Efficient Approximation of the Matching Distance
for 2-Parameter Persistence

Michael Kerber
Graz University of Technology, Austria
kerber@Qtugraz.at

Arnur Nigmetov

Graz University of Technology, Austria
nigmetov@tugraz.at

—— Abstract

In topological data analysis, the matching distance is a computationally tractable metric on multi-

filtered simplicial complexes. We design efficient algorithms for approximating the matching distance
of two bi-filtered complexes to any desired precision € > 0. Our approach is based on a quad-tree
refinement strategy introduced by Biasotti et al., but we recast their approach entirely in geometric
terms. This point of view leads to several novel observations resulting in a practically faster
algorithm. We demonstrate this speed-up by experimental comparison and provide our code in a
public repository which provides the first efficient publicly available implementation of the matching
distance.

2012 ACM Subject Classification Theory of computation — Computational geometry

Keywords and phrases multi-parameter persistence, matching distance, approximation algorithm
Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.53

Related Version A full version of the paper is availabe at [14], https://arxiv.org/abs/1912.05826.

Supplementary Material Our code is available as part of the HERA library https://bitbucket.org/
grey_narn/hera/src/master/matching/ and provides an efficient implementation for computing
the matching distance for bi-filtrations.

Funding Michael Kerber: Supported by Austrian Science Fund (FWF) grant number P 29984-N35.

1 Introduction

Persistent homology [10, 4, 9, 18] is one of the major concepts in the quickly evolving field of
topological data analysis. The concept is based on the idea that studying the topological
properties of a data set across various scales yields valuable information that is more robust
to noise than restricting to a fixed scale.

We distinguish the case of single-parameter persistence, where the scale is expressed by a
single real parameter, and the case of multi-parameter persistence, in which the scale consists
of two or more parameters that vary independently. The former case is the predominant
one in the literature. The entire homological multi-scale evolution of the data set can be
expressed by a multi-set of points in the plane, the so-called persistence diagram. Moreover,
the interleaving distance yields a distance measure between two data sets by measuring
the difference in their topological evolution. For a single parameter, this distance can be
rephrased as a combinatorial matching problem of the corresponding persistence diagrams
(known as the bottleneck distance) and computed efficiently [12]. These results are part of a
rich theory of single-parameter persistence, with many algorithmic results and applications.

The case of multi-parameter persistence received significantly less attention until recently.
One reason is the early result that a complete combinatorial structure such as the persistence
diagram does not exist for two or more parameters [5]. Moreover, while the interleaving
distance can be straight-forwardly generalized to several parameters, its computation becomes

© Michael Kerber and Arnur Nigmetov; [l
oY licensed under Creative Commons License CC-BY AR
36th International Symposium on Computational Geometry (SoCG 2020). }

Editors: Sergio Cabello and Danny Z. Chen; Article No. 53; pp. 53:1-53:16 N

\\v Leibniz International Proceedings in Informatics BN
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

|
L

[
(]

[N

https://orcid.org/0000-0002-8030-9299
mailto:kerber@tugraz.at
https://orcid.org/0000-0003-4823-5311
mailto:nigmetov@tugraz.at
https://doi.org/10.4230/LIPIcs.SoCG.2020.53
https://arxiv.org/abs/1912.05826
https://bitbucket.org/grey_narn/hera/src/master/matching/
https://bitbucket.org/grey_narn/hera/src/master/matching/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2

Matching Distance Approximations

NP-hard already for two parameters, as well as any approximation to a factor less than 3 [3].
On the other hand, data sets with several scale parameters appear naturally in applications,
and an efficiently computable distance measure is therefore highly important.

We focus on the matching distance [6, 2, 13] as a computationally tractable lower bound
on the interleaving distance [15]. It is based on the observation that when restricting the
multi-parameter space R? to a one-dimensional affine subspace (that is, a line in R?), we are
back in the case of single-parameter persistence. We can compute the bottleneck distance
between the two persistence diagrams restricted to the same subspace. The matching distance
is then defined as the supremum of all bottleneck distances over all subspaces (see Section 3
for the precise definition). The matching distance has been used in shape analysis [6, 2]
(where it is known as the matching distance between size functions), for virtual screening in
computational chemistry [11], and a recent algorithm [13] computes the distance exactly in
polynomial time (with a large exponent).

Our contribution is an improvement of an approximation algorithm by Biasotti et al. [2]
for the 2-parameter case which we summarize next. We parameterize the space of all lines of
interest as a bounded rectangle R C R2. To each point p in the rectangle, we assign f(p)
as the bottleneck distance between the two persistence diagrams when restricting the data
sets to the line parameterized by p. The matching distance is then equal to sup,cr f(p)-
The major ingredient of the algorithm is a variation bound which tells how much f(p) varies
when p is perturbed by a fixed amount. For any subrectangle S C R with center ¢, f(¢) and
the variation bound yield an upper bound of f within .S. We then obtain an e-approximation
with a simple branch-and-bound scheme, subdividing R with a quad-tree in BFS order and
stopping the subdivision of a rectangle when its upper bound is sufficiently small.

Our contributions. We aim for a fast implementation useful for practical applications of

multi-parameter persistent homology. Towards this goal, we make the following contributions:

1. We rephrase the approximation algorithm by Biasotti et al. entirely in elementary
geometric terms. We think that the geometric point of view complements their formulation
and makes the structure of the algorithm more accessible. Indeed, we are able to simplify
several arguments from [2] (see Appendix E in [14]).

