooted at v; we call π(av, bv) a canonical subpath of π and use π(v) to denote it.

Next, we remove some nodes in the lower part of Ψ(π), as follows. For each node v whose
canonical path has at most log2 n vertices and whose parent canonical subpath has more
than log2 n vertices, we remove both the left and the right subtrees of v from Ψ(π) but
explicitly store π(v) at v, after which v becomes a leaf of the new tree. From now on we use
Ψ(π) to refer to the new tree. It is not difficult to see that Ψ(π) now has O(n/ log2 n) nodes.

We then compute compact interval trees T+(π(v)) for all nodes v of Ψ(π) in a bottom-up
manner. Specifically, if v is a leaf, then π(v) has at most log2 n vertices, and we compute
T+(π(v)) from scratch, which takes O(log2 n) time by Lemma 2. If v is not a leaf, then
T+(π(v)) can be obtained by merging the two compact interval trees of its children, which
takes O(logn) time by Lemma 1. In this way, computing compact interval trees for all nodes
of Ψ(π) takes O(n) time in total, for Ψ(π) has O(n/ log2 n) nodes.

3.2 A preliminary query algorithm
Consider a subpath hull query (i, j). We first present an O(log2 n) time query algorithm
using Ψ(π) and then reduce the time to O(logn). Depending on whether the two vertices pi
and pj are in the same canonical subpath of a leaf of Ψ(π), there are two cases.

Case 1. If yes, let v be the leaf. Then, π(i, j) is a subpath of π(v) and thus has at most
log2 n vertices. We compute T+(π(i, j)) from scratch in O(log2 n) time by Lemma 2.

Case 2. Otherwise, let v be the leaf of Ψ(π) whose canonical subpath contains pi and u the
leaf whose canonical subpath contains pj . Let w be the lowest common ancestor of u
and v. As in [18], we partition π(i, j) into two subpaths π(i, k) and π(k + 1, j), where
k = bw′ with w′ being the left child of w (recall the definition of bw′ given before). We
will compute the compact interval trees for the two subpaths separately, and then merge
them to obtain T+(π(i, j)) in additional O(logn) time by Lemma 1. We only discuss
how to compute T+(π(i, k)), for the other tree can be computed likewise.
We partition π(i, k) into two subpaths π(i, bv) and π(bv + 1, k). We will compute the
trees for them separately and then merge the two trees to obtain T+(π(i, k)).
For computing T+(π(i, bv)), as π(i, bv) is a subpath of π(v), it has at most log2 n vertices.
Hence, we can compute T+(π(i, bv)) from scratch in O(log2 n) time.
For T+(π(bv + 1, k)), observe that π(bv + 1, k) is the concatenation of canonical subpaths
of O(logn) nodes of Ψ(π); precisely, these nodes are the right children of their parents
that are in the path of Ψ(π) from v’s parent to w′ and these nodes themselves are not on
the path. Since the compact interval trees of these nodes are already computed in the
preprocessing, we can produce T+(π(bv + 1, k)) in O(log2 n) time by merging these trees.

3.3 Reducing the query time to O(logn)
We now reduce the query time to O(logn), with additional preprocessing (but still O(n)).

To reduce the time for Case 1, we perform the following preprocessing. For each leaf v
of Ψ(π), we preprocess the path π(v) in the same way as above for preprocessing π. This
means that we construct an interval tree T (π(v)) as well as a decomposition tree Ψ(π(v)) for
the subpath π(v). To answer a query for Case 1, we instead use Ψ(π(v)) (and use T (π(v))
as the reference tree). The query time becomes O(log2 logn) as |π(v)| ≤ log2 n. Note that
to construct T (π(v)) and Ψ(π(v)) in O(|π(v)|) time, we need to sort all vertices of π(v) by

H. Wang 69:7

x-coordinate in O(|π(v)|) time. Recall that we already have a sorted list of all vertices of π,
from which we can obtain sorted lists for π(v) for all leaves v of Ψ(π) in O(n) time altogether.
Hence, the preprocessing for π(v) for all leaves v of Ψ(π) takes O(n) time.

We proceed to Case 2. To reduce the query time to O(logn), we will discuss how to
perform additional preprocessing so that T+(π(i, k)) can be computed in O(logn) time.
Computing T+(π(k+ 1, j)) can be done in O(logn) time similarly. Finally we can merge the
two trees to obtain T+(π(i, j)) in additional O(logn) time by Lemma 1.

To compute T+(π(i, k)) in O(logn) time, according to our algorithm it suffices to compute
both T+(i, bv) and T+(bv + 1, k) in O(logn) time. We discuss T+(i, bv) first.

Dealing with T+(π(i, bv)). To compute T+(i, bv) in O(logn) time, we preform the fol-
lowing additional preprocessing. For each leaf v of Ψ(π), recall that |π(v)| ≤ log2 n; we
partition π(v) into tv ≤ logn subpaths each of which contains at most logn vertices. We
use πv(1), πv(2), . . . , πv(tv) to refer to these subpaths in order along π(v). For each subpath
πv(i), we compute T+(πv(i)) from scratch in O(logn) time. The total time for computing
all such trees is O(log2 n). Next, we compute compact interval trees for tv prefix subpaths of
π(v). Specifically, for each t ∈ [1, tv], we compute T+(πv[1, t]), where πv[1, t] is the concate-
nation of the paths πv(1), πv(2), . . . , πv(t). This can be done in O(log2 n) time by computing
T+(πv[1, t]) incrementally for t = 1, 2, . . . , tv using the merge algorithm of Lemma 1. Indeed,
initially T+(πv[1, t]) = T+(πv(1)), which is already available. Then, for each 2 ≤ t ≤ tv,
T+(πv[1, t]) can be produced by merging T+(πv[1, t − 1]) and T+(πv(t)) in O(logn) time.
Similarly, we compute compact interval trees for tv suffix subpaths of π(v): T+(πv[t, tv]) for
all t = 1, 2, . . . , tv, where πv[t, tv] is the concatenation of the paths πv(t), πv(t+ 1), . . . , πv(tv).
This can be done in O(log2 n) time by a similar algorithm as above. Thus, the preprocessing
on v takes O(log2 n) time; the preprocessing on all leaves of Ψ(π) takes O(n) time in total.

We can now compute T+(i, bv) in O(logn) time as follows. Recall that π(i, bv) is a
subpath of π(v) and bv is the last vertex of π(v). We first determine the subpath πv(t) that
contains i. Let g be the last vertex of πv(t). We partition π(i, bv) into two subpaths π(i, g)
and π(g+ 1, bv), and we will compute their compact interval trees separately and then merge
them to obtain T+(π(i, bv)). For π(i, g), as π(i, g) is a subpath of πv(t) and |πv(t)| ≤ logn,
we can compute T+(π(i, g)) from scratch in O(logn) time. For π(g + 1, bv), observe that
π(g + 1, bv) is exactly the suffix supath πv[t+ 1, tv], whose compact interval tree has already
been computed in the preprocessing. Hence, T+(i, bv) can be produced in O(logn) time.

Dealing with T+(π(bv + 1, k)). To compute T+(bv + 1, k) in O(logn) time, we perform
the following preprocessing, which was also used by Guibas et al. [18]. Recall that π(bv + 1, k)
is the concatenation of the canonical paths of O(logn) nodes that are right children of the
nodes on the path in Ψ(π) from v’s parent to the left child of w (and these nodes themselves
are not on the path). Hence, this sequence of nodes can be uniquely determined by the
leaf-ancestor pair (v, w); we use πv,w to denote the above concatenated subpath of π.

Correspondingly, in the preprocessing, for each leaf v we do the following. For each
ancestor w of v, we compute the compact interval tree for the subpath πv,w. As v has
O(logn) ancestors, computing the trees for all ancestors takes O(log2 n) time using the merge
algorithm of Lemma 1. Hence, the total preprocessing time on v is O(log2 n), and thus the
total preprocessing time on all leaves of Ψ(π) is O(n), for Ψ(π) has O(n/ log2 n) leaves. Due
to the above preprocessing, T+(bv + 1, k) is available during queries.

SoCG 2020

69:8 Subpath Convex Hull Queries and Ray-Shooting

Wrapping up. In summary, the query time is O(logn). Comparing with the method of
Guibas et al. [18], our innovation is threefold. First, we process subpaths individually to
handle queries of Case 1. Second, we precompute compact interval trees for convex hulls
of the prefix and suffix subpaths of π(v) for each leaf v of Ψ(π). Third, we use a smaller
decomposition tree Ψ(π) of only O(n/ log2 n) nodes. Theorem 3 summarizes our result.

I Theorem 3. After all vertices of π are sorted by x-coordinate, a data structure of O(n)
space can be built in O(n) time so that each subpath hull query can be answered in O(logn)
time. The query algorithm produces a compact interval tree representing the convex hull of
the query subpath, which can support all binary-search-based operations on the convex hull in
O(logn) time each. These operations include (but are not limited to) the following (let π′
denote the query subpath and let H(π′) be its convex hull):
1. Given a point, decide whether the point is in H(π′).
2. Given a point outside H(π′), find the two tangents from the point to H(π′).
3. Given a direction, find the most extreme point of π′ along the direction.
4. Given a line, find its intersection with H(π′).
5. Given a convex polygon (represented in a data structure supporting binary search), decide

whether it intersects H(π′), and if not, find their common tangents (both outer and inner).
In addition, H(π′) can be output in time linear in the number of vertices of H(π′).

4 Ray-shooting

The ray-shooting problem among lines is discussed in Section 4.1. Section 4.2 is concerned
with the intersection detection problem and the ray-shooting problem among segments.

4.1 Ray-shooting among lines
Given a set of n lines in the plane, we wish to build a data structure so that the first line
hit by a query ray can be found efficiently. The problem is usually tackled in the dual
plane, e.g., [11]. Let P be the set of dual points of the lines. In the dual plane, the problem
is equivalent to the following: Given a query line lq, a pivot point q ∈ lq, and a rotation
direction (clockwise or counterclockwise), find the first point of P hit by rotating lq around q.

A spanning path π(P) of P is a polygonal path connecting all points of P such that P is
the vertex set of the path. Hence, π(P) corresponds to a permutation of P . For any line l in
the plane, let σ(l) denote the number of edges of π(P) crossed by l. The stabbing number
of π(P) is the largest σ(l) of all lines l in the plane. It is known that a spanning path of
P with stabbing number O(

√
n) always exists [8], which can be computed in O(n1+δ) time

using Matoušek’s partition tree [21] (e.g., by a method in [8]). Let π′(P) denote such a path.
Note that π′(P) may have self-intersections. Using π′(P), Edelsbrunner et al. [15] gave an
algorithm that can produce another spanning path π(P) of P such that the stabbing number
of π(P) is also O(

√
n) and π(P) has no self-intersections (i.e., π(P) is a simple path); the

runtime of the algorithm is O(n1.5). Below we will use π(P) to solve our problem.

I Lemma 4 (Chazelle and Guibas [7]). We can build a data structure of O(n) size in O(n logn)
time for any simple path of n vertices, so that given any query line lq, if lq intersects the
path in k edges, then these edges can be found in O(k log n

k) time.

We first build the data structure in Lemma 4 for π(P). Then, we construct the subpath
hull query data structure of Theorem 3 for π(P). This finishes our preprocessing.

H. Wang 69:9

Given a query line lq, along with the pivot q and the rotation direction, we first use
Lemma 4 to find the edges of π(P) intersecting lq. As the stabbing number of π(P) is O(

√
n),

this steps finds O(
√
n) edges intersecting lq in O(

√
n logn) time. Then, using these edges

we can partition π(P) into O(
√
n) subpaths each of which does not intersect lq. For each

subpath, we use our subpath hull query data structure to compute its convex hull in O(logn)
time. Next, we compute the tangents from the pivot q to each of these O(

√
n) convex hulls,

in O(logn) time each by Theorem 3. Using these O(
√
n) tangents, based on the rotation

direction of lq, we can determine the first point of P hit by lq in additional O(
√
n) time.

Hence, the total time of the query algorithm is O(
√
n logn).

I Theorem 5. There exists a data structure of complexity O(n1.5, n,
√
n logn) for the ray-

shooting problem among lines. The preprocessing time can be reduced to O(n logn) time by a
randomized algorithm while the query time is bounded by O(

√
n logn) with high probability.

Proof. The deterministic result has been discussed above. For the randomized result, Chan [6]
gave an O(n logn) time randomized algorithm to compute a spanning path π′′(P) for P such
that π′′(P) is a simple path and the stabbing number of π′′(P) is at most O(

√
n) with high

probability. After having π′′(P), we build the data structure for Lemma 4 and the subpath
hull query data structure. Hence, the preprocessing takes O(n logn) time and O(n) space,
and the query time is bounded by O(

√
n logn) with high probability. J

We can extend the algorithm to obtain the result for the first-k-hit queries. The details
are omitted but can be found in the full paper.

4.2 Intersection detection and ray-shooting among segments
Given a set S of n segments in the plane, an intersection detection query asks whether a
query line intersects at least one segment of S. One motivation to study the problem is that
it is a subproblem in our algorithm for the ray-shooting problem among segments.

To find a data structure to store the segments of S, we adapt the techniques of Overmars
et al. [23] to the partition trees of Matoušek [20,21] (to obtain the deterministic result) as
well as that of Chan [6] (to obtain the randomized result). To store segments, Overmars
et al. [23] used a so-called interval partition tree, whose underling structure is a conjugation
tree of Edelsbrunner and Welzl [16]. The idea is quite natural due to the nice properties
of conjugation trees: Each parent region is partitioned into exactly two disjoint children
regions by a line. The drawback of conjugation trees is the slow Õ(n0.695) query time. When
adapting the techniques to more query-efficient partition trees such as those in [6,20,21], two
issues arise. First, each parent region may have more than two children. Second, children
regions may overlap. Chan’s partition tree [6] does not have the second issue while both issues
appear in Matoušek’s partition trees [20, 21]. As a matter of fact, the second issue incurs
a much bigger challenge. In the following, we first present our randomized result by using
Chan’s partition tree [6], which is relatively easy, and then discuss the more complicated
deterministic result using Matoušek’s partition trees [20,21].

We begin with the following lemma, which solves a special case of the problem. The
lemma will be needed in both our randomized and deterministic results.

I Lemma 6. Suppose all segments of S intersect a given line segment.
1. We can build a data structure of O(n) space in O(n logn) time so that whether a query

line intersects any segment of S can be determined in O(logn) time.
2. If the segments of S are nonintersecting, we can build a data structure of O(n) space in

O(n logn) time so that the first segment hit by a query ray can be found in O(logn) time.

SoCG 2020

69:10 Subpath Convex Hull Queries and Ray-Shooting

4.2.1 The randomized result
We briefly review Chan’s partition tree [6] (for simplicity we only discuss it in 2D, which
suffices for our problem). Chan’s tree for a set P of n points, denoted by T , is a hierarchical
structure by recursively subdividing the plane into triangles. Each node v of T corresponds
to a triangle, denoted by 4(v). If v is the root, then 4(v) is the entire plane. If v is not
a leaf, then v has O(1) children whose triangles form a disjoint partition of 4(v). Define
P (v) = P ∩ 4(v). The set P (v) is not explicitly stored at v unless v is a leaf, in which
case |P (v)| = O(1). The height of T is O(logn). Let κ(T) denote the maximum number of
triangles of T that are crossed by any line in the plane. Chan [6] gave an O(n logn) time
randomized algorithm to compute T such that κ(T) is at most O(

√
n) with high probability.

Let P be the set of the endpoints of all segments of S (so |P | = 2n). We first build the
tree T as above. We then store the segments of S in T , as follows. For each segment s, we
do the following. Starting from the root of T , for each node v, we assume that s is contained
in 4(v), which is true when v is the root. If v is a leaf, then we store s at v; let S(v) denote
all segments stored at v. If v is not a leaf, then we check whether s is in 4(u) for a child
u of v. If yes, we proceed on u. Otherwise, for each child u, for each edge e of 4(u), if s
intersects e, then we store s at the edge e (in this case we do not proceed to the children of
u); denote by S(e) the set of edges stored at e. This finishes the algorithm for storing s. As
each node of T has O(1) children, s is stored O(1) times and the algorithm runs in O(logn)
time. In this way, it takes O(n logn) time to store all segments of S, and the total sum of
|S(e)| and |S(v)| for all triangle edges e and all leaves v is O(n). In addition, |S(v)| = O(1)
for any leaf v, since |P (v)| = O(1) and both endpoints of each segment s ∈ S(v) are in P (v).

Next, for each triangle edge e, since all edges of S(e) intersect e, we preprocess S(e) using
Lemma 6(1). Doing this for all triangle edges e takes O(n logn) time and O(n) space.

Consider a query line l. Our goal is to decide whether l intersects a segment of S. Starting
from the root, we determine the set of nodes v whose triangles 4(v) are crossed by l. For
each such node v, if v is a leaf, then we check whether s intersects l for each segment s ∈ S(v);
otherwise, for each edge e of 4(v), we use the query algorithm of Lemma 6(1) to determine
whether l intersects any segment of S(e). As the number of nodes v whose triangles 4(v)
crossed by l is at most κ(T) and S(v) = O(1) for each leaf v, the total time of the query
algorithm is O(κ(T) · logn). The algorithm correctness is discussed in the proof of Theorem 7.

I Theorem 7. There exists a data structure of complexity O(n logn, n,
√
n logn) for the

intersection detection problem, where the query time holds with high probability.

Proof. We have discussed the preprocessing time and space. Since the query time is
O(κ(T) · logn) and κ(T) is at most O(

√
n) with high probability, the query time is bounded

by O(
√
n logn) with high probability. For the correctness of the query algorithm, suppose l

intersects a segment s, say, at a point p. If s is stored at S(v) for a leaf v, then l must cross
4(v) and thus our algorithm will detect the intersection. Otherwise, s must be stored in S(e)
for an edge e of a triangle 4(u) that contains p. Since p ∈ l, l must cross 4(u). According
to our query algorithm, the query algorithm of Lemma 6(1) will be invoked on S(e), and
thus the algorithm will report the existence of intersection. J

If the segments of S are nonintersecting, by replacing Lemma 6(1) with Lemma 6(2) in
both the above preprocessing and query algorithms, we can obtain the following result.

I Theorem 8. There exists a data structure of complexity O(n logn, n,
√
n logn) for the

ray-shooting among nonintersecting segments, where the query time holds with high probability.

H. Wang 69:11

To solve the ray-shooting problem among (possibly intersecting) segments, as discussed
in Section 1.1, using our results in Theorems 5 and 7 and following the algorithmic scheme
of Cheng and Janardan [11], we can obtain Theorem 9 (see the full paper for details).

I Theorem 9. There exists a data structure of complexity O(n log2 n, n logn,
√
n logn) for

the ray-shooting among intersecting segments, where the query time holds with high probability.

4.2.2 The deterministic result
To obtain the deterministic result, we resort to Matoušek’s partition trees [20,21].

An overview. To solve the simplex range searching problem (e.g., the counting problem),
Matoušek built a partition tree in [20] with complexity O(n logn, n,

√
n(logn)O(1)); subse-

quently, he presented a more query-efficient result in [21] with complexity O(n1+δ, n,
√
n).

Ideally, we want to use his second approach. In order to achieve the O(n1+δ) preprocessing
time, Matoušek used multilevel data structures (called partial simplex decomposition scheme
in [21]). In our problem, however, the multilevel data structures do not work any more
because they do not provide a “nice” way to store the segments of S. Without using multilevel
data structures, the preprocessing time would be too high (indeed Matoušek [21] gave a basic
algorithm without using multilevel data structures but he only showed that its runtime is
polynomial). By a careful implementation, we can bound the preprocessing time by O(n2).
To improve it, we resort to the simplicial partition in [20]. Roughly speaking, let P be the
set of endpoints of the segments of S; we partition P into r = Θ(

√
n) subsets of size

√
n

each, using r triangles such that any line in the plane only crosses O(
√
r) triangles. Then,

for each subset, we apply the algorithm of [21]. This guarantees the O(n1.5) upper bound on
the preprocessing time for all subsets. To compute the simplicial partition, Matoušek [20]
first provided a basic algorithm of polynomial time and then used other techniques to reduce
the time to O(n logn). For our purpose, these techniques are not suitable (for a similar
reason to multilevel data structures). Hence, we can only use the basic algorithm, whose
time complexity is only shown to be polynomial in [20]. Further, we cannot directly use the
algorithm because the produced triangles may overlap (the algorithm in [21] has the same
issue). Nevertheless, we manage to modify the algorithm and bound its time complexity
by O(n1.5). Also, even with the above modification that avoids certain triangle overlap,
using the approach in [21] directly still cannot lead to an O(

√
n logn) time query algorithm.

Instead we have to further modify the algorithm (e.g., choose a different weight function).
In the following, we first describe our algorithm for computing the simplicial partition.

4.2.3 Computing a simplicial partition
Recall that P is the set of the endpoints of S and |S| = n. To simplify the notation, we let
|P | = n in the following (and thus |S| = n/2).

A simplicial partion of size m for P is a collection Π = {(P1,41), . . . , (Pm,4m)} with
the following properties: (1) The subsets Pi’s form a disjoint partition of P ; (2) each 4i is
an open triangle containing Pi; (3) max1≤i≤m |Pi| ≤ 2 ·min1≤i≤m |Pi|; (4) the triangles may
overlap and a triangle 4i may contain points in P \ Pi. We define the crossing number of Π
as the largest number of triangles that are intersected by any line in the plane.

I Lemma 10 ([20]). For any integer z with 2 ≤ z < |P |, there exists a simplicial partition
Π of size Θ(r) for P , whose subsets Pi’s satisfy z ≤ |Pi| < 2z, and whose crossing number is
O(
√
r), where r = |P |/z.

SoCG 2020

69:12 Subpath Convex Hull Queries and Ray-Shooting

p

4j

4i

Figure 2 Illustrating the weakly-overlapped property: Pj consists of all circle points and Pi
consists of all disk points. A point p ∈ Pj is also contained in 4i, but all points of Pi are outside 4j .

To compute such a simplicial partition as in Lemma 10, Matoušek [20] first presented
a basic algorithm whose runtime is polynomial and then improved the time to O(n logn)
by other techniques. As discussed before, the techniques are not suitable for our purpose
and we can only use the basic algorithm. In addition, the above property (4) prevents us
from using the partition directly. Instead we use an enhanced simplicial partition with the
following modified/changed properties. In property (2), each 4i is either a triangle or a
convex quadrilateral; we now call 4i a cell. In property (4), the cells may still overlap, and a
cell 4i may still contain points in P \ Pi; however, if 4i contains a point p ∈ Pj with j 6= i,
then all points of Pi are outside 4j (e.g., see Fig. 2). This modified property (4), which
we call the weakly-overlapped property, is the key to guarantee the success of our approach.
We use convex quadrilaterals instead of only triangles to make sure the weakly-overlapped
property can be achieved. The crossing number of the enhanced partition is defined as
the largest number of cells that are intersected by any line in the plane. By modifying
Matoušek’s basic algorithm [20], we can compute in O(n1.5) time an enhanced simplicial
partition Π = {(P1,41), . . . , (Pm,4m)} with m = Θ(r), which satisfies the property of
Lemma 10 with z =

√
n (and thus r =

√
n); in particular, the crossing number of Π is O(

√
r).

The algorithm is omitted but can be found in the full paper.

Storing the segments in Π. For each segment s of S, if both endpoints of s are in the same
subset Pi of Π, then s is in the cell 4i and we store s in 4i; let Si denote the set of segments
stored in 4i. Otherwise, let Pi and Pj be the two subsets that contain the endpoints of s,
respectively. The weakly-overlapped property of Π leads to the following observation.

I Observation 11. The segment s intersects the boundary of at least one cell of 4i and 4j .

By Observation 11, we find a cell 4 of 4i and 4j whose boundary intersects s. Let e be
an edge of 4 that intersects s. We store s at e; let S(e) denote the set of segments of S that
are stored at e. In this way, each segment of S is stored exactly once. Next, for each cell
4 ∈ Π and for each edge e of 4, we preprocess S(e) using Lemma 6. With Π, the above
preprocessing on S takes O(n logn) time and O(n) space.

We further have the following Lemma 12, whose proof can be found in the full paper.

I Lemma 12.
1. For each subset Pi of Π, with O(|Pi|2) time and O(|Pi|) space preprocessing, we can

decide whether a query line intersects any segment of Si in O(
√
|Pi| log |Pi|) time.

2. If segments of Si are nonintersecting, with O(|Pi|2) time and O(|Pi|) space preprocessing,
we can find the first segment of Si hit by a query ray in O(

√
|Pi| log |Pi|) time.

H. Wang 69:13

We preprocess each Pi using Lemma 12. As Π has O(
√
n) subsets Pi and the size of each

Pi is O(
√
n), the total preprocessing time is O(n1.5) and the total space is O(n).

Answering queries. Consider a query line `. First, for each cell 4i of Π, for each edge e of
4i, we determine whether ` intersects a segment of S(e), in O(logn) time by Lemma 6(1).
As Π has Θ(

√
n) cells and each cell has at most four edges, the total time of this step is

O(
√
n logn). Second, by checking every cell of Π, we find those cells that are crossed by `.

For each such cell 4i, by Lemma 12(1), we determine whether ` intersects any segment of Si
in O(n1/4 logn) time, for |Pi| = Θ(

√
n). As ` can cross at most O(n1/4) cells of Π, this step

takes O(
√
n logn) time. Hence, the query time is O(

√
n logn).

If the segments of Si are nonintersecting, the ray-shooting query algorithm is similar. We
can thus obtain our results for the segment intersection and the ray-shooting problems.

References
1 P.K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing

number. SIAM Journal on Computing, 21:540–570, 1992.
2 P.K. Agarwal and M. Sharir. Applications of a new space-partitioning technique. Discrete

and Computational Geometry, 9(1):11–38, 1993.
3 R. Bar-Yehuda and S. Fogel. Variations on ray shootings. Algorithmica, 11:133–145, 1994.
4 B. Becker, P.G. Franciosa, S. Gschwind, S. Leonardi, T. Ohler, and P. Widmayer. Enclosing a

set of objects by two minimum area rectangles. Journal of Algorithms, 21:520–541, 1996.
5 B. Becker, P.G. Franciosa, S. Gschwind, T. Ohler, T. Ohler, G. Thiemt, and P. Widmayer.

An optimal algorithm for approximating a set of rectangles by two minimum area rectangles.
In Workshop on Computational Geometry, pages 13–25, 1991.

6 T.M. Chan. Optimal partition trees. Discrete and Computational Geometry, 47:661–690, 2012.
7 B. Chazelle and L. Guibas. Fractional cascading: II. Applications. Algorithmica, 1(1):163–191,

1986.
8 B. Chazelle and E. Welzl. Quasi-optimal range searching in spaces of finite VC-dimension.

Discrete and Computational Geometry, 4(5):467–489, 1989.
9 D.Z. Chen, J. Li, and H. Wang. Efficient algorithms for the one-dimensional k-center problem.

Theoretical Computer Science, 592:135–142, 2015.
10 D.Z. Chen and H. Wang. Approximating points by a piecewise linear function. Algorithmica,

88:682–713, 2013.
11 S.W. Cheng and R. Janardan. Algorithms for ray-shooting and intersection searching. Journal

of Algorithms, 13:670–692, 1992.
12 T. Christ, M. Hoffmann, Y. Okamoto, and T. Uno. Improved bounds for wireless localization.

Algorithmica, 57:499–516, 2010.
13 B.-S. Dai, M.-J. Kao, and D.T. Lee. Optimal time-convex hull under the Lp metrics. In

Proceedings of the 13rd Algorithms and Data Structures Symposium (WADS), pages 268–279,
2013.

14 J. Driscoll, N. Sarnak, D. Sleator, and R.E. Tarjan. Making data structures persistent. Journal
of Computer and System Sciences, 38(1):86–124, 1989.

15 H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl.
Implicitly representing arrangements of lines or segments. Discrete and Computational
Geometry, 4:433–466, 1989.

16 H. Edelsbrunner and E. Welzl. Halfplanar range search in linear space and O(n0.695) query
time. Information Processing Letters, 23:289–293, 1986.

17 R.L. Graham and F.F. Yao. Finding the convex hull of a simple polygon. Journal of Algorithms,
4:324–331, 1983.

SoCG 2020

69:14 Subpath Convex Hull Queries and Ray-Shooting

18 L. Guibas, J. Hershberger, and J. Snoeyink. Compact interval trees: A data structure for
convex hulls. International Journal of Computational Geometry and Applications, 1(1):1–22,
1991. First appeared in SODA 1990.

19 L. Guibas, M. Overmars, and M. Sharir. Intersecting line segments, ray shooting, and other
applications of geometric partitioning techniques. In Proceedings of the 1st Scandinavian
Workshop on Algorithm Theory (SWAT), pages 64–73, 1988.

20 J. Matoušek. Efficient partition trees. Discrete and Computational Geometry, 8(3):315–334,
1992.

21 J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete and Computational
Geometry, 10(1):157–182, 1993.

22 A. Melkman. On-line construction of the convex hull of a simple polygon. Information
Processing Letters, 25:11–12, 1987.

23 M.H. Overmars, H. Schipper, and M. Sharir. Storing line segments in partition trees. BIT
Numerical Mathematics, 30:385–403, 1990.

24 H. Wagener. Optimal parallel hull construction for simple polygons in O(log logn) time. In
Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 593–599, 1992.

25 H. Wang and W. Zhang. On top-k weighted sum aggregate nearest and farthest neighbors in
the L1 plane. International Journal of Computational Geometry and Applications, 29:189–218,
2019.

GPU-Accelerated Computation of Vietoris-Rips
Persistence Barcodes
Simon Zhang
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
zhang.680@osu.edu

Mengbai Xiao
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
xiao.736@osu.edu

Hao Wang
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
wang.2721@osu.edu

Abstract

The computation of Vietoris-Rips persistence barcodes is both execution-intensive and memory-
intensive. In this paper, we study the computational structure of Vietoris-Rips persistence barcodes,
and identify several unique mathematical properties and algorithmic opportunities with connections
to the GPU. Mathematically and empirically, we look into the properties of apparent pairs, which
are independently identifiable persistence pairs comprising up to 99% of persistence pairs. We give
theoretical upper and lower bounds of the apparent pair rate and model the average case. We also
design massively parallel algorithms to take advantage of the very large number of simplices that
can be processed independently of each other. Having identified these opportunities, we develop a
GPU-accelerated software for computing Vietoris-Rips persistence barcodes, called Ripser++. The
software achieves up to 30x speedup over the total execution time of the original Ripser and also
reduces CPU-memory usage by up to 2.0x. We believe our GPU-acceleration based efforts open a
new chapter for the advancement of topological data analysis in the post-Moore’s Law era.

2012 ACM Subject Classification Theory of computation→ Massively parallel algorithms; Software
and its engineering → Massively parallel systems; Theory of computation → Randomness, geometry
and discrete structures

Keywords and phrases Parallel Algorithms, Topological Data Analysis, Vietoris-Rips, Persistent
Homology, Apparent Pairs, High Performance Computing, GPU, Random Graphs

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.70

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.07989.

Supplementary Material Open Source Software: https://www.github.com/simonzhang00/ripser-
plusplus

Funding This work has been partially supported by the National Science Foundation under grants
CCF-1513944, CCF-1629403, CCF-1718450, and an IBM Fellowship.

Acknowledgements We would like to thank Ulrich Bauer for technical discussions on Ripser and
Greg Henselman for discussions on Eirene. We also thank Greg Henselman, Matthew Kahle, and
Cheng Xin on discussions about probability and apparent pairs. We acknowledge Birkan Gokbag
for his help in developing Python bindings for Ripser++. We appreciate the constructive comments
and suggestions of the anonymous reviewers. Finally, we are grateful for the insights and expert
judgement in many discussions with Tamal Dey.

© Simon Zhang, Mengbai Xiao, and Hao Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 70; pp. 70:1–70:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zhang.680@osu.edu
mailto:xiao.736@osu.edu
mailto:wang.2721@osu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.70
https://arxiv.org/abs/2003.07989
https://www.github.com/simonzhang00/ripser-plusplus
https://www.github.com/simonzhang00/ripser-plusplus
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Ripser++

1 Introduction

Topological data analysis (TDA) [12] is an emerging field in the era of big data, which has a
strong mathematical foundation. As a subfield of TDA, persistent homology seeks to find
topological or qualitative features of data (usually represented by a finite metric space). It has
many applications, such as in neural networks [25], sensor networks [15], bioinformatics [14],
deep learning [28], manifold learning [36], and neuroscience [32]. One of the most popular and
useful topological signatures persistent homology can compute are Vietoris-Rips barcodes.
There are two challenges to Vietoris-Rips barcode computation. The first one is its highly
computing- and memory-intensive nature in part due to the exponentially growing number
of simplices it must process. The second one is its irregular computation patterns with high
dependencies such as its matrix reduction step [47]. Therefore, sequential computation is still
the norm in computing persistent homology. There are several CPU-based software packages
in sequential mode for computing persistent homology [8, 9, 27, 33, 5]. Ripser [5, 46] is
a representative and computationally efficient software specifically designed to compute
Vietoris-Rips barcodes, achieving state of the art performance [6, 37] by using effective and
mathematically based algorithmic optimizations.

The usage of hardware accelerators like GPU is inevitable for computation in many
areas. To continue advancing the computational geometry field, we must include hardware-
aware algorithmic efforts. The ending of Moore’s law [45] and the termination of Dennard
scaling [19] technically limits the performance improvement of general-purpose CPUs [23].
The computing ecosystem is rapidly evolving from conventional CPU computing to a new
disruptive accelerated computing environment where hardware accelerators such as GPUs
play the main roles of computation for performance improvement.

Our goal in this work is to develop GPU-accelerated computation for Vietoris-Rips
barcodes, not to only significantly improve the performance, but also to lead a new direction
in computing for topological data analysis. We have looked into the two major computational
components of Vietoris-Rips barcodes, namely filtration construction with clearing and matrix
reduction, and identified hidden parallelisms and data locality. Having laid mathematical
foundations, we develop parallel algorithms for each component.

Our contributions explained in this paper are as follows:

1. We introduce and prove the Apparent Pairs Lemma for Vietoris-Rips barcode computation.
It has a natural algorithmic connection to the GPU. We furthermore prove theoretical
bounds on the number of so-called “apparent pairs”.

2. We design and implement hardware-aware massively parallel algorithms that accelerate the
two major computation components of Vietoris-Rips barcodes as well as a data structure
for persistence pairs for matrix reduction.

3. We perform extensive experiments justifying our algorithms’ computational effectiveness
as well as dissecting the nature of Vietoris-Rips barcode computation.

4. We achieve up to 30x speedup over the original Ripser software and, surprisingly, up to
2.0x CPU memory efficiency and requires, at best, 60% of the CPU memory used by
Ripser on the GPU device memory.

5. Ripser++ is an open source software in the public domain to serve the TDA community
and relevant application areas.

S. Zhang, M. Xiao, and H. Wang 70:3

2 Preliminaries

2.1 Persistent Homology
Computing Vietoris Rips barcodes involves the measurement of “birth” and “death” [4, 8, 21]
of topological features as we grow combinatorial objects on top of the data with respect to
some real-valued time parameter. We call the pairs of birth and death times with respect to
the combinatorial objects “persistence barcodes.” Persistence barcodes give a topological
signature of the original data (finite metric space) and have many further applications with
statistical meaning in TDA [1, 11, 24, 39].

2.2 Vietoris-Rips Filtrations
When computing persistent homology, data is usually represented by a finite metric space
X, a finite set of points with real-valued distances determined by an underlying metric d

between each pair of points. X is defined by its distance matrix D, which is defined as
D[i, j]= d(point i, point j) with D[i, i] = 0.

