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Preface

The Scandinavian Symposium and Workshops on Algorithm Theory (SWAT, formerly the
Scandinavian Workshop on Algorithm Theory) has been held every two years beginning in
1988. It alternates with its sister conference, the Algorithms and Data Structures Symposium
(WADS), which is usually offered in Canada. This year marks the 17th SWAT, and for the
first time the symposium is hosted on Faroe Islands.

A total of 118 papers were submitted to the conference, four of which were withdrawn.
Among the remaining 114 papers, the program committee selected 34 for presentation at
the conference. In addition, the conference program featured two invited lectures, given by
Fedor Fomin (University of Bergen) and Jukka Suomela (Aalto University). Accompanying
extended abstracts are also contained in the proceedings.

I would like to thank the program committee and the subreviewers for their great
effort. For almost all of the papers, extensive and detailed evaluations were submitted.
The program committee consisted of Peyman Afshani (Aarhus University), Susanne Albers
(chair; Technical University of Munich), Per Austrin (KTH Royal Institute of Technology),
Sayan Bhattacharya (University of Warwick), Joan Boyar (University of Southern Denmark),
Parinya Chalermsook (Aalto University), Timothy Chan (University of Illinois at Urbana-
Champaign), Faith Ellen (University of Toronto), Travis Gagie (Dalhousie University),
Naveen Garg (Indian Institute of Technology Delhi), Fabrizio Grandoni (IDSIA, University of
Lugano), Roberto Grossi (University of Pisa), Pinar Heggernes (University of Bergen), Thore
Husfeldt (Lund University and IT University of Copenhagen), Telikepalli Kavitha (Tata
Institute of Fundamental Research), Yusuke Kobayashi (Kyoto University), Kasper Green
Larsen (Aarhus University), Daniel Lokshtanov (University of California, Santa Barbara),
Benjamin Moseley (Carnegie Mellon University), Wolfgang Mulzer (Freie Universität Berlin),
Seth Pettie (University of Michigan), Michał Pilipczuk (University of Warsaw), Hadas
Shachnai (Technion), Michiel Smid (Carleton University), Philipp Woelfel (University of
Calgary), Christian Wulff-Nilsen (University of Copenhagen), and Qin Xin (University of
the Faroe Islands).

This year’s conference was organized by Qin Xin (University of the Faroe Islands) and
his team.

The SWAT conference series is guided by a steering committee consisting of Lars Arge
(Aarhus University), Magnús M. Halldórsson (chair; Reykjavík University), Andrzej Lingas
(Lund University), Jan Arne Telle (University of Bergen), and Esko Ukkonen (University of
Helsinki).
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Parameterized Complexity of PCA
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
Fedor.Fomin@uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

Kirill Simonov
Department of Informatics, University of Bergen, Norway
Kirill.Simonov@uib.no

Abstract
We discuss some recent progress in the study of Principal Component Analysis (PCA) from the
perspective of Parameterized Complexity.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases parameterized complexity, Robust PCA, outlier detection

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.1

Category Invited Talk

Funding This work is supported by the Research Council of Norway via the project “MULTIVAL”.

1 Introduction

Worst-case running time analysis has been at the center of nearly all developments in
theoretical computer science since the inception of the field. Nevertheless, the worst-case
approach to measure algorithm efficiency has a serious drawback: For many fundamental
problems it does not provide a reasonable explanation why in real life situations these
problems are efficiently solvable. The dramatic gap between theory and practice calls for a
more nuanced approach, beyond the worst-case case algorithmic analysis. The forthcoming
book edited by Tim Roughgarden [23] provides a comprehensive introduction to this emerging
area of algorithms.

A particularly successful attempt of building a mathematical model improving over worst-
case analysis for NP-hard problems is the field of parameterized complexity. Originating in
the late 80s from the foundational work of Downey and Fellows [7], parameterized complexity
has experienced tremendous growth, and is now considered to be one of the central subfields
of theoretical computer science, with several textbooks [8, 9, 11, 21], including the most
recent book on parameterized algorithms [5] and kernelization [13].

However, so far the mainstream of parameterized complexity was devoted to the study
of with NP-hard optimization problems, mostly on graphs and networks. In this talk we
want to discuss the applicability of parameterized complexity to the problems involving data
point, vectors and matrices.

© Fedor V. Fomin, Petr A. Golovach, and Kirill Simonov;
licensed under Creative Commons License CC-BY
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1:2 Parameterized Complexity of PCA

2 Robust PCA

Classical principal component analysis (PCA) is one of the most popular and successful
techniques used for dimension reduction in data analysis and machine learning [22, 19, 10].
In PCA one seeks the best low-rank approximation of data matrix M by solving

minimize ‖M − L‖2
F

subject to rank(L) ≤ r.

Here ||A||2F =
∑

i,j a
2
ij is the square of the Frobenius norm of matrix A. By the Eckart-Young

theorem [10], PCA is efficiently solvable via Singular Value Decomposition (SVD). PCA
is used as a preprocessing step in a great variety of modern applications including face
recognition, data classification, and analysis of social networks. A well-documented drawback
of PCA is its vulnerability to noise. Even when a small number of observations is corrupted,
like a few elements or columns of matrix M are changed, PCA of M may not reveal any
reasonable information about non-corrupted observations.

There is a large class of extensively studied various robust PCA problems, see e.g.
[26, 28, 2]. In the robust PCA setting we observe a noisy version M of data matrix L whose
principal components we have to discover. In the case when M is a “slightly” disturbed
version of L, PCA performed on M provides a reasonable approximation for L. However,
whenM is very “noisy” version of L, like being corrupted by a few outliers, even one corrupted
outlier can arbitrarily alter the quality of the approximation. Unfortunately, almost every
natural mathematical model of robust PCA leads to an NP-hard computational problem, and
hence computationally intractable from the perspective of the classical worst-case analysis.

One of the popular approaches to robust PCA, is to model outliers as additive sparse
matrix. Thus we have a data d × n matrix M , which is the superposition of a low-rank
component L and a sparse component S. That is, M = L+S. This approach became popular
after the works of Candès et al. [3], Wright et al. [27], and Chandrasekaran et al. [4]. A
significant body of work on the robust PCA problem has been centered around proving that,
under some feasibility assumptions on M , L, and S, a solution to

minimize rank(L) + λ‖S‖0 (1)
subject to M = L+ S,

where ‖S‖0 denotes the number of non-zero entries in matrix S and λ is a regularizing
parameter, recovers matrix L uniquely. While optimization problem (1) is NP-hard [15], it
is possible to show that under certain assumptions on L and S, its convex relaxation can
recover these matrices efficiently.

The problem strongly related to (1) was studied in computational complexity under the
name Matrix Rigidity [16, 17, 25]. Here, for a given matrix M , and integers r and k, the
task is to decide whether at most k entries of M can be changes so that the rank of the
resulting matrix is at most r. Equivalently, this is the problem to decide whether a given
matrix M = L+ S, where rank(L) ≤ r and ‖S‖0 ≤ k. Thus we define the following problem.

Input: Data matrix M ∈ Rn×d, integer parameters r and k.
Task: Decide whether there are L, S ∈ Rn×d, rank(L) ≤ r and ‖S‖0 ≤ k, such

that M = L + S.

Robust PCA

We first look at Robust PCA from the perspective of parameterized complexity and
discuss when the problem is tractable and when it is not.
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I Theorem 1 ([12]). Robust PCA is solvable in time 2O(r·k·log(r·k)) · (nd)O(1).

The proof of the theorem requires ideas from kernelization, linear algebra and algebraic
geometry. Thus Robust PCA is fixed-parameter tractable when parameterized by k + d.
It is also worth to note that the theorem is tight in the following sense: The problem is
NP-hard for every r ≥ 1 [14, 6] and is W[1]-hard parameterized by k [12].

3 PCA with Outliers

Another popular variant of robust PCA is PCA with outliers. Suppose that we have n points
(observations) in d-dimensional space. We know that a part of the points are arbitrarily
located (say, produced by corrupted observations) while the remaining points are close to an
r-dimensional true subspace. We do not have any information about the true subspace and
about the corrupted observations. Our task is to learn the true subspace and to identify the
outliers. As a common practice, we collect the points into n× d matrix M , thus each of the
rows of M is a point and the columns of M are the coordinates.

Xu et al. [28] introduced the following idealization of this problem.

minimize rank(L) + λ‖S‖0,r (2)
subject to M = L+ S.

Here ‖S‖0,r denotes the number of non-zero raws in matrix S and λ is a regularizing
parameter. Xu et al. [28] approached this problem by building its convex surrogate and
applying efficient convex optimization-based algorithm for the surrogate. A huge body of
work exists on a variant of this problem, called Robust Subspace Recovery, see e.g. [20]
for a survey. In this problem for the set of given n points in r-dimensional space, the task is
to find an r-dimensional subspace containing the maximum number of points. Hardt and
Moitra [18] prove non-approximability of the optimization version of Robust Subspace
Recovery under Small Set Expansion conjecture.

An approximation variant of (2) and of Robust Subspace Recovery is the following
problem. Given n points in Rd, we seek for a set of k points whose removal leaves the
remaining n − k points as close as possible to some r-dimensional subspace. Here is the
reformulation of the problem in terms of matrices.

Input: Data matrix M ∈ Rn×d, integer parameters r and k.
Task:

minimize ‖M − L− S‖2
F

subject to L, S ∈ Rn×d,

rank(L) ≤ r, and
S has at most k non-zero rows.

PCA with Outliers

We will see how the tools from Real Algebraic Geometry [1] can be used to prove the
following theorem.

I Theorem 2 ([24]). Solving PCA with Outliers is reducible to solving nO(d2) instances
of PCA.

We also discuss some lower bounds for PCA with Outliers.

SWAT 2020
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Landscape of Locality
Jukka Suomela
Aalto University, Finland
https://jukkasuomela.fi/
jukka.suomela@aalto.fi

Abstract
The theory of distributed computing aims at understanding which tasks can be solved efficiently
in large distributed systems. This forms the basis for our understanding of the modern world,
which heavily depends on world-wide communication networks and large-scale distributed computer
systems.

In distributed computing the key computational resource is communication, and we seek to find
out which computational problems can be solved with only a few communication steps. This is
directly connected to the concept of locality: in T synchronous communication rounds, all nodes in
a network can gather all information in their radius-T neighborhoods, but not any further. Hence
the distributed time complexity of a graph problem can be defined in two equivalent ways: it is the
number of communication rounds needed to solve the problem, and it is the distance up to which
individual nodes need to see in order to choose their own part of the solution.

While the locality of graph problems has been studied already since the 1980s, only in the past
four years we have started to take big leaps in understanding what the landscape of distributed time
complexity looks like and with what kind of tools and techniques we can study it.

One concept that has been a driving force in the recent developments is the notion of locally
verifiable problems. These are graph problems in which a solution is feasible if and only if it looks
valid in all constant-radius neighborhoods; put otherwise, these are problems that could be solved
efficiently with a nondeterministic distributed algorithm, and hence they form a natural distributed
analogue of class NP. Now the key question is this: if a problem is locally verifiable, is it also locally
solvable, and if not, what can we say about its distributed time complexity?

Naor and Stockmeyer [SIAM J. Comput. 1995] formalized the idea of locally verifiable problems
by introducing the class of LCL problems (locally checkable labeling problems). While the concept is
old, and over the years we have seen results related to the locality of many specific LCLs, little was
known about the distributed complexity of LCLs in general. By 2015, we had only seen examples of
LCLs with localities O(1), Θ(log∗ n), and Θ(n), and it was wide open whether these three classes
are all that there is.

All this started to change rapidly after we proved [Brandt et al., STOC 2016] that there are
natural examples of LCLs that have a locality strictly between ω(log∗ n) and o(n). The same paper
also paved the way for the development of a new general-purpose proof technique for analyzing the
locality of locally verifiable problems, namely round elimination.

Now after four years of work and a number of papers by several research teams working in the
area, we have reached a point in which there is a near-complete picture of the landscape of LCL
problems – and it looks nothing like what we would have expected.
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Abstract
We study the problem of preclustering a set B of imprecise points in Rd: we wish to cluster the
regions specifying the potential locations of the points such that, no matter where the points are
located within their regions, the resulting clustering approximates the optimal clustering for those
locations. We consider k-center, k-median, and k-means clustering, and obtain the following results.

Let B := {b1, . . . , bn} be a collection of disjoint balls in Rd, where each ball bi specifies the
possible locations of an input point pi. A partition C of B into subsets is called an (f(k), α)-
preclustering (with respect to the specific k-clustering variant under consideration) if (i) C consists
of f(k) preclusters, and (ii) for any realization P of the points pi inside their respective balls, the
cost of the clustering on P induced by C is at most α times the cost of an optimal k-clustering on P .
We call f(k) the size of the preclustering and we call α its approximation ratio. We prove that, even
in R1, one may need at least 3k− 3 preclusters to obtain a bounded approximation ratio – this holds
for the k-center, the k-median, and the k-means problem – and we present a (3k, 1) preclustering
for the k-center problem in R1. We also present various preclusterings for balls in Rd with d > 2,
including a (3k, α)-preclustering with α ≈ 13.9 for the k-center and the k-median problem, and
α ≈ 254.7 for the k-means problem.
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1 Introduction

Clustering is one of the most important and widely studied problems in unsupervised learning.
It comes in many different flavors, depending on the type of data to be clustered, the measure
used to assess the quality of a clustering, and so on. In this paper we are interested in
geometric clustering, where the data are points in Rd, and we consider three well-known
centroid-based clustering methods, namely k-center, k-median, and k-means, on so-called
imprecise points.
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3:2 Preclustering Algorithms for Imprecise Points

In (the geometric version of) centroid-based clustering one is given a set P of n points
in Rd, where d is a fixed constant, and an integer k. The goal is to partition P into k subsets
P1, . . . , Pk and assign a centroid qi to each cluster Pi such that the cost of the resulting
clustering is minimized. In the k-center problem the cost of the clustering is defined as
max16i6k maxp∈Pi

|pqi|, where |pq| denotes the Euclidean distance between two points p
and q. In the k-median problem the cost of a clustering is defined as

∑
16i6k

∑
p∈Pi
|pqi|, and

in the k-means problem it is defined as
∑

16i6k

∑
p∈Pi
|pqi|2. Given a collection of centroids

it is always optimal to define the clusters by assigning each point in P to its nearest centroid.
Thus an equivalent definition of the k-center problem, for instance, is to find a collection of
{q1, . . . , qk} as centroids that minimizes maxp∈P min16i6k |pqi|. In other words, we want to
find k congruent balls of minimum radius that together cover all points in P .

The k-center problem in Rd is NP-hard for d > 2 when k is part of the input. For the
Euclidean k-center problem a PTAS exists, as shown by Agarwal and Procopiuc [1]. (For
the k-center problem in general metric spaces, a PTAS does not exists; for this case an r-
approximation algorithm with r < 2 is not possible unless P=NP, and several 2-approximation
algorithms are known [5, 14].) The k-median and k-means problems are also NP-hard for
d > 2, and they admit a PTAS as well [2, 4, 6, 8].

In the traditional setting the locations of the input points are known exactly. In practice
this may not always be the case: typically locations are measured using GPS or other devices
that are not completely accurate, or the points may move around inside a given region.
This leads to the study of geometric algorithms on so-called imprecise points. Here, instead
of specifying the exact coordinates of each input point, we specify a region for each point
where it may be located. For points in the plane the regions are typically disks or squares.
Over the past decade, many problems have been studied for imprecise points, including
convex hulls (compute the smallest (or largest) possible convex hull of a set of imprecise
points [7, 11]), Delaunay triangulations (preprocess a set of imprecise points such that for
any given instantiation of the points in the given regions we can compute the Delaunay
triangulation quickly [3]), separability problems [13], and more [9, 10, 12].

Problem statement and notation. In this paper we study the k-center, k-median, and
k-means problem for imprecise points. The input is a set B := {b1, . . . , bn} of (closed) balls
in Rd, each representing the possible locations of an input point. Our goal is to compute a
preclustering of the imprecise points, that is, a partition of B into a collection C of subsets
called preclusters that gives a good clustering for any possible realization of the points inside
the input balls. Next we define this more formally.

For a (precise) point set P , let Opt∞(P, k) denote the cost of an optimal k-center
clustering on P , that is,

Opt∞(P, k) := min
q1,...,qk∈Rd

max
p∈P

min
16i6k

|pqi|.

The cost of an optimal solution for the k-median and k-means problem on a set P are
denoted by Opt1(P, k) and Opt2(P, k), respectively.1 Now consider an imprecise point set
specified by a set B = {b1, . . . , bn} of balls. A point set P := {p1, . . . , pn} such that pi ∈ bi

for all 1 6 i 6 n is called a B-instance. A preclustering C of the set B into preclusters Bi

1 The subscript ∞ in Opt∞ refers to the fact that if di denotes the distance of point pi ∈ P to its nearest
center, then we are minimizing the norm of the vector 〈d1, . . . , dn〉 in the `∞-metric. For k-median and
k-means we are minimizing the norm in the `1-metric and in the squared `2-metric, respectively.
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induces a clustering on any B-instance P in a natural manner, namely by creating a cluster
Pi := {p ∈ P : p ∈ Bi} for every precluster Bi ∈ C. The cost of the preclustering C on P ,
denoted by C-Cost∞(P ) for the k-center problem, is defined as the cost of the induced
clustering on P if we choose the centroid of each cluster Pi optimally, namely by solving the
1-clustering problem on Pi. So for the k-center problem we have

C-Cost∞(P ) := max
Bi∈C

min
q∈Rd

max
p∈Pi

|pq|.

The preclustering costs for the k-median and k-means problem are denoted by C-Cost1(P )
and C-Cost2(P ), respectively, and they are defined similarly. To quantify the quality of
a preclustering C on B (with respect to the k-clustering problem under consideration) we
define C to be a (f(k), α)-preclustering if
C consists of f(k) preclusters,
C-Cost(P ) 6 α ·Opt(P, k) for any B-instance P .

We call f(k) the size of the preclustering and we call α its approximation ratio. Ideally, we
would like to have a (k, 1)-preclustering, but this is not always possible. If the balls in B
have a non-empty common intersection, then any preclustering with fewer than n preclusters
may have an arbitrarily bad approximation ratio, even for the 2-center problem. Hence, we
assume (as is often done in papers on imprecise points) that the balls in B are disjoint.

Our results. As mentioned, obtaining a (k, 1)-preclustering is not always possible. This
leads to the question: what is the smallest value for f(k) such that we can always obtain an
(f(k), 1)-preclustering? More generally, which trade-offs are possible between the size f(k) of
the preclustering and its approximation ratio α?

In Section 2 we study this problem in R1. We show that there are input sets B that
require at least 3k − 3 preclusters to get a bounded approximation ratio; this holds for the
k-center problem, the k-median problem, as well as the k-means problem. We complement
this result by proving that any set B of intervals in R1 admits a (3k, 1)-preclustering for the
k-center problem. This preclustering can be computed in polynomial time.

In Section 3 we consider the d-dimensional version of the problem for d > 2. We give an
example showing that here a (3k, 1)-preclustering does not always exist, and we present a
(3k, α)-preclustering with α ≈ 13.9 for the k-center and k-median problem, and α ≈ 254.7 for
the k-means problem. A different parameterization of the strategy gives a (6k, 3)-preclustering
for k-center and k-median, and a (6k, 10)-preclustering for k-means in R2.

Finally, in Section 4 we obtain tight asymptotic bounds on the size of the preclustering
needed to obtain any given approximation ratio ε > 0 for the k-center problem. In particular,
we prove that Θ(d1/εde · k) preclusters are always sufficient and sometimes necessary to
obtain approximation ratio ε.

2 The 1-dimensional problem

We begin by proving that even in R1 – here the input balls are disjoint intervals on the line –
preclusterings with only k preclusters cannot always guarantee a good approximation ratio.
In fact, we sometimes need as much as 3k − 3 preclusters in any preclustering with bounded
approximation ratio.

I Theorem 1. For any integer k > 2 and any given α, there is a set B of disjoint intervals
in R1 that does not admit a (k′, α)-preclustering with k′ < 3k − 3. This holds for k-center,
k-median, as well as k-means clustering.

SWAT 2020
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ε1 1 bibj

Figure 1 Illustration of the lower-bound construction for k = 5: a collection of k − 1 groups of
three intervals (in grey), each group consisting of a left and right interval of length 1 separated by a
gap of length ε, and a middle interval in inside this gap. The points in the B-instance used in the
proof are shown slightly above intervals for clarity.

Proof. Let B be a collection of 3k − 3 disjoint intervals in R1 consisting of k − 1 groups
of three intervals each. The left and right interval in each group have length 1 and are at
distance ε from each other, where ε is a sufficiently small number that will be specified later.
The middle interval from the group lies in the gap between the left and right interval with its
center at the center of the gap; see Fig. 1. Now consider a preclustering C = {B1, . . . , Bk′}. If
k′ < 3k − 3, then there is at least one precluster containing two intervals, bi and bj . Assume
without loss of generality that length(bi) > length(bj), and consider the B-instance in which
each point pt is placed in its interval bt ∈ B as follows.

If t = i or bt is a middle interval, then pt lies at the center of bt.
If t 6= i and bt is a left interval, then pt lies at the right endpoint of bt.
If t 6= i and bt is a right interval, then pt lies at the left endpoint of bt.

Note that with this placement we have |pipj | > 1/2. We will argue that by choosing ε
appropriately we get the desired result.

First consider the k-center problem. Note that Opt∞(P, k) 6 ε/2. Indeed, by putting a
centroid at the center of each of the k − 1 gaps and one centroid at pi, all points in P are
at distance at most ε/2 from a centroid. On the other hand, C-Cost∞(P ) > 1/4 since the
centroid for the cluster containing pi and pj is at distance at least 1/4 from pi or pj . Hence,

C-Cost∞(P )
Opt∞(P, k) >

1/4
ε/2 = 1

2ε .

For ε < 1/(2α) we thus enforce an approximation ratio greater than α.
The argument for k-median and k-means is similar. For k-median we have Opt1(P, k) 6

2(k − 1)(ε/2) and C-Cost1(P ) > 1/2, so ε < 1/(2(k − 1)α) enforces an approximation ratio
greater than α, while for k-means we have Opt2(P, k) 6 2(k − 1)(ε/2)2 and C-Cost2(P ) >
2(1/4)2, so ε <

√
1/(4(k − 1)α) suffices. J

I Remark 2. The construction in the proof of Theorem 1 uses an input set B of size 3k − 3.
We can easily generate an input set with the same behavior for any n > 3k − 3, by adding
another n− 3k + 3 tiny intervals inside one of the gaps between a left and a right interval
from the same group.

Theorem 1 states that for some problem instances any preclustering with fewer than
3k − 3 preclusters has arbitrarily large approximation ratio. We now show how to obtain a
1-approximation with only 3k preclusters for the k-center problem. We assume from now on
that n > 3k, otherwise we can trivially create a zero-cost solution with at most 3k preclusters.

Before we describe our preclustering strategy, we first generalize the k-center problem in
R1 from points to intervals. In this generalization the input is a collection B of n intervals,
and the goal is to find a collection I := {I1, . . . , Ik} of intervals that together cover all
intervals in B and such that the maximum radius of the intervals in I is minimized. (The
radius of an interval is half its length.) We denote the value of an optimal solution I to the
k-center problem on B by Opt∞(B, k), so Opt∞(B, k) := maxIi∈I radius(Ii).

Our preclustering algorithm is now as follows.
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PreClustering-1D(B, k)
1. Sort the intervals in B by radius, such that radius(b1) > · · · > radius(bn).
2. For each k′ ∈ {0, . . . , 2k} do the following.

a. Let {B1, . . . , B(3k−k′)} be an optimal (3k − k′)-center clustering on {bk′+1, . . . , bn},
and let Opt∞({bk′+1, . . . , bn}, 3k − k′) be its cost.

b. Let C(k′) be the preclustering {{b1}, . . . , {bk′}, B1, . . . , B(3k−k′)}.
3. Of all preclusterings C(0), . . . , C(2k) found in Step 2, let C(k′) be the one that minimizes

Opt∞({bk′+1, . . . , bn}, 3k − k′). Let C := C(k′) and return C.

I Theorem 3. Any set B of disjoint intervals in R1 admits a (3k, 1)-preclustering for the
k-center problem and this algorithm can be executed in polynomial time.

Proof. Obviously PreClustering-1D(B, k) gives a preclustering C with 3k preclusters.
It remains to prove that C has approximation ratio 1. Let P be a B-instance, and let
Q ∈ {q1, . . . , qk} be an optimal set of centroids for the k-center problem on P . Thus by
placing an interval of radius Opt∞(P, k) centered at each centroid qi ∈ Q, we cover all points
in P . By assigning each point in P to its nearest centroid in Q, with ties broken arbitrarily,
we obtain a partition of P into k clusters. This partition induces a preclustering C∗ of size
k on B. We use C∗ to define two types of intervals: outer intervals, which are the leftmost
or rightmost interval in any of the preclusters Bi ∈ C∗, and inner intervals, which are the
remaining intervals. Note that the number of outer intervals is at most 2k. Define k∗ as the
largest k′ such that b1, . . . , bk′ are all outer intervals, where b1, . . . , bn is the sorted set of
intervals obtained in Step 1 of the algorithm. Since bk∗+1 is an inner interval, we have

Opt∞(P, k) > radius(bk∗+1). (1)

The preclustering C := C(k′) returned by our algorithm minimizes Opt∞({bk′+1, . . . , bn}, 3k−
k′). Note that C-Cost∞(P ) 6 Opt∞({bk′+1, . . . , bn}, 3k− k′), since the intervals b1, . . . , bk′

are all in singleton preclusters and an interval covering all intervals in a precluster Bi

obviously covers all points from P in those interval. Hence,

C-Cost∞(P ) 6 Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

It remains to argue that Opt∞(P, k) > Opt∞({bk∗+1, . . . , bn}, 3k − k∗). To this end, we
create a collection I of intervals as follows.

For each outer interval bj with j > k∗ we create an interval equal to bj .
For each precluster Bi ∈ C∗ that has at least one inner interval, we create a minimum-
length interval covering all inner intervals of Bi.

Note that I contains at most 3k − k∗ intervals, and that these intervals together cover all
intervals in {bk∗+1, . . . , bn}. Hence,

max
I∈I

radius(I) > Opt∞({bk∗+1, . . . , bn}, 3k − k∗).

Moreover, Opt∞(P, k) > radius(I) for any I ∈ I. Indeed, if I is equal to an outer interval bj

with j > k∗ then Opt∞(P, k) > radius(bj) by Inequality (1), and otherwise I is the minimum-
length interval covering all inner intervals of some precluster Bi. (In the latter case we also
have Opt∞(P, k) > radius(I) because in any B-instance the cluster of BI includes a point
in both outer intervals) We conclude that

Opt∞(P, k) > max
I∈I

radius(I) > Opt∞({bk∗+1, . . . , bn}, 3k − k∗).
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(i) (ii) (iii) (iv)

p3

p4

p1

p2

b3

b4

Figure 2 The seven balls shown in the figure do not admit a (3k, 1)-preclustering for k = 2.

It remains to argue that PreClustering-1D(B, k) can be implemented to run in polynomial
time. The most time-consuming step is Step 2a, which can be implemented to run in O(n2k)
time using dynamic programming in a straightforward manner. J

Theorem 3 only holds for the k-center problem. In the next section we present a more general
algorithm, which not only works in higher dimensions but also for k-median and k-means.
The approximation ratio will not be as good as the one provided by Theorem 2, however.

3 The d-dimensional problem

In the previous section we saw that for some problem instances any preclustering with fewer
than 3k − 3 preclusters has an arbitrarily large approximation ratio. The result is stated for
R1 but it also holds in Rd for d > 1: we can use exactly the same construction, replacing
the intervals by d-dimensional balls whose centers lie on the x1-axis. We also presented an
algorithm giving a (3k, 1)-preclustering for intervals in R1, for the k-center problem.

Fig. 2 shows that a (3k, 1)-preclustering is not always possible for the k-center problem
in R2. The figure shows a set B of seven unit balls, with one central ball touching the
other six balls. For k = 2 a preclustering of size 3k would use five singleton preclusters and
one precluster with two balls. There are four combinatorially distinct ways of choosing the
precluster of two balls, indicated by the dark grey balls in parts (i)–(iv) of the figure. For
each case, a B-instance is shown (the black dots), and the optimal solution to the 2-center
problem for the instance is shown (the two black circles). The best preclustering is the one
in part (ii). Here the two points p1, p2 in the dark grey balls are placed at distance 4 from
each other, so C-Cost∞(P ) = 2. The point p3 inside the ball b3 is placed as close to p1 as
possible, while p4 is placed as close to p2 as possible. The other points are placed such that
they are either contained in the ball with diameter p1p3 or in the ball with diameter p2p4.
Hence, Opt∞(P ) = (

√
13 − 1)/2. The balls in this construction are not disjoint, but we

can scale them by a factor (1− ε) to obtain an instance where any (3k, α)-preclustering has
α > 2/((

√
13− 1)/2) = 4/(

√
13− 1) ≈ 1.54.

We now present a preclustering strategy that works for k-center, k-means and k-median
in any dimension. It is similar to, and actually somewhat simpler than, the preclustering
algorithm we presented for the 1-dimensional k-center problem.

PreClustering-dD(B, k)
1. Sort the balls in B by radius, such that radius(b1) > · · · > radius(bn).
2. Define Bsmall := {b2k+1, . . . , bn}; we call the balls in Bsmall small. Let {P1, . . . , Pk} be an

optimal k-center (or k-median, or k-means) clustering on the point set centers(Bsmall) :=
{cj : 2k + 1 6 j 6 n}, where cj is the center of the ball bj . Let {B1, . . . , Bk} be the
preclustering on Bsmall induced by it.

3. Return the preclustering C := {{b1}, . . . , {b2k}, B1, . . . , Bk}.
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Before we analyze the algorithm’s approximation ratio, we note that, depending on the
dimension d and the value of k, we may not be able to implement Step 2 efficiently. However,
instead of computing an optimal k-clustering on the centers of the small balls, we can also
compute a (1 + ε′)-approximation of the optimal clustering. For an appropriate ε′ = O(ε)
this increases the approximation ratio by only a factor 1 + ε, as explained later.

Obviously PreClustering-dD(B, k) gives a preclustering of size 3k. To analyze the
approximation ratio, we use the following lemma.

I Lemma 4. For any B-instance P the preclustering C := {{b1}, . . . , {b2k}, B1, . . . , Bk}
computed by the algorithm satisfies:
(i) C-Cost∞(P ) 6 Opt∞(P, k) + 2 · radius(b2k+1)
(ii) C-Cost1(P ) 6 Opt1(P, k) + 2

∑n
j=2k+1 radius(bj)

(iii) C-Cost2(P ) 6 4 ·Opt2(P, k) + 6
∑n

j=2k+1 radius(bj)2.

Proof. We first prove part (i) of the lemma. Let P be any B-instance, let pj ∈ P denote
the point inside bj , and let cj be the center of bj . Recall that Pi ⊂ P is the subset of points
in the instance corresponding to the precluster Bi. Define Psmall := {p2k+1, . . . , pn} to be
the set of points from P in the small balls, and define Csmall := {c2k+1, . . . , cn}. Note that
Psmall = P1 ∪ · · · ∪ Pk and that

|pjcj | 6 radius(bj) 6 radius(b2k+1) (2)

for all pj ∈ Psmall. We define the following sets of centroids:
Let Q := {q1, . . . , qk} be the set of centroids in an optimal k-center solution for the entire
point set P . We have

max
pj∈Psmall

min
qi∈Q

|pjqi| 6 max
pj∈P

min
qi∈Q

|pjqi| = Opt∞(P, k). (3)

Let Q′ := {q′1, . . . , q′k} be the set of centroids in the optimal k-center clustering on Csmall
used in Step 2 of the algorithm. Thus

max
ci∈Csmall

min
q′

j
∈Q′
|ciq
′
j | = Opt∞(Csmall, k) 6 max

ci∈Csmall
min
qj∈Q

|ciq
′
j |. (4)

Let Q′′ := {q′′1 , . . . , q′′k}, where q′′i is the optimal centroid for Pi. Note that for all Pi we
have

max
pj∈Pi

|pjq
′′
j | 6 max

pj∈Pi

|pjq
′
j |. (5)

Since the total cost of the singleton preclusters is trivially zero, we have

C-Cost∞(P )
= max16i6k maxpj∈Pi

|pjq
′′
i |

6 max16i6k maxpj∈Pi
|pjq

′
i| (Inequality (5))

6 max16i6k maxpj∈Pi

(
|pjcj |+ |cjq

′
i|
)

(triangle inequality)
6 radius(b2k+1) + max16i6k maxpj∈Pi |cjq

′
i| (Inequality (2))

6 radius(b2k+1) + maxcj∈Csmall minq′
i
∈Q′ |cjq

′
i| (definition of Csmall)

6 radius(b2k+1) + maxcj∈Csmall minqi∈Q |cjqi| (Inequality (4))
6 radius(b2k+1) + maxpj∈Psmall minqi∈Q

(
|cjpj |+ |pjqi|

)
(triangle inequality)

6 2 · radius(b2k+1) + maxpj∈Psmall minqi∈Q |pjqi| (Inequality (2))
6 2 · radius(b2k+1) + Opt∞(P, k) (Inequality (3))
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To prove part (ii) of the lemma, which deals with the k-median problem, note that In-
equality (2) still holds while Inequalities (3)–(5) hold if we replace the max-operator by a
summation. Part (ii) can thus be derived using a similar derivation as for part (i).

To prove part (iii), which deals with the k-means problem, we need to work with squared
distances. Note that Inequality (2) still holds, while Inequalities (3)–(5) hold if we replace
the max-operator with a summation and all distance values with their squared values. For
squared distances the triangle inequality does not hold. Instead we use the Cauchy-Schwarz
inequality, which implies that if a, b, c are positive reals with a 6 b+ c, then a2 6 2b2 + 2c2.
A similar computation as above can now be used to prove part (iii), we have

C-Cost2(P )
=
∑k

i=1

∑
pj∈Pi

|pjq
′′
i |2

6
∑k

i=1

∑
pj∈Pi

|pjq
′
i|2 (Inequality (5))

6
∑k

i=1

∑
pj∈Pi

(
2|pjcj |2 + 2|cjq

′
i|2
)

(Cauchy-Schwarz)
6 2
∑n

j=2k+1 radius(bj)2 + 2
∑k

i=1

∑
pj∈Pi

|cjq
′
i|2 (Inequality (2))

6 2
∑n

j=2k+1 radius(bj)2 + 2
∑

cj∈Csmall
minq′

i
∈Q′ |cjq

′
i|2 (definition of Csmall)

6 2
∑n

j=2k+1 radius(bj)2 + 2
∑

cj∈Csmall
minqi∈Q |cjqi|2 (Inequality (4))

6 2
∑n

j=2k+1 radius(bj)2 + 2
∑

pj∈Psmall
minqi∈Q

(
2|cjpj |2 + 2|pjqi|2

)
(Cauchy-Schwarz)

6 6
∑n

j=2k+1 radius(bj)2 + 4
∑

pj∈Psmall
minqi∈Q |pjqi|2 (Inequality (2))

6 6
∑n

j=2k+1 radius(bj)2 + 4 ·Opt2(P, k) (Inequality (3))

J

The lemma above shows that our preclustering gives an additive error that depends on
the radii of the small balls. The following two lemmas will be used to turn this into a
multiplicative error. Let r∗d be the smallest possible radius of any ball that intersects three
disjoint unit balls in Rd.

I Lemma 5. We have
(i) Opt∞(P, k) > r∗d · radius(b2k+1)
(ii) Opt1(P, k) > r∗d ·

∑n
j=2k+1 radius(bj)

(iii) Opt2(P, k) > (r∗d)2 ·
∑n

j=2k+1 radius(bj)2

Proof. For part (i) notice that by the Pigeonhole Principle an optimal clustering must have a
cluster containing at least three points from {p1, . . . , p2k+1}. The cost of this cluster is lower
bounded by the radius of the smallest ball intersecting three balls of radius at least b2k+1,
which is in turn lower bounded by r∗d · radius(b2k+1).

For part (ii) let P1, P2, . . . , Pk be the clusters in an optimal k-median clustering on P ,
and let qi be the centroid of Pi in this clustering. Let Bi be the set of balls corresponding
the points in Pi. We claim that∑
pj∈Pi

|pjqi| > r∗d ·
(( ∑

bj∈Bi

radius(bj)
)
− sum of the radii of the two largest balls in Bi

)
. (6)

To show this, let b(qi, r) be the ball of radius r centered at qi, let Pi(r) := {pj ∈ Pi :
bj ∩ b(qi, r) 6= ∅} be the set of points in Pi whose associated ball intersects b(qi, r), and let
Bi(r) be the corresponding set of balls. Since for sufficiently large r we have Pi = Pi(r), it
suffices to show that for all r > 0 we have∑

pj∈Pi(r)

|pjqi| > r∗d ·
(( ∑

pj∈Bi(r)

radius(bj)
)
− sum of the radii of the two largest balls in Bi(r)

)
.
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Figure 3 The figure shows the smallest possible ball intersecting three disjoint unit balls in 2D.
The larger balls are the unit balls and the radius of the small ball is r∗2 = 2√

3 − 1.

To prove this, consider this inequality as r increases from r = 0 to r = ∞. As long as
|Pi(0)| 6 2 the right-hand side is zero and so the inequality is obviously true. As we increase r
further, b(qi, r) starts intersecting more and more balls from Bi. Consider what happens
to the inequality when b(qi, r) starts intersecting another ball b` ∈ Bi. Then p` is added
to Pi(r), so the left-hand side of the inequality increases by |p`qi|, which is at least r. The
right-hand side increases by at most r∗d times the radius of the third-largest ball in Bi. By
definition of r∗d, if three balls intersect a ball of radius r then the smallest has radius at
most r/r∗d. Hence, the right-hand side increases by at most r and the inequality remains
true.

Recall that b1, . . . , b2k are the 2k largest balls in B. Hence, summing Inequality (6) over
all clusters P1, . . . , Pk gives

Opt1(P, k) =
k∑

i=1

∑
pj∈Pi

|pjqi| > r∗d ·
( k∑

i=1

∑
bj∈Bi

radius(bj)−
2k∑

j=1

radius(bj)
)

= r∗d ·
n∑

j=2k+1

radius(bj).

For part (iii) the same proof as (ii) works if we replace all distances with squared distances. J

I Lemma 6. For all d > 2 we have r∗d = 2/
√

3− 1.

Proof. It is easy to see that r∗d 6 r∗2 , since any configuration of three disjoint unit disks in
the plane, with a fourth disk intersecting all three, can be extended to Rd by embedding the
centers of the balls on a 2-dimensional plane in Rd. Next we show that r∗d > r∗2 for all d > 2,
which implies that r∗d = r∗2 .

Let d > 2 and let b, b′, b′′ be three disjoint unit balls in Rd. Let c, c′, c′′ denote the centers
of b, b′, and b′′, respectively, and let h be a 2-dimensional plane containing c, c′, c′′. Let D
be a smallest ball that intersects b, b′, b′′ and whose center is restricted to lie on h. Then
radius(D) > r∗2 . We claim that D is in fact a smallest ball intersecting b, b′, b′′ even if we do
not restrict the center of this ball to be on h. Indeed, if a ball D′ with center q 6∈ h intersects
b, b′, b′′, then the ball of the same radius as D′ and whose center is the orthogonal projection
of q onto h also intersects b, b′, b′′.

It remains to show that r∗2 = 2/
√

3 − 1. The configuration minimizing the radius of
the smallest ball intersecting b, b′, b′′ is where b, b′, b′′ are pairwise touching, resulting in the
claimed bound – see Fig. 3. J

We are now ready to prove the following theorem.

SWAT 2020



3:10 Preclustering Algorithms for Imprecise Points

I Theorem 7. Let B be a set of disjoint balls in Rd with d > 2. Then
(i) there exists a (3k, 7 + 4

√
3)-preclustering for the k-center and the k-median problem,

(ii) there exists a (3k, 130 + 72
√

3)-preclustering for the k-means problem.
Moreover, a (3k, 7 + 4

√
3 + ε)-preclustering for the k-center and the k-median problem, and

a (3k, 130 + 72
√

3 + ε)-preclustering for the k-means problem can be computed in polynomial
time.

Proof. Parts (i) and (ii) follow immediately by putting together Lemmas 4–6. It remains
to argue that we can compute a preclustering whose approximation ratio is as claimed in
polynomial time. Recall that each of the three clustering problems admits a PTAS [1, 2, 4, 6, 8],
that is, for any given ε′ > 0 we can compute a (1+ε′)-approximation to an optimal clustering
in polynomial time. To obtain the result, we set ε′ := ε/(1 + 1

r∗
d
) for the k-center and

k-median problem and ε′ := ε/(2 + 2
(r∗

d
)2 ) for the k-means problem. Then in Step 2 of

PreClustering-dD(B, k) we compute a (1 + ε′)-approximation of the optimal clustering.
The resulting algorithm runs in polynomial time. The only change in the analysis will appear
in Inequality (4) of Lemma 4, where we get an extra multiplicative factor 1 + ε′. With the
above choice of ε′ the approximation ratio for the whole algorithm will increase by ε. J

Generalizing the solution. We generalize the above theorem in order to control the number
of preclusters for various approximations. Let rp

d be the minimum possible value for the
radius of a ball being tangent to p disjoint unit balls in Rd for d > 2. Notice that r3

d = r∗d.
We can generalize the above result for appropriate p as follows.

The algorithm here is similar to PreClustering-dD, but in Step 2 we replace b2k+1 by
b(p−1)k+1 and in Step 3 we return the preclustering C := {{b1}, . . . , {b(p−1)k}, B1, . . . , Bk}.
Note that Lemmas 4, 5 still hold if we replace 2k + 1 with (p− 1)k + 1 and r∗d with rp

d.

I Theorem 8. Let B be a set of disjoint balls in Rd with d > 2. Then
(i) there exists a (pk, 1 + 2

rp
d

)-preclusterings for the k-center and the k-median problem.
(ii) there exists a (pk, 4 + 6

(rp
d

)2 )-preclustering for the k-means problem.

Moreover, a (pk, 1 + 2
rp

d

+ ε)-preclustering for the k-center and the k-median problem, and a
(pk, 4 + 6

(rp
d

)2 + ε)-preclustering for the k-means problem can be computed in polynomial time.

For instance, for d = 2 and p = 6 we have r6
2 = 1 – indeed, any ball intersecting six disjoint

unit balls in R2 has at least unit radius itself – leading to the following corollary. (For other
bounds on rp

d, see at [15].)

I Corollary 9. Any set of disjoint balls in R2 admits a (6k, 3)-preclustering for the k-center
and the k-median problem, and a (6k, 10)-preclustering for k-means problem.

4 Asymptotically tight trade-offs for the k-center problem

Next, we explain how to obtain a (Θ(d1/εde · k), ε)-preclustering for the k-center problem,
by adding more steps to the algorithm PreClustering-dD(B, k).

I Lemma 10. For any point set P in Rd, any integer k > 1, and any ε > 0 we have

Opt∞(P, cd(ε) · k) 6 ε ·Opt∞(P, k)

for cd(ε) = d
√
d/εed.
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(a) n unit balls forming a square in 2D. (b) clustering the circles into square-shaped clusters.

Figure 4 Illustration for the proof Theorem 12.

Proof. First consider the case k = 1. Let Q be the optimal centroid for P and let S be the
smallest hypercube centered at Q and containing P . Note that the edge length of S is at
most 2Opt∞(P, k). Partition S into d

√
d/εed smaller hypercubes of edge length at most

2ε ·Opt∞(P, k)/
√
d, and for each such hypercube make a cluster containing all points in it.

Note that each such cluster can be covered by a ball of radius ε ·Opt∞(P, k). Hence,

Opt∞(P, d
√
d/εed · k) 6 ε ·Opt∞(P, k).

For k > 1 we can simply apply the result for k = 1 to each of the k clusters in an optimal
k-center clustering on P . J

With this lemma in hand we can now run algorithm PreClustering-dD(B, k′) with
the appropriate value of k, namely k′ = cd(ε/(7 + 4

√
3)) · k, and then by Theorem 7 we get a

(3k′, ε)-preclustering with k′ = Θ(d1/εed · k).

I Theorem 11. Let B be a set of disjoint balls in Rd with d > 2. Then there exists a
(Θ(d1/εde · k), ε)-preclustering for B for any positive constant ε.

Finally, we show that this number of preclusters is asymptotically the best number we
can achieve.

I Theorem 12. There exists a set B of n disjoint balls in Rd such that in any (f(k), ε)-
preclustering of B for the k-center problem, we have f(k) = Ω(d1/εde · k).

Proof. Observe that it suffices to prove the lower bound for k = 1; for larger k we can
simply copy the construction k times and put the copies sufficiently far from each other.
Now, for k = 1 consider a set B of n1/d × · · · × n1/d unit balls arranged in a grid-like
pattern, as in Fig. 4a. Note that Opt∞(P, 1) 6

√
d(n1/d + 1) for any B-instance P . Now

partition the “grid” into (
√
d/ε)d “subgrids” as in Fig. 4b. For each subgrid, select the

ball with the lexicographically smallest center (shaded in Fig. 4b), and let B∗ ⊂ B be
the set of selected balls. If a preclustering uses fewer than (

√
d/ε)d preclusters, two of

the balls from B∗ will end up in the same precluster. But then there is a B-instance P
where C-Cost∞(P ) > ε ·

√
d · n1/d + 1. Hence, any (f(1), ε)-precluster must have Ω(d1/εde)

preclusters. J
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5 Concluding remarks

In this paper, we introduced the concept of preclustering for imprecise points and studied
it for k-center,k-median and k-means problems. It would be interesting if one can fill the
gap between lower and upper bounds for the number of preclusters needed in order to
approximate the optimum solution. Also one can try to generalize the ideas used in section 4
for the k-median and k-means versions. It would also be interesting to study non-disjoint
balls, and try to obtain preclusterings whose size and approximation ratio depend on the
amount of overlap between the balls.
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Abstract
The Terrain Guarding problem is a well-known variant of the famous Art Gallery problem. Only
second to Art Gallery, it is the most well-studied visibility problem in Discrete and Computational
Geometry, which has also attracted attention from the viewpoint of Parameterized complexity. In
this paper, we focus on the parameterized complexity of Terrain Guarding (both discrete and
continuous) with respect to two natural parameters. First we show that, when parameterized by
the number r of reflex vertices in the input terrain, the problem has a polynomial kernel. We also
show that, when parameterized by the number c of minima in the terrain, Discrete Orthogonal
Terrain Guarding has an XP algorithm.
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1 Introduction

The (Continuous and Discrete) Terrain Guarding problem is a widely studied problem
in Discrete and Computational Geometry. In particular, it is the most well-studied visibility
problem except for the classic Art Gallery problem. Formally, a 1.5-dimensional terrain
T = (V,E), or terrain for short, is a graph on vertex-set V = {v1, v2, . . . , vn} where each
vertex vi is associated with a point (xi, yi) on the two-dimensional Euclidean plane such that
x1 ≤ x2 ≤ . . . ≤ xn where, for any i ∈ {1, 2, . . . , n − 2}, having xi = xi+1 = xi+2 implies
that either yi < yi+1 < yi+2 or yi > yi+1 > yi+2 (see Figure 1); the edge-set of this graph
is E = {{vi, vi+1} : i ∈ {1, 2, . . . , n − 1}}. In the two-dimensional Euclidean plane, let R1
be a ray starting from vertex v1 ∈ V towards negative infinity, and R2 be a ray starting
from vn ∈ V towards positive infinity. The region bounded by T ∪R1 ∪R2 and lying on and
above T is called the region bounded by the terrain T . Note that the points lying on the
terrain include the vertices vi ∈ V , 1 ≤ i ≤ n, as well as the points that lie on the edges in
E. The Continuous Terrain Guarding problem takes as input a terrain and a positive
integer k, and the objective is to decide whether one can place guards on at most k points on
the terrain such that each point on the terrain is seen by at least one guard. When we say
that a point p sees a point q, we mean that the line segment pq lies in the region bounded
by the terrain. Notice that the guards may be placed on points on the terrain that do not
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4:2 Parameter Analysis for Guarding Terrains

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

Figure 1 A terrain, where convex vertices are denoted by circles, reflex vertices are denoted by
double circles, and edges are denoted by straight line segments. The set of reflex vertices sees all the
vertices of the terrain.

belong to V . The Discrete Terrain Guarding problem is defined similarly, with the
requirement that the guards must be placed on vertices in V only, as well as that only each
vertex in V must be guaranteed to be seen by at least one guard.

One of the reasons why the Terrain Guarding problem and its numerous variants are
important is because there is a wide variety of applications in the design of communication
technologies such as cellular networks and line-of-sight transmission networks for radio
broadcasting, as well as in coverage of highways, streets and walls with street lights as well as
security cameras and natural terrain border security [2, 12]. In Discrete and Computational
Geometry, the problem has its origin in 1995, when an NP-hardness proof was claimed by
Chen et al. [5]. This proof was never completed and it took almost 15 years until King and
Krohn [18] finally showed that this problem is indeed NP-hard. In between, the problem
has received a lot of attention from the viewpoint of approximation algorithms. In 2005,
Ben-Moshe et al. [2] obtained the first constant-factor approximation algorithm for Discrete
Terrain Guarding. Subsequently, the approximation factor was gradually improved
in [6, 17, 11], until a PTAS was proposed by Gibson et al. [14] for Discrete Terrain
Guarding. Recently, Friedrichs et al. [12] showed that even the Continuous Terrain
Guarding problem admits a PTAS.

A special case of Terrain Guarding that has received notable attention is Orthogonal
Terrain Guarding, which was recently shown to be NP-hard [4]. Here, the terrain is
orthogonal: for each vertex vi, 2 ≤ i ≤ n− 1, either both xi−1 = xi and yi = yi+1 or both
yi−1 = yi and xi = xi+1. In other words, each edge is either a horizontal line segment
or a vertical line segment, and each vertex is incident to at most one horizontal edge and
at most one vertical edge (see Figure 2 for two examples of orthogonal terrains). This
problem is of particular interest to the algorithm design community as it provides more
structure and therefore more positive results than Terrain Guarding [15, 19, 20, 10].
Although the PTASes designed in [14] and [12] clearly work for the Orthogonal Terrain
Guarding problem as well, studies on this particular variant of Terrain Guarding bring
out interesting structural properties specific to this variant. For instance, in the work of Katz
and Roisman [15] a relatively simple 2-approximation algorithm is described for Discrete
Orthogonal Terrain Guarding. Recently, Lyu and Üngör [19] improved upon this
result by developing a linear-time 2-approximation algorithm for Orthogonal Terrain
Guarding. In [20] and [10], restricted versions were studied under which Orthogonal
Terrain Guarding can be solved in polynomial time.

With a satisfactory landscape of approximation results for Terrain Guarding, the
focus shifted to parameterized variants of the problem. In fact, in their landmark paper [18]
King and Krohn state that “the biggest remaining question regarding the complexity of
Terrain Guarding is whether or not it is FPT”. Khodakarami et al. [16] introduced
the parameter “the depth of the onion peeling of a terrain” and showed that Terrain



A. Agrawal, S. Kolay, and M. Zehavi 4:3

Guarding is FPT with respect to this parameter. In [1], for the solution size k as parameter
a subexponential-time algorithm for Terrain Guarding with running time nO(

√
k) was

given in both discrete and continuous domains. In the same paper, an FPT algorithm with
running time kO(k) · nO(1) was presented for Discrete Orthogonal Terrain Guarding.
We remark that a lower bound of 2Ω(

√
n) for the time complexity of any algorithm for

Terrain Guarding under the Exponential Time Hypothesis (ETH) was claimed in the
conference version [3] of [4], but the proof was said to be false and replaced by a lower bound
of 2Ω(n1/3) under the ETH in [4].

The Parameters. We consider two structural parameters. So far, the understanding of the
parameterized complexity of Terrain Guarding has been very limited, and, more generally,
exact (exponential-time) algorithms for any visibility problem are extremely scarce. All our
results utilize new and known structural properties of terrains. The individual results make
use of different methods in parameterized complexity, and thus show several ways of how the
aforementioned structural properties can be exploited algorithmically. In particular, we show
how the paradigm of parameterized complexity can successfully yield positive, non-trivial
results in the context of visibility. We believe that our work will open the door for additional
research of which structural properties of terrains, polygons and related input domains make
them easy to solve, and which do not. For example, here we see that terrains somewhat close
to being convex, or which has constantly many minima, can be efficiently guarded.

We first consider the number r of reflex vertices of the terrain as a parameter; reflex
vertices are those whose incident edges create an angle strictly larger than 180 degree in
the region bounded by the terrain (see Figure 1);1 all other vertices are convex vertices. It
is known (and follows from, say, Theorem 1.5 of [21]) that if one places a guard on each
of the reflex vertices of the terrain, then all points of the terrain are guarded. Hence, the
parameterized instances of interest are those where r > k, k being the intended solution size.
Thus, r can be considered as a natural relaxation of parameterization by solution size (whose
status is a longstanding open problem). Further, we believe that it is interesting in its own
right, since having a small (but not necessarily a fixed constant) parameter r means that the
terrain is close to being convex. For such terrains, our result (formally stated ahead) not only
shows that the problem is solvable efficiently (by a parameterized algorithm) but also that,
in fact, the entire terrain can be shrunk to be of small size (by a kernelization algorithm).

The second structural parameter we consider is the number c of minima of the terrain,
for orthogonal terrains. Recall that in the orthogonal terrains that we consider, every vertex
is incident to at most one horizontal and at most one vertical edge. Then in an orthogonal
terrain, a minimum is a horizontal edge whose y-coordinates are all the same as well as
smaller than that of the (at most) two neighbours on either end (see the blue edges in
Figure 2). Notice that in an orthogonal terrain, except for possibly the first and the last
vertices of the terrain, the minima occur in pairs of convex endpoints of horizontal edges (see
Figure 2).

It is to be noted that c, unlike r, cannot related to k – it can be arbitrarily smaller or
arbitrarily larger than k (as well as than r); see Figure 2. We believe that in many naturally
occurring terrains the number of minima is much smaller than the number of observable
vertices (where the gradient of the terrain changes). Indeed, it is conceivable to have (e.g., on
natural hills or artificial structures) a huge number of vertices with slight changes of slope,
and only few that actually alter the current “trend” (of having increasing y-coordinates or
decreasing y-coordinates) of the terrain, in which case c is small.

1 For the sake of convenience, we use the convention that the end vertices of the terrain are also its reflex
vertices, unless otherwise stated.
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4:4 Parameter Analysis for Guarding Terrains

(a) (b)

Figure 2 As illustration of c being arbitrary (a) larger or (b) smaller than k. In the terrains
vertices are denoted by squares and edges by straight line segments. The red vertices are solution
vertices, and the blue edges are the minima.

Our Contribution. First, we consider the Discrete Terrain Guarding problem para-
meterized by the number r of reflex vertices. Then, an instance of the problem is denoted by
(T, k, r), where the input terrain T has r reflex vertices, and the objective is to determine if
there is a k-sized vertex guard set for guarding all vertices of the terrain. Parameterized by
r, we obtain a polynomial kernel for Terrain Guarding:

I Theorem 1. For an instance (T, k, r) of Discrete Terrain Guarding, in polynomial
time we can find an equivalent instance (T ′ = (V ′, E′), k, r) of the problem, where |V ′| ∈ O(r2).
Moreover, the problem admits a polynomial kernel, when parameterized by r.

Our algorithm exploits structural properties of consecutively appearing convex vertices to
identify vertices sufficient to capture a solution. We also find vertices guarding which would
imply that all vertices of the terrain are guarded. Then, roughly speaking, we remove useless
vertices (and make their neighbors adjacent) to obtain an instance with O(r2) vertices. We
remark that Theorem 1 also works for Continuous Terrain Guarding, by using an
appropriate “discretization” as described in [12] (for details see Section 3 and Appendix A.1).

Next, we consider Discrete Orthogonal Terrain Guarding parameterized by the
number of minima, c, of the input orthogonal terrain. We design a somewhat tricky dynamic
programming algorithm for it that belongs to XP. The membership in FPT remains open.

I Theorem 2. Discrete Orthogonal Terrain Guarding parameterized by c can be
solved in 4c · n2c+O(1) time.

2 Preliminaries

For a positive integer k, we use [k] as a shorthand for {1, 2, . . . , k}. We use standard notation
and terminology from the book of Diestel [8] for graph-related terms which are not explicitly
defined here. We only consider simple undirected graphs. Given a graph H, V (H) and E(H)
denote its vertex-set and edge-set, respectively.

Terrains. Consider a terrain T = (V,E), where V = {vi = (xi, yi) | i ∈ [n]} and x1 ≤ x2 ≤
. . . ,≤ xn. We denote the ordering of vertices in T by v1 ≺ v2 ≺ . . . ,≺ vn. Moreover, for
vertices vi, vj ∈ V , we write vi ≺ vj if i < j, and vi � vj if i ≤ j. We say that a subset
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of points P on the terrain sees a subset of points Q on the terrain if each point in Q is
seen by at least one point in P . A subterrain of T is an induced subgraph of T over a set
{vi, vi+1, . . . , vj} of consecutive vertices in V with i ≤ j ∈ [n].

I Proposition 3 (Order Claim [2]). For a terrain T = (V,E), consider four vertices vi ≺
vj ≺ vt ≺ vr, such that vi sees vt, and vj sees vr. Then, vi sees vr.

Consider an orthogonal terrain T = (V,E). A minimum (resp. maximum) of T is a pair
of consecutive vertices (vi, vi+1) of T , where 1 ≤ i ≤ n, such that the following conditions
are satisfied: i) yi = yi+1, ii) if vi−1 exists, then yi−1 > yi (resp. yi−1 < yi), and iii) if vi+2
exists, then yi+1 < yi+2 (resp. yi+1 > yi+2).2 We denote the set of minima and maxima of
T by Min(T ) and Max(T ), respectively.

Parameterized Complexity. In Parameterized Complexity each problem instance is ac-
companied by a parameter k. A central notion in this field is fixed-parameter tractability
(FPT). This means, for a given instance (I, k), solvability in time f(k)|I|O(1) where f is
some computable function of k. A kernelization algorithm for a parameterized problem
Π is a polynomial time procedure which takes as input an instance (x, k), where k is the
parameter, and returns an instance (x′, k′) such that (x, k) ∈ Π if and only if (x′, k′) ∈ Π
and |x′|+ k′ ≤ g(k), where g is a computable function. In the above, we say that Π admits a
g(k)-kernel. If g(k) is a polynomial function, then the kernel is a polynomial kernel for Π.
For more information on Parameterized Complexity we refer the reader to [9, 7].

3 Polynomial Kernel for Discrete Terrain Guarding

We design a polynomial kernel for Discrete Terrain Guarding when parameterized by
the number of reflex vertices. Towards this result, we prove (in Lemma 4) that given an
instance (T, k, r) of Discrete Terrain Guarding, in polynomial time we can compute an
equivalent instance (T ′, k′, r) of Discrete Terrain Guarding with O(r2) vertices. We
now interpret the instance of Discrete Terrain Guarding as an instance of Dominating
Set with O(r2) vertices. After this we apply the well-known polynomial time reduction
(chain) from Dominating Set to Discrete Terrain Guarding to obtain our kernel.

The main goal will be to prove the next lemma, which is the first statement of Theorem 1.

I Lemma 4. For an instance (T, k, r) of Discrete Terrain Guarding, in polynomial
time we can compute an equivalent instance (T ′ = (V ′, E′), k, r) of the problem, where
|V ′| ∈ O(r2).

Using the above lemma and polynomial time reducibility among NP-complete problems, we
can obtain a proof of Theorem 1. Now we focus on the proof of Lemma 4. Let (T = (V, k), k, r)
be an instance of Discrete Terrain Guarding.

We will design three marking schemes that will mark at most O(r2) vertices. Roughly
speaking, we will argue that there is a solution contained in the marked set of vertices, and
guarding marked vertices is enough to guard all the vertices. Our first marking scheme will
be used to ensure that there is a solution that contains only marked vertices. Our second
and third marking schemes will be used to ensure that it is enough to guard the marked
vertices. Finally, to obtain the proof of Lemma 4, we construct a modified terrain by adding
edges between “consecutive” marked vertices in the original terrain.

2 Recall that in an orthogonal terrain each vertex is adjacent to at most one horizontal edge and at most
one vertical edge.
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vv0 = grht
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Figure 3 An illustration of convex regions in a terrain and Marking Scheme II. The terrain has
six convex regions C1, C2, . . . , C6, and the reflex vertices are double circled. The blue/red/green
(dotted) lines/points/squares are the objects defined in Marking Scheme II. Also, the labelling of
vertices and points are as defined in Marking Scheme II. We remark that for the pair of reflex vertices
w, w′, the line segment Lww′ is blocked by the terrain.

We begin with some definitions and establish some useful properties regarding them,
which will be helpful in proving the lemma.

I Definition 5. Given a terrain T , a convex region of T is a maximal subterrain of T where
every vertex is a convex vertex (see Figure 3). For a convex region C, the vertex set of C
is denoted by V (C). A vertex in V (C) that is not one of the two (not necessarily distinct)
endpoints is called an internal vertex of C. A partial convex region is a subterrain of a
convex region C that contains at least one endpoint of C. We can also define internal vertices
of partial convex regions as above.

Notice that the ordering of vertices given by � (and ≺) naturally extends to convex
regions, as two convex regions do not have common vertices. Thus, hereafter we will use �
(and ≺) to denote orderings among convex regions as well. In the following we state some
useful observations regarding convex regions. The first two are immediate.

I Observation 6. The number of convex regions in T is at most r − 1.

I Observation 7. Consider a convex region C in T with endpoints vi � vj. For each
u, u′ ∈ V (C) ∪ {vi−1, vj+1},3 u sees u′.

I Observation 8 (♠4). Let C be a convex region in T with endpoints vi � vj. Consider
vertices v /∈ V (C) and u ∈ V (C), such that v sees u and v � vi � u � vj (resp. vi � u �
vj � v). Then v sees each vertex u′ such that u � u′ � vj (resp. vi � u′ � u).

We are now ready to state our first marking scheme. Intuitively speaking, this marking
scheme is used to identify a set of vertices where we can always find a solution.

I Definition 9 (Marking Scheme I). We create a subset S1 ⊆ V of vertices as follows.
1. Add all the reflex vertices of T to S1.
2. For each convex region C, add its two (not necessarily distinct) endpoints to S1.
3. Consider an ordered pair of distinct convex regions (Ci, Cj) such that there is v ∈ V (Ci)

that sees all vertices of Cj . If Ci ≺ Cj (resp. Cj ≺ Ci), let f(Ci, Cj) be the largest (resp.
smallest) vertex in Ci other than the endpoints of Ci that sees Cj. Add f(Ci, Cj) to S1.

3 If i = 1, then we do not consider the vertex vi−1. Similarly, if j = n, then we do not consider vj+1.
Notice that if vi−1 or vj+1 exist, then they are reflex vertices.

4 The proofs of the results marked with ♠ and some of the figures can be found in the Appendix.
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4. Consider a reflex vertex v and a convex region C with endpoints vi, vj, such that vi �
vj ≺ v (resp. v ≺ vi � vj). Let f(C, v) be the largest (resp. smallest) vertex other than
the endpoints of C that v sees. Add f(C, v) to S1.

The following observation easily follows from the above definition and Observation 6.

I Observation 10. The number of vertices in S1 is bounded by O(r2).

In the next lemma we show existence of a solution (for a yes-instance) contained in S1.

I Lemma 11. (T, k, r) is a yes-instance of Discrete Terrain Guarding if and only if
there is a solution S′ ⊆ S1.

Proof. If S′ ⊆ S1 is a solution for (T, k, r) then (T, k, r) is a yes-instance. Now suppose that
(T, k, r) is a yes-instance. Consider a solution S′ for (T, k, r) that maximizes the number of
vertices from S1 and is of minimum possible size. If S′ ⊆ S1, then we are done. Thus, we
assume that there is v ∈ S′ ∩ (V \ S1). From Item 1 and 2 of Definition 9 we can obtain that
v is neither a reflex vertex nor an endpoint of any convex region in T . Thus we assume that
v belongs to a convex region, say C, with vi ≺ vj as its endpoints.

We first consider the case when there is a convex region C̃ such that: i) C̃ contains a
vertex that is seen by v and no vertex in S′ \ {v}, and ii) v does not see all vertices of C̃.
(Note that C̃ 6= C, from Observation 7.) Without loss of generality we assume that C̃ ≺ C.
(The other case can be argued symmetrically.) For the arguments that follow, please refer to
Figure 4(a). Let vĩ ≺ vj̃ be the endpoints of C̃. We will argue that S∗ = (S′ \ {v}) ∪ {vj} is
a solution for (T, k, r). Clearly, |S∗| ≤ k. We will now argue that S∗ sees each vertex in V .
To prove the above, it is enough to show that for each u ∈ V , such that v is the only vertex
in S′ that sees it, there is a vertex in S∗ that sees u. Consider such a vertex u. If u ∈ V (C),
then from Observation 7, vj sees u. Now we consider the case when u ≺ vi ≺ v ≺ vj . We will
show that vj sees u. Recall that u sees v by our assumption and vi sees vj (Observation 7).
Thus using the Order Claim (Proposition 3) on u ≺ vi ≺ v ≺ vj , we conclude that vj sees
u. Finally, we consider the case when vi ≺ v ≺ vj ≺ u. As v does not see all vertices of C̃
and C̃ ≺ C, using Observation 8 we conclude that v does not see vj̃ . As S′ is a solution,
there is some û ∈ S′ \ {v} that sees vj̃ . By Observations 7 and 8, respectively, if û ∈ V (C̃)
or vj̃ ≺ û then û sees all vertices in C̃, which contradicts the choice of C̃ to contain a vertex
seen only by v and no other vertex in S′. Thus including the fact that C̃ ≺ C, it must be
the case that û ≺ vĩ ≺ vj̃ ≺ vi ≺ v ≺ vj ≺ u. From Observation 8 we obtain that v sees
vĩ, and by assumption û sees vj̃ . Thus, using the Order Claim for vertices û ≺ vĩ ≺ vj̃ ≺ v,
we obtain that û sees v. Next, as û ≺ vi ≺ v ≺ vj , û sees v, and vi sees vj (Observation 7
applied to C), using the Order Claim on û ≺ vi ≺ v ≺ vj we obtain that û sees vj . Finally as
û ≺ v ≺ vj ≺ u, v sees u, and û sees vj , using the Order Claim on û ≺ v ≺ vj ≺ u we obtain
that û sees u. Thus, S∗ = (S′ \ {v}) ∪ {vj} is a solution for the instance (T, k, r), such that
either |S∗| < |S′|, or |S∗| = |S′| and |S∗ ∩ S1| > |S′ ∩ S1|. This contradicts the choice of S′.

Hereafter we assume that for any convex region C̃, either v sees all the vertices in C̃ or
sees none of its vertices. Again our goal will be to find another solution S∗ by modifying
S′ so as to obtain a contradiction to the choice of S′. Towards the construction of S∗, we
start by constructing a set X as follows. For each reflex vertex u ∈ V such that v is the
only vertex in S′ that sees u, we add the vertex f(C, u) to X (see Definition 9). Similarly,
for each convex region C ′ such that v is the only vertex in S′ that sees all the vertices of
it, add the vertex f(C,C ′) to X. As S′ is a minimum sized solution, and hence a minimal
solution, and v /∈ S1, we obtain that X 6= ∅. Let v∗ ∈ X be a vertex that is closest to v in
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Figure 4 An illustrative example of the case study in Lemma 11. Here, v is an unmarked vertex
in S′ that belongs to convex region C and vi, vj are the endpoints of the convex region C. (a) C̃ is
a convex region with endpoints vĩ and vj̃ . A partial convex region C′ of C̃ that includes vĩ is seen
by v. The other endpoint vj̃ is seen by a vertex û. (b) Any convex region that has some vertex seen
by v has all its vertices seen by v. The vertex v∗ is as defined in Lemma 11. Given a reflex vertex u,
the vertex f(C, u) is shown in the diagram.

(the path in) C. We assume that vi � v ≺ v∗ ≺ vj . (The case when vi ≺ v∗ ≺ v � vj can
be argued symmetrically.) For the arguments that follow, please refer to Figure 4(b). Let
S∗ = (S′ \ {v})∪{v∗}. Notice that either |S∗| < |S′|, or |S∗| = |S′| and |S∗ ∩S1| > |S′ ∩S1|.
Thus, like previously, if we argue that S∗ is a solution to (T, k, r), then we will arrive at a
contradiction to the choice of S′. Now we will show that S∗ is a solution for (T, k, r). First,
we show that for each reflex vertex that v sees, the vertex v∗ sees it as well. Consider a reflex
vertex u that is seen by v. If v∗ = f(C, u), then clearly, v∗ sees u. Now we assume that
v∗ 6= f(C, u). If vi ≺ v ≺ vj ≺ u, then by definition of f(C, u) and the fact that v∗ 6= f(C, u)
we obtain that v∗ ≺ f(C, u) ≺ vj ≺ u. As v∗ sees vj (Observation 7) and f(C, u) sees u,
using the Order Claim on v∗ ≺ f(C, u) ≺ vj ≺ u we can obtain that v∗ sees u. Next consider
the case when u ≺ vi ≺ v ≺ vj (also we have v∗ 6= f(C, u) and v ≺ v∗). In this case by
definition of f(C, u) and the fact that v /∈ S1, we obtain that u ≺ f(C, u) ≺ v ≺ v∗. As v
sees u and f(C, u) sees v∗, we apply the Order Claim on u ≺ f(C, u) ≺ v ≺ v∗ to obtain
that v∗ sees u.

Next, we show that for each convex region C̃ that v sees (we are in the case when v sees
all vertices of a convex region or none), the vertex v∗ sees it as well. If v∗ = f(C, C̃), then
clearly, v∗ sees C̃. Now we assume that v∗ 6= f(C, C̃). If C ≺ C̃ then vi ≺ v ≺ vj ≺ u for
each vertex u ∈ V (C̃). Then by definition of f(C, C̃) and the fact that v∗ 6= f(C, C̃) we
obtain that v∗ ≺ f(C, C̃) ≺ vj ≺ u for each vertex u ∈ C̃. As v∗ sees vj (Observation 7) and
f(C, C̃) sees C̃, using the Order Claim on v∗ ≺ f(C, C̃) ≺ vj ≺ u for each vertex u ∈ V (C̃),
we can obtain that v∗ sees each u ∈ V (C̃). Next consider the case when C̃ ≺ C. Then
for each u ∈ V (C̃), u ≺ vi ≺ v ≺ vj (also we have v∗ 6= f(C, C̃) and v ≺ v∗). In this
case by definition of f(C, C̃) and the fact that v /∈ S1, we obtain that for each u ∈ V (C̃),
u ≺ f(C, u) ≺ v ≺ v∗. As v sees u and f(C, C̃) sees v∗, we apply the Order Claim on
u ≺ f(C, u) ≺ v ≺ v∗ to obtain that v∗ sees u, for each u ∈ V (C̃). Thus, v∗ sees C̃. This
concludes the proof. J

Our next two marking schemes will help us identify vertices such that guarding them
will be sufficient for any vertex subset to qualify as a solution. We remark that the ordering
≺ (and �) of vertices of T naturally extends to the points that lie on the terrain. We will
slightly abuse the notation and use ≺ (and �) to also denote the ordering of points on T .
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I Definition 12 (Marking Scheme II). Consider an (unordered) pair of distinct reflex vertices
u, u′ and let Luu′ be the line containing them (see Figure 3). Let Luu′ (if it exists) be the
maximal line segment with endpoints puu′ and p̂uu′ that contains both u and u′, and is
completely contained on or above T . Let glft

uu′ and grht
uu′ be the (not necessarily distinct from

puu′) vertices in V that are to the left and right of puu′ , i.e. glft
uu′ (resp. grht

uu′) is the largest
(resp. smallest) vertex in V , such that glft

uu′ � puu′ (resp. puu′ � grht
uu′). Add the vertices glft

uu′

and grht
uu′ , and their (at most two) neighbors in T to S2. Similarly, let ĝlft

uu′ (resp. ĝrht
uu′) be

the largest (resp. smallest) vertex in V , such that ĝlft
uu′ � puu′ (resp. puu′ � ĝrht

uu′). Add the
vertices ĝlft

uu′ and ĝrht
uu′ , and their neighbors in T to S2.

We design another simple marking scheme, which constructs a set of vertices S3 which
marks the neighbors of the vertices in S1 ∪ S2 (excluding vertices in S1 ∪ S2).

I Definition 13 (Marking Scheme III). For each u ∈ S1 ∪S2 and v ∈ V \ (S1 ∪S2), such that
{u, v} ∈ E, add the vertex v to S3.

I Observation 14. |S1 ∪ S2 ∪ S3| is bounded by O(r2). Moreover, S3 ∩ (S1 ∪ S2) = ∅.

In the next lemma we show that guarding S1 ∪ S2 ∪ S3 is enough to guard T , and the
guards can be selected from the set S1 ∪ S2 ∪ S3. (Although there is a solution contained in
S1 from Lemma 11, we state the lemma a bit differently to simplify its usage later.)

I Lemma 15. A set S′ ⊆ S1∪S2∪S3 of size at most k is a solution for the instance (T, k, r)
of Discrete Terrain Guarding if and only if for each u ∈ S1 ∪ S2 ∪ S3, there is some
v ∈ S′ that sees u.

Proof of Lemma 15. In one direction, suppose there is S′ ⊆ S1 ∪ S2 ∪ S3 that is a solution
for the instance (T, k, r). Then, clearly, for each u ∈ S1 ∪ S2 ∪ S3, there is some v ∈ S′ that
sees u.

In the other direction, consider a set S′ ⊆ S1 ∪ S2 ∪ S3 of minimum size that sees each
vertex in S1 ∪ S2 ∪ S3, and S′ maximizes the number of reflex vertices it contains. We will
show that S′ is a solution for the instance (T, k, r). For the sake of contradiction, suppose
that there is a vertex v ∈ V \ (S1 ∪S2 ∪S3) that is seen by no vertex in S′. Since S1 contains
all reflex vertices (see Definition 9) and S1 is guarded by S′, v must be a convex vertex. Let
C be the convex region in T containing v. Let v′1 ∈ S1 ∪ S2 ∪ S3 be the largest vertex such
that v′1 ≺ v. Similarly, let v′2 ∈ S1 ∪ S2 ∪ S3 be the smallest vertex such that v ≺ v′2. From
Item 2 of Definition 9, both v′1 and v′2 exist, and they must belong to the convex region C.
Moreover, from Definition 13, we obtain that v′1, v′2 ∈ S3 (recall that S3 ∩ (S1 ∪ S2) = ∅, see
Observation 14).

If there is a u1 ∈ S′ such that u1 � v′1 and u1 sees v′1, then using Observations 7 and 8 we
conclude that u1 sees v. Similarly, if there is u2 ∈ S′, such that v′2 � u2 and u2 sees v′2, then
we conclude that u2 sees v. From the above, we assume that there are vertices u1, u2 ∈ S′,
such that u2 ≺ v′1 ≺ v ≺ v′2 ≺ u1, u1 sees v′1, and u2 sees v′2. We now consider the following
cases based on whether or not u1 is a reflex vertex.

1. Suppose u1 is a reflex vertex (see Figure 5(a)). Since u1 sees v′1 but not v, there must be a
reflex vertex u, such that v ≺ u ≺ u1 and the line segment Lu1u intersects the subterrain
C ′ of C between v′1 and v (containing these vertices). Hence C ′ must contain a vertex
from S2. As v′1 is the largest vertex from S1 ∪ S2 ∪ S3 with v′1 ≺ v, C ′ has no vertex
from S1 ∪ S2 ∪ S3 other than v′1. But v′1 ∈ S3 and S3 ∩ (S1 ∪ S2) = ∅. This leads to a
contradiction.
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Figure 5 An illustrative example of the case study in Lemma 15. Here, v′1 and v′2 are the nearest
marked vertices to v. The vertices v′1 and v′2 are seen by u1 and u2, respectively. (a) In Case 1, u1

is a reflex vertex that sees v′1 but cannot see v because of a reflex vertex u. (b) In Case 2, u1 is a
convex vertex and urht is the smallest reflex vertex to the right of u1. Similarly, ulft is the largest
reflex vertex to the left of u1.

2. Suppose u1 belongs to a convex region, say C ′. By our assumption u1 does not see v, thus
using Observation 7 we obtain that C ′ 6= C. Moreover, as v ≺ u1, we have C ≺ C ′. Let
urht be the smallest reflex vertex such that u1 ≺ urht, and ulft be the largest reflex vertex
such that ulft ≺ u1. Note that ulft ≺ u1 ≺ urht. We will show that S∗ = (S′ \{u1})∪{urht}
sees each vertex in S1 ∪ S2 ∪ S3. Moreover, either |S∗| < |S′|, or |S∗| = |S′| and S∗

contains strictly more reflex vertices that S′. The above would lead us to a contradiction
to the choice of S′. Now we focus on showing that S∗ sees each vertex in S1 ∪ S2 ∪ S3
(see Figure 5(b)). Consider any u′ ∈ S1 ∪ S2 ∪ S3. If u′ is seen by a vertex in S′ \ {u1},
then clearly, S∗ sees u′. If u′ ∈ V (C ′) or u′ ∈ {ulft, urht}, then using Observation 7 we
can obtain that urht sees u′. Now we can assume that either u′ ≺ ulft or urht ≺ u′. First
consider the case when u′ ≺ ulft. As u′ ≺ ulft ≺ u1 ≺ urht, u1 sees u′ (by assumption),
and ulft sees urht (Observation 7), using the Order Claim on u′ ≺ ulft ≺ u1 ≺ urht we
obtain that urht sees u′. Now we consider the other case, i.e., when urht ≺ u′. Recall
that u2 ≺ v′1 ≺ v′2 ≺ u1, and u1 sees v′1 and u2 sees v′2. Thus using the Order Claim on
u2 ≺ v′1 ≺ v′2 ≺ u1 we obtain that u1 sees u2. As u2 ≺ ulft ≺ u1 ≺ urht, u1 sees u2, and
ulft sees urht, using the Order Claim on u2 ≺ ulft ≺ u1 ≺ urht we obtain that u2 sees urht.
Again, as u2 ≺ u1 ≺ urht ≺ u′, u2 sees urht, and u1 sees u′, using the Order Claim on
u2 ≺ u1 ≺ urht ≺ u′ we obtain that u2 sees u′. This concludes the proof. J

We define a new terrain T ′ = (V ′ = S1∪S2∪S3, E
′) (see Figure 6), where the coordinates

of S1 ∪ S2 ∪ S3 remain the same as in T and the edge set E′ is defined as follows. Consider
the restriction of the ordering, ≺, of vertices in T to the vertices in S1 ∪ S2 ∪ S3. The set
E′ contains an edge between every consecutive pair of vertices in S1 ∪ S2 ∪ S3, given by the
above ordering. We have the following observations about the new terrain T ′.

I Observation 16 (♠). A vertex is reflex in T if and only if it is a reflex vertex in T ′.

I Observation 17 (♠). Given two vertices u, v ∈ S1 ∪ S2 ∪ S3, u sees v in T if and only if
it sees v in T ′.

We are now ready to prove Lemma 4.
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(a) (b)

Figure 6 An illustrative example of deriving from terrain T = (V, E) shown in (a) the new terrain
T ′ = (S1 ∪ S2 ∪ S3, E′) shown in (b). The vertices in S1 ∪ S2 ∪ S3 are denoted by boxes whereas
unmarked vertices of V are denoted as circles.

Proof of Lemma 4. We show that (T = (V,E), k, r) is a yes-instance of Discrete Ter-
rain Guarding if and only if (T ′ = (V ′, E′), k, r) is a yes-instance of the problem. By
Observation 16, the reflex vertices of T are reflex vertices of T ′ and vice versa. Therefore,
the number of reflex vertices in both T and T ′ is r.

First, let (T, k, r) be a yes-instance of Discrete Terrain Guarding. Following from
Lemmas 11, there is a solution S′ ⊆ S1 ∪ S2 ∪ S3 of size at most k. In particular, S′ guards
all vertices in S1 ∪ S2 ∪ S3. By Observation 17, S′ is a k-sized solution for (T ′, k, r) and
therefore (T ′, k, r) is a yes-instance.

On the other hand, let (T ′, k, r) be a yes-instance of Discrete Terrain Guarding.
Let S′ be a k-sized solution for (T ′, k, r). By Observation 17, S′ ⊆ S1 ∪ S2 ∪ S3 sees all
vertices in S1 ∪ S2 ∪ S3 in the terrain T . Thus, by Lemma 15 S′ is a solution for (T, k, r)
and therefore (T, k, r) is a yes-instance.

Moreover, we can construct (T ′, k, r) in polynomial time. Also from Observation 14 we
have |V ′| ∈ O(k2). This concludes the proof. J

We conclude this section with the proof of Theorem 1.

Proof of Theorem 1. Let (T, k, r) be an instance of Discrete Terrain Guarding. Using
Lemma 4, in polynomial time we compute an equivalent instance (T ′ = V ′, E′), k, r) of
Discrete Terrain Guarding with |V ′| ∈ O(r2).

We now construct an instance of Dominating Set (G, k) as follows. We let V (G) = V ′,
and for u, v ∈ V (G), {u, v} ∈ E(G) if and only if u and v see each other in T ′. Clearly, (G, k)
is a yes-instance of Dominating Set if and only if (T ′, k, r) is a yes-instance of Discrete
Terrain Guarding. Moreover, (G, k) can be constructed in polynomial time. Now we can
convert the instance (G, k) of Dominating Set in polynomial time to an equivalent instance
of Discrete Terrain Guarding using the NP-hardness reduction from Dominating Set
to Discrete Terrain Guarding. (This can be explicitly achieved for example, by a chain
of polynomial time reductions Dominating Set ≤poly SAT ≤poly 3-SAT ≤poly Planar
3-SAT ≤poly Discrete Terrain Guarding [4, 18, 13].) This concludes the proof. J

4 Algorithm for Discrete Orthogonal Terrain Guarding

We design a dynamic programming based algorithm for Discrete Orthogonal Terrain
Guarding running in time 4|Min(T )| ·n2|Min(T )|+O(1), where n is the number of vertices in the
input orthogonal terrain. Let (T, k) be an instance of Discrete Orthogonal Terrain
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Figure 7 An intuitive illustration of the set of valleys W = {W1, W2, W3, W4} and different
vertices in an orthogonal terrain. (The sets are presented modulo the elements −∞ and +∞.)

Guarding. Intuitively speaking, in our algorithm the states for our dynamic programming
table are chosen in relation to the minima of T as follows (see Figure 8). We will maintain a
height, on or above which we can place guards. With respect to our minima, we will define
the notion of valleys. For each such “valley”, we will have a vertex on its “left slope” in our
state of the table, and we would like to guard all the vertices of the valley that appear in
the “left slope” and lie on or above this vertex. Similarly, we will have such vertices for the
“right slopes”. Towards formalizing the above, we begin by introducing some notations and
preliminary results that will be useful later.

Notations. We let R and C denote the set of reflex and convex vertices of T , respectively.
(For the sake of simplicity, we include the two endpoints of T in both R and C). In the
following we state a well-known result from Claim 3.3 and 3.4 of [15], which states that
guarding convex vertices of an orthogonal terrain using guards placed at reflex vertices is
enough to guard the whole terrain. This property will be useful in our algorithm.

I Proposition 18 ([15]). (T, k) is a yes-instance of Discrete Orthogonal Terrain
Guarding if and only if there is S ⊆ R of size at most k such that S sees each vertex of C.

I Observation 19. For an orthogonal terrain T and vertices u = (xu, yu) ∈ R and v =
(xv, yv) ∈ C, if u sees v, then yv ≤ yu.

Next we will define the notion of valleys. Roughly speaking, a “valley” is a maximal
region containing at most one minimum and at most two maxima. We will formally define
the notion of valleys in an orthogonal terrain; our definitions will be formulated in a way to
ensure uniqueness of the set of valleys in the given terrain (see Figure 7).

I Definition 20. For an integer i ≥ 1, the ithvalley, denoted byWi (with its vertex set denoted
by V (Wi)), of the terrain T is an (ordered) set of consecutive vertices of T that contains
the smallest vertex u that is not contained in any valley Wj, where j < i, and the following
vertices.5 Let a < n be the smallest integer (if it exists) such that (va, va+1) ∈ Max(T )
and va, va+1 /∈ ∪j<iV (Wj). If a does not exist, then Wi contains all the vertices v where
u � v � vn. Otherwise, Wi contains all the vertices v where u � v � va+1.

5 The 1st valley contains the vertex v1.
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We let W = {W1,W2, . . . ,Wt} be the set of valleys in T . Notice that t ≤ |Min(T )|+ 2.
For a valley Wi = (vf , vf+1, . . . , v`) ∈ W, the vertices fst(i) = vf and lst(i) = v` denote the
first and last vertices of Wi, respectively. For the sake of notational convenience, we will
now define left/right slope convex vertices. We say that Wi contains a minimum/maximum
(va, va+1), if va, va+1 ∈ V (Wi). Note that by definition,Wi can contain at most one minimum
and at most two maxima. If Wi has one minimum, say (va, va+1), then the set of left slope
vertices Li, is the set {vf , vf+1, . . . , va} and the set of right slope vertices Ri, is the set
{va+1, va+2, . . . , v`}. Otherwise, the vertices (vf , vf+1, . . . , v`) have either non-increasing
y-coordinates or non-decreasing y-coordinates. If (vf , vf+1, . . . , v`) have non-increasing y-
coordinates, then we have Li = V (Wi) and Ri = ∅. Otherwise, (vf , vf+1, . . . , v`) have
non-decreasing y-coordinates, and we have Ri = V (Wi) and Li = ∅. We let Ri = V (Wi) ∩R,
Clft

i = (Li ∩ C) ∪ {−∞}, Crht
i = (Ri ∩ C) ∪ {+∞} (see Figures 7 and 8).6 We let plft

i be the
largest vertex in Clft

i . Similarly, we let p̂rht
i be the smallest vertex in Crht

i . We will now define
the set of heights H of guards in the terrain, which will be used in defining the states of our
dynamic programming routine: H = {y | v = (x, y) ∈ R} ∪ {+∞}. For y ∈ H \ {+∞}, by
prv(y) we denote the smallest element y′ ∈ H such that y′ > y. (For the largest element, say
y∗ ∈ H \ {+∞}, we have prv(y∗) = +∞.) Finally for i ∈ [t], we let Si = Clft

i × Crht
i .

