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Abstract
Given a set S of n points in the Euclidean plane, the two-center problem is to find two congruent
disks of smallest radius whose union covers all points of S. Previously, Eppstein [SODA’97] gave a
randomized algorithm of O(n log2 n) expected time and Chan [CGTA’99] presented a deterministic
algorithm of O(n log2 n log2 logn) time. In this paper, we propose an O(n log2 n) time deterministic
algorithm, which improves Chan’s deterministic algorithm and matches the randomized bound of
Eppstein. If S is in convex position, we solve the problem in O(n logn log logn) deterministic time.
Our results rely on new techniques for dynamically maintaining circular hulls under point insertions
and deletions, which are of independent interest.
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1 Introduction

Given a set S of n points in the Euclidean plane, we consider the planar 2-center problem
that is to find two congruent disks of smallest radius whose union covers all points of S.

The classical 1-center problem for a set of points is to find the smallest disk covering all
points, and the problem can be solved in linear time in any fixed dimensional space [9,13,24].
As a natural generalization, the 2-center problem has attracted much attention. Hershberger
and Suri [19] first solved the decision version of the problem in O(n2 logn) time, which was
later improved to O(n2) time [18]. Using this result and parametric search [23], Agarwal and
Sharir [2] gave an O(n2 log3 n) time algorithm for the 2-center problem. Katz and Sharir [21]
achieved the same running time by using expanders instead of parametric search. Eppstein [15]
presented a randomized algorithm of O(n2 log2 n log logn) expected time. Later, Jaromczyk
and Kowaluk [20] proposed an O(n2) time algorithm. A breakthrough was achieved by
Sharir [26], who proposed the first subquadratic algorithm for the problem, and the running
time is O(n log9 n). Afterwards, following Sharir’s algorithmic scheme, Eppstein [16] derived
a randomized algorithm of O(n log2 n) expected time, and then Chan [6] developed an
O(n log2 n log2 logn) time deterministic algorithm and a randomized algorithm of O(n log2 n)
time with high probability. Recently, Tan and Jiang [27] proposed a simple algorithm of
O(n log2 n) time based on binary search, but unfortunately, the algorithm is not correct (see
the full paper for details). The problem has an Ω(n logn) time lower bound in the algebraic
decision tree model [16], by a reduction from the max-gap problem.

In this paper, we present a new deterministic algorithm of O(n log2 n) time, which
improves the O(n log2 n log2 logn) time deterministic algorithm by Chan [6] and matches the
randomized bound of O(n log2 n) [6,16]. This is the first progress on the problem since Chan’s
work [6] was published twenty years ago. Further, if S is in convex position (i.e., the points
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of S are all on the convex hull of S), our technique solves the problem in O(n logn log logn)
time. Previously, Kim and Shin [22] announced an O(n log2 n) time algorithm for this convex
position case, but Tan and Jiang [27] found errors in their time analysis.

Some variations of the 2-center problem have also been considered in the literature.
Agarwal et al. [3] studied the discrete 2-center problem where the centers of the two disks
must be in S, and they solved the problem in O(n4/3 log5 n) time. Agarwal and Phillips [1]
considered an outlier version of the problem where k points of S are allowed to be outside
the two disks, and they presented a randomized algorithm of O(nk7 log3 n) expected time.
In addition to the set S, the problem of Halperin et al. [17] also involves a set of pairwise
disjoint simple polygons, and the centers of the two disks are required to lie outside all
polygons. Both exact and approximation algorithms are given in [17]. Arkin et al. [4] studied
a bichromatic 2-center problem for a set of n pairs of points in the plane, and the goal is to
assign a red color to a point and a blue color to the other point for every pair, such that
max{r1, r2} is minimized, where r1 (resp., r2) is the radius of the smallest disk covering all
red (resp., blue) points. Arkin et al. [4] gave an O(n3 log2 n) time algorithm, which was
recently improved to O(n2 log2 n) time by Wang and Xue [28].

1.1 Our techniques
Let D∗1 and D∗2 be two congruent disks in an optimal solution such that the distance of their
centers is minimized. Let r∗ be their radius and δ∗ the distance of their centers. If δ∗ ≥ r∗,
we call it the distant case; otherwise, it is the nearby case.

Eppstein [16] already solved the distant case in O(n log2 n) deterministic time. Solving
the nearby case turns out to be the bottleneck in all previous three sub-quadratic time
algorithms [6, 16, 26]. Specifically, Sharir [26] first solved it in O(n log9 n) deterministic time.
Eppstein [16] gave a randomized algorithm of O(n logn log logn) expected time. Chan [16]
proposed a randomized algorithm of O(n logn) time with high probability and a deterministic
algorithm of O(n log2 n log2 logn) time. Our contribution is an O(n logn log logn) time
deterministic algorithm for the nearby case, which improves Chan’s algorithm by a factor of
logn log logn. Combining with the O(n log2 n) time deterministic algorithm of Eppstein [16]
for the distant case, the 2-center problem can now be solved in O(n log2 n) deterministic
time. Interestingly, solving the distant case now becomes the bottleneck of the problem.