Define an (abstract) simplicial complex K as a collection of simplices closed under the
subset relation, where a simplex s is defined as a subset of X. We call a “filtration” as
a totally ordered sequence of growing simplicial complexes. A particularly popular and
useful [3] filtration is a Vietoris-Rips filtration. See Figure 1 for an illustration. Let

Ripst(X) = {∅ 6= s ⊂ X | diam(s) ≤ t}, (1)

where t ∈ R and diam(s) is the maximum distance between pairs of points in s as determined
by D. The Vietoris-Rips filtration is defined as the sequence: (Ripst(X))t, indexed by
growing t ∈ R where Ripst(X) strictly increases in cardinality for growing t.

0 1

2 3

diam. = 2
0 1

2 3

0 1

2 3

diam. = 1

Dimension 1 Vietoris-Rips
Persistent Homology Barcodes

⊆ ⊆

0=diam. 1=diam. 2=diam.

An Increasing Sequence of 1-
Skeletons of a Vietoris-Rips
Filtration.

Figure 1 A filtration on an example finite metric space of four points of a square in the plane.
The 1-skeleton at each diameter value where “birth” or “death” occurs is shown. The 1 dimensional
Vietoris-Rips barcode is below it: a 1-cycle is “born” at diameter 1 and “dies” at diameter

√
2.

2.2.1 The Simplex-wise Refinement of the Vietoris-Rips Filtration
For computation (see Section 2.4) of Vietoris-Rips persistence barcodes, it is necessary to
construct a simplex-wise refinement S of a given filtration F . F is equivalent to a partial
order on the simplices of K, where K is the largest simplicial complex of F . To construct S,

SoCG 2020

70:4 Ripser++

we assign a total order on the simplices {si}i=1..|K| of K, extending the partial order induced
by F so that the increasing sequence of subcomplexes S = (

⋃
i≤j {si})j=1..|K| ordered by

inclusion grows subcomplexes by one simplex at a time. There are many ways to order a
simplex-wise refinement S of F [32]; in the case of Ripser and Ripser++, we use the following
simplex-wise filtration ordering criterion on simplices:

1. by increasing diameter: denoted by diam(s),
2. by increasing dimension: denoted by dim(s), and
3. by decreasing combinatorial index: denoted by cidx(s) (equivalently, by decreasing

lexicographical order on the decreasing sequence of vertex indices) [41, 31, 38].

Every simplex in the simplex-wise refinement will correspond to a “column” in a uniquely
associated (co-)boundary matrix for persistence computation. Thus we will use the terms
“column” and “simplex” interchangeably to explain our algorithms.

Define persistence pairs as a pair of “birth” and “death” simplices from K [22].

2.3 The Combinatorial Number System
We use the combinatorial number system to encode simplices. The combinatorial number
system is simply a bijection between ordered fixed-length N-tuples and N. It provides a
minimal representation of simplices and an easy extraction of simplex facets (see Algorithm
3), cofacets, and vertices. When not mentioned, we assume that all simplices are encoded by
their combinatorial index. The bijection is stated as follows:

Nd+1 3 (vd...v0) ⇐⇒
(

vd

d + 1

)
+ ... +

(
v0

1

)
∈ N, vd > ... > v0 ≥ 0. (2)

For a proof of this bijection see [41, 31, 38].

2.4 Computation
The general computation of persistent barcodes involves two inter-relatable stages. One stage
is to construct a simplex-wise refinement [9] of the given filtration. The other stage is to
“reduce” the corresponding boundary matrix by a “standard algorithm” [21]. In Algorithm 1,
let lowR(j) be the maximum nonzero row of column j, -1 if column j is zero for a given
matrix R. For fully reduced R, (lowR(j), j) over all j are in bijection with persistence pairs.

Algorithm 1 Standard Persistent Homology Computation.

Require: filtered simplicial complex KKK

Ensure: PPP persistence barcodes
1: FFF ← FFFKKK . let FFF be the filtration of KKK

2: SSS ←simplex-wise-refinement(FFF) . FFF = SSS ◦ r where r is injective
3: R← ∂(SSS)
4: for every column j in R do . begin the standard matrix reduction algorithm
5: while ∃ k < j s.t. lowR(j)=lowR(k) do
6: column j ← column k + column j

7: if lowR(j) 6= −1 then
8: PPP ← PPP ∪ r−1([low(j), j)) . we call the pair (low(j), j) a pivot in the matrix R.

The construction stage can be optimized [6, 29, 33, 44, 48]. Furthermore, all persistent
homology software are based on the standard algorithm [2, 6, 8, 9, 26, 33, 35, 47].

S. Zhang, M. Xiao, and H. Wang 70:5

2.4.1 The Coboundary Matrix
We compute cohomology [17, 16, 20] in Ripser++, like in Ripser, for performance reasons
specific to Rips filtrations mentioned in [6]. Thus we introduce the coboundary matrix of a
simplex-wise filtration. This is defined as the matrix of coboundaries (each column is made
up of the cofacets of the corresponding simplex) where the columns/simplices are ordered in
reverse to the order given in Section 2.2.1 (see [16]). If certain columns can be zeroed/cleared
[13] in the coboundary matrix, we will still denote the cleared matrix as a coboundary matrix
since the matrix reduction does nothing on zero columns (see Algorithm 1).

(diam., simplex) (2, (21)) (2, (30)) (1, (10)) (1, (20)) (1, (31)) (1, (32))

(2, (210)) 1 1 1

(2, (310)) 1 1 1

(2, (320)) 1 1 1

(2, (321)) 1 1 1

0 1

2 3

diam. = 1

diam. = 2

Vertices 0,1,2,3 Form a Length

1 Square in the Plane

Dim 1 Coboundary Matrix

older

older

Figure 2 The full 1-skeleton for the point cloud of Figure 1. Its 1-dimensional coboundary matrix
is shown on the right. Let (e, (ad...a0)) be a d-dimensional simplex with vertices ad...a0 and diameter
e ∈ R+. For example, simplex (1,(10)) has vertices 1 and 0 with diameter 1. The order of the
columns/simplices is the reverse of the simplex-wise refinement of the Vietoris-Rips filtration.

2.5 Computation in Ripser
The sequential computation in Ripser follows the two stages given in Algorithm 1, however
with four key optimizations [6]. We use and build on top of all of these four optimizations.

1. The clearing lemma [7, 13, 47],
2. Computing cohomology [16, 20], with a low complexity 0-dim. persistence algorithm,
3. Implicit matrix reduction [6], and
4. The emergent pairs lemma [6].

3 Mathematical and Algorithmic Foundations in GPU Acceleration

3.1 Overview of GPU-Accelerated Computation
Figure 3(a) shows a high-level structure of Ripser, which processes simplices dimension by
dimension. In each dimension starting at dimension 1, the filtration is constructed and the
clearing lemma is applied followed by a sort operation. The simplices to reduce are further
processed in the matrix reduction stage, where the cofacets of each simplex are enumerated
to form coboundaries and the column addition is applied iteratively.

Running Ripser intensively on many datasets, we have observed its inefficiency on CPU.
There are two major performance issues. First, in each dimension, the matrix reduction of
Ripser uses an enumeration-and-column-addition style to process each simplex. Although
the computation is highly dependent among columns, a large percentage of columns (see
Table 1 in Section 5) do NOT need the column addition. Only the cofacet enumeration
and a possible persistence pair insertion (into the hashmap of Ripser) are needed on these
columns. In Ripser, a subset of these columns are identified by the “emergent pair” lemma [6]
as columns containing “shortcut pairs”. Ripser follows the serial framework of Figure 3(a) to
process these columns one by one, where rich parallelisms are hidden. Second, in the filtration

SoCG 2020

70:6 Ripser++

Finding

Apparent

Pairs

Submatrix

Reduction

Filtration

Construction

+ Clearing

GPU

Simplices of

Dimension d

d + 1

Filtration

Construction

+ Clearing

Matrix

Reduction

Simplices of

Dimension d

d + 1

Columns to Reduce

(a) Ripser (b) Ripser++

Matrix Reduction

Figure 3 A High-level computation framework comparison of Ripser and Ripser++ starting
at dimension d ≥ 1. Ripser follows the two stage standard persistence computation of sequential
Algorithm 1 with optimizations. In contrast, Ripser++ finds the hidden parallelism inside Vietoris-
Rips barcode computation, extracts “Finding Apparent Pairs” out from Matrix Reduction, and
parallelizes “Filtration Construction with Clearing” on GPU. These two steps are designed and
implemented with new parallel algorithms on GPU, as shown in (b) with the dashed rectangle.

construction with clearing stage, applying the clearing lemma and predefined threshold is
independent among simplices. Furthermore, on GPU the performance of sorting for filtration
construction with clearing can be further improved due to the massive parallelism and the
high memory bandwidth of GPU [40, 42].

We aim to turn these hidden parallelisms and data localities into reality for accelerated
computation by GPU for high performance. Utilizing SIMT (single instruction, multiple
threads) parallelism and achieving coalesced device memory accesses are our major inten-
tions because they are unique advantages of GPU architecture. Our efforts are based on
mathematical foundation, algorithms development, and effective implementations interacting
with GPU hardware. Figure 3(b) gives the high-level structure of Ripser++, showing the
components of Vietoris-Rips barcode computation offloaded to GPU. We will elaborate on
the computation mathematically and algorithmically in this section.

3.2 Matrix Reduction
Matrix reduction is a fundamental component of computing Rips barcodes. Its computation
can be highly skewed [47], involving very few columns for column additions. We prove
and present the Apparent Pairs Lemma and a GPU algorithm to find apparent pairs in
an implicitly represented coboundary matrix. We then design and implement a 2-layer
data structure that optimizes the performance of the hashmap storing persistence pairs
for subsequent matrix reduction on the non-apparent columns, which we term “submatrix
reduction”.

3.2.1 The Apparent Pairs Lemma
I Definition 1. A pair of simplices (s, t) is an apparent pair iff:
1. s is the youngest facet of t and
2. t is the oldest cofacet of s.

We will use the simplex-wise order of Section 2.2.1 for Definition 1. In a (co-)boundary
matrix, a nonzero entry having all zeros to its left and below is equivalent to an apparent
pair. We call a column containing such a nonzero entry as an apparent column. An example
of an apparent pair geometrically and computationally is shown in Figure 4. Furthermore,
apparent pairs have zero persistence in Rips filtrations by property 1 of Definition 1.

S. Zhang, M. Xiao, and H. Wang 70:7

s

…

…

t 0 … 0 1 … …

0

…

0

Column Dim is d

Simplex

Cofacet
diam. = 3diam. = 4

v

s (diam. = 5)

t (diam. = 5)

v

u w

(a) (b)

Coboundary Matrix of Dim d

Row Dim is d+1

older

older

Figure 4 (a) A dimension 1 0-persistence apparent pair (s, t) on a single 2-dimensional simplex.
s is an edge of diameter 5 and t is a cofacet of s with diameter 5. The light arrow denotes the
pairing between s and t. (b) In the dimension d coboundary matrix, (s, t) is an apparent pair iff
entry (t, s) has all zeros to its left and below. See Figure 2 for an example coboundary matrix.

In the explicit matrix reduction, where every column is stored in memory, it is easy to
determine apparent pairs by checking the positions of s and t in the (co-)boundary matrix.
However, in the implicit matrix reduction used in Ripser and Ripser++, we need to enumerate
cofacets t from s and facets s from t at runtime. We first notice a property of the facets of a
cofacet t of simplex s where diam(s) = diam(t).

I Proposition 2. Let t be the cofacet of simplex s with diam(s) = diam(t).
s′ is a strictly younger facet of t than s iff

1. diam(s′) = diam(s) = diam(t) and
2. cidx(s′) < cidx(s). (s′ is strictly lexicographically smaller than s)

Proof. (=⇒) s′ as a facet of t implies that diam(s′) ≤ diam(t) = diam(s). If s′ is strictly
younger than s, then diam(s′) ≥ diam(s). Thus 1. diam(s′) = diam(s) = diam(t).
Furthermore, if s′ is strictly younger than s and diam(s′) = diam(s), then the only way for
s′ to be younger than s is if 2. cidx(s′) < cidx(s).

(⇐=) If diam(s′) = diam(s) = diam(t) and cidx(s′) < cidx(s) then certainly s′ is a
strictly younger facet of t than s is as a facet of t. J

We propose the following lemma to find apparent pairs:

I Lemma 3 (The Apparent Pairs Lemma). Given simplex s and its cofacet t,
1. t is the lexicographically greatest cofacet of s with diam(s) = diam(t) and
2. no facet s′ of t is strictly lexicographically smaller than s with diam(s′) = diam(s),
iff (s, t) is an apparent pair.

Proof. (=⇒) Since diam(t) ≥ diam(s) for all cofacets t, Condition 1 is equivalent to having
chosen the cofacet t of s of minimal diameter at the largest combinatorial index, by the
filtration ordering we have defined in Section 2.2.1; this implies t is the oldest cofacet of s.

Assuming condition 1, by the negation of the iff in Proposition 2, there are no simplices
s′ with diam(s′) = diam(s) = diam(t) and cidx(s′) < cidx(s) iff s is the youngest facet of t.

(⇐=) If diam(t) > diam(s) then there exists a younger s′ with same cofacet t and thus
s is not the youngest facet of t. Thus (s, t) being an apparent pair implies Condition 1.
Furthermore, (s, t) being apparent with Condition 1 implies Condition 2 by Proposition 2.

Thus (Conditions 1 and 2) is equivalent to Definition 1. J

SoCG 2020

70:8 Ripser++

I Corollary 4. The Apparent Pairs Lemma can be applied for massively parallel operations
on every column s of the coboundary matrix.

Proof. Notice we may generate the cofacets of simplex s and facets of cofacet t of s indepen-
dently with other simplices s′ 6= s. J

I Remark 5. The effectiveness of the Apparent Pairs Lemma hinges on an important empirical
fact and common dataset property: namely that there are a lot of apparent pairs [47, 6]. By
Table 1 in Section 5, in many datasets up to 99% of persistence pairs are apparent pairs.
Further theoretical results are in Section 3.2.3 and more results are illustrated by Figure 10.

3.2.2 Finding Apparent Pairs in Parallel on GPU
Based on Lemma 3, finding apparent pairs from a cleared coboundary matrix without explicit
coboundaries becomes feasible. There is no dependency for identifying an apparent pair as
Corollary 4 states, giving us a unique opportunity to develop an efficient GPU algorithm by
exploiting the massive parallelism.

Algorithm 2 Finding Apparent Pairs on GPU.

Require: CCC: the simplices to reduce; vertices(·): the vertices of a simplex; diam(·): the
diameter of a simplex; cidx(·): the combinatorial index of a simplex; dist(·): the distance
between two vertices; enumerate-facets(·): enumerates facets of a simplex. . global to
all threads
tid: the thread id. . local to each thread

Ensure: AAA: the apparent pair set from the coboundary matrix of dimension dim.
1: s← CCC[tid] . each thread fetches a distinct simplex from the set of simplices
2: VVV ← vertices(s) . this only depends on the combinatorial index of s
3: for each cofacet t of s in lexicographically decreasing order do
4: for v′ in VVV do . t and s differ by one vertex v

5: diam(t)← max(dist(v′, v), diam(s)) . calculate the diameter of t

6: if diam(t) = diam(s) then . t is the oldest cofacet of s

7: SSS ← ∅
8: enumerate-facets(t, SSS) . SSS are facets of t in lexicographical increasing order
9: for s′ in SSS do

10: if diam(s′) = diam(s) then
11: if cidx(s′) = cidx(s) then . s is the youngest facet of t

12: AAA← AAA ∪ {(s, t)}
13: return . exit if (s, t) is apparent or if s′ is strictly younger than s

Algorithm 2 shows how a GPU kernel finds all apparent pairs in a massively parallel
manner. A GPU thread fetches a distinct simplex from an ordered array of simplices in
GPU device memory, and checks if this simplex and one of its cofacets can form an apparent
pair. Lastly, it inserts into a data structure containing all apparent pairs in the GPU device
memory. The complexity of one GPU thread is O(log(n) · (d+1)+(n-d-1) · (d+1)), in which
n is the number of points and d is the dimension of the simplex s. The first term represents
a binary search for d+1 simplex vertices from a combinatorial index, and the second term
says the algorithm checks at most d+1 facets of all n-d-1 cofacets of the simplex s.

S. Zhang, M. Xiao, and H. Wang 70:9

Enumerating cofacets/facets in a lexicographically decreasing/increasing order is substan-
tial to our algorithm. Algorithm 3 shows how to enumerate facets of a simplex. A facet of a
simplex is enumerated by removing one of its vertices. Due to properties of the combinatorial
number system, if the removed vertex index follows a decreasing order, the combinatorial
indices of the generated facets will lexicographically increase.

Algorithm 3 Enumerating Facets of a Simplex.

Require: XXX = {0..n − 1}: n points of a finite metric space; s: a simplex with vertices in
XXX; vertices(·): the vertices of a simplex; cidx(·): the combinatorial index of a simplex;
last(·): the last simplex of a sequence.

Ensure: SSS: the facets of s in lexicographically increasing order.
1: procedure enumerate-facets(s, SSS)
2: VVV ← vertices(s)
3: prev ← ∅; k ← |VVV |
4: for v ∈ VVV ⊂XXX in decreasing order do
5: if prev 6= ∅ then
6: cidx(s′)← cidx(last(SSS))−

(
v
k

)
+
([prev]

k

)
. [x] is the only element of singleton x

7: else
8: cidx(s′)← cidx(last(SSS))−

(
v
k

)
append(SSS, s′) . append s’ to the end of SSS

9: prev ← {v}; k ← k − 1

3.2.3 Theoretical Bounds on the Number of Apparent Pairs
Besides the existence of a large number of apparent pairs empirically (see Section 5), we
show theoretically that there are tight upper and lower bounds to the number of apparent
pairs. The proof of Theorem 6 is in this paper’s full version.

I Theorem 6 (Bounds on the Number of Apparent Pairs). The ratio of the number of d-
dimensional apparent pairs to the number of d-dimensional simplices for a full Rips-filtration
on a n point (d + 1)-skeleton where all d-dimensional simplices s′ containing maximum vertex
n− 1 have diam(s′) ≤ diam(s) for all d-dimensional simplices s not containing vertex n− 1:

theoretical upper bound: (n− d− 1)/n; (tight for all n ≥ d + 1 and d ≥ 1).
theoretical lower bound: 1/(d + 2); (tight for d ≥ 1).

2

011 0

2

3

01

2 3

4

(a) (b) (c)

Figure 5 Geometric interpretation of the theoretical upper bound in Theorem 6. Edge distances
are not to scale. (a),(b),(c) (constructed in this order) show the apparent pairs for d = 1 on the
planar cone graph centered around the newest apex point: n− 1 for n = 3, 4, 5 points. The yellow
arrows denote the apparent pairs: blue edges paired with purple or navy triangles. The dashed (not
dotted) blue edges denote apparent edges from the previous n− 1 point subcomplex.

SoCG 2020

70:10 Ripser++

4 GPU and System Kernel Development for Ripser++

4.1 Core System Optimizations

… ………

… <

Submatrix of
Nonapparent Columns

Coboundary Matrix of Columns/Simplices

< <

<

A Nonapparent Column An Apparent Column The Oldest Cofacet of A Column/Simplex

… …

… …

Array of Apparent Pairs

Figure 6 After finding apparent pairs, we partition the coboundary matrix columns into apparent
and nonapparent columns. The apparent columns are sorted by the coboundary matrix row (the
oldest cofacet of an apparent column) and stored in an array of pairs; while the nonapparent columns
are collected and sorted by coboundary matrix order in another array for submatrix reduction.

The expected performance gain of finding apparent pairs on GPU comes from not only
the parallel computation on thousands of cores but also the concurrent memory accesses at
a high bandwidth, where the apparent pairs can be efficiently aggregated. In a sequential
context, an apparent pair (a row index and a column index) of the coboundary matrix may
be kept in a hashmap as a key-value pair with the complexity of O(1). However building a
hashmap is not as fast as constructing a sorted continuous array [30] in parallel. So in our
implementation, the apparent pairs are represented by a key-value pair (t, s) where t is the
oldest cofacet of simplex s and stored in an aligned continuous array of pairs. This slightly
lowers the read performance because we need a binary search to locate a desired apparent
pair. But this is cost-effective since the number of insertions of apparent pairs are actually
three orders of magnitude higher than that of reads (See Table 3 in Section 5) after finding
apparent pairs. Figure 6 presents how we collect apparent pairs on GPU, where each thread
works on a column of coboundary matrix and writes to the output array in parallel.

Key

(cofacet)

Value

(column index)

… …

t s

… …

… ………

First layer of “small” hash table for persistence pairs found

by the submatrix reduction on nonapparent columns

Second layer of “large” sorted array (by cofacet) of

apparent pairs

… ………

First layer miss

< <

Figure 7 Two-layer data structure for persistence pairs. Apparent pair insertion to the second
layer of the data structure is illustrated in Figure 6, followed by persistence pair insertion to a small
hashmap during the submatrix reduction on CPU. A key-value read during submatrix reduction
involves atmost two steps: first, check the hashmap; second, if the key is not found in the hashmap,
use a binary search over the sorted array to locate the key-value pair (see the arrow in the figure).

S. Zhang, M. Xiao, and H. Wang 70:11

We add a hashmap as one more layer to store persistence pairs discovered during the
submatrix reduction. Figure 7 explains such a design in details.

4.2 Filtration Construction with Clearing

… ………

… …< <

Generated Simplices (diam(s),cidx(s)) for Simplex s

Filtering and Sorting

Coboundary Matrix Columns to Reduce (After Filtering Simplices: Clearing and Threshold Condition)

Filtered Out Simplices (Cleared or not

Satisfying Threshold Condition Simplices)
Simplices that Form the Coboundary Matrix Columns

Figure 8 The Filtration Construction with Clearing Algorithm for Full Rips Filtrations.

Before entering the matrix reduction phase, the input simplex-wise filtration must be
constructed and simplified to form coboundary matrix columns. We call this Filtration
Construction with Clearing. This requires two steps: filtering and sorting. Both of which
can be done in parallel. Filtering removes simplices that we don’t need to reduce as they
are equivalent to zeroed columns. As presented in Algorithm 4, the simplices having higher
diameters than the threshold and paired simplices (the clearing lemma [13]) are filtered out.

Algorithm 4 Filtering the Columns on GPU.

Require: PPP : the persistence pairs in the form (cofacet,simplex) discovered in the previous
dimension; threshold: the max diameter allowed for a simplex; diam(·): the diameter of
a simplex; cidx(·): the combinatorial index of a simplex. . global to all threads
tid: the thread id. . local to each thread

Ensure: CCC: an array of simplices, in which an element is represented as a diameter paired
with a combinatorial index; flagarray: an array of flags marking which columns are
kept (filtered in).

1: procedure filter-columns-kernel(CCC, PPP , threshold, flagarray)
2: cidx(s)← tid

3: if @t s.t. (t, s) ∈ PPP AND diam(s) ≤ threshold then
4: diam(CCC[tid])← diam(s); cidx(CCC[tid])← cidx(s); flagarray[tid] ← 1;
5: else
6: diam(CCC[tid])← −∞; cidx(CCC[tid])← +∞; flagarray[tid] ← 0;

Sorting in the reverse of the order given in Section 2.2.1 is then conducted over the
remaining simplices. This is the order for the columns of a coboundary matrix. The resulting
sequence of simplices is then the columns to reduce for the following matrix reduction
phase. Algorithm 5 presents how we construct the full Rips filtration with clearing. Our
GPU-based algorithms leverage the massive parallelism of GPU threads and high bandwidth
data processing in GPU device memory.

SoCG 2020

70:12 Ripser++

Algorithm 5 Use GPU for Full Rips Filtration Construction with Clearing.

Require: PPP , threshold, flagarray: same as in Algorithm 4; n: the number of points; d: the
current dimension for simplices to construct. len: the number of simplices selected.

Ensure: CCC same as in Algorithm 4.
1: CCC ← ∅
2: flagarray ← {0, ..., 0}
3: filter-columns-kernel(CCC,PPP , threshold, flagarray) .

(
n

d+1
)
threads launched

4: len← GPU -reduction(flagarray)
5: GPU -sort(CCC) . sort entries of CCC in coboundary filtration order: decreasing diameters,

increasing combinatorial indices; restrict CCC to indices 0 to len− 1 afterwards.

5 Experiments

All experiments are performed on a powerful computing server. It consists of an NVIDIA
Tesla V100 GPU that has 5120 FP32 cores and 2560 FP64 cores for single- and double-
precision floating-point computation. The GPU device memory is 32 GB High Bandwidth
Memory 2 (HBM2) that can provide up to 900 GB/s memory access bandwidth. The node
also has two 14 core Intel XEON E5-2680 v4 CPUs (28 cores in total) running at 2.4 GHz
with a total of 100 GB of DRAM. The datasets are taken from the original Ripser repository
on Github [5] and the repository of benchmark datasets from [37].

5.1 The Empirical Relationship amongst Apparent Pairs, Emergent
Pairs, and Shortcut Pairs

There exists three kinds of persistence pairs of the Vietoris-Rips filtration, in fact for any
filtration with a simplex-wise refinement. Using the terminology of [6], these are apparent
(Definition 1) [18, 27, 6, 34], shortcut [6], and emergent pairs [6, 47]. By definition, they are
known to form a tower of sets ordered by inclusion (expressed by Equation (3)). We will
show a further empirical relationship amongst these pairs involving their cardinalities.

the difference in cardinalities is “small”︷ ︸︸ ︷
apparent pairs︸ ︷︷ ︸
large cardinality

⊂ shortcut pairs ⊂ emergent pairs ⊂ persistence pairs (3)

The cardinality difference amongst all of the sets of pairs is very small compared to the
number of pairs, assuming Ripser’s framework of computing cohomology and using the
simplex-wise filtration ordering in Section 2.2.1. Thus there are a very large number of
apparent pairs to be found.

Table 1 shows the percentage of apparent pairs up to dimension d is extremely high,
around 99%. Since the number of columns of a cleared coboundary matrix equals to the
number of persistence pairs, the number of nonapparent columns for submatrix reduction is
a tiny fraction of the original number of columns in Ripser’s matrix reduction phase.

5.2 Execution Time and Memory Usage
We perform extensive experiments that demonstrate the execution time and memory usage of
Ripser++. We further look into the performance of both the apparent pairs search algorithm
and the management of persistence pairs in the two layer data structure after finding apparent
pairs. Variables n and d for each dataset are the same for all experiments.

S. Zhang, M. Xiao, and H. Wang 70:13

Table 1 Empirical Results on Apparent, Shortcut, Emergent Pairs.

apparent shortcut emergent all percentage of
Datasets n d pairs pairs pairs pairs apparent pairs

celegans 297 3 317,664,839 317,723,916 317,723,974 317,735,650 99.9777139%
dragon1000 1000 2 166,132,946 166,160,587 166,160,665 166,167,000 99.9795062%
HIV 1088 2 214,000,996 214,030,431 214,040,521 214,060,736 99.9720920%
o3 (sparse: t = 1.4) 4096 3 43,480,968 43,940,030 43,940,686 44,081,360 98.6379912%
sphere_3_192 192 3 54,779,316 54,871,199 54,871,214 54,888,625 99.8008531%
Vicsek300_of_300 300 3 330,724,672 330,818,491 330,818,507 330,835,726 99.9664323%

Table 2 Total Execution Time and CPU/GPU Memory Usage.

R.++ R. R.++ GPU R.++ CPU R. CPU
Datasets n d time time mem. mem. mem. Speedup

celegans 297 3 7.30 s 228.56 s 16.84 GB 10.53 GB 23.84 GB 31.33x
dragon1000 1000 2 5.79 s 48.98 s 8.81 GB 3.75 GB 5.79 GB 8.46x
HIV 1088 2 7.11 s 147.18 s 11.36 GB 6.68 GB 14.59 GB 20.69x
o3 (sparse: t = 1.4) 4096 3 11.62 s 64.18 s 18.76 GB 2.77 GB 3.86 GB 5.52x
sphere_3_192 192 3 2.43 s 36.96 s 2.92 GB 2.03 GB 4.32 GB 15.21x
Vicsek300_of_300 300 3 9.98 s 248.72 s 17.53 GB 11.46 GB 27.78 GB 24.92x

Table 2 shows the comparisons of execution time and memory usage for computation up
to dimension d between Ripser++ and Ripser with six datasets, where R. stands for Ripser
and R.++ stands for Ripser++. Memory usage on CPU and total execution time were
measured with the /usr/time -v command on Linux. GPU memory usage was counted by
the total displacement of free memory over program execution.

Table 2 shows Ripser++ can achieve 5.52x - 31.33x speedups of total execution time
over Ripser in the evaluated datasets. The performance improvement mainly comes from
massive parallel operations of finding apparent pairs on GPU, and from the fast filtration
construction with clearing by GPU using filtering and sorting. We also notice that the
speedups of execution time varies in different datasets. That is because the percentages of
execution time in the submatrix reduction are different among datasets.

It is well known that the memory usage of full Vietoris-Rips filtration grows exponentially
in the number of simplices with respect to the dimension of persistence computation. For
example, 2000 points at dimension 4 computation may require

(2000
4+1
)
×8 bytes = 2 million

GB memory. Algorithmically, we avoid allocating memory in the cofacet dimension and
keep the memory requirement of Ripser++ asymptotically same as Ripser. Table 2 also
shows the memory usage of Ripser++ on CPU and GPU. Ripser++ can actually lower the
memory usage on CPU. This is mostly because Ripser++ offloads the process of finding
apparent pairs to GPU and the following matrix reduction only works on much fewer columns
than that of Ripser (as the submatrix reduction). Table 2 also shows that the GPU device
memory usage is usually lower than the total memory usage of Ripser. However, in the
sparse computation case (dataset o3) the algorithm must change; Ripser++ thus allocates
memory depending on the hardware instead of the input sizes.

SoCG 2020

70:14 Ripser++

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 7x107

 8x107

 9x107

 1x108

celegans dragon1000 HIV o3_4096 sphere_3_192 Vicsek300

T
hr

ou
gh

pu
t

 (
nu

m
be

r
of

 c
ol

um
ns

/ti
m

e
(s

ec
.)

 to
 fi

nd
 th

em
)

GPU apparent pair discovery throughput
CPU shortcut pairs discovery throughput

Figure 9 A comparison of column discovery throughput of apparent pair discovery with Ripser++
vs. Ripser’s shortcut pair discovery. The corresponding time is greatly reduced due to Algorithm 2.

Table 3 Hashmap Access Throughput, Counts, and Times Comparisons.

R.++ write R. write Num. of Num. of R.++ R.

throuput throughput R.++ reads R. reads read read

Datasets (pairs/s) (pairs/s) to data struct. to hashmap time (s) time (s)

celegans 7.21× 108 6.98× 107 3.22× 104 5.81× 108 0.00100 11.43

dragon1000 7.62× 108 6.29× 107 1.19× 105 1.12× 108 0.00460 1.28

HIV 7.06× 108 8.85× 107 1.57× 105 3.10× 108 0.00130 5.52

o3 (sparse: t = 1.4) 4.78× 108 6.88× 107 1.65× 106 8.85× 107 0.01500 0.56

sphere_3_192 7.32× 108 9.41× 107 2.71× 105 9.37× 107 0.00068 0.30

Vicsek300_of_300 6.80× 108 8.82× 107 2.12× 105 5.67× 108 0.00053 10.81

5.3 Throughput of Apparent Pairs Discovery with Ripser++ vs.
Throughput of Shortcut Pairs Discovery in Ripser

Discovering shortcut pairs in Ripser and discovering apparent pairs in Ripser++ account for
a significant part of the computation. Let the throughput be calculated as the number of a
specific type of pair divided by the time to find and store them. We can find in Figure 9
that for all datasets, our GPU-based solution outperforms the CPU-based algorithm used in
Ripser by 4.2x-12.3x. Since the two types of pairs’ counts are almost the same (see Table 1),
such throughput improvement can lead to a significant saving in computation time.

5.4 Two-layer Data Structure for Memory Access Optimizations

Table 3 first presents the write throughput of persistence pairs in pairs/s. In Ripser, we
use the measured time of writing pairs to the hashmap to divide the total persistence pair
number; while in Ripser++, the time includes writing to the two-layer data structure and
sorting the array on GPU. The results show that Ripser++ consistently has one order of
magnitude higher write throughput than that of Ripser.

Table 3 also gives the number of reads as well as the time consumed in the read operations
(in seconds). The number of reads in Ripser means the number of reads to its hashmap, while
Ripser++ counts the number of reads to the data structure. The reported results confirm
that Ripser++ can reduce at least two orders of magnitude memory reads over Ripser. A
similar performance improvement can also be observed in the measured read time.

S. Zhang, M. Xiao, and H. Wang 70:15

5.5 The Apparent Fraction Depending on the Number of Points
Figure 10 shows 3 curves for the apparent fraction depending on the number of points.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 1000 2000 3000 4000 5000 6000 7000 8000 9000

di
m

en
si

on
 1

 a
pp

ar
en

t f
ra

ct
io

n

number of points for a 2-skeleton

theoretical upper bound apparent fraction
true experimental apparent fraction

random model's apparent estimated fraction

Figure 10 Three different curves of the apparent fraction: (num. apparent pairs
num. d-simplices) for d = 1 as a

function of the number of points. The theoretical upper bounding curve for the case of all equivalent
edge diameters is shown as well as the true experimental curve. The dotted curve is the piecewise
linear interpolated curve of a uniform random mathematical model that matches the shape of the
empirical and theoretical curve. (See the paper’s full version for more explanations.)

6 Conclusion

Ripser++ can achieve significant speedup (up to 20x-30x) on representative datasets in our
work and thus opens up unprecedented opportunities in many application areas. For example,
fast streaming applications [43] or point clouds from neuroscience [10] that spent minutes
can now be computed in seconds, significatly advancing the domain fields.

We identify specific properties of Vietoris-Rips filtrations such as the simplicity of
diameter computations by individual threads on GPU for Ripser++. Related discussions,
both theoretical and empirical, suggest that our approach be applicable to other filtration
types such as cubical [8], flag [32], and alpha shapes [44]. We strongly believe that our
acceleration methods are widely applicable beyond computing Rips persistence barcodes.

We have described the mathematical, algorithmic, and experimental-based foundations of
Ripser++. We hope our efforts open a new chapter for the advancement of TDA.

References
1 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,

Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images:
A stable vector representation of persistent homology. The Journal of Machine Learning
Research, 18(1):218–252, 2017.

2 Henry Adams and Andrew Tausz. Javaplex tutorial. Google Scholar, 2011.
3 Mehmet E Aktas, Esra Akbas, and Ahmed El Fatmaoui. Persistence homology of networks:

methods and applications. Applied Network Science, 4(1):61, 2019.
4 Sergey Barannikov. The framed morse complex and its invariants, 1994.
5 Ulrich Bauer. Ripser: efficient computation of vietoris–rips persistence barcodes, 2018. URL:

https://github.com/Ripser/ripser.
6 Ulrich Bauer. Ripser: efficient computation of vietoris-rips persistence barcodes. arXiv preprint,

2019. arXiv:1908.02518.
7 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent

homology in chunks. In Topological methods in data analysis and visualization III, pages
103–117. Springer, 2014.

SoCG 2020

https://github.com/Ripser/ripser
http://arxiv.org/abs/1908.02518

70:16 Ripser++

8 Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Distributed computation of persistent
homology. In 2014 proceedings of the sixteenth workshop on algorithm engineering and
experiments (ALENEX), pages 31–38. SIAM, 2014.

