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Abstract
We derive conditions under which the reconstruction of a target space is topologically correct via
the Čech complex or the Vietoris-Rips complex obtained from possibly noisy point cloud data.
We provide two novel theoretical results. First, we describe sufficient conditions under which
any non-empty intersection of finitely many Euclidean balls intersected with a positive reach set
is contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we
demonstrate the homotopy equivalence of a positive µ-reach set and its offsets. Applying these
results to the restricted Čech complex and using the interleaving relations with the Čech complex (or
the Vietoris-Rips complex), we formulate conditions guaranteeing that the target space is homotopy
equivalent to the Čech complex (or the Vietoris-Rips complex), in terms of the µ-reach. Our results
sharpen existing results.
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1 Introduction

A fundamental task in topological data analysis, geometric inference, and computational
geometry is that of estimating the topology of a set X ⊂ Rd based on a finite collection of data
points X that lie in it or in its proximity. This problem naturally occurs in many applications
area, such as cosmology [30], time series data [28], machine learning [17], and so on.

A natural way to approximate the target space is to consider an r-offset of the data
points, that is, to take the union of the open balls of radius r > 0 centered at the data points.
Under appropriate conditions, by the Nerve theorem [5] this offset is topologically equivalent
to the target space X via the Čech complex [7, 23]. For computational reasons, the Alpha
shape complex may be used instead, which is homotopy equivalent to the Čech complex
[20]. To further speed up calculations, and in particular if the data are high dimensional, the
Vietoris-Rips complex may be preferable as only the pairwise distances between the data
points are used.

To guarantee that the topological approximation based on the data points recovers
correctly the homotopy type of X, it is necessary that the data points are dense and close to
the target space, and that the radius parameter used for constructing the Čech complex or
the Vietoris-Rips complex be of appropriate size.

The conditions require the offset r to be lower bounded by a constant times the Hausdorff
distance between the target space and the data points, and upper bounded by another
constant times a measure of the size of the topological features of the target space. Originally,
the topological feature size was described as a sufficiently small number, for the Vietoris-Rips
complex in [24, 25]. Then, the topological feature size was expressed in terms of the reach
of X: see, for the Čech complex, in [12, 27]. Subsequently, the notion of µ-reach was put
forward to allow for more general target spaces: the condition for the Čech complex is
studied in [6, 8], and the condition for the Vietoris-Rips complex is studied in [6]. Also, the
radii parameters are allowed to vary across the data points in [12]. For the case when the
target space equals the data points, the conditions for the Čech complex or the Vietoris-Rips
complex is studied in [3, 4]. When the offset r is beyond the topological feature size so that
the homotopy equivalence does not hold, the homotopy type of the Vietoris-Rips complex
was studied for the circle in [2].

In this paper, we derive conditions under which the homotopy type of the target space
is correctly recovered via the Čech complex or the Vietoris-Rips complex, in terms of the
Hausdorff distance and the µ-reach of the target space. To tackle this problem, we provide
two novel theoretical results. First, we describe sufficient conditions under which any non-
empty intersection of finitely many Euclidean balls intersected with a set of positive reach is
contractible, so that the Nerve theorem applies for the restricted Čech complex. Second, we
demonstrate the homotopy equivalence of a positive µ-reach set and its offsets. These results
are new and of independent interest.

Overall, our new bounds offer significant improvements over the previous results in [27, 6]
and are sharp: in particular, they achieve the optimal upper bound for the parameter of
the Čech complex and the Vietoris-Rips complex under a positive reach condition. We will
provide a detailed comparison of our results with existing ones in Section 6.

2 Background

This section provides a brief introduction to simplicial complex, Nerve theorem, reach, and
µ-reach. We refer to Appendix A and [23, 19, 21, 1, 8, 13, 26, 18] for further definitions
and details. Throughout the paper, we let X and X be subsets of Rd. For x, y ∈ Rd, we
let d(x, y) := ‖x− y‖ be the Euclidean distance with ‖ · ‖ being the Euclidean norm. Let
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d(x,X) = infy∈X d(x, y) denotes the distance from a point x to a set X, and let dX : Rd → R
be the distance function x 7→ d(x,X). For r > 0, we let BX(x, r) := {y ∈ X : d(x, y) < r}
be the open restricted ball centered at x ∈ Rd of radius r > 0. For r > 0, we let Xr be an
r-offset of a set X defined by the collection of all points that are within r distance to X, that
is, Xr :=

⋃
x∈X BRd(x, r). Finally, for two sets X,Y ⊂ Rd, we let dH(X,Y ) := inf{r > 0 :

X ⊂ Y r and Y ⊂ Xr} be the Hausdorff distance between X and Y .

2.1 Simplicial complex and Nerve theorem
A natural way to approximate the target space X with the data points X is to take the union
of open balls centered at the data points. In detail, let r = {rx, x ∈ X} ∈ RX+ be pre-specified
radii and consider the union of restricted balls⋃

x∈X
BX(x, rx). (1)

Though we allow for the points in X to lie outside X, we will assume throughout that
BX(x, rx) 6= ∅ for all x ∈ X .

To infer the topological properties of the union of balls in (1), we rely on a simplicial
complex, which can be seen as a high dimensional generalization of a graph. Given a set V ,
an (abstract) simplicial complex is a collection K of finite subsets of V such that α ∈ K and
β ⊂ α implies β ∈ K. Each set α ∈ K is called its simplex, and each element of α is called a
vertex of α.

A simplicial complex encoding the topological properties of the union of balls in (1) is
the Čech complex.

I Definition 1 (Čech complex). Let X , X be two subsets and r ∈ RX+ . The (weighted) Čech
complex ČechX(X , r) is the simplicial complex

ČechX(X , r) :=

σ = {x1, . . . , xk} ⊂ X :
k⋂
j=1

BX(xj , rxj ) 6= ∅

 . (2)

Computing the Čech complex requires computing all possible intersections of the balls.
To further speed up the calculation, we only check the pairwise distances between the data
points and instead build the Vietoris-Rips complex.

I Definition 2 (Vietoris-Rips complex). Let X , X be two subsets and r ∈ RX+ . The weighted
Vietoris-Rips complex Rips(X , r) is the simplicial complex defined as

Rips(X , r) :=
{
σ ⊂ X : d(xi, xj) < rxi + rxj , for all xi, xj ∈ σ

}
. (3)

The ambient Čech complex in (2) (that is, X = Rd) and the Vietoris-Rips complex in (3)
have the following interleaving relationship when all radii are equal (e.g., see Theorem 2.5
in [16]). That is, when rx = r > 0 for all x ∈ X , then

ČechRd(X , r) ⊂ Rips(X , r) ⊂ ČechRd
(
X ,
√

2d
d+ 1r

)
. (4)

This interleaving relation is extended to the case of different radii in Lemma 16.
The union of balls in (1) and the Čech complex in (2) are homotopy equivalent under

appropriate conditions. This remarkable result is precisely the renowned nerve theorem
[5, 7, 23], which we recall next. We first introduce the nerve, which is a more abstract notion
of the Čech complex.

