
Euclidean TSP in Narrow Strips
Henk Alkema
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
h.y.alkema@tue.nl

Mark de Berg
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
m.t.d.berg@tue.nl

Sándor Kisfaludi-Bak
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Abstract
We investigate how the complexity of Euclidean TSP for point sets P inside the strip (−∞,+∞)×
[0, δ] depends on the strip width δ. We obtain two main results.

For the case where the points have distinct integer x-coordinates, we prove that a shortest bitonic
tour (which can be computed in O(n log2 n) time using an existing algorithm) is guaranteed to
be a shortest tour overall when δ 6 2

√
2, a bound which is best possible.

We present an algorithm that is fixed-parameter tractable with respect to δ. More precisely, our
algorithm has running time 2O(

√
δ)n2 for sparse point sets, where each 1 × δ rectangle inside

the strip contains O(1) points. For random point sets, where the points are chosen uniformly at
random from the rectangle [0, n]× [0, δ], it has an expected running time of 2O(

√
δ)n2 +O(n3).

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Computational geometry, Euclidean TSP, bitonic TSP, fixed-parameter
tractable algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.4

Related Version A full version of the paper is available at https://arxiv.org/abs/2003.09948.

Funding The work in this paper is supported by the Netherlands Organisation for Scientific Research
(NWO) through Gravitation-grant NETWORKS-024.002.003.

Acknowledgements We thank Remco van der Hofstad for discussions about the probabilistic analysis
of an earlier version of the algorithm.

1 Introduction

In the Traveling Salesman Problem one is given an edge-weighted complete graph and
the goal is to compute a tour – a simple cycle visiting all nodes – of minimum total weight.
Due to its practical as well as theoretical importance, the Traveling Salesman Problem
and its many variants are among the most famous problems in computer science and
combinatorial optimization. In this paper we study the Euclidean version of the problem.
In Euclidean TSP the input is a set P of n points in Rd, and the goal is to compute
a minimum-length tour visiting each point. Euclidean TSP in the plane was proven to
be np-hard in the 1970s [16, 21]. Around the same time, Christofides [4] gave an elegant
(3/2)-approximation algorithm, which works in any metric space. For a long time it was
unknown if Euclidean TSP is APX-hard, until Arora [2], and independently Mitchell [20],
presented a PTAS. Mitchell’s algorithm works for the planar case, while Arora’s algorithm
also works in higher dimensions. Rao and Smith [22] later improved the running time of
Arora’s PTAS, obtaining a running time of 2(1/ε)O(d)

n+ (1/ε)O(d)n logn in Rd.
© Henk Alkema, Mark de Berg, and Sándor Kisfaludi-Bak;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.y.alkema@tue.nl
mailto:m.t.d.berg@tue.nl
mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.4
https://arxiv.org/abs/2003.09948
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Euclidean TSP in Narrow Strips

We are interested in exact algorithms for Euclidean TSP. As mentioned, the problem
is already np-hard in the plane. Unlike the general (metric) version, however, it can be
solved in subexponential time, that is, in time 2o(n). In particular, Kann [19] and Hwang et
al. [17] presented algorithms with nO(

√
n) running time. Smith and Wormald [26] gave

a subexponential algorithm that works in any (fixed) dimension; its running time in Rd
is nO(n1−1/d). Very recently De Berg et al. [8] improved this to 2O(n1−1/d), which is tight up
to constant factors in the exponent, under the Exponential-Time Hypothesis (ETH) [18].

There has also been considerable research on special cases of Euclidean TSP that are
polynomial-time solvable. One example is Bitonic TSP, where the goal is to find a shortest
bitonic tour. (A tour is bitonic if any vertical line crosses it at most twice; here the points from
the input set P are assumed to have distinct x-coordinates.) It is a classic exercise [5] to prove
that Bitonic TSP can be solved in O(n2) time by dynamic programming. De Berg et al. [9]
showed how to speed up the algorithm to O(n log2 n). When P is in convex position, then
the convex hull of P is a shortest tour and so one can solve Euclidean TSP in O(n logn)
time [10]. Deineko et al. [12] studied the case where the points need not all be on the convex
hull; the points inside the convex hull, however, are required to be collinear. Their algorithm
runs in O(n2) time. Deineko and Woeginger [13] extended this to the case where the points
in the interior of the convex hull lie on k parallel lines, obtaining an O(nk+2) algorithm.
These results generalize earlier work by Cutler [6] and Rote [24] who consider point sets lying
on three, respectively k, parallel lines. Deineko et al. [11] gave a fixed-parameter tractable
algorithm for Euclidean TSP where the parameter k is the number of points inside the
convex hull, with running time O(2kk2n). Finally, Reinhold [23] and Sanders [25] proved
that when there exists a collection of disks centered at the points in P whose intersection
graph is a single cycle – this is called the necklace condition – then the tour following the
cycle is optimal. Edelsbrunner et al. [15] gave an O(n2 logn) algorithm to verify if such a
collection of disks exists (and, if so, find one).

Our contribution. The computational complexity of Euclidean TSP in Rd is 2Θ(n1−1/d)

(for d > 2), assuming ETH. Thus the complexity depends heavily on the dimension d. This
is most pronounced when we compare the complexity for d = 2 with the trivial case d = 1:
in the plane Euclidean TSP takes 2Θ(

√
n) time in the worst case, while the 1-dimensional

case is trivially solved in O(n logn) time by just sorting the points. We study the complexity
of Euclidean TSP for planar point sets that are “almost 1-dimensional”. In particular, we
assume that the point set P is contained in the strip (−∞,∞) × [0, δ] for some relatively
small δ and investigate how the complexity of Euclidean TSP depends on the parameter δ.
As any instance of Euclidean TSP can be scaled to fit inside a strip, we need to make
some additional restriction on the input. We consider three scenarios.

Integer x-coordinates. Bitonic TSP can be solved in O(n log2 n) time [9]. It is natural
to conjecture that for points with distinct integer x-coordinates inside a sufficiently
narrow strip, an optimal bitonic tour is a shortest tour overall. We give a (partially
computer-assisted) proof that this is indeed the case: we prove that when δ 6 2

√
2 an

optimal bitonic tour is optimal overall, and we show that the bound 2
√

2 is best possible.
Sparse point sets. We generalize the case of integer x-coordinate to the case where each
rectangle [x, x+ 1]× [0, δ] contains O(1) points, and we investigate how the complexity
of Euclidean TSP grows with δ. We show in the full version [1] that for sparse point
sets an optimal tour must be k-tonic – a tour is k-tonic if it intersects any vertical line at
most k-times – for k = O(

√
δ). This suggests that one might be able to use a dynamic-

programming algorithm similar to the ones for for points on k parallel lines [13, 24].