9 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat–persistent homology
algorithms toolbox. Journal of symbolic computation, 78:76–90, 2017.

10 Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer. Persistent
homology analysis of brain artery trees. The annals of applied statistics, 10(1):198, 2016.

11 Peter Bubenik. Statistical topological data analysis using persistence landscapes. The Journal
of Machine Learning Research, 16(1):77–102, 2015.

12 Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009.

13 Chao Chen and Michael Kerber. Persistent homology computation with a twist. In Proceedings
27th European Workshop on Computational Geometry, volume 11, 2011.

14 Yuri Dabaghian, Facundo Mémoli, Loren Frank, and Gunnar Carlsson. A topological paradigm
for hippocampal spatial map formation using persistent homology. PLoS computational biology,
8(8):e1002581, 2012.

15 Vin De Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebraic
& Geometric Topology, 7(1):339–358, 2007.

16 Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Dualities in persistent (co)
homology. Inverse Problems, 27(12):124003, 2011.

17 Vin De Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology and
circular coordinates. Discrete & Computational Geometry, 45(4):737–759, 2011.

18 Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and partition-
ing of digital images using discrete morse theory. IEEE transactions on pattern analysis and
machine intelligence, 37(3):654–666, 2014.

19 Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5):256–268, 1974.

20 Tamal K Dey, Fengtao Fan, and Yusu Wang. Computing topological persistence for simplicial
maps. In Proceedings of the thirtieth annual symposium on Computational geometry, page 345.
ACM, 2014.

21 Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

22 Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. In Proceedings 41st annual symposium on foundations of computer science,
pages 454–463. IEEE, 2000.

23 Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. IEEE Micro, 32(3):122–134, 2012.

24 Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman
Balakrishnan, Aarti Singh, et al. Confidence sets for persistence diagrams. The Annals of
Statistics, 42(6):2301–2339, 2014.

25 William H Guss and Ruslan Salakhutdinov. On characterizing the capacity of neural networks
using algebraic topology. arXiv preprint, 2018. arXiv:1802.04443.

26 G Henselman. Eirene: a platform for computational homological algebra, 2016.
27 Gregory Henselman and Robert Ghrist. Matroid filtrations and computational persistent

homology. arXiv preprint, 2016. arXiv:1606.00199.
28 Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. Deep learning with

topological signatures. In Advances in Neural Information Processing Systems, pages 1634–1644,
2017.

29 Alan Hylton, Janche Sang, Greg Henselman-Petrusek, and Robert Short. Performance
enhancement of a computational persistent homology package. In 2017 IEEE 36th International
Performance Computing and Communications Conference (IPCCC), pages 1–8. IEEE, 2017.

http://arxiv.org/abs/1802.04443
http://arxiv.org/abs/1606.00199

S. Zhang, M. Xiao, and H. Wang 70:17

30 Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D. Nguyen, Nadathur
Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs. hash revisited: Fast
join implementation on modern multi-core cpus. Proc. VLDB Endow., 2(2):1378–1389, August
2009. doi:10.14778/1687553.1687564.

31 Donald Ervin Knuth. The art of computer programming, volume 3. Pearson Education, 1997.
32 Daniel Luetgehetmann, Dejan Govc, Jason Smith, and Ran Levi. Computing persistent

homology of directed flag complexes. arXiv preprint, 2019. arXiv:1906.10458.
33 Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette Yvinec. The gudhi library:

Simplicial complexes and persistent homology. In International Congress on Mathematical
Software, pages 167–174. Springer, 2014.

34 Rodrigo Mendoza-Smith and Jared Tanner. Parallel multi-scale reduction of persistent
homology filtrations. arXiv preprint, 2017. arXiv:1708.04710.

35 Dmitriy Morozov. Dionysus software, 2017. URL: http://www.mrzv.org/software/
dionysus/.

36 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–
441, 2008.

37 Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017.

38 Ernesto Pascal. Sopra una formula numerica, 1887.
39 Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel

for topological machine learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4741–4748, 2015.

40 Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting algorithms
for manycore gpus. In Proceedings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing, IPDPS ’09, pages 1–10, Washington, DC, USA, 2009. IEEE
Computer Society. doi:10.1109/IPDPS.2009.5161005.

41 Abu Bakar Siddique, Saadia Farid, and Muhammad Tahir. Proof of bijection for combinatorial
number system. arXiv preprint, 2016. arXiv:1601.05794.

42 Erik Sintorn and Ulf Assarsson. Fast parallel gpu-sorting using a hybrid algorithm. J. Parallel
Distrib. Comput., 68(10):1381–1388, October 2008. doi:10.1016/j.jpdc.2008.05.012.

43 Meirman Syzdykbayev and Hassan A Karimi. Persistent homology for detection of objects from
mobile lidar point cloud data in autonomous vehicles. In Science and Information Conference,
pages 458–472. Springer, 2019.

44 The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.
URL: http://gudhi.gforge.inria.fr/doc/latest/.

45 Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science & Engineering, 19(2):41, 2017.

46 Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser. py: A lean persistent homology
library for python. J. Open Source Software, 3(29):925, 2018.

47 Simon Zhang, Mengbai Xiao, Chengxin Guo, Liang Geng, Hao Wang, and Xiaodong Zhang.
Hypha: a framework based on separation of parallelisms to accelerate persistent homology
matrix reduction. In Proceedings of the ACM International Conference on Supercomputing,
pages 69–81. ACM, 2019.

48 Afra Zomorodian. Fast construction of the vietoris-rips complex. Computers & Graphics,
34(3):263–271, 2010.

SoCG 2020

https://doi.org/10.14778/1687553.1687564
http://arxiv.org/abs/1906.10458
http://arxiv.org/abs/1708.04710
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
https://doi.org/10.1109/IPDPS.2009.5161005
http://arxiv.org/abs/1601.05794
https://doi.org/10.1016/j.jpdc.2008.05.012
http://gudhi.gforge.inria.fr/doc/latest/

The Spiroplot App
Casper van Dommelen
Utrecht University, The Netherlands

Marc van Kreveld
Utrecht University, The Netherlands
m.j.vankreveld@uu.nl

Jérôme Urhausen
Utrecht University, The Netherlands
j.e.urhausen@uu.nl

Abstract
We introduce an app for generating spiroplots, based on a new discrete-time, linear, dynamic system
that repeatedly rotates a pair of points, and plots points where they land. The app supports
easy definition of the initial situation and has various visualization settings. It can be accessed at
https://spiroplot.sites.uu.nl.

2012 ACM Subject Classification Applied computing → Media arts; Computing methodologies →
Animation

Keywords and phrases generative art, dynamic system, pattern generation tool

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.71

Category Media Exposition

Supplementary Material https://spiroplot.sites.uu.nl

Funding Supported by the Netherlands Organisation for Scientific Research (NWO) under project
no. 612.001.651.

1 Spiroplots

Spiroplots are a new type of discrete-time, linear, dynamic system that produces various
nice geometric patterns. They are introduced in [2], where a comparison is made with other
systems that generate patterns like L-systems, chaotic systems, and fractals [1]. A spiroplot
is defined by a finite set V of points in the plane with their initial positions, a finite sequence
R of triplets consisting of two points from V and a rotation angle, and a rotation count k.
Each triplet in R – called r-triplet – defines a repositioning of the two specified points in V

by rotating them around their middle over the specified rotation angle (in degrees in this
paper). Whenever points of V land somewhere, they plot a small dot. Each point plots in a
different color. We refer to both the system and to the resulting pattern as a spiroplot.

The sequence of k rotations is done by following the sequence in R and repeating it from
the start, until k rotations in total have been done, and 2k dots are plotted. Even simple
spiroplots give nice patterns. For example, a spiroplot with just three points V = {v1, v2, v3},
and just two r-triplets R = 〈(v1, v2, 90), (v2, v3, 90)〉 will show a pattern with eight ellipses
after a few thousand rotations (Figure 1, left), regardless of the initial coordinates.

The name spiroplot is derived from the spirograph, a drawing tool for kids from the 1960s.
A more complete description and various properties of spiroplots are given in [2], including
preservation of the center of mass and the existence of cyclic and non-cyclic spiroplots. The
latter ones plot infinitely many points when k →∞.

© Casper van Dommelen, Marc van Kreveld, and Jérôme Urhausen;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 71; pp. 71:1–71:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.j.vankreveld@uu.nl
mailto:j.e.urhausen@uu.nl
https://spiroplot.sites.uu.nl
https://doi.org/10.4230/LIPIcs.SoCG.2020.71
https://spiroplot.sites.uu.nl
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 The Spiroplot App

Figure 1 Three spiroplots. Left, with R = 〈(v1, v2, 90), (v2, v3, 90)〉, after 5000 rotations.
Middle, with R = 〈(v1, v2, 4), (v2, v3, 4)〉, after 50, 000 rotations. Right, with R = 〈(v1, v2, 1),
(v2, v3, 1), (v3, v4,−1), (v4, v5, 1)〉, after 8000 rotations; only v3 is shown.

Figure 2 User interface. On the canvas, pairs of rotating points are shown by an edge.

2 A web app for spiroplots

This abstract presents a web app that generates spiroplots with a simple user interface.
https://spiroplot.sites.uu.nl

We believe it can serve to make young people enthusiastic about mathematical patterns,
dynamic systems, and procedural generation of structures.

The app has a canvas and a control panel, see Figure 2. It allows the user to place points
using a mouse left-click, and generate pairs by dragging (mouse-down) from one point to the
other point. The default rotation angle is 90 degrees, but other angles can be specified in
a text box for that pair. We may repeat a pair of points in the r-triplet sequence. With a
right-click on a point, it can be moved, removed, or assigned a different color.

The left panel shows the sequence of r-triplets, each by the colors of the points and its
own rotation angle. A green indicator shows what the next rotation will be.

https://spiroplot.sites.uu.nl

C. van Dommelen, M. van Kreveld, and J. Urhausen 71:3

To the bottom in the left panel, options to perform one or many rotations are given,
along with visualization options, wiping, resetting, and saving. The center-and-scale option
places and scales the point set to ensure that the spiroplot stays inside the canvas and uses
most of it. The Fast option performs 100 rotations before the next canvas redraw, doing
close to 7, 000 rotations per second (web app, standard laptop, wall clock time). On the
desktop app version, it is a few times faster. Simple patterns often start to emerge within
seconds; complex patterns may show a pattern only after minutes. Sometimes we do not
discern any pattern. The Thick option draws 2× 2 pixels when plotting a point. Every color
can be toggled on or off in the row of colored eyes, and so can the graph of the spiroplot
(bottom eye). Colors are stacked, so there is always a top color. The stacking order can be
changed by clicking the colored eyes, which brings the last toggled color to the top. The app
has a tutorial built in.

3 Various settings

When trying out different settings in the app, we can make various observations.
Spiroplots with V = {v1, v2, v3}, R = 〈(v1, v2, 90), (v2, v3, 90)〉 always look like ellipses

after sufficiently many rotations, regardless of the initial coordinates of v1, v2 and v3. The
points plotted for v2 lie on four ellipses and the points plotted for v1 or v3 lie on two ellipses
each. If one of the angles is −90 degrees, there are only four ellipses in total, two for v2 and
one for each of v1 and v3. When the two angles are 30 or 45 degrees, we see more ellipses.

Spiroplots like V = {v1, v2, v3}, R = 〈(v1, v2, 90), (v2, v3, 90), (v1, v3, 90)〉 also show el-
lipses only, and all points plot on the same eight ellipses.

When spiroplots use small angles only, like 1 degree (or even smaller), the plotted points
trace a curve with small steps, essentially drawing it (see Figure 1, right). The types of
curves can appear rather complex when there are five or more points in the system.

Certain spiroplots repeat their current points after a few rotations. For example, every
spiroplot with V = {v1, v2, v3, v4}, R = 〈(v1, v2, 90), (v2, v3, 90), (v3, v4, 90)〉 will have the
same positions for v1, . . . , v4 after 36 rotations, regardless of the initial coordinates. Hence,
no interesting pattern appears. The three rotations can be represented together by an 8× 8
matrix operating on the eight coordinates of the four points. Raising this matrix to the
power 12 yields the identity matrix.

The order of r-triplets is very important. A spiroplot with R=〈(v1, v2, 90), (v2, v3, 90),
(v3, v4, 90), (v1, v4, 90)〉 shows complex patterns while R=〈(v1, v2, 90), (v3, v4, 90), (v2, v3, 90),
(v1, v4, 90)〉 yields a cyclic spiroplot.

Many spiroplots with more complex specifications will not show a pattern in the app.
This may be due to the limited resolution that is available. Sometimes one point (color)
shows a pattern but another point does not.

For simpler situations, patterns show up after a few thousand rotations. For complex
spiroplots, it may take hundreds of thousands rotations. Figure 3 shows how more iterations
yields a fuller pattern. Figure 4 shows two more examples of spiroplots.

4 Discussion

There are many interesting open problems related to spiroplots.

1. By observation we noticed that spiroplots with three points only show ellipses, and each
ellipse has the same center. Can we prove this, or find a counterexample?

2. Do all points of a spiroplot lie on a finite set of algebraic curves? Or are there positive-area
regions of the plane that are covered arbitrarily densely by plotted points, if k →∞?

SoCG 2020

71:4 The Spiroplot App

Figure 3 Spiroplots that are the same except for the number of rotations. Left, after 201,000
rotations. Right, after 500,800 rotations. The rotation sequence is 〈(v1, v2, 120), (v3, v4,−120),
(v5, v6, 120), (v2, v3, 0.4), (v4, v5, 0.4), (v6, v1,−0.4)〉. Only three of the six colors are shown: v1 is
red, v2 is green, and v5 is blue.

Figure 4 Two spiroplots created with the program. Left, R = 〈(v1, v2, 90), (v3, v4, 90), (v5, v6, 90),
(v2, v3, 90), (v4, v5, 90)〉. Right, R = 〈(v1, v2, 0.2), (v1, v2, 0.2), (v1, v2,−0.6), (v1, v2,−0.2),
(v1, v2, 90.4), (v2, v3, 0.2), (v2, v3, 0.2), (v2, v3,−0.6), (v2, v3,−0.2), (v2, v3, 90.4), (v1, v3, 45)〉 (some
colors were changed during the run).

3. Can spiroplots be interpreted as projections of higher-dimensional curves?
4. Can we characterize all cyclic spiroplots?
5. How should we define 3D spiroplots? Rotations of two points about their center are no

longer unique; we need a rotation axis.

A more practical question is the one of control: How can we provide intuitive control on
the spiroplot to be produced? If we generated a spiroplot and want it slightly different, it is
unclear how to change the parameters to realize this.

C. van Dommelen, M. van Kreveld, and J. Urhausen 71:5

References
1 Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe. Chaos and Fractals: new frontiers

of science. Springer Science & Business Media, 2006.
2 Casper van Dommelen, Marc van Kreveld, and Jérôme Urhausen. Spiroplots: a new discrete-

time dynamical system to generate curve patterns, 2020. Submitted.

SoCG 2020

Coordinated Particle Relocation with Global
Signals and Local Friction
Victor M. Baez
Department of Electrical and Computer Engineering, University of Houston, TX, USA
vjmontan@uh.edu

Aaron T. Becker
Department of Electrical and Computer Engineering, University of Houston, TX, USA
atbecker@uh.edu

Sándor P. Fekete
Department of Computer Science, TU Braunschweig, Germany
s.fekete@tu-bs.de

Arne Schmidt
Department of Computer Science, TU Braunschweig, Germany
arne.schmidt@tu-bs.de

Abstract
In this video, we present theoretical and practical methods for achieving arbitrary reconfiguration
of a set of objects, based on the use of external forces, such as a magnetic field or gravity: Upon
actuation, each object is pushed in the same direction. This concept can be used for a wide range of
applications in which particles do not have their own energy supply or in which they are subject to
the same global control commands.

A crucial challenge for achieving any desired target configuration is breaking global symmetry in
a controlled fashion. Previous work (some of which was presented during SoCG 2015) made use
of specifically placed barriers; however, introducing precisely located obstacles into the workspace
is impractical for many scenarios. In this paper, we present a different, less intrusive method:
making use of the interplay between static friction with a boundary and the external force to achieve
arbitrary reconfiguration. Our key contributions are theoretical characterizations of the critical
coefficient of friction that is sufficient for rearranging two particles in triangles, convex polygons,
and regular polygons; a method for reconfiguring multiple particles in rectangular workspaces, and
deriving practical algorithms for these rearrangements. Hardware experiments show the efficacy of
these procedures, demonstrating the usefulness of this novel approach.

2012 ACM Subject Classification Theory of computation → Computational geometry; Computer
systems organization → Embedded and cyber-physical systems

Keywords and phrases Global control, reconfiguration, geometric algorithms, friction

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.72

Category Media Exposition

1 Introduction

Reconfiguring a large set of objects in a prespecified manner is a fundamental task for a
large spectrum of applications, including swarm robotics, smart materials and advanced
manufacturing. In many of these scenarios, the involved items are not equipped with
individual motors or energy supplies, so actuation must be performed from the outside.
Moreover, reaching into the workspace to manipulate individual particles of an arrangement
is often impractical or even impossible; instead, global external forces (such as gravity or a
magnetic force) may have to be employed, targeting each object in the same, uniform manner.
These limitations of individual navigation apply even in scenarios of swarm robotics, e.g.

© Victor M. Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 72; pp. 72:1–72:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8490-4204
mailto:vjmontan@uh.edu
https://orcid.org/0000-0001-7614-6282
mailto:atbecker@uh.edu
https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0001-8950-3963
mailto:arne.schmidt@tu-bs.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.72
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Coordinated Particle Relocation with Global Signals and Local Friction

θ

u(t)

u(t)
r1

r2

θ

r1

r2

u(t)

u(t)

θ

ures(t)

N(boundaryxr1
(t))N(boundaryxr1

(t))

Figure 1 Left: An input force command u(t) within the cone ±θ about the normal to the
boundary results in no motion of r1. Right: An input force command u(t) outside the cone results in
a motion of both particles. Observe that r1 slides along the boundary with a resulting force ures(t).

for the well-known kilobots [12] that can be directed by switching on a light beacon, which
works just like activating an external force. This concept of global control has also been
studied for using biological cells as reactive robots controlled by magnetic fields, see Arbuckle
and Requicha [3] and Kim et al. [9]. Global control also has applications in assembling nano-
and micro-structures. Related work shows how to assemble shapes by adding one particle at
a time [8, 4], or combining multiple pairs of subassemblies in parallel in one time step [14].

Considering this approach of navigation by a global external force gives rise to a number
of problems, including navigation of one particle from a start to a goal position [10], particle
computation [6, 7], or emptying a polygon [2]. Zhang et al. [15, 16] show how to rearrange
a rectangle of agents in a workspace that is only constant times larger than the number
of agents. Akella et al. [1] consider the problem of reconfiguring an object on a conveyor
belt with a simple robot, and Lynch et al. [11] use a mobile robot with a flat pusher plate
as the gripper to manipulate objects. A crucial issue for all these tasks is how to combine
the use of a uniform force (which is the same for all involved items) with the individual
requirements of object relocation (which may be distinct for different particles): How can
we achieve an arbitrary arrangement of particles if all of them are subjected to the same
external force? Previous work (such as [7]) has shown how arbitrary reconfiguration of an
ensemble is possible with the help of specifically placed barriers; this has also been the subject
of a previous multimedia contribution to SoCG [5]. However, introducing precisely located
obstacles into the workspace is impractical for many scenarios.

In this contribution, we present a different, less intrusive method: making use of the
interplay between static friction with a boundary of the workspace and the external force to
achieve any desired configuration. For more details, see our journal paper [13].

2 Using friction for reconfiguration

The coefficient of friction µ is the ratio between the strength of an orthogonal force against
a surface and the resistance parallel to the surface. Geometrically, this corresponds to a
(static) angle of friction θ: which is the critical angle when sliding commences, satisfying
µ := tan θ. See Fig. 1 for an illustration.

Just like in the context of sorting algorithms in computer science or discrete mathematics,
a critical component for achieving arbitrary reconfiguration of larger ensembles is the ability
to rearrange two specific particles. The idea is to completely cover the ∆ configuration,
which is the set of all differences between all pairs of possible particle locations. To this end,
we employ a number of different strategies (shown in Fig. 2 and visualized in the video). As
shown in Fig. 3, these can be combined to yield an overall lower bound for θ, as follows.

V.M. Baez, A. T. Becker, S. P. Fekete, and A. Schmidt 72:3

(a) Blue strategy.

(b) Red strategy. (c) Orange strategy.

(d) Green strategy. (e) Violet strategy.

Figure 2 Illustration of the five strategies for dealing with different portions of ∆ space. In each
case, shown are two particles in actual space (top), and in ∆ space (bottom).

I Theorem 1. Let T be a triangle with angles α ≤ β ≤ γ. If θ > π
2 − β, then we can

guarantee any reconfiguration of two particles, i.e., ∆T is completely covered by our strategies.

This can be generalized to other environments, as follows.

I Theorem 2. Let P be a convex polygon with vertices C0, . . . , Cn−1 and angles γ0, . . . , γn−1.

If θ > max
0≤i<n

(
min
j∈Pi

(
γi

2 ,max
(γj

2 , η
+
i,j − π

2 , η
−
i,j − π

2
)))

, where η+
i,j :=

∑
Ck∈P+

i+1,j−1

δk and η−i,j :=∑
Ck∈P−

i−1,j+1

δk, then every configuration of two particles can be reached.

I Theorem 3. If P is a regular polygon with n vertices and if µ > cot(π/n), then every
reconfiguration is possible.

These results for static friction can be extended to rearranging multiple particles; this is
visualized in the video, and demonstrated for a real-world application.

SoCG 2020

72:4 Coordinated Particle Relocation with Global Signals and Local Friction

(a) Small angle of friction. (b) Medium angle of friction.

(c) Large angle of friction.

Figure 3 Combining the different strategies for covering ∆ space. (a) For small θ, a portion
remains uncovered, while the rest is covered by the blue, orange and red strategies. (b) For growing
θ, green and violet strategies cover an increasing portion of the remaining sections. (c) For large
enough θ, the whole ∆ space is covered.

I Theorem 4. Consider the class C of configurations of three particles in a square, where
one of the particles lies within the bounding rectangle of the other two particles. If θ > π

4 ,
then we can reconfigure any configuration to any configuration of C.

Using induction, we can achieve arbitrary reconfiguration of a set of collinear particles,
as demonstrated in the video for an example with six particles.

I Theorem 5. For θ > π
4 , we can sort any permuted set of collinear particles.

3 The video

The video starts with an introduction of controlling a swarm of particles or robots by a
uniform global force, and the problem of controlled reconfiguration. After a brief review
of previous work (which employed obstacles), we introduce the approach of using local
differences in boundary friction for breaking symmetry between different particles. This
is followed by a description of involved parameters, the concept of ∆ space and our five
different, “colored” strategies for using static friction to achieve arbitrary reconfiguration of
two particles. This ultimately leads to Theorem 1 and can be extended to Theorems 2 and 3;
it also can be extended to multiple particles, which yields Theorems 4 and 5. We conclude
with practical demonstrations with real particles that are rearranged by a robot controller,
and a pair of particles of size 1mm that are relocated in the stomach of a cow.

References
1 Srinivas Akella, Wesley H Huang, Kevin M Lynch, and Matthew T Mason. Parts feeding on a

conveyor with a one joint robot. Algorithmica, 26(3-4):313–344, 2000.
2 Greg Aloupis, Jean Cardinal, Sébastien Collette, Ferran Hurtado, Stefan Langerman, and

Joseph O’Rourke. Draining a polygon – or – rolling a ball out of a polygon. Computational
Geometry, 47(2):316–328, 2014.

V.M. Baez, A. T. Becker, S. P. Fekete, and A. Schmidt 72:5

3 DJ Arbuckle and Aristides AG Requicha. Self-assembly and self-repair of arbitrary shapes by
a swarm of reactive robots: algorithms and simulations. Autonomous Robots, 28(2):197–211,
2010.

4 Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A Cantu,
Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: Universal constructors for
general shapes with uniform external forces. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2689–2708, 2019.

5 A. Becker, Erik D. Demaine, Sándor P. Fekete, S. H. Mohtasham Shad, and R. Morris-Wright.
Tilt: The video. designing worlds to control robot swarms with only global signals. In
Symposium on Computational Geometry (SoCG), pages 16–18, 2015.

6 Aaron Becker, Erik D Demaine, Sándor P Fekete, and James McLurkin. Particle computation:
Designing worlds to control robot swarms with only global signals. In IEEE International
Conference on Robotics and Automation (ICRA), pages 6751–6756, 2014.

7 Aaron T. Becker, Erik D. Demaine, Sándor P. Fekete, Jarrett Lonsford, and Rose Morris-Wright.
Particle computation: complexity, algorithms, and logic. Natural Computing, 18(1):181–201,
2019.

8 Aaron T Becker, Sándor P Fekete, Phillip Keldenich, Dominik Krupke, Christian Rieck,
Christian Scheffer, and Arne Schmidt. Tilt assembly: algorithms for micro-factories that build
objects with uniform external forces. Algorithmica, pages 1–23, 2017.

9 Paul Seung Soo Kim, Aaron T. Becker, Yan Ou, Anak Agung Julius, and Min Jun Kim. Impart-
ing magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism
swarm control. Journal of Nanoparticle Research, 17(3):1–15, 2015.

10 Jeremy S. Lewis and Jason M. O’Kane. Planning for provably reliable navigation using an
unreliable, nearly sensorless robot. The International Journal of Robotics Research, 32(11):1342–
1357, 2013.

11 Kevin M Lynch and Matthew T Mason. Stable pushing: Mechanics, controllability, and
planning. The International Journal of Robotics Research, 15(6):533–556, 1996.

12 Michael Rubenstein, Christian Ahler, Nick Hoff, Adrian Cabrera, and Radhika Nagpal. Kilobot:
A low cost robot with scalable operations designed for collective behaviors. Robotics and
Autonomous Systems, 62(7):966–975, 2014.

13 Arne Schmidt, Victor M. Baez, Aaron T. Becker, and Sándor P. Fekete. Coordinated particle
relocation using finite static friction with boundary walls. Robotics and Automation Letters,
2:985–992, 2020.

14 Arne Schmidt, Sheryl Manzoor, Li Huang, Aaron T Becker, and Sándor P Fekete. Efficient
parallel self-assembly under uniform control inputs. IEEE Robotics and Automation Letters,
3(4):3521–3528, 2018.

15 Y. Zhang, X. Chen, H. Qi, and D. Balkcom. Rearranging agents in a small space using global
controls. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3576–3582, 2017. doi:10.1109/IROS.2017.8206202.

16 Yinan Zhang, Emily Whiting, and Devin Balkcom. Assembling and disassembling planar
structures with divisible and atomic components. Transactions on Automation Science and
Engineering, 15(3):945–954, 2018.

SoCG 2020

https://doi.org/10.1109/IROS.2017.8206202

Space Ants: Constructing and Reconfiguring
Large-Scale Structures with Finite Automata
Amira Abdel-Rahman
Center for Bits and Atoms, MIT,
Cambridge, MA, USA
amira.abdel-rahman@cba.mit.edu

Aaron T. Becker
Department of Electrical and Computer
Engineering, University of Houston, TX, USA
atbecker@uh.edu

Daniel E. Biediger
Department of Electrical and Computer
Engineering, University of Houston, TX, USA
dbiediger@gmail.com

Kenneth C. Cheung
Coded Structures Lab, NASA Ames Research
Center, Moffett Field, CA, USA
kenny@nasa.gov

Sándor P. Fekete
Department of Computer Science,
TU Braunschweig, Germany
s.fekete@tu-bs.de

Neil A. Gershenfeld
Center for Bits and Atoms, MIT,
Cambridge, MA, USA
neil.gershenfeld@cba.mit.edu

Sabrina Hugo
Department of Computer Science,
TU Braunschweig, Germany
s.hugo@tu-bs.de

Benjamin Jenett
Center for Bits and Atoms, MIT,
Cambridge, MA, USA
bej@mit.edu

Phillip Keldenich
Department of Computer Science,
TU Braunschweig, Germany
p.keldenich@tu-bs.de

Eike Niehs
Department of Computer Science,
TU Braunschweig, Germany
e.niehs@tu-bs.de

Christian Rieck
Department of Computer Science,
TU Braunschweig, Germany
c.rieck@tu-bs.de

Arne Schmidt
Department of Computer Science,
TU Braunschweig, Germany
arne.schmidt@tu-bs.de

Christian Scheffer
Department of Computer Science,
TU Braunschweig, Germany
c.scheffer@tu-bs.de

Michael Yannuzzi
Department of Electrical and Computer
Engineering, University of Houston, TX, USA
mcyannuz@central.uh.edu

Abstract
In this video, we consider recognition and reconfiguration of lattice-based cellular structures by
very simple robots with only basic functionality. The underlying motivation is the construction and
modification of space facilities of enormous dimensions, where the combination of new materials
with extremely simple robots promises structures of previously unthinkable size and flexibility. We
present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based on
finite-state robots, while also preserving connectivity of a structure during reconfiguration. Specific
results include methods for determining a bounding box, scaling a given arrangement, and adapting
more general algorithms for transforming polyominoes.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Formal languages and automata theory

Keywords and phrases Finite automata, reconfiguration, construction, scaling

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.73

Category Media Exposition

© Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung,
Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich,
Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 73; pp. 73:1–73:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7183-8818
mailto:amira.abdel-rahman@cba.mit.edu
https://orcid.org/0000-0001-7614-6282
mailto:atbecker@uh.edu
mailto:dbiediger@gmail.com
mailto:kenny@nasa.gov
https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
mailto:neil.gershenfeld@cba.mit.edu
mailto:s.hugo@tu-bs.de
https://orcid.org/0000-0002-5130-6005
mailto:bej@mit.edu
https://orcid.org/0000-0002-6677-5090
mailto:p.keldenich@tu-bs.de
https://orcid.org/0000-0003-1785-9105
mailto:e.niehs@tu-bs.de
https://orcid.org/0000-0003-0846-5163
mailto:c.rieck@tu-bs.de
https://orcid.org/0000-0001-8950-3963
mailto:arne.schmidt@tu-bs.de
https://orcid.org/0000-0002-3471-2706
mailto:c.scheffer@tu-bs.de
https://orcid.org/0000-0002-6720-6201
mailto:mcyannuz@central.uh.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Space Ants: Constructing Large-Scale Structures with Finite Automata

1 Introduction

Building and modifying large-scale structures is an important and natural objective in a
vast array of applications. In many cases, the use of autonomous robots promises significant
advantages, but also a number of additional difficulties. This is particularly true in space,
where the difficulties of expensive supply chains, scarcity of building materials, dramatic
costs and consequences of even small errors, and the limitations of outside intervention in
case of malfunctions pose a vast array of extreme challenges.

In recent years, a number of significant advances have been made to facilitate overall
breakthroughs. One important step has been the development of ultra-light and scalable
composite lattice materials [29] that allow the construction of modular, reconfigurable, lattice-
based structures [35]; see Figure 1. A second step has been the design of simple autonomous
robots [32, 34] that are able to move on the resulting lattice structures and move their cell
components, allowing the reconfiguration of the overall edifice; see Figure 2.

Figure 1 (a) An assembled cuboctahedral lattice specimen, made from octahedral unit cells
(highlighted), termed voxels. (c) A single injection molded voxel. (See [29].)

Figure 2 (Left) Modular reconfigurable 3D lattice structure and mobile robots; note how robots
are similar in size to lattice cells, and the parallel use of multiple robots. (See [7].) (Right) A
sequence of images from the video: a BILL-E robot moving on an expanding row of voxels. (See [31].)

We address the next step in this hierarchy: Can we enable extremely simple robots to
perform a more complex spectrum of construction tasks for cellular structures in space, such
as patrolling and marking the perimeter, scaling up a given seed construction, and a number
of other design operations? As we demonstrate, finite automata can achieve these tasks.

2 Related Work

The structures considered in this work are based on ultra-light material, as described by
Cheung and Gershenfeld [6] and Gregg et al. [29]. Modular two-dimensional elements
mechanically link in 3D to form reversibly assembled composite lattices. This process is

A. Abdel-Rahman et al. 73:3

not limited by scale, and it enables disassembly and reconfiguration. As shown by Cramer
et al. [8] and Jenett et al. [33], large but light-weight structures can be built from these
components. Jenett et al. have developed autonomous robots that move on the surface [32, 31]
or within the cellular structure [34]. With the help of these robots, individual cells can be
attached to an existing assembly, or moved to a different location [31]. An approach for
global optimization of a corresponding motion plan has been described by Costa et al. [7],
while the design of hierarchical structures was addressed by Jenett et al. [36].

Assembly by simple robots has also been considered at the micro scale, where global
control is used for supplying the necessary force for moving agents, e.g., see Becker et al. [2]
for the corresponding problem of motion planning, Schmidt et al. [39] for using this model
for assembling structures, and Balanza-Martinez et al. [1] for theoretical characterizations.
On the algorithmic side, work dealing with robots or agents on graphs includes Blum and
Kozen [4], who showed that two finite automata can jointly search any unknown maze.
Other work has focused on exploring general graphs (e.g.,[38, 23, 20]), as a distributed or
collaborative problem using multiple agents (e.g. [3, 21, 9, 5]) or with space limitations (e.g.
[22, 23, 17, 24, 25]).

From an algorithmic view, we are interested in different models representing programmable
matter and further recent results. Inspired by the single-celled amoeba, Derakhshandeh et al.
introduced the Amoebot model [11] and later a generalized variant, the general Amoebot
model [15]; see [13, 10, 16, 14, 12] for various results in this model. Other models with active
particles were introduced in [40] as the Nubot model and in [30] with modular robots. In
[26], Gmyr et al. introduced a model with two types of particles: active robots acting like
a deterministic finite automaton and passive tile particles. Furthermore, they presented
algorithms for shape formation [28] and shape recognition [27] using robots on tiles.

3 Results for Finite Automata

We consider a set of N two-dimensional orthogonal tiles that form a polyomino P of total
width w and height h. We use robots as active particles, which work like finite deterministic
automata that can move between adjacent grid positions, where they can place or remove a
tile. We assume that different robots cannot occupy the same position at the same time, and
communication between robots is limited to adjacent positions. A basic step for recognizing
and possibly reconfiguring P is based on constructing its bounding box bb(P), which is the
boundary of the smallest axis-aligned rectangle enclosing but not touching P ; this implies
that there is a gap of one tile between the two, so we use a robot to keep the two parts
connected.

The first result demonstrated in the video deals with constructing the bounding box, and
thus recognizing the extent of a shape. See [19, 18, 37] for technical details.

I Theorem 1. Given a polyomino P of width w and height h, we can build a bounding box
surrounding P with the boundary and P always being connected, with two finite-state robots
in O(max(w, h) · (wh + k · |∂P |)) steps, where k is the number of convex corners in P .

The second result demonstrated in the video achieves scaling of a given shape.

I Theorem 2. After building bb(P), scaling a polyomino P of width w and height h by a
constant scaling factor c without loss of connectivity can be done with one finite-state robot
in O(wh · (c2 + cw + ch)) steps.

Further reconfiguration results mentioned in the video are as follows.

SoCG 2020

73:4 Space Ants: Constructing Large-Scale Structures with Finite Automata

I Theorem 3. Copying a polyomino P columnwise can be done within O(wh2) steps using
O(N) of auxiliary particles and O(wh) additional space in O(h) extra rows and columns.

I Theorem 4. Reflecting a polyomino P horizontally can be done in O(w2h) steps, using
O(w) of additional space and O(w) auxiliary particles.