SoCG 2020



54:4 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

I Definition 3 (Nerve). Let U = {Uα} be an open cover of a given topological space X. The
nerve of U , denoted by N (U), is the abstract simplicial complex defined as

N (U) =

{U1, . . . , Uk} ⊂ U :
k⋂
j=1

Uj 6= ∅

 .

The nerve theorem prescribes conditions under which the nerve of an open cover of X is
homotopy equivalent to X itself.

I Theorem 4 (Nerve theorem). Let X be a paracompact space and U be an open cover of X.
If every nonempty intersection of finitely many sets in U is contractible, then X is homotopy
equivalent to the nerve N (U).

Thus, in order to conclude that the ČechX(X , r) complex in (2) has the same homotopy
type as X, it is enough to show, by the nerve theorem, that the union of restricted balls⋃
x∈X BX(x, rx) covers the target space X and that any arbitrary non-empty intersection

of restricted balls is contractible. The difficulty in establishing the latter, more technical,
condition lies in the fact that it is not clear a priori what properties of X will imply it. If
X is a convex set, then the nerve theorem applies straightforwardly. But for more general
spaces, such as smooth lower-dimensional manifolds, it is not obvious how contractibility
may be guaranteed. One of the main results of this paper, given below in Theorem 9, asserts
that if X has positive reach and the radii of the restricted balls are small compared to the
reach, then any non-empty intersection of restricted balls is contractible.

2.2 The reach
First introduced by [21], the reach is a quantity expressing the degree of geometric regularity
of a set. In detail, given a closed subset X ⊂ Rd, the medial axis of X, denoted by Med(X),
is the subset of Rd consisting of all the points that have at least two nearest neighbors in X.
Formally,

Med(X) =
{
x ∈ Rd \ X : there exist q1 6= q2 ∈ X, ||q1 − x|| = ||q2 − x|| = d(x,X)

}
, (5)

The reach of X is then defined as the minimal distance from X to Med(X).

I Definition 5. The reach of a closed subset X ⊂ Rd is defined as

τX = inf
q∈X

d (q,Med(X)) = inf
q∈X,x∈Med(X)

||q − x||. (6)

Some authors [see, e.g. 27, 29] refer to τ−1
X as the condition number. From the definition

of the medial axis in (5), the projection πX(x) = arg minp∈X ‖p− x‖ onto X is well defined
(i.e. unique) outside Med(X). In fact, the reach is the largest distance ρ ≥ 0 such that πX is
well defined on the ρ-offset

{
x ∈ Rd : d(x,X) < ρ

}
. Hence, assuming the set X has positive

reach can be seen as a generalization or weakening of convexity, since a set X ⊂ Rd is convex
if and only if τX = ∞. In the next section, we describe how to use the reach condition to
ensure that the union of restricted balls is contractible, which in turn allows us to apply the
Nerve theorem to recover the homotopy type of the target space X.

For a non-smooth target space, the reach of the space can be zero. In this case, we can
deploy a more general notion of feature size, called µ-reach, introduced by [8]. For any point
x ∈ Rd \ X, let ΓX(x) be the set of points in X closest to x. Let ΘX(x) be the center of the
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ΓX(x)

X

ΘX(x)

x

∇X(x) = x−ΘX(x)
dX(x)dX(x)

1

Figure 1 The graphical illustration for the generalized gradient ∇X(x), from [9, 8].

unique smallest closed ball enclosing ΓX(x). Then, for x ∈ Rd \ X, the generalized gradient
of the distance function dX is defined as

∇X(x) = x−ΘX(x)
dX(x) , (7)

and set ∇X(x) = 0 for x ∈ X. See Figure 1 for a graphical illustration. Then, for µ ∈ (0, 1],
the µ-medial axis of X is defined as

Medµ(X) =
{
x ∈ Rd \ X : ‖∇X(x)‖ < µ

}
, (8)

Finally, the µ-reach of X is defined as the minimal distance from X to Medµ(X).

I Definition 6. The µ-reach of a closed subset X ⊂ Rd is defined as

τµX = inf
q∈X

d (q,Medµ(X)) = inf
q∈X,x∈Medµ(X)

||q − x||. (9)

Note that if µ = 1, the corresponding µ-reach equals to the reach of X.
Two offsets Xr and Xs of the target space X are topologically equivalent if they are free

of critical points of the distance function dX in the sense specified below (see e.g., [22] or
Proposition 3.4 in [11]).

I Lemma 7 (Isotopy Lemma). Let X ⊂ Rd be a set, and for r, s > 0 with s ≤ r, let Xr and
Xs be two offsets of X. Suppose the distance function dX does not have a critical point on
Xr\Xs, that is, ∇X(x) 6= 0 for all x ∈ Xr\Xs where ∇X is from (7). Then Xr and Xs are
homeomorphic.

Note that requiring ∇X(x) 6= 0 for all x ∈ Xr\Xs is weaker than the µ-reach condition τµX > r

for any µ ∈ (0, 1]. One of the main results of the paper, given in Theorem 12, generalizes this
topological relation to the relation between the target space and its offset under a stronger
positive µ-reach condition.

SoCG 2020
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x1 x2

Figure 2 An example in which the union of balls is different from the underlying space in terms
of the homotopy. In the figure, the union of balls deformation retracts to a circle, hence its homotopy
is different from the underlying semicircle.

2.3 Restricted versus Ambient balls
It is important to point out that the nerve theorem needs not to be applied to the Čech
complex built using ambient, as opposed, to restricted balls. In particular, the homotopy
type of X, may not be correctly recovered using unions of ambient balls even if the point
cloud is dense in X and the radii of the balls all vanish. We elucidate this point in the next
example. Below, BRd(x, r) denotes the open ambient ball in Rd centered at x and of radius
r > 0.

I Example 8. Let X = (∂BR2(0, 1)) ∩ {x ∈ R2 : x2 ≥ 0} be a semicircle in R2. Let
ε ∈ (0, 1) be fixed, and x1, x2 be points on X satisfying ‖x1 − x2‖ ∈

(
ε
√

4− ε2, 2ε
)
. Then,

BR2(x1, ε) ∩ BR2(x2, ε) is nonempty but has an empty intersection with X. Now, choose
ρ < d(X, BR2(x1, ε)∩BR2(x2, ε)) and choose X0 ⊂ X be dense enough so that

⋃
x∈X0

BR2(x, ρ)
covers X. Now, consider the union of ambient balls(

BR2(x1, ε)
⋃

BR2(x2, ε)
)⋃( ⋃

x∈X0

BR2(x, ρ)
)
. (10)

Then from the fact ρ < d (X, BR2(x1, ε) ∩ BR2(x2, ε)) and
⋃
x∈X0

BR2(x, ρ) is a covering of X,
we have that the union of balls in (10) is homotopy equivalent to a circle, hence its homotopy
is different from the semicircle X. Note that the above construction holds for all choices of
ε ∈ (0, 1). Since ρ→ 0 as ε→ 0, X0 can be arbitrary dense in X. See Figure 2.