We state some useful observations that will be useful in our algorithm. We will move to
the description of the states of our dynamic programming table after the stating few simple
but useful observations below.

I Observation 21. Consider i ∈ [t]. For a vertex vj = (xj , yj) ∈ Clft
i , if v` = (x`, y`) ∈ R

sees vj and ` < j, then ` = j − 1. Similarly, a vertex vj = (xj , yj) ∈ Crht
i , if v` = (x`, y`) ∈ R

sees vj and j < `, then ` = j + 1.

I Observation 22. Consider i ∈ [t], and vertices vj1 = (xj1 , yj1), vj2 = (xj2 , yj2) ∈ Clft
i ,

where j1 < j2. If v` = (x`, y`) ∈ R sees vj2 , where j2 < `, and yj1 ≤ y`, then v` sees vj1 .

We define the set of heights of guards in a valley, which will be useful in stating the
states of our dynamic programming routine. For i ∈ [t], we let Hgt(i) = {ya | va = (xa, ya) ∈
Ri} ∪ {+∞}. Moreover, for ya ∈ Hgt(i) \ {+∞}, by prvi(ya) we denote the smallest element
ya′ ∈ Hgt(i) such that ya′ > ya. (For the largest element, say y∗a ∈ Hgt(i) \ {+∞}, we have
prvi(ya) = +∞.) Finally for i ∈ [t], we let Si = Clft

i × Crht
i × Hgt(i).

We let Rlft
i = (Rlft∩V (Wi))∪{+∞}, Rrht

i = (Rrht∩V (Wi))∪{−∞}, Clft
i = (Clft∩V (Wi))∪

{−∞} and Crht
i = (Crht ∩ V (Wi)) ∪ {+∞}. Furthermore, we let Si = Clft

i × Crht
i × Rrht

i × Rlft
i .

We are now ready to define the states of our dynamic programming algorithm. For each
valley we will have the following in our dynamic programming states. Firstly, we have a pair
of vertices from each valley, one from the left-side and other from the right-side of the valley.
These two vertices tell us “what” vertices must be guarded (see Figure 8 for an illustration).
Intuitively speaking, we want to guard all the left (resp. right) convex vertices in the valley
that are on or above the left-side (resp. right-side) vertex for this valley in the state of our
dynamic programming table. Additionally, we have a number denoting the height, on or
above which we are allowed to place the guards. Apart from these, we will have a number
k′ ≤ k denoting the number of guards that we are allowed to use in our “partial” solution.

6 We use the convention that −∞ and +∞ are the smallest and largest elements, respectively, which are
added for ease in comparison among vertices of a valley in the dynamic programming routine.
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Figure 8 An intuition of states of our dynamic programming algorithm.

States of the Dynamic Programming Table and their Interpretation. Consider τ =
(τ1, τ2, . . . , τt) ∈ S1×S2× . . .×St, where for i ∈ [t], τi = (pi, p̂i) ∈ Si, h ∈ H, and an integer
k′ ∈ {0, 1, 2, . . . , k}. For each such triple we have an entry in our dynamic programming
table denoted by Π(τ, h, k′). For interpreting Π(τ, h, k′), we will define Γ(τ, h, k′); the goal of
the algorithm will be to compute Π(τ, h, k′), so as to mimic Γ(τ, h, k′), for every triple.

I Definition 23. For τ = (τ1, τ2, . . . , τt) ∈ S1×S2× . . .×St, where for i ∈ [t], τi = (pi, p̂i) ∈
Si, h ∈ H, and an integer k′ ∈ {0, 1, 2, . . . , k}, we have Γ(τ, h, k′) = 1 if and only if there is
a set S ⊆ R of size at most k′ such that the following conditions are satisfied (see Figure 8):
1. All the guards placed are at height at least h. That is, for each v = (x, y) ∈ S, we have

y ≥ h.
2. Each vertex in Clft

i that is pi or above it, is seen by a guard in S. Similarly, each vertex in
Crht

i that is p̂i or above it, is seen by a guard in S. So, for each i ∈ [t] and u ∈ Clft
i ∪ Crht

i ,
such that either fst(i) � u � pi or p̂i � u � lst(i), there is w ∈ S that sees u.

In the above, the set S is called a solution for (τ, h, k′).

Let h∗ = min{y ∈ H}, and τ∗i = (plft
i , p̂

rht
i ), for each i ∈ [t]. (In the above, for i ∈ [t], as

−∞ ∈ Clft
i and +∞ ∈ Crht

i , plft
i and p̂rht

i can never be undefined.) From Proposition 18 we
can obtain that (T, k) is a yes-instance of Discrete Orthogonal Terrain Guarding if
and only if Γ(τ∗1 , τ∗2 , . . . , τ∗t , h∗, k) = 1.

Order of Computation of Entries. We describe the order in which we compute the entries
of our dynamic programming table. We will use a modified form of “lexicographic” ordering
for the table entries as follows. To this end we first describe how we order the vertices in
the “left” and “right” sides of our valleys. For i ∈ [t], the vertices in Clft

i are ordered as per
the ordering given by T , whereas, the vertices in Crht

i are reverse ordered compared to the
ordering given by T . (We need to do the above because when are going down the valley
from right side, the vertices are decreasing.) We order the elements of H in decreasing order
(with +∞ being the first element in this ordering). Finally, the overall ordering is obtained
by using (lexicographic) ordering of H, the ordering of vertices in Clft

i , and the ordering of
vertices in Crht

i , with increasing values of i, and k′ (increasing).
Next we will describe how we (recursively) compute the entries of the table. Consider

τ = (τ1, τ2, . . . , τt) ∈ S1 ×S2 × . . .×St, where for i ∈ [t], τi = (pi, p̂i), h ∈ H, and an integer
k′ ∈ {0, 1, 2, . . . , k}. We compute Π(τ, h, k′) as follows.
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Base Cases. The base cases occur in the following scenariois, applied in the given order.
1. If for each i ∈ [t], we have pi = −∞ and p̂i = +∞, then Π(τ, h, k′) = 1.
2. If k = 0 and for some i ∈ [t], pi 6= −∞ or p̂i 6= +∞, then Π(τ, h, k′) = 0.
3. If h = +∞ and for some j ∈ [t], pj 6= −∞ or p̂j 6= +∞, then Π(τ, h, k′) = 0.

The correctness of the base cases directly follow from their description. Next we describe
the recursive formula for computation of the other entries of our dynamic programming table.

Recursive Formula. Intuitively, we will compute the entry by taking “or” of the solutions
for already computed entries, where the entries we query are based on where and at what
vertices we place the lowest height guards in the partial solution.

Let Ah = {v = (x, y) ∈ R | and y = h}. As Item 1 of Base Case is not applicable, we
need to place at least one guard, thus we can obtain that H 6= ∅. Notice that |Ah| ≤ 2t, as
for each valley, we can have at most two vertices from R that are at height h. For every
A ⊆ Ah, we will compute ρA, which (intuitively speaking) corresponds to the solution S for
(τ, h, k′), where S ∩Ah = A, i.e., A is the set of vertices of guards at height h in the solution.
(We will have ρA = 1 if and only if there is a solution S for (τ, h, k′) such that S ∩Ah = A.)

We remark that h 6= +∞, as the base cases are not applicable. Consider A ⊆ Ah. If some
a ∈ A sees pi, then we let pi[A] be the largest vertex in Clft

i that is not seen by any vertex in A.
(If pi[A] does not exists, it is set to −∞.) Otherwise, no a ∈ A sees pi, and we set pi[A] = pi.
Similarly, if some a ∈ A sees p̂i, we let p̂i[A] be the smallest vertex in Crht

i that is not seen
by any a ∈ A. (If p̂i[A] does not exists, it is set to +∞.) Otherwise, no a ∈ A sees p̂i, and
we set p̂i[A] = p̂i. Let τi[A] = (pi[A], p̂i[A]). Finally, we let τ [A] = (τ1[A], τ2[A], . . . , τt[A]).
Notice that (τ [A], prv(h), k′ − |A|) is smaller in order compared to (τ, h, k), and thus the
entry corresponding to it in our dynamic programming table is already computed. We let
ρA = Π(τ [A], prv(h), k′ − |A|). Finally, we set Π(τ, h, k′) = ∨A⊆Ah

ρA.

I Lemma 24. The recursive formula for computation of the entries is correct.

Proof of Lemma 24. To establish the correctness it is enough to show that Γ(τ, h, k′) = 1 if
and only if there is A ⊆ Ah, such that ρA = Π(τ [A], prv(h), k′ − |A|) = 1.

For the forward direction suppose that Γ(τ, h, k′) = 1, and S ⊆ R be a solution for (τ, h, k′).
We let A∗ = S∩Ah and S∗ = S \A∗. We will show that ρA∗ = Π(τ [A∗], prv(h), k′−|A∗|) = 1.
We will show that Π(τ [A∗], prv(h), k′ − |A∗|) = 1, by proving that S∗ is a solution for
(τ [A∗], prv(h), k′ − |A∗|). As S is a solution for (τ, h, k′), for each v = (x, y) ∈ S, we have
y ≥ h. The above together with the construction of S∗ (and Ah) implies that for each
v = (x, y) ∈ S∗, we have y ≥ prv(h), and |S∗| ≤ k′ − |A∗|. Now it remains to prove Item 2
of Definition 23, to show that S∗ is a solution for (τ [A∗], prv(h), k′ − |A∗|). Consider i ∈ [t].
We will show that for each u ∈ Ci, such that either fst(i) � u � pi[A∗] or p̂i[A∗] � u � lst(i),
there is some s ∈ S∗ that sees u. We will only prove the above statement for the case
when fst(i) � u � pi[A∗]. (We can obtain the proof for the case when p̂i[A∗] � u � lst(i),
by following similar arguments.) Let u = (xu, yu) ∈ Clft

i be the largest vertex such that
fst(i) � u � pi[A∗] and u is not seen by any vertex in S∗. (If such a vertex u does not exist,
then the claim trivially follows.) Since S is a solution for (τ, h, k′) and (by construction)
pi[A∗] ≤ pi, there exists s = (x, h) ∈ S \ S∗ = A∗, such that s sees u. Furthermore, there
is s′ = (x′, y′) ∈ S∗, where h < y′, such that s′ sees pi[A∗]. From the above we can obtain
that all of u, pi[A∗], s, s′ are distinct and u ≺ pi[A∗]. From Observation 19 we have yu ≤ h.
This together with the fact that h < y′ implies that yu < y′. If pi[A∗] ≺ s′, then using
Observation 22 we can conclude that s′ sees u. This contradicts the choice of u that no vertex
in S∗ sees it. Now consider the case when s′ ≺ pi[A∗]. In this case, using Observation 21 we
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can obtain that u ≺ s′ ≺ pi[A∗]. Thus, we have yu ≥ y′. As y′ > h, using Observation 19 we
can obtain a contradiction to the our assumption that s = (x, h) sees u. This concludes the
proof of forward direction.

Now we consider the reverse direction. Consider A∗ ⊆ Ah, such that ρA∗=Π(τ [A∗], prv(h),
k′−|A∗|) = 1, and let S∗ be a solution for (τ [A∗], prv(h), k′−|A∗|). Let S = S∗∪A∗. Clearly,
|S| ≤ k′, and for each v = (x, y) ∈ S, we have y ≥ h. Also, for i ∈ [t], by the construction
of pi[A∗] and p̂i[A∗], and the fact that S∗ is a solution for (τ [A∗], prv(h), k′ − |A∗|), we can
conclude that for each u ∈ Clft

i ∪ Crht
i , such that either fst(i) � u � pi or p̂i � u � lst(i),

there is s ∈ S that sees u. From the above discussions we can obtain that S is a solution for
(τ, h, k′), and thus we have Γ(τ, h, k′) = 1. This concludes the proof. J

Note that t, the number of valleys, is bounded |Min(T )|+ 2. The number of entries in our
dynamic programming table is bounded by n2t+O(1). The entries in our base cases can be
computed in O(1) time. The recursive formula per entry can be computed in time bounded
by 22t · nO(1), as |Ah| ≤ 2t, for each h ∈ H. Thus we obtain the proof of Theorem 2.
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A Remaining Details from Section 3

Proof of Observation 8. Consider the case when v � vi � u � vj . (The other case can be
proved by following similar arguments.) If u = vj , then the claim trivially follows. Thus we
assume that u ≺ vj . Consider u′ ∈ V (C), such that u ≺ u′ � vj . If v = vi−1, then from
Observation 7 it follows that v sees u′. Now we consider the case when v ≺ vi−1. From
Observation 7, vi−1 sees u′, by our assumption v sees u, and we have v ≺ vi−1 ≺ u ≺ u′.
Thus by the Order Claim (Proposition 3) we can conclude that v sees u′. J

Proof of Observation 16. Consider a reflex vertex v in T . By Definition 9, v ∈ V ′. We
show that v is also a reflex vertex of T ′. If v is the first or last vertex of T , then it is also
the first or last vertex of T ′ and therefore is a reflex vertex by definition. Otherwise, v has
two neighbours, say u1 and u2. From Definition 9 we can obtain that u1, u2 ∈ V ′. As the
coordinates of u1, v, u2 in T are the same as that in T ′, we obtain that v is a reflex vertex of
T ′.

Now we show that a vertex v ∈ S1 ∪ S2 ∪ S3 that is a convex vertex in T is also a convex
vertex in T ′. By definition, v cannot be the first or last vertex. Let u1 and u2 be the two
neighbours of v such that u1 ≺ v ≺ u2. If u1, u2 ∈ V ′, then as the coordinates of u1, v, u2
in T are the same as that in T ′, we obtain that v is also a convex vertex in T ′. Otherwise,
let u′1 ∈ V ′ be the closest such vertex to v where u′1 ≺ v. By definition of V ′, such a vertex
exists for all convex vertices v. Notice that it must hold that u′1 � u1 ≺ v. Also by definition
of V ′, if u1 is a reflex vertex then u′1 = u1 and u1 ∈ V ′. Similarly, let u′2 ∈ V ′ be the closest
such vertex to v where v ≺ u′2. By definition of V ′, such a vertex exists for all convex vertices
v. Notice that it must hold that v ≺ u2 � u′2. Again by definition of V ′, if u2 is a reflex
vertex then u′2 = u2 and u2 ∈ V ′. Note that in T ′, u′1 and u′2 are the neighbours of v such
that u′1 ≺ v ≺ u′2. We are in the case that at least one of u1 6= u′1 and u2 6= u′2 holds. If u′1
(u′2) is not a reflex vertex, by construction of V ′ it must belong to the same convex region
as v, u1 (v, u2). By Observation 7, u′1 sees v (u′2 sees v) and therefore u1 lies below or on
the line L̂u′1v (u2 lies below or on the line L̂vu′2

). Now consider ∠u′1vu′2 and ∠u1vu2 made
inside the region bounded by T . It must be the case that ∠u′1vu′2 ≤ ∠u1vu2. Thus, if v was
a convex vertex in T then it means that in the region bounded by T ∠u1vu2 ≤ 180◦. This
implies that in the region bounded by T ′ ∠u′1vu′2 ≤ 180◦, which means that v is a convex
vertex of T ′. J

Proof of Observation 17. For any u, v ∈ S1 ∪ S2 ∪ S3 such the u sees v in T , each w ∈ V ,
such that v ≺ w ≺ u (or u ≺ w ≺ v) must lie below or on the line L̂uv, containing u and v.
In particular, each w ∈ S1 ∪ S2 ∪ S3 such that v ≺ w ≺ u (or u ≺ w ≺ v) must lie below or
on the line L̂uv. Thus we can obtain that u sees v in T ′.
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Consider u, v ∈ S1 ∪ S2 ∪ S3 such the u sees v in T ′. Consider a w ∈ V such that
u ≺ w ≺ v (we can give a symmetric argument for v ≺ w ≺ u). If w ∈ V ′ then it must
lie below or on the line L̂uv. Otherwise, w ∈ V \ V ′ and by construction of V ′, w must
be a convex vertex. Let u1 ∈ V ′ be the closest such vertex to w such that u1 ≺ w in T .
Similarly, let u2 ∈ V ′ be the closest such vertex to w such that w ≺ u2 in T . Note that u, v
are potential candidates for u1 and u2, respectively and that u � u1 ≺ u2 � v in T ′. By
definition of V ′, u1, w, u2 all belong to a convex region C of T . By Observation 7, u1 sees u2
in T . Since u1 ≺ w ≺ u2, w lies below or on the line L̂u1u2 . Coming back to the fact that
u sees v in T ′ and u � u1 ≺ u2 � v, the line segment L̂u1u2 must lie below or on the line
segment L̂uv. Putting everything together, we see that w lies below or on the line segment
L̂uv. Thus, u sees v in T . J

A.1 Extension of Theorem 1 for Continuous Terrain Guarding
Consider an instance (T̂ , k, r) of Continuous Terrain Guarding, where r is the number
of reflex vertices in T . Using the discretization result of Friedrichs et al. (Section 2, [12]), in
polynomial time we can construct a terrain T = (V,E) by sub-dividing (possibly multiple
times) edges of T̂ , and sets X,Y , where V̂ ⊆ X ⊆ Y ⊆ V , such that the following condition
is satisfied: (T, k, r) is a yes-instance of Continuous Terrain Guarding if and only if
there is a set S ⊆ X of size at most k that sees each vertex in Y . Equipped with the above
result, we can adapt our marking schemes to consider only vertices from Y while dealing
with visibilities, and marking only vertices from X for potential guard set. Using this we can
obtain an instance of a restricted (NP-complete) version of Discrete Terrain Guarding
with O(r2) vertices in the terrain. Also by using NP-hardness of Continuous Terrain
Guarding, we can obtain a polynomial kernel for the problem.
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Abstract
We consider the problem of interdicting a directed graph by deleting nodes with the goal of minimizing
the local edge connectivity of the remaining graph from a given source to a sink. We introduce
and study a general downgrading variant of the interdiction problem where the capacity of an arc
is a function of the subset of its endpoints that are downgraded, and the goal is to minimize the
downgraded capacity of a minimum source-sink cut subject to a node downgrading budget. This
models the case when both ends of an arc must be downgraded to remove it, for example. For
this generalization, we provide a bicriteria (4, 4)-approximation that downgrades nodes with total
weight at most 4 times the budget and provides a solution where the downgraded connectivity from
the source to the sink is at most 4 times that in an optimal solution. We accomplish this with an
LP relaxation and rounding using a ball-growing algorithm based on the LP values. We further
generalize the downgrading problem to one where each vertex can be downgraded to one of k levels,
and the arc capacities are functions of the pairs of levels to which its ends are downgraded. We
generalize our LP rounding to get a (4k, 4k)-approximation for this case.
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1 Introduction

Interdiction problems arise in evaluating the robustness of infrastructure and networks. For
an optimization problem on a graph, the interdiction problem can be formulated as a game
consisting of two players: an attacker and a defender. Every edge/vertex of the graph
has an associated interdiction cost and the attacker interdicts the network by modifying
the edges/vertices subject to a budget constraint. The defender solves the problem on the
modified graph. The goal of the attacker is to hamper the defender as much as possible. Ford
and Fulkerson initiated the study of interdiction problems with the maximum flow/minimum
cut theorem [4, 10, 15]. Other examples of interdiction problems include matchings [17],
minimum spanning trees [12, 20], shortest paths [7, 11], st-flows [14, 16, 18] and global
minimum cuts [19, 3].
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5:2 Vertex Downgrading to Minimize Connectivity

Most of the interdiction literature today involves the interdiction of edges while the study
of interdicting vertices has received less attention (e.g.[17, 18]). The various applications
for these interdiction problems, including drug interdiction, hospital infection control, and
protecting electrical grids or other military installations against terrorist attacks, all naturally
motivate the study of the vertex interdiction variant. In this paper, we focus on vertex
interdiction problems related to the minimum st-cut (which is equal to the maximum st-flow
and hence also termed network flow interdiction or network interdiction in the literature).

For st-cut vertex interdiction problems, the set up is as follows. Consider a directed
graph G = (V (G), A(G)) with n vertices, m arcs, an arc cost function c : A(G)→ N, and an
interdiction cost function r : V (G) \ {s, t} → N defined on the set of vertices V (G) \ {s, t}.
A set of arcs F ⊆ A(G) is an st-cut if G\F no longer contains a directed path from s to
t. Define the cost of F as c(F ) = Σe∈F c(e). For any subset of vertices X ⊆ V (G) \ {s, t},
we denote its interdiction cost by r(X) =

∑
v∈X r(v). Let λst(G\X) denote the cost of a

minimum st cut in the graph G\X.

I Problem 1. Weighted Network Vertex Interdiction Problem (WNVIP) and its
special cases. Given two specific vertices s (source) and t (sink) in V (G) and interdiction
budget b ∈ N, the Weighted Network Vertex Interdiction Problem (WNVIP) asks to find
an interdicting vertex set X∗ ⊆ V (G) \ {s, t} such that

∑
v∈X∗ r(v) ≤ b and λst(G\X∗) is

minimum. The special case of WNVIP where all the interdiction costs are one will be termed
NVIP, while the further special case when even the arc costs are one will be termed NVIP
with unit costs.

In this paper, we define and study a generalization of the network flow interdiction problem
in digraphs that we call vertex downgrading. Since interdicting vertices can be viewed
as attacking a network at its vertices, it is natural to consider a variant where attacking a
node does not destroy it completely but partially weakens its structural integrity. In terms of
minimum st-cuts, one interpretation could be that whenever a vertex is interdicted, instead of
removing it from the network we partially reduce the cost of its incident arcs. In this context,
we say that a vertex is downgraded. Specifically, consider a directed graph G = (V (G), A(G))
and a downgrading cost r : V (G) \ {s, t} → N. For every arc e = uv ∈ A(G), there exist four
associated nonegative costs ce, ceu, cev, ceuv, respectively representing the cost of arc e if 1)
neither {u, v} are downgraded, 2) only u is downgraded, 3) only v is downgraded, and 4)
both {u, v} are downgraded. Note that these cost functions are independent of each other
so downgrading vertex v might affect each of its incident arcs differently. However, we do
impose the following conditions: ce ≥ ceu ≥ ceuv and ce ≥ cev ≥ ceuv. These inequalities are
natural to impose since the more endpoints of an arc are downgraded, the lower the resulting
arc should cost. Given a downgrading set Y ⊆ V (G) \ {s, t}, define cY : A(G)→ R+ to be
the arc cost function representing the cost of cutting e after downgrading Y .

u, v /∈ Y u ∈ Y, v /∈ Y u /∈ Y, v ∈ Y u, v ∈ Y

cY (e) = ce ceu cev ceuv

Given a set of arcs F ⊆ A(G), we define cY (F ) = Σe∈F cY (e).

I Problem 2. Network Vertex Downgrading Problem (NVDP). Let G=(V (G), A(G))
be a directed graph with a source s and a sink t. For every arc e = uv, we are given non-
negative costs ce, ceu, cev, ceuv as defined above. Given a (downgrading) budget b, find a set
Y ⊆ V (G) \ {s, t} and an st-cut F ⊆ A(G) such that Σv∈Y r(v) ≤ b and minimizes cY (F ).

While it is not immediately obvious as it is for WNVIP, we can still show that detecting
a zero solution for NVDP is easy.
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I Theorem 1. Given an instance of NVDP on graph G with budget b, there exists a
polynomial time algorithm to determine if there exists Y ⊆ V (G) and an st-cut F ⊆ A(G)
such that Σv∈Y r(v) ≤ b and cY (F ) = 0.

First we present some useful reductions between the above problems.

1. In the NFI (Network Flow Interdiction) problem defined in [4], the given graph is
undirected instead of directed and the adversary interdicts edges instead of vertices.
The goal is to minimize the cost of the minimum st-cut after interdiction. NFI can be
reduced to the undirected version of WNVIP (where the underlying graph is undirected).
Simply subdivide every undirected edge e = uv with a vertex ve. The interdiction cost
of ve remains the same as the interdiction cost of e while all original vertices have an
interdiction cost of ∞ (or a very large number). The cut cost of the edges uve, vev are
equal to the original cost of cutting the edge e.

2. The undirected version of WNVIP can be reduced to the (directed) WNVIP by replacing
every edge with two parallel arcs going in opposite directions. Each new arc has the same
cut cost as the original edge.

3. WNVIP is a special case of NVDP with costs ceu = cev = ceuv = 0 for all e = uv.
The first two observations above imply that any hardness result for NFI in [4] also applies
to WNVIP. Based on the second observation, we prove our hardness results for the (more
specific) undirected version of WNVIP. As a consequence of the third observation, all of
these hardness results also carry over to the more general NVDP.

Our work also studies the following further generalization of NVDP. Every vertex has k
possible levels that it can be downgraded to by paying different downgrading costs. Every arc
has a cutting cost depending on what level its endpoints were downgraded to. More precisely,
for each level 0 ≤ i, j ≤ k, let ri(v) be the interdiction cost to downgrade v to level i and let
ci,j(e) be the cost of cutting arc e = uv if u, v were downgraded to levels i, j respectively.
We assume that 0 = r0(v) ≤ r1(v) ≤ ... ≤ rk(v) since higher levels of downgrading should
cost more and ci,j(e) ≥ ci′,j′(e) if i ≤ i′, j ≤ j′ since the more one downgrades, the easier
it is to cut the incident arcs. Then, given a map L : V (G) → {0, ..., k}, representing
which level to downgrade each vertex to, one can talk about the cost of performing this
downgrading: rL := Σv∈V (G)rL(v)(v), and the cost of a cut F after downgrading according
to L: cL(F ) := Σuv∈F cL(u),L(v)(uv). Now, we can formally define the most general problem
we address.

I Problem 3. Network Vertex Leveling Downgrading Problem (NVLDP). Let G =
(V (G), A(G)) be a directed graph with a source s and a sink t. For every vertex v and
0 ≤ i ≤ k, we have non-negative downgrading costs ri(v). For every arc e = uv and levels
0 ≤ i, j ≤ k, we are given non-negative cut costs ci,j(e). Given a (downgrading) budget b,
find a map L : V (G)→ {0, ..., k} and an st-cut F ⊆ A(G) such that rL ≤ b and minimizes
cL(F ).

Note that when k = 1 we have NVDP.

Related Works
I Definition 2. An (α, β) bicriteria approximation for the interdiction (or downgrading)
problem returns a solution that violates the interdiction budget b by a factor of at most β
and provides a final cut (in the interdicted graph) with cost at most α times the optimal cost
of a minimum cut in a solution of interdiction budget at most b.
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Chestnut and Zenklusen [4] study the network flow interdiction problem (NFI), which is
the undirected and edge interdiction version of WNVIP. NFI is also known to be essentially
equivalent to the budgeted minimum st cut problem [13]. NFI is also a recasting of the
k-route st-cut problem [5, 9], where a minimum cost set of edges must be deleted to reduce
the node or edge connectivity between s and t to be k. The results of Chestnut and
Zenklusen, and Chuzhoy et al. [5] show that an (α, 1)-approximation for WNVIP implies
a 2(α)2-approximation for the notorious Densest k-Subgraph (DkS) problem. The results
of Chuzhoy et al. [5] (Theorem 1.9 and Appendix section B) also imply such a hardness
for NVIP even with unit edge costs. For the directed version, WNVIP is equivalent to
directed NFI (by subdividing arcs or splitting vertices). As noted in [18], there is a symmetry
between the interdicting cost and the capacity on each arc and thus it is also hard to obtain
a (1, β)-approximation for WNVP. Furthermore, Chuzhoy et al. [5] also show that there
is no (C, 1 + γC)-bi-criteria approximation for WNVIP assuming Feige’s Random κ-AND
Hypothesis (for every C and sufficiently small constant γC ). For example, under this
hypothesis, they show hardness of ( 11

10 − ε,
25
24 − ε) approximation for WNVIP.

Chestnut and Zenklusen give a 2(n− 1) approximation algorithm for NFI for any graph
with n vertices. In the special case where the graph is planar, Philips [14] gave an FPTAS
and Zenklusen [18] extended it to handle the vertex interdiction case.

Burch et al. [2] give a (1 + ε, 1), (1, 1 + 1
ε ) pseudo-approximation algorithm for NFI. Given

any ε > 0, this algorithm returns either a (1 + ε)-approximation, or a solution violating the
budget by a factor of 1 + 1

ε but has a cut no more expensive than the optimal cost. However,
we do not know which case occurs a priori. In this line of work, Chestnut and Zenklusen [3]
have extended the technique of Burch et al. to derive pseudo-approximation algorithms
for a larger class of NFI problems that have good LP descriptions (such as duals that are
box-TDI). Chuzhoy et al. [5] provide an alternate proof of this result by subdividing edges
with nodes of appropriate costs.

Our Contributions
1. We define and initiate the study of multi-level node downgrading problems by defining the

Network Vertex Leveling Downgrading Problem (NVLDP) and provide the first results
for it. This problem extends the study in [18] of the vertex interdiction problem so as to
consider a richer set of interdiction functions.

2. For the downgrading variant NVDP, we show that the problem of detecting whether
there exists a downgrading set that gives a zero cost cut can be solved in polynomial
time. (Section 2)

3. We design a new LP rounding approximation algorithm that provides a (4, 4)-approxima-
tion to NVDP. We use a carefully constructed auxiliary graph so that the level-cut
algorithm based on ball growing for showing integrality of st-cuts in digraphs (See.
e.g. [6]) can be adapted to choose nodes to downgrade and arcs to cut based on the LP
solution. (Section 3)

4. For the most general version NVLDP with k levels of downgrading each vertex and k2

possible downgraded costs of cutting an edge, we generalize the LP rounding method for
NVDP to give a (4k, 4k)-approximation. The direct extension of the NVDP rounding to
this case only gives an O(k2) approximation. However, we exploit the sparsity properties
of a vertex optimal solution to our LP formulation to improve this guarantee to match
that for the case of k = 1. Details are in the full version [1].

5. As noted before, many previous works showed hardness in obtaining a unicriterion
approximation for WNVIP, which motivates the focus on finding bicriteria approximation
results. We push the hardness result further to show that it is also “DkS hard” to obtain a
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(1, β)-approximation for NVIP and NVIP with unit costs even in undirected graphs. Note
that this is in sharp contrast to the edge interdiction case. NFI in undirected graphs with
unitary interdiction cost and unitary cut cost can be solved by first finding a minimum
cut and then interdicting b edges in that cut [19]. Details are in the full version [1].

6. Burch et al. [2] gave a polynomial time algorithm that finds a (1 + 1/ε, 1) or (1, 1 +
ε)-approximation for any ε > 0 for WNVIP in digraphs. This was reproved more
directly by Chuzhoy et al [5] by converting both interdiction and arc costs into costs on
nodes. We show that this strategy can also be extended to give a simple (4, 4(1 + ε))-
bicriteria approximation for the multiway cut generalization in directed graphs and a
(2(1 + ε) ln k, 2(1 + ε) ln k)-approximation for the multicut vertex interdiction problem in
undirected graphs, for any ε > 0, where k is the number of terminal nodes in the multicut
problem. Details are in the full version [1].

2 Detecting Zero in NVDP in Polynomial Time

In this section, we provide an algorithm to detect, in a given instance of NVDP, whether
there exists nodes to downgrade such that the downgrading cost is less than the budget and
the min cut after downgrading is zero, and hence prove Theorem 1.

In order to demonstrate the main idea of the proof, we first work on a special case of
NVDP. Suppose for every arc e = uv, ce = ceu = cev = 1 and ceuv = 0. In other words, every
arc is unit cost and requires the downgrading of both ends in order to reduce the cost down
to zero. For every vertex v ∈ V (G), we assume the interdiction cost r(v) = 1. We call this
the Double-Downgrading Network Problem (DDNP). We first prove the following.

I Lemma 3. Given an instance of DDNP on graph G with budget b, there exist a polynomial
time algorithm to determine if there exists Y ⊆ V (G) and an st-cut F ⊆ A(G) such that
|Y | ≤ b and cY (F ) = 0.

Proof. Let X ⊆ V (G) be a minimum set of vertices to downgrade such that the resulting
graph contains a cut of zero cost. Let F be the set of arcs in the graph induced by X (i.e.,
with both ends in X). Note that F are the only arcs with cost zero and hence F is an arc
cut in G. Furthermore, since X is optimal, X is the set of vertices incident to F (there
are no isolated vertices in the graph induced by X). Let Vs, Vt be the set of vertices in the
component of G\F that contains s, t respectively.

Consider the graph G2 where we add arc uv to G if there exists w ∈ V (G) such that
uv, vw ∈ A(G). First we claim that X is a vertex cut in G2. Suppose there is an st path in
G2 \X where the first arc crossing over from Vs to Vt is uv. Note that any such u ∈ Vs \X
and v ∈ Vt \X are distance 3 apart and hence do not have an arc between them in G2, a
contradiction.

Given any vertex cut Y in G2, we claim that downgrading Y in G creates an st-cut of
zero cost, by deleting the arcs induced by Y from G. Suppose for a contradiction there is an
st-path after downgrading Y and deleting the zero-cost arcs induced by Y . Then the path
cannot have two consecutive nodes in Y . Let y ∈ Y be a single node along the path with
neighbors y−, y+ 6∈ Y . Note that (y−, y+) ∈ G2, and shortcutting over all such single node
occurrences from Y in the path gives us an st-path in G2 \ Y , a contradiction.

This proves that a minimum size downgrading vertex set Y in G whose downgrading
produces a zero-cost st-cut is also a minimum vertex-cut in G2. Then, one can check if
a zero-cut solution exists with budget b for DDNP by simply checking if the minimum
vertex-cut in G2 is at most b. J
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A0

Al0

A0r

Al0r

A1

Added arcs

Figure 1 Example of Added Arcs in H.

Now, to prove Theorem 1, we have to slightly modify the graph G and the construction
of G2 in order to adapt to the various costs. Our goal is still to look for a minimum vertex
cut in an auxiliary graph using r(v) as vertex cost.

Proof. Given an instance of NVDP on G with a budget b, vertex downgrading costs r(v)
and arc costs ce, ceu, cev, ceu, consider the following auxiliary graph H. First, we delete any
arc e where ce = 0 since they are free to cut anyways. For every arc e = uv where ceuv > 0,
subdivide e with a vertex te and let r(te) =∞. In some sense, since ce, ceu, cev ≥ ceuv > 0,
downgrading u, v cannot reduce the cost of e to zero. Then, we should never be allowed
to touch the vertex te. Let T be the set of all newly-added subdivided vertices. To finish
constructing H, our next step is to properly simulate H2.

We classify arcs into five types based on which of its costs are zero. Note that we no
longer have any arcs where ce = 0. Let A0 := {e = uv : ceu = cev = ceuv = 0}, the arcs where
downgrading either ends reduce its cost to zero. Let Al0 := {e = uv : ceu = ceuv = 0, cev >
0}, A0r := {e = uv : cev = ceuv = 0, ceu > 0}, Al0r := {e = uv : ceuv = 0, ceu, cev > 0}
respectively represent arcs that require the downgrading of its left tail, its right head, or
both in order to reduce its cost. Let A1 be all remaining arcs, those incident to the newly
subdivided vertex te. Now, for every path uvw of length two, we consider adding the arc uw
based on the following rules (see Figure 1 for example of newly added arcs):

If v /∈ T

Add uw? vw ∈

uv ∈ A0 Al0 A0r Al0r A1

A0 No No No No No
Al0 No No Yes Yes Yes
A0r No No No No No
Al0r No No Yes Yes Yes
A1 No No Yes Yes Yes

If v = te ∈ T , do not add uw

The idea is similar to the proof for DDNP. If uv, vw ∈ Al0r, downgrading v is not enough
to cut uv, vw for free. Thus we add arc uw to keep the connectivity. If uv ∈ A0r, then
downgrading v should reduce the cost of uv to 0. Thus, we do not want to bypass v by
adding an arc uw. If v = te ∈ T , since r(v) has high cost, we never cut it so we do not need
to strengthen the connectivity by adding arcs uw.
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Let (X,F ) be a solution to NVDP where Σv∈Xr(v) is minimum, F is an st-cut and
cX(F ) = 0. Let Vs be all vertices connected to s in G\F . We claim that X is a vertex cut in
H. Suppose not and there exists an st-path in H and let uv be the first arc of the path leaves
Vs. If v = te ∈ T , then arc e ∈ F , contradicting cX(F ) = 0. If uv ∈ A(G), then uv ∈ F .
Since u, v /∈ X, cX(uv) > 0, a contradiction. If uv is a newly added arc, then there exist
v′ ∈ V (G) such that uv′v is a path in G. By definition, Vs ∩ T = ∅ so u, v /∈ T . Then, there
are only four cases where we add arc uw to create H. In all cases, downgrading v′ does not
reduce the cost of uv′′, v′v to 0. Since at least one of uv′, v′v ∈ F , it contradicts cX(F ) = 0.

Given a minimum vertex cut Y in H, we claim downgrading Y in G creates an st-cut of
zero cost. Note that Y ∩ T = ∅ since any vertex in T is too expensive to cut. Suppose for a
contradiction there is an st-path P that does not cross an arc with cost 0 after downgrading Y .
Let P ′ be the corresponding path in H. If P contains two consecutive vertices u, v ∈ Y , then
ceuv > 0 and it would have been subdivided. This implies there are no consecutive vertices
of Y in P ′. Let uvw be a segment of P ′ where v ∈ Y . Since downgrading v does not reduce
its incident arcs to a cost of 0, it follows that uv ∈ Al0 ∪Al0r ∪A1 and vw ∈ A0r ∪Al0r ∪A1.
Then it follows that uw ∈ A(H). Then, every vertex v ∈ Y ∩ V (P ′) can be bypassed, a
contradiction.

This implies a minimum vertex cut in H is a downgrading set that creates a zero-cost
cut in G. Then, by checking the min-vertex cut cost of H, we can determine whether a
zero-solution exists for G with budget b. J

3 Approximating Network Vertex Downgrading Problem (NVDP)

As an introduction and motivation to the LP model and techniques used to solve NVLDP,
in this section, we focus on the special case NVDP, where there is only one other level to
downgrade each vertex to. Our main goal is to show the following theorem.

I Theorem 4. There exists a polynomial time algorithm that provides a (4, 4)-approximation
to NVDP on an n-node digraph.

3.1 LP Relaxation and Rounding
LP Model for Minimum st-cut. To formulate the NVDP as a LP, we begin with the
following standard formulation of minimum st-cuts [8].

min
∑

e∈A(G)

c(e)xe

s.t. dv ≤ du + xuv ∀uv ∈ A(G) (1)
ds = 0, dt ≥ 1
xuv ≥ 0 ∀uv ∈ A(G) (2)

An integer solution of this problem can be seen as setting d to be 0 for nodes in the s shore
and 1 for nodes in the t shore of the cut. Constraints (1) then insist that the x-value for
arcs crossing the cut to be set to 1. The potential dv at node v can also be interpreted as
a distance label starting from s and using the nonnegative values xuv as distances on the
arcs. Any optimal solution of the above LP can be rounded to an optimal integer solution of
no greater value by using the x-values on the arcs as lengths, growing a ball around s, and
cutting it at a random threshold between 0 and the distance to t (which is 1 in this case).
The expected cost of the random cut can be shown to be the LP value (See e.g., [6]), and
the minimum such ball can be found efficiently using Dijkstra’s algorithm. Our goal in this
section is to generalize this formulation and ball-growing method to NVDP.
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One difficulty in NVDP comes from the fact that every arc has four associated costs and
we need to write an objective function that correctly captures the final cost of a chosen cut.
One way to overcome this issue is to have a distinct arc associated with each cost. In other
words, for every original arc uv ∈ A(G), we create four new arcs [uv]0, [uv]1, [uv]2, [uv]3 with
cost ce, ceu, ceuv, cev respectively. Then, every arc has its unique cost and it is now easier to
characterize the final cost of a cut. We consider the following auxiliary graph. See Figure 2.

u v w

e = uv f = vw

= (uv)0

(uv)2(uv)1 (uv)3 (vw)1 (vw)2 (vw)3

= (vw)4

(uu) (vv) = (uv)4

= (vw)0

(ww)

[uv]0 [uv]1 [uv]2 [uv]3 [vw]0 [vw]1 [vw]2 [vw]3

Vertices

Arcs

Vertices

Arcs

H

G

Costs Downgrading

Cut

r(u) r(v) r(w)

ce ceu ceuv cev cf cfv cfvw cfw

DLP Downgrading

Potential

Cut

yu yv yw

d(uv)0 d(uv)1 d(uv)2 d(uv)3 d(vv) d(vw)1 d(vw)2 d(vw)3 d(vw)4

x[uv]0 x[uv]1 x[uv]2 x[uv]3 x[vw]0 x[vw]1 x[vw]2 x[vw]3

V 0

V 1

Figure 2 Construction of the auxiliary graph H.

Constructing the Auxiliary Graph H

Let V (H) = V 0(H) ∪ V 1(H) where V 0(H) = {(vv) : v ∈ V (G)} and V 1(H) = {(uv)i :
uv ∈ A(G), i = 1, 2, 3}. Define A(H) = {[uv]0 = (uu)(uv)1, [uv]1 = (uv)1(uv)2, [uv]2 =
(uv)2(uv)3, [uv]3 = (uv)3(vv) : uv ∈ A(G)}. Essentially, the vertices (uu) ∈ V 0(H) corre-
spond to the original vertices u ∈ V (G) and for every arc uv ∈ A(G), we replace it with a path
(uu)(uv)1(uv)2(uv)3(vv) where the four arcs on the path are [uv]0, [uv]1, [uv]2, [uv]3. For
convenience and consistency in notation, we define (uv)0 := (uu), (uv)4 := (vv). Note that
the vertices of H will always be denoted as two lowercase letters in parenthesis while arcs in H
will be two lowercase letters in square brackets with subscript i = 0, 1, 2, 3. The cost function
c : A(H) → R≥0 is as follows: c([uv]0) = ce, c([uv]1) = ceu, c([uv]2) = ceuv, c([uv]3) = cev.
Since we can only downgrade vertices in V 0, to simplify the notation, we retain r(v) as the
cost to downgrade vertex (vv) ∈ V 0. Note that |V (H)| = 3|A(G)|+ |V (G)| = O(n+m).

Downgrading LP

Given the auxiliary graph H, we can now construct an LP similar to the one for st-
cuts. For vertices (vv) ∈ V 0(H) corresponding to original vertices of G, we define a
downgrading variable yv representing whether vertex v is downgraded or not in G. For every
arc [uv]i ∈ A(H), we have a cut variable x[uv]i to indicate if the arc belongs in the final
cut of the graph. Lastly for all vertices (uv)i ∈ V (H), we have a potential variable d(uv)i
representing its distance from the source (ss).
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The idea is to construct an LP that forces s, t to be at least distance 1 apart from each
other as before. This distance can only be contributed from the arc variables x[uv]i . The
downgrading variables yv imposes limits on how large these distances x[uv]i of some of its
incident arcs can be. The motivation is that the larger yu and yv are, the more we should
allow arc [uv]2 to appear in the final cut over the other arcs [uv]0, [uv]1, [uv]3 in order to
incur the cheaper cost of ceuv. We consider the following downgrading LP henceforth called
DLP.

Figure 2 includes the list of variables associated with H. In the LP, our objective is to
minimize the cost of the final cut. Constraint (3) corresponds to the budget constraint for the
downgrading variables. Constraint (4) is analogous to Constraint (1) in the LP for min-cuts.

Constraint (5) relates cut and downgrade variables. If we do not consider any constraint
related to downgrading variables for a moment, the LP will naturally always want to choose
the cheapest arc [uv]2 over [uv]0, [uv]1, [uv]3 when cutting somewhere between (uu) and (vv).
However, the cut should not be allowed to go through [uv]2 if one of u, v is not downgraded.
In other words x[uv]2 should be at most the minimum of yu, yv. This reasoning gives the
constraint x[uv]2 , x[uv]3 , x[vw]1 and, x[vw]2 all need to be ≤ yv for in-arcs uv and out-arcs vw.
Now consider an arc f = vw ∈ E(G). In an integral solution, if v is downgraded, the arc
vw incurs a cost of either cfv or cfvw but not both, since v must lie on one side of the cut.
This translates to a LP solution where only one of the arcs [vw]1, [vw]2 is in the final cut.
Thus, a better constraint to impose is x[vw]1 + x[vw]2 ≤ yv. We can also similarly insist that
x[uv]2 +x[uv]3 ≤ yv for in-arcs uv. To push this even further, consider a path uvw in G. In an
integral solution, at most one of the arcs uv, vw appears in the final cut. This implies that if
v is downgraded, then only one of the costs cev, ceuv, cfv, cfvw is incurred. This corresponds
to the tighter constraint (5). Note that for every vertex v ∈ V (G), for every pair of incoming
and outgoing arcs of v, we need to add one such constraint. Then for every vertex in G, we
potentially have to add up to n2 many constraints. In total, the number of constraints would
still only be O(n3). The last few constraints in DLP make sure s and t are 1 distance apart
and cannot themselves be downgraded. The final LP relaxation is given below.

min
∑

[uv]i∈A(H)

c([uv]i)x[uv]i

s.t.
∑

(vv)∈V 0(H)

r(v)yv ≤ b (3)

d(uv)i+1 ≤ d(uv)i + x[uv]i ∀arc [uv]i, 0 ≤ i ≤ 3 (4)
x[uv]2 + x[uv]3 + x[vw]1 + x[vw]2 ≤ yv ∀ path (uv)3(vv)(vw)1 (5)
d(ss) = 0, d(tt) = 1, ys = 0, yt = 0

The following lemmas shows the validity of our defined DLP for NVDP.

I Lemma 5. An optimal solution to NVDP provides a feasible integral solution to DLP with
the same cost.

Proof. Given a digraph G with cost functions ce, ceu, cev, ceuv, a source s and a sink t, let
Y ⊆ V (G), F ⊆ A(G) be an optimal solution to NVDP where r(Y ) ≤ b, F is an st-cut
and cY (F ) is minimum. Then, a feasible solution (x, y, d) to DLP on the graph H can be
constructed as follows:

For the cut variables x, let
x[uv]0 = 1 if uv ∈ F and u, v /∈ Y , 0 otherwise,
x[uv]1 = 1 if uv ∈ F and u ∈ Y, v /∈ Y , 0 otherwise,
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x[uv]2 = 1 if uv ∈ F, u, v ∈ Y , 0 otherwise,
x[uv]3 = 1 if uv ∈ F, u /∈ Y, v ∈ Y , 0 otherwise.

For the downgrading variables y, let yu = 1 if u ∈ Y , 0 otherwise.
For the potential variables d, let d[uv]i = 0 if [uv]i ∈ S and 1 otherwise,

where we define S, T as follows. Let F ∗ be the set of arcs in H whose x variable is 1. We
claim that F ∗ is an st-cut in H. Note that every st-path Q in H corresponds to an st-path
P in G. Then, there is an arc uv in P that is also in F . Then, it follows from construction
that the x value for one of [uv]0, [uv]1, [uv]2, [uv]3 is 1 and thus there exists i = 0, 1, 2, 3 such
that [uv]i ∈ F ∗. Note that [uv]i is also in Q. Therefore F ∗ is an st-cut in H. Then, let S be
the set of vertices in H\F ∗ that is connected to the source s and let T = V (H)\S.

Note that by construction, (x, y, d) is integral and is a feasible solution to DLP. The final
objective value Σ[uv]i∈A(H)c([uv]i)x[uv]i = Σ[uv]i∈F∗c([uv]i) and by construction, it matches
the cost cY (F ∗). J

I Lemma 6. An integral solution (x∗, y∗, d∗) to DLP with objective value c∗ corresponds to
a feasible solution (Y ∗, E∗) to NVDP such that cY ∗(E∗) ≤ c∗.

Proof. Given a directed graph G and its auxiliary graph H, let (x∗, y∗, d∗) be an optimal
integral solution to DLP with an objective value of c∗. Let F ∗ ⊆ A(H) be the set of arcs
whose x∗ value is 1. Let Y ∗ ⊆ V 0(H) whose y value is 1. Let E∗ ⊆ A(G) = {uv ∈ A(G) :
[uv]i ∈ F ∗ for some i = 0, 1, 2, 3} be the set of original arcs of those in F ∗.

Note that by construction, Y ∗ does not violate the budget constraint. Every st-path in
G corresponds directly to an st-path in H. Since F ∗ is an st-cut in H, it follows that E∗ is
an st-cut in G. Then it remains to show that c∗ ≥ cY ∗(E∗).

Note that

c∗ = Σ[uv]i∈A(H)c([uv]i)x∗[uv]i = Σe=uv∈A(G)cex
∗
[uv]0 + ceux

∗
[uv]1 + ceuvx

∗
[uv]2 + cevx

∗
[uv]3 .

Meanwhile, note that cY ∗(E∗) = Σe=uv∈A(G)c
Y ∗(e). Thus, it suffices to prove the following

claim.

B Claim 7. For every arc e = uv ∈ A(G), Σ3
i=0c([uv]i)x∗[uv]i ≥ c

Y ∗(e).

First, note that if e = uv /∈ E∗, then cY ∗(e) = 0 by definition fo E∗. Then, the inequality
is trivially true. Thus, we may assume uv ∈ E∗ which implies there exist i = 0, 1, 2, 3 such
that [uv]i ∈ F ∗ and x∗[uv]i = 1. We will now break into cases depending on whether u, v ∈ Y ∗.

Suppose u, v /∈ Y ∗. Then, y∗u = y∗v = 0 and by constraint (5) in DLP, it follows that the ∗x
value for [uv]1, [uv]2, [uv]3 are all 0. Then, [uv]0 ∈ F ∗ and Σ3

i=0c([uv]i)x∗[uv]i = ce = cY
∗(e).

Now, assume u ∈ Y ∗, v /∈ Y ∗. By constraint (5), x∗[uv]2 + x∗[uv]3 ≤ y∗v = 0 and thus
only the x∗ value for [uv]0, [uv]1 can be 1. Since we have an integral solution, it follows
that x∗[uv]0 + x∗[uv]1 ≥ 1, since e ∈ E∗. Note that ce ≥ ceu. Then Σ3

i=0c[uv]ix
∗
[uv]i =

cex
∗
[uv]0 + ceux

∗
[uv]1 ≥ ceu(x∗[uv]0 + x∗[uv]1) ≥ ceu = cY

∗(e). Note that a similar argument can
be made for the case when u /∈ Y ∗, v ∈ Y ∗.

Lastly, assume both u, v ∈ Y ∗. Then cY ∗(e) = ceuv. Note that ce, ceu, cev ≥ ceuv. Then,
Σ3
i=0c([uv]i)x∗[uv]i ≥ Σ3

i=0ceuvx
∗
[uv]i ≥ ceuv. The last inequality is due to the fact that there

exists i = 0, 1, 2, 3 such that [uv]i ∈ F ∗. This completes the proof of claim and thus also our
lemma. J
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Bicriteria Approximation for NVDP

We now prove Theorem 4. We will work with an optimal solution of DLP defined on the
auxiliary graph H. The idea is to use a ball-growing algorithm that greedily finds cuts
until one with the promised guarantee is produced. The reason this algorithm is successful
is proved by analyzing a randomized algorithm that picks a number 0 ≤ α ≤ 1 uniformly
at random and chooses a cut at distance α from the source s. Then we choose vertices
to downgrade and arcs to cut based on arcs in this cut at distance α. By computing the
expected downgrading cost and the expected cost of the cut arcs, the analysis will show the
existence of a level cut that satisfies our approximation guarantee.

To achieve the desired result, we cannot work with the graph H directly. This is because
the ball-growing algorithm works only if the probability of cutting some arc can be bounded
within some range. This bound exists for the final cut arcs (as in the proof for st-cuts) but
not for the final downgraded vertices. Consider a vertex v; it is downgraded if any arc of the
form [uv]2, [uv]3, [vw]1, [vw]2 is cut in H. Thus it has the potential of being cut anywhere
between the range of the vertices (uv)2 and (vw)3. We would like to use Constraint (5) to
bound this range but we cannot do this directly since we do not know the length of the
arc [vw]0 which also lies in this range. To circumvent this difficulty and properly employ
Constraint (5), we will construct a reduced graph H ′ obtained by contracting some arcs.

Let (x∗, y∗, d∗) be an optimal solution to DLP where the optimal cost is c∗. It follows
from the validity of our model that c∗ is at most the cost of an optimal integral solution.

Constructing Graph H ′

For every arc uv ∈ A(G), we compare the value x∗[uv]0 and x∗[uv]1 + x∗[uv]2 + x∗[uv]3 . The
reason we separate this way is because the variables in the second term are influenced by the
downgrading values on u, v. Thus the more we downgrade u and v, the larger we are allowed
to increase the second sum, and the more length we can place between u and v in these
variables. For an arc uv ∈ A(G), if x∗[uv]0 < x∗[uv]1 + x∗[uv]2 + x∗[uv]3 , we say uv is an aided arc
since the majority of its length is contributed by the downgrading values on the u, v and
thus the downgrading values help to generate its length. For all other arcs, we say uv is an
unaided arc since more of its length would be contributed by the arc [uv]0, corresponding
to simply paying for the original cost of deletion ce without the aid from downgrading. To
construct H ′, if uv is an aided arc, then contract [uv]0. Otherwise, contract [uv]1, [uv]2, [uv]3.

Consider a path P = (uv)0(uv)1(uv)2(uv)3(uv)4 in H. Note that the length of this path
is shortened in H ′ depending on whether uv is an aided/unaided arc. However, since we
always retain the larger of x∗[uv]0 and x∗[uv]1 + x∗[uv]2 + x∗[uv]3 in H ′, the path’s length is at
most halved. Then it follows that the distance between any two vertices in H ′ is reduced to
at most half its original value in H. In particular, it follows that the shortest path between
the source and the sink is at least 1/2. This property will be crucial in arguing that the
solution chosen by our algorithm has low cost relative to the LP optimum.

We make one last adjustments to the weight of aided arcs. Let D∗((uv)i) be the shortest
path distance from the source (ss) to the vertex (uv)i viewing x∗ as lengths in H ′. Consider
a path [uv]1[uv]2[uv]3 of an aided arc. Note that the distances of nodes (uu), (uv)2, (uv)3 are
strictly increasing but D∗((vv)) might be strictly less than D∗((uv)3) (e.g. via an alternate
shorter path to (vv) avoiding (uu)). In fact D∗((vv)) might even be smaller than D∗((uu)).
This makes the analysis of the usage of arcs of the form [uv]i in the cutting procedure difficult.
To avoid this difficulty, for any aided arcs uv where D∗((vv)) < D∗((uu)), replace the path
[uv]1[uv]2[uv]3 with a single dummy arc. Then we redefine a new weight variable x′: for every
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aided arc uv, where 0 ≤ D∗((vv))−D∗((uu)) < Σ3
i=1x

∗
[uv]i , let x

′
[uv]i = x∗[uv]i

D∗((vv))−D∗((uu))
Σ3
i=1x

∗
[uv]i

.
The weight of all dummy arcs are 0. For all other arcs, the x′ variables stay the same. This
step guarantees that for all aided arcs that have not been replaced by dummy arcs, the
distances of (uu), (uv)2, (uv)3, (vv) are in non-decreasing order. For those that have been
replaced by the dummy arc, we will ensure that these arcs do not occur in any cut chosen in
our algorithm. Two important things to keep in mind: x′ ≤ x∗ for any arc while the distance
of any vertex from the source remains unchanged. In particular D∗((tt)) remains at least
1/2. Our ball growing algorithm uses the modified distances x′.

Algorithm 1 Ball-Growing Algorithm for NVDP.

Require: a graph G and its auxiliary graph H ′ with non-negative arc-weights x′[uv]i , source
(ss), sink (tt), arc cut costs c([uv]i) and vertex downgrading costs r(v)

Ensure: a vertex set V ′ and an arc cut E′ of G such that Σv∈V ′r(v) ≤ 4b, cV ′(E′) ≤ 4c∗
1: initialization V = {(ss)}, D((uv)i) = 1 for all (uv)i ∈ V (H ′)
2: repeat
3: let X ′ ⊆ A(H ′) be the cut induced by V
4: find [uv]i = (uv)i(uv)i+1 ∈ X ′ minimizing D((uv)i) + x′[uv]i
5: update by adding (uv)i+1 to V , update D((uv)i+1) = D((uv)i) + x′[uv]i
6: let E′ = {uv ∈ A(G) : {[uv]0, [uv]1, [uv]2, [uv]3} ∩ X ′ 6= ∅} and V ′ = {v ∈ V (G) :

{[uv]2, [uv]3, [vw]1[vw]2} ∩X ′ 6= ∅ for some u,w ∈ V (G)}
7: until Σv∈V ′r(v) ≤ 4b and cV ′(E′) ≤ 4c∗
8: output the set V ′, E′

Algorithm 1 is simply a restatement of Dijkstra’s algorithm run on H ′. It follows the
general ball-growing technique and looks at cuts X ′ at various distances from the source.
Note that the algorithm adds at least one vertex to a node set V at each iteration so it runs
for at most |V (H ′)| = O(m) steps when applied to the graph H ′ (Recall that m denotes the
number of arcs in the original graph G).

At each iteration, the algorithm computes a cut X ′ ⊆ A(H ′) and considers the set E′
of original arcs associated to those in X ′ and the vertex set V ′ representing the set of
vertices we should downgrade based on the arcs in X ′. For example, if [uv]2 ∈ X ′, then we
should downgrade both u and v. Note that every chosen cut only contains arcs [uv]i where
D((uv)i) ≤ D((uv)i+1) so they do not contain any dummy arcs. Thus we can essentially
ignore dummy arcs in accounting for the cost of the chosen cut. Furthermore, since X ′ is a
cut in H ′, it follows that E′ is a cut in G.

To argue the validity of the algorithm, we show that there exists a cut X ′ at some distance
α ≤ D(tt) from the source such that the associated sets V ′, E′ provides the approximation
guarantee.

I Lemma 8. There exists X ′, V ′, E′ such that Σv∈V ′r(v) ≤ 4b, cV ′(E′) ≤ 4c∗

The main idea of the proof is to pick a distance uniformly at random between zero and
the distance of (tt) (which is at least half) and study the cut at that distance. We claim
that the extent to which an arc is cut (chosen in E′ above) in the random cut is at most
twice its x∗-value, using the fact that the range of this arc is at most its x∗-value and the
range of the cutting threshold is at least half. When nodes are chosen in the random cut
(in V ′ above) to be downgraded, we argue that the range of cutting any node is at most
the maximum of the values in the left hand side of the constraints (5) corresponding to this
node, which in turn is at most its y∗-value. Again, since the range of the cutting threshold
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is at least half, we infer that the probability of downgrading a node in the cutting process
is at most twice its y∗-value. To obtain a cut where we simultaneously do not exceed both
bounds, we use Markov’s inequality to argue a probability of at least half of being within
twice these respective expectations, hence giving us a single cut with both bounds within
four times their respective LP values. The detailed proof follows.

Proof of Lemma 8. Let D((uv)i) be the shortest-path distance from the source (ss) to any
vertex (uv)i ∈ V (H ′) viewing the x′ variables as lengths. Note that D((tt)) ≥ 1/2 since the
original distance is at least 1 and H ′ reduces the distance by at most 1/2. Note that the
triangle-inequality holds under this distance metric where D((uv)i)−D((u′v′)i′) is at most
the distance between (uv)i and (u′v′)i′ .

Defining the Random Variables. Let α be chosen uniformly at random from the interval
[0, D((tt))]. Consider Xα := {[uv]i ∈ A(H ′) : D((uv)i) ≤ α < D((uv)i+1)}, the cut at
distance α in H ′. Let Eα = {uv ∈ A(G) : [uv]i ∈ Xα for some i = 0, 1, 2, 3}, representing the
original arcs corresponding to those in Xα. Let Vα = {v ∈ V (G) : {[uv]2, [uv]3, [vw]1, [vw]2}∩
Xα 6= ∅ for some u,w ∈ V (G)}, representing the set of vertices we should downgrade so
that the final cost of the arcs Eα matches the cost associated to Xα. More precisely, we
want cVα(Eα) = Σ[uv]i∈Xαc([uv]i). Note that by construction Eα is an st-cut in G. Let
V = Σv∈Vαr(v), E = cVα(Eα). Our goal is to show that these two random variables V, E have
low expectations and obtain our approximation guarantee using Markov’s inequality. In
particular, we will prove that E[V] ≤ 2b, and that E[E ] ≤ 2c∗ where c∗ is the optimal value
of DLP.

To understand E , for every arc e = uv ∈ A(G), we introduce the indicator variables Ee
to be 1 if arc e ∈ Eα and 0 otherwise. Then E = Σe∈A(G)EecVα(e). To study the value of
EecVα(e), we can break into several cases depending on which arc [uv]i ∈ Xα. Note that if
[uv]i /∈ Xα for i = 0, 1, 2, 3, then e /∈ Eα and EecYα(e) = 0. Next, if we assume [uv]i ∈ Xα,
then one can check that cVα(e) ≤ c([uv]i) as in the proof of Claim 7.

Slightly abusing the notation, define the indicator variable E[uv]i for arc [uv]i ∈ A(H) to
be 1 if [uv]i ∈ Xα and 0 otherwise. Then, we can upper-bound the expectation of E using
conditional expectations of the events E[uv]i = 1 as follows.

E[E ] =Σe∈A(G)E[EecVα(e)]
=Σe∈A(G)Σ3

i=0E[cVα(e)|E[uv]i = 1] · Pr[E[uv]i = 1]
≤Σe∈A(G)Σ3

i=0c([uv]i)Pr[E[uv]i = 1]

To understand the probability of E[uv]i = 1, note that an arc [uv]i ∈ Xα if and only if
D((uv)i) ≤ α < D((uv)i+1). Then, Pr[[uv]i ∈ Xα] ≤ (D((uv)i+1) − D((uv)i)/D((tt)) ≤
2x′[uv]i ≤ 2x∗[uv]i since D((tt)) ≥ 1/2. Combining with the previous inequalities, we see that

E[E ] ≤Σuv∈A(G)Σ3
i=0c([uv]i)Pr[E[uv]i = 1]

≤Σuv∈A(G)Σ3
i=0c([uv]i)2x∗[uv]i = 2c∗.

Next, we show a similar result for V. Note that E[V] = Σv∈V (G)r(v) · Pr[v ∈ Vα].
Recall that v ∈ Vα if and only if there exists a vertex u or w such that at least one of
[uv]2, [uv]3, [vw]1, [vw]2 ∈ Xα. Note that if uv is an unaided arc, then [uv]2, [uv]3 would
have been contracted in H ′ and would never be chosen in Xα. If uv is an aided arc that
was turned into a dummy arc, it would also never be chosen in the final cut. Therefore,
we only need to consider aided arcs that have not been turned into dummy arcs. In order
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to upper-bound the probability of choosing v into Vα, we thus need to find the range of
possible α that might affect v. For any vertex v ∈ V (G), it follows that we only need to
examine aided arcs incident to the vertex v. Let u ∈ V (G) such that uv ∈ A(G), uv is
an aided arc and D((uv)2) is minimum. Let w ∈ V (G) such that vw is an aided arc and
D((vw)3) is maximum. Note that for any aided arcs zv, vz′ that are not replaced by a dummy
arc, D((zz)) ≤ D((zv)2) ≤ D((zv)3) ≤ D((vv)) ≤ D((vz′)2) ≤ D((vz′)3) ≤ D((z′z′)) by
our choice of x′. For all such arcs of the form [zv]2, [zv]3, [vz′]1, [vz′]2, their extremities
are in the distance range D((uv)2), D((vw)3). Then, v is chosen only if α is between
D((uv)2) and D((vw)3). The distance between (uv)2 and (vw)3 is upper-bounded by the
length of a shortest path in H ′. Since vw is an aided arc, [vw]0 is contracted in H ′. Then
(uv)2(uv)3(vv)(vw)1(vw)2 is a path in H ′. Thus D((vw)3) − D((uv)2) ≤ x′[uv]2 + x′[uv]3 +
x′[vw]1 + x′[vw]2 ≤ x

∗
[uv]2 + x∗[uv]3 + x∗[vw]1 + x∗[vw]2 ≤ y

∗
v where the last inequality follows from

Constraint (5)1. Thus, Pr[D((uv)2) ≤ α < D((vw)3)] ≤ y∗v/D((tt)) ≤ 2y∗v . Therefore

E[V] =Σv∈V (G)r(v) · Pr[v ∈ Vα]
≤Σv∈V (G)r(v)2y∗v ≤ 2b.

Lastly, by Markov’s inequality, Pr[V ≤ (2 + ε)2b] ≥ 1− 1/(2 + ε), P r[E ≤ 4c∗] ≥ 1/2 for
any ε > 0. Then it follows there exists 0 ≤ α ≤ D((tt)) such that Σv∈Vαr(v) ≤ 4b+ 2εb and
cVα(Eα) ≤ 4c∗. One can choose ε such that 2εb < 1. Since r(v) is always integral, it follows
that Σv∈Vαr(v) ≤ 4b, proving Lemma 8. J

It is well known that the Ball Growing algorithm (which is Djikstra’s algorithm run on
H ′) selects a linear number of nested cuts that represent the set of all cuts at all distances
between zero and D((tt)) from the source. It follows from Lemma 8 that one of these cuts
meets the desired guarantees. Theorem 4 is then proved by simply running Algorithm 1 on
the auxiliary graph H ′.
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Abstract
Predicting floods caused by storm surges is a crucial task. Since the rise of ocean water can create
floods that extend far onto land, the flood damage can be severe. By developing efficient flood
prediction algorithms that use very detailed terrain models and accurate sea-level forecasts, users can
plan mitigations such as flood walls and gates to minimize the damage from storm surge flooding.

In this paper we present a data structure for predicting floods from dynamic sea-level forecast
data on dynamic massive terrains. The forecast data is dynamic in the sense that new forecasts are
released several times per day; the terrain is dynamic in the sense that the terrain model may be
updated to plan flood mitigations.

Since accurate flood risk computations require using very detailed terrain models, and such
terrain models can easily exceed the size of the main memory in a regular computer, our data
structure is I/O-efficient, that is, it minimizes the number of I/Os (i.e. block transfers) between
main memory and disk. For a terrain represented as a raster of N cells, it can be constructed using
O( N

B
log M

B

N
B

) I/Os, it can compute the flood risk in a given small region using O(logB N) I/Os, and
it can handle updating the terrain elevation in a given small region using O(log2

B N) I/Os, where B
is the block size and M is the capacity of main memory.
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1 Introduction

Predicting floods caused by storm surges is a crucial task. Since the rise of ocean water
can create floods that extend far onto land, the flood damage can be severe. By developing
efficient flood prediction algorithms, we hope to minimize the damage from storm surge
flooding by allowing users to plan mitigations such as flood walls and gates, or evacuation of
affected areas.
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6:2 Sea-Rise Flooding on Massive Dynamic Terrains

Due to the advancement of remote sensing technology and meteorology, nowadays very
detailed terrain models and accurate sea-level forecasts can be obtained, and these datasets
can be used for designing accurate flood prediction algorithms. For example, the publicly
available detailed raster terrain model of Denmark [13] (where each cell represents a 0.4 by
0.4 meter region) contains 267 billion cells. Furthermore, the Danish Meteorological Institute
releases a sea-level forecast of the Danish territorial waters every 6 hours, containing 81
thousand values (each value corresponding to the forecasted sea-level in a 1 km2 region).

Designing an efficient flood prediction algorithm is a challenging task. The algorithm
must be fast enough that the computation can finish before the actual disastrous event
happens or a new forecast appears, while to guarantee the accuracy of the prediction it is
required to use very detailed data that is larger than the main memory in a typical computer.
For example, with the terrain model and sea-level forecast datasets mentioned above, the
algorithm must process the terabyte-sized terrain model and complete well within 6 hours
before a new sea-level forecast is released. Existing flood prediction algorithms process the
entire terrain model to compute the flood risk when a new forecast is released. Moreover, if
a user modifies the terrain model to e.g. examine the effect of planned mitigations, the entire
terrain model must be processed again. This is critical in practice since even a simple scan
of a detailed terrain model such as the model of Denmark easily takes a few hours. However,
users examine flood risk and plan flood mitigations not for the entire terrain but only for
small regions of the terrain. Therefore, supporting efficient computations for a small region
in the terrain would make flood prediction algorithms more practically relevant.

In this paper, we consider the problem of predicting floods from dynamic sea-level forecast
data on dynamic massive terrains. The forecast data is dynamic in the sense that new
forecasts can appear; the terrain is dynamic in the sense that the terrain model may be
updated locally, to e.g. incorporate planned flood mitigations. We present a data structure
that allows updating respectively the forecast and the terrain, and a query algorithm to
report the flood height in a given query window (i.e. a small region of the terrain examined
by the user). The data structure is I/O-efficient, meaning it can efficiently handle terrain
models much larger than main memory.

The dynamic sea-level flooding problem. We use the I/O-model by Aggarwal and Vitter [4]
to design and analyze our algorithms. In this model, the computer is equipped with a two-
level memory hierarchy consisting of an internal memory and a (disk-based) external memory.
The internal memory is capable of holding M data items, while the external memory is of
conceptually unlimited size. All computation has to happen on data in internal memory.
Data is transferred between internal and external memory in blocks of B consecutive data
items. Such a transfer is referred to as an I/O-operation or I/O. The cost of an algorithm is
the number of I/Os it performs.

A terrain is typically represented using a digital elevation model (DEM) as a two-
dimensional array with N cells (a raster). Note that by storing a raster of N cells in O( N

B )
tiles of size

√
B×
√
B, for any s ≥ B a

√
s-by-

√
s square of the raster can be read or written

in O( s
B ) I/Os. Each cell in a raster terrain T is either a terrain cell, meaning that the

corresponding location is on land, or an ocean cell. We denote the elevation of cell u in T by
hT (u); the height of an ocean cell is undefined. For two cells u and v, we say that u and v are
adjacent (or that v is a neighbor of u) if u and v share at least one point on their boundary.
A terrain cell is a coastal cell if it is adjacent to an ocean cell. Since the resolution of terrain
models is typically much greater than the resolution of forecasts, we partition the coastal
cells into a set C of connected coastal regions, each region corresponding to the coastal cells
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associated with a single cell of the forecast. We denote the region containing a coastal cell u
by C(u). A sea-level forecast is a function F : C → R that assigns a sea-level elevation value
to each coastal region. We denote the sea-level elevation of a region R ∈ C by F (R), and
define a function hF (v) = F (C(v)) that assigns a forecast value to each coastal cell v.

A terrain cell u is flooded through a coastal cell v if there exists a path p = u  v of
adjacent terrain cells such that each cell x in p has hT (x) < hF (v). We call p a flood path
of u with respect to v. Let Su be the set of coastal cells that have flood paths to u. For a
flooded cell u, we define its flood height as f(u) = maxv∈Su(hF (v)−hT (u)). The flood source
of u is the region R containing the coastal cell v ∈ Su that has the highest sea-level value,
that is, f(u) = hF (v)− hT (u); for simplicity, we assume that the flood source is unique.

The dynamic sea-level flooding problem we consider in this paper consists of constructing
an I/O-efficient data structure on a raster terrain T , a partition C of the coastal cells and a
forecast F , and supporting the following operations I/O-efficiently, where QB and U is a
query and an update of

√
B ×

√
B cells, respectively:

Flood-Height(QB): Return the flood height f(u) of each terrain cell u in QB .
Forecast-Update(F ): Update the data structure with the new forecast F .
Height-Update(QB , U): Set the heights of terrain cells in QB to the values given by U .

Previous work. Previously, a large number of results on I/O-efficient algorithms have
been obtained. Aggarwal and Vitter [4] showed that reading and sorting N items require
Θ(Scan(N)) = Θ( N

B ) and Θ(Sort(N)) = Θ( N
B logM/B

N
B ) I/Os, respectively. A set of N

items can be maintained in an O( N
B )-block search tree such that updates and queries can be

performed in O(logB N) I/Os. Refer e.g. to the surveys [6, 20].
I/O-efficient algorithms for modeling flooding on terrains have been studied extensively

(e.g. [2, 5, 9, 12, 7, 10, 8, 11, 14]). A number of results have also been obtained for flooding
from sea-level rise. However, to our knowledge, the problem of computing flood heights while
I/O-efficiently supporting updates of sea-level forecasts and the heights of terrain cells has
not been studied before.

When the sea level rises uniformly with the same amount hr, that is, all coastal cells
belong to the same region R and F (R) = hr, then it is easy to see that there is a threshold
`u for each terrain cell u so that u is flooded with flood height hr − hT (u) if and only if
hr ≥ `u. The thresholds `u for all cells u in the terrain can be computed in O(Sort(N))
I/Os [7], after which the flood heights in any square of B cells can be easily reported for an
arbitrary hr in O(1) I/Os.

Arge et al. [11] introduced an O(Sort(N))-I/O algorithm for computing flood heights
when the sea-level rises non-uniformly. Their algorithm relies on the so-called merge tree
that captures the nesting topology of depressions in T [14, 15]. Their algorithm has been
incorporated into a real-time storm surge flood warning system in a pilot project between
Danish Meteorological Institute (DMI) and the research spin-out company SCALGO. This
system maps the extent of any flood risk resulting from the current sea-level forecast for
the Danish territorial waters (updated by DMI every six hours) in full resolution on the
0.4-meter terrain model of Denmark. As part of the pilot project, the algorithm has been
engineered to support efficient recomputation when a new forecast is released. However, it is
unable to handle updates to the terrain without incurring O(Sort(N)) I/Os, which is the
main motivation for the work in the present paper.

In addition to rasters, TINs are commonly used to represent terrain models. A TIN
T4 consists of a planar triangulation of N vertices in the plane, each vertex v having an
associated height hT4(v). The height of a point interior to a face is a linear interpolation
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of the face vertices, so that hT4 is a continuous piecewise linear function. Since a raster
can be triangulated into a TIN, algorithms for TIN representations can be applied to raster
representations as well, but the converse is not true. However, GIS applications typically
implement algorithms for rasters directly, as rasters are often easier to process with simple
algorithms. Furthermore, often data, such as the terrain data that we consider, is available
as rasters.

To maintain dynamic terrains, Agarwal et al. [3] presented an internal-memory so-called
kinetic data structure for maintaining the so-called contour tree of a TIN terrain T4 with a
time-varying height function. Whereas the merge tree represents how the depressions of T
are nested, the contour tree represents the nested topology of the contours defined by T4.
This result was extended to an I/O-efficient data structure by Yang [21]. He showed that for
a TIN terrain with N vertices, the contour tree can be constructed in O(Sort(N)) I/Os and
the elevation of a TIN vertex can be updated in O(log2

B N) I/Os.

Our results. In this paper we introduce the first data structure for the dynamic sea-level
flooding problem. Our data structure can be constructed in O(Sort(N)) I/Os and uses O( N

B )
blocks, where N is the number of cells in T . Flood-Height(QB) can be performed in
O(logB N) I/Os, Forecast-Update(F ) in O(Scan(F )) I/Os, and Height-Update(QB , U)
in O(log2

B N) I/Os. Note that the number of I/Os needed to update a forecast does not
depend on N , and that the terrain update bound matches the update bound of Yang [21].

Our result assumes that the size of partition set C is smaller than M (which implies that
the forecast F is smaller than M), and that the number of local minima and maxima in
the terrain T is also smaller than M . As the number of local minima and maxima in the
terrain data for Denmark (after removing all depressions and hills with volume less than
1 m3, which is customary in flood computations) is 60 million, and the sea-level forecast
contains 81 thousand values, both of the assumptions hold for the data for Denmark that we
described above. It also requires the so-called confluence assumption [17] on the flow network
that models how water flows on a raster terrain T . In such a network, a flow direction is
assigned to each terrain cell u, which is a lower neighbor of u that water will flow to, and the
confluence assumption intuitively says that flowing water quickly combines to larger flows at
all scales. Formally, the confluence parameter γ is defined as follows: Let Qs be a square
of
√
s ×
√
s cells and Q3

s be the square of 3
√
s × 3

√
s cells that has Qs in the center. Let

γ(Qs) be the number of cells on the boundary of Q3
s reached from the boundary of Qs when

following flow directions without leaving Q3
s. Refer to Figure 1. The confluence parameter is

γ = maxs>0 maxQs
γ(Qs) where the maximum is taken over all squares Qs of all sizes. The

confluence assumption then states that γ is a constant independent of the size and resolution
of the terrain model.

Our work is inspired by the work of Arge et al. [11] and Yang [21]. As described previously,
Arge et al. [11] compute the flood risk by using the topological features of T encoded in the
merge tree. However, this structure does not support efficient terrain updates. On the other
hand, Yang [21] presented an I/O-efficient data structure for maintaining the contour tree of a
dynamic TIN terrain. In Section 2 we show how a raster terrain T can be transformed into a
TIN T4 while maintaining the topology pertaining to the dynamic sea-level flooding problem.
In Section 3 we then show how the merge tree of T , which is needed when computing flood
risk using the approach of Arge et al. [11], can be constructed from the contour tree of
T4, which can be maintained under terrain updates using the data structure of Yang [21].
Note that standard techniques for triangulating a raster terrain have several issues, because
they do not necessarily preserve flood paths and they do not allow the merge tree to be
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Q3
s

Qs

Figure 1 Confluence parameter. Hillshaded terrain shown in greyscale. Blue lines show the flow
directions of the terrain. The thicker, lighter blue lines are flow directions reachable from Q3

s. There
are only 5 cells on the boundary of Q3

s that are reached from Qs (red crosses), which implies that
γ(Qs) = 5 in this example.

constructed from the contour tree. Thus we believe that our transformation algorithm is of
independent interest. In Section 4 we then describe the sea-level flooding data structure and
show how the three operations are performed efficiently using the confluence assumption and
the assumption on C and the number of minima and maxima.

2 Reducing raster problem to TIN

Problem definition for TINs. As mentioned, a TIN consists of a planar triangulation of a
set of N vertices in the plane along with a continuous height function hT4 that is linear on
each face of the triangulation. We assume that the boundary of the triangulation is a simple
polygon, with the interior corresponding to land and the exterior corresponding to ocean. A
subset of the vertices are coastal vertices, and like for raster terrains, the coastal vertices are
partitioned into a set C of connected coastal regions. For two vertices u, v in T4, we say u
and v are adjacent (or u is a neighbor of v) when there exists an edge in T4 that connects u
and v. We define flood path, flood height and flood source on TINs as for raster terrains.

Transforming the raster terrain. The incidence graph GT of a raster terrain T is a graph
on the terrain cells of T , where two vertices u4 and v4 are connected in GT if u and v are
adjacent in T . If u and v are connected diagonally we call u4 a diagonal neighbor of v4,
otherwise a cardinal neighbor of v4. Note that the natural planar embedding of GT , where
the vertex u4 corresponding to a cell u is placed at the center of u, is almost a triangulation,
except for the intersecting edges corresponding to diagonal neighbors. We turn GT into a

a b

d c

a b

d c

e1
e2

triangulation T4 by assigning u4 in T4 the same height as u in T , that is, hT4(u4) = hT (u),
and by removing a diagonal edge in T4 corresponding to each two-by-two square of terrain
cells in T as follows: For each two-by-two square of cells a, b, c, d in clockwise order, there

SWAT 2020



6:6 Sea-Rise Flooding on Massive Dynamic Terrains

5 5 5 4 4 4 5 5 5 5

6 4 4 6 5 5 4 3 4 3

4 4 3 3 4 4 3 3

4 4 4 5 3 2 5 5 5

5 6 3 3 5 2 2 5

5 4 3 5 2 3 4

4 2 3 5 2 4 2 1 3

3 5 2 2 1 1 1 1 1

5 2 3 3 4 5 2 0

5 3 5 4 4 2 1 2 4 4

2 1 1 0 5 5 0 5 1 0

3

3

2

1

6

5

4

5 5

3

2

1

Figure 2 Example of flood path preservation. On the triangulated terrain T4, each missing
diagonal (dotted blue) is replaced by two cardinal edges (red).

are two intersecting incidence edges e1 = {a, c} and e2 = {b, d} in GT . We triangulate the
square by removing whichever edge has the higher midpoint, where the midpoint height of
an edge e = {u, v} is s(e) = 1

2 (hT (u) + hT (v)). If s(e1) = s(e2), then we pick an arbitrary
edge to remove.

I Theorem 1. u is flooded through v in T if and only if u4 is flooded through v4 in T4.

Proof. First, if u4 is flooded through v4 in T4, that is, there exists a flood path p4 : u4  
v4, then there is a flood path p : u  v in T corresponding to p4, since each edge in T4
has a corresponding edge in GT . Thus u is flooded through v in T .

Next, we show that if p : u v is a flood path in T , then there is a corresponding flood
path p4 : u4  v4 in T4. If no edge in GT corresponding to adjacent cells in p was removed
by the TIN construction, then we are done; p4 is the sequence of vertices that correspond
to the cells in p. Otherwise, we show how to obtain p4 by replacing each edge e in GT

corresponding to adjacent cells in p that is not in T4 as follows: Since the TIN construction
only removes diagonal edges, e is a diagonal edge connecting two raster cells a and c. Recall
that the definition of flood path means that max{hT (a), hT (c)} ≤ hF (u). Let e′ be the
diagonal edge connecting cells b and d such that e and e′ intersect and e′ is included in
T4. Then s(e′) ≤ s(e), which implies that min{hT (b), hT (d)} ≤ max{hT (a), hT (c)} ≤ hF (u).
Without loss of generality assume hT (b) ≤ hT (d), in which case we replace the edge e with
the two edges {a, b} and {b, c}. These edges are both non-diagonal edges and thus were not
discarded when we triangulated T into T4, that is, we replace the adjacent cells a and c in p
with cells abc. Refer to Figure 2 for an example. Since hT (b) ≤ hF (u), p is still a flood path
after adding b. After handling all relevant edges this way, we have obtained a flood path p
such that p4 is the sequence of vertices that correspond to the cells in p. J

3 Connecting topology of T and T4

3.1 Local topology and depressions
Flow directions, sinks, peaks, upper and lower sequences, and depressions. As mentioned
previously, water flow on a raster terrain T can be modeled by assigning a flow direction on
each terrain cell u in T , which is a lower neighbor of u that water will flow to from u.
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maximal depressionelementary
depression

depression β

α
v1

v2

v3

Figure 3 An example terrain seen from the side, showing cells v1-v3 along with depressions
defined by the cells. The cell v2 defines an elementary depression α. The cell v3 defines a maximal,
but not elementary, depression β.

When a cell u does not have any lower neighbors, then u is not assigned a flow direction
and we call it a sink. Similarly, a cell u is a peak if there is no neighbor of u that has higher
elevation than u. We assume that no pair of adjacent cells have the same height. That is,
a flow direction can be assigned to all terrain cells except sinks. The assumption can be
removed using standard techniques [7].

As we traverse the neighbors of a cell u in T that is not a sink or peak in clockwise order,
there are sequences of cells that are lower or higher than u. Each continuous sequence of
lower (resp. higher) neighbors of u is called a lower sequence (resp. upper sequence) of u.

A raster terrain cell u defines a depression that is the maximal connected component
of terrain cells containing u such that all cells v in the depression have h(v) ≤ h(u) [8].
Note that each depression contains at least one sink. A depression β1 is maximal if every
depression β2 ⊃ β1 contains strictly more sinks than β1. If a maximal depression β contains
exactly one sink, then we call β an elementary depression. Refer to Figure 3.

TIN construction preserves lower sequences, sinks, and depressions. On TINs, flow
direction, sink, peak, lower/upper sequence, and (maximal/elementary) depression are defined
as for rasters, but with the vertex adjacency defined by edges of the triangulation T4 rather
than the incidence graph GT . The following lemmas show that lower sequences, sinks, and
depressions in T are preserved by our raster to TIN transformation. Note that the lemmas
say nothing about peaks or upper sequences, as it is easy to verify that they are not preserved
by the transformation. Refer to Figure 4 for an example.

I Lemma 2. For any lower sequence J of any cell u in T , u has a neighbor v in J such that
u4 and v4 are connected in T4.

x v4

u4 y

e
e′

Proof. Pick any v ∈ J . If the edge e = (u4, v4) is in T4, then we are done. Otherwise, e is
removed by our TIN construction, so v must be a diagonal neighbor of u in T . Let e′ = (x, y)
be the edge that was chosen to remain instead of e in the TIN construction. Then we have
that x and y are the common neighbors of u and v and s(e′) ≤ s(e), which implies that
min{hT (x), hT (y)} ≤ hT (u). Without loss of generality assume hT (x) ≤ hT (y). Then x is a
lower neighbor of u in J , and since x is a cardinal neighbor of u, T4 contains {u4, x4}. J

I Corollary 3. A cell u has a lower neighbor in T if and only if u4 has a lower neighbor
in T4.
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(a) Raster terrain. (b) Triangulated terrain.

