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Abstract
We present a new game, Dots & Polygons, played on a planar point set. We prove that its NP-hard
and discuss strategies for the case when the point set is in convex position.
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1 Introduction

Dots & Boxes [4] is a popular game, in which two players take turns in connecting nodes
lying on the integer lattice, scoring when they surround unit squares. We introduce a more
geometric variant of this game: Dots & Polygons.

The game is played on a planar point set P of size n. Two players, B (blue) and R (red),
take turns, connecting two points p, q ∈ P by a straight-line edge in a turn. The edge may
not intersect other points or edges, and may not lie in a previously scored area. When a
player closes a polygon, this player scores its area and makes another move. At the end, the
player with the larger total area wins. We distinguish two variants. In Dots & Polygons &
Holes, when a player closes a cycle, the player scores the enclosed area (excluding possibly
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Figure 1 A screenshot of the Dots & Polygons game. In the Dots & Polygons & Holes version,
if R draws the dotted edge, R will score the interior minus the blue triangle. In Dots & Simple
Polygons, R will not score in this way.

previously enclosed parts). In Dots & Simple Polygons, a player only scores, when they
close a simple polygon with no points inside. Figure 1 illustrates the difference between the
variants.

A similar game is Monochromatic Complete Triangulation Game [1], but in that game
only triangles are scored, and the score is the number of triangles. There is another variant
of Dots & Boxes also called Dots & Polygons [12] that is played on the integer lattice.

Dots & Polygons is implemented on top of the Ruler of the Plane framework [2]. Both
variants of the game can be played online (see supplementary materials). The ruler of the
plane framework can be used to demonstrate different interesting geometric concepts and their
applications. For example, to show a dynamic representation of the trapezoidal decomposition
the user can press the T key while a game is active. The framework is extended with an
implementation of a Doubly-Connected Edge List (DCEL) [3], a trapezoidal decomposition
[3] and the Graham Scan algorithm [11].

Contributions. In Section 2 we show that Dots & Simple Polygons is NP-hard. We do
so by a reduction from vertex-disjoint cycle packing in cubic planar graphs, including a
self-contained reduction from planar 3-Satisfiability to this cycle-packing problem, and from
the cycle-packing problem to Dots & Boxes. In Section 3 we discuss a greedy strategy for
the case that P is in convex position.

2 Hardness

We show that Dots & Simple Polygons is NP-hard by a reduction from the maximum cycle
packing problem in planar cubic graphs. The reduction is similar to the proof of NP-hardness
of Dots & Boxes. The book Winning Ways for your Mathematical Plays [5] mentions that
a generalization of Dots & Boxes can be shown to be NP-hard by a reduction from the
maximum vertex-disjoint cycle packing (VCP) problem. The VCP problem can be viewed as
a generalization of the triangle packing problem [6], which is known to be NP-hard [10].
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Figure 2 Player R could have won this game, but after reaching the state in (a) loses as shown
in (b–e).

Eppstein notes that the NP-hardness, mentioned in [5], should apply to the classic Dots
& Boxes by a reduction from the VCP problem in planar cubic graphs [9]. However, he does
not cite a source of the hardness proof for this VCP variant. Furthermore, triangle packing is
polynomial-time solvable in planar graphs with maximum degree three [8], and thus can no
longer be used to justify the hardness of the VCP in planar cubic graphs. Thus, for the sake
of completeness, we also show Theorem 1 and Theorem 2, which are used to prove Theorem
3. The full proofs for these theorems are given in [7].

I Theorem 1. Maximal vertex-disjoint cycle packing in planar cubic graphs is NP-complete.

I Theorem 2. Given a state of Dots & Boxes, it is NP-hard to decide whether B can win.

I Theorem 3. Given a state of Dots & Simple Polygons, it is NP-hard to decide whether B
can win.

3 Strategy

What follows is a discussion of greedy strategies for Dots & Polygons played on a set of
points P in convex position. Trivially, when the points are places in convex position, there
exists no distinction between Dots & Polygons & Holes and Dots & Simple Polygons. In the
related Monochromatic Complete Triangulation Game a greedy strategy is optimal for such
points [1].

We first observe that in this setting the number of turns is exactly n = |P |: Consider
connected components of the edges drawn by the players. If a player connects two points in
the same component, this closes a polygon, and therefore the turn continues. If, however,
the two points are in different components, the turn ends and the number of connected
components decreases. Thus, the number of turns equals to the number of initial components.
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Consider a game state in which the current player cannot close a polygon. Let E be the
set of all edges that can still be drawn. Define the weight w(e) for e ∈ E to be the area the
opponent can claim on their next turn if the current player draws e. For example an edge e

between two isolated points has weight w(e) = 0. A simple greedy strategy is the following: if
there is an edge that can close some area, immediately draw that edge. Otherwise, draw the
edge emin = min

∀e∈E
w(e). This strategy is not optimal, as shown in Figure 2.

The edges drawn partition the remaining area into subproblems. For an edge e ∈ E, w(e)
can only change if an edge in the same subproblem is drawn. Let E′ ⊂ E be the set of edges
within a subproblem. We call a subproblem easy, if only two of the edges e, e′ ∈ E′ lie on the
convex hull of P . In such a subproblem, all edges have the same weight, namely the area of
the subproblem. We call a game state in which all subproblems are easy, an easy endgame.

In the following we assume that points are placed in such a way that a draw is not
possible. Consider the player that will go last (i.e., B for odd n, R for even n). If this player
plays the simple greedy strategy in such a way that they reach an easy endgame, then this
player wins. The reason is that from that point onward, anytime the opponent scores an
area, this player will score an area that is at least as large in their next turn. For n ≤ 5,
an easy endgame is always reached. For n = 6 and n = 7, the player that will go last can
enforce an easy endgame by playing a diagonal in their first move, preventing the situation
of Figure 2. In this way, B can always win for n = 3, 5, 7, and R for n = 4, 6. We leave the
problem for n > 7 open.
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