I Theorem 5. There is a strategy to rotate a polyomino P by ±π2 within O((w + h)wh)
steps, using O(w + h + |w−h|h) of additional space in O(|w−h|+ 1) extra rows and columns
and O(w + h) auxiliary particles.

Finally, the video demonstrates how we can carry out any geometric transformation by
finite-state robots, if and only if there is a corresponding Turing machine for transforming
the corresponding one-dimensional string S(P1) (arising from a row-wise scan of P1) into
S(P2).

I Theorem 6. Let P1 and P2 be two polyominos with |P1| = |P2| = N . There is a strategy
transforming P1 into P2 if there is a Turing machine transforming the corresponding one-
dimensional string S(P1) into S(P2). The finite-state robot needs O(∂P1 + ∂P2 + STM)
auxiliary particles, O(N4 + TTM) steps, and Θ(N2 + STM) of additional space, where TTM
and STM are the number of steps and additional space needed by the Turing machine.

4 The Video

The video starts with a discussion of the problems faced when building large-scale structures
in space, and an introduction of digital, ultra light-weight materials and simple robots
currently developed at MIT and NASA. This is followed by a description of finite automata
corresponding to finite-state robots. As a first algorithmic demonstration, the connected
construction of the bounding box of a given polyomino shape is shown, followed by producing
a scaled copy of a shape. Then we show how general constructions can be built based on
methods of Turing machines. The video concludes with a 3D simulation.

References
1 Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A Cantu,

Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: universal constructors for
general shapes with uniform external forces. In ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2689–2708, 2019.

2 Aaron T Becker, Sándor P Fekete, Phillip Keldenich, Dominik Krupke, Christian Rieck,
Christian Scheffer, and Arne Schmidt. Tilt assembly: Algorithms for micro-factories that
build objects with uniform external forces. Algorithmica, 82:165–187, 2020.

3 M. A. Bender and D. K. Slonim. The power of team exploration: two robots can learn
unlabeled directed graphs. In Symposium on Foundations of Computer Science (FOCS, pages
75–85, 1994. doi:10.1109/SFCS.1994.365703.

4 M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search
than graphs). In Symposium on Foundations of Computer Science (FOCS), pages 132–142,
1978. doi:10.1109/SFCS.1978.30.

5 P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Multirobot tree and graph exploration.
IEEE Transactions on Robotics, 27(4):707–717, 2011. doi:10.1109/TRO.2011.2121170.

6 Kenneth C Cheung and Neil Gershenfeld. Reversibly assembled cellular composite materials.
Science, 341(6151):1219–1221, 2013.

7 Allan Costa, Amira Abdel-Rahman, Benjamin Jenett, Neil Gershenfeld, Irina Kostitsyna,
and Kenneth Cheung. Algorithmic approaches to reconfigurable assembly systems. In IEEE
Aerospace Conference, pages 1–8, 2019.

https://doi.org/10.1109/SFCS.1994.365703
https://doi.org/10.1109/SFCS.1978.30
https://doi.org/10.1109/TRO.2011.2121170

A. Abdel-Rahman et al. 73:5

8 Nicholas B Cramer, Daniel W Cellucci, Olivia B Formoso, Christine E Gregg, Benjamin E
Jenett, Joseph H Kim, Martynas Lendraitis, Sean S Swei, Greenfield T Trinh, Khanh V Trinh,
and Kenneth C. Cheung. Elastic shape morphing of ultralight structures by programmable
assembly. Smart Materials and Structures, 28(5):055006, 2019.

9 Shantanu Das, Paola Flocchini, Shay Kutten, Amiya Nayak, and Nicola Santoro. Map
construction of unknown graphs by multiple agents. Theoretical Computer Science, 385(1):34–
48, 2007. doi:10.1016/j.tcs.2007.05.011.

10 Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Stroth-
mann. Improved leader election for self-organizing programmable matter. In Algorithms for Sen-
sor Systems (ALGOSENSORS), pages 127–140, 2017. doi:10.1007/978-3-319-72751-6_10.

11 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: Amoebot – a new model for programmable
matter. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
220–222, 2014. doi:10.1145/2612669.2612712.

12 Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. On the runtime of universal coating for programmable matter. In
Yannick Rondelez and Damien Woods, editors, DNA Computing and Molecular Programming,
pages 148–164, 2016. doi:10.1007/978-3-319-43994-5_10.

13 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In International Conference on Nanoscale Computing and Communication
(NANOCOM), pages 21:1–21:2, 2015. doi:10.1145/2800795.2800829.

14 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal coating for programmable matter. CoRR, abs/1601.01008, 2016.
arXiv:1601.01008.

15 Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa,
and Christian Scheideler. Leader election and shape formation with self-organizing pro-
grammable matter. In Andrew Phillips and Peng Yin, editors, DNA Computing and Molecular
Programming, pages 117–132, 2015. doi:10.1007/978-3-319-21999-8_8.

16 Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape formation by programmable particles. CoRR, abs/1705.03538, 2017. arXiv:
1705.03538.

17 Krzysztof Diks, Pierre Fraigniaud, Evangelos Kranakis, and Andrzej Pelc. Tree exploration
with little memory. Journal of Algorithms, 51(1):38–63, 2004. doi:10.1016/j.jalgor.2003.
10.002.

18 Sándor P. Fekete, Robert Gmyr, Sabrina Hugo, Phillip Keldenich, Christian Scheffer, and
Arne Schmidt. CADbots: Algorithmic aspects of manipulating programmable matter with
finite automata. CoRR, abs/1810.06360, 2018. To appear in: Proceedings of Workshop of
Algorithmic Foundations of Robotics (WAFR 2018). arXiv:1810.06360.

19 Sándor P. Fekete, Eike Niehs, Christian Scheffer, and Arne Schmidt. Connected assembly and
reconfiguration by finite automata. CoRR, abs/1909.03880, 2019. arXiv:1909.03880.

20 Rudolf Fleischer and Gerhard Trippen. Exploring an unknown graph efficiently. In European
Symposium on Algorithms (ESA), pages 11–22, 2005.

21 Pierre Fraigniaud, Leszek Gasieniec, Dariusz R. Kowalski, and Andrzej Pelc. Collective tree
exploration. Networks, 48(3):166–177, 2006. doi:10.1002/net.20127.

22 Pierre Fraigniaud and David Ilcinkas. Digraphs exploration with little memory. In Symposium
on Theoretical Aspects of Computer Science (STACS), pages 246–257, 2004.

23 Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, and David Peleg. Graph Exploration
by a Finite Automaton. Theoretical Computer Science, 345(2-3):331–344, 2005. doi:10.1016/
j.tcs.2005.07.014.

SoCG 2020

https://doi.org/10.1016/j.tcs.2007.05.011
https://doi.org/10.1007/978-3-319-72751-6_10
https://doi.org/10.1145/2612669.2612712
https://doi.org/10.1007/978-3-319-43994-5_10
https://doi.org/10.1145/2800795.2800829
http://arxiv.org/abs/1601.01008
https://doi.org/10.1007/978-3-319-21999-8_8
http://arxiv.org/abs/1705.03538
http://arxiv.org/abs/1705.03538
https://doi.org/10.1016/j.jalgor.2003.10.002
https://doi.org/10.1016/j.jalgor.2003.10.002
http://arxiv.org/abs/1810.06360
http://arxiv.org/abs/1909.03880
https://doi.org/10.1002/net.20127
https://doi.org/10.1016/j.tcs.2005.07.014
https://doi.org/10.1016/j.tcs.2005.07.014

73:6 Space Ants: Constructing Large-Scale Structures with Finite Automata

24 Leszek Gasieniec, Andrzej Pelc, Tomasz Radzik, and Xiaohui Zhang. Tree exploration with
logarithmic memory. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
585–594, 2007. URL: http://dl.acm.org/citation.cfm?id=1283383.1283446.

25 Leszek Gasieniec and Tomasz Radzik. Memory efficient anonymous graph exploration. In
Graph-Theoretic Concepts in Computer Science (WG), pages 14–29, 2008.

26 R. Gmyr, I. Kostitsyna, F. Kuhn, C. Scheideler, and T. Strothmann. Forming tile
shapes with a single robot. In European Workshop on Computational Geometry (Eu-
roCG 2017), pages 9–12, 2017. URL: https://research.tue.nl/en/publications/
forming-tile-shapes-with-a-single-robot.

27 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, and
Christian Scheideler. Shape Recognition by a Finite Automaton Robot. In Mathematical
Foundations of Computer Science (MFCS), pages 52:1–52:15, 2018. doi:10.4230/LIPIcs.
MFCS.2018.52.

28 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian
Scheideler, and Thim Strothmann. Forming tile shapes with simple robots. In DNA Computing
and Molecular Programming, pages 122–138, 2018. doi:10.1007/978-3-030-00030-1_8.

29 Christine E Gregg, Joseph H Kim, and Kenneth C Cheung. Ultra-light and scalable composite
lattice materials. Advanced Engineering Materials, 20(9):1800213, 2018.

30 Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sacristán. Distributed
reconfiguration of 2d lattice-based modular robotic systems. Autonomous Robots, 38(4):383–
413, 2015. doi:10.1007/s10514-015-9421-8.

31 B. Jenett, A. Abdel-Rahman, K. Cheung, and N. Gershenfeld. Material–robot system for
assembly of discrete cellular structures. IEEE Robotics and Automation Letters, 4:4019–4026,
2019.

32 Ben Jenett and Kenneth Cheung. BILL-E: Robotic platform for locomotion and manipulation
of lightweight space structures. In AIAA/AHS Adaptive Structures Conference, pages 1876–ff.,
2017.

33 Benjamin Jenett, Sam Calisch, Daniel Cellucci, Nick Cramer, Neil Gershenfeld, Sean Swei,
and Kenneth C Cheung. Digital morphing wing: active wing shaping concept using composite
lattice-based cellular structures. Soft Robotics, 4(1):33–48, 2017.

34 Benjamin Jenett and Daniel Cellucci. A mobile robot for locomotion through a 3D periodic
lattice environment. In IEEE International Conference on Robotics and Automation (ICRA),
pages 5474–5479, 2017.

35 Benjamin Jenett, Daniel Cellucci, Christine Gregg, and Kenneth Cheung. Meso-scale digital
materials: modular, reconfigurable, lattice-based structures. In International Manufacturing
Science and Engineering Conference. American Society of Mechanical Engineers Digital
Collection, 2016.

36 Benjamin Jenett, Christine Gregg, Daniel Cellucci, and Kenneth Cheung. Design of multi-
functional hierarchical space structures. In IEEE Aerospace Conference, pages 1–10, 2017.

37 Eike Niehs, Arne Schmidt, Christian Scheffer, Daniel E. Biediger, Michael Yanuzzi, Benjamin
Jenett, Amira Abdel-Rahman, Kenneth C. Cheung, Aaron T. Becker, and Sándor P. Fekete.
Recognition and reconfiguration of lattice-based cellular structures by simple robots. In IEEE
International Conference on Robotics and Automation (ICRA), 2020. To appear.

38 Petrişor Panaite and Andrzej Pelc. Exploring unknown undirected graphs. Journal of
Algorithms, 33(2):281–295, 1999. doi:10.1006/jagm.1999.1043.

39 Arne Schmidt, Sheryl Manzoor, Li Huang, Aaron T Becker, and Sándor P Fekete. Efficient
parallel self-assembly under uniform control inputs. IEEE Robotics and Automation Letters,
3(4):3521–3528, 2018.

40 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Innovations in Theoretical Computer Science (ITCS), pages 353–354, 2013. doi:10.1145/
2422436.2422476.

http://dl.acm.org/citation.cfm?id=1283383.1283446
https://research.tue.nl/en/publications/forming-tile-shapes-with-a-single-robot
https://research.tue.nl/en/publications/forming-tile-shapes-with-a-single-robot
https://doi.org/10.4230/LIPIcs.MFCS.2018.52
https://doi.org/10.4230/LIPIcs.MFCS.2018.52
https://doi.org/10.1007/978-3-030-00030-1_8
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.1006/jagm.1999.1043
https://doi.org/10.1145/2422436.2422476
https://doi.org/10.1145/2422436.2422476

How to Make a CG Video
Aaron T. Becker
Department of Electrical and Computer Engineering, University of Houston, TX, USA
atbecker@uh.edu

Sándor P. Fekete
Department of Computer Science, TU Braunschweig, Germany
s.fekete@tu-bs.de

Abstract
In this video we describe why producing a Computational Geometry video is a good idea, what it
takes to make one, and how to actually do it. This includes a guide for the overall process, a number
of examples, and a variety of tips and tricks.

2012 ACM Subject Classification Theory of computation → Computational geometry; Applied
computing → Education

Keywords and phrases Videos, animation, education, SoCG Multimedia

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.74

Category Media Exposition

1 Introduction

Developing and communicating abstract concepts is one of the fundamental capabilities of
humans that distinguish them from other beings [20]. For tens of thousands of years, this
communication was based on direct human interaction; one of the crucial breakthroughs
of humankind was the development of methods that allow conveying information by other
means, in particular, by written language [21]. This has allowed spreading and preserving
information and ideas, independent of physical presence.

In this evolution, mathematics has been at the forefront of exploring and expanding the
realm of abstract concepts; moreover, the development of mathematics has greatly benefitted
from a rigorous separation of human emotions and experience from logic and truth. As a
consequence, many mathematical ideas are difficult to convey and comprehend; however,
in the words of Terry Tao [22]: “There’s more to mathematics than rigour and proofs...
The point of rigour is not to destroy all intuition; instead, it should be used to destroy bad
intuition while clarifying and elevating good intuition.”

What are the best ways to convey mathematical ideas and intuition? While human brains
have dealt with visual information since the beginning of humankind, processing letters and
mathematical notation has been a very recent development. Moreover, the evolution of
visual information processing by humans has largely been fueled by the need to recognize
the position, motion and interaction of objects in space, so the affinity of human brains to
geometry is deeply rooted [2]. Therefore, it is quite natural to make use of geometry to
convey mathematical ideas – in particular, in the field of geometry itself, as demonstrated by
the visual power of Byrne’s classic illustrated version of Euclid’s elements [10].

Over the years, many other scientific areas have contributed to advances in visualiza-
tion [18, 19], at the same time demonstrating the power of turning complex information into
convincing geometric representations. This development has been fueled both by the need
for processing and representing large amounts of data, as well as the availability of more and
more powerful computational devices, algorithms and interfaces.

© Aaron T. Becker and Sándor P. Fekete;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 74; pp. 74:1–74:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7614-6282
mailto:atbecker@uh.edu
https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.74
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 How to Make a CG Video

2 Videos in Computational Geometry

All this makes it natural to use dynamic visual presentation of concepts and ideas in Compu-
tational Geometry. Now in its 29th year, the multimedia track of SoCG has demonstrated
how videos not only allow making use of dynamically changing objects, but can also make
use of the fundamental concept of storytelling, already mentioned above [21].

There are a number of other good reasons for capturing and visualizing scientific ideas in
the form of videos. They allow presenting results and ideas in a dynamic fashion, instead
of statically as on paper; because they allow demonstrating how things really work, they
are more convincing. With concise and well-planned presentation, they are also compact,
allowing them to present ideas and results in just a few minutes.

Particularly important is the portability of digital content, which can travel large distances
without requiring physical presence. While this video was designed and submitted before
the onset of recent world events, the new reality of social distancing and remote teaching
has made it irrefutably clear that the need to convey complex ideas without direct human
proximity will greatly benefit from a large spectrum of methods for digital representation.

Other benefits of a video are a lasting, memorable impression, and the reproducibility
of running it. Finally, the process of carefully planning and producing a video is also
inspiring, helping to make regular talks better. This is particularly true for long-distance
presentations, which benefit from mastering all aspects of the involved technologies, a clear,
crisp delivery, and the ability to quickly turn a talk into a video production when a conference
moves from physical to virtual presence. A good example was the 2020 European Workshop
on Computational Geometry, for which 77 talks were turned into videos within just three
days [11].

The process described in the following is based on the experience of producing a number
of SoCG videos [15, 16, 9, 4, 5, 6, 7, 14, 13, 1, 3]), as well as serving on several multimedia
committees. There is a wide range of other tools that can be used, and the need for remote
presentations will lead to further progress; however, the underlying process of planning
the story, planning visual elements, sound, process and mastering the tools is pretty much
independent of those specifics.

3 The How to video

The video starts with a number of introductory scenes filmed in front of a lightboard [8],
an illuminated piece of glass that can be used similar to a whiteboard, with the speaker
facing the camera; see Figure 1. This produces mirror-inverted writing, which is flipped in
video editing. After an initial motivation for producing videos, the main components are
introduced: results, story, visual elements, sound, process, tools, and abstract.

The following part discusses putting together the story, based on combining key ideas
with visual elements and developing an overall plot. A top-down approach for structuring a
screenplay is recommended, which is then refined with a storyboard for planning the visual
elements (Figure 2 (Left)). These are discussed in the context of presenting mathematical
results (such as the ones from paper [12] and video [13]), in particular, turning ideas into
dynamic visualizations, and presenting mathematical theorems as images of mathematical
theorems. This is followed by a demonstration of how effective use of sound can turn even a
simple sequence of images into a story, and by a brief glimpse at a completed screenplay.

The next step focuses on producing animation based on standard presentation software,
such as Keynote or PowerPoint, which are then exported into a video format or converted
by a screen capture; the particular demonstration visualizes the dimensions of large-scale
structures in space (as shown in Figure 2 (Right)), which is part of the SoCG video [1].

A.T. Becker and S. P. Fekete 74:3

Figure 1 Lightboard presentation: components for making a video.

Figure 2 (Left) A storyboard for the video [6]. (Right) Generating animations for the video [1].

This is followed by recommendations for producing the voiceover. A particularly helpful
tip is to simply record the sound by itself in one continuous session, without the need for
completely avoiding coughing or misspeaking, or synchronicity to animations: If an error
occurs, there is no need to start over; it suffices to simply repeat the line until it is correct.
Any issues can be worked out later in video editing.

The remainder deals with tools and processes by showing a variety of capabilities of a
good video program, demonstrated in Camtasia as a concrete example. The main focus is on
editing sound and video to create a well-synchronized movie, described for major parts of
this “How to” video itself, as shown in Figure 3. The first step consists in cutting video and
sound into relatively small individual pieces, which can then easily be arranged appropriately.
In most cases, it works best to let the sound be the guide for the timing of the video, as
it is easier to speed up or slow down the latter; this is demonstrated with the opening of
this very video, for which the animation steps are synchronized to the beats of the music.
Another tip is the combination of different video elements (such as slides, real-world video,
and labels) into the same scene; a demonstration uses a snippet of a mathematical talk [17]
with a dance video featuring one of the authors (Figure 4). Finally, everything is exported
into one integral video.

SoCG 2020

74:4 How to Make a CG Video

Figure 3 Four levels of editing for this video, shown in Camtasia. (Level 0, white rectangle)
The title sequence for this video. (Level 1, inner black frame) Editing the title sequence. (Level 2,
medium black frame) Showing how to synchronize sound and video in the title sequence. (Level 3,
outer black frame) Screenshot of editing Level 2 for this video.

Figure 4 Combining multiple elements in the same scene with the help of a video editor, such as
a slide, a label (“BlaBlaBla”), and some real-world video.

A.T. Becker and S. P. Fekete 74:5

References
1 Amira Abdel-Rahman, Aaaron T. Becker, Daniel E. Biedinger, Kenneth C. Cheung, Sándor P.

Fekete, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne
Schmidt, Christian Scheffer, and Michael Yannuzzi. Space ants: Constructing and reconfiguring
large-scale structures with finite automata. In 36th International Symposium on Computational
Geometry (SoCG), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 73:1–73:6, 2020. These proceedings. doi:10.4230/LIPIcs.SoCG.2020.73.

2 William L Abler. The human mind: origin in geometry. Science progress, 93(4):403–427, 2010.
3 Victor Baez, Aaron T. Becker, Sándor P. Fekete, and Arne Schmidt. Coordinated particle

relocation with global signals and local friction. In 36th International Symposium on Compu-
tational Geometry (SoCG), volume 164 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 72:1–72:5, 2020. These proceedings. doi:10.4230/LIPIcs.SoCG.2020.72.

4 A. T. Becker, Erik D. Demaine, Sándor P. Fekete, S. H. Mohtasham Shad, and R. Morris-
Wright. Tilt: The video. designing worlds to control robot swarms with only global signals. In
31st International Symposium on Computational Geometry (SoCG), pages 16–18, 2015. Video
available at http://www.computational-geometry.org/SoCG-videos/socg15video/.

5 Aaron T. Becker, Mustapha Debboun, Sándor P. Fekete, Dominik Krupke, and An Nguyen.
Zapping Zika with a Mosquito-Managing Drone: Computing Optimal Flight Patterns with
Minimum Turn Cost. In 33rd International Symposium on Computational Geometry (SoCG),
volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), pages 62:1–62:5, 2017.
Video available at http://www.computational-geometry.org/SoCG-videos/socg17video/.
doi:10.4230/LIPIcs.SoCG.2017.62.

6 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Matthias Konitzny, Lillian Lin,
and Christian Scheffer. Coordinated Motion Planning: The Video (Multimedia Exposi-
tion). In 34th International Symposium on Computational Geometry (SoCG), volume 99
of Leibniz International Proceedings in Informatics (LIPIcs), pages 74:1–74:6, 2018. Video
available at http://www.computational-geometry.org/SoCG-videos/socg18video/. doi:
10.4230/LIPIcs.SoCG.2018.74.

7 Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Sebastian Morr, and Christian
Scheffer. Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Ex-
position). In 35th International Symposium on Computational Geometry (SoCG), volume
129 of Leibniz International Proceedings in Informatics (LIPIcs), pages 63:1–63:6, 2019.
Video available at http://www.computational-geometry.org/SoCG-videos/socg19video/.
doi:10.4230/LIPIcs.SoCG.2019.63.

8 J Alex Birdwell and Michael Peshkin. Capturing technical lectures on lightboard. In ASEE
Annual Conference & Exposition, volume 26, pages 12851:1–12851:9, 2015.

9 Dorit Borrmann, Pedro de Rezende, Clécio de Souza, Sándor P. Fekete, Alexander Kröller,
Andreas Nüchter, and Christiane Schmidt. Point guards and point clouds: Solving general art
gallery problems. In 29th Annual ACM Symposium on Computational Geometry (SoCG), pages
347–348, 2013. Video available at http://www.computational-geometry.org/SoCG-videos/
socg13video/.

10 Oliver Byrne. The first six books of the Elements of Euclid: in which coloured diagrams and
symbols are used instead of letters for the greater ease of learners. William Pickering, 1847.

11 Stephen Chaplick, Philipp Kindermann, and Alexander Wolff, editors. 36th European Work-
shop on Computational Geometry (EuroCG), 2020. URL: http://www1.pub.informatik.
uni-wuerzburg.de/eurocg2020/.

12 Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah. Worst-
Case Optimal Covering of Rectangles by Disks. In Proceedings 36th International Symposium
on Computational Geometry (SoCG), volume 164 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 42:1–42:23, 2020. These proceedings. doi:10.4230/LIPIcs.SoCG.
2020.42.

SoCG 2020

https://doi.org/10.4230/LIPIcs.SoCG.2020.73
https://doi.org/10.4230/LIPIcs.SoCG.2020.72
http://www.computational-geometry.org/SoCG-videos/socg15video/
http://www.computational-geometry.org/SoCG-videos/socg17video/
https://doi.org/10.4230/LIPIcs.SoCG.2017.62
http://www.computational-geometry.org/SoCG-videos/socg18video/
https://doi.org/10.4230/LIPIcs.SoCG.2018.74
https://doi.org/10.4230/LIPIcs.SoCG.2018.74
http://www.computational-geometry.org/SoCG-videos/socg19video/
https://doi.org/10.4230/LIPIcs.SoCG.2019.63
http://www.computational-geometry.org/SoCG-videos/socg13video/
http://www.computational-geometry.org/SoCG-videos/socg13video/
http://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/
http://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/
https://doi.org/10.4230/LIPIcs.SoCG.2020.42
https://doi.org/10.4230/LIPIcs.SoCG.2020.42

74:6 How to Make a CG Video

13 Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer. Covering rectangles by disks:
The video. In Proceedings of the 36th International Symposium on Computational Geometry
(SoCG), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages
75:1–75:4, 2020. These proceedings. doi:10.4230/LIPIcs.SoCG.2020.75.

14 Sándor P. Fekete, Rolf Klein, and A. Nüchter. Searching with an autonomous robot. In
20th Annual ACM Symposium on Computational Geometry (SoCG), pages 449–450, 2004.
Video available at http://www.computational-geometry.org/SoCG-videos/socg04video/.
doi:10.1145/997817.997885.

15 Sándor P. Fekete and Alexander Kröller. Geometry-based reasoning for a large sensor network.
In 22th Annual ACM Symposium on Computational Geometry (SoCG), pages 475–476, 2006.
Video available at http://www.computational-geometry.org/SoCG-videos/socg06video/.
doi:10.1145/1137856.1137926.

16 Sándor P. Fekete, Alexander Kröller, L.S. Kyou, and J. McKurkin Christiane Schmidt.
Triangulating unknown environments using robot swarms. In 29th Annual ACM Symposium
on Computational Geometry (SoCG), pages 345–346, 2013. Video available at http://www.
computational-geometry.org/SoCG-videos/socg13video/.

17 Sándor P. Fekete, Sven von Höveling, and Christian Scheffer. Online circle packing. In
International Algorithms and Data Structures Symposium (WADS), pages 366–369, 2019.

18 Michael Friendly. Milestones in the history of data visualization: A case study in statistical
historiography. In Classification—the Ubiquitous Challenge, pages 34–52. Springer, 2005.

19 Charles D Hansen and Chris R Johnson. Visualization handbook. Elsevier, 2011.
20 Yuval Noah Harari. The tree of knowledge. In Sapiens: A brief history of humankind, chapter 2,

pages 22–44. Random House, 2014.
21 Yuval Noah Harari. The storytellers. In Homo Deus: A brief history of tomorrow, chapter 4,

pages 181–207. Random House, 2016.
22 Terence Tao. There’s more to mathematics than rigour and proofs. What’s New blog, 2009.

URL: http://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-
than-rigour-and-proofs.

https://doi.org/10.4230/LIPIcs.SoCG.2020.75
http://www.computational-geometry.org/SoCG-videos/socg04video/
https://doi.org/10.1145/997817.997885
http://www.computational-geometry.org/SoCG-videos/socg06video/
https://doi.org/10.1145/1137856.1137926
http://www.computational-geometry.org/SoCG-videos/socg13video/
http://www.computational-geometry.org/SoCG-videos/socg13video/
http://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs
http://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs

Covering Rectangles by Disks: The Video
Sándor P. Fekete
Department of Computer Science, TU Braunschweig, Germany
s.fekete@tu-bs.de

Phillip Keldenich
Department of Computer Science, TU Braunschweig, Germany
p.keldenich@tu-bs.de

Christian Scheffer
Department of Computer Science, TU Braunschweig, Germany
scheffer@ibr.cs.tu-bs.de

Abstract
In this video, we motivate and visualize a fundamental result for covering a rectangle by a set
of non-uniform circles: For any λ ≥ 1, the critical covering area A∗(λ) is the minimum value for
which any set of disks with total area at least A∗(λ) can cover a rectangle of dimensions λ× 1. We
show that there is a threshold value λ2 =

√√
7/2− 1/4 ≈ 1.035797 . . ., such that for λ < λ2 the

critical covering area A∗(λ) is A∗(λ) = 3π
(

λ2

16 + 5
32 + 9

256λ2

)
, and for λ ≥ λ2, the critical area is

A∗(λ) = π(λ2 + 2)/4; these values are tight. For the special case λ = 1, i.e., for covering a unit
square, the critical covering area is 195π

256 ≈ 2.39301 We describe the structure of the proof, and
show animations of some of the main components.

2012 ACM Subject Classification Theory of computation→ Packing and covering problems; Theory
of computation → Computational geometry

Keywords and phrases Disk covering, critical density, covering coefficient, tight worst-case bound,
interval arithmetic, approximation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.75

Category Media Exposition

Related Version This contribution visualizes the main result of paper [1], https://doi.org/10.
4230/LIPIcs.SoCG.2020.42, which is part of SoCG 2020.

Supplementary Material https://github.com/phillip-keldenich/circlecover

Acknowledgements We thank Sebastian Morr, Utkarsh Gupta and Sahil Shah for joint related
work.

1 Introduction

Given a collection of (not necessarily equal) disks, is it possible to arrange them so that they
completely cover a given region, such as a square or a rectangle? Problems of this type have
a variety of applications, but are notoriously difficult; see our related conference paper [1] for
a more detailed overview.

In this contribution, we illustrate a fundamental result: If the total area of the disks
is sufficiently large, they can always cover the region. More precisely, for any given λ, we
identify the minimum value A∗(λ) for which any collection of disks with total area at least
A∗(λ) can cover a rectangle of dimensions λ× 1. We call A∗(λ) the critical covering area
for λ × 1 rectangles and give a complete and tight characterization, along with a visual
illustration of the involved proof techniques.

© Sándor P. Fekete, Phillip Keldenich, and Christian Scheffer;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 75; pp. 75:1–75:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9062-4241
mailto:s.fekete@tu-bs.de
https://orcid.org/0000-0002-6677-5090
mailto:p.keldenich@tu-bs.de
https://orcid.org/0000-0002-3471-2706
mailto:scheffer@ibr.cs.tu-bs.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.75
https://doi.org/10.4230/LIPIcs.SoCG.2020.42
https://doi.org/10.4230/LIPIcs.SoCG.2020.42
https://github.com/phillip-keldenich/circlecover
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Covering Rectangles by Disks: The Video

1 1.2 1.4 1.6 1.8 2 2.2 2.4
2.2

2.3

2.4

2.5

2.6

λ2
√

2 λ = (195 +
√

5257)/128

195π
256

π√
2

√
469+182

√
7

1728 π

Skew λ

C
rit

ic
al

co
ve
rin

g
de

ns
ity

d
∗ (
λ

)=
A

∗
(λ

)
λ

Figure 1 The critical covering density d∗(λ) depending on λ and its values at the threshold value
λ2, the global minimum at

√
2 and the skew λ at which the density becomes as bad as for the square.

I Theorem 1. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let

λ2 =

√√
7

2 −
1
4 ≈ 1.035797 . . . , and A∗(λ) =

3π
(
λ2

16 + 5
32 + 9

256λ2

)
, if λ < λ2,

π λ
2+2
4 , otherwise.

(1) For any a < A∗(λ), there is a set D− of disks with A(D−) = a that cannot cover R.
(2) Let D = {r1, . . . , rn} ⊂ R, r1 ≥ r2 ≥ . . . ≥ rn > 0 be any collection of disks identified by

their radii. If A(D) ≥ A∗(λ), then D can cover R.

See Figure 1 for a graph showing the (normalized) critical covering area, called critical
covering density d∗(λ) = A∗(λ)/λ, and Figure 2 for examples of worst-case configurations.
The point λ = λ2 is the unique real number greater than 1 for which the two bounds
3π
(
λ2

16 + 5
32 + 9

256λ2

)
and π λ

2+2
4 coincide; see Figure 1. At this so-called threshold value,

the worst case changes from three identical disks to two disks, which are the circumcircle
r2

1 = λ2+1
4 and a disk r2

2 = 1
4 ; see Figure 2. The intuition behind the behavior of d∗(λ) is

as follows. The three-disk worst case is bad due to the fact that one of the three disks has
to cover an entire edge of the rectangle. The efficiency of this placement improves when
λ increases, because the size of the largest disk increases as well, while the length of the
shorter edge remains constant. For the two-disk worst case, increasing λ initially improves
the density, because the constant area contributed by the second disk becomes less significant.
After this initial improvement, the quadratic growth of the largest disk compared to the
linear growth of the rectangle dominates, leading to an overall linear increase in density.

2 High-level description

As shown in the video and illustrated in Figure 3, the proof consists of several components.
In addition, there are a number of lemmas, which we describe first for easier reference.

2.1 Mathematical components
First is a lemma that describes the worst cases and shows tightness of our result.

S. P. Fekete, P. Keldenich, and C. Scheffer 75:3

h2 =
1
2

h3 =
1
2

r
r

r

r2 = λ2

16 +
5
32 +

9
256λ2

S1 =
√
4r2 − 1

r21 =
λ2+1
4

r22 =
1
4

x3

x2

x1
︷ ︸︸ ︷

Figure 2 Worst-case configurations for small λ ≤ λ2 (left) and for large skew λ ≥ λ2 (right).

Figure 3 The different proof components. (Left) Individual covering routines. (Center) Recursive
logic of the overall algorithmic approach. (Right) Case analysis for the computer-assisted proof.

I Lemma 2. Let λ ≥ 1 and let R be a rectangle of dimensions λ×1. (1) Two disks of radius
r1 =

√
λ2+1

4 and r2 = 1
2 suffice to cover R. (2) For any ε > 0, two disks of radius r1 − ε

and r2 do not suffice to cover R. (3) Three identical disks of radius r =
√

λ2

16 + 5
32 + 9

256λ2

suffice to cover R. (4) For λ ≤ λ2 and any ε > 0, three identical disks of radius r− := r − ε
do not suffice to cover R.

For large λ, the critical covering coefficient E∗(λ) := A∗(λ)
λπ of Theorem 1 becomes worse,

as large disks cannot be used to cover the rectangle efficiently. If the weight, i.e., squared
radius, of each disk is bounded by some σ ≥ r2

1, we provide the following lemma achieving a
better covering coefficient E(σ) for large λ.

I Lemma 3. Let σ̂ := 195
√

5257
16384 ≈ 0.8629. Let σ ≥ σ̂ and E(σ) := 1

2

√√
σ2 + 1 + 1. Let

λ ≥ 1 and D = {r1, . . . , rn} be any collection of disks with σ ≥ r2
1 ≥ . . . ≥ r2

n and
W (D) :=

n∑
i=1

r2
i ≥ E(σ)λ. Then D can cover a rectangle R of dimensions λ× 1.

The final component is the following Lemma 4, which also gives a better covering coefficient
if the size of the largest disk is bounded. The bound required for Lemma 4 is smaller than
for Lemma 3, yielding a better covering coefficient in return.

I Lemma 4. Let λ ≥ 1 and let R be a rectangle of dimensions λ× 1. Let D = {r1, . . . , rn},
0.375 ≥ r1 ≥ . . . ≥ rn > 0 be a collection of disks. If W (D) ≥ 0.61λ, or equivalently
A(D) ≥ 0.61πλ ≈ 1.9164λ, then D suffices to cover R.

SoCG 2020

75:4 Covering Rectangles by Disks: The Video

2.2 Proof overview
The proofs of Theorem 1 and Lemmas 3 and 4 work by induction on the number of disks.
For proving Lemma 3 for n disks, we use Theorem 1 for n disks. For proving Theorem 1
for n disks, we use Lemma 4 for n disks; Lemma 3 is only used for fewer than n disks. For
proving Lemma 4 for n disks, we only use Theorem 1 and Lemma 3 for fewer than n disks.
Therefore, there are no cyclic dependencies in our argument; however, we have to perform
the induction for Theorem 1 and Lemmas 3 and 4 simultaneously.

The proofs of our result are constructive; they are based on an efficient recursive algorithm
that uses a set of simple routines. These routines were derived by hand, in many cases based
on problematic instances that were identified by the automatic prover and could not be
handled by the routines that were already present. We go through the list of routines in
some fixed order. For each routine, we check a sufficient criterion for the routine to work.
We call these criteria success criteria. They only depend on the total available weight and a
constant number of largest disks. If we cannot guarantee that a routine works by its success
criterion, we simply disregard the routine; this means that our algorithm does not have to
backtrack. We prove that, regardless of the distribution of the disks’ weight, at least one
success criterion is met, implying that we can always apply at least one routine. The number
of routines and thus success criteria is large; this is where the need for automatic assistance
comes from.