3 The nerve theorem for Euclidean sets of positive reach

In order to apply the nerve theorem to the Čech complex built on restricted balls, it is enough
to check whether any finite intersection of the restricted balls

⋂k
j=1 BX(xj , rxj ) is contractible

(since X is a subset of Rd and is endowed with the subspace topology, it is paracompact.).
Theorem 9 is one of the main statements of this paper and shows that, if a subset X ⊂ Rd

has a positive reach τ > 0, any non-empty intersection of restricted balls is contractible if
the radii are small enough compared to τ .

I Theorem 9. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a set of points.
Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X . Then, if rx ≤

√
τ2 + (τ − dX(x))2

for all x ∈ X , any nonempty intersection of restricted balls
⋂
x∈I BX(x, rx) for I ⊂ X is

contractible.



J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:7

√
1 + (1− ε)2

X

x1 x2

BX(x1, r) BX(x2, r)

0

1

r r1− ε

Figure 3 An example in which BX(x1, r)
⋃

BX(x2, r) is not homotopy equivalent to ČechX (X , r)
where X =

{
x ∈ R2 : ‖x‖2 = 1

}
, x1 = (−1 + ε, 0), x2 = (1 − ε, 0), X = {x1, x2}, and

r >
√

1 + (1− ε)2, for any ε > 0.

Therefore, by combining Theorem 9 and the Nerve Theorem (Theorem 4), we can establish
that the topology of the subspace X can be recovered by the corresponding restricted Čech
complex ČechX(X , r), provided the radii of the balls are not too large with respect to the
reach. This result is summarized in the following corollary.

I Corollary 10 (Nerve Theorem on the restricted balls). Under the same condition of The-
orem 9, suppose rx ≤

√
τ2 + (τ − dX(x))2 for all x ∈ X , then the union of restricted balls⋃

x∈X BX(x, rx) is homotopy equivalent to the restricted Čech complex ČechX(X , r). If, in
addition, the union of restricted balls covers the target space X, that is,

X ⊂
⋃
x∈X

BX(x, rx), (11)

then X is homotopy equivalent to the restricted Čech complex ČechX(X , r).

The reach condition rx ≤
√
τ2 + (τ − dX(x))2 is tight as the following example shows.

I Example 11. Let X be the unit Euclidean sphere in Rd, and fix ε > 0. Let x1 :=
(1− ε, 0, . . . , 0), x2 := (−1 + ε, 0, . . . , 0) ∈ Rd , and set X := {x1, x2}. For a unit Euclidean
sphere, the reach is equal to its radius 1. Therefore, if r = (r1, r2) ∈

(
0,
√

1 + (1− ε)2
]2

then
BX(x1, r1)

⋃
BX(x2, r2) is homotopy equivalent to ČechX (X , r) by Corollary 10. However,

if r1, r2 >
√

1 + (1− ε)2, BX(x1, r1)
⋃

BX(x2, r2) ' X but ČechX (X , r) ' 0. Figure 3
illustrates the 2-dimensional case.

4 Deformation retraction on positive µ-reach

The positive reach condition is critical for the nerve theorem on the restricted Čech complex.
However, it is not easily generalized to the positive µ-reach condition. Instead, we find a
positive reach set that approximates the positive µ-reach set. And to show their homotopy
equivalence, we discover the topological relation between the positive µ-reach set and its offset.

The homeomorphic relation between two offsets Xr and Xs of the target space X in
Lemma 7 does not hold in general between the target space and its offset, but a weakened
topological relation holds under a stronger condition on the target space. Theorem 12, which

SoCG 2020
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Figure 4 An example where Xr does not deformation retracts to X. X is a topologist’s sine circle,
that is, X = X0 ∪ X1 ∪ X2, with X0 =

{(
x, sin π

x

)
∈ R2 : x ∈ [0, 1]

}
, X1 = {0} × [−1, 1], and X2 is a

sufficiently smooth curve joining (0, 1) and (1, 0) and meeting X0 ∪ X1 only at its endpoints.

is one of the main results in our paper, asserts that if the target space X has a positive
µ-reach, then the offset Xr deformation retracts to X when the offset size is not large, and in
particular, they are homotopy equivalent.

I Theorem 12. Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For r ≤ τµ, the
r-offset Xr deformation retracts to X. In particular, X and Xr are homotopy equivalent.

The positive µ-reach condition r ≤ τµ in Theorem 12 is critical and cannot be weakened
to ∇X(x) 6= 0 for all x ∈ Xr\X as in Lemma 7. Indeed, Example 13 shows that the offset
does not deformation retract to the target space although ∇X(x) 6= 0 for all x ∈ Rd.

I Example 13. Let X ⊂ R2 be a topologist’s sine circle, that is, X = X0 ∪ X1 ∪ X2, with
X0 =

{(
x, sin π

x

)
∈ R2 : x ∈ [0, 1]

}
, X1 = {0} × [−1, 1], and X2 is a sufficiently smooth curve

joining (0, 1) and (1, 0) and meets X0 ∪ X1 only at its endpoints. See Figure 4. Then,
τµX = 0 for any µ ∈ (0, 1] but ∇X is nonzero for all x ∈ R2\X. Now, H1(X) = 0, but for any
sufficiently small r > 0, Xr is homeomorphic to an annulus BR2(0, 2)\BR2(0, 1) and hence
H1(Xr) = Z. Hence Xr cannot deformation retract to X.

Using Theorem 12, we find a positive reach set that approximates the positive µ-reach
set. The set we will use is the double offset [9]. Recall that, for r > 0, an r-offset Xr of a set
X is the collection of all points that are within r distance to X, that is, Xr :=

⋃
x∈X BRd(x, r).

The double offset is to take offset, take complement, take offset, and take complement, that
is, for s ≥ t > 0, Xs,t := (((Xs){)t){. Roughly speaking, it is to inflate your set first, and
then deflate your set, so that sharp corners become smooth. See [9] for more details. To
set up the homotopy equivalence of the positive µ-reach set and its double offset, we need
another tool for finding the homotopy equivalence of the complement set. This is done in
the next lemma.

I Lemma 14. Let X ⊂ Rd be a subset with positive reach τ > 0. For r ≤ τ , X{ deformation
retracts to (Xr){. In particular, X{ and (Xr){ are homotopy equivalent.
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Now, combining Theorem 12 and Lemma 14 gives the desired homotopy equivalence
between the target set of positive µ-reach and its double offset, where the double offset has a
positive reach.

I Corollary 15. Let X ⊂ Rd be a subset with positive µ-reach τµ > 0. For s, t > 0 with t ≤ s,
let Xs,t := (((Xs){)t){ be the double offset of X. If s < τµ and t < µs, then Xs,t and X are
homotopy equivalent, and the reach of Xs,t is greater than or equal to t, that is, τXs,t ≥ t.

