
Fast Algorithms for Geometric Consensuses
Sariel Har-Peled
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
sariel@illinois.edu

Mitchell Jones
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
mfjones2@illinois.edu

Abstract
Let P be a set of n points in Rd in general position. A median hyperplane (roughly) splits the point
set P in half. The yolk of P is the ball of smallest radius intersecting all median hyperplanes of
P . The egg of P is the ball of smallest radius intersecting all hyperplanes which contain exactly d

points of P .
We present exact algorithms for computing the yolk and the egg of a point set, both running

in expected time O(nd−1 log n). The running time of the new algorithm is a polynomial time
improvement over existing algorithms. We also present algorithms for several related problems, such
as computing the Tukey and center balls of a point set, among others.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric optimization, centerpoint, voting games

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.50

Related Version A full version of this paper is available at https://arxiv.org/abs/1912.01639.

Funding Sariel Har-Peled: Supported in part by NSF AF award CCF-1907400.
Mitchell Jones: Supported in part by NSF AF award CCF-1907400.

Acknowledgements The authors thank Joachim Gudmundsson for bringing the problem of computing
the yolk to our attention. The second author thanks Sampson Wong for discussions on computing
the yolk in higher dimensions. We also thank Timothy Chan for useful comments (in particular, the
improved algorithm for the yolk in 3D, see Remark 26).

1 Introduction

Voting games and the yolk. Suppose there is a collection of n voters in Rd, where each
dimension represents a specific ideology. In a fixed dimension, each voter maintains a value
along this continuum representing their stance on a given ideology. One can interpret Rd
as a policy space, and each point in Rd represents a single policy. In the Euclidean spatial
model, a voter p ∈ Rd always prefers policies which are closer to p under the Euclidean norm.
For two policies x, y ∈ Rd and a set of voters P ⊂ Rd, x beats y if more voters in P prefer
policy x compared to y. A plurality point is a policy which beats all other policies in Rd.
For d = 1, the plurality point is the median voter (when n is odd) [3]. However for d > 1,

© Sariel Har-Peled and Mitchell Jones;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 50; pp. 50:1–50:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sariel@illinois.edu
mailto:mfjones2@illinois.edu
https://doi.org/10.4230/LIPIcs.SoCG.2020.50
https://arxiv.org/abs/1912.01639
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Fast Algorithms for Geometric Consensuses

a plurality point is not always guaranteed to exist [18]. It is known that one can test if a
plurality point exists (and if so, compute it) in O(dn logn) time [10]. Note that the plurality
point is a point of Tukey depth dn/2e – in general this is the largest possible Tukey depth
any point can have; while the centerpoint is a point that guarantees a “respectable” minority
of size at least n/(d+ 1).

Since plurality points may not always exist, one generalization of a plurality point is the
yolk [17]. A hyperplane is a median hyperplane if the number of voters lying in each of
the two closed halfspaces is at least dn/2e. The yolk is the ball of smallest radius intersecting
all such median hyperplanes. Note that when a plurality point exists, the yolk has radius
zero (equivalently, all median hyperplanes intersect at a common point).

We also consider the following restricted problem. A hyperplane is extremal if and
only if it passes through d points, under the assumption that the points are in general
position. The extremal yolk is the ball of smallest radius intersecting all extremal median
hyperplanes. Importantly, the yolk and the extremal yolk are different problems – the radius
of the yolk and extremal yolk can differ [21].

The egg of a point set. A problem related to computing the yolk is the following: For a set
of n points P in Rd, compute the smallest radius ball intersecting all extremal hyperplanes
of P (i.e., all hyperplanes passing through d points of P). Such a ball is the egg of P . See
Figure 1.1 for an illustration of the yolk and egg of a point set.

Linear programs with many implicit constraints. The problem of computing the egg can
be written as a linear program (LP) with Θ(nd) constraints, defined implicitly by the point
set P . One can apply Seidel’s algorithm [19] (or any other linear time LP solver in constant
dimension) to obtain an O(nd) expected time algorithm for computing the egg (or the yolk,
with a bit more work). However, as each d-tuple of points forms a constraint, it is natural to
ask if one can obtain a faster algorithm in this setting. Specifically, we are interested in the
following problem: Let I be an instance of a d-dimensional LP specified via a set of n entities
P , where each k-tuple of P induces a linear constraint in I, for some (constant) integer k.
The problem is to efficiently solve I, assuming access to some additional subroutines.

1.1 Previous work
The yolk. Let P be a set of n points in Rd. Both the yolk and extremal yolk have been
studied in the literature. The first polynomial time exact algorithm for computing the yolk
in Rd was by Tovey in O

(
n(d+1)2) time – in the plane, the running time can be improved

to O(n4) [22]. Following Tovey, the majority of results have focused on computing the yolk
in the plane. In 2018, de Berg et al. [10] gave an O(n4/3 log1+ε n) time algorithm (for any
fixed ε > 0) for computing the yolk. Obtaining a faster exact algorithm remained an open
problem. Gudmundsson and Wong [12, 13] presented a (1 + ε)-approximation algorithm
with O(n log7 n log4 ε−1) running time. An unpublished result of de Berg et al. [8] achieves a
randomized (1 + ε)-approximation algorithm for the extremal yolk running in expected time
O(nε−3 log3 n).

The egg. The egg of a point set in Rd can be computed by solving a linear program with
Θ(nd) constraints. The egg is a natural extension to computing the yolk, and thus obtaining
faster exact algorithms is of interest. The authors are not aware of any previous work on
this specific problem. Bhattacharya et al. [2] gave an algorithm which computes the smallest
radius ball intersecting a set of m hyperplanes in O(m) time, when d = O(1), by formulating
the problem as an LP (see also Lemma 11). However we emphasize that in our problem the
set of hyperplanes are implicitly defined by the point set P , and is of size Θ(nd) in Rd.