2. We provide a simple yet crucial algorithmic improvement: instead of using the global
variation bound for all rectangles of the subdivision, we derive adaptive local variation
bounds for each rectangle individually. This results in much smaller upper bounds and
avoids many subdivisions in the approximation algorithm.

3. We experimentally compare our version of the global bound with the usage of the adaptive
bounds. We show that the speed-up factor of the sharpest adaptive bound is typically
between 3 and 8, depending on the input bi-filtrations (for some inputs the speed-up is
15).

4. Our code is available as part of HERA library! and provides an efficient implementation
for computing the matching distance for bi-filtrations.

Outline. We start with a short introduction to filtrations and persistent homology in
Section 2. We define the matching distance in Section 3. The algorithm to approximate it
is described in Section 4, and our local variation bounds are derived in Section 5. We do
experiments in Section 6 and conclude in Section 7.

! https://bitbucket.org/grey_narn/hera/src/master/matching/

https://bitbucket.org/grey_narn/hera/src/master/matching/

M. Kerber and A. Nigmetov

v=0.1! v=0.41 v=0.6l v=0.81 v=1

Figure 1 Left: Mono-filtration of a simplicial complex K of dimension 2. The critical value of
each simplex is displayed. Right: Examples of the complexes K, for various values of v.

2 Background

Mono-Filtrations. Fixing a base set V, a k-simplex o is a non-empty subset of V of
cardinality kK + 1. A face 7 of ¢ is a non-empty subset of . A simplicial compler K is
a collection of simplices such that whenever o € K, every face of ¢ is in K as well. The
dimension of a simplicial complex K is the maximal k£ such that K contains a k-simplex. As
an example, a graph is merely a simplicial complex of dimension 1. Following graph-theoretic
notations, we call 0-simplices of K wvertices and 1-simplices of K edges. A subcomplex of K
is a subset L C K such that L is again a simplicial complex. We will henceforth assume that
the base set V is finite, which implies also that the simplicial complex K is finite.

A mono-filtration is a simplicial complex K equipped with a function ¢ : K +— R such
that for any simplex ¢ and any face 7 of o, it holds that ¢(7) < (o). We call ¢(o) the
critical value of o and define for any v € R

K, :={ce€ K|yp(o) <v}.

By the condition on ¢ from above, K, is a subcomplex of K for each v. Moreover, whenever
v < w, we have that K, C K,,. Hence, the collection (K,),cr yields a nested sequence of
simplicial complexes, which is entirely determined by the critical values of each simplex in
K. See Figure 1 for an illustration.

Persistence diagrams. We are interested in the topological changes of (K,),er when v
increases continuously. A persistence diagram is a multi-set of points in R x (R U {oco}) with
all points strictly above the diagonal x = y. The general definition requires a digression
into representation theory and homological algebra (e.g., see [18]). Instead, we explain the
idea on the problem of tracking connected components of K, within the filtration, which is
a special case of the general theory. Assume for simplicity that no two simplices have the
same critical value. Whenever we reach the critical value b of a vertex, a new connected
component comes into existence. We call this a birth. We say that the component born at b
dies at value d if there is an edge with critical value d that merges the connected component
with another connected component which was born before b. In that case, (b,d) is a point in
the persistence diagram, denoting that the corresponding connected component persisted
from scale b to scale d. Assuming that K is connected, each component gets assigned a
unique death value except the component born at the minimal critical value. We assign the
death value oo to this component, adding an infinite point to the diagram. The resulting
diagram is called the persistence diagram in (homological) dimension 0. See Figure 2 (left).
Similar diagrams can be defined for detecting tunnels, voids, and higher-dimensional holes in
the simplicial complex.

We define a distance on two persistence diagrams D; and D, next. Fixing a partial
matching between D and D, we assign to each match of p € Dy and g € D5 the cost
lp — ¢lloo = max{|ps — x|, [Py — gy}, With the understanding that co — oo = 0. In particular,
the cost of matching a finite to an infinite point is co. Every unmatched point p gets assigned

53:3

SoCG 2020

53:4

Matching Distance Approximations

=€ ° , 7 1 %. , 7
7 7
0.7+ 7 0.7+ >Q]. 7
-+ Y s =+ 03 s
1 .0 1 x29
7 7
04+ /7 04+ X025,
7 "‘b‘/
—+ 7/ —+ 7
7 7
+ o 7 4 e005
, Iz
0.1+ ~ 0.1+ -
7/ 7/
——————— —————+—+—
0.1 0.4 0.7 0.1 0.4 0.7

Figure 2 Left: The persistence diagram in dimension 0 of the example from Figure 1 (plus the
point (0,00) that is not drawn). Note that indeed, connected components are born at 0, 0.1, 0.4
and 0.5, and the latter three components die at 0.2, 0.6 and 0.8, respectively. Right: A partial
matching of two diagrams (depicted by circles and x-shapes). The cost of each match and of each
unmatched vertex is displayed. The cost of this matching is 0.125 which is in fact the optimal cost
in this example, so the bottleneck distance between the diagrams is 0.125.

the cost 2 y;p £ which corresponds to the Lo.-distance from p to the diagonal. Taking the
maximum over all matched and unmatched points in Dy and Dy results in the cost of the
chosen partial matching. The bottleneck distance between Dy and D5 is then the minimum
cost over all possible partial matchings between Dy and Ds. See Figure 2 (right) for an
example. Since filtrations give rise to persistence diagrams, we also talk about the bottleneck
distance between two filtrations and denote it by dp(-,-) from now on.