Figure 4 Example showing that upper sequences and peaks are not necessarily preserved by our
TIN construction. In (a) the raster terrain cell with height 14 has two upper sequences (red), but in
the TIN terrain, the corresponding vertex (marked with a circle in (b)) has only one upper sequence.
The raster terrain has only a single peak, the cell with height 25 (blue), but in the TIN terrain the
vertex corresponding to the cell with height 18 is also a peak (blue).

I Lemma 4. For any cell u in T , the cells in the depression β defined by u in T are in
one-to-one correspondence with the vertices in the depression β4 defined by u4 in T4.

Proof. First, we show that for each v4 ∈ β4, v is in β: As v4 ∈ β4, there is a path
p : u4  v4 in T4 of vertices with height below hT4(u). This path corresponds to a path
in T (since the TIN construction only removes edges) and therefore v ∈ β.

To show that the cells in β correspond to a subset of the vertices in β4, it suffices to
show that the vertices corresponding to cells in β are connected in T4, since β4 is a maximal
connected component of vertices with height ≤ hT4(u4) (and each vertex in T4 has the
same height as it has in T ). To show this we proceed by induction in the list of cells u in
T ordered by height hT (u). Suppose that for any cell u′ in T with hT (u′) < hT (u), the
depression defined by u′ is connected in T4. If u is a sink, then β = {u} which is trivially
connected in T4. Otherwise, we consider the set L = β \ {u} and make the following two
observations for each connected component β′ of L.

Since β′ is a depression in T defined by the highest cell in β′, it follows by induction that
β′ is connected in T4.
It is easy to see that β′ contains a lower neighbor v of u and thus contains all cells in the
lower sequence J containing v; by Lemma 2, it follows that u4 is adjacent in T4 to a
vertex that corresponds to a cell in J .

From this it follows that u4 is connected to all of β′ in T4, so β is connected in T4. J

I Corollary 5. A depression β is a maximal (resp. elementary) depression in T if and only
if β4 is a maximal (resp. elementary) depression in T4.

3.2 Merge trees and contour trees
Merge tree of raster T . As mentioned, the merge treeM of a raster terrain T is a rooted
tree that represents the nested topology of the maximal depressions [14]. Each node inM
represents a maximal depression in T , and we refer to the maximal depression represented
by a merge tree node x as βx. Each elementary depression is represented by a leaf node, and
a node y is the parent of a node x when βx ⊂ βy and there exists no maximal depression βz

such that βx ⊂ βz ⊂ βy.
Now consider sweeping the raster terrain with a plane of height ` from −∞ to ∞ while

maintaining the set of depressions that consist of cells with elevation less than or equal to
`. If the number of depressions decreases when the sweeping plane crosses a cell u, then u
is called a negative saddle; it is easy to see that a negative saddle u has at least two lower
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α1 β1

α2 β2

α3 β3

(a)

u
v

w

α2 β2
β3β1 α3

α1 u
v

w

(b)

Figure 5 An example terrain with negative saddle cells u, v and w. (a) Terrain seen from above.
Sinks are marked with a square and saddles are marked with a cross. The maximal depressions α1,
β1, α3, and β3 are elementary. (b) Terrain seen from the side along with the merge tree M.

sequences. Then note that for any two maximal depressions βx and βy whose corresponding
nodes x and y inM share the same parent, there exists a negative saddle where βx and βy

are merged. Using this we associate a terrain cell to each merge tree node as follows: To
a leaf node x we associate the sink in the elementary depression βx; to an internal node x
we associate the negative saddle where the maximal depressions of its children are merged.
Refer to Figure 5.

Contour tree of TIN T4. For ` ∈ R, the `-level set of T4 is defined to consist of points
x ∈ R2 with hT4(x) = `. A contour of T4 is a connected component of a level set of
T4 [3]. We define a down-contour of u4 as any contour with elevation hT4(u) − ε, for a
value ε smaller than the height difference between any pair of vertices, such that the contour
intersects an edge incident to u4 [3]. Similarly, we define an up-contour as a contour with
elevation hT4(u) + ε that intersects an edge incident to u4.

Traversing the neighbors of a vertex u4 in clockwise order, we say that u4 is a saddle in
T4 if there are multiple sequences of lower neighbors of u4 disconnected by higher neighbors
of u4 [3]. For simplicity we assume that every saddle has exactly two such sequences of
lower neighbors. This assumption can be removed [16]. We say that a vertex u4 is critical if
u4 is a peak, sink, or saddle. If a saddle u4 has one up-contour (down-contour) and two
down-contours (up-contours) then u4 is called a negative (positive) saddle. For any two
contours C1 and C2 with level `1 and `2, respectively, we say C1 and C2 are equivalent if
they belong to the same connected component of Γ = {x ∈ R2 | `1 ≤ hT4(x) ≤ `2} that
does not contain any critical vertex. When sweeping T4 with a plane from −∞ to ∞, an
equivalence class of contours starts and ends at critical vertices. That is, the contours deform
continuously as the sweeping plane changes its height, but the number of contours does not
change as long as the plane varies between two critical vertices. A contour appears and
disappears at a sink and a peak, respectively. Two contours merge into one at a negative
saddle, and a contour splits into two at a positive saddle.

The contour tree A of a TIN T4 is a tree on the critical vertices in T4 that encodes the
topological changes of the contours [3, 21]. Two critical vertices u4, v4 are connected in A
if and only if an equivalence class of contours starts at u4 and ends at v4. That is, an edge
(u4, v4) in A represents the equivalence class of contour that appears at u4 and disappears
at v4. Refer to Figure 6. Note that the contour tree is not a rooted tree; an internal node
has two lower (higher) neighbors and one higher (lower) neighbor if it corresponds to a
negative (positive) saddle.

9
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5

SWAT 2020



6:10 Sea-Rise Flooding on Massive Dynamic Terrains

36

39

19

30

29

31 19 2

13

18

33

19

33

20

32

12

19

23

31

4144

33

32

39

44
4

11

34

14

42

44

45

424627

21

43

32

20

29

26

31

42

(a) From above. (b) In perspective.
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2
4

19

33

41

12

29

18

23

(d) Depression structure.

Figure 6 Example TIN terrain. Sinks are marked with squares, peaks with circles, and saddles
with crosses. (a, b) Everything below ` = 23 is marked as blue. Contours defined by saddle vertices
are marked with red lines. (b) Edges of the contour tree A are shown as arcs pointing downwards
in height. (c) Merge tree derived from the contour tree (dashed), representing how the maximal
depressions in (d) are nested.

TIN construction preserves negative saddles. Note that for raster terrains we have only
defined negative saddles, and not saddles or positive saddles. The reason is, as shown in the
example in Figure 6, that a cell in T with multiple lower and upper sequences can become a
regular vertex in T4 after our transformation. However, we can show that negative saddles
are preserved by the transformation. To do so we need the following lemma.

I Lemma 6. For any negative saddle u in a raster terrain T that merges two depressions β1
and β2, let J1 and J2 be the two higher sequences of u that separate β1 and β2 in a clockwise
traversal of the neighbors of u. Then J1 and J2 each contain a cardinal neighbor of u.

u

J1β1

β2

Proof. Assume for contradiction that a higher sequence separating β1 and β2 does not
contain a cardinal neighbor of u, that is, that it consists of a single diagonal neighbor. This
implies that a cell in β1 has a diagonal neighbor in β2, which violates the definition of
depressions as maximal connected components. J

Using Lemma 6 we can prove the following.

I Lemma 7. A cell u is a negative saddle in T if and only if u4 is a negative saddle in T4.

Proof. First, we show that if u is a negative saddle in T , then u4 is a negative saddle in
T4. Let β1 and β2 be the two depressions that merge at u. By Lemma 2, u4 is connected
in T4 to a lower neighbor u1

4 in β1 and a lower neighbor u2
4 in β2. By Lemma 6, u has

two higher cardinal neighbors v1 and v2 separating u1 and u2 in a clockwise traversal of the
neighbors of u. Since the construction of T4 only removes diagonal edges, u4 is connected
to both v1

4 and v2
4 in T4. Thus u4 has four alternating lower and higher neighbors

u1
4, v

1
4, u

2
4, v

2
4 in clockwise order, so u4 is a saddle in T4. By Lemma 4, β1 and β2

are preserved in T4. Thus the down-contour of u4 intersecting u1
4 is distinct from the

down-contour intersecting u2
4, so u4 is a negative saddle.
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Next, we show that if u is not a negative saddle in T , then u4 is not a negative saddle
in T4. If the number of lower sequences of u is less than 2, then it is easy to see that u4
is not a saddle in T4. If the number of lower sequences of u is at least 2, then these lower
sequences must be from the same depression β. By Lemma 4, β is connected in T4 and thus
u4 is not a negative saddle. J

Constructing merge tree M of T from contour tree A of T4. We now show how the
merge tree M of T can be constructed from the contour tree A of the TIN T4 obtained
after applying our TIN construction to T . From Corollary 3 and Lemma 7 it follows that
the nodes ofM, which correspond to the sinks and negative saddles of T , are encoded in A.
In Appendix A.1 we show (Lemma 12) that if v is the highest node on the path between u
and v in A, then there is a path between u and v in T4 where v is the highest vertex. The
following lemma is then the key to constructing the edges ofM from A.

I Lemma 8. For two distinct nodes u4 and v4 in the contour tree A of T4 that correspond
to negative saddles or sinks, βu4 ⊂ βv4 if and only if there is a path pA : u4  v4 in A
such that all vertices in pA have height less than or equal to the height of v4.

Proof. Suppose βu4 ⊂ βv4 . Then there is a path p4 : u4  v4 in T4 such that all vertices
in p4 have height less than or equal to hT4(v4). The edges and vertices in A corresponding
to all contours through points on p4 in T4 form a connected subtree of A. Thus there is a
path pA : u4  v4 in A with height less than or equal to the height of v4.

Now, suppose pA is a path in A from u4 to v4 such that v4 is the highest vertex in pA.
By Lemma 12 there is a path p4 : v4  u4 in T4 such that the highest vertex on p4 is v4.
This implies that u4 is contained in the depression defined by v4, so βu4 ⊆ βv4 . J

I Theorem 9. The merge treeM of T can be constructed from the contour tree A of T4.

Proof. For each negative saddle u4 in A we define a key descendant of u4 for each child v4
of u4 as follows: If v4 is a sink or a negative saddle, then v4 is the key descendant of u4.
Otherwise, it is a positive saddle, and the key descendant is found by following a downward
path from v4 in A until reaching a negative saddle or sink; since a vertex in A that is not a
negative saddle or sink has exactly one lower neighbor, this downward path following lower
neighbors until encountering a negative saddle or sink is unique. Since u4 has exactly two
children, it has two key descendants.

To constructM we start with a forest containing all the sinks of A (leaves ofM), and
we maintain a union-find data structure that maps each vertex u ofM to the root of u in
the forestM constructed so far. Next, we insert the negative saddles of A (internal nodes)
intoM in increasing order of height using the union-find data structure as follows: When
processing a negative saddle u4 with key descendants v1

4 and v2
4, we query the union-find

data structure to obtain v1 = Find(v1
4) and v2 = Find(v2

4). From Lemma 8, v1 and v2 are
the children of u inM, so we insert u intoM with children v1 and v2. We then update the
union-find structure using Union(v1, v2). When we have processed all negative saddles in
this way, we have constructedM. J

4 Sea-level flooding data structure

We are now ready to describe our sea-level flooding data structure. Intuitively, our structure
maintains the result of a flood computation for a forecast F on a terrain T by a flood instance
IF , which stores for each sink cell u of T the flood source of u. When answering a query
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the flood height of any cell can then be computed from IF using the observation that if a
non-sink cell v is flooded by F , then the flood source of v is the same as the flood source of
any sink cell u in the depression defined by v, and it is easy to compute the flood height of v
from such a sink u [11]. Furthermore, we maintain the contour tree A of T4 using the data
structure of Yang [21]. As required by this data structure, our data structure also maintains
a so-called descent tree Π↓ and a so-called ascent tree Π↑ that store descending and ascending
connectivity on T4, respectively. More precisely, the descent (ascent) tree is an I/O-efficient
data structure that maintains a forest on the vertices in T4, where each vertex is connected
to one of its lower (upper) neighbors in T4, and where each root in the forest corresponds to
a sink (peak). The descent (ascent) tree Π↓ (Π↑) supports finding for a cell u, a sink (peak)
that can be reached from u by a decreasing (increasing) path in O(logB N) I/Os. Thus, Π↓
can be queried to find a sink in the depression defined by v in O(logB N) I/Os. The ascent
and descent trees also support the following operations in O(log2

B N) I/Os: Disconnect the
subtree rooted at u from its parent, and link a root u to a vertex v. For details we refer
to [21].

While Yang described how to maintain A, Π↓ and Π↑ when updating the height of a
single vertex in O(log2

B N) I/Os [21], we need to update heights in a square QB of B cells in
the same bound. Yang classifies the possible changes to A as a result of changing the height
of a vertex of T4 as either adding a sink or peak (birth event), removing a sink or peak
(death event), or reordering saddles (interchange event). When updating a number of vertices
in a region QB of

√
B by

√
B cells, birth and death events are conceptually simple to handle,

as the involved sink or peak is either in QB or adjacent to a vertex in QB. On the other
hand, an interchange event involves a saddle u in QB and a saddle v adjacent to u in A, but
not necessarily in the vicinity of QB in T4. Yang [21] handles such an interchange event by
querying Π↓ and Π↑ with the neighbors of u and v in T4. However, this is a problem for
our data structure, as updating the heights of B vertices in QB can cause Θ(B) interchange
events and thus Θ(B) queries to Π↓ and Π↑, which would require Θ(B logB N) I/Os. In
Appendix A.2 we describe (Lemma 13) how to answer the queries to Π↓ and Π↑ without
I/Os, by maintaining in addition a set L of vertices of Π↓ and Π↑ in main memory. In this
way, A can be updated without using I/Os (since we have assumed that the critical vertices,
and thus A, fits in memory).

Yang also showed how to augment his data structure such that all vertices in T4 are
represented in A [21]. Intuitively, a vertex v is added to the edge representing the contour
through v. The augmented data structure can be maintained in the same bounds as described
above [21]. In our sea-level flooding data structure, we similarly augment the contour tree of
T4 with the so-called coastal minima of T4 that are the coastal vertices u with no lower
neighbors inside their coastal region, that is, a coastal vertex u is a coastal minimum if there
is no vertex v ∈ C(u) adjacent to u that is lower than u. We denote by A+ this augmented
contour tree extended to represent the coastal minima. In Appendix A.3 (Lemma 14) we
show that A+ contains enough information to determine which sinks are flooded by a forecast
F . More precisely, we show that if a coastal vertex u in coastal region R floods a terrain
vertex v, then there is a coastal minimum w in R that also floods v. Furthermore, we show
that the number of coastal minima is bounded by the number of coastal regions |R| and the
number of critical vertices in T4.

In summary, our sea-level flooding data structure consists of the following components:

Contour tree A+ containing the sinks, peaks, saddles and coastal minima of T4;

Descent tree Π↓ and ascent tree Π↑ on T4, as well as a set L of vertices of Π↓ and Π↑;

Terrain T , forecast F and flood instance IF .
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Space. Recall that we assume that the number of sinks, peaks and saddles in T4, as well
as the number of coastal regions, is smaller than M . Thus A+ and L fit in main memory. As
IF stores a coastal region for each sink of T4, it also fits in main memory. By assumption,
F fits in main memory. Finally, T and the descent and ascent trees are stored in external
memory where they use O(N/B) blocks of space [21]. It is easy to see that our data structure
can be constructed in O(Sort(N)) I/Os [21].

Flood-Height(QB) query. To compute the flood height for all cells in QB , we first associate
each cell v ∈ QB with a sink in the depression defined by v as follows: Let Q3

B be the square
of 3
√
B × 3

√
B cells that has QB in the center. For each v ∈ QB , we follow flow directions

from v until reaching either the boundary of Q3
B or a sink u. By assumption, the number of

times we reach a cell on the boundary of Q3
B is constant. For each such cell w, we query Π↓

to find a sink u in the depression defined by w, and we associate u with the cell v ∈ QB that
reached w when following flow directions. After this way having associated each v ∈ QB

with a sink u in the depression defined by v, the flood source of each v ∈ QB can be found
using IF as discussed above.

Following flow directions can be done by loading the query cells of T in Q3
B into main

memory and computing the flow directions in O(1) I/Os. Making the O(1) queries to Π↓
requires O(logB N) I/Os [21]. Then, the flood sources can be found using IF without using
any I/Os, since IF is stored in memory. Thus, Flood-Height(QB) requires O(logB N) I/Os
in total.

Forecast-Update(F ). To update the flood instance IF given a new forecast F , we first
construct M from A+ using Theorem 9. Then for each coastal minimum v in a coastal
region R, we compute h = hF (v)−hT (v). If h > 0, it means that v is flooded by the forecast
value F (R) = hF (v). Note that this also means that all sinks in the depression defined by v
are flooded. As A+ contains the coastal minimum v, we can then use A+ to find one of these
sinks u by following a decreasing path in A+ from v until reaching a sink as follows: At a
negative saddle w, we pick an arbitrary lower neighbor of w, and at a vertex w that is not a
negative saddle or sink (i.e. a peak, positive saddle, or coastal minimum), w has a unique
lower neighbor in A+. Eventually we reach a sink u and since we have followed a strictly
decreasing path from v to u in A+ it follows by Lemma 8 that u is in the depression defined
by v. Note that u is also a node inM, and that in any instance of the sea-level flooding
problem in which u is flooded with forecast value F (R), the other sinks in the depression
defined by v will also be flooded. After having found at most one flooded sink for each
coastal minimum in this way, we can identify the remaining flooded sinks in the terrain using
the algorithm by Arge et al. [11] that takes as input a list of forecast values for sinks in a
merge treeM of T and computes the flood source and flood height for all sinks inM. This
in turn gives us the new flood instance IF .

After the forecast F is read into memory using O(Scan(F )) I/Os, no further I/Os are
required for Forecast-Update, since A+,M and IF fit in main memory.

Height-Update(QB, U). To update the heights of the cells in QB we need to update Π↓,
Π↑, A+ and IF .

Intuitively, we update Π↓ and Π↑ by removing subtrees containing the vertices whose
heights were updated, reconstructing a new forest corresponding to the new descending or
ascending connectivity after the update, and then linking the forest into the structure. More
precisely, let Q3

B and Q5
B be the squares of 3

√
B × 3

√
B and 5

√
B × 5

√
B cells, respectively,
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such that Q3
B and Q5

B both have QB in the center. We describe how the descent tree Π↓ is
updated; the ascent tree can be updated in an analogous way. First, we will disconnect a
number of edges on the boundary of Q3

B to ensure that no tree in Π↓ contains both a vertex
inside QB and a vertex outside Q5

B. In other words, we isolate a set of vertices V in Π↓
such that QB ⊂ V ⊂ Q5

B, as follows: First we disconnect edges so that no vertex in QB is
connected to a vertex on the boundary of Q3

B by following edges of Π↓ from each vertex in QB

until reaching either a sink inside Q3
B or a vertex on the boundary of Q3

B . By the confluence
assumption, the number of times we reach a vertex on the boundary of Q3

B is constant. For
each such vertex w, we disconnect w from its parent in Π↓. Next, we disconnect edges so
that no vertex outside Q5

B is connected to a vertex on the boundary of Q3
B by following

edges of Π↓ from all cells on the boundary of Q5
B towards Q3

B until we reach a sink or the
boundary of Q3

B . It is easy to show that the number of times we reach the boundary of Q3
B

is a constant, by covering each of the four sides of Q5
B with five translated copies of QB , and

bounding the number of times each copy can reach the boundary of Q3
B using the confluence

parameter. As previously, we disconnect each vertex w reached on the boundary of Q3
B from

its parent in Π↓. Let u in QB and v outside Q5
B be vertices that were in the same tree of

Π↓ before we disconnected edges on the boundary of Q3
B , and let w be the lowest common

ancestor of u and v in Π↓ at that time. If w is outside Q3
B , then u is no longer connected to

w as we disconnected the first edge on the path from u to w that is on the boundary of Q3
B .

If w is inside Q3
B, a similar argument shows that v is no longer connected to w. Thus we

have isolated a set V of O(B) vertices in Π↓ such that QB ⊆ V ⊆ Q5
B . We can then simply

reconstruct new subtrees for V in Π↓ according to the new descending connectivity resulting
from the height updates in QB and link back the disconnected edges on the boundary of Q3

B

into Π↓.
After updating Π↓/Π↑ we update A+ with the new topology of the terrain using the

update algorithm in [21], and we use Forecast-Update(F ) to update the flood instance IF .
As we disconnect and reconnect O(1) edges of Π↓ and Π↑, updating the heights of cells

in QB can be done using O(log2
B N) I/Os [21]. Updating A+ requires querying Π↓ and

Π↑ with neighbors of saddle vertices; as discussed previously (Lemma 13), this part can
be handled without I/Os since A+ and L fit in memory, where L contains the vertices of
Π↓ and Π↑ required to perform the update of A+. Since F is already in main memory,
Forecast-Update does not require any I/Os. Thus, Height-Update(QB , U) requires
O(log2

B N) I/Os in total.

I Theorem 10. Given a terrain of N cells, a partition of the coastal cells of the terrain into
a set of coastal regions C, and a forecast F : C → R, for which the following assumptions
hold:

the confluence parameter γ is constant,
the number of local minima and maxima is smaller than M ,
|C| is smaller than M ,

a data structure for the dynamic sea-level flooding problem can be constructed in O(Sort(N))
I/Os using O( N

B ) blocks of space, such that
Flood-Height(QB) can be performed in O(logB N) I/Os,
Forecast-Update(F ) can be performed in O(Scan(F )) I/Os, and
Height-Update(QB , U) can be performed in O(log2

B N) I/Os.
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A Appendices

A.1 Connecting paths in T4 and A
In this section we show an important relation between paths along the edges of a TIN T4
and paths along the edges of the contour tree A of T4. Recall that we have defined a flood
path from a coastal vertex u to a vertex v as a path p : u v along the edges of T4 such
that no vertex in v has height greater than hF (u). Thus, one way of showing that flood
paths are preserved is by showing the more general statement that paths that stay below
some height level ` are preserved. The following lemmas show that a path in A that stays
below ` corresponds to a path along the edges of T4 that stays below `, and vice versa.

I Lemma 11. For any critical vertex v4 ∈ T4, sink u4 ∈ T4 and strictly decreasing path
p4 : v4  u4 along the edges of T4, there is a corresponding path p : v4  u4 in A that
is strictly decreasing in height.

Proof. Consider lowering a plane from ` = hT4(v4) to hT4(u4). Since p4 is strictly
decreasing in height, the plane intersects p4 at a single point x(`) for all `. The path p

consists of edges of A corresponding to the contours containing x(`) for all `. J

I Lemma 12. For any pair of nodes v, w ∈ A such that v is the highest vertex on the path
p : v  w in A, there exists a path p4 : v  w along the edges of T4 such that the highest
vertex on p4 is v.

Proof. First, we observe that for each vertex v ∈ A and down-contour c of v, there exists a
strictly decreasing path π4(v, c) in T4 from v through c to a sink u. By applying Lemma 11,
we obtain a path πA(v, c) : v  u in A. We show how to find a path in T4 between any pair
v, w ∈ A using the paths π4, as follows: We proceed by induction in the list of contour tree
nodes sorted in increasing height order. Fix v ∈ A and suppose that, for all pairs v′, w ∈ A
such that hT4(v′) < hT4(v) and v′ is the highest vertex on the path from v′ to w in A, there
exists a path from v′ to w in T4 having v′ as the highest vertex. We have to show that for
any w ∈ A and path p : v  w where v is the highest vertex on p, there is a corresponding
path along the edges of T4 having v as the highest vertex. Let c be the down-contour
represented by the edge of p incident to v, and let u be the sink such that π(v, c) connects v
to u in T4. By induction, u is connected to w in T4 by a path p4 such that w is the highest
vertex. By concatenating π4(v, c) : u w and the reverse of p4 : w  u, we obtain a path
from v to w such that v is the highest vertex on the path. J

A.2 Updating A without using I/Os
In this section we describe how updates to A in Height-Update can be handled without
I/Os. First we give a brief description of how the data structure of Yang [21] handles updates
to A. Then we describe how our sea-level flooding data structure avoids I/Os when the
contour tree is updated.

Yang describes the dynamic forest data structure that is an I/O-efficient data structure
used to store the descent tree Π↓ and ascent tree Π↑. The data structure represents a forest of
rooted trees, and for a forest of N vertices the following operations are supported: Returning
the root of a vertex u in O(logB N) I/Os and linking a root u to a vertex v or disconnecting
a non-root u from its parent in O(log2

B N) I/Os. The dynamic forest is represented by its
Euler tour [19, 18], using the observation that cutting or linking an edge corresponds to
a constant number of splits and merges in the Euler tour. The Euler tour is stored in a
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level-balanced B-tree [1] that supports split and merge in O(log2
B N) I/Os. Each vertex in

the forest stores a pointer to its first and last occurrences in the Euler tour, which allows
cutting or linking an edge in O(log2

B N) I/Os.
It is straightforward to augment the level-balanced B-tree to support the rank oper-

ation, which returns the number of elements before a given element in the sequence in
O(logB N) I/Os. The ranks of Euler tour occurrences can be used to answer subtree queries:
Given vertices u and v, u is in the subtree rooted at v if and only if the rank of the first occur-
rence of u is contained in the interval spanned by the ranks of the first and last occurrences
of v.

Let L be the set of vertices adjacent to saddle vertices in a TIN T4; the size of L is
at most 8X, where X is the number of critical vertices of T4. Our sea-level flooding data
structure stores, for each vertex v in L, the rank of the first occurrence of v in Π↓ and Π↑,
and it stores for each sink (peak) u the ranks of the first and last occurrences of u in Π↓
(Π↑). As described above, from the ranks of u and v it can be determined whether v is in
the subtree of u in Π↓ or Π↑.

When the data structure of Yang [21] handles an interchange event between saddles u and
v in A, that is, the event that u and v swap height order due to an update to the height of u,
Π↓ (Π↑) is queried with a vertex from each lower (higher) sequence of u and v to determine
the new nesting structure of contours. By answering the queries to Π↓ and Π↑ using the
ranks stored in main memory, the queries require no I/Os; since this is the only case in
which Π↓ or Π↑ is queried by the update algorithm for A, our data structure may update A
without I/Os.

During our update algorithm, Π↓ and Π↑ are updated to reflect the new descending
and ascending connectivity of the vertices in the updated square QB . Whenever an edge is
disconnected or reconnected in Π↓ or Π↑, this operation is translated into a constant number
of splits and merges to the level-balanced B-trees underlying Π↓ and Π↑, and these splits and
merges can cause the ranks of vertices in L to change. By using the rank operation on the
level-balanced B-tree before and after each such split or merge operation, it is straightforward
to update the stored ranks of vertices in L accordingly.

As we assume that X is less than M , L fits in main memory, and thus querying and
updating L incurs no I/Os.

I Lemma 13. For Π↓ (Π↑), the ranks of L and terrain sinks (peaks) can be maintained in
internal memory by the sea-level flooding data structure such that queries to the sink (peak)
reached when following edges in Π↓ (Π↑) from a vertex v ∈ L can be answered without I/Os.

A.3 Analyzing the coastal minima
In this section we show that the contour tree augmented with coastal minima, denoted by
A+, contains enough information to determine which sinks are flooded. Recall that a coastal
minimum is a coastal vertex u such that no other coastal vertex in C(u) is below u. We
define coastal maxima analogously to coastal minima. A coastal minimum (maximum) is
a true coastal minimum (maximum) if it has no lower (higher) neighbor that is a coastal
vertex in any coastal region; otherwise it is a region minimum (maximum).

I Lemma 14. Let X be the number of sinks, saddles and peaks in the terrain, and let |C| be
the number of coastal regions.
(i) If a coastal vertex u in coastal region R floods a terrain vertex v, then there is a coastal

minimum w in R that also floods v.
(ii) The number of coastal minima is O(X + |C|).
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un+1 v

(a) v 6∈ Bn

un+1

v

(b) v ∈ Bn

Figure 7 The two cases when un+1 is added. Open and closed vertices are marked with circles
and disks, respectively.

Proof. First, we show (i). Suppose a coastal vertex u in coastal region R floods a terrain
vertex v; we have to show that there exists a coastal minimum w in R that also floods
v. Let p : u  v be a flood path from u to v. Now we construct another flood path
p′ : u w  u v that goes through the coastal minimum w in R reached when following
a descending path in R from u until reaching a coastal minimum. Then the path w  u v

is a flood path from the coastal minimum w to v.
Next, we show (ii). We define the lowest descent path p from a given vertex u as the path

along the edges of T4 starting in u and ending in a sink, such that for each edge (v, w) in p,
w is the lowest neighbor of v; the highest ascent path is defined analogously. If two lowest
descent paths or two highest ascent paths p, q intersect, then they share a common suffix; as
such, p and q do not cross. From each true coastal minimum, we follow the lowest descent
path to reach a sink, and from each true coastal maximum, we follow the highest ascent
path to reach a peak. Note that an ascending path and a descending path cannot cross, and
if two paths share a common suffix, we can separate them so that all paths form a planar
bipartite graph G = (A ∪B,E), where A is the set of true coastal minima and maxima, and
B is the set of sinks and peaks in the terrain. Let u1, . . . , u|A| be the vertices in A labeled in
the order that they appear as we traverse the coastline. Each vertex ui ∈ A is connected
to exactly one vertex in B by an edge e(ui) ∈ E. Since any two true coastal minima are
separated by a true coastal maximum and vice-versa, we assume without loss of generality
that u1, u3, . . . are minima and

ui

uj

uk

u`

vpvq

u2, u4, . . . are maxima. Observe that for all n ≥ 1, un and un+1 are connected to distinct
vertices in B. Consider three vertices ui, uj , and uk with i < j < k, such that ui and uk

are connected to the same vertex vp and uj is connected to vertex vq. Then vq cannot be
connected to any vertex u` with k < `.

To show that |A| < 2|B|, we consider constructing G incrementally by adding the vertices
of A in the order they appear on the coastline; for each n ≥ 0 let Gn = (An ∪ Bn, En) be
the subgraph of G consisting of An = {u1, . . . , un}, En = {e(u1), . . . , e(un)}, and Bn being
the set of B-vertices connected by En. For each Gn, we call a vertex v ∈ Bn open if it can
be reached from un+1 via a path on the terrain that does not intersect any edge in Gn,
and closed otherwise. Let Cn (On) be the set of closed (open) vertices of Bn. We show by
induction in n that |An| ≤ |On|+ 2|Cn|, from which it follows that |An| < 2|Bn| (since not
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all vertices in Bn can be closed). Initially, A1 = {u1}, |O1| = 1 and |C1| = 0. When un+1 is
added with an edge to a vertex v ∈ Bn+1, there are two cases. If v 6∈ Bn (Figure 7a), then
|Cn+1| = |Cn| and |On+1| = |On|+ 1, so

|An+1| = |An|+ 1 ≤ |On|+ 2|Cn|+ 1 = |On+1|+ 2|Cn+1|. J

Otherwise, v ∈ Bn (Figure 7b). The edge from un+1 to v moves k vertices in On to Cn+1,
so |On+1| = |On| − k, |Cn+1| = |Cn| + k. Since both un and un+1 cannot be maxima or
minima, they cannot have the same neighbor and therefore the neighbor of un is open in Gn

and closed in Gn+1, which implies that k ≥ 1. Thus it follows that

|An+1| = |An|+ 1 ≤ |On|+ 2|Cn|+ 1 ≤ (|On| − k) + 2(|Cn|+ k) = |On+1|+ 2|Cn+1|. J
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Abstract
Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional
simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic
complexity, and the ratio of the length of the longest simple path to the the length of the shortest
edge is poly(n). In the drawing f , a path P of G, or its image in the drawing π = f(P ), is β-stretch
if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P ,
the length of the sub-curve of π connecting f(p) with f(q) is at most β‖f(p) − f(q)‖, where ‖.‖
denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short),
in which we are given a pair of vertices s and t of G, and we are to decide whether in the given
drawing of G there exists a β-stretch path P connecting s and t. The βSP also asks that we output
P if it exists.

The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerry-
mandering regions in a map, where edges of G represent natural geographical/political boundaries
that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to
cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show
that the extension is closely related to several studied measures of local fatness of geometric shapes.

We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-
polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs
a β-stretch path between s and t, if a (1− ε)β-stretch path between s and t exists in the drawing.
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1 Introduction

We study an optimal path problem in planar drawings of graphs, in which we represent edges
as curves of constant algebraic complexity. We seek a path in a graph G from a given vertex
s to another given vertex t that is, in a precise sense, as close as possible to the straight-line
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segment from s to t. We formalize this notion by saying that an s− t path is a β-stretch
path if the distance between any two points along the path (not only the endpoints) is at
most β times the Euclidean distance between them.

The notion of “β-stretch” in this definition is similar to the notion of stretch in a
multiplicative β graph spanner [17], where we want to remove edges from the graph while
ensuring that the shortest path distance in the spanner is at most β times the length of
a shortest path in the original graph. Thorough reviews of existing results for geometric
spanners are available in [4, 9, 16]. In our problem we are not sparsifying the graph; instead,
we try to find the most “natural” path connecting two given vertices s and t in a given
embedded graph. If we interpret the embedded graph as the road network of a country,
such paths can be used as an initial step to partition the country into regions with natural
shapes. One of our motivations, in fact, is the problem of computing natural regions that, in
a precise sense, avoid gerrymandering. A few definitions have been proposed in the literature
to characterize what a “natural” path could entail. For example, a path in a drawing of
a graph is defined to be self-approaching [1, 12] if for any two points p and q on the path,
when moving from p to q along the path, the Euclidean distance to q is decreasing. Icking et
al. [12] proved that a self-approaching path is 5.3332-stretch.

The problem of computing β-stretch paths bears similarities to the graph dilation problem,
where for every pair of vertices s and t in a geometric graph, we compare the shortest-path
distance between s and t to their actual Euclidean distance in the plane, and return the
largest ratio of these two values over all pairs (s, t). In the special case of cycles this problem
is known as computing the maximum detour of a polygonal chain [8]. Klein and Kutz show
that computing a minimum-dilation graph that connects a given n-point set in the plane with
at most m edges is NP-hard [14]. In one direction, if we are given an embedded geometric
graph with a dilation ratio that is at most as large as our target stretch factor, a weaker
variant of a β-stretch path exists between every pair of vertices s− t, in which we consider
only pairs of vertices along the path rather than points. However, since the dilation is a
global property an s− t path that is β-stretch in the given graph might still exist even if the
dilation is more than β. We elaborate on other connections to our problem in Section 1.3.

We naturally extend the notion of β-stretch paths to β-stretch cycles. Interestingly, we
show that a β-stretch cycle bounds a locally “fat” shape in the sense as defined by De Berg [7],
with the parameter of fatness depending on β. The converse is easily seen not to be true.
Our notion of β-stretch cycles may have applications to computing geographic partitions
into regions whose shapes are well shaped in a sense that cannot be captured with fatness
criteria.

The rest of the paper is organized as the following. We formally define the β-stretch path
problem is Section 1.1, followed by key main results and an overview of related results in
the literature in Section 1.2 and 1.3, respectively. In Section 2, we prove a relation between
β-stretch cycles and locally γ-fat shapes. Section 3 proves that β-stretch path problem
is strongly NP-complete. Section 4 develops a quasi-polynomial approximation scheme
algorithms for β-stretch path problem and its extension to computing β-stretch cycles. We
conclude with open problems and future directions in Section 5. Omitted proofs are in the
Appendix (Section 6).

1.1 Problem Statement
Let G = (V,E) be a finite simple graph, with vertex set V and edge set E ⊆

(
V
2
)
. A drawing

of a graph is a representation of G in the Euclidean plane R2, in which vertices are distinct
points and edges are Jordan arcs represented as curves of constant algebraic complexity, i.e.,
described by a constant number of polynomial equations (inequalities), whose maximum
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degree is bounded by a fixed constant.
Formally, a drawing of a graph is a continuous map f : G→ R2, where we treat G as a

1-dimensional simplicial complex. The representation of a vertex v ∈ V , an edge e ∈ E, and
a path P ⊆ G in the drawing f is f(v), f(e), and f(P ), respectively. Here, we consider a
generalized path that can end in a midpoint of an edge.

We will distinguish paths in a graph from paths in a drawing of a graph. The reason is
that we will consider “paths” in a drawing that end in relative interiors of edges. Treating
G as a 1-dimensional simplicial complex, a path in a drawing f of G is f(P ), where P is a
generalized path in G. We will be denoting paths in a drawing by lower case Greek letters.

Let ‖.‖ be the Euclidean norm. Let P ⊆ G denote a path between p and q ∈ G. If both
p and q are vertices of G then P corresponds to a usual path in G. Let f be a drawing of
G. Then π = f(P ) is the path between p and q in f . Let π(p′, q′) denote the sub-path of π
between p′, q′ ∈ G, that is, π(p′, q′) = f(P (p′, q′)), where P (p′, q′) ⊆ P is the path between
p′ and q′. If we want to specify a path π together with its endpoints s and t we denote it by
π(s, t) = π. The path π passes through all of the vertices and edges of G intersecting P . The
length of the path π, denoted by ‖π‖, is the usual Euclidean length, which can be computed
as
∫
P
‖f ′(x)‖dx. The distance between s ∈ P and t ∈ P along π, denoted by dπ(s, t), is the

length of the sub-curve of π between f(s) and f(t).

β-stretch path. Let π be a path in f free of self-intersections. For β ≥ 1, path π is a
β-stretch path if for every p, q ∈ P we have

dπ(p, q)
‖f(p)− f(q)‖ ≤ β. (1)

β-stretch cycle. Let C be a simple cycle in G so that γ = f(C) is free of self-intersections.
The cycle γ in f is a β-stretch cycle if for every pair of points p and q on C we have

dγ(p, q)
‖f(p)− f(q)‖ = min{dπ(p, q), dπ′(p, q)}

‖f(p)− f(q)‖ ≤ β, (2)

where π = π(p, q) and π′ = π′(p, q) are the two paths between q and p whose union is γ.
The left hand side of (1) and (2) is the stretch factor of p and q along π and γ, respectively.

The maximum of the stretch factor of p and q over distinct p, q ∈ P and p, q ∈ C is the
stretch factor of π and γ, respectively. Note that a β-stretch path (cycle) is a β′-stretch path
(cycle), for every β′ ≥ β. If a path π or a cycle γ is self-intersecting, its stretch factor is
undefined.

I Problem 1. β-stretch Path Problem (βSP). We are given a drawing f of a graph G,
β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch path in f between s
and t. The instance of the problem is denoted by (G, f, β, s, t).

A self-intersection-free cycle γ in a drawing f of G separates s ∈ G \ C from t ∈ G \ C if
f(s) and f(t) are contained in different connected components of the complement of γ in R2.

I Problem 2. β-stretch Cycle Problem (βCP). We are given a drawing f of a graph G,
β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch cycle in f separating
s from t. The instance of the problem is denoted by (G, f, β, s, t).
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1.2 Main Results
Our main results proved in Sections 3, 4.2 and 4.3, respectively, are the following.

I Theorem 1. βSP is strongly NP-complete.

I Theorem 2. Let (G, f, β, s, t) be an instance for βSP with poly(logn) ≥ β ≥ 1. Suppose
that the shortest edge length in f is 1, and that there exists c > 0 such that the longest
simple path in f has length at most nc. Under the above assumptions there exists a QPTAS
for βSP. In other words, there exists a quasi-polynomial-time algorithm that for a fixed
poly(logn) ≥ β ≥ 1 and ε > 0 returns a β-stretch path between s and t if a β(1− ε)-stretch
path between s and t exists in f .

I Theorem 3. Let (G, f, β, s, t) be an instance for βSC with poly(logn) ≥ β ≥ 1. Suppose
that the shortest edge length in f is 1, and that there exists c > 0 such that the longest path in
f has the length at most nc. Under the above assumptions there exists a QPTAS for βSC. In
other words, there exists a quasi-polynomial-time algorithm that for a fixed poly(logn) ≥ β ≥ 1
and ε > 0 returns a β-stretch cycle separating s from t if a β(1− ε)-stretch cycle separating
s from t exists in f .

1.3 Related Work
Dilation or stretch factor [16] is perhaps the most common measure for the quality of a
geometric graph. There is a subtle difference between the stretch factor of a path versus the
stretch factor of a graph. For a path, the stretch factor only pertains to its endpoints, while
for a graph the stretch factor pertains to every pair of the graph vertices. Our definition of
β-stretch path falls in the middle as it pertains to all pairs of points belonging to the path.

It is worth mentioning that a line of existing results in the literature is not about designing
a geometric graph with desired stretch factor, but about the fast computation of the stretch
factor, given the graph. Narasimhan and Smid [15] considered the problem of computing the
stretch factor of a Euclidean graph, defined as the maximum ratio of graph distance and
Euclidean distance between any two vertices of the graph. Using Callahan and Kosaraju’s
well-separated pair decomposition, they showed that there exists a EPTAS for computing
the stretch factor running in O(|V |3/2) time, which is much faster than computing all-pairs-
shortest-path distances. For general weighted graphs, Cohen proposed fast algorithms to
compute paths with a desired stretch factor [6]. The stretch factor, in this case, is the ratio
of the path length to the graph distance. Farshi et al. studied the problem of adding an edge
to a Euclidean graph that lowers its stretch factor as much as possible [11].

Chen et al. [5] recently proposed a new straightness measure for a path. A polygonal
chain (p1, p2, . . . , pn) is a c-chain if for all 1 ≤ i < j < k ≤ n, we have ‖pi−pj‖+‖pj−pk‖ ≤
c‖pi − pk‖. There is a connection between the notion of c-chain and our proposed notion of
β-stretch paths. On the one hand, if a chain is β-stretch, it is trivial to show that it is also a
β-chain according to the definition in [5]. On the other hand, a c-chain bounds the possible
stretch of the chain according to [5, Theorem 1–3]. Even though the analysis is only for the
endpoints of the path, the results readily follow for any pair of points on the chain. Hence, it
indeed implies the chain has β-stretch (with the difference of only checking pairs of vertices,
not the points on the connecting segments).

A closely related notion to our β-stretch path is the notion of quasiconvexity as defined by
Azzam and Schul [3]. A connected subset Γ of the Euclidean space is said to be quasiconvex
if any two points x and y in Γ can be connected via a path in Γ whose length is bounded by
a constant times the Euclidean distance between x and y [3]. According to this definition, a
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β-stretch path is quasiconvex with constant β. The problem studied by Azzam and Schul is
in some sense opposite to ours. Given a connected set Γ and a target set of points K, they
compute a superset Γ̃ ⊃ Γ that connects the K points, has Hausdorff length comparable
to that of Γ, and is quasiconvex. We, instead, look for a path that is a subset of the given
connected set (graph) and that is quasiconvex with a constant stretch factor β. While a
short quasiconvex set always exists [3, Theorem 1], we show that determining whether a
β-path exists is strongly NP-complete.

One measure of “compactness” designed to quantify gerrymandering in political districting
is the Polsby-Popper score, based on the ratio of the area of a district to the square of the
district’s perimeter [18]. See [19] for a discussion of shape measures used in the study of
gerrymandering.

2 β-Stretch Curves and Locally γ-Fat Shapes

In order to model inputs that represent realistic objects, computational geometers introduced
the notion of fat shapes. The aim of this section is to argue that our notion of β-stretch
cycles captures a local variant of fatness.

Roughly speaking, a planar shape, understood as a closed topological disk T , is locally
γ-fat if every disk that is centered in T and is not containing the whole T has at least a
γ-fraction of its area in T . Let D ⊂ R2 denote a disk. Let D u S, for S ⊆ R2, denote the
path connected component of D ∩ S containing the center of D.

Locally γ-fat shape [2, 7]. For 0 ≤ γ ≤ 1
2 , a closed topological disk T ⊆ R2 is locally

γ-fat if for every disk D centered in T that does not contain D in its interior, we have
area(T uD) ≥ γ · area(D).

We remark that there exists a variant of local γ-fatness that considers area(T ∩D) rather
than area(T uD) [20, 21]. The following applies also to this weaker notion of local γ-fatness.

The notion of β-stretch cycles extends to any measurable Jordan curve, in particular,
boundaries of “nice” topological disks. In the following theorem, we show that by controlling
the stretch factor of the boundary of a topological disk, we also control its local fatness. In
particular, lowering the stretch factor increases the fatness. The corresponding lower bound
on the local fatness is the inverse of a linear function of the stretch factor with the leading
constant factor 2π. We also show that the stretch factor of the boundary cannot be bounded
by a function of its local fatness.

I Theorem 4. Every closed topological disk T ⊂ R2, whose boundary ∂T is measurable and
β-stretch, is locally 1

2πβ -fat. For every β > 1, there exists a locally 1
32π -fat topological disk

whose boundary is not a β-stretch cycle.

Proof. Let D denote a disk, centered at a point p ∈ T , that does not contain T in its interior.
We need to show that 1

2πβ area(D) ≤ area(T uD).
Let D(r) and C(r), for r ≥ 0, denote the disk and circle, respectively, with radius r

centered at p. By rescaling, we assume that D = D(1) is a unit disk. Let re = min{r| r ≥
0, (C(r) ∩ ∂T ) 6= ∅}. Hence, re is the radius of the largest disk D(re), whose interior does
not intersect ∂T . Since D does not contain T in its interior, we have re ≤ 1.

We will presently show that
(
r2
e + (1−re)2

2πβ

)
area(D) =

(
r2
e + (1−re)2

2πβ

)
π ≤ area(T uD).

Then optimizing over the value of re, such that 0 ≤ re ≤ 1, in the previous two inequalities
gives the desired lower bound 1

2β area(D) on area(T uD). The lower bound is minimized for

re = 0. It remains to show that
(
r2
e + (1−re)2

2πβ

)
π ≤ area(T uD). The first term is due to

the fact that D(re) ⊆ T since p ∈ T .
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7:6 Computing β-Stretch Paths in Drawings of Graphs

To get the second term we consider slices S(r) = T ∩ C(r), for re ≤ r ≤ 1. First, we
treat r ∈ [re, 1+re

2 ]. We claim that S
( 1+re

2 − t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of
angular length greater than or equal to 1

β · 2
1−re−2t
1+re−2t . The claim is proved with the help of

the following lemma; see Figure 1 for an illustration.

p

p1

p2

C( 1+re
2 − t)

C(1)

αt

C(1)

A(x)

∂T

p1

p2
C(x)

p

τ1

τ2

C(re)

Figure 1 An illustration of Lemma 5 (left) and inequality (3) (right).

I Lemma 5. The slice S(x), re < x ≤ 1, contains a circular arc A(x), whose relative interior
is contained in the interior of T uD, and whose endpoints p1 ∈ ∂T and p2 ∈ ∂T split ∂T
into two parts τ1 and τ2 sharing p1 and p2, such that τ2 ∩ C(re) 6= ∅ and τ1 ∩ C(1) 6= ∅.

Proof. Refer to Figure 1 (left). First, we perturb ∂T a little bit to eliminate touchings
between C(x) and ∂T without increasing the total length of C(x) contained in the interior
of T . Let p′1 and p′2 denote a point in ∂T ∩C(re) and ∂T ∩C(1), respectively. Let τ ′1 and τ ′2
denote the two parts of ∂T connecting p′1 and p′2. We assume that τ ′2 is shortest possible. In
particular, τ ′2 is contained in ∂(T uD). Note that both τ ′1 and τ ′2 intersect C(x) in an odd
number of path connected components.

Let A1, . . . , Ak denote the path connected components of T ∩ C(x). Note that none of
Ai’s is a point since we eliminated touchings between ∂T and C(x). It must be that there
exists Aj , 1 ≤ j ≤ k, such that one endpoint of Aj belongs to τ ′1 and the other to τ ′2. Indeed,
otherwise the number of path connected components in τ ′1 ∩ C(x) and τ ′2 ∩ C(x) would be
even.

By the choice of τ ′2, putting A(x) = Aj concludes the proof. J

We show that A
( 1+re

2 − t
)
from Lemma 5 is an arc of the desired angular length, which

is at least 1
β ·2

1−re−2t
1+re−2t . Let τ1 and τ2, and p1 and p2 be as in Lemma 5 for x = 1+re

2 − t. Note
that due to the choice of t and the fact that C(re)∩τ2 6= ∅, we have dτ2(p1, p2) ≥ 2

( 1−re
2 − t

)
.

The same inequality holds for dτ1(p1, p2), since τ1 ∩ C(1) 6= ∅. Let αt denote the smaller
angle defined by the rays emanating from p through p1 and p2. Since ∂T is β-stretch, we
have, see Figure 1 (right),

β ≥
2
( 1−re

2 − t
)

‖p1 − p2‖
=

2
( 1−re

2 − t
)

2 sin αt
2
( 1+re

2 − t
) . (3)

The desired lower bound 1
2β ·

1−re−2t
1+re−2t on the angular length of A

( 1+re
2 − t

)
follows since this

is lower bounded by 2 sin αt
2 .

Similarly we prove that S
( 1+re

2 + t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of angular
length at least 1

β · 2
1−re−2t
1+re+2t .
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Finally, by summing up infinitesimal thickenings of the slices of width dt we get

area(D u T ) ≥ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re − 2t

((
1 + re

2 − t
)2
−
(

1 + re
2 − t− dt

)2
)

+

+ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re + 2t

((
1 + re

2 + t

)2
−
(

1 + re
2 + t− dt

)2
)
,

which simplifies to

area(D u T ) ≥ 2
β

∫ 1−re
2

0
(1− re − 2t)dt.

It follows that (1−re)2

2β ≤ area(T uD), concluding the proof of the first part of the theorem.

ε p

D
(√

2
4 − ε

2

)

Figure 2 A family of topological disks T witnessing that a locally 1
32π -fat shape can have boundary

with an arbitrarily large stretch factor, which is achieved by choosing ε arbitrarily small.

Refer to Figure 2. For the second part of the theorem, consider a topological disk T , that
is a unit square with an ε > 0 wide slit from the middle of an edge to the center as in Figure 2.
Clearly, if we choose ε < 1

β then ∂T is not a β-stretch cycle. However, T stays locally 1
32π -fat

for any ε > 0. Indeed, it is not hard to see that for r <
√

2
4 −

ε
2 , a disk D(r) centered at a

point p in T of radius r has area(T uD(r)) ≥
(
r√
2

)2
> r2

32 = area(D(r))
32π . For r ≥

√
2

4 −
ε
2 , we

have area(T uD(r)) ≥ 1
16 , but it is enough to consider r ≤

√
2, since otherwise the whole T

is contained in D(r). Hence, area(T uD(r)) ≥ 1
16 = 2π

32π ≥
area(D(r))

32π . J

3 NP-completeness of βSP

The aim of this section is to prove Theorem 1. Let G, f, s and t be as in the statement of
the problem βSP. First, we show that we can certify that a given path π in f is a β-stretch
path in polynomial time, which follows by the next lemma.

I Lemma 6. Let π be a non-self-intersecting path in f between s and t. There exists a
quadratic time algorithm to check if π is a β-stretch path.

Proof. Note that it is enough to compute the maximum of

max
s∈e,t∈f

dπ(s, t)
‖f(s)− f(t)‖ , (4)

over pairs of edges e and f on the path P in G such that π = f(P ). Due to a constant
algebraic complexity of edges in f , (4) can be seen as a rational function of two variables whose
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7:8 Computing β-Stretch Paths in Drawings of Graphs

maximum can be computed in constant time by the standard calculus and approximated
by solving a system of polynomial equations, and therefore the quadratic time complexity
follows. J

Thus, the problem is in NP, and it remains to argue the NP-hardness. We proceed by a
reduction from the graph vertex cover problem, which is one of the first known NP-complete
problems from Karp’s seminal paper [13], and which we state next. A vertex cover in a
graph G = (V,E) is a subset V ′ of its vertex set V such that every edge in E has at least
one vertex in V ′.

I Problem 3. Vertex cover. We are given a graph G, and a positive integer k. Decide
whether there exists a vertex cover in G of size at most k. The instance of the problem is
denoted by (G, k).

For any instance (G, k) of vertex cover we construct an instance (H, f, β, s, t) of βSP
that is positive if and only if (G, k) is positive. It will follow from the reduction that βSP is
strongly NP-complete, since all of the numerical values in the constructed instance of βSP
are bounded by a polynomial in the size of G. The construction follows.

Note that the problem βSP in trees is solvable in quadratic time, by Lemma 6, since in a
tree there exists exactly one path between every pair of vertices. Our reduction shows that
βSP becomes NP-hard even for graphs whose maximal 2-connected components are cycles.

We put β = n5, where n is the number of vertices in G. Let m be the number of edges in
G. We identify V (G) with [n] = {0, . . . , n− 1} and label the edges e0, . . . , em−1. The graph
H = (V (H), E(H)) is constructed as follows; see Figure 3 for an illustration. Roughly, H is
composed of chains of 4-cycles arranged in a serial fashion between the distinguished vertices
s and t, and drawn as diamonds. Each 4-cycle in a chain (except the two rightmost chains)
corresponds to an edge-vertex pair in G, and each pair of consecutive chains except the last
one corresponds to an edge of G. Two consecutive chains are joined by an edge or a subdivided
edge. The abstract graph H depends only on the number of vertices and edges in G, that is,
n and m, and the structure of G is encoded in the drawing of H. Every vertex of H is either
a triplet or a 4-tuple: the first element corresponds to an index of an edge of G or is equal to
m, the second element corresponds to a vertex of G or is equal to −1 or n, the third element
is “L” (for left) or “R” (right), and the fourth element is “E” (for east), “S” (for south) or “W”
(for west). Formally, the vertex set is V (H) = {s = (0,−1, L), t} ∪ {(v, e, α, β)| v ∈ [n], e ∈
[m + 1], α ∈ {L,R}, β ∈ {E,S,W}} ∪ {(e, n, α, S), (−1, e, α)| e ∈ [m + 1], α ∈ {L,R}},
and the edge set E(H) = {(e, v, α,W )(e, v, α, S), (e, v, α, S)(e, v, α,E), (e, v, α,E)(e, v +
1, α, S), (e, v + 1, α, S)(e, v, α,W )| v ∈ [n], α ∈ {L,R}, e ∈ [m + 1]} ∪ {(e,−1, R)(e +
1,−1, L), (e, n, L)(e, n,R)| e ∈ [m]} ∪ {(e,−1, α)(e, 0, α, S)| e ∈ [m + 1], α ∈ {L,R}} ∪
{(m,−1, R)t}.

The drawing f represents H in a zig-zag fashion, and has a grid-like structure reminiscent
of the edge-vertex incidence matrix of G with rows corresponding to the vertices and columns
corresponding to the edges of G. Thus, every chain of 4-cycles of H occupies its own column,
and 4-cycles corresponding to the same vertex of G occupy their own row. First, we define
f(v) for each v ∈ V (H). Let ε = β−1 = n−5. Let h > 0 and h′ > 0 be sufficiently small
constants that we specify later. We put f(t) =

(
2m+ 1

2 + h′, n− 1
2
)
. We put f((e,−1, L)) =

(2e − h,−1) and f((e,−1, R)) = (2e + h,−1). We put f((m,−1, L)) = (2m,−1) and
f((m,−1, R)) = (2m+ 1,−1). We put f((e, v, L,E)) = (2e− ε, v), f((e, v,R,E)) = (2e+ 1−
ε, v), f((e, v, L,W )) = (2e−1+ε, v), and f((e, v,R,W )) = (2e+ε, v). We put f((e, v, L, S)) =(
2e− 1

2 , v −
1
2
)
and f((e, v,R, S)) =

(
2e+ 1

2 , v −
1
2
)
, for v ∈ [n] and e ∈ [m+ 1].
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s

t

0 1 2 3 4

vertex 0

vertex 1

vertex 2

-1

-1

(0,-1,R) (1,-1,L) (1,-1,R) (2,-1,L) (2,-1,R)

(0,3,L,S) (0,3,R,S) (1,3,L,S) (1,3,R,S) (2,3,L,S) (2,3,R,S)

(0,0,L,E)

(0,0,L,S)

(0,0,L,W)

(2,2,R,E)

(2,1,R,E)

(2,0,R,E)

e0 e1

h′

hh

Figure 3 The drawing f of H in the NP-hardness reduction if G is a path on three vertices 0, 1
and 2, with edges e0 = 02 and e1 = 21. Letters in the 3rd and 4th component of a vector representing
a vertex stand for Left,Right and East,South,West, respectively. A β-stretch path π between s and
t is depicted bold, and corresponds to the minimum vertex cover VC(π) of G consisting of the single
vertex 2. (A vertex v is contained in VC(π) if and only if π passes through (2, v, R,E).)

In f , all of the edges are drawn as straight-line segments except in the following cases.
For every v ∈ V and ei such that v ∈ ei, we draw the edge (i, v, R,W )(i, v + 1, R, S)
in a close neighborhood of the straight-line segments connecting their end vertices as an
xy-monotone curve (that is, a curve that intersects every vertical and horizontal line in
at most 1 point) that is longer by more than 20n−4 in comparison with the straight-line
segment (i, v, R,W )(i, v + 1, R, S). We do not care about the shape of the curve and
we can think of it as a slightly perturbed line segment. Note that the length of the
curve is at most

√
2‖f((i, v, R,W )) − f((i, v + 1, R, S))‖. In the same way, we also draw

all of the edges (m, v,R,E)(m, v + 1, R, S), for all v ∈ [n]. Finally, we draw the edge
(m,−1, R)t as a concatenation of the horizontal line segment between f(t) and the point
p = f((m,n,R, S))− (20n−4, 0) ∈ R2 and a y-monotone curve (that is, every horizontal line
intersects the curve at most once) of length 10n between f(m,−1, R) and p such that its
relative interior does not pass very close to the rest of the drawing.

To finish the drawing f = f(h, h′) it remains to choose the values of h and h′. We denote
faux = f(0, 0) an auxiliary drawing of H with h = h′ = 0. Let πe = faux(Pe) be the 2nd
shortest path in faux between the vertex (e,−1, L) and (e,−1, R), which is independent of the
choice of e ∈ [m]. Note that πe is a path all of whose edges but 1 are drawn as line segments,
and its first and last vertex coincide in the drawing. We put h = ‖πe‖

2β ≤
20n
2n5 = 10n−4. Let

π′ = faux(P ′) be the (k + 1)-st shortest path in faux between (m,n,R, S) and t. We put
h′ = ‖π′‖

β ≤ 20n
n5 = 20n−4. Note that π′ is a path with all but k + 1 of its edges drawn as

line segments, and its first and last vertex t coincide in the drawing.

I Observation 7. The path f(Pe), for e ∈ [m], and f(P ′) is shorter than πe and π′,
respectively, and longer than ‖πe‖ − 20n−4 and ‖π′‖ − 20n−4.

For every v ∈ [n], e ∈ [m + 1] and α ∈ {L,R}, every path in G between s and t must
pass either through (e, v, α,W ) or (e, v, α,E). Furthermore, due to the very short distances
between blue vertices in the figure we have the following.
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I Lemma 8. Let π be a β-stretch path in f between s and t. If π passes through (e, v, L,E)
then π passes through (e, v,R,E) and (e′, v, α,E), for all e′ > e and α ∈ {L,R}. If π passes
through (e, v,R,E) then π passes through (e′, v, α,E), for all e′ > e and α ∈ {L,R}.

Proof. Suppose that π passes through (e, v, L,E), and, for the sake of contradiction, let e′ ≥ e
denote the smallest value such that π passes through (e, v, α,E) 6= (e, v, L,E) for some α ∈
{L,R}. Suppose that e = e′. The other case is treated analogously. By the construction of the
drawing f , ‖f((e, v, L,E))−f((e, v,R,W ))‖ = 2ε = 2

β , and dπ((e, v, L,E), (e, v,R,W ))) > 2.
Hence, the stretch factor of π is strictly more than β (contradiction). J

Proof of Theorem 1. It is easy to verify that the construction of (H, f, β, s, t) can be carried
out in polynomial time, and all of the numerical values appearing in the construction of
f can be bounded from above by a polynomial function of n, the number of vertices in G.
Thus, the strong NP-completeness of βSP follows once we show that (G, k) is a positive
instance if and only if (H, f, β, s, t) is a positive instance.

First, if (G, k) is a positive instance, there exists a vertex cover V ′ ⊆ V of G of size at
most k. Let πmax denote the longest path of H in f . Let π be the path in f between s

and t passing through (e, v, α, w) if and only if v ∈ V ′, for all e ∈ [m+ 1] and α ∈ {L,R}.
We need to show that π is a β-stretch path. Note that π is uniquely determined, and
that by the choice of β, the only possible pairs of points that could violate the property
of π being a β-stretch path are (e,−1, L) and (e,−1, R), for some e ∈ [m], and (m,n,R, S)
and t. Indeed, it is easy to check that the union of two edges sharing a vertex is always
a β-stretch path in f , which follows from the fact that an xy-monotone curve is at most√

2-stretch. Hence, in order to violate that π is a β-stretch path, we need to find a pair of
points p ∈ ei ∈ E(H) and q ∈ ei′ ∈ E(H), ei ∩ ej = ∅, such that f(p) ∈ π, f(q) ∈ π, and
‖f(p) − f(q)‖ < ‖πmax‖

β < 20n3

n5 = 20n−2. We can assume that n is sufficiently large such
that the pre-image in f of a disk neighborhood of f(p) ∈ R2, p ∈ H, with radius 20n−2 is a
single component of H, that does not intersect a pair of edges not sharing a vertex, except
when p is very close to (e,−1, α), for some e ∈ [m+ 1], α ∈ {L,R}, (m,n,R, S) or t, which
are colored red in the figure.

Since V ′ is a vertex cover, we have dπ((i,−1, L), (i,−1, R)) ≤ ‖πi‖, for all i ∈ [m].
Indeed, for each i ∈ [m], the path π misses two non-linear edges incident to (i, v, R, 0)
for v ∈ ei such that v ∈ V ′. Then by Observation 7, dπ((i,−1,L),(i,−1,R))

‖f(i,−1,L)−f(i,−1,R)‖ ≤
‖πi‖
2h = β.

Furthermore, since |V ′| ≤ k, we have dπ((m,n, S,R), t) ≤ ‖π′‖. Then by Observation 7,
dπ((m,n,S,R),(t))
‖f(m,n,S,R)−f(t)‖ ≤

‖π′‖
h = β.

Second, if π is a β-stretch path between s and t, let VC(π) ⊆ V be defined as follows. A
vertex v is contained in VC(π) if and only if π passes through (m, v,R,E). Since π is β-stretch,
we have dπ((m,n,R, S), t) ≤ h′β = ‖π′‖

β β = ‖π′‖. If |VC(π)| > k then by Observation 7 and
the length of non-geodesic edges dπ((m,n,R, S), t) > ‖π′‖ − 20n−4 + 20n−4 = ‖π′‖, which
is in contradiction with the previous claim. Hence, |VC(π)| ≤ k. It remains to show that
VC(π) is a vertex cover of G.

For the sake of contradiction, suppose that there exists an uncovered edge, that is, an
edge uv = ei ∈ E such that ei∩VC(π) = ∅. On the one hand, by Lemma 8 and the definition
of VC(π), π passes through (i, u,R,W ) and (i, v, R,W ). Hence, by Observation 7 and the
length of non-geodesic edges, dπ((e,−1, L), (e,−1, R)) > ‖πe‖ − 20n−4 + 20n−4 = ‖πe‖.
On the other hand, since π is β-stretch, dπ((e,−1, L), (e,−1, R)) ≤ 2hβ = 2‖πe‖2β β = ‖πe‖
(contradiction). J

Note that our NP-hardness proof involves large stretch values (here, β = n5). It would
be interesting to show NP-hardness for small stretch values.
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4 Approximation Algorithms

In Section 3, we proved that βSP is strongly NP-complete, which rules out that there exists
a FPTAS [22, Section 8] for it, unless P=NP; see [22, Corollary 8.6]1. Let (G, f, β, s, t) be
an instance of βSP, and let β∗ = argminβ((G, f, β, s, t) is positive), which is well defined
by compactness. In other words, it is highly unlikely that we can approximate β∗ within a
factor of (1 + ε), for any ε > 0, in time that is polynomial in both |V (G)| and 1

ε .
To complement our hardness result, we show that there exists an algorithm with a quasi-

polynomial, that is O(npoly(logn)), running time that for a given ε > 0 and β, 1 ≤ β ≤ logc n,
for some fixed c ≥ 1, returns a β-stretch path between s and t if a β(1 − ε)-stretch path
between s and t exists thereby proving Theorem 2. We assume that ε, c and β satisfy the
above properties in the rest of the section. Unless specified otherwise, the base of log is 2.

4.1 A Path Filtering Scheme
We give a path filtering scheme that we use in Section 4.2 to prove Theorem 2. The main
idea behind our algorithm is the following. Since we are aiming only at ε > 0 approximation,
we do not need to take into account all of the possible paths between s and t. From a set
of paths that are very “similar“ to each other, in the sense that we specify later, we only
keep one candidate and delete the rest. Our algorithm proceeds in dlogne rounds; in the
i-th round we compute a set of at most quasi-polynomially many (in terms of n, ε and β)
paths of G with at most 2i edges that are (1− εi)β-stretch in f , for some small εi’s, such
that ε0 = ε, εi > εi+1, and εdlogne = 0. In the following, we rigorously define what we mean
by “similar”, and how we cluster similar paths. In particular, we cluster paths connecting
the same pair of verices u and v according to their behaviour with respect to stretched radial
grids centered at their end vertex u or v; see Figure 4 for an illustration.

u

π2π1

(1 + ε′)2

ε′

β

1

2π(1 + ε′)
⌈
2π
∆

⌉−1

u

π2π1

v v

Figure 4 A pair of paths π1 and π2 that are not equivalent (on the left) and that are equivalent
(on the right) w.r.t. a radial grid centered at u .

Radial grid. Let ε > 0, ε′ = ε/β, ri = (1 + ε′)i and ∆ = ε′

1+ε′ . The radial grid Fu(ε, β)
centered at a point (vertex) u ∈ V (G) consists of

⌈
β
ε′

⌉
circles centered at f(u) of radius i ε

′

β ,

for i ∈
[⌈

β
ε′

⌉]
, and circles of radius ri, for i ∈ [dc log1+ε′ ne+ 1], and D =

⌈ 2π
∆
⌉
equiangular

1 Indeed, we can place the vertices in the construction of the reduction on a grid of polynomial size in
n = |V (G)| with the unit corresponding to n1/10.
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spaced rays emanating from f(u). (Recall that we assumed that the shortest edge has length
1 and the largest simple path length is nc for some constant c > 0.) The complement of the
radial grid Fu(ε, β) in R2 consists of at most N = D · (

⌈ 1
ε′

⌉
+ log1+ε′ n

c) = O(poly(logn))
two-dimensional open path connected components, whose closures are cells of Fu(ε, β). Note
that, ε is treated as a constant and β = O(poly(logn)) by the hypothesis of Theorem 2.
In the following, we disregard unbounded cells since they do not intersect f(G). Without
loss of generality, we assume that Fu(ε, β) is sufficiently generic with respect to f , that is,
Fu(ε, β)∩f(G) consists of a finite set of points. To this end we might need to slightly perturb
the value of ε.

Let π = π(u, v) be a path in f . Let Σu
π denote the subset of cells of Fu(ε, β) that π

intersects. We group paths π = π(u, v) between u and v according to Σuπ and approximate
distances between u and cells σ in Σuπ, which we define next. Let dπ(σ, u) be the minimum
length of the sub-path of π between the point p on π such that f(p) ∈ σ and u. Let rσ
denote the Euclidean distance from u to a furthest point in σ from u. Let Ξuπ = Ξuπ(ε, β) ={(
σ,
⌊
log1+ε′

dπ(σ,u)
rσ

⌋)
| σ ∈ Σuπ

}
. If π is a β-stretch path, then dπ(σ,u)

rσ
≤ β. Therefore the

second component of each pair in Ξuπ is a natural number not bigger than
⌊
log1+ε′ β

⌋
.

Path equivalence. Two paths π = π(u, v) and π′ = π′(u, v) are equivalent with respect to
the radial grid Fu(ε, β) if the first and last edge of π and π′ are identical, Ξuπ(ε, β) = Ξuπ′(ε, β),
and the length of π differs from the length of π′ by a multiplicative factor of at most (1 + ε).

Intuitively, equivalent paths pass through the same cells with almost similar distances from
u to each intersected cell. Let N be as above, the number of the cells, and k =

⌊
log1+ε′ β

⌋
+

1. The crucial aspect of the grid Fu(ε, β) is that there are at most kN pairwise non-
equivalent paths. We have kN = (log1+ε′ β)cD(d 1

ε′ e+log1+ε′ n) = O(poly(logn)poly(logn)) =
O(npoly(log logn)), which is quasi-polynomial in n.

The following lemma (proved in Section 6.1) quantifies the approximation guarantee of
our filtering scheme.

I Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =
π2(vj−1, w = vj), and π′1 = π′1(u = v0, v1), π′2 = π′2(v1, v2), . . . , π′j = π′j(vj−1, w = vj) be
β-stretch paths such that πi and π′i, for every 1 ≤ i < j, are equivalent with respect to
Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds.

If π = π_1 π_2 . . ._ πj is not a β-stretch path, then π′ = π′_1 π′_2 . . ._ π′j is not a (1−31ε)β-
stretch path.

4.2 Approximation algorithm for paths

We give an algorithm proving Theorem 2. Refer to the pseudo-code of Algorithm 1. We
initialize Ψ0 := E(G) and ε′ := ln (1−ε)−1

32dlogne . The algorithm proceeds in dlogne many steps, and
in the i-th step it computes a set of 1−ε

(1−31ε′)i β-stretch paths Ψi in G such that every path in
Ψi has at most 2i edges. The set Ψi+1 is computed from Ψ≤i =

⋃
j≤i Ψj as follows. We pick

every pair of distinct paths π1(u, v) ∈ Ψ≤i and π2(v, w) ∈ Ψ≤i such that the concatenation
π = π(u,w) = π1(u, v)_π2(v, w) is a self-intersection free path with at least 2i + 1 edges.
We put π into Ψi+1 if π is a 1−ε

(1−31ε′)i+1 β-stretch path. At the end of the (i + 1)-st step,
we recursively delete for every pair of vertices u and v of G in Ψi+1 a path π′(u, v) if an
equivalent path π′(u, v) with respect to Fu(ε′, β) and Fv(ε′, β) still exists in Ψi+1.

The algorithm outputs a β-stretch path between s and t if Ψ≤dlogne contains such a path.
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Correctness. Suppose that there exists a (1− ε)β-stretch path π0 in f connecting s and
t with ` edges. We show that the algorithm outputs a β-stretch path connecting s and t.
We show by induction on i that after the i-th step of the algorithm, in Ψ≤i there exists a
sequence Si of

⌈
`
2i
⌉
paths, whose concatenation is a β 1−ε

(1−31ε′)i -stretch path πi between s and
t. If the claim holds, we are done, since, for a sufficiently large n, we have

(1−31ε′)−dlogne(1−ε)β =
(

1− 31 ln (1− ε)−1

32 dlogne

)−dlogne

(1−ε)β < eln(1−ε)−1
(1−ε)β = β.

In the base case the claim holds by the existence of π0. By the induction hypothesis, we
suppose that the claim holds after the i-th round. We apply Lemma 9 with β0 := β, ε := ε′,
and β := β 1−ε

(1−31ε′)i to the paths in Si, whose concatenation πi in the given order plays
the role of π′, and to the equivalent representatives of consecutive pairs of paths in Si that
were not deleted from Ψ≤i+1, whose concatenation plays the role of π. It follows that π is
β 1−ε

(1−31ε′)i+1 -stretch yielding Si+1. Putting πi+1 = π concludes the proof of the correctness
of the algorithm.

Running time. The bottleneck of the algorithm is clearly the path filtering scheme that
filters all but quasi-polynomially many paths, and therefore the claimed running time follows
by the fact that the algorithm ends in dlogne steps and Lemma 6.

Algorithm 1 Approximation algorithm.

Data: An instance of βSP (G, f, β, s, t) and ε > 0.
Result: A β-stretch path between s and t in f if a (β(1− ε))-stretch path between s

and t exists. (The algorithm can possibly output a β-stretch path even if no
(β(1− ε))-stretch path exists.)

ε′ := ln (1−ε)−1

32dlogne ;
Ψ0 := E(G), i := 0; (Ψi : the set of candidate β-stretch paths with at most 2i edges.)
while Ψi 6= ∅ do

Ψi+1 := ∅;
for π1(u, v), π2(v, w) ∈

⋃
j≤i Ψj do

if π = π(u,w) = π1(u, v)_π2(v, w) has at least 2i + 1 edges, and is a
β 1−ε

(1−31ε′)i+1 -stretch path. then
add π to Ψi+1

while there exists two equivalent paths π(u, v) and π′(u, v) with respect to
Fu(ε′, β) and Fv(ε′, β) in Ψi+1. do

remove π from Ψi+1
i← i+ 1;

return A β-stretch path between s and t if
⋃
i Ψi contains such path.

4.3 Approximation Algorithm for Cycles
We discuss an extension of the algorithm from Section 4.2 from paths to cycles thereby
establishing Theorem 3. Let (G, f, β, s, t) be the input instance for βCP. Let G0 = G \ {s, t}.
We subdivide the edges of G0 such that every edge has the length at least 1 and at most 2
in f . Let f0 denote the drawing of G0 inherited from f . The graph G0 has polynomially
many vertices in terms of the number of vertices of G. We will work with the input instance
(G0, f0, β, s0, t0) of βSP, where s0, t0 ∈ V (G0) and ε0 = 1 −

√
1− ε. The reason for the
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7:14 Computing β-Stretch Paths in Drawings of Graphs

choice of smaller ε0 is that we will need to work with ε0 such that (1 − ε0)2 = (1 − ε).
Intuitively, we try to combine all pairs of paths joining the same pair of vertices in Ψ≤dlogne
constructed by the algorithm from Section 4.2.

A self-intersection free cycle in f0 separates f0(s) from f0(t) if and only if it crosses the
line segment between f0(s) and f0(t) an odd number of times. In order to keep track of
the parity of crossings of paths with the line segment between s and t, we extend the path
filtering scheme from Section 4.1 as follows.

Path equivalence. Two paths π = π(u, v) and π = π′(u, v) are equivalent with respect to the
radial grid Fu(ε, β) in f0 if the first and last edge of π and π′ are identical, Ξuπ(ε, β) = Ξuπ′(ε, β),
the length of π differs from the length of π′ by a multiplicative factor of at most (1 + ε),
and additionally the parities of the number of crossings of π′ and π with the line segment
connecting f0(s) and f0(t) are the same.

Algorithm. First, we run a brute-force algorithm to find a β-stretch separating cycle C
such that the length of γ = f(C) is at least 4

ε0
+ 2. If we fail to find a β-stretch cycle C,

we run the algorithm from Section 4.2 with the input instance (G0, f0, β, s0, t0), for ε0 > 0,
using the previously modified notion of path equivalence with radial grids parametrized by
ε′(ε0) = ln (1−ε0)−1

3200dlogne and β, that is, Fu(ε′/100, β) rather than Fu(ε′, β) in comparison with
the original algorithm. The algorithm returns Ψ≤dlogne. We check if there exists a pair of
paths in Ψ≤dlogne, whose concatenation is a β-stretch cycle C separating s from t. If this is
the case we output C.

Correctness. Suppose that there exists a (1− ε)β-stretch cycle γ = f(C) in G0 separating
s from t. Let P1 and P2 denote a pair of paths in G between u ∈ V (G0) and v ∈ V (G0),
whose union is C. We choose P1 and P2 so that the difference of the length of π1 = f(P1)
and π2 = f(P2) is minimized. Note that this difference is at most 2. Suppose that π1 is
not shorter than π2. We claim that π1 and π2 are 1−ε

1−ε0
β-stretch paths. Indeed, for any

p1, p2 ∈ P1 dγ(p1, p2) ≥ dπ1(p1, p2)− 2 ≥ (1− ε0)dπ1(p1, p2). The first inequality is by the
choice of P1 and P2, and the second one by the fact that the length of π1 is at least 2

ε0
, since

the length of γ is at least 4
ε 0 + 2.

Note that 1−ε
1−ε0

β = (1− ε0)β. Mimicking the proof of the correctness of the algorithm
from Section 4.2, we derive that Ψ≤dlogne contains a pair of (1− ε0)β-stretch paths P ′1 and
P ′2 joining the same pair of vertices at P1 and P2 such that the concatenation of π′1 = f0(P ′1)
and π′2 = f0(P ′2) is a β-stretch cycle γ′. To this end we need to adapt Lemma 9 to the case
when u = w.

I Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =
π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′1 = π′1(u = v0, v1), π′2 =
π′2(v1, v2), . . . , π′j = π′j(vj−1, u = vj) be β-stretch paths such that πi and π′i, for every
0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some
β0 ≥ β. Then the following holds. If γ = π_1 π_2 . . ._ πj has length at least 20, and is not a
β-stretch cycle, then γ′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch cycle. Furthermore, γ
separates s from t if and only if γ′ separates s from t.

5 Conclusion and Future Work

We proved that βSP is strongly NP-complete, but our reduction seems to work only with large
β that is polynomial in the number of vertices n of the input graph. A natural open problem
is to determine the complexity of βSP for β constant or logarithmic in n. We proposed a
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quasi-polynomial algorithm for βSP that works only for β that is at most logarithmic in n,
and that has a quasi-polynomial running already for constant values of β. Therefore we find
the problem of devising a PTAS for βSP interesting even when β is a fixed constant.

This leads us to suspect that devising an approximation algorithm for βSP becomes
easier if we restrict ourselves to drawings of graphs in which the vertex set is supported by
an integer grid of a polynomial size and edges are straight-line segments.

In the future, we intend to extend our work in the following direction, motivated by the
computation of districts that avoid gerrymandering. We mark some vertices in a plane graph
as “important” and we wish to cut the graph into regions, whose boundaries are β-stretch
cycles, such that each region contains exactly one important vertex. A related work by
Eppstein et al. [10] describes a method for defining geographic districts in road networks
using stable matching. However, their resulting regions might even be disconnected. As
we discussed in Section 2, the β-stretch condition is more constraining than local fatness;
a locally fat region, whose boundary has a large stretch factor, might look like the shape
in Figure 2, which is indicative of a gerrymandered district, with a selective slit removed.
We propose that partitioning of geographic regions using β-stretch paths/cycles can lead to
districting solutions that may better avoid gerrymandering. We leave this work for future
study.
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6 Appendix

6.1 Proof of Lemma 9

p p′

q

p′′

q′′

q′

u

v

w
π2 π′2

σp

σq

π′1

π1

Figure 5 An illustration of Lemma 9 when j = 2. A radial grid centered at v1, and a pair of
paths π = π_1 π2 and π′ = π′_

1 π′
2 that are equivalent with respect to the radial grid centered at v1.

I Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =
π2(vj−1, w = vj), and π′1 = π′1(u = v0, v1), π′2 = π′2(v1, v2), . . . , π′j = π′j(vj−1, w = vj) be
β-stretch paths such that πi and π′i, for every 1 ≤ i < j, are equivalent with respect to
Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds.

If π = π_1 π_2 . . ._ πj is not a β-stretch path, then π′ = π′_1 π′_2 . . ._ π′j is not a (1−31ε)β-
stretch path.
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Proof. Refer to Figure 5. Assume that π is not a β-stretch path. It follows that either π
contains a self-intersection, or there exists two points q and p on π, whose stretch factor is
bigger than β. Formally, in either case, there exists a pair of points p an q in G such that

dπ(p, q)
‖f(p)− f(q)‖ > β. (5)

It is enough to consider the case, in which p is on π1 and q is on πj , and p and q are not
contained in the union of 2 consecutive edges of π. Indeed, these 2 consecutive edges would
be also both on π′ by the definition of the equivalent paths.

We show that π′ is not a β(1−31ε)-stretch path. Consider the cell σq and σp in the radial
grid Fv1(ε, β0) and Fvj−1(ε, β0), respectively, that contains p and q. Let q′ ∈ G and q′′ ∈ G,
and p′ ∈ G and p′′ ∈ G, respectively, be the points such that f(q′) ∈ σq and f(q′′) ∈ σq, and
f(p′) ∈ σp and f(p′′) ∈ σp, respectively, minimizing dπ′(q′, v) and dπ(q′′, v), and dπ′(p′, v)
and dπ(p′′, v). We show that the stretch factor of p′ and q′ along π′ is bigger than β(1− 16ε),
which will conclude the proof. To this end we first derive several simple inequalities.

Since π1 and π′1, and πj and π′j are equivalent with respect to Fv1(ε, β0) and Fvj−1(ε, β0),
respectively, the values of dπ′(q′, v1) and dπ(q′′, v1), and dπ′(p′, vj−1) and dπ(p′′, vj−1) are
within the factor of (1 + ε′) of each other, where ε′ = ε/β0. Since π1 is a β-stretch paths,
dπ(q, q′′) ≤ βLσq , where Lσq is the diameter of σq. Therefore

dπ(q, v1) = dπ(q, q′′) + dπ(q′′, v1) ≤ βLσq + (1 + ε′)dπ′(q′, v1). (6)

The same holds for p, p′ and p′′. By the construction of Fv1(ε, β) and Fvj−1(ε, β), the diameter
of σ ∈ {σp, σq} such that rσ = (1 + ε′)i+1 can be bounded from the above as follows

Lσ < (1 + ε′)i+1 − (1 + ε′)i + 2πε′

1 + ε′
(1 + ε′)i ≤ (1 + 2π) ε′

1 + ε′
rσ. (7)

The upper bound on the diameter of all of the other cells σ contained in the unit disk
centered at v1 and vj−1, respectively, follows if p and q is contained in the annulus between
the unit circle and the circle of radius 1

β0
centered at v1 and vj−1.

Lσ <
ε′

β0
+

2πε′
(
rσ − ε′

β0

)
ε′ + 1 < ε′

(
rσ −

ε′

β0

)
+2π

(
rσ −

ε′

β0

)
ε′ = (1+2π)ε′

(
rσ −

ε′

β0

)
(8)

By the triangle inequality, ‖f(q)−f(p)‖ ≥ ‖f(q′)−f(p′)‖−‖f(q)−f(q′)‖−‖f(p)−f(p′)‖ ≥
‖f(p′)− f(q′)‖ − Lσq − Lσp . Therefore

β
(5)
<
dπ(q, v1) + dπ(v1, v2) + . . .+ dπ(vj−1, p)

‖f(q)− f(p)‖

(6)
≤

(1 + ε′)(dπ′(q′, v1) + . . .+ dπ′(vj−1, p
′)) + β(Lσq + Lσp)

‖f(q′)− f(p′)‖ − Lσq − Lσp

≤ dπ′(q′, v1) + . . .+ dπ(vj−1, p
′)

‖f(q′)− f(p′)‖
1 + ε′

1− Lσq+Lσp
‖f(q′)−f(p′)‖

+ β

Lσq+Lσp
‖f(q′)−f(p′)‖

1− Lσq+Lσp
‖f(q′)−f(p′)‖

. (9)

We consider two cases depending on whether π′ is a β-stretch path. If π′ is not a β-stretch
path, then it is also not a β(1− 16ε′)-stretch path and we are done. If π′ is a β-stretch path
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and both σq and σp are not contained in the unit disk centered at v1 and vj−1, respectively,
then we must have

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖

β
≥
rσq + rσp
(1 + ε′)β . (10)

Combining (10) with the upper bound (7) on Lσ from the above yields

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)ε′(rσq + rσp)
(rσq + rσp)/β = (1 + 2π)ε β

β0
≤ (1 + 2π)ε. (11)

If σq and σp is contained in the annulus between the unit circle and the circle of radius 1
β0

centered at v1 and vj−1, respectively, then (10) becomes

‖f(p′)− f(q′)‖ > ‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖
β

≥
rσq − ε′/β0 + rσp − ε′/β0

β
. (12)

Then using (8) and (12), we recover the upper bound from (11).

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)(rσq − ε′/β0 + rσp − ε′/β0)ε′
rσq−ε′/β0+rσp−ε′/β0

β

= (1 + 2π)ε β
β0
≤ (1 + 2π)ε (13)

If σq is contained in the annulus between the unit circle and the circle of radius 1
β0

centered at v1, and σp is not contained in the unit disk centered at vj−1 then (10) becomes.

‖f(p′)− f(q′)‖ > ‖f(q′)− f(v1)‖+ ‖f(vj−1)− f(p′)‖
β

≥
rσp

(1+ε′) + (rσq − ε′

β0
)

β
. (14)

Then using (7),(8) and (10), we again recover the upper bound from (11).

Lσq + Lσp
‖f(q′)− f(p′)‖ <

(1 + 2π)
(
rσq − ε′/β0 + rσp

(1+ε′)

)
ε′

rσp

(1+ε′) +(rσq−ε′/β0)
β

= (1 + 2π)ε β
β0
≤ (1 + 2π)ε (15)

Finally, if σq is contained in the disk of radius 1
β0

centered at v1 we distinguish two cases
depending on whether σp is contained in the unit disk centered at vj−1. If this is the case, q
is contained on an edge of π1 incident to vj , since π1 is a β-stretch path, and β0 ≥ β. Hence,
as every edge has length at least 1 in f , we have that σp is not contained in the unit disk
centered at vj−1 with diameter 1

β0
. Indeed, q and p are not contained in two consecutive

edges of π and therefore they are at distance more than 1 along π, and thus, σp is not in
the disk of radius 1

β , but β0 ≥ β. Depending on whether σp is contained in the unit disk
centered at vj−1, we obtain one of the following bounds.