S. Har-Peled and M. Jones 50:3

(A) (B)

(C) (D)

Figure 1.1 (A) Points. (B) Median lines and the extremal yolk. (C) All lines and the egg. (D)
Points with the extremal yolk and the egg.

SoCG 2020

50:4 Fast Algorithms for Geometric Consensuses

Table 1.1 Some previous work on the yolk and our results. Existing algorithms are deterministic,
while the running time of our algorithms holds in expectation.

d = 2 (1 + ε)-approx Exact Our results (Exact)

Extremal yolk O(nε−3 log3 n)
[8]

O(n4/3 log1+ε n)
[10]

O(n log n)
Theorem 16

Yolk O(n log7 n log4 ε−1)
[13]

O(n4/3 log1+ε n)
Variant of [10]

O(n log n)
Theorem 25

d = 3

Yolk ? O(n3)
Known techniques

O(n2)
Remark 26

d > 3

Extremal yolk ? O(nd)
Known techniques

O(nd−1 log n)
Theorem 16

Yolk ? O(nd)
Known techniques

O(nd−1 log n)
Theorem 25

Implicit LPs. In 2004, Chan [4] developed a framework for solving LPs with many implicit
constraints (the motivation was to obtain an efficient algorithm for computing the Tukey
depth of a point set). Informally, suppose that each input set P of entities maps to a set
H(P) of implicit constraints. For n entities P and a candidate solution, suppose one can
decide if the candidate solution violates any constraints of H(P) in D(n) time. Additionally,
assume that from P , one can construct r = O(1) sets P1, . . . , Pr, each of size at most n/c
(for some constant c > 1) with H(P) =

⋃r
i=1H(Pi). If this partition step can be performed

in D(n) time, then both assumptions imply that the resulting LP can be solved in O(D(n))
expected time.

1.2 Our results
Note. Due to space limitations, not all results discussed below are presented in the paper.
We refer the reader to the full version of the paper on arXiv [14].

In this paper we revisit Chan’s algorithm for solving LPs with many implicitly defined
constraints [4]. The technique leads to efficient algorithms for the following problems.
Throughout, let P ⊂ Rd be a set of n points in general position:

(A) The yolk (and extremal yolk) of P can be computed exactly in O(nd−1 logn) expected
time. Hence in the plane, the yolk can be computed exactly in O(n logn) expected time.
This improves all existing algorithms (both exact and approximate) [22, 10, 13, 12, 8]
for computing the yolk in the plane, and our algorithm easily generalizes to higher
dimensions. See Table 1.1 for a summary of our results and previous work.

(B) By a straight-forward modification of the above algorithm, see Lemma 17, implies that
the egg of P can be computed in O(nd−1 logn) expected time. The authors are not
aware of any previous work on this specific problem.

(C) Let Hk(P) be the collection of all open halfspaces which contain at least n− k points of
P . Consider the convex polygon Tk = ∩h∈Hk(P)h. Observe that T0 is the convex hull
of P , with T0 ⊇ T1 ⊇ · · · . The centerpoint theorem implies that Tn/(d+1) is non-empty
(and contains the centerpoint). The Tukey depth of a point q in the minimal k such
that q ∈ Tk \ Tk+1.

S. Har-Peled and M. Jones 50:5

When Tk is non-empty, the center ball of P is the ball of largest radius contained
inside Tk. For Tk empty, we define the Tukey ball of P as the smallest radius ball
intersecting all halfspaces of Hk(P).
In the full version of the paper [14] we show that the Tukey ball and center ball can both
be computed in Õ

(
kd−1[1 + (n/k)bd/2c]) expected time. Here, Õ hides polylogarithmic

factors in n. In particular when k is a (small) constant, a point of Tukey depth k can
be computed in time Õ(nbd/2c). This improves Chan’s O(nd−1 logn) expected time
algorithm for deciding if there is a point of Tukey depth at least k [4].

(D) For a set Q ⊆ Rd, let conv(Q) denote the convex hull of Q. For a given integer k
let C(P, k) =

{
conv(Q)

∣∣ Q ∈ (Pk)} , where (Pk) is the set of all k-tuples of points of P .
We define the k-ball of P as the smallest radius ball intersecting all convex bodies in
C(P, k).
While one may be tempted to apply the techniques discussed so far for implicit LPs,
there is a faster algorithm using (≤ k)-sets. When k is constant, in [14] we present an
algorithm for computing the k-ball in O(nbd/2c + n logn) expected time. As such, the
smallest ball intersecting all triangles induced by triples of a set of n points in R3 can
be computed in O(n logn) expected time.

In [14], we present another application of Chan’s technique for solving implicit LP-type
problems.

(E) Given a set L of n lines in the plane, the crossing distance between two points p, q ∈ R2

is the number of lines of L intersecting the segment pq. Given a point q ∈ R2 not lying
on any lines of L, the disk of smallest radius containing all vertices of A(L), within
crossing distance at most k from q, can be computed, in O(n logn) expected time.

2 Preliminaries

I Notation. Throughout, the O hides factors which depend (usually exponentially) on the
dimension d. Additionally, the Õ notation hides factors of the form logc n, where c may
depend on d.