5 Homotopy Reconstruction via Cech complex and Vietoris-Rips
complex

Next, we derive conditions under which the homotopy type of the target space is correctly
recovered via the Čech complex and the Vietoris-Rips complex. We first extend the inter-
leaving relationship of the ambient Čech complex and the Vietoris-Rips complex in (4) to
the different radii case in Lemma 16.

I Lemma 16. Let X ⊂ Rd be a set of points and r = {rx > 0 : x ∈ X} be a set of radii
indexed by x ∈ X . Then,

ČechRd(X , r) ⊂ Rips(X , r) ⊂ ČechRd
(
X ,
√

2d
d+ 1r

)
.

To recover the homotopy of the target set via the ambient Čech complex and the Vietoris-
Rips complex, we utilize the restricted Čech complex. Hence, we set up the interleaving
relationship between the restricted Čech complex and the ambient Čech complex in Lemma 17
and between the restricted Čech complex and the Vietoris-Rips complex in Corollary 18.

I Lemma 17. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a set of points.
Let r = {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X . Then,

ČechX(X , r) ⊂ ČechRd(X , r) ⊂ ČechX(X , r′),

where r′ = {r′x > 0 : x ∈ X} with

r′x =
√

2τ (r2
x + dX(x) (2τ − dX(x)))

τ +
√
τ2 − (r2

x + dX(x) (2τ − dX(x)))
− dX(x) (2τ − dX(x)).

Equivalently,

ČechRd(X , r′′) ⊂ ČechX(X , r) ⊂ ČechRd(X , r),

where r′′ = {r′′x > 0 : x ∈ X} with

r′′x =
√
τ2 − dX(x)(2τ − dX(x))− (2τ2 − r2

x − dX(x)(2τ − dX(x)))2

4τ2 .

I Corollary 18. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a set of points.
Let r = {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X . Then,

ČechX(X , r) ⊂ Rips(X , r) ⊂ ČechX(X , r′′′),

where r′′′ = {r′′′x > 0 : x ∈ X} with

r′′′x =

√√√√√√ 2τ
(

2d
d+1r

2
x + dX(x) (2τ − dX(x))

)
τ +

√
τ2 −

(
2d
d+1r

2
x + dX(x) (2τ − dX(x))

) − dX(x) (2τ − dX(x)).
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Combining Nerve Theorem on the restricted balls (Corollary 10) with the covering
condition (11) and Lemma 17 or Corollary 18 gives the following commutative diagram:

X

yy
ČechX(X , r)

%%

// ČechX(X , r′′′′)

ee

S

99

, (12)

where S is either the ambient Čech complex ČechRd(X , r) or the Vietoris-Rips complex
Rips(X , r). Using this diagram, we develop the homotopy equivalence between the target
space and either the ambient Čech complex or the Vietoris-Rips complex. First, Theorem 19
asserts that when the target space of positive reach is densely covered by the data points
and if they are not too far apart, the ambient Čech complex can be used to recover the
homotopy type.

I Theorem 19. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a closed
discrete set of points. Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X with
rmin := minx∈X {rx} and rmax := maxx∈X {rx}, and let ε := max{dX(x) : x ∈ X}. Suppose
X is covered by the union of balls centered at x ∈ X and radius δ as

X ⊂
⋃
x∈X

BR(x, δ). (13)

Suppose that the maximum radius rmax is bounded as

rmax ≤ τ − ε. (14)

Also, suppose δ satisfies the following condition:

δ +

√√√√r2
max − l̃2 + ε(2τ − ε)− ((τ − ε)2 − r2

max + l̃2 + (τ − εl̃)2)
(

τ√
τ2 − r̃δ,c

− 1
)

≤ rmin,√
d

2(d+ 1)
rmax

rmin


√√√√√r̃2

b − (2τ2 − r̃2
b )

 τ√
τ2 − r̃2

δ,b

− 1

+ 2δ

 ≤ r′′min, (15)

l̃ := 1
2

(
rmin − τ +

√
(τ − ε)2 − r2

max − δ
)
, εl̃ := τ −

√
(τ − ε)2 − r2

max + l̃,

r̃2
δ,c := min

{
δ2 + ε(2τ − ε), 1

2(r2
max − l̃2 + ε(2τ − ε) + εl̃(2τ − εl̃))

}
,

r′′min :=
√
τ2 − ε(2τ − ε)− (2τ2 − r2

min − ε(2τ − ε))2

4τ2 ,

r̃2
b :=

2τ
(
(r′′min)2 + ε(2τ − ε)

)
τ +

√
τ2 − ((r′′min)2 + ε(2τ − ε))

, r̃2
δ,b := min

{
δ2 + ε(2β − ε), 1

2 r̃
2
b

}
.

Then X is homotopy equivalent to the ambient Čech complex ČechRd(X , r).
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A similar approach also gives the homotopy equivalence between the target space and
the Vietoris-Rips complex when the target space has positive reach.

I Theorem 20. Let X ⊂ Rd be a subset with reach τ > 0 and let X ⊂ Rd be a closed
discrete set of points. Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X with
rmin := minx∈X {rx} and rmax := maxx∈X {rx}, and let ε := max{dX(x) : x ∈ X}. Suppose
X is covered by the union of balls centered at x ∈ X and radius δ as

X ⊂
⋃
x∈X

BR(x, δ). (16)

Suppose that the maximum radius rmax is bounded as

rmax ≤
√
d+ 1

2d (τ − ε) . (17)

Also, suppose δ satisfies the following condition:√√√√√r̃2
b (rmax)− (2τ2 − r̃2

b (rmax))

 τ√
τ2 − r̃2

δ,b(rmax)
− 1

+ 2δ ≤ 2rmin,

√
d

2(d+ 1)


√√√√√r̃2

b (r′′min)− (2τ2 − r̃2
b (r′′min))

 τ√
τ2 − r̃2

δ,b(r′′min)
− 1

+ 2δ

 ≤ r′′min,

(18)

where

r′′min :=
√
τ2 − ε(2τ − ε)− (2τ2 − r2

min − ε(2τ − ε))2

4τ2 ,

r̃2
b (t) :=

2τ
(
t2 + ε(2τ − ε)

)
τ +

√
τ2 − (t2 + ε(2τ − ε))

, r̃2
δ,b(t) := min

{
δ2 + ε(2τ − ε), 1

2 r̃
2
b (t)

}
.

Then X is homotopy equivalent to the Vietoris-Rips complex Rips(X , r).