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:3

The latter algorithms run in O(nk) time, suggesting that a running time of nO(
√
δ) is

achievable in our case. We give a much more efficient algorithm, which is fixed-parameter
tractable (and subexponential) with respect to the parameter δ. Its running time is
2O(
√
δ)n2.

Random point sets. In the third scenario the points in P are drawn independently and
uniformly at random from the rectangle R := [0, n] × [0, δ]. For this case we prove
that the same algorithm as for sparse point sets has a (now expected) running time of
2O(
√
δ)n2 +O(n3).

Notation and terminology. Let P := {p1, . . . , pn} be a set of points in a horizontal strip
of width δ – we call such a strip a δ-strip – which we assume without loss of generality to be
the strip (−∞,∞)× [0, δ]. We denote the x-coordinate of a point p ∈ R2 by x(p), and its
y-coordinate by y(p). To simplify the notation, we also write xi for x(pi), and yi for y(pi).
We sort the points in P such that 0 6 xi 6 xi+1 for all 1 6 i < n.

For two points p, q ∈ R2, we write pq to denote the directed edge from p to q. Paths
are written as lists of points, so (q1, q2, ..., qm) denotes the path consisting of the edges
q1q2, . . . , qm−1qm. All points in a path must be distinct, except possibly q1 = qm in which
case the path is a tour. The length of an edge pq is denoted by |pq|, and the total length of
a set E of edges is denoted by ‖E‖.

A separator is a vertical line not containing any of the points in P that separates P into
two non-empty subsets.

2 Bitonicity for points with integer x-coordinates

In this section we consider the case where the points in P have distinct integer x-coordinates.
For our purposes, two separators s, s′ that induce the same partitioning of P are equivalent.
Therefore, we can define S := {s1, . . . , sn−1} as the set of all combinatorially distinct
separators, obtained by taking one separator between any two points pi, pi+1. Let E be a set
of edges with endpoints in P . The tonicity of E at a separator s, written as ton(E, s), is the
number of edges in E crossing s. We say that a set E has lower tonicity than a set F of edges,
denoted by E 4 F , if ton(E, si) 6 ton(F, si) for all si ∈ S. The set E has strictly lower
tonicity, denoted by E ≺ F , if there also exists at least one i for which ton(E, si) < ton(F, si).
Finally, we call a set E of edges k-tonic – or monotonic when k = 1, and bitonic when k = 2
– if ton(E, si) 6 k for all si ∈ S.

The goal of this section is to prove the following theorem.

I Theorem 1. Let P be a set of points with distinct and integer x-coordinates in a δ-strip.
When δ 6 2

√
2, a shortest bitonic tour on P is a shortest tour overall. Moreover, for any

δ > 2
√

2 there is a point set P in a δ-strip such that a shortest bitonic tour on P is not a
shortest tour overall.

The construction for the case δ > 2
√

2 is shown in Fig. 1. It is easily verified that, up to
symmetrical solutions, the tours T1 and T2 are the only candidates for the shortest tour.
Observe that ‖T2‖ − ‖T1‖ = |p1p4| − |p4p5| = 3 −

√
1 + δ2. Hence, for δ > 2

√
2 we have

‖T2‖ < ‖T1‖, which proves the lower bound of Theorem 1. The remainder of the section is
devoted to proving the first statement.

Let P be a point set in a δ-strip for δ = 2
√

2, where all points in P have distinct integer
x-coordinates. Among all shortest tours on P , let Topt be one that is minimal with respect
to the 4-relation; Topt exists since the number of different tours on P is finite. We claim
that Topt is bitonic, proving the upper bound of Theorem 1.

SoCG 2020

4:4 Euclidean TSP in Narrow Strips

p1

p2

p3

p4

p5

δ/2

δ/2

T1

T2

Figure 1 Construction for δ > 2
√

2 for Theorem 1. The grey vertical segments are at distance 1
from each other. If δ > 2

√
2 then T1, the shortest bitonic tour (in blue), is longer than T2, the

shortest non-bitonic tour (in red).

Suppose for a contradiction that Topt is not bitonic. Let s∗ ∈ S be the rightmost
separator for which ton(Topt, s

∗) > 2. We must have ton(Topt, s
∗) = 4 because otherwise

ton(Topt, s) > 2 for the separator s ∈ S immediately to the right of s∗, since there is only
one point from P between s∗ and s. Let F be the four edges of Topt crossing s∗, and let E
be the remaining set of edges of Topt. Let Q be the set of endpoints of the edges in F . We
will argue that there exists a set F ′ of edges with endpoints in Q such that E ∪ F ′ is a tour
and (i) ‖F ′‖ < ‖F‖, or (ii) ‖F ′‖ = ‖F‖ and F ′ ≺ F . We will call such an F ′ superior to F .
Option (i) contradicts that Topt is a shortest tour, and (ii) contradicts that Topt is a shortest
tour that is minimal with respect to 4 (since E ∪ F ′ ≺ E ∪ F if and only if F ′ ≺ F). Hence,
proving that such a set F ′ exists finishes the proof.

The remainder of the proof proceeds in two steps. In the first step we move the points in
Q to obtain a set Q with consecutive integer coordinates, in such a way that there exists
an edge set F on Q such that if an F

′ superior to F exists, then there also exists an F ′

superior to F . In the second step we then give a computer-assisted proof that the desired
set F ′ exists.

Step 1: Finding a suitable Q with consecutive x-coordinates. Let Topt, s∗, E, F and Q
be defined as above. We assume without loss of generality that the x-coordinate of s∗ is
equal to x∗ + 1

2 , where x
∗ is the largest integer such that the line x = x∗ + 1

2 intersects all
four edges in F . Since the actual edges in E are not important for our arguments, we replace
them by abstract “connections” specifying which pairs of endpoints of the edges in F are
connected by paths of edges in E. It will be convenient to duplicate the points in Q that are
shared endpoints of two edges in F , and add a connection between the two copies; see Fig. 2.
We denote the set of connections obtained in this way by Ẽ, and we call Ẽ the connectivity
pattern of F (in E ∪ F).