2.1 LP-type problems
An LP-type problem, introduced by Sharir and Welzl [20], is a generalization of a linear
program. Let H be a set of constrains and f be an objective function. For any B ⊆ H,
let f(B) denote the value of the optimal solution for the constraints of B. The goal is to
compute f(H). If the problem is infeasible, let f(H) =∞. Similarly, define f(H) = −∞ if
the problem is unbounded.

I Definition 1. Let H be a set of constraints, and let f : 2H → R∪{∞,−∞} be an objective
function. The tuple (H, f) forms an LP-type problem if the following properties hold:
(A) Monotonicity. For any B ⊆ C ⊆ H, we have f(B) ≤ f(C).
(B) Locality. For any B ⊆ C ⊆ H with f(C) = f(B) > −∞, and for all s ∈ H,

f(C) < f(C + s) ⇐⇒ f(B) < f(B + s), where B + s = B ∪ {s}.

A basis of H is an inclusion-wise minimal subset b ⊆ H with f(b) = f(H). The
combinatorial dimension δ is the maximum size of any feasible basis of any subset of H.
Throughout, we consider δ to be constant. For a basis b ⊆ H, we say that h ∈ H violates
the current solution induced by b if f(b+ h) > f(b). LP-type problems with n constraints
can be solved in randomized time O(n), hiding constants depending (exponentially) on δ [7],
where the bound on the running time holds with high probability.

SoCG 2020

50:6 Fast Algorithms for Geometric Consensuses

2.2 Implicit LPs using Chan’s algorithm
Our algorithms will need the following result of Chan [4] on solving LPs with implicitly
defined constraints.

I Lemma 2 ([4]). Let (H, f) be an LP-type problem of constant combinatorial dimension δ,
and let cδ be a constant that depends only on δ. Let ψ, c > 1 be fixed constants, such that
cδ logδ ψ < c. For an input space Π, suppose that there is a function g : Π→ 2H which maps
inputs to constraints. Furthermore, assume that for any input P ∈ Π of size n, we have:

(I) When n = O(1), a basis for g(P) can be computed in constant time.
(II) For a basis b, one can decide if b satisfies g(P) in D(n) time.
(III) In D(n) time, one can construct sets P1, . . . , Pψ ∈ Π, each of size at most n/c, such

that g(P) =
⋃ψ
i=1 g(Pi).

Then a basis for g(P) can be computed in O(D(n)) expected time, assuming that D(n/k) =
O(D(n)/k), for all positive integers k ≤ n.

2.3 Duality, levels, and zones
2.3.1 Duality
I Definition 3 (Duality). The dual hyperplane of a point p = (p1, . . . , pd) ∈ Rd is the
hyperplane p? defined by the equation xd = −pd+

∑d−1
i=1 xipi. The dual point of a hyperplane

h defined by xd = ad +
∑d−1
i=1 aixi is the point h? = (a1, a2, . . . , ad−1,−ad).

I Fact 4. Let p be a point and let h be a hyperplane. Then p lies above h if and only if the
hyperplane p? lies below the point h?.

Given a set of objects T (e.g., points in Rd), we let T ? = {x? | x ∈ T} denote the dual
set of objects.

2.3.2 k-Levels
I Definition 5 (Levels). For a collection of hyperplanes H in Rd, the level of a point p ∈ Rd
is the number of hyperplanes of H lying on or below p. The k-level of H is the union of
points in Rd which have level equal to k. The (≤ k)-level of H is the union of points in Rd
which have level at most k.

By Fact 4, if h is a hyperplane which contains k points of P lying on or above it, then
the dual point h? is a member of the k-level of P ?.

2.3.3 Zones of surfaces
For a set of hyperplanes H, we let A(H) denote the arrangement of H and V(A(H)) denote
the vertices of the arrangement of H.

I Definition 6 (Zone of a surface). For a collection of hyperplanes H in Rd, the complexity
of a cell ψ in the arrangement A(H) is the number of faces (of all dimensions) which are
contained in the closure of ψ. For a (d− 1)-dimensional surface γ, the zone Z(γ,H) of γ is
the subset of cells of A(H) which intersect γ. The complexity of a zone is the sum of the
complexities of the cells in Z(γ,H).

The complexity of a zone of a hyperplane is known to be Θ(nd−1) [11]; for general
algebraic surfaces it is larger by a logarithmic factor. Furthermore, the cells in the zone of a
surface can be computed efficiently using lazy randomized incremental construction [9].

S. Har-Peled and M. Jones 50:7

I Lemma 7 ([1, 9]). Let H be a set of n hyperplanes in Rd and let γ be a (d−1)-dimensional
algebraic surface of degree δ. The complexity of the zone Z(γ,H) is O(nd−1 logn), where
the hidden constants depend on d and δ. The collection of cells in Z(γ,H) can be computed
in O(nd−1 logn) expected time.

3 Computing the extremal yolk

3.1 Background
I Definition 8. Let P ⊂ Rd be a set of n points in general position. A median hyperplane is
a hyperplane such that each of its two closed halfspaces contain at least dn/2e points of P . A
hyperplane is extremal if it passes through d points of P . The extremal yolk is the ball of
smallest radius interesting all extremal median hyperplanes of P .

We give an O(nd−1 logn) expected time exact algorithm computing the extremal yolk.
To do so, we focus on the more general problem.
I Problem 9. Let Ek(P) be the collection of extremal hyperplanes which contain exactly k
points of P on or above it. Here, k is not necessarily constant. The goal is to compute the
smallest radius ball intersecting all hyperplanes of Ek(P).

We observe that computing the extremal yolk can be reduced to the above problem.

I Lemma 10. The problem of computing the extremal yolk can be reduced to Problem 9.