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(vj−1)− f(p′)‖

β
≥

rσp
(1+ε′)

β
(16)

‖f(p′)− f(q′)‖ ≥ dπ′(p′, q′)
β

>
‖f(vj−1)− f(p′)‖

β
≥
rσp − ε′/β0

β
(17)

Then using (7),(8) and (16) and (17), we again recover an upper bound analogous to (11),
but worse by a multiplicative factor of 2.

Lσq + Lσp
‖f(q′)− f(p′)‖ ≤

2Lσp
‖f(q′)− f(p′)‖ ≤ 2(1 + 2π)ε (18)
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Using (11), (13), (15), and (18), (9) can be in every possible case rewritten as follows,
which concludes the proof.

dπ′(q′, p′)
‖f(q′)− f(p′)‖ = dπ′(q′, v1) + . . .+ dπ(vj−1, p

′)
‖f(q′)− f(p′)‖ > β

1− 4(1 + 2π)ε
1 + ε/β

> β
1− 4(1 + 2π)ε

1 + ε
>

1− 31ε
1 + ε

β > (1− 31ε)β J

6.2 Proof of Lemma 10
I Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =
π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′1 = π′1(u = v0, v1), π′2 =
π′2(v1, v2), . . . , π′j = π′j(vj−1, u = vj) be β-stretch paths such that πi and π′i, for every
0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some
β0 ≥ β. Then the following holds. If γ = π_1 π_2 . . ._ πj has length at least 20, and is not a
β-stretch cycle, then γ′ = π′_1 π′_2 . . ._ π′j is not a (1− 31ε)β-stretch cycle. Furthermore, γ
separates s from t if and only if γ′ separates s from t.

Proof. The proof is analogous to the proof of Lemma 9 except that we consider distances
along γ and γ′, which are cycles rather than paths. Due to this reason we slightly weaken
some inequalities. The second claim of the lemma is immediate from the definition of the
path equivalence. In the following we derive the first claim.

Assume that γ is not a β-stretch cycle. It follows that either γ contains a self-intersection,
or there exists two points q and p on π, whose stretch factor is bigger than β. Formally, in
either case, there exists a pair of points p an q in G0 such that

dγ(p, q)
‖f0(p)− f0(q)‖ > β. (19)

It is enough to consider the case, in which p is on πi′ and q is on πj′ , and p and q are not
contained in the union of 2 consecutive edges of γ. Indeed, these 2 consecutive edges would
be also both on γ′ by the definition of the equivalent paths, and the edges have length at
most 2. Therefore the minimum length curve between p and q in γ is contained in these 2
consecutive edges.

We show that π′ is not a β(1 − 31ε)-stretch path. Consider the cell σq and σp in the
radial grid Fv1(ε/100, β0) and Fvj−1(ε/100, β0), respectively, that contains p and q. We
have ε′ = ε

100β0
. The rest of the proof differs from the proof of Lemma 9 in the following

weaker consequence of a variant of (6), and other inequalities with dπ′(q′, p′) that needs to
be replaced with dγ′(q′, p′).

dγ(q, p) = β(Lσq + Lσp) + (1 + 100ε′)dγ′(q′, p′), (20)

where f0(q′) ∈ πi′ ∩ σq and f0(p′) ∈ π′j′ ∩ σp.
In the following we derive (20). Let π = π(q, p) ⊂ γ such that dπ(q, p) = dγ(q, p). Let

π′ = π′(q′, p′) ⊂ γ such that π′ ∩ π′i 6= ∅ if and only if π ∩ πi 6= ∅. Thus, π′ is equivalent to π.
Let `(γ) and `(γ′) denote the length of γ and γ′, respectively. If dπ′(q′, p′) = dγ′(q′, p′)

then (20) holds by the same argument as in the proof of Lemma 9.
Otherwise, dγ′(q′, p′) = `(γ′) − dπ′(q′, p′). Furthermore, dπ′(q′, p′) = β(Lσq + Lσp) +

(1 + ε′)dγ(q, p) ≤ β(Lσq + Lσp) + 1
2`(γ) ≤ β(Lσq + Lσp) + 1

2`(γ
′)(1 + ε′). Combining the

previous two (in)equalities we get that dγ′(q′, p′) ≥ `(γ′)− β(Lσq + Lσp)− 1
2`(γ

′)(1 + ε′) =
1
2`(γ

′)(1− ε′)− β(Lσq + Lσp).
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By the previous paragraph, and (7) and (8),

dπ′(q′, p′)
dγ′(q′, p′)

≤
1
2`(γ

′)(1 + ε′) + β(Lσq + Lσp)
1
2`(γ′)(1− ε′)− β(Lσq + Lσp)

≤
1
2`(γ

′)(1 + ε′) + 16ε′`(γ′)
1
2`(γ′)(1− ε′)− 16ε′`(γ′)

≤ 1 + 33ε′

1− 33ε′ (21)

Now, (20) follows from (6) using (21) for sufficiently small ε′. J



Submodular Clustering in Low Dimensions
Arturs Backurs
Toyota Technological Institute at Chicago, Il, USA

Sariel Har-Peled
University of Illinois at Urbana-Champaign, Il, USA

Abstract
We study a clustering problem where the goal is to maximize the coverage of the input points by k

chosen centers. Specifically, given a set of n points P ⊆ Rd, the goal is to pick k centers C ⊆ Rd

that maximize the service
∑

p∈P
ϕ
(
d(p, C)

)
to the points P , where d(p, C) is the distance of p to its

nearest center in C, and ϕ is a non-increasing service function ϕ : R+ → R+. This includes problems
of placing k base stations as to maximize the total bandwidth to the clients – indeed, the closer the
client is to its nearest base station, the more data it can send/receive, and the target is to place k

base stations so that the total bandwidth is maximized. We provide an nε−O(d)
time algorithm for

this problem that achieves a (1− ε)-approximation. Notably, the runtime does not depend on the
parameter k and it works for an arbitrary non-increasing service function ϕ : R+ → R+.
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1 Introduction

Clustering is a fundamental problem, used almost everywhere in computing. It involves
partitioning the data into groups of similar objects – and, under various disguises, it is the
fundamental problem underlying most machine learning applications. The (theoretically)
well studied variants include k-median, k-means and k-center clustering. But many other
variants of the clustering problem have been subject of a long line of research [10].

A clustering problem is often formalized as a constrained minimization problem of a cost
function. The cost function captures the similarity of the objects in the same cluster. By
minimizing the cost function we obtain a clustering of the data such that objects in the same
cluster are more similar (in some sense) to each other than to those in other clusters. Many
of this type of formalizations of clustering are both computationally hard, and sensitive to
noise – often because the number of clusters is a hard constraint.

Clustering as a quality of service maximization

An alternative formalization of the clustering problem is as a maximization problem where
the goal is to maximize the quality of “service” the data gets from the facilities chosen. As a
concrete example, consider a set of n clients, and the problem is building k facilities. The
quality of service a client gets is some monotonically decreasing non-negative function of its
distance to the closest facility. As a concrete example, for a mobile client, this quantity might
be the bandwidth available to the client. We refer to this problem as the k-service problem.

Such a formalization of clustering has several advantages. The first is diminishing returns
(a.k.a. submodularity) – that is, the marginal value of a facility decreases as one adds
more facilities. This readily leads to an easy constant approximation algorithm. A second
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significant advantage is the insensitivity to outliers – a few points being far away from the
chosen facilities are going to change the target function by an insignificant amount (naturally,
these outliers would get little to no service).

Formal problem statement: k-service

Given a set P ⊆ Rd of n points, a monotonically decreasing function ϕ : R+ → R+, the goal
is to choose a set C of k centers (not necessarily among the n given points), that maximize∑
p∈P ϕ

(
d(p, C)

)
, where d(p, C) = minc∈C ‖p− c‖.

Our result

We obtain an nε−O(d) time algorithm for this problem that achieves (1− ε)-approximation
for points in Rd.

Related work

Maximum coverage problems, such as partial coverage by disks, were studied in the past
[15]. These problems can be interpreted as a k-service problem, where the function is 1
within distance r from a facility, and zero otherwise. In particular, Chaplick et al. [3]
showed a PTAS for covering a maximum number of points, out of a given set of disks in the
plane. Our result implies a similar result in higher dimensions, except that we consider the
continuous case (i.e., our results yields a PTAS for covering the maximum number of points
using k unit disks). Cohen-Addad et al. [7] showed that local search leads to a PTAS for
k-median and k-means clustering in low dimensions (and also in minor-free graphs). In [5] it
was shown that the local search for k-means can be made faster achieving the runtime of
n · k · (logn)(d/ε)O(d) . In [6] near-linear time approximation schemes were obtained for several
clustering problems improving on an earlier work (in particular, [12]). The authors achieve
the runtime of 2(1/ε)O(d2)

n(logn)O(1). The techniques from the above works do not seem
to be able to give near-linear time solution for the k-service problem, unfortunately. For
instance, consider the special case of the k-service problem with k = 1 and where the service
function is 1 within distance r from a facility, and zero otherwise (the maximum coverage
problem as above). Even for this very special case of the problem there is no algorithm
known running in time no(d) where d is the dimension of the underlying space. The special
case of k = 1 is a significant obstacle towards obtaining near-linear time algorithms for the
k-service problem.

Another related line of work is on the kernel density estimation problem where a set P of
n points is given and the goal is to preprocess P such that for an arbitrary query point c
one can efficiently approximate

∑
p∈P ϕ

(
d(p, c)

)
. The goal is to answer such queries much

faster than in O(nd) time, which is just the linear scan. For various service functions ϕ and
distance functions d significantly faster algorithms are known [14, 4, 1]. Despite the similarity,
however, finding a point (center) c that (approximately) maximizes the sum

∑
p∈P ϕ

(
d(p, c)

)
seems to be a much harder problem [13].1 Our work can be seen as a generalization of the
latter problem where our goal is to pick k centers instead of one center.

In a another work, Friggstad et al. [11] addressed the clustering problem in the setting
with outliers.

1 In particular, to find such a point, [13] use a heuristic that iteratively computes the gradient (mean
shift vector) to obtain a sequence of points that converge to a local maxima (mode) of the density.
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Balanced divisions

One of the building blocks we need is balanced divisions for Voronoi diagrams. This is present
in the recent paper of Cohen-Addad et al. [7]. The idea of balanced divisions seems to go
back to the work of Cohen-Addad and Mathieu [8]. Chaplick et al. [3] also prove a similar
statement for planar graphs.

For the sake of completeness, we include the proof of the desired balanced divisions
we need in Appendix A. Both here and [7] uses the Voronoi separator of Bhattiprolu and
Har-Peled [2] as the starting point to construct the desired divisions. The Voronoi divisions
we construct here are slightly stronger than the one present in [7] – all the batches in the
division are approximately of the same size, and each one has a small separator from the rest
of the point set.

Clustering and submodularity

Work using submodularity in clustering includes Nagano et al. [16] and Wei et al. [17].
Nagano et al. [16] considers the problem of computing the multi-way cut, that minimizes the
average cost (i.e., number of edges in the cut divided by the number of clusters in the cut).
Wei et al. [17] also studies such partitions with average cost target function. These works do
not have any direct connection to what is presented here, beyond the usage of submodularity.

Paper organization

We define the problem formally in Section 2, and review some necessary tools including
submodularity and balanced subdivisions. Section 3 describes how to find a good exchange
for the current solution. We describe the local search algorithm in Section 4. The main
challenge is to prove that if the local search did not reach a good approximation, then there
must be a good exchange that improves the solution – this is proved in Section 5.

2 Preliminaries

Notations

In the following, we use X+x and X−x as a shorthand for X∪{x} and X \{x}, respectively.
Given a point p ∈ Rd, and a set D ⊆ Rd, we denote by d(p,D) = minf∈D ‖p− f‖ the

distance of p from D. A point in D realizing this distance is the nearest-neighbor to p in D,
and is denoted by nn(p,D) = arg minc∈D ‖c− p‖.

2.1 Service function and problem statement
A service function is a monotonically non-increasing function ϕ : R+ → R+. In the following,
given x ≥ 0, assume that one can compute, in constant time, both ϕ(x) and ϕ−1(x).
Given a point p ∈ Rd, and a center c ∈ Rd, the quality of service that c provides p is
ρ(c, p) = ϕ

(
‖p− c‖

)
. For a set of centers C, the quality of service it provides to p is

ρ(C, p) = max
c∈C

ρ(c, p) = ρ(nn(p, C), p).

The service to P provided by the set of centers C, or just profit, is

ρ(C) = ρ(C,P ) =
∑
p∈P

ρ(C, p).

In the k-service problem, the task is to compute the set C∗ of k points that realizes

optk(P ) = max
C⊆Rd,|C|=k

ρ(C,P ).
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2.2 Submodularity
The above is a submodular optimization problem. Indeed, consider a center point c, and a
set of centers C. The cell of c, in the Voronoi partition induced by C, is

cl(c, C) =
{
p ∈ P

∣∣‖c− p‖ < d(p, C − c)
}
.

I Definition 1. The marginal value of c is

∇(c, C) = ρ(C + c, P )− ρ(C − c, P ) =
∑

p∈cl(c,C+c)

(ρ(C + c, p)− ρ(C − c, p)).

In words, this is the increase in the service that one gets from adding the center c.

For two sets of centers D ⊆ C, and a center c, observe that cl(c, C + c) ⊆ cl(c,D + c). In
particular, we have

∇(c,D) =
∑

p∈cl(c,D+c)

(ρ(c, p)− ρ(D, p)) ≥
∑

p∈cl(c,C+c)

(ρ(c, p)− ρ(D, p))

≥
∑

p∈cl(c,C+c)

(ρ(c, p)− ρ(C, p)) = ∇(c, C).

This property is known as submodularity.

2.3 Balanced divisions
For a point set P ⊆ Rd, the Voronoi diagram of P , denoted by V(P ) is the partition of space
into convex cells, where the Voronoi cell of p ∈ P is

CP (p) =
{
q ∈ Rd

∣∣ ‖q − p‖ ≤ d(q, P − p)
}
,

where d(q, P ) = mint∈P ‖q − t‖ is the distance of q to the set P , see [9] for more details on
Voronoi diagrams.

I Definition 2. Let P be a set of points in Rd, and P1 and P2 be two disjoint subsets of P .
The sets P1 and P2 are Voronoi separated in P if for all p1 ∈ P1 and p2 ∈ P2, we have that
their Voronoi cells are disjoint – that is, CP (p1) ∩ CP (p2) = ∅. That is, the Voronoi cells of
the pointsets are non-adjacent.

I Definition 3. Given a set P of n points in Rd, a set of pairs {(B1, ∂1), . . . , (Bm, ∂m)} is
a Voronoi α-division of P , if for all i, we have
(i) B1, . . . , Bm are disjoint,
(ii)

⋃
j Bj = P ,

(iii) pointset ∂i Voronoi separates Bi from P \Bi in the Voronoi diagram of P ∪ ∂i in the
sense of Definition 2, and

(iv) |Bi| ≤ α.
The set Bi is the ith batch, and ∂i is its boundary.

A balanced coloring is a coloring χ : P → {−1,+1} of P by ±1, such that χ(P ) =∑
p∈P χ(p) = 0. For a set X ⊆ P , its discrepancy is |χ(X)|. We need the following balanced

α-division result. Since this result is slightly stronger than what is available in the literature,
and is not stated explicitly in the form we need it, we provide a proof for the sake of
completeness in Appendix A.
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I Theorem 4. Given a set P of n points in Rd, parameters δ ∈ (0, 1) and α = Ω(1/δd+1),
and a balanced coloring χ of P , one can compute in polynomial time, a Voronoi α-division
D = {(B1, ∂1), . . . , (Bm, ∂m)}, such that the following holds:
(A)

⋃
Bi = P , and the batches B1, . . . , Bm are disjoint.

(B) m = O(n/α).
(C) For all i, we have the following properties:

(C.i) the set ∂i Voronoi separates Bi from P \Bi.
(C.ii) (1 − δ)α ≤ |Bi| ≤ α (except for the last batch, which might be of size at least

(1− δ)α, and at most size 2α).
(C.iii) |∂i| ≤ δ |Bi|.
(C.iv) |χ(Bi)| ≤ δ |Bi|.

3 Computing a good local exchange (if it exists)

I Lemma 5 (Computing a good single center). Let P be a set of n points in Rd, and let
C be a set of k centers. Given a parameter ε ∈ (0, 1), one can (1 − ε)-approximate the
center c ∈ Rd that maximizes the marginal value in (n/ε)O(d) time. Formally, we have
∇(c, C) ≥ (1− ε) maxf∈Rd\C ∇(f, C).

Proof. Let ρ = ρ(C,P ), g = arg maxf∈P ∇(f, C), ∆ = ∇(g, C), and u = ϕ(0). Clearly, the
profit of the optimal solution, after adding any number of centers to C (but at least one), is
somewhere in the interval [ρ+ ∆, nu] ⊆ [ρ+ ∆, ρ+ n∆], which follows from u ≤ (ρ/n) + ∆.
For a point p ∈ P , let

v(p, i) = min(ρ(C, p) + `(i), u) where `(i) = (1 + ε/4)i ε∆4n ,

for i = 0, . . . , N , where N =
⌈
16(lnn)/ε2⌉. Let r(p, i) = ϕ−1(v(p, i)

)
(this is the radius from

p where a center provides service v(p, i)).
Place a sphere of radius r(p, i) around each point p ∈ P , for i = 0, . . . , N . Let F be the

resulting set of spheres. Compute the arrangement A(F), and place a point inside each face
of this arrangement. Let Q be the resulting set of points. Compute the point c ∈ Q realizing
maxf∈Q∇(f, C), and return it as the desired new center.

To show the correctness, consider the (open) face F of A(C), that contains c∗, where c∗
is the optimal center to be added. Let f be any point of Q in F . Let

∇(f, p) = ρ(f ∪ C, p)− ρ(C, p).

Define ∇(c∗, p) similarly. Clearly, we have ∇(f, C) =
∑
p∈P ∇(f, p). Let P1 be all the points

p of P such that ∇(c∗, p) ≤ ∇(f, p) + ε∆/(4n). Similarly, let P2 be all the points p of P ,
such that

∇(c∗, p) > ∇(f, p) + ε∆/(4n).

For any point p ∈ P2, by the choice of N , there exists an index i, such that `(i) ≤ ∇(c∗, p) <
`(i + 1). By the choice of f from the arrangement, we have that ∇(f, p) ≥ `(i), which in
turn implies that

∇(f, p) ≤ ∇(c∗, p) < (1 + ε/4)∇(f, p) =⇒ ∇(f, p) ≥ (1− ε/2)∇(c∗, p).

We thus have the following

∇(f, C) =
∑
p∈P
∇(f, p) =

∑
p∈P1

∇(f, p) +
∑
p∈P2

∇(f, p)
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≥
∑
p∈P1

(
∇(c∗, p)− ε∆

4n
)

+
∑
p∈P2

(1− ε/2)∇(c∗, p)

≥ (1− ε/2)
∑
p∈P
∇(c∗, p)− ε∆

4 ≥ (1− ε)∇(c∗, C).

The runtime follows from the observation that the number of faces in the arrangement is
(n/ε)O(d). J

I Lemma 6. Given a set P of n points in the plane, and a parameter k, one can compute
in polynomial time (i.e., nO(d)) a constant approximation to ρO = optk(P ).

Proof. Follows by using Lemma 5 in a greedy fashion k times, with ε = 0.1, to get a set of k
centers. The quality of approximation readily follows from known results about submodularity
[18]. Indeed, let vi = ρ(Ci, P ) be the service provided by the first i centers computed.
By submodularity, and the quality guarantee of Lemma 5, we have that ∇(ci, Ci−1) ≥
(1 − ε)(ρO − vi−1)/k. In particular, setting ∆0 = ρO, and ∆i = ρO − vi−1, we have that
∆i ≤ (1− (1− ε)/k)∆i−1. As such, ∆k ≤ exp(−k(1− ε)/k)∆0 = ρO/e

ε−1 ≤ ρO/2. Namely,
we have vk ≥ ρO/2, as desired. J

For two sets of points S and C we define ∇(S,C) = ρ(C + S, P )− ρ(C − S, P ).

I Lemma 7. Let P be a set of n points in Rd, and let C be a set of k centers. Given an
integer t ≥ 1, a parameter ε ∈ (0, 1), in (n/ε)O(dt) time, one can (1 − ε)-approximate the
set S ⊂ Rd with |S| = t that maximizes the marginal value in (n/ε)O(td) time. Formally, we
have ∇(S,C) ≥ (1− ε) maxF⊂Rd, |F |=t∇(F,C).

Proof. Consider the optimal set F of size t. Denote it by S∗. Compute the same arrangement
as in the proof of Lemma 5. Let F1, . . . , Ft be the faces of A(C) that contain the t points of
S∗. Pick an arbitrary point from each Fi and let S be the resulting point set of size t. Define

∇(S, p) = ρ(S ∪ C, p)− ρ(C, p).

and similarly ∇(S∗, p).
As in the proof of Lemma 5, let P1 be all the points of P such that ∇(S∗, p) ≤ ∇(S, p) +

ε∆/4n and P2 be all the points of P such that

∇(S∗, p) > ∇(S, p) + ε∆/4n.

We also conclude that ∇(S, p) ≥ (1− ε/2)∇(S∗, p) for all p ∈ P2. We get

∇(S,C) =
∑
p∈P
∇(S, p) =

∑
p∈P1

∇(S, p) +
∑
p∈P2

∇(S, p)

≥
∑
p∈P1

(
∇(S∗, p)− ε∆

4n
)

+
∑
p∈P2

(1− ε/2)∇(S∗, p)

≥ (1− ε/2)
∑
p∈P
∇(S∗, p)− ε∆

4 ≥ (1− ε)∇(S∗, C).

The runtime follows from the observation that the number of faces in the arrangement is
(n/ε)O(d) and that it is sufficient to consider subsets of size t of the faces. J
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4 The local search algorithm

The algorithm starts with a constant approximation, using the algorithm of Lemma 6. Next,
the algorithm performs local exchanges, as long as it can find a local exchange that is
sufficiently profitable.

Specifically, let α = O(1/εd), and let ξ = O(α/ε) = O(1/εd+1). Assume that one can
“quickly” check given a set of k centers C, whether there is a local exchange of size ξ, such
that the resulting set of centers provides service (1 + ε2/(16k))ρcurr, where ρcurr is the service
of the current solution. To this end, the algorithm considers at most kξ possible subsets of
the current set of centers that might be dropped, and for each such subset, one can apply
Lemma 7, to compute (approximately) the best possible centers to add. If all such subsets
do not provide an improvement, the algorithm stops.

Running time analysis

The algorithm starts with a constant approximation. As such, there could be at most O(k/ε2)
local exchanges before the algorithm must terminate. Finding a single such exchange requires
applying Lemma 7 kξ times. Lemma 7 is invoked with t = ξ. The resulting running time is
kξ(n/ε)O(dξ) = (n/ε)O(d/εd+1), where we remember that k ≤ n.

5 Correctness of the local search algorithm

Here we show that if the local algorithm has reached a local optimum, then it reached a
solution that is a good approximation to the optimal solution.
I Remark 8. In the following, we simplify the analysis at some points, by assuming that the
local solution takes an exchange if it provides any improvement (the algorithm, however,
takes an exchange only if it is a significant improvement). Getting rid of the assumption and
modifying the analysis is straightforward, but tedious.

5.1 Notations
Let L and O be the local and optimal set of k centers. Let U = L∪O. Assign a point of U color
+1 if it is in O and −1 if it is in L (for the sake of simplicity of exposition assume no point
belong to both sets). Let γ be a sufficiently large constant. For δ = ε/γ and α = O(1/δd+1),
compute a α-division D = {(B1, ∂1), . . . , (Bm, ∂m)} of L ∪ O, using Theorem 4.

Let Li = Bi ∩ L, Li = Li ∪ ∂i, Oi = Bi ∩ O, Oi = Oi ∪ ∂i, li = |Li|, and oi = |Oi|,
for all i. Let L =

⋃
i Li, and O =

⋃
i Oi. Let ∂ =

⋃
i ∂i. By construction, we have that∑

i |∂i| ≤ δ2k ≤ εk/4 if γ is a sufficiently large constant.

5.2 Submodularity implies slow degradation
The following is a well known implication of submodularity. We include the proof for the
sake of completeness.

I Lemma 9. Let C be a set of k centers. Then, for any t ≤ k, there exists a subset C ′ ⊆ C
of size t, such that ρ(C ′) ≥ t

kρ(C), where ρ(C) = ρ(C,P ).

Proof. Let C0 = C. In the ith iteration, we greedily remove the point of Ci−1 that is
minimizing the marginal value. Formally,

fi = arg min
c∈Ci−1

∇(c, Ci−1 − c),

SWAT 2020
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and Ci = Ci−1 − fi. By submodularity, we have that ∇(fi, Ci−1 − fi) ≤ ρ(Ci−1)/ |Ci−1|. As
such, we have

ρ(Ci) = ρ(Ci−1)−∇(fi, Ci−1 − fi) ≥
(

1− 1
k − i+ 1

)
ρ(Ci−1) = k − i

k − i+ 1ρ(Ci−1)

≥ k − i
k − i+ 1 ·

k − i+ 1
k − i+ 1 + 1 · · ·

k − 1
k

ρ(C0) = k − i
k

ρ(C).

The claim now readily follows by taking the set Ck−t. J

5.3 Boundary vertices are not profitable
First, we argue that adding the boundary points, does not increase the profit/service
significantly, for either the local or optimal solutions.

I Lemma 10. ρ
(
L
)
≤ (1 + ε/4)ρ(L) and ρ

(
O
)
≤ (1 + ε/4)ρ(O).

Proof. Let p = |∂|. Consider a point c ∈ ∂, and observe that ∇(c, L) ≤ ρ(L)/k. This is a
standard consequence of submodularity and greediness/local optimality. To see that, order
the centers of L = {c1, . . . , ck} in an arbitrary order. Let ∇i = ∇(ci, {c1, . . . , ci−1}) ≥ 0, for
i = 1, . . . , k, and observe that ρ(L) =

∑k
i=1∇i. As such, there exists an index i, such that

∇i ≤ ρ(L)/k. By submodularity, we have that ∇(ci, L− ci) ≤ ∇(ci, {c1, . . . , ci−1}) = ∇i ≤
ρ(L)/k, and ∇(c, L− ci) ≥ ∇(c, L). Assume, for the sake of contradiction, that ∇(c, L) >
ρ(L)/k. We have that

ρ(L− ci + c) = ρ(L)−∇(ci, L− ci) +∇(c, L− ci) ≥ ρ(L)− ρ(L)
k

+∇(c, L)

> ρ(L)− ρ(L)
k

+ ρ(L)
k

= ρ(L).

But the local search algorithm considered this swap, which means that L− ci + c can not be
more profitable than the local solution. A contradiction (see Remark 8).

Setting ∂ = {f1, . . . , fp}, we have

ρ
(
L
)

= ρ(L) +
p∑
i=1
∇(fi, L + f1 + · · ·+ fi−1) ≤ ρ(L) +

p∑
i=1
∇(fi, L) ≤

ρ(L) + pρ(L)/k ≤ (1 + ε/4)ρ(L),

since p = |∂| ≤ εk/4.
The second claim follows by a similar argument. J

5.4 If there is a gap, then there is a swap
The contribution of the clusters Li and Oi is

∇Li = ∇
(
Li, L \ Li

)
. and ∇Oi = ∇

(
Oi,O \ Oi

)
, (5.1)

respectively. Notice that, because of the separation property, the points in P that their
coverage change when we move from L \ Li to L, are points that are served by ∂i ⊆ L \ Li
(same holds for O \ Oi and O).

This implies that

∇(L, ∂) =
∑
i

∇Li and ∇(O, ∂) =
∑
i

∇Oi.
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In the following, we assume that ρ(L) < (1 − ε)ρ(O). By Lemma 10 this implies that
ρ
(
L
)
≤ (1 + ε/4)ρ(L) < (1 + ε/4)(1− ε)ρ(O) ≤ (1− ε/2)ρ(O) ≤ (1− ε/2)ρ

(
O
)
. As such, we

have

ρ
(
L
)
< (1− ε/2)ρ

(
O
)

=⇒ ρ(∂) +∇(L, ∂) < (1− ε/2)(ρ(∂) +∇(O, ∂))
=⇒ ∇(L, ∂) < (1− ε/2)∇(O, ∂)− (ε/2)ρ(∂)
=⇒ ∇(L, ∂) < (1− ε/2)∇(O, ∂)

=⇒ (ε/2)∇(O, ∂) <
∑
i

(∇Oi −∇Li).

By averaging, this implies that there exists an index t, such that

∇Ot −∇Lt >
ε

2k∇(O, ∂) > ε

2k
(
∇(O, ∂)−∇(L, ∂)

)
(5.2)

= ε

2k
(
ρ
(
O
)
− ρ
(
L
))
≥ ε

2k ·
ε

2ρ
(
O
)
≥ ε2

4kρ
(
O
)
, (5.3)

where in the second to last inequality we use that ρ
(
L
)
< (1− ε/2)ρ

(
O
)
. Namely, there is a

batch where the local and optimal solution differ significantly.

5.4.1 An unlikely scenario
Assume that |Lt| ≥ |Ot|+ |∂t|. We then have that

ρ(L + ∂t − Lt + Ot) = ρ(L + ∂t)−∇Lt +∇Ot ≥ ρ(L) + ε2

4kρ
(
O
)
.

But this is impossible, since the local search algorithm would have performed the exchange
L + ∂t − Lt + Ot, since |∂t|+ |Lt|+ |Ot| is smaller than the size of exchanges considered by
the algorithm.

5.4.2 The general scenario
I Lemma 11. There exists a subset Y ⊆ Ot, such that |Lt| ≥ |Y |+ |∂t|, and

∇
(
Y,O \ Ot

)
≥ ∇Lt + ε2

8kρ
(
O
)
,

see Eq. (5.1).

Proof. We have that (ε/2)∇(O, ∂) <
∑
i(∇Oi −∇Li). Subtracting (ε/8)∇(O, ∂) from both

sides implies that (ε/4)∇(O, ∂) <
∑
i((1− ε/8)∇Oi −∇Li). This in turn implies that there

exists t such that (1− ε/8)∇Ot −∇Lt > (ε/(4k))∇(O, ∂). Arguing, as above, we have that
(1− ε/8)∇Ot −∇Lt > (ε2/(8k))ρ

(
O
)
.

Consider the following (submodular) function

f(X) = ∇
(
X,O \ Ot

)
,

By Lemma 9 (or more precisely arguing as in this lemma), we have that there exists a set
Y ⊂ Ot, such that |Y | = (1− ε/8) |Ot| and f(Y ) ≥ (1− ε/8)f(Ot) = (1− ε/8)∇Ot. As such,
we have that

∇
(
Y,O \ Ot

)
≥ (1− ε/8)∇Ot ≥ ∇Lt + (ε2/8k)ρ

(
O
)
.

SWAT 2020
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As for the size of Y . Observe that by Theorem 4, we have |∂i| ≤ ε
γ (|Oi| + |Li|) and∣∣|Oi| − |Li|

∣∣ ≤ ε
γ (|Oi| + |Li|). This readily implies that |Oi| ≤ (1 + 4ε/γ) |Li| , and |Li| ≤

(1 + 4ε/γ) |Oi| , if γ is sufficiently large. As such, we have that

|Lt| ≥
|Ot|

1 + 4ε/γ ≥ (1− 4ε/γ) |Ot| = (1− ε/8) |Ot|+ (ε/8− 4ε/γ) |Ot|

≥ |Y |+ ε

16 |Ot| ≥ |Y |+ |∂i| ,

if γ ≥ 64. J

I Lemma 12. The local search algorithm computes a (1− ε)-approximation to the optimal
solution.

Proof. If not, then, arguing as above, there must be a batch for which there is an exchange
with profit at least (ε2/4k)ρ

(
O
)
(see Eq. (5.3)). By Lemma 11, we can shrink the optimal

batch Ot, such that the exchange becomes feasible, and is still profitable (the profit becomes
(ε2/8k)ρ

(
O
)
). But that is impossible, since by arguing as above (i.e., the unlikely scenario),

we have that this swap would result in a better local solution, and the exchange is sufficiently
small to have been considered. Specifically, the local search algorithm uses Lemma 7, say
with ε = 1/2, ensures that the local search algorithm would find an exchange with half this
value, and would take it. A contradiction. J

5.5 The result
I Theorem 13. Let P be a set of n points in Rd, let ε ∈ (0, 1) be a parameter, let ϕ : R+ →
R+ be a service function, and let k ≤ n be an integer parameter. One can compute, in
(n/ε)O(d/εd+1) time, a set of k centers C, such that ρ(C,P ) ≥ (1− ε)optk(P ), where optk(P )
denotes the optimal solution using k centers.

6 Discussion

We presented an algorithm that runs in polynomial time for any constant ε > 0 and any
constant dimension d and achieves a (1−ε)-approximation. The dependency on the dimension
d is doubly exponential, however. A natural question is whether the dependency on the
dimension d in the runtime can be improved. Perhaps by considering some special cases of
the problem, for more specific service function, such as ϕ(`) = 1

1+` or ϕ(`) = 1
1+`2 (i.e., the

service quality drops roughly linearly or quadraticly with the distance).
Our algorithm finds a subset C ⊆ Rd of size k that approximately maximizes the objective

function. A close variant of the problem asks to find a subset C ⊆ Rd of size k that has an
additional constraint that C ⊆ P . Can we obtain an algorithm for this problem with the
same asymptotic runtime for d > 2? The main difficulty is that we would need a variant of
Theorem 4 with an additional property ∂i ⊆ P for all i but such a division does not exist
even for d = 3. (For d = 2 using planar graph divisions on the Voronoi diagram directly
implies the desired result.)

Finally, one can ask a similar question about clustering in graphs. Specifically, given a
graph on n vertices P , we would like to select k vertices C that approximately maximizes∑
p∈P minc∈C ϕ

(
d(p, c)

)
, where d(p, c) is the shortest-path distance from p to c. Can we

achieve a polynomial time algorithm for arbitrary small constant ε > 0 if the graph is planar
or come from some other class of graphs?
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A Balanced Voronoi division

We need the following variant of a result of Bhattiprolu and Har-Peled [2].

I Theorem 14. Let P be a set of n′ points in Rd, where every point has a positive integer
weight, such that the total weight of the points is n, and let α be parameter. Furthermore,
assume that no point has weight that exceeds α. Then, one can compute, in expected O(n)
time, a ball , and a set Z that lies on the boundary of , such that
(i) |Z| ≤ c1α

1−1/d,
(ii) the total weight of the points of P inside is at least α and at most c2α,
(iii) Z is a Voronoi separator of the points of P inside from the points of P outside .
Here c1, c2 > 0 are constants that depends only on the dimension d.

The points of the separator Z are guards.

A.1 A division using the above separator
A.1.1 Algorithm
We start with a set P of n points, and a parameter α. The idea is to repeatedly extract a
set of weight (roughly) α from the point set, separate it, remove it, and put the set of guards
associated with it back into the set.

To this end, let α be a parameter, such that

c1α
1−1/d < α/8 ⇐⇒ 8c1 < α1/d ⇐⇒ α > (8c1)d,

where c1 is the constant from Theorem 14.
For an unweighted set of points X and a real number τ > 0, let τ ∗X denote the set of

points, where every points has weight τ .
The algorithm for constructing the division is the following:

1. P0 ← P . Initially all the points in P0 have weight 1.
2. i← 1.
3. While Pi−1 has total weight larger than α do:

3.1 (i, Zi)← ball and separator computed by Theorem 14 for Pi−1 with parameter α.
3.2 Ii ← Pi−1 ∩ i. // All points inside ball to be removed
3.3 Gi ← Ii \ P . // The old guards in the ball
3.4 Bi = P ∩ Ii // The batch of original points
3.5 Pi = (Pi−1 \ i) ∪ (τi ∗ Zi), where τi = d(α/4)/ |Zi|e.
3.6 ∂i = Zi ∪Gi // The set of guards for the batch Bi
3.7 i← i+ 1.

4. m← i

5. Bm = Pm−1 ∩ P , and ∂m = Pm−1 \Bm.
6. Return D = {(B1, ∂1), . . . , (Bm, ∂m)}.

http://papers.nips.cc/paper/5706-mixed-robustaverage-submodular-partitioning-fast-algorithms-guarantees-and-applications
http://papers.nips.cc/paper/5706-mixed-robustaverage-submodular-partitioning-fast-algorithms-guarantees-and-applications
https://doi.org/10.1007/BF02579435
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A.1.2 Analysis
I Lemma 15. Consider the Voronoi diagram of V(P ∪ ∂i). There is no common boundary
in this Voronoi diagram between a cell of a point of Bi and a cell of a point of P \Bi.

Proof. Consider a point p that is in equal distance to a point f ∈ Bi, and a point g ∈ P \Bi,
and furthermore, all other points of P \ {f, g} are strictly further away from p.

The claim is that d(p, ∂i) < ‖p− f‖ = ‖p− g‖. Namely, the region of common boundary
between f and g in V(P ) is completely covered by cells of ∂i in V(P ∪ ∂i).

If g ∈ Pi, then Zi separates (in the Voronoi interpretation) f ∈ Bi ⊆ Ii from all the
points of Pi ∩ P 3 g, which implies the claim.

As such, it must be that g ∈ Bj , for some j < i. Namely, there is a guard gj ∈ Zj , that
separates g from f , and its cell contains p. That is ‖p− gj‖ < ‖p− f‖, and gj ∈ Pj . If
gj ∈ ∂i then the claim holds.

Otherwise, we apply the same argument again, this time to gj and f . Indeed, gj was
removed (from Pk) in some iteration k, such that j < k < i. Namely gj ∈ k, and f /∈ k. The
point p is closer to gj then to f . If p ∈ k then there is a guard gk ∈ Zk that is closer to p
than f , by the separation property. Otherwise, it is easy to verify that the Voronoi cells of
the guards of Zk in V(Pk−1 ∪ Zk) cover completely the portion of the Voronoi cells of points
in Pk−1 ∩ k outside k, in the Voronoi diagram V(Pk−1). This readily implies that there is a
closer guard gk ∈ Zk to p than gj . In either case, we continue the argument inductively on
(gk, f).

By finiteness, it follows that there must be a guard g′ ∈ ∂i that is closer to p than f ,
which implies the claim. J

I Observation 16. (A) For all i, we have τi =
⌈
α/4
|Zi|

⌉
≥ α/4
|Zi| ≥

α/4
c1α1−1/d ≥ α1/d

4c1
.

(B) As such, for all i, Ii contains at most c2α/minj αj = O(α1−1/d) points that are not
in P . That is, we have |Ii \Bi| = O(α1−1/d).

(C) It follows that |∂i| = |Ii \Bi|+ |Zi| = O(α1−1/d).

I Lemma 17. Given a set P of n points in Rd, and a parameter α, one can compute in
polynomial time, a division D = {(B1, ∂1), . . . , (Bm, ∂m)}, such that the following holds:
(A)

⋃
Bi = P , and the clusters B1, . . . , Bm are disjoint.

(B) m = O(n/α).
(C) For all i, we have the following properties:

(C.i) the set ∂i separates Bi from P \Bi.
(C.ii) |Bi| = O(α).
(C.iii) |∂i| = O(α1−1/d).

(D) For ∂ =
⋃
i ∂i, we have that |∂| = O(n/α1/d).

Furthermore, one can modify the above construction, so that Cii is replaced by |Bi| = Θ(α).

Proof. For the bound on number of clusters, observe that every iteration of the algorithm
reduces the weight of the working set Pi by at least α/2 – indeed, the weight of Bi is at least
α, and the total weight of points of Zi (after multiplying their weight by τi) is at most α/2.
Thus implying the claim.

All the other claims are either proved above, or readily follows from the algorithm
description.

The modification of Cii follows by observing that we can merge clusters, and there are
Θ(n/α) clusters with Ω(α) points of P , by averaging. As such, one can merge O(1) clusters
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8:14 Submodular Clustering in Low Dimensions

that have o(α) points of P into a cluster that has Ω(α) points of P , thus implying the
modified claim. J

I Theorem 4. Given a set P of n points in Rd, parameters δ ∈ (0, 1) and α = Ω(1/δd+1),
and a balanced coloring χ of P , one can compute in polynomial time, a Voronoi α-division
D = {(B1, ∂1), . . . , (Bm, ∂m)}, such that the following holds:
(A)

⋃
Bi = P , and the batches B1, . . . , Bm are disjoint.

(B) m = O(n/α).
(C) For all i, we have the following properties:

(C.i) the set ∂i Voronoi separates Bi from P \Bi.
(C.ii) (1 − δ)α ≤ |Bi| ≤ α (except for the last batch, which might be of size at least

(1− δ)α, and at most size 2α).
(C.iii) |∂i| ≤ δ |Bi|.
(C.iv) |χ(Bi)| ≤ δ |Bi|.

Proof. We compute a division of P using Lemma 17, with parameter α′ = O(δα) = Ω(1/δd),
such that (i) the maximum size of a batch is strictly smaller than δα/2, and (ii) c4(α′)1−1/d <

δα′, where c4 is some prespecified constant. Let D′ = {(B′1, ∂′1), . . . , (B′τ , ∂′τ )}, be the resulting
division. Let ∆i = χ(∂′i), and observe that

∑
i ∆i = χ(P ) = 0. There is a permutation π of

the batches, such that for any prefix j, we have |
∑j
i=1 ∆π(i)| ≤ maxi |Bi| ≤ δα/2 = D. This

follows readily by reordering the summation, such that one adds batches with positive (resp.,
negative) balance if the current prefix sum is negative (resp., positive), and repeating this
till all the terms are used2.

We break the permutation π into minimum number of consecutive intervals, such that
total size of batches in each interval is at least (1 − δ)α. Merging the last two interval if
needed to comply with the desired property. The batch formed by a union of an interval can
have discrepancy at most 2D = 2(δα/2) = δα, as desired.

All the other properties follows readily by observing that merging batches, results in valid
batches, as far as separation. J

2 This is the same idea that is used in the Riemann rearrangement theorem.
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Abstract
We analyze a reduction rule for computing kernels for the hitting set problem: In a hypergraph, the
link of a set c of vertices consists of all edges that are supersets of c. We call such a set critical if
its link has certain easy-to-check size properties. The rule states that the link of a critical c can
be replaced by c. It is known that a simple linear-time algorithm for computing hitting set kernels
(number of edges) at most kd (k is the hitting set size, d is the maximum edge size) can be derived
from this rule. We parallelize this algorithm and obtain the first AC0 kernel algorithm that outputs
polynomial-size kernels. Previously, such algorithms were not even known for artificial problems. An
interesting application of our methods lies in traditional, non-parameterized approximation theory:
Our results imply that uniform AC0-circuits can compute a hitting set whose size is polynomial in
the size of an optimal hitting set.
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1 Introduction

In the theory of fixed-parameter tractability, kernelization algorithms play an important
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hypergraphs, which are pairs (V,E) consisting of a set V of vertices and a set E of hyperedges
(which we will call just edges) such that for all edges e ∈ E we have e ⊆ V and |e| ≤ d:

I Problem 1.1 (pk-d-hitting-set for fixed d ∈ N).
Instances: A d-hypergraph H = (V,E) and a parameter k ∈ N.
Question: Is there a size-k hitting set X ⊆ V , that is, |X| ≤ k and X ∩ e 6= ∅ for all e ∈ E?
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When d is not fixed, but part of the input, the resulting problem pk-hitting-set is
complete for W[2] and, thus, no kernelization is possible unless W[2] = FPT [13]. In contrast,
pk-d-hitting-set can be kernelized in polynomial time for every d. A standard way of doing
so is based on the following reduction rule, where a sunflower is a set S ⊆ E such that any
two elements of S have the same intersection cS , called the core of the sunflower:

I Rule 1.2. Find a sunflower S of size |S| ≥ k + 1 and replace E by (E \ S) ∪ {cS}.

It is easy to see that this rule is safe and not-so-easy to see that it results in a kernel with
at most d!kd edges (this follows from the Sunflower Lemma [15], by which a sunflower of
size k + 1 always exists as long as |E| > d!kd). However, finding sunflowers is a difficult
problem in itself, requiring either expensive methods like color coding [3] or approximate
solutions [18]. Therefore, the current state-of-the-art algorithm due to Fafianie and Kratsch
uses the simpler and yet more powerful critical core rule [16]:

I Rule 1.3. Find a critical core c ⊆ e ∈ E and replace E by (E \ Lc) ∪ {c}.

The rule hinges on how we setup the definition of “critical” cores. This will depend on the
computational model; in the simplest setup (see Definition 3.2 for the general case), a core c
is critical if (1) for all supersets c′ ) c we have |Lc′ | ≤ kd−|c′| and (2) we have |Lc| > kd−|c|.
Checking this for a given core c is relatively easy, making the rule fairly easy to implement.
While a bit of effort is needed to show that the rule is safe, it clearly yields a kernel with kd
edges1: When it is no longer applicable, the empty set is no longer critical and by (2) we
have |E| = |L∅| ≤ kd−0.

Less is known in the parallel setting. Only for d = 2 (the vertex cover problem) do we know
anything concerning the parallel computation of polynomial-size kernels: TC0-circuits can
compute quadratic kernels [14]. A complex argument shows that AC0-circuits can compute
exponential-size kernels for the hitting set problem [6]. However, AC0-circuits were not
known to be able to compute polynomial-size kernels for the vertex cover problem (nor, for
that matter, for any other problem). For d > 2, the best parallel kernelization is the logspace
algorithm due to Fafiane and Kratsch [16].

Our Contributions. We rephrase the kernelization algorithm from Fafianie and Kratsch [16]
in a terminology that is more suited for changing the computational model on which the
algorithm is implemented. As by-product, we obtain a slightly tighter bound on the kernel
size: While the original paper achieves a kernel size of (k + 1)d edges, we obtain a kernel
of size kd. Furthermore, we can construct a kernel of size

∑d
i=0 k

i that has the desirable
property that it is a subsets of the original edge set. However, the main objective of this
paper is a parallel constant-time implementation of the critical core rule:

Contribution I: First Polynomial-Size Constant-Time Kernels. By adjusting the setup
when a core is considered critical, we are able to derive the first polynomial-size kernel that
can be computed by AC0-circuits. It was previously known that exponential-size kernels
for the hitting set problem can be computed by AC0-circuits, but no problem (not even an
artificial one) was known for which AC0-circuits can compute a polynomial-size kernel.

There is more to the construction than just adjusting some thresholds: Any natural
implementation of the critical core rule internally needs threshold gates, leading to TC0-
circuits. To get down to AC0, we use fuzzy threshold gates, which behave like a normal
threshold gate only when the number of input 1-bits is below the threshold or “well above”
it. We show that the “fuzziness” of the gates is not a problem when computing kernels.

1 In this paper, we are only interested in minimizing the number of edges and call it the kernel size.
Reducing the number of vertices is also of interest, but not addressed by us. The set V is immutable.
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Contribution II: Constant-Time Approximations. There are known connections between
kernelization and approximation algorithms [1, 17, 21]. These connections carry over to
AC0 and we can derive an approximation algorithm for the hitting set problem that works
in constant time: There is a family of AC0-circuits that on input of any d-hypergraph
H = (V,E) outputs a hitting set X of H such that if X∗ is a minimum hitting set of H,
then |X| ∈ O(|X∗|d). While clearly worse than the best approximation ratio (namely d)
achieved sequentially, observe that AC0-circuits can only reliably “count up to polylogarithmic
numbers,” but we must still compute an approximate hitting set when |X∗| = nε.

Related Work. The “classical” way of computing kernels for pk-d-hitting-set, due to
Flum and Grohe [18, Section 9.1], is based on Erdős and Rado’s [15] Sunflower Lemma.
Variations of this algorithm where proposed by van Bevern [24] and by Damaschke [12].

Attempts to parallelise parameterized algorithms date back to the late 1990s [9, 10]. A
structural study of parameterized circuit complexity was started around 2015 by Elberfeld et
al. [14]. The parameterized circuit model we use within this paper was introduced in [4]. It
is known that a decidable problem is in para-ACi if, and only if, it has a kernel function in
ACi [6]. A first AC0 kernelization for pk-d-hitting-set was presented by Chen, Flum, and
Huang [11], which was later improved to a AC0 kernelization for pk,d-hitting-set (here, d
is parameter and not a fixed constant) [5]. All of these kernels have exponential size.

Approximation algorithms based on kernelizations where studied by Abu-Khzam et al. [1],
by Fellow et al. [17] as “fidelity kernels,” and by Lokshtanov et al. [21] as “lossy kernels.”

Structure of this Article. This article has four main sections: In Section 2 we explore the
properties of “fuzzy” threshold gates. In Section 3 we review the critical core reduction rule
and use it to compute polynomial-size kernels in linear or constant parallel time. In Section 4,
we show how our results allow us to develop constant-depth approximation algorithms. We
close the article with a look at the set packing problem in Section 5.

2 Technical Tools

On a technical level, we need a few standard notions, briefly reviewed in the following. The
technical tool of fuzzy threshold gates is presented in more detail.

Circuits. We use standard notions of Boolean circuits: AC-circuits have n input gates and
m output gates as well as and-, or-, and not-gates. The and-gates and or-gates may have
unbounded fan-in. A TC-circuit may additionally have unbounded fan-in threshold>t≤t-
gates, which output 0 if at most t of its inputs are set to 1 and which outputs 1 otherwise.
For a circuit C and a bitstring x ∈ {0, 1}n we write C(x) for the length-m bitstring that is
output by the circuit on input x.

A problem L ⊆ {0, 1}∗ is in AC0 if there is a family (Cn)n∈N of AC-circuits, where each
Cn has n inputs and only one output, such that (1) we have x ∈ L if, and only if, C|x|(x) = 1
and (2) depth(Cn) ≤ c and size(Cn) ≤ nc for some constant c. (Here, the size and depth
functions for circuits can be defined in any sensible way.) We also require that the families
are dlogtime-uniform, which is the strongest form of uniformity commonly required [7].
The definition of the class TC0 is analogue. In slight abuse of notation, we also use AC0 and
TC0 to denote the functional classes (more correctly known as FAC0 and FTC0) containing
functions f : {0, 1}∗ → {0, 1}∗ by allowing that the Cn have more than one output gate.

SWAT 2020



9:4 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

Parameterized Problems. A parameterized problem is a set Q ⊆ Σ∗×N. It lies in the class
FPT (also known as para-P), if on input (x, k) we can decide whether (x, k) ∈? Q holds in
time f(k) · |x|c for some computable function f and some constant c. The problem lies in
the class para-AC0 if there is a family (Cn,k)n,k∈N such that (1) we have (x, k) ∈ Q if, and
only if, C|x|,k(x) = 1 and (2) we have depth(Cn,k) ≤ c and size(Cn,k) ≤ f(k) · nc. We also
require a dlogtime-uniformity condition, which in this context means that the ith bit of a
suitable encoding of Cn,k can be computed by a deterministic Turing machine that obtains i,
n, and k encoded as binary numbers as input and that runs in time f(k) +O(logn+ log i).
The class para-TC0 is defined in the same way by additionally allowing threshold gates.

Kernels. A kernel function for a parameterized problem Q is a mapping K : Σ∗×N→ Σ∗×N
such that forK(x, k) =: (x′, k′) we have (x, k) ∈ Q⇔ (x′, k′) ∈ Q, |x′| ≤ s(k), and |k′| ≤ ρ(k)
for two computable functions s and ρ. The function s is called the size (function) of the
kernel and we are particularly interested in the case that s is a polynomial.2 The function ρ
is less important and will always be the identity in this paper. It is well-known that for
decidable problems Q we have Q ∈ para-P if, and only if, Q has a kernel function K ∈ FP
(that is, computable in polynomial time) [18]; we have Q ∈ para-AC0 if, and only if, Q has a
kernel function K in the function class AC0 (where (x, k) ∈ Σ∗ × N is suitably encoded as a
bitstring) [6]; and that an analogous result holds for para-TC0.

Most kernel algorithms are based on reduction rules: They take an input (x, k) ∈ Σ∗ ×N
and are either not applicable or output some (x′, k′) with |x′| < |x| and k′ ≤ k. A rule is
called safe for a problem Q if we always have (x, k) ∈ Q ⇐⇒ (x′, k′) ∈ Q. A set of such
rules yields a kernel if for any input (x, k) at least one rule is still applicable as long as
|x′| > s(k), that is, as long as the input has not yet shrunk to a kernel.

Kernel functions can map inputs (x, k) to some (x′, k′) that have “very little to do
with the original (x, k)” except for being membership-equivalent, while it is often desirable
that kernels should preserve some of the properties of the input. When x is a hypergraph
H = (V,E) and the objective is to find a set X ⊆ V with certain properties, we say that a
kernel function K preserves solutions if (x, k) and K(x, k) always have the same solutions,
and it preserves edges if the edges in K(x, k) constitute a subset of E. The full kernels of
Damaschke [12] preserve minimal solutions in our sense and the explanatory kernels of van
Bevern [24] are edge-preserving kernels in our sense. An edge-preserving kernel does not
need to be solution-preserving, but this will always be the case in the present paper.

Fuzzy Thresholds. It is well-known [23] that threshold>t≤t-gates can be simulated by AC0-
circuits for polylogarithmic t, that is, for each exponent c we have {1t0b | t ∈ N, b ∈ {0, 1}∗,∑|b|
i=1 b[i] ≤ t ≤ logc2 |b|} ∈ AC0 and TC0-families using only polylogarithmic thresholds

can be replaced by equivalent AC0-families. However, majority ∈ TC0 \ AC0 shows that
for t = bn/2c an AC0-circuit simulating a threshold>t≤t-gate would need superpolynomial
size [19]. To step beyond the “polylogarithmic boundary” we use fuzzy threshold gates: They
behave the same way as ordinary threshold gates when the number of 1-bits in the input is
below a threshold t1 or above a larger threshold t2 > t1, but no guarantee is made about their
behavior in between. Clearly, such gates are less useful than normal threshold gates – the
majority problem demonstrates the importance of precisely distinguishing between bn/2c
and bn/2c+ 1 many 1-bits – but they turn out to be sufficient for the computation of certain
kernels. Crucially, fuzzy threshold gates can be simulated by AC0-circuits for superlogarithmic
thresholds, allowing us to turn such “fuzzy TC0 algorithms” into AC0-circuits.

2 As remarked earlier, in this paper “only the edge sets” of hypergraphs will be kernelized since we insisted
that the vertex set is immutable; |x′| should in this case be read as |E′|.
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In detail, just as for the standard class TC0, we consider dlogtime-uniform circuit families
(Cn)n∈N of constant depth and polynomial size. However, instead of threshold>t≤t-gates,
the circuits now contain the following gates (in addition to and-, or-, and not-gates):

I Definition 2.1. On input b ∈ {0, 1}l, a (“fuzzy”) threshold>t2≤t1 gate g with l inputs
outputs one bit g(b) ∈ {0, 1} such that for s =

∑l
i=1 b[i] we have:

1. If s ≤ t1, then g(b) = 0.
2. If s > t2, then g(b) = 1.
In all other cases, when s exceeds the threshold only “slightly” (t1 < s ≤ t2), no guarantees
are made about g(b): it can be 0 or 1.

A fuzzy threshold circuit Cn with m output gates may produce as output any string from
a set Cpossible

n (b) ⊆ {0, 1}m of possible outputs, depending on how the fuzzy gates happen to
behave. The objective is, of course, that no matter how the fuzzy gates actually behave and
no matter which z ∈ Cpossible

n (b) we actually get, it will be a valid “solution” for the given
input b. A bit more formally, we define a solution relation as a relation S ⊆ {0, 1}∗ × {0, 1}∗
such that for each possible input b ∈ {0, 1}∗ the set S(b) := { s | (b, s) ∈ S } of (“allowed” or
“permissible”) solutions is a subset of {0, 1}p(|b|) for some fixed polynomial p. As an example,
consider the task of finding quadratic kernels for the vertex cover problem. We model this
by an S containing all pairs (b, s) where b is (the encoding of) a graph G and a number k
and s is (the encoding of) a graph K of size at most k2 such that G has a size-k vertex cover
if, and only if, K does.

I Definition 2.2. Let S be a solution relation. We say that a family (Cn)n∈N of fuzzy
threshold circuits computes solutions for S if Cpossible

|b| (b) ⊆ S(b) holds for all b ∈ {0, 1}∗.

We derive rather tight fuzzy threshold gates from an result of Ajtai about approximate
counting with first-order formulas over arithmetic structures [2]:

I Fact 2.3 (Theorem 2.1 in [2]). For each positive integer i there exists an FO[+,×] formula
ϕ(x,X) with free variable x and free unary set variable X such that we have for each relational
structure S over size-n universe U , each threshold t ∈ U , and each set A ⊆ U :

|A| ≤
(
1− (logn)−i

)
· t =⇒ S |= ¬ϕ(t, A),

|A| ≥
(
1 + (logn)−i

)
· t =⇒ S |= ϕ(t, A).

I Corollary 2.4. Let t be a threshold and ε > 0 be a small error term. There is a constant c
such that for each n-input circuit C with threshold>(1+ε)t

≤t gates there is a circuit C ′ without
such gates (a normal AC-circuit) with
1. depth(C ′) = depth(C) · c and size(C ′) = size(C)c such that
2. for all b ∈ {0, 1}n we have C ′(b) ∈ Cpossible(b).

Proof. Let C be an n-input circuit with an ñ-input threshold>(1+ε)t
≤t gate g. We construct

a circuit C ′ by replacing g with an AC0-subcircuit. By Fact 2.3 and the well-known relation
that the set of decision problems definable in FO[+,×] is exactly dlogtime-uniform AC0 [20],
we know that for every i ∈ N and every a ∈ N there is an AC0-circuit C̃ such that for all
w ∈ {0, 1}ñ we have:∑|w|

i=1
wi ≤

(
1− (log ñ)−i

)
· a =⇒ C̃|w|(w) = 0,∑|w|

i=1
wi ≥

(
1 + (log ñ)−i

)
· a =⇒ C̃|w|(w) = 1.
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9:6 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

In order to replace the gate g with an AC0-circuit, observe that there is a constant n0 > 0
such that 1− (logn)−1 ≥ (1+ε/2)−1 and (1+ε) · (1+ε/2)−1 ≥ 1+(logn)−1 for all n ≥ n0. If
the number of inputs ñ of g is smaller than n0, we can replace g by a hard-wired constant-size
AC0-circuit. For ñ ≥ n0, we set a = (1 + ε/2) · t and replace g by the circuit from above. Let
x :=

∑|w|
i=1 wi and observe that x ≤ t implies x ≤ t = (1 + ε/2)−1 · a ≤

(
1 − (logn)−1) · a

and x > (1 + ε)t = (1 + ε) · (1 + ε/2)−1 · a implies x ≥
(
1 + (logn)−1) · a. J

I Corollary 2.5. Let S be a solution relation and let (Cn)n∈N be a family of fuzzy threshold
circuits that compute solutions for S. Let depth(Cn) ∈ O(1) and size(Cn) ∈ nO(1). Then
there is a function f ∈ AC0 that maps every b ∈ {0, 1}∗ to a solution f(b) ∈ S(b).

3 Three Ways of Implementing the Critical Core Rule

Recall the “classical” sunflower reduction rule, Rule 1.2, which asks us to find and then
replace a sunflower S of size k + 1 by its core. The reason this rule is safe is that there is no
way of hitting all p ∈ S with k vertices without hitting the core, as all p ∈ S are disjoint
outside the core. In other words, the hypergraph with edge set S 	 c := { p \ c | p ∈ S } has
no hitting set of size k. The key insight behind the critical core rule is that there are other
hypergraphs that also do not have hitting sets of size k, but are easier to find: A hypergraph
with |E| > k ·∆, where ∆ is the maximum vertex degree, cannot have a hitting set of size k.
Naturally, the maximum degree ∆ of an arbitrary hypergraph is unbounded a priori, but we
can still turn this observation into a safe reduction rule, namely Rule 1.3.

In the introduction, we left open the details of the central definition of a critical core,
which we remedy presently. First, it will be useful to call the number i(c) := d − |c| the
index i of a core c. Our algorithms will typically process cores in increasing order of index,
which means in decreasing order of size. Next, a setup is a system of bounds – tailored to a
specific computational model – that determines which cores are critical. In detail:

I Definition 3.1 (Setup, Factor). A setup (w, u, l) consists of three monotone sequences of
positive integers: the weight sequence w = (wi)i∈N, prescribing a weight for cores of index i,
the uncritical bound sequence u = (ui)i∈N, and the light bound sequence l = (li)i∈N. These
sequences must satisfy w0 = u0 = l0 = 1 and wi, ui ∈ {1, . . . , li}. The factor of a setup is the
largest number f such that ui+1 ≥ f · li holds for all i ∈ N.

For a core c and a setup (w, u, l), the three numbers we will be particularly interested in are
wi(c), ui(c), and li(c); and we will write w(c), u(c), and l(c) for them, respectively.

I Definition 3.2 (Critical Cores). Let (w, u, l) be a setup and let c be a core. The weight
of Lc is w(Lc) =

∑
e∈Lc

w(e). The core is light if w(Lc) ≤ l(c), otherwise it is heavy. The
core is critical if Lc \ {c} is not empty, all c′ ) c are light, and w(Lc) > u(c).

We spell out what these definitions mean for an exemplary setup: wi = 1 and ui = li = ki.
The factor is k since ui+1 = ki+1 = k ·ki = kli holds. The weight w(Lc) of a link Lc is simply
|Lc| since all weights are 1. A core c is light if |Lc| ≤ ki(c) = kd−|c|, and it is critical if for all
c′ ) c we have |Lc′ | ≤ kd−|c′|, but |Lc| > kd−|c| (Lc \ {c} 6= ∅ then holds automatically).

I Lemma 3.3. For a factor-k setup, let c be critical. Then Lc 	 c has no size-k hitting set.

Proof. Let i be the index of c. Suppose Lc 	 c had a hitting set X ⊆ V \ c of size k.
Then Lc =

⋃
v∈X Lc∪{v} and, therefore, also w(Lc) ≤

∑
v∈X w(Lc∪{v}). As c is critical by

assumption, we have w(Lc) > ui and w(Lc∪{v}) ≤ li−1 since c ∪ {v} ) c. However, this
yields ui < w(Lc) ≤

∑
v∈X w(Lc∪{v}) ≤

∑
v∈X li−1 = kli−1, contradicting ui ≥ kli−1, which

we assumed (the setup has factor k). J
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I Corollary 3.4. For any factor-k setup, any size-k hitting set must hit all critical cores. In
particular, Rule 1.3 is a safe kernel rule for the hitting set problem.

A simple, but crucial property of the critical core rule is that it removes all heavy links:

I Lemma 3.5. Exhaustively applying the critical core reduction rule to a d-hypergraph H
yields an edge set K without heavy cores. In particular, the empty set will be a light core and
|K| = |L∅| ≤ ld.

Proof. If there is a core that is heavy for K, then there is also a heavy core c of minimal
index i – meaning that all c′ ) c are light. By definition of c being heavy, w(Lc) > li. But
li ≥ ui and all c′ ) c are light. Thus, c is critical contrary to the assumption. J

The following algorithm and theorem summarizes the above findings.

Algorithm 1 The critical core reduction algorithm, which we run on an hypergraph H = (V,E)
for some fixed setup.

1 while there is a critical core c ⊆ e ∈ E do
2 E ← (E \ Lc) ∪ {c}
3 return E

I Theorem 3.6. For every factor-k setup, Algorithm 1 outputs an edge set K of size |K| ≤ ld
that is solution-preserving for the hitting set problem.

Clearly, the smaller ld, the smaller our kernels. Since by Definition 3.1 we need to ensure
li+1 ≥ ui+1 ≥ kli, the smallest ld is obtained when we set ui = li = ki. Interestingly, the
weights wi are not relevant yet (we will need them later on) and can be chosen arbitrarily
between 1 and li = ki.

3.1 Computing Kernels in Linear Time
In this section we discuss a linear time implementation of Algorithm 1, similar to the
one provided by Fafianie and Kratsch [16]. However, we differ in two regards: First, the
cited implementation directly computes an edge-preserving kernel of size (k + 1)d, while we
compute a solution-preserving kernel of size kd. Secondly, we introduce another rule – the
critical core expansion rule – that allows us to transform the previous computed kernel to
an edge-preserving kernel of size (k + 1)d. This approach turns out to be slightly more
complicated than the implementation of Fafianie and Kratsch, but it allows a straight forward
parallelization, which we discuss in the following sections.

It is not too hard to implement a single application of the critical core rule in time
|E| · 2d poly(d): Iterate over all e ∈ E and for each c ⊆ e increase a counter n[c] by the edge’s
weight. Determine a maximal c with w(Lc) = n[c] > ui in a second loop (i is the index of c)
and then apply the rule. Since each application of the rule reduces the number of edges by
at least 1, we get a total runtime of |E|2 · 2d poly(d) to compute the kernel.

To improve the runtime to |E| · 2d poly(d), we need a new definition: For a d-hypergraph
H = (V,E), let us call a set K of subsets of V light if in the hypergraph (V,K) all edges are
light, and we say that K can be obtained from E if there is a sequence E0, E1, . . . , Eq with
E0 = E and Eq = K such that each Ej+1 is obtained from Ej through one of two actions:
1. We can set Ej+1 = Ej ∪ {c} if c is critical in (V,Ej).
2. We can set Ej+1 = Ej \ {e} if there is a c ( e with c ∈ Ej .
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9:8 Kernelizing the Hitting Set Problem in Linear Sequential and Constant Parallel Time

The critical core rule is now the special case where we always do the first action for some
critical c, immediately followed by doing the second action for all e ) c, that is, of all of Lc
(except for c itself, of course).

I Theorem 3.7. For any factor-k setup, there is a |E| · 2d poly(d) time algorithm that, on
input of a d-hypergraph H = (V,E), obtains a size-ld solution-preserving kernel K for the
hitting set problem. In particular, for li = ki, a kernel of size kd can be computed in time
|E| · 2d poly(d).

Proof. The algorithm iterates over all indices i ← 1, . . . , d in d rounds. At the start of
round i, all cores c of index i′ < i will be light and the objective is to ensure that at the end
of the round there is no heavy core c of index i. Towards this aim, we wish to modify E
(compute Ej+1 from the current Ej , but let us just write that we “modify E”) by
1. removing all edges in R := {e ∈ E | e ) c for some critical set c of index i},
2. adding all edges in a set A0 ⊆ A := {c | c is critical and has index i} such that
3. A0 has the properties |A0| ≤ |R| and R = {e ∈ E | ∃c ∈ A0 : e ) c}.
Suppose we could find A0 and R efficiently. Then we can, indeed, add all of A0 and then
remove all of R in accordance with the two rules: All c ∈ A0 are initially critical and stay
this way when we add other c′ ∈ A0 of the same size to E; and we can then safely remove
all of R as all e ∈ R are proper supersets of some c ∈ A0 that we have just added. Finally
note that after we have added A0 and removed R, there are no heavy c of size |c| = r for the
resulting set E: If c with |c| = r were still heavy in j, then c would also have been heavy in
the original E prior to the modifications and, thus, also critical. But, then, e ∈ R would have
been true for all e in c’s link in E and, thus, all these e would have been removed. Putting it
all together, we see that we can, indeed, use the updated E for the next round.

It remains to show how R and A0 can be found. First, we iterate over all e ∈ E and all
c ⊆ e with |c| = i and for each such c increment a counter n[c] by wd−|e|. Note that at the
end of the first loop we have n[c] = w(Lc) for all such c. Second, we once more iterate over
all e ∈ E and for each of them we now check whether there is a c ( e of index i such that
n[c] > ui−1. If so, we add e to R and we mark one such c as to belonging to A0. Clearly, at
the end of the second loop we will have correctly computed R and a set A0 of critical edges
with |A0| ≤ |R| and R = {e ∈ E | ∃c ∈ A0 : e ) c}.

The runtime of the algorithm is |E| · 2d poly(d), assuming an efficient implementation
of the array of counters n[c]: In the round for core size r, we iterate twice over at most |E|
edges e and each time consider at most

(
d
i

)
subsets c ( e. Removing R and adding A0 takes

time linear in their sizes. Finally, |A0| ≤ |R| ensures that |E| can only shrink in each round,
yielding a total runtime of at most

∑d−1
i=0

(
d
i

)
|E| · poly(d) = |E| · 2d poly(d) as claimed. J

While we can now compute solution-preserving kernels K in time |E| · 2d poly(d), the
kernels are not yet edge-preserving: many e ∈ K will not be elements of the original edge
set E. In the following we present an expansion rule that can be used to turn K into an
edge-preserving kernel. Recall that the critical core reduction rule replaces E by (E \Lc)∪{c}
for a critical c. The “reverse” version replaces K by (K \ {c}) ∪ L′c, where L′c ⊆ Lc is a
subset large enough to ensure that c becomes critical.

I Rule 3.8 (Critical Core Expansion Rule). In a d-hypergraph H = (V,E), let c /∈ E be critical
and let E′ = (E \ Lc) ∪ {c}. Determine an L′ ⊆ Lc with l(c) ≥ w(L′) > u(c) and replace E′
by E′′ := (E′ \ {c}) ∪ L′.

(If c ∈ E is critical, the critical core reduction rule just removes all supersets of c from E. In
this case we also consider the expansion rule to be applicable and set E′′ = E′.)
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I Lemma 3.9. For every setup with wi = li, if we apply the critical core expansion rule
to E′ for some c, then w(E′′) ≤ w(E′) will hold.

Proof. w(E′′) = w(E′)− w(c) + w(L′) and w(c) = l(c) ≥ w(L′). J

I Lemma 3.10. For every factor-k setup with wi−1 + ui ≤ li, if c /∈ E is critical for E,
then there is a set L′ such that the critical core expansion rule is applicable to the set
E′ = (E \ Lc) ∪ {c} and E′′ will have the same size-k hitting sets as E (and E′).

Proof. Let c be critical for E and have index i. The set L′ can be obtained from Lc by
iteratively adding elements of Lc to L′ until we have w(L′) > u(c) for the first time (at the
latest when all of Lc has been added). Let e ) c be the last element added to L′. Then
w(L′ \ {e}) ≤ u(c) = ui and w(L′) = w(L′ \ {e}) + w(e) ≤ ui + wi−1 ≤ li. To see that E′
and E′′ have the same size-k hitting sets, observe that each hitting set of E′ must hit c ∈ E′
and is thus also a hitting set of E′′. For the other direction note that c is critical in E′′: No
c′ ⊇ c can be heavy in E′′ since no such c′ was heavy in E ⊇ E′′. With c being critical in
E′′, any size-k hitting set of E′′ must hit c and, thus, all of E′ and thus also all of E. J

I Theorem 3.11. For every factor-k setup with wi = li and wi−1 + ui ≤ li, there is an
algorithm running in time |E| · 2d poly(d) that on input of a d-hypergraph H = (V,E) outputs
a kernel K of size ld that is edge- and solution-preserving for the hitting set problem.

Proof of Theorem 3.11. By the conditions we impose on the weights, the two lemmas tell
us that any application of the critical core reduction rule can be reversed by expansion
(Rule 3.8). In particular, an algorithm can use the rule to “undo” the replacement of E by
E′ := (E \R) ∪A0 by finding a set L′ for each c ∈ A0. Observe that we can remove all of
A0 from E′ (except for those c ∈ A0 that were already present in E) and add an appropriate
L′ for each such c ∈ A0 to, still, ensure that all c ∈ A0 are still critical. J

The smallest setup that satisfies the conditions of the theorem is wi = li = (k + 1)i and
ui = k(k + 1)i−1 for i ≥ 1. Thus, the theorem tells us that we can compute edge-preserving
kernels of size (k + 1)d for the hitting set problem in linear time.

We point out that there is a much simpler way of implementing the critical core rule
sequentially in order to compute an edge-preserving kernel. Algorithm 2 is essentially the
algorithm of Fafianie and Kratsch [16] in our terminology.

Algorithm 2 The critical core filter algorithm. When started on H = (V,E), it will output a
kernel K ⊆ E of size at most ld – provided that the setup satisfies ui + wi ≤ li, see Theorem 3.12.

1 K ← ∅
2 for e ∈ E do
3 if there is no c ⊆ e that is critical with respect to K then
4 K ← K ∪ {e}
5 return K

It is easy implement the algorithm so that it runs in time |E| · 2d poly(d) by keeping track
of the weights of all links in K. Unfortunately, the algorithm does not seem to be suitable
for parallelisation. However, analyzing the algorithm with our proposed setups still allows us
to bound to kernel size slightly better than it was done by Fafianie and Kratsch [16]:

I Theorem 3.12. For every factor-k setup with ui + wi ≤ li, the output of Algorithm 2 is
an edge-preserving hitting set kernel for H of size at most ld.
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Proof. By construction, we have K ⊆ E. We have |K| ≤ ld, since c = ∅ is light in K. To
see that K is a kernel, consider an e ∈ E that we do not add to K. Then there must be a
core c ⊆ e such that for the link Lc of c in K we have w(LKc ) + w(e) > l(c) (otherwise we
would have added e to K). For i = i(c), we then have li < w(LKc ) + wi and, by assumption,
ui ≤ li − wi < w(LKc ). This means that c was critical in K and, hence, every size-k hitting
set of K also hits c and, thus, in particular also e ⊇ c and there is no need to add e to K. J

The slowest growing setup with factor k satisfying ui + wi ≤ li is given by wi = 1 and
ui =

∑i
j=1 k

j = k + k2 + · · ·+ ki and li = ui + 1 =
∑i
j=0 k

j = 1 + k + k2 + · · ·+ ki. Thus,
a kernel with

∑i
j=0 k

j edges can be achieved, which is slightly better than the previously
known bound of (k + 1)d.

3.2 Computing Kernels by Constant-Depth Threshold Circuits
The algorithm from Theorem 3.7 allows an efficient parallel implementation:

I Theorem 3.13. For each d, the hitting set kernels from Theorems 3.7 and 3.11 can
be computed by TC0-circuits. In particular, TC0-circuits can compute solution-preserving
kernels of size kd and edge-preserving kernels of size (k + 1)d for the hitting set problem for
d-hypergraphs.

Proof. Just observe that a TC0-circuit can determine whether n[c] > u(c) holds for a given c
without iterating over all e ∈ E sequentially, but by using a single threshold gate. In
particular, we can compute R in parallel and thus also A0. This yields a circuit whose depth
in linear in d (a constant) and whose size is polynomial in |E| · 2d and thus polynomial in
the input length for constant d. We can also implement the reverse critical link rule using
threshold gates since to identify the sets L′ from the rule, we just need threshold gates to
find the first edge e ∈ Lc for which the sum of the weights of all edges in Lc prior to this
edge together with w(e) exceeds ui. J

We point out that for solution-preserving kernels, the above theorem was already known
for d = 2 [6], while only the logspace kernelization from Fafiane and Kratsch [16] were known
for d > 2.

3.3 Computing Kernels by Constant-Depth Fuzzy Threshold Circuits
Our final goal is an implementation of our kernelization using AC0-circuits. As pointed out
earlier, previously it was not known how kernels of polynomial size can be computed by
AC0-circuits for any problem. The difficulty in computing polynomial-size kernels using
AC0-circuits lies in the inability of such circuits to count precisely when the parameter k is
no longer polylogarithmic. We overcome this problem by using fuzzy threshold gates.

Critcial Core Reduction by Fuzzy Thresholds. We wish to replace the TC0-circuit family
from Theorem 3.13 by a fuzzy one, and then we wish to apply Corollary 2.5 to turn it into
an AC0-circuit family. The threshold circuits from Theorem 3.13 really need to be precise: If
we naively replace all threshold gates by fuzzy ones, it can happen that a critical c is not
detected, but a smaller one is – resulting in a incorrect application of the rule. The other
way round, it may also happen that the rule is not applied when it actually should.

We solve these problems by using a setup with worse (but still polynomial) bounds. The
jump from one bound to the next is so big that the fuzziness is no longer a problem:
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I Theorem 3.14. For any δ > 1, factor-k setup with li ≥ δ · ui and d ∈ N, there is a
constant-depth, polynomial-size family (Cn)n∈N of fuzzy threshold circuits that, on input of
a hypergraph H = (V,E) and a number k, outputs a solution-preserving size-ld hitting set
kernel K. In particular, a kernel of size δd−1kd can be computed using ui = δi−1ki and
li = δiki.

Proof. Let us first reiterate the steps from the proof of Theorem 3.13, but now with a closer
look at where and how threshold gates are needed (and with which thresholds).

The idea behind the kernelization was that at the beginning of a round for some index
i ∈ {1, . . . , d}, all cores of smaller index are light and the objective is to ensure that at the
end of the round this is also true for all cores of index i. To ensure this, we identified all c of
index i that were critical: For each possible c ⊆ e ∈ E (of which there can be at most

(
d
i

)
|E|

many), a normal TC0-circuit would use a single threshold gate at this point to determine
whether w(LEc ) exceeds the threshold ui. If so, c gets marked and then included in the
process by which A0 and R are determined, but this process does not include any use of
threshold gates – it is only the test whether w(LEc ) > ui where we need threshold gates.

In the fuzzy setting, we will need to use a fuzzy threshold>δt≤t -gate to implement the
test w(Lc) > ui using, of course, t = ui. This has the following effects:
1. If w(LEc ) ≤ ui = t holds, then we safely and correctly identify c as noncritical as the test

will always yield 0.
2. If w(LEc ) > δt = δui, then c is safely and correctly identified as critical as the test will

always yield 1.
3. If w(LEc ) is in the fuzzy range, then c is guaranteed to be critical, but not heavy (since

δui ≤ li).
The important observation is that in the third item, it is correct to apply the critical link
rule to c (which we do if the fuzzy threshold outputs 1), but it is not necessary to do so since
c is light. In particular, after the round for i is done, there will be no heavy c of index i in E,
which was exactly our objective. J

I Corollary 3.15. For every d and any ε > 0, there is a function in AC0 that maps every
d-hypergraph and number k to a solution-preserving hitting set kernel of size at most (1+ε)kd.

Critcial Core Expansion by Fuzzy Thresholds. Like the critical core reduction rule, the
critical core expansion rule can be implemented by fuzzy threshold circuits. Recall that
Rule 3.8 allowed us to safely replace a set E′ of edges, which had been obtained by setting
E′ = (E \Lc)∪ {c}, by the set E′′ = (E′ \ {c})∪L′ for any set L′ ⊆ Lc of appropriate size –
namely for l(c) ≥ w(L′) > u(c). As we did earlier, using a setup with more “slack” will allow
us to replace threshold gates by fuzzy threshold gates here.

I Theorem 3.16. For any δ > 1, factor-k setup with wi = li and wi−1 + δui ≤ li and
d ∈ N, there is a constant-depth, polynomial-size family (Cn)n∈N of fuzzy threshold circuits
that, on input of a d-hypergraph H = (V,E) and a number k, outputs a size-ld hitting set
kernel K that is edge- and solution-preserving. In particular, a kernel of size δd(k + 1)d can
be computed using the setup with wi = li = δi(k + 1)i and ui = δi−1k(k + 1)i−1.

Proof. We once more need to look more closely at how threshold gates are used in The-
orem 3.13 to obtain L′ ⊆ Lc: For Lc = {e1, e2, . . . , e|Lc|} we use |Lc| threshold gates in
parallel, each of which tests for some number j ∈ {1, . . . , |Lc|} whether w({e1, . . . , ej}) > u(c)
holds – and the smallest j for which is the case determines L′ = {e1, . . . , ej}. Then,
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clearly, w(L′) > u(c) and also w(L′) ≤ ui + wi−1, which will be less than li by as-
sumption. Now, in the fuzzy setting, we use fuzzy gates for tests, which will still ensure
that w(L′) = w({e1, . . . , ej}) > u(c) holds; but for the upper bound we can only ensure
w(L′) ≤ δui + wi−1 since as long as w({e1, . . . , ej}) ≤ δui holds, the fuzzy threshold gates
might still output 0, making us (incorrectly) believe that {e1, . . . , ej} is not yet heavy enough.
Thus, in order for the critical core expansion rule to work, we need δui + wi−1 ≤ li, which is
exactly our assumption.

For the setup wi = li = δi(k+ 1)i and ui = kli−1 = δi−1k(k+ 1)i−1, observe that it does,
indeed, satisfy all properties needed by the different lemmas on which the correctness of the
rule is based:
1. It satisfies wi ≤ li and ui = δi−1k(k + 1)i−1 ≤ δi(k + 1)i = li (needed by Definition 3.1).
2. It has factor k since ui+1 = δik(k + 1)i = kli (needed by Lemma 3.3).
3. It has δui+wi−1 = δik(k+1)i−1 +δi−1(k+1)i−1 = δi(k+1)i−1(k+1/δ) < δi(k+1)i = li

(needed by this theorem). J

4 Constant-Time Approximation Algorithms for Hitting Set

Approximation algorithms compute solutions for optimization problems that, while perhaps
not optimal, have a size that is at least “close” to the optimum. For a minimization problem
like vertex-cover, the ultimate objective is to output a vertex cover X whose size is at
most (1 + ε)|X∗|, where X∗ denotes some optimal solution. It turns out that unless some
complexity classes collapse, such near-optimal approximations cannot be computed for the
vertex cover problem. The best approximation to date is to compute a maximal matching
and to then take all vertices involved in it. This algorithm delivers solutions of size at most
2|X∗| and can be implemented using NC2-circuits. However, no approximation algorithm
that produces a solution that is at least polynomially bounded in |X∗| was known to be
implementable with circuits below NC2. In this section we present such an algorithm.

Our strategy is based on a simple observation: The set of vertices in any solution-
preserving kernel is already a solution for the original graph and, thus, also an approximation.
However, we still have the problem that we do not know the size of the optimal solution and,
thus, do not know which number k we should use with our kernel algorithms.

I Theorem 4.1. For each d and ε > 0, there are functions f and g that map (the encondings
of) d-hypergraphs H to hitting sets of H, such that (let X∗ be a minimum hitting set of H):
1. f ∈ TC0 and |f(H)| ≤ d|X∗|d;
2. g ∈ AC0 and |g(H)| ≤ (1 + ε) · d|X∗|d.

Proof. The idea is identical for both claims. On input H = (V,E), we run the following
algorithm in parallel for each k ∈ {1, . . . , |V |}: Compute a solution-preserving kernel Kk

for H using the circuits from Theorem 3.13 for TC0 or using those from Corollary 3.15 for
AC0. Then test whether Kk is actually a hitting set of H (this test can easily be done using
AC0-circuits). Output the set

⋃
Kk (the set of all vertices mentioned in any edges e ∈ Kk)

for the smallest k that passes the test, that is, for which Kk is still a hitting set of K.
Trivially, the outputs of the described circuits will be hitting sets. For the size bounds,

observe that all Kk are solution-preserving: They have the same size-k hitting sets as the
original hypergraph H. In particular, for k = |X∗|, the kernel Kk will have X∗ as a hitting
set and

⋃
Kk will contain X∗ and will thus hit all of H. The size bounds now follow from

the size bounds on Kk in Theorem 3.13 and Corollary 3.15. J
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5 Adapting the Approach for the Set Packing Problem

The dual problem of pk-d-hitting-set is the set packing problem, in which we are asked to
find k disjoint edges in a hypergraph:

I Problem 5.1 (pk-d-set-packing for fixed d ∈ N).
Instances: A d-hypergraph H = (V,E) and a parameter k ∈ N.
Question: Is there a set X ⊆ E with |X| ≥ k such that any different e, f ∈ X are disjoint?

Kernelizations based on the critical core rule tend to carry over to the set packing
problem [22]. It is thus not too surprising that our approach also works for set packings,
though there are also some subtleties.

5.1 Computing Set Packing Kernels
Recall that the safety of the critical core rule for the hitting set problem hinged on Lemma 3.3:
For critical c, the set Lc	 c has no size-k hitting set and, thus, for the question of whether H
has a size-k hitting set all the edges in Lc can be represented by c. We show that a similar
situation arises for the set packing problem: For the question of whether H has a size-k set
packing, all edges in Lc can be represented by c, which gives us an analogue of Corollary 3.4:

I Lemma 5.2. For a setup with factor d(k − 1), let c be critical in a d-hypergraph H. Then
for every U ⊆ V of size |U | ≤ d(k − 1) there is a set x ∈ Lc 	 c such that x ∩ U = ∅.

Proof. Let i be the index of c. We may assume that U ∩ c = ∅ holds (otherwise we
can just replace U by U \ c). Now consider the set I =

⋃
v∈U Lc∪{v} ⊆ Lc. As c is

critical by assumption, we have w(Lc) > ui and also w(Lc∪{v}) ≤ li−1. This gives us
w(I) ≤

∑
v∈U w(Lc∪{v}) ≤ |U |li−1 ≤ d(k − 1)li−1 ≤ ui < w(Lc). Hence, there must be an

edge e ∈ Lc \ I, which means e ∩ U = ∅. Then x = e \ c is the desired element of Lc 	 c. J

I Lemma 5.3. For any setup with factor d(k − 1), let c be critical for H = (V,E).
1. If c 6= ∅, then (E \ Lc) ∪ {c} has a set packing of size k if, and only if, E does.
2. If c = ∅, then E has a set packing of size k.

Proof. For the first item, first note that if X ⊆ E is a set packing (of any size), then
(X \Lc)∪{c} ⊆ (E \Lc)∪{c} is a set packing of the same size as X. For the other direction,
X ⊆ (E \ Lc) ∪ {c} is a size-k set packing. Clearly, if c /∈ X, we have X ⊆ E and we are
done, so suppose c ∈ X. Consider the set U :=

⋃
x∈X\{c} x of all vertices mentioned in any

edge of X, except for those in c. Then |U | ≤ d(k − 1) since H is a d-hypergraph and each
of the k − 1 many elements of X \ {c} contributes at most d vertices to U . By Lemma 5.2,
there is a edge x ∈ Lc 	 c that is disjoint from U and trivially also from c. This means that
X ′ = (X \ {c}) ∪ {x ∪ c} is also a set packing of size k and X ′ ⊆ E.