I Remark 21. Compared to the restricted Čech complex (Corollary 10), the covering condition
in (13) or (16) is more critical for the ambient Čech complex (Theorem 19) or the Vietoris-
Rips complex (Theorem 20). Although the restricted Čech complex ČechX(X , r) is still
homotopy equivalent to the union of restricted balls

⋃
x∈X BX(x, rx) without the covering

condition in (11), such homotopy equivalence does not hold for the ambient Čech complex or
the Vietoris-Rips complex. This is since the upper triangle of the diagram in (12) only holds
under the covering condition in (13) or (16). Furthermore, the covering condition in (13) or
(16) is denser in that δ < rx for all x ∈ X , to construct an additional homotopy equivalence
on the lower triangle of the diagram in (12).

The homotopy equivalences in Theorem 19 and 20 for the positive reach case is extended
to the positive µ-reach case by applying Corollary 15 with the double offset of the target
space. Corollary 22 shows that when the double offset of the target space of positive µ-reach
is densely covered by the data points and if they are not too far apart, either the ambient
Čech complex or the Vietoris-Rips complex can be used to recover the homotopy type of X.
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I Corollary 22. Let X ⊂ Rd be a subset with positive µ-reach τµ > 0 and let X ⊂ Rd be
a closed discrete set of points. Let {rx > 0 : x ∈ X} be a set of radii indexed by x ∈ X
with rmin := minx∈X {rx} and rmax := maxx∈X {rx}. Let s, t, ε ≥ 0 with t

µ < s < τµ, and let
Y := (((Xs){)t){ be the double offset, with dY(x) ≤ ε for all x ∈ X . Suppose Y is covered by
the union of balls centered at x ∈ X and radius δ as

Y ⊂
⋃
x∈X

BR(x, δ).

(i) Suppose rmax ≤ t− ε, and δ satisfies the following condition:

δ +

√√√√r2
max − l̃2 + ε(2t− ε)− ((t− ε)2 − r2

max + l̃2 + (t− εl̃)2)
(

t√
t2 − r̃δ,c

− 1
)

≤ rmin,√
d

2(d+ 1)
rmax

rmin


√√√√√r̃2

b − (2t2 − r̃2
b )

 t√
t2 − r̃2

δ,b

− 1

+ 2δ

 ≤ r′′min,

where

l̃ := 1
2

(
rmin − t+

√
(t− ε)2 − r2

max − δ
)
, εl̃ := t−

√
(t− ε)2 − r2

max + l̃,

r̃2
δ,c := min

{
δ2 + ε(2t− ε), 1

2(r2
max − l̃2 + ε(2t− ε) + εl̃(2t− εl̃))

}
,

r′′min :=
√
t2 − ε(2t− ε)− (2t2 − r2

min − ε(2t− ε))2

4t2 ,

r̃2
b :=

2t
(
(r′′min)2 + ε(2t− ε)

)
t+
√
t2 − ((r′′min)2 + ε(2t− ε))

, r̃2
δ,b := min

{
δ2 + ε(2t− ε), 1

2 r̃
2
b

}
.

Then X is homotopy equivalent to the ambient Čech complex ČechRd(X , r).

(ii) Suppose rmax ≤
√

d+1
2d (t− ε), and δ satisfies the following condition:

√√√√√r̃2
b (rmax)− (2t2 − r̃2

b (rmax))

 t√
t2 − r̃2

δ,b(rmax)
− 1

+ 2δ ≤ 2rmin,

√
d

2(d+ 1)


√√√√√r̃2

b (r′′min)− (2t2 − r̃2
b (r′′min))

 t√
t2 − r̃2

δ,b(r′′min)
− 1

+ 2δ

 ≤ r′′min,

where

r′′min :=
√
t2 − ε(2t− ε)− (2t2 − r2

min − ε(2t− ε))2

4t2 ,

r̃2
b (t) :=

2t
(
t2 + ε(2t− ε)

)
t+
√
t2 − (t2 + ε(2t− ε))

, r̃2
δ,b(t) := min

{
δ2 + ε(2t− ε), 1

2 r̃
2
b (t)

}
.

Then X is homotopy equivalent to the Vietoris-Rips complex Rips(X , r).
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We end this section by introducing a sampling condition in which we can guarantee the
covering conditions in Corollary 10 and Theorem 19, 20 are satisfied. Let P be the sampling
distribution on X. We assume that there exist positive constants a, b and ε0 such that, for
all x ∈ X, the following inequality holds:

P (BRd(x, ε)) ≥ aεb, for all ε ∈ (0, ε0). (19)

This condition on P is also known as the (a, b)-condition or the standard condition [15, 14, 10].
It is satisfied, for example, if X is a smooth manifold of dimension b and P has a density
with respect to the Hausdorff measure on it bounded from below by a.

Under this condition, we have the following covering lemma.

I Lemma 23. Let {X1, . . . , Xn} be an i.i.d. sample from the distribution P and let {rn =
(rn,1, . . . , rn,n)}n∈N be a triangular array of positive numbers such that, for each n,

2
(

logn
an

)1/b
≤ min

i
rn,i ≤ 2ε0. (20)

Then, the probability that the sample is a rn-covering of X is bounded as

P

(
X ⊂

n⋃
i=1

BRd(Xi, rn,i)
)
≥ 1− 1

2b logn. (21)

5.1 Conditions for homotopy reconstruction
In this subsection, we discuss the tightness of the conditions we have identified for guaranteeing
the homotopy equivalence of the target space and the Čech complex and the Vietoris-Rips
complex. We first argue that the maximum radius conditions in (14) and (17) are tight,
as Example 24 shows that the Čech complex fails to be homotopy equivalent to X when
rmax > τ − dX(x) and the Vietoris-Rips complex fails to be homotopy equivalent to X when
rmax >

√
d+1
2d (τ − dX(x)) and d ≤ 2.

I Example 24. Let ε ∈ [0, 1) be fixed. Let X ⊂ Rd be the unit sphere in Rd, and let
X = {x1, . . . , xn} ⊂ (1 − ε)X be a finite set of points on the sphere centered at 0 and of
radius 1 − ε. Suppose that for some δ > ε, X is covered by δ-balls centered at X , that is,
X ⊂

⋃
x∈X BR(x, δ). The reach of X equals to its radius 1.

For the ambient Čech complex, if r ∈ (0, 1− ε]n and condition (15) is satisfied, then X is
homotopy equivalent to ČechX (X , r) by Theorem 19. Now, suppose that rmin > 1− ε. Then
0 ∈ BRd(xi, rxi) for all i, hence for any y ∈

⋃n
i=1 BRd(xi, rxi), a line segment connecting 0

and y is contained in
⋃n
i=1 BRd(xi, rxi) as well. Hence

⋃n
i=1 BRd(xi, rxi) is contractible, and

then from the usual Nerve Theorem, ČechRd (X , r) '
⋃n
i=1 BRd(xi, rxi) ' 0. On the other

hand, the d − 1-th homology group of X is Hd−1(X) = Z, so X and ČechRd (X , r) are not
homotopy equivalent.