We will need the following properties of the bottleneck distance. The proofs of the first
three of them follow directly from the definition.

dp satisfies the triangle inequality: dp(F, H) < dp(F,G) + dp(G, h) for three filtrations

F, G, H.

dp is shift-invariant: let F' = (K,) be a filtration, define F,. be the filtration (K, ¢ +),

where the critical value of each simplex is shifted by . Then dp(F,G) = dg(Fy, Gr).

dp is homogeneous: let F' = (K,) be a filtration, A be a positive number, define AF" be

the filtration (K, Ap).Then dg(AF, \G) = Adp(F,G).

dp is stable [7]: let F1 = (K, 1) and Fy = (K, p2) be two filtrations of the same complex

such that for each 0 € K, |p1(0) — p2(0)| < e. Then, dp(Fi, Fs) < €.

Bi-filtrations. Define the partial order < on R? as p < ¢ if and only if p, < g, and Dy < Qy-
Geometrically, p < ¢ if and only if ¢ lies in the upper-right quadrant with corner p. A
(1-critical) bi-filtration is a simplicial complex K together with a function ¢ : K — R? such
that for every simplex o and every face 7 of o, we have that o(7) < ¢(0). As before, ¢(0) is
called the critical value of 0. Our assumption that every simplex has a unique critical value
is just for the sake of simpler exposition; our ideas extend to the k-critical case where each o
has up to k incomparable critical values (Appendix H, [14]). Fixing p € R?, we define

K, = {0 € K | (o) < p}.

Similar to the mono-filtration case, K, is a subcomplex and K, C K,, whenever p < q.

It is worth visualizing the construction of K, geometrically. We can represent the bi-
filtration as a multi-set of points in R?, where each point corresponds to a simplex and is
placed at the critical value of the simplex. The complex K, then consists of all simplices
that are placed in the lower-left quadrant with p at its corner. See Figure 3 for an example.

M. Kerber and A. Nigmetov

(0,0.2)]
1p=(0.7,0.6)
(0.5,0.4) L4
0.2,0.3) ° Y
[]
0.8,0.7) ¢ °
[}
0.1,0.1) 0.6,02) (0.4,0) TS

Figure 3 Left: Bi-filtration of a simplicial complex K of dimension 2. Middle: Every point in
the plane denotes the critical value of a simplex. The shaded rectangle yields the simplices that
belong to K. Right: Illustration of K, as a subcomplex of K.

Figure 4 Left: The slice parameterized by (%,0.1). For two critical values of the bi-filtration
from above, we illustrate the construction of the point ¢ (displayed by a cross shape). The push of
the critical value is simply the Euclidean distance to the point (0,0.1), which is the origin of the
slice. Right: The non-weighted restriction on the slice. Each simplex gets its push as critical value.

3 The matching distance

Slices. Bi-filtrations are too wild to admit a simple combinatorial description such as a
persistence diagram. But we can obtain a persistence diagram when restricting to a one-
dimensional affine subspace. For all concepts in this subparagraph, see Figure 4 for an
illustration. We consider a non-vertical line L with positive slope, which we call a slice. For
every slice, we distinguish a point O, called the origin of the slice. We let £ denote the set
of all slices. Since the slope is positive, for any two distinct points p, ¢ on L either p < g or
q < p holds. Hence, < becomes a total order along L.

Given p € R?, let ¢ be the minimal point on L (with respect to <) such that p < q.
Geometrically, ¢ is the intersection of L with the boundary of the upper-right quadrant of
p, or equivalently, the horizontally-rightwards projection of p to L if p lies above L, or the
vertically-upwards projection of p to L if p lies below L. Since ¢ lies on L, ¢ can be written as

0 ()
sin 7y
where v is the angle between L and z-axis, and A\, € R. We define A\, as the push of p to L,
which can be formally written as a function push : R? x £ — R. Geometrically, the push is
simply the (signed) distance of the point ¢ to the origin of the slice. Fixing a bi-filtration
F = (K, ¢), the composition push(-, L) o ¢ yields a function K — R, and it can be readily
checked that this function yields a mono-filtration, which we call the non-weighted restriction
of F onto L. See Figure 4 (right) for an example.

53:5

SoCG 2020

53:6

Matching Distance Approximations

Figure 5 Two points that are close to each other might have pushes far from each other. Note
that by making the slice more flat, the distance between the pushes can be made arbitrarily large.

Matching distance. Given two bi-filtrations F'!, F2, we could try to define a distance
between them by taking the supremum of bottleneck distances between their non-weighted
restrictions on all slices. However, this does not yield a meaningful result. The reason is that
for almost horizontal and almost vertical slices, the pushes of two close-by points can move
very far away from each other — see Figure 5 for an example. As a result, the bottleneck
distance along such slices becomes arbitrarily large.

Instead, we introduce a weight for each slice. Let v denote the angle between the slice L
and z-axis. We call L flat if v < % (i.e., if its slope is < 1) and steep if v > F. Then we set

w(L) = {sin’y if L is flat

cosy if L is steep.