For the second item, we repeat the following instructions k times, starting with U = ∅
and X = ∅: Invoke Lemma 5.2 to obtain x ∈ Lc 	 c = Lc = E with x ∩ U = ∅ and update
X ← X ∪{x} and U ← U ∪x. Note that in invocations of the lemma we have |U | ≤ d(k− 1),
so we always get a fresh x ∈ E that is disjoint from all previous elements of X. J

The lemma states that just as for the hitting set problem, the critical core rule is safe – as
long as c is nonempty; and when c is empty and critical, we actually know that there is a set
packing of size k and can output a trivial kernel. The observations prove the following:
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I Theorem 5.4. For any setup with factor d(k− 1) and input H = (V,E), let K be a kernel
computed by (1) applying the critical core rule for nonempty cores as long as possible and (2)
possibly setting K to a trivial yes-instance if the empty set becomes critical at some point.
Then K has a size-k set packing if, and only if, H has one; and |K| ≤ ld.

The smallest possible setup with factor d(k− 1) is of course ui = li = (d(k− 1))i, leading
to a kernel size of ld = (d(k − 1))d ≤ ddkd. Since this kernelization works with the exact
same reduction rule we used for the hitting set problem – and since the special case of a
critical empty core is easy to take care of – we deduce the following results:

I Corollary 5.5. For each d ∈ N and ε > 0, one can compute on input of a d-hypergraph
H = (V,E) a set packing kernel

in time |E| · 2d poly(d) of size
(
d(k − 1)

)d and an edge-preserving one of size
(
dk
)d,

by TC0-circuits of size
(
d(k − 1)

)d and an edge-preserving one of size
(
dk
)d, and

by AC0-circuits of size (1 + ε)
(
d(k− 1)

)d and an edge-preserving one of size (1 + ε)
(
dk
)d.

5.2 Approximation Algorithms for the Set Packing Problem
When one compares our kernelization results on the hitting set and the set packing problems,
it may seem that these problems behave in identical ways and only the sizes of the outputs
differ slightly. However, in the approximation setting, the situation is quite different: For the
set packing problem, we do not know how we can extract an approximation from a kernel. To
appreciate the underlying difficulties, observe that it is not even clear how one can compute
in AC0 a matching for a graph that is known to be a complete bipartite graph with two given
shores U and W of identical size k.

We do not know whether it is possible to compute approximate matchings, let alone set
packings, using AC0-circuits. It is thus a bit surprising that we can, nevertheless, approximate
the size of optimal matchings and set packings:

I Theorem 5.6. For each d and ε > 0, there are functions f and g that map (the enconding
of) each d-hypergraphs H to a number such that (let X∗ denote a largest set packing of H):
1. f ∈ TC0 and 1

d |X
∗|1/d < f(H) ≤ |X∗|.

2. g ∈ AC0 and 1
(1+ε)d |X

∗|1/d < g(H) ≤ |X∗|.

Proof. On input H = (V,E), we compute in parallel for each k ∈ {1, . . . , |V |} a set packing
kernel Kk for H using the circuits from Corollary 5.5. For each kernel we perform a simple
test: Is Kk the trivial kernel? (Recall that this is the case when c = ∅ because critical during
the computation of the kernel and, then, we have a “witness” that the original hypergraph
has a set packing of size at least k.) We output the largest k that passes this test.

For the upper bounds, note that whatever k we output, we know that there is a set packing
of this size in the output. For the lower bounds, we show that whenever |X∗| > ld, then the
trivial kernel will be output. Assume that this not the case for Kk. We observe that X := X∗

is a set packing of size |X∗| and for any nonempty c, the set (X \Lc)∪{c} is also a set packing
of the same size (see the argument at the beginning of the proof of Lemma 5.3). Thus, the
final Kk, which arose through a series of applications of E ← (E \ Lc) ∪ {c} for different,
nonempty c, contains some set packing of size |X∗|. In particular, |Kk| ≥ |X∗| > ld. But,
then, c = ∅ is critical in Kk, contrary to our assumption. We know that all k pass the test “Is
Kk the trivial kernel?” for which |X∗| > ld holds. For the function f we used ld = (d(k−1))d,
so all k with |X∗|1/d/d > k − 1 pass the test. For g we used ld = ((1 + ε)d(k − 1))d, so now
all k with |X∗|1/d/((1 + ε)d) > k − 1 pass the test. J
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6 Conclusion

We analyzed a simple reduction rule for the hitting set problem in a parallel setting: The
critical core rule states that for any critical set c, we can safely replace the link of c by c.
Whether or not a set is critical depended only on the weights of links and by varying the
thresholds, we got different kernelization algorithms with different properties, see Table 1.

From the perspective of circuit complexity, this paper gives two new insights: First, it is
possible to compute polynomial-size kernels for difficult problems using AC0-circuits; and
second, it is possible to find polynomial-factor approximations for the hitting set problem
using AC0-circuits.

Table 1 Summary of our results concerning kernels and approximations for the hitting set
problem (above) and the set packing problem (below) in d-hypergraphs. The number opt is the size
|X∗| of a smallest hitting set or a largest set packing of the input, respectively.

Hitting Set Kernelization Results

Runtime What is Computed? Size Reference

|E| · 2d poly(d) solution-preserving hitting set kernel kd edges Theorem 3.7
TC0 solution-preserving hitting set kernel kd edges Theorem 3.13
AC0 solution-preserving hitting set kernel (1 + ε)kd edges Corollary 3.15

|E| · 2d poly(d) edge-preserving hitting set kernel
∑d

j=0 k
j edges Theorem 3.12

|E| · 2d poly(d) edge-preserving hitting set kernel (k + 1)d edges Theorem 3.11
TC0 edge-preserving hitting set kernel (k + 1)d edges Theorem 3.13
AC0 edge-preserving hitting set kernel (1 + ε)(k + 1)d edges Corollary 3.15

NC2 a hitting set d · opt vertices folklore
TC0 a hitting set optd vertices Theorem 4.1
AC0 a hitting set (1 + ε)optd vertices Theorem 4.1

Set Packing Kernelization Results

Runtime What is Computed? Size Reference

|E| · 2d poly(d) set packing kernel (d(k − 1))d edges Corollary 5.5
TC0 set packing kernel (d(k − 1))d edges Corollary 5.5
AC0 set packing kernel (1 + ε)(d(k − 1))d edges Corollary 5.5

|E| · 2d poly(d) edge-preserving set packing kernel (dk)d edges Corollary 5.5
TC0 edge-preserving set packing kernel (dk)d edges Corollary 5.5
AC0 edge-preserving set packing kernel (1 + ε)(dk)d edges Corollary 5.5

NC2 number z 1
d

opt ≤ z ≤ opt folklore
TC0 number z 1

d
opt1/d ≤ z ≤ opt Theorem 5.6

AC0 number z 1
(1+ε)dopt1/d ≤ z ≤ opt Theorem 5.6

SWAT 2020
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Abstract
The classical problem of degree sequence realizability asks whether or not a given sequence of n
positive integers is equal to the degree sequence of some n-vertex undirected simple graph. While
the realizability problem of degree sequences has been well studied for different classes of graphs,
there has been relatively little work concerning the realizability of other types of information profiles,
such as the vertex neighborhood profiles.

In this paper, we initiate the study of neighborhood degree profiles, wherein, our focus is on
the natural problem of realizing maximum neighborhood degrees. More specifically, we ask the
following question: “Given a sequence D of n non-negative integers 0 ≤ d1 ≤ · · · ≤ dn, does there
exist a simple graph with vertices v1, . . . , vn such that for every 1 ≤ i ≤ n, the maximum degree in
the neighborhood of vi is exactly di?”

We provide in this work various results for maximum-neighborhood-degree for general n vertex
graphs. Our results are first of its kind that studies extremal neighborhood degree profiles. For
closed as well as open neighborhood degree profiles, we provide a complete realizability criteria. We
also provide tight bounds for the number of maximum neighbouring degree profiles of length n that
are realizable. Our conditions are verifiable in linear time and our realizations can be constructed in
polynomial time.
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1 Introduction

Background and Motivation. In many application domains involving networks, it is com-
mon to view vertex degrees as a central parameter, providing useful information concerning
the relative significance (and in certain cases, centrality) of each vertex with respect to the
rest of the network, and consequently useful for understanding the network’s basic properties.
Given an n-vertex graph G with adjacency matrix Adj(G), its degree sequence is a sequence
consisting of its vertex degrees,

Deg(G) = (d1, . . . , dn).
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Given a graph G or its adjacency matrix, it is easy to extract the degree sequence. An
interesting dual problem, sometimes referred to as the realization problem, concerns a
situation where given a sequence of nonnegative integers D, we are asked whether there
exists a graph whose degree sequence conforms to D. A sequence for which there exists a
realization is called a graphic sequence. Erdős and Gallai [10] gave a necessary and sufficient
condition for deciding whether a given sequence of integers is graphic (also implying an
O(n) decision algorithm). Havel and Hakimi [12, 13] gave a recursive algorithm that given a
sequence of integers computes in O(m) time a realizing m-edge graph, if such a graph exists.

Over the years, various extensions of the degree realization problem were studied as
well, cf. [1, 3, 23], concerning different characterizations of degree-profiles. The motivation
underlying the current paper is rooted in the observation that realization questions of a
similar nature pose themselves naturally in a large variety of other application contexts,
where given some type of information profile specifying the desired vertex properties (be it
concerning degrees, distances, centrality, or any other property of significance), it can be asked
whether there exists a graph conforming to the specified profile. Broadly speaking, this type
of investigation may arise, and find potential applications, both in scientific contexts, where
the information profile reflects measurement results obtained from some natural network of
unknown structure, and the goal is to obtain a model that may explain these measurements,
and in engineering contexts, where the information profile represents a specification with
some desired properties, and the goal is to find an implementation in the form of a network
conforming to that specification.

This basic observation motivates a vast research direction, which was little studied over
the last five decades. In this paper we make a step towards a systematic study of one specific
type of information profiles, concerning neighborhood degree profiles. Such profiles are of
theoretical interest in context of social networks (where degrees often reflect influence and
centrality, and consequently neighboring degrees reflect “closeness to power”). Neighborhood
degrees were considered before in [5], where the profile associated with each vertex i is the list
of degrees of all vertices in i’s neighborhood. In contrast, we focus here on “single parameter”
profiles, where the information associated with each vertex relates to a single degree in its
neighborhood. The first natural problem in this direction concern the maximum degrees in
the vertex neighborhoods. For each vertex i, let di denote the maximum vertex degree in i’s
neighborhood. Then MaxNDeg(G) = (d1, . . . , dn) is the maximum neighborhood degree
profile of G. The same realizability questions asked above for degree sequences can be posed
for neighborhood degree profiles as well. This brings us to the following central question of
our work:

Maximum Neighborhood Degree Realization
Input: A sequence D = (d1, . . . , dn) of non-negative integers.
Question: Is there a graph G of size n such that the maximum degree in the neighborhood
of i-th vertex in G is exactly equal to di ?

Our Contributions. We now discuss our contributions in detail. For simplicity, we represent
the input vector D alternatively in a more compact format as σ = (dn`

` , · · · , d
n1
1 ), where

ni’s are positive integers with
∑`
i=1 ni = n; here the specification requires that G contains

exactly ni vertices whose maximum degree in neighborhood is di. We may assume that
d` > d`−1 > · · · > d1 ≥ 1 (noting that vertices with max degree zero are necessarily singletons
and can be handled separately).
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We perform an extensive study of maximum neighborhood degree profiles.
1. We obtain the necessary and sufficient conditions for σ = (dn`

` , · · · , d
n1
1 ) to be MaxNDeg

realizable for closed neighborhoods in Section 3. For general graphs we obtain the
following characterization.

d` ≤ n` − 1, and (d1 ≥ 2 or n1 is even)

We also study the version of the problem in which the realization is required to be
connected. Our characterization is as follows.

d` ≤ n` − 1, and (d1 ≥ 2 or σ = (12))

2. Next, we consider the open neighborhoods, wherein a vertex is not counted in its own
neighborhood. These are more involved, and are discussed in Section 4. Our results for
open neighborhood are summarised in Table 1.

Table 1 Max-neighboring-degree realizability for open neighborhood.

Graph Complete characterisation

Connected Graphs
d` ≤ min{n`, n− 1}

d1 ≥ 2 or σ = (dd, 11) or σ = (12)
σ 6= (dd`+1

` , 21)

General graphs
σ can be split1 into two profiles σ1 and σ2 such that

(i) σ1 has a connected MaxNDeg-open realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1), for integers d ≥ 2, α ≥ 0.

3. Enumerating realizable maximum neighborhood degree profiles: The simplicity of above
characterizations enables us to enumerate and count the number of realizable profiles.
This gives a way to sample uniformly a random MaxNDeg realizable profile. In contrast,
counting and sampling are open problems for the traditional degree sequence realizability
problem. In the full version of this paper, we show that the number of realizable profiles
of length n is d(2n−1 + (−1)n)/3e for general graphs and 2n−3 for connected graphs. In
comparison, the total number of non-increasing sequences of length n on the numbers
1, . . . , n− 1 is Θ(4n/

√
n).

Through this work, we make the first crucial step by obtaining a closed form charac-
terization for maximum-neighborhood-degree profiles, and solving the realization problem
for such profiles with an efficient algorithm. As was done with degree sequences, we solve
the problem for both connected graphs as well as general graphs. Our conditions are veri-
fiable in linear time and our realizations are computable in polynomial time. Finally, in
contrast to the degree-sequence case, we are able to count the number of distinct realizable
maximum-neighborhood-degree sequences.

Further Related Work. Many works have addressed related questions such as finding all
the (non-isomorphic) graphs that realize a given degree sequence, counting all the (non-
isomorphic) realizing graphs of a given degree sequence, sampling a random realization for a
given degree sequence as uniformly as possible, or determining the conditions under which

1 A profile σ = (dn`

` , · · · , dn1
1 ) is said to be split into two profiles σ1 = (dp`

` , · · · , d
p1
1 ) and σ2 = (dq`

` , · · · , d
q1
1 )

if ni = pi + qi for each i ∈ [1, `].

SWAT 2020
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a given degree sequence defines a unique realizing graph (a.k.a. the graph reconstruction
problem), see [6, 8, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 22, 24]. Other works such as [7, 9, 17]
studied interesting applications in the context of social networks.

To the best of our knowledge, the MaxNDeg realization problems have not been explored
so far. There are only two related problems that we are aware of. The first is the shotgun
assembly problem [18], where the characteristic associated with the vertex i is some description
of its neighborhood up to radius r. The second is the neighborhood degree lists problem [5],
where the characteristic associated with the vertex i is the list of degrees of all vertices in
i’s neighborhood. We point out that in contrast to these studies, our MaxNDeg problem
applies to a more restricted profile (with a single number characterizing each vertex), and
the techniques involves are totally different from those of [5, 18]. Several other realization
problems are surveyed in [2, 4].

2 Preliminaries

Let H be an undirected graph. We use V (H) and E(H) to respectively denote the vertex
set and the edge set of graph H. For a vertex x ∈ V (H), let degH(x) denote the degree
of x in H. Let NH [x] = {x} ∪ {y | (x, y) ∈ E(H)} be the (closed) neighborhood of x in
H. For a set W ⊆ V (H), we denote by NH(W ), the set of all the vertices lying outside set
W that are adjacent to some vertex in W , that is, NH(W ) = (

⋃
w∈W N [w]) \W . Given a

vertex v in H, the maximum degree in the neighborhood of v, namely MaxNDegH(v), is
defined to be the maximum over the degrees of all the vertices in the neighborhood of v.
Similarly, the maximum degree in the open neighborhood (NH [v] \ v) of vertex v, namely
MaxNDeg−H(v) is the maximum over the degrees of all the vertices present in the open
neighborhood of v. Given a set of vertices A in a graph H, we denote by H[A] the subgraph
of H induced by the vertices of A. For a set A and a vertex x ∈ V (H), we denote by A ∪ x
and A \ x, respectively, the sets A ∪ {x} and A \ {x}. When the graph is clear from context,
for simplicity, we omit the subscripts H in all our notations. Finally, given two integers i ≤ j,
we define [i, j] = {i, i+ 1, . . . , j}.

32

2

2 1

(a)

32

2

2 1

(b)

Figure 1 A comparison of the MaxNDeg realization of (34, 21) and a MaxNDeg− realization
of (33, 22).

Next we formally define the realizable profiles.

I Definition 1. A profile σ = (dn`

` , · · · , d
n1
1 ) satisfying d` > d`−1 > · · · > d1 > 0 is

said to be MaxNDeg realizable if there exists a graph G on n = n1 + · · · + n` vertices
that for each i ∈ [1, `] contains exactly ni vertices whose MaxNDeg is di. Equivalently,
|{v ∈ V (G) : MaxNDeg(v) = di}| = ni.

I Definition 2. A profile σ = (dn`

` , · · · , d
n1
1 ) is said to be MaxNDeg− realizable if there

exists a graph G on n = n1 + · · · + n` vertices that for each i ∈ [1, `] contains exactly ni
vertices whose MaxNDeg− is di. Equivalently, |{v ∈ V (G) : MaxNDeg−(v) = di}| = ni
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The figure depicts a MaxNDeg realization of (34, 21). (The numbers in the vertices
represent their degrees.) Note that in the open neighborhood model, the corresponding
MaxNDeg− profile becomes (33, 22).

3 Realizing maximum neighborhood degree profiles

In this section, we provide a complete characterization of MaxNDeg profiles. For simplicity,
we first discuss the uniform scenario of σ = (dk). Observe that a star graphK1,d is MaxNDeg
realization of the profile (dd+1). We show in the following lemma that, by identifying together
vertices in different copies of K1,d, it is always possible to realize the profile (dk), whenever
k ≥ d+ 1.

I Lemma 3. For any positive integers d and k, the profile σ = (dk) is MaxNDeg realizable
whenever k ≥ d+ 1. Moreover, we can always compute in O(k) time a connected realization
that has an independent set, say S, of size d such that all vertices in S have degree at most
2, and at least two vertices in S have degree 1.

Proof. Let α be the smallest integer such that k ≤ 2 + α(d − 1). We first construct a
caterpillar2 T as follows. Take a path P = (s0, s1, . . . , sα, sα+1) of length α + 1. Connect
each internal vertex si (here i ∈ [1, α]) with a set of d− 2 new vertices, so that the degree of
si is d. (See Figure 2). Note that the MaxNDeg of each vertex v ∈ T is d.

Now if k = 2 +α(d− 1), then T serves as our required realizing graph. If k < 2 +α(d− 1),
then α ≥ 2 since k ≥ d+ 1. The tree T is “almost” a realizing graph for the profile, except
that it has too many vertices. Let r = 2+α(d−1)−k denote the number of excess vertices in
T that need to be removed. The r vertices can be removed as follows. Take any two distinct
internal vertices si and sj on P , and let s1

i , . . . , s
d−2
i and s1

j , . . . , s
d−2
j , respectively, denote

the neighbors of si and sj not lying on P . Let G be the graph obtained by merging vertices
s`i and s`j into a single vertex for ` ∈ [1, r]. (See Figure 2). Since the number of vertices
was decreased by r, G now contains exactly n vertices. The degree of vertices s1, s2, . . . , sα
remains d, and the degree of all other vertices is at most 2, therefore MaxNDeg(v) = d for
each v ∈ G, so G is a realization of the profile σ.

Finally, in the resultant graph G, the end points of P (i.e. s0 and sα+1) have degree 1,
and there are d − 2 other vertices, namely s1

i , . . . , s
d−2
i (or s1

j , . . . , s
d−2
j ), that have degree

bounded by 2. Therefore we set S to these d vertices. It is easy to verify that S is indeed an
independent set. J

s0 s1 s2 s3 s4

s1
1 s2

1 s3
1 s1

2 s2
2 s3

2 s1
3 s2

3 s3
3

Figure 2 A caterpillar for d = 5 and α = 3. If k = 12, then r = 2, and we merge (i) s1
1, s

1
2, and

(ii) s2
1, s

2
2.

2 A caterpillar is a tree in which all the vertices are within distance one of a central path.
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3.1 An incremental procedure for computing MaxNDeg realizations
We explain here our main building block, procedure AddLayer, that will be useful in
incrementally building graph realizations in a decreasing order of maximum degrees. Given
a partially computed connected graph H and integers d and k satisfying d ≥ 2 and k ≥ 1,
the procedure adds to H a set W of k new vertices such that MaxNDeg(w) = d, for each
w ∈W . The reader may assume that MaxNDeg(v) ≥ d, for each existing vertex v ∈ V (H).
The procedure takes in as an input a sufficiently large vertex list L (of size d− 1) that forms
an independent set in H, and whose vertices have small degree (that is, at most d − 1).
Moreover, in order to accommodate its iterative use, each invocation of the procedure also
generates and outputs a new list, to be used in the further iterations.

Procedure AddLayer. The input to procedure AddLayer (H,L, k, d) is a connected graph
H and a list L = (a1, . . . , ad−1) of vertices in H whose degree is bounded above by d−1. The
first step is to add to H a set of k new vertices W = {w1, w2, . . . , wk}. Next, the new vertices
are connected to the vertices of L and to themselves so as to ensure that MaxNDeg(w) = d

for every w ∈W . Depending upon whether or not k < d, there are two separate cases. (Refer
to Algorithm 1 for pseudocode).

Algorithm 1 AddLayer (H,L, k, d).

1 Let the list L be (a1, a2, . . . , ad−1).
2 Add to H a set W = {w1, . . . , wk} of k new vertices.
3 case (k < d) do
4 Set count = k and i = d− 1.
5 while (count 6= 0) do
6 Let r = min{d− deg(ai), count}.
7 Add edges (ai, wcount−t) to H for t ∈ [0, r − 1].
8 Decrement i by 1 and count by r.
9 foreach j ∈ [d− 1, . . . , 2, 1] do

10 If deg(ai) = d then break the for loop.
11 If (j < i) then add edge (aj , ai) to H.
12 If (j > i) then add an edge between ai and an arbitrary vertex in N(aj) ∩W .
13 Set L to be prefix of (w1, w2, . . . , wk, a1, a2, . . . , ai−1) of size d− 2.
14 case (k ≥ d) do
15 Use Lemma 3 to compute over independent set (W ∪ {a1}) the graph, say H̄,

realizing the profile (dk+1) such that degH̄(a1) = 1.
16 Add edges between a1 and any arbitrary d− deg(a1) vertices in set

{a2, a3, . . . , ad−1}.
17 Let b1, . . . , bd−1 ∈ H̄ \ a1 be such that 1 = degH̄(b1) ≤ · · · ≤ degH̄(bd−1) ≤ 2.
18 Set L = (b1, b2, . . . , bd−2).
19 Output L.

Let us first consider the case k ≤ d− 1. In this case we add edges from vertices in W to
a subset of vertices from L such that those vertices in L will have degree d and therefore
will imply MaxNDeg(w) = d, for every w ∈ W . We initialize two variables, count and i,
respectively, to k and d− 1. The variable count holds, at any instant of time, the number of
vertices in W that still need to be connected to vertices in L. While count > 0, the procedure
performs the following steps:
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(i) compute r = min{d− deg(ai), count}, the maximum number of vertices in W that can
be connected to vertex ai;

(ii) connect ai to following r vertices inW : wcount−(r−1), wcount−(r−2), . . . , wcount−1, wcount;
and

(iii) decrease count by r, and i by 1.

When count = 0, the vertices ai, ai+1, . . . , ad−1 are connected to at least one vertex in W
(this implies d− i ≤ k). It is also easy to verify that at this stage, deg(ad−1) = deg(ad−2) =
· · · = deg(ai+1) = d, and deg(ai) ≤ d. Since the input graph H was connected, in the
beginning of the execution deg(ai) ≥ 1, and by connecting ai to at least one vertex in W ,
specifically to w1, its degree is increased at least by one. So at most d− 2 edges need to be
added to ai to ensure that its degree is exactly d. The procedure performs the following
operation for each j ∈ [d− 1, d− 2, . . . , 2, 1] (in the given order) until deg(ai) = d:
(i) if j < i then add edge (aj , ai) to H, and
(ii) if j > i then add an edge between ai and an arbitrary neighbor of aj lying in W .

Since deg(ai) = deg(ai+1) = · · · = deg(ad−1) = d, and deg(w) ≤ 2 for every w ∈W , it follows
that MaxNDeg(w) = d, for each w ∈ W . In the end, we set a new list L containing the
first d − 2 vertices in the sequence (w1, w2, . . . , wk, a1, a2, . . . , ai−1). This is possible since
k + i − 1 ≥ d − 2 due to the fact that d − i ≤ k. (Later on we bound the degrees of the
vertices in the new list.)

Now we consider the case k ≥ d. The procedure uses Lemma 3 to compute over the
independent set W ∪ {a1} a graph H̄ realizing the profile (dk+1) such that degH̄(a1) = 1.
Notice that in the beginning of the execution, deg(a1) ∈ [1, d − 1], and it is increased by
one by adding H̄ over the set W ∪ {a1}. So now deg(a1) ∈ [2, d]. To ensure deg(a1) = d,
at most d − 2 more edges need to be added to a1. Edges are added between a1 and any
arbitrary d− deg(a1) vertices in set {a2, a3, . . . , ad−1}. This ensures that every w ∈W has
MaxNDeg(w) = d. By Lemma 3, H̄ \ {a1} contains an independent set of d− 1 vertices,
say b1, . . . , bd−1, such that 1 = degH̄(b1) ≤ degH̄(b2) ≤ · · · ≤ degH̄(bd−1) ≤ 2. In the end, the
procedure creates a new list L = (b1, b2, . . . , bd−2).

For sake of better understanding, in the rest of paper, we denote by Hold, Lold and
Hnew, Lnew respectively the graph and the list before and after the execution of Procedure
AddLayer. Observe that V (Hnew) = V (Hold) ∪W .

The following two lemmas follow from the description of algorithm.

I Lemma 4. Each w ∈W satisfies MaxNDeg(w) = d, and N(w) ⊆W ∪ Lold.

I Lemma 5. Each a ∈ Lold \ Lnew satisfies degHnew
(a) ≤ d, and each a ∈ Lold ∩ Lnew

satisfies degHnew
(a) ≤ degHold

(a) + 1.

It is also easy to verify that the total execution time of Procedure AddLayer is O(k+ d).

The Inheritance Property. Till now, we showed that given an independent list of d − 1
vertices of degree at most d− 1 in a graph H, we can add k ≥ 1 vertices to H such that the
MaxNDeg of these k vertices is d. In order to iteratively use this algorithm to add vertices
of smaller MaxNDeg values (� d) we require that the list Lnew computed by Procedure
AddLayer should satisfy following three constraints:
(i) The size of Lnew should be d− 2;
(ii) the vertices of Lnew should form an independent set; and most importantly,
(iii) the vertices in Lnew should have degree at most d− 2.
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In order to ensure these constraints on Lnew, we further impose the constraint that the
list Lold is a valid list; this is formally defined as below.

I Definition 6 (Valid List). A list L = (a1, a2, . . . , at) in a graph G is said to be “valid” with
respect to G if the following two conditions hold:
(i) for each i ∈ [1, t], deg(ai) ≤ i, and
(ii) the vertices of L form an independent set in G.

We next prove the inheritance property of our procedure.

I Lemma 7 (Inheritance property). If the input list Lold in Procedure AddLayer is valid,
then the output list Lnew is valid as well.

Proof. We first consider the case k ≤ d− 1. Let i be the smallest index such that vertices
ai, ai+1, . . . , ad−1 are adjacent to some vertex of W in Hnew. (That is, i is the index when
Procedure AddLayer exits the while loop). Recall that in the graph Hnew, w1 ∈ W is a
neighbor of ai. Also, to increase the degree of ai to d, we connect ai to some/all vertices in
a1, . . . , ai−1, and some/all neighbors of ai+1, . . . , ad−1 lying in W . Therefore the vertex set
W ∪ {a1, . . . , ai−1} is independent in Hnew. Also, its size at least d− 1, as we showed that
k ≥ d− i. Since the list Lold = (a1, a2, . . . , ad−1) is valid in the beginning of the execution of
Procedure AddLayer, it follows that in Hold, deg(aj) ≤ j for j ∈ [1, d− 1]. So by Lemma 5,
in Hnew, (i) deg(aj) ≤ j + 1 for j ∈ [1, i− 1], (ii) deg(w1) = 1, and (iii) the degree of each
other vertex in W \ w1 is at most 2. Consequently, (w1, · · · , wk) is a valid list of length at
least d− i ≥ 1. Since deg(aj) ≤ j + 1 for j ∈ [1, i− 1], the list (w1, · · · , wk, a1, . . . , ai−1) is
valid and has length at least d− 1. Truncating this to length d− 2 again gives us a valid list.

We now consider the case k ≥ d. By Lemma 3, H[W ∪{a1}] = H̄ contains an independent
set {b1, b2, . . . , bd−1} ⊆W such that deg(b1) = 1 and deg(bj) ≤ 2 for j ∈ [2, d− 1]. Therefore,
(b1, b2, . . . , bd−2) is a valid list of length d− 2 in Hnew. J

The following proposition summarizes the above discussion.

I Proposition 8. For any integers d ≥ 2, k ≥ 1, and any connected graph H containing a
valid list L of size d− 1, procedure AddLayer adds to H in O(k + d) time, a set W of k
new vertices such that MaxNDeg(w) = d, for every w ∈W . All the edges added to H lie
in W × (W ∪ L). Moreover, degH(a) ≤ d, for every a ∈ L, and the updated graph remains
connected and contains a new valid list of size d− 2.

3.2 The main algorithm
We now present the main algorithm for computing the realizing graph using Procedure
AddLayer.

Let σ = (dn`

` , · · · , d
n1
1 ) be any profile satisfying d` ≤ n`− 1 and d1 ≥ 2. The construction

of a connected graph realizing σ is as follows (refer to Algorithm 2 for pseudocode). We first
use Lemma 3 to initialize G to be the graph realizing the profile (dn`

` ). Recall G contains
an independent set, say W = {w1, w2, . . . , wd`

}, satisfying the condition that the degree of
the first two vertices is one, and the degree of the remaining vertices is at most two. Set
L`−1 = (w1, w2, . . . , wd`−1−1) (notice that d`−1 − 1 ≤ d`). It is easy to verify that this list is
valid. Next, for each i = `− 1 to 1, perform the following steps:
(i) Taking as input the valid list Li of size di−1, execute Procedure AddLayer (G,Li,ni,di)

to add ni new vertices to G. The procedure returns a valid list Li−1 of size di − 2.
(ii) Truncate the list Li−1 to contain only the first di−1−1(≤ di−2) vertices. The truncated

list remains valid since any prefix of a valid list is valid.
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Algorithm 2 MaxNDeg realization of σ = (dn`
` , . . . , dn1

1 ).

Input: A sequence σ = (dn`

` , · · · , d
n1
1 ) satisfying d` ≤ n` − 1 and d1 ≥ 2.

1 Initialize G to be the graph obtained from Lemma 3 that realizes the profile (dn`

` ).
2 Let L`−1 be a valid list in G of size d`−1 − 1.
3 for (i = `− 1 to 1) do
4 Li−1 ← AddLayer (G,Li, ni, di).
5 Truncate list Li−1 to contain only the first di−1 − 1(≤ di − 2) vertices.
6 Output G.

Proof of Correctness. Let V` denote the set of vertices in graph G initialized in step 1,
and for i ∈ [1, `− 1], let Vi denote the set of ni new vertices added to graph G in iteration i
of the for loop. Also for i ∈ [1, `], let Gi be the graph induced by vertices Vi ∪ · · · ∪ V`. The
following lemma proves the correctness.

I Lemma 9. For any i ∈ [1, `], graph Gi is a MaxNDeg realization of profile (dn`

` , · · · , d
ni
i ),

and for any j ∈ [i, `] and any v ∈ Vj, degGi
(v) ≤MaxNDegGi

(v) = dj.

Proof. We prove the claim by induction on the iterations of the for loop. The base case
is for index `, and by Lemma 3 we have that degG`

(v) ≤ MaxNDegG`
(v) = d`, for every

v ∈ V`. For the inductive step, we assume that the claim holds for i+ 1, and prove the claim
for i. Consider any vertex v in Gi. We have two cases.
1. v ∈ Vi : In this case by Proposition 8 we have that degGi

(v) ≤MaxNDegGi
(v) = di.

2. v ∈ Vj , for j > i : We first show that for any vertex w ∈ NGi [v], degGi
(w) ≤ dj . If w ∈ Vi,

then we already showed degGi
(w) ≤ di. So let us consider the case w ∈ Vi+1 ∪ · · · ∪ V`.

Now if w ∈ Li participates in Procedure AddLayer (G,Li, ni, di), then by Proposition 8,
in the updated graph degGi

(w) ≤ di � dj . If w 6∈ Li, then the degree of w is unaltered
in the ith iteration, and thus degGi

(w) = degGi+1(w) ≤ MaxNDegGi+1(v) = dj by the
inductive hypothesis. It follows that MaxNDeg(v) remains unaltered due to iteration i,
and thus MaxNDegGi

(v) = MaxNDegGi+1(v) = dj . J

The execution time of the algorithm is O
(∑`

i=1(ni + di)
)
. This is also optimal. Indeed,

any connected graph realizing σ must contain Ω(n1 + n2 + · · ·+ n`) edges as the degrees of
all vertices must be non-zero. Also, the graph must contain at least one vertex of each of the
degrees d1, d2, . . . , d`, and therefore must have Ω(d1 + d2 + · · ·+ d`) edges. In other words,
any realizing graph must contain Ω

(∑`
i=1(ni + di)

)
edges, and thus the computation time

must be at least Ω
(∑`

i=1(ni + di)
)
. The following theorem is immediate from the above

discussions.

I Theorem 10. There exists an algorithm that given any profile σ = (dn`

` , . . . , d
n1
1 ) satisfying

d` ≤ n` − 1 and d1 ≥ 2 computes in optimal time a connected MaxNDeg realization of σ.

3.3 A complete characterization for MaxNDeg realizable profiles

The necessary conditions for MaxNDeg realizability is as follows.

I Lemma 11. A necessary condition for a profile σ = (dn`

` , · · · , d
n1
1 ) to be MaxNDeg

realizable is d` ≤ n` − 1.
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Proof. Suppose σ is MaxNDeg realizable by a graph G. Then G must contain a vertex,
say w, of degree d` in G. Since d` is the maximum degree in G, the MaxNDeg of all the
d` + 1 vertices in N [w] must be d`. Thus n` ≥ d` + 1. J

Consider a profile σ = (dn`

` , · · · , d
n1
1 ) realizable by a connected graph. If d1 = 1, then

the graph must contain a vertex, say v, of degree 1, and the vertices in N [v] must also have
degree 1. The only possibility for such a graph is a single edge graph on two vertices. Thus
in this case σ = (12). If d1 ≥ 2, then by Lemma 11, for σ to be realizable in this case we need
that n` ≥ d` + 1. Also, by Theorem 10, under these two conditions σ is always realizable.
We thus have the following theorem.

I Theorem 12. For a profile σ = (dn`

` , · · · , d
n1
1 ) to be MaxNDeg realizable by a connected

graph the necessary and sufficient condition is that either
(i) n` ≥ d` + 1 and d1 ≥ 2, or
(ii) σ = (12).

Now if d1 = 1, then n1 must be even, since the vertices v with MaxNDeg(v) = 1 must
form a disjoint union of exactly n1/2 edges. So for general graphs we have the following
theorem.

I Theorem 13. For a profile σ = (dn`

` , · · · , d
n1
1 ) to be MaxNDeg realizable by a general

graph the necessary and sufficient conditions are that d` ≥ n` − 1, and either n1 is even or
d1 ≥ 2.

3.4 Discussion
We briefly discuss the reasons behind the innateness in our incremental construction. Let us
consider the MaxNDeg profile σ = (dn`

` , · · · , d
n1
1 ) for a graph G = (V,E). For 1 ≤ i ≤ `, let

Wi ⊆ V be the set of vertices whose MaxNDeg in G is at least di. Note that for any vertex
v ∈Wi, a vertex having maximum degree in NG[v] (say x) must be contained inWi. Moreover,
all the neighbors of x must also lie in Wi. It follows that the degree of x remains unaltered
when restricted to the induced subgraph G[Wi], and MaxNDegG(v) = MaxNDegG[Wi](v).
Hence, MaxNDeg profiles satisfy the following nice substructure property, which justifies
our incremental algorithm for computing their realizations.

I Substructure Property. The induced graph Gi = G[Wi] is a MaxNDeg realization of the
partial profile (dn`

` , · · · , d
ni
i ), for each 1 ≤ i ≤ `.

Observe that in the case of MaxNDeg− profiles, unfortunately, the nice sub-structure
property does not always hold, which in turn increases the complexity of the problem. For
example, for the graph considered in Figure 1, the profile σ = (33, 22) is MaxNDeg−
realizable, however, the subsequence (33) is not MaxNDeg− realizable.

4 Realizing maximum open neighborhood-degree profiles

4.1 Pseudo-valid List
We begin by stating the following lemmas that are an extension of Lemma 3 and Proposition 8
presented in Section 3 for MaxNDeg profiles.
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I Lemma 14. For any positive integers d and k, the profile σ = (dk) is MaxNDeg−
realizable whenever k ≥ d+ 2. Moreover, we can always compute in O(k) time a connected
realization that contains an independent set having
(i) two vertices of degree 1, and
(ii) d− 2 other vertices of degree at most 2.

I Proposition 15. For any integers d ≥ 2, k ≥ 1, and any connected graph H containing a
valid list L of size d− 1, procedure AddLayer adds to H in O(k + d) time, a set W of k
new vertices such that MaxNDeg−(w) = d, for every w ∈W . All the edges added to H lie
in W × (W ∪ L). Moreover, degH(a) ≤ d, for every a ∈ L, and the updated graph remains
connected and contains a new valid list of size d− 2.

It is important to note that though the Proposition 15 holds for the open-neighborhoods
it can not be directly used to incrementally compute the realizations. This is because for the
profiles σ = (dd`+1

` ) unlike the scenario of MaxNDeg realization, there is no MaxNDeg−
realization that contains a valid list (See Lemma 18 for further details). This motivates us to
define pseudo-valid lists.

I Definition 16. A list L = (a1, a2, . . . , at) in a graph H is said to be “pseudo-valid” with
respect to H if
(i) for each i ∈ [1, t], deg(ai) = 2, and
(ii) the vertices of L form an independent set.

Note that the only deviation that prevents L from being a valid list is that deg(a1) is 2
instead of 1.

We next state two lemmas that are crucial in obtaining MaxNDeg− realizations in the
scenarios n` = d` and n` = d` + 1.

I Lemma 17. For any integers d > d̄ ≥ 2, the profile σ = (dd, d̄1) is MaxNDeg− realizable.
Moreover, in O(d) time we can compute a connected realization that contains a valid list of
size d− 1.

Proof. The construction of G is as follows. Take a vertex z and connect it to d− 1 other
vertices v1, . . . , vd−1. Next take another vertex y and connect to v1, . . . , vd̄−1 (recall 2 ≤ d̄ <
d). Also connect z to y. In the resulting graph G, deg(z) = d, deg(y) = d̄, and deg(vi) ≤ 2
for i ∈ [1, d − 1]. Also, vd−1 is not adjacent to y as d̄ < d, thus deg(vd−1) = 1. Therefore,
MaxNDeg−(z) = d̄, MaxNDeg−(y) = d, and MaxNDeg−(vi) = d, for i ∈ [1, d− 1]. It is
also easy to verify that (vd−1, . . . , vd̄−1, . . . , v2, v1) is a valid list in G. J

I Lemma 18. For any integer d ≥ 2, the profile σ = (dd+1) is MaxNDeg− realizable.
Moreover, a connected realization that contains an independent set having d− 1 vertices of
degree 2 can be compute in O(d) time. However, none of the graphs realizing σ can contain a
vertex of degree 1.

Proof. The construction of graph G realizing σ is very similar to the previous lemma. Take
two vertex-sets, namely, U = {u1, u2} and W = {w1, . . . , wd−1}. Add to G the edge (u1, u2),
and for each i ∈ [1, d − 1], add to G the edges (u1, wi) and (u2, wi). This ensures that
deg(u1) = deg(u2) = d and deg(wi) = 2 for i ∈ [1, d− 1]. So G contains d+ 1 vertices with
MaxNDeg− equal to d. Also, W is an independent set of size d− 1 in G and deg(wi) = 2,
for every vertex wi ∈W .
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Next, let H be any MaxNDeg− realizing graph of σ. Then H must contain two vertices,
say x and y, of degree d, since a single vertex of degree d in H can guarantee MaxNDeg− = d

for at most d vertices. Next notice that N [x] = N [y], because otherwise H will contain more
than d+ 1 vertices. This implies that all the vertices in H, other than x and y, are adjacent
to both x and y. Therefore, each of the vertices in H must have degree at least two. J

The next lemma shows that AddLayer outputs a valid list, even when the input list is
pseudo-valid.

I Lemma 19. In procedure AddLayer, the list Lnew is valid even when the list Lold is
pseudo-valid and the parameter d satisfies d ≥ 3.

Proof. We borrow notations from the proof of Lemma 7. As before, we have two separate
cases depending on whether or not k < d. We first consider the case k ≤ d − 1. We
showed in Lemma 7 that (w1, · · · , wk, a1, . . . , ai−1) is a valid list of length at least d−1 when
degHold

(a1) = 1. We now consider the scenario when Lold is pseudo-valid, and degHold
(a1) = 2.

The list Lnew is still valid if k ≥ 2, since the degree of a1 in Hnew is at most 3 and its position
in Lnew is also 3 or greater. So the non-trivial case is k = 1. In such a case i = d− 1, as the
only vertex w1 belonging to W is connected to ad−1 in Algorithm 1. Also, degHold

(ad−1) = 2,
and ad−1 is connected to vertex w1, so to ensure that deg(ad−1) = d, in the for loop in
step 9 of Algorithm 1, it is connected to only d− 3 vertices, namely, a2, a3, . . . , ad−2. Since
ad−1 is never connected to vertex a1, degHnew

(a1) = degHold
(a1) = 2. This shows that the

sequence (w1, · · · , wk, a1, . . . , ai−1) = (w1, a1, . . . , ad−2) is a valid list of length exactly d− 1.
Truncating it to length d− 2 again yields a valid sequence. In case k ≥ d, a1’s degree does
not play any role, so the argument from the proof of Lemma 7 works as is. J

I Remark 20. The condition d ≥ 3 is necessary in Lemma 19 because in a pseudo-valid
list all the vertices have degree 2. However, Procedure AddLayer works only in the case
when the degree of each vertex in the list is at most d− 1, which does not hold true for a
pseudo-valid list when d = 2. So we provide a different analysis for the profile (dd+1, 2k).

4.2 MaxNDeg− realization of the profile σ = (dd+1, 2k)
The following lemmas shows that σ = (dd+1, 21), for d ≥ 3, is not MaxNDeg− realizable
when d ≥ 3; and σ = (dd+1, 2k) is MaxNDeg− realizable when d ≥ 3 and k ≥ 2.

I Lemma 21. For any integer d ≥ 3, the profile σ = (dd+1, 21) is not MaxNDeg− realizable.

Proof. Let us assume on the contrary that σ is MaxNDeg− realizable by a graph G, and
let w ∈ V (G) be a vertex such that MaxNDeg−(w) = 2. The graph G must contain at
least two vertices, say x and y, of degree d, since a single vertex of degree d can guarantee
MaxNDeg− of d for at most d vertices in the graph. Consider the following two cases.
(i) N [x] = N [y]: In this case the MaxNDeg− of all the vertices in N [x] = N [y] is at

least d ≥ 3, as they are adjacent to either x or y. Thus w /∈ N [x], which implies that
V (G) = N [x]∪{w} since |N [x]| = d+1 and |V (G)| = d+2. Also, w cannot be adjacent
to any vertex in N [x], because if w is adjacent to a vertex w0 ∈ N [x], then deg(w0)
must be 3, in contradiction to the assumption MaxNDeg−(w) = 2. Thus the only
possibility left is that w is a singleton vertex, which is again a contradiction.

(ii) N [x] 6= N [y]: In this case the vertex set of G is equal to N [x] ∪ N [y] since size of
N [x]∪N [y] must be at least d+2 (as |N [x]∩N [y]| ≤ d) and is also at most |V (G)| = d+2.
This implies that all the vertices of G are adjacent to either x or y, which contradicts
the fact that MaxNDeg−(w) = 2, since deg(x) = deg(y) = d ≥ 3. J
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I Lemma 22. For any integers d ≥ 3 and k ≥ 2, the profile σ = (dd+1, 2k) is MaxNDeg−
realizable. Moreover, we can compute a connected realization in O(d+ k) time.

Proof. The construction of G is as follows. Take a vertex u1 and connect it to d other
vertices v1, . . . , vd. Next, take another vertex u2 and connect it to vertices v2, . . . , vd, and a
new vertex vd+1. Finally, take a path (a1, a2, . . . , aα) on α = k− 2 new vertices, and connect
a1 to vd+1. In the graph G, deg(u1) = deg(u2) = d, and deg(vi), deg(aj) ≤ 2, for i ∈ [1, d+ 1]
and j ∈ [1, k − 2]. Vertices u1 and u2 has maximum degree in their neighborhood 2, thus
MaxNDeg−(u1) = MaxNDeg−(u2) = 2. Each vi is adjacent to u1, u2, for i ∈ [1, d + 1],
so its MaxNDeg− is d. And, the MaxNDeg− of vertices on the path (a1, a2, . . . , aα) is 2,
since they have a neighbor of degree 2. J

4.3 Algorithm
We now explain the construction of a graph realizing the profile σ = (dn`

` , · · · , d
n1
1 ) 6=

(dd`+1
` , 21) that satisfies the conditions
(i) d` ≤ min{n`, n− 1}, and
(ii) d1 ≥ 2 ,

where n = n1 + · · ·+ n`. If σ is equal to (dd`+1
` , 2k), for some k ≥ 2, we use Lemma 22 to

realize σ. If not, then depending upon the value of n`, we initialize G differently as follows
(refer to Algorithm 3 for the pseudocode).
1. If n` ≥ d` + 2, we use Lemma 14 to initialize G to be a MaxNDeg− realization of

the profile (dn`

` ). Recall G contains an independent set, say W = {w1, w2, . . . , wd`
},

satisfying the condition that the degree of first two vertices is one, and the degree of
the remaining vertices is at most two. We set L`−1 to be the list (w1, w2, . . . , wd`−1−1)
(notice d`−1 − 1 < d`). It is easy to verify that this list is valid.

2. If n` = d` + 1, then a realization of (dd`+1
` ) does not contains a valid list. So we use

Lemma 18 to initialize G to be a MaxNDeg− realization of the profile (dd`+1
` ) that

contains a pseudo-valid list. This is possible since we showed G contains an independent
set, say W = {w1, w2, . . . , wd`−1}, such that degree of each w ∈W is two. We set L`−1
to be the list (w1, w2, . . . , wd`−1−1) (again notice d`−1 − 1 < d` − 1).

3. If n` = d`, then the sequence dd`

` is not realizable (see Lemma 25). So we initialize G to
be the graph realization of (dn`

` , d`−1) as obtained from Lemma 17. We set L`−1 be a
valid list in G of size d`−1 − 1. Also we decrement n`−1 by one as G already contain a
vertex whose MaxNDeg− is d`−1.

Next for each i = `− 1 to 1 we perform following steps.
(i) We take as an input the valid list Li of size di − 1, and execute Procedure AddLayer

(G,Li, ni, di) to add ni new vertices to G. The procedure returns a valid list Li−1 of
size di − 2.

(ii) Truncate list Li−1 to contain only the first di−1 − 1(≤ di − 2) vertices. The truncated
list remains valid since it is a prefix of a valid list.

Correctness. Let V̄` denote the set of vertices in graph G initialized in steps 5, 8, or 11 of
Algorithm 3, and for i ∈ [1, `− 1], let V̄i denote the set of new vertices added to graph G in
iteration i of for loop. For i ∈ [1, `], let Gi be the graph induced by vertices V̄i ∪ · · · ∪ V̄`.

Recall that if n` = d`, then the graph is initialized in step 11 and contains n` + 1 vertices,
of which one vertex, say z, has MaxNDeg−(z) = d`−1, and the remaining vertices have
MaxNDeg− = d`. If n` = d`, then let Z = {z}, otherwise let Z = ∅. We set V` = V̄` \ Z,
V`−1 = V̄`−1 ∪Z, and Vi = V̄i for i ∈ [1, `− 2]. Thus |Vi| = ni, for i ∈ [1, `]. The next lemma
proves the correctness.
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Algorithm 3 MaxNDeg− realization of σ = (dn`
` , . . . , dn1

1 ).

Input: A sequence σ = (dn`

` , · · · , d
n1
1 ) 6= (d`d`+121) satisfying d` ≤ min{n− 1, n`} and

d1 ≥ 2.

1 if σ = (dd`+1
` , 2k) for some k ≥ 2 then

2 Use Lemma 22 to compute a realization G for profile σ.
3 else
4 case n` ≥ d` + 2 do
5 Initialize G to be the graph obtained from Lemma 14 that realizes the profile

(dn`

` ).
6 Set L`−1 to be a valid list in G of size d`−1 − 1.
7 case n` = d` + 1 do
8 Initialize G to be the graph obtained from Lemma 17 that realizes the profile

(dd`+1
` ).

9 Set L`−1 to be a pseudo-valid list in G of size d`−1 − 1.
10 case n` = d` do
11 Initialize G to be the graph obtained from Lemma 18 that realizes the profile

(dd`

` d`−1).
12 Set L`−1 to be a valid list in G of size d`−1 − 1.
13 Decrement n`−1 by 1.
14 for (i = `− 1 to 1) do
15 Li−1 ← AddLayer (G,Li, ni, di).
16 Truncate list Li−1 to contain only the first di−1 − 1(≤ di − 2) vertices.

17 Output G.

I Lemma 23. For any i ∈ [1,`], graph Gi is a MaxNDeg− realization of profile (dn`

` ,· · · ,d
ni
i ),

except for the case n` = d` in which G` is MaxNDeg− realization of profile (dn`

` , d`−1).
Moreover, for any j ∈ [i, `], we have
1. For every v ∈ Vj \ Z, degGi

(v) ≤MaxNDeg−Gi
(v) = dj.

2. If n` = d`, then degGi
(z) = d` and MaxNDeg−Gi

(z) = d`−1.

Proof. We prove the claim by induction on the iterations of the for loop. The base case
is for index `, and the claim follows from Lemmas 14, 17, and 18. Specifically, notice
that every vertex v ∈ V` that is included in G in step 5, 8, or 11 of the algorithm has
MaxNDeg−(v) = d`. In the case n` = d`, the vertex z ∈ V`−1 included in step 11 of
algorithm has MaxNDeg−(z) = d`−1. Also, in both the cases, V` ∪Z is the vertex set of G,
and degree of all the vertices in this set is bounded by d`.

For the inductive step, we assume that the claim holds for i+ 1, and prove the claim for
i. Consider any vertex v in Gi. We have two cases.
1. v ∈ Vi\Z : In this case by Proposition 15 and Lemma 19, degGi

(v) ≤MaxNDeg−Gi(v) =
di.

2. v ∈ Vj \Z, for j > i : In this case we first show that for any vertex w ∈ N(v), degGi
(w) ≤

dj . If w ∈ Vi\Z, then we already showed degGi
(w) ≤ di. So we next consider the case w ∈

(Vi+1∪· · ·∪V`)\Z. Now if w ∈ Li participates in Procedure AddLayer(G,Li, ni, di), then
by Proposition 15 in the updated graph degGi

(w) ≤ di ≤ dj . If w 6∈ Li, then the degree of
w is unaltered in the ith iteration, and thus degGi

(w) = degGi+1(w) ≤ dj by the inductive
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hypothesis. If n` = d` and w = z ∈ Z, then also degGi
(w) = degGi+1(w) since vertex

z never participates in procedure AddLayer. It follows that MaxNDeg−(v) remains
unaltered due to iteration i, and thus MaxNDeg−Gi

(v) = MaxNDeg−Gi+1(v) = dj .

Now when n` = d`, then degG`
(z) = d` and MaxNDeg−G`

(z) = d`−1. The degree
of vertex z never changes since it does not participates in procedure AddLayer. The
MaxNDeg− of z never changes from the same reasoning as above. J

The execution time of algorithm takes O
(∑`

i=1(ni+di)
)
time, which can be easily shown

to be optimal. The following theorem is immediate from the above discussions.

I Theorem 24. There exists an algorithm that given any profile σ = (dn`

` , . . . , d
n1
1 ) 6=

(d`d`+121) with n = n1 + · · · + n` satisfying d` ≤ min{n − 1, n`} and d1 ≥ 2, computes in
optimal time a connected MaxNDeg− realization of σ.

4.4 Complete characterization of MaxNDeg− profiles.
We first give the sufficient conditions for a profile to be MaxNDeg− realizable.

I Lemma 25. A necessary condition for the profile σ = (dn`

` , · · · , d
n1
1 ) with n = n1 + · · ·+n`

to be MaxNDeg− realizable is d` ≤ min{n`, n− 1}.

Proof. Suppose σ is MaxNDeg− realizable by a graph H. Then there exists at least one
vertex, say u, of degree exactly d` in H. Now |N(u)| = d` and |N [u]| = d` + 1, which implies
that the number of vertices in H whose MaxNDeg− is d` must be at least d`, so n` ≥ d`.
Also, the number of vertices in the graph H, n, must be at least d` + 1. J

Consider a profile σ = (dn`

` , · · · , d
n1
1 ) realizable by a connected graph. If d1 = 1, then the

realizing graph must contain a vertex, say u, such that each vertex in N(u) has degree 1. Let
d = deg(u), and v1, . . . , vd be the neighbors of u. Then deg(v1) = · · · = deg(vd) = 1. So in this
case the realizing graph is a star graph K1,d with MaxNDeg− profile σ = (dd, 11). If d1 ≥ 2,
then by Lemma 25, for σ to be realizable in this case, we need that d` ≤ min{n`, n−1}. Also,
Lemma 21 implies that σ must not be (dd+1, 21). By Theorem 24, under these conditions σ
is always realizable. We thus have the following theorem.

I Theorem 26. The necessary and sufficient condition for a profile σ = (dn`

` , · · · , d
n1
1 ) 6=

(dd+1, 21) with n = n1 + · · ·+ n` to be MaxNDeg− realizable by a connected graph is
(i) d` ≤ min{n`, n− 1} and d1 ≥ 2; or
(ii) σ = (dd, 11) for some positive integer d > 1; or
(iii) σ = (12).

For general graphs we have the following theorem.

I Theorem 27. The necessary and sufficient condition for a profile σ to be MaxNDeg−
realizable by a general graph is that σ can be split into two profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1) for some integers d ≥ 2, α ≥ 0.

Proof. Suppose σ is realizable by graph G. Let C(G) be a set consisting of all those
components in G that contain a vertex of MaxNDeg− equal to 1 but is not an edge. As
a long as |C(G)| > 1, we perform following modifications to G. Take any two components
C1, C2 ∈ C(G), and let σ1 and σ2 be their MaxNDeg− profiles. For i = 1, 2, component Ci
must be of form K1,δi

and contain δi(≥ 2) vertices of MaxNDeg− equal to δi, and a single
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vertex of MaxNDeg− equal to 1. Let us assume δ2 ≥ δ1. We replace C1 and C2 in G by two
different components, namely, an edge and (i) a connected MaxNDeg− realization of profile
δδ1+δ2
2 if δ2 = δ1, or (ii) a connected MaxNDeg− realization of profile (δδ2

2 , δ
δ1
1 ) if δ2 > δ1.

In each iteration we decrease |C(G)| by a value two. In the end if C(G)| is non-empty we
denote the only component in it by C0. Next let C̄1, . . . , C̄k be all those components in G
that contain only the vertices of MaxNDeg− strictly greater than 1. Also let σ1, . . . , σk
be their MaxNDeg− profiles. If k > 0, we replace the components C̄1, . . . , C̄k by a single
connected component, say C̄0, that realizes the profile σ1 + · · ·+ σk. It is easy to verify from
Theorem 24 that σ1 + · · ·+ σk will be MaxNDeg− realizable. The final graph G contains
(i) at most one component, namely C̄0, having all vertices of MaxNDeg− greater than 1,
(ii) at most one component, namely C0, having exactly one vertex of MaxNDeg− equal to
1, and (iii) a union of some α ≥ 0 disjoint edges. This shows that σ can be split into two
profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1) for some integers d ≥ 2, α ≥ 0.

To prove the converse notice that σ2 = (12α) is realizable by a disjoint union of α ≥ 0 edges,
and σ2 = (dd, 12α+1) is realizable by a disjoint union of α edges and the star graph K1,d.
Thus any σ that can be split into two profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12α) or σ2 = (dd, 12α+1) for some integers d ≥ 2, α ≥ 0
is MaxNDeg− realizable. J
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Abstract
A dynamic dictionary is a data structure that maintains sets of cardinality at most n from a
given universe and supports insertions, deletions, and membership queries. A filter approximates
membership queries with a one-sided error that occurs with probability at most ε. The goal is to
obtain dynamic filters that are space-efficient (the space is 1 + o(1) times the information-theoretic
lower bound) and support all operations in constant time with high probability. One approach to
designing filters is to reduce to the retrieval problem. When the size of the universe is polynomial
in n, this approach yields a space-efficient dynamic filter as long as the error parameter ε satisfies
log(1/ε) = ω(log log n). For the case that log(1/ε) = O(log log n), we present the first space-efficient
dynamic filter with constant time operations in the worst case (whp). In contrast, the space-efficient
dynamic filter of Pagh et al. [29] supports insertions and deletions in amortized expected constant
time. Our approach employs the classic reduction of Carter et al. [9] on a new type of dictionary
construction that supports random multisets.
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1 Introduction

We consider the problem of maintaining datasets subject to insert, delete, and membership
query operations. Given a set D of n elements from a universe Û , a membership query asks
if the queried element x ∈ Û belongs to the set D. When exact answers are required, the
associated data structure is called a dictionary. When one-sided errors are allowed, the
associated data structure is called a filter. Formally, given an error parameter ε > 0, a filter
always answers “yes” when x ∈ D, and when x /∈ D, it makes a mistake with probability at
most ε. We refer to such an error as a false positive event1.

1 The probability is taken over the random choices that the filter makes.
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11:2 A Dynamic Space-Efficient Filter with Constant Time Operations

When false positives can be tolerated, the main advantage of using a filter instead
of a dictionary is that the filter requires much less space than a dictionary [9, 25]. Let
û ,

∣∣∣Û∣∣∣ be the size of the universe and n denote an upper bound on the size of the set at
all points in time. The information theoretic lower bound for the space of dictionaries is
dlog2

(
û
n

)
e = n log(û/n) + Θ(n) bits.23 On the other hand, the lower bound for the space of

filters is n log(1/ε) bits [9]. In light of these lower bounds, we call a dictionary space-efficient
when it requires (1 + o(1)) · n log(û/n)) + Θ(n) bits, where the term o(1) converges to zero
as n tends to infinity. Similarly, a space-efficient filter requires (1 + o(1)) · n log(1/ε) +O(n)
bits.4

When the set D is fixed, we say that the data structure is static. When the data structure
also supports insertions, we say that it is incremental. Data structures that handle both
deletions and insertions are called dynamic.

The goal is to design dynamic dictionaries and filters that achieve “the best of both
worlds” [2]: they are space-efficient and perform operations in constant time in the worst
case with high probability.5

The Dynamic Setting. One approach for designing dynamic filters was suggested by Pagh et
al. [29], outlined as follows. Static (resp., incremental) filters can be obtained from static
(resp., incremental) dictionaries for sets by a reduction of Carter et al. [9]. This reduction
simply hashes the universe to a set of cardinality n/ε. Due to collisions, this reduction does
not directly lead to dynamic filters. Indeed, if two elements x and y in the dataset collide,
and x is deleted, how is y kept in the filter? To overcome the problem with deletions, an
extension of the reduction to the dynamic setting was proposed by Pagh et al. [29]. This
proposal is based on employing a dictionary that maintains multisets rather than sets (i.e.,
elements in multisets have arbitrary multiplicities). This extension combined with a dynamic
dictionary for multisets yields a dynamic filter [29]. In fact, Pagh et al. obtain a dynamic
filter that is space-efficient but performs insertions and deletions in amortized constant time
(but not in the worst case). Until recently, the design of a dynamic dictionary on multisets
that is space-efficient and performs operations in constant time in the worst case whp was
open [2]. In this paper, we avoid the need for supporting arbitrary multisets by observing
that it suffices to support random multisets (see Sec. 3).6

Another approach for designing filters employs retrieval data structures. In the retrieval
problem, we are given a function f : D → {0, 1}k, where f(x) is called the satellite data
associated with x ∈ D. When an element x ∈ Û is queried, the output y must satisfy y = f(x)
if x ∈ D (if x /∈ D, any output is allowed). By storing as satellite data a random fingerprint
of length log(1/ε), a retrieval data structure can be employed as a filter at no additional cost
in space and with an O(1) increase in time per operation [14, 35] (the increase in time is for
computing the fingerprint). This reduction was employed in the static case and it also holds
in the dynamic case (see Sec. 6).

2 All logarithms are base 2 unless otherwise stated. ln x is used to denote the natural logarithm.
3 This equality holds when û is significantly larger than n.
4 An asymptotic expression that mixes big-O and small-o calls for elaboration. If ε = o(1), then the

asymptotic expression does not require the O(n) addend. If ε is constant, the O(n) addend only
emphasizes the fact that the constant that multiplies n is, in fact, the sum of two constants: one is
almost log(1/ε), and the other does not depend on ε. Indeed, the lower bound in [25] excludes space
(1 + o(1)) · n log(1/ε) in the dynamic setting for constant values of ε.

5 By with high probability (whp), we mean with probability at least 1− 1/nΩ(1). The constant in the
exponent can be controlled by the designer and only affects the o(1) term in the space of the dictionary
or the filter.

6 We recently resolved the problem of supporting arbitrary multisets in [6] (thus the dictionary in [6] can
support arbitrary multisets vs. the dictionary presented here that only supports random multisets).
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Using the dynamic retrieval data structure of Demaine et al. [12], one can obtain a
filter that requires (1 + o(1)) · n log(1/ε) + Θ(n log log(û/n)) bits and performs operations in
constant time in the worst case whp. When the size of the universe satisfies û = poly(n),
this reduction yields a space-efficient filter when the false positive probability ε satisfies
log(1/ε) = ω(log logn) (which we call the sparse case).7 This approach is inherently limited
to the sparse case since dynamic retrieval data structures have a space lower bound of
Θ(n log log(û/n)) regardless of the time each operation takes and even when storing two bits
of satellite data [28].

Thus, the only case in which a space-efficient dynamic filter with constant time operations
is not known is when log(1/ε) = O(log logn). We refer to this case as the dense case. The
dense case occurs, for example, in applications in which n is large and ε is a constant (say
ε = 1%).

1.1 Our Contributions
In this paper, we present the first dynamic space-efficient filter for the dense case with
constant time operations in the worst case whp. In the following theorem, we assume that
the size of the universe Û is polynomial in n.8 We allow ε to be as small as n/|Û | (below
this threshold, simply use a dictionary). Memory accesses are in the RAM model in which
every memory access reads/writes a word of Θ(logn) contiguous bits. All computations we
perform over one word take constant time (see Sec. 4.1). Overflow refers to the event that
the space allocated for the filter does not suffice.

I Theorem 1. There exists a dynamic filter that maintains a set of at most n elements
from a universe Û = [û], where û = poly(n) with the following guarantees: (1) For every
polynomial in n sequence of insert, delete, and query operations, the filter does not overflow
whp. (2) If the filter does not overflow, then every operation (query, insert, and delete) can
be completed in constant time. (3) The required space is (1 + o(1)) · n log(1/ε) +O(n) bits.
(4) For every query, the probability of a false positive event is bounded by ε.

Our result is based on the observation that it suffices to use the reduction of Carter et al. [9]
on dictionaries that support random multisets rather than arbitrary multisets. A random
multiset is a uniform random sample (with replacements) of the universe. In Sec. 3, we prove
that the reduction of Carter et al. [9] can be applied in this new setting. We then design a
dynamic space-efficient dictionary that works on random multisets from a universe U = [u]
with log(u/n) = O(log logn) (Sec. 4). The dictionary supports operations in constant time
in the worst case whp. Applying the reduction of Carter et al. [9] to this new dictionary
yields our dynamic filter in the dense case. Together with the filter construction for the
sparse case (included, for completeness, in Sec. 6), we obtain Theorem 1.

1.2 Our Model
Memory Access Model. We assume that the data structures are implemented in the RAM
model in which the basic unit of one memory access is a word. Let w denote the memory
word length in bits. We assume that w = Θ(logn). See Sec. 4.1 for a discussion of how
computations over words are implemented in constant time.

7 The terms “sparse” and “dense” stem from the fact that the reduction of Carter et al. [9] is employed.
Thus, the filter is implemented by a dictionary that stores n elements from a universe of cardinality n/ε.

8 This is justified by mapping Û to [poly(n)] using 2-independent hash functions [12].
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Success Probability. We prove that overflow occurs with probability at most 1/ poly(n)
and that one can control the degree of the polynomial (the degree of the polynomial only
affects the o(1) term in the size bound). In the case of random multisets, the probability of
an overflow is a joint probability distribution over the random choices of the dictionary and
the distribution over the realizations of the multiset. In the case of sets, the probability of
an overflow depends only on the random choices that the filter makes.

Hash Functions. The filter for the dense case employs pairwise independent hash functions
and invertible permutations of the universe that can be evaluated in constant time and that
have a small space representation (i.e., the one-round Feistel permutations of Arbitman et
al. [2] or the quotient hash functions of Demaine et al. [12]). For simplicity, we first analyze
the filter construction assuming fully random hash functions (Sec. 4.5). In Sec. 5, we prove
that the same arguments hold when we use succinct hash functions.

Worst Case vs. Amortized. An interesting application that emphasizes the importance
of worst-case performance is that of handling search engine queries. Such queries are sent
in parallel to multiple servers, whose responses are then accumulated to generate the final
output. The latency of this final output is determined by the slowest response, thus reducing
the average latency of the final response to the worst latency among the servers. See [1,2,7,23]
for further discussion on the shortcomings of expected or amortized performance in practical
scenarios.

The Extendable Setting. This paper deals with the non-extendable setting in which the
bound n on the cardinality of the dataset is known in advance. The filter is allocated space
that is efficient with respect to the lower bound on the space of a filter with parameters
u, n, ε. The extendable scenario in which space must adapt to the current cardinality of the
dataset is addressed in Pagh et al. [31]. In fact, they prove that extendible filters require an
extra Ω(log logn) bits per element.

1.3 Related Work
The topic of dictionary and filter design is a fundamental theme in the theory and practice
of data structures. We restrict our focus to the results that are closest to our setting (i.e.,
are space-efficient, take constant time per operation, support dynamic sets).

Dictionaries. The dictionary of Arbitman et al. [2] is the only space-efficient dynamic
dictionary for sets that performs all operations in constant time in the worst case with
high probability. They leave it as an open question whether one can design a dictionary on
multisets with similar guarantees. Indeed, their construction does not seem to extend even
to the case of random multisets. The main reason is that the second level of their dictionary
(the backyard), implemented as a de-amortized cuckoo hash table, does not support duplicate
elements. Moreover, the upper bound on the number of elements that the backyard stores
is Ω

(
log logn

(logn)1/3 · n
)
. As such, it cannot accommodate storing naive fixed-length counters of

elements (which would require Θ(logn) bits per element) without rendering the dictionary
space-inefficient.

The space-efficient dynamic dictionary for multisets of Pagh et al. [29] supports queries
in constant time, and insertions/deletions in amortized expected constant time. For diction-
aries on sets, several dynamic constructions support operations in constant time with high
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probability but are not space-efficient [1, 11–13]. On the other hand, some dictionaries are
space-efficient but do not have constant time guarantees with high probability for all of their
operations [16, 21, 33, 36]. For the static case, several space-efficient constructions exist that
perform queries in constant time [8, 30,34,39].

Filters. The filters of Pagh et al. [29] and Arbitman et al. [2] follow from their respective
dictionaries by employing the reduction of Carter et al. [9]. Specifically, the dynamic filter of
Pagh et al. [29] supports queries in constant time and insertions and deletions in amortized
expected constant time. The incremental filter of Arbitman et al. [2] performs queries in
constant time and insertions in constant time with high probability. It does not support
deletions.

The construction of Bender et al. [4] describes a dynamic adaptive filter that assumes
access to fully random hash functions. 9 The adaptive filter works in conjunction with an
external memory dictionary (on the set of elements) and supports operations in constant
time with high probability (however, an insert or query operation may require accessing the
external memory dictionary). The space of the external memory dictionary is not counted
in the space of their filter. The (in-memory) filter they employ is a variant of the dynamic
quotient filter [5, 10, 29, 32]. The space-efficient quotient filter employs linear probing and
performs operations only in expected constant time for large values of ε [29]. The filter in [4]
tries to avoid a large running time per insert operation by bounding the displacement of the
inserted element. Hence, if (Robin Hood) linear probing does not succeed after a constant
number of words, then the element is inserted in a secondary structure (see Sec. 5.3 in [3]).
There is a gap in [3] regarding the question of whether bounded displacements guarantee
constant time operations in the worst case. Specifically, searching for an element requires
finding the beginning of the “cluster” that contains the “run” associated with that particular
element. No description or proof is provided in [3] that the beginning of the cluster is a
constant number of words away from the “quotient” in the worst case.

Other filters of interest include the dynamic filter of Pagh et al. [31] that adjusts its
space on the fly to the cardinality of the dataset (hence, works without knowing the size
of the dataset in advance) and performs operations in constant time. Pagh et al. [31]
also prove a lower bound that forces a penalty of O(log logn) per element for such “self-
adjusting” dynamic filters. Another filter is the cuckoo filter, whose performance depends
on the number of elements currently stored in the filter but that has been reported to
work well in practice [18, 19]. Space-efficient filters for the static case have been studied
extensively [14,16,26,35].

1.4 Paper Organization

Preliminaries are in Sec. 2. The proof that the reduction of Carter et al. [9] can be employed
to construct dynamic filters from dynamic dictionaries on random multisets can be found in
Sec. 3. The filter for the dense case is described and analyzed in Sec. 4. Section 5 includes a
discussion on how to remove the assumption of access to fully random hash functions from
Sec. 4.5. Section 6 reviews the construction of a filter in the sparse case based on a retrieval
data structure. Theorem 1 is proved in Sec. 7.

9 Loosely speaking, an adaptive filter is one that fixes false positives after they occur [4, 27].
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2 Preliminaries

Notation. The indicator function of a set S is the function 1S : S → {0, 1} defined by

1S(x) ,
{

1 if x ∈ S,
0 if x 6∈ S .

For any positive k, let [k] denote the set {0, . . . , dke − 1}. For a string a ∈ {0, 1}∗, let |a|
denote the length of a in bits.

We define the range of a hash function h to be a set of natural numbers [k] and also treat
the image h(x) as a binary string, i.e., the binary representation of h(x) using dlog2 ke bits.

2.1 Filter and Dictionary Definitions
Let Û denote the universe of all possible elements.

Operations. We consider three types of operations:
insert(xt) - insert xt ∈ Û to the dataset.
delete(xt) - delete xt ∈ Û from the dataset.
query(xt) - is xt ∈ Û in the dataset?

Dynamic Sets and Random Multisets. Every sequence of operations R = {opt}
T
t=1 defines

a dynamic set D(t) over Û as follows.10

D(t) ,


∅ if t = 0
D(t− 1) ∪ {xt} if opt = insert(xt)
D(t− 1) \ {xt} if opt = delete(xt)
D(t− 1) if t > 0 and opt = query(xt).

(1)

I Definition 2. A multisetM over Û is a functionM : Û → N. We refer toM(x) as the
multiplicity of x. IfM(x) = 0, we say that x is not in the multiset. We refer to

∑
x∈ÛM(x)

as the cardinality of the multiset and denote it by |M|.

The support of the multiset is the set {x | M(x) 6= 0}. The maximum multiplicity of a
multiset is maxx∈ÛM(x).

A dynamic multiset {Mt}t is specified by a sequence of insert and delete operations. Let
Mt denote the multiset after t operations.11

Mt(x) ,


0 if t = 0
Mt−1(x) + 1 if opt = insert(x)
Mt−1(x)− 1 if opt = delete(x)
Mt−1(x) otherwise.

We say that a dynamic multiset {Mt}t has cardinality at most n if |Mt| ≤ n, for every t.

I Definition 3. A dynamic multiset M over Û is a random multiset if for every t, the
multisetMt is the outcome of independent uniform samples (with replacements) from Û .

10The definition of state in Equation 1 does not rule out a deletion of x /∈ D(t− 1). However, we assume
that opt = delete(xt) only if xt ∈ D(t− 1).

11As in the case of dynamic sets, we require that opt = delete(xt) only ifMt−1(xt) > 0.
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Dynamic Filters. A dynamic filter is a data structure that maintains a dynamic set D(t) ⊆ Û
and is parameterized by an error parameter ε ∈ (0, 1). Consider an input sequence that
specifies a dynamic set D(t), for every t. The filter outputs a bit for every query operation.
We denote the output that corresponds to query(xt) by outt ∈ {0, 1}. We require that the
output satisfy the following condition:

opt = query(xt)⇒ outt ≥ 1D(t)(xt) . (2)

The output outt is an approximation of 1D(t)(xt) with a one-sided error. Namely, if xt ∈ D(t),
then bt must equal 1.

I Definition 4 (false positive event). Let FPt denote the event that opt = query(xt), outt = 1
and xt /∈ D(t).

The error parameter ε ∈ (0, 1) is used to bound the probability of a false positive error.

I Definition 5. We say that the false positive probability in a filter is bounded by ε if it
satisfies the following property. For every sequence R of operations and every t,

Pr [FPt] ≤ ε .

The probability space in a filter is induced only by the random choices (i.e., choice of
hash functions) that the filter makes. Note also that if opt = opt′ = query(x), where
x 6∈ D(t) ∪ D(t′), then the events FPt and FPt′ may not be independent (see [4, 27] for a
discussion of repeated false positive events and adaptivity).

Dynamic Dictionaries. A dynamic dictionary with parameter n is a dynamic filter with
parameters n and ε = 0. In the case of multisets, the response outt of a dynamic dictionary
to a query(xt) operation must satisfy outt = 1 iffMt(xt) > 0.12

When we say that a filter or a dictionary has parameter n, we mean that the cardinality
of the input set/multiset is at most n at all points in time.

Success Probability and Probability Space. We say that a dictionary (filter) works for
sets and random multisets if the probability that the dictionary does not overflow is high
(i.e., it is ≥ 1− 1/ poly(n)). The probability in the case of random multisets is taken over
both the random choices of the dictionary and the distribution of the random multisets. In
the case of sets, the success probability depends only on the random choices of the dictionary.

Dense vs. Sparse. We differentiate between two cases in the design of filters, depending
on 1/ε.

I Definition 6. The dense case occurs when log(1/ε) = O(log logn). The sparse case occurs
when log(1/ε) = ω(log logn).

3 Reduction: Filters Based on Dictionaries

In this section, we employ the reduction of Carter et al. [9] to construct dynamic filters out
of dynamic dictionaries for random multisets. Our reduction can be seen as a relaxation
of the reduction of Pagh et al. [29]. Instead of requiring that the underlying dictionary
support multisets, we require that it only supports random multisets. We say that a function
h : A→ B is fully random if h is sampled u.a.r. from the set of all functions from A to B.

12One may also define outt =Mt(xt).
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11:8 A Dynamic Space-Efficient Filter with Constant Time Operations

B Claim 7. Consider a fully random hash function h : Û →
[
n
ε

]
and let D ⊆ Û . Then h(D)

is a random multiset of cardinality |D|.

Consider a dynamic set D(t) specified by a sequence of insert and delete operations. Since
h is random, an “adversary” that generates the sequence of insertions and deletions for D(t)
becomes an oblivious adversary with respect to h(D(t)) in the following sense. Insertion
of x translates to an insertion of h(x) which is a random element (note that h(x) may be
a duplicate of a previously inserted element13). When deleting at time t, the adversary
specifies a previous time t′ < t in which an insertion took place, and requests to delete the
element that was inserted at time t′.

Let Dict denote a dynamic dictionary for random multisets of cardinality at most n from
the universe

[
n
ε

]
.

I Lemma 8. For every dynamic set D(t) of cardinality at most n, the dictionary Dict with
respect to the random multiset h(D(t)) and universe

[
n
ε

]
is a dynamic filter for D(t) with

parameters n and ε.

Proof Sketch. The Dict records the multiplicity of h(xt) in the multiset h(D(t)) and so
deletions are performed correctly. The filter outputs 1 if and only if the multiplicity of h(xt)
is positive. False positive events are caused by collisions in h. Therefore, the probability of a
false positive is bounded by ε because of the cardinality of the range of h. J

4 Fully Dynamic Filter (Dense Case)

In this section, we present a fully dynamic filter for the dense case, i.e., log(1/ε) = O(log logn).
The reduction in Lemma 8 implies that it suffices to construct a dynamic dictionary for
random multisets. We refer to this dictionary as the RMS-Dictionary (RMS - Random
Multi-Set).

The RMS-Dictionary is a dynamic space-efficient dictionary for random multisets of
cardinality at most n from a universe U = [u], where u = n/ε. The dense case implies that
log(u/n) = O(log logn).

The RMS-Dictionary consists of two levels of dictionaries: a set of bin dictionaries (in
which most of the elements are stored) and a spare (which stores ns = O(n/ log3 n) elements).
The number of bin dictionaries is m. Let B , n/m , so, in expectation, each bin stores
(at most) B elements. To accommodate deviations from the expectation, extra capacity is
allocated in the bin dictionaries. Namely, each bin dictionary can store up to (1 + δ) · B
elements.

The universe of the spare dictionary is [u]. However, the universe of each bin dictionary
is [u/m]. The justification for the reduced universe of bin dictionaries is that the index of
the bin contains logm bits of information about the elements in it (this reduction in the
universe size is often called “quotienting” [5, 12,24,29,30]).

4.1 The Bin Dictionary
The bin dictionary is a (deterministic) dynamic dictionary for (small) multisets. Let u′
denote the cardinality of the universe from which elements stored in the bin dictionary are
taken. Let n′ denote an upper bound on the cardinality of the dynamic multiset stored in a

13Duplicates in h(D(t)) are caused by collisions (i.e., h(x) = h(y)) rather than by reinsertions.
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bin dictionary (i.e., n′ includes multiplicities). The bin dictionary must be space-efficient,
namely, it must fit in n′ log(u′/n′) +O(n′) bits, and must support queries, insertions, and
deletions in constant time.

The specification of the bin dictionary is even more demanding than the dictionary we are
trying to construct. The point is that we focus on parametrizations in which the bin dictionary
fits in a constant number of words. Let B , Θ

(
logn

log(u/n)

)
and δ , Θ

(
log logn√

B

)
= o(1). Recall

that the number of bins is m = n/B.

I Observation 9. Let u′ = u/m and n′ = (1 + δ) ·B. The bin dictionary for u′ and n′ fits
in O(logn) bits, and hence fits in a constant number of words.

We propose two implementations of bin dictionaries that meet the specifications; one is
based on lookup tables, and the other on Elias-Fano encoding [17,20]. The space required by
the bin dictionaries that employ global lookup tables meets the information-theoretic lower
bound. The space required by the Elias-Fano encoding is within half a bit per element more
than the information-theoretic lower bound [17].

Global Tables. We follow Arbitman et al. [2] and employ a global lookup table common to
all the bin dictionaries. For the sake of simplicity, we discuss how insertion operations are
supported. An analogous construction works for queries and deletions.

The bin dictionary has s ,
(
u′+n′
n′

)
states. Hence, we need to build a table that encodes

a function f : s × u′ → s, such that given a state i ∈ [s] and an element x ∈ [u′], f(i, x)
encodes the state of the bin dictionary after x is inserted. The size of the table that stores f
is s · u′ · log s bits.

We choose the following parametrization so that the table size is o(n) (recall that n is the
upper bound on the cardinality of the whole multiset). Set B = 1

2(1+δ) ·
logn

log(1+u/n) (recall
that B is the expected occupancy of a bin). Recall that u′ = u/m and n′ = (1 + δ) · B.
Hence,

s =
(
u′ + n′

n′

)
≤
(
e(u′ + n′)

n′

)n′
≤ poly(logn) ·

(
1 + u′

n′

)n′
≤ poly(logn) ·

(
1 + u

n

)(1+δ)· 1
2(1+δ) ·

logn
log(1+u/n)

≤ poly(logn) ·
√
n .

Since u′ = u/m ≤ poly(logn) and log s = O(logn), we conclude that the space required to
store f is o(n) bits.

Operations are supported in constant time since the table is addressed by the encoding
of the current state and operation.

Elias-Fano Encoding. In this section, we present a bin dictionary implementation that
employs (a version of) the Elias-Fano encoding. We refer to this implementation as the
Pocket Dictionary.

We view each element in the universe [u′] as a pair (q, r), where q ∈ [B] and r ∈ [u′/B] (we
refer to q as the quotient and to r as the remainder). Consider a multiset F , {(qi, ri)}n

′−1
i=0 .

The encoding of F uses two binary strings, denoted by header(F ) and body(F ), as follows.
Let nq , | {i ∈ [f ] | qi = q} | denote the number of elements that share the same quotient q.
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The vector (n0, . . . , nB−1) is stored in header(F ) in unary as the string 1n0 ◦0◦ · · · ◦1nB−1 ◦0.
The length of the header is B+n′. The concatenation of the remainders is stored in body(F )
in nondecreasing lexicographic order of {(qi, ri)}i∈[n′]. The length of the body is n′ · log(u′/B).
The space required is B + n′(1 + log(u′/n) bits, which meets the required space bound since
B = O(n′).

We argue that operations in a Pocket Dictionary can be executed in constant time if
the Pocket Dictionary fits in a single word. Here we propose to extend the classical RAM
model in which instructions such as comparison, addition, and multiplication take constant
time [22].14 These instructions require Boolean circuits of depth logw, where w denotes the
number of bits per word. Moreover, multiplication is implemented using circuits with Θ(w2)
gates (i.e., all the partial products are computed). Hence, we consider an extension of the
RAM model in which instructions over words can be executed in constant time if there exists
a Boolean circuit with constant fan-in that computes the instruction in O(logw) depth using
O(w2) gates.

Indeed, operations over Pocket Dictionaries can be supported by circuits of depth logw
with O(w logw) gates. Consider an insertion operation of an element (q, r). Insertion is
implemented using the following steps (all implemented by circuits):
(i) Locate in the header the positions of qth zero and the zero that proceeds it (this is a

select operation). Let j and i denote these positions within the header. This implies
that

∑
q′<q nq′ = i− (q − 1) and nq = j − i− 1.

(ii) Update the header by shifting the suffix starting in position j by one position and
inserting a 1 in position j.

(iii) Read nq remainders in the body, starting from position i− (q − 1). These remainders
are compared in parallel with r, to determine the position p within the body in which
r should be inserted (this is a rank operation over the outcomes of the comparisons).

(iv) Shift the suffix of the body starting with position p by |r| bits, and copy r into the
body starting at position r.

Modern instruction sets support instructions such as rank, select, and SIMD comparisons
(shifts are standard instructions) [3, 32, 37]. Hence, one can implement Pocket Dictionary
operations in constant time using such instruction sets.

4.2 The Spare
The spare is a dynamic dictionary that maintains (arbitrary) multisets of cardinality at most
ns from the universe U with the following guarantees: (1) For every poly(n) sequence of
operations (insert, delete, or query), the spare does not overflow whp. (2) If the spare does
not overflow, then every operation (query, insert, delete) takes O(1) time. (3) The required
space is O(ns log u) bits.15

We propose to implement the spare by using a dynamic dictionary on sets with constant
time operations in which counters are appended to elements. To avoid having to discuss the
details of the interior modifications of the dictionary, we propose a black-box approach that
employs a retrieval data structure in addition to the dictionary.

14 In modern CPUs, addition and comparison take a single clock cycle, multiplication may take 2 cycles.
15 Since ns = o(n/ log n) and log u = O(log n), the space consumed by the spare is o(n).
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IObservation 10. Any dynamic dictionary on sets of cardinality at most ns from the universe
U can be used to implement a dynamic dictionary on arbitrary multisets of cardinality at
most ns from the universe U . This reduction increases the space of the dictionary on sets by
an additional Θ(logns + log log(u/ns)) bits per element and increases the time per operation
by a constant.

Proof. The dictionary on multisets (MS-Dict) can be obtained by employing a dictionary
on sets (Dict) and the dynamic retrieval data structure (Ret) of Demaine et al. [12]. The
dictionary on sets (Dict) stores the support of the input multiset. The retrieval data structure
(Ret) stores as satellite data the multiplicity of each element in the support. The space that
Ret requires is Θ(ns logns + ns log log(u/ns)), since the satellite data occupies logns bits.

On membership queries, the dictionary accesses Dict. When a new element x is inserted,
MS-Dict inserts x in Dict and adds x with satellite value 1 to Ret. In the case of insertions
of duplicates or deletions, Ret is updated to reflect the current multiplicity of the element. If
upon deletion, the multiplicity of the element reaches 0, the element is deleted from Dict and
from Ret. Since the Ret supports operations in constant time, this reduction only adds O(1)
time to the operations on Dict. J

To finish the description of the spare, we set ns , n/(log3 n) and employ Obs. 10 with a
dynamic dictionary on sets that requires O(ns log(u/ns)) bits and performs operations in
constant time whp [1,2,11–13]. Under our definition of ns and since log(u/n) = O(log logn),
the spare then requires o(n) bits. Moreover, the spare does not overflow whp (see Claim 11).