Next we show how to move the points in Q such that the modified set Q uses consecutive
x-coordinates. Recall that s∗ : x = x∗ + 1

2 is a separator that intersects all edges in F . Let
Qleft and Qright be the subsets of points from Q lying to the left and right of s∗, respectively.
We will move the points in Qleft such that they will get consecutive x-coordinates with the
largest one being equal to x∗, while the points in Qright will get consecutive x-coordinates
with the smallest one being x∗ + 1.

We move the points in Qleft as follows. Let z 6 x∗ be the largest x-coordinate currently not
in use by any of the points in Qleft. If Qleft lies completely to the right of the line `(z) : x = z,
then we are done: the set of x-coordinates used by points in Qleft is {z+1, . . . , x∗}. Otherwise
we take an arbitrary edge e ∈ F that crosses `(z), and we move its left endpoint to the point
e ∩ `(z); see Fig. 3(i). This process is repeated until Qleft uses consecutive x-coordinates.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:5

s∗ s∗

=⇒

Figure 2 Replacing the paths connecting endpoints of edges in F by abstract connections. The
copies of duplicated shared endpoints are slightly displaced in the figure to be able to distinguish
them, but they are actually coinciding.

s∗

=⇒

s∗ s∗

(i) (ii)

`(z)

Figure 3 The process of moving the points in Q. Grey vertical lines have integer x-coordinates.
(i) Moving a point in Qleft so that it gets x-coordinate z. (ii) A possible configuration after Qleft

and Qright have been treated.

After moving the points in Qleft we treat Qright in a similar manner; the only difference is
that now we define z > x∗ to be the smallest x-coordinate currently not in use by any of the
points in Qright. Fig. 3(ii) shows the final result for the example in part (i) of the figure.

Before we prove that this procedure preserves the desired properties, two remarks are
in order about the process described above. First, in each iteration we may have different
choices for the edge e crossing `(z), and the final result depends on these choices. Second,
when we move a point in Q to a new location, then the new x-coordinate is not used by Q
but it may already be used by points in P \Q. Neither of these facts cause any problems for
the coming arguments.

Let Q be the set of points from Q after they have been moved to their new locations,
and let F be the set of edges from F after the move. With a slight abuse of notation we still
use Ẽ to specify the connectivity pattern on F , which is simply carried over from F . The
following lemma shows that we can use F , Q and Ẽ in Step 2 of the proof.

I Lemma 2. Let E,F,Q, Ẽ, F ,Q be defined as above. Let F ′ be any set of edges (with
endpoints in Q) superior to F , such that Ẽ ∪ F ′ is a tour. Then there is a set of edges F ′
(with endpoints in Q) superior to F such that E ∪ F ′ is a tour.

Proof. We define F ′ in the obvious way, by simply taking F ′ and replacing each endpoint
(which is a point in Q) by the corresponding point in Q. Clearly E ∪ F ′ forms a tour if
Ẽ ∪ F ′ forms a tour.

Suppose F ′ is superior to F . We will now show that F ′ is superior to F . We will show
this by first proving that ‖F‖− ‖F ′‖ > ‖F‖− ‖F ′‖, and then proving that for any separator
we have s ∈ S, ton(F, s)− ton(F ′, s) = ton(F , s)− ton(F ′, s).

SoCG 2020

4:6 Euclidean TSP in Narrow Strips

Recall that each edge e ∈ F is obtained from the corresponding edge e ∈ F by moving
one or both endpoints along the edge e itself. Also recall that we duplicated shared endpoints
of edges in F , so if we move a point in Q we move the endpoint of a single edge in F . Hence,

‖F‖ − ‖F‖ = total distance over which the points in Q are moved.

Since we added a connection to Ẽ between the two copies of a shared endpoint, each point
in Q is incident to exactly one connection in Ẽ and, hence, to exactly one edge in F ′. This
means that if we move a point in Q we move the endpoint of a single edge in F ′, so

‖F ′‖ − ‖F ′‖ 6 total distance over which the points in Q are moved.

We conclude that ‖F‖ − ‖F ′‖ > ‖F‖ − ‖F ′‖.

Next, consider any separator s ∈ S to the left of s∗. Since points in Qleft are only moved
towards s∗ we know that

ton(F, s)−ton(F , s) = (number of points in Qleft moved across s) = ton(F ′, s)−ton(F ′, s).

A similar argument shows that ton(F, s)− ton(F ′, s) = ton(F , s)− ton(F ′, s) for any separa-
tor s to the right of s∗.

Now, since we have proven that ‖F‖ − ‖F ′‖ > ‖F‖ − ‖F ′‖ and that for any separator
we have s ∈ S, ton(F, s)− ton(F ′, s) = ton(F , s)− ton(F ′, s), we can conclude that if F ′ is
superior to F , then F ′ is superior to F . J

Step 2: Finding the set F ′. The goal of Step 2 of the proof is the following: given the
tour Topt = E ∪ F inside a δ-strip of width δ = 2

√
2, show that there exists a set F ′ of edges

such that E ∪ F ′ is a tour and F ′ is superior to F . Lemma 2 implies that we may work with
Ẽ and F instead of E and F (and then find F ′ instead of F ′).

In Step 1 we duplicated shared endpoints of edges in E. We now merge these two copies
again if they are still at the same location. This will always be the case for the shared endpoint
immediately to the right of the separator s∗, since we picked s∗ : x = x∗+ 1

2 such that there is
a shared endpoint at x = x∗+ 1 and the copies of this endpoint will not be moved. So if nleft
and nright denote the number of distinct endpoints to the right and left of s∗, respectively, then
nright ∈ {2, 3} and nleft ∈ {2, 3, 4}. We thus have six cases in total for the pair (nleft, nright),
as depicted in Fig. 4. Each of the six cases has several subcases, depending on the left-to-right
order of the vertices inside the gray rectangles in the figure. Once we fixed the ordering, we
can still vary the y-coordinates in the range [0, δ], which may lead to scenarios where different
sets F ′ are required. We handle this potentially huge amount of cases in a computer-assisted
manner, using an automated prover FindShorterTour(nleft, nright, F , Ẽ,X, δ, ε). The input
parameter X is an array where X[i] specifies the set from which the x-coordinate of the i-th
point in the given scenario may be chosen, where we assume w.l.o.g. that x(s∗) = −1/2; see
Fig. 4. The role of the parameter ε will be explained below.

