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Abstract
Define the k-th Radon number rk of a convexity space as the smallest number (if it exists) for which
any set of rk points can be partitioned into k parts whose convex hulls intersect. Combining the
recent abstract fractional Helly theorem of Holmsen and Lee with earlier methods of Bukh, we prove
that rk grows linearly, i.e., rk ≤ c(r2) · k.
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1 Introduction

Define a convexity space as a pair (X, C), where X is any set of points and C, the collection
of convex sets, is any family over X that contains ∅, X, and is closed under (arbitrary)
intersection and under (arbitrary) union of nested sets. The convex hull, conv(S), of
some point set S ⊂ X is defined as the intersection of all convex sets containing S, i.e.,
conv(S) = ∩{C ∈ C | S ⊂ C}; since C is closed under intersection, conv(S) is the minimal
convex set containing C. This generalization of convex sets includes several examples; for
an overview, see the book by van de Vel [26] or for a more recent work, [20]. It is a natural
question what properties of convex sets of Rd are preserved, or what the relationships are
among them for general convexity spaces. A much investigated parameter is the Radon
number rk (sometimes also called partition number or Tverberg number), which is defined as
the smallest number (if it exists) for which any set of rk points can be partitioned into k
parts whose convex hulls intersect. For k = 2, we simply write r = r2.

In case of the convex sets of Rd, it was shown by Radon [23] that r = d + 2 and by
Tverberg [25] that rk = (d+ 1)(k − 1) + 1. Calder [7] and Eckhoff [11] raised the question
whether rk ≤ (r − 1)(k − 1) + 1 also holds for general convexity spaces (when r exists),
and this became known as Eckhoff’s conjecture. It was shown by Jamison [16] that the
conjecture is true if r = 3, and that the existence of r always implies that rk exists and
rk ≤ rdlog2 ke ≤ (2k)log2 r. His proof used the recursion rk` ≤ rkr` which was later improved
by Eckhoff [12] to r2k+1 ≤ (r − 1)(rk+1 − 1) + rk + 1, but this did not significantly change
the growth rate of the upper bound. Recently Bukh [6] disproved the conjectured bound
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rk ≤ (r − 1)(k − 1) + 1 by showing an example where r = 4, but rk ≥ 3k − 1 (just one more
than the conjectured value), and also improved the upper bound to rk = O(k2 log2 k), where
the hidden constant depends on r. We improve this to rk = O(k), which is optimal up to a
constant factor and might lead to interesting applications.

I Theorem 1. If a convexity space (X, C) has Radon number r, then rk ≤ c(r) · k.

Our proof combines the methods of Bukh with recent results of Holmsen and Lee [15]. In
particular, we will use the following version of the classical fractional Helly theorem [17].

I Theorem 2 (Holmsen-Lee [15]). For any r ≥ 3 there is an f such that for any α > 0 there
is a β > 0 with the following property. If a convexity space (X, C) has Radon number r,
then for any finite family F of convex sets if at least an α fraction of the f -tuples of F are
intersecting, then a β fraction of F intersects.

There are several other connections between the parameters of a convexity space [26];
for example, earlier it was already shown [19] that in convexity spaces the Helly number is
always strictly less than r (if r is finite), while in [15] it was also shown that the colorful Helly
number [4] can be also bounded by some function of r (and this implied Theorem 2 combined
with a combinatorial result from [14]).1 It was also shown in [15] that it follows from the
work of Alon et al. [2] that weak ε-nets [1] of size c(ε, r) also exist and a (p, q)-theorem [3]
also holds, so understanding these parameters better might lead to improved ε-net bounds.
It remains an interesting challenge and a popular topic to find new connections among such
theorems; for some recent papers studying the Radon numbers or Tverberg theorems of
various convexity spaces, see [8, 9, 10, 13, 18, 22, 21, 24], while for a comprehensive survey,
see Bárány and Soberón [5].

Restricted vs. multiset

In case of general convexity spaces, there are two, slightly different definitions of Radon
numbers ([26]: 5.19). When we do not allow repetitions in the point set P to be partitioned,
i.e., P consist of different points, the parameter is called the restricted Radon number, which
we will denote by r(1)

k . If repetitions are also allowed, i.e., we want to partition a multiset,
the parameter is called the unrestricted or multiset Radon number, which we will denote by
r

(m)
k . The obvious connection between these parameters is r(1)

k ≤ r
(m)
k ≤ (k− 1)(r(1)

k − 1) + 1.
In the earlier papers multiset Radon numbers were preferred, while later papers usually
focused on restricted Radon numbers; we followed the spirit of the age, so the results in the
Introduction were written using the definition of r(1)

k , although some of the bounds (like
Jamison’s or Eckhoff’s) are valid for both definitions. The proof of Theorem 1, however, also
works for multisets, so we will in fact prove the stronger r(m)

k = O(k), and in the following
simply use rk for the multiset Radon number r(m)

k .
A similar issue arises in Theorem 2; is F allowed to be a multifamily? Though not

emphasized in [15], their proof also works in this case and we will use it for a multifamily.
Note that this could be avoided with some cumbersome tricks, like adding more points to the
convexity space without increasing the Radon number r to make all sets of a family different,
but we do not go into details, as Theorem 2 anyhow holds for multifamilies.

1 We would like to point out that a difficulty in proving these results is that the existence of a Carathéodory-
type theorem is not implied by the existence of r.
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2 Proof

Fix r, and a collection of points P with cardinality tk, where we allow repetitions and the
cardinality is understood as the sum of the multiplicities. We will treat all points of P as if
they were different even if they coincide in X, e.g., when taking subsets.