For the Vietoris-Rips complex, if r ∈
(

0,
√

d+1
2d (1− ε)

]d+1
and condition (18) is satisfied,

then X is homotopy equivalent to RipsX (X , r) by Theorem 20. Now, suppose each rxi is
equal to some r >

√
d+1
2d (1 − ε), and further suppose that d ≤ 2 and δ < 1

2(1−ε)r0 −
√

3
4 .

When d = 1, then the Vietoris-Rips complex equals the ambient Čech complex, hence from
the above argument, Rips (X , r) = ČechRd (X , r) ' 0. When d = 2, then Rips (X , r) ∼=
Rips

(
1

1−εX ,
1

1−εr0

)
and 1

1−εX ⊂ X ⊂
⋃n
i=1 BRd( 1

1−εxi, δ) holds. Then 1
1−εr0 − 2δ >

√
3

2 ,
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and hence from Proposition 3.8, Corollary 4.5, Proposition 5.2 of [2], either Rips (X , r) '
S2l+1 for some l ≥ 1 or Rips (X , r) ' ∨cS2l for some l ≥ 1 and c ≥ 0. In either case,
H1(Rips (X , r)) = 0. However, the d− 1-th homology group of X is Hd−1(X) = Z, so X and
Rips (X , r) are not homotopy equivalent.

We then rephrase the conditions on ε := max{dX(x) : x ∈ X} and the covering radius δ
in (15) and (18) in terms of the Hausdorff distance dH(X,X ). For simplicity, we consider the
case when all the radii rx’s are equal, and we denote that common value as r. In general, the
Hausdorff distance dH(X,X ) gives a bound for both ε and δ, that is, ε, δ ≤ dH(X,X ). Let
ρ := dH(X,X )

τ . For the Čech complex, a sufficient condition for (15) is that for some r
τ ∈ (0, 1],

ρ+

√√√√√( r
τ

)2 − l̃2 + ρ(2− ρ)− ((1− ρ)2 − ( r
τ

)2 + l̃2 + (1− ρl̃)2)

 1√
1− r̃2

δ,c

− 1

 ≤ r

τ
,

√
d

2(d+ 1)


√√√√√r̃2

b − (2− r̃2
b )

 1√
1− r̃2

δ,b

− 1

+ 2ρ

 ≤ r′′min, (22)

where

l̃ := 1
2

(
r

τ
− 1 +

√
(1− ρ)2 − ( r

τ
)2 − ρ

)
, ρl̃ := 1−

√
(1− ρ)2 − ( r

τ
)2 + l̃,

r̃2
δ,c := min

{
2ρ, 1

2(( r
τ

)2 − l̃2 + ρ(2− ρ) + ρl̃(2− ρl̃))
}
,

r′′min :=
√

1− ρ(2− ρ)−
(2− ( rτ )2 − ρ(2− ρ))2

4 ,

r̃2
b :=

2
(
(r′′min)2 + ρ(2− ρ)

)
1 +

√
1− ((r′′min)2 + ρ(2− ρ))

, r̃2
δ,b := min

{
2ρ, 1

2 r̃
2
b

}
.

And for the Vietoris-Rips complex, the sufficient condition for (18) is√√√√√r̃2
b (r0)− (2− r̃2

b (r0))

 1√
1− r̃2

δ,b(r0)
− 1

+ 2ρ ≤ 2r0,

√
d

2(d+ 1)


√√√√√r̃2

b (r′′min)− (2− r̃2
b (r′′min))

 1√
1− r̃2

δ,b(r′′min)
− 1

+ 2ρ

 ≤ r′′min, (23)

where

r0 :=
√
d+ 1

2d (1− ρ), r′′min :=

√
1− ρ(2− ρ)−

(2− d+1
2d (1− ρ)2 − ρ(2− ρ))2

4 ,

r̃2
b (t) :=

2
(
t2 + ρ(2− ρ)

)
1 +

√
1− (t2 + ρ(2− ρ))

, r̃2
δ,b(t) := min

{
2ρ, 1

2 r̃
2
b (t)

}
.

With the aid of a computer program, we can check that (22) is equivalent to ρ ≤ 0.01591 · · · ,
and (23) is equivalent to ρ ≤ 0.07856 · · · .

Now, we consider two specific cases. First, we consider the noiseless case X ⊂ X, that is,
the data points lie in the target space. For that case, ε = 0 and δ ≤ dH(X,X ). For the Čech
complex, the sufficient condition for (15) is that for some r

τ ∈ (0, 1],
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ρ+

√√√√√( r
τ

)2 − l̃2 − (1− ( r
τ

)2 + l̃2 + (1− ρl̃)2)

 1√
1− r̃2

δ,c

− 1

 ≤ r

τ
,

√
d

2(d+ 1)


√√√√√r̃2

b − (2− r̃2
b )

 1√
1− r̃2

δ,b

− 1

+ 2ρ

 ≤ r′′min, (24)

where

l̃ := 1
2

(
r

τ
− 1 +

√
1− ( r

τ
)2 − ρ

)
, ρl̃ := 1−

√
1− ( r

τ
)2 + l̃,

r̃2
δ,c := min

{
ρ2,

1
2(( r

τ
)2 − l̃2 + ρl̃(2− ρl̃))

}
,

r′′min :=
√

1−
(2− ( rτ )2)2

4 , r̃2
b := 2(r′′min)2

1 +
√

1− (r′′min)2
, r̃2

δ,b := min
{
ρ2,

1
2 r̃

2
b

}
.

For the Vietoris-Rips complex, a sufficient condition for (18) is√√√√√r̃2
b (r0)− (2− r̃2

b (r0))

 1√
1− r̃2

δ,b(r0)
− 1

+ 2ρ ≤ 2r0,

√
d

2(d+ 1)


√√√√√r̃2

b (r′′min)− (2− r̃2
b (r′′min))

 1√
1− r̃2

δ,b(r′′min)
− 1

+ 2ρ

 ≤ r′′min, (25)

where

r0 :=
√
d+ 1

2d (1− ρ), r′′min :=

√
1−

(2− d+1
2d (1− ρ)2)2

4 ,

r̃2
b (t) := 2t2

1 +
√

1− t2
, r̃2

δ,b(t) := min
{
ρ2,

1
2 r̃

2
b (t)

}
.

With the aid of a computer program, we can check that (24) is equivalent to ρ ≤ 0.02994 · · · ,
and (25) is equivalent to ρ ≤ 0.1117 · · · .