We define the matching distance between the bi-filtrations F! = (K, p!) and F? =
(K?,¢?) as

dy(FY, F?) .= sup w(L) - dp(restr(F*, L), restr(F? L)),

LeLl
where restr(F?, L) denotes the non-weighted restriction of F* onto L. Note that while the
non-weighted restrictions depend on the choice of the origin, a different choice of origin for
a slice only results in a uniform translation of the critical values of both mono-filtrations.
Hence, the bottleneck distance does not change because of shift-invariance. This means that
the matching distance is independent of the choice of the origins.

Moreover, the shift-invariance of dp implies that if we alter ¢; and @9 such that every
value is translated by the same vector v € R?, the matching distance does not change.
Recalling that we can visualize bi-filtrations as finite multi-sets of points in R?, we can hence
assume without loss of generality that all these points are in the upper-right quadrant of the
plane, that is, ¢*(c) € [0,00) x [0, 00).

Let us now define the weighted push of a point p to a slice L as wpush(p,L) =
w(L) push(p, L), and let Fy, denote the mono-filtration induced by o +— wpush(p(o), L).
We call F, a weighted restriction of F onto L. Note that F, equals restr(F, L) except that
all critical values are scaled by the factor w(L). Using homogeneity of dp, we see that

dM(F17F2):Sude(FII,7Fg>' (1>
LeL

We will use this equivalent definition of the matching distance in the remaining part of the
paper, and “restriction” will always mean “weighted restriction”.

4 The approximation algorithm

The idea of the approximation algorithm for dy; is to sample the set of slices through a
finite sample, and chose the maximal bottleneck distance between the (weighted) restriction
encountered as the approximation value. In order to execute this plan, we need to parameterize
the space of slices and need to compute the restriction of a parameterized slice efficiently.

M. Kerber and A. Nigmetov

Figure 6 A steep y-slice (I), a flat y-slice (II), a steep z-slice(III) and a flat z-slice. The slopes
are 2 for the steep and % for the flat slices, and the origin is at (0, 2) for the y-slices and at (2, 0) for
the z-slices. Consequently, all four slices are parameterized by (%7 2).

Slice Parameterization. FEvery slice has a unique point where the line enters the positive
quadrant of R2, which is either its intersection with the positive z-axis, the positive y-axis,
or the point (0,0). From now on, we always use this point as the origin of the slice.

We call a slice an x-slice if its origin lies on the positive z-axis, and call it a y-slice if its
origin lies on the positive y-axis (slices through the origin are both z- and y-slices). Recall
also that a slice is flat if its slope is less than 1, and steep if it is larger than 1. Thus, a slice

belongs to one of the four types: flat z-slices, flat y-slices, steep z-slices and steep y-slices.

Every slice is represented as a point (A,) € (0,1] x [0, 00) where the interpretation of the
parameters depends on the type of the slice as follows: Let O = (O, O) be the origin of L,
and recall that « is the angle of the slice with the z-axis. Then

N {tan(’y), if L is flat {Om if L is z-slice
= M =

cot(7y), if L is steep O, if L is y-slice .

In other words, A is the slope of the line in the flat case, and the inverse of the slope in the
steep case, and p contains the non-trivial coordinate of the origin. Note that the same pair of

parameters can parameterize different slices depending on the type. Figure 6 illustrates this.

Weighted pushes. We next show a simple formula for the value of wpush(p, L) depending
on the type of the slice.

» Lemma 1. With the chosen parameterization and choice of origin on L, wpush(p, L) is
computed according to the formulas given in Table 1.

Proof. The proof of the lemma is a series of elementary calculations. Let us consider, for
example, the case of a flat y-slice. In this case the slice L = (A,) is given by

{(0)+o(7) 10er).

If p = (pe, py) is above L, we consider the point ¢ = (¢, q,) which is the intersection of L
and the line y = p,. Obviously, ¢, = p,, and, since ¢ lies on L, the second coordinate yields

Qy —H _ Py — H

P=g i
siny sin vy

By definition, p is the push of p to L and since L is flat, we have that w(L) = sin~y which
cancels with the denominator. The other 7 cases are proved analogously. <

53:7

SoCG 2020

53:8 Matching Distance Approximations

Table 1 Formulas for weighted push of (ps,py) onto a slice L = (A, p).

y-slices x-slices
flat steep flat steep
p above L py— i Apy —) Dy Apy
p below L APz D Ape —p) po—p

Figure 7 Illustration for the fact that slices with larger value of can be ignored.

All 8 expressions in Table 1 involve only addition and multiplication without trigonometric
functions. Hence we can extend them continuously to A = 0, which corresponds to horizontal
lines (in the flat case) or vertical lines (in the steep case). With this interpretation, we can
extend £ to a set £ in (1), containing these limit cases, without changing the supremum.

Next, we observe that we can restrict our attention to a bounded range of u-parameters.
For that, let X denote the maximal x-coordinate and Y be the maximal y-coordinate among
all critical values of F! and of F2. For a y-slice (steep or flat) L = (A,) with u > Y,
let L' = (\,Y) be the parallel slice with origin at (0,Y). All critical values of F12 are
below L and L’ by construction (recall that all critical points are assumed in the upper-right
quadrant), hence we obtain the push by projecting vertically upwards. Looking at the
second row in Table 1, we see that the weighted pushes are independent of p, and therefore
equal for L and L’. Hence, the weighted bottleneck distances along L and L’ are equal:
dp(F},F?) =dg(F},, F3?)). See Figure 7 for an illustration. We conclude that for y-slices it
suffices to consider 0 < p < Y in (1) without changing the matching distance. An analogous
argument shows that for z-slices, it is only necessary to consider 0 < p < X.