Typical routines are recursive; they consist of splitting the collection of disks into smaller
parts, splitting the rectangle accordingly, and recursing, or recursing after fixing the position
of a constant number of large disks. As a success criterion for recursion, we check whether
Theorem 1 or Lemma 3 or 4 can be applied.

2.3 Interval arithmetic
We use interval arithmetic to prove that there always is a routine that works. In interval
arithmetic, operations like addition, multiplication or taking a square root are performed on
intervals [a, b] ⊂ R instead of numbers. After proving our result manually for large λ, this
allows us to check a finite, discrete set of cases, instead of the continuum of all possible radii
and λ. See our main paper [1] for details.

3 The video

The video starts with a motivation of the basic problem of covering a rectangle by disks,
followed by a description of the main result. After an overview of the main three aspects of
the proof (individual covering routines, recursive logic, case analysis), these are explained
and illustrated in detail.

References
1 Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah.

Worst-Case Optimal Covering of Rectangles by Disks. In Proceedings 36th International
Symposium on Computational Geometry (SoCG 2020), pages 42:1–42:19, 2020. doi:10.4230/
LIPIcs.SoCG.2019.35.

https://doi.org/10.4230/LIPIcs.SoCG.2019.35
https://doi.org/10.4230/LIPIcs.SoCG.2019.35

Step-By-Step Straight Skeletons
Günther Eder
Universität Salzburg, FB Computerwissenschaften, Austria
geder@cs.sbg.ac.at

Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Peter Palfrader
Universität Salzburg, FB Computerwissenschaften, Austria
palfrader@cs.sbg.ac.at

Abstract
We present two software packages for computing straight skeletons: Monos, our implementation of
an algorithm by Biedl et al. (2015), computes the straight skeleton of a monotone input polygon,
and Surfer2 implements a generalization of an algorithm by Aichholzer and Aurenhammer (1998)
to handle multiplicatively-weighted planar straight-line graphs as input.

The graphical user interfaces that ship with our codes support step-by-step computations, where
each event can be investigated and studied by the user. This makes them a canonical candidate for
educational purposes and detailed event analyses. Both codes are freely available on GitHub.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases weighted straight skeleton, implementation, visualization, graphical user
interface, education

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.76

Category Media Exposition

Funding Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

1 Introduction

The straight skeleton of a polygon P is a skeletal structure similar to the medial axis. It
consists of straight-line segments only and was introduced to computational geometry by
Aichholzer et al. [2]. Consider a shrinking process of P , called the wavefront propagation,
where all edges of P move inwards in a parallel manner at unit speed. The shrinking polygon,
called the wavefront, will change as edges collapse to zero length and are removed (edge
event), and vertices move into non-incident wavefront edges, thereby splitting the wavefront
into more components (split event). The propagation ends when all wavefront components
have collapsed. The straight skeleton is then defined as the set of line segments which cover
the traces of vertices of the wavefront polygons during this process; cf. Figure 1.

Straight skeletons can be generalized by using planar straight-line graphs (PSLGs) as
input instead of just polygons [1], or by weighting the input edges either multiplicatively or
additively which causes their wavefront edges to move either faster [1, 5] or to start moving
at different times [6].

Several algorithms exist to compute straight skeletons. Aichholzer and Aurenhammer [1]
describe an algorithm with a worst-case complexity of O(n3 log n) for an n-vertex PSLG which,
however, seems to run in near-linear time in practice [4, 7]. Currently, the algorithm with the
best known worst-case complexity for general input is due to Eppstein and Erickson [5] and

© Günther Eder, Martin Held, and Peter Palfrader;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 76; pp. 76:1–76:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4676-591X
mailto:geder@cs.sbg.ac.at
https://orcid.org/0000-0003-0728-7545
mailto:held@cs.sbg.ac.at
https://orcid.org/0000-0002-5796-6362
mailto:palfrader@cs.sbg.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.76
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 Step-By-Step Straight Skeletons

Figure 1 The straight skeleton (blue) of a polygon P (black) is given by the traces of the vertices
of shrinking wavefront polygons (dashed) during the wavefront-propagation process.

runs in O(n17/11+ε) time and space for any positive ε. We are not aware of any implementation
of their algorithm, though. Biedl et al. [3] present an O(n log n) time algorithm to construct
the straight skeleton of an n-vertex monotone polygon.

2 Contribution

We implemented the algorithms by Aichholzer and Aurenhammer [1] as well as Biedl et al. [3]
and will report at SoCG 2020 on the engineering challenges of casting these algorithms into
actual software [4]. Our code is freely available on GitHub: Surfer2 computes the weighted
straight skeleton of planar straight-line graphs, and Monos is a special-purpose code to
construct straight skeletons of monotone polygons1.

In the course of implementing the algorithms, we also created graphical user interfaces
(GUIs). These GUIs enable the user to “see” the algorithm in action. The interfaces
are invaluable during development and debugging, but they also help to gain a deeper
understanding of the various events handled during the wavefront propagation and, in the
case of Monos, the merge step of the algorithm. As such they represent useful aids in
teaching computational geometry classes. The concepts which they help to understand are
not strictly limited to straight skeletons, but also include general event-based algorithms,
kinetic data structures, and sweep-plane processes.

3 MonosGUI: Straight skeleton of a monotone polygon

Biedl et al. [3] describe an O(n log n) time algorithm to compute the straight skeleton of a
simple n-vertex monotone polygon P . Their algorithm consists of two steps: (i) The polygon
P is split into an upper and lower monotone chain, and the straight skeleton of each chain is
computed individually. (ii) The final straight skeleton S(P) is obtained by merging these
two straight skeletons.

We employ a classical wavefront propagation to obtain the straight skeleton of a monotone
chain in O(n log n) time [3]. In the second step, the skeletons of the upper and lower chains
are merged to form S(P). This merge is based on a left-to-right traversal of the two chains
and their respective straight-skeleton faces. Starting at the leftmost vertex of both chains,
the angular bisector between the incident edges is constructed. It intersects arcs of both the

1 Source available at https://github.com/cgalab/surfer2 and https://github.com/cgalab/monos.

https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab
https://github.com/cgalab/surfer2
https://github.com/cgalab/monos
https://github.com/cgalab/surfer2
https://github.com/cgalab/monos

G. Eder, M. Held, and P. Palfrader 76:3

top and bottom straight skeleton. We stop at the first intersection reached and modify the
respective straight skeleton locally by creating a node. Then the next bisector is constructed
between the two edges that induce the faces of the upper and lower skeleton we are currently
in. This process is repeated until the rightmost vertex of P is reached, thus obtaining the
final skeleton S(P).

MonosGUI, the graphical user interface that comes with Monos, allows to step through
both the skeleton computation of the chains and the merge process; cf. Figure 2. Pressing

n , MonosGUI steps to the next event. We can skip the chain computation with c , then
MonosGUI stops before the merge process starts. Simply pressing computes the given
input and displays its straight skeleton.

Figure 2 MonosGUI: A step-by-step construction of the straight skeleton of a single chain (left);
The construction of the merge chain between the finished upper and lower chain’s skeleton (right).

4 SurfGUI: Straight Skeleton of a PSLG

The algorithm by Aichholzer and Aurenhammer [1] constructs the straight skeleton by simu-
lating the wavefront propagation. As the wavefront sweeps the plane, a kinetic triangulation
of that part of the plane which has not yet been swept is maintained.

This triangulation is a kinetic data structure where every change in the structure of the
wavefront, i.e., every edge event and every split event, is witnessed by a triangle collapse.
However, not all triangle collapses witness a corresponding event of the wavefront. Some
triangle collapses correspond to internal events only, where the triangulation changes as a
wavefront vertex moves over a triangulation diagonal (flip event).

Our implementation of this algorithm, Surfer2, comes with a graphical user interface,
SurfGUI, which shows the wavefront propagation step by step. By default, SurfGUI
shows the input planar straight-line graph, the current kinetic triangulation and all straight
skeleton arcs traced out so far. The next triangle to witness an event is highlighted.

The user can interactively control time, moving forwards or backwards. When moving
forwards in time, event handling can optionally be skipped, which will result in the display
of an invalid configuration after the missed event (time will reset to the first missed event
once event-handling is re-enabled). Moving back will not undo events already processed.
Shortcuts are provided to jump forward to (but not yet process) the next event or to jump
backwards to the event just handled. See Figure 3 for some screenshots.

SoCG 2020

76:4 Step-By-Step Straight Skeletons

Figure 3 SurfGUI processing the input from Figure 1. The triangle witnessing the next event
is always highlighted (in yellow). In reading order, the highlighted triangle witnesses an edge event,
a split event, a flip event, and the collapse of an entire wavefront component.

References
1 Oswin Aichholzer and Franz Aurenhammer. Straight Skeletons for General Polygonal

Figures in the Plane. In Voronoi’s Impact on Modern Sciences II, volume 21, pages
7–21. Institute of Mathematics of the National Academy of Sciences of Ukraine, 1998.
doi:10.1007/3-540-61332-3_144.

2 Oswin Aichholzer, Franz Aurenhammer, David Alberts, and Bernd Gärtner. A Novel Type
of Skeleton for Polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.
doi:10.1007/978-3-642-80350-5_65.

3 Therese Biedl, Martin Held, Stefan Huber, Dominik Kaaser, and Peter Palfrader. A Simple
Algorithm for Computing Positively Weighted Straight Skeletons of Monotone Polygons.
Information Processing Letters, 115(2):243–247, 2015. doi:10.1016/j.ipl.2014.09.021.

4 Günther Eder, Martin Held, and Peter Palfrader. On Implementing Straight Skeletons:
Challenges and Experiences. In 36th International Symposium on Computational Geometry,
SoCG 2020, volume 164 of LIPIcs, pages 38:1–38:16, Zürich, Switzerland, 2020.

5 David Eppstein and Jeff Erickson. Raising Roofs, Crashing Cycles, and Playing Pool: Ap-
plications of a Data Structure for Finding Pairwise Interactions. Discrete & Computational
Geometry, 22(4):569–592, 1999. doi:10.1145/276884.276891.

6 Martin Held and Peter Palfrader. Straight Skeletons with Additive and Multiplicative Weights
and Their Application to the Algorithmic Generation of Roofs and Terrains. Computer-Aided
Design, 92(1):33–41, 2017. doi:10.1016/j.cad.2017.07.003.

7 Peter Palfrader, Martin Held, and Stefan Huber. On Computing Straight Skeletons by Means of
Kinetic Triangulations. In Proceedings of the 20th Annual European Symposium on Algorithms
(ESA), pages 766–777, 2012. doi:10.1007/978-3-642-33090-2_66.

https://doi.org/10.1007/3-540-61332-3_144
https://doi.org/10.1007/978-3-642-80350-5_65
https://doi.org/10.1016/j.ipl.2014.09.021
https://doi.org/10.1145/276884.276891
https://doi.org/10.1016/j.cad.2017.07.003
https://doi.org/10.1007/978-3-642-33090-2_66

Computing Animations of Linkages with
Rotational Symmetry
Sean Dewar
Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences, Linz, Austria
sean.dewar@ricam.oeaw.ac.at

Georg Grasegger
Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austrian Academy of Sciences, Linz, Austria
georg.grasegger@ricam.oeaw.ac.at

Jan Legerský
Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC),
Linz, Austria
Department of Applied Mathematics, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
jan.legersky@risc.jku.at

Abstract
We present a piece of software for computing animations of linkages with rotational symmetry in the
plane. We construct these linkages from an algorithm that utilises a special type of edge colouring
to embed graphs with rotational symmetry.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Flexibility, Linkages, Symmetry

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.77

Category Media Exposition

Related Version A proof of the theorem can be found in [1], https://arxiv.org/abs/2003.09328.

Supplementary Material An implementation can be found in [3, 4], https://doi.org/10.5281/
zenodo.3719345.

Funding Sean Dewar : Supported by the Austrian Science Fund (FWF): P31888.
Georg Grasegger : Supported by the Austrian Science Fund (FWF): P31888 and W1214-N15.
Jan Legerský: Supported by the Austrian Science Fund (FWF): P31061 and by the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 675789.

1 Introduction

A framework is a pair (G, p) where G is a (finite simple) graph and p : V (G) → R2 – the
placement of G – is a map where p(u) 6= p(v) if uv is an edge. A framework is a linkage if
there exists a continuous motion of its placed vertices that preserves the distances between
each pair of vertices that share an edge, and the motion is not a rigid body motion of the
framework; if such a motion does not exist then the framework is rigid. It was shown in [6]
that a framework (G, p) with a generic placement of vertices (i.e. the set of coordinates of p is
an algebraically independent set over the rational numbers) is rigid if and only if G contains
a Laman graph as a spanning subgraph. This does not inform us whether we can construct
a linkage from a graph; for example, any generic placement of the complete bipartite graph
K4,4 is rigid, however we can construct linkages from K4,4 [2].

© Sean Dewar, Georg Grasegger, and Jan Legerský;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 77; pp. 77:1–77:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2220-4576
mailto:sean.dewar@ricam.oeaw.ac.at
https://orcid.org/0000-0001-7421-8115
mailto:georg.grasegger@ricam.oeaw.ac.at
https://orcid.org/0000-0002-8122-668X
mailto:jan.legersky@risc.jku.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.77
https://arxiv.org/abs/2003.09328
https://doi.org/10.5281/zenodo.3719345
https://doi.org/10.5281/zenodo.3719345
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

77:2 Computing Animations of Linkages with Rotational Symmetry

To determine whether a graph can be the graph of a linkage we introduce a special class
of edge colourings. A red-blue colouring of the edges of a graph is a NAC-colouring if each
colour is used at least once and each cycle is either monochromatic or contains at least two red
and two blue edges (NAC comes from No Almost Cycle, which are cycles in which all edges
but one have the same color). It was proven by [5, Theorem 3.1] that a connected graph with
at least one edge is the graph of a linkage in the plane if and only if it has a NAC-colouring.
The proof is done in two very distinct parts; the first part proves via valuation theory that
any linkage induces a NAC-colouring, while the second gives an algorithmic method to
construct a linkage from any given NAC-colouring. While the construction given for each
NAC-colouring does give a linkage, the linkage will often not share any of the symmetries of
the graph it was formed from (see for example Figure 1). A natural question now arises; can
we adapt the result so as to preserve any chosen symmetry of our graph?

1

23

45

6

7 8

9

1 2 3

4

5 6

78

9

1 2 3

4

5 6

78

9

Figure 1 A graph (left) with a linkage constructed from the ilustrated NAC-coloring (middle).
The motion of the linkage (right) is parametrised by the angle of the currently vertical lines to the
fixed bottom horizontal line.

2 Linkages with rotational symmetry

We define a graph to have n-fold rotational symmetry if the group Cn := 〈ω : ωn = 1〉 acts
freely on the graph, i.e., each vertex has an orbit of exactly n elements. We define a
placement p of G to be n-fold rotational symmetric if the placement of a rotated vertex is
the rotation of the placement of the vertex, i. e. p(ωkv) = τ(ωk)p(v) for each vertex v and
rotation ωk ∈ Cn, where τ(ωk) is the rotation matrix for angle 2πk/n.

If this holds then we define (G, p) to be a n-fold rotational symmetric framework with
n-fold rotational symmetric placement p. We further define (G, p) to be a n-fold rotational
symmetric linkage if there is a continuous edge-length preserving motion of (G, p) that
maintains the rotational symmetry but is not a rotation of the framework. Remembering this,
we can define the correct type of NAC-colouring to take into account the graph’s rotational
symmetry.

I Definition 1. Let G be an n-fold rotational symmetric graph with NAC-colouring δ. We
define δ to be an n-fold rotational symmetric NAC-colouring if the colouring respects the
symmetry of the graph, and no two distinct blue, resp. red, partially invariant connected
components are connected by an edge; a set of vertices U is partially invariant if there exists
γ ∈ Cn \ {1} such that γU = U .

The ideas of n-fold rotational symmetric linkages and n-fold rotational symmetric NAC-
colourings tie together nicely similarly to how linkages and NAC-colourings do.

S. Dewar, G. Grasegger, and J. Legerský 77:3

I Theorem 2. An n-fold rotational symmetric connected graph with at least one edge is the
graph of an n-fold rotational symmetric linkage in the plane if and only if it has an n-fold
rotational symmetric NAC-colouring δ.

The full proof of Theorem 2 comes in two parts and can be found in [1]. We detail below
the construction part that builds an n-fold rotational symmetric linkage from an n-fold
rotational symmetric graph G with n-fold rotational symmetric NAC-colouring δ:

(1) We first need to label our red and blue connected components in a way that respects
the symmetry; we will not, however, need to bother doing this for the partially in-
variant components as we will see in Step 3. We label the not partially invariant
red components as R0

1, . . . , R
n−1
1 , . . . , R0

m, . . . , R
n−1
m , where Ri

j = ωiR0
j for 0 ≤ i < n

and 1 ≤ j ≤ m; similarly, we label the not partially invariant blue components as
B0

1 , . . . , B
n−1
1 , . . . , B0

k, . . . , B
n−1
k .

(2) Next, we need to choose base vectors for each of the red and blue components that will
determine the shape of the framework. The choice is actually (almost) arbitrary, which
fortunately will allow us to pick “nice” vectors. Let a1, . . . , am and b1, . . . , bk be our
choice of points in the plane with the assumption that aj 6= τ(ωi)aj′ and bj 6= τ(ωi)bj′

for j 6= j′ and 1 ≤ i < n. This assumption is necessary to avoid overlapping vertices.
(3) Using our choices of ai’s and bj ’s from Step 2, we now create a “coordinate system” in

which vertices are placed depending on the red and blue component they belong to. To
do this, we define the functions a, b : V (G)→ R2 by

a(v) =
{
τ(ωi)aj if v ∈ Ri

j

(0, 0) otherwise,
and b(v) =

{
τ(ωi)bj if v ∈ Bi

j

(0, 0) otherwise.

We note that a vertex is mapped to the origin by a (respectively, b) if and only if it lies
in a red (respectively blue) partially invariant component.

(4) Finally, by using our “coordinate system” determined by a, b we define for each t ∈ [0, 2π]
an n-fold rotational symmetric placement pt of G, where for each v ∈ V (G) we have

pt(v) :=
(

cos t − sin t
sin t cos t

)
a(v) + b(v) .

This yields indeed an n-fold rotational symmetric linkage with the corresponding motion
given by t 7→ (G, pt). Further, we can change the linkage by choosing different ai’s and bj ’s.
This often allows us to construct “better” linkages by choosing new base vectors; whether
“better” entails maintaining some other unspecified symmetry (for example, reflectional), or
just a linkage that is more aesthetically pleasing.

I Example 3. By using our construction we can obtain the n-fold rotational symmetric
linkages given in Figures 2 and 3.

Figure 2 A 3-fold rotational symmetric linkage constructed from a given 3-fold rotational
symmetric NAC-colouring.

SoCG 2020

77:4 Computing Animations of Linkages with Rotational Symmetry

Figure 3 A 4-fold rotational symmetric linkage constructed from a given 4-fold rotational
symmetric NAC-colouring.

3 Software for Animations

Animations can be created by an implementation of the above described algorithm using
canonical choices for the base vectors. An updated version [4] of the package [3] can be
used to study Cn-symmetric frameworks. We encourage the reader to experiment1 with
the choice of ai’s and bj ’s from Theorem 2. The implementation can also be used to find
the symmetric NAC-colouring. However, in both graphs of Figure 4 we chose a simple
NAC-colouring where two triangle subgraphs intersecting in a single vertex are coloured
differently. Basic animations can be created with the software packages. The provided
animation was constructed using graphical post-processing for the coordinate output.

Figure 4 Two graphs with their symmetric NAC-colourings used for the animations. To illustrate
the difficulty of finding the symmetric motion, we only show some arbitrary graph layouts. In fact,
the animations will never reach either of these layouts.

References
1 S. Dewar, G. Grasegger, and J. Legerský. Flexible placements of graphs with rotational

symmetry. Technical report, arXiv, 2020. arXiv:2003.09328.
2 A. C. Dixon. On certain deformable frameworks. Messenger, 29(2):1–21, 1899.
3 G. Grasegger and J. Legerský. FlexRiLoG – SageMath package for Flexible and Rigid

Labelings of Graphs. Zenodo, March 2020. doi:10.5281/zenodo.3719345.
4 G. Grasegger and J. Legerský. FlexRiLoG – SageMath package for Flexible and Rigid

Labelings of Graphs, repository, 2020. URL: https://github.com/Legersky/flexrilog/.
5 G. Grasegger, J. Legerský, and J. Schicho. Graphs with Flexible Labelings. Discrete &

Computational Geometry, 62(2):461–480, 2019. doi:10.1007/s00454-018-0026-9.
6 H. Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke. Zeitschrift für Angewandte

Mathematik und Mechanik (ZAMM), 7:58–72, 1927. doi:10.1002/zamm.19270070107.

1 See file examples/Rotationally_symmetric_frameworks_SoCGmedia.ipynb of [4] or try it online:
https://jan.legersky.cz/SoCGmedia2020 redirecting to a Binder version of the notebook.

http://arxiv.org/abs/2003.09328
https://doi.org/10.5281/zenodo.3719345
https://github.com/Legersky/flexrilog/
https://doi.org/10.1007/s00454-018-0026-9
https://doi.org/10.1002/zamm.19270070107
https://jan.legersky.cz/SoCGmedia2020

Hiding Sliding Cubes: Why Reconfiguring
Modular Robots Is Not Easy
Tillmann Miltzow
Utrecht University, The Netherlands
t.miltzow@uu.nl

Irene Parada
TU Eindhoven, The Netherlands
i.m.de.parada.munoz@tue.nl

Willem Sonke
TU Eindhoven, The Netherlands
w.m.sonke@tue.nl

Bettina Speckmann
TU Eindhoven, The Netherlands
b.speckmann@tue.nl

Jules Wulms
TU Eindhoven, The Netherlands
j.j.h.m.wulms@tue.nl

Abstract
Face-connected configurations of cubes are a common model for modular robots in three dimensions.
In this abstract and the accompanying video we study reconfigurations of such modular robots using
so-called sliding moves. Using sliding moves, it is always possible to reconfigure one face-connected
configuration of n cubes into any other, while keeping the robot connected at all stages of the
reconfiguration. For certain configurations Ω(n2) sliding moves are necessary. In contrast, the best
current upper bound is O(n3). It has been conjectured that there is always a cube on the outside
of any face-connected configuration of cubes which can be moved without breaking connectivity.
The existence of such a cube would immediately imply a straight-forward O(n2) reconfiguration
algorithm. However, we present a configuration of cubes such that no cube on the outside can move
without breaking connectivity. In other words, we show that this particular avenue towards an O(n2)
reconfiguration algorithm for face-connected cubes is blocked.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Sliding cubes, Reconfiguration, Modular robots

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.78

Category Media Exposition

Supplementary Material The code used, along with a list of coordinates of the cubes in the
construction, can be found at https://github.com/tue-aga/cubes-checker.

Funding This work was initiated at the 5th Workshop on Applied Geometric Algorithms (AGA
2020).
Tillmann Miltzow: Supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 016.Veni.192.250.
Bettina Speckmann: Partially supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 639.023.208.
Jules Wulms: Supported by the Netherlands eScience Center (NLeSC) under project no. 027.015.G02.

Acknowledgements We thank Tim Ophelders for his help with the computational verification of
the properties of our configuration.

© Tillmann Miltzow, Irene Parada, Willem Sonke, Bettina Speckmann, and Jules Wulms;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 78; pp. 78:1–78:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.miltzow@uu.nl
https://orcid.org/0000-0003-2401-8670
mailto:i.m.de.parada.munoz@tue.nl
https://orcid.org/0000-0001-9553-7385
mailto:w.m.sonke@tue.nl
https://orcid.org/0000-0002-8514-7858
mailto:b.speckmann@tue.nl
mailto:j.j.h.m.wulms@tue.nl
https://doi.org/10.4230/LIPIcs.SoCG.2020.78
https://github.com/tue-aga/cubes-checker
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

78:2 Hiding Sliding Cubes

1 Introduction

Modular robots consist of several identical modules that can assemble themselves into various
configurations. Often such modules live on a lattice and can move only relative to each
other. One of the main algorithmic challenges in this context is to find efficient ways to
reconfigure one configuration into any other. This topic has attracted significant attention in
the computational geometry community [1, 2, 3, 4, 5, 7]; yet many fundamental questions
remain open.

One frequently studied paradigm of modular robots is the so-called sliding cube model.
Here, a configuration C is a face-connected set of cubes on the cubic grid. The model allows
two types of moves: slides and convex transitions (see Figure 1). A cube c is movable, that
is, c is allowed to perform a move, if and only if removing c from the configuration C leaves
C \ c face-connected.

slide convex transition

Figure 1 The two types of moves in the sliding cube model.

To reconfigure a vertical pillar of n cubes into a horizontal line, Ω(n2) moves are necessary,
since that is the sum of the n (grid) distances to any horizontal plane through one of the cubes.
Furthermore, Abel and Kominers [1] showed that O(n3) slides and convex transitions suffice
to transform any configuration into a strip. Since both moves are reversible, this implies that
any two configurations of n cubes can be reconfigured into each other with O(n3) moves. It
has been conjectured that there is a simple way to close this gap, using so-called outer cubes.
Specifically, we say that the outside of a configuration C is the unbounded maximal set of
face-connected grid cells not in C. A cube c in a configuration C is an outer cube of C if
it is face-connected to the outside. Furthermore, a void is a maximal face-connected set of
grid cells neither in C, nor on the outside. If any configuration of cubes contains at least
two movable outer cubes, then it is straight-forward to construct a horizontal line of cubes
using O(n2) moves. In particular, we can iteratively construct the horizontal line to the
right of a rightmost cube in the original configuration. If we are not done, we can find one
movable outer cube c not yet part of the horizontal line. Then c can slide to the right of
the horizontal line in O(n) moves (we can actually find the shortest route by DFS). If the
configuration does not contain voids, then there are indeed always two movable outer cubes.
This fact about outer cubes has been used as the basis of reconfiguration algorithms [6, 8].
However, in this paper and in the associated video we show that there are configurations of
cubes where no outer cube is movable.

2 The configuration

Consider the face-adjacency graph of the cubes. This graph has a spanning tree where all
leaves correspond to cubes on the boundary of the configuration (either face-adjacent to the
outside or to a void) [7]. Any tree with at least two vertices has at least two leaves. Hence,
every configuration with more than one cube contains at least two movable cubes. It follows
that the face-adjacency graph of configurations with the fewest movable cubes is a path. We

T. Miltzow, I. Parada, W. Sonke, B. Speckmann, and J. Wulms 78:3

la
ye
rs

lo
w

h
ig
h

en
d

p
o
in
t

0

1

2

3

4

5

6

7

Figure 2 Adjacency graph of a basket, in top-down view: bottom (left) and lid (right). The
colors correspond to layers. Some positions contain two or three cubes stacked on top of each other.
Note that layer 3 is drawn in both halves.

are hence basing our construction on such configurations. Intuitively, we are building two
rope baskets out of the path of cubes. In each basket we are creating a void, in which we
are hiding one endpoint of the path. The other endpoint becomes the top of the lid of the
basket. Finally, we connect the two lids via a path.

We build each basket layer by layer (see Figure 2 (left) and Figure 3 (left)). This is
a delicate construction, as we have to enclose a void while not creating cycles in the face-
adjacency graph. Starting at an endpoint e of the path, on Layer 2, we first loop around e

on Layers 1 and 0 in such a way that we trap e locally on the inside. The remainder of the
construction closes this void, so that e is actually hidden inside it. To do so we build a lid
for the basket, as shown in Figure 2 (right) and Figure 3 (right), ending with an endpoint e′

on the top of the lid. All that remains now is to connect the top cubes of each basket via a
path of cubes that does not introduce cycles (see Figure 4).

We computationally verified the correctness of our basket construction. The code
used, along with a list of coordinates of the cubes in the construction, can be found at
https://github.com/tue-aga/cubes-checker.

Figure 3 3D rendering of a basket: bottom only (left), and entire basket (right).

SoCG 2020

https://github.com/tue-aga/cubes-checker

78:4 Hiding Sliding Cubes

Figure 4 3D rendering of the complete construction.

3 The video

Our construction is inherently three dimensional and two-dimensional illustrations such as
Figures 2 and 3 can convey only a schematic view of one of the baskets. To make our result
more accessible and to stimulate interest in this fascinating class of modular robots, we hence
produced a video using 3D animation in Blender. Our video first introduces modular robots
and the sliding cube model, and then proceeds to build our configuration step-by-step.

4 Future work

The sliding cubes model extends to dimensions higher than three. Hence, concerning our
specific construction, one can wonder if a similar example can be constructed in four or
higher dimensions. Furthermore, we need two voids to trap both endpoints of our path. Is
there an example that uses only one void? An obvious open question on the algorithmic
side is the existence of an algorithm that reconfigures two configurations of n cubes in O(n2)
time. Furthermore, the question arises if there are input sensitive algorithms to reconfigure
cubes. That is, given two configurations C1 and C2, can we find the minimum number k of
moves to reconfigure C1 into C2?

References
1 Zachary Abel and Scott Duke Kominers. Universal reconfiguration of (hyper-)cubic robots.

ArXiv e-Prints, 2011. arXiv:0802.3414v3.
2 Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmovic,

Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera
Sacristán. Universal reconfiguration of facet-connected modular robots by pivots: The O(1)
Musketeers. In 27th Annual European Symposium on Algorithms (ESA 2019), volume 144
of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:14, 2019. doi:
10.4230/LIPIcs.ESA.2019.3.

3 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Val Pinciu, Suneeta Ramaswami, Vera Sacristán, and Stefanie
Wuhrer. Efficient constant-velocity reconfiguration of crystalline robots. Robotica, 29(1):59–71,
2011. doi:10.1017/S026357471000072X.

http://arxiv.org/abs/0802.3414v3
https://doi.org/10.4230/LIPIcs.ESA.2019.3
https://doi.org/10.4230/LIPIcs.ESA.2019.3
https://doi.org/10.1017/S026357471000072X

T. Miltzow, I. Parada, W. Sonke, B. Speckmann, and J. Wulms 78:5

4 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D. Demaine, Robin Flatland, Stefan
Langerman, Joseph O’Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer.
Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6):652–663,
2009. doi:10.1016/j.comgeo.2008.11.003.

5 Adrian Dumitrescu and János Pach. Pushing squares around. Graphs and Combinatorics,
22:37–50, 2006. doi:10.1007/s00373-005-0640-1.

6 Robert Fitch, Zack Butler, and Daniela Rus. Reconfiguration planning for heterogeneous self-
reconfiguring robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and System (IROS 2003), volume 3, pages 2460–2467, 2003. doi:10.1109/IROS.2003.
1249239.

7 Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sacristán. Distributed
reconfiguration of 2D lattice-based modular robotic systems. Autonomous Robots, 38:383–413,
2015. doi:10.1007/s10514-015-9421-8.

8 Daniela Rus and Marsette Vona. Crystalline robots: self-reconfiguration with compressible
unit modules. Autonomous Robots, 10:107–124, 2001. doi:10.1023/A:1026504804984.

SoCG 2020

https://doi.org/10.1016/j.comgeo.2008.11.003
https://doi.org/10.1007/s00373-005-0640-1
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1109/IROS.2003.1249239
https://doi.org/10.1007/s10514-015-9421-8
https://doi.org/10.1023/A:1026504804984

Dots & Polygons
Kevin Buchin
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
k.a.buchin@tue.nl

Mart Hagedoorn
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
m.h.hagedoorn@student.tue.nl

Irina Kostitsyna
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
i.kostitsyna@tue.nl

Max van Mulken
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
m.j.m.v.mulken@student.tue.nl

Jolan Rensen
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
j.j.r.rensen@student.tue.nl

Leo van Schooten
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
l.g.t.v.schooten@student.tue.nl

Abstract
We present a new game, Dots & Polygons, played on a planar point set. We prove that its NP-hard
and discuss strategies for the case when the point set is in convex position.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Dots & Boxes, NP-hard, game, cycle packing

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.79

Category Media Exposition

Related Version A full version of this paper is available at https://arxiv.org/abs/2004.01235.

Supplementary Material
game: https://www.win.tue.nl/~kbuchin/proj/ruler/dotsandpolygons/,
source code: https://github.com/kbuchin/ruler/tree/dots-and-polygons

Acknowledgements We would like to thank David Eppstein for discussing [9] with us.

1 Introduction

Dots & Boxes [4] is a popular game, in which two players take turns in connecting nodes
lying on the integer lattice, scoring when they surround unit squares. We introduce a more
geometric variant of this game: Dots & Polygons.

The game is played on a planar point set P of size n. Two players, B (blue) and R (red),
take turns, connecting two points p, q ∈ P by a straight-line edge in a turn. The edge may
not intersect other points or edges, and may not lie in a previously scored area. When a
player closes a polygon, this player scores its area and makes another move. At the end, the
player with the larger total area wins. We distinguish two variants. In Dots & Polygons &
Holes, when a player closes a cycle, the player scores the enclosed area (excluding possibly

© Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, Max van Mulken, Jolan Rensen,
and Leo van Schooten;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 79; pp. 79:1–79:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3022-7877
mailto:k.a.buchin@tue.nl
mailto:m.h.hagedoorn@student.tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:i.kostitsyna@tue.nl
mailto:m.j.m.v.mulken@student.tue.nl
mailto:j.j.r.rensen@student.tue.nl
mailto:l.g.t.v.schooten@student.tue.nl
https://doi.org/10.4230/LIPIcs.SoCG.2020.79
https://arxiv.org/abs/2004.01235
https://www.win.tue.nl/~kbuchin/proj/ruler/dotsandpolygons/
https://github.com/kbuchin/ruler/tree/dots-and-polygons
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Dots & Polygons

Figure 1 A screenshot of the Dots & Polygons game. In the Dots & Polygons & Holes version,
if R draws the dotted edge, R will score the interior minus the blue triangle. In Dots & Simple
Polygons, R will not score in this way.

previously enclosed parts). In Dots & Simple Polygons, a player only scores, when they
close a simple polygon with no points inside. Figure 1 illustrates the difference between the
variants.

A similar game is Monochromatic Complete Triangulation Game [1], but in that game
only triangles are scored, and the score is the number of triangles. There is another variant
of Dots & Boxes also called Dots & Polygons [12] that is played on the integer lattice.

Dots & Polygons is implemented on top of the Ruler of the Plane framework [2]. Both
variants of the game can be played online (see supplementary materials). The ruler of the
plane framework can be used to demonstrate different interesting geometric concepts and their
applications. For example, to show a dynamic representation of the trapezoidal decomposition
the user can press the T key while a game is active. The framework is extended with an
implementation of a Doubly-Connected Edge List (DCEL) [3], a trapezoidal decomposition
[3] and the Graham Scan algorithm [11].

Contributions. In Section 2 we show that Dots & Simple Polygons is NP-hard. We do
so by a reduction from vertex-disjoint cycle packing in cubic planar graphs, including a
self-contained reduction from planar 3-Satisfiability to this cycle-packing problem, and from
the cycle-packing problem to Dots & Boxes. In Section 3 we discuss a greedy strategy for
the case that P is in convex position.

2 Hardness

We show that Dots & Simple Polygons is NP-hard by a reduction from the maximum cycle
packing problem in planar cubic graphs. The reduction is similar to the proof of NP-hardness
of Dots & Boxes. The book Winning Ways for your Mathematical Plays [5] mentions that
a generalization of Dots & Boxes can be shown to be NP-hard by a reduction from the
maximum vertex-disjoint cycle packing (VCP) problem. The VCP problem can be viewed as
a generalization of the triangle packing problem [6], which is known to be NP-hard [10].