Second, we consider the asymptotic case, where we sample more and more points and X
forms a dense cover of X, that is, supy∈X infx∈X ‖x− y‖ → 0. Still, we have a noisy sample
distribution, that is, supx∈X infy∈X ‖x− y‖9 0, so the Hausdorff distance dH(X,X ) need
not go to 0. In this case, δ → 0 and ε ≤ dH(X,X ). For the Čech complex, a sufficient
condition for (15) is that for some r

τ ∈ (0, 1],√√√√√( r
τ

)2 − l̃2 + ρ(2− ρ)− ((1− ρ)2 − ( r
τ

)2 + l̃2 + (1− ρl̃)2)

 1√
1− r̃2

δ,c

− 1

 ≤ r

τ
,

√
d

2(d+ 1)

√√√√√r̃2
b − (2− r̃2

b )

 1√
1− r̃2

δ,b

− 1

 ≤ r′′min, (26)
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where

l̃ := 1
2

(
r

τ
− 1 +

√
(1− ρ)2 − ( r

τ
)2
)
, ρl̃ := 1−

√
(1− ρ)2 − ( r

τ
)2 + l̃,

r̃2
δ,c := min

{
ρ(2− ρ), 1

2(( r
τ

)2 − l̃2 + ρ(2− ρ) + ρl̃(2− ρl̃))
}
,

r′′min :=
√

1− ρ(2− ρ)−
(2− ( rτ )2 − ρ(2− ρ))2

4 ,

r̃2
b :=

2
(
(r′′min)2 + ρ(2− ρ)

)
1 +

√
1− ((r′′min)2 + ρ(2− ρ))

, r̃2
δ,b := min

{
ρ(2− ρ), 1

2 r̃
2
b

}
.

And for the Vietoris-Rips complex, a sufficient condition for (18) is√√√√√r̃2
b (r0)− (2− r̃2

b (r0))

 1√
1− r̃2

δ,b(r0)
− 1

 ≤ 2r0,

√
d

2(d+ 1)

√√√√√r̃2
b (r′′min)− (2− r̃2

b (r′′min))

 1√
1− r̃2

δ,b(r′′min)
− 1

 ≤ r′′min, (27)

where

r0 :=
√
d+ 1

2d (1− ρ), r′′min :=

√
1− ρ(2− ρ)−

(2− d+1
2d (1− ρ)2 − ρ(2− ρ))2

4 ,

r̃2
b (t) :=

2
(
t2 + ρ(2− ρ)

)
1 +

√
1− (t2 + ρ(2− ρ))

, r̃2
δ,b(t) := min

{
ρ(2− ρ), 1

2 r̃
2
b (t)

}
.

With the aid of a computer program, we can check that (26) is equivalent to ρ ≤ 0.03440 · · · ,
and (27) is equivalent to ρ ≤ 0.07712 · · · .

6 Discussion and Conclusion

Above we have provided conditions under which the ambient Čech complex ČechRd(X , r)
and the Rips complex Rips(X , r) are homotopy equivalent to the target space X when the
target space X has positive µ-reach τµ and the data points X being contained in the ε-offset
Xε of X. In this section, we further discuss our results and compare them with existing ones.
For the comparison purpose, we consider the case when all the radii rx’s are equal, and
we denote the common value as r. In these settings, an analogous homotopy equivalence
between the ambient Čech complex ČechRd(X , r) and the target space X is presented in [6]
and [27].

First, we compare the upper bound for the maximum parameter value r in ČechRd(X , r) or
Rips(X , r). When µ = 1 so that τµ = τ , our result suggests that the homotopy equivalences
hold when r ≤ τ − ε for ČechRd(X , r) and r ≤

√
d+1
2d (τ − ε) for Rips(X , r). As we have seen

in Example 24, these bounds are optimal bounds. In [27], such a bound for ČechRd(X , r) is
(τ+ε)+

√
τ2+ε2−6τε
2 (see Proposition 7.1). Then our bound is strictly sharper than this when

ε > 0 since

(τ + ε) +
√
τ2 + ε2 − 6τε
2 <

(τ + ε) +
√
τ2 + 9ε2 − 6τε
2 = τ − ε.

In [6], a necessary condition for ČechRd(X , r) in Section 5.3 is r ≤ τ −3ε, so our upper bound
is strictly better when ε > 0.
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Second, we compare the condition for the maximum possible ratio of the Hausdorff
distance dH(X,X ) and the µ-reach τµ. For this case, as we have seen in Section 5.1, we can
check that ČechRd(X , r) is homotopy equivalent to X when dH(X,X )

τ ≤ 0.01591 · · · . This result
is worse than 3−

√
8 ≈ 0.1716 · · · in Proposition 7.1 in [27] or −3+

√
22

13 ≈ 0.1300 · · · in Section
5.3 in [6]. Again from Section 5.1, we can check that Rips(X , r) is homotopy equivalent
to X when dH(X,X )

τ ≤ 0.07856 · · · . This result is better than 2
√

2−
√

2−
√

2
2+
√

2 ≈ 0.03412 · · · in
Section 5.3 in [6].

Then we consider two specific cases. In the noiseless case X ⊂ X, the data points
lie in the target space. In this case, as we have seen in Section 5.1, we can verify that
ČechRd(X , r) is homotopy equivalent to X when dH(X,X )

τ ≤ 0.02994 · · · , and Rips(X , r) is
homotopy equivalent to X when dH(X,X )

τ ≤ 0.1117 · · · .
In the asymptotics case, as we sample more and more points from the target space, X

forms a dense cover on X, that is, supy∈X infx∈X ‖x− y‖ → 0. For this case, as we have seen
in Section 5.1, we can check that ČechRd(X , r) is homotopy equivalent to X when dH(X,X )

τ ≤
0.03440 · · · , and Rips(X , r) is homotopy equivalent to X when dH(X,X )

τ ≤ 0.07712 · · · .
Finally, we emphasize that our result also allows the radii {rx}x∈X to vary across the

points x ∈ X . Considering different radii is of practical interest if each data point has different
importance. For example, one might want to use large radii on the flat and sparse region,
while to use small radii on the spiky and dense region. However, there remain significant
technical difficulties to allow for a different radius per each data point. As it can be seen
in Figure 2, an uneven distribution of radii might lead to nonhomotopic between the Čech
complex (or the Vietoris-Rips complex) and the target space. This situation has been studied
in [12] for the union of balls under the reach condition, but not the Vietoris-Rips complex or
under the µ-reach case. Theorem 20 or Corollary 22 first tackles this homotopy reconstruction
problem with different radii for the Vietoris-Rips complex or under the µ-reach condition.

References
1 Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and Larry

Wasserman. Estimating the reach of a manifold. Electronic Journal of Statistics, 13(1):1359–
1399, 2019. doi:10.1214/19-EJS1551.

2 Michał Adamaszek and Henry Adams. The Vietoris-Rips complexes of a circle. Pacific Journal
of Mathematics, 290(1):1–40, 2017. doi:10.2140/pjm.2017.290.1.

3 Michał Adamaszek, Henry Adams, and Florian Frick. Metric reconstruction via optimal
transport. SIAM Journal on Applied Algebra and Geometry, 2(4):597–619, 2018. doi:10.
1137/17M1148025.

4 Henry Adams and Joshua Mirth. Metric thickenings of euclidean submanifolds. Topology and
its Applications, 254:69–84, 2019. doi:10.1016/j.topol.2018.12.014.

5 Paul Alexandroff. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur
elementaren geometrischen Anschauung. Mathematische Annalen, 98(1):617–635, 1928.
doi:10.1007/BF01451612.

