
A Quasi-Polynomial Algorithm for Well-Spaced
Hyperbolic TSP
Sándor Kisfaludi-Bak
Max Planck Institute for Informatics, Saarbrücken, Germany
sandor.kisfaludi-bak@mpi-inf.mpg.de

Abstract
We study the traveling salesman problem in the hyperbolic plane of Gaussian curvature −1. Let α
denote the minimum distance between any two input points. Using a new separator theorem and a
new rerouting argument, we give an nO(log2 n) max(1,1/α) algorithm for Hyperbolic TSP. This is
quasi-polynomial time if α is at least some absolute constant, and it grows to nO(

√
n) as α decreases

to log2 n/
√
n. (For even smaller values of α, we can use a planarity-based algorithm of Hwang et al.

(1993), which gives a running time of nO(
√
n).)

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Computational geometry, Hyperbolic geometry, Traveling salesman

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.55

Related Version A full version of the paper is available at [19], https://arxiv.org/abs/2002.05414.

1 Introduction

The Traveling Salesman Problem (or TSP for short) is very widely studied in combinatorial
optimization and computer science in general, with a long history. In the general formulation,
we are given a complete graph G with positive weights on its edges. The task is to find
a cycle through all the vertices (i.e., a Hamiltonian cycle) of minimum weight. The first
non-trivial algorithm (with running time O(2nn2)) was given by Held and Karp [11], and
independently by Bellman [3]. The problem was among the first problems to be shown
NP-hard by Karp [16].

A very important case of TSP concerns metric weight functions, where the edge weights
satisfy the triangle inequality. The problem has a (3/2)-approximation due to Christofides [6],
which is still unbeaten. On the other hand, it is NP-hard to approximate Metric TSP
within a factor of 123/122 [17]. Fortunately, the problem is more tractable in low-dimensional
geometric spaces. Arora [1] and independently, Mitchell [21] gave the first polynomial time
approximation schemes (PTASes) for the low-dimensional Euclidean TSP problem, where
vertices correspond to points in Rd and the weights are defined by the Euclidean distance
between the given points. The PTAS was later improved by Rao and Smith [23], and after
two decades, several more general approximation schemes are known. In particular, there is
a PTAS in metric spaces of bounded doubling dimension by Bartal et al. [2], and in metric
spaces of negative curvature by Krauthgamer and Lee [20]. The PTAS of [20] applies in the
hyperbolic plane.

Turning to the exact version of the problem in the geometric setting, we can again get
significant improvements over the best known O(2n poly(n)) running time for the general
version. In the Euclidean case, the first set of improved algorithms were proposed in the
plane by Kann [15] and by Hwang et al. [12] with running time nO(

√
n). Later, an algorithm

in Rd with running time nO(n1−1/d) was given by Smith and Wormald [24]. The latest

© Sándor Kisfaludi-Bak;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2020).
Editors: Sergio Cabello and Danny Z. Chen; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sandor.kisfaludi-bak@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.SoCG.2020.55
https://arxiv.org/abs/2002.05414
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

improvement to 2O(n1−1/d) by De Berg et al. [7] came with a matching lower bound under
the Exponential Time Hypothesis (ETH) [13]. To our knowledge, the exact version of the
problem in hyperbolic space has not been studied yet.

Given the history of the problem, the PTAS results and the Euclidean exact algorithm,
one might expect that the hyperbolic case is very similar to the Euclidean, and a good
hyperbolic TSP algorithm will have a running time of nO(nδ) for some constant δ. In this
paper, we show that we can often get significantly faster algorithms. Let H2 denote the
hyperbolic plane of Gaussian curvature −1. The first hopeful sign is that H2 exhibits
special properties when it comes to intersection graphs. Recently, the present author has
given quasi-polynomial algorithms for several classic graph problems in certain hyperbolic
intersection graphs of ball-like objects [18]. The studied problems include Independent
Set, Dominating Set, Steiner Tree, Hamiltonian Cycle and several other problems
that are NP-complete in general graphs. Interestingly, a polynomial time algorithm was
given for the Hamiltonian Cycle problem in hyperbolic unit disk graphs. The question
arises whether a quasi-polynomial algorithm is available for TSP in H2? Given that the best
running times for Hamiltonian Cycle in unit disk graphs in R2 and for Euclidean TSP
are identical, perhaps even polynomial time is achievable for Hyperbolic TSP?

Unfortunately, a quasi-polynomial algorithm is unlikely to exist for the general Hyper-
bolic TSP problem: the lower bound of [8] in grids can be carried over to H2, which rules
out a 2o(

√
n) algorithm under the Exponential Time Hypothesis (ETH) [13]. This however

relies on embedding a grid-like structure in H2 efficiently, which seems to be possible only if
the points are densely placed. Since H2 is locally Euclidean, it comes as no surprise that we
cannot beat the Euclidean running time for dense point sets.

For this reason, we use a parameter measuring the density of the input point set. We say
that the input point set P is α-spaced if for any pair of distinct points p, p′ ∈ P , we have
that dist(p, p′) > α. Our main contribution is the following theorem.