Proof. Suppose that n is even, and define the set Seven = {n/2, n/2 + 1, . . . , n/2 + d}. A
case analysis shows that any extremal median hyperplane h must have exactly m points of P
above or on h, where m ∈ Seven. Thus, computing the extremal yolk reduces to computing
smallest radius ball intersecting all hyperplanes in the set

⋃
m∈Seven

Em(P).
When n is odd, a similar case analysis shows that any extremal median hyperplane must

have exactly m points above or on it, where m ∈ Sodd = {dn/2e , dn/2e+1, . . . , dn/2e+d−1}.
Analogously, computing the extremal yolk with n odd reduces to computing the smallest
radius ball intersecting all hyperplanes in the set

⋃
m∈Sodd

Em(P). J

To solve Problem 9, we apply Chan’s result for solving implicit LP-type problems [4],
stated in Lemma 2. We first prove that Problem 9 is an LP-type problem when the constraints
are explicitly given (the following Lemma was also observed by Bhattacharya et al. [2]).

I Lemma 11. Problem 9 when the constraints (i.e., hyperplanes) are explicitly given, is an
LP-type problem and has combinatorial dimension δ = d+ 1.

Proof. We prove something stronger, namely that the problem can be written as a linear
program, implying it is an LP-type problem. Let H be the set of n hyperplanes. For each
hyperplane h ∈ H, let 〈ah, x〉+bh = 0 be the equation describing h, where ah ∈ Rd, ‖ah‖ = 1,
and bh ∈ R. Because of the requirement that ‖ah‖ = 1, for a given point p ∈ Rd, the distance
from p to a hyperplane h is |〈ah, p〉+ bh|.

The linear program has d+ 1 variables and 2n constraints. The d+ 1 variables represent
the center p ∈ Rd and radius ν ≥ 0 of the egg. The resulting LP is

min ν

subject to ν ≥ 〈ah, p〉+ bh ∀h ∈ H
ν ≥ −

(
〈ah, p〉+ bh

)
∀h ∈ H

p ∈ Rd.

SoCG 2020

50:8 Fast Algorithms for Geometric Consensuses

Figure 3.1 A disk and its dual.

As for the combinatorial dimension, observe that any basic feasible solution for the above
linear program will be tight for at most d+ 1 of the above 2n constraints. Namely, these
d+ 1 planes are tangent to the optimal radius ball, and as such form a basis b ⊆ H. J

To apply Lemma 2 we need to:
(i) design an appropriate input space,
(ii) develop a decider, and
(iii) construct a constant number of subproblems which cover the constraint space.

3.2 Building the decider
The algorithm will work in the dual space. In the dual, the interior of a ball b corresponds
to a closed region b? which lies between two branches of a hyperboloid, see Figure 3.1.

I Lemma 12. The dual of the set of points in a ball is the set of hyperplanes whose union
forms the region enclosed between two branches of a hyperboloid.

Proof. In Rd the hyperplane h defined by xd = β +
∑d−1
i=1 αixi, or more compactly

〈x, (−α, 1)〉 = β, intersects a disk b centered at p = (p1, . . . , pd) with radius r ⇐⇒
the distance of h from p is at most r. That is, h intersects b if

|〈p, (−α, 1)〉 − β|
‖(−α, 1)‖ ≤ r ⇐⇒ (〈p, (−α, 1)〉 − β)2 ≤ r2 ‖(−α, 1)‖2

⇐⇒
(
pd − β −

d−1∑
i=1

αipi

)2
≤ r2(‖α‖2 + 1).

⇐⇒
(
pd − β −

∑d−1
i=1 αipi

)2

r2 − ‖α‖2 ≤ 1.

The boundary of the above inequality is a hyperboloid in the variables pd − β −
∑d−1
i=1 αipi

and α1, . . . , αd−1. This corresponds to an affine image of a hyperboloid in the dual space
α×−β. J

Throughout, we let b? denote the region between the two branches of the hyperboloid
dual to a ball b.

S. Har-Peled and M. Jones 50:9

∆′

∆′′

b?

∆ ∩ b?

Figure 3.2 The region ∆ ∩ (Rd \ b?) consists of (at most) two disjoint convex regions, ∆′ and ∆′′.

3.2.1 Algorithm
Given a candidate solution (i.e., a ball b in the primal) and a collection of points Q ⊆ P . Our
goal is to construct a decider which detects if there is a hyperplane of Ek(P), passing through
d points of Q, which avoids the interior of the ball b. In the dual setting, the problem is to
decide if there is a vertex of A(Q?) which is a member of the k-level, and is inside the region
Rd \ b?.

The input. The input to the algorithm is a simplex ∆, the set of hyperplanes

H = P ? ∩∆ = {h ∈ P ? | h ∩∆ 6= ∅}

(i.e., all hyperplanes of P ? that intersect ∆), a candidate solution b?, and a parameter u
which is the number of hyperplanes of P ? lying completely below ∆.

The task. Decide if there is a vertex of A(P ?) of the k-level in ∆∩ (Rd \ b?). That is, there
is a vertex of level k that is outside b? but inside ∆.

The decision procedure. Consider the set ∆ ∩ (Rd \ b?), where ∆ is a simplex, and notice
that the set is the union of at most two convex regions. Indeed, the set Rd \ b? consists of
two disjoint connected components, where each component is a convex body. Intersecting a
simplex ∆ with each component of Rd \ b? produces two (disjoint) convex bodies ∆′ and ∆′′
(it is possible that ∆′ or ∆′′ are empty). See Figure 3.2. Let ∆′ be one of these two regions
of interest. The algorithm will process ∆′′ in exactly the same way.