6 Dominique Attali, André Lieutier, and David Salinas. Vietoris–rips complexes also provide
topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448–
465, 2013. 27th Annual Symposium on Computational Geometry (SoCG 2011). doi:10.1016/
j.comgeo.2012.02.009.

7 Anders Björner. Topological Methods, page 1819–1872. MIT Press, Cambridge, MA, USA,
1996.

8 Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
sets in euclidean space. Discrete & Computational Geometry, 41(3):461–479, 2009. doi:
10.1007/s00454-009-9144-8.

SoCG 2020

https://doi.org/10.1214/19-EJS1551
https://doi.org/10.2140/pjm.2017.290.1
https://doi.org/10.1137/17M1148025
https://doi.org/10.1137/17M1148025
https://doi.org/10.1016/j.topol.2018.12.014
https://doi.org/10.1007/BF01451612
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1016/j.comgeo.2012.02.009
https://doi.org/10.1007/s00454-009-9144-8
https://doi.org/10.1007/s00454-009-9144-8


54:18 Homotopy Reconstruction via Cech Complex and Vietoris-Rips Complex

9 Frédéric Chazal, David Cohen-Steiner, André Lieutier, and Boris Thibert. Shape smoothing
using double offsets. In Proceedings of the 2007 ACM Symposium on Solid and Physical
Modeling, SPM ’07, page 183–192, New York, NY, USA, 2007. Association for Computing
Machinery. doi:10.1145/1236246.1236273.

10 Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertr, Michel, Aless, ro Rinaldo, and Larry
Wasserman. Robust topological inference: Distance to a measure and kernel distance. Journal
of Machine Learning Research, 18(159):1–40, 2018. URL: http://jmlr.org/papers/v18/
15-484.html.

11 Frédéric Chazal and André Lieutier. Weak feature size and persistent homology: Computing
homology of solids in Rn from noisy data samples. In Proceedings of the Twenty-First Annual
Symposium on Computational Geometry, SCG ’05, page 255–262, New York, NY, USA, 2005.
Association for Computing Machinery. doi:10.1145/1064092.1064132.

12 Frédéric Chazal and André Lieutier. Smooth manifold reconstruction from noisy and non-
uniform approximation with guarantees. Computational Geometry, 40(2):156–170, 2008.
doi:10.1016/j.comgeo.2007.07.001.

13 Frédéric Chazal and Steve Yann Oudot. Towards persistence-based reconstruction in euclidean
spaces. In Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry,
SCG ’08, page 232–241, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1377676.1377719.

14 Antonio Cuevas. Set estimation: another bridge between statistics and geometry. Boletín de
Estadística e Investigación Operativa. BEIO, 25(2):71–85, 2009.

15 Antonio Cuevas and Alberto Rodríguez-Casal. On boundary estimation. Advances in Applied
Probability, 36(2):340–354, 2004. doi:10.1239/aap/1086957575.

16 Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algebraic
& Geometric Topology, 7:339–358, 2007. doi:10.2140/agt.2007.7.339.

17 Tamal K. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Analysis.
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University
Press, 2006. doi:10.1017/CBO9780511546860.002.

18 Jürgen Eckhoff. Chapter 2.1 - Helly, Radon, and Carathéodory type theorems. In P.M.
GRUBER and J.M. WILLS, editors, Handbook of Convex Geometry, pages 389–448. North-
Holland, Amsterdam, 1993. doi:10.1016/B978-0-444-89596-7.50017-1.

19 Herbert Edelsbrunner and John Harer. Computational Topology: An Introduction. American
Mathematical Society, 2010. URL: http://www.ams.org/bookstore-getitem/item=MBK-69.

20 Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. ACM Transactions
on Graphics, 13(1):43–72, January 1994. doi:10.1145/174462.156635.

21 Herbert Federer. Curvature measures. Transactions of the American Mathematical Society,
93:418–491, 1959. doi:10.2307/1993504.

22 Karsten Grove. Critical point theory for distance functions. In Differential geometry: Rie-
mannian geometry (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pages
357–385. Amer. Math. Soc., Providence, RI, 1993.

23 Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
24 Jean-Claude Hausmann. On the Vietoris-Rips complexes and a cohomology theory for metric

spaces. In Prospects in topology (Princeton, NJ, 1994), volume 138 of Annals of Mathematics
Studies, pages 175–188. Princeton Univ. Press, Princeton, NJ, 1995.

25 Janko Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold.
Archiv der Mathematik, 77(6):522–528, 2001. doi:10.1007/PL00000526.

26 John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics.
Springer, New York, second edition, 2013.

27 Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419–
441, 2008. doi:10.1007/s00454-008-9053-2.

https://doi.org/10.1145/1236246.1236273
http://jmlr.org/papers/v18/15-484.html
http://jmlr.org/papers/v18/15-484.html
https://doi.org/10.1145/1064092.1064132
https://doi.org/10.1016/j.comgeo.2007.07.001
https://doi.org/10.1145/1377676.1377719
https://doi.org/10.1239/aap/1086957575
https://doi.org/10.2140/agt.2007.7.339
https://doi.org/10.1017/CBO9780511546860.002
https://doi.org/10.1016/B978-0-444-89596-7.50017-1
http://www.ams.org/bookstore-getitem/item=MBK-69
https://doi.org/10.1145/174462.156635
https://doi.org/10.2307/1993504
https://doi.org/10.1007/PL00000526
https://doi.org/10.1007/s00454-008-9053-2


J. Kim, J. Shin, F. Chazal, A. Rinaldo, and L. Wasserman 54:19

28 Vanessa Robins, James D. Meiss, and Elizabeth Bradley. Computing connectedness: dis-
connectedness and discreteness. Physica D: Nonlinear Phenomena, 139(3):276–300, 2000.
doi:10.1016/S0167-2789(99)00228-6.

29 Amit Singer and Hau-Tieng Wu. Vector diffusion maps and the connection laplacian. Commu-
nications on Pure and Applied Mathematics, 65(8):1067–1144, 2012. doi:10.1002/cpa.21395.

30 Jean-Luc Starck, Vicent Martínez, D. Donoho, Ofer Levi, Philippe Querre, and Enn Saar.
Analysis of the spatial distribution of galaxies by multiscale methods. EURASIP Journal on
Applied Signal Processing, 2005(15):2455–2469, 2005. doi:10.1155/ASP.2005.2455.

SoCG 2020

https://doi.org/10.1016/S0167-2789(99)00228-6
https://doi.org/10.1002/cpa.21395
https://doi.org/10.1155/ASP.2005.2455

	Introduction
	Background
	Simplicial complex and Nerve theorem
	The reach
	Restricted versus Ambient balls

	The nerve theorem for Euclidean sets of positive reach
	Deformation retraction on positive mu-reach
	Homotopy Reconstruction via Cech complex and Vietoris-Rips complex
	Conditions for homotopy reconstruction

	Discussion and Conclusion