The output of FindShorterTour is a list of scenarios and an outcome for each scenario. A
scenario contains for each point q an x-coordinate x(q) from the set of allowed x-coordinates
for q, and a range y-range(q) ⊆ [0, 2

√
2] for its y-coordinate, where the y-range is an interval

of length at most ε. The outcome is either Success or Fail. Success means that a set F ′

has been found with the desired properties: Ẽ∪F ′ is a tour, and for all possible instantiations
of the scenario – that is, all choices of y-coordinates from the y-ranges in the scenario – we
have ‖F ′‖ < ‖F‖. Fail means that such an F ′ has not been found, but it does not guarantee
that such an F ′ does not exist for this scenario. The list of scenarios is complete in the sense
that for any instantiation of the input case there is a scenario that covers it.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:7

65

4

• (nleft, nright) = (2, 2)

• F = {(1, 3), (1, 4), (2, 3), (2, 4)}
• Ẽ = ∅
• X = [{−2}, {−1}, {0}, {1}]

• (nleft, nright) = (3, 2)

• F = {(1, 4), (1, 5), (2, 4), (3, 5)}
• Ẽ = {(2, 3)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {0}, {1}]

1

2

3

4

1

3

2

• (nleft, nright) = (4, 2)

• F = {(1, 6), (2, 5), (3.5), (4, 6)}
• Ẽ = {(1, 2), (3, 4)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {−3,−2,−1},
{0}, {2}]

1

2

3

4

5

4

• (nleft, nright) = (2, 3)

• F = {(1, 3), (1, 5), (2, 3), (2, 4)}
• Ẽ = {(4, 5)}
• X = [{−2}, {−1}, {0}, {1, 2}, {1, 2}]

• (nleft, nright) = (3, 3)

• F = {(1, 4), (1, 5), (2, 4), (3, 6)}
• Ẽ = {(2, 3), (5, 6)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {0}, {1, 2}, {1, 2}]

1

2

3

4

1

3

2
5

5

• (nleft, nright) = (4, 3)

• F = {(1, 6), (2, 5), (3.5), (4, 7)}
• Ẽ = {(1, 2), (3, 4), (6, 7)}
• X = [{−3,−2,−1}, {−3,−2,−1},

{−3,−2,−1}, {−3,−2,−1},
{0}, {1, 2}, {1, 2}]

1

2

3

6

4
7

5

6

s∗ s∗ s∗

s∗ s∗ s∗

Figure 4 The six different cases that result after applying Step 1 of the proof. Points indicated by
filled disks have a fixed x-coordinate. The left-to-right order of points drawn inside a grey rectangle,
on the other hand, is not known yet. The vertical order of the edges is also not fixed, as the points
can have any y-coordinate in the range [0, 2

√
2].

FindShorterTour works brute-force, by checking all possible combinations of x-coordinates
and subdividing the y-coordinate ranges until a suitable F ′ can be found or until the y-ranges
have length at most ε. The implementation details of the procedure are the full version [1].

Note that case (nleft, nright) = (2, 3) in Fig. 4 is a subcase of case (nleft, nright) = (3, 2),
if we exchange the roles of the points lying to the left and to the right of s∗. Hence, we
ignore this subcase and run our automated prover on the remaining five cases, where we
set ε := 0.001. It successfully proves the existence of a suitable set F ′ in four cases; the
case where the prover fails is the case (nleft, nright) = (3, 2). For this case it fails for the
two scenarios depicted in Fig. 5; all other scenarios for these cases are handled successfully
(up to symmetries). For both scenarios we consider two alternatives for the set F ′: the set
F
′
1 shown in red in Fig. 5, and the set F ′2 shown in blue in Fig. 5. We will show that in

any instantiation of both scenarios, either F ′1 or F ′2 is at least as short as F ; since both
alternatives are bitonic this finishes the proof.

For 1 6 i 6 5, let qi be the point labeled i in Fig. 5. We first argue that (for both scenarios)
we can assume without loss of generality that y(q2) = y(q4) = 2

√
2 and y(q3) = y(q5) = 0.

To this end, consider arbitrary instantiations of these scenarios, and imagine moving q2 and
q4 up to the line y = 2

√
2, and moving q3 and q5 down to the line y = 0. It suffices to show,

for i ∈ {1, 2}, that if we have ‖F ′i‖ 6 ‖F‖ after the move, then we also have ‖F i‖ 6 ‖F‖
before the move. This can easily be proven by repeatedly applying the following observation.

I Observation 3. Let a, b, c be three points. Let ` be the vertical line through c, and let us
move c downwards along `. Let α be the smaller angle between ac and ` if y(c) < y(a), and
the larger angle otherwise, and let β be the smaller angle between bc and ` if y(c) < y(b), and
the larger angle otherwise, and suppose α < β throughout the move. Then the move increases
|ac| more than it increases |bc|.

SoCG 2020

4:8 Euclidean TSP in Narrow Strips

4

• X = [{−1}, {−2}, {−3, }, {0}, {1}]
• Y = [[1.61, 1.62], [2.82, 2

√
2],

[0, 0.01], [2.82, 2
√
2], [0, 0.01]]

5

4

5

• X = [{−1}, {−3}, {−2, }, {0}, {1}]
• Y = [[1.41, 1.42], [2.82, 2

√
2],

[0, 0.01], [2.82, 2
√
2], [0, 0.01]]

F
′
1 F

′
1

1

1

2 2

33
F

′
2 F

′
2

Figure 5 Two scenarios covering all subscenarios where the automated prover fails. Each point
has a fixed x-coordinate and a y-range specified by the array Y ; the resulting possible locations
are shown as small grey rectangles (drawn larger than they actually are for visibility). For all
subscenarios, at least one of F ′1 (in red) and F ′2 (in blue) is at most as long as F (in black).

So now assume y(q2) = y(q4) = 2
√

2 and y(q3) = y(q5) = 0. Consider the left scenario in
Fig. 5, and let y := y(q3). If y > (8

√
2)/7 then

|q2q1|+ |q4q5| =
√

1 + (2
√

2− y)2 + 3 6 2 +
√

4 + y2 = |q2q4|+ |q1q5|,

so ‖F ′1‖ 6 ‖F‖. On the other hand, If y 6 (8
√

2)/7 then

|q3q1|+ |q4q5| =
√

4 + y2 + 3 6
√

1 + (2
√

2− y)2 + 4 = |q1q4|+ |q3q5|,

so ‖F ′2‖ 6 ‖F‖. So either F ′1 or F ′2 is at least as short as F , finishing the proof for the left
scenario in Fig. 5. The proof for the right scenario in Fig. 5 is analogous, with cases y >

√
2

and y 6
√

2. This finishes the proof for the right scenario and, hence, for Theorem 1.

3 An algorithm for narrow strips

In this section we investigate how the complexity of Euclidean TSP depends on the width δ
of the strip containing the point set P . Recall that a point set P inside a δ-strip is sparse if
for every x ∈ R the rectangle [x, x+ 1]× [0, δ] contains O(1) points.