K. Buchin et al. 79:3

v1

v6

v2 v3

v4

v5

v1

v6

v2 v3

v4

v5

v1

v6

v2 v3

v4

v5

v1

v6

v2 v3

v4

v5

v1

v6

v2 v3

v4

v5

(a) (b) (c)

(d) (e)

Figure 2 Player R could have won this game, but after reaching the state in (a) loses as shown
in (b–e).

Eppstein notes that the NP-hardness, mentioned in [5], should apply to the classic Dots
& Boxes by a reduction from the VCP problem in planar cubic graphs [9]. However, he does
not cite a source of the hardness proof for this VCP variant. Furthermore, triangle packing is
polynomial-time solvable in planar graphs with maximum degree three [8], and thus can no
longer be used to justify the hardness of the VCP in planar cubic graphs. Thus, for the sake
of completeness, we also show Theorem 1 and Theorem 2, which are used to prove Theorem
3. The full proofs for these theorems are given in [7].

I Theorem 1. Maximal vertex-disjoint cycle packing in planar cubic graphs is NP-complete.

I Theorem 2. Given a state of Dots & Boxes, it is NP-hard to decide whether B can win.

I Theorem 3. Given a state of Dots & Simple Polygons, it is NP-hard to decide whether B
can win.

3 Strategy

What follows is a discussion of greedy strategies for Dots & Polygons played on a set of
points P in convex position. Trivially, when the points are places in convex position, there
exists no distinction between Dots & Polygons & Holes and Dots & Simple Polygons. In the
related Monochromatic Complete Triangulation Game a greedy strategy is optimal for such
points [1].

We first observe that in this setting the number of turns is exactly n = |P |: Consider
connected components of the edges drawn by the players. If a player connects two points in
the same component, this closes a polygon, and therefore the turn continues. If, however,
the two points are in different components, the turn ends and the number of connected
components decreases. Thus, the number of turns equals to the number of initial components.

SoCG 2020

79:4 Dots & Polygons

Consider a game state in which the current player cannot close a polygon. Let E be the
set of all edges that can still be drawn. Define the weight w(e) for e ∈ E to be the area the
opponent can claim on their next turn if the current player draws e. For example an edge e

between two isolated points has weight w(e) = 0. A simple greedy strategy is the following: if
there is an edge that can close some area, immediately draw that edge. Otherwise, draw the
edge emin = min

∀e∈E
w(e). This strategy is not optimal, as shown in Figure 2.

The edges drawn partition the remaining area into subproblems. For an edge e ∈ E, w(e)
can only change if an edge in the same subproblem is drawn. Let E′ ⊂ E be the set of edges
within a subproblem. We call a subproblem easy, if only two of the edges e, e′ ∈ E′ lie on the
convex hull of P . In such a subproblem, all edges have the same weight, namely the area of
the subproblem. We call a game state in which all subproblems are easy, an easy endgame.

In the following we assume that points are placed in such a way that a draw is not
possible. Consider the player that will go last (i.e., B for odd n, R for even n). If this player
plays the simple greedy strategy in such a way that they reach an easy endgame, then this
player wins. The reason is that from that point onward, anytime the opponent scores an
area, this player will score an area that is at least as large in their next turn. For n ≤ 5,
an easy endgame is always reached. For n = 6 and n = 7, the player that will go last can
enforce an easy endgame by playing a diagonal in their first move, preventing the situation
of Figure 2. In this way, B can always win for n = 3, 5, 7, and R for n = 4, 6. We leave the
problem for n > 7 open.

References
1 Oswin Aichholzer, David Bremner, Erik D. Demaine, Ferran Hurtado, Evangelos Krana-

kis, Hannes Krasser, Suneeta Ramaswami, Saurabh Sethia, and Jorge Urrutia. Games on
triangulations. Theoretical Computer Science, 343(1–2):52–54, 2005.

2 Sander Beekhuis, Kevin Buchin, Thom Castermans, Thom Hurks, and Willem Sonke. Ruler of
the plane – games of geometry (multimedia contribution). In 33rd International Symposium
on Computational Geometry (SoCG), volume 77 of LIPIcs, pages 63:1–63:5. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

3 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
geometry: algorithms and applications. Springer, 2008.

4 Elwyn R. Berlekamp. The Dots and Boxes Game: Sophisticated Child’s Play. AK Peters/CRC
Press, 2000.

5 Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Chapter 16: Dots-and-boxes. In
Winning Ways for your Mathematical Plays, volume 3, pages 541–584. A K Peters/CRC Press,
2nd edition, 2003.

6 Hans L. Bodlaender. On disjoint cycles. In Graph-Theoretic Concepts in Computer Science,
pages 230–238, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

7 Kevin Buchin, Mart Hagedoorn, Irina Kostitsyna, Max van Mulken, Jolan Rensen, and Leo
van Schooten. Dots & polygons, 2020. arXiv:2004.01235.

8 Alberto Caprara and Romeo Rizzi. Packing triangles in bounded degree graphs. Information
Processing Letters, 84(4):175–180, 2002.

9 David Eppstein. Computational complexity of games and puzzles. Last accessed on 14/02/2020.
URL: https://www.ics.uci.edu/~eppstein/cgt/hard.html.

10 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1979.

11 Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1:132–133, 1972.

12 Sian Zelbo. Dots and polygons game. Last accessed on 14/02/2020. URL: http://www.
1001mathproblems.com/2015/03/for-printable-game-boards-click-here.html.

http://arxiv.org/abs/2004.01235
https://www.ics.uci.edu/~eppstein/cgt/hard.html
http://www.1001mathproblems.com/2015/03/for-printable-game-boards-click-here.html
http://www.1001mathproblems.com/2015/03/for-printable-game-boards-click-here.html

Designing Art Galleries
Toon van Benthem
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
a.t.v.benthem@student.tue.nl

Kevin Buchin
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
k.a.buchin@tue.nl

Irina Kostitsyna
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
i.kostitsyna@tue.nl

Stijn Slot
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
s.j.slot@student.tue.nl

Abstract
We present a method for generating interesting levels based on several NP-hardness reductions for a
puzzle game based on the Art Gallery problem.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Art Gallery problem, NP-hard, puzzle, level generation

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.80

Category Media Exposition

Supplementary Material game: https://www.win.tue.nl/~kbuchin/proj/ruler/art/,
source code: https://github.com/kbuchin/ruler/

1 Introduction

The Art Gallery problem is a classic visibility problem in computational geometry: given a
polygon (i.e., an art gallery), find the smallest number of points (guards) inside the polygon
such that the guards together see the interior of the polygon. The Art Gallery problem was
shown to be NP-hard by Lee and Lin [3] by a reduction from 3SAT.

Figure 1 Screenshot from the Art Gallery Game: Two torches/guards have been placed so far,
which is not sufficient to see the whole polygon.

© Toon van Benthem, Kevin Buchin, Irina Kostitsyna, and Stijn Slot;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 80; pp. 80:1–80:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.t.v.benthem@student.tue.nl
https://orcid.org/0000-0002-3022-7877
mailto:k.a.buchin@tue.nl
https://orcid.org/0000-0003-0544-2257
mailto:i.kostitsyna@tue.nl
mailto:s.j.slot@student.tue.nl
https://doi.org/10.4230/LIPIcs.SoCG.2020.80
https://www.win.tue.nl/~kbuchin/proj/ruler/art/
https://github.com/kbuchin/ruler/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 Designing Art Galleries

xi

xixi

xi

Figure 2 Variable gadget for 3SAT.

xixi

Figure 3 Wire gadget for 3SAT.

In a collection of games based on computational geometry [2], we recently published an
Art Gallery puzzle1, in which the player has to solve the Art Gallery problem, see Figure 1.
The goal of this work is to develop methods for generating interesting levels for the Art
Gallery puzzle based on NP-hardness reductions. We design levels, i.e., art galleries, based on
three hardness reductions, from planar 3SAT, from planar vertex cover, and from geometric
hitting set. We present the details of level generation using NP-hardness reductions in
Section 2. We discuss how to measure the quality of the levels in Section 3. To evaluate the
generated levels we have performed a user study, the results of which we discuss in Section 4.

2 Reductions

Next we present three NP-hardness reductions for the Art Gallery problem. The constructions
described can be used to generate new levels, starting from an instance of the respective
original problem, for the Art Gallery game.

Planar 3SAT. The first method is based on the reduction from the planar 3SAT [4]. Given
an instance of the planar 3SAT, we construct an instance of the Art Gallery problem for
polygons with holes. The 3SAT formula is satisfiable if and only if the resulting polygon can
be guarded by K or fewer guards, for some K. For each variable and clause of the 3SAT
instance we construct a variable- and clause-gadget respectively, and connect them with wire
gadgets. To connect the same variable to multiple clauses we use split gadgets.

Variable gadget (Fig. 2) is a cycle with an even number of corners. The essential property of
the gadget is that it (ignoring outgoing corridors) can be optimally covered in two possible
ways. By increasing the size of the gadget (to a 2k-gon for k ≥ 2) we can create more
instances of xi and xi for a 3SAT variable xi. This can also be achieved using a split gadget.

Wire gadget consists of a zig-zag corridor (Fig. 3), which can be optimally covered by placing
the guards in every other corner. The wire thus has two settings, which depend on the initial
corner in which the first guard is placed. Define the wire to be active for a given direction
when guard are placed in every other corners starting from the second turn.

1 http://www.win.tue.nl/~kbuchin/proj/ruler/

http://www.win.tue.nl/~kbuchin/proj/ruler/

T. van Benthem, K. Buchin, I. Kostitsyna, and S. Slot 80:3

xi

xk

xi xj

xk

xj

xi ∨ xj ∨ xk

Figure 4 Clause gadget for 3SAT.

xi

xixi

xi

Figure 5 Split gadget for 3SAT.

Figure 6 Art Gallery puzzle generated by reduction from planar 3SAT formula (a ∨ b ∨ c) ∧ (¬a ∨
¬b) ∧ (¬b ∨ ¬c ∨ d) ∧ (¬c ∨ ¬d) ∧ (a ∨ b ∨ d); 13 guards are necessary for coverage (K = 13).

Clause gadget. In the clause gadget (Fig. 4) three corridors meet in a large room. It is covered
if one of the wires is active, i.e., one of the wires has a guard in the corner closest to the
room. The room can be of any size, as long as it cannot be covered by three inactive wires.

Split gadget. Though a split gadget (Fig. 5) is not technically necessary, for generating
interesting puzzles we believe it might be better than a large variable gadget. For the split
gadget we can reuse part of the variable gadget.

Puzzle level design. Figure 6 shows an example of an Art Gallery level generated from a
small instance of planar 3SAT, with three variables and three clauses. Starting from a 3SAT
instance, variables and clauses are replaced by gadgets and connected using corridors. The
shape (e.g. variable-clause graph and corridors) for a level is designed by hand.

Planar Vertex Cover. Planar VC is another classic NP-complete problem which can be
reduced to Art Gallery. For each vertex and edge, we build a vertex- and edge-gadget.

Vertex and edge gadgets. Figure 7 shows a vertex gadget. We represent the edges with positive
width corridors which meet together in a crossing (highlighted in orange) corresponding to
a vertex. The main property is that placing a guard at the crossing will cover all adjacent
corridors. Additionally, if all corridors are covered by guards the crossing will also be covered.

SoCG 2020

80:4 Designing Art Galleries

Figure 7 Vertex gadget. Left: original vertex. Right: simple vertex gadget.

Figure 8 From Vertex Cover (K = 7). Figure 9 From Geometric Hitting Set (K = 3).

One subtlety for the vertex gadget is that corridors must not be collinear for the reduction
to work. Potential issues may also arise from the interplay of the thickness of the corridors
and the general layout of the construction. However, by carefully designing the layout of the
graph and by adjusting the thickness of the corridors, these issues can be avoided.

Puzzle level design. In the final construction we use a planar embedding of the graph to
create the Art Gallery level. Figure 8 shows an example of a generated level.

Geometric Hitting Set. A third NP-hardness reduction, used for level generation, is from
hitting the lines of a line arrangement with a minimum number of intersection points, the so
called “spike box” construction [1]. For a given arrangement of lines in the plane, construct a
large box containing all the intersections of the lines. For each line attach two spikes sticking
out of the box. Guarding the spike box then is equivalent to hitting all the lines in the line
arrangement. A spike box construction is shown in Figure 9, where solid lines are covered by
the two guards, and dashed lines are not covered.

3 Defining Interestingness

To be able to compare the three described methods, and to evaluate the quality of generated
puzzles, we measure how interesting the resulting puzzles are to a human. It may occur that
a certain puzzle is trivial to an algorithmic solver but a human may have a very hard time in
finding the right step. We believe the quality of a puzzle to be a combination of the following
factors: niceness of the polygon shape, difficulty of the puzzle, fun in solving the puzzle.

T. van Benthem, K. Buchin, I. Kostitsyna, and S. Slot 80:5

The intuition behind this is the following. A puzzle that is too easy is often not interesting,
as the solution will be too obvious. A puzzle that is not aesthetically pleasing, for example
containing too fine features, can be frustrating. A puzzle that is not fun, e.g., the logic
behind which is obvious, is often not interesting, since players may get bored.

4 User Study

In a user study, participants (n = 17) were asked to solve puzzles and answer a set of
questions. Specifically the flow for each art gallery was: (i) observe an Art Gallery puzzle
level for five seconds, (ii) answer a pre-solve survey, (iii) attempt to solve the Art Gallery
puzzle level, and (iv) answer a post-solve survey.

The conclusions we draw from the user study is that the puzzles generated based on the
reduction from the planar 3SAT were the most difficult ones (indicated by high solve time
and placement attempts), yet also the most enjoyable. The single most enjoyed puzzle is a
3SAT puzzle (a puzzle similar to Fig. 6). Vertex cover puzzles were the most logical to solve,
yet also the easiest set of puzzles. The spike box puzzles were considered the least nice. Their
too fine features resulted in significantly lower average scores for shape aesthetics, solving
fun, logical approach, and shape uniqueness. The single least enjoyed puzzle is a spike box
puzzle (one similar to Fig. 9), the main problem being the lack of clarity regarding what
part is still not illuminated. As a consequence, we added a feedback point which highlights
some point in the polygon (white dot in Fig. 9) that is not yet covered.

References
1 Yoav Amit, Joseph S.B. Mitchell, and Eli Packer. Locating guards for visibility coverage of

polygons. International Journal of Computational Geometry & Applications, 20(05):601–630,
2010.

2 Sander Beekhuis, Kevin Buchin, Thom Castermans, Thom Hurks, and Willem Sonke. Ruler
of the plane – games of geometry (multimedia contribution). In Proc. 33rd International
Symposium on Computational Geometry (SoCG), pages 63:1–63:5, 2017.

3 Der-Tsai Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986.

4 David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982.

SoCG 2020

Plane-Filling Trails
Herman Haverkort
Universität Bonn, Germany
http://herman.haverkort.net/
cs.herman@haverkort.net

Abstract
The order in which plane-filling curves visit points in the plane can be exploited to design efficient
algorithms. Typically, the curves are useful because they preserve locality: points that are close to
each other along the curve tend to be close to each other in the plane, and vice versa. However,
sketches of plane-filling curves do not show this well: they are hard to read on different levels of
detail and it is hard to see how far apart points are along the curve. This paper presents a software
tool to produce compelling visualisations that may give more insight in the structure of the curves.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases space-filling curve, plane-filling curve, spatial indexing

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.81

Category Media Exposition

Related Version A full version of this paper is available at https://arxiv.org/abs/2003.12745.

Supplementary Material For software and additional figures visit http://spacefillingcurves.net.

1 Plane-filling curves

A plane-filling curve is a continuous surjective mapping f from the unit interval to a subset
of the plane that has positive area, that is, Jordan content. Although such a mapping cannot
be one-to-one, an unambiguous inverse can be defined with a tie-breaking rule. Thus, the
mapping provides an order in which to process points in the plane. Famous examples include
Pólya’s triangle-filling curve [12] and square-filling curves by Peano [11] and Hilbert [7].
Continuity of the mapping is not always required: if we drop this requirement, we speak of
plane-filling traversals. Z-Order [9] is an example that is often applied in practice.

Plane-filling traversals and their inverses have been used to design efficient solutions for
various applications, including indexing of points in the plane, geometric algorithms and data
structures, finite element methods, load balancing in parallel computing, improving cache
utilization in computations on large matrices or images, combinatorial optimization, image
compression, information visualization, and sonification [1, 6]. It is therefore interesting to
see the differences between the various plane-filling traversals that have been proposed.

2 Defining a plane-filling curve

Plane-filling traversals are usually visualised in a way that follows their definition. Consider
Pólya’s curve. To define it, we start with a single line segment (Figure 1a). We refine
this simple drawing as follows. Let p and r be the end points of the original line segment.
Imagine a circle with centre line pr and draw another point q halfway on the circle as we
follow it clockwise from p to r. Erase the original line segment pr and replace it by two
smaller segments pq and qr (Figure 1b). Next, refine the drawing again by applying the
same refinement procedure to each segment, but this time changing the orientation: to find
the new intermediate points, we now follow the circles in counterclockwise direction. To
indicate this change in orientation, we add an arrow head to pr on the left side, and put the
arrow heads for pq and qr on the right side. Thus, two line segments become four segments

© Herman Haverkort;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 81; pp. 81:1–81:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://herman.haverkort.net/
mailto:cs.herman@haverkort.net
https://doi.org/10.4230/LIPIcs.SoCG.2020.81
https://arxiv.org/abs/2003.12745
http://spacefillingcurves.net
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Plane-Filling Trails

p r p r

q
a) b) c) d)

Figure 1 Pólya’s triangle-filling curve.

a) b)

Figure 2 Sketches of a) the Hilbert curve [7] and b) an Ω section of the βΩ-curve [16].

(Figure 1c). Note that the middle two segments lie on top of each other, but they have
different directions. If we repeat this refinement process six more times, alternating clockwise
and counterclockwise, and move all points slightly so that the curve does not back up on
itself, we get Figure 1d. If we continue ad infinitum, the curve fills a right isosceles triangle.

3 The challenge of visualising plane-filling curves

Figures 1b and 1d are typical of the way in which plane-filling curves are usually sketched.
Neither figure makes it clear in an instant in what order the curve fills what parts of the plane
– not to mention showing the curve’s locality-preserving properties and violations thereof.
Try comparing, for example, Hilbert’s curve in Figure 2a to the βΩ-curve in Figure 2b (a
promising alternative [17]). Furthermore, the impression one gets of the curve depends
heavily on how one chooses to define it and on the details of how it is sketched. Figure 3a
shows three sketches that all sketch the same curve, and Figure 3b shows a sketch of a
trapezoid-filling curve that is nothing else than the first three quarters of Pólya’s curve: none
of this is visually obvious from the drawings.

4 Visualisation as three-dimensional landscapes

To visualise plane-filling curves and traversals more clearly, I developed a tool pftrail. The
tool reads a definition of a plane-filling curve and produces a plane-filling trail, a model of
the curve on a three-dimensional landscape, in which each point f(t) = (x, y) of the curve
is rendered as a point (x, y, t). Thus the curve becomes a steadily ascending path in the
landscape, see Figure 4. At a low resolution, the concept can be seen in action in a Hilbert
curve marble run design by Ortiz [10]. At higher resolutions, we obtain a clear visualisation
of the locality-preserving and locality-violating properties of the curve that can be studied
at different levels of detail. High, steep slopes reveal pairs of points that are close in the

H. Haverkort 81:3

a) b)

Figure 3 a) Three sketches of Peano’s curve, mapped to a
√

3 : 1 rectangle. b) A sketch of a
trapezoid-filling curve.

a) b)

Figure 4 a) Pólya’s curve. b) The trapezoid-filling curve sketched in Figure 3b.

plane but far apart along the curve. Narrow corridors reveal sections between points that are
relatively close to each other along the curve, but far apart in the plane. Wide corridors show
sections of the curve that have good locality-preserving properties in both directions. The
global course of the curve is easy to follow, but the image also facilitates studying the curve
in more detail. Moreover, the visualisation is independent of what definition of the curve is
used, out of multiple equivalent definitions. For example, the fact that the trapezoid-filling
curve is simply the first three quarters of the Pólya curve is now obvious, see Figure 4. The
visualisation gives the user the possibility to study the curve without any bias towards an
arbitrary underlying tessellation.

5 Alternative visualisations

Alternative methods that come closest to meeting the same goals render the t-coordinate as
values on a grey or colour scale instead of elevation. Indeed, such renderings are quite common.
However, in comparison to our perception of elevation in a landscape, our perception of
colour is less precise, more context-dependent, and not invariant under translation. Another
interesting alternative are the three-dimensional models by Irving and Segerman [8] that stack
different refinement levels according to a definition of the curve. However, these models are
hard to “read” when presented as a two-dimensional printed image, and they are inherently
dependent on the chosen definition of the curve. That is fine if one wants to illustrate the
definition, but it is a shortcoming if one wants to be able to reveal the equivalence of different
definitions by producing the same image in such cases.

SoCG 2020

81:4 Plane-Filling Trails

Figure 5 On top: Hilbert’s curve [7], βΩ [16], and a curve from Ventrella [15] (p86) filling a
fractal “pinwheel” tile [2], rendered “eroded”. In the middle: Double-Gray-code [4] and a curve
filling half of a Rauzy fractal [13]. Bottom: the Gosper curve [5], a close-up of the point at 2/7 of
the curve where three tiles meet (ζ = 8), and a close-up of the point at 1/3 of Pólya’s curve (ζ = 5).

6 The pftrail tool

The pftrail tool reads the definition of a plane-filling traversal in the format from Ventrella [15],
extended to support discontinuities and multiple refinement rules (known as generators). Thus,
the various traversals that have been proposed in the computer science literature [3, 14, 16]
can all be rendered and it is easy to explore new designs. Traversals are not confined to an
integer grid, so we can also visualise interesting traversals related to, for example, the Rauzy

H. Haverkort 81:5

fractal [13] (see Figure 5). For rendering, the traversal is sampled and drawn on a grid of
hexagonal cells; thus pftrail operates without any knowledge of the shape that is filled by the
traversal (which can be a complicated fractal). The tool offers various options to control
parameters such as camera position, resolution of the rendering grid, visualisation style, and
the height of “parapets” that accentuate steep drops to enhance the perception of depth.
The output is a collada file that can be rendered with, for example, Blender; if the resolution
is not too high, it can also be moved around in Blender in real time.

Special features include “polynomial” close-up: given a focus point p and a zoom parameter
ζ, any point q at distance x from p is moved to the point at distance x1/ζ on the ray from p

through q. Elevation differences are modified in a similar way. This allows us to zoom in
on features that remain invisible in normal close-up views. For example, the Gosper curve
(Figure 5, bottom left) follows a tessellation with tiles arranged in a hexagonal grid pattern.
At the vertices of this grid, the tiles wind around each other like logarithmic spirals that
shrink by a factor of roughly 9 · 107 per revolution. No normal close-up view could show
these spirals, but the polynomial close-up reveals them clearly, see Figure 5.

References
1 M. Bader. Space-filling curves: an introduction with applications in scientific computing.

Springer, 2013.
2 C. Bandt, D. Mekhontsev, and A. Tetenov. A single fractal pinwheel tile. Proc. Amer. Math,.

Soc., 146:1271–1285, 2018.
3 C. Burstedde and J. Holke. A tetrahedral space-filling curve for nonconforming adaptive

meshes. SIAM J. Scientific Computing, 38(5), 2016.
4 C. Faloutsos. Multiattribute hashing using Gray codes. In Proc. 1986 Conf. ACM SIG

Management of Data (SIGMOD 1986), pages 227–238, 1986.
5 M. Gardner. Mathematical games: in which “monster” curves force redefinition of the word

“curve”. Scientific American, 235:124–133, 1976.
6 H. Haverkort. Sixteen space-filling curves and traversals for d-dimensional cubes and simplices.

CoRR, abs/1711.04473, 2017. arXiv:1711.04473.
7 D. Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann., 38(3):459–

460, 1891.
8 G. Irving and H. Segerman. Developing fractal curves. J. of Mathematics and the Arts,

7(3–4):103–121, 2013.
9 G. Morton. A computer oriented geodetic data base, and a new technique in file sequencing.

Technical report, International Business Machines Co., Ottawa, Canada, 1966.
10 S. Ortiz. Hilbert curve marble run, 2018. Accessed 26 March 2020. URL: https://www.

thingiverse.com/thing:3031891.
11 G. Peano. Sur une courbe, qui remplit toute une aire plane. Math. Ann., 36(1):157–160, 1890.
12 G. Pólya. Über eine Peanosche Kurve. Bull. Int. Acad. Sci. Cracovie, Ser. A, pages 305–313,

1913.
13 G. Rauzy. Nombres algébriques et substitutions. Bulletin Soc. Math. Fr., 110:147–178, 1982.
14 H. Samet. Foundations of multidimensional and metric data structures, page 199. Morgan

Kaufmann, 2006.
15 J. Ventrella. Brainfilling curves: a fractal bestiary. Eyebrain books, 2012.
16 J.-M. Wierum. Definition of a new circular space-filling curve: βΩ-indexing. Technical Report

TR-001-02, Paderborn Center for Parallel Computing (PC2), 2002.
17 S.-E. Yoon and P. Lindstrom. Mesh layouts for block-based caches. IEEE Trans. on Visual-

ization and Computer Graphics, 12(5), 2006.

SoCG 2020

http://arxiv.org/abs/1711.04473
https://www.thingiverse.com/thing:3031891
https://www.thingiverse.com/thing:3031891

Visual Demo of Discrete Stratified Morse Theory
Youjia Zhou
University of Utah, Salt Lake City, UT, USA
zhou325@sci.utah.edu

Kevin Knudson
University of Florida, Gainesville, FL, USA
kknudson@ufl.edu

Bei Wang1

University of Utah, Salt Lake City, UT, USA
beiwang@sci.utah.edu

Abstract
Discrete stratified Morse theory, first introduced by Knudson and Wang, works toward a discrete
analogue of Goresky and MacPherson’s stratified Morse theory. It is inspired by the works of Forman
on discrete Morse theory by generalizing stratified Morse theory to finite simplicial complexes. The
class of discrete stratified Morse functions is much larger than that of discrete Morse functions. Any
arbitrary real-valued function defined on a finite simplicial complex can be made into a discrete
stratified Morse function with the proper stratification of the underlying complex. An algorithm
is given by Knudson and Wang that constructs a discrete stratified Morse function on any finite
simplicial complex equipped with an arbitrary real-valued function. Our media contribution is an
open-sourced visualization tool that implements such an algorithm for 2-complexes embedded in the
plane, and provides an interactive demo for users to explore the algorithmic process and to perform
homotopy-preserving simplification of the resulting stratified complex.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Discrete Morse theory, stratified Morse theory, discrete stratified Morse
theory, topological data analysis, data visualization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.82

Category Media Exposition

Related Version A paper describing the theoretical foundation for the visualization is available at
https://arxiv.org/abs/1801.03183.

Supplementary Material The visualization tool (our media contribution) is available on GitHub:
https://github.com/tdavislab/VIS-DSMT with a link to a visual demo.

Funding NSF IIS-1513616, NSF DBI-1661375.

Acknowledgements We thank Yulong Liang who worked on the first prototype of the visualization.

1 Discrete stratified Morse theory

We begin with a brief review of discrete stratified Morse theory (DSMT) [4, 5]. Several
key components differentiate DSMT from previous theories [1, 2, 3]. First, we work with
open simplices, which is not surprising, since we are developing a discrete version of the
strata in stratified spaces, which are typically open manifolds. Second, we define a stratified
simplicial complex, which mimics the frontier condition of a Whitney stratification in a
discrete setting. Third, we derive the notion of a discrete stratified Morse function from the

1 Corresponding author

© Youjia Zhou, Kevin Knudson, and Bei Wang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 82; pp. 82:1–82:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4501-8496
mailto:zhou325@sci.utah.edu
https://orcid.org/0000-0001-6768-2542
mailto:kknudson@ufl.edu
https://orcid.org/0000-0002-9240-0700
mailto:beiwang@sci.utah.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.82
https://arxiv.org/abs/1801.03183
https://github.com/tdavislab/VIS-DSMT
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

82:2 Visual Demo of Discrete Stratified Morse Theory

definition of a stratified Morse function. Finally, we establish the theoretical foundations
of DSMT regarding its ability to capture the shape of data (homotopy type and homology)
and its relation to DMT (generality). In particular, DSMT is applicable to any function
f defined on a simplicial complex K since f can be made into a discrete stratified Morse
function with respect to some stratification S.

I Definition 1 (Definition 3.2, [5]). Let K be a simplicial complex. A stratification of K,
S = {Si}, is a locally finite collection of disjoint locally closed subsets called strata, Si ⊂ K,
such that K =

⋃
Si and Si satisfies the condition of the frontier: Si ∩ Sj 6= ∅ if and only if

Si ⊂ Sj. Each Si is a union of (open) simplices; its connected components are called strata
pieces. Let Si denote its closure, and S̊i its interior.

A stratification gives an assignment s : K → S taking each open simplex σ in K to a
particular stratum s(σ). Let K be a simplicial complex equipped with a stratification s and
a function f : K → R. For a p-simplex α, we define

Us(α) = {β(p+1) > α | s(β) = s(α) and f(β) ≤ f(α)},

Ls(α) = {γ(p−1) < α | s(γ) = s(α) and f(γ) ≥ f(α)}.

Similarly, U(α) = {β(p+1) > α | f(β) ≤ f(α)}, and L(α) = {γ(p−1) < α | f(γ) ≥ f(α)}.

I Definition 2 (Definition 3.5, [5]). A function f : K → R (equipped with a stratification
s) is a discrete stratified Morse function if for every p-dimensional simplex α(p) ∈ K, (i)
|Us(α)| ≤ 1, (ii) |Ls(α)| ≤ 1, and (iii) if one of these sets is nonempty, then the other must
be empty.

99 87

65

43

21

10

f

87

65

43

21

10

'
(f, s)

10

9
(a) (b) (c)

Figure 1 An example of a discrete stratified Morse function. Red are violators; yellow are critical
simplicies. See DSMT Exp. 1 in the demo.

I Definition 3 (Definitions 3.6 and 3.7 [5]). A simplex α(p) is globally critical if |U(α)| =
|L(α)| = 0. A simplex α(p) is locally critical if it is not globally critical and if |Us(α)| =
|Ls(α)| = 0. A critical value of f is its value at a critical simplex. A simplex α(p) is
globally noncritical if |U(α)|+ |L(α)| = 1. A simplex α(p) is locally noncritical if it is not
globally noncritical and exactly one of the following two conditions holds: (i) |Us(α)| = 1 and
|Ls(α)| = 0; or (ii) |Ls(α)| = 1 and |Us(α)| = 0.

I Definition 4 (Definition 3.8, [5]). A simplex α(p) is a violator (of the conditions associated
with a discrete Morse function) if it is neither critical nor noncritical.

Violators are central to the algorithm in constructing a discrete stratified Morse function.
See Figure 1 for an example: f in (a) is not a discrete stratified Morse function; however, it
can be converted into one when it is equipped with an appropriate stratification s in (b).

Y. Zhou, K. Knudson, and B. Wang 82:3

Given a discrete stratified Morse function f equipped with a stratification s, f restricted
to Si ∈ S, denoted as fi := f |Si

, is by definition a discrete Morse function. We may associate
a discrete gradient vector field Vi to Si as follows. Since any noncritical simplex α(p) ∈ Si has
at most one of the sets Us(α) and Ls(α) being nonempty, there is a unique face γ(p−1) < α

in Si with f(γ) ≥ f(α) or a unique coface β(p+1) > α in Si with f(β) ≤ f(α). The pair
{α < β} (or the pair {γ < α}) is referred to as a Morse pair. Denote by Vi the collection
of all such pairs. Such pairs are formed by (globally or locally) noncritical simplices. We
visualize Vi by drawing an arrow from α to β for every Morse pair {α < β} ∈ Vi. Such a
discrete gradient provides a simplification (i.e., collapsing) order for the complex Si, where
Morse pairs can be removed to produce a reduced complex with the same homotopy type,
see Figure 1(c). We have the following result [5, Theorem 3.1]:

I Theorem 5 (Weak DSMT Theorem A, Theorem 3.3, [5]). Given a discrete stratified Morse
function (f, s), performing a collapse of either a global noncritical pair or a local noncritical
pair is a stratum-preserving homotopy equivalence.

2 Algorithm

Given a simplicial complex K, and any real-valued function f : K → R, we can construct a
discrete stratified Morse function using the following algorithm described in [5, Section 3.5]:

1. Make a single pass of all simplices in K, and order the violators V = {σ1, σ2, . . . , σr} by
increasing dimension and by increasing function value within each dimension.

2. Initialize S = ∅, i = 1.
3. Remove σi from V and add σi to S.
4. Consider Ki = K \ {σ1, . . . , σi}:

If the restriction of f to Ki, f |Ki , is a discrete Morse function, then let J denote the
set of indices k ≤ i such that σk ∈ Ki and add the following strata to S (which may
contain more than two strata pieces): the frontier Ki \ (K̊i ∪ {σj}j∈J) and K̊i.
Otherwise, if f |Ki

is not a discrete Morse function, then at least one σj with j > i

remains a violator.
5. Remove simplices that are no longer violators from the list and repeat steps 2-4 above

until no violators are left.

The result of the algorithm is shown in Figure 1(b). We have shown the correctness of the
algorithm in [5, Theorem 3.4].

3 Visualization design

We provide an interactive visualization tool that demonstrates the algorithmic process of
DSMT as described in Section 2; see Figure 2 for its user interface and the video for a demo.

The tool constructs a discrete stratified Morse function from any real-valued function
defined on a 1- or 2-complex embedded in the plane (e.g., a planar triangulation). The tool
provides 6 examples for DSMT, 4 of which are described in [5, Section 4], and for comparison,
3 examples for DMT (since a discrete Morse function is a discrete stratified Morse function
for the trivial stratification). The tool enables the random perturbation of function values
for each example. It also allows the import of user-specified examples in an appropriate
format (see the user’s guide for details). Using such a tool, we visualize a simplicial complex
with function values attached to each simplex. We explore various stages of the algorithm by

SoCG 2020

82:4 Visual Demo of Discrete Stratified Morse Theory

Figure 2 The user interface of our visualization tool.

marking violators, critical simplices, and noncritical simplices, which form Morse pairs that
are visualized by green arrows. We also highlight the resulting stratification. We additionally
perform homotopy-preserving simplification of the stratified simplicial complex by removing
Morse pairs. Figure 3 illustrates such a process; see the visualization tool for more examples.

Figure 3 A homotopy-preserving simplification of a stratified simplicial complex.