Our algorithm (for the nearby case) is based on Chan’s framework [6]. Our improvement
is twofold. First, Chan [6] derived an O(n logn) time algorithm for the decision problem, i.e.,
given r, decide whether r∗ ≤ r. We improve the algorithm to O(n) time, after O(n logn) time
preprocessing. Second, Chan [6] solved the optimization problem (i.e., the original 2-center
problem) by parametric search. To this end, Chan developed a parallel algorithm for the
decision problem and the algorithm runs in O(logn log2 logn) parallel steps using O(n logn)
processors. By applying Cole’s parametric search [10] and using his O(n logn) time decision
algorithm, Chan solved the optimization problem in O(n log2 n log2 logn) time. We first
notice that simply replacing Chan’s O(n logn) time decision algorithm with our new O(n)
time algorithm does not lead to any improvement. Indeed, in Chan’s parallel algorithm, the
number of processors times the number of parallel steps is O(n log2 n log2 logn). We further
design another parallel algorithm for the decision problem, which runs in O(logn log logn)
parallel steps using O(n) processors. Consequently, by applying Cole’s parametric search with
our O(n) time decision algorithm, we solve the optimization problem in O(n logn log logn)
time. Note that although Cole’s parametric search is used, our algorithm mainly involves
independent binary searches and no sorting networks are needed.

In addition, we show that our algorithm can be easily applied to solving the convex
position case in O(n logn log logn) time.
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Circular hulls. To obtain our algorithm for the decision problem, we develop new techniques
for circular hulls [19] (also known as α-hulls with α = 1 [14]). A circular hull of radius r
for a set Q of points is the common intersection of all disks of radius r containing Q (to
see how circular hulls are related to the two-center problem, notice that there exists a disk
of radius r covering all points of Q if and only if the circular hull of Q of radius r exists).
Although circular hulls have been studied before, our result needs more efficient algorithms
for certain operations. For example, two algorithms [14, 19] were known for constructing the
circular hull for a set of n points; both algorithms run in O(n logn) time, even if the points
are given sorted. We instead present a linear-time algorithm once the points are sorted.
Also, Hershberger and Suri [19] gave a linear-time algorithm to find the common tangents of
two circular hulls separated by a line, and we design a new algorithm of O(logn) time. We
also need to maintain a dynamic circular hull for a set of points under point insertions and
deletions. Hershberger and Suri [19] gave a semi-dynamic data structure that can support
deletions in O(logn) amortized time each. In our problem, we need to handle both insertions
and deletions but with the following special properties: the point in each insertion must be
to the right of all points of Q and the point in each deletion must be the leftmost point of
Q. Our data structure can handle each update in O(1) amortized time (which leads to the
linear time decision algorithm for the 2-center problem1). We believe that these results on
circular hulls are interesting in their own right.

Outline. We introduce notation and review some previous work in Section 2. In Section 3,
we present our decision algorithm, and the algorithm needs a data structure to maintain
circular hulls dynamically, which is given in the full paper. Section 4 solves the optimization
problem. The convex position case is discussed in Section 5.

2 Preliminaries

We begin with some notation. It suffices to solve the nearby case. Thus, we assume δ∗ < r∗

in the rest of the paper. In the nearby case, it is possible to find in O(n) time a constant
number of points such that at least one of them, denoted by o, is in D∗1 ∩D∗2 [16]. We assume
that o is the origin of the plane. We make a general position assumption: no two points of S
are collinear with o and no two points of S have the same x-coordinate. This assumption
does not affect the running time of the algorithm, but simplifies the presentation.

For any set P of points in the plane, let τ(P ) denote the radius of the smallest enclosing
disk of P . For a connected region B in the plane, let ∂B denote the boundary of B.

The boundaries of the two disks D∗1 and D∗2 have exactly two intersections, and let ρ1
and ρ2 be the two rays through these intersections emanating from o (e.g., see Fig. 1). As
argued in [6], one of the two coordinate axes must separate ρ1 and ρ2 since the angle between
the two rays lies in [π/2, 3π/2], and without loss of generality, we assume it is the x-axis.

Let S+ denote the subset of points of S above the x-axis, and S− = S\S+. For notational
simplicity, let |S+| = |S−| = n. Let p1, p2, . . . , pn be the sorted list of S+ counterclockwise
around o, and q1, q2, . . . , qn the sorted list of S− also counterclockwise around o (e.g., see
Fig. 2). For each i = 0, 1, . . . , n and j = 0, 1, . . . , n, define Lij = {pi+1 . . . , pn, q1, . . . , qj} and
Rij = {qj+1, . . . , qn, p1, . . . , pi}. Note that if i = n, then Lij = {q1, . . . , qj}, and if j = n,
then Rij = {p1, . . . , pi}. In words, if we consider a ray emanating from o and between pi

and pi+1, and another ray emanating from o and between qj and qj+1, then Lij (resp., Rij)
consist of all points to the left (resp., right) of the two rays (e.g., see Fig. 2).

1 As will be clear later, the points involved in our dynamic circular hull problem are actually sorted
radially by a point; we can extend the result for the left-right sorted case to the radically sorted case.

SoCG 2020
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Figure 1 Illustrating the nearby case.
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Figure 2 Illustrating the points of S+ and S−. Figure 3 The circular hull of a set of points.

Note that the partition of S by the two rays ρ1∪ρ2 is {Lij , Rij} for some i and j, and thus
r∗ = max{τ(Lij), τ(Rij)}. Define A[i, j] = τ(Lij) and B[i, j] = τ(Rij), for all 0 ≤ i, j ≤ n.
Then, r∗ = min0≤i,j≤n max{A[i, j], B[i, j]}. If we consider A and B as (n + 1) × (n + 1)
matrices, then each row of A (resp., B) is monotonically increasing (resp., decreasing) and
each column of A (resp., B) is monotonically decreasing (resp., increasing). For each i ∈ [0, n],
define r∗i = min0≤j≤n max{A[i, j], B[i, j]}. Thus, r∗ = min0≤i≤n r

∗
i .