4.3 Hash Functions
We consider three hash functions, the bin index, quotient, and remainder, as follows: 16

(Recall that n = m ·B.)

hb : U → [m] (bin index)
q : U → [B] (quotient)
r : U → [u/n] (remainder)

We consider three settings for the hash functions:
(i) Fully random hash functions.
(ii) In the case that the dataset is a random multiset, the values of the hash functions

are taken simply from the bits of x. Namely hb(x) is the first log(n/B) bits, q(x) is
the next logB bits, and r(x) is the last log(u/n) bits (to be more precise, one needs
to divide x and take remainders). Since x is chosen independently and uniformly at
random, the hash functions are fully random.

(iii) Hash functions sampled from special distributions of hash functions (with small repres-
entation and constant evaluation time).

4.4 Functionality
A query(x) is implemented by searching for (q(x), r(x)) in the bin dictionary of index hb(x).
If the pair is not found, the query is forwarded to the spare. An insert(x) operation first
attempts to insert (q(x), r(x)) in the bin dictionary of index hb(x). If the bin dictionary

16One could define the domain of the quotient function q(x) and the remainder function r(x) to be [u/m]
instead of U .
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is full, it forwards the insertion to the spare. A delete(x) operation searches for the pair
(q(x), r(x)) in the bin dictionary of index hb(x) and deletes it (if found). Otherwise, it
forwards the deletion to the spare.

4.5 Overflow Analysis17

The proposed dictionary consists of two types of dictionaries: many small bin dictionaries
and one spare. The overflow of a bin dictionary is handled by sending the element to the
spare. Hence, for correctness to hold, we need to prove that the spare does not overflow whp.

The first challenge that one needs to address is that the dictionary maintains a dynamic
multiset D(t) (see [12]). Consider the insertion of an element x at time t. If bin hb(x) is full
at time t, then x is inserted in the spare. Now suppose that an element y with hb(y) = hb(x)
is deleted at time t+ 1. Then, bin hb(x) is no longer full, and x cannot “justify” the fact
that it is in the spare at time t+ 1 based on the present dynamic multiset D(t+ 1). Indeed,
x is in the spare due to “historical reasons”.

The second challenge is that the events that elements are sent to the spare are not
independent. Indeed, if x is sent to the spare at time t, then we know that there exists a
full bin. The existence of a full bin is not obvious if the cardinality of D(t) is small. Hence,
we cannot even argue that the indicator variables for elements being sent to the spare are
negatively associated.

The following claim bounds the number of elements stored in the spare. Using the same
proof, one could show that the number of elements in the spare is bounded by n/(logn)c
whp, for every constant c.

B Claim 11. The number of elements stored in the spare is less than n/ log3 n with high
probability.

Proof. Consider a dynamic multiset D(t) at time t. To simplify notation, let {x1, . . . , xn′}
denote the multiset D(t) (hence, the elements need not be distinct, and n′ ≤ n). Let ti
denote the time in which xi was inserted to D(t). Let Xi denote the random variable that
indicates if xi is stored in the spare (i.e., Xi = 1 iff bin hb(xi) is full at time ti). Our goal is
to prove that the spare at time t does not overflow whp, namely:

Pr

 n′∑
i=1

Xi ≥
n

log3 n

 ≤ n−ω(1) . (3)

The claim follows from Eq. 3 by applying a union bound over the whole sequence of operations.
To prove Eq. 3, we first bound the probability that a bin is full. Let γ , e−δ

2·B/3. Fix a
bin b, by a Chernoff bound, the probability that bin b is full is at most γ. Indeed:
(i) Each element belongs to bin b with probability B/n. Hence, the expected occupancy of

a bin is B.
(ii) The variables

{
hb(xj)

}n′
j=1 are independent.

(iii) A bin is full if at least (1 + δ) ·B elements belong to it.

We overcome the problem that the random variables {Xi}i are not independent as follows.
Let Ft denote the set of full bins at time t. If |Ft| ≤ 6γm, let F̂t denote an arbitrary
superset of Ft that contains 6γm bins. Note that it is unlikely that there exists a t such
that |Ft| > 6γm. Indeed, by linearity of expectation, E [|Ft|] ≤ γm. By a Chernoff bound,
Pr [Ft ≤ 6γm] ≤ 2−6γm.

17The proofs in this section assume that the hash functions are fully random. See Section 5 for a discussion
of special families of hash functions.
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Define X̂i to be the random variable that indicates if hb(xi) ∈ F̂ti . Namely, X̂i = 1 if xi
belongs to a full bin or a bin that was added to F̂ti . Thus, X̂i ≥ Xi. The key observation is

that the random variables
{
X̂i

}n′
i=1

are independent and identically distributed because the
bin indexes

{
hb(xi)

}
i
are independent and uniformly distributed.

The rest of the proof is standard. Recall that B = O(logn) and δ2 = Θ
(

(log logn)2

B

)
.

Let Gt denote the event that Ft ≤ 6γm. Since Pr [Gt] ≤ 2−6γm ≤ 2−
√
n, by a union

bound Pr
[⋃n′

i=1 Gti

]
≤ n · 2−

√
n.

The expectation of X̂i is 6γ (conditioned on the event
⋂n′
i=1 Gti). Since n/ log3 n = ω(γn),

for a sufficiently large n, by Chernoff bound Pr
[∑n′

i=1 X̂i ≥ n
log3 n

∣∣ ⋂n′
i=1 Gti

]
< 2−n/ log3 n.

We conclude that

Pr

 n′∑
i=1

X̂i ≥
n

log3 n

 ≤ Pr

 n′⋃
i=1

Gti

+ Pr

 n′∑
i=1

X̂i ≥
n

log3 n

∣∣ n′⋂
i=1

Gti

 (4)

≤ n · 2−
√
n + 2−n/ log3 n = n−ω(1) , (5)

and Eq. 3 follows. C

5 Succinct Hash Functions

In this section we discuss how to replace the fully random hash functions from Sec. 4 with
succinct hash functions (i.e., representation requires o(n) bits) that have constant evaluation
time in the RAM model. Specifically, we describe how to select hash functions hb(x), r(x), q(x)
for the RMS-dictionary used for constructing the dynamic filter in the dense case.

The construction proceeds in two stages and uses existing succint constructions for highly
independent hash functions [15, 38]. First, we employ a permutation function π to partition
the universe Û into M = n9/10 equal parts. The permutation π can be either the one-round
Feistel permutation from [2] or the quotient permutation from [12]. We think of π as a pair
of functions, i.e., π(x) = (h1(x), h2(x)) with h1(x) ∈ [M ]. This induces a partition of the
dynamic set into M = n9/10 subsets of size at most n1/10 + n3/40 whp. Each subset consists
of the h2(x) values of the elements x ∈ D that share the same h1(x) value.

In the second step, we instantiate the RMS-Dictionary separately for each subset. Each
dictionary instance employs the same k-wise independent hash function f b : [û/M ]→ [m]
with k = n1/10 +n3/40. We define hb(x) = f b(h2(x)) to be the bin of x. From the perspective
of each dictionary instantiation, hb(x) is sampled independently and uniformly at random,
so throughout the sequence of poly(n) operations, the spare does not overflow whp.

We now describe how the quotient q(x) and the remainder r(x) are chosen. We sample
a 2-independent hash function (f, g) : [û/M ] → [B] × [1/ε]. Define q(x) , f(h2(x)) and
r(x) , g(h2(x)).

B Claim 12. Consider a filter based on an RMS-dictionary that employs the hash functions
hb(x), q(x), r(x) described in this section. Then the probability of a false positive event is
bounded by 2ε.

Proof. Consider a query y that is not in the dataset D(t) at time t. One cause of failure
is when too many elements of D(t) are mapped to bin hb(y). The probability that more
that (1 + δ)B elements are mapped to bin hb(y) is bounded by 2e−δ2B/3 (see the proof
of Claim 11). Since δ2B = (log logn)2, and since log(1/ε) = O(log logn), this probability
is o(ε).
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Now assume that at most (1 + δ)B elements in D(t) were mapped to bin hb(y). Since h is
bijective and (f, g) are selected from a family of 2-independent hash functions, the probability
of a collision with an element in bin hb(y) is at most (1 + δ)B · εB = (1 + δ) · ε. The claim
follows since δ = o(1). C

6 Dynamic Filter via Retrieval (Sparse Case)

In this section, we present a space-efficient dynamic filter for the case that log
( 1
ε

)
=

ω(log logn) (sparse case). We let n denote an upper bound on the cardinality of a dynamic
set over a poly(n) sequence of insertions and deletions. We let Û denote a universe of
cardinality û that satisfies û = poly(n). The construction is based on a reduction from
dynamic retrieval. The construction relies on the fact that in dynamic retrieval structures
(e.g., [12]), the overhead per element is O(log logn). This overhead is o(log(1/ε)) in the
sparse case.

Dietzfelbinger and Pagh [14] formulate a reduction that uses a static retrieval data
structure storing k bits of satellite data per element to implement a static filter with false
positive probability 2−k. The reduction is based on the assumption that retrieval data
structure is “well behaved” with respect to negative queries. Namely, a query for x ∈ Û \ D
returns either “fail” or the satellite data of an (arbitrary) element y ∈ D. The reduction
incurs no additional cost in space and adds O(1) extra time to the query operations (to
evaluate the fingerprint). We note that the same reduction can be employed in the dynamic
case. Specifically, the following holds:

I Observation 13. Assume access to a family of pairwise independent hash functions
h : Û → [k]. 18 Then any dynamic retrieval data structure that stores h(x) as satellite data
for element x can be used to implement a dynamic filter with false positive probability 2−k.
The space of the resulting filter is the same as the space of the retrieval data structure and
the time per operation increases by a constant (due to the computation of h(x)).

The question of designing a space-efficient dynamic filter now boils down to:
(i) Choose a suitable dynamic retrieval data structure.
(ii) Determine the range of false positive probabilities ε for which the reduction yields a

space-efficient dynamic filter.
We resolve this question by employing the retrieval data structure of Demaine et al. [12] in
the sparse case.

B Claim 14. There exists a dynamic filter in the sparse case that maintains a set of at
most n elements from the universe Û = [û], where û = poly(n) such that, for any ε such that
log(1/ε) = ω(log logn), the following hold: (1) For every sequence of poly(n) opertations (i.e,
insert, delete, or query), the filter does not overflow whp. (2) If the filter does not overflow,
then every operation (query, insert, and delete) takes O(1) time. (3) The required space is
(1 + o(1)) · n log(1/ε) bits. (4) For every query, the probability of a false positive event is
bounded by ε.

Proof. The dynamic retrieval data structure in [12] uses a dynamic perfect hashing data
structure for n elements from the universe U of size u that maps each element to a unique value
in a given range [n+ t], for any t > 0. 19 The space that the perfect hashing data structure

18We note that Dietzfelbinger and Pagh [14] assume access to fully random hash functions. Pairwise
independence suffices, however, as noted by [35].

19We note that one could also use the dynamic perfect hashing scheme proposed in Mortesen et al. [28]
with similar space and performance guarantees.
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occupies is Θ
(
n log log û

n + n log n
t+1

)
. All operations are performed in O(1) time and the

perfect hashing data structure fails with 1/ poly(n) probability over a sequence of poly(n)
operations. A retrieval data structure can be obtained by allocating an array of n+ t entries,
each used to store satellite data of k bits. The satellite data associated with an element x is
stored at the position in the array that corresponds to the hash code associated with x. The
retrieval data structured obtained this way occupies (n+ t) · k + Θ

(
n log log û

n + n log n
t+1

)
bits. It performs every operation in constant time and fails with probability 1/ poly(n) over
a sequence of poly(n) operations.

For the filter construction, we set k , log(1/ε) and t , n/ logn. Since log log(û/n) =
O(log logn) and log(1/ε) = ω(log logn), the filter we obtain occupies (1 + o(1)) · n log(1/ε)
bits. It performs all operations in constant time and does not overflow whp over a sequence
of poly(n) operations. C

7 Proof of Theorem 1

The proof of Thm. 1 deals with the sparse case and dense case separately. The theorem for
the sparse case, in which log(1/ε) = ω(log logn), is proven in Sec. 6.

The proof for the dense case employs the reduction in Lemma 8 with the RMS-Dictionary
construction described in Sec. 4. Let U = [u] where u = n/ε denotes the universe of an
RMS-Dictionary that can store a random multiset of cardinality at most n. In this case, the
assumption that log(1/ε) = O(log logn) translates into log(u/n) = O(log logn).

The time per operation is constant because the RMS-dictionary supports operations in
constant time. The space consumed by the RMS-Dictionary equals the sum of spaces for
the bin dictionaries and the spare. This amounts to m · n′ · log(u′/n′) +m ·O(n′) + o(n) ≤
(1 + δ) · n · log(1/ε) +O(n). Since δ = o(1), the filter is space-efficient, as required. Finally,
by Claim 11, the spare does not overflow whp.
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Abstract
We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm
to find a minimum cut that 2-respects (cuts two edges of) a spanning tree T of a graph G. This
procedure can be used in place of the complicated subroutine given in Karger’s near-linear time
minimum cut algorithm [23]. We give a self-contained version of Karger’s algorithm with the new
procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on
an m-edge, n-vertex graph in O(m log3 n) time with high probability, matching the complexity of
Karger’s approach.
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min-cut-paper.

1 Introduction

The minimum cut problem on an undirected (weighted) graph G asks for a vertex subset
S such that the total number (weight) of edges from S to V \ S is minimized. The
minimum cut problem is a fundamental problem in graph optimization and has received
vast attention by the research community across a number of different computation models
[23, 8, 36, 20, 25, 15, 41, 19, 5, 17, 4, 22, 11, 27, 18, 6, 10, 34, 39, 12]. Its applications include
network reliability [37, 21], cluster analysis [3], and a critical subroutine in cutting-plane
algorithms for the traveling salesman problem [2].

A seminal result in weighted minimum cut algorithms is an algorithm by Karger [23]
which produces a minimum cut on an m-edge, n-vertex graph in O(m log3 n) time with
high probability1. This algorithm stood as the fastest minimum cut algorithm for the past
two decades, until very recently, work published on arXiv shaved a log factor in Karger’s
approach [31, 9]. The main component of Karger’s algorithm is a subroutine that finds a
minimum cut that 2-respects (cuts two edges of) a given spanning tree T of a graph G. In
other words, the cut found is minimal amongst all cuts of G that cut exactly two edges
of T . Despite the number of pairs of spanning tree edges totaling Ω(n2), Karger shows

1 Probability 1− 1/nc for some constant c.
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this can be accomplished in O(m log2 n) time. Unfortunately, the procedure developed is
particularly complex, a detail Karger admits when comparing the algorithm to a simpler
O(n2 logn) algorithm he develops to find all minimum cuts [23]. Indeed, perhaps for this
reason, implementation of the asymptotically fastest minimum cut algorithm has been avoided
in practical performance analyses [5, 19].

In this paper, we give a simple algorithm to find a minimum cut that 2-respects a
spanning tree T of a graph G. Our procedure runs in O(m log2 n) time, matching the
performance of Karger’s more-complicated subroutine. We achieve the simplification via a
clever use of the heavy-light decomposition. Although our procedure requires the top tree data
structure [1] to achieve optimal performance, at the cost of an extra O(logn) factor, heavy-
light decomposition can be used a second time so that only augmented binary search trees
are required. We also give a self-contained version of Karger’s algorithm [23] with this new
procedure and implement it, avoiding issues associated with previous implementations [23, 5].

Karger’s algorithm [23], as well as the edge-sampling technique it is based on [22], has been
extended and adapted to achieve results in a number of different settings [12, 6, 41, 11, 10, 34].
In particular, in the fully-dynamic setting, Thorup [41] uses the tree-packing technique
developed by Karger [23], but maintains a larger set of trees so that the minimum cut
1-respects at least one of them. In the parallel setting, Geissmann and Gianinazzi [11] are
able to parallelize both the dynamic tree data structure and the necessary computation
required by Karger’s algorithm [23]. This work is based off prior work in the cache-oblivious
model [10], also based on Karger’s algorithm [23]. In the distributed setting, Ghaffari and
Kuhn [12] achieve a (2 + ε)-approximation to the minimum cut based on Karger’s sampling
technique [22]. This is improved to a (1+ε)-approximation with similar runtime by Nanongkai
and Su [34]. Nanongkai and Su develop their algorithm from Thorup’s fully-dynamic min-cut
algorithm [41], Karger’s sampling technique [22], and Karger’s dynamic program to find
the minimum cut that 1-respects a tree [23]. Finally, Daga et al. [6] achieve a sublinear
time distributed algorithm to compute the exact minimum cut in an unweighted undirected
graph. This algorithm builds off a more recent development in minimum cut algorithms [27],
combined again with the tree-packing technique introduced by Karger [23]. Specifically, a tree
packing is found in an efficient number of distributed rounds, then Karger’s more-complicated
algorithm to find a minimum 2-respecting cut is applied in the distributed setting.

This vast amount of work based on Karger’s original near-linear time algorithm suggests
that simplifying it may yield additional techniques that can be applied both sequentially and
in alternative settings. Indeed, the very recent improvements to Karger’s algorithm [31, 9]
were published on arXiv two months after our paper was first made available online [28],
one of which [9] cites our paper as what drew the authors to the problem. Indeed, their
procedure for “descendent edges”, given in Section 3.1, is similar to our procedure given in
Section 5. We have further found use of the approach given in this paper to achieve new
results in dynamic higher connectivity algorithms [30].

This paper is organized as follows. In Section 2, we state the history of the minimum
cut problem, in particular discussing other simple algorithms. In Section 3, we give an
overview of Karger’s algorithm to pack spanning trees, leaving the details of the approach to
Appendix A. Our main contribution is given in Sections 4 and 5. In Section 4, we show how
to find minimum cuts that 1-respect (cut one edge of) a tree using our new procedure. In
Section 5, we extend the approach to find minimum cuts that 2-respect (cut two edges of) a
tree. We discuss our implementation in Section 6 and give concluding remarks in Section 7.
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2 Related Work

Before we begin, we give a brief history of the minimum cut problem. The minimum cut
problem was originally perceived as a harder variant of the maximum s-t flow problem and
was solved by

(
n
2
)
flow computations. Gomory and Hu [14] showed how to compute all

pairwise max flows in n− 1 flow computations, thus reducing the complexity of the minimum
cut problem by a Θ(n) factor. Hao and Orlin [16] further showed that the minimum cut in a
directed graph can be reduced to a single flow computation.

Nagamochi and Ibaraki [33, 32] developed a deterministic algorithm that is not based
on computing maximum s-t flows. They achieve O(nm + n2 logn) time on a capacitated,
undirected graph. This procedure was simplified by Stoer and Wagner [39], achieving the
same runtime. The Stoer-Wagner algorithm gives a simple procedure to find an arbitrary
minimum s-t cut. Vertices s and t are then merged, and the procedure repeats. Although
the O(nm+n2 logn) time complexity requires an efficient priority queue such as a Fibonacci
heap [7], a binary heap can be used to achieve runtime O(nm logn).

Two algorithms based on edge contraction have been devised. The first is an algorithm
of Karger [20] and is incredibly simple. The algorithm randomly contracts edges until only
two vertices remain. Repeated O(n2 logn) times, the algorithm finds all minimum cuts on
an undirected, weighted graph in O(n2m logn) time with high probability. This technique
was improved by Karger and Stein [25] by observing an edge of the minimum cut is more
likely to be contracted later in the contraction procedure. Their improvement branches the
contraction procedure after a certain threshold has been reached, spending more time to
avoid contracting an edge of the minimum cut when fewer edges remain. The Karger-Stein
algorithm achieves runtime O(n2 log3 n), finding the minimum cut with high probability.

In an unweighted graph, Gabow [8] showed how to compute the minimum cut in
O(cm log(n2/m)) time, where c is the capacity of the minimum cut. Karger [22] improved
Gabow’s algorithm by applying random sampling, achieving runtime Õ(m

√
c) in expectation2.

The sampling technique developed by Karger [22], combined with the tree-packing technique
devised by Gabow [8], form the basis of Karger’s near-linear time minimum cut algorithm [23].
As previously mentioned, this technique finds the minimum cut in an undirected, weighted
graph in O(m log3 n) time with high probability.

A recent development uses low-conductance cuts to find the minimum cut in an undirected
unweighted graph. This technique was introduced by Kawarabayashi and Thorup [27], who
achieve near-linear deterministic time (estimated to be O(m log12 n)). This was improved by
Henzinger, Rao, and Wang [18], who achieve deterministic runtime O(m log2 n (log logn)2).
Although the algorithm of Henzinger et al. is more efficient than Karger’s algorithm [23] on
unweighted graphs, the procedure, as well as the one it was based on [27], are quite involved,
thus making them largely impractical for implementation purposes.

Since an earlier version of this paper became available online [28], several important
improvements in minimum cut algorithms have been discovered. Ghaffari et al. [13] devise a
randomized unweighted minimum cut algorithm by using contraction based on sampling from
each vertex, rather than standard uniform edge sampling. Their algorithm reduces unweighted
minimum cuts to weighted minimum cuts on a graph with O(n) edges, achieving O(min(m+
n log3 n,m logn)) time complexity. Gawrychowski et al. [9] improve Karger’s procedure
for finding the minimum cut that 2-respects a tree to O(m logn) time. This improves the
state-of-the-art for weighted minimum cuts to O(m log2 n) time and, by Ghaffari et al. [13],

2 The Õ(f) notation hides O(log f) factors.
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improves the complexity of unweighted minimum cuts to O(min(m+ n log2 n,m logn)) time.
Mukhopadhyay and Nanongkai [31] also study Karger’s procedure for finding the minimum
cut that 2-respects a tree, arriving at an O(m log2 n

log logn + n log6 n) time weighted minimum cut
algorithm. Mukhopadhyay and Nanongkai further apply their new procedure to minimum
cuts in the cut-query and streaming models.

3 Overview of Karger’s Spanning Tree Packing

We first formalize the definition mentioned earlier in this paper and originally given by
Karger.

I Definition 1 (Karger [23]). Let T be a spanning tree of G. We say that a cut in G k-respects
T if it cuts at most k edges of T . We also say that T k-constrains the cut in G.

We also define weighted tree packings.

I Definition 2 (Karger [23]). A weighted tree packing is a set of spanning trees, each with
an assigned non-negative weight, such that the total weight of trees containing a given edge
of G is no greater than the weight of that edge. The weight of the packing is the total weight
of the trees in it.

The first stage of Karger’s algorithm is to sample edges independently and uniformly at
random from graph G to form a graph H, and then pack spanning trees in H. If we sample
a tree T from a packing with probability proportional to its weight, a minimum cut in G
will cut at most two edges of T with constant probability. Thus, if we sample O(logn) trees
from the weighted packing, a minimum cut in G 2-respects at least one of the sampled trees
with high probability. The remainder of the algorithm is a procedure that, given a spanning
tree T of a graph G, finds a minimal cut of G that 2-respects T . This procedure is applied
to all O(logn) sampled spanning trees.

We leave the intuition behind Karger’s approach and the relevant mathematics to Ap-
pendix A. We will use Algorithm 1 to pack spanning trees, credited to Thorup and Karger [42],
Plotkin-Shmoys-Tardos [36], and Young [43]. The procedure appears in Gawrychowski et
al. [9].

Algorithm 1 Obtain a Packing of Weight at least .4c from a Graph G.

Let G be a graph with m edges and n vertices.
1. Initialize `(e)← 0 for all edges e of G. Initialize multiset P ← ∅. Initialize W ← 0.
2. Repeat the following:

a. Find a minimum spanning tree T with respect to `(·).
b. Set `(e)← `(e) + 1/(75 lnm) for all e ∈ T . If `(e) > 1, return W,P .
c. Set W ←W + 1/(75 lnm).
d. Add T to P .

I Lemma 3 ([36, 42, 43]). Given an undirected unweighted graph G with m edges, n
vertices, and minimum cut c, Algorithm 1 returns a weighted packing of weight at least .4c in
O(mc logn) time.

Algorithm 1 and Lemma 3 are given in Appendix A with general epsilon and proven.
To achieve O(mc logn) time in Algorithm 1, we may use a linear time minimum spanning
tree routine [24] or the following implementation trick given by Gawrychowski et al. [9]. In
the use of Algorithm 1 in Algorithm 2, the graph in Algorithm 1 has edges which may be



N. Bhardwaj, A. J.M. Lovett, and B. Sandlund 12:5

duplicated O(logn) times, while the number of distinct edges can be bounded as a factor
Θ(logn) fewer. It suffices to invoke the minimum spanning tree algorithm of Algorithm 1
with only the minimum of each set of parallel edges. We can easily maintain the minimum
of each set of parallel edges in O(logn) time per edge per iteration, which suffices to shave a
log factor in the runtime of Algorithm 1. Note that if we chose to avoid these optimizations
and/or avoid the use of top trees in Section 5, the final runtime becomes O(m log4 n).

We use Algorithm 1 in Algorithm 2 to obtain Θ(logn) trees for the 2-respect algorithm
given in Sections 4 and 5.

Algorithm 2 Obtain Θ(logn) Spanning Trees for the 2-respect Algorithm.

Let d denote the exponent in the probability of success 1− 1/nd. Let b = 3 · 62(d+ 2) lnn.
1. Form graph G′ from G by first normalizing the edge weights of G so the smallest non-zero

edge weight has weight 1, then multiplying each edge weight by 100 and rounding to the
nearest integer. Let U be an upper bound for the size of the minimum cut of G′.

2. Initialize c′ ← U . Repeat the following:
a. Construct H in the following way: for each edge e of G′, let e have weight in H drawn

from the binomial distribution with probability p = min(b/c′, 1) and number of trials
the weight of e in G′. Cap the weight of any edge in H to at most d7/6 · 12be.

b. Run Algorithm 1 on H, considering an edge of weight w as w parallel edges. There
are three cases:
i. If p = 1, set P to the packing returned and skip to step 3.
ii. If the returned packing is of weight 24b/70 or greater, set c′ ← c′/6 and repeat

steps 2a and 2b, setting P to the packing returned and then proceeding to step 3.
iii. Otherwise, repeat steps 2a and 2b with c′ ← c′/2.

3. Return d36.53d lnne trees sampled uniformly at random proportional to their weights
from P .

I Lemma 4. Algorithm 2 returns a collection of Θ(logn) spanning trees of G in time
O(m log3 n) such that the minimum cut of G 2-respects at least one tree in the collection
with high probability.

Algorithm 2 and Lemma 4 are given in Appendix A with general epsilon and proven.

4 Minimum Cuts that 1-Respect a Tree

We now give our algorithm for finding a minimum cut that 1-respects a spanning tree T of a
graph G. We present it here only to build intuition for the idea used to find 2-respecting
cuts in the following section, which also finds 1-respecting cuts.

We use the following lemma, a consequence of Sleator and Tarjan’s heavy-light decom-
position [38].

I Lemma 5 (Sleator and Tarjan [38]). Given a tree T , there is an ordering of the edges of T
such that the edges of the path between any two vertices in T consist of the union of up to
2 logn contiguous subsequences of the order. The order can be found in O(n) time.

Proof. We use heavy-light decomposition, credited to Sleator and Tarjan [38]. Note that
the algorithm assumes T is rooted. We can root T arbitrarily. We then take the heavy paths
given from the usual construction and concatenate them in any order. J
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Our algorithm begins by labeling the edges of T in heavy-light decomposition order
e1, . . . , en−1 as given by Lemma 5. Consider the cut of G induced by the vertex partition
resulting from cutting a single edge of T . We iterate index i through heavy-light decomposition
order and keep up-to-date the total weight of all edges of G that cross the cut induced by ei.
The minimum weight found is then returned.

Call the edges of G in T tree edges and edges of G not in T non-tree edges. Critical to
our approach is the following proposition.

I Proposition 6. For any cut of G that 2-respects T , the non-tree edge uv crosses the cut if
and only if exactly one tree edge from the uv-path in T crosses the cut.

Proof. Recall that for any edge of T crossing the cut, the components of each of its endpoints
must fall on opposite sides of the cut. Therefore if the number of tree edges in the cut on
the uv-path in T is odd, the non-tree edge uv crosses the cut. Since we are only considering
cuts that cut at most 2 edges of T , the proposition follows. J

We now give our algorithm explicitly.

Algorithm 3 Minimum Cuts that 1-Respect T .

1. Arrange the edges of T in the order of Lemma 5; label them e1, . . . , en−1.
2. For each non-tree edge uv, mark every i such that ei is on the uv-path in T and ei+1 is

not on the uv-path in T , or vice versa. Indicate whether edge e1 is on the uv-path in T .
3. Iterate index i from 1 to n− 1, in each iteration keeping track of the total weight of all

non-tree edges uv such that ei lies on the uv-path in T , added together with the weight
of edge ei.

4. Return the minimum total weight found in step 3.

I Lemma 7. Algorithm 3 finds the value of the minimum cut that 1-respects a spanning tree
T of a graph G in O(m logn) time.

Proof. Via Proposition 6, in a 1-respecting cut including only ei from T , a non-tree edge uv
is cut if and only if the edge ei lies on the uv-path in T . Algorithm 3 keeps track of all such
non-tree edges for each possible ei that is cut, therefore it finds the minimum cut of G that
cuts a single edge of T .

The time complexity can be determined as follows. Finding the heavy-light decomposition
for step 1 takes O(n) time. In doing so, we can label each edge and each heavy path so that
every edge knows its index in the order as well as the heavy path to which it belongs. Each
heavy path can store its starting and ending index in the order. With this information, step
2 can be completed by walking up from u and v in T towards the root of T . We spend O(1)
work per heavy path from root to vertex, which is bounded by O(logn) via the heavy-light
decomposition. In total this step takes O(m logn) time.

In step 3, we spend O(n) total work plus O(1) work for each transition of the current
edge ei on or off the uv path for all non-tree edges uv. Each non-tree edge transitions on or
off O(logn) times as guaranteed by Lemma 5, therefore the time complexity of this step is
O(m logn). Overall, Algorithm 3 takes O(m logn) time. J

Note that if we wish to find the edges in the minimum cut, we can keep track of the
minimum-achieving index i so we know the vertex separation of the minimum cut. With the
vertex separation, it is easy to find in O(m logn) time which non-tree edges cross the cut.
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Further note that we need not know the identity of the non-tree edge uv as ei falls on
or off the uv-path. Thus the space required for step 2 need only be O(m), since at each
transition point we can just keep track of the total weight added or subtracted from the
minimum cut.

5 Minimum Cuts that 2-Respect a Tree

We now discuss an extension of Algorithm 3 to find a minimum cut that 2-respects a tree.
We still iterate i through heavy-light decomposition order, but in addition to cutting ei, we
find the best j so that the cut resulting from cutting ei and ej is minimal. To find the best j
efficiently we use a clever data structure.

I Lemma 8 (Alstrup et al. [1]). There is a data structure that supports the following operations
on a weighted tree T in O(logn) time:

PathAdd(u, v, x) := Add weight x to all edges on the unique uv-path in T .
NonPathAdd(u, v, x) := Add weight x to all edges not on the unique uv-path in T .
QueryMinimum() := Query for the minimum weight edge in T .

Proof. Operations PathAdd() and QueryMinimum() are just Theorems 3 and 4 of [1]. Oper-
ation NonPathAdd(u, v, x) can be achieved by keeping a counter of global weight added to
(subtracted from) T and executing PathAdd(u, v, -x) to undo this action on the uv-path.
See also [40]. J

Note that the weight x can be positive or negative.
If we seek to avoid implementing any sophisticated data structures, we can instead use

heavy-light decomposition again and support the above two operations in O(log2 n) time. To
see how, by Lemma 5 each path of T represents at most O(logn) contiguous segments of the
total order of edges. Range add and a global minimum query can be supported in O(logn)
time via an augmented binary search tree. Thus the total time complexity per operation is
O(log2 n).

We use the range operations as follows. As we iterate index i through the order of
Lemma 5, we keep up to date the cost of the cut resulting from cutting any other edge ej
via the data structure of Lemma 8. Instead of querying each other edge ej directly, however,
we just use a global minimum query to find the best choice of j. The procedure is given in
Algorithm 4. The first two steps are the same as Algorithm 3.

I Lemma 9. Algorithm 4 finds the value of the minimum cut that 2-respects a spanning tree
T of a graph G in O(m log2 n) time.

Proof. By Proposition 6, in a 2-respecting cut including ei and ej of T , a non-tree edge
uv is cut if and only if exactly one of ei or ej lies on the uv-path in T . Observe that the
invariants enforced in step 4 guarantee that in each iteration the total weight of edges from
the cut resulting from cutting any other edge ej along with ei is kept up-to-date in the data
structure of Lemma 8. Since the minimum such j is found for every i, it follows that step 4
finds the weight of the minimum cut of G that cuts exactly two edges of T . In step 5, we
return the minimum of this weight with a single call to QueryMinimum() where we assume
edge ei to be off the path of all non-tree edges uv. Observe that this computes the minimum
cut of G that cuts exactly one edge of T . Thus, the minimum cut of G that 2-respects T is
returned in step 5.

The time complexity follows similarly to Algorithm 3. Steps 1 and 2 take O(m logn)
total time. However, step 4 requires O(logn) time for non-tree edge uv whenever edge ei
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Algorithm 4 Minimum Cuts that 2-Respect T .

1. Arrange the edges of T in the order of Lemma 5; label them e1, . . . , en−1.
2. For each non-tree edge uv, mark every i such that ei is on the uv-path in T and ei+1 is

not on the uv-path in T , or vice versa. Indicate whether edge e1 is on the uv-path in T .
3. Initialize the data structure of Lemma 8 on T so that the weight of edge ej is equal to its

weight in T .
4. Iterate index i from 1 to n− 1. Via the computation done in step 2, maintain the

following invariants in the data structure of Lemma 8 as i is iterated.
a. When edge ei is on the uv-path in T , add the weight of non-tree edge uv to all edges

off the uv-path in T .
b. When edge ei is off the uv-path in T , add the weight of non-tree edge uv to all edges

on the uv-path in T .
Each time i is incremented, after updating weights in Lemma 8 as per 4a and 4b, add ∞
to edge ei, execute QueryMinimum(), then subtract ∞ from edge ei. The value of the
minimum cut found in each iteration is the result of QueryMinimum() plus the weight of
ei.

5. Return the minimum of the smallest cut found in step 4 with the result of
QueryMinimum() when we consider edge ei to be off the path of all non-tree edges uv in
the data structure of Lemma 8.

falls on or off the uv-path in T , since the data structure of Lemma 8 takes O(logn) time per
operation. For a given non-tree edge uv, edge ei falls on or off the uv-path in T a total of
O(logn) times by Lemma 5; thus step 4 takes O(m log2 n) time. The final QueryMinimum()
call in step 5 takes O(m logn) time. The total time taken is O(m log2 n). J

We make a few further remarks about Algorithm 4. To determine the edges of the
minimum cut, the data structure of Lemma 8 can be augmented to return the index j of the
edge that achieves the minimum given in operation QueryMinimum(). With ei and ej , we
can determine the vertex partition in G of the minimum cut and, as stated in Section 4, and
from this we can find which non-tree edges cross the minimum cut easily in O(m logn) time.

The space complexity of Algorithm 3 was easily linear. In Algorithm 4, we must know
the identity of each non-tree edge uv in every transition point where edge ei falls on or off
the uv-path. Naively this costs O(m logn) space. This can be improved to O(m) space
by performing step 2 incrementally while executing step 4. That is, we only need to know
the next transition point where the non-tree edge uv falls on or off the uv-path, and from
the current transition point this can be determined in constant time via the heavy-light
decomposition.

Recall that while Algorithm 3 helped demonstrate the approach of Algorithm 4, we need
only implement Algorithm 4, since Algorithm 4 finds the minimum cut of G that cuts either
1 or 2 edges of T .

From this we get our final theorem, equivalent to the result of Karger [23].

I Theorem 10. The minimum cut in a weighted undirected graph can be found in O(m log3 n)
time with high probability.

Proof. We first find Θ(logn) spanning trees by Algorithm 2. We then find the minimum
cuts that 2-respect each of these trees by Algorithm 4. By Lemmas 4 and 9, this finds the
minimum cut with high probability in O(m log3 n) time. J
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Figure 1 Performance comparison of an O(m log4 n) implementation of our algorithm with an
O(n3) Stoer-Wagner [39] and O(n3 logn) Karger [20].

6 Implementation

We have implemented an O(m log4 n) version of our algorithm in C++3. Algorithm 1 together
with an O(m logn) minimum spanning tree routine take about 100 lines of code, Algorithm 2
takes about 200 lines, Algorithm 4 takes about 200 lines, and using an augmented binary
search tree as the data structure for Lemma 8 takes about 200 lines. To the best of our
knowledge, our implementation is the first to achieve near-linear time complexity. We
have tested it against an O(n3) implementation of the Stoer-Wagner algorithm [39] and
an O(n3 logn) implementation of Karger’s randomized contraction algorithm [20]. Under
favorable inputs, the runtime compares as in Figure 1.

Figure 1 demonstrates the near-linear growth in the running time of our algorithm.
Unfortunately, it does not appear our implementation is competitive compared to existing im-
plementations [5]. The bottleneck is in obtaining the O(logn) spanning trees for Algorithm 4,
even when Algorithm 2 runs in O(m log3 n) time and Algorithm 4 runs in O(m log4 n) time.
The issue is the large constant factors due to the quadratic dependencies on epsilons, seen in
Algorithms 5 and 6. We have calculated that the number of calls to the minimum spanning
tree routine in our implementation can be as much as 8100 lnn lnm, and that changing the
choices of epsilons for Algorithms 1 and 2 does not yield significant improvement.

If we replace Algorithm 1 with the more-complicated Gabow’s algorithm [8], we can
likely improve our implementation’s runtime. Further, a factor of about two can be saved by
finding c′ via an approximation algorithm [26]. However, a large constant factor will remain
due to the sampling procedure in Lemma 14, discussed in Appendix A. All known algorithms
to compute weighted tree packings have dependence on c, the value of the minimum cut,
and Lemma 14 reduces the value of the minimum cut to at least 3(d+ 2)(lnn)/ε2, which in
our algorithms manifests as a factor of 108(d+ 2) lnn. It appears that for Karger’s approach
to be made practical, this large constant factor will likely need to be improved or heuristic
approaches would need to be considered [5].

3 Our implementation is available at: https://github.com/nalinbhardwaj/min-cut-paper.
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7 Conclusion

In this paper, we have discussed a simplification to Karger’s original near-linear time minimum
cut algorithm [23]. In contrast to Karger’s original algorithm [23], finding spanning trees that
have a constant probability of 2-respecting the minimum cut is now the more-complicated
part of the algorithm and finding minimum cuts that 2-respect a tree is relatively simpler.
In actuality, both were complicated in Karger’s original algorithm, however the work to find
the tree packing was largely abstracted to previous publications. The same can be said for
many statements of Karger’s near-linear time algorithm [9, 31]. Our version, on the other
hand, is self-contained: the only procedures outside of Algorithms 1, 2, and 4 required to
implement the full algorithm are a minimum spanning tree subroutine and (optionally) a top
tree data structure.

The main contribution of our algorithm is a new, simple procedure to find a minimum cut
that 2-respects a tree T in O(m log2 n) time. Karger advertises that the complexity of his
near-linear time algorithm is O(m log3 n) and thus his routine to find a minimum cut that
2-respects a tree also takes O(m log2 n) time. However, he gives two small improvements to
the algorithm to reduce the overall runtime to O(m log2 n log(n2/m)/ log logn + n log6 n).
The first uses the fact that finding a 1-respecting cut can be done in linear time, and the
other is an improvement which reduces an O(logn) factor to an O(log(n2/m)) factor in the
2-respect routine. For our algorithm, the first improvement can be applied by substituting
our 1-respect algorithm with his. The second improvement can not be applied. Thus, when
m = Θ(n2), his algorithm is faster by an O(logn) factor. However, for this case, Karger
gives a different, simpler algorithm [23] which finds the global minimum cut in O(n2 logn)
time anyway.

There are three algorithms that are referred to as simple min-cut algorithms: the Stoer-
Wagner algorithm [39] which runs in O(nm logn) time or O(nm + n2 logn) time with a
Fibonacci heap [7], Karger’s randomized contraction algorithm [20] which runs in O(n2m logn)
time, and the improvement to Karger’s algorithm by Karger and Stein [25] which runs in
O(n2 log3 n) time. In comparison to these, our approach is the least simple. However, our
O(m log3 n) runtime is significantly better. While the large constant factors in our approach
make this only relevant at large values of n, we hope the procedure developed in this paper
can be used in conjunction with an optimized version of Karger’s sampling technique to
produce an asymptotically fast, practical minimum cut algorithm.
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A Karger’s Algorithm for Packing Spanning Trees

In this section we give the intuition and mathematics behind the spanning tree packing of
Karger’s algorithm.

A.1 Tree Packing
The basic idea of Karger’s near-linear time algorithm [23] is to exploit the following com-
binatorial result. Recall that a tree packing of an undirected unweighted graph G is a set
of spanning trees such that each edge of G is contained in at most one spanning tree. The
weight of a tree packing is the number of trees in it.

I Theorem 11 (Nash-Williams [35]). Any undirected unweighted multigraph with minimum
cut c contains a tree packing of weight at least c/2.

Now consider a minimum cut and a tree packing given by Theorem 11. Each edge of the
minimum cut can only be present in at most one spanning tree. As there are c edges of the
minimum cut, this implies that the average spanning tree contains at most c/(c/2) = 2 edges
of the minimum cut. In other words, a spanning tree chosen at random from a packing of
Theorem 11 will 2-constrain the minimum cut with probability at least 1/2.
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Suppose we are given a spanning tree T of G with each edge of T marked if it crosses
the minimum cut. The endpoints of any marked edge must fall on opposite sides of the cut.
Conversely, the endpoints of any unmarked edge must be on the same side of the cut. It
follows that if we know the edges of T that cross the minimum cut, we can determine the
vertex partition of the minimum cut and its total weight in G.

This gives the intuition behind Karger’s algorithm [23]. We sample spanning trees
from a tree packing of G and for each tree T , we find the minimum cut that 2-respects
T . Unfortunately, several obstacles need be overcome before this can be made into an
efficient algorithm. For one, all currently known approaches of determining a tree packing of
Theorem 11 have runtime Ω(cm), which for large values of c is far more than the runtime we
seek. Further, Theorem 11 must be generalized to weighted graphs.

We first address the latter concern. Recall the definition of weighted tree packings given
in Section 3.

I Lemma 12 (Karger [23]). Any undirected weighted graph with minimum cut c contains a
weighted tree packing of weight at least c/2.

Proof. For contradiction, suppose some graph G with minimum cut c and ε > 0 exist such
that G does not contain a weighted packing of weight (1− ε)c/2 or greater.

Take G and approximate each edge ei of weight wi by a rational number ai/bi such that
ai/bi < wi and wi − ai/bi < ε. Multiply all edges by d =

∏
i bi and call the resulting graph

G′. Then by Theorem 11, when viewed as an unweighted multigraph, G′ has a tree packing
of weight at least (1 − ε)dc/2. If we weight each tree of the packing by 1/d, the packing
becomes a weighted packing of G of weight at least (1− ε)c/2, a contradiction. J

Note that for both Lemma 11 and Lemma 12, an upper bound of weight c also exists,
because every spanning tree in the packing must cross the minimum cut at least once.

To effectively use Lemma 12, we formally state the relationship between weighted packings
and trees that 2-constrain small cuts.

I Lemma 13 (Karger [23]). Consider a weighted graph G and a weighted tree packing of
weight βc, where c is the weight of the minimum cut in G. Then given a cut of weight αc, a
fraction at least 1

2 (3− α/β) of the trees (by weight) 2-constrain the cut.

Proof. Note that every spanning tree must cross every cut. Let x denote the total weight
of trees with at least three edges crossing the cut and y the total weight of trees with one
or two edges crossing the cut. Then x + y = βc and 3x + y ≤ αc. Rearranging, we get
y ≥ 1

2 (3βc− αc). J

A.2 Random Sampling
In order to avoid the Ω(cm) complexity of finding a packing of weight c/2, we first apply
random sampling to G. Specifically, we use the following from Karger’s earlier work.

I Lemma 14 (Karger [22]). Let p = 3(d+ 2)(lnn)/(ε2γc) ≤ 1, where c is the weight of the
minimum cut of an unweighted multigraph G and γ ≤ 1, γ = Θ(1). Then if we sample each
edge of G independently with probability p, the resulting graph H has the following properties
with probability 1− 1/nd.
1. The minimum cut in H is of size within a (1 + ε) factor of cp = 3(d + 2)(lnn)/(γε2),

which is O(ε−2 logn).
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12:14 Simple Min-Cut in Near-Linear Time

2. A cut in G takes value within a factor (1 + ε) of its expected value in H. In particular,
the minimum cut in G corresponds (under the same vertex partition) to a (1 + ε)-times
minimum cut of H.

By picking ε to be a constant such as 1/6, Lemma 14 will allow us to reduce the size of
the minimum cut in H to O(logn). We can then run existing algorithms [36, 8] to pack trees
in H in Õ(m) time. Further, since the minimum cut of G corresponds to a (1 + ε)-times
minimum cut of H, we can still apply Lemma 13 on the sampled graph H so that a tree
randomly sampled from the packing has a constant probability of 2-constraining the minimum
cut in G.

There are still several issues to resolve. Lemma 14 applies to unweighted multigraphs
G, but our graph G can have non-negative real weights. The other issue is that the value γ
needs to be known ahead of time in order to apply the lemma. We first address the latter
issue.

Lemma 14 requires knowing a constant-factor underestimate c′ = γc for the minimum
cut c. In particular, without γ ≤ 1, property 2 of Lemma 14 is not guaranteed with high
probability, and if γ = o(1), the minimum cut of H will be of size ω(ε−2 logn) with high
probability. We may run a linear-time 3-approximation algorithm [29], with modifications to
work on weighted graphs [26], to find this approximation. This is simple to state, but more
difficult to implement.

A different approach is to start with a known upper bound U for c′. Karger states that
we can then halve this upper bound until “our algorithms succeed” [22]. This approach
is taken by the implementation of Chekuri et al. [5]. Unfortunately, it is not rigorous as
stated. Lemma 14 indicates that with a constant-factor underestimate c′ = γc for c, our
algorithm can proceed. However, it does not give a process for rejecting a guess c′ that
is not a constant-factor underestimate for c. We could try all powers of 2 for c′ within a
known lower and upper bound of the value of the minimum cut, and run our algorithms for
all possibilities. This is rigorous, but introduces an extra O(logn) factor in our runtimes,
assuming the range of c′ we try is polynomial in n. We instead show the following.

I Lemma 15. Let p = 3(d + 2)(lnn)/(ε2γc) ≤ 1 as in Lemma 14, but with γ ≥ 6 and
ε ≤ 1/3. Then if we sample each edge of the unweighted multigraph G uniformly at random
with probability p, the resulting graph H has minimum cut of size less than (d+ 2)(lnn)/ε2
with probability at least 1− 1/nd+2.

Proof. Consider the size of a minimum cut of G as a cut in H. Let X be a random variable
denoting this size. Then E [X] = cp. By a Chernoff bound, Pr [X ≥ (1 + δ)cp] ≤ e− 1

3 (cpδ) for
δ ≥ 1. Let (1 + δ) = γ

3 . Then

Pr
[
X ≥ (d+ 2)(lnn)/ε2

]
≤ e− 1

3 (cp( γ
3−1))

= e−(d+2)(lnn)γ−1ε−2( γ
3−1))

= n−
1
3 (d+2)ε−2+(d+2)γ−1ε−2

≤ n− 1
6 (d+2)ε−2

< n−(d+2).

Therefore, the minimum cut in H has size less than (d + 2)(lnn)/ε−2 with probability at
least 1− 1/nd+2. J

Lemma 15 states that if our estimate c′ = γc satisfies γ ≥ 6, the minimum cut will be at
least a factor 3 smaller than 3(d+ 2)(lnn)/ε2 with high probability. Recall that with γ = 1
and therefore c′ = c, we expect the minimum cut in H to be within a factor (1 + ε) from



N. Bhardwaj, A. J.M. Lovett, and B. Sandlund 12:15

3(d+ 2)(lnn)/ε2 with high probability. Lemma 15 gives us the necessary tool to reject c′
that are not a constant factor underestimate of c. We try a value for c′, and if the size of the
minimum cut in H is greater than (1 + ε)−13(d+ 2)(lnn)/ε2, we know c′ < 6c. Therefore we
can decrease c′ by a factor of 6 and rerun the tree packing algorithm. The resulting graph H
must satisfy the conditions of Lemma 14, therefore the algorithm may proceed. Since our
tree packing algorithms determine the minimum cut up to constant factors, this approach
avoids the need of a different (or recursive!) minimum cut algorithm to run on H.

We briefly remark on the choice of known upper bound U . If the edge weights are
polynomially bounded by the number of vertices, n, a simple upper bound of the sum of
weights of edges attached to any single vertex will do. If we do not consider this guarantee,
Karger shows [22] that the minimum weight edge w in a maximum spanning tree has the
property that the minimum cut must have weight between w and n2w. Thus, setting U = n2w

gives only O(logn) values of c′ to try regardless of edge weights. The choice of an upper
bound U is further discussed in [5].

We now return to the issue of real-value weights in Lemma 14. This was described
as a complication in [5], to which they substituted a heuristic method in order to achieve
practicality. The approach we have described thus far is amenable to small constant-factor
approximations. Suppose we replace G with a graph G′ such that each edge weight is first
normalized so the smallest weight edge has weight 1, then all edge weights are multiplied by
100 and rounded to the nearest integer. Normalizing has no effect on the relative sizes of cuts
in G′. Rounding to the nearest integer when the smallest weight edge has weight at least
100 has the effect that a cut of weight x will take on a new weight in range [.995x, 1.005x].
Then the original minimum cut of G corresponds to an at most 201/199-times minimum cut
of G′. Now, G′ can be represented as an unweighted multigraph and then sampled according
to Lemma 14. In the resulting graph H, the minimum cut of G corresponds to an at most
201/199 · 7/6-times minimum cut of H with the choice ε = 1/6. By adjusting constants
throughout the rest of our approach, this shows we can treat real weighted graphs G correctly.
The other issue is how to do so efficiently.

If we consider G′ as an unweighted multigraph, the number of edges of G′ is proportional
to the weight of edges of G, which may be quite large. However, we may also consider
G′ as an integer-weighted graph, in which case we can sample each edge of G′ by drawing
from the binomial distribution with probability p and number of trials the weight of the
respective edge. There are many methods to sample from the binomial distribution. One
simple method that can be made efficient for our purposes is inverse transform sampling. Let
X denote a random variable sampled from the binomial distribution as described. In inverse
transform sampling, we draw a number u uniformly at random between 0 and 1, and then
choose our sample x to be the largest such that P (X < x) ≤ u. Instead of having to sample
a number of times equal to the weight of an edge, we must only compute the probabilities
of the cumulative distribution function for the binomial distribution for all possible values
that may result in H. We can make this efficient with the following observation. Say the
weight of the minimum cut in H is ĉ. Then a tree packing of H has value at most ĉ, and in
particular for a given edge, any weight beyond ĉ is excess capacity that cannot be used in
the tree packing. It follows that capping the weight of any edge of H to the maximum size
of the minimum cut in H, thus O(logn), will have no impact on the packing found. Thus,
we must only compute O(logn) probabilities of the binomial distribution per edge, which
can be done in total O(logn) time per edge.

The final choice is to pick a tree packing algorithm. Karger gives two options. The first
is an algorithm by Gabow [8], which computes a c/2 packing. The second is a more general
approach by Plotkin-Shmoys-Tardos [36], which can find a packing a factor (1 + ε′) from
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12:16 Simple Min-Cut in Near-Linear Time

the maximum packing, which has value in [c/2, c]. Karger describes the latter approach as
simpler, using only minimum spanning tree computations. Although the paper [36] does not
explicitly give a routine for packing spanning trees, such a procedure is explicitly given in
Thorup and Karger [42], with credit given to Plotkin-Shmoys-Tardos [36] and Young [43].
This procedure also appears in Gawrychowski et al. [9]. We give the procedure in Algorithm 1
and state a version of Algorithm 1 with general epsilon in Algorithm 5.

Algorithm 5 Obtain a Packing of Weight at least (1− ε)c/2 from a Graph G.

Let G be a graph with m edges and n vertices.
1. Initialize `(e)← 0 for all edges e of G. Initialize multiset P ← ∅. Initialize W ← 0.
2. Repeat the following:

a. Find a minimum spanning tree T with respect to `(·).
b. Set `(e)← `(e) + ε2/(3 lnm) for all e ∈ T . If `(e) > 1, return W,P .
c. Set W ←W + ε2/(3 lnm).
d. Add T to P .

We now give the general form of Lemma 3 with proof.

I Lemma 16 ([36, 42, 43]). Given 0 < ε < 1 and an undirected unweighted graph G with m
edges, n vertices, and minimum cut c, Algorithm 5 returns a weighted packing of weight at
least (1− ε)c/2 in O(mc logn) time.

Proof. On each iteration, the weight of some tree is increased by ε2/(3 lnm). Since the
weight of the resulting packing is bounded by c, there are at most 3c lnm/ε2 = O(c logn)
iterations. The bottleneck in each iteration is the time to compute a minimum spanning tree
in G. With an O(m) time minimum spanning tree algorithm [24] our final time complexity
is O(mc logn); an alternative way to achieve this runtime when Algorithm 5 is used in
Algorithm 6 was shown in Section 3. Correctness is given via Thorup and Karger [42],
Young [43], and Plotkin-Shmoys-Tardos [36]. J

Our full procedure for obtaining Θ(logn) spanning trees for the rest of the algorithm is
given in Algorithm 2. We give a version of Algorithm 2 with general epsilons in Algorithm 6.

We give the generalization of Lemma 4 for Algorithm 6 below.

I Lemma 17. Algorithm 6 returns a collection of Θ(logn) spanning trees of G in time
O(m log3 n) such that the minimum cut of G 2-respects at least one tree in the collection
with high probability.

Proof. We first prove correctness. Consider general epsilons ε1, ε2, ε3 > 0, where in Al-
gorithm 2, ε1 = 1/100 is the real-weight approximation, ε2 = 1/6 is the approximation for
Lemmas 14 and 15, and ε3 = 1/5 is the approximation for Algorithm 1 to return a packing
of size (1− ε3)c/2 or greater.

Suppose for a particular c′ that c′ ≥ 6c, where c is the size of the minimum cut in G′.
Then by Lemma 15, H will have minimum cut of size less than b/3 = (d+ 2) lnn/ε22 with
high probability. A maximum tree packing of H will have weight at most ĉ, the weight of the
minimum cut in H, and thus the weight of the tree packing found by Algorithm 5 will be at
most b/3 < 1

2 (1− ε3)(1 + ε2)−1b because (1 + ε2)−1(1− ε3) > 2/3. Therefore Algorithm 6 will
proceed to the next iteration with c′ ← c′/2. Note that the overall probability of failure from
any of the O(logn) iterations of this step is at most O(logn · n−(d+2)) ≤ n−d for sufficiently
large n.
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Algorithm 6 Obtain Θ(logn) Spanning Trees for the 2-respect Algorithm.

Let d denote the exponent in the probability of success 1− 1/nd. Let ε1, ε2, ε3 > 0 be
constants of approximation such that f = 3/2− ( 2+ε1

2−ε1
)(1 + ε2)(1− ε3)−1 > 0 and

(1 + ε2)−1(1− ε3) > 2/3. Let b = 3(d+ 2) lnn/ε22.
1. Form graph G′ from G by first normalizing the edge weights of G so the smallest non-zero

edge weight has weight 1, then multiplying each edge weight by ε−1
1 and rounding to the

nearest integer. Let U be an upper bound for the size of the minimum cut of G′.
2. Initialize c′ ← U . Repeat the following:

a. Construct H in the following way: for each edge e of G′, let e have weight in H drawn
from the binomial distribution with probability p = min(b/c′, 1) and number of trials
the weight of e in G′. Cap the weight of any edge in H to at most d(1 + ε2)12be.

b. Run Algorithm 5 on H with approximation ε3, considering an edge of weight w as w
parallel edges. There are three cases:
i. If p = 1, set P to the packing returned and skip to step 3.
ii. If the returned packing is of weight 1

2 (1− ε3)(1 + ε2)−1b or greater, set c′ ← c′/6
and repeat steps 2a and 2b, setting P to the packing returned and then proceeding
to step 3.

iii. Otherwise, repeat steps 2a and 2b with c′ ← c′/2.
3. Return d−d lnn/ ln(1− f)e trees sampled uniformly at random proportional to their

weights from P .

Now suppose Algorithm 5 returns a tree packing of weight 1
2 (1− ε3)(1 + ε2)−1b or greater.

By the above, c′ < 6c with high probability. If c′ ≤ c, Lemma 14 says that the weight of the
minimum cut is at least (1 + ε2)−1b with high probability, unless p > 1. In the latter case,
this implies the weight of the minimum cut is O(logn) and there is no need to apply sampling
to G′. Consider the former case. The tree packing is of weight at least (1− ε3) times half the
minimum cut. It follows that the tree packing will be of weight at least 1

2 (1− ε3)(1 + ε2)−1b.
The consequence of this is that if a tree packing of this weight or greater is found in step 2b,
in addition to the bound c′ < 6c, we also know c′ > c/2 with high probability, since whenever
c′ ≤ c, Lemma 14 says the packing will have weight at least 1

2 (1 − ε3)(1 + ε2)−1b, and we
decrease c′ by a factor of 2 in each iteration. Therefore, if we set c′ ← c′/6, then in the next
iteration we will have c/12 < c′ < c.

Now consider the next iteration when the tree packing is returned. In sampling H, we only
preserve weights in H up to d(1+ε2) ·12be. Since c′ > c/12, the expected size of the minimum
cut in H is at most 12b = 12 · 3(d+ 2) lnn/ε22. Thus, with high probability, by Lemma 14,
the size of the minimum cut in H is at most (1 + ε2)12b, and as explained previously, we
can afford to remove the capacity of any edge beyond (1 + ε2)12b without impacting the
returned packing. Now by Lemma 13 with α ≤ 2+ε1

2−ε1
(1 + ε2) and β ≥ 1

2 (1− ε3), a fraction of
at least f = 3/2− ( 2+ε1

2−ε1
)(1 + ε2)(1− ε3)−1 of the trees in the packing found will 2-constrain

the minimum cut of G. The probability that no tree in a sample of size t 2-constrains
the minimum cut is (1− f)t. Solving for t in (1− f)t = n−d yields t = −d lnn/ ln(1− f).
Therefore with probability at least 1− 1/nd, at least one tree in the returned sample will
2-constrain the minimum cut.

Time complexity can be proven as follows. Sampling H can be done in O(m logn) time,
as explained previously. Algorithm 5 runs in O(m′ĉ log2 n) time using a textbook O(m logn)
minimum spanning tree algorithm, where ĉ is the value of the minimum cut in H and m′ is

SWAT 2020



12:18 Simple Min-Cut in Near-Linear Time

the number of edges in H, where weighted edges are considered parallel unit weight edges.
Due to the sampling procedure, m′ = O(m logn). To reduce this complexity, we can either
use a linear time minimum spanning tree algorithm [24] or the implementation trick given in
Section 3. If we use the latter, we reduce the effective m′ needed in Algorithm 5 to O(m).
Further, in expectation, the value of the minimum cut ĉ of H doubles in each iteration
of Algorithm 6. A high probability statement can be made via an argument similar to
Lemma 15. Therefore the cost of running Algorithm 5 doubles in each iteration, with the
final cost being O(m log3 n), since ĉ = O(logn) by Lemma 14. This is a geometric series,
so the entire cost is O(m log3 n), and so Algorithm 6 runs in O(m log3 n) time with high
probability. J

Since Algorithm 5 returns O(logn) trees, we could avoid sampling trees from the weighted
packing and instead return all of them. We keep the sampling in Algorithm 6 because,
depending on the constants, sampling may require less trees. Further, the above version of
Algorithm 5 is more versatile in that the packing algorithm can be changed. Observe that
the entire algorithm is still only correct with high probability, since we required sampling G′
to construct graph H. Finally, returning all trees from Algorithm 5 does not actually allow
us to relax ε1, ε2, or ε3. The condition f = 3/2− (1 + ε1)(1 + ε2)(1− ε3)−1 > 0 is satisfied
for all values of α and β that guarantee at least one tree in a weighted packing of weight βc
2-constrains a cut of weight αc given by Lemma 13.

Algorithm 6 is slightly different than the approach taken by Karger [23]. In particular,
Karger sparsifies edges of H to have m′ = O(n logn) and replaces an O(m logn) time
minimum spanning tree computation in the tree packing algorithm with an O(m) one, avoiding
the implementation trick of Gawrychowski et al. [9]. This gives complexity O(n log3 n) for
finding the Θ(logn) spanning trees. However, since the remaining part of the algorithm also
takes O(m log3 n) time, we avoid these optimizations to simplify our procedures.
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Abstract
We study the Steiner Tree problem on unit disk graphs. Given a n vertex unit disk graph G, a
subset R ⊆ V (G) of t vertices and a positive integer k, the objective is to decide if there exists a
tree T in G that spans over all vertices of R and uses at most k vertices from V \R. The vertices
of R are referred to as terminals and the vertices of V (G) \R as Steiner vertices. First, we show
that the problem is NP-hard. Next, we prove that the Steiner Tree problem on unit disk graphs
can be solved in nO(

√
t+k) time. We also show that the Steiner Tree problem on unit disk graphs

parameterized by k has an FPT algorithm with running time 2O(k)nO(1). In fact, the algorithms
are designed for a more general class of graphs, called clique-grid graphs [16]. We mention that the
algorithmic results can be made to work for Steiner Tree on disk graphs with bounded aspect
ratio. Finally, we prove that Steiner Tree on disk graphs parameterized by k is W[1]-hard.
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1 Introduction

Given a graph G with a weight function w : E(G)→ R+ and a subset R ⊆ V (G) of vertices,
a Steiner tree is an acyclic subgraph of G spanning all vertices of R. The vertices of R
are usually referred to as terminals and the vertices of V (G) \ R as Steiner vertices. The
Minimum Steiner Tree problem is to find a Steiner tree T such the total weight of E(T ) is
minimized. The decision version of this is the Steiner Tree problem, where given a graph
G, a subset R ⊆ V (G) of vertices and a positive integer k, the objective is to determine if
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there exists a Steiner tree T in G for the terminal set R such that the number of Steiner
vertices in T is at most k. The Steiner Tree problem is one of Karp’s classic NP-complete
problems [22]; moreover, that makes the optimization problem NP-hard.

A special case of the Minimum Steiner Tree problem is the Metric Steiner Tree
problem. Given a complete graph G = (V,E), each vertex corresponds to a point in a
metric space, and for each edge e ∈ E the weight w(e) corresponds to the distances in the
space. In other words, the edge weights satisfy the triangle inequality. It is well known
that, given an instance of the non-metric Steiner tree problem, it is possible to transform
it in polynomial time into an equivalent instance of the Metric Steiner Tree problem.
Moreover, this transformation preserves the approximation factor [30]. The Euclidean
Steiner Tree problem or Geometric Steiner Tree problem takes as input n points
in the plane. The objective is to connect them by lines of minimum total length in such
a way that any two points may be interconnected by line segments either directly or via
other points and line segments. The Minimum Steiner Tree problem is NP-hard even in
Euclidean or Rectilinear metrics [18].

Arora [2] showed that the Euclidean Steiner Tree and Rectilinear Steiner
Tree problems can be efficiently approximated arbitrarily close to the optimal. Several
approximation schemes have been proposed over the years on Minimum Steiner Tree
for graphs with arbitrary weights [4, 7, 23, 27]. Although the Euclidean version admits a
PTAS, it is known that the Metric Steiner Tree problem is APX-complete. There is a
polynomial-time algorithm that approximates the minimum Steiner tree to within a factor of
ln(4) + ε ≈ 1.386 [8]; however, approximating within a factor 96

95 ≈ 1.0105 is NP-hard [3].
The decision version, Steiner Tree is well-studied in parameterized complexity. A

well-studied parameter for the Steiner Tree is the number of terminals t = |R|. It is known
that the Steiner Tree is FPT for this parameter due to the classical result of Dreyfus
and Wagner [13]. Fuchs et al. [17] and Nederlof [26] gave alternative algorithms for Steiner
Tree parameterized by t with running times that are not comparable with the Dreyfus and
Wagner algorithm. On the other hand, Steiner Tree parameterized by the number of
Steiner vertices k is W[2]-hard [12]. Hence, the focus has been on designing parameterized
algorithms for graph subclasses like planar graphs [20], d-degenerate graphs [29], etc. In
[15], Dcořák et al. designed an efficient parameterized approximation scheme (EPAS) for the
Steiner Tree parameterized by k 1.

In this paper, we study the Steiner Tree problem on unit disk graphs when the
parameter is the number of Steiner vertices k. Unit disk graphs are the geometric intersection
graphs of unit circles in the plane. That is, given n unit circles in the plane, we have a
graph G where each vertex corresponds to a circle such that there is an edge between two
vertices when the corresponding circles intersect. Unit disk graphs have been widely studied
in computational geometry and graph algorithms due to their usefulness in many real-world
problems, e.g., optimal facility location [31], wireless and sensor networks; see [19, 21]. These
led to the study of many NP-complete problems on unit disk graphs; see [9, 14].

There are some works on variants of Minimum Steiner Tree on unit disk graphs in
the approximation paradigm. Li et al. [24] studied node-weighted Steiner trees on unit disk
graphs, and presented a PTAS when the given set of vertices is c-local. Moreover, they used
this to solve the node-weighted connected dominating set problem in unit disk graphs and
obtained a (5 + ε)-approximation algorithm. In [5], Biniaz et al. studied the Full Steiner

1 For any ε > 0 computes a (1 + ε) approximation in time f(p, ε)× nO(1) for a computable function f
independent of n.
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Tree2 problem on unit disk graphs. They presented a 20-approximation algorithm for this
problem, and for λ-precise graphs gave a (10 + 1

λ )-approximation algorithm where λ is the
length of the longest edge. Although there have been a plethora of work on variants of the
Minimum Steiner Tree problem on unit disk graphs in approximation algorithms, hardly
anything is known in parameterized complexity for the decision version. In this regard, we
refer to the work of Marx et al. [25] who investigated the parameterized complexity of the
Minimum Steiner Tree problem on planar graphs, where the number of terminals (k) is
regarded as the parameter. They have designed an nO(

√
k)-time exact algorithm, and showed

that this problem on planar graphs cannot be solved in time 2o(k) · nO(1), assuming ETH.
However, these results do not directly apply on unit disk graphs as unit disk graphs can
contain very large cliques, but, then planar graphs contains arbitrarily large stars. Recently,
Berg et al. [11] showed that the Steiner Tree problem can be solved in 2O(n1− 1

d ) time on
intersection graphs of d-dimensional similarly-sized fat objects, for some d ∈ Z+.

More often than not, the geometric intersection graph families such as unit disk graphs,
unit square intersection graphs, rectangle intersection graphs, provide additional geometric
structure that helps to generate algorithms. In this paper, our objective is to understand
parameterized tractability landscape of the Steiner Tree problem on unit disk graphs.

Our Results

First in Section 3, we show that Steiner Tree on unit disk graphs is NP-hard. Then, in
Section 4, we design a subexponential algorithm for the Steiner Tree problem on unit disk
graphs parameterized by the number of terminals t and the number of Steiner vertices k.

I Theorem 1. Steiner Tree on unit disk graphs can be solved in nO(
√
t+k) time.

The approach to design this subexponential algorithm is very similar to that used in [16].
First, we apply a Baker-like shifting strategy to create a family F of instances (of Exact
Steiner Tree, which is a variant of Steiner Tree) such that if the input instance
(G,R, t, k) is a yes-instance then there is at least one constructed instance in F that is a
yes-instance of Exact Steiner Tree. On the other hand, if (G,R, t, k) is a no-instance of
Steiner Tree, then no instance of F is a yes-instance of Exact Steiner Tree. With the
knowledge that the answer is preserved in the family F , we design a dynamic programming
subroutine to solve Exact Steiner Tree on each of the constructed instances of F .

Next, in Section 5, we show that the Steiner Tree on unit disk graphs has an FPT
algorithm when parameterized by k.

I Theorem 2. Steiner Tree on unit disk graphs can be solved in 2O(k)nO(1) time.

Here, we show that solving the Steiner Tree problem on an instance (G,R, t, k) is
equivalent to solving the problem on an instance (G′, R′, t′, k) where the graph G′ is obtained
by contracting all connected components of G[R]. Although G′ loses all geometric properties,
we show that the number of terminals in R′ is only dependent on k. This essentially changes
the problem to running the Dreyfus-Wagner algorithm on (G′, R′, t′, k).

Both the results in Theorem 1 and 2 are shown to work for a superclass of graphs, called
clique-grid graphs. We would like to remark that the algorithms can also be made to work
for disk graphs with constant aspect ratio.

2 A full Steiner tree is a Steiner tree which has all the terminal vertices as its leaves
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Finally, in contrast, in Section 6 we prove that the Steiner Tree problem for disk
graphs is W[1]-hard, parameterized by the number Steiner vertices k. The Steiner Tree
problem is known to be W[2]-hard on general graphs [12]. However, it is not clear how to use
that reduction for disk graphs. We show a reduction of our problem from Grid Tiling with
≥ [10], ruling out the possibility of a f(k)no(k) time algorithm for any function f , assuming
ETH.

I Theorem 3. The Steiner Tree problem on disk graphs is W[1]-hard, parameterized by
the number of Steiner vertices k.

2 Preliminaries

The set {1, 2, . . . , n} is denoted as [n]. For a graph G, and a subset V ′ ⊆ V (G), G[V ′] denotes
the subgraph induced on V ′. The Exact Steiner Tree problem takes as input a graph G,
a terminal set R with t terminals and a positive integer k. The aim is to determine whether
there is a Steiner tree T in G for R that has exactly k Steiner vertices. A Steiner tree with at
most k Steiner vertices is called a k-Steiner tree while one with exactly k Steiner vertices is
called an exact k-Steiner tree. Note that if T is an exact k-Steiner tree then |V (T )| = t+ k.
When the Steiner Tree or Exact Steiner Tree problem is restricted to taking input
graphs only from a graph class G, then these variants are referred to as Steiner Tree on G
and Exact Steiner Tree on G, respectively.

I Observation 4. A tree T is a k-Steiner tree for an instance (G,R, t, k) if and only if T
is an exact k′-Steiner tree for the instance (G,R, t, k′) of Exact Steiner Tree for some
k′ ≤ k.

I Definition 5. [16] A graph G is a clique-grid graph if there is a pair p, p′ ∈ N and a
function f : V (G)→ [p]× [p′] such that the following conditions hold:
1. For all (i, j) ∈ [p]× [p′], f−1(i, j) is a clique in G.
2. For all uv ∈ E(G), if f(u) = (i, j) and f(v) = (i′, j′) then |i− i′| ≤ 2 and |j − j′| ≤ 2.
Such a function f is called a representation of the graph G.

Unit disk graphs are clique-grid graphs [16]. Next, we define a representation of a
clique-grid graph called a cell graph.

I Definition 6. [16] Given a clique-grid graph G with representation f : V (G)→ [p]× [p′],
the cell graph cell(G) is defined as follows:

V (cell(G)) = {vij |i ∈ [p], j ∈ [p′], f−1(i, j) 6= ∅},
E(cell(G)) = {vijvi′j′ |(i, j) 6= (i′, j′),∃u ∈ f−1(i, j) and ∃v ∈ f−1(i′, j′) such that uv ∈
E(G)}.

For each vertex vij ∈ V (cell(G)), the pair (i, j) is also called a cell of G and by definition
corresponds to a non-empty clique of G. A vertex v ∈ V (G) is said to be in the cell
(i, j) if f(v) = (i, j). The neighbour of a cell C = (i, j) in a cell C′ = (i′, j′) 6= C are
{v ∈ V (G)|f(v) = (i′, j′),∃u such that f(u) = (i, j) and uv ∈ E(G)}.

Let G be a graph. A path decomposition of a graph G is a pair T = (P, β : V (P )→ 2V (G)),
where P is a path where every node p ∈ V (P ) is assigned a subset β(p) ⊆ V (G), called a
bag, such that the following conditions hold: (i)

⋃
p∈V (P ) β(p) = V (G), (ii) for every edge

xy ∈ E(G) there is a p ∈ V (P ) such that {x, y} ⊆ β(p), and (iii) for any v ∈ V (G) the
subgraph of P induced by the set {p | v ∈ β(p)} is connected. A path decomposition will also
be denoted as a sequence of bags {β(p1), β(p2), . . . , β(pq)} where P = p1p2 . . . pq. The width
of a path decomposition is maxp∈V (P ) |β(p)| − 1. The pathwidth of G is the minimum width
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over all path decompositions of G and is denoted by pw(G). Given a path decomposition of
a graph G, we say it is rooted at exactly one of the two degree one vertices of the underlying
path.

I Definition 7. [16] A path decomposition T = (P, β) of a clique-grid graph G with
representation f : V (G)→ [p]× [p′] is a nice `-clique path decomposition (`-NCPD) if for
the root r of P , β(r) = ∅ and for each v ∈ V (P ) the following hold:

1. There are at most ` cells {(i1, j1), (i2, j2), . . . , (i`, j`)} such that β(v) =
⋃`
p=1 f

−1(ip, jp),
2. The node v is one of the following types: (i) Leaf node where β(v) = ∅, (ii) Forget node

where v has exactly one child u and there is a cell (i, j) ∈ [p]×[p′] such that f−1(i, j) ⊆ β(u)
and β(v) = β(u) \ f−1(i, j), (iii) Introduce node where v has exactly one child u and there
is a cell (i, j) ∈ [p]× [p′] such that f−1(i, j) ⊆ β(v) and β(u) = β(v) \ f−1(i, j),

See Figure 1 for an example of an NCPD. A path decomposition for a clique-grid graph
G with representation f where only property 1 of Definition 7 is true for a positive number `
is referred to as an `-CPD.

φ φC1 C2 C4

C1,

C2

C2,

C4

C1, C2 C2, C4

2-CPD

C1 C2 C3 C4

2-NCPD

Figure 1 An illustration of nice 2-clique path decomposition.

3 NP-Hardness of Steiner Tree on Unit Disk Graphs

In this section, we consider the Steiner Tree problem on unit disk graphs and prove that
this problem is NP-hard. We show a reduction from Connected Vertex Cover in planar
graphs with maximum degree 4. The reduction is very similar to that in [1].

I Theorem 8. The Steiner Tree problem on unit disk graphs is NP-hard.

Proof. We show a reduction from the Connected Vertex Cover in planar graphs with
maximum degree 4 problem, which is known to be NP-hard [18]. Given a planar graph
G with maximum degree 4 and an integer k, the Connected Vertex Cover problem
asks to find if there exists a vertex cover D for G such that the subgraph induced by D is
connected and |D| ≤ k. We adopt the proof of Abu-Affash [1], where it was shown that
the k-Bottleneck Full Steiner Tree problem is NP-hard. We make this reduction
compatible for unit disk graphs. Given a planar graph G with maximum degree 4 and an
integer k, we construct an unit disk graph GC where V (GC) = C in polynomial time, where
V (GC) is divided into two sets of unit disks R and S, denoted by Steiner and terminals,
respectively. Let V (G) = {v1, v2, . . . , vn} and let E(G) = {e1, e2, . . . , em}. Then, we compute
an integer k′ such that G has a connected vertex cover D of size k if and only if there exists
a Steiner Tree with at most k′ Steiner vertices of GC .

As as an intermediate step we build a rectangular grid graph G′. First, we embed G on a
rectangular grid, with distance at least 8 between adjacent vertices. Each vertex vi ∈ V (G)
corresponds to a grid vertex, and each edge e = vivj ∈ E(G) corresponds to a rectilinear

SWAT 2020



13:6 Steiner Tree on Unit Disk Graphs

path comprised of some horizontal and vertical grid segments with endpoints corresponding
to vi and vj . Let V (G′) = {v′1, . . . , v′n} be the grid points corresponding to the vertices of
V (G), and let E(G′) = {pe1 , . . . , pem

} be the set of paths corresponding to the edges of E(G)
Moreover, these paths are pairwise disjoint; see Figure 2(b). This embedding can be done in
O(n) time and the size of the grid is at most n− 2 by n− 2; see [28]. Next, we construct an
unit disk graph GC from G′. First, we replace each grid vertex v′i ∈ V (G′) by an unit disk.
Let C = {c1, . . . , cn} be the set of unit disks centered at the grid points corresponding to
the vertices of V (G′). For the sake of explanation we call these disks grid point disks. At
this point, the unit disk graph is not connected due to the edge length which we have taken
between any two adjacent vertices in the grid graph. In fact this length ensures that there
are no undesirable paths other than the ones in G. Next, we place two sets of disks on each
path pei

∈ E(G′). Let |pei
| be the total length of the grid segments of pei

. We place two
Steiner disks on pei , such that each one of them is adjacent to a grid point disk corresponding
to pei

and the distance between their centers is exactly 2. Next, we place |pei
| − 6/2 many

terminals disks on pei such that the distance between any two adjacent centers is exactly 2.
See Figure 2(c) for detailed explanation. Let s(ei) be the set of Steiner disks and t(ei) be
the set of terminal disks placed to pei

. The terminal set R =
⋃

ei∈E(G′)
t(ei); the Steiner set

S = C ∪
⋃

ei∈E(G′)
s(ei). V (GC) = R ∪ S and GC is the intersection graph induced by V (GC).

Finally, we set k′ = m+ 2k − 1. Observe that, for any path pei
, the terminal set t(ei) itself

form a Steiner tree without any Steiner disks. However, in order to make that tree connected
we need at least one of Steiner disks from s(ei). This completes the construction.

(a)

ei

(b)

pei

(c)

pei

v′i v′j
vjvi

Figure 2 (a) A planar graph G of maximum degree 4, (b) the intermediate rectilinear embedding
G′ of G, (c) the unit disk graph GC ; the black disks are corresponding to the grid vertices of G′, the
blue disks are Steiner disks and the red disks are the terminal disks.

In the forward direction, suppose G has a connected vertex cover D of size at most k.
We construct a Steiner tree of R in the following manner. For each edge ei, we simply take
the terminal path induced by t(ei). Now, let TS be any spanning tree of the subgraph of G
induced by D, containing |D|−1 edges. The existence of such a spanning tree is ensured since
D is a connected vertex cover of G. For each edge e = vivj ∈ TS we connect the corresponding
disks ci, cj by two Steiner red disks adjacent to them. Then, for each edge e = vivj ∈ G \ TS
we select one endpoint that is in D (say vi) and connect ci to the tree by its adjacent disk.
The constructed tree is a Steiner tree of R consisting |D|+ 2(|D|− 1) + (m− (|D|− 1)) which
is m+ 2k − 1.

Conversely, let there exists a Steiner tree T of R with at most k′ Steiner disks. Let D ⊆ C
be the set of vertices that appear in T , and let T ′ be the subtree of T spanning over D. For
each subset t(ei) ⊆ R, let Tei

be the subtree of Tei
spanning the vertices in t(ei). By the
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above construction, Tei does not require any Steiner disk. Moreover, it is easy to see that in
any valid solution Tei

must be connected to at least one endpoint of D. This implies that
the set of vertices in G corresponding to the vertices in D is a connected vertex cover of
G. Moreover a tree Tei which also a subtree of T is connected to D via two Steiner disks
of s(ei). Therefore, TS contains |D|+ 2(|D| − 1) + (m− (|D| − 1)) many Steiner disks. We
started with the tree T with at most k′ = m+ 2k − 1 many Steiner disks. This completes
the proof. J

4 Subexponential Exact Algorithm for Steiner Tree on Unit Disk
Graphs

In this section, we prove Theorem 1 by designing a sub-exponential algorithm for the Steiner
Tree problem on unit disk graphs parameterized by t+k, where t is the number of terminals
and k is an upper bound on the number of Steiner vertices. In fact, our aim for this section
is to design a subexponential algorithm for Steiner Tree on clique-grid graphs and as
unit disk graphs are clique-grid graphs [16], this would imply the algorithm proposed in
Theorem 1.

I Lemma 9. The Steiner Tree problem on clique-grid graphs can be solved in nO(
√
t+k)

time.

For the rest of the section, we concentrate on proving Lemma 9. Informally, we first
apply a Baker-like shifting strategy to create a family F of instances of Exact Steiner
Tree that preserves the answer for the input instance (G,R, t, k) of Steiner Tree: if
(G,R, t, k) is a yes-instance then there is at least one constructed instance in F that is a
yes-instance of Exact Steiner Tree; if (G,R, t, k) is a no-instance of Steiner Tree then
all instances of F are no-instances of Exact Steiner Tree. As a second step, we design a
dynamic programming subroutine to solve Exact Steiner Tree on each of the constructed
instances of F , which is enough to solve the Steiner Tree problem on (G,R, t, k).

Before we describe the subexponential algorithm, we state some properties of Steiner
trees in clique-grid graphs.

I Observation 10. Consider a k-Steiner tree T for a clique-grid graph G with representation
f , such that the set {uv ∈ E(T )|f(u) 6= f(v)} is minimised over all k-Steiner trees for G.
Let C = (i, j) be a cell of G. Then there are at most 24 edges with one endpoint in C and the
other endpoint in another cell.

Proof. We claim that in the k-Steiner tree where the set {uv ∈ E(T )|f(u) 6= f(v)} is
minimised, there can be at most one neighbour of C in each cell C′ 6= C. Suppose that C′ is a
cell that contains at least two neighbours of C. Let two such neighbours be u′, v′. Note that
u′v′ is an edge in E(G). Let u, v (may be the same) be the neighbours of u, v, respectively
in C. Note that uv is an edge in E(G). Thus adding the edge u′v′ and removing the edge
uu′ results in a connected graph containing all the terminals. The spanning tree of this
connected graph has strictly less number of edges with endpoints in different cells, which is a
contradiction to the choice of T .

By the definition of clique-grid graphs, |i− i′|, |j − j′| ≤ 2. Thus, when we fix a cell C
there are at most 24 cells that can have neighbours of vertices in C. Putting everything
together, for the k-Steiner tree T where the set {uv ∈ E(T )|f(u) 6= f(v)} is minimised,
|{v|f(v) 6= (i, j),∃u such that f(u) = (i, j), uv ∈ E(G)}| ≤24. J
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I Observation 11. Suppose there is a k-Steiner tree for a clique-grid graph G, and let T be
a k-Steiner tree where the set {uv ∈ E(T )|f(u) 6= f(v)} is minimised. Moreover, amongst
k-Steiner trees where {uv ∈ E(T )|f(u) 6= f(v)} is minimised, T has minimum number of
Steiner points. Then, in T the number of Steiner vertices per cell is at most 24.

Proof. For the sake of contradiction, let C = (i, j) be a cell such that |f−1(i, j)∩V (T )| ≥24+1.
Then by Observation 10, there is at least one Steiner vertex v ∈ f−1(i, j) ∩ V (T ) such that
it does not have any neighbours in T \ f−1(i, j). Consider the subgraph T \ {v}. Since the
vertices of f−1(i, j) induce a clique, T \ {v} is still a connected subgraph that contains all
the terminals and strictly less number of Steiner vertices. Thus, a spanning tree of this
connected subgraph contradicts the choice of T . J

Consider a k-Steiner tree T for an instance (G,R, t, k) of Steiner Tree where {uv ∈
E(T )|f(u) 6= f(v)} is minimised and then the number of Steiner vertices is minimised. By
Observation 4, T is an exact k′-Steiner tree for the instance (G,R, t, k′) of Exact Steiner
Tree for some k′ ≤ k. Next, we define a good family of instances that preserve the answer
for (G,R, t, k) of Steiner Tree.

I Definition 12. For an instance (G,R, t, k) of Steiner Tree on clique-grid graphs where
G has representation f , a good family of instances F has the following properties:
1. For each instance (H,R, t, k′) in the family, the input graph H is an induced subgraph

of G that contains all vertices in R and k′ ≤ k. Note that H is also a clique-grid graph
where f |V (H) is a representation.

2. (G,R, t, k) is a yes-instance of Steiner Tree if and only if there exists an instance
(H,R, t, k′) ∈ F which is a yes-instance of Exact Steiner Tree.

3. For any instance (H,R, t, k′) ∈ F , H has a 7
√
t+ k-NCPD.

We show that given an instance (G,R, t, k) of Steiner Tree on clique-grid graphs, a
good family of instances can be enumerated in subexponential time.

I Lemma 13. Given an instance (G,R, t, k) for Steiner Tree on clique-grid graphs with
G represented by f , a good family of instances F can be computed in nO(

√
t+k) time.

Proof. Let T be a k-Steiner tree for G. In particular, T is an exact k′-Steiner tree for
some k′ ≤ k and V (T ) = t + k′ ≤ t + k. First, we employ a Baker-like technique similar
to [16] (please refer to Figure 3). Note that if G has n vertices and has representation
f : V (G)→ [p]× [p′], then p, p′ ≤ n. Thus, f represents G on the n× n grid. First we define
a column of the n× n grid. For any j ∈ [n] the set of cells {(i, j)|i ∈ [n]} is called a column.
There are n columns for the n×n grid. We partition the n columns of the n×n grid with n/2
blocks of two consecutive columns and label them from the set of labels [

√
t+ k]. Formally,

each set of consecutive columns {2i− 1, 2i}, where i ∈ [n/2] is labelled with i mod
√
t+ k.