I Theorem 1. Let P ⊂ H2 be an α-spaced set of points. Then the shortest traveling salesman
tour of P can be computed in nO(log2 n)·max(1,1/α)) time.

Note that for α > 1, this is a quasi-polynomial algorithm. In the full version [19] we show
that for very dense inputs, it is unlikely that our running time can be improved significantly:
we prove that there is no 2o(

√
n) algorithm for point sets of spacing Θ(1/

√
n), unless the

Exponential Time Hypothesis (ETH) fails.

Adapting algorithms from the Euclidean plane

Most algorithms for Euclidean TSP are difficult to adapt to the hyperbolic setting. The
majority of known subexponential algorithms for Euclidean TSP (see [15, 24, 7]) are based
on some version of the so-called Packing Property [7], which roughly states that for any disk
δ of radius r, the number of segments in an optimal tour of length at least r that intersect δ
is at most some absolute constant. This starting point is not available to us, since a direct
adaptation of the Packing Property as stated above is false in H2. For example, we can
create a regular n-gon where the length of each side is c logn for some constant c, and the
inscribed circle has radius r < c logn. The boundary of the n-gon is an optimal tour of its
vertices, and the inscribed disk is intersected more than a constant times with tour segments
of length at least r.

The only exact Euclidean TSP algorithm that directly carries over to H2 is the algorithm
of Hwang, Chang and Lee [12], as it only relies on the fact that any optimal tour in the
plane is crossing-free. Unfortunately, this algorithm has a running time of nO(

√
n), which is

far from our goal. Nonetheless, we can use this algorithm for the case when the point set P
has close point pairs, that is, when α 6 log2 n/

√
n. This is discussed further in Section 2.

S. Kisfaludi-Bak 55:3

Our techniques

To get a quasi-polynomial algorithm for α = Ω(1), we need to prove our own separator
theorem. The separator itself is fairly simple: it is a line segment of length O(logn). Due to
the special properties of H2, optimal tours cannot go “around” this segment. The difficulty
is to show that the line segment is crossed only O(logn) times by an optimal tour. We show
that having a pair of “nearby”1 tour edges crossing a certain neighborhood R of the segment
can be ruled out with a rerouting argument that is reminiscent of the proof of the Packing
Property in R2. This limits the number of segments crossing both R and the segment to
O(logn). All other tour edges crossing the segment must have an endpoint in R. Since R is
“narrow”, it can contain at most O(logn) points from P , as P is α-spaced. These bounds
together limit the number of tour edges crossing our segment to O(logn). With the separator
at hand, we use a standard divide-and-conquer algorithm to prove Theorem 1. For values
α 6 log2 n/

√
n, we suggest using the algorithm of Hwang et al. [12].

Computational model

As our input, we get a list of points P with rational coordinates in the Poincaré disk model
(which we briefly introduce in Section 2) and a rational number x. The goal is to decide if
there is a tour of length at most x.

It is a common issue in computational geometry that one needs to be able to compare
sums of distances. In geometric variants of TSP, this directly impacts the output, and
unfortunately no method is known to tackle this in a satisfactory manner on a word-RAM
machine. For this reason, most work in the area assumes that the computation is done on
a real-RAM machine that can compute square roots exactly. Perhaps even less is known
about comparing sums of distances in hyperbolic space. For this article, we work in a
real-RAM that, in addition to taking square roots, is also capable of computing the natural
logarithm ln(.).

2 Preliminaries

The hyperbolic plane and the Poincaré disk model

Introducing the hyperbolic plane properly is well beyond the scope of this section, but we
list some important properties that we will be using. A detailed exposition can be found in
several textbooks [4, 26, 10, 22].

The hyperbolic plane H2 is a homogeneous metric space with the key property that
the area and circumference of disks grows exponentially with the radius, that is, a disk
of radius r has area 4π sinh2(r/2) and circumference 2π sinh(r). For r > 1, both the area
and circumference are Θ(er). On the other hand, a small neighborhood of any point in
the hyperbolic plane is very similar to a small neighborhood of a point in the Euclidean
plane. More precisely, the disk of radius ε around a point in H2 and R2 have a smooth
bijective mapping that preserve distances up to a multiplicative factor of 1 + f(ε), where
limε→0 f(ε) = 0.

The hyperbolic plane itself can be defined in many ways, but it is most convenient to
take some region of R2, and equip it with a custom metric. Such definitions are also called
models of the hyperbolic plane. In this article, we use the Poincaré disk model for all of the
figures, however, most of the claims and proofs are model-independent.

1 The absolute distance of crossing edges cannot be bounded; we use a special definition of “nearby”.

SoCG 2020

55:4 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

o

p

q

p′

`

`′

Figure 1 Left: lines in the Poincaré model. Right: the angle of parallelism for the length |pq|.

The Poincaré disk model is the open unit disk of R2 equipped with the distance function

dist(u, v) = cosh−1
(

1 + 2 ‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)
,

where ‖.‖ is the Euclidean norm.2 The precise function here is irrelevant; we present the
formula just as an example of defining a custom metric space.3 We list some further properties
of H2 used in the article.