2.1 Circular hulls

For any point c in the plane and a value r, we use Dr(c) to denote the disk centered at
c with radius r. For a set Q of points in the plane, define Ir(Q) =

⋂
c∈Q Dr(c), i.e., the

common intersection of the disks Dr(c) for all points c ∈ Q. Note that Ir(Q) is convex. A
dual concept of Ir(Q) is the circular hull [19] (also known as α-hull with α = 1 [14]; e.g., see
Fig 3), denoted by αr(Q), which is the common intersection of all disks of radius r containing
Q. αr(Q) is convex and unique. The vertices of αr(Q) is a subset of Q and the edges are
arcs of circles of radius r. Ir(Q) and αr(Q) are dual to each other: Every arc of αr(Q) is on
the circle of radius r centered at a vertex of Ir(Q) and every arc of Ir(Q) is on the circle
of radius r centered at a vertex of αr(Q). Note that αr(Q) exists if and only if Ir(Q) 6= ∅,
which is true if and only τ(Q) ≤ r. For brevity, we often drop the subscript r from Ir(Q)
and αr(Q) if it is clear from the context.

Circular hulls are critical to our algorithm. As discussed in [19], circular hulls have many
properties similar to convex hulls. However, circular hulls also have special properties that
convex hulls do not possess. For example, the circular hull for a set of points may not exist.
Also, the leftmost point of a set Q of points must be a vertex of the convex hull of Q, but
this may not be the case for the circular hull. Due to these special properties, extending
algorithms on convex hulls to circular hulls sometimes is not trivial, as will be seen later. In
the following, we introduce some concepts on circular hulls that will be needed later.
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Figure 4 Illustrating two minor arcs of p and q.
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Figure 5 Illustrating the two tangents
from p to α(Q): cw(a, p) and ccw(b, p).

We assume that r = 1 and thus a disk of radius r is a unit disk (whose boundary is a
unit circle). We use α(Q) to refer to αr(Q). We assume that α(Q) exists.

For any arc of a circle, the circle is called the supporting circle of the arc, and the disk
enclosed in the circle is called the supporting disk of the arc. If a disk D contains all points of
a set P , we say D covers P . We say that a set P of points in the plane is unit disk coverable
if there is a unit disk containing all points of P , which is true if and only if α(P ) exists.

Consider two points p and q that are unit disk coverable. There must be a unit circle
with p and q on it, and we call the arc of the circle subtending an angle of at most 180◦ a
minor arc [19]. Note that there are two minor arcs connecting p and q, we use cw(p, q) to
refer to the one clockwise around the center of the supporting circle of the arc from p to q,
and use ccw(p, q) to refer to the other one (e.g., see Fig. 4). Note that cw(p, q) = ccw(q, p)
and ccw(p, q) = cw(q, p). For any minor arc w, we use D(w) to denote the supporting disk
of w, i.e., the disk whose boundary contains w. Note that all arcs of α(Q) are minor arcs.
We make a general position assumption that no point of Q is on a minor arc of two other
points of Q. The following observation has already been discovered previously [14,19].

I Observation 1 ([14,19]).
1. A point p of Q is a vertex of α(Q) iff there is a unit disk covering Q and with p on the

boundary.
2. A minor arc connecting two points of Q is an arc of α(Q) iff its supporting disk covers Q.
3. α(Q) is the common intersection of the supporting disks of all arcs of α(Q).
4. A unit disk covers Q iff it contains α(Q).
5. For any subset Q′ of Q, α(Q′) ⊆ α(Q).

For any vertex v of α(Q), we refer to the clockwise neighboring vertex of v on α(Q) the
clockwise neighbor of v, and the counterclockwise neighbor is defined analogously. We use
cw(v) and ccw(v) to denote v’s clockwise and counterclockwise neighbors, respectively.

Tangents. Consider a vertex v in the circular hull α(Q). Consider the arc cw(ccw(v), v) of
α(Q). Let D be the disk D(cw(ccw(v), v)). By Observation 1(2) and (4), D contains α(Q).
Observe that if we rotate D around v clockwise until ∂D contains the arc cw(v, cw(v)), D
always contains α(Q), and in fact, this continuum of disks D are the only unit disks that
contain α(Q) and have v on the boundaries. For each of such disk D, we say that D (and
any part of ∂D containing v) is tangent to α(Q) at v. We have the following observation.

I Observation 2. A unit disk D that contains a vertex v of α(Q) on its boundary is tangent
to α(Q) at v if and only if D contains both cw(v) and ccw(v).

Let p be a point outside α(Q). If there is a vertex a on α(Q) such that D(cw(a, p)) is
tangent to α(Q) at a, then the arc cw(a, p) is an upper tangent from p to α(Q); e.g., see
Fig 5. If there is a vertex b on α(Q) such that D(ccw(b, p)) is tangent to α(Q) at b, then

SoCG 2020
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Figure 6 Illustrating the upper common tangent cw(a1, a2) and the lower common tangent
ccw(b1, b2) of α(Q1) and α(Q2).

the arc ccw(b, p) is a lower tangent from p to α(Q). By replacing the arcs of α(Q) clockwise
from a to b with the two tangents from p, we obtain α(Q ∪ {p}). This also shows that p has
tangents to α(Q) if and only if Q ∪ {p} is unit disk coverable and p is outside α(Q). Note
that a = b is possible, in which case α(Q ∪ {p}) = α({a, p}).