If ∆′ is empty, then no constraints are violated. Otherwise, we need to check for any
violated constraints inside ∆′. Let ∂∆′ denote the boundary of ∆′. Define H ′ ⊆ H to be the
subset of hyperplanes intersecting ∆′. Observe that it suffices to check if there is a vertex v
in the arrangement A(H ′) such that:
(i) v has level k in P ?,
(ii) v is a member of some cell in the zone Z(∂∆′, H ′), and
(iii) v is contained in ∆′.

The algorithm computes Z(∂∆′, H ′). Next, it chooses a vertex v of the arrangement
A(H ′) which lies inside ∆′ and computes its level in H ′ (adding u to the count). The
algorithm then walks around the vertices of the zone inside ∆′, computing the level of

SoCG 2020

50:10 Fast Algorithms for Geometric Consensuses

Figure 3.3 Left: A convex region ∆′. Let H ′ be the set of lines intersecting ∆′, with one line
lying completely below ∆′ (u = 1). The shaded regions are the cells of A(H ′) intersecting ∂∆′. The
vertices of the cells in the zone Z(∂∆′, H ′) are highlighted. Right: The vertices of Z(∂∆′, H ′) which
are part of the 3-level and contained inside ∆′.

each vertex along the walk. Note that the level between any two adjacent vertices in the
arrangement differ by at most a constant (depending on d). If at any point we find a vertex
of the desired level (such a vertex also lies inside ∆′), we report the corresponding median
hyperplane which violates the given ball b. See Figure 3.3 for an illustration.

3.2.2 Analysis
The running time of the algorithm is proportional to the complexity of the zone Z(∂∆′, H ′).
Because the boundary of ∆′ is constructed from d+ 1 hyperplanes and the boundary of the
hyperboloid, Lemma 7 implies that the zone complexity is no more than O(|H|d−1 log |H|).
As such, our decision procedure runs in time D(n) = O(nd−1 logn).

3.3 Constructing subproblems
To decompose a given input into smaller subproblems, we need the notion of cuttings.

I Definition 13 (Cuttings). Given n hyperplanes in Rd, a (1/c)-cutting is a collection
of interior disjoint simplices covering Rd, such that each simplex intersects at most n/c
hyperplanes. A (1/c)-cutting of size O(cd) can be constructed in O(ncd−1) time [6].

Given a simplex ∆ and the set of hyperplanes H = P ? ∩∆, we compute a (1/c)-cutting
of H into O(cd) simplices, and clip this cutting inside ∆. For each cell in this new cutting,
we compute the set of hyperplanes which intersect it, and the number of hyperplanes lying
completely below the cell naively in O(|H|) time. Repeating this process for the O(cd)
cells implies that this decomposition procedure can be completed in O(|H|) time (ignoring
dependencies on d), as (1/c)-cuttings can be constructed in deterministic linear time for
constant c [6].

The above shows that we can decompose a given input of size n into ψ = O(cd) sub-
problems, each of size at most n/c. Furthermore, this decomposition preserves all implicit
constraints of interest (vertices of A(H)). Choosing c to be a sufficiently large constant
(possibly depending on d), to meet the requirements of Lemma 2, finishes the construction.

S. Har-Peled and M. Jones 50:11

3.4 Putting it all together
The above discussions together with Lemma 2 and D(n) = O(nd−1 logn) implies the following.

I Lemma 14. Let P ⊂ Rd be a set of n points in general position. For a given integer k,
one can compute in O(nd−1 logn) expected time the smallest radius ball intersecting all of
the hyperplanes of Ek(P)

I Notation. For an integer n > 0, let JnK = {1, . . . , n}.

I Corollary 15. Let P ⊂ Rd be a set of n points in general position, and let S ⊆ JnK. One
can compute in O(nd−1 logn) expected time the smallest radius ball intersecting all of the
hyperplanes of

⋃
k∈S Ek(P)

Proof. The algorithm is a slight modification of Lemma 14. During the decision procedure,
for each vertex in the zone, we check if it is a member of the k-level for some k ∈ S. If S is
of non-constant size, membership in S can be checked in constant time using hashing. J

3.5 Computing the extremal yolk and the egg
I Theorem 16. Let P ⊂ Rd be a set of n points in general position. One can compute the
extremal yolk of P in O(nd−1 logn) expected time.

Proof. The result follows by applying Corollary 15 with the appropriate choice of S. When
n is even, Lemma 10 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we
set S = {dn/2e , dn/2e+ 1, . . . , dn/2e+ d− 1}. J

I Lemma 17. Let P ⊂ Rd be a set of n points in general position. One can compute the egg
of P in O(nd−1 logn) expected time.

Proof. Follows by Corollary 15 with S = JnK. (Alternatively, by directly modifying the
decision procedure to check if any vertex of the zone Z(∆′, H ′) lies inside ∆′.) J

3.6 An algorithm sensitive to k

Recall that to compute the extremal yolk, we reduced the problem to computing the smallest
ball intersecting all hyperplanes which contain a fixed number of points of P above or on
them (see Lemma 10). In particular, we developed an algorithm for Problem 9 and applied
it when k is proportional to n. It is natural to ask for an algorithm for Problem 9 which is
faster when k is small. The algorithm will work for all values of k. However when k is large,
the running time deteriorates to the running time of the algorithm of Lemma 14.

To develop an algorithm sensitive to k, we use the result of Lemma 14 as a black-box
and introduce the notion of shallow cuttings.

I Definition 18 (Shallow cuttings). Let H be a set of n hyperplanes in Rd. A k-shallow
cutting is a collection of simplices such that:
(i) the union of the simplices covers the (≤ k)-level of H (see Definition 5), and
(ii) each simplex intersects at most k hyperplanes of H.