Lines, angles, and ideal points.
In the Poincaré disk model hyperbolic lines appear as Euclidean circular arcs that are
perpendicular to the unit circle, as illustrated on the left of Figure 1. In particular,
hyperbolic lines through the center of the disk are diametrical segments of the unit disk.
The model is conformal, that is, the angle of a pair of lines in H2 is the same as the angle
of the corresponding arcs in R2. The points on the boundary of the disk are called ideal
points.
Angle of parallelism.
Let p, q ∈ H2 and let ` be a line through p that is perpendicular to pq, and let p′ be an
ideal point of `, see the right hand side of Figure 1. Let `′ be the line through q and p′.
Note that ` and `′ are disjoint lines in the open disk; they are called limiting parallels.
The angle ^pqp′ is called the angle of parallelism, which only depends on the length of
the segment pq the following way [22].

tan(^pqp′) = 1
sinh(|pq|) (1)

Hypercycles or equidistant curves.
The set of points at a given distance % from a line ` is not a line, but it forms a hypercycle
in H2. A hypercycle has two arcs, one on each side of `. In the Poincaré model, a
hypercycle for a line ` consists of two circular arcs, ending at the same ideal points as `.

2 As cosh−1(x) = ln(x +
√
x2 − 1), the distance of two points in the Poincaré disk model with given

Euclidean coordinates can be computed on a real-RAM machine which is capable of taking square roots
and computing ln(.).

3 If we need to calculate angles, curve length, and area, we should define the metric tensor instead:
ds2 = 4 ‖dx‖2

(1−‖x‖2)2 [5].

S. Kisfaludi-Bak 55:5

Optimal tours in H2 and crossings.
An optimal traveling salesman tour will consist of geodesics between pairs of input points,
i.e., hyperbolic segments, just as in R2. Moreover, the triangle inequality implies that
any self-crossing tour (where two segments pp′ and qq′ cross) can be shortened. Thus,
optimal tours in H2 are non-crossing.

Getting a subexponential algorithm for all values of α

We can give the following more general formulation of the result of [12].

I Theorem 2 (Hwang, Chang and Lee [12], stated generally). Let P be a set of n points in
R2, and let w :

(
P
2
)
→ R be a weight function on the (straight) segments defined by the point

pairs. Suppose that the optimal TSP tour of P with respect to w is crossing-free. Then there
is an algorithm to compute this optimal tour in nO(

√
n) time.

We convert our initial point set P in the Poincaré model to the Beltrami-Klein model
of H2 to get a point set PBK . In the Beltrami-Klein model, Euclidean segments inside the
open unit disk are (geodesic) segments of H2. Since the optimal hyperbolic TSP tour is
crossing-free, the tour in the Beltrami-Klein model is a polygon with vertex set PBK . The
hyperbolic distances can be used as weights on all segments with endpoints from PBK , and
we can apply Theorem 2 to get an nO(

√
n) algorithm regardless of the value of α.

3 A separator for Hyperbolic TSP

Centerpoint and a separating line

It has already been observed in [18] that for any set P ⊂ H2 of n points there exists a point
q ∈ H2 such that for any line ` through q the two open half-planes with boundary ` both
contain at most 2

3n points from P , that is, the line ` is a 2/3-balanced separator of P . Such a
point q is called a centerpoint of P . It has been observed in [18] that given P , a centerpoint
of P can be computed using a Euclidean centerpoint algorithm, which takes linear time [14].

It is now easy to prove that we can find a balanced line separator that has a small
neighborhood empty of input points.

I Lemma 3. Given a point set P ⊂ H2, there exists a point q ∈ H2 and there exists a
line ` through q such that P is disjoint from the open double cone with center q, axis ` and
half-angle π

2n . Any such line ` is a 2/3-balanced separator of P , and given P , a suitable point
q and line ` can be found in linear time.

Proof. Let q be a centerpoint of P . For each point p ∈ P , let `p be the line through q and
p. Since we have defined n lines through q, there is a pair of consecutive lines `p, `p′ whose
acute angle is at least π/n. Let ` be the angle bisector of `p and `p′ . Then ` clearly has the
desired properties, and the centerpoint q, the lines `p, `p′ and the line ` can all be computed
in linear time. J

We can extend Lemma 3 to get balance with respect to a subset B ⊆ P , that is, both
half-planes bounded by ` would contain at most 2

3 |B| points of B. One only needs to set q
to be the centerpoint of B instead of P .

SoCG 2020

55:6 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

a

b

q `t

b′

a′

t′

π
2n

s

Figure 2 The empty double cone with axis `.

Defining a region around the separator

From this point onwards, q denotes a centerpoint of P , and ` is a line through q with the
properties from Lemma 3. Let C denote the double cone of center q, axis ` and half-angle
π

2n , see Figure 2. Note that by Lemma 3, we have that C ∩ P = ∅. Let s be an ideal point
of `, and let a, b be ideal points on the boundary of C, such that ^aqs = ^sqb = π

2n . Let
t = ab ∩ `. Notice that qta is a right-angle triangle with ideal point a, and it has angle π

2n at
q. Therefore, π

2n is the angle of parallelism for the distance |qt|, and it satisfies

sinh(|qt|) = 1
tan(π2n) . (2)

The line ab splits H2 into two open half-planes: the side Hq containing q, and the side
Hs that has s on its boundary. Note that Hs ⊂ C, therefore P ⊂ Hq. Consequently, all
segments of the tour are contained in Hq. We mirror a, b and t to the point q; let a′, b′
and t′ denote the resulting points respectively. By our earlier observation, the entire tour
is contained in the geodesically convex region between the lines ab and a′b′, and any tour
segment intersecting ` will intersect it somewhere on the segment tt′.