To summarize the last two observations, we arrive at the following statement. There are
sets £ of flat z-slices, Lo of steep z-slices, L3 of flat y-slices, and L4 of steep y-slices (with
each set containing some vertical/horizontal lines as limit case) such that

du(FY, F?) = sup dp(Fi, F?) (2)

Lelq U..ULy

and such that £1 and Ly are parameterized by [0, 1] x [0, X] and L3 and L4 by [0,1] x [0,Y].

Approximation. We present an approximation algorithm that, given two bi-filtrations F'*
and F? and some ¢ > 0 returns a number & such that

du(F' F?) —e <6 <du(Fh F?).

We assume that the two bi-filtrations are given as simplicial complexes, i.e., a list of simplices,
where each simplex is annotated with two real values denoting the critical value of the
simplex. In the description, we set T := {z-flat, x-steep, y-flat, y-steep} for the type of a slice.
The algorithm is based on the following two primitives:

M. Kerber and A. Nigmetov

Eval(F', F? L) Computes dg(F},F?), where L is specified by the triple (), u,t) where
(A,) are the parameterization of L and t € T' denotes its type.

Bound (F'', F?, B,t) If B is an axis-parallel rectangle and ¢ € T', the pair (B,) specifies a
set of slices L£y. The primitive computes a number px € R such that, for every L € Ly,

With these two primitives, we can state our approximation algorithm: from now on,
we refer to axis-parallel rectangles as boxes for brevity. We start by computing maximal
coordinates X and Y of critical values of F'* and F? and enqueueing the four initial items
([0,1) x[0, Y], y-steep), ([0,1] x [0, Y], y-flat), ([0, 1] x [0, X], z-steep), and ([0, 1] x [0, X], z-flat)
into a FIFO-queue. We also maintain a variable p storing the largest bottleneck distance
encountered so far, initialized to 0.

Now, we pop items from the queue and repeat the following steps: for an item (B, t), let
L denote the slice that corresponds to the center point of B. We call Eval(F!,F2,L) and
update p if the computed value is bigger than the current maximum. Then, we compute
u +Bound(F',F?,B,t). If uw > p+ e, we split B into 4 sub-boxes By, ..., By of equal
dimensions (using the center as splitpoint) and enqueue (By,t),..., (By,t). When the queue
is empty, we return § < p. This ends the description of the algorithm.

Assuming that the above algorithm terminates (which is unclear at this point because
it depends on the implementation of the Bound primitive), the output is indeed an e-
approximation. This can be derived directly from the termination condition of the subdivision
and the fact that p is non-decreasing during the algorithm. See Appendix A, [14] for details.

A variant of the above algorithm computes a relative approximation of the matching
distance, that is, a number § such that

du(F' F?) <0< (T4¢e)du(F F?).

The algorithm is analogous to the above, with the difference that a box is subdivided if
> (14 ¢€)p, and at the end of the algorithm (1 4 ¢)p is returned as §. The correctness of
this variant follows similarly. However, the algorithm terminates only if dy(F*!, F2) > 0,
and its complexity depends on the value of the matching distance.

What is needed to realize the Eval primitive? First, we compute the weighted pushes
of each critical value of F' and of F? in time proportional to the number of critical values
using Lemma 1. Then, we compute the persistence diagrams of F! and of F?, and their
bottleneck distance. Both steps are well-studied standard tasks in persistent homology, and
several practically efficient algorithms have been studied. We use PHAT [1] for computing
persistence diagrams and HERA [12] for the bottleneck computation.

5 The Bound primitive

Recall that the input of Bound is (F!, F?, B,t), where (B,t) specifies a collection of slices of
type t. In what follows, we will identify points in B with the parameterized slice, writing
L € B to denote that L is obtained from a pair of parameters (\, u) € B with respect to
type t (which we skip for notational convenience).

Let L, be the slice corresponding to the center of B. The variation of a point p € R? for
B denotes how much the weighted push of p changes when the slice is changed within B:

v(p, B) := max | wpush,,(L) — wpush,,(L.)|.

53:9

SoCG 2020

53:10

Matching Distance Approximations

For a bi-filtration F, we define

v(F,B) := max v(p, B).

p critical value of F
The variation yields an upper bound for the bottleneck distance within a box:

» Lemma 2. With the notation as before, we have that for two filtrations F', F? that

sup dg(F}, F7) < o(F', B) + dg(F} F?) + o(F?,B)
LeB

Proof. By triangle inequality of the bottleneck distance,
dp(FL, F7) <dp(FL, Fi) +dp(Fy F7) +dp(FE,, F7).

Looking at the first term on the right, we have two filtrations of the same simplicial complex,
and every critical values changes by at most v(F'*, B) by definition of the variation. Hence,
by stability of the bottleneck distance, dp(F}, F iv) < v(F!, B). The same argument applies
to the third term which proves the theorem. ‘ |

Note that the second term in the bound of Lemma 2 is the value at the center slice, which is
already computed in the algorithm. It remains to compute the variation of a bi-filtration
within B. This, in turn, we do by analyzing the variation of a point p within B. We show

» Theorem 3. For a box B, let Ly, ..., Ly be the four slices on the corners of B. Then

v(p, B) = max | wpush,,(L;) — wpush,,(L.)|

The theorem gives a direct algorithm to compute v(p, B), just by computing the weighted
pushes at the four corners (in constant time) and return the maximal difference to the weighted
push in the center. Doing so for every critical point of a bi-filtration F' yields v(F, B), and
with Lemma 2 an algorithm for the Bound primitive that runs in time proportional to the
number of critical points of F'! and F2. We refer to this bound as local linear bound (where
the term “linear” refers to the computational complexity), or as L-bound.

