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Abstract
We present a piece of software for computing animations of linkages with rotational symmetry in the
plane. We construct these linkages from an algorithm that utilises a special type of edge colouring
to embed graphs with rotational symmetry.
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1 Introduction

A framework is a pair (G, p) where G is a (finite simple) graph and p : V (G) → R2 – the
placement of G – is a map where p(u) 6= p(v) if uv is an edge. A framework is a linkage if
there exists a continuous motion of its placed vertices that preserves the distances between
each pair of vertices that share an edge, and the motion is not a rigid body motion of the
framework; if such a motion does not exist then the framework is rigid. It was shown in [6]
that a framework (G, p) with a generic placement of vertices (i.e. the set of coordinates of p is
an algebraically independent set over the rational numbers) is rigid if and only if G contains
a Laman graph as a spanning subgraph. This does not inform us whether we can construct
a linkage from a graph; for example, any generic placement of the complete bipartite graph
K4,4 is rigid, however we can construct linkages from K4,4 [2].
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To determine whether a graph can be the graph of a linkage we introduce a special class
of edge colourings. A red-blue colouring of the edges of a graph is a NAC-colouring if each
colour is used at least once and each cycle is either monochromatic or contains at least two red
and two blue edges (NAC comes from No Almost Cycle, which are cycles in which all edges
but one have the same color). It was proven by [5, Theorem 3.1] that a connected graph with
at least one edge is the graph of a linkage in the plane if and only if it has a NAC-colouring.
The proof is done in two very distinct parts; the first part proves via valuation theory that
any linkage induces a NAC-colouring, while the second gives an algorithmic method to
construct a linkage from any given NAC-colouring. While the construction given for each
NAC-colouring does give a linkage, the linkage will often not share any of the symmetries of
the graph it was formed from (see for example Figure 1). A natural question now arises; can
we adapt the result so as to preserve any chosen symmetry of our graph?
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Figure 1 A graph (left) with a linkage constructed from the ilustrated NAC-coloring (middle).
The motion of the linkage (right) is parametrised by the angle of the currently vertical lines to the
fixed bottom horizontal line.

2 Linkages with rotational symmetry

We define a graph to have n-fold rotational symmetry if the group Cn := 〈ω : ωn = 1〉 acts
freely on the graph, i.e., each vertex has an orbit of exactly n elements. We define a
placement p of G to be n-fold rotational symmetric if the placement of a rotated vertex is
the rotation of the placement of the vertex, i. e. p(ωkv) = τ(ωk)p(v) for each vertex v and
rotation ωk ∈ Cn, where τ(ωk) is the rotation matrix for angle 2πk/n.

If this holds then we define (G, p) to be a n-fold rotational symmetric framework with
n-fold rotational symmetric placement p. We further define (G, p) to be a n-fold rotational
symmetric linkage if there is a continuous edge-length preserving motion of (G, p) that
maintains the rotational symmetry but is not a rotation of the framework. Remembering this,
we can define the correct type of NAC-colouring to take into account the graph’s rotational
symmetry.

I Definition 1. Let G be an n-fold rotational symmetric graph with NAC-colouring δ. We
define δ to be an n-fold rotational symmetric NAC-colouring if the colouring respects the
symmetry of the graph, and no two distinct blue, resp. red, partially invariant connected
components are connected by an edge; a set of vertices U is partially invariant if there exists
γ ∈ Cn \ {1} such that γU = U .

The ideas of n-fold rotational symmetric linkages and n-fold rotational symmetric NAC-
colourings tie together nicely similarly to how linkages and NAC-colourings do.
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I Theorem 2. An n-fold rotational symmetric connected graph with at least one edge is the
graph of an n-fold rotational symmetric linkage in the plane if and only if it has an n-fold
rotational symmetric NAC-colouring δ.

The full proof of Theorem 2 comes in two parts and can be found in [1]. We detail below
the construction part that builds an n-fold rotational symmetric linkage from an n-fold
rotational symmetric graph G with n-fold rotational symmetric NAC-colouring δ:

(1) We first need to label our red and blue connected components in a way that respects
the symmetry; we will not, however, need to bother doing this for the partially in-
variant components as we will see in Step 3. We label the not partially invariant
red components as R0

1, . . . , R
n−1
1 , . . . , R0

m, . . . , R
n−1
m , where Ri

j = ωiR0
j for 0 ≤ i < n

and 1 ≤ j ≤ m; similarly, we label the not partially invariant blue components as
B0

1 , . . . , B
n−1
1 , . . . , B0

k, . . . , B
n−1
k .

(2) Next, we need to choose base vectors for each of the red and blue components that will
determine the shape of the framework. The choice is actually (almost) arbitrary, which
fortunately will allow us to pick “nice” vectors. Let a1, . . . , am and b1, . . . , bk be our
choice of points in the plane with the assumption that aj 6= τ(ωi)aj′ and bj 6= τ(ωi)bj′

for j 6= j′ and 1 ≤ i < n. This assumption is necessary to avoid overlapping vertices.
(3) Using our choices of ai’s and bj ’s from Step 2, we now create a “coordinate system” in

which vertices are placed depending on the red and blue component they belong to. To
do this, we define the functions a, b : V (G)→ R2 by

a(v) =
{
τ(ωi)aj if v ∈ Ri

j

(0, 0) otherwise,
and b(v) =

{
τ(ωi)bj if v ∈ Bi

j

(0, 0) otherwise.

We note that a vertex is mapped to the origin by a (respectively, b) if and only if it lies
in a red (respectively blue) partially invariant component.

(4) Finally, by using our “coordinate system” determined by a, b we define for each t ∈ [0, 2π]
an n-fold rotational symmetric placement pt of G, where for each v ∈ V (G) we have

pt(v) :=
(

cos t − sin t
sin t cos t

)
a(v) + b(v) .

This yields indeed an n-fold rotational symmetric linkage with the corresponding motion
given by t 7→ (G, pt). Further, we can change the linkage by choosing different ai’s and bj ’s.
This often allows us to construct “better” linkages by choosing new base vectors; whether
“better” entails maintaining some other unspecified symmetry (for example, reflectional), or
just a linkage that is more aesthetically pleasing.

I Example 3. By using our construction we can obtain the n-fold rotational symmetric
linkages given in Figures 2 and 3.

Figure 2 A 3-fold rotational symmetric linkage constructed from a given 3-fold rotational
symmetric NAC-colouring.
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Figure 3 A 4-fold rotational symmetric linkage constructed from a given 4-fold rotational
symmetric NAC-colouring.

3 Software for Animations

Animations can be created by an implementation of the above described algorithm using
canonical choices for the base vectors. An updated version [4] of the package [3] can be
used to study Cn-symmetric frameworks. We encourage the reader to experiment1 with
the choice of ai’s and bj ’s from Theorem 2. The implementation can also be used to find
the symmetric NAC-colouring. However, in both graphs of Figure 4 we chose a simple
NAC-colouring where two triangle subgraphs intersecting in a single vertex are coloured
differently. Basic animations can be created with the software packages. The provided
animation was constructed using graphical post-processing for the coordinate output.

Figure 4 Two graphs with their symmetric NAC-colourings used for the animations. To illustrate
the difficulty of finding the symmetric motion, we only show some arbitrary graph layouts. In fact,
the animations will never reach either of these layouts.
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