Thus, all the two consecutive columns {2i− 1, 2i} are labelled with i mod
√
t+ k.

Recall that an exact k′-Steiner tree T has at most t+ k vertices. Applying the pigeonhole
principle, there is a label ` ∈ {1, 2, . . . ,

√
t+ k} such that the number of vertices from V (T )

which are in columns labelled ` is at most
√
t+ k. As we do not know this k′-Steiner tree T ,

we guess the Steiner vertices of V (T ) which are in the columns labelled `. The number of
potential guesses is bounded by nO(

√
t+k). Suppose Y ′ is the set of guessed Steiner vertices

of V (T ) which are in the columns labelled by `. Then we delete all the non-terminal vertices
in columns labelled `, except the vertices of Y ′ . Let S be the set of deleted non-terminal
vertices. Let YR be the set of terminal vertices that are in columns labelled by `. Let
Y = Y ′ ∪ YR. Notice that by choice of label `, |Y | ≤

√
t+ k. By Property 2 of clique-grid
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graphs, G \ (S ∪ Y ) is a disjoint union of clique-grid graphs each of which is represented
by a function with at most 2

√
t+ k columns. Formally, G1 = G[

⋃2(`−1)
j=1 f−1(∗, j)] and

Gi+1 = G[
⋃min{i·2`+2

√
t+k,n}

j=i·2`+1 f−1(∗, j)] for each i ∈ {1, . . . , n/
√
t+ k}. Each Gi is a clique-

grid graph with representation fi : V (Gi)→ [n]× [2
√
t+ k] defined as, fi(u) = (r, j), when

f(u) = (r, (i−1)2`+j). Thus, by Property 2 of Definition 5, G\(S∪Y ) = G1] . . .]Gn/√t+k.

``− 1 `+ 1 ``− 1 `+ 1

Figure 3 An illustration of grid labelling. The blue disks are terminals, and the red and black
disks are chosen Steiner vertices and not-chosen non-terminal vertices, respectively.

B Claim 14. The graph G \ S has a 7
√
t+ k-NCPD.

Proof. Suppose we are able to show that for each i ∈ {1, . . . , n/
√
t+ k} Gi has a 6

√
t+ k-

CPD. This results in a 6
√
t+ k-CPD for G \ (S ∪ Y ) = G1 ] . . . ]Gn/√t+k. Finally, note

that |Y | ≤
√
t+ k and therefore the vertices of Y can belong to at most

√
t+ k cells. We

add Y to all the bags in the 6
√
t+ k-CPD for G \ (S ∪ Y ) to obtain a 7

√
t+ k-CPD for

G \ S. We convert the 7
√
t+ k-CPD of G \ S into a NCPD using the known algorithm of [6].

Note that this results in a 7
√
t+ k-NCPD.

What is left to show is that for each Gi there is a 6
√
t+ k-CPD. First, for each Gi, we

give a path decomposition with the following sequence of bags: {X1, X2, . . . , Xn−2}. This is
done by defining each Xi = f−1(i, ∗) ∪ f−1(i+ 1, ∗) ∪ f−1(i+ 2, ∗). It is easy to check that
this is a path decomposition of Gi. Note that since Gi has at most 2

√
t+ k columns, the

number of cells contained in each Xj , j ∈ [n− 1] is at most 6
√
t+ k. C

Finally, notice that from the definition of the constructed instances keeping in mind
potential k-Steiner trees, (G,R, t, k) is a yes-instance of Steiner Tree if and only if there is
an instance (H,R, t, k′) ∈ F such that it is a yes-instance of Exact Steiner Tree. Thus,
accounting for guessing a label ` ∈ [

√
t+ k] and the set Y of Steiner vertices and terminal

vertices of a potential solution Steiner tree that belong to columns labelled `, we obtain a
good family of nO(

√
t+k) instances for the given instance (G,R, t, k). J

For the ease of our algorithm design, we make a slight modification of the NCPD for
a constructed instance (H,R, t, k′) ∈ F : Upon fixing the label ` and a set Y of terminal
vertices and potential Steiner vertices in the columns labelled by `, we add the set Y in all
the bags of the resulting NCPD for G \S. Therefore, no bag is empty after this modification.
In particular the first and the last bags of the modified path decomposition contain only
the set Y . Also notice that as |Y | ≤

√
t+ k, the new path decomposition of H is still an

O(
√
t+ k)-CPD. We call this new path decomposition of H a modified NCPD. Now, we are

ready to prove Lemma 9.
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Proof of Lemma 9. As a first step of the algorithm, by Lemma 13 in nO(
√
t+k) time we

compute a good family of instances F for the given instance (G,R, t, k) of Steiner Tree
on clique-grid graphs. From Definition 12(2), (G,R, t, k) is a yes-instance of Steiner Tree
if and only if there is an instance (H,R, t, k′) ∈ F that is a yes-instance of Exact Steiner
Tree. Deriving from Definition 12(3), Lemma 13 and the construction of a modified NCPD,
for each instance (H,R, t, k′) ∈ F , there is a modified O(

√
t+ k)-NCPD for H, due to a

guessed label ` and a guessed set Y of non-terminal vertices from columns labelled by `
such that the following hold: (i) |Y | ≤

√
t+ k, (ii) if (H,R, t, k′) is a yes-instance then there

is an exact k′-Steiner tree T such that all vertices of Y are Steiner vertices in T . Let the
modified NCPD using the set Y have the sequence of bags {X1, X2, . . . , Xq}. Recall that
the definition of the modified NCPD ensures that X1 = Xq = Y .

In the next step, our algorithm for Steiner Tree considers every instance (H,R, t, k′) ∈
F and checks if it is a yes-instance of Exact Steiner Tree. By Definition 12(2), this is
sufficient to determine if (G,R, t, k) is a yes-instance of Steiner Tree.

For the rest of the proof we design a dynamic programming subroutine algorithm A
for Exact Steiner Tree that takes as input an instance (H,R, t, k′) ∈ F and uses its
modified O(

√
t+ k)-NCPD to determine whether it is a yes-instance of Exact Steiner

Tree. Suppose (G,R, t, k) is a yes-instance and consider a k-Steiner tree T for (G,R, t, k)
where {uv ∈ E(T )|f(u) 6= f(v)} is minimised and then the number of Steiner vertices in T
is minimised. Using Observation 4, this is an exact k′-Steiner tree of G for some k′ ≤ k. By
the construction in Lemma 13 note that there is an instance (H,R, t, k′) ∈ F such that T is
an exact k′-Steiner tree for (H,R, t, k′). The aim of the dynamic programming algorithm
is to correctly determine that this particular instance (H,R, t, k′) is a yes-instance. The
algorithm A is designed in such a manner that for such a yes-instance (H,R, t, k′) the tree T
will be the potential solution Steiner tree that behaves as a certificate of correctness.

The states of the dynamic programming algorithm store information required to represent
the partial solution Steiner tree, which is the potential solution Steiner tree restricted to the
graph seen so far. The states are of the form A[`,Q,Q = Q1]Q2 . . .]Qb,P = P1] . . . Pb, k′′]
where:

` ∈ [q] denotes the index of the bag X` of the modified NCPD of H.
Q ⊆ X` \ R is a set of at most 24·7 non-terminal vertices. For each cell C = (i, j) that
belongs to X`, |Q ∩ f−1(i, j)| ≤24.
Q = Q1 ]Q2 . . . ]Qb is a partition of Q with the property that for each cell C = (i, j),
Q ∩ f−1(i, j) is contained completely in exactly one part of Q.
The partition P is over the vertex set Q ∪ (R ∩X`). Q ∩ Pi = Qi. Also for each cell C in
X`, C ∩ (Q ∪R) is completely contained in exactly one part of P.
The value k′′ represents the total number of Steiner vertices used so far in this partial
solution Steiner tree. |Q| ≤ k′′ holds.

Essentially, let T be an exact k′-Steiner tree for (H,R, t, k′) if it is a yes-instance. For
` ∈ [q], let T `ptl represent the partial solution Steiner tree when T is restricted to H[

⋃`
j=1 Xj ].

The partition P represents the intersection of a component of T `ptl with X`. The set Q is
the set of Steiner vertices of T `ptl in the bag X` and Q is the partition of Q with respect to
the components of T `ptl. The number k′′ denotes the total number of Steiner vertices in T `ptl.

In order to show the correctness of A we need to maintain the following invariant
throughout the algorithm: (LHS) A[`,Q,Q = Q1 ]Q2, . . . Qb,P = P1 ] P2 ] Pb, k′] = 1 if
and only if (RHS) there is a forest T ′ as a subgraph of H[

⋃`
j=1] with b connected components

D1, . . . , Db: Di ∩X` = Pi, (Di \R) ∩X` = Qi, the total number of non-terminal points in
T ′ is k′′, for each cell C the number of nonterminal vertices in C ∩ T ′ is at most 24, and
R ∩ (

⋃`
j=1 Xj) ⊆ V (T ′).
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Suppose the algorithm invariant is true. This means that if A[q, Y, Y, Y, k′] = 1 then
there is an exact k′-Steiner tree for (H,R, t, k′). On the other hand, suppose (G,R, t, k)
is a yes-instance and has a k-Steiner tree T where {uv ∈ E(T )|f(u) 6= f(v)} is minimised
and then the number of Steiner vertices in T is minimised. By Observation 11, the number
of Steiner vertices of T in each cell of G is bounded by 24. By Observation 4 and the
construction in Lemma 13 note that there is a subset Y and an instance (H,R, t, k′) ∈ F
such that T is an exact k′-Steiner tree for (H,R, t, k′) and Y ⊆ V (T ). Suppose the invariant
of the algorithm is true. This means that if (G,R, t, k) is a yes-instance of Steiner Tree
then there is a (H,R, t, k′) for which A[q, Y, Y, Y, k′] = 1.

Thus, proving the correctness of the algorithm A amounts to proving the correctness of
the invariant of A. We prove the correctness of the invariant by induction on `. If ` = 1 then
X` must be a leaf bag. By definition of the modified NCPD, the bag contains Y .
A[1, Q,Q,P, k′′] = 1 if Q = Y , Q is the partition of Y into the connected components in

H[Y ], P = Q, k′′ = |Y |. In all other cases, A[1, Q,Q,P, k′′] = 0.
First, suppose A[1, Q,Q,P, k′′] = 1. Then as X1 does not contain any terminal vertices,

(RHS) trivially is true for the cases when A[1, Q,Q,P, k′′] = 1. On the other hand, suppose
(RHS) is true for ` = 1. Again considering the cases when A[1, Q,Q,P, k′′] = 1, (LHS) holds.
So the invariant holds when ` = 1.

Now, we assume that ` > 1. Our induction hypothesis is that the invariant of the
algorithm is true for all 1 ≤ `′ < `. We show that the invariant is true for `. There can be
two cases:

Case 1: X` is a forget bag with exactly one child X`−1 : Let C be the cell being forgotten
in X`. Consider A[`,Q,Q = Q1, . . . Qb,P = P1 . . . Pb, k

′′].
Let Q′ ⊆ X`−1\R such that Q ⊆ Q′ and Q′\Q consists of a set of at most 24 non-terminal
vertices from C. Let P ′ = P ′1 . . . P

′
b be a partition of (Q′ ∪R) ∩X`−1) such for each cell

C′ in X`−1, C′ ∩ (Q′ ∪R) is completely contained in exactly one part. Also, Pi = P ′i \ C.
Moreover, consider the part P ′i such that C ∩ (Q′ ∪ R) ⊆ P ′i : P ′i \ (C ∩ (Q′ ∪ R)) 6= ∅.
Let Q′ be the partition of Q′ such that Q′ ∩ P ′i = Q′i. If A[`− 1, Q′,Q′,P ′, k′′] = 1 then
A[`,Q,Q,P, k′′] = 1. Otherwise, A[`,Q,P, k′′] = 0.
Suppose (LHS) of the invariant is true for A[`,Q,Q,P, k′′]: A[`,Q,Q,P, k′′] = 1. By
definition, there is a A[`− 1, Q′,Q′,P ′, k′′] = 1 for a Q′,Q′,P ′ as described above. By
induction hypothesis, (RHS) corresponding to A[` − 1, Q′,Q′,P ′, k′′] = 1 holds. Thus,
there is a witness forest T ′ in H[

⋃`−1
j=1 Xj ] = H[

⋃`
j=1] (By definition of a forget bag). By

definition of Q,Q,P, T ′ is also a witness forest in H[
⋃`
j=1 Xj ] and therefore (RHS) is

true for A[`,Q,Q,P, k′′].
On the other hand, suppose (RHS) is true for A[`,Q,Q,P, k′′]. Then there is a wit-
ness forest T ′ in H[

⋃`
j=1 Xj ] = H[

⋃`−1
j=1]. Moreover, T ′ has b connected components

D1, . . . , Db: Di ∩X` = Pi, (Di \R) ∩X` = Qi, the total number of non-terminal points
in T ′ is k′′ and R ∩ (

⋃`
j=1 Xj) ⊆ V (T ′). Let Di ∩ X`−1 = P ′i , (Di \ R) ∩ X`−1 = Q′i,

Q′ =
⋃b
j=1 Q

′
i. Note that the total number of non-terminal points in T ′ is k′′ and by

definition of a forget node it is still true that R ∩ (
⋃`−1
j=1 Xj) ⊆ V (T ′). By induction

hypothesis, (LHS) is true for A[`− 1, Q′,Q′,P ′, k′′] and A[`− 1, Q′,Q′,P ′, k′′] = 1. By
the description above, this implies that A[`,Q,Q,P, k′′] = 1. Therefore, (LHS) is true
for A[`,Q,Q,P, k′′].

Case 2: X` is an introduce bag with exactly one child X`−1. Let C be the cell being
introduced in X`. Consider A[`,Q,Q = Q1, . . . Qb,P = P1 . . . Pb, k

′′]. Without loss of
generality, let Pb contain all the vertices in C ∩ (Q ∪R).
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By definition of a state, |C ∩ Q| ≤24. Let St = C ∩ Q and Q′ = Q \ St. Let P ′ =
P ′1 ] P ′2 . . . ] P ′b ] . . . P ′d be a partition of Q′ ∪ (R ∩X`−1) such that for j < b, Pj = P ′j ,
and Pb = C ∩ (Q ∪ R) ∪

⋃d
j=b P

′
j . Moreover, C ∩ (Q ∪ R) has a neighbour in each

P ′j , b ≤ j ≤ d. Let Q′ be the partition of Q′ such that Q′ ∩ P ′i = Q′i. Let k∗ = k′′ − |St|.
If A[`− 1, Q′,Q′,P ′, k∗] = 1 then A[`,Q,Q,P, k′′] = 1. Otherwise, A[`,Q,P, k′′] = 0.
Suppose (LHS) of the invariant is true for A[`,Q,Q,P, k′′]: A[`,Q,Q,P, k′′] = 1. By
definition, there is a A[`− 1, Q′,Q′,P ′, k∗] = 1 for a Q′,Q′,P ′ as described above. By
induction hypothesis, (RHS) corresponding to A[` − 1, Q′,Q′,P ′, k∗] = 1 holds. Thus,
there is a witness forest T ′ inH[

⋃`−1
j=1 Xj ]. By definition ofQ,Q,P ,H[V (T ′)∪(C∩(Q∪R))]

is a connected graph. Consider a spanning tree of this connected graph. By definition
of k∗, this spanning tree has all vertices of R and exactly k′′ non-terminal vertices.
Therefore, this spanning tree is a witness forest in H[

⋃`
j=1 Xj ] and therefore (RHS) is

true for A[`,Q,Q,P, k′′].
On the other hand, suppose (RHS) is true for A[`,Q,Q,P, k′′]. Then there is a witness
forest T ′ in H[

⋃`
j=1 Xj ]. Moreover, T ′ has b connected components D1, . . . , Db: Di ∩

X` = Pi, (Di \ R) ∩ X` = Qi, the total number of non-terminal points in T ′ is k′′
and R ∩ (

⋃`
j=1 Xj) ⊆ V (T ′). Without loss of generality, let Db contain T ′ ∩ C. Let

D′1, D
′
2, . . . D

′
b, . . . , D

′
d be the connected components of T ′ restricted to H[

⋃`−1
j=1 Xj ]. Let

D′i ∩X`−1 = P ′i , (D′i \ R) ∩X`−1 = Q′i, Q′ =
⋃d
j=1 Q

′
i. Note that the total number of

non-terminal points in T ′ is k∗ = k′′ − |St| and by definition of an introduce node it is
true that R ∩ (

⋃`−1
j=1 Xj) ⊆ V (T ′) ∩ (

⋃`−1
j=1 Xj). By induction hypothesis, (LHS) is true

for A[`− 1, Q′,Q′,P ′, k∗] and A[`− 1, Q′,Q′,P ′, k∗] = 1. By the description above, this
implies that A[`,Q,Q,P, k′′] = 1. Therefore, (LHS) is true for A[`,Q,Q,P, k′′].

Finally, we analyse the time complexity of the algorithm. First, the good family F is
computed in nO(

√
t+k) time as per Lemma 13, and the number of instances in the good

family F is nO(
√
t+k). For one such instance (H,R, t, k′) the possible states for the algorithm

A are of the form [`,Q,Q,P, k′′]. By definition, ` ≤ n, k′′ ≤ k′ and Q = O(
√
t+ k). Again,

by definition P is upper bounded by the number of partitions of cells contained in a bag of
the modified NCPD of (H,R, t, k′). Thus, the number of possibilities of P is

√
t+ k

O(
√
t+k)).

Also by definition, Q is fixed once Q and P are fixed. Therefore, the number of possible
states is nO(

√
t+k). From the description of A, the computation of A[`,Q,Q,P, k′′] may look

up the solution for nO(
√
t+k) instances of the form A[`− 1, Q′,Q′,P ′, k∗] and therefore takes

nO(
√
t+k) time. Thus, the total time for the dynamic programming is O(n

√
t+k). J

5 FPT Algorithm for Steiner Tree on Unit Disk Graphs

In this section, we prove Theorem 2. We consider the Steiner Tree problem on unit disk
graphs and design an FPT algorithm parameterized by k, which is an upper bound on the
number of Steiner vertices in the solution Steiner tree. Our algorithm is based on the idea
that for an instance (G,R, t, k), in order to determine the existence of a Steiner tree we can
first find spanning trees for all components of G[R] and extend these spanning trees to a
required k-Steiner tree.

In fact, we prove our results for the superclass of clique-grid graphs. For an instance
(G,R, t, k) of Steiner Tree on clique-grid graphs, where G has n vertices and R ⊆ V (G)
is the set of terminals we prove the following result in this rest of this section.

I Lemma 15. Steiner Tree on clique-grid graphs has an FPT algorithm with running
time 2O(k)nO(1).
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First, we prove some properties of Steiner trees for unit disk graphs. Consider the induced
subgraph G[R]. Let C1, C2, . . . , Cq be the connected components in G[R]. For each Ci,
i ∈ [q], let Ti be a spanning tree of Ci.

I Observation 16. Let G be a clique-grid graph with the terminal set R. Let C1, C2, . . . , Cq
be the connected components of G[R], and for each i ∈ [q] let Ti be a spanning tree for each
Ci. For any k, let T ′ be a k-Steiner tree for G. Then there is a k-Steiner tree T such that
for each i ∈ [q] Ti is a subtree of T . Moreover, q ≤24k.

Proof. Consider the k-Steiner tree T and let S = V (T ) \ R be the set of Steiner vertices
of T . Note that in G[R ∪ S], T is a spanning tree and therefore G[R ∪ S] is a connected
graph. Similarly, for each i ∈ [q], Ti is a subgraph of G[R ∪ S]. Consider the subgraph
H = T ′ ∪

⋃
i∈[q] Ti. As T ′ is a spanning tree, T ′ ∪

⋃
i∈[q] Ti is a connected graph. We consider

an arbitrary ordering O of the edges in E(H) \ (
⋃
i∈[q] E(Ti)). In this order we iteratively

throw away an edge ej ∈ E(H) \ (
⋃
i∈[q] E(Ti)) if the resulting graph remains connected

upon throwing ej away. Let H ′ be the graph at the end of considering all the edges in the
order O. We prove that H ′ must be a tree. Suppose for the sake of contradiction, there
is a cycle C as a subgraph of H ′. As for each i ∈ [q], Ti is a tree and for each i 6= i′ ∈ [q],
V (Ti)∩V (Ti′) = ∅, there must be an edge from E(H) \ (

⋃
i∈[q] E(Ti)) in E(C). Consider the

edge e ∈ (E(H) \ (
⋃
i∈[q] E(Ti))) ∩ E(C) with the largest index according to O. This edge

was throwable as C \ {e} ensured any connectivity due to e. Thus, there can be no cycle in
H ′ and it is a spanning tree of V (H). This implies that T = H ′ is a k-Steiner tree for G, S
being the set of at most k Steiner vertices, such that for each i ∈ [q], Ti is a subtree of T .

Finally, we show that if a k-Steiner tree T exists then q ≤24k. Let f be a representation
of the clique-grid graph G. Note that for any cell (a, b) f−1(a, b) is a clique, Therefore,
there can be at most one component Ci intersecting with a cell (a, b). By property (2) of
Definition 5, there are at most 24 cells that can have neighbours of any vertex in (a, b). Thus,
for any Steiner vertex, there can be at most 24 components of G[R] it can have neighbours in.
Putting everything together, if there are at most k Steiner vertices that are used to connect
the q connected components of G[R] and each Steiner vertex can have neighbours in at most
24 components, then it must be that q ≤24k. J

Henceforth, we wish to find a solution k-Steiner tree T such that for each i ∈ [q], Ti is a
subtree of T .

I Definition 17. Let G be a clique-grid graph with the terminal set R. Let C1, C2, . . . , Cq
be the connected components of G[R], and for each i ∈ [q] let Ti be a spanning tree for
each Ci. Let G∗ be the following graph: V (G∗) = V (G \ R) ∪ R∗ where R∗ = {ci|i ∈ [q]},
E(G∗) = {v1v2|v1, v2 ∈ V (G)\R}∪{vci|v ∈ V (G)\R,∃u ∈ Ci s.t vu ∈ E(G)}. G∗ is called
the component contracted graph of G and {ci|i ∈ [q]} is the set of terminals for G∗ (See
Figure 4).

Note that G∗ may no longer be a clique-grid graph. From the definition of a component
contracted graph and Observation 16, we have the following observation.

I Observation 18. Let G be a clique-grid graph with the terminal set R. Let C1, C2, . . . , Cq
be the connected components of G[R], and for each i ∈ [q] let Ti be a spanning tree for each
Ci. Let G∗ be the component contracted graph of G using the Ti’s. Then (G,R, t, k) is a
yes-instance of Steiner Tree if and only if q ≤24k and (G∗, R∗, q, k) is a yes-instance of
Steiner Tree.
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(a) (b)

Figure 4 An illustration of the component contraction; (a) red disks are Steiners and blue
disks are terminals; (b) red vertices are Steiner vertices and blue vertices are contracted terminal
components.

Now we are ready to design our FPT algorithm for Steiner Tree on clique-grid graphs
parameterized by k and complete the proof of Lemma 15.

Proof of Lemma 15. Let (G,R, t, k) be an input instance of n-vertex clique-grid graphs.
Let C1, C2, . . . , Cq be the connected components of G[R], and for each i ∈ [q] let Ti be a
spanning tree for each Ci. Let G∗ be the component contracted graph of G using the Ti’s.
Let R∗ = {ci|i ∈ [q]} be the terminal set of G∗. By, Observation 16, if G is a yes-instance
then it must be that q ≤24k. If this is not the case, then we immediately output no.

From now on, we are in the case q ≤24k. By Observation 18, it is enough to determine
whether (G∗, R∗, q, k) is a yes-instance of Steiner Tree. As noted earlier, G∗ may no
longer be a clique-grid graph.

We run the Dreyfus-Wagner algorithm [13] which returns a minimum edge-weighted
Steiner tree connecting R∗ in G∗. Since G∗ is unweighted, the returned solution Steiner tree
T has the minimum number of edges. Note that since G∗ is unweighted, a Steiner tree for
R∗ minimizes the number of Steiner vertices if and only if it has minimum number of edges.
The total number of Steiner vertices in T is |V (T )| − |R∗|. If |V (T )| − |R∗| ≤ k, then our
algorithm returns that (G∗, R∗, q, k) is a yes-instance of Steiner Tree, and otherwise it
returns no.

The construction of G∗ is done in polynomial time. Since q ≤24k, the Dreyfus-Wagner
algorithm runs in 2O(k)nO(1). Thus, our algorithm also has running time 2O(k)nO(1). J

6 W[1]-Hardness for Steiner Tree on Disk Graphs

In this section, we consider the Steiner Tree problem on disk graphs and prove that this
problem is W[1]-hard parameterized by the number Steiner vertices k.

I Theorem 3. The Steiner Tree problem on disk graphs is W[1]-hard, parameterized by
the number of Steiner vertices k.

Proof. We prove Theorem 3 by giving a parameterized reduction from the Grid Tiling
with ≥ problem which is known to be W[1]-hard3 [10]. In the Grid Tiling with ≥ problem,
we are given an integer n, a k × k matrix for an integer k and a set of pairs Sij ⊆ [n]× [n]
of each cell. The objective is to find, for each 1 ≤ i, j ≤ k, a value sij ∈ Sij such that if
sij = (a, b) and si+1,j = (a′, b′) then a ≥ a′; if sij = (a, b) and si,j+1 = (a′, b′) then b ≥ b′.

3 k × k Grid Tiling with ≥ problem is W[1]-hard, assuming ETH, cannot be solved in f(k)no(k) for
any function f
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Let I = (n, k,S) be an instance of the Grid Tiling with ≥. We construct a set of unit
disks D, that is divided into three sets of unit disks D1, D2, D3; D = D1 ]D2 ]D3. Each
disk in D1, D2, D3 is of radius 1, δ and κ, respectively. We will define the value of δ and κ
shortly. The construction of the set D = D1]D2]D3 will ensure that D contains a Steiner
Tree with k2 Steiner vertices if and only if I is a yes instance of Grid Tiling with ≥. Let
ε = 1/n10, and δ = ε/4. Here, we point out that the value of κ, ε are independent of each
other. First, we move the cells away from each other, such that the horizontal (resp. vertical)
distance between the left columns (resp. top rows) any two consecutive cell is 2 + ε. Let
100δ be the side of length of each cell. Then, we introduce diagonal chains of terminal disks
into D3 of radius κ =

√
2(2 + ε− 100δ)/1000 to connect the cells diagonally; see Figure 5(a).

For every 1 ≤ x, y ≤ k, and every (a, b) ∈ S(x, y) ⊆ [n] × [n], we introduce into D1 a disk
of radius 1 centered at (2x + εx + εa, 2y + εy + εb). Let D[x, y] ⊆ D1 be the set of disks
introduced for a fixed x and y, and notice that they mutually intersect each other. Next, for
1 ≤ x, y ≤ k, we introduce into D2, disks of radius δ between consecutive cells of coordinate
(2x + 1 + εx + εa, 2y + εy) (placed horizontally); and (2x + εx, 2y + 1 + εy + εb) (placed
vertically). For every cell S[x, y], we denote the top, bottom, left, right cluster of terminal
disks of radius δ from D2 by L[x, y], R[x, y], T [x, y], B[x, y], respectively. Moreover, for each
cell S[x, y], we introduce a disk of radius δ at a coordinate that is completely inside the
rectangle bounding the centres of disks in D[x, y]. This is to enforce that at least one disk is
chosen form each D[x, y]. See Figure 5(b) for an illustration.

(a) (b)

(2 + ε)

(2 + ε)

T[x,y]

L[x,y]

B[x,y]

R[x,y]

S[x,y]

Figure 5 (a) The schematic diagram of the cells, after adjusting the distance between adjacent
cells which is 2 + ε. The red disks inside each cells, are the coordinates where the center of the
Steiner disk of radius 1 will be placed. The diagonal chains consisting of terminal disks of radius κ,
are connecting the cells diagonally. (b) The small black dots inside each cell are extra terminals of
radius δ. Consider a cell S[x, y]. The shaded grey disks are the potential disks and the shaded red
disk is chosen in the solution from D[x, y].

We proceed with the following observation. Consider a disk p that is centered at
(2x+ εx+ εa, 2y + εy + εb) for some (a, b) ∈ [n]× [n]. Now, consider a disk q from R[x, y]
centered at (2x+ 1 + εx+ εa, 2y + εy). The distance between their centers are

√
1 + ε2b2.

We need to show that this is less than (1 + ε/4). This is true because 1 + ε2b2 is less than
(1 + ε/4) as the value of b goes to n, ε = 1/n10 and the value of n is large. Hence, q is covered
by the disk p from S[x, y] centered at (a, b). Next, consider a disk q′ from R[x, y] centered at
(2x+ 1 + εx+ ε(a+ 1), 2y + εy). The distance between their centers are

√
(1 + ε)2 + ε2b2.

We show that this value is bigger than (1 + ε/4). This means (1 + ε)2 + ε2b2 is bigger than
(1 + ε/4)2. As the value of b goes to n, it is not hard to see the left side is bigger since
ε = 1/n10 and the value of n is large. Therefore, q′ is not covered by the disk p from S[x, y]
centered at (a, b). The same calculation holds for L[x, y], T [x, y] and B[x, y].
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In the forward direction, let the pairs s[x, y] ∈ S[x, y] form a solution for instance I, and let
s[x, y] = (a[x, y], b[x, y]). For every 1 ≤ x, y ≤ k, we select the disk d[x, y] from D1 of radius 1
centered at (2x+ εx+ εa[x, y], 2y+ εy+ εb[x, y]). We have seen in the previous paragraph that
this disk cover any disk from R[x, y] of center with (2x+ 1 + εx+ εa[x, y], 2y + εy) but does
not covers disks with coordinate (2x+ 1 + εx+ ε(a[x, y] + 1), 2y + εy). Similarly, this holds
for L[x, y], T [x, y], B[x, y]. s[x, y]’s forms a solution of I, then we have a[x, y] ≥ a[x+ 1, y].
Therefore, the disks d[x, y] and d[x + 1, y] will cover all disks from R[x, y]. Similarly, we
have b[x, y] ≥ b[x, y + 1] which implies that d[x, y] and d[x, y + 1] will cover T [x, y] and
form a component them. Now, the diagonals chains consisting of terminal disks of radius
κ, we have taken to join the cells (see Figure 5(a)) ensures that all cells are connected.
Moreover, we have shown that if s[x, y]’s form a solution of instance I, then all terminals in
L[x, y], R[x, y], T [x, y], B[x, y] (for any 1 ≤ x, y ≤ k) are covered. Therefore, this will form a
connected Steiner tree with k2 many Steiner disks.

In the reverse direction, let D′ ⊆ D1 be a set of k2 Steiner disks that spans over all
terminals in D2 ∪ D3. This is true when for every 1 ≤ x, y ≤ k, the set D′ contains a
disk d[x, y] ∈ D[x, y] that is centered at (2x + εx + εa[x, y], 2y + εy + εb[x, y]) for some
(a[x, y], b[x, y]) ∈ [n]× [n]. Indeed, we are required to choose one disk from D[x, y] due to
the reason that there is a terminal disk lying inside the rectangle bounding the centres of
disks in D[x, y]. The claim is that s[x, y] = (a[x, y], b[x, y])’s form a solution of I. First
of all, d[x, y] ∈ D[x, y] implies that s[x, y] ∈ S[x, y]. Consider a cell S[x, y]. We have
observed that it covers disk q from R[x, y] centered at (2x + 1 + εx + εa, 2y + εy), but
a disk q′ from R[x, y] centered at (2x + 1 + εx + ε(a + 1), 2y + εy) is not covered. This
is true for L[x, y], T [x, y], B[x, y]. Hence, if all terminals points from inside S[x, y]’s and
L[x, y], R[x, y], T [x, y], B[x, y] are covered by k2 many Steiner disks, it would imply that
a[x, y] ≥ a[x+ 1, y] and b[x, y] ≥ b[x, y + 1]. Therefore, s[x, y]’s form the solution for Grid
Tiling with ≥ instance I. This completes the proof. J

Conclusion

In this paper we studied the parameterized complexity of Steiner Tree on unit disk graphs
and disk graphs under the parameterizations of k and t+ k. In future, we wish to explore
tight bounds for the algorithms we have obtained and to probe into kernelization questions
under these parameters. It would also be interesting to consider the minimum weight of a
solution k-Steiner tree as a parameter. A variant of Steiner Tree that usually is easier to
study is Full Steiner Tree. However, in the case of unit disk graphs this problem proved
to be very resilient to all our algorithmic strategies. We wish to explore Full Steiner
Tree on unit disk graphs under natural and structural parameters in future works.
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Abstract
Motivated by the connectivity problem in wireless networks with directional antennas, we study
bounded-angle spanning trees. Let P be a set of points in the plane and let α be an angle. An
α-ST of P is a spanning tree of the complete Euclidean graph on P with the property that all edges
incident to each point p ∈ P lie in a wedge of angle α centered at p. We study the following closely
related problems for α = 120◦ (however, our approximation ratios hold for any α > 120◦).
1. The α-minimum spanning tree problem asks for an α-ST of minimum sum of edge lengths.

Among many interesting results, Aschner and Katz (ICALP 2014) proved the NP-hardness of
this problem and presented a 6-approximation algorithm. Their algorithm finds an α-ST of
length at most 6 times the length of the minimum spanning tree (MST). By adopting a somewhat
similar approach and using different proof techniques we improve this ratio to 16/3.

2. To examine what is possible with non-uniform wedge angles, we define an α-ST to be a spanning
tree with the property that incident edges to all points lie in wedges of average angle α. We
present an algorithm to find an α-ST whose largest edge-length and sum of edge lengths are at
most 2 and 1.5 times (respectively) those of the MST. These ratios are better than any achievable
when all wedges have angle α. Our algorithm runs in linear time after computing the MST.
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1 Introduction

A wireless network can be represented by disks in the plane, where a wireless node at point
p with transmission range r is represented by a disk of radius r centered at point p. An
edge of the network connects two nodes if each one is inside the disk centered at the other
one. The question of assigning transmission ranges to the nodes to ensure a well-connected
network of low interference has been widely studied [5, 6, 10, 13, 15, 16, 20, 23]. If different
nodes may have different transmission ranges then we obtain “power assignment” problems,

© Ahmad Biniaz, Prosenjit Bose, Anna Lubiw, and Anil Maheshwari;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 14; pp. 14:1–14:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahmad.biniaz@gmail.com
mailto:jit@scs.carleton.ca
mailto:alubiw@uwaterloo.ca
mailto:anil@scs.carleton.ca
https://doi.org/10.4230/LIPIcs.SWAT.2020.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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which have also been heavily studied. The minimum transmission range to ensure network
connectivity is the bottleneck of the minimum Bottleneck Spanning Tree (BST) – equivalently,
the maximum edge-length in a Minimum Spanning Tree (MST).

In recent years, the idea of replacing omni-directional antennas with directional antennas
has received considerable attention (see, e.g., [1, 4, 8, 11, 12, 14, 15, 24]). In this model, the
full disk at each point p is restricted to a circular wedge with apex p that has some angle
α and is oriented in some direction. Directional antennas are desirable in many ways, for
example, they require lower transmission power, cause less interference, and provide more
secure communication (see [5, 24] and references therein). The symmetric communication
network [5] has an edge between two nodes if each one is inside the other’s wedge.

When every node has the same transmission range r and angle α, there is still freedom to
orient the directional antennas. The question of whether r and α permit a connected network
is NP-hard (see Further Background below for details). Most previous work has concentrated
on the case where α is some fixed value. Aschner and Katz [4] formulated this in terms of an
α-Spanning Tree (α-ST): a spanning tree of the complete Euclidean graph on a point set P
in the plane such that for each point p ∈ P all the edges incident to p lie in a wedge of angle
α centered at p (see Figure 1-left). For any α < π/3, an α-ST may not exist, for example, if
P is the set of vertices of an equilateral triangle. However, for any α > π/3, an α-ST always
exists (see [1], [2], and [12] for three different and somewhat involved proofs). There is a
relationship between α-STs and the well-studied concept of restricted degree spanning trees,
since d edges at a vertex always lie in some wedge of angle at most 2π(1− 1/d).

2π
3

8π
5

Figure 1 Left: A 120◦-ST ( 2π
3 -ST). Right: a degree-5 minimum spanning tree which is a 8π

5 -ST.

To evaluate edge lengths of α-STs two concepts are useful. An α-Bottleneck Spanning
Tree (α-BST) is an α-ST that minimizes the maximum edge length, and an α-Minimum
Spanning Tree (α-MST) is an α-ST that minimizes the sum of the edge lengths. Both are
NP-hard to compute. Although any MST is also a BST [10], this is not necessarily true for
α-MST and α-BST – we give an example later on. For α > 120◦ Aschner and Katz [4, 22]
gave a simple polynomial time 5-approximation algorithm for the α-BST.

The main result of Aschner and Katz [4] is an involved 6-approximation algorithm for the
α-MST for α > 120◦. In particular, they construct an α-ST of length at most 6 times the
length of an MST of the points. Our main technical result is to improve this approximation
factor to 16/3. An interesting aspect of their proof is that they orient the wedges at small
subsets of the points so that the network on these points is connected and the wedges cover
the whole plane. The problem of orienting wedges at fixed points to cover (or “light up”) the
plane is called the “Floodlight Problem”. Bose et al. [9] showed that for any n points and
any set {α1, . . . , αn} of angles that are at most π and sum to 2π, there is a way to assign
angles to points and orient the wedges to light up the plane. To obtain our main result, we
prove a strengthened version of the Floodlight result for n = 3 where we obtain a connected
symmetric communication network even if the angles are pre-assigned to the points.
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The new problem we study in this paper is the directional antenna problem when different
nodes are allowed to have different wedge angles. The goal is to minimize the sum of the
angles. For consistency with previous notation, we define an α-ST to be a spanning tree
of the point set P such that for each point p ∈ P all the edges incident to p lie in a wedge
of angle αp centered at p and the average of the αp’s is α, or in other words,

∑
p αp = nα.

One might hope that, as with the Floodlight Problem, a constant angle sum would suffice
to construct a good network. Indeed, taking a star as a spanning tree achieves constant
angle sum (with π at an extreme point taken as the center, and 0 at the leaves of the star)
– but this uses a large transmission range. We show that it is not possible in general to
achieve constant angle sum and transmission ranges bounded by a constant times the BST
bottleneck.

In the positive direction, we show that allocating an angle sum of n · 120◦ non-uniformly
does help, in particular, we can achieve smaller maximum edge-length and sum of edge
lengths (compared to the MST) than is possible with uniform angles. Now we give more
details about our results and techniques, and more details on background.

1.1 Our Results
We obtain the following results for angle α = 120◦, however, our approximation ratios hold
for any angle α > 120◦.

(1) Aschner and Katz [4] gave an elegant algorithm that finds a 120◦-ST of length at most 6
times the MST length, thus providing a 6-approximation algorithm for the 120◦-MST. Our
main technical result (Theorem 5 in Section 3) is to improve the approximation ratio to 16/3.

Aschner and Katz prove their result using (in their words) a “surprising theorem”, proved
via a long case-analysis, that there is a way to assign 120◦ wedges to any 3 points (a “triplet”)
such that: the union of the 3 wedges covers the plane; the resulting graph on the triplet
is connected; and the resulting graph on any pair of triplets (whose wedges are assigned
independently) is also connected. After that, their approach is to take an MST of the points,
double its edges and take short-cuts to obtain a Hamiltonian path of length at most 2 times
the MST length (as in the standard TSP approximation), and then apply their result to
successive triplets of points on the path. Their theorem guarantees that successive pairs
of triplets are connected. Finally, they get an approximation factor of 6 using the triangle
inequality, and a judicious choice of whether to start the partition into triplets at the first,
second, or third point of the path. One limitation of their approach is that the two edges
used in each triplet may be the longest and second longest edges of the triplet.

We follow the same approach. We take a non-crossing Hamiltonian path and consider
successive triplets of points along the path. The fact that edges of the Hamiltonian path are
non-crossing ensures that the triplets are also “non-crossing” in some sense. This allows us to
assign wedges to the triplets in a different way which leads to a shorter proof of the“surprising
theorem” for non-crossing triplets, as well as a better length guarantee within each triplet.

Our algorithm is slower than that of Aschner and Katz because of the extra work of
uncrossing the edges of the Hamiltonian path.

(2) We give an algorithm to find a 120◦-ST whose largest edge-length is at most 2 times that
of the MST, and whose sum of edge lengths is at most 1.5 times that of the MST (Theorem 11
in Section 4). The idea of our algorithm is to start with an MST that has maximum degree
5 (which is known to exist) and then re-assign parts of the wedge angles from leaves to inner
vertices. Our algorithm runs in linear time after computation of the MST. The ratios 2 and
1.5 improve the best known ratios for 120◦-BST and 120◦-MST (5 and 16/3, respectively). In
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fact, our ratios for non-uniform angles are better than any possible with uniform angles, as
we prove by designing an infinite class of point sets such that every 120◦-ST has maximum
edge length at least 3 times that of the MST, and sum of edge lengths at least 2 times that
of the MST.

(3) We present the following lower bounds for approximating the above problems with respect
to the MST. These lower bounds are proved in Section 2. Although the lower bounds 2 and
3 (in Proposition 1) for the 120◦-MST and the 120◦-BST seem to be common knowledge
[4, 22], for the sake of completeness we provide a proof of them.

I Proposition 1. The 120◦-MST, the 120◦-MST, and the 120◦-BST problems cannot be
approximated by ratios smaller than 2, 4/3, and 3, respectively, given the MST length and
the MST largest edge-length as lower bounds.

I Proposition 2. Let A(n) be the smallest value that suffices to construct, for any set of n
points in the plane, a connected symmetric network with angle sum A(n) and with transmission
ranges bounded by a constant times the BST largest edge-length. Then A(n) = Ω(

√
n).

I Proposition 3. For any α < π there exists a point set for which no α-MST is an α-BST.

1.2 Further Background
As mentioned above, there is a connection between α-STs and restricted degree spanning trees,
due to the fact that d edges at a vertex always lie in some wedge of angle at most 2π(1−1/d).
The Minimum degree-k spanning tree (degree-k MST) problem has been well-studied (see,
e.g., [3, 13, 21, 23]). It is easy to compute a degree-2 spanning tree (a Hamiltonian path) of
length at most twice the length of the Euclidean MST by doubling the MST edges, taking
an Euler tour, short-cutting repeated vertices, and then removing an edge. It is also possible
to compute in polynomial time degree-3, degree-4, and degree-5 spanning trees of lengths
at most 1.402 [13], 1.1381 [13, 21], and 1 [25] times the MST length, respectively. This
immediately implies the existence of 180◦-ST, 240◦-ST, 270◦-ST, and 288◦-ST ( 8π

5 -ST) of
lengths at most 2, 1.402, 1.1381, and 1 times the MST length, respectively. See Figure 1-right
for an illustration of a degree-5 MST which is a 288◦-ST.

The α-MST problem is also related to the problem of computing angle-restricted Hamilto-
nian paths and cycles on points in the plane. One can compute a Hamiltonian path with
angles of at most 90◦ by starting from an arbitrary point and iteratively connecting the
current point to its farthest among the remaining points (see [19]); the angle 90◦ is tight
in the sense that there are point sets for which every Hamiltonian path has an angle larger
than 90◦ − ε for any ε > 0 (see [12, 17]). Fekete and Woeginger [19] conjectured that for
any even-size point set of at least 8 elements there exists a Hamiltonian cycle with angles at
most 90◦. Dumitrescu et al. [17] gave a partial solution by constructing a cycle with angles
of at most 120◦. The conjecture remains open.

Aschner and Katz [4] studied the α-MST problem for α ∈ {90◦, 120◦, 180◦}. They proved
the NP-harness of this problem for α = 120◦ and α = 180◦ by reductions from the problem
of finding a Hamiltonian path in hexagonal grid graphs and in square grid graphs of degree
at most three, respectively. In addition to the result mentioned above for a 120◦-ST of length
at most 6 times the MST length, they also presented an algorithm for computing a 90◦-ST
of length at most 16 times the MST length.

The problem of constructing bounded-angle networks with no long edges (the α-BST
problem) has been studied extensively. The NP-hardness reduction of Aschner and Katz
for the 120◦-MST problem also implies the NP-hardness of the 120◦-BST problem and its
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inapproximability by a factor smaller than
√

3. Carmi et al. [12] construct 90◦-Hamiltonian
paths with edges that are shorter than that of the construction by Fekete and Woeginger
[19]. Aschner and Katz [4] construct 120◦-hop-spanners with hop-ratio 6 and edge lengths
at most 7 for unit disk graphs. Dobrev et al. [15, 16] and Caragiannis et al. [11] construct
strongly connected directed networks with short edges and nodes of bounded out-degree.

1.3 Notation and Preliminaries

p

wp

−→wp

←−wp

wq
q

Figure 2 The point p sees q but q does not see p.

Let wp be a wedge in the plane with apex p. We denote by −→wp the clockwise (right)
boundary ray of wp, and by ←−wp the counterclockwise (left) boundary ray of wp. Let wq be
another convex wedge in the plane with apex q. If q lies in wp then we say that p sees q and
denote this by p→q. We use p↔q to denote that p and q are mutually visible, that is, p and
q see each other. In other words, p↔q denotes p→q and q→p. In Figure 2 the point p sees
q but q does not see p, and thus they are not mutually visible. Let P be a set of points in
the plane and assume that wedges, possibly of different angles, are placed at every point of
P . Then the induced mutual-visibility graph on P is a geometric graph with vertex set P
that has a straight-line edge between two points p and q if and only if p and q are mutually
visible. The underlying non-geometric graph is the symmetric communication network on P .

We denote the sum of edge lengths of a geometric graph G by w(G). We need the
following basic fact about triangles in the plane.

I Lemma 4. Let a, b, and c be three points in the plane, and let E = {ab, ac, bc} be the set
of edges between them. Then the total length of the shortest and longest edges in E is at
most 1.5 times the total length of any two edges of E.

Proof. After a suitable relabeling we may assume that |ab| 6 |ac| 6 |bc|. To prove the lemma
it suffices to show that (i) |ab|+ |bc| 6 1.5(|ac|+ |bc|) and (ii) |ab|+ |bc| 6 1.5(|ab|+ |ac|).
Statement (i) holds because |ab| 6 |ac|. To verify statement (ii) observe that by the triangle
inequality we have |bc| 6 (|ab|+ |ac|), and by our assumption that |ab| is not larger than |ac|
we have |ab| 6 0.5(|ab|+ |ac|). The sum of the two inequalities implies statement (ii). J

2 Lower bounds

In this section we prove Propositions 1, 2, and 3. First we prove Proposition 1 that is: The
120◦-MST, the 120◦-MST, and the 120◦-BST problems cannot be approximated by ratios
smaller than 2, 4/3, and 3, respectively, given the MST length and the MST largest edge-length
as lower bounds.

Proof. Consider a sequence X = (x1, x2, . . . , xn) of n points on the x-axis with coordinates
1, 2, . . . , n, respectively, as in Figure 3. We show that X satisfies the statement of the
proposition for the three problems. The MST of X is a path with edges of length 1 and total
length n− 1.
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x1 x2 x3 x4 x5 x1 −→x6−→x3x2 x4 x5

(a) (b)

Figure 3 (a) A 120◦-ST of length 2n− 3, and (b) a 120◦-ST of length 4n/3− 3.

First we prove the lower bound 2 for the 120◦-MST problem (this lower bound is also
mentioned in [4]). We show by induction that any 120◦-minimum spanning tree T on X
has length at least 2n − 3. This is trivial if n ∈ {1, 2}, thus assume that n > 3. There
are n − 1 intervals on the x-axis between consecutive points of X. If every interval is
covered by two edges of T then w(T ) > 2n − 2. Assume that some interval [i, i + 1] is
covered by only one edge of T , say edge e. By removing e we obtain two subtrees T1
and T2 where T1 spans the points x1, . . . , xi while T2 spans xi+1, . . . , xn. Let n1 and n2
be the number vertices of T1 and T2, respectively. Assume that both n1 and n2 are at
least 2. Since T1 spans x1, . . . , xi, the vertex xi is oriented to the left (and does not see
any point to its right). Analogously, xi+1 is oriented to the right. Therefore e is not
incident to xi or xi+1, and thus its length is at least 3. By the induction hypothesis we get
w(T ) = w(T1)+w(T2)+w(e) > (2n1−3)+(2n2−3)+3 = 2(n1+n2)−3 = 2n−3. Now assume
that n1 = 1, and thus n2 > 2. Then T1 has only vertex xi = x1 which is an endpoint of e. Since
T2 spans x2, . . . , xn, the vertex x2 is oriented to the right. Therefore e is not incident to x2,
and thus its length is at least 2. Thus w(T ) = w(T1)+w(T2)+w(e) > 0+(2n2−3)+2 = 2n−3.
The case where n2 = 1 is handled similarly.

To verify the lower bound 3 for the 120◦-BST problem, assume that n = 5. Consider the
edge-maximal graph on X that has edges of length at most 2. In any spanning tree in this
graph, at least one of x2, x3, x4 has incident edges in both directions (left and right). Thus,
no matter how we place wedges of angle 120◦ on vertices of X, we cannot get a 120◦-ST of
edge lengths at most 2. Therefore, any 120◦-ST on X has an edge of length at least 3, as in
Figure 3(a). This argument can be generalized for any n larger than 5.

Now consider any 120◦-minimum spanning tree T on X. We show that w(T ) > 4n/3− 3.
Partition the vertices of T into X1 and X2 where X1 is the set of vertices with wedges
of angle strictly less than 180◦ and X2 is the set of vertices with wedges of angle at least
180◦. Since the total available angle is 120n degrees, |X2| 6 120n/180 = 2n/3. Thus
|X1| = n− |X2| > n/3. Observe that every interval (between consecutive vertices of X) is
covered by an edge of T . Every vertex xi ∈ X1 sees the vertices that are either to its left or
to its right. We denote xi by ←−xi if it sees the vertices to its left, and by −→xi otherwise (see
Figure 3(b)). For every ←−xi the interval [i− 1, i] is covered by at least two edges otherwise
connectivity is lost: one edge is incident to ←−xi and another edge connects a point to the left
of ←−xi with a point to the right (assuming i 6= n). Similarly for every −→xi the interval [i, i+ 1]
is covered by an edge that is incident to −→xi and by an edge that connects a point to the right
of −→xi with a point to the left (assuming i 6= 1), as in Figure 3(b). Thus, for every ←−xi (except
possibly ←−xn) there exists a unique interval that is covered by two edges of T . Similarly, for
every −→xi (except possibly −→x1) there exists a unique interval that is covered by two edges of
T . (If xi is oriented to the left and xi+1 is oriented to the right then – by the minimality
of the tree – (xi, xi+1) is an edge of T and the interval [i, i+ 1] is covered by three edges.)
Therefore the length of T is at least (n− 1) + (|X1| − 2) > 4n/3− 3. J

Now we prove Proposition 2 that is: Let A(n) be the smallest value suffices to construct,
for any set of n points in the plane, a connected symmetric network with angle sum A(n)
and with transmission ranges bounded by a constant times the BST largest edge-length. Then
A(n) = Ω(

√
n).
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Proof. Consider a set of n points on the vertices of a regular
√
n×
√
n grid of side length√

n−1. The largest edge-length of any BST for this point set is 1. Now consider any connected
symmetric network T for this point set that satisfies the statement of the proposition, and
let the constant c be the largest transmission range (edge-length) in T . Let L denote the
set of supporting lines for all edges of T . Since any line in the plane contains at most

√
n

points of the grid, L has at least
√
n lines. Therefore, T has at least one vertex, say v, where

the neighbors of v lie on more than one line of L. Let V be the set of all such vertices of T .
Observe that every line in L passes through a vertex in V . For every v ∈ V the neighbors of
v lie in a square of side-length 2c that is centered at v. Thus v has at most (2c)2 neighbors
(that can lie on at most (2c)2 lines in L). Therefore |V | > |L|/(2c)2 >

√
n/(2c)2.

Now consider any v ∈ V . Let v1 and v2 be two neighbors of v such that edges (v, v1) ∈ T
and (v, v2) ∈ T lie on two different lines of L. Since v, v1, and v2 are grid points and lie on a
square of constant side-length 2c, the angle between v1 and v2 at v is a constant number.
Let α be the smallest such constant over all vertices in V . Then, the total angle at vertices
in V is at least α · |V | > α

√
n/(2c)2 = Ω(

√
n). J

The following is a proof of Proposition 3 that is: For any α < π there exists a point set
for which no α-MST is an α-BST.

Proof. Consider the point set P in Figure 4 consisting of n > 9 points partitioned into
t = n/3 triplets (ai, bi, ci) where |ciai+1| = 1 and |aibi| = |bici| = ε for some ε < 1/(2n− 3).
We refer to an edge of length at least 1 as a long edge. The red bold tree is an α-ST of total
length (t− 1) ((1 + 3ε) + 2ε+ ε) + 2ε+ ε = (t− 1) + (6t− 3)ε < t, where the last inequality
holds by our choice of ε. Therefore any α-MST for P has at most t− 1 long edges because
otherwise it would have a length larger than t. This implies that each interval [ci, ai+1] is
covered by at most 1 edge of any α-MST. On the other hand, any spanning tree for P has
at least t− 1 long edges as all triplet should be connected to the rest of the tree by a long
tree edge. It turns out that any α-MST T of P has exactly t− 1 long edges each connecting
a point in triplet (ai, bi, ci) to a point in triplet (ai+1, bi+1, ci+1). In the rest of the proof
we show that T has an edge of length at least 1 + 3ε. This immediately proves our claim
because P admits an α-ST of edge lengths at most 1 + 2ε, see for example the thin blue tree
in Figure 4.

b1 c1 a2 b2 c2 a3 b3 c3a1

ε ε 1

Figure 4 The red bold spanning tree has a total length of less than t. The blue thin spanning
tree has edges of lengths at most 1 + 2ε.

Consider any i ∈ {1, . . . , t− 1}. Let ei be the long edge of T between triplets (ai, bi, ci)
and (ai+1, bi+1, ci+1). The point ci cannot be an endpoint of ei because otherwise there must
be a long edge e′i in T that connects a point to the left of ci to a point to the right of ci;
this contradicts the fact that the interval [ci, ai+1] is covered by exactly one edge of T (by
the degree constraint ci cannot be connected to any point to the left). By symmetry, ai+1
cannot be an endpoint of ei either. If ai or ci+1 is an endpoint of ei then |ei| > 1 + 3ε and
we are done. Assume that for every i ∈ {1, . . . , t− 1} we have ei = (bi, bi+1). Then (b1, b2)
and (b2, b3) are edge of T . Thus the angle at b2 is larger than α which contradicts T being
an α-ST. J
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3 Approximating the 120◦-MST

Let α = 120◦ in this section. Let P be a set of points in the plane. Aschner and Katz [4]
showed a construction of an α-ST on P of length at most 6 times the MST length. In this
section we present an alternate construction that achieves an α-ST of length at most 16/3
times the MST length, thereby proving the following theorem.

I Theorem 5. Given a set of points in the plane and an angle α > 120◦, there is an
α-spanning tree of length at most 16/3 times the length of the MST. Furthermore, there
is a polynomial time algorithm to find such an α-ST, thus providing a 16/3-approximation
algorithm for the α-MST problem.

3.1 The construction of Aschner and Katz
To facilitate comparisons, we briefly describe the algorithm of Aschner and Katz [4]. They
use the following theorems to compute an α-ST.

I Theorem 6 (Aschner and Katz, 2014). Given a set P of three points in the plane, one can
place at each point of P a wedge of angle 120◦ such that the three wedges cover the plane
and the induced mutual-visibility graph on P is connected, and hence it contains an 120◦-ST.

A placement that satisfies the conditions of Theorem 6 is given in the proof of Claim
2.1 [4]. This placement has an interesting property which is given in the following theorem
whose proof is very involved.

I Theorem 7 (Aschner and Katz, 2014). Let P1 and P2 be two disjoint sets each containing
three points in the plane. Assume that a wedge of angle 120◦ is placed at each point of
P1 and at each point of P2 according to the placement of Theorem 6. Then, the induced
mutual-visibility graph on P1 ∪ P2 is connected, and hence it contains a 120◦-ST.

Let H be a Hamiltonian path on P of length at most 2 times the MST length. The
constant 2 is tight, as Fekete et al. [18] showed that for any fixed ε > 0 there exists a point
set for which any Hamiltonian path has length at least 2− ε times the MST length.

Let (p0, . . . , pn−1) be the sequence of points of P from one endpoint of H to the other. Let
(h0, h1, . . . , hn−2) be the sequence of the edges of H where hi = (pi, pi+1). Partition the edges
of H into three sets H0 = {h0, h3, h6, . . . }, H1 = {h1, h4, h7, . . . }, and H2 = {h2, h5, h8, . . . },
as in Figure 5. The length of one of these sets, say H2, is at least w(H)/3. Therefore
w(H0) + w(H1) 6 2

3w(H). Partition P into a sequence of triplets (p0, p1, p2), (p3, p4, p5), . . .
such that the edges of H, that lie between consecutive triplets, are in H2. Then place three
wedges on the points of each triplet according to Theorem 6, and let Gα be the induced
mutual-visibility graph. The points in each triplet are connected (by Theorem 6) and any
pair of triplets are connected (by Theorem 7), and thus Gα is connected.

Now let T be a spanning tree of Gα computed as follows (see Figure 5): between the
points in each triplet take two edges that are obtained from Theorem 6 (these edges are
called inner edges), and between every two consecutive triplets take an edge that is obtained
by Theorem 7 (these edges are called connecting edges). To bound the length of T , we
charge edges of H for the edges of T . Every edge of H that belongs to H2 lies between two
consecutive triplets, and thus is charged only once for the connecting edge between the two
triplets. Every edge of H that belongs to H0 ∪H1 lies inside a triplet, say t. Such an edge is
charged 4 times: twice for the two inner edges of t and twice for the two edges that connect
t to adjacent triplets. Therefore,

w(T ) 6 w(H2) + 4(w(H0) +w(H1)) = w(H) + 3(w(H0) +w(H1)) 6 3w(H) 6 6w(MST ).



A. Biniaz, P. Bose, A. Lubiw, and A. Maheshwari 14:9

p1

p2
p3

pn−1

t0

t1

t2

p4

p5

p0

H0 H1 H2

Thm 6 Thm 7

Figure 5 Top: path H where H0, H1, H2 are colored blue, green, and red, respectively. Bottom:
spanning tree T where edges obtained by Theorems 6 and 7 are colored purple and orange, respectively.

3.2 The new construction
Our approach, for the construction of an α-ST of length at most 16/3 times the MST length,
is similar to that of Aschner and Katz, however we use a different placement of wedges on
points of triplets which in turn requires different proof techniques.

Let P = {p1, p2, p3} be any set of three points in the plane. The complete graph on
P has edge set E = {p1p2, p1p3, p2p3} and contains exactly three spanning trees. Let T1
be the tree that has the two shortest edges of E, T3 be the tree that has the two longest
edges of E, and T2 be the tree that has the shortest and the longest edges of E. Observe
that w(T1) 6 w(T2) 6 w(T3). We refer to T1, T2, and T3 as the shortest, intermediate, and
longest trees on P , respectively.

The α-ST obtained by the wedge placement in (the proof of) Theorem 6 contains the two
longest edges of E. In other words, this placement gives the spanning tree T3. Due to the
objective of minimizing the sum of edge lengths, one may ask for a wedge placement that
covers the plane using T1 or T2. We answer this question in the affirmative in Theorem 8.
This theorem improves Theorem 6 in the sense that it uses T1 or T2 and also allows more
flexibility on the angles of the wedges.

Consider three points in the plane, and three angles α1, α2, α3 where each αi is at most π
and α1 +α2 +α3 = 2π. The Floodlight result of Bose et al. [9] implies that one can cover the
plane by placing three wedges of angles α1, α2, α3 at the three points. Our Theorem 8 also
improves this result in two ways: (i) one can cover the plane with three wedges even if the
assignment of angles to points is specified in advance, and (ii) the induced mutual-visibility
graph is connected, in particular it contains the shortest or the intermediate tree on points.

I Theorem 8 (proved in Section 3.3). Given a set P = {p1, p2, p3} of three points in the
plane and three angles α1, α2, α3 6 π where α1 + α2 + α3 = 2π, one can place at each pi a
wedge of angle αi such that the three wedges cover the plane and the induced mutual-visibility
graph contains the shortest or the intermediate tree on P .

If we set each αi equal to 120◦ in Theorem 8, then we get the following corollary.

I Corollary 9. Given a set P of three points in the plane, one can place wedges of angle 120◦
at points of P such that the three wedges cover the plane and the induced mutual-visibility
graph contains the shortest or the intermediate tree on P .
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K1
K2

p
q

p

q

K1

K2

Figure 6 Two configurations of a forbidden pair {P1, P2} forming triangles K1 and K2.

Corollary 9 ensures covering of the plane and also uses T1 or T2. Unfortunately, we cannot
directly use this corollary in the approach of Aschner and Katz because their Theorem 7
ensures a connection between two triplets t1 and t2 only if they are oriented by Theorem 6;
such a connection may not exist if the triplets are oriented by Corollary 9. However, we show
in Theorem 10 that if the relative positions of the points of t1 and t2 is not among the two
configurations shown in Figure 6, then the orientation of Corollary 9 ensures a connection
between them. Our final proof relies on the fact that the configurations in Figure 6 never
arise from triplets of a non-crossing Hamiltonian path.

To be more precise, consider disjoint point sets P1 and P2, each of size three, in the plane.
Let K1 and K2 be the complete graphs (triangles) on points of P1 and P2, respectively. We
say that the (unordered) pair {P1, P2} is forbidden if there exist vertices p ∈ K1 and q ∈ K2
such that (i) both incident edges of p intersect both incident edges of q, or (ii) p lies inside the
triangle K2 and the non-incident edge of p intersects both incident edges of q. See Figure 6.

I Theorem 10 (proved in Appendix A). Let P1 and P2 be two disjoint sets, each containing
three points in the plane, such that {P1, P2} is not forbidden. Assume that a wedge of angle
120◦ is placed at each point of P1 and at each point of P2 according to the placement algorithm
of Corollary 9. Then, the induced mutual-visibility graph on P1 ∪ P2 is connected, and hence
it contains a 120◦-ST.

I Remark 1. Intuitively, it would seem that our proof of Theorem 10 should follow the same
approach as that of Aschner and Katz’s Theorem 7. We note, however, that their proof of
Theorem 7 is highly involved and uses a combination of nontrivial ideas. In order to cope with
the large number of cases, they classify the number of edges in the induced mutual-visibility
graph of each triplet. Their proof ensures the existence of an edge between P1 and P2 only if
the wedges are oriented according to the placement in the proof of Theorem 6. Such an edge
may not exist for other wedge placements with similar properties, i.e., coverage of the plane

Figure 7 There is no connection between the red and blue triplets.
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and connectivity of each set P1 and P2; for example see Figure 7 which is borrowed from [4]
(notice that the pair of triplets in this figure is forbidden). Thus, there is no straightforward
way of adjusting their proof to work for our Theorem 10 where the wedges in P1 and P2 are
oriented according to Corollary 9 instead. We give a relatively short proof of Theorem 10 in
Appendix 3.3. Instead of classifying the number of edges of visibility graphs, we introduce a
“representative” point for each triplet; this facilitates a shorter presentation of our proof.

The remaining ingredient we need in order to apply Theorem 10 is the following observation
that forbidden triplets do not arise if we begin with a Hamiltonian path H that is non-crossing.

I Observation 1. Let H be a non-crossing Hamiltonian path and let t1 and t2 be disjoint
triplets, each of which is obtained by consecutive vertices of H. Then, {t1, t2} is not forbidden.

Proof. Each of t1 and t2 must contain two edges of H (because they come from consecutive
vertices of H), and the union of these edges is non-crossing because H is non-crossing. But
if {t1, t2} is forbidden (see Figure 6), then there is no way to choose two edges in each of t1
and t2 such that their union is non-crossing. J

To use this observation, we need a non-crossing Hamiltonian path. Such a path can be
obtained by iteratively flipping crossing edges of H. It is known that this iterative process
terminates after O(n3) edge flips [26], where n is the number of path vertices. (See [7] for
some recent results on obtaining non-crossing configurations by edge flips.) Since the edge
flip operation does not increase the total edge length (this can be verified by the triangle
inequality), the length of the resulting non-crossing path is not more than that of the original
path. Therefore, we assume from now on that H is non-crossing and w(H) 6 2w(MST ).

Now we have the necessary tools (a non-crossing path H and Theorem 10) to use the
orientation of the wedges as in Corollary 9. Let (p0, . . . , pn−1) be the sequence of points
from one endpoint of H to the other. Construct edge sets H0, H1, H2, and as before
assume that w(H2) > w(H)/3, which implies w(H0) + w(H1) 6 2

3w(H). Construct triplets
t0 = (p0, p1, p2), t1 = (p3, p4, p5), . . . , and orient the wedges according to Corollary 9. Since
H is non-crossing, no pair of triplets is forbidden (by Observation 1). The induced mutual-
visibility graph, Gα, is connected because the points of each triplet are connected (by
Corollary 9) and every two triplets are connected (by Theorem 10). We obtain a spanning
tree T from Gα as before. Every edge of H2 is charged only once for the connecting edge
between two consecutive triplets. Every pair (hi, hi+1) of edges in each triplet t (where
hi ∈ H0 and hi+1 ∈ H1) is charged 3.5 times: twice for connecting edges between t and
its adjacent triplets, and 1.5 times for inner edges of t (by Lemma 4 the length of the tree
obtained by Corollary 9 is at most 1.5(w(hi) + w(hi+1))). Therefore

w(T ) 6 w(H2) + 3.5(w(H0) + w(H1)) = w(H) + 2.5(w(H0) + w(H1))

6 w(H) + 5
3w(H) = 8

3w(H) 6 16
3 w(MST ).

This finishes the proof of Theorem 5.

3.3 Proof of Theorem 8
In this section we prove Theorem 8: Given a set P = {p1, p2, p3} of three points in the plane
and three angles α1, α2, α3 6 π where α1 + α2 + α3 = 2π, one can place at each pi a wedge
of angle αi such that the three wedges cover the plane and the induced mutual-visibility graph
contains the shortest or the intermediate tree on P .
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p

−→r1 (p)
←−r1 (p)

−→r2 (p)

−→r3 (p) ←−r2 (p)

←−r3 (p)

c1R(p)

c1L(p)
c1(p)

c1(p)

Figure 8 Notation for proofs.

First we provide some preliminaries for the proof; see Figure 8. We use similar notation
also for the proof of Theorem 10. Let p be a point in the plane and let [−→r1(p),−→r2(p),−→r3(p)]
be the cyclic counterclockwise permutation of three rays emanating from p where the angle
between any two consecutive rays is less than π. See the figure to the right for an illustration.
These rays partition the plane into three cones with apices at p. For an index i ∈ {1, 2, 3} we
denote by −−→ri+1(p) the ray after −→ri (p) in the cyclic permutation, by ←−ri (p) the ray emanating
from p in the opposite direction of −→ri (p), and by li(p) the line through −→ri (p). We denote by
ci(p) the convex cone with boundary rays −→ri (p) and −−→ri+1(p), and by ci(p) the reflection of
ci(p) with respect to p. Moreover, we denote by ciR(p) the portion of ci(p) that is between
−→ri (p) and ←−−ri+2(p), and by ciL(p) the of portion ci(p) of that is between ←−−ri+2(p) and −−→ri+1(p).

α3

α2
α1
x

−→r1 (x)

−→r2 (x)

−→r3 (x)

p3

p2
p1

β3

−→r2 (p3)

←−r2 (p3)

α2
α1

p3

p1β2

−→r1 (p2)

←−r1 (p2)

α3

p2

(a) The embedding R(x) (b) α3 > β3 (c) α3 < β3 and α2 > β2

Figure 9 Illustration of the proof of Theorem 8.

Now we proceed with the proof. Consider the triangle with vertices p1, p2, and p3.
Let β1, β2, β3 denote the interior angles of this triangle at p1, p2, p3 respectively, and note
that β1 + β2 + β3 = π. Without loss of generality assume that β1 6 β2 6 β3, and thus
|p2p3| 6 |p1p3| 6 |p1p2|. After a suitable reflection assume that p3 appears to the left of the
ray from p1 towards p2. We consider two cases where α3 > β3 and α3 < β3. For each case
we show how to place three wedges w1, w2, w3 (with angles α1, α2, α3) at points p1, p2, p3,
respectively, to satisfy the conditions of the theorem.

Let [−→r1(x),−→r2(x),−→r3(x)] be the cyclic counterclockwise permutation of three rays emanat-
ing from some point x in the plane such that the angle at each cone ci(x) is αi for i ∈ {1, 2, 3}.
Let R(x) denote a fixed embedding of these rays in the plane, as in Figure 9(a).

α3 > β3. Translate R(x) so that x lies on p3, i.e., x = p3. Rotate R(x) so that p1
and p2 lie in c3(p3) and ←−r2(p3) intersects the segment p1p2 (observe the existence of
such rotation). Place w1, w2, and w3 at cones c1(p3), c2(p3), and c3(p3), respectively.
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The union of these wedges covers the entire pane. Now translate w1 and w2 so that
their apices lie on p1 and p2, respectively, as in Figure 9(b). The union of the three
wedges still covers the plane. In this setting, p3 and p1 are mutually visible and so are
p3 and p2. Thus, the mutual-visibility graph contains the shortest tree on P with edges
T1 = {p3↔p1, p3↔p2}.
α3 < β3. We claim that α2 > β2. For the sake of contradiction assume that α2 < β2.
Then α1 + β2 + β3 > α1 +α2 +α3 = 2π. Since β2 and β3 are interior angles of a triangle,
β2 + β3 6 π. By combining these two inequalities we get α1 > π, which contradicts an
assumption in the statement of the theorem. Thus our claim follows.
Translate R(x) so that x lies on p2. Rotate R(x) so that p1 and p3 lie in c2(p2) and←−r1(p2)
intersects the segment p1p3. Place w1, w2,w3 at cones c1(p2), c2(p2), c3(p2). Translate
w1 and w3 so that their apices lie on p1 and p3, respectively, as in Figure 9(c). Again
the three wedges cover the entire plane, and the mutual-visibility graph contains the
intermediate tree on P with edges T2 = {p2↔p1, p2↔p3}.

4 Approximating the 120◦-MST

In this section we prove the following theorem.

I Theorem 11. Given a set of points in the plane and an angle α > 120◦, there is an
α-spanning tree of length at most 1.5 times the length of the MST and with edges of length
at most 2 times the BST largest edge-length. Furthermore, there is an algorithm to find such
an α-ST that runs in linear time after computing the MST.

Let P be a set of points in the plane. As in previous sections we assume that α = 120◦.
Let T be a degree-5 MST of P . We assign to each vertex of T an initial angle α which we
refer to by “charge”. The initial charge of a vertex may not cover all its incident edges. The
idea is to modify the tree locally and transfer charges between nodes to make sure that all
vertices have enough charges to cover their incident edges in the new tree. Mainly we transfer
charges from leaves to internal vertices, because edges incident to leaves can be covered by
0◦ wedges (however at the end of this section we assign to all leaves positive wedges).

Assume that T is not a path and thus has a vertex of degree at least 3 (we describe the
case where T is a path at the end of this section). A maximal path in T is a path with at
least two edges where its internal-node degrees are 2 and its end-node degrees are not 2.

Our algorithm has two phases. Phase 1 works as follows. Contract every maximal path
of T to an edge (this is done by removing the internal nodes of the path and connecting its
endpoints by an edge). This results in a tree T ′ that has no vertex of degree 2, and moreover,
the degree of each vertex in T ′ is the same as its degree in T . Let ` denote the number of
leaves of T ′ and let n3, n4, and n5 denote the number of vertices of degree three, four, and
five in T ′ respectively. Since each vertex of degree three, four, and five introduces 1, 2, and 3
new leaves respectively, we have ` = 2 + n3 + 2n4 + 3n5. We consider the ` · α charges of all
leaves as a “pool of charges” that are available to be distributed among other vertices. From
this pool, we give the charge α, 2α, and 3α to each vertex of degree three, four, and five
respectively. After this redistribution, every vertex of degree three, four, and five holds the
charge 240◦, 360◦, and 480◦ respectively (including its initial 120◦ charge), which is sufficient
to cover all its incident edges. Moreover, the pool is left with 2α charges.

Based on the above discussion if T has no degree-2 vertices, then it is an α-ST and we
are done. Now we describe Phase 2 which takes care of contracted paths; here is the place
where our tree gains an extra 0.5w(T ) length. Consider every contracted path and denote
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it by (p1, p2, . . . , pm) if it has an even number of edges and by (p1, p2, . . . , pm, pm+1) if it
has an odd number of edges. One endpoint of this path, say p1, has degree at least 3 in
T and the other endpoint either is a leaf or it has degree at least 3 (see Figure 10). The
charges of the two endpoints of the path have already been considered in Phase 1, but the
charges of its internal nodes are untouched. Let σ denote the path (p1, p2, . . . , pm); σ does
not contain pm+1 if this point exists. Observe that m > 3. Partition the edges of σ into
matchings σ1 = {(p1, p2), (p3, p4), . . . } and σ2 = {(p2, p3), (p4, p5), . . . }, as in Figure 10. Let
σmax denote the heavier of σ1 and σ2 (i.e., the one with larger total length) and σmin denote
the lighter one. Thus w(σmin) 6 w(σmax) and hence w(σmin) 6 0.5w(σ). We replace the
edge set σmax in T by the edge set δ = {(p1, p3), (p3, p5), . . . , (pm−2, pm)}, as in Figure 10.
Let T ′′ be the tree obtained after performing this replacement for all contracted paths.

We claim that T ′′ is a desired α-ST. First we show that w(T ′′) 6 1.5w(T ). To do so, it
suffices to show that, for each contracted path, the length of edges after replacement (i.e.,
edges of σmin and δ) is not more than 1.5 times the length of original edges (i.e., edges of σ). By
the triangle inequality, w(δ) 6 w(σ). Therefore w(δ) +w(σmin) 6 w(σ) + 0.5w(σ) 6 1.5w(σ);
this proves the total-length constraint of Theorem 11. Moreover, the length of every edge of
δ is at most twice the largest edge-length of σ (again by the triangle inequality); this proves
the edge-length constraint of Theorem 11. It remains to ensure the coverage of incident
edges for all vertices of T ′′. To that end we distribute the charges of p2, p4, . . . , pm−1 (which
are new leaves) among other vertices. We consider two cases depending on the existence of
pm+1. First assume that pm+1 does not exist. Now we consider two sub-cases depending on
which of σ1 and σ2 is heavier (i.e., is σmax).

p1

p2

p3 pm

pm−1

p1

p2

p3 pm

pm−1

p1

p2

p3

pm+1

pm

p1

p2

p3

pm+1

pm

60◦
60◦

w(σ1) ≥ w(σ2)

w(σ1) < w(σ2)

w(σ1) ≥ w(σ2)

w(σ1) < w(σ2)

σ1 σ1 σ1σ2 σ2 σ2

pm−1

pm−1

pm−2

Figure 10 The contracted path is shown by black segments. The dashed-black edges belong to
σmax and the red edges belong to δ.

σmax = σ1. In this case σ1 has been replaced by δ. This replacement has not changed the
degree of p1 and thus it holds enough charge (from Phase 1) to cover its incident edges.
We move the charges of leaves p2, p4, . . . , pm−1 to vertices p3, p5, . . . , pm respectively
(see Figure 10). Each of p3, p5, . . . , pm−2 has degree three and now holds 240◦ charge
(including its own 120◦ charge) which is sufficient to cover its incident edges. Now consider
pm and notice that its degree has been increased by one. If pm is of degree at least 3 in T ,
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then it now holds at least 360◦ charge (120◦ from pm−1 and at least 240◦ from Phase 1)
which covers all its incident edges. Assume that pm is a leaf in T , and thus it has degree
2 in T ′′. The original charge of pm has been distributed among other vertices in Phase
1, but it now has 120◦ charge coming from pm−1. Consider the triangle 4pmpm−1pm−2.
The segment pmpm−2 is the largest side of this triangle because otherwise we could add
this edge to the MST and remove the larger of the other two sides to obtain a smaller
tree. Thus the angle at pm−1 is the largest angle of this triangle, and hence the other
two angles (including the one at pm) are at most 90◦. Therefore the two edges incident
to pm can be covered by its 120◦ charge.
σmax = σ2. Then σ2 has been replaced by δ. We move the charges of p2, p4, . . . , pm−1
to p1, p3, . . . , pm−2 respectively (see Figure 10). The replacement does not change the
degree of pm and thus it holds enough charge from Phase 1 to cover its incident edges.
Each of p3, p5, . . . , pm−2 has degree three and now holds 240◦ charge which covers its
incident edges. The vertex p1 now has at least 360◦ charge (120◦ from p2 and at least
240◦ from Phase 1) which covers all its incident edges.

Now assume that pm+1 exists. Again we consider two sub-cases.

σmax = σ1. Move the charges of p2, p4, . . . , pm−1 to p3, p5, . . . , pm (see Figure 10). The
degrees of p1 and pm+1 have not changed in Phase 2, and thus they hold enough charge
from Phase 1 to cover their incident edges. Each of p3, p5, . . . , pm has degree three and
now holds 240◦ charge which covers its incident edges.
σmax = σ2. Move the charges of p4, p6 . . . , pm−1 to p3, p5, . . . , pm−2. Split the 120◦ charge
of p2 evenly between p1 and pm as in Figure 10. The degree of pm+1 has not changed and
thus it holds enough charge from Phase 1. Each of p3, p5, . . . , pm−2 has degree three and
now holds enough charge 240◦. The vertex pm has degree two and now holds 180◦ charge
(including its original 120◦ charge) which is sufficient to cover its two incident edges. Now
consider p1. If it has degree 4 or 5 in T then after Phase 1 it holds at least 360◦ charge
which covers all its incident edges. Assume that it has degree 3 in T , and now it has
degree 4 in T ′′. Then it holds 300◦ charge (60◦ from p2 and 240◦ from Phase 1) which is
enough to cover its four incident edges (in fact 270◦ is enough). It might be the case that
p1 was also incident to another contracted path and hence has received another incident
edge which increases p1’s degree to five. In this case p1 also receives 60◦ charge from the
other path. This would increase p1’s charge to 360◦ which covers all its incident edges.

I Remark 2. If T is a path then we run only Phase 2 of the above algorithm on this path.
Since there is no Phase 1, the charges of path endpoints are still available. The charge
redistribution of Phase 2 guarantees the coverage of incident edges of all vertices. See
Figure 10. If pm+1 does not exist then in the first sub-case (resp. the second sub-case) the
charge of p1 (resp. pm) remains unused. If pm+1 exists, then its charge remains unused.

I Remark 3. At the end of the algorithm we have at least 120◦ unused charge (from the pool
or from a path endpoint). We split the unused charge evenly between all vertices such that
every vertex has a positive charge and its incident edges lie strictly inside the assigned wedge.

5 Conclusions

The obvious open problem is to improve our 16/3 approximation ratio for the 120◦-MST
problem further by designing better algorithms. Our proof rely on the fact that the orientation
of the wedges of every triplet covers the entire plane. Such orientations are a bottleneck for
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our ratio. It might be possible to get better ratio with orientations that do not necessarily
cover the entire plane. Another bottleneck is the use of a Hamiltonian path which forces
a factor of 2 in the ratio. It might be possible to get better ratios by using the original
MST instead of the path. However, this has to be done in a clever way as the number of
connecting edges incident to a triplet may increase.
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A Proof of Theorem 10

In this section we prove Theorem 10: Let P1 and P2 be two disjoint sets, each containing three
points in the plane, such that {P1, P2} is not forbidden. Assume that a wedge of angle 120◦
is placed at each point of P1 and at each point of P2 according to the placement algorithm of
Corollary 9. Then, the induced mutual-visibility graph on P1 ∪ P2 is connected, and hence it
contains a 120◦-ST.

We use the notation introduced in Section 3.3. Let P1 = {a, b, c} and P2 = {a′, b′, c′}.
Orient P1 and P2 according to Corollary 9 (in fact according to the proof of Theorem 8 with
angles 120◦). Let wa, wb, wc, wa′ , wb′ and wc′ be the wedges of angle 120◦ that are place at
these points, respectively. Recall, from the proof of Theorem 8, three rays [−→r1(x),−→r2(x),−→r3(x)]
with cones of angles 120◦ that are placed at a point x. In the orientation of P1 we may
assume that these rays are placed at a, i.e., x = a. Thus b and c lie in the same cone ci(a)
for some i ∈ {1, 2, 3}; in particular one of them lies in ciL(a) and the other lies in ciR(a).
Moreover wa covers ci(a) and we have a↔b and a↔c. In the orientation of P2 assume that
these rays are placed at a′. Thus one of b′ and c′ lies in ciL(a′) and the other lies in ciR(a′)
for some i ∈ {1, 2, 3}, wa′ covers ci(a′), and we have a′↔b′ and a′↔c′. Also recall that each
cone ci(a) contains a point of P1 whose wedge covers ci(a), and similarly each cone ci(a′)
contains a point of P2 whose wedge covers ci(a′).

Since the three cones c1(a), c2(a), and c3(a) cover the plane, a′ lies in one of them, say
c3(a). Similarly, a lies in one of the three cones at a′, say c2(a′). In this setting one of the
following three configurations holds:

(A) −→r1(a) and −→r2(a′) intersect, but −→r3(a) and −→r3(a′) do not intersect. See Figures 11 and 12.
(B) −→r1(a) and −→r2(a′) do not intersect, but −→r3(a) and −→r3(a′) intersect.
(C) −→r1(a) and −→r2(a′) intersect, and −→r3(a) and −→r3(a′) intersect. See Figures 13 and 14.
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a′

b′a

y

−→r2 (a′)

−→r2 (a)

−→r1 (a)

−→r1 (a′)

α

−→r3 (a′)

−→r3 (a)

d
c3(a) ∩ c2(a′)

c2(a
′) ∩ c3(a)

c2(a
′) \ c3(a)

←−r3 (a′)

←−r2 (a′)

c1(a) ∩ wb′

c1(a) \ wb′

Figure 11 −→r1(a) and −→r2(a′) intersect, −→r3(a) and −→r3(a′) do not intersect, and b′ ∈ c3L(a′) ∩ c1(a).

We consider each configuration separately. Since configurations (A) and (B) are symmetric,
we describe only (A) and (C).

Configuration (A). Let d be the intersection point of −→r1(a) with −→r2(a′), and let α denote
the convex angle ∠ada′, as in Figure 11. Since −→r3(a) and −→r3(a′) do not intersect, α > 2π/3,
and consequently a′ lies in c3L(a) and a lies in c2R(a′). Recall that each cone at a (resp.
a′) is covered by a point of P1 (resp. P2). Let x ∈ P1 be the point in c3(a) whose wedge
wx covers c3(a), and let x′ ∈ P2 be the point in c2(a′) whose wedge wx′ covers c2(a′). If
x ∈ c3(a) ∩ c2(a′) and x′ ∈ c2(a′) ∩ c3(a) (the dark-gray regions in Figure 11) then x↔x′

and we are done. Therefore we may assume that x ∈ c3(a) \ c2(a′) or x′ ∈ c2(a′) \ c3(a). By
symmetry we assume that x′ ∈ c2(a′) \ c3(a) (the light-gray region in Figure 11). This and
the fact that a′ ∈ c3(a) imply that x′ 6= a′, and thus x′ ∈ {b′, c′}. After a suitable relabeling
we assume that x′ = b′. Therefore, wb′ covers c2(a′).