The proof of the theorem is presented in Appendix B, [14]. The main idea is that the
expression | wpush,,(Ly) — wpush,(L.)| (with Ly , the slice given by (A, 1)) has no isolated
local maxima, even for a fixed A or a fixed . That implies that from any (A, p) in the box,
there is rectilinear path to a corner on which the expression above is non-decreasing.

A coarser bound. We have derived a method to compute v(p, B) exactly which takes linear
time. Alternatively, we can derive an upper bound as follows:

» Theorem 4. Let B be a box [Amins Amax] X [Mmins fmax] With center (Mg, pie), width AX =
Amax — Amin and height Ay = fimax — fimin- Then, for any point p € [0, X] x [0,Y], v(p, B)
18 at most

(Ap+ XAN) for flat y-slices
AAp+ (Y — pimin) AN} for steep y-slices
(AAp + (X — pmin)AX) for flat z-slices
(Ap+YAN for steep x-slices.

[T S ST I

Importantly, the bound is independent of p, and hence also an upper bound for v(F, B) that
can be computed in constant time; we refer to it as local constant bound or C-bound.

M. Kerber and A. Nigmetov 53:11

The proof of Theorem 4 is based on deriving a bound of how much wpush,, (L) and
wpush, (L) can differ for two slices L = (A,) and L' = (X', ¢1) in dependence of |\ — \'| and
| — 1| This bound, in turn, is derived separately for all four types of boxes and involves
an inner case distinction depending on whether p lies above both slices, below both slices, or
in-between. In either case, the claim of the statement follows from the bound by plugging in
the center slice of a box for either L or L’. See [14] for the detailed proof.

Termination and complexity. We show next that our absolute approximation algorithm
terminates when realized with either the local linear bound or the local constant bound. In
what follows, set C' := max{X,Y}. In the subdivision process, each box B considered is
assigned a level, where the level of the four initial boxes is 0, and the four sub-boxes obtained
from a level-k-box have level k + 1. Since every box is subdivided by the center, we have
immediately that for a level-k-box, AX = 27% and Au < C27%. Using these estimates in
Theorem 4, we obtain

v(F',B) < =(C27F + C27%) = 027", (3)

N | —

for ¢ = 1,2 and every level-k-box B considered by the algorithm. Note that the local constant
bound yields a bound on v(F? B) that is not worse, and so does the local linear bound
(which computes v(F?, B) exactly). Hence we have

» Lemma 5. Let B be a level-k-box considered in the algorithm. Then, u, the result of the
Bound primitive in the algorithm, satisfies

p<dp(Fi ,Fi)+2027"
both for the local linear and local constant bound.

It follows easily that if 2C27% < ¢, or equivalently 2% > %, a box is not further subdivided
in the algorithm (see Lemma 9 in [14]). Moreover, if the maximal subdivision depth is k, the
algorithm visits O(4*) boxes, and requires O(n3) time per box because of the computation
of two persistence diagrams and their bottleneck distance. Combining these results leads to

the complexity bound.

» Theorem 6. Our algorithm to compute an absolute e-approximation terminates in

o (2

steps in the worst case (both for the linear and constant bound).

See again [14] for more details. In there, we also derive a similar bound for the variant of
computing a relative approximation.

» Theorem 7. Our algorithm to compute a relative (1 + €)-approzimation terminates in

Cl+e) \°
Oo(n® (5dM(F1,F2)>)

steps in the worst case if dy(FY, F2) > 0.

SoCG 2020

53:12

Matching Distance Approximations

6 Experiments

Experimental setup. Our experiments were performed on a workstation with an Intel(R)
Xeon(R) CPU E5-1650 v3 CPU (6 cores, 3.5GHz) and 64 GB RAM, running GNU/Linux
(Ubuntu 16.04.5). The code was written in C++ and compiled with gcc-8.1.0.

We generated two datasets, which we call GH and ED, following [2] (unfortunately, we
were unable to get either the code or the data used by the authors). Each of the 70 files
in the datasets is a lower-star bi-filtration of a triangular mesh (2-dimensional complex),
representing a 3D shape. We also generated dataset RND of larger random bi-filtrations
with up to 2,000 vertices. A more detailed description of the datasets can be found in [14].
In all our experiments we used persistence diagrams in dimension 0. In the experiments with
the datasets GH and ED, we computed all pairwise distances; in the experiments with RND
we computed distances only between bi-filtration with the same number of vertices. We used
relative error threshold, which we call € in this section throughout (i.e., we always compute
(1 + e)-approximation).

Comparison of different bounds. First, we experimentally compare the performance of
our algorithm with the L-bound from Theorem 3 and with the C-bound from Theorem 4.
Obviously, the L-bound is sharper, so it allows us to subdivide fewer boxes and in this sense
is more efficient. However, it is not a priori clear that the L-bound is preferable, since its
computation takes O(n) time per box, in contrast to the constant bound.