Common tangents of two circular hulls. Let Q1 and Q2 be two sets of points in the plane
such that all points of Q1 (resp., Q2) are to the left (resp., right) of a vertical line `. Let
Q = Q1 ∪Q2. A unit disk D that is tangent to α(Q1), say at a vertex a, and is also tangent
to α(Q2), say at a vertex b, is said to be commonly tangent to α(Q1) and α(Q2). The
minor arc of D connecting a and b is called a common tangent of the two circular hulls.
It is an upper (resp, lower) tangent if it is clockwise (resp., counterclockwise) from a to b
along the minor arc (e.g., see Fig. 6). The common tangents of α(Q1) and α(Q2) may not
exist. Indeed, if α(Q) does not exist, then the common tangents do not exist. Otherwise
the common tangents do not exist either if all points of Q2 are contained in α(Q1), which
happens only if Q2 is covered by D(w) for the rightmost arc w of α(Q1) and we call it the
Q1-dominating case, or if all points of Q1 are contained in α(Q2), which happens only if Q1
is covered by D(w′) for the leftmost arc w′ of α(Q2) and we call it the Q2-dominating case.
If none of the above cases happens, then there are exactly two common tangents between
the two hulls. Each tangent intersects the vertical line `, which separates Q1 and Q2, and
the upper tangent intersects ` higher than the lower tangent does.

3 The decision problem

This section is concerned with the decision problem: Given a value r, decide whether r∗ ≤ r.
Previously, Chan [6] solved the problem in O(n logn) time (Chan actually considered a
slightly different problem: decide whether r∗ < r, but the idea is similar). We present an
O(n) time algorithm, after O(n logn) time preprocessing to sort all points of S+ and S− to
obtain the sorted lists p1, . . . , pn and q1, . . . , qn.

Given r, we use the following algorithmic framework in Algorithm 1 from [6] (see
Theorem 3.3), which can decide whether r∗ ≤ r, and if yes, report all indices i with r∗i ≤ r.

The algorithm is simple, but the technical crux is in how to decide whether A[i, j+ 1] ≤ r
and whether B[i, j] ≤ r. Chan [6] built a data structure in O(n logn) time so that each
of these two steps can be done in O(logn) time, which leads to an overall O(n logn) time
for his decision algorithm. Our innovation is a new data structure that can perform each
of the two steps in O(1) amortized time, resulting in an O(n) time algorithm. Our idea is
motivated by the following observation.
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Algorithm 1 The decision algorithm of Chan [6].

1 j ← −1;
2 for i← 0 to n do
3 while A[i, j + 1] ≤ r do j + + ;
4 if B[i, j] ≤ r then report i ;
5 end

I Observation 3. All such elements A[i, j + 1] that are checked in the algorithms (i.e.,
Line 3) are in a path of the matrix A from A[0, 0] to an element in the bottom row and the
path only goes rightwards or downwards. The same holds for the elements of B that are
checked in the algorithms (i.e., Line 4).

We call such a path in A as specified in the observation a monotone path, which has at most
2(n+ 1) elements of A. We show that we can determine in O(n) time whether A[i, j] ≤ r for
all elements A[i, j] in a monotone path of A. The same algorithm works for B as well.

Let π be a monotone path of A, starting from A[0, 0]. Consider any element A[i, j] on
π. Recall that A[i, j] = τ(Lij). The next value of π after A[i, j] is either A[i, j + 1] or
A[i+ 1, j], i.e., either τ(Li,j+1) or τ(Li+1,j). Note that Li,j+1 can be obtained from Lij by
inserting qj+1 and Li+1,j can be obtained from Lij by deleting pi+1. Because the points
p1, p2, . . . , pn, q1, q2 . . . , qn are ordered around o counterclockwise, our problem becomes the
following. Maintain a sublist Q of the above sorted list of S, with Q = S+ initially, to
determine whether τ(Q) ≤ r (or equivalently whether αr(Q) exists) under deletions and
insertions, such that a deletion operation deletes the first point of Q and an insertion
operation inserts the point of S following the last point of Q. Further, deletions only happen
to points of S+ (i.e., once pn is deleted from Q, no deletions will happen). We refer to the
problem as the dynamic circular hull problem. In the full paper we solve the problem in O(n)
time, i.e., each update takes O(1) amortized time. This leads to the following result.

I Theorem 4. Assume that points of S are sorted cyclically around o. Given any r, whether
r∗ ≤ r can be decided in O(n) time.

I Remark. For the nearby case, Chan proposed (in Theorem 3.4 [16]) a randomized algorithm
of O(n logn) time with high probability (i.e., 1− 2−Ω(n/ log12 n)) by using his O(n logn) time
decision algorithm. Applying our decision algorithm and following Chan’s algorithm (specifi-
cally, setting m to bn/ log7 nc instead of bn/ log6 nc in the algorithm of Theorem 3.4 in [16]),
we can obtain the following result: After O(n logn) deterministic time preprocessing, we can
compute r∗ for the nearby case in O(n) time with high probability (i.e., 1− 2−Ω(n/ log14 n)).

4 The optimization problem

With Theorem 4, we solve the optimization problem by parametric search [10, 23]. As
Chan’s algorithm [6], because our decision algorithm is inherently sequential, we need to
design a parallel decision algorithm. Chan [6] gave a parallel decision algorithm that runs
in O(logn log2 logn) parallel steps using O(n logn) processors. Consequently, by using his
O(n logn) time decision algorithm and applying Cole’s parametric search [10], Chan [6] solved
the optimization problem in O(n log2 n log2 logn) time. By following Chan’s algorithmic
scheme, we develop a new parallel decision algorithm that runs in O(logn log logn) parallel
steps using O(n) processors. Then, with the serial decision algorithm in Theorem 4 and
applying Cole’s parametric search [10] on our new parallel decision algorithm, we solve the
optimization problem in O(n logn log logn) time.