I Theorem 4. Let P be a set of n points in δ-strip.
(i) If for any i ∈ Z the square [(i− 1)δ, iδ]× [0, δ] contains at most k points, then we can

solve Euclidean TSP on P in 2O(
√
k)n2 time.

(ii) If P is sparse then we can solve Euclidean TSP in 2O(
√
δ)n2 time.

Part (ii) of the theorem is a trivial consequence of part (i), so the rest of the section focuses
on proving part (i). Our proof uses and modifies some techniques of [8]. For i ∈ Z, let σi be
the square [(i− 1)δ, iδ]× [0, δ]. Define ni := |σi ∩ P | – we assume without loss of generality
that all points from P lie in the interior of a square σi – and let k := maxi ni. We say that a
square σi is empty if ni = 0.

We will regularly use that any subset E of edges from an optimal tour of a planar point
set P has the Packing Property [8]: for any t > 0 and any square σ of side length t, the
number of edges from E of length at least t/4 that intersect σ is O(1). The Packing Property
is at the heart of several subexponential algorithms [19, 26]. We also need the following
lemma, which is essentially a special case of a recent result by De Berg et al. [8, Theorem 5];
see the full version [1] for a proof.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:9

s1 s2 s3s0 s4

block blockblock block

Figure 6 The separators s0, . . . , st+1 and the blocks they define.

I Lemma 5. Let σi be a square as defined above. Then we can compute in O(k3) time a
separator s intersecting σi such that the following holds. Let Topt be an optimal TSP tour
on P . For a separator s, let T (s, σi) denote the set of edges from Topt with both endpoints in
σi−1 ∪ σi ∪ σi+1 and crossing s. Then |T (s, σi)| = O(

√
k). Furthermore, there is a family C

of 2O(
√
k) sets, which we call candidate sets, such that T (s, σi) ∈ C, and this family can be

computed in 2O(
√
k) time.

Separators and blocks. Consider the sequence of non-empty squares σi, ordered from left
to right. We use Lemma 5 to place a separator in every second block of this sequence. Let
S := {s1, . . . , st} be the resulting (ordered) set of separators, and let s0 and st+1 denote
separators coinciding with the left side of the leftmost non-empty square and the right side
of the rightmost non-empty square, respectively; see Fig. 6. We call the region of the δ-strip
between two consecutive separators sj−1 and sj a block. Let Pj ⊆ P denote the set of points
in this block. Note that |Pj | 6 3k.

For an edge set E and a separator s, let E(s) ⊆ E denote the subset of edges intersecting s,
and define Pright(E, s) to be the set of endpoints of the edges in E(s) that lie on or to the
right of s. We call Pright(E, s) the endpoint configuration of E at s. The next two lemmas
rule out endpoint configurations with two “distant” points from the separator.

I Lemma 6. Let sleft : x = xleft and sright : x = xright be two separators such that
xright−xleft > 3δ, and suppose there is a point z ∈ P with xleft + 3δ/2 < x(z) < xright−3δ/2.
Then an optimal tour on P cannot have two edges that both cross sleft and sright.

Proof. Suppose for a contradiction that an optimal tour T has two directed edges, q1q2 and
r1r2, that both cross sleft and sright. (The direction of q1q2 and r1r2 is according to a fixed
traversal of the tour.) If both edges cross sleft and sright from left to right (or both cross
from right to left) then replacing q1q2 and r1r2 by q1r1 and r2q2 gives a shorter tour – see
Observation 14 in the full version [1] – leading to the desired contradiction.

Now suppose that q1q2 and r1r2 cross sleft and sright in opposite directions. Assume
w.l.o.g. that x(q1) < xleft and x(r2) < xleft, and that z lies on the path from r2 to q1. Let
u1, . . . , uk, v1, . . . , vl, and w1, . . . , wm be such that

T = (q1, q2, u1, . . . , uk, r1, r2, v1, . . . , vl, z, z2, w1, . . . , wm, q1).

We claim that the tour T ′ defined as

T ′ = (q1, r2, v1, . . . , vl, z, r1, uk, . . . , u1, q2, z2, w1, . . . , wm, q1)

is a strictly shorter tour. To show this, we will first change our point set P into a point
set P ′ such that if ‖T ′‖ < ‖T‖ on P ′, then ‖T ′‖ < ‖T‖ also on P . To this end we replace q1
by q′1 := q1q2 ∩ sleft and q2 by q′2 := q1q2 ∩ sright, and we replace r1 by r′1 := r1r2 ∩ sleft and
r2 by r′2 := r1r2 ∩ sright; see Fig. 7.

SoCG 2020

4:10 Euclidean TSP in Narrow Strips

Finally, we replace z2 by a point z′2 coinciding with z (note that if z2 = q1, we can split
it before moving the resulting two points, analogous to the proof of Theorem 1). Using
a similar reasoning as in the proof of Lemma 2, one can argue that the point set P ′ :=
(P \ {q1, q2, r1, r2, z2}) ∪ {q′1, q′2, r′1, r′2, z′2} has the required property. To get the desired
contradiction it thus suffices to show that ‖T‖ − ‖T ′‖ > 0 on P ′. This is true because

‖T‖ − ‖T ′‖ = |q′1q′2|+ |r′1r′2|+ |zz′2| − |q′1r′2| − |zr′1| − |q′2z′2|
> |xleft − xright|+ |xright − xleft|+ 0

−δ − (|x(z)− xright|+ δ)− (|xright − x(z)|+ δ)
= 2(x(t)− xleft)− 3δ > 0,

where the last line uses that xleft + 3δ/2 < x(z). J

I Lemma 7. Let sj ∈ S be a separator, and let σj∗ = [(j∗ − 1)δ), j∗δ] × [0, δ] denote the
square in which it is placed. Let Topt be an optimal tour on P and let V := Pright(Topt, sj)
be its endpoint configuration at sj. Let P ′ denote the set of input points with x-coordinates
between (j∗ + 1)δ and x(sj+3), and let P ′′ be the set of input points with x-coordinate larger
than x(sj+3). Then (i) |P ′ ∩ V | 6 c∗ for some absolute constant c∗, and (ii) |P ′′ ∩ V | 6 1.