Secondly, we compare the local bounds L and C with the bound provided by Equation (3),
which we call the global bound or G-bound because it only depends on the size of the box. A
bound of that sort (worse than Equation (3)) is used in [2].

Recall that the dominating step in the complexity analysis (and in practice) is the
computation of persistence, and we perform two such computations when we call the Eval
primitive. Therefore we are interested in the number of calls of Eval; for brevity, we refer to
this number simply as the number of calls.

In Table 2, we give the average number of calls and timings for different datasets and values
of €. Actually, the variance behind the average in these tables is large, so we additionally
provide Table 3 and Table 4, where we report the average, maximal, and minimal ratios of
the number of calls and time that the algorithm needs with different bounds. For instance,
the third line of Table 3 shows that for all pairs from ED that we tested with relative error
€ = 0.5, switching from the local constant to the local linear bound reduces the number of
calls by a factor between 1.78 and 4.92.

Table 4 shows that, as expected, the C-bound always performs better than the G-bound,
with the average speed-up around 2. The L-bound brings an additional speed-up by a factor
of 1.5-2 in terms of the running time; the number of calls is reduced more significantly, by a
factor of 3. However, the second from the right column of Table 4 shows that the running
time can sometimes moderately increase, if we switch to the L-bound from the C-bound.
If we compare the G-bound with the L-bound directly (these numbers are not present in
Table 4), the best speed-up factor is 15.6, the worst one is 1.14, and the average is between 3
and 8, depending on the dataset.

Breadth-first search, depth-first search, and error decay. In the formulation of our al-
gorithm we used a FIFO-queue. This means that we traverse the quad-tree in breadth-first
order (i.e., level by level). Other traversal strategies are possible, for instance a depth-first
order, or a greedy algorithm where boxes with large bottleneck distance at the center are

M. Kerber and A. Nigmetov

Table 2 Average number of calls and average running time with the L-, C- and G-bounds for

different datasets and relative error .

#Calls Time (min)
L C G L C G
GH, e =0.5 938 2502 11082 2.08 3.67 18.78
ED,e=0.1 1455 3920 27529 2.58 3.26 25.96
ED,e=0.5 169 531 2112 0.28 0.42 1.67

Table 3 Comparison of number of calls between the global, local constant, and local linear
bounds. G / C denotes the ratio of the G-bound compared with the C-bound; C / L denotes the
ratio of the C-bound compared with the L-bound.

#Calls: G / C #Calls: C / L
Dataset, ¢ Avg Min Max Avg Min Max
GH,e=05 180 1.21 3.28 3.10 1.51 7.02
ED,e=0.1 293 143 5.07 3.00 1.88 6.82
ED,e=05 194 1.17 2.81 329 178 4.92
RND,e=0.1 6.06 276 10.58 2.08 191 2.47

Table 4 Comparison of running time between the global, local constant, and local linear bounds.

Time: G / C Time: C / L
Dataset, ¢ Avg Min Max Avg Min Max
GH,e=0.5 1.66 1.00 3.18 2.03 0.75 6.32
ED,e=01 312 1.44 5.21 1.64 0.81 3.40
ED,e=05 208 1.07 3.38 1.59 092 3.89
RND, e=0.1 5.73 283 10.67 1.93 1.66 2.20

53:13

SoCG 2020

53:14

Matching Distance Approximations

—— ¢, C-bound
1+ —— ¢, G-bound

0.8 -

0.6 |-

0.4

Relative error ¢

0.2

|
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5)
Time (msec) .10°

Figure 8 Error decay with time for the C- and G-bounds.

picked first. We experimented with these variants and found no significant difference. The
explanation is that a good lower bound is achieved after a small number of iterations in
every variant, and the remaining part of the computations is mostly to certify the answer.

A variant of our algorithm is that instead of e, we are given a time budget and want
to compute the best possible (relative) approximation in this time limit. In such a case,
we propose to traverse the quad-tree by always subdividing the box with the largest upper
bound (i.e., the output of the Bound primitive). When the time is over, it suffices to peek at
the top of the priority queue to get the current upper bound, and we can output the lower
bound p and the relative error that we can guarantee at this moment. It is instructive to plot
how the relative error decreases as the algorithm runs;see Figure 8. For instance, we can see
that it takes approximately 3.5 times longer to bring the relative error below 0.1 than below
0.2, if we use the constant bound. This agrees with the complexity estimate in Theorem 7.

One detail in this plot is relevant for the experiments of the previous subparagraph. If
we choose a relative error €y and draw a horizontal line € = g in Figure 8 until it intersects
the plotted curves, then the x-coordinate of the intersection is the time that our algorithm
needs to guarantee a 1 + £¢ approximation with the corresponding bound. We can see that
the difference between the time needed with the global bound and the time needed with
the constant bound is not large for some values of gy, but a small change of g can rapidly
increase it. Clearly, this is highly input-specific, and this partially explains the large variation
in the improvement ratios that we observed above, when we ran experiments with fixed e.

We provide additional experimental results in [14]. It contains the reduction rate (the
measure used in [2]) for the experiments of this section, scaling results on the dataset RND,
and heatmap visualization of dg(F}, F?).