SoCG 2020
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Our algorithm relies on Lemma 5, whose proof is quite independent of the remainder
of this section and is given in the full paper. Note that Hershberger and Suri [19] gave a
linear-time algorithm to achieve the same result as Lemma 5, which suffices for their purpose.

I Lemma 5. Given the circular hull (with respect to a radius r) of a set L of points and the
circular hull of another set R of points such that the points of L and R are separated by a
line, one can do the following in O(log(|L|+ |R|)) time (assuming that the vertices of each
circular hull are stored in a data structure that supports binary search): determine whether
the circular hull of L∪R (with respect to r) exists; if yes, either determine which dominating
case happens (i.e., all points of a set are contained in the circular hull of the other set) or
compute the two common tangents between the circular hulls of L and R.

For any 0 ≤ i ≤ j ≤ n, let S+[i, j] = {pi, pi+1, . . . , pj} and S−[i, j] = {qi, qi+1, . . . , qj}.
By using Lemma 5, we have the following lemma.

I Lemma 6. We can preprocess S and compute an interval (r1, r2] containing r∗ in O(n logn)
time so that given any r ∈ (r1, r2) and any pair (i, j) with 1 ≤ i ≤ j ≤ n, we can determine
whether αr(S+[i, j]) (resp., αr(S−[i, j])) exists, and if yes, return the root of a balanced
binary search tree representing the circular hull, in O(log k log log k) parallel steps using
O(log k) processors, or in O(log2 k) time using one processor, where k = j − i+ 1.

Proof. As in [6, 16], we use the following geometric transformation. For any point p = (a, b),
let h(p) denote the halfspace {(x, y, z) : z ≥ a2 + b2 − 2ax − aby}. Then, for any set P of
points in the plane, (τ(P ))2 is the minimum of x2 + y2 + z over all points (x, y, z) in the
polyhedron H(P ) =

⋂
p∈P h(p).

Preprocessing. We build a complete binary search tree T+ on the set S+ = {p1, p2, . . . , pn}
such that the leaves of T+ from left to right storing the points of S+ in their index order.
Each internal node v of T+ stores a hierarchical representation [11] of the polyhedron
H(P ), where P is the set of points stored in the leaves of the subtree rooted at v (P is
called a canonical subset). Computing the polyhedrons of all internal nodes of T+ can be
done in O(n logn) time in a bottom-up manner using linear time polyhedra intersection
algorithms [7, 8]. Similarly, we build a tree T− on the set S− = {q1, q2, . . . , qn}.

Consider a vertex v = (x, y, z) of H(P ) for a canonical subset P of T+. Define r(v) =√
x2 + y2 + z. Let C be the set of the values r(v) of all vertices v of H(P ) for all canonical

subsets P of T+. Note that |C| = O(n logn). We find the smallest value r(v) ∈ C such that
r∗ ≤ r(v), and let r2 denote such r(v). The value r2 can be found in O(n logn) using our
linear time decision algorithm and doing binary search on C using the linear time selection
algorithm [5]. Next, we find the largest value in C that is smaller than r2, and let r1 denote
that value. By definition, r∗ ∈ (r1, r2] and (r1, r2) does not contain any element of C.

Consider a canonical subset P of T+ and any r ∈ (r1, r2). We construct Ir(P ) for
each canonical subset P of T+ by intersecting the facets of H(P ) with the paraboloid
W (r) = {(x, y, z) : x2 + y2 + z = r2} and projecting them vertically to the xy-plane. By the
definitions of r1 and r2, the paraboloid W (r) intersects the same set of edges of H(P ) for all
r ∈ (r1, r2); this implies that Ir(P ) is combinatorially the same for all r ∈ (r1, r2). Hence,
we can consider αr(P ), which is the dual of Ir(P ), as a parameterized circular hull of P . We
store the (parameterized) vertices of αr(P ) in a balanced binary search tree. Since H(P ) is
convex, we can obtain Ir(P ) and thus the balanced binary search tree for αr(P ) in O(|P |)
time; we associate the tree at the node of T+ for P . Because the total size of H(P ) for all
canonical subsets P in T+ is O(n logn), we can obtain the balanced binary search trees for
αr(P ) of all canonical subsets P in T+ in O(n logn) time.
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We do the same for T− as above, which will obtain two values r′1 and r′2 correspondingly
as above r1 and r2. We update r1 = max{r1, r

′
1} and r2 = min{r2, r

′
2}; so r∗ ∈ (r1, r2] still

holds. This finishes our processing on S, which takes O(n logn) time and is independent of r.

Queries. Given any r ∈ (r1, r2) and any pair (i, j) with i < j, we determine whether
αr(S+[i, j]) exists, and if yes, return the root of a balanced binary search tree representing
it, as follows (the case for S−[i, j] is similar). Let k = j − i+ 1 and let P = S+[i, j].

By the standard method, we first find O(log k) canonical subsets of T+ whose union is
exactly S+[i, j]. Our following computation procedure can be described as a complete binary
tree T where the leaves corresponding to the above O(log k) canonical subsets. So T has
O(log k) leaves, and its height is O(log log k). For each leave of T , its circular hull is already
available due to the preprocessing. For each internal node v that is the parent of two leaves,
we compute the circular hull of the union of the two subsets P1 and P2 of the two leaves. As
the points of S+ are ordered radially by o, the two subsets are separated by a line through o.
Hence, we can find the common tangents (if exist) using Lemma 5 in O(log k) time because
the size of each subset is no more than k. Recall that the circular hull of each canonical
subset is represented by a balanced binary search tree. After having the common tangents,
we split and merge the two balanced binary search trees to obtain a balanced binary search
tree for αr(P1 ∪ P2). In addition, we keep unaltered the two original trees for αr(P1) and
αr(P2) respectively, and this can be done by using persistent data structures (e.g., using
the copy-path technique [12,25]) in O(log k) time. In this way, the original trees for αr(P1)
and αr(P2) can be used in parallel for other computations. If the algorithm detects that
αr(P1 ∪ P2) does not exist, then we halt the algorithm and report that αr(S+[i, j]) does not
exist. Also, if the algorithm finds that a dominating case happens, e.g., the P1-dominating
case, then αr(P1 ∪ P2) = αr(P1) and thus we simply return the root of the tree for αr(P1).