Let at and bt be the points on a′b′ at distance % from t, where % ∈ (0, α/2) is a suitable
number that will be defined later. Let a′t and b′t denote the analogous points on a′b′, see
Figure 3. Let R denote the region of the hyperbolic plane consisting of all points between ab
and a′b′ whose distance from tt′ is at most %. The resulting shape R is geodesically convex;
its boundary consists of two segments (atbt and a′tb′t), and two hypercycle arcs, denoted by
>
atb
′
t and

>
bta
′
t. In general, for two points u, v on one of these hypercycle arcs, let >uv denote

the arc between them, and let |>uv| be the length of this arc.
Note that any tour segment that connects points on two different sides of ` also intersects

R. A tour segment that intersects R can have 0, 1 or 2 endpoints in R. A segment with
exactly 1 endpoint in R is called entering. As R is geodesically convex, segments with both
endpoints in R are entirely contained in R. All other tour segments crossing ` must intersect
at least one of

>
atb
′
t and

>
bta
′
t. We say that a segment crosses R if it intersects both

>
atb
′
t and>

bta
′
t. (It is possible that a segment whose endpoints lie outside R on the same side of `

intersect one of these arcs twice. These segments are not relevant for our algorithm.)

S. Kisfaludi-Bak 55:7

%%

%

R

a

b

q` t

b′

a′

t′

at

bt

%

a′t

b′t

Figure 3 The construction of the region R.

The rest of this section focuses on the following main lemma.

I Lemma 4. The region R has the following properties:
(i) |R ∩ P | < nin

def= 1 + 2(lnn+1)
α−2%

(ii) There are less than scr
def= 2 + 2(lnn+1) cosh %

% tour segments that cross R.

The proof requires that we explore the geometry of R more thoroughly.

I Lemma 5. We have |qt| < lnn+ 1, and |
>
atb
′
t| = |

>
bta
′
t| < 2(lnn+ 1) cosh %.

Proof. We first prove our bound on |qt|. Note that sinh(.) is monotone increasing and
sinh(|qt|) = 1

tan(π2n) by (2), so it suffices to show that sinh(lnn+ 1) > 1
tan(π2n) . Indeed,

sinh(lnn+ 1) =
en− 1

en

2 > n and 1
tan(π2n) <

1
3

2n
< n.

The arc length of the equidistant hypercycle of base b and distance % is b cosh % according
to [25], therefore |

>
atb
′
t| = |tt′| cosh(%) = 2|qt| cosh(%) < 2(lnn+ 1) cosh %. J

Ruling out dense crossings

Our next ingredient for the proof is to show that if two segments cross R very close to each
other, then they cannot both be in an optimal tour.

I Lemma 6. Let p1p2 . . . pipi+1 . . . pn−1pn be an optimal tour on P where both p1p2 and
pipi+1 cross R, and where p1, pi and at lie on the same side of `. Let p′1 = p1p2 ∩

>
atb
′
t, and

define p′2, p′i and p′i+1 analogously. Then |
>
p′1p
′
i|+ |

>
p′2p
′
i+1| > 4%.

Proof. We can create a new tour by removing the segments p′1p′2 and p′ip′i+1, and replacing
them with p′1p′i and p′2p′i+1, see Figure 4. The resulting tour is

p1p
′
1p
′
ipipi−1pi−2 . . . p2p

′
2p
′
i+1pi+1pi+2 . . . pn.

SoCG 2020

55:8 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

%%

%

a

b

`

b′

a′

at

bt

%

a′t

b′t

p1

p2

pi

pi+1

p′1

p′2

p′i

p′i+1

%%

%

a

b

`

b′

a′

at

bt

%

a′t

b′t

p1

p2

pi

pi+1

p′1

p′2

p′i

p′i+1

Figure 4 Rerouting two crossing edges (p1p2 and pipi+1) into a different tour.

Note that this tour contains all the input points.4 Since the only difference between the
tours is that p′1p′2 and p′ip′i+1 are only present in the optimal tour and p′1p′i and p′2p′i+1 are
only present in the new tour, by the optimality of p1 . . . pn we have that

0 > |p′1p′2|+ |p′ip′i+1| − |p′1p′i| − |p′2p′i+1|.

Note that |p′1p′2| > 2% by the definition of R, and analogously |p′ip′i+1| > 2%. Therefore we
have

0 > |p′1p′2|+ |p′ip′i+1| − |p′1p′i| − |p′2p′i+1| > 4%− |
>
p′1p
′
i| − |

>
p′2p
′
i+1|,

which concludes the proof. J

We can now prove Lemma 4.