Proof. Let uv be a tour edge crossing sj . By definition of sj , the number of edges crossing
sj with both endpoints in σj∗−1 ∪ σj∗ ∪ σj∗+1 is O(

√
k). Any other edge crossing sj must

fully cross σj∗−1 or σj∗+1 (or both), see Fig. 8. Therefore such edges have length at least δ.
By the Packing Property, there can be at most c∗ = O(1) such edges. This proves (i).

To prove (ii), note there are five non-empty squares between sj and sj+3. Hence, there is a
non-empty square between sj and sj+3 with distance at least 2δ from sj and sj+3. Lemma 6
thus implies that Topt has at most one edge crossing both sj and sj+3, proving (ii). J

Putting Lemma 5 and Lemma 7 together, we get the following corollary.

I Corollary 8. Let Topt be an optimal tour, let sj ∈ S be a separator, and let V ⊂ P be the
endpoint configuration of Topt at sj. Then we can enumerate in 2O(

√
k) · n time a family Bj

of candidate endpoint sets such that V ∈ Bj.

In addition to the sets Bj (j = 1, . . . , t), we define B0 = Bt+1 := ∅.

Matchings, the rank-based approach, and representative sets. When we cut a tour using
a vertical separator line, the tour falls apart into several paths. As in other TSP algorithms,
we need to make sure that the paths on each side of the separator can be patched up into a

sleft

=⇒

sright

q1
q2

r2

r1

z
z2

sleft sright

q′1
q′2

r′2 r′1

z

z′2

T

T ′

Figure 7 Illustration for the proof of Lemma 6. The point z′2 coincides with z but is slightly
displaced for visibility. The sum of the length of the edges unique to T (displayed in blue) is strictly
larger than the sum of the length of the edges unique to T ′ (displayed in red).

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:11

sj+1sj sj+2
sj+3

σj∗−1 σj∗ σj∗+1
P ′ P ′′

> 2δ > 2δ

δ δ

Figure 8 Tour edges crossing sj and x = (j∗ + 1)δ satisfy the Packing Property. Tour edges
crossing sj and sj+3 obey Lemma 6. The points in the red area form P ′. The points in the blue
area form P ′′.

Hamiltonian cycle. Following the terminology of [8], let P be our input point set, and let
M be a perfect matching on a set B ⊆ P , where the points of B are called boundary points.
A collection P = {π1, . . . , π|B|/2} of paths realizes M on P if (i) for each edge (p, q) ∈ M
there is a path πi ∈ P with p and q as endpoints, and (ii) the paths together visit each point
p ∈ P exactly once. We define the total length of P as the length of the edges in its paths.
In general, the type of problem that needs to be solved on one side of a separator is called
Euclidean Path Cover. The input to such a problem is a point set P ⊂ R2, a set of
boundary points B ⊆ P , and a perfect matching M on B. The task is to find a collection of
paths of minimum total length that realizes M on P .

To get the claimed running time, we need to avoid iterating over all matchings. We can
do this with the so-called rank-based approach [3, 7]. As our scenario is very similar to the
general Euclidean TSP, we can reuse most definitions and some proof ideas from [8].

Let M(B) denote the set of all perfect matchings on B, and consider a matching
M ∈M(B). We can turn M into a weighted matching by assigning to it the minimum total
length of any collection of paths realizing M . In other words, weight(M) is the length of the
solution of Euclidean Path Cover for input (P,B,M). We useM(P,B) to denote the
set of all such weighted matchings on B. Note that |M(P,B)| = |M(B)| = 2O(|B| log |B|).

We say that two matchings M,M ′ ∈ M(B) fit if their union is a Hamiltonian cycle.
Consider a pair P,B. Let R be a set of weighted matchings on B and let M be another
matching on B. We define opt(M,R) := min{weight(M ′) : M ′ ∈ R,M ′ fits M}, that is,
opt(M,R) is the minimum total length of any collection of paths on P that together with
the matching M forms a cycle. A set R ⊆ M(P,B) of weighted matchings is defined to
be representative of another set R′ ⊆ M(P,B) if for any matching M ∈ M(B) we have
opt(M,R) = opt(M,R′). Note that our algorithm is not able to compute a representative
set ofM(P,B), because it is also restricted by the Packing Property and Lemma 6, while
a solution of Euclidean Path Cover for a generic P,B,M may not satisfy them. Let
M∗(P,B) denote the set of weighted matchings in M(P,B) that have a corresponding
Euclidean Path Cover solution satisfying the Packing Property and Lemma 6.

The basis of the rank-based method is the following result.

I Lemma 9 (Bodlaender et al. [3], Theorem 3.7). There exists a set R consisting of 2|B|−1

weighted matchings that is representative of the setM(P,B). Moreover, there is an algorithm
Reduce that, given a representative set R ofM(P,B), computes such a set R in |R| · 2O(|B|)

time.

Lemma 9 can also be applied for our case, where R is representative ofM∗(P,B) ⊆M(P,B),
the set of weighted matchings in M(P,B) that have a corresponding Euclidean Path
Cover solution satisfying the Packing Property and Lemma 6.

SoCG 2020

4:12 Euclidean TSP in Narrow Strips

We say that perfect matchings M on B and M ′ on B′ are compatible if their union on
B∪B′ is either a single cycle or a collection of paths. The join of these matchings, denoted by
Join(M,M ′) is a perfect matching on the symmetric difference B4B′ obtained by iteratively
contracting edges with an incident vertex of degree 2 in the graph (B ∪B′,M ∪M ′) .

The algorithm. Our algorithm is a dynamic program, where we define a subproblem for
each separator index j, and each set of endpoints B ∈ Bj . The value of A[j, B] will be a
representative set containing pairs (M,x), where M is a perfect matching on B and x is a
real number equal to the total length of the path cover of P1 ∪ · · · ∪ Pj ∪ B realizing the
matching M . The length of the entire tour will be the value corresponding to the empty
matching at index t+ 1, that is, it will be the value x such that A[t+ 1, ∅] = {(∅, x)}.

Our dynamic-programming algorithm works on a block-by-block basis (which explains
the parameter j) and it solves subproblems inside a block using the algorithm TSP-repr by
De Berg et al. [8] for Euclidean Path Cover on arbitrary planar point sets. Algorithm 1
gives our algorithm in a pseudocode, which is further explained below.