Matoušek was the first to prove existence of k-shallow cuttings of size O((n/k)bd/2c) [15].
When d = 2, 3, a k-shallow cutting of size O(n/k) can be constructed in O(n logn) time [5].
For d ≥ 4, we sketch a randomized algorithm which computes a k-shallow cutting, based on
Matoušek’s original proof of existence [15].

SoCG 2020

50:12 Fast Algorithms for Geometric Consensuses

I Lemma 19 (Proof sketch in [14]). Let H be a set of n hyperplanes in Rd. A k-shallow
cutting of size O((n/k)bd/2c) can be constructed in O(k(n/k)bd/2c + n logn) expected time.
For each simplex ∆ in the cutting, the algorithm returns the set of hyperplanes intersecting
∆ and the number of hyperplanes lying below ∆.

Let P ⊂ Rd be a set of n points and let H = P ? be the set of dual hyperplanes. The
algorithm itself is a randomized incremental algorithm, mimicking Seidel’s algorithm for
solving LPs [19]. First, compute a k-shallow cutting for the set of hyperplanes H using
Lemma 19. Let ∆1, . . . ,∆`, where ` = O((n/k)bd/2c), be the collection of simplices in the
cutting. For each simplex ∆i, we have the subset H ∩∆i and the number of hyperplanes
lying completely below H (which is at most k). For each cell ∆i, let g(∆i) be the set of
vertices of A(H) which have level k and are contained in ∆i.

The algorithm. The input to the algorithm is a set of simplices and an initial ball b0. Such
a ball is uniquely defined by a subset of d+ 1 constraints, and this is a basis for the LP-type
problem.

Begin by randomly permuting the simplices ∆1, . . . ,∆`. At all times, the algorithm
maintains a ball bi of smallest radius which meets all the constraints defined by ∪ij=1g(∆i).
In the ith iteration, the algorithm performs a violation test: it decides if any constraint of
g(∆i) is violated by bi−1. If so, the algorithm executes a basis computation, in which it
computes the ball b′i of smallest radius which obeys the constraints of g(∆i) and the d+ 1
constraints defining bi−1. The algorithm then computes a ball bi by invoking itself recursively
on the subset of cells ∆1, . . . ,∆i with b′i as the initial basis.

I Lemma 20. Let P ⊂ Rd be a set of n points in general position. For a given integer k, one
can compute in Õ

(
kd−1(1 + (n/k)bd/2c)) expected time the smallest radius ball intersecting

all of the hyperplanes of Ek(P).

Proof. The algorithm is described above. As for the analysis, it is similar to any randomized
incremental algorithm for LP-type problems. The key difference is that we are not adding
a single constraint incrementally, but rather a collection of constraints in each iteration.
Fortunately, this does not change the analysis of the algorithm (for further details, see the
proof of Lemma 2 in [4] or the full version of our paper [14]).

It is well-known that in expectation, the algorithm performs O((n/k)bd/2c) violation
tests and O(logd+1(n/k)) basis computations [20]. Since each simplex ∆i intersects O(k)
hyperplanes of H, each of these subroutines can be implemented in O(kd−1 log k) time using
Lemma 14. Finally, we account for the time needed to construct the shallow cutting – by
Lemma 19 this can be done in O(k(n/k)bd/2c + n logn) expected time. J

4 Computing the (continuous) yolk

I Definition 21. Let P ⊂ Rd be a set of n points in general position. The continuous yolk
of P is the ball of smallest radius intersecting all median hyperplanes of P .

In contrast to Definition 8, we emphasize that the (continuous) yolk must intersect all
median hyperplanes defined by P (not just extremal median hyperplanes).

As before, the algorithm works in the dual space. For an integer k, let Hk(P) be the
collection of halfspaces containing exactly k points of P on or above it. Equivalently, P ? is
the collection of hyperplanes defined by P in the dual space, and

(
Hk(P)

)? is the k-level of
P ?. Our problem can be restated in the dual space as follows.

S. Har-Peled and M. Jones 50:13

Figure 4.1 Left: A set of lines and the cells of the 3-level. Middle: A simplex ∆, with the portion
of the 3-level inside ∆. Right: Triangulating the portion of the 3-level contained inside ∆. All red
triangles together with the lower dimensional faces of the 3-level form the set of constraints g(∆).

I Problem 22. Let P be a set of points in Rd in general position and let k be a given integer.
Compute the ball b of smallest radius so that all points in the k-level of P ? are contained
inside the region b?.

Let Lk(P) =
(
Hk(P)

)? denote the set of all points in the k-level of P ?. Note that Lk(P)
consists of points which are either contained in the interior of some `-dimensional flat, where
0 ≤ ` ≤ d− 1, or in the interior of some d-dimensional cell of A(P ?).

We take the same approach as the algorithm of Theorem 16 – building a decider subroutine,
and showing that the input space can be decomposed into subproblems efficiently. However
the problem is more subtle, as the collection of constraints (i.e., median hyperplanes) is no
longer a finite set.

The input space. The input consists of a simplex ∆. The algorithm, in addition to ∆,
maintains the set of hyperplanes

H = P ? ∩∆ = {h ∈ P ? | h ∩∆ 6= ∅} ,

and a parameter u which is equal to the number of hyperplanes of P ? lying completely
below ∆.

The implicit constraint space. Each input ∆ maps to a region R which is the portion of
the k-level Lk(P) contained inside ∆. For each d-dimensional cell in R, we compute its
bottom-vertex triangulation (see, e.g., [16, Section 6.5]), and collect all of these simplices,
and all lower dimensional faces of R, into a set g(∆), see Figure 4.1.