We need to show that if t ≥ c(r), then we can partition P into k sets whose convex hulls
intersect. For a fixed constant s, define F to be the family of convex sets that are the convex
hull of some s-element subset of P , i.e., F = {conv(S) | S ⊂ P, |S| = s}. Since we treat all
points of P as different, F will be a multifamily with |F| =

(
tk
s

)
. We will refer to the point

set S whose convex hull gave some F = conv(S) ∈ F as the vertices of F (despite that some
of the points might be in the convex hull of the remaining ones). Note that for some S 6= S′,
we might have conv(S) = conv(S′), but the vertices of conv(S) and conv(S′) will still be S
and S′; since P is a multiset, it is even possible that S ∩ S′ = ∅.

The constants t and s will be set to be large enough compared to some parameters
that we get from Theorem 2 when we apply it to a fixed α. (Our arguments work for any
0 < α < 1.) First we set s to be large enough depending on α and rf (where f is the
fractional Helly number from Theorem 2; recall that rf ≤ rlog f is a constant [16]), then
we set t to be large enough depending on s and β (which depends on our chosen α). In
particular, we can set s = log( 1

1−α1
)rfffrf and t = max( s

2

β ; (fs)2

k(1−α2) ), where 0 < α1, α2 < 1
are any two numbers such that α1 · α2 = α. Also, we note that the proof from [14, 15] gives
f ≤ rrlog r and β = Ω(αrf ) for Theorem 2. Combining all these to get the best bound, note
that rf , frf ≤ R ≈ rr

rlog r

. Set α = 1 − 1
R with, e.g., α1 = α2 ≈ 1 − 1

2R . This keeps β
constant, and both s and t around R, so we get an upper bound of approximately rrrlog r

for
t. (The simpler α1 = α2 = 1

2 would give approximately 2rrrlog r

.)
Theorem 1 will be implied by the following lemma and Theorem 2.

I Lemma 3. An α fraction of the f -tuples of F are intersecting.

Proof. Since t is large enough, almost all f -tuples will be vertex-disjoint, thus it will be
enough to deal with such f -tuples. More precisely, the probability of an f -tuple being
vertex-disjoint is at least (1− fs

tk )fs ≥ 1− (fs)2

tk ≥ α2 by the choice of t. We need to prove
that at least an α1 fraction of these vertex-disjoint f -tuples will be intersecting.

Partition the vertex-disjoint f -tuples into groups depending on which (fs)-element subset
of P is the union of their vertices. We will show that for each group an α1 fraction of them
are intersecting. We do this by generating the f -tuples of a group uniformly at random
and show that such a random f -tuple will be intersecting with probability at least α1. For
technical reasons, suppose that m = s

rf
is an integer and partition the fs supporting points

of the group randomly into m subsets of size frf , denoted by V1, . . . , Vm. Call an f -tuple
type (V1, . . . , Vm) if each set of the f -tuple intersects each Vi in rf points. Since these Vi
were picked randomly, it is enough to show that the probability that a (V1, . . . , Vm)-type
f -tuple is intersecting is at least α1.

The (V1, . . . , Vm)-type f -tuples can be uniformly generated by partitioning each Vi into
f equal parts of size rf . Therefore, it is enough to show that such a random f -tuple will be
intersecting with probability at least α1. Since |Vi| ≥ rf , there is at least one partition of
the first rf points of Vi to f parts whose convex hulls intersect. Since we can distribute the
remaining (f − 1)rf points of Vi to make all f parts equal, we get that when we partition Vi
into f equal parts of size rf , the convex hulls of these parts will intersect with probability at
least

(
frf

rf ,rf ,...,rf

)−1 ≥ f−frf . Since these events are independent for each i, we get that the
final f -tuple will be intersecting with probability at least 1−(1−f−frf )m ≥ 1−e−mf

−frf ≥ α1
by the choice of s. J
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Therefore, if s is large enough, the conditions of Theorem 2 are met, so at least β
(
tk
s

)
members of F intersect. In other words, these intersecting sets form an s-uniform hypergraph
H on tk vertices that is β-dense. We need to show that H has k disjoint edges to obtain
the desired partition of P into k parts with intersecting convex hulls. For a contradiction,
suppose that H has only k − 1 disjoint edges. Then every other edge meets one of their
(k − 1)s vertices. There are at most (k − 1)s

(
tk
s−1

)
such edges, which is less than β

(
tk
s

)
if

(k−1)s < β tk−s+1
s , but this holds by the choice of t. This finishes the proof of Theorem 1. J

Concluding remarks

It is an interesting question to study how big f can be compared to r and the Helly number
h of (X, C). The current bound [15] gives f ≤ hrh ≤ rr

log r . We would like to point out
that the first inequality, f ≤ hrh , can be (almost) strict, as shown by the following example,
similar to Example 3 (cylinders) of [20]. Let X = {1, . . . , q}d be the points of a d-dimensional
grid, and let C consist of the intersections of the axis-parallel affine subspaces with X. (Note
that for q = 2, X will be the vertices of a d-dimensional cube, and C its faces.) It is easy to
check that h = 2, r = blog(d+ 1) + 2c and f = d+ 1; the last equality follows from that for
α = d!

dd we need β = 1
q when F consists of all qd axis-parallel affine hyperplanes (if q is large

enough).
It is tempting to assume that Theorem 1 would improve the second inequality, hrh ≤ rrlog r ,

as instead of rh ≤ rlogh we can use rh = O(h). Unfortunately, recall that the hidden constant
depended on r, in particular, it is around rrrlog r

. We have a suspicion that this might not
be entirely sharp, so a natural question is whether this dependence could be removed to
improve rk ≤ rr

rlog r

· k to rk ≤ c · r · k. This would truly lead to an improvement of the
upper bound on f in Theorem 2 and would lead to further applications [5].
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