We do this for all internal nodes in the second level of T (i.e., the level above the leaves) in
parallel by assigning a processor for each node. As T has O(log k) leaves, we can compute the
circular hulls for the second level in O(log k) parallel steps using O(log k) processors. Then,
we proceed on the third level similarly. At the root of T , we will have the root of a balanced
binary search tree for αr(P ). Using O(log k) processors, this takes O(log k log log k) parallel
steps because each level needs O(log k) parallel steps and the height of T is O(log log k).

Alternatively, if we only use one processor, then since T has O(log k) nodes and we spend
O(log k) time on each node, the total time is O(log2 k). J

Armed with Lemma 6, to determine whether r∗ ≤ r, we use the algorithm framework in
Theorem 4.2 of Chan [6], but we provide a more efficient implementation, as follows.

Recall the definitions of the matrices A and B in Section 2, and in particular, each row of
A (resp., B) is monotonically increasing while each column of A (resp., B) is monotonically
decreasing. For convenience, let A[i,−1] = 0 and A[i, n+ 1] = B[i,−1] =∞ for all 0 ≤ i ≤ n.
Let m = bn/ log6 nc. Let jt = t · bn/mc for t = 1, 2, . . . ,m − 1. Set j0 = −1 and jm = n.
For each t ∈ [0,m], find the largest it ∈ [0, n] with A[it, jt] ≥ B[it, jt] (set it = −1 if no such
index exists; note that i0 = −1). Observe that i0 ≤ i1 ≤ · · · ≤ im. Each it can be found in
O(log7 n) time by binary search using Lemma 7. Hence, computing all it’s takes O(n logn)
time. This is part of our preprocessing, independent of r.

I Lemma 7 ([6,16]). After O(n logn) time preprocessing, A[i, j] and B[i, j] can be computed
in O(log6 n) time for any given pair (i, j).
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Given r > 0, our goal is to decide whether r∗ ≤ r. Let (r1, r2] be the interval obtained
by Lemma 6. Since r∗ ∈ (r1, r2], if r ≤ r1, then r∗ > r; if r ≥ r2, then r∗ ≤ r. It remains to
resolve the case r ∈ (r1, r2), as follows. In this case the result of Lemma 6 applies.

We will decide whether r∗i ≤ r for all i = 0, 1, . . . , n (recall that r∗ ≤ r iff some r∗i ≤ r).
Let t ∈ [0,m− 1] such that it < i ≤ it+1. If A[i, jt] > r, then return r∗i > r. Otherwise, find
(by binary search) the largest j ∈ [jt, jt+1] with A[i, j] ≤ r, and return r∗i ≤ r if and only if
B[i, j] ≤ r. See the pseudocode below. See Theorem 4.2 of [6] for the algorithm correctness.

Algorithm 2 The decision algorithm of Theorem 4.2 by Chan [6].

1 Let t ∈ [0,m− 1] such that it < i ≤ it+1;
2 if A[i, jt] > r then return r∗i > r ;
3 find the largest j ∈ [jt, jt+1] with A[i, j] ≤ r;
4 return r∗i ≤ r iff B[i, j] ≤ r;

Chan [6] implemented the algorithm in O(logn log2 logn) parallel steps using O(n logn)
processors. With Lemma 6, we provide a faster implementation of O(logn log logn) parallel
steps using O(n) processors. Line 1 can be done in O(n) time as part of the preprocessing,
independent of r. We first discuss how to implement Line 3 for all indices i, and we will
show later that Lines 2 and 4 can be implemented in a similar (and faster) way.

For each t = 0, 1, . . . ,m− 1, if it+1 − it ≤ log6 n, then we form a group of at most log6 n

indices: it + 1, it + 2, . . . , it+1. Otherwise, starting from it + 1, we form a group for every
consecutive log6 n indices until it+1, so every group has exactly log6 n indices except that the
last group may have less than log6 n indices. In this way, we have at most 2m groups, each
of which consists of at most log6 n consecutive indices in (it, it+1] for some t ∈ [0,m− 1].

Consider a group G = {a, a+ 1, . . . , a+ b} of indices in (it, it+1]. Note that b < log6 n.
For each i ∈ [a, a+ b] such that A[i, jt] ≤ r, we need to perform binary search on [jt, jt+1] to
find the largest index j with A[i, j] ≤ r. To this end, we do the following. We compute the
two circular hulls α(S+[a+ b, n]) and α(S−[1, jt]), in O(logn log logn) parallel steps using
O(logn) processors by Lemma 6. Note that by “compute the two circular hulls”, we mean that
the two circular hulls are computed implicitly in the sense that each of them is represented
by a balanced binary search tree and we have the access of its root. If α(S+[a+ b, n]) (resp.,
α(S−[1, jt])) does not exist, we set it to null. We do this for all 2m groups in parallel, which
takes O(logn log logn) parallel steps using O(m logn) ∈ O(n) processors.