Let Ξ be the collection of all simplices formed from d + 1 vertices of the arrangement
A(P ?). We let H be the union of the sets g(∆) over all simplices ∆ ∈ Ξ. To see why this
suffices, each simplex in the input space is a simplex generated by a cutting algorithm. One
property of cutting algorithms [6] is that the simplices returned are induced by hyperplanes
of P ?. Indeed, each simplex has (at most) d+ 1 vertices, and upon inspection of the cutting
algorithm, each vertex is defined by d hyperplanes of P ?. There are a finite number of
simplices ∆ to consider, and each ∆ induces a fixed subset of constraints g(∆) ⊆ H.

As such, H forms our constraint set, where each constraint is of constant size (depending
on d). Clearly, a solution satisfies all constraints of H if and only if the solution intersects
all hyperplanes in the set Hk(P). For a given subset C ⊆ H, the objective function is the
minimum radius ball b such that all regions of C are contained inside the region b?. In
particular, the problem of computing the minimum radius ball b such that b? contains all
points of Lk(P) in its interior is an LP-type problem of constant combinatorial dimension.

SoCG 2020

50:14 Fast Algorithms for Geometric Consensuses

Constructing subproblems. For a given input simplex ∆ (along with the set H = P ? ∩∆
and the number u) a collection of subproblems ∆1, . . . ,∆ψ (with the corresponding sets Hi

and numbers ui for i = 1, . . . , ψ) can be constructed as described in Section 3.3, by computing
a cutting of the planes H and clipping this cutting inside ∆. In particular, we have that⋃
i g(∆i) = g(∆). Strictly speaking, we have not decomposed the constraints of g(∆) (as

required by Lemma 2), but rather have decomposed the region which is the union of the
constraints of g(∆). This step is valid, as a solution satisfies the constraints of

⋃
i g(∆i) if

and only if it satisfies the constraints of g(∆).

The decision procedure. Given a candidate solution b?, the problem is to decide if b?
contains g(∆) in its interior. The decision algorithm itself is similar as in the proof of
Theorem 16. Consider the set ∆ ∩ (Rd \ b?), where ∆ is a simplex, and notice that it is
the union of the most two convex regions. Let ∆′ be one of these two regions of interest.
Observe that it suffices to check if there is a point on the boundary of ∆′ which is part of
the k-level. Let H ′ ⊆ H be the subset of hyperplanes intersecting ∆′.

To this end, compute Z(∂∆′, H ′). For each (d−1)-dimensional face f of ∆′, the collection
of regions Ξ = {f ∩ s | s ∈ Z(∂∆′, H ′)} forms a (d− 1)-dimensional arrangement restricted
to f . Furthermore, the complexity of this arrangement lying on f is at most O(nd−1 logn).
Notice that the level of all points in the interior of a face of Ξ is constant, and two adjacent
faces (sharing a boundary) have their level differ by at most a constant. The algorithm
picks a face in Ξ, computes the level of an arbitrary point inside it (adding u to the count).
Then, the algorithm walks around the arrangement, exploring all faces, using the level of
neighboring faces to compute the level of the current face. If at any step a face has level k,
we report that the input (∆, H, u) violates the candidate solution b?.

Analysis of the decision procedure. We claim the running time of the algorithm is pro-
portional to the complexity of the zone Z(∂∆′, H ′). Indeed, for each (d − 1)-dimensional
face f of ∆′ (where f may either be part of a hyperplane or part of the boundary of b?), we
can compute the set {f ∩ s | s ∈ Z(∂∆′, H ′)} in time proportional to the total complexity
of Z(∂∆′, H ′) (assuming we can intersect a hyperplane with a portion of a constant degree
surface efficiently). The algorithm then computes the level of an initial face naively in O(|H ′|)
time, and computing the level of all other faces can be done in O(|Z(∂∆′, H ′)|) time by
performing a graph search on the arrangement.

Because the boundary of ∆′ is constructed from d+ 1 hyperplanes and the boundary of
the hyperboloid, Lemma 7 implies that the zone complexity is O(|H|d−1 log |H|). As such,
our decision procedure runs in time D(n) = O(nd−1 logn).

I Lemma 23. Problem 22 can be solved in O(nd−1 logn) expected time, where n = |P |.

Proof. Follows by plugging the above discussion into Lemma 2. J

By modifying the decision procedure appropriately, we also obtain a similar result to
Corollary 15.

I Corollary 24. Let P ⊂ Rd be a set of n points in general position, and let S ⊂ JnK. The
smallest ball intersecting all hyperplanes in

⋃
k∈S Hk(P) can be computed in O(nd−1 logn)

expected time.

I Theorem 25. Let P ⊂ Rd be a set of n points in general position. One can compute the
yolk of P in O(nd−1 logn) expected time.

S. Har-Peled and M. Jones 50:15

Proof. The result follows by applying Corollary 24 with the appropriate choice of S. When
n is even, Lemma 10 tells us to choose S = {n/2, n/2 + 1, . . . , n/2 + d}. When n is odd, we
set S = {dn/2e , dn/2e+ 1, . . . , dn/2e+ d− 1}. J

I Remark 26. In R3, one can shave the O(logn) factor to obtain an O(n2) expected time
algorithm for the yolk. We modify the decision procedure as follows, which avoids computing
the zone Z(∂∆′, H ′). For each 2D face f of ∆′, simply compute the arrangement of the
set of lines {f ∩ h | h ∈ H} on f in O(n2) time. As before, we perform a graph search on
this arrangement, computing the level of each face. If any time we discover a point on
the boundary of ∆′ of the desired level, we report that the given input violates the given
candidate solution.