References
1 Robin Forman. Morse theory for cell complexes. Advances in Mathematics, 134:90–145, 1998.
2 Robin Forman. A user’s guide to discrete Morse theory. Séminaire Lotharingien de Combin-

atoire, 48, 2002.
3 Mark Goresky and Robert MacPherson. Stratified Morse Theory. Springer-Verlag, 1988.
4 Kevin Knudson and Bei Wang. Discrete stratified Morse theory: A user’s guide. International

Symposium on Computational Geometry (SOCG), 2018.
5 Kevin Knudson and Bei Wang. Discrete stratified Morse theory: Algorithms and a user’s

guide, 2019. arXiv:1801.03183.

http://arxiv.org/abs/1801.03183

Computing Low-Cost Convex Partitions for Planar
Point Sets with Randomized Local Search and
Constraint Programming
Da Wei Zheng
Department of Computer Science, University of British Columbia, Vancouver, Canada
zhengdw@cs.ubc.ca

Jack Spalding-Jamieson
Department of Computer Science, University of British Columbia, Vancouver, Canada
jacketsj@alumni.ubc.ca

Brandon Zhang
Department of Computer Science, University of British Columbia, Vancouver, Canada
brandon.zhang@alumni.ubc.ca

Abstract
The Minimum Convex Partition problem (MCP) is a problem in which a point-set is used as
the vertices for a planar subdivision, whose number of edges is to be minimized. In this planar
subdivision, the outer face is the convex hull of the point-set, and the interior faces are convex. In
this paper, we discuss and implement the approach to this problem using randomized local search,
and different initialization techniques based on maximizing collinearity. We also solve small instances
optimally using a SAT formulation. We explored this as part of the 2020 Computational Geometry
Challenge, where we placed first as Team UBC.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases convex partition, randomized local search, planar point sets

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.83

Category CG Challenge

Related Version A description of the 2020 CG:SHOP Challenge with related work and overall
outcomes can be found at [4] https://arxiv.org/abs/2004.04207.

Acknowledgements We want to thank Sam Bayless for help with MonoSAT and constraint pro-
gramming.

1 Introduction

For a point set P , a convex partition is a planar subdivison with vertex set P , including all
the edges of the convex hull of P , such that all interior faces are convex. In the Minimum
Convex Partition problem, the number of edges, or equivalently the number of faces, in a
convex partition of P is minimized. When collinear points are allowed, this problem has
been shown to be NP-hard [5].

One example of convex partitions is the family of triangulations. In fact this is the
family of maximum convex partitions, so all other convex partitions can be compared to
triangulations. We can also further conclude that any convex partition is a subset of some
triangulation.

In this paper, we explore practical solutions to this problem, in the case of collinear
points being allowed, and points having integer coordinates. We explored this during the
2020 Computational Geometry Challenge (CG:SHOP 2020), which was made to encourage
the exploration of this problem [4]. We placed first in the challenge as Team UBC, and our
experimental results in this paper are based on the instances provided.

© Da Wei Zheng, Jack Spalding-Jamieson, and Brandon Zhang;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 83; pp. 83:1–83:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0844-9457
mailto:zhengdw@cs.ubc.ca
mailto:jacketsj@alumni.ubc.ca
mailto:brandon.zhang@alumni.ubc.ca
https://doi.org/10.4230/LIPIcs.SoCG.2020.83
https://arxiv.org/abs/2004.04207
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 Convex Partitions Using Randomized Local Search and Constraint Programming

We begin by briefly describing a simple constraint solving approach for small instances.
We then discuss the details of a randomized local search approach. The details are divided
into search operations, initialization techniques, and finally metaheuristics. Finally, we will
discuss our experimental testing and results.

2 Algorithmic methods

2.1 Approaches for the Small Instances
We quickly solved the smallest instances (with ≤ 50 points) with a simple SAT formulation:
For every pair of points in a point-set, create a variable representing whether the corresponding
edge is enabled, i.e. it appears in the convex partition. In a convex partition, each interior
vertex has what we refer to as the standard convexity constraint: For each edge coming into
the vertex, and adjacent face, there should be another edge leaving the vertex touching the
same face, such that the interior angle of the face at that vertex is at most 180 degrees. We
can add this convexity constraint to the SAT formulation: For every enabled edge adjacent
to an interior vertex, require that at least one of the edges within a 180 degree window in
each direction is also enabled. Additionally, require that each vertex has degree at least 2,
and that all convex hull edges are enabled. In addition to the encoded convexity constraint,
we also require that for every two edges that intersect, at least one edge is disabled. Lastly,
disable any edge that intersects a point in the point-set. The size of this formulation is O(n4)
for a point-set with n vertices. The number of enabled edges in this formulation can be
minimized using a MaxSAT solver. We used the MaxSAT solver UWrMaxSAT [2].

We also attempted a formulation with the geometry tools in MonoSAT [3], although it
was not efficient enough to solve any instances.

2.2 Randomized local search
The main approach we used was a simple greedy local search starting from a valid convex
partition. The search was designed for iterations to be as fast as possible. An edge that
can be removed while preserving the convexity of its bordering faces is greedily removed.
The removed edge is selected uniformly at random among all edges that can be removed.
If no edge can be removed, a random edge is selected for a rotation. A rotation of an edge
(u, v) around the point u can be performed when the edge is required to satisfy the vertex
convexity constraint at u but not necessarily at v. This edge is removed and replaced with
an edge (u, a) or (u, b) if these do not violate the convexity constraints at u (where a and b

are the points adjacent to v on the same face as u). The direction of rotation is chosen at
random. An edge for which this operation can be performed without violating the vertex
convexity constraint is called rotatable.

2.3 Fast operations for high number of iterations
For this randomized local search strategy to be successful, we needed to be able to run many
iterations quickly.

At each iteration, we sample at random a half-edge (an edge and a pivot vertex) that
is rotatable in one or both directions. To sample valid edges quickly, we maintain a list of
rotatable half-edges. After each rotation of an edge or deletion of an edge, we only change the
rotation status of the neighbouring edges (sharing both a vertex and a face) of the rotation
or deletion. This is because this operation only changes the local angular properties of the
edges that are adjacent to the rotatable edge on the two faces that the edge was on.

D. Zheng, J. Spalding-Jamieson, and B. Zhang 83:3

v

u

ba

Figure 1 The edge (u, v) can rotate to either (u, a) or (u, b) in one iteration.

We managed to do an average of 20000 iterations per second on large instances. In
our implementation, one iteration took O(log n) operations. It could have been written in
expected O(1) operations per iteration by making use of the expected (and practically) low
degree of each vertex, but we did not explore this during the competition.

2.4 Initialization

The local search strategy we employed is fairly sensitive to initialization and to the random
choices that were made. To mitigate this, we spent some effort finding different initializations.
We found that the best solutions for most instances were obtained by starting the local
search from the Delaunay triangulation.

The second set of instances included dense point sets in a small grid, and had a large
number of collinear points. With collinear points, it is possible to obtain convex partitions
with a large number of degree two vertices that have edges on opposite sides, which is what
we did. To do well on these instances we joined all vertices with the same x-coordinate in a
chain. For the top and bottom ends of each chain we joined them with an algorithm similar
to the monotone chain algorithm [1] for convex hulls where we add every edge the monotone
chain algorithm considers to create a valid convex partition. Figure 2(a) is an example of
such an instance.

We also generalized this to arbitrary slopes, by rotating the points before running the
monotone chain subroutine. 2(b) and (c) are examples of this. We call this majorization
with respect to a slope. We tried to initialize the local search with majorized initializations
using commonly occuring slopes we found by sampling random pairs of points. However
these other initializations did not improve our results.

2.5 Metaheuristics

To mitigate the sensitivity of the solver to the random choices it makes, we restarted an
instance from a randomly chosen initial configuration if the objective value of the solution
did not improve for 8n log2 n iterations, where n is the number of points in the instance. We
chose a value that was Ω(n log2 n) to ensure that every edge would be moved at least once
with high probability, as we sample the O(n) rotatable half-edges with uniform probability.

SoCG 2020

83:4 Convex Partitions Using Randomized Local Search and Constraint Programming

(a) Vertically majorized (b) Horizontally majorized

(c) Slope −1 majorized (d) Final result after local search

Figure 2 Images of convex partitions of the rop0000548 instance.

3 Practical computation

3.1 Computational envorinment
We performed computations on one of the shared UBC undergrad CS servers, which has two
32-core Intel Xeon E5-2698 v3 CPUs running at 2.30 GHz. After some initial testing of the
algorithm, we ran the local search continuously on all instances for about 16 days, for a total
of approximately 2.8 years of CPU time.

3.2 Experimental results
We tested our implementations using the instances provided for CG:SHOP 2020. Here we
provide some analysis on the following groups of instances:

euro-night and us-night: Randomly sampled points from an illumination map of
Europe/the US at night.
uniform: Uniformly randomly generated points.
rop: Instances with many orthogonally collinear points in a bounded grid.

For each convex partition of an instance, a score can be computed according to the following
formula:

score = number of edges in convex partition
number of edges in triangulation

As was mentioned in the introduction, the number of edges in the triangulation is maximum,
so the score will be a value between 0 and 1. Smaller scores are better.

D. Zheng, J. Spalding-Jamieson, and B. Zhang 83:5

3.3 Performance on small instances

All the instances up to size 100 were run using the MaxSAT solver UWrMaxSAT [2], which
allows the instances to be solved optimally. The largest instance to be completely solved
within a 600 second time limit had 45 points. Most of the instances with at most 45 points
completed in under a second. During the contest, there was no strict time limit for the
MaxSAT solver, and a total of 70 instances were solved optimally with the SAT formulation
before they were later matched by our local search methods. The largest of these had
100 points.

Our local search methods eventually matched the answers we obtained from running
MaxSAT. The longest any of these took to match the answers was 65142 iterations, with 20
restarts. Most took under a second and less than 20000 iterations, and used no restarts.

3.4 Performance on uniform instances

Figure 3 Performance of our algorithm with different initializations on the instance euro-
night-0100000. Both lines depict 1 minute of runtime of our implementation. The red x-mark
denotes our final score on the instance.

Uniform point sets should approximate general position point sets. For general position
point sets it can be shown with Euler’s characteristic that the maximum score achievable is
asymptotically 1

2 . On large point sets, we are approaching this limit.

3.5 Performance on rop

We were able to achieve much better performance on rop instances by first horizontally or
vertically majorizing the instance as initialization to the randomized local search. This took
advantage of the many collinear points in the instance, as most of them had very small
ranges of x and y coordinates.

SoCG 2020

83:6 Convex Partitions Using Randomized Local Search and Constraint Programming

Figure 4 Our final solution to euro-night-0040000 found by running randomized local search
from horizontally majorized initialization.

3.6 Improved performance on large euro-night and us-night

We obtained better scores on large euro-night and us-night instances than on large
uniform instances by initializing our randomized local search with horizontal majorization.
This can be seen in Figure 5. This is an artifact of how the test data for the contest
was created: The uniform instances have coordinates sampled from the range [0, 6000000].
However, the us-night and euro-night instances have coordinates in much smaller ranges:
The us-night-0100000 instance has y coordinates in the range [0, 76956], and x coordinates
in the range [4, 136766], while the largest euro-night instance of 100000 points has y

coordinates in the range [0, 57598], and x coordinates in the range [8, 102392]. These
instances were points sampled from a distribution based on an illumination map. As a result
of the restriction to integer points, and these very small bounds for the integers, the large
us-night and euro-night instances had lots of points with the same x or y coordinate, and
hence lots of collinear points. By majorizing these instances, we were able to successfully take
advantage of this. For example, our solution for euro-night-0100000 has 36820 vertices
with degree 2, for a total of 143883 edges and 43884 faces. We believe that with more clever
methods to leverage collinear points, these solutions can improved even further.

4 Open questions

Are there other modifications of our local search strategy that can perform well, or even
better? During the competition, we tried various methods of adding edges and simulated
annealing based on total length of the edges in the convex partition, but we were unable to
do any better with these methods.

D. Zheng, J. Spalding-Jamieson, and B. Zhang 83:7

Figure 5 A plot of score vs number of points in the instance, where the score is defined as the
number of edges over the number of edges in a triangulation.

Our algorithm local search strategy was very simple, yet it was able to achieve very
good results on all instances. On almost uniform point sets, it was able to approach the
theoretical limit of 1

2 . Is it possible to prove theoretical guarantees about the performance
of this algorithm on random point sets or in general? We conjecture that on large random
point sets, the performance of our local search algorithm approaches 0.5 in score.

References
1 A.M. Andrew. Another efficient algorithm for convex hulls in two dimensions. Information

Processing Letters, 9(5):216–219, 1979. doi:10.1016/0020-0190(79)90072-3.
2 Fahiem Bacchus, Matti Järvisalo, and Ruben Martins, editors. MaxSAT Evaluation 2019:

Solver and Benchmark Descriptions. Department of Computer Science Report Series B.
Department of Computer Science, University of Helsinki, Finland, 2019.

3 Sam Bayless, Noah Bayless, Holger H. Hoos, and Alan J. Hu. SAT Modulo Monotonic Theories.
Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.

4 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Joseph S. B. Mitchell, and Dominik
Krupke. Computing convex partitions for point sets in the plane: The cg:shop challenge 2020,
2020. arXiv:2004.04207.

5 Nicolas Grelier. Minimum convex partition of point sets is np-hard, 2019. arXiv:1911.07697.

SoCG 2020

https://doi.org/10.1016/0020-0190(79)90072-3
http://arxiv.org/abs/2004.04207
http://arxiv.org/abs/1911.07697

Computing Low-Cost Convex Partitions for Planar
Point Sets Based on a Memetic Approach
Laurent Moalic
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
laurent.moalic@uha.fr

Dominique Schmitt
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
dominique.schmitt@uha.fr

Julien Lepagnot
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
julien.lepagnot@uha.fr

Julien Kritter
Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
Université de Strasbourg, France
julien.kritter@uha.fr

Abstract
We present a memetic approach designed to tackle the 2020 Computational Geometry Challenge on
the Minimum Convex Partition problem. It is based on a simple local search algorithm hybridized
with a genetic approach. The population is brought down to its smallest possible size – only 2
individuals – for a very simple implementation. This algorithm was applied to all the instances,
without any specific parameterization or adaptation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases metaheuristics, memetic algorithms, convex partition optimization

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.84

Category CG Challenge

Related Version A description of the 2020 CG:SHOP Challenge with related work and overall
outcomes can be found at [2] https://arxiv.org/abs/2004.04207.

1 Introduction

Given a set P of points in the plane, the Minimum Convex Partition problem is that of
identifying a partition of the convex hull of P into the smallest number of convex polygons
whose vertices are the points of P . Finding the minimum convex partition of given instances
of points with integer coordinates was the aim of the 2020 CG:SHOP Challenge [2].

It has recently be shown that the Minimum Convex Partition problem is NP-hard, when
the point sets are not necessarily in general position [3]. Thus, simple local search algorithms,
which are prone to be trapped in local optima, are not efficient enough and do not yield
the best solutions for several instances of this problem. For these reasons, we propose to
use a memetic approach, an effective class of metaheuristics commonly used to solve various
combinatorial problems [5].

© Laurent Moalic, Dominique Schmitt, Julien Lepagnot, and Julien Kritter;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 84; pp. 84:1–84:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3749-3227
mailto:laurent.moalic@uha.fr
mailto:dominique.schmitt@uha.fr
mailto:julien.lepagnot@uha.fr
https://orcid.org/0000-0002-0450-4287
mailto:julien.kritter@uha.fr
https://doi.org/10.4230/LIPIcs.SoCG.2020.84
https://arxiv.org/abs/2004.04207
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

84:2 SOCG Challenge: A Memetic Approach

s
l

s
r

s

t
l

F
l F

r

t
r

t

Figure 1 The edge st is rotatable at s.

2 Algorithmic Methods

2.1 A memetic approach
The main idea is to hybridize two mechanisms, a local search which intensifies the search
(exploitation phase, which improves a solution by converging to a nearby local optimum), and
a crossover which diversifies it (exploration phase, to escape from local optima and explore
new areas of the search space). The goal is to cover all parts of the search space as well as
possible and find the best local solution in each part. The idea of using only two individuals
in the population was first successfully introduced in [4], for the graph coloring problem. It
has the advantage of removing the selection phase, as well as the replacement strategy.

The memetic scheme starts here with two identical individuals which are the Delaunay
triangulation of the point-set. In order to avoid wasting time with reparations, the individuals
are kept legal, that is, convex partitions of the point-set. The fitness value of a solution is
given by the number of its polygons, which we aim at minimizing.

2.2 A simple descent local search
Let P be a set of n points in the plane and let P be a convex partition of P , i.e., a partition
of the convex hull of P into convex polygons whose vertices are the points of P .

The aim of the descent local search is to remove internal edges of P, i.e. edges that do
not belong to the boundary of the convex hull of P . Thereby, the two faces of P on each
side of the removed edge are merged to become a single face. The descent local search never
degrades the current convex partition.

Let st be an internal edge of P and let Fl and Fr be the faces of P that share the edge
st, and that are respectively on the left side and on the right side of st (see Figure 1). Let
sl (resp., tl) be the vertex of Fl that precedes s (resp., succeeds t) on the boundary of Fl

in counterclockwise direction. Let sr (resp., tr) be the vertex of Fr that succeeds s (resp.,
precedes t) on the boundary of Fr in counterclockwise direction. Consider the two following
conditions:

1. The point sr is on the left side of or on the oriented straight line (sls).
2. The point tl is on the left side of or on the oriented straight line (trt).

The edge st is said to be immovable, rotatable, or removable respectively, when 0, 1, or 2
of the conditions 1 and 2 are satisfied. When st is rotatable, we say that st is rotatable at t

if condition 1 is satisfied, and we say that st is rotatable at s if condition 2 is satisfied.

L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:3

Build a random edge sequence

For each edge in the sequence

Determine edge status

Removable edge

Rotatable edge
Immovable edge

Process edge according to status

next edge (if any)

Figure 2 One step of the local search: a remove, move, unmove approach.

Let F be the face obtained by removing st and by merging Fl and Fr. If the edge st is
removable, F is obviously convex. If st is immovable, F is not convex, neither in s, nor in t.
The only way to cut F into two convex faces is to put back the edge st.

If st is rotatable, suppose, without loss of generality, that it is rotatable at s. In this case,
F is not convex in s but is convex in all other vertices. To cut F into two convex faces, we
have to add an edge st′ that connects s to a vertex t′ of F other than s, sl, and sr. Whatever
the choice of t′, the two new faces are convex in all their vertices, except possibly in s. To
ensure the convexity in s, t′ must be chosen altogether on the left side of or on (ssr), and on
the left side of or on (sls). The vertices t′ that satisfy these conditions are called the valid
positions for t (relatively to st in P). The valid positions for t form a connected polyline on
the boundary of F . This polyline contains necessarily t and may be reduced to t.

The descent local search uses the above properties to improve the current convex partition
P . It proceeds by steps. In each step, a random sequence of internal edges of P is generated
(see Figure 2). For every edge st in the sequence:

if st is removable, it is removed from P,
if st is rotatable at s, the set of valid positions for t is generated, a point r in the set is
randomly chosen, and st is replaced by sr (the processing is symetric if st is rotatable
at t).

Clearly, every removable edge produces an improvement of the current convex partition.
Rotatable edges give rise neither to improvements nor to degradations, but by moving a
rotatable edge, another edge may become removable and may therefore be removed later on
in the process.

This process is repeated until no more improvement seems to be possible, i.e. until the
current convex partition is trapped in a local optimum. For all instances of the competition,
the number of steps was fixed to 10,000.

Let us now consider the complexity of one step. The generation of a random sequence
of edges, as well as the processing of all removable and immovable edges are linear in the
number of edges. Thus, the complexity will be determined by the processing of the rotatable

SoCG 2020

84:4 SOCG Challenge: A Memetic Approach

-4-2

0

-2

-3

-2

-2

P
1

P
2

Figure 3 The numbers in the faces of P1 are the scores of theses faces with respect to P2. If the
best face of P1 is transmitted to a child, then the faces of P2 with full edges are the only ones that
can still be transmitted to that child.

edges. For each edge st rotatable at, say, s, all vertices of the two faces on both sides of
st may be valid positions for t, except s and its two neighbors sl and sr. This leads to a
complexity of O(n) per edge, and thus to an overall complexity of O(n2) for one step of the
algorithm.

In practice, this complexity is much lower. Consider, for example, the instances of the
competition with 100,000 points. The largest set of valid positions encountered over 10 runs
for each of these instances contained only 16 points. The average size of the set was about
2.64 points. The sets are larger for instances with large numbers of collinear points. For the
instance “rop” with 64054 points, a set of 305 valid positions was found. The average size
was 7.56 points.

2.3 A crossover which gets the best of the parents
Diversification starts with two given convex partitions P1 and P2 of P - the parents -
generated by the descent local search. The crossover aims at getting part of each parent’s
“gene pool” to produce two new convex partitions of P - the children. To generate a child,
the idea is to get some non-overlapping faces from each parent. The child is then, at first, a
partial solution made of convex polygons and isolated points.

A “good” child is typically one which gathers “good” faces from its parents. Clearly,
the optimal convex partition of P minimizes the sum of its vertices’ degrees. We therefore
compute a score for every face of each partition, which measures the attractiveness of the
face relatively to the other partition. The score of a face of, say, P1 is obtained by summing
up the degrees of its vertices and by subtracting the degrees of these same vertices in P2 (see
Figure 3). Roughly speaking, if the score is negative, the environment of the face is better in
P1 than it is in P2. The best face is the one with lowest score.

The crossover algorithm first sorts the faces of P1 and P2 independently by increasing
scores. Then, it transmits alternatively one face from P1 and one face from P2 to one child, in
order. Ties are broken randomly. This stochasticity helps to generate two different children.
It is enhanced by the fact that the first face transmitted to the first child comes from P1,
while the first face transmitted to the second child comes from P2.

So that the faces transmitted to a same child do not intersect, intersection tests between
the faces in P1 and P2 have to be performed. To accelerate the intersection test when a face
in, say, P1 is transmitted to a child, the axis-parallel bounding box of the face is computed.
All faces in P2 which intersect the box are disabled, so that they cannot be transmitted to

L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:5

Generate two copies of the Delaunay triangulation

While time limit not reached

For 10 generations

Perform local search on both convex partitions

Save best partition found in the current while loop

Save best partition found so far

Perform crossover with the two partitions

Replace the two parent-partitions with their children

Replace one children with the best partition of the previous while loop

Figure 4 General scheme of the memetic approach.

that child. When no more faces in P1 and no more faces in P2 can be transmitted to a child,
a constrained triangulation of P and of the set of transmitted faces is computed. The two
child-partitions constructed that way replace their parents and are used in the next iteration
of the algorithm (see Figure 4).

The algorithm alternates between the local search and the crossover phases until a time
limit is reached. As the local search is a simple descent, the best encountered solution is
recorded just before each crossover phase.

3 Practical Computation

3.1 Computational Environment
The program was written in C++ using data structures and functions from the CGAL
library [1]. Several experiments were carried out on the Strasbourg high-performance
computing cluster (HPC) using identical machines equipped with 2.6GHz Intel Xeon Gold
6126 CPUs. Some statistics on the results obtained by 10 executions of our algorithm are
presented and discussed. To obtain these statistics, each execution was stopped after one hour.
Note that the results submitted for the challenge were obtained without any information on
running time. However, it turns out that, for 80% of the instances, the algorithm achieved
the value submitted to the challenge in less than one hour.

3.2 Algorithm Engineering
It seems interesting to note that one of the strengths of the proposed approach is that there
are no instance-specific settings. The same program is applied to all instances, regardless of
their size or structure.

SoCG 2020

84:6 SOCG Challenge: A Memetic Approach

The only parameters are the local search duration between two crossovers, and the number
of generations in one cycle. We have set the local search duration to 10,000 for all instances.
That is to say that for each generation, each edge can move or be removed 10,000 times. The
size of a cycle is set to 10 for all instances. That is, after 10 generations the best solution of
the previous cycle is reintroduced. These values have been determined experimentally, and
can be improved for a better behavior of the algorithm.

3.3 Experimental Results
For each instance of the problem, let pimpr be the improvement between an intermediary
solution and a final solution (in percent). It is computed using the best fitness among the
ones found by the first descent local search over the 10 runs (ffirst), and the best fitness at
the end of the one-hour execution over the 10 runs (fend). It is given by 100 (ffirst−fend)

ffirst
. For

each class of instances, the evolution of this value is presented in Figure 5, over the number
of points in the instance on which the algorithm is applied.

A similar percentage of improvement, denoted by pcomp, is computed between fend and
the fitness of the solution submitted for the competition.

One can see in Figure 5 that three different behaviors are adopted by the algorithm,
depending on the class of instances on which it is applied:

1. On the class of “rop” instances, the values of pimpr are globally significantly greater than
for any other class of instances. Hence, the exploration phase using a genetic crossover
appears to be very useful for the “rop” instances. Among these instances, the one having
the highest value of pcomp is “rop0010050”, for which pcomp = 25.74.

2. On the “ortho_rect_union” instances, the opposite behavior is displayed by the algorithm,
i.e. the values of pimpr are globally significantly lower than for the other classes. Let
stdfirst be the standard deviation of the solutions found by the first descent for the 10
executions of our approach on a given instance. Among the “ortho_rect_union” instances,
the one having the highest value of stdfirst is “ortho_rect_union_47381”, for which
stdfirst = 4.93. It is the lowest value of stdfirst compared to 50,000 and even 40,000
point instances of all other classes. Furthermore, among these instances, the one having
the highest value of pcomp is “ortho_rect_union_7663”, for which pcomp = 0.10. It could
mean that a simple local search is sufficient to find good solutions for these instances.

3. On the other classes of instances except “mona-lisa”, our approach appears to behave
similarly. The values of pimpr are globally significantly greater than the ones of “or-
tho_rect_union” instances, but significantly lower than the ones of “rop” instances.
Among the instances of all classes except the “ortho_rect_union”, the “rop” and the
“mona-lisa” ones, the one having the highest value of pcomp is “uniform-0090000-1”, for
which pcomp = 0.13.

For “mona-lisa”, containing only one instance of 1,000,000 points, it is not possible to
observe how pimpr would evolve over the number of points. However, pcomp equals 0.65, which
is low compared to most “rop” instances. One can also notice significant fitness differences
between instances belonging to the same class, which could be due either to a stability issue
of the approach or to the nature of the instances.

The analyses presented in Figures 6, 7, and 8 are based on one of the 10 runs that leads
to the median performance. It shows the evolution of the number of faces of the best solution
found so far over the generations. These 3 figures correspond to a one hour run.

One can see that our approach is able to converge to a good solution in few generations.

L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:7

1

10

100

1 10 100 1000 10000 100000 1000000

euro-night

jupiter

london

paris

protein

skylake

stars

sun

uniform-1

uniform-2

us-night

world

mona-lisa

ortho_rect_union

rop

Figure 5 Evolution of pimpr + 1 (in ordinate) depending on the number of points of the instance
(in abscissa). A logarithmic scale is used on both axes for clarity.

519

524

529

534

539

us-night uniform-1 euro-night paris

Figure 6 Convergence curve of the algorithm for 1,000 point instances over generations.

SoCG 2020

84:8 SOCG Challenge: A Memetic Approach

5100

5120

5140

5160

5180

5200

5220

us-night uniform-1 euro-night

Figure 7 Convergence curve of the algorithm for 10,000 point instances over generations.

50925

51125

51325

51525

51725

51925

1 6 11 16 21 26 31 36

us-night uniform-1 euro-night

Figure 8 Convergence curve of the algorithm for 100,000 point instances over generations.

L. Moalic, D. Schmitt, J. Lepagnot, and J. Kritter 84:9

4 Conclusion

The proposed memetic algorithm has proven its overall effectiveness by ranking second
among the best algorithms competing at the 2020 Computational Geometry Challenge on the
Minimum Convex Partition problem. As pointed out in the analysis of section 3.3, significant
fitness differences are observed between instances, belonging to the same class or not. In spite
of this, the proposed algorithm does not have instance-specific parameter settings. These
differences between instances should be studied, as well as the stability of the algorithm on
each class of instances, to lead to an improved variant of our approach.

References
1 CGAL, Computational Geometry Algorithms Library. http://www.cgal.org.
2 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B.

Mitchell. Computing convex partitions for point sets in the plane: The cg:shop challenge 2020,
2020. arXiv:2004.04207.

3 Nicolas Grelier. Minimum convex partition of point sets is NP-hard, 2019. arXiv:1911.07697.
4 Laurent Moalic and Alexandre Gondran. Variations on memetic algorithms for graph coloring

problems. Journal of Heuristics, 24(1):1–24, 2018. doi:10.1007/s10732-017-9354-9.
5 Pablo Moscato and Carlos Cotta. A Gentle Introduction to Memetic Algorithms. In F. Glover

and G. A. Kochenberger, editors, Handbook of Metaheuristics, pages 105–144. Springer, 2003.

SoCG 2020

http://www.cgal.org
http://arxiv.org/abs/2004.04207
http://arxiv.org/abs/1911.07697
https://doi.org/10.1007/s10732-017-9354-9

Computing Low-Cost Convex Partitions for Planar
Point Sets Based on Tailored Decompositions
Günther Eder
Universität Salzburg, FB Computerwissenschaften, Austria
geder@cs.sbg.ac.at

Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Stefan de Lorenzo
Universität Salzburg, FB Computerwissenschaften, Austria
slorenzo@cs.sbg.ac.at

Peter Palfrader
Universität Salzburg, FB Computerwissenschaften, Austria
palfrader@cs.sbg.ac.at

Abstract
Our work on minimum convex decompositions is based on two key components: (1) different
strategies for computing initial decompositions, partly adapted to the characteristics of the input
data, and (2) local optimizations for reducing the number of convex faces of a decomposition. We
discuss our main heuristics and show how they helped to reduce the face count.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, geometric optimization, algorithm engineering,
convex decomposition

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.85

Category CG Challenge

Supplementary Material The source code of our tools and heuristics is available at GitHub and can
be used freely under the GPL(v3) license: https://github.com/cgalab.

Funding Work supported by Austrian Science Fund (FWF): Grants ORD 53-VO and P31013-N31.

1 Introduction

The task of the 2020 Computational Geometry Challenge – called Challenge in the sequel
for the sake of brevity – was to compute minimum convex decompositions (MCD) of point
sets in the plane. We refer to the survey by Demaine et al. [2] for background information.

We employed several tools and heuristics to tackle the Challenge. All tools submitted
their solutions to a central database of ours, such that tool A could query and then improve
on solutions obtained by tool B, and vice versa. Most of our heuristics are based on local
search: Begin with a convex decomposition and iteratively modify it locally to reduce the
number of convex faces. The source code of our tools and heuristics is available at GitHub
and can be used freely under the GPL(v3) license: https://github.com/cgalab.

© Günther Eder, Martin Held, Stefan de Lorenzo, and Peter Palfrader;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 85; pp. 85:1–85:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4676-591X
mailto:geder@cs.sbg.ac.at
https://orcid.org/0000-0003-0728-7545
mailto:held@cs.sbg.ac.at
https://orcid.org/0000-0003-4981-805X
mailto:slorenzo@cs.sbg.ac.at
https://orcid.org/0000-0002-5796-6362
mailto:palfrader@cs.sbg.ac.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.85
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

85:2 Low-Cost Convex Partitions Based on Tailored Decompositions

2 Algorithmic methods

2.1 3-Approximation
Our tool 3Apx implements the 3-approximation algorithm by Knauer and Spillner [3]. Tests
quickly showed that this approach generates decompositions that are clearly not optimal.
Hence, we extended 3Apx by an approach based on onion layers [1]: We construct all onion
layers and then find convex decompositions of the annuli between the layers. Contrary to [3],
this approach does not modify the layer boundaries. See Figure 1 for sample decompositions
obtained via 3-approximation and the onion layers. Experiments showed that computing a
convex decomposition based on onion layers is superior to the 3-approximation algorithm
even without merging convex faces across different onion layers, see the plot in Figure 7.

Figure 1 In reading order: When using the 3-approximation implemented in 3Apx for an instance
with 1000 vertices we obtain a convex decomposition with 1350 faces; 1125 faces when using our
approach based on onion layers without partitioning into cells; 1123 faces when partitioning into
four cells and subsequent onion-layer based decomposition; and 1148 faces when using 16 cells.

A visual inspections of the results achieved by 3Apx quickly made it apparent that the
decompositions computed contained lots of extremely long and thin triangles. Hence, we tried
to partition a given input P into smaller “cells” and then run 3Apx on each cell individually.
Then the individual decompositions are joined by triangulating the area between them and
randomly dropping triangulation edges if this is possible without violating convexity. This
produced visually nicer images such as the last two decompositions in Figure 1 but did not
reduce the face counts substantially.

2.2 Merging faces
One of our earliest ideas was to do the obvious: Start with a triangulation of P and then
merge adjacent faces by randomly dropping triangulation edges as long as faces remain
convex. Tests with an initial straightforward implementation, MergeRefine, suggested
that this is a promising approach, easily beating 3Apx (Figure 7). In order to be better
prepared for refined heuristics we quickly re-implemented it in a new tool called Recursor.
In particular, we resorted to a more advanced data structure for storing our decompositions.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:3

Recursor keeps its state in a variant of a doubly-connected edge list (dcel) or half-edge
data structure. The base layer of our variant is a dcel of a triangulation of P . Additionally,
each half-edge pair is considered either constrained or not constrained, depending on whether
the edge is part of our convex decomposition of P . As a layer on top of the base dcel, each
constrained half-edge, in addition to the pointers to the next triangulation edges encountered
in clockwise (CW) or counter-clockwise (CCW) direction, also holds a reference to next CW
and CCW constrained edges; cf. Figure 2. This enables constant-time testing whether an
edge can be dropped, i.e., marked unconstrained, while keeping a fully fledged triangulation
of P during the entire process. To obtain a decomposition, Recursor first uses Shewchuk’s
Triangle [4] to construct a Delaunay triangulation of P , and then iterates over the edges
in a random order, dropping every edge that can be dropped. This process continues until
no further edge can be dropped, i.e., the decomposition is locally optimal.

Figure 2 Our two-layer doubly-connected edge list stores two planar graphs simultaneously, with
one planar graph being a subgraph of the other. A constrained half-edge h has references to its
neighbors in the convex decomposition (green) and to the underlying triangulation (blue). The
Challenge data set euro-night-10 is shown.

Hole refinement. It is not surprising that a locally optimal decomposition may consist of
many more faces than the true global optimum. Therefore, we worked on strategies that
allow us to move away from local optima: Recursor picks a face f of the decomposition
and a (random) number of its neighbors as a “hole” to work on. In general, it picks a face f

that is incident to a high-degree vertex. We consider a vertex of the decomposition to be of
high degree if its degree is larger than 3 or if its degree is equal to 3 and two incident edges
span an angle of 180°. In other words, high-degree vertices are vertices whose degree could
(locally) be reduced without violating convexity.

Once a hole has been selected, Recursor marks all its triangulation edges as constrained
again. In the next step it tries to drop these edges in a (different) random order. If this results
in a decomposition with no more faces than previously, we keep the new decomposition.
Otherwise, we abandon the modifications and restore the old decomposition. See Figure 3 for
a sample modification of a decomposition for the Challenge data set euro-night-0000100.

Recursor has several parameters to adjust, and we tried to fine-tune them “on the fly”
as we applied it to the Challenge instances. Eventually we settled on hole sizes of 7 + P

faces where P is a random number drawn from a geometric distribution with p = 0.4. In
each hole, we try a number of decompositions that is equal to the number of triangulation
edges in that hole.

Edge flips. Our initial decompositions were based on Delaunay triangulations of the input
points. But there is no argument to justify why Delaunay edges were to be preferred over
other triangulation edges. Hence, the next improvement of Recursor does a number of

SoCG 2020

85:4 Low-Cost Convex Partitions Based on Tailored Decompositions

Figure 3 Top: An initial decomposition of euro-night-0000100 by Recursor. Bottom: A
detail of the initial decomposition (of the dashed blue frame in the full image), with those seven
faces shaded in gray that were selected by the hole-refinement algorithm. The decomposition after
one round of local optimization is shown on the right. The edges affected are shown in blue and
bold. The improved variant has two faces less.

random edge flips on the triangulation of a hole before attempting to drop edges. The
number of edge flips used by our code changed over time. After a series of quick experiments
we ended up with using roughly 5

√
t edge flips, where t is the number of triangles in the hole.