Algorithm 1 NarrowRectTSP-DP(P, δ).
Input: A set P of points in [0, |P |]× [0, δ] chosen independently, uniformly at random
Output: The length of the shortest tour through all points in P

1: Compute the separators s1, . . . , st using Lemma 5, as explained above.
2: A[0, ∅] := {(∅, 0)}
3: for j = 1 to t+ 1 do
4: for all B ∈ Bj do
5: A[j, B] := ∅
6: for B′ ∈ Bj−1 where B′ ∩ distant(sj) ⊆ B do
7: for all (M,x) ∈ TSP-repr(Pj ∪B′ ∪B, B′4B)) do
8: for all (M ′, x′) ∈ A[j − 1, B′] do
9: if M ′ and M are compatible then
10: Insert (Join(M,M ′), x+ x′) into A[j, B]
11: Reduce(A[j, B])
12: return length(A[t+ 1, ∅])

The goal of Lines 4–11 is to compute a representative set A[j, B] ofM∗(P1∪· · ·∪Pj∪B, B)
of size 2O(

√
k). We say that a point p ∈ P is distant (with respect to a separator sj) if it is

more than five non-empty squares after sj , and denote the set of distant input points from
sj by distant(sj). First, we iterate over all sets B ∈ Bj in Line 4. Next, we consider certain
boundary sets B′ ∈ Bj−1. Notice that if there is a distant point p ∈ B′ ∩ distant(sj), then a
tour edge crossing sj−1 ending at p also crosses sj , and thus p is also a (distant) point of B.

In Line 7 we call the algorithm of De Berg et al. [8] for Euclidean Path Cover within
the block Pj and the boundary points B′ ∪ B. This gives us a representative set R of
M∗(Pj ∪B′ ∪B, B′4B). For each weighted matching (M,x) ∈ R, and for each weighted
matching from the representative set (M ′, x′) ∈ A[j − 1, B′], we check if M and M ′ are
compatible. If so, then taking the union of the corresponding path covers gives a path cover
of P1 ∪ · · · ∪ Pj ∪B of total length x+ x′, which realizes the matching Join(M,M ′) on B;
we then add (Join(M,M∗), x+ x∗) to A[j, B] in Line 10.

After iterating over all boundary sets B′, the entry A[j, B] stores a set of weighted
matchings, which we reduce to size 2O(

√
k) using the Reduce algorithm [3] in Line 11.

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:13

Note that in the final iteration, when j = t + 1, we take B = ∅. Now M and M ′ are
compatible if and only if the union of the corresponding path covers is a Hamiltonian cycle.
Line 11 then gives to a single entry the smallest weight. Therefore, the length of the only
entry in A[t+ 1, ∅] after the loops have ended, is the length of the optimal TSP tour. Hence,
the correctness of NarrowRectTSP-DP follows from the next lemma, proved in the full
version [1].

I Lemma 10. After Step 11, the set A[j, B] is a representative set ofM∗(P1∪· · ·∪Pj∪B, B).

Analysis of the running time. The loop of Lines 3–11 has t+ 2 = O(n) iterations. Each
set Bj contains 2O(

√
k)n sets. For each choice of B ∈ Bj , we have 2O(

√
k) options for B′,

since B can have at most one point distant from sj by Lemma 6. The running time of
TSP-repr is T (|P |, |B|) = 2O(

√
|P |+|B|) [8, Lemma 8]. By Lemma 5 we have |B| = O(

√
k),

so the running time of each call to TSP-repr in Algorithm 1 is 2O(
√

3k+|B|+
√
|B|) = 2O(

√
k).

The representative set returned by TSP-repr has 2O(
√
k) weighted matchings, and the

representative set of A[j − 1, B′] also has 2O(
√
k) matchings. Checking compatibility, joining

and insertion in Lines 9 and 10 takes poly(|M |, |M ′|) = poly(k) time. Consequently, before
executing the reduction in Line 11, the set A[j, B] contains at most 2O(

√
k) · 2O(

√
k) =

2O(
√
k) entries. The application of the Reduce algorithm ensures that the constant in the

exponent in the 2O(
√
k) is kept under control; see Lemma 9. Hence, the total running time is

n · 2O(
√
k)n · 2O(

√
k) = 2O(

√
k)n2.

4 Random point sets inside a narrow rectangle

The algorithm from Theorem 4 also works efficiently on random point sets inside a narrow
rectangle, as stated in the following theorem.

I Theorem 11. Let P be a set of n points chosen independently and uniformly at random
from [0, n]× [0, δ]. Then a shortest tour on P can be computed in 2O(

√
δ)n2 +O(n3) expected

time.

Proof. To prove that the expected running time of our algorithm is as claimed, we need
a good bound on k, the expected maximum number of points falling in any square σi :=
[(i− 1)δ, iδ)× [0, δ]. Note that ni := |P ∩ σi| is a random variable with binomial distribution
with parameters n and δ/n, so

Pr[ni = `] =
(
n

`

)(
δ

n

)`(
n− δ
n

)n−`
.

As above, let k := maxi ni. We need a strong upper bound on k. We have that

Pr[k > `] = Pr[there is an i such that ni > `] 6
dn/δe∑
i=1

Pr[ni > `] = nPr[n1 > `].

We use the Chernoff-Hoeffding theorem [14]: for a binomially distributed random variable x
with parameters n, p and for ` > np, we have that Pr(x > `) 6 exp

(
−n ·D

(
`
n

∣∣∣∣p)), where
D(`n ||p) = `

n ln(`/np) + n−`
n ln((n−`)/n

1−p). Consequently,

nPr[n1 > `] 6 n · exp
(
−n
(
`
n ln `/n

δ/n + n−`
n ln (n−`)/n

(n−δ)/n

))
= n · exp

(
−` ln `

δ − (n− `) ln n−`
n−δ

)
.

SoCG 2020

4:14 Euclidean TSP in Narrow Strips

Assuming e2δ < `, we get

Pr[k > `] < n · exp
(
−` ln `

δ + (n− `) ln n−δ
n−`

)
< n · exp

(
−` ln `

δ + (n− `) ln n
n−`

)
< n · exp

(
−` ln `

δ + (n− `) `
n−`

)
= n · exp(−`(ln `

δ − 1))
< ne−`,

where the third inequality uses that ln(x) < x − 1 for x > 1. The running time of the
algorithm can now be bounded the following way.