Consider the group G defined above again. For each i ∈ [a, a+ b], we need to do binary
search on [jt, jt+1] for O(log(jt+1−jt)) = O(log logn) iterations. In each iteration, the goal is
to determine whether A[i, j] ≤ r for an index j ∈ [jt, jt+1]. To this end, it suffices to determine
whether α(Uij) exists. Notice that Uij = S+[i+1, a+b−1]∪S+[a+b, n]∪S−[1, jt]∪S−[jt+1, j].
α(S+[a+ b, n]) and α(S−[1, jt]) are already computed above. If one of them does not exist,
then α(Uij) does not exist and thus A[i, j] > r. Otherwise, we compute the circular hull
α(S+[i+1, a+b−1]), which can be done in O(log2 logn) time using one processor by Lemma 6
because a+ b− 1− i ≤ b− 1 ≤ log6 n. We also compute α(S−[jt + 1, j]) in O(log2 logn) time
using one processor. Then, we compute the common tangents of α(S+[i+ 1, a+ b− 1]) and
α(S+[a+ b, n]) by Lemma 5 (note that S+[i+ 1, a+ b−1] and S+[a+ b, n] are separated by a
line through o), in O(logn) time using one processor. Then, we merge the two hulls with the
two common tangents to obtain a balanced binary search tree for α(S+[i+ 1, n]). Because
we want to keep the tree for α(S+[a + b, n]) unaltered so that it can participate in other
computations in parallel, we use a persistent tree to represent it. Similarly, we obtain a tree
for α(S−[1, j]), in O(logn) time using one processor. If one of α(S+[i+ 1, n]) and α(S−[1, j])
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does not exist, then we return A[i, j] > r. Note that S+[a+ b, n] and S−[1, j] are separated
by ` and Uij = S+[a+ b, n]∪S−[1, j]. By Lemma 5, we can determine whether α(Uij) exists
in O(logn) time using one processor and consequently determine whether A[i, j] ≤ r. Hence,
the above algorithm determines whether A[i, j] ≤ r in O(logn) time using one processor.

If we do the above for all i’s in parallel, then we can determine whether A[i, j] ≤ r in
O(logn) time using n+ 1 processors, for each iteration of the binary search. As there are
O(log logn) iterations, the binary search procedure (i.e., Line 3) for all i = 0, 1, . . . , n runs
in O(logn log logn) parallel steps using n+ 1 processors.

For implementing Line 2, we can use the same approach as above by grouping the indices
i into 2m groups. The difference is that now each i has a specific index j, i.e., j = jt, for
deciding whether A[i, j] ≤ r, and thus we do not have to do binary search. Hence, using
n+ 1 processors, we can implement Line 2 for all i = 0, 1, . . . , n in O(logn) parallel steps.
We can do the same for Line 4. As a summary, we have the following theorem.

I Theorem 8. After O(n logn) time preprocessing on S, given any r, we can decide whether
r∗ ≤ r in O(logn log logn) parallel steps using O(n) processors.

With the serial decision algorithm in Theorem 4 and applying Cole’s parametric search [10]
on the parallel decision algorithm in Theorem 8, the following result follows.

I Theorem 9. The value r∗ can be computed in O(n logn log logn) time.

Proof. Suppose there is a serial decision algorithm of time TS and another parallel decision
algorithm that runs in Tp parallel steps using P processors. Then, Megiddo’s parametric
search [23] can compute r∗ in O(PTp + TsTp logP ) time by simulating the parallel decision
algorithm on r∗ and using the serial decision algorithm to resolve comparisons with r∗. If the
parallel decision algorithm has a “bounded fan-in or bounded fan-out” property, then Cole’s
technique [10] can reduce the time complexity to O(PTp + Ts(Tp + logP )). Like Chan’s
algorithm [6], our algorithm has this property because it mainly consists of O(log logn)
rounds of independent binary search (i.e., the algorithm of Lemma 5). In our case, Ts = O(n),
Tp = O(logn log logn), and P = O(n). Thus, applying Cole’s technique, r∗ can be computed
in O(n logn log logn) time. J

I Corollary 10. The planar two-center problem can be solved in O(n log2 n) time.

Proof. This follows by combining Theorem 9, which is for the nearby case, with the
O(n log2 n) time algorithm for the distant case [16]. J

5 The convex position case

In this section, we consider the case where S is in convex position (i.e., every point of S is a
vertex of the convex hull of S). We show that our above O(n logn log logn) time algorithm
can be applied to solving this case in the same time asymptotically.

We first compute the convex hull CH(S) of S and order all vertices clockwise as
p1, p2, . . . , pn. A key observation [22] is that there is an optimal solution with two con-
gruent disks D∗1 and D∗2 of radius r∗ such that D∗1 covers the points of S in a chain of ∂CH(S)
and D∗2 covers the rest of the points. In other words, the cyclic list of p1, p2, . . . , pn can be
cut into two lists such that one list is covered by D∗1 and the other list is covered by D∗2 .

Let o be any point in the interior of CH(S). By the above observation, there exists a pair
of rays ρ1 and ρ2 emanating from o such that D∗1 covers all points of S on one side of the two
rays and D∗2 covers the points of S in the other side. To apply our previous algorithm, we
need to find a line ` that separates the two rays. For this, we propose the following approach.