Continuous refinement. So far, each run of Recursor always started from a triangulation
of an input. We modified Recursor such that it could load a previous decomposition and
work on it. This allowed us to run it on different instances whenever we had computational
resources to spare, with no need to run it for long continuous stretches of time.

Parallel recursor. RecurseSplit is a wrapper around Recursor that partitions a given
decomposition into a few dozen or a hundred non-overlapping sets of contiguous faces such
that each set of faces forms a simply-connected region. Each such region is handed to a
dedicated instance of Recursor which attempts to reduce the face count within that region.
Note that Recursor does not require such a region to be convex. Since every individual
run of Recursor operates strictly within its own region, the resulting decompositions can
be merged trivially upon the completion of all runs of Recursor.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:5

2.3 Flipper
Flipper was implemented relatively late during the time of the Challenge, not even a month
prior to its end. It picks a point set and loads our currently best decomposition for that point
set. Then it performs the following steps repeatedly: First, Flipper picks a high-degree
vertex v and finds, if one exists, an incident edge (u, v) that can be rotated away from v

without violating convexity at either u or v. That is, if u0, u, u1 is a CCW ordering of the
vertices that share a decomposition edge with v then Flipper attempts to replace the edge
(u, v) by either (u, u0) or (u, u1) if permissible. See the green edge in Figure 4, left. As shown
in Figure 4, right, such a rotation may cause one of the edges incident at v or u to become
unnecessary. In that case, we drop it. If, however, no edge can be removed, then the degree
of v has decreased and the degree of either u0 or u1 has increased by one. Flipper then
applies this process to u0 or u1.

Variations, added even later, try to pick a specific input point p at regular intervals.
Then, with some probability, a rotation may only be carried out if the vertex whose degree
is increased by one gets closer to p. The motivation for this decision was that finding edges
that can be dropped gets easier if several vertices with higher degree are in close proximity.

v

uu1

u0
v

uu1

u0

Figure 4 A detail of the initial decomposition (within the dash-dotted green frame of Figure 3):
Rotating the green edge allows to drop the red edge while maintaining the convexity of all faces.

2.4 Orthogonal optimizer
Towards the end of the Challenge, a second batch of input instances was made available.
While the organizers had warned a priori that the inputs may contain collinear points, the
first batch of inputs contained relatively few subsets of collinear points per instance. In
contrast, in the second batch of data, each input instance contained points sampled from
a dense integer grid, resulting in every input instance containing many subsets of collinear
points aligned along horizontal and vertical lines

A visual inspection quickly revealed that the approaches implemented so far did not
generate decent decompositions for several inputs of the second batch. Therefore, we
were forced to devise and implement a new heuristic. OrthoOpt generates initial convex
decompositions geared towards this new type of input instances. It proceeds as follows: First,
it sorts the input points of P lexicographically. Then it connects input points that share
the same x-coordinate in order of increasing y-coordinates. Finally, it constructs a bottom
bounding chain B and a top bounding chain T by linking the bottom-most (top-most, resp.)
input points, and it triangulates all pockets between the convex hull of P and the current
decomposition, as bounded by B and T . Of course, OrthoOpt can also proceed relative
to y-coordinates rather than x-coordinates; see Figure 5. These initial decompositions were

SoCG 2020

85:6 Low-Cost Convex Partitions Based on Tailored Decompositions

passed to Flipper and Recursor for further optimization. In particular, these tools helped
to get rid of unnecessary triangulation edges inside of the pockets formed by the convex hull
of P and the two chains B and T .

3 Practical computation

3.1 Computational environment
Our tools were run on a diverse set of computers operated by our lab as well as by other
groups at the University of Salzburg. We used a varying number of standard PCs plus some
(rather small) compute servers, whenever a machine was available. (We did not have access
to a genuine high-performance computer.) In particular, we used our own desktop machines
whenever they were (partially) idle. One of them, an Intel Core i7-6700 CPU clocked at
3.40 GHz, was used to obtain the performance plot of Figure 6, which shows CPU-time
consumptions of several of our tools for Challenge instances with different numbers of points.

Our low-profile way of accessing computers resulted in a highly non-uniform consumption
of computational resources, which in turn had highly non-uniform performance levels, ranging
from 15-year-old compute servers to machines acquired just a year ago. The availability of a
particular machine or of some of its cores was discussed with the operator of that machine on
a day-by-day or week-by-week basis. We set up a database and engineered some scripts that
allowed all machines to fetch problem instances from and send results back to a home base.

Figure 5 The two top figures show initial decompositions generated by OrthoOpt for the
355-vertex instance rop0000355. The bottom left figure shows the best decomposition (with 44
faces) derived from an initial triangulation of rop0000355. The bottom right figure shows our overall
best decomposition (with 36 faces) derived from an initial decomposition generated by OrthoOpt.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:7

101 102 103 104 105

Points

10−4

10−3

10−2

10−1

100

101

102
R

u
n

ti
m

e
[s

] 3Apx

MergeRefine

3Apx-onion

Recursor

Figure 6 Time needed to obtain one initial decomposition for the competition inputs.

The heterogeneity of (our use of) the computational resources makes it very difficult to
come up with a reliable ball-park figure of the total CPU time consumed. We estimate,
though, that our tools would have kept a standard desktop machine busy for a few years.

3.2 Experimental results
The estimated quality of a specific convex decomposition is based upon its score, where

score := number of edges in convex partition
number of edges in triangulation .

Figure 7 plots the score for the Challenge instance euro-night-0100000 over time. It
reflects the improvements achieved by refining our tools. While we did not generate such
a plot for each and every instance, we did compare sample plots for a few instances: No
significant differences were observed. That is, the plot shown in Figure 7 can be regarded
as representative for the progress that we made on the Challenge instances of the first
batch. The plot shows nicely how Recursor and Flipper interacted. Near the end of the
competition, Recursor and Flipper by themselves rarely found better decompositions.
However, even when a tool did not reduce the total number of faces, it still restructured the
decomposition and uploaded it to our central server, which in turn may have enabled another
tool to find some small improvement. The plot also indicates that each new tool yielded a
substantial improvement at the beginning, with the gains tapering off as time progressed. So,
likely, investing drastically more computational resources than what we had at our disposal
would have hardly led to truly substantial improvements. In our case, the availability of
human resources for devising and implementing new tools was the decisive limiting factor.

The second batch of Challenge instances made it apparent that our heuristics had been
(implicitly) geared towards the inputs that they had to handle. The rop* input class proved
to be particularly challenging for our initial strategy. Therefore, we introduced OrthoOpt

SoCG 2020

85:8 Low-Cost Convex Partitions Based on Tailored Decompositions

0.6

0.8

0.506

0.508

0.510

Nov Dec Jan Feb

0.5041

0.5042

0.5043

0.5044

0.5045

S
co

re
(s

m
a

ll
er

is
b

et
te

r)
3Apx

3Apx-onion

3Apx-onion+partition

MergeRefine

Recursor

Recursor (+ local refinement)

Recursor (+ random edge flips)

Recursor (+ improve on previous decompositions)

Recursor+partition

Flipper

Figure 7 Score over time for euro-night-0100000. Note that the y-axis changes scale twice.

to generate initial decompositions that are tailored towards inputs with lots of dense, grid-
aligned and, thus, collinear points. Figure 8 illustrates the score over time for rop0064054
and ortho_rect_union_47381, which act as representatives for their corresponding input
classes. Apparently, the introduction of OrthoOpt improved our solutions for the rop*
instances, whereas it provided no improvement for the ortho_rect_union* input class.

In Figure 9, we show the scores of the overall best decompositions for various Challenge
instances. Additionally, Figure 10 illustrates the development of the average score over time.
Note that the significant improvement of the average score in mid January is due to the
introduction of Flipper.

4 Conclusion

Our work makes it apparent that well-crafted heuristics run on moderate computing equipment
are good enough to achieve decent minimum convex decompositions. But the second batch of
Challenge instances made it also apparent that heuristics need not be universally applicable.
Rather, they may require an adaption relative to the characteristics of the input data.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:9

Jan-20 Jan-27 Feb-03 Feb-10

0.34

0.36

0.38

0.40

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Recursor

Flipper

OrthoOpt

Jan-20 Jan-27 Feb-03 Feb-10

0.40

0.45

0.50

0.55

0.60

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Recursor

Flipper

OrthoOpt

Figure 8 Score over time for rop0064054 and ortho_rect_union_47381.

101 102 103 104 105 106

Instance Size

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

euro-night

uniform

us-night

mona-lisa

rop

ortho rect

Figure 9 Score per instance.

SoCG 2020

85:10 Low-Cost Convex Partitions Based on Tailored Decompositions

Nov Dec Jan Feb

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r) Batch 1

Batch 2

Jan-20 Feb-01 Feb-15
0.3821340

0.3821345

0.3821350

0.3821355

0.3821360

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r) Batch 2

Dec Jan Feb
0.5389

0.5390

0.5391

0.5392

0.5393

0.5394

A
ve

ra
ge

S
co

re
(s

m
a

ll
er

is
b

et
te

r)

Batch 1

Figure 10 Average score over time.

G. Eder, M. Held, S. de Lorenzo, and P. Palfrader 85:11

References
1 Bernard Chazelle. On the Convex Layers of a Planar Set. IEEE Transactions on Information

Theory, 31(4):509–517, July 1985. doi:10.1109/TIT.1985.1057060.
2 Erik D. Demaine, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B.

Mitchell. Computing Convex Partitions for Point Sets in the Plane: The CG:SHOP Challenge
2020, 2020. arXiv:2004.04207.

3 Christian Knauer and Andreas Spillner. Approximation Algorithms for the Minimum Convex
Partition Problem. In Algorithm Theory – SWAT 2006, pages 232–241, 2006.

4 Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator. In Applied Computational Geometry: Towards Geometric Engineering,
volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag, May 1996.
ISBN 3-540-61785-X.

SoCG 2020

https://doi.org/10.1109/TIT.1985.1057060
http://arxiv.org/abs/2004.04207

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Ackerman
	Introduction
	Overview of the proof
	An auxiliary lemma on closed odd walks
	General assumptions and notations
	Associated pairs of consecutive sides

	The principal structure lemma about pairs of associated pairs
	A weaker bound
	Ramsey-theoretic tools
	Proof of Theorem 1
	Imposing more structure on the examples
	Finalizing the analysis

	p002-Agarwal
	Introduction
	Warm-up: 1D set cover for intervals
	Bootstrapping
	Putting everything together

	2D set cover for quadrants and unit squares
	Bootstrapping
	An output-sensitive cover algorithm
	Putting everything together

	p003-Agrawal
	Introduction
	Background: Related Algorithmic Works
	Giannopoulos's Parameterization and Our Contribution
	Our Methods and Preliminaries

	Algorithm for Art Gallery
	Simple Structural Claims
	Turing Reduction to Structured Art Gallery
	Karp Reduction to Monotone 2-CSP

	p004-Alkema
	Introduction
	Bitonicity for points with integer x-coordinates
	An algorithm for narrow strips
	Random point sets inside a narrow rectangle
	Concluding remarks

	p005-Alon
	Introduction
	Preliminaries
	Our problem
	Results

	Construction of auxiliary hypergraphs
	Some preparatory results
	A first hypergraph on t-subsets
	A smaller, well-behaved hypergraph on t-subsets

	Existence of small ε-t-nets
	Deterministic construction of ε-t-nets
	Deterministic construction of ε-nets
	Deterministic construction of ε-t-nets
	t-VC-dimension versus classical VC-dimension

	Geometric ε-2-nets
	Non-piercing regions
	Small union complexity

	Discussion and open problems

	p006-Ameer
	Introduction
	Previous work
	Pseudo-visibility
	The visibility graphs of terrains
	Persistent graphs
	Our contribution
	Organization of the paper

	Reconstructing terrains via linear programming
	A picky persistent graph
	A persistent graph that is not a terrain visibility graph
	Conclusions and open problems

	p007-Aronov
	Introduction
	Bounds on beta*_d
	Finding a point that maximizes beta(p,V)
	An exact algorithm
	An approximation algorithm

	Concluding Remarks

	p008-Aronov
	Introduction
	Preliminaries
	Hierarchical Polynomial Partitioning
	Testing for a Vanishing Pair of Polynomials
	Collinearity Testing and Related Problems: The Case of 2 x 1 x 1 Dimensions
	Higher Dimensions

	p009-Arroyo
	Introduction
	A set of strings with an obstruction is not extendible
	The key lemma
	Proof of Theorem 2
	Finding obstructions and extending strings in polynomial time
	Concluding remarks

	p010-Arya
	Introduction
	Background
	Random Projections
	k-Distance
	Persistent Homology

	Results
	Proofs
	Extensions
	Sets of Bounded Gaussian Width
	Submanifolds of Euclidean Space

	Conclusion and Future Work

	p011-Aukerman
	Introduction
	Data and Background
	Biological Data
	Nearest Neighbor Analysis
	Topological Data Analysis

	Methods and Results
	Persistence Diagrams of Cells with Stain Intensity values
	Statistics on Persistence Diagrams
	Results

	Open Questions and Future Work

	p012-Avvakumov
	Introduction
	Shortest Homotopic Curves
	The Affine Curve-Shortening Flow
	Relation to Grid Peeling
	Our Contribution

	Homotopic Curve Shortening
	Experimental Connection Between ACSF and HCS
	Experiments

	Properties of Homotopic Curve Shortening
	Proofs
	Triangulations
	The Vertex Release Algorithm
	Proof of Theorems 3–5
	Proof sketch of Theorems 6–8
	Proof sketch of Theorem 9

	Discussion

	p013-Bae
	Introduction
	Preliminaries
	Empty Squares and the Voronoi Diagram
	Definition of Voronoi diagrams
	Basic properties
	Combinatorial changes of {VD}(theta) and 4-squares

	Number of 4-Squares
	Upper bounds
	Lower bounds

	Maintaining the L_infinity Voronoi Diagram under Rotation
	Events
	Algorithm

	Maximal Empty Squares

	p014-Balko
	Introduction
	Our results
	Islands and holes in random point sets
	Islands and holes in d-Horton sets

	Proofs of Theorem 1 and Theorem 2
	Proof of Theorem 5

	p015-Bauer
	Introduction
	Topological aspects of Reeb graphs
	Reeb graphs as quotient spaces
	Reeb quotient maps and Reeb graphs of piecewise linear functions

	Stable and universal distances
	Edit distances
	Stability and universality of the Reeb graph edit distance
	Discussion

	p016-Bekos
	Introduction
	Proof of Theorem 1
	Base case: two-level instances
	Linear ordering
	Edge-to-page assignment

	Inductive step: multi-level instances

	Conclusions and open problems

	p017-Masood
	Introduction
	Related work
	Summary of results

	Background
	Simplex and simplicial complex
	Power distance and weighted Voronoi diagram
	Weighted Delaunay triangulation
	Alpha complex

	Algorithm
	Outline
	Proof of correctness

	Parallel algorithm for biomolecules
	Biomolecular data characteristics
	Acceleration data structure
	Potential simplices
	Pruning
	CUDA implementation
	Handling large data sizes

	Experimental results
	Comparison with gReg3D

	Conclusions

	p018-Blaser
	Introduction
	Relative persistent homology
	The relative Delaunay-Cech complex
	Dowker nerves
	The alpha- and Delaunay-Cech complexes
	The relative Delaunay-Cech dissimilarity
	Nerve of the relative Delaunay-Cech dissimilarity

	p019-Boissonnat
	Introduction
	Preliminaries
	Edge Collapse
	Simple Collapse and Persistence
	Edge collapse of a flag filtration
	Computational Experiments

	p020-Boissonnat
	Introduction
	Isomanifolds (without boundary)
	Estimates for a single simplex
	Preliminaries and variations of know results
	Estimates on the gradient inside a single simplex
	Transversality with regard to the time direction

	Global result
	Fréchet distance

	Isomanifolds with boundary
	Step 1
	Bump functions
	Inside a single simplex
	Transversality with regard to the time direction
	Global result

	Step 2
	Assumptions and notations
	Inside a single simplex
	Transversality with regard to the time direction
	Global result

	Isostratifolds
	Bibliography

	p021-Borradaile
	Introduction
	Our results
	Related Work
	Chain problems over Z and R
	Chain problems over Z_2
	Algebraic formulations
	Paper organization

	Preliminaries
	Simplicial complexes
	Homology
	Embeddings and duality
	Graph cuts
	The minimum bounded/homologous chain problems

	Approximation algorithm and fixed-parameter tractability
	Reductions to the minimum cut completion problem
	Algorithms for the minimum cut completion problem
	Wrap up (Proofs of Theorems 1, 2, 3, and 4)

	Hardness of approximation
	Minimum bounded chain to minimum cut completion
	Minimum homologous cycle to minimum cut completion
	Wrap up

	p022-Botnan
	Introduction
	Completeness of the rank invariant
	Computing the rank invariant and rectangle decompositions
	Algebraic formulation of weak exactness
	Algorithm for checking rectangle decomposability
	An example of rectangle-decomposable module

	p023-Brecheteau
	Introduction
	Power-functions-based filtrations for robust clustering
	Generalities on filtrations
	Power-functions-based filtrations
	The isotropic case
	The anisotropic case

	Examples of filtrations based on robust power functions
	Isotropic robust power functions
	An anisotropic robust power function

	Persistence-based clustering from power-functions-based filtrations
	Persistence for power-functions-based filtrations
	An algorithm for persistence-based clustering
	Connection to other persistence-based clustering methods

	Numerical illustrations
	A complete illustration of the method
	Comparison of the different methods on synthetic datasets
	Applications to real datasets
	Recovering fleas species, based on 6 measurements
	Clustering a earthquake dataset

	p024-Buchin
	Introduction and Related work
	Minimizing seen area
	Simple polygons

	A PTAS for minimizing integral exposure
	Reduction to WRP with curved regions
	A detailed implementation

	On planar optimal satisfiability
	Conclusion

	p025-Burton
	Introduction
	Preliminaries
	Stage one: Enumeration
	Enumeration of model graphs
	Flype equivalence
	Resolving into knot diagrams

	Stage two: Uniqueness
	Exhaustive simplification via R3 moves
	Attempting canonical triangulations
	Separating hyperbolic from non-hyperbolic

	Stage two, continued: Finishing the non-hyperbolic case
	Exhaustive simplification, 1 extra crossing
	Pass moves
	Exhaustive simplification, 2 extra crossings
	Exhaustive search for duplicates, 1 extra crossing
	Separating using HOMFLY-PT polynomials
	Exhaustive search for duplicates, 2 or 3 extra crossings
	Certifying hyperbolicity, again
	Certifying non-hyperbolicity
	Identifying satellites and certifying primeness

	Stage two, continued: Finishing the hyperbolic case
	Separating using HOMFLY-PT polynomials
	Subgroups of index 2–4
	Verified canonical triangulations
	Exhaustive search for duplicates, 1 or 2 extra crossings
	Subgroups of index 5
	Verified canonical triangulations, again
	Subgroups of index 6
	Exhaustive search for duplicates, 3 extra crossings
	Subgroups of index 7

	p026-Cai
	Introduction
	Persistence modules and their decompositions
	Elder-rule-staircodes for augmented metric spaces
	Decorated elder-rule-staircodes and treegrams
	Bipersistence treegrams
	Elder-rule-staircodes and fibered treegrams

	Elder-rule-staircodes and graded Betti numbers
	Computation and Algorithms
	Discussion

	p027-Chan
	Introduction
	Preliminaries
	The Basic MWU Algorithm
	Agarwal and Pan's (First) MWU Algorithm

	``New'' MWU Algorithm
	Implementations
	Deterministic Version
	Randomized Version 1
	Randomized Version 2

	Weighted Set Cover
	MWU Algorithm in the Weighted Case

	p028-Chan
	Introduction
	Colored orthogonal range reporting
	Colored 3D halfspace range reporting
	Colored 2D orthogonal type-2 range counting
	Techniques

	Colored 3D Halfspace Range Reporting: First Method
	Combinatorial lemmas on colored randomized incremental construction
	The k=1 case
	The general case

	Colored 3D Halfspace Range Reporting: Second Method
	The k=1 case
	The general case

	Colored 3D Dominance Range Reporting
	Colored 2D Orthogonal Type-2 Range Counting
	Capped 2-Sided Queries

	p029-Cheng
	Introduction
	Self-improving sorter
	Hidden partition and V-list
	Trie
	Operation phase

	Self-improving Delaunay triangulator
	Auxiliary structures
	Operation phase

	p030-Cheng
	Introduction
	Dynamic convex subdivision
	Dynamic DK-triangulation
	Point location
	General-update sequence

	Slab tree: fixed vertical lines
	Structure definition
	Querying
	Construction

	Handling triangulation-updates: fixed vertical lines
	Allowing arbitrary vertex location
	Weights of gaps and more
	Revised slab tree structure
	Insertion of a vertical line into the slab tree
	Handling triangulation-updates

	p031-Choudhary
	Introduction
	Tensor product and no-dimensional Tverberg Theorem
	Existence of a desired partition
	Computing the Tverberg partition
	Algorithm for the general case
	Algorithm for the balanced case

	Conclusion and future work

	p032-Cohen-Steiner
	Introduction
	Problem statement
	Contributions
	Related work

	Definitions
	Simplicial complexes
	Simplicial chains
	Boundary operator
	Lexicographic order

	Lexicographic optimal homologous chain
	Problem statement
	Boundary matrix reduction
	Total reduction algorithm

	Lexicographic-minimal chain under imposed boundary
	Problem statement
	Boundary reduction transformation matrix
	Total reduction with imposed boundary
	Finding a representative of BA

	Efficient algorithm for codimension 1 (dual graph)
	Problem statement
	Codimension 1 and Lexicographic Min Cut (LMC)
	Algorithm for Lexicographic Min Cut

	Application to point cloud triangulation
	Simplicial ordering
	Open surface triangulation
	Closed surface triangulation

	p033-Demaine
	Introduction
	Our Results
	Models of Computation

	Algorithm
	Outline
	Extending Quasigeodesic Rays
	Full Algorithm

	Conclusion

	p034-Dennis
	Introduction
	Preliminaries
	Main result
	Technical lemma
	The amortization lemma
	The gentle path lemma
	The main result and the main lemma

	Proof of (gentle path) lemma 11
	Proof of (technical) lemma 5
	Proof of (amortization) lemma 8
	Conclusion

	p035-Despre
	Introduction
	Background and notation
	Surfaces
	The Poincaré disk model of the hyperbolic plane
	Triangulations on surfaces

	Geometric triangulations of surfaces
	The flip algorithm
	Data structure
	Correctness of the algorithm

	Algorithm analysis

	p036-Dey
	Introduction
	Background
	Examples of 1-boundaries

	Computing 1-dimensional path homology Lg
	A simple algorithm

	Computing persistent path homology Lg
	Persistent path homology
	A more efficient algorithm
	Procedure Lg

	Analysis of Algorithm 2

	Concluding remarks

	p037-Dey
	Introduction
	Preliminaries
	Multivectors and Combinatorial Dynamics
	Conley Indices

	Conley Index Persistence
	Noise-Resilient Index Pairs
	Computing a Noise-Resilient Index Pair

	Tracking Invariant Sets
	Changing the Isolating Neighborhood
	Finding Isolating Neighborhoods

	Conclusion

	p038-Eder
	Introduction
	Contribution
	Straight skeleton and wavefront propagation
	Straight skeleton of a monotone polygon
	Monotone algorithm
	Implementational details

	Weighted straight skeleton of a PSLG
	Triangulation-based algorithm
	Implementational details

	Results
	Discussion and conclusion
	Source code

	p039-Eiben
	Introduction
	Overview of the Algorithm

	Preliminaries
	FPT algorithm for Colored Path*
	Algorithm assuming Lemma 3.3
	Proof of Lemma 3.3
	Sketch of the Proof
	The Color-Disjoint Case
	Finishing the Proof

	p040-Erickson
	Introduction
	Our Results
	Other Related Results

	Background and Definitions
	Flat Tori
	Graphs and Embeddings
	Homology, Homotopy, and Circulations
	Geodesic Drawings and Embeddings
	Equilibrium Stresses and Spring Embeddings
	Duality and Reciprocality
	Coherent Subdivisions

	Reciprocal Implies Equilibrium
	Coherent iff Reciprocal
	Notation
	Results

	Equilibrium Implies Reciprocal, Sort Of
	The Square Flat Torus
	Arbitrary Flat Tori

	A Toroidal Steinitz Theorem

	p041-Evans
	Introduction
	Related Work
	New Results

	Preliminaries
	Regular and Generic Curves
	Combinatorial Relations and Intersection Sequences
	Minimum Homotopies

	Equivalences
	Direct Splits
	Decompositions and Loops
	Equivalence of Interior Boundaries
	Equivalences of Self-Overlapping Curves
	Zero Obstinance Curves

	Wraps and Irreducability
	Wraps
	Wrapping Resolves Obstinance
	Irreducible and Strongly Irreducible Curves

	Discussion

	p042-Fekete
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	High-Level Description
	Proof Components
	Proof Overview
	Interval Arithmetic

	Proof Structure
	Proof Structure for Lemma 4
	Proof Structure for Theorem 1
	Proof of Lemma 3

	Conclusion

	p043-Fekete
	Introduction
	Problem definition: Minimum Scan Cover
	Overview of results and organization
	Related work

	One-dimensional point sets
	Bounds based on chromatic number and cut cover number
	No constant-factor approximation in 1D
	Polynomially solvable cases

	Two-dimensional point sets
	Bipartite graphs
	No approximation better than 1.5 for bipartite graphs in 2D
	4.5-approximation for bipartite graphs in 2D

	Graphs with bounded chromatic number

	Three-dimensional point sets and abstract MSC
	Conclusion and open problems

	p044-Fomin
	Introduction
	Related Works on Long Path and Long Cycle

	Preliminaries
	Marking Scheme
	The Algorithm

	p045-Fox
	Introduction
	Our results and approach

	Reduction to minimum cost flow in a sparse graph
	Construction of the sparse graph
	Reduction to minimum cost flow
	Decomposition into simpler subproblems

	Approximating the minimum cost flow
	The preconditioning framework
	Preconditioning the minimum cost flow

	Recovering a transportation map from the minimum cost flow
	Decomposing minimum cost flow into simpler subproblems
	Prefix split trees
	Omitted Proofs

	p046-Fox
	Introduction
	A partition lemma
	Proof of Theorem 3
	Concluding remarks

	p047-Frankl
	Introduction
	Almost-monochromatic sets

	The line
	Higher dimensions
	Proof of ``if'' direction of Theorem 5
	Proof of ``only if'' direction of Theorem 5
	Finding an AM positive homothet

	Smiling bouquets and the chromatic number of the plane
	Smiling pencils
	Conjecture 1 for lattice-like bouquets
	Lattices
	Lattice-like bouquets

	Further problems and concluding remarks

	p048-Frankl
	Introduction
	Preliminaries
	Bounds in Lg
	Lower bounds
	Upper bound for Lg (mod Lg)
	Upper bound for Lg
	Upper bound for Lg (mod Lg

	Bounds in Lg
	Lower bounds
	Upper bound

	p049-Goaoc
	Introduction
	Motivations
	Results
	Approach
	Setting and terminology
	Related work
	Paper organization

	Background
	Groups
	Duality and arrangements on S^2
	Convexity on the sphere

	Hemisets: relating affine and projective order types
	Analysis of labeled affine order types
	The two roles of affine symmetries
	Hemisets and duality
	Counting extreme points: expectation and variance

	p050-Har-Peled
	Introduction
	Previous work
	Our results

	Preliminaries
	LP-type problems
	Implicit LPs using Chan's algorithm
	Duality, levels, and zones
	Duality
	k-Levels
	Zones of surfaces

	Computing the extremal yolk
	Background
	Building the decider
	Algorithm
	Analysis

	Constructing subproblems
	Putting it all together
	Computing the extremal yolk and the egg
	An algorithm sensitive to k

	Computing the (continuous) yolk
	Conclusion

	p051-Henzinger
	Introduction
	Hierarchical Grid Decomposition
	Weighted Hypercubes

	p052-Kaplan
	Introduction
	Previous Work
	Our Construction

	Preliminaries
	The exponential mechanism
	Tukey depth

	The case of general position
	Handling degeneracies
	Finding an affine subspace with many points privately
	Privacy analysis
	Utility analysis

	An O(n^d) algorithm via volume estimation
	Conclusions

	p053-Kerber
	Introduction
	Background
	The matching distance
	The approximation algorithm
	The Bound primitive
	Experiments
	Conclusion

	p054-Kim
	Introduction
	Background
	Simplicial complex and Nerve theorem
	The reach
	Restricted versus Ambient balls

	The nerve theorem for Euclidean sets of positive reach
	Deformation retraction on positive mu-reach
	Homotopy Reconstruction via Cech complex and Vietoris-Rips complex
	Conditions for homotopy reconstruction

	Discussion and Conclusion

	p055-Kisfaludi-Bak
	Introduction
	Preliminaries
	A separator for Hyperbolic TSP
	A divide-and-conquer algorithm
	Algorithm
	Analyzing the running time

	Conclusion

	p056-Maria
	Introduction
	Intrinsic Topological Transforms from Compact Operators
	Extrinsic Topological Transforms
	Compact Operators and their Embeddings
	Topological Kernel Transforms

	The Distance Kernel Operator and its Embedding
	Stability for the DKE and its Topological Transforms
	Injectivity for the DKE and its Topological Transforms
	Injectivity of Phi
	Quasi-Injectivity of Phi_{k}
	Quasi-Injectivity of the e-PKT_{k} and e-EKT_{k}

	Experiments
	Open Problems

	p057-Mulzer
	Introduction
	Existence of large separated bichromatic matchings
	Runs and separated matchings
	Chunks, partitions, and configurations
	From (k, lambda)-partitions to k-configurations
	Random chunk-matchings in k-configurations
	Taking advantage of k-configurations
	Putting it together

	p058-Nath
	Introduction
	Preliminaries, definitions and an overview
	Clustering via sampling
	Covering metric spaces
	Clustering discrete Fréchet and Hausdorff distances
	Hardness of k-median clustering under Hausdorff distance
	Conclusion

	p059-Nekrich
	Introduction
	Preliminaries
	Five-Sided Range Reporting in Linear Space
	Faster Queries using More Space
	Conclusions

	p060-Palvolgyi
	Introduction
	Proof

	p061-Patakova
	Introduction
	New results
	Embeddability
	Consequences and related results

	Technique
	Homological almost embeddings
	Constrained chain maps
	Combinatorial part of the proof
	The induction

	A fractional Helly theorem on surfaces

	p062-Patakova
	Introduction
	Few hyperplanes realizing the depth
	Critical points of the depth function
	One more critical point

	p063-Phillips
	Introduction
	Our Results
	Connections to other Domains, and Core Challenges

	The Distance Between Two Hyperplanes using Signed Sketches
	Sketched MinDist for Two Geometric Objects
	Lower Bound on Total Sensitivity
	Upper Bound on the Total Sensitivity

	Strong Coresets for the Distance Between PL Curves
	Trajectory Reconstruction

	p064-Rathod
	Introduction
	Background and Preliminaries
	Cycle Basis
	Matrix operations
	Homology

	An algorithm for computing minimum cycle basis
	Minimum homology basis, minimum cycle basis and tight cycles
	Algorithms for minimum homology basis
	Discussion

	p065-Raz
	Introduction
	Rigidity in the plane and line configurations in R^3
	Embeddings of complete bipartite graphs in R^2
	Point-line incidences in R^3
	Proof of Theorem 1
	Proof of Theorem 2
	title

	p066-Sharir
	Introduction
	Anchored unit circles in space
	Proof of Theorem 10
	Proof of Lemma 11

	Point-circle tangencies in the plane
	Proof of Theorem 14
	Proof of Lemma 15
	Coplanar lines

	Generalizations
	Conclusion

	p067-Wagner
	Introduction
	Preliminaries, Terminology, and Notation
	Partial Subdivisions – Slack and Order
	Coarsening Partial Subdivisions
	The Link of a Triangulation – Proof of (n-3)-Connectivity

	p068-Wang
	Introduction
	Our techniques

	Preliminaries
	Circular hulls

	The decision problem
	The optimization problem
	The convex position case

	p069-Wang
	Introduction
	Ray-shooting

	Preliminaries
	Subpath convex hull queries
	A decomposition tree
	A preliminary query algorithm
	Reducing the query time to O(log n)

	Ray-shooting
	Ray-shooting among lines
	Intersection detection and ray-shooting among segments
	The randomized result
	The deterministic result
	Computing a simplicial partition

	p070-Zhang
	Introduction
	Preliminaries
	Persistent Homology
	Vietoris-Rips Filtrations
	The Simplex-wise Refinement of the Vietoris-Rips Filtration

	The Combinatorial Number System
	Computation
	The Coboundary Matrix

	Computation in Ripser

	Mathematical and Algorithmic Foundations in GPU Acceleration
	Overview of GPU-Accelerated Computation
	Matrix Reduction
	The Apparent Pairs Lemma
	Finding Apparent Pairs in Parallel on GPU
	Theoretical Bounds on the Number of Apparent Pairs

	GPU and System Kernel Development for Ripser++
	Core System Optimizations
	Filtration Construction with Clearing

	Experiments
	The Empirical Relationship amongst Apparent Pairs, Emergent Pairs, and Shortcut Pairs
	Execution Time and Memory Usage
	Throughput of Apparent Pairs Discovery with Ripser++ vs. Throughput of Shortcut Pairs Discovery in Ripser
	Two-layer Data Structure for Memory Access Optimizations
	The Apparent Fraction Depending on the Number of Points

	Conclusion

	p071-VanDommelen
	Spiroplots
	A web app for spiroplots
	Various settings
	Discussion

	p072-Baez
	Introduction
	Using friction for reconfiguration
	The video

	p073-Abdel-Rahman
	Introduction
	Related Work
	Results for Finite Automata
	The Video

	p074-Becker
	Introduction
	Videos in Computational Geometry
	The How to video

	p075-Fekete
	Introduction
	High-level description
	Mathematical components
	Proof overview
	Interval arithmetic

	The video

	p076-Eder
	Introduction
	Contribution
	MonosGUI: Straight skeleton of a monotone polygon
	SurfGUI: Straight Skeleton of a PSLG

	p077-Dewar
	Introduction
	Linkages with rotational symmetry
	Software for Animations

	p078-Miltzow
	Introduction
	The configuration
	The video
	Future work

	p079-Buchin
	Introduction
	Hardness
	Strategy

	p080-VanBenthem
	Introduction
	Reductions
	Defining Interestingness
	User Study

	p081-Haverkort
	Plane-filling curves
	Defining a plane-filling curve
	The challenge of visualising plane-filling curves
	Visualisation as three-dimensional landscapes
	Alternative visualisations
	The pftrail tool

	p082-Zhou
	Discrete stratified Morse theory
	Algorithm
	Visualization design

	p083-Zheng
	Introduction
	Algorithmic methods
	Approaches for the Small Instances
	Randomized local search
	Fast operations for high number of iterations
	Initialization
	Metaheuristics

	Practical computation
	Computational envorinment
	Experimental results
	Performance on small instances
	Performance on uniform instances
	Performance on rop
	Improved performance on large euro-night and us-night

	Open questions

	p084-Moalic
	Introduction
	Algorithmic Methods
	A memetic approach
	A simple descent local search
	A crossover which gets the best of the parents

	Practical Computation
	Computational Environment
	Algorithm Engineering
	Experimental Results

	Conclusion

	p085-Eder
	Introduction
	Algorithmic methods
	3-Approximation
	Merging faces
	Flipper
	Orthogonal optimizer

	Practical computation
	Computational environment
	Experimental results

	Conclusion