E[running time] 6 Pr[k 6 e2δ] · 2O(
√
δ)n2 +

n∑
`=be2δ+1c

Pr[k = `] · 2O(
√
`)n2

6 2O(
√
δ)n2 + n2

n∑
`=be2δ+1c

Pr[k > `] · 2O(
√
`)

6 2O(
√
δ)n2 + n3

n∑
`=be2δ+1c

e−`2O(
√
`)

6 2O(
√
δ)n2 + n3

∞∑
`=0

e−`+O(
√
`)

6 2O(
√
δ)n2 +O(n3) J

5 Concluding remarks

Our paper contains two main results on Euclidean TSP. First, we proved that for points
with integer x-coordinates in a strip of width δ, an optimal bitonic tour is optimal overall
when δ 6 2

√
2. The proof of this bound, which is tight in the worst case, is partially

automated to reduce the potentially very large number of cases to two worst-case scenarios.
It would be interesting to see if a direct proof can be given for this fundamental result.
Furthermore, we note that the proof of Theorem 1 can easily be adapted to point sets of
which the x-coordinates of the points need not be integer, as long as the difference between
x-coordinates of any two consecutive points is at least 1.

Second, we gave a 2O(
√
δ)n2 algorithm for sparse point sets, which also works in 2O(

√
δ)n2 +

O(n3) expected time for random point sets. For δ = Θ(n) the running time becomes 2O(
√
n),

which is optimal under ETH. For small δ it would be interesting to improve the dependency
on n in the running time. Another direction for future research is to study the problem in
higher dimensions. We believe that our algorithmic results may carry over to Rd to points
that are almost collinear, that is, that lie in a narrow cylinder. Generalizing the results to,
say, points lying in a narrow slab will most likely be more challenging.

References
1 H Alkema, M. de Berg, and S. Kisfaludi-Bak. Euclidean TSP in narrow strips. arXiv, 2020.

arXiv:2003.09948.
2 S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other

geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

http://arxiv.org/abs/2003.09948
https://doi.org/10.1145/290179.290180

H. Alkema, M. de Berg, and S. Kisfaludi-Bak 4:15

3 H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic single exponential time
algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86–111,
2015. doi:10.1016/j.ic.2014.12.008.

4 N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie Mellon University,
1976.

5 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (3rd
edition). MIT Press, 2009.

6 M. Cutler. Efficient special case algorithms for the n-line planar traveling salesman problem.
Networks, 10:183–195, 1980. doi:10.1002/net.3230100302.

7 M. Cygan, S. Kratsch, and J. Nederlof. Fast hamiltonicity checking via bases of perfect
matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

8 M. de Berg, H.L. Bodlaender, S. Kisfaludi-Bak, and S. Kolay. An ETH-tight exact algorithm
for Euclidean TSP. In Proc. 59th IEEE Symp. Found. Comput. Sci. (FOCS), pages 450–461,
2018. doi:10.1109/FOCS.2018.00050.

9 M. de Berg, K. Buchin, B.M.P. Jansen, and G. Woeginger. Fine-grained complexity analysis
of two classic TSP variants. In Proc. 43rd Int. Conf. Automata Lang. Prog. (ICALP), pages
5:1–5:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.5.

10 M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 2008. doi:10.1007/978-3-540-77974-2.

11 V.G. Deineko, M. Hoffmann, Y. Okamoto, and G.J. Woeginger. The traveling salesman
problem with few inner points. Oper. Res. Lett., 34(1):106–110, 2006. doi:10.1016/j.orl.
2005.01.002.

12 V.G. Deineko, R. van Dal, and G. Rote. The convex-hull-and-line traveling salesman problem:
a solvable case. Inf. Proc. Lett., 51:141–148, 1994. doi:10.1016/0020-0190(94)00071-9.

13 V.G. Deineko and G. Woeginger. The convex-hull-and-k-line traveling salesman problem. Inf.
Proc. Lett., 59(3):295–301, 1996. doi:10.1016/0020-0190(96)00125-1.

14 J. Doe. Probability inequalities for sums of bounded random variables. The Collected Works
of Wassily Hoeffding, pages 409–426, 1994. doi:10.1007/978-1-4612-0865-5_26.

15 H. Edelsbrunner, G. Rote, and E. Welzl. Testing the necklace condition for shortest tours
and optimal factors in the plane. Theoret. Comput. Sci., 66:157–180, 1989. doi:10.1016/
0304-3975(89)90133-3.

16 M.R. Garey, R.L. Graham, and D.S. Johnson. Some NP-complete geometric problems. In Proc.
8th ACM Symp. Theory Comp. (STOC), pages 10–22, 1976. doi:10.1145/800113.803626.

17 R.Z. Hwang, R.C. Chang, and R.C.T. Lee. The searching over separators strategy to solve
some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993. doi:
10.1007/BF01228511.

18 R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–
375, 2001. doi:10.1006/jcss.2000.1727.

19 V. Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology, Stockholm, 1992.

20 J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

21 C.H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theoret.
Comput. Sci., 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.

22 S. Rao and W. D. Smith. Approximating geometrical graphs via ‘spanners’ and ‘banyans’. In
Proc. 30th ACM Symp. Theory Comp. (STOC), pages 540–550, 1998. doi:10.1145/276698.
276868.

23 A.G. Reinhold. Some results on minimal covertex polygons. Manuscript, City College of New
York, 1965.

SoCG 2020

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1002/net.3230100302
https://doi.org/10.1145/3148227
https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.4230/LIPIcs.ICALP.2016.5
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/j.orl.2005.01.002
https://doi.org/10.1016/0020-0190(94)00071-9
https://doi.org/10.1016/0020-0190(96)00125-1
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1016/0304-3975(89)90133-3
https://doi.org/10.1016/0304-3975(89)90133-3
https://doi.org/10.1145/800113.803626
https://doi.org/10.1007/BF01228511
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/276698.276868
https://doi.org/10.1145/276698.276868

4:16 Euclidean TSP in Narrow Strips

24 G. Rote. The n-line traveling salesman problem. Networks, 22:91–108, 1992. doi:10.1002/
net.3230220106.

25 D. Sanders. On extreme circuits. PhD thesis, City University of New York, 1968.
26 W.D. Smith and N.C. Wormald. Geometric separator theorems and applications. In Proc. 39th

IEEE Symp. Found. Comput. Sci. (FOCS), pages 232–243, 1998. doi:10.1109/SFCS.1998.
743449.

https://doi.org/10.1002/net.3230220106
https://doi.org/10.1002/net.3230220106
https://doi.org/10.1109/SFCS.1998.743449
https://doi.org/10.1109/SFCS.1998.743449

	Introduction
	Bitonicity for points with integer x-coordinates
	An algorithm for narrow strips
	Random point sets inside a narrow rectangle
	Concluding remarks