Proof of Lemma 4.
(i) For a point p ∈ P ∩R, let p` denote the point on ` for which pp` is perpendicular to

`. Let p, p′ ∈ P ∩ R be points such that p`, p′` are consecutive on ` (i.e., there is no
p′′ ∈ P ∩R such that p′′` ∈ p`p′`). By the triangle inequality, |pp`|+ |p`p′`|+ |p′`p′| > |pp′|,
and |pp′| > α since P is α-spaced. By the definition of R and %, we also have that
|pp`| 6 % and |p′`p′| 6 %. Consequently,

|p`p′`| > α− 2%. (3)

We can apply this inequality to all consecutive pairs p`p′`. Since all the points p` lie on
the segment tt′, the total length of the segments p`p′` cannot exceed |tt′|. It follows that

|P ∩R| 6 1 +
⌊
|tt′|

α− 2%

⌋
< 1 + 2(lnn+ 1)

α− 2% ,

where the second inequality uses our bound from Lemma 5.

4 This is generally not an optimal tour as it can be further shortened into
p1pipi−1pi−2 . . . p2pi+1pi+2 . . . pn.

S. Kisfaludi-Bak 55:9

(ii) Let p1 . . . , pn be an optimal tour, and let pipi+1 be an edge crossing R. (Indices are
defined modulo n.) Note that pipi+1 can cross R in two directions: either from the side
of a to the side of b or the other way around. By Lemma 6, consecutive crossings pipi+1

and pjpj+1 in the same direction use at least a total arc length of 4% on the arcs
>
atb
′
t

and
>
bta
′
t. Since the total length of these arcs is less than 4(lnn+ 1) cosh % by Lemma 5,

the number of crossings in one direction is less than

1 +
⌊

4(lnn+ 1) cosh %
4%

⌋
6 1 + (lnn+ 1) cosh %

%
.

Consequently, the total number of crossings (in both directions) is less than

2 + 2(lnn+ 1) cosh %
%

.

This concludes the proof. J

4 A divide-and-conquer algorithm

In order for a divide-and-conquer approach to work for Euclidean TSP, one should be
able to solve subproblems with partial tours. We follow the terminology and definitions of
De Berg et al. [7] here. Let M be a perfect matching on a set B ⊆ P of so-called boundary
points. We say that a collection P = {π1, . . . , π|B|/2} of paths realizes M on P if (i) for each
pair (p, q) ∈M there is a path πi ∈ P with p and q as endpoints, and (ii) the paths together
visit each point p ∈ P exactly once. We define the length of a path πi to be the sum of
the lengths of its edges, and we define the total length of P to be the sum of the lengths of
the paths πi ∈ P. The subproblems that arise in our divide-and-conquer algorithm can be
defined as follows.

Hyperbolic Path Cover
Input: A point set P ⊂ H2, a set of boundary points B ⊆ P , and a perfect matching
M on B.
Task: Find a collection of paths of minimum total length that realizes M on P .

Let PathTSP(P,B,M) be the optimal tour length for the instance (P,B,M). Note that we
can solve Hyperbolic TSP on a point set P by solving Hyperbolic Path Cover n− 1
times on P with B := {p, q} and M := {(p, q)} for each q ∈ P \ {p}, and answering

min
q∈P\{p}

(
PathTSP

(
P, {p, q}, {(p, q)}

)
+ |pq|

)
.

4.1 Algorithm
Our algorithm is a standard divide and conquer algorithm that is very similar to [24] and [7].
The algorithm requires knowledge of the initial value of α; we can compute this before the
first call in O(n2) time. We give a pseudocode and also explain the steps below. In the
explanation, we sometimes regard sets of segments with endpoints in P as subgraphs of the
complete graph with vertex set P .

As a first step, we run a brute-force algorithm (comparing all path covers of P) if the
input points set P has size at most the threshold t, where t will be a large constant. On
line 2, we check the size of the boundary. If it is less than max

(
40 ln |P |

α , 8 ln |P |
)
, then we

SoCG 2020

55:10 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

Algorithm 1 HyperbolicTSP(P,B,M,α).

Input: A set P ⊂ Rd, a subset B ⊆ P , a perfect matching M ⊆
(
B
2
)
, and initial spacing α

Output: The minimum length of a path cover of P realizing the matching M on B
1: if |P | 6 t then return BruteForceTSP(P,B,M)
2: if |B| < max

(
40 ln |P |

α , 8 ln |P |
)

then
3: Compute a centerpoint q of P , the line ` through q and the region R.
4: else
5: Compute a centerpoint q of B, the line ` through q and the region R.
6: Cr← {pp′ | p, p′ ∈ P, pp′ crosses R}, End← {pp′ | p ∈ R ∩ P, p′ ∈ P, pp′ intersects `}
7: mincost←∞
8: for all Scr ⊆ Cr, |Scr| 6 scr do
9: for all Send ⊆ End, the maximum degree of Send is at most 2 do
10: P1, P2 ← uncovered vertices on each side of `
11: B1, B2 ← boundary vertices of Scr ∪ Send and points of B in P1 (resp., P2).
12: for all perfect matchings M1 on B1 and M2 on B2 do
13: if M1 ∪M2 ∪ Scr ∪ Send realize M then
14: c1 ← HyperbolicTSP (P1, B1,M1, α)
15: c2 ← HyperbolicTSP (P2, B2,M2, α)
16: if c1 + c2 + length(Scr ∪ Send) < mincost then
17: mincost← c1 + c2 + length(Scr ∪ Send)
18: return mincost

compute the centerpoint of P , the line ` with the empty cone according to Lemma 3, and
the region R. Otherwise (similarly to [7]), we need to shrink the boundary, so we use a line
` through the centerpoint of B instead. Next, we define the segment set Cr as the set of
segments pp′ that cross R, and End as the set of segments intersecting ` that have at least
one endpoint in R. We initialize the returned value mincost to infinity.