SoCG 2020
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For any i, j ∈ [1, n], let Scw[i, j] denote the subset of vertices on CH(S) clockwise
from pi to pj , and Scw[i, j] = {pi} if i = j. Due to the above observation, r∗ =
mini,j∈[1,n] max{τ(Scw[i, j]), τ(Scw[j + 1, i− 1])}, with indices modulo n. For each i ∈ [1, n],
define r(i) = minh∈[i,i+n−1] max{τ(Scw[i, h]), τ(Scw[h+ 1, i− 1])}. Notice that as h increases
in [1, n−1], τ(Scw[1, h]) is monotonically increasing while τ(Scw[h+1, n]) is monotonically de-
creasing. Define k to be the largest index in [1, n−1] such that τ(Scw[1, k]) ≤ τ(Scw[k+1, n]).

I Lemma 11. r∗ is equal to the minimum of the following values: r(1), r(k+1), r(k+2), and
max{τ(Scw[i, j]), τ(Scw[j + 1, i− 1]) for all indices i and j with i ∈ [1, k] and j ∈ [k + 2, n].

Proof. Observe that r∗ = mini,j∈[1,n] max{τ(Scw[i, j]), τ(Scw[j+1, i−1])} = min1≤h≤n r(h).
Hence, r∗ is no larger than any of the values specified in the lemma statement.

Let i and j be two indices such that r∗ = max{τ(Scw[i, j]), τ(Scw[j + 1, i − 1])} with
1 ≤ i ≤ j ≤ n. We claim that r∗ = r(i). Indeed, since r∗ = min1≤h≤n r(h), we have r∗ ≤ r(i).
On the other hand, as r(i) ≤ max{τ(Scw[i, j]), τ(Scw[j+ 1, i− 1])} = r∗, we obtain r(i) = r∗.
By a similar argument, r∗ = r(j + 1) also holds.

Without loss of generality, we assume that r∗ = τ(Scw[i, j]) ≥ τ(Scw[j + 1, i− 1]).
If i ∈ [1, k] and j ∈ [k+2, n], then the lemma follows. Otherwise, one of the following four

cases must hold: i = k + 1, j = k + 1, [i, j] ⊆ [1, k], and [i, j] ⊆ [k + 2, n]. If i = k + 1, then
r∗ = r(k+ 1). If j = k+ 1, then r∗ = r(k+ 2). Below we show that r∗ = r(1) if [i, j] ⊆ [1, k]
and we also show that the case [i, j] ⊆ [k + 2, n] cannot happen, which will prove the lemma.

If [i, j] ⊆ [1, k], then τ(Scw[j+1, i−1]) ≥ τ(Scw[k+1, n]), for Scw[k+1, n] ⊆ Scw[j+1, i−1].
By the definition of k, we have τ(Scw[k + 1, n]) ≥ τ(Scw[1, k]). Because [i, j] ⊆ [1, k],
τ(Scw[1, k]) ≥ τ(Scw[i, j]). Combining the above three inequalities leads to the following:
τ(Scw[j+1, i−1]) ≥ τ(Scw[k+1, n]) ≥ τ(Scw[1, k]) ≥ τ(Scw[i, j]). Because r∗ = τ(Scw[i, j]) ≥
τ(Scw[j + 1, i− 1]), we obtain r∗ = τ(Scw[j + 1, i− 1]) = τ(Scw[k + 1, n]) = τ(Scw[1, k]) =
τ(Scw[i, j]). Notice that r(1) ≤ max{τ(Scw[1, k]), τ(Scw[k+1, n])}. Thus, we derive r(1) ≤ r∗.
Since r∗ ≤ r(1), we finally have r∗ = r(1).

If [i, j] ⊆ [k+2, n], then τ(Scw[j+1, i−1]) ≥ τ(Scw[1, k+1]). By the definition of k, we have
τ(Scw[1, k+1]) > τ(Scw[k+2, n]). Also, since [i, j] ⊆ [k+2, n], τ(Scw[k+2, n]) ≥ τ(Scw[i, j])
holds. Therefore, we obtain τ(Scw[j + 1, i − 1]) ≥ τ(Scw[1, k + 1]) > τ(Scw[k + 2, n]) ≥
τ(Scw[i, j]), which incurs contradiction since r∗ = τ(Scw[i, j]) ≥ τ(Scw[j + 1, i− 1]). Thus,
the case [i, j] ⊆ [k + 2, n] cannot happen. J

Based on the above lemma, our algorithm works as follows.
We first compute r(1) and the index k. This can be easily done in O(n logn) time. Indeed,

as h increases in [1, n− 1], τ(Scw[1, h]) is monotonically increasing while τ(Scw[h+ 1, n]) is
monotonically decreasing. Thus, r∗1 and k can be found by binary search on [1, n− 1]. As
both τ(Scw[1, h]) and τ(Scw[h+ 1, n]) can be computed in O(n) time, the binary search takes
O(n logn) time. Similarly, we can compute r(k + 1) and r(k + 2) in O(n logn) time.

If r∗ 6∈ {r(1), r(k + 1), r(k + 2)}, then r∗ = max{τ(Scw[i, j]), τ(Scw[j + 1, i− 1]) for two
indices i and j with i ∈ [1, k] and j ∈ [k+ 2, n]. We can compute it as follows. Let ` be a line
through vk+1 and intersecting the interior of pnp1. Let o be any point on ` in the interior of
CH(S). Lemma 11 implies ` and o satisfy the property discussed above, i.e., ` separates the
two rays ρ1 and ρ2. Consequently, we can apply our algorithm for Theorem 9 to compute r∗
in O(n logn log logn) time.

I Theorem 12. The planar two-center problem for a set of n points in convex position can
be solved in O(n logn log logn) time.

I Remark. The randomized result remarked after Theorem 4 also applies here: r∗ can be
computed in O(n) time with high probability after O(n logn) deterministic time preprocessing.
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