7 Conclusion

We presented an algorithm for the matching distance that keeps subdividing boxes until a
sufficiently close approximation of the matching distance can be guaranteed. This high-level
description also applies to the previous approach by Biasotti et al., which raises the question
of how the approaches compare in the details. Instead of pointing out similarities and
differences in the technical part, we give a detailed discussion on this topic in [14].

M. Kerber and A. Nigmetov

We have restricted to the case of bi-filtrations in this work. Generalizations in several
directions are possible. First of all, instead of bi-filtrations, our algorithm works the same
when the input is a pair of presentations of persistence modules [16, 13, 3]. Since a minimal
presentation of a bi-filtration can be of much smaller size than the bi-filtration itself, and its
computation is feasible [16, 8], switching to a minimal presentation will most likely increase
the performance further. We plan to investigate this in further work. Moreover, the case of
k-critical bi-filtrations can be handled with our methodology, just by defining the push of a
simplex as the minimal push over all its critical values (Appendix H in [14]). Our approach
can also be combined with barcode templates as introduced in the RIVET library [17]. Finally,
an extension of our approach to 3 and more parameters should be possible in principle, but
we point out that the space of affine lines through R is 2(d — 1) dimensional. Hence, already
the next case of tri-filtrations requires a subdivision in R*, and it is questionable whether
reasonably-sized instances could be handled by an extended algorithm.

As the experiments show, in some cases the cost of computing the L-bound makes the
variant with the C-bound faster. However, parallelization of the L-bound is trivial, and we
believe that on larger instances it will make the L-bound the best choice.

Finally, since the matching distance can be computed exactly in polynomial time [13], the
question is whether there is a practical algorithm for this exact computation. Our current
implementation can serve as a base-line for a comparison between exact and approximate
version of matching distance computations that hopefully lead to further improvements for
the computation of the matching distance.

—— References

1 Ulrich Bauer, Michael Kerber, Jan Reininghaus, and Hubert Wagner. Phat - persistent

homology algorithms toolbox. J. Symb. Comput., 78:76-90, 2017. doi:10.1016/j.jsc.2016.

03.008.

2 Silvia Biasotti, Andrea Cerri, Patrizio Frosini, and Daniela Giorgi. A new algorithm for
computing the 2-dimensional matching distance between size functions. Pattern Recognition
Letters, 32(14):1735-1746, 2011.

3 Havard Bjerkevik, Magnus Botnan, and Michael Kerber. Computing the interleaving distance
is NP-hard. arXiv:1811.09165.

4 G. Carlsson. Topology and data. Bulletin of the AMS, 46:255-308, 2009.

5 G. Carlsson and A. Zomorodian. The theory of multidimensional persistence. Discrete &
Computational Geometry, 42(1):71-93, 2009. doi:10.1007/s00454-009-9176-0.

6 A. Cerri, B. Di Fabio, M. Ferri, P. Frosini, and C. Landi. Betti numbers in multidimensional
persistent homology are stable functions. Mathematical Methods in the Applied Sciences,
36(12):1543-1557, 2013.

7 D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete
& Computational Geometry, 37:103-120, 2007.

8 Tamal Dey and Cheng Xin. Generalized persistence algorithm for decomposing multi-parameter
persistence modules. arXiv:1904.03766.

9 H. Edelsbrunner and J. Harer. Computational Topology. An Introduction. American Mathem-
atical Society, 2010.

10 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.
Discrete & Computational Geometry, 28(4):511-533, 2002. doi:10.1007/s00454-002-2885-2.

11 Bryn Keller, Michael Lesnick, and Theodore L. Willke. Persistent homology for virtual screening,
2018.

12 M. Kerber, D. Morozov, and A. Nigmetov. Geometry helps to compare persistence diagrams.
Journal of Experimental Algorithms, 22:1.4:1-1.4:20, September 2017.

53:15

SoCG 2020

https://doi.org/10.1016/j.jsc.2016.03.008
https://doi.org/10.1016/j.jsc.2016.03.008
http://arxiv.org/abs/1811.09165
https://doi.org/10.1007/s00454-009-9176-0
http://arxiv.org/abs/1904.03766
https://doi.org/10.1007/s00454-002-2885-2

53:16

Matching Distance Approximations

13

14

15

16

17

18

Michael Kerber, Michael Lesnick, and Steve Oudot. Exact computation of the matching distance
on 2-parameter persistence modules. In 35th International Symposium on Computational
Geometry (SoCG 2019), pages 46:1-46:15, 2019.

Michael Kerber and Arnur Nigmetov. Efficient approximation of the matching distance for
2-parameter persistence. arXiv preprint, 2019. arXiv:1912.05826.

Claudia Landi. The rank invariant stability via interleavings. In Research in Computational
Topology, pages 1-10. Springer, 2018.

Michael Lesnick and Matthew Wright. Computing minimal presentations and bigraded betti
numbers of 2-parameter persistent homology. arXiv:1902.05708.

Michael Lesnick and Matthew Wright. Interactive visualization of 2-D persistence modules
persistence modules. arXiv, 2015. arXiv:1512.00180.

S. Oudot. Persistence theory: From Quiver Representation to Data Analysis, volume 209 of
Mathematical Surveys and Monographs. American Mathematical Society, 2015.

http://arxiv.org/abs/1912.05826
http://arxiv.org/abs/1902.05708
http://arxiv.org/abs/1512.00180

	Introduction
	Background
	The matching distance
	The approximation algorithm
	The Bound primitive
	Experiments
	Conclusion