On line 8, we iterate over all segment sets Scr ⊆ Cr with |Scr| 6 scr, where scr is our
bound on the number of crossing segments from Lemma 4. The algorithm considers Scr to
be the set of segments crossing R. Next, we iterate over all the sets Send ⊆ End where each
point of P has at most two incident segments from Send. The algorithm considers Send to
be the set of segments crossing ` with at least one endpoint in R.

Each point in B needs to have one adjacent segment in the optimum tour P, and each
point in P \ B needs two such points. We say that a point p ∈ B (resp., p ∈ P \ B) is
uncovered if its degree in Scr ∪ Send is less than 1 (resp., 2). We denote by P1 and P2 the set
of uncovered points on each side of `. A point p ∈ P1 is a boundary point if p ∈ B and p
is not an endpoint of Scr ∪ Send, or p ∈ P \B and it has degree 1 in Scr ∪ Send. We let B1
denote the boundary points in P1. Similarly, B2 is the set of boundary points in P2.

Line 13 proceeds by iterating over all perfect matchings M1 on B1 and M2 on B2. If the
graph on B1 ∪B2 ∪B formed by M1 ∪M2 ∪Scr ∪Send is a set of paths such that contracting
edges with an endpoint in (B1 ∪B2) \B results in M , then we say that M1 ∪M2 ∪Scr ∪Send
realize M . If this is the case for a particular choice M1,M2, then on lines 14 and 15 we
recurse on both P1 and P2. The resulting path covers together with Scr ∪ Send form a path
cover realizing M : if their length is shorter than mincost, then we update mincost. After
the loops have ended, we return mincost.

We can also compute the optimum tour itself with a small modification of the algorithm.

S. Kisfaludi-Bak 55:11

Correctness

The same algorithmic strategy has been used several times in the literature [24, 7], so we
only give a brief justification. Given an optimal path cover P, the set Scr of segments in P
crossing R has size at most scr by Lemma 4. The set of segments Send with one endpoint in
R has degree at most two at each point of R ∩ P . Consequently, both sets will be considered
in Line 8 and Line 9. The segments of P not in Scr ∪ Send form a path cover of P1 and P2
with boundary set B1 and B2. These path covers realize some perfect matchings M1 and
M2 on B1 and B2 respectively. The matchings M1 and M2 together with Scr ∪ Send realize
M , therefore M1 and M2 will be considered in the loop at line 13. These path covers must
be optimal by the optimality of P.

4.2 Analyzing the running time
All non-recursive steps can be handled in O(n2) time. The number of segment sets Scr to be
considered in line 8 is at most

(|Cr|
scr

)
= O(n2scr), since |Cr| = O(n2). The number of segment

sets Send to be considered is at most O(n2|R∩P |) 6 O(n2nin). By Lemma 4, the loop in line 8
has at most

O

(
n

2
(

1+ 2(lnn+1)
α−2% +2+ 2(lnn+1) cosh %

%

))
= O

(
n4(lnn+1)(1

α−2%+ cosh %
%)+O(1)

)
(4)

iterations. Instead of trying to minimize this expression by our choice of %, we settle for
something that is easy to handle. Let

%
def= min

(
3
10α,

12
10

)
.

The exponent of (4) can be bounded the following way. If α < 4, then % = 3
10α, and

cosh(%) < 1.82, so we get

2(scr + nin) = 4(lnn+ 1)
(

1
α− 2% + cosh %

%

)
+O(1)

< 4(lnn+ 1)
(

1
4

10α
+ 1.82

3
10α

)
+O(1)

< 4(lnn)
(

8.57
α

)
+O(1/α)

< 35 lnn
α
, (5)

where the last step uses that n is large enough, which we can ensure by setting the
threshold t in Line 1 large enough. If α > 4, then % = 1.2:

2(scr + nin) = 4(lnn+ 1)
(

1
α− 2% + cosh %

%

)
+O(1)

< 4(lnn+ 1)
(

1
α− 2.4 + 1.82

1.2

)
+O(1)

< 7 lnn. (6)

Next, we will analyze the loop at line 13, but this will require a bound on the size of the
boundary set B.

SoCG 2020

55:12 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

I Lemma 7. The size of the boundary set B is at most max(60 ln |P |
α , 12 ln |P |) at every

recursion level of HyperbolicTSP.