5 Conclusion

The natural open problem is to improve the running times for computing the yolk (and
extremal yolk) even further. It seems believable, that for d > 3, the log factors in Theorem 16
and Theorem 25 might not be necessary. We leave this as an open problem for further
research.

References
1 Boris Aronov, Marco Pellegrini, and Micha Sharir. On the zone of a surface in a hyperplane

arrangement. Discrete Comp. Geom., 9:177–186, 1993. doi:10.1007/BF02189317.
2 Binay K. Bhattacharya, Shreesh Jadhav, Asish Mukhopadhyay, and Jean-Marc Robert.

Optimal algorithms for some intersection radius problems. Computing, 52(3):269–279, 1994.
doi:10.1007/BF02246508.

3 Duncan Black. On the rationale of group decision-making. Journal of Political Economy,
56(1):23–34, 1948. doi:10.1086/256633.

4 Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth. In J. Ian
Munro, editor, Proc. 15th ACM-SIAM Sympos. Discrete Algs. (SODA), pages 430–436. SIAM,
2004. URL: http://dl.acm.org/citation.cfm?id=982792.982853.

5 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-
d and 3-d shallow cuttings. Discrete Comp. Geom., 56(4):866–881, 2016. doi:10.1007/
s00454-016-9784-4.

6 Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Comp. Geom.,
9:145–158, 1993. doi:10.1007/BF02189314.

7 Kenneth L. Clarkson. Las vegas algorithms for linear and integer programming when the
dimension is small. J. ACM, 42(2):488–499, 1995. doi:10.1145/201019.201036.

8 Mark de Berg, Jonathan Chung, and Joachim Gudmundsson. Computing the yolk in spatial
voting games, 2019.

9 Mark de Berg, Katrin Dobrindt, and Otfried Schwarzkopf. On lazy randomized incremental
construction. Discrete Comp. Geom., 14(3):261–286, 1995. doi:10.1007/BF02570705.

10 Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing
plurality points. ACM Trans. Algorithms, 14(3):36:1–36:23, 2018. doi:10.1145/3186990.

11 Herbert Edelsbrunner, Raimund Seidel, and Micha Sharir. On the zone theorem for hyperplane
arrangements. SIAM J. Comput., 22(2):418–429, 1993. doi:10.1137/0222031.

12 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games
without computing median lines. In 33th Conf. Artificial Intell. (AAAI), 2019.

13 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games
without computing median lines. CoRR, abs/1902.04735, 2019. arXiv:1902.04735.

14 Sariel Har-Peled and Mitchell Jones. Fast algorithms for geometric consensuses. CoRR,
abs/1912.01639, 2019. arXiv:1912.01639.

SoCG 2020

https://doi.org/10.1007/BF02189317
https://doi.org/10.1007/BF02246508
https://doi.org/10.1086/256633
http://dl.acm.org/citation.cfm?id=982792.982853
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/BF02189314
https://doi.org/10.1145/201019.201036
https://doi.org/10.1007/BF02570705
https://doi.org/10.1145/3186990
https://doi.org/10.1137/0222031
http://arxiv.org/abs/1902.04735
http://arxiv.org/abs/1912.01639

50:16 Fast Algorithms for Geometric Consensuses

15 Jiří Matoušek. Reporting points in halfspaces. Comput. Geom., 2:169–186, 1992. doi:
10.1016/0925-7721(92)90006-E.

16 Jiří Matoušek. Lectures on Discrete Geometry, volume 212 of Grad. Text in Math. Springer,
2002. doi:10.1007/978-1-4613-0039-7/.

17 Richard D. McKelvey. Covering, dominance, and institution-free properties of social choice.
American Journal of Political Science, 30(2):283–314, 1986. doi:10.2307/2111098.

18 Ariel Rubinstein. A note about the “nowhere denseness” of societies having an equilibrium
under majority rule. Econometrica, 47(2):511–514, 1979. doi:10.2307/1914198.

19 Raimund Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete
Comp. Geom., 6:423–434, 1991. doi:10.1007/BF02574699.

20 Micha Sharir and Emo Welzl. A combinatorial bound for linear programming and related
problems. In 9th Symp. on Theoretical Aspects of Comput. Sci. (STACS), pages 569–579, 1992.
doi:10.1007/3-540-55210-3_213.

21 Richard E. Stone and Craig A. Tovey. Limiting median lines do not suffice to determine the
yolk. Social Choice and Welfare, 9(1):33–35, 1992. doi:10.1007/BF00177668.

22 Craig A. Tovey. A polynomial-time algorithm for computing the yolk in fixed dimension. Math.
Program., 57:259–277, 1992. doi:10.1007/BF01581084.

https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1007/978-1-4613-0039-7/
https://doi.org/10.2307/2111098
https://doi.org/10.2307/1914198
https://doi.org/10.1007/BF02574699
https://doi.org/10.1007/3-540-55210-3_213
https://doi.org/10.1007/BF00177668
https://doi.org/10.1007/BF01581084

	Introduction
	Previous work
	Our results

	Preliminaries
	LP-type problems
	Implicit LPs using Chan's algorithm
	Duality, levels, and zones
	Duality
	k-Levels
	Zones of surfaces

	Computing the extremal yolk
	Background
	Building the decider
	Algorithm
	Analysis

	Constructing subproblems
	Putting it all together
	Computing the extremal yolk and the egg
	An algorithm sensitive to k

	Computing the (continuous) yolk
	Conclusion