Proof. The statement holds for the initial call as we have |B| = 2 and |P | = n there.
Notice that if |B| < max(40 ln |P |

α , 8 ln |P |), then we use the branch on line 3. Consequently,
the boundary set B1 (and B2) in the new recursive call always has size at most |B|+(scr+nin).
So by induction and the bounds (5) and (6), we have that

|B1| 6 max
(

40 ln |P |
α

, 8 ln |P |
)

+ max
(

17.5 ln |P |
α

, 3.5 ln |P |
)

< max
(

57.5 ln |P |
α

, 11.5 ln |P |
)

< max
(

60 ln |P1|
α

, 12 ln |P1|
)
,

where we use |P1| > |P |/3⇒ ln(|P |) < ln(P1) + 1.1; therefore, the last inequality holds if we
set the threshold t large enough.

In case of |B| > max(40 ln |P |
α , 8 ln |P |), we use the branch on line 5. We have that

|B1| 6 2
3 |B|+ (scr + nin). By induction, we still have |B| < max(60 ln |P |

α , 12 ln |P |), so

|B1| 6
2
3 max

(
60 ln |P |

α
, 12 ln |P |

)
+ max

(
17.5 ln |P |

α
, 3.5 ln |P |

)
< max

(
60 ln |P1|

α
, 12 ln |P1|

)
. J

The number of perfect matchings on a boundary set B1 is at most |B1|O(|B1|). Let
b

def= max(60 ln |P |
α , 12 ln |P |) be the bound acquired above. The number of iterations of the loop

at line 13 is at most bO(b). If α > 4, then this is (ln |P |)O(ln |P |) = |P |O(ln ln |P |) < |P |ε ln |P |

for any ε > 0, as long as |P | is large enough. If α < 4, then we get

bO(b) =
(

lnn
α

)O(lnn
α)

= nO(1
α (ln lnn+ln(1/α)).

As long as 1/α = no(1), this term is insignificant compared to the iterations of the other loop.
Otherwise, we have 1

α 6
√
n, and therefore

bO(b) = nO(1
α (ln lnn+ln(1/α)) = nO(logn

α).

I Remark 8. If one wants to optimize the leading coefficient in the exponent of the eventual
running time, then it is possible to modify the algorithm to use only c|B1| matchings for
M1 as all other matchings lead to crossings. See for example the technique in [9]. As a
consequence, the leading coefficient will not be influenced by the second loop at all. However,
this effort would be in vain if there exists a significantly better algorithm for α 6 1, say
nO(logn·(1/α)) or even nO(1/α), which we cannot rule out yet.

The following lemma finishes the proof of Theorem 1.

I Lemma 9. The running time of HyperbolicTSP on our initial call is nO(log2 n) max(1,1/α).

Proof. By the analysis above, the running time for an instance (P,B,M,α) with |P | = n

satisfies the following recursion.

T (n) 6 nO(max(logn
α ,logn))T

(
2
3n

)

S. Kisfaludi-Bak 55:13

Therefore, there exists a constant c such that the running time is at most

T (n) 6 nmax(1,1/α)·c logn
(

2
3n

)max(1,1/α)·c(log(2
3n))
·
(

4
9n

)max(1,1/α)·c(log(4
9n))
· . . .

= nmax(1,1/α)·c(logn+log(2
3n)+log(4

9n)+...)

= nmax(1,1/α)·O(log2 n). J

5 Conclusion

We have devised a separator theorem in H2 that led to a quasi-polynomial algorithm for
Hyperbolic TSP on constant-spaced point sets. For α-spaced point sets with spacing
α > log2 n/

√
n our algorithm runs in nO(log2 n) max(1,1/α) time. When the point set has

spacing only Θ(log2 n/
√
n), the algorithm’s performance degrades to the point of reaching

(roughly) the performance of the Euclidean algorithm. If the point set has even closer point
pairs, then the algorithm of Hwang et al. [12] can be used to obtain a running time of nO(

√
n).

We have shown that our algorithm’s dependence on density is necessary and for spacing
1/
√
n, it cannot be significantly improved under ETH. There are several intriguing questions

that are left open. We list some of these questions below.
Improving the running time, lower bounds. There is a considerable gap between
the running time for Hamiltonian Cycle in hyperbolic unit disk graphs (which is
polynomial) and our Hyperbolic TSP algorithm, which for constant α runs in nO(log2(n))

time. Is there an nO(logn) or a polynomial algorithm for α > 1? Alternatively, can we
prove a (conditional) superpolynomial lower bound? Such a lower bound would have to
go beyond the quasi-polynomial lower bound for Independent Set seen in [18], as that
relies heavily on dense point sets which are not allowed for α = Ω(1). Another approach
would be to use the naïve grid embedding of [18] directly, but that does not lead to a
superpolynomial lower bound here.
Higher dimensions. The grid-based lower-bound framework of [8] can be used in Hd+1,
see [18]. In particular, the ETH-based lower bound of [7] for Euclidean TSP implies
that there is no 2o(n1−1/(d−1)) algorithm for Hyperbolic TSP in Hd under ETH. Can we
extend our algorithmic techniques to constant-spaced point sets in Hd and gain algorithms
with running time 2n1−1/(d−1) poly(logn)? What happens for denser point sets? As observed
in [7], the techniques of Hwang et al. [12] do not even seem to extend to Rd for d > 3. Is
a running time of 2n1−1/d poly(logn) possible for all point sets in Hd?
A less forgiving parameter. Our usage of the spacing parameter α may be too
restrictive. Is there a better algorithm that can handle more general inputs that can
contain a few close point pairs?

References
1 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and

other geometric problems. Journal of the ACM, 45(5):753–782, 1998. doi:10.1145/290179.
290180.

2 Yair Bartal, Lee-Ad Gottlieb, and Robert Krauthgamer. The traveling salesman problem:
Low-dimensionality implies a polynomial time approximation scheme. SIAM J. Comput.,
45(4):1563–1581, 2016. doi:10.1137/130913328.

3 Richard Bellman. Dynamic programming treatment of the travelling salesman problem.
Journal of the ACM, 9(1):61–63, 1962. doi:10.1145/321105.321111.

SoCG 2020

https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1137/130913328
https://doi.org/10.1145/321105.321111

55:14 A Quasi-Polynomial Algorithm for Well-Spaced Hyperbolic TSP

4 Riccardo Benedetti and Carlo Petronio. Lectures on hyperbolic geometry. Springer Science &
Business Media, 2012.

5 James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic
geometry. Flavors of geometry, 31:59–115, 1997.

6 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Graduate School of Industrial Administration, Carnegie Mellon University,
1976.

7 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, and Sudeshna Kolay. An ETH-tight
exact algorithm for Euclidean TSP. In Proceedings of FOCS 2018, pages 450–461. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00050.

8 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for ETH-tight algorithms and lower bounds in geometric intersection
graphs. In Proceedings of STOC 2018, pages 574–586, 2018. doi:10.1145/3188745.3188854.

9 Vladimir G. Deineko, Bettina Klinz, and Gerhard J. Woeginger. Exact algorithms for the
Hamiltonian cycle problem in planar graphs. Operations Research Letters, 34(3):269–274, 2006.
doi:10.1016/j.orl.2005.04.013.

10 Marvin J Greenberg. Euclidean and non-Euclidean geometries: Development and history.
Macmillan, 1993.

11 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
In Proceedings of the 1961 16th ACM National Meeting, ACM ’61, pages 71.201–71.204, New
York, NY, USA, 1961. ACM.

12 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

13 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

14 Shreesh Jadhav and Asish Mukhopadhyay. Computing a centerpoint of a finite planar
set of points in linear time. Discrete & Computational Geometry, 12:291–312, 1994. doi:
10.1007/BF02574382.

15 Viggo Kann. On the approximability of NP-complete optimization problems. PhD thesis, Royal
Institute of Technology Stockholm, 1992.

16 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming, pages 219–241. Springer, 2010.

17 Marek Karpinski, Michael Lampis, and Richard Schmied. New inapproximability bounds for
TSP. J. Comput. Syst. Sci., 81(8):1665–1677, 2015. doi:10.1016/j.jcss.2015.06.003.

18 Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In
Proceedings of SODA 2020, pages 1621–1638. SIAM, 2020. doi:10.1137/1.9781611975994.
100.

19 Sándor Kisfaludi-Bak. A quasi-polynomial algorithm for well-spaced hyperbolic TSP. CoRR,
abs/2002.05414, 2020. arXiv:2002.05414.

20 Robert Krauthgamer and James R. Lee. Algorithms on negatively curved spaces. In Proceedings
of FOCS 2006, pages 119–132, 2006. doi:10.1109/FOCS.2006.9.

21 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

22 Arlan Ramsay, Robert Davis Richtmyer, and Robert D. Richtmyer. Introduction to hyperbolic
geometry. Universitext. Springer, New York, 1995.

23 Satish Rao and Warren D. Smith. Approximating geometrical graphs via "spanners" and
"banyans". In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing,
pages 540–550. ACM, 1998. doi:10.1145/276698.276868.

https://doi.org/10.1109/FOCS.2018.00050
https://doi.org/10.1145/3188745.3188854
https://doi.org/10.1016/j.orl.2005.04.013
https://doi.org/10.1007/BF01228511
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/BF02574382
https://doi.org/10.1007/BF02574382
https://doi.org/10.1016/j.jcss.2015.06.003
https://doi.org/10.1137/1.9781611975994.100
https://doi.org/10.1137/1.9781611975994.100
http://arxiv.org/abs/2002.05414
https://doi.org/10.1109/FOCS.2006.9
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1145/276698.276868

S. Kisfaludi-Bak 55:15

24 Warren D. Smith and Nicholas C. Wormald. Geometric separator theorems & applications. In
Proceedings of FOCS 2018, pages 232–243. IEEE Computer Society, 1998. doi:10.1109/SFCS.
1998.743449.

25 Aleksandr S. Smogorževskij. Lobatschewskische Geometrie. Mathematische Schülerbücherei
96. Teubner, Leipzig, 1. aufl. edition, 1978.

26 William P. Thurston. Three-Dimensional Geometry and Topology, volume 1. Princeton
University Press, 1997.

SoCG 2020

https://doi.org/10.1109/SFCS.1998.743449
https://doi.org/10.1109/SFCS.1998.743449

	Introduction
	Preliminaries
	A separator for Hyperbolic TSP
	A divide-and-conquer algorithm
	Algorithm
	Analyzing the running time

	Conclusion