Since α > 2π/3 and a′ ∈ c3L(a), the rays ←−r3(a′) and ←−r2(a′) do not intersect the line l2(a),
and consequently the cone c2(a′) does not intersect l2(a) and hence this cone is disjoint
from c2(a). Therefore, b′ – which is in c2(a′) \ c3(a) – lies in c1(a). Let y ∈ P1 be the
point in c1(a) whose wedge wy covers c1(a). Since b′ ∈ c1(a), the point y sees b′, as in
Figure 11. If y ∈ c1(a) ∩ wb′ (the dark-blue region) then b′ sees y, and hence y↔b′ and we
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a′

b′

a

−→r2 (a′)

−→r2 (a)

−→r1 (a)

−→r1 (a′)

α

−→r3 (a′)

−→r3 (a)

b

c′

d

c2(a
′) \ c3(a)

c2(a
′) ∩ c3(a)

c1(a) ∩ wb′
c1(a) \ wb′

c1L(a
′) \ wb

c1L(a
′) ∩ wb

Figure 12 −→r1(a) and −→r2(a′) intersect, −→r3(a) and −→r3(a′) do not intersect, and b′ ∈ c1R(a′) ∩ c1(a).

are done. Assume that y ∈ c1(a) \ wb′ , and hence it is not in c2(a′). Since y ∈ c1(a) and
c1(a) is disjoint from c1(a′), the point y is not in c1(a′) either. Thus y lies in c3(a′). In
this setting, wy covers the region c3L(a) ∩ wb′ which contains a′. Thus, y sees a′. Recall
that b′ ∈ c2(a′) ∩ c1(a). Since c2(a′) = c3L(a′) ∪ c1R(a′) we consider two cases where
b′ ∈ c3L(a′) ∩ c1(a) and b′ ∈ c1R(a′) ∩ c1(a).

b′ ∈ c3L(a′) ∩ c1(a). This case is depicted in Figure 11. Since b′ ∈ c3(a′) and wa′ covers
the cone that contains b′ (and also c′), it covers c3(a′). Therefore, a′ sees y which lies in
c3(a′), and hence y↔a′ and we are done.
b′ ∈ c1R(a′) ∩ c1(a). This case is depicted in Figure 12. Since b′ ∈ c1(a′) and wa′ covers
the cone that contains b′, it covers c1(a′). Since y ∈ c3(a′) and a ∈ c2(a′), we have y 6= a

and thus y ∈ {b, c}. After a suitable relabeling we assume that y = b. Therefore wb
covers c1(a), and wa covers the cone c3(a) which contains b. Since b lies in c3R(a), the
point c lies in c3L(a). Notice that wc covers c2(a) (which is not covered by wa ∪ wb).
Since b′ ∈ c1R(a′), the points c′ lies in c1L(a′) and wc′ covers c3(a′), and hence sees b. If
c′ ∈ c1L(a′) ∩ wb (the dark-orange region in Figure 12) then b sees c′ and we get c′↔b.
Assume that c′ ∈ c1L(a′) \ wb (the light-orange region). This region is to the left of ←−wb
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which is parallel to −→r2(a); in particular this region is a subset of c2R(a) which is covered
by wc. Thus c sees c′. We are going to show that c′ also sees c. Notice that c2R(a) (which
contains c′) is the reflection of c3L(a) (which contains c) with respect to a. This and the
fact that ←−wc′ is parallel to −→r1(a′) which intersects −→r1(a) (because α > 2π/3) imply that
←−wc′ does not intersect −→r1(a). Moreover, since −→wc′ is parallel to −→r3(a′) which intersects
←−r2(a) (because α < π), −→wc′ does not intersect ←−r2(a). Thus −→wc′ and ←−wc′ do not intersect
the boundary rays −→r1(a) and ←−r2(a) of c3L(a), and hence wc′ covers c3L(a) which contains
c′. Therefore c′ sees c and hence c′↔c.

a′

a

−→r1 (a)

−→r2 (a)

−→r3 (a)

−→r1 (a′)

−→r2 (a′)

−→r3 (a′)

b′

b

c′

α

β

d

e

c3(a) ∩ c2(a′)

c2(a
′) ∩ c3(a)

c2(a
′) \ c3(a)

c1(a) ∩ wb′

c1(a) \ wb′

Figure 13 −→r1(a) and −→r2(a′) intersect, −→r3(a) and −→r3(a′) intersect, and a′ ∈ c3L(a).

Configuration (C). In this configuration −→r1(a′) does not intersect any of −→r1(a), −→r2(a), −→r3(a),
and −→r2(a) does not intersect any of −→r1(a′), −→r2(a′), −→r3(a′). Let d be the intersection point
of −→r1(a) with −→r2(a′), and e be the intersection point of −→r3(a) with −→r3(a′), as in Figures 13
and 14. Let α denote the convex angle ∠ada′, and β denote the convex angle ∠aea′. After
a suitable relabeling we assume that α > β, and thus α > π/3 (notice that the sum of
the interior angles of the convex quadrilateral with vertices a, d, a′, e is 2π). This and the
fact that ∠ead = 2π/3 imply that −→r3(a) and ←−r2(a′) do not intersect. Since −→r3(a) and −→r3(a′)
intersect, their opposite rays ←−r3(a) and ←−r3(a′) do not intersect.

Let x ∈ P1 be the point in c3(a) whose wedge wx covers c3(a), and let x′ ∈ P2 be the
point in c2(a′) whose wedge wx′ covers c2(a′). As in configuration (A) if x ∈ c3(a) ∩ c2(a′)
and x′ ∈ c2(a′) ∩ c3(a) (the dark-gray regions in Figures 13 and 14) then x↔x′. Therefore
we may assume by symmetry that x′ ∈ c2(a′) \ c3(a). This and the fact that a′ ∈ c3(a) imply
that x′ 6= a′ and thus x′ ∈ {b′, c′}. After a suitable relabeling we assume that x′ = b′, and
thus wb′ covers c2(a′), as in Figures 13 and 14. The region c2(a′) \ c3(a) (shown by light-gray
color in Figures 13 and 14) which contains b′ is in fact equal to c1R(a′) ∩ c1R(a).
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The wedge wa′ covers c1(a′) which contains b′. Since b′ lies in c1R(a′), the point c′ lies in
c1L(a′) and wc′ covers c3(a′). Let y ∈ P1 be the point in c1(a) whose wedge wy covers c1(a).
Since b′ ∈ c1(a), y sees b′. If y ∈ c1(a) ∩ wb′ (the dark-blue regions in Figures 13 and 14)
then b′ sees y and thus y↔b′ and we are done. Assume that y ∈ c1(a) \ wb′ (the light-blue
regions). This and the fact that a lies in c2(a′) (which is covered by wb′) imply that y 6= a

and thus y ∈ {b, c}. After a suitable relabeling we assume that y = b. Our assumption that b
is not in wb′ implies that b /∈ c2(a′). Recall that a′ is in c3(a) and thus it lies either in c3L(a)
or in c3R(a). We describe each case separately.

a′

a −→r1 (a)

−→r2 (a)

−→r3 (a)

−→r2 (a′)

−→r3 (a′)

−→r1 (a′)

b

b′

c′

β

α

c2(a
′) ∩ c3(a)

c3(a) ∩ c2(a′)
c2(a

′) \ c3(a)

c1(a) ∩ wb′

c1(a) \ wb′

d

e

Figure 14 −→r1(a) and −→r2(a′) intersect, −→r3(a) and −→r3(a′) intersect, and a′ ∈ c3R(a).

a′ ∈ c3L(a). This case is depicted in Figure 13. In this case −→r1(a′) and ←−r2(a) do not
intersect because α > π/3. Thus c1(a) and c1(a′) are disjoint, and hence b /∈ c1(a′).
Therefore b ∈ c3(a′) and thus c′ sees b. The boundary rays ←−wb and −→wb of wb do not
intersect the boundary rays −→r2(a′) and←−r3(a′) of cone c1L(a′) which contains c′. Therefore
wb covers c1L(a′). This implies that b sees c′, and hence b↔c′.
a′ ∈ c3R(a). See Figure 14. If c′ is to the left side of ←−r2(a) then b↔c′ and we are done.
Assume that c′ is to the right side of ←−r2(a), and thus c′ ∈ c3R(a). If c′ is to the right side
of ←−wb then again b↔c′ and we are done. Assume that c′ is to the left side of ←−wb, which
implies that b ∈ c3R(a) (we already knew that b is in c1(a) = c2L(a) ∪ c3R(a)). Therefore
wa covers c3(a) which contains b, and thus c lies in c3L(a). This setting is depicted in
Figure 14. We show that this is an invalid setting for points in P1 and P2.
Consider the line through a and b. In the current setting a′ and c′ lie on the same side of
this line, but b′ lies on the other side. The points a′ and c′ are to the left side of the ray−→
b′a (because

−→
b′a does not intersect the interior of c3(a) which contains a′ and c′) and to

the right side of the ray
−→
b′b (because b is to the left side of ←−wb′ while a′ and c′ are to its

right side); see also Figure 15. Therefore a′ and c′ lie in the convex cone with boundary
rays

−→
b′a and

−→
b′b. Since c is in c3L(a), it is also in the convex cone with boundary rays

−→
ab′ and

−→
ab. As depicted in Figure 15, no matter where – in this cone – c lies, the two
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triangles defined by the vertices of P1 and P2 form one of the forbidden configurations of
Figure 6. This is impossible because {P1, P2} is not forbidden by the statement of the
theorem.

a′

a

b

b′

c′

c

c

c

Figure 15 The point c lies in the shaded cone with boundary rays
−→
ab′ and

−→
ab.
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Abstract
We study the problem of low-stretch spanning trees in graphs of bounded width: bandwidth,
cutwidth, and treewidth. We show that any simple connected graph G with a linear arrangement
of bandwidth b can be embedded into a distribution T of spanning trees such that the expected
stretch of each edge of G is O(b2). Our proof implies a linear time algorithm for sampling from T .
Therefore, we have a linear time algorithm that finds a spanning tree of G with average stretch
O(b2) with high probability. We also describe a deterministic linear-time algorithm for computing a
spanning tree of G with average stretch O(b3). For graphs of cutwidth c, we construct a spanning
tree with stretch O(c2) in linear time. Finally, when G has treewidth k we provide a dynamic
programming algorithm computing a minimum stretch spanning tree of G that runs in polynomial
time with respect to the number of vertices of G.
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1 Introduction

Let G = (V,E) be an unweighted, connected graph with m edges and n vertices, and T

be any spanning tree of G. For any (u, v) ∈ E, the stretch of (u, v) with respect to T is
stretchT (u, v) = dT (u, v), where dT (u, v) denotes the length of the unique u-to-v path in T .
The stretch of T is then defined to be stretch(T ) = 1

m

∑
(u,v)∈E stretchT (u, v).

As minimal distance preserving structures, low-stretch spanning trees are a fundamental
concept that have been studied extensively; they have also found applications in computer
science in problems such as the k-server problem [3], minimum cost communication trees [26],
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and solving diagonally dominant linear systems [21]. Perhaps the first notable structural
result is the paper by Alon et al. [3], where they show that any general graph has a spanning
tree of stretch O(exp(

√
logn log logn)) and that there exist graphs with minimum stretch

Ω(logn). A series of papers [11, 1, 22, 2] followed the result of Alon et al., culminating in
the recent construction of Abraham and Neiman of an O(logn log logn) stretch spanning
tree for general graphs, which is almost tight considering the Ω(logn) lower bound. The
existence of spanning trees with bounded average distortion is often implied by a stronger
statement that the graph can be embedded into a distribution of spanning trees such that
the expected stretch of any edge is bounded.

Given these results for general graphs, a natural question is to consider restricted classes
of graphs, both in terms of finding better bounds than general graphs for some classes of
graphs, as well as finding lower bounds that match the general case in others. For example,
we know that constant factor stretch spanning trees exist for k-outerplanar graphs: they
have stretch ck for a constant c [17, 12]. On the lower bound side, we also know that grid
graphs, which are planar, have a lower bound of Ω(logn) on their stretch, so we cannot hope
to get constant factor for this class. Additionally, Gupta et al. [17] found a family of bounded
treewidth graphs (in fact, series parallel graphs) whose minimum stretch spanning trees have
stretch Ω(logn).

In light of these bounds, the search for families of graphs that might have smaller stretch
must be limited to classes of graphs that exclude these examples. In this regard, a natural
and still-open question is whether bounded pathwidth graphs admit a spanning tree of
sublogarithmic stretch. In fact, we conjecture that bounded pathwidth graphs admit constant
stretch spanning trees. In this paper, we make progress towards this conjecture by showing
this is true for bounded bandwidth (Theorem 3) and bounded cutwidth graphs (Theorem 4);
both classes are contained within the family of bounded pathwidth graphs. More precisely,
we prove:

For every n-vertex graph of bandwidth b there exists a random distribution over spanning
trees of the graph, such that the expected stretch of any individual edge of the graph
is O(b2). The random distribution can be sampled in linear time given a bandwidth-b
linear arrangement of the graph, or constructed explicitly in quadratic time.
Under the same assumptions, a spanning tree T of average stretch O(b3) can be constructed
deterministically in linear time.
Every n-vertex graph of cutwidth c has a spanning tree T of average stretch O(c2). T
can be constructed from a cutwidth-c linear arrangement of the graph in linear expected
time.
We provide a dynamic programming algorithm computing the minimum stretch spanning
tree of an unweighted graph with treewidth k. Our algorithm runs in O(23kk2knk+1)
time.

It is important to note that our algorithms require either a linear arrangement or a tree
decomposition realizing the width as input, and computing such structures is NP-hard
[25, 4, 15]. Due to space constraints the deterministic algorithm and some proofs have been
placed in the appendix.

Lee and Sidiropoulos [23] show that a bounded pathwidth graph admits an embedding
into a distribution of trees with constant distortion. In this paper, we conjecture that a
similar result holds for embedding into a distribution of spanning trees. For embedding of
bounded bandwidth graphs into normed spaces see Carrol et al. [8] and Bartal et al. [5].

The key insight by which we obtain these results lies in the connection between spanning
trees of low-stretch and fundamental cycle bases of low weight. Any spanning tree T of G
naturally gives a fundamental cycle basis for G: for each e = (u, v) ∈ E\T , the basis contains
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the unique cycle in T ∪ {e}. The weight of this basis is defined to be the sum of the lengths
of its cycles. A graph G has a spanning tree of average stretch O(logn) if and only if it has
a fundamental cycle basis of weight O(m logn). Similarly, a cycle basis of length O(m) is
equivalent to a spanning tree of stretch O(1). (The relationship between T ’s stretch and
fundamental cycle basis will be discussed in more detail in the next section.)

Shortest fundamental cycle bases have been studied as a basic structure of graphs and for
their different applications in graph drawing [14], electrical engineering [7], chemistry [16],
traffic light planning [20], periodic railway time tabling, [24, 27], and kinematic analysis of
mechanical structures [9].

2 Preliminaries

2.1 Cycle bases
Given a simple, connected, unweighted graph G with n vertices and m edges the cycle space
of G is an m− n+ 1 dimensional vector space over Z2 that spans the cycles in G. In this
context a cycle in G is any subgraph of G with even degree. We call a basis of this vector
space a cycle basis, and the weight of a cycle basis is the sum of the lengths of the cycles in
the basis. Given a spanning tree T of G we call a cycle formed by adding a non-tree edge to
T a fundamental cycle with respect to T . Every spanning tree T of G yields a basis of the
cycle space using the fundamental cycles induced by the m− n+ 1 edges in G \ T . We call
a basis of this form a fundamental cycle basis. Each cycle in the fundamental cycle basis
created by T corresponds to exactly one edge in G \ T . We call this edge the fundamental
edge of the cycle.

2.2 Fundamental cycle bases and low-stretch spanning trees
The weight of a fundamental cycle basis with respect to a tree T is closely related to the
stretch of T . The stretch of an edge e = (u, v) in G with respect to T , denoted stretchT (e),
is defined as the length of the unique u-to-v path in T . The stretch of T is defined as the
mean stretch of the edges,

stretch(T ) = 1
m

∑
e∈E(G)

stretchT (e).

Let FCB(T ) denote the weight of the fundamental cycle basis corresponding to T . By
observing that the length of a fundamental cycle induced by an edge e is stretchT (e) + 1 we
see that the fundamental cycle basis with respect to T is related to the stretch of T by

FCB(T ) = m · stretch(T ) +m− 2n+ 2 (1)

It follows that FCB(T ) = O(m) if and only if stretch(T ) = O(1).

2.3 Linear arrangements
A bijective map φ : V (G)→ {1, 2, ..., n} is called a linear arrangement of G. For any subset
of vertices S ⊆ V (G) if s ∈ S maximizes φ restricted to S we call it the right endpoint of S;
similarly if s minimizes φ restricted to S we call it the left endpoint of S. If u and v are the
left and right endpoints of S we define the spread of S to be φ(v)− φ(u). For any vertex v
we call the sets {u ∈ V (G) | φ(u) < φ(v)} and {u ∈ V (G) | φ(v) < φ(u)} the left and right
sides of v, respectively.

SWAT 2020
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2.4 The arrangement tree
Given a linear arrangement φ of G the arrangement tree A is defined as a balanced binary
tree with the following two properties. The leaves of A are in bijection with V (G) and each
internal node v is mapped to the subgraph of G induced by the vertices corresponding to the
descendent leaves of v. More specifically we construct A as follows: let n be the number of
vertices in G, and let p be the largest power of two that is less than n. Let the left subtree
of A be constructed recursively from the first p vertices in the linear arrangement, and let
the right subtree be constructed recursively from the remaining n− p vertices (Figure 1).

Figure 1 Linear arrangement of a graph of bandwidth three and its arrangement tree. The root
node and the edges split by the root node are marked in red.

We denote the induced subgraph of the leaves descending from v by Gv. Consider the
children x and y of v in A. The induced subgraph Gv has the form Gv = Gx ∪Gy ∪Sv where
Sv is the set of edges connecting Gy and Gx. We call Sv the set of edges split by v. Note
that each edge is split by exactly one vertex.

2.5 Bandwidth and cutwidth
The bandwidth of a linear arrangement φ of a graph G is defined as

max
(u,v)∈E(G)

|φ(u)− φ(v)|.

Note that |φ(u)− φ(v)| is the spread of (u, v) with respect to the arrangement tree arising
from φ. The bandwidth of G is the minimum bandwidth over all possible linear arrangements.
In a graph with bandwidth b we have deg(v) ≤ 2b for all v ∈ V (G). Hence, when b = O(1)
we have |E(G)| = O(n). Consider the induced subgraph Gv = Gx ∪Gy ∪ Sv corresponding
to node v of A with x as the left and y as the right child of v. Any edge (q, r) ∈ Sv with q
and r from Gx and Gy, respectively, has spread at most b. So, if r is i positions away from
the left endpoint of Gy then q is at most b− i positions away from the right endpoint of Gx.
It follows that

|Sv| ≤
1
2(b− 1)(b− 2) = O(b2). (2)

The cutwidth of a linear arrangement φ of a graph G is defined as

max
i∈Z
|{(u, v) ∈ E(G) | φ(u) ≤ i, φ(v) ≥ i+ 1}|.

The cutwidth of G is the minimum cutwidth over all linear arrangements. The cutwidth
measures the number of edges that cross a fixed position in the linear arrangement.
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2.6 Tree decompositions
A tree decomposition of a graph G is a tree D = (I, E) where the vertex set I is in bijection
with a collection {Bi}i∈I of subsets of V (G), called bags, meeting the following conditions.

1. Every vertex v ∈ V (G) is contained in some bag. That is,
⋃

i∈I Bi = V (G).
2. For every edge (u, v) ∈ E(G) there exists an i ∈ I with u, v ∈ Bi.
3. For all v ∈ V (G) the subgraph induced by the set of bags containing v is a tree.
The width of a tree decomposition is defined to be maxi∈I |Bi| − 1. The treewidth of G is
the minimum width over all of its tree decompositions, denoted k. We will use the notation
D(B) to refer to the set of vertices in the bag B and the descendants of B. Similarly, by
A(B) we denote the set of vertices in B and the ancestors of B. We call a tree decomposition
a nice tree decomposition if it meets the following extra conditions.
4. D is a rooted binary tree.
5. If i, j, k ∈ I with j and k the children of i, then Bi = Bj = Bk.
6. If j is the child of i and deg(i) = 2 then either Bj ⊂ Bi and |Bi| = |Bj |+ 1 or Bi ⊂ Bj

and |Bi| = |Bj | − 1.
We call the parent bags satisfying property 5 join nodes. We call the parent bags satisfying
the two conditions of property 6 introduce nodes and forget nodes, respectively. Without loss
of generality we may assume all tree decompositions are nice since any tree decomposition
can be transformed into a nice tree decomposition in polynomial time [6]. Further, we
may assume that every leaf bag contains only one vertex and the root bag is a forget node
containing only one vertex.

3 Spanning trees from linear arrangements

Both our construction of a random family of spanning trees with low expected stretch on
each edge and our construction of a deterministic spanning tree with low mean stretch will
depend on a construction of spanning trees from arrangement trees, which we now describe.

Although we will use a different construction algorithm, our tree can be described as the
one constructed by the following greedy algorithm:

Algorithm 1 Spanning tree from a linear arrangement.
Given a graph G and arrangement tree A:
T ← ∅
for node x ∈ A in leaf-to-root order:

for edge e ∈ Sx in increasing order by spread:
if T ∪ {e} is acyclic, add e to T .

Return T .

This algorithm is simply Kruskal’s algorithm for the minimum spanning tree of G, with
each edge weighted by the height in the arrangement tree of the least common ancestor of
the edge endpoints with ties broken by spread. Because the result is a minimum spanning
tree for these edge weights, we can construct the same tree by any other minimum spanning
tree algorithm. Finding the lowest common ancestor for all edges in G can be done in O(n)
time [18]. The algorithm of Fredman and Willard [13], which finds a minimum spanning tree
of a graph with integer weights in O(n) time, implies that our algorithm can be implemented
in linear time.
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I Lemma 1. Let e be an arbitrary edge of G, let i and j (with 1 ≤ i < j ≤ n) be the positions
of the endpoints of e in the linear arrangement, and let p be the largest power of two that
divides an integer in the half-open interval [i, j). Then the stretch of e in the tree constructed
as above is O(p).

Proof. Let v be the node of the arrangement tree with e ∈ Sv. From our construction of the
arrangement tree it follows that the number of leaf descendants of v is at least p+ 1 and
at most 2p. By the greedy algorithm for the construction of a spanning tree, the spanning
tree contains a path connecting the endpoints of e within these at most 2p descendants, for
otherwise e itself would have been added to the spanning tree. Therefore, the stretch of e is
at most 2p− 1. J

4 Embedding into a distribution of trees

Let G be any graph having a linear arrangement φ of bandwidth b. In this section, we
construct a random distribution over spanning trees T of G with the property that each edge
of G has expected stretch O(b2). That is, for an arbitrary edge e (chosen independently from
the construction of T ) we have ET [stretch(e)] = O(b2). A single tree from the distribution
can be sampled in time O(n), and the entire distribution can be constructed explicitly in
time O(n2).

Let n be the number of vertices in G, and let n′ be the smallest power of two greater
than or equal to 2n (so, n′ = Θ(n)). Let G′ be formed from G by adding n′ − n isolated
vertices. Consider the n′ − n ≥ n different linear arrangements φi of G′ obtained from the
linear arrangement φ of G by placing i isolated vertices before the vertices of G and n′−n− i
vertices after the vertices of G (for 0 ≤ i ≤ n′ − n). Denote the collection of arrangement
trees of these linear arrangements by A = {Ai}n′−n

i=1 . For each arrangement tree Ai ∈ A,
Algorithm 1 produces a tree Ti. Our random distribution T is generated by choosing i
uniformly at random and, based on that choice, selecting tree Ti.

Given a fixed choice of edge e, define `(Ai) to be the node v of the arrangement tree
Ai such that e ∈ Sv (that is, the endpoints of e are in distinct children of v). Given two
arrangement trees Ai and Aj we say Ai ≡ Aj if the rightmost leaf descendants of the left
children of `(Ai) and `(Aj) are equal. That is, Ai ≡ Aj are equivalent if and only if e is split
in the same position of the linear arrangements φi and φj . Note that ≡ is an equivalence
relation that is defined with respect to a fixed e.

Therefore, we can calculate the expected spread of e by concentrating only on a single
equivalence class [A] of ≡. Since the bound holds for every equivalence class, the same
expected spread will hold for our entire random distribution, by averaging over the equivalence
classes.

Given an arrangement tree Ai (chosen from a fixed equivalence class [A]) let vi be the
node of Ai such that e ∈ Svi

(that is, vi splits e), and let hi be the height of vi in the
arrangement tree. Then for all Aj in the same equivalence class with hi = hj , we have
Gvi

= Gvj
and the edges in this induced subgraph have the same minimum spanning tree

weights, so they also have Ti ∩Gvi
= Tj ∩Gvj

. Within these two subtrees these nodes have
the same two paths connecting the endpoints of e. Because this path depends only on the
height hi and not on i itself, we denote it Phi

. Different heights may have the same associated
paths. We say that hi is a critical height if Phi 6= Phi−1; that is, if hi is the lowest height
that gives rise to its path.

I Lemma 2. For a fixed choice of edge e and equivalence class [A] there are O(b) critical
heights.
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Proof. Let Ai, Aj ∈ [A] be arrangement trees that split the edge e at vertices vi and vj ,
respectively. Further, we assume vi and vj are at heights hi and hj = hi − 1 where hi is a
critical height. We denote the spanning trees produced by Algorithm 1 with input Ai and
Aj by Ti and Tj . The associated induced subgraphs are related by the inclusion Gvj ⊂ Gvi .

We now describe the ways in which Tvi
= Ti ∩Gvi

can differ from Tvj
= Tj ∩Gvj

. By
the construction of the equivalence relation every edge split by vj is also split by vi, that is
Svj
⊂ Svi

. The edges in Tvj
\ Svj

must be included in Tvi
since their weights are the same in

both Ai and Aj . This is because in the linear arrangement Gvi adds an equal number of
vertices to the left and right of Gvj

and this number is equal to a power of two. It follows
that Tvi

differs from Tvj
by the addition of non-split edges, the potential addition of split

edges, and the potential removal of split edges.
Consider the case when there exists some edge e′ ∈ Tvj

∩ Svj
but e′ /∈ Tvi

. The edge e′
was added to Tvj by Algorithm 1 because it connected to previously disconnected components
of Gvj

. These connected components must have already been contained in a larger connected
component of Gvi , since otherwise Algorithm 1 would have picked e′ for Tvi . It follows that
these connected components must have been connected by the addition of a non-split edge
not contained in Tvj

.
When e′ ∈ Tvi

∩ Svi
but not in Tvj

then e′ must contain an endpoint outside of Gvj
.

Since there are O(b) vertices within b positions away from the split point, and once a critical
height excludes a split edge it cannot be reintroduced to the spanning tree, we see that at
most O(b) split edges can be added across all critical heights.

The height hi can only be a critical height if Tvi∩Gvj differs from Tvj , otherwise Phi = Phj .
Hence, hi can only be a critical height if Tvi

excludes a split edge appearing in Tvj
. The

number of split edges at the smallest critical height is O(b) because these edges form an
acyclic subgraph on the O(b) vertices within b positions away from the split point. Since an
edge can be excluded from the spanning tree at a critical height at most once we conclude
that there are O(b) critical heights. J

I Theorem 3. For an arbitrary edge e (chosen independently from the construction of T )
the expected stretch of e is O(b2).

Proof. Let [A] be any equivalence class of the equivalence relation ≡, and let stretch[A](e)
denote the expected stretch of e over all arrangement trees from the class [A]. Also, let
h1 < h2 < . . . < hk be the critical heights of e in [A]. Finally, let v be the (random) vertex in
the arrangement tree that splits e, and let Hv be the random variable of v’s height. We have

E[stretch[A](e)] =
k∑

i=1
len(Phi

) · Pr[Phi
],

where Pr[Phi
] is the probability that Phi

is the path connecting the endpoints of e in the
(randomly) selected tree. It follows, by the definition of critical heights, that

Pr[Phi
] = Pr[hi ≤ Hv < hi+1] ≤ Pr[hi ≤ Hv] = O(spread(e)/2hi).

In addition, we have len(Phi
) = O(2hi) by Lemma 1. Putting everything together, we have

E[stretch[A](e)] =
k∑

i=1
O(2hi) ·O(spread(e)/2hi) = O(k · spread(e)) = O(b2),

as k = O(b) by Lemma 2, and spread(e) ≤ b by the definition of bandwidth.
Since stretch(e) is a weighted average of stretch[A](e) for different classes [A], and

stretch[A](e) = O(b2) for all classes [A], we conclude that stretch(e) = O(b2). J
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5 Bounded cutwidth

A theorem from Chung [10] says that for any graph G with cutwidth c there exists a
subdivision of G with bandwidth c. However, this entails expanding the number of edges
by a factor of c, so combining this with our construction of low-stretch spanning trees for
low-bandwidth graphs would give us a tree with average stretch O(c3). In this section we
provide a direct construction that obtains stretch O(c2). The proof of Theorem 4 is almost
identical to that of Theorem 3, however since we do not have the inequality spread(e) ≤ c
we instead compute the expected stretch of the tree rather than the expected stretch of a
single edge.

I Theorem 4. A graph G with cutwidth c has a spanning tree with expected stretch O(c2).

Proof. We apply the same construction for a random distribution of spanning trees as in
Theorem 3 to a linear arrangement of G with cutwidth c. We show that the expected stretch
a spanning tree produced by Algorithm 1 on a randomly chosen arrangement tree from the
distribution is O(c2). Therefore, there exists a spanning tree with stretch at least as good as
this expected value.

As before, we fix an equivalence class of arrangement trees [A] from our random distri-
bution. Let h1 < h2 < · · · < hk denote the critical heights of [A]. Since at hk there are at
most O(c) split edges, we can conclude that there are at most O(c) critical heights. As in
the proof of Theorem 3, for a fixed edge e the expected stretch is given by

E[stretch[A](e)] =
k∑

i=1
len(Phi) · Pr[Phi ].

We have that Pr[Phi ] = O(spread(e)/2hi) and len(Phi) = O(2hi), hence E[stretch[A](e)] =
O(c · spread(e)). Let T be the spanning tree constructed by Algorithm 1 from the randomly
selected arrangement tree. We compute the expected stretch of T by

E[stretch(T )] = 1
m

∑
e∈E(G)

O(c · spread(e)).

Note that
∑

e∈E(G) spread(e) ≤ cn since by the definition of cutwidth at most c edges cross
any given interval in the linear arrangement. Hence, E[stretch(T )] = O(c2). J

I Corollary 5. Any graph with cutwidth c has a fundamental cycle basis with weight O(c2n).

Because this method produces high expected stretch for edges of high spread, it is not
clear how to strengthen this result to obtain a distribution with low-stretch for each edge, as
we did for bandwidth. We leave the question of whether this is possible as open for future
research.

6 Bounded treewidth

In this section we consider simple, connected, unweighted graphs with fixed treewidth k.
We provide a dynamic programming approach computing a spanning tree that minimizes
the total stretch over all spanning trees of G. The dynamic programming table indexes
partial solutions based on a localized view of the complete solution from a bag of the
tree decomposition. This is done by indexing the table with trees that correspond with
weighted contracted spanning trees of G that retain the stretch of the edges inside the current
bag. The approach yields a dynamic programming table whose size is polynomial in n but
superexponential in k. The goal of this section is to prove the following theorem.
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I Theorem 6. A minimum stretch spanning tree of a graph with n vertices and treewidth k
can be computed in O(23kk2knk+1) time.

6.1 Spanning trees conforming to a configuration
Let T be a spanning tree of G and (T, c) be a tuple consisting of a tree T and a weight
function c on the edges of T . Fix a bag B in the tree decomposition of G. We say that T
conforms to (T, c) if T can be transformed into T by in the following way. Initialize c(e) = 1
for every edge in T and update by applying the following contractions while any of them is
possible.
1. If e is not contained in any (u, v)-path where u, v ∈ B then contract e.
2. If e = (u, v) where u, v /∈ B and degT (v) = 2 then contract e. Let e′ be the other edge

incident to v. Set c(e′) := c(e) + c(e′).
3. If e = (u, v) where u ∈ B, v /∈ B, and degT (v) = 2 then contract e. Let e′ be the other

edge incident to v. Set c(e′) := c(e) + c(e′).
T is the unique minimal minor of T retaining the structure of the paths between vertices in
B. We call a tuple (T, c) a configuration of the bag B. In Lemma 7, we will show that any
spanning tree T conforms to a bounded number of configurations. Our dynamic program
will maintain an array of forests DPi[T, c] indexed by a bag Bi of the tree decomposition and
all configurations with respect to the bag. Each configuration at Bi will describe a spanning
tree T on G that has been contracted in the way described above. We say a forest F meets a
configuration (T, c) if by following the contraction rules stated above F can be transformed
into T \ SA for some SA ⊆ V (T ) \ V (B). We will define the subset SA in the following
paragraph. The solution stored at DPi[T, c] will be the minimum cost forest of G[D(Bi)]
meeting the configuration (T, c). We will describe how to calculate the cost of F in the next
subsection. We will use DPi[T, c] to refer to the total stretch of the partial solution and use
F to denote the partial solution that has been computed.

Let T be a tree built by our dynamic program conforming to (T, c) and let v1, . . . , vn be
a path in T such that v1, vn ∈ V (B) and v2, . . . , vn−1 ∈ V (T ) \ V (B). By property 3 of the
tree decomposition either v2, . . . , vn ∈ D(B) or v2, . . . , vn ∈ A(B). We call the vertices in
V (T )\V (B) Steiner vertices and partition them into two sets SA and SB , the Steiner vertices
above the bag and the Steiner vertices below the bag. A forest F meets the configuration
(T, c) if it can be transformed into T \ SA following our contraction scheme. The cost of
F is defined to be the sum

∑
e∈E(G) stretchF (e) where stretchF (e) is the stretch of e in F

when e’s endpoints are in the same connected component of F , when e’s endpoints are in
different connected components we set stretchF (e) to be the distance between e’s endpoints
in T weighted by the cost function c. Our dynamic program will process the bags of the tree
decomposition in a leaf-to-root order. Paths in SA will represent paths that will eventually
be added to the complete solution by the dynamic program and paths in SB will represent
paths that have already been added to the partial solution by the dynamic program.

I Lemma 7. Let T be a spanning tree of G. There is a configuration (T, c) at bag B that T
conforms to such that |V (T )| = O(k).

We now describe how to populate each entry in the dynamic programming table by
considering each type of bag separately. We will prove that the forests indexed at each entry
DPi[T, c] span D(Bi) and minimize the cost over all forests meeting the configuration (T, c).
We will prove each case by induction using the fact that any solution stored at a leaf node is
a single vertex as our base case.
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6.2 Leaf nodes
If Bi is a leaf node in the tree decomposition it contains one vertex v. The only configuration
on Bi is ({v}, ∅) where ∅ is the empty function. We initialize Fi := {v} and DPi[{v}, ∅] := 0.

6.3 Introduce nodes
When Bi is an introduce node with child Bj we have Bi = Bj ∪ {v} where v is the vertex
being introduced to Bi. Let (Ti, ci) and (Tj , cj) be configurations of Bi and Bj . Let Fj be
the partial solution stored at DPj [Tj , cj ]. We say (Ti, ci) and (Tj , cj) are compatible with
one another if (Ti, ci) can be constructed from (Tj , cj) in a way that extends Fj to a partial
solution Fi in the following way. If T is a spanning tree conforming to (Tj , cj) such that
T [D(Bj)] = Fj we construct Fi and (Ti, ci) such that T [D(Bi)] = Fi and T conforms to
(Ti, ci). We enumerate the six ways Fj can be extended to Fi meeting this criteria; by N(v)
and I(v) we denote the neighbors of a vertex v and the edges incident to v.
I1 Let e = (v, u) ∈ E(G) with u ∈ E(G[Bi]). Define Ti := Tj ∪ {e} and ci(e) = `(e). This

extends Fj to Fi := Fj ∪ {e}.
I2 Let v be adjacent to some set of vertices Bv ⊆ B in G and let s ∈ SA

j such that
Bv = N(s) ∩Bj and cj(b, s) = 1 for each b ∈ Bv. Define SA

i := SA
j \ {v}, SB

i := SB
j , and

E(Ti) := E(Tj) ∪ I(v) ∩ E(Bi) with ci(e) = 1 for all e ∈ I(v) ∩ E(Bi) and ci(e) = cj(e)
for all e /∈ I(v) ∩ E(Bi). This extends Fj to Fi := Fj ∪ (I(v) ∩ I(Bv)).

I3 Let v be adjacent to some vertex b ∈ Bj in G. Let b be adjacent to some Steiner vertex
s ∈ SA

j with cj(b, s) > 1. Define Ti := Tj ∪{(v, b), (v, s)} with ci(v, s) := cj(v, s)− 1. This
extends Fj to Fi := Fj ∪ {(v, b)}.

I4 Let s ∈ SA
j and define Ti := Tj ∪ {(v, s)} with 1 ≤ ci(v, s) ≤ n. This extends Fj to

Fi := Fj ∪ {v}.
I5 Define SA

i := SA
j ∪{s} and let b ∈ Bj . Define Ti := Tj∪{(v, s), (b, s)} with 1 ≤ ci(v, s) ≤ n

and 1 ≤ ci(b, s) ≤ n. This extends Fj to Fi := Fj ∪ {v}.
I6 Let s ∈ SA

j be a Steiner vertex with deg(s) > 2 and let b ∈ Bj be adjacent to s in Tj .
We remove (b, s) and introduce a new Steiner vertex s′ with edges (b, s′), (s, s′), and
(v, s′). Hence SA

i := SA
j ∪ {s′} and Ti := (Tj \ {b, s}) ∪ {(b, s′), (s, s′), (v, s′)} such that

ci(b, s′) + ci(s, s′) = cj(b, s) and 1 ≤ ci(v, s′) ≤ n. This extends Fj to Fi := Fj ∪ {v}.

Each of these six constructions correspond to a possible way that v can be connected to
the complete solution constructed by the dynamic program. See Figure 2 for an example of
each case. In I1 v is directly connected to the partial solution at DPi[Ti, ci] via some edge in
E(Bi). In I2 and I3 v can be thought of as the next vertex along the paths being built by
the dynamic program. In I4, I5, and I6 v is connected to the complete solution via some
path that has yet to be built by the dynamic program.

We now prove that these are the only six ways we can extend Fj to Fi while preserving
the conformity.

I Lemma 8. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the bag
Bj. Let Bi be the parent of Bj introducing the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via I1 through
I6.

The value of a subproblem at an introduce node is given by

DPi[Ti, ci] = min

DPj [Tj , cj ] +
∑

e∈I(v)

stretchTi
(e)

 (3)
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(I1) The introduced vertex is at-
tached to the spanning tree via
an edge incident to a vertex con-
tained in Bi.

(I2) The introduced vertex takes
the role of a Steiner vertex in
SA

i .

(I3) The introduced vertex sub-
divides an edge between Bi and
SA

i . The introduced vertex is
the next vertex along a path be-
ing built by the dynamic pro-
gram.

(I4) The introduced vertex is at-
tached to a Steiner vertex. This
shows that the introduced ver-
tex will be connected to the
spanning tree along a path that
the dynamic program has not
yet initialized.

(I5) The newly added Steiner
vertex represents the intersec-
tion of two paths that have yet
to be initialized by the dynamic
program. The introduced ver-
tex is connected to the spanning
tree along one of these paths.

(I6) The introduced vertex is
connected to the spanning tree
along a path that has not yet
been initialized. The newly ini-
tialized path is attached to the
spanning tree on a path that has
already been initialized.

Figure 2 The six types of compatible configurations at an introduce node. The original tree
consists of the black vertices and solid edges. The modifications are represented by the white vertices
and dashed edges. The white vertex inside the circle is the vertex being introduced. The vertices
enclosed in the circle are contained in the Bi and the vertices above the circle are contained in SA

i .

where the minimum is taken over all compatible configurations of Bj . Fi is constructed from
Fj and the inclusion of v. Since D(Bi) = D(Bj) ∪ {v} the inductive hypothesis implies that
Fi spans D(Bi). Finally, we show that the cost of Fi is minimum over all forests meeting
(Ti, ci).

I Lemma 9. Fix a spanning tree T of G and an introduce node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

6.4 Forget nodes
When Bi is a forget node with child Bj we have Bi = Bj \ {v} where v is the vertex being
forgotten in Bi. Let (Ti, ci) and (Tj , cj) be configurations of Bi and Bj . We say (Ti, ci) and
(Tj , cj) are compatible with one another if (Ti, ci) can be constructed from (Tj , cj) in the
following way.
F1. If v is a leaf construct Ti by contracting the edge incident to v. If this edge is incident

to a Steiner vertex of degree 2 contract it as well.
F2. If v is an internal vertex let S ⊆ SD

j be the set of Steiner vertices with degree 2 adjacent
to v. Construct Ti by contracting each edge (v, s) for s ∈ S. Set SD

i := SD
j ∪ {v} and

ci(v, s′) := cj(v, s) + cj(s, b) where b ∈ Bj is the other neighbor of s.

I Lemma 10. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the
bag Bj. Let Bi be the parent of Bj forgetting the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via F1 or F2.
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Figure 3 A pair of compatible configurations at a forget node. The figure on the left is the
original tree, and the white vertex is the vertex being forgotten. The figure on the right is the result
of the contraction.

The value of a subproblem at a forget node is given by the recurrence

DPi[Ti, ci] = min DPj [Tj , cj ] (4)

where the minimum is taken over all (Tj , cj) compatible with (Ti, ci). We set Fi := Fj where
Fj is the partial solution stored in the minimum DPj [Tj , cj ]. Since D(Bi) = D(Bj) it follows
inductively that Fi spans D(Bi). We now use the inductive hypothesis to prove that Fi is
the minimum cost forest meeting (Ti, ci).

I Lemma 11. Fix a spanning tree T of G and a forget node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

6.5 Join nodes
When Bi is a join node with children Bj and Bk we have Bi = Bj = Bk. Given a configuration
(Ti, ci) of Bi we show how to build compatible configurations (Tj , cj) and (Tk, ck) of Bj and
Bk. At a join node we decide which previously computed paths in the partial solutions at
Bj and Bk to keep in the partial solution at Bi.

For a fixed configuration (T, c) of a bag B let S be the set of maximal, connected, induced
subgraphs of SD. We invert a tree S ∈ S by setting SD := SD \ S and SA := SA ∪ S. If
(u, v) ∈ E(S) or (u, v) has u ∈ SD

i and v ∈ B we add (u, v) to E(SA). Moreover, we do not
change the value of c(u, v). Inverting S does not change the structure of the tree it only
changes the way we interpret the Steiner vertices in S.

We enumerate over the subsets S ′ of S. In one child of Bi we invert S ′ and in the other
we invert S \ S ′. For each configuration (Ti, ci) of Bi and subset of trees S ′ ⊂ S we build a
compatible triplet of configurations in the following way. Define Tj to be the tree constructed
by inverting S ′ in Ti and Tk to be the tree constructed by inverting S \ S ′ in Ti. The cost
functions cj and ck are inherited from ci.

Figure 4 A pair of compatible configurations corresponding to an inverted tree.

Fix a tree S ∈ S ′. The configuration (Tj , cj) is anticipating the construction of a subtree
isomorphic to S in order to connect the vertices in Bj . Similarly, the configuration (Tk, ck)
has already constructed a subtree isomorphic to S connecting the vertices in Bk. Since
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D(Bj)\Bi and D(Bk)\Bi are disjoint we can safely merge the solutions to form the solution
at the configuration (Ti, ci). Hence, the stretch of the partial solution at a join node is given
by

DPi[Ti, ci] = min

DPj [Tj , cj ] + DPk[Tk, ck]−
∑

e∈E(Bi)

stretchTi
(e)

 . (5)

The minimization is taken over all triplets of compatible configurations. We subtract∑
e∈E(Bi)

stretchTi
(e)

to prevent double counting the stretch of the edges in Bi since Bi = Bj = Bk. If Fj and
Fk are the partial solutions at DPj [Tj , cj ] and DPk[Tk, ck] then the result of the join node is
Fi := Fj ∪ Fk. By induction Fj spans D(Bj) and Fk spans D(Bk), hence Fi spans D(Bi).

I Lemma 12. Fix a spanning tree of T of G and a join node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

6.6 Correctness
Let Br be the root node of the tree decomposition of G. Without loss of generality we can
assume that Br is a forget node containing one vertex vr. The only configuration on Br is
({vr}, ∅) which is a single vertex. Since every spanning tree of G conforms to ({vr}, ∅) the
solution indexed at DPr[{vr}, ∅] must be a minimum stretch spanning tree of G. We analyze
the runtime and provide complete proofs in the appendix.
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We use a charging scheme to pay for the cycles in the fundamental basis created by
our spanning tree algorithm. Each fundamental cycle with sufficiently large spread will be
assigned a charge. Moreover, the sum of the charges is an upper bound on the sum of the
lengths of the cycles.

We are now ready to define the key component to our charging scheme. Let x be a node
in A. A long component of Gx is a connected component of Gx that includes at least one
vertex within distance b of each endpoint in the linear arrangement of Gx. The number of
long components in Gx will be denoted with `x.

I Lemma 13. For any x ∈ V (G) we have (1) `x ≤ b and (2) if x is the parent of y then
`x ≤ `y.

Proof. Since a long component is a special type of connected component a vertex can be in
at most one long component. A long component contains at least one vertex from the first b
vertices in the linear arrangement. This implies there can be at most b long components,
hence `x ≤ b.

Let x be a node in A with left child y and right child z. Recall that Gx = Gy ∪Gz ∪ Sx.
The left endpoint of Gx is the left endpoint of Gy, and the right endpoint of Gx is the right
endpoint of Gz. Any edge in Sx connects a vertex within the rightmost b vertices of Gy to a
vertex within the leftmost b vertices of Gz. Therefore a long component in Gx must contain
a long component in Gy, a long component in Gz, and an edge in Sx, thus `x ≤ `y. J

Here we introduce a charging scheme that will be used to pay for the cycles added to our
basis. For any node x in the arrangement tree A let nx be the number of leaf descendants of
x. If x is the parent of y and z such that `x < `y and `x < `z we assign a charge cx = ny +nz

to x, if `x < `y and `x = `z we assign a charge cx = ny to x, similarly if `z < `x and `y = `z

we assign cx = nz, otherwise cx = 0. Next, we show that the sum over all charges is O(n).

I Lemma 14. The sum of the charges is linear in the number of vertices in G. That is,∑
x∈V (A) cx ≤ bn.

Proof. Consider the set J of nodes with exactly j long components and non-zero charge. If
u, v ∈ J such that v is a descendent of u, then all nodes on the u to v path are in J since
by Lemma 13 the number of long components is monotonic in depth. Let x be a node on
this path, let z be its child on the path, and let y be its child off the path. If both x and y
have j long components our charging scheme makes cy = 0, therefore y /∈ J and cx is the
number of leaf descendants of y. Therefore, the sets of leaf descendants from which every
node in J derives its charge are disjoint. Thus,

∑
x∈J cx ≤ n. By Lemma 13 the number of

long components in any induced subgraph is at most b, therefore
∑

x∈V (A) cx ≤ bn. J

Recall that the spread of a fundamental cycle C is defined to be φ(v`)− φ(vr) where v`

and vr are the left and right endpoints of C. In Lemma 15 we show that the spread of C
is within a constant factor of its length. In Lemma 16 we show that C’s fundamental edge
induces a charge that is within a constant factor of the spread of C. This justifies the use of
our charging scheme.

I Lemma 15. If C is a cycle with length |C| and spread s, then we have the inequality
2s
b ≤ |C| ≤ s+ 1.

Proof. The upper bound is trivial. Conversely, decompose C into the two unique v`-to-vr

paths. Each edge in these paths has a spread of at most b in the linear arrangement, so each
path needs at least s

b edges. Therefore, 2s
b ≤ |C|. J
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Let C be a fundamental cycle of T with length |C|, spread s ≥ 4b, and whose fundamental
edge is in Sx. Since C’s fundamental edge is in Sx, Gx must be the first induced subgraph
in the leaf-to-root ordering that contains C since every tree edge of C must be added to T
before the fundamental edge is considered by Algorithm 1. Let S = {v ∈ V (G) | φ(v`) ≤
φ(v) ≤ φ(vr)} where v` and vr are the left and right endpoints of C. Let u and v be the left
and right child of x in A, respectively. We call S ∩Gu the left half of S and S ∩Gv the right
half of S. Without loss of generality assume that |S ∩Gv| ≥ |S ∩Gu|. Let y be the deepest
descendant of x such that Gy contains the right half of S. Note that it may be the case that
y = v. We call y the charging node of C. This is illustrated in Figure 5. In the following
lemma we show that the existence of C implies that cy = Θ(|C|). This is the charge that
will pay for C in the cycle basis.

I Lemma 16. Let C be a fundamental cycle of T as described above. It follows that C’s
charging node y has cy > 0 and y’s left child z contributes nz to its charge. Moreover,
1
4 (|C| − 1) ≤ cy ≤ b · |C|.

Proof. Consider the two unique v`-to-vr paths, P1 and P2, in C. Since there are at least
b vertices in Gz there must be edges e1 ∈ E(P1) and e2 ∈ E(P2) connecting Gu to Gz.
One of these edges belongs to T , and the other is the fundamental edge of C. The right
endpoints of e1 and e2 must belong to long components of Gz since they belong to P1 and
P2 which extend to vr. Moreover, these long components are distinct. For otherwise, C’s
right endpoint would be in Gz, contradicting our choice of y. By the existence of P1 and
P2, these long components are merged in Gy. Since y is the parent of z with `y < `z, we
have cy ≥ nz. We also have that cy ≤ ny = 2nz. Further, by our choice of y as the deepest
descendant, nz ≤ s ≤ 4nz. Combining these inequalities with those of Lemma 15 yields
1
4 (|C| − 1) ≤ cy ≤ b · |C|. J

Figure 5 An illustration of the conditions of Lemma 16. The colored region encloses the linear
arrangement of Gx, and the partitions represent the subgraphs induced by the descendants of x.
The dotted lines represent the paths P1 and P2. The solid lines represent the edges that induce the
charge cy.

We are now ready to prove the main theorem of the section.

I Theorem 17. The spanning tree T of G produced by Algorithm 1 has FCB(T ) ≤ 4b3n.
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Proof. There are at most 1
2 (b − 1)(b − 2) edges in Sx by (2). By Lemma 16, sum of the

lengths of all of the fundamental cycles with spread at least 4b is at most∑
y∈V (A)

1
2(b− 1)(b− 2)(4cy + 1) ≤ n+ 2(b− 1)(b− 2)

∑
y∈V (A)

cy

≤ n+ 2(b− 1)(b− 2)bn
≤ 3b3n

Where the first and second inequalities come from Lemmas 16 and 14, respectively. All
fundamental cycles with spread at most 4b have their non-tree edges a node of A of height
at most log 4b. Therefore, there are at most n nodes in A with |V (Gx)| ≤ 4b that contain a
cycle. These contribute at most 1

2 (b−1)(b−2)n to the sum of the lengths of the fundamental
cycles. In total we have

FCB(T ) ≤ 3b3n+ b2n ≤ 4b3n

as desired. J

I Corollary 18. The tree T produced by our spanning tree algorithm has stretch(T ) ≤ 4b3 +2.

Proof. According to (1), the weight of the fundamental cycle basis and the minimum stretch
spanning tree are related by

stretch(T ) = 1
m

(FCB(T )−m+ 2n+ 2).

The result follows immediately from the fact that n ≤ m ≤ bn. J

B Details for the bounded treewidth dynamic program

I Lemma 7. Let T be a spanning tree of G. There is a configuration (T, c) at bag B that T
conforms to such that |V (T )| = O(k).

Proof. Let (T, c) be the configuration obtained by applying the contraction rules to T . Every
vertex v ∈ V (T ) \B is an internal vertex of T , otherwise its incident edge is not contained
in a path connecting a pair of vertices from B and should have been contracted. Further,
any vertex of V (T ) \B with degree 2 in T is adjacent to two vertices of B. Therefore, T is a
tree with at most k + 1 leaves and k + 1 vertices of degree 2. It follows that |V (T )| = O(k).

J

I Lemma 8. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the bag
Bj. Let Bi be the parent of Bj introducing the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via I1 through
I6.

Proof. If (Ti, ci) was constructed from (Tj , cj) from one of the six methods described in the
preceding subsection then either Ti and Tj are isomorphic (I2) and T conforms to (Ti, ci) or
Ti differs from Tj by the inclusion of v, or the inclusion of v and some Steiner vertex. In
I1, I4, I5, and I6 we have deg(v) = 1 and v is either adjacent to another vertex in Bi, a
Steiner vertex with degree 2 whose second neighbor is in Bi, or a Steiner vertex of degree
of degree at least 3. In each of these cases T conforms to (Ti, ci). In I3 v has degree two
and is adjacent to a vertex in the bag and some Steiner vertex. This case is equivalent to
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subdividing the edge incident to the Steiner vertex to make v, hence the Steiner vertex still
meets the conforming criteria.

Conversely, assume T conforms to (Ti, ci). If v is a leaf in Ti then it is connected to
some other vertex in Bi along some path consisting of zero or more Steiner vertices. Since T
conforms to (Tj , cj) this path must have been contracted in Tj . Hence, to build Ti we need
to undo the contraction. This corresponds to I1, I4, I5, and I6. If v is an internal vertex
in Ti with deg(v) = 2 with one neighbor in SA

i then v must have been contracted when
building Tj . In this case Ti is built by undoing the contraction which corresponds to I3. If v
is any other internal vertex in Ti then it is contained in some path whose endpoints are in
Bj . Moreover, its neighbors must also be contained in such a path otherwise they would
have been contracted. It follows that Ti is isomorphic to Tj which corresponds to I1 where
the only change is a relabeling of the vertices. J

I Lemma 9. Fix a spanning tree T of G and an introduce node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

Proof. When Bi is an introduce node we have Bi = Bj ∪{v} where Bj is the child of Bi. Let
(Tj , cj) be a configuration of Bj that is compatible with (Ti, ci). We need to show that if T
conforms to (Ti, ci) then T also conforms to (Tj , cj). Since (Ti, ci) and (Tj , cj) are compatible
Ti differs from Tj by at most the inclusion of v and possibly a Steiner vertex s adjacent to
v. By contracting the newly added edges incident to s and v we see that T conforms to
(Tj , cj). By the inductive hypothesis we have DPj [Tj , cj ] ≤

∑
e∈G[D(Bj)] stretchT (e). Since

D(Bi) = D(Bj) ∪ {v} it follows that

DPi[Ti, ci] ≤ DPj [Tj , cj ] +
∑

e∈I(v)∩Bj

stretchT (e) ≤
∑

e∈G[D(Bi)]

stretchT (e). J

I Lemma 10. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the
bag Bj. Let Bi be the parent of Bj forgetting the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via F1 or F2.

Proof. Assume T conforms to (Ti, ci). Since T conforms to (Tj , cj) and Bj \ Bi = {v} it
follows that Ti differs from Tj by the contraction of edges incident to v. These edges are
the edges contracted by rules F1 and F2. Conversely, assume (Ti, ci) was constructed from
(Tj , cj) by either F1 or F2. Since F1 and F2 apply the contraction rules for conformity on
the edges incident to v it follows that T conforms to (Ti, ci). J

I Lemma 11. Fix a spanning tree T of G and a forget node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

Proof. When Bi is a forget node we have Bi = Bj \ {v} where Bj is the child of Bi,
hence D(Bi) = D(Bj). If T conforms to (Ti, ci) then T conforms to some configuration
(Tj , cj) of Bj . The configuration (Tj , cj) can be found by undoing the contractions made
by F1 and F2 and choosing the minimum such DPj [Tj , cj ]. It follows that (Ti, ci) and
(Tj , cj) are compatible, hence DPi[Ti, ci] = DPj [Tj , cj ]. Applying the inductive hypothesis
DPj [Tj , cj ] ≤

∑
e∈G[D(Bj)] stretchT (e) proves the claim. J

I Lemma 12. Fix a spanning tree of T of G and a join node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

Proof. Let Bi be a join node with children Bj and Bk with configurations (Tj , cj) and
(Tk, ck). When (Ti, ci), (Tj , cj), and (Tk, ck) are compatible with each other the trees Ti, Tj ,
and Tk are isomorphic since they only differ by the labeling of the Steiner vertices. Hence,
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if T conforms to (Ti, ci) also conforms to (Tj , cj) and (Tk, ck). By the inductive hypothesis
we have DPj [Tj , cj ] ≤

∑
e∈G[D(Bj)] stretchT (e) and DPk[Tk, ck] ≤

∑
e∈G[D(Bk)] stretchT (e).

From the equality∑
e∈G[D(Bk)]

stretchT (e)+
∑

e∈G[D(Bk)]

stretchT (e)−
∑

e∈G[Bi]

stretchT (e) =
∑

e∈G[D(Bi)])

stretchT (e)

it follows that

DPi[Ti, ci] ≤ DPj [Tj , cj ] + DPk[Tk, ck]−
∑

e∈G[Bi])

stretchT (e) ≤
∑

e∈G[D(Bi)])

stretchT (e),

which proves the theorem. J

B.1 Runtime analysis for Section 6
In this section we analyze the runtime of our dynamic program on a graph G with treewidth
k. We begin by analyzing the size of the three dimensional array DPi[T, c]. The subscript
i represents a bag in the nice tree decomposition of G. It is known that a graph with n

vertices has a nice tree decomposition of width k with at most 4n bags [19]. It follows from
Lemma 7 that any tree T used as an index in our array has at most 2k vertices. By Cayley’s
formula there are at most (2k)2k−2 = O(22kk2k) such trees that will ever be built as an index
by our dynamic program. The cost function c has domain E(T ) which has size k. The range
of c is {1, . . . , n} since the value of the cost function is only ever incremented by one when
an edge is contracted. Hence the total number of possible cost functions is nk. We conclude
that the total size of our dynamic programming table is O(22kk2knk+1).

Next we analyze the complexity of filling in the entries of our dynamic programming
table. We will need to analyze introduce, forget, and join nodes as separate cases. In each
case we find the compatible configurations of the child nodes by undoing the operations
described in the previous section.

At an introduce node Bi we compute the value of DPi[Ti, ci] by undoing the six methods
used to build a pair of compatible configurations. For each v ∈ V (Ti) ∩ Bi we transform
(Ti, ci) into (Tj , cj) by reversing the methods described in the introduce nodes section with v
being treated as the vertex introduced to Bi. When v is a leaf in Ti or an internal vertex
with one neighbor in Bi this is done by contracting the added edges. Otherwise, we take
(Tj , cj) := (Ti, ci). Hence, equation 3 takes the minimum over O(k) compatible configurations.

When Bi is a forget node forgetting a vertex v there are two methods for finding compatible
configurations of (Ti, ci). In the case that v was a leaf in Tj we attach v to each of the O(k)
vertices in V (Ti) ∩Bi to construct each possible compatible configuration (Tj , cj). We have
to consider the two cases where v is adjacent to the vertex in V (T ) ∩Bj and where there
exists one intermediate Steiner vertex of degree 2 in between them. In the case that v was an
internal vertex we consider each of the O(k) Steiner vertices in SD

i that are adjacent to some
vertex in V (Ti) ∩Bi via some edge of cost 1. To undo the operation we subdivide each of its
incident edges with cost greater than 1 whose endpoint is in Bi. It follows that equation 4
takes its minimum over O(k) compatible configurations.

When Bi is a join node there is a pair of compatible configurations for each of the O(2k)
subsets of SD

i . It follows that equation 5 takes the minimum over O(2k) values. Computing
the entries of DPi[T, c] is dominated by the time it takes to compute the value at join nodes.
We have now proven the main theorem of the section.
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Abstract
A 2-interval is the union of two disjoint intervals on the real line. Two 2-intervals D1 and D2 are
disjoint if their intersection is empty (i.e., no interval of D1 intersects any interval of D2). There can
be three different relations between two disjoint 2-intervals; namely, preceding (<), nested (@) and
crossing (G). Two 2-intervals D1 and D2 are called R-comparable for some R ∈ {<,@, G}, if either
D1RD2 or D2RD1. A set D of disjoint 2-intervals is R-comparable, for some R ⊆ {<,@, G} and
R 6= ∅, if every pair of 2-intervals in R are R-comparable for some R ∈ R. Given a set of 2-intervals
and some R ⊆ {<,@, G}, the objective of the 2-interval pattern problem is to find a largest subset of
2-intervals that is R-comparable.

The 2-interval pattern problem is known to be W[1]-hard when |R| = 3 and NP-hard when
|R| = 2 (except for R = {<,@}, which is solvable in quadratic time). In this paper, we fully settle
the parameterized complexity of the problem by showing that it is W[1]-hard for both R = {@, G}
and R = {<, G} (when parameterized by the size of an optimal solution). This answers the open
question posed by Vialette [Encyclopedia of Algorithms, 2008].
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1 Introduction

Interval graphs and their generalizations are often used to study problems in resource
allocation, scheduling, and DNA mapping. In 2002, Vialette [13] proposed a geometric
description of RNA helices in an attempt to improve the understanding of the computational
complexity for finding structured patterns in RNA sequences. In particular, Vialette modeled
the RNA secondary structure using a set of 2-intervals, which inspired subsequent research
(e.g., see [15]) on examining the properties of the geometric graphs arising from such
representations. Vialette [14] introduced the 2-interval pattern problem, which is now a
widely-studied problem and the main topic of this paper.

A 2-interval is the union of two disjoint intervals on the real line. Two 2-intervals D1
and D2 are disjoint if their intersection is empty; that is, no interval of D1 intersects any
interval of D2. We can define three different relations between two disjoint 2-intervals: one
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a a′ b b′c c′d d′

p

r

s
t

u

q

(a)

(b)

v w

Figure 1 (a) An example for showing the three possible relations between a pair of 2-intervals;
here, the same-colour intervals form a 2-interval. Then, (a, a′) < (d, d′), (d, d′) @ (b, b′) and
(c, c′) G (d, d′). (b) An instance of 2-interval pattern problem with R = {<, G} and the 2-intervals are
{(u, w), (q, s), (r, u), (p, t)}. The 2-intervals {(p, t), (r, u)} form a largest subset that is R-comparable.

2-interval lies entirely to the left of the other one (called preceding and denoted by <), one
2-interval is nested within the other one (called nested and denoted by @), and the intervals
of the two 2-intervals alternate on the real line (called crossing and denoted by G). See
Figure 1(a) for an example; a formal definition is given in Section 2. Two 2-intervals D1 and
D2 are R-comparable for some R ∈ {<,@, G} if either D1RD2 or D2RD1. A set D of disjoint
2-intervals is R-comparable, for some R ⊆ {<,@, G} and R 6= ∅, if every pair of 2-intervals
in R are R-comparable for some R ∈ R. In the 2-interval pattern problem, we are given a
set of 2-intervals and a set R ⊆ {<,@, G}, and the objective is to compute a largest subset
of 2-intervals that is R-comparable. Figure 1(b) illustrates such an example.

The 2-interval pattern problem can model various scenarios in the context of RNA
structure prediction. While looking for certain RNA structures, some common approaches
to cope with intractability are either to restrict the class of pseudoknots [11] or to apply
heuristics [4, 10, 12]. Vialette [14] proposed that one can obtain a relevant set of 2-intervals
from an RNA sequence by selecting stable stems, e.g., using a simplified thermodynamic model
without accounting for loop energy [12, 14, 16]. Then, the prediction of the RNA structure
is equivalent to finding a maximum subset of non-conflicting (i.e., disjoint) 2-intervals.

Related work. Vialette [14] observed that if |R| = 1, then the 2-interval pattern problem is
polynomial-time solvable by reductions to the maximum independent set problem on interval
graphs, or to the maximum clique problem on comparability graphs. The running time of
these algorithms have been improved since then, and expressed in terms of the number of
input 2-intervals and various interval-related parameters such as their lengths or overlap [3].
For the case when |R| = 2, the problem is solvable in polynomial time when R = {<,@} [14].
However, the problem is known to be NP-hard if R = {<, G} or R = {@, G}, even if the
intervals of every 2-interval have unit length [14, 2]. If |R| = 3 (i.e., R = {<,@, G}), then
the problem is APX-hard [1].

The approximability of the NP-hard models of the 2-interval pattern problem was studied
by Crochemore et al. [5]. They gave polynomial-time algorithms for the problem with
approximation factors 4 when R = {<,@, G} or R = {@, G}, and 6 when R = {<,@}. They
also showed that the results hold for the weighted case; i.e., when each 2-interval is associated
with a weight and the goal is to find a maximum weight subset. For the weighted version and
when R = {<,@, G}, a 2-approximation algorithm was given by Bar-Yehuda et al. [1]. These
factors are improved to 3 when the intervals of every input 2-interval have unit length [5],
where they also considered the case when the 2-intervals are weighted. For R = {<, G}
(and arbitrary input 2-intervals), Jiang [7] improved the approximation factor to 2 and
subsequently to 1 + ε for any ε > 0 [8].
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The problem is W[1]-hard when R = {<,@, G}, because in this case, the problem is
equivalent to computing a maximum independent set on 2-interval graphs, and the latter is
known to be W[1]-hard [6]; see Section 3 for more details. For |R| = 2, to the best of our
knowledge, the only parameterized algorithm is the work of Blin et al. [2] who proved that
the problem is fixed-parameter tractable, but only when R = {@, G}, the input intervals all
have unit length and the tractability is with respect to the forward crossing number : the
maximum number of 2-intervals that cross a 2-interval “from the right”.

Our results. In this paper, we answer a question of Vialette [15] by proving that the
2-interval pattern problem is W[1]-hard for R = {@, G} and R = {<, G} when parameterized
by the size of an optimal solution. Our W[1]-hardness result is inspired by the reduction
of the k-independent set problem used by Fellows et al. [6]. Their reduction requires all
three relations (i.e., they prove the W[1]-hardness of the 2-interval pattern problem when
R = {<, G,@}). Prior to our work, it was known that the complexity of the problem is
polynomial when R = {<,@} [3], but it was unknown whether the problem is fixed-parameter
tractable (when parameterized by the size of an optimal solution) or it is W[1]-hard for
R = {@, G} and R = {<, G}. Hence, our W[1]-hardness result fully settles the parameterized
complexity of the 2-interval pattern problem problem.

2 Preliminaries

In this section, we give some definitions and notation that will be used throughout the paper.
A 2-interval D is the union of two disjoint intervals on the real line; that is, D = (A,B)

and the interval A lies to the left of the interval B. For a pair of disjoint intervals I, J ,
we write I < J when I is to the left of J . Two 2-intervals Di and Dj are disjoint if
(Ii ∪ Ji) ∩ (Ij ∪ Jj) = ∅. Moreover, for two disjoint 2-intervals Di and Dj , we say that Di

is preceding (resp., nested in, crossing) Dj if Ii < Ji < Ij < Jj (resp., Ij < Ii < Ji < Jj ,
Ii < Ij < Ji < Jj . We write Di < Dj (resp., Di @ Dj , Di G Dj) when Di is preceding (resp.,
nested in, crossing) Dj .

We say that two 2-intervals Di and Dj are R-comparable, for some R ∈ {<,@, G}, if (i) Di

and Dj are disjoint and (ii) either DiRDj or DjRDi. Let S be a set of n 2-intervals on the
real line, and let R ⊆ {<,@, G} such that R 6= ∅. Then, a set D ⊆ S is called R-comparable
if every pair of 2-intervals in D are R-comparable for some R ∈ R. Given S and some
R ∈ {<,@, G}, the objective of the 2-interval pattern problem is to compute a largest subset
D ⊆ S such that D is R-comparable.

Given a graph G and a parameter k, the k-independent set problem asks whether there
is an independent set of size k in G. Fellows et al. [6] proved that the k-independent set
problem is W[1]-hard on 2-interval graphs when R = {<, G,@}. A 2-interval graph is the
intersection graph of a set of 2-intervals on the real line. Our W[1]-hardness results are also
based on showing reductions from the k-Multicoloured Clique Problem, which is known to be
W[1]-hard [6]. The problem is defined as follows.

Problem: k-Multicoloured Clique.
Input: A graph G, and a vertex-colouring c : V (G)→ {1, 2, . . . , k} for G.
Question: Is there a clique of size k in G such that, for each c ∈ {1, 2, . . . , k}, there is
exactly one vertex in the clique that has colour c?
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3 W[1]-Hardness

In this section, we prove that the 2-interval pattern problem is W[1]-hard when R = {@, G}
and R = {<, G}. Our reduction is inspired by that of Fellows et al. [6]. Let (G, c, k) be an
instance of the k-multicoloured clique problem (we assume w.l.o.g. for our purposes that c is
a proper colouring1). We construct a set F of 2-intervals such that G has a multicoloured
clique of size k if and only if F contains a set of k′ = 2k + 4

(
k
2
)
disjoint 2-intervals that

are pairwise comparable in one of the relations in R; the value of k′ will be clear from our
construction. We first describe an outline of the construction and the corresponding gadgets.
Then, we give the details on how to organize the gadgets on the real line specific to each
of the sets R = {@, G} and R = {<, G}. For a colour i ∈ {1, 2, . . . , k}, let Vi(G) denote the
set of vertices of G that have colour i. Moreover, for every distinct pair of colours i, j, let
E(i,j)(G) denote the set of edges (u, v) of G such that {c(u), c(v)} = {i, j}. That is, E(i,j)(G)
consists of all the edges whose end vertices are coloured with two distinct colours i and j.

Outline. The construction consists of two main types of gadgets: selection and validation.
By selection gadgets, we ensure that 2-intervals representing k vertices with distinct colours
and

(
k
2
)
edges with distinct pairs of colours are selected. By validation gadgets, we ensure that

the selected set of 2-intervals are valid in the sense that the k selected vertices are actually
adjacent in the graph and the selected edges are indeed over the selected set of vertices. We
group the 2-intervals corresponding to vertices of the same colour together in a vertex-selection
gadget in such a way that any feasible solution for the 2-interval pattern problem will have
2-intervals corresponding to one vertex per vertex-selection gadget. Similarly, we group the
2-intervals corresponding to edges with the same pairs of distinct colours {i, j} together in a
edge-selection gadget such that any feasible solution for the 2-interval pattern problem will
have 2-intervals corresponding to one edge (u, v) with {c(u), c(v)} = {i, j}. We will then
organize the gadgets on the real line in such a way that any feasible solution will contain
2-intervals that are R-comparable.

Given (G, c, k), we associate one 2-interval Iv for each vertex v ∈ V (G). Moreover, we
associate four 2-intervals for each edge (u, v) ∈ E(G): two 2-intervals I(u,v) and I(v,u) for
each “direction” of the edge and two 2-intervals I{u,v} and I ′

{u,v} that are undirected. The
2-intervals for “directed” edges will be used for validation, and we will show below how they
are constructed. Therefore, the number of 2-intervals of the constructed instance will be
|V (G)|+ 4|E(G)|. We next give the details of each type of gadgets.

Vertex-selection gadget. For each colour c ∈ {1, 2, . . . , k}, we construct a vertex-selection
gadget. The gadget has two components, which we denote by I1(c) and I2(c); see Figure 2
for an illustration. The component I1(c) has |Vc(G)| “rows” of intervals, each of which has
(k + 1) “columns”; each row corresponds to a vertex of G with colour c. The intervals in the
same column pairwise intersect. Moreover, for the intervals in a fixed column j, we assign an
offset such that each interval in row i > 1 intersects the interval that is in column j + 1 and
row i− 1; see Figure 2. The component I2(c) consists of two columns of intervals, and each
column has |Vc(G)| rows. Here, we assign an offset such that the interval in the first column
and row i intersects the interval in the second column and row i+ 1 (see Figure 2).

For each vertex v ∈ Vc(G), we associate two 2-intervals Iv and I ′
v as follows. The first

(resp., second) 2-interval Iv (resp., I ′
v) is composed of the interval in the first (resp., last)

column of I1(c) that corresponds to v and the interval in the first (resp., second) column of

1 Otherwise, one can remove the edges whose end vertices are coloured with the same color.
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I1(c) I2(c)

v

k + 1 columns 2 columns

|Vc(G)|

Figure 2 A vertex-selection gadget and the two 2-intervals Iv and I ′
v corresponding to a vertex v.

I2(c) that corresponds to v. These 2-intervals are illustrated with dashed lines in Figure 2.
Each of the remaining k columns in I1(c) corresponds to a colour in {1, 2, . . . , k} \ {c}. These
|Vc(G)| × (k − 1) intervals are later paired with intervals from edge-selection gadgets to
form 2-intervals that correspond to “directed” edges. Notice that the intervals of the first
column of I1(c) pairwise intersect, ensuring that at most one 2-interval corresponding to a
vertex with colour c can appear in any feasible solution. Similarly, for the |Vc(G)| × (k − 1)
intermediate intervals of I1(c) (i.e., the intervals of I1(c) excluding those in the first and last
column), it means that all the edges of a k-multicoloured clique with at least one endpoint
with colour c are incident to the same vertex in Vc(G).

I Lemma 1. Let S be feasible a solution for the 2-interval pattern problem, and consider
the vertex-selection gadget T corresponding to colour c. Moreover, let M ⊆ S be the set of
2-intervals such that each 2-interval in M has at least one interval in T . If |M | ≥ k + 1,
then all the intervals in M ∩ T are selected from the same row of T .

Proof. Since there are (k+1) columns in the component I1(c) of T ,M cannot have more than
(k + 1) 2-intervals, where each containing at least one interval from T . Hence, |M | = k + 1,
This means that M must contain exactly one interval from every column of I1(c) and hence,
one from every column of I2(c). Consider the interval in the first column of I1(c) (that is
in M) and assume that this interval is in row i, for some 1 ≤ i ≤ |Vc(G)|; it corresponds to
a vertex v ∈ Vc(G). We now show that every other interval in M ∩ T must also be in row
i. Since M ⊆ S and S is a feasible solution, then the interval in the first column of I2(c)
and row i must also be in M because these two intervals form one of the two 2-intervals
corresponding to v. Now, suppose that the interval in M that is from the second column
of I2(c) is in row i′. Clearly, i′ ≤ i (i.e., i′ lies below i) because otherwise the interval of
M that is in the first column of I2(c) would intersect this interval due to the offset. Since
M ⊆ S and S is a feasible solution, M must contain the interval in the last column of I1(c)
that is in row i′ (as only these two would form a valid 2-interval while considering I2(c)). If
i′ < i, then it is not possible to have exactly one interval from column j of I1(c) in M for all
j = 2, 3, . . . , k because the offset would imply that at least two intervals must intersect in
M . Therefore, i′ = i. In the same way, we can show that the subsequent intervals of M ∩ T
must also be in row i. J

Observe that the assignment of two 2-intervals for each vertex v ∈ Vc(G) and placement of
their second intervals in I2(c) with an offset allowed us to argue that the remaining intervals
are also selected from the same row of the vertex-selection gadget. We will use a similar
construction to argue the same for edge-selection gadgets. Before we continue, one might
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C1(i, j) C2(i, j)

(u, v)

(a) (b)

4 columns 2 columns

|E(i,j)(G)|

Figure 3 An illustration of the two components of an edge-selection gadget; namely, (a) C1(i, j)
and (b) C2(i, j). The two 2-intervals I{u,v} and I ′

{u,v} corresponding to the edge (u, v) ∈ E(G) are
shown dashed-dotted red.

wonder why we needed I2(c) and why could not we have only I1(c) with one 2-interval for
each vertex. Although this would force the selection of remaining intervals from the same row,
it is impossible to place such a gadget on the real line while maintaining R-comparability.
To ensure R-comparability, we will need to place I1(c) and I2(c) on different parts of the
real line, possibly far apart from each other.

Edge-selection gadget. For each distinct pair of colours (i, j), we construct an edge-selection
gadget. The gadget has two main components, which we denote by C1(i, j) and C2(i, j).
The component C1(i, j) has |E(i,j)| rows of intervals each of which corresponds to an edge
(u, v) of G such that {c(u), c(v)} = {i, j}; see Figure 3(a). Each row has four columns of
intervals; the intervals in the same column pairwise intersect. Moreover, there is an offset
such that an interval in column t intersects the interval in column t+ 1 that is in the row
immediately above it. The component C2(i, j) has |E(i,j)| rows and only two columns. There
is also an offset between the intervals similar to the offset defined for the intervals in C1(i, j);
see Figure 3(b). The row r in C1(i, j) corresponds to an edge (u, v) ∈ E(G) if and only if
the row r in C2(i, j) corresponds to the edge (u, v) ∈ E(G).

Recall that for each edge in E(G), we associate four 2-intervals; we next describe the
construction of these 2-intervals. Let (u, v) ∈ E(G) such that c(u) = i, c(v) = j and i < j.
Then, the 2-interval I{u,v} (resp., I ′

{u,v}) is composed of the interval in the first column (resp.,
last column) of the row corresponding to (u, v) in C1(i, j) and the first interval (resp., second
interval) of the row corresponding to (u, v) in C2(i, j). See Figure 3 for an illustration. The
2-interval I(u,v) (associated with the “directed” edge (u, v)) is composed of the interval in
the second column of C1(i, j) and the interval in the vertex-selection gadget of i that is in
the row corresponding to vertex u and the column for colour j. The 2-interval corresponding
to the “directed” edge (v, u) is constructed in a similar way: it consists of the interval in the
third column of C1(i, j) and the interval in the vertex-selection gadget of j that is in the row
corresponding to vertex v and the column for colour i. Figure 4 illustrates an example for
constructing the two 2-intervals corresponding to such “directed” edges. Note that the latter
two 2-intervals that correspond to “directed” edges are used for validation: they ensure that
if the 2-intervals of a vertex u with colour i is selected, then all the selected edges with an
endpoint of colour i are incident to u.
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(1, 2)
(2, 1)

C1(k − 1, k)

1 2

C1(1, 2) C1(1, 3)I1(1) I1(2) I1(k)

2 1

Figure 4 An illustration of the two 2-intervals corresponding to the “directed” edges (u, v) and
(v, u), assuming c(u) = 1 and c(v) = 2. The dashed (red) rectangles shown in gadgets I1(·) indicate
the first and last columns of intervals in the gadget.

I Lemma 2. Let S be a feasible solution for the 2-interval pattern problem, and consider an
edge-selection gadget T . If there are four 2-intervals in S such that each of them has at least
one interval in T , then all such four 2-intervals must have intervals from the same row of T .

Proof. The proof uses an argument similar to the one we used in the proof of Lemma 1.
Suppose that T corresponds to edges with colours i and j, where i < j. Now, consider the
gadget C1(i, j). Clearly, S can have at most one interval from each column of C1(i, j). Since
S has four 2-intervals that have at least one interval in T , the set S contains exactly one
interval from each column of T . Suppose that the interval of the first column of C1(i, j)
(that is in S) is at row t for some 1 ≤ t ≤ |E(i,j)|. Notice that this interval forms a 2-interval
with the first interval in row t of C2(i, j) and so that interval must also be in S (these two
intervals form a valid 2-interval and S is a feasible solution). We now show that the interval
of the last column of C1(i, j) (that is in S) must also be at row t. Suppose for the sake of
contradiction that it is at a row t′ 6= t. First, by construction, this interval forms a 2-interval
with the second interval in row t′ of C2(i, j) and so that interval must also be in S. If t′ > t,
then the second interval in row t′ of C2(i, j) intersects with the first interval in row t of
C2(i, j) by the construction and so they cannot both be in S – a contradiction. Moreover, if
t′ < t, then S cannot contain an interval from both the second and third columns of C1(i, j)
because at least one of them intersects the interval of S that is in either the first or the last
column of C1(i, j) – a contradiction. Therefore, t′ = t and so the two intervals in S that are
in C2(i, j) are also from the same row t. Finally, the fact that t′ = t forces the intervals in
the second and third columns of C1(i, j) (that are in S) to be also from the row t. J

By the above constructions, we obtain the set F of 2-intervals as

F = {Iv, I
′
v|v ∈ V (G)} ∪ {I{u,v}, I

′
{u,v}, I(u,v), I(v,u)|(u, v) ∈ E(G)}.

Since we associate each vertex with two 2-intervals and each edge with four 2-intervals, we
have |F| = 2|V (G)|+ 4|E(G)|. The construction of our gadgets can all be done in FPT-time.
In the following, we show the arrangement of the gadgets on the real line specific to each of
R = {@, G} and R = {<, G}. Then, we show that any k-multicoloured clique in G corresponds
to 2k + 4

(
k
2
)
pairwise disjoint 2-intervals of F . For brevity, let k′ = 2k + 4

(
k
2
)
for the rest of

this section.

3.1 Hardness for R = {@, G}
We now show how to arrange the gadgets on the real line when R = {@, G}. To this end,
consider the ordering {1, 2, . . . , k} of colours. We place the gadgets on disjoint regions of
the real line from left to right as follows. First, for each pair of distinct colours i and j,
1 ≤ i < j ≤ k, we place the gadget C2(i, j) on the line in lexicographic order; that is, we first
place the gadgets C2(1, j) for all j = 2, . . . , k, then the gadgets C2(2, j) for all j = 3, . . . , k
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2112

(u,w)

(u, v) (v, u)
(u,w)

C1(k, k − 1)C2(k, k − 1) I1(1) I1(2) I1(k)
C1(1, 2) C1(1, 3) I2(1) I2(2) I2(k)

C2(1, 2) C2(1, 3)

Figure 5 The arrangement of gadgets for R = {@, G}.

and so on. Then, we place the gadgets I1(c) (1 ≤ c ≤ k) from left to right in the increasing
order of c. Next, we place the gadgets C1(i, j), 1 ≤ i < j ≤ k in the same order as we placed
their corresponding gadgets C2(i, j). Finally, we place the gadgets I2(c) (1 ≤ c ≤ k) in the
same order as we placed their corresponding gadgets I1(c). See Figure 5 for an example.
This forms our instance (F ,R, k′) of the 2-interval pattern problem, where R = {@, G} and
k′ = 2k+ 4

(
k
2
)
. Clearly, this arrangement can be done in FPT-time. Moreover, one can verify

that any two 2-intervals in this instance are R-comparable, where R = {@, G}.

I Lemma 3. Graph G has a k-multicoloured clique if and only if the 2-interval pattern
problem on F has a feasible solution of size k′ with respect to R = {@, G}.

Proof. (⇒) Suppose that G has a k-multicoloured clique. For each colour c, let vc be the
vertex in the clique with colour c. Then, for every colour c, we select the two 2-intervals
Ivc and I ′

vc
from the vertex-selection gadget corresponding to c. Moreover, for every pair

of colours i and j with i < j, let (ui, uj) be the edge in the clique such that c(ui) = i and
c(uj) = j. Then, we select the four 2-intervals I{ui,uj}, I

′
{ui,uj}, I(ui,uj) and I(uj ,ui). In this

way, we have selected k′ 2-intervals in total. Moreover, by the arrangement of gadgets on the
real line, one can verify that this set of k′ 2-intervals is R-comparable.

(⇐) Consider a set S of k′ 2-intervals that is a feasible solution for the 2-interval pattern
problem with respect to R = {@, G}. First, observe that S can have at most one interval
from the first column of every vertex-selection gadget. We now show that it must contain at
least one such interval from the first column of every vertex-selection gadget. Let S1 ⊆ S

(resp., S2 ⊆ S) be the set of 2-intervals such that each 2-interval in S1 has at least one
interval in a vertex-selection gadget (resp., an edge-selection gadget). Moreover, let S3 ⊆ S
(resp., S4 ⊆ S) be the set of 2-intervals such that each 2-interval in S3 (resp., S4) has exactly
two intervals from the same vertex-selection gadget (resp., the same edge-selection gadget).
Observe that |S2| ≤ 4

(
k
2
)
because the component C1(·) of an edge-selection gadget has four

columns and no two intervals in S can come from the same column of any given C1(·). This
means that |S3| ≥ 2k. But, there are exactly k vertex-selection gadgets and at most two
2-intervals of S3 can be from the same vertex-selection gadget. Hence, |S3| = 2k and so
|S2| = 4

(
k
2
)
. Since there are exactly

(
k
2
)
edge-selection gadgets, it follows that we have exactly

four 2-intervals in S that come from the same edge-selection gadget. By Lemma 2, all the
2-intervals coming form the same edge-selection gadget lie in the same row of the gadget.

On the other hand, |S1 \S3| ≤ k(k−1) = 2
(

k
2
)
because we have k vertex-selection gadgets,

the component I1(·) of any vertex-selection gadget has k − 1 “internal” intervals, and at
most one of such internal intervals (per column, per vertex-selection gadget) can be in S.
Notice that a 2-interval has exactly one interval in a vertex-selection gadget if and only if
it has exactly one interval in an edge-selection gadget. Therefore, S2 \ S4 = S1 \ S3. Since
{S1, S3, S4} (or, S2, S3, S4) forms a partition of S, we must have |S2 \ S4| = |S1 \ S3| = 2

(
k
2
)
.

That is, there are exactly 2
(

k
2
)
2-intervals that have exactly one interval in a vertex-selection

gadget and the other interval in an edge-selection gadget. Notice that at most k − 1 of
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21 12

(u,w)

(u,w) (u, v)

C2(1, 2) C2(1, 3) C2(k − 1, k) C1(1, 2) C1(1, 3) C1(k − 1, k) I1(1) I1(2) I1(k) I2(1) I2(2) I2(k)

(v, u)

Figure 6 The arrangement of gadgets for R = {<, G}.

such 2
(

k
2
)
2-intervals can come from the same vertex-selection gadget. Since there are k

vertex-selection gadgets, there are exactly k − 1 of them from each vertex-selection gadget.
This means that, for each vertex-selection gadget, there are k + 1 2-intervals in S that come
from this gadget. By Lemma 1, these k + 1 2-intervals all come from the same row of the
gadget. Hence, we select the k vertices corresponding to these k rows. We now claim that
they are a feasible solution for the k-multicoloured clique. Clearly, each selected vertex has a
unique colour. Moreover, take any colour c and let u be the vertex that we selected with
colour c. Recall that all the intervals of S that come from the vertex-selection gadget c are
in the same row as that of u. There are k − 1 of them (excluding those corresponding to u
itself) and each is paired with an interval in an edge-selection gadget corresponding to the
pair (c, c′) of colours, for all colours c′ 6= c. Therefore, there exists an edge between u and
every other selected vertex and so the k selected vertices are indeed a feasible solution for
the k-multicoloured clique. J

I Theorem 4. The 2-interval pattern problem is W[1]-hard when R = {@, G}.

3.2 Hardness for R = {<, G}
We now show that the 2-interval pattern problem is W[1]-hard even when R = {<, G}. To
this end, we show how to arrange the gadgets on the real line such that any pair of two
2-intervals are {<, G}-comparable. Then, one can prove a result similar to Lemma 3 for
R = {<, G}, concluding that the problem is W[1]-hard even for R = {<, G}. Here, we only
show the arrangement.

Consider the ordering {1, 2, . . . , k} of colours. We place the gadgets on disjoint regions
of the real line from left to right as follows. First, for each pair of distinct colours i and j,
1 ≤ i < j ≤ k, we place the gadget C2(i, j) on the line in this order; that is, we first place
the gadgets C2(1, j) for all j = 2, . . . , k, then the gadgets C2(2, j) for all j = 3, . . . , k and
so on. Then, we place the gadgets C1(i, j), 1 ≤ i < j ≤ k in the same order as we placed
their corresponding gadgets C2(i, j). Next, we place the gadgets I1(c) (1 ≤ c ≤ k) from left
to right in the increasing order of c. Finally, we place the gadgets I2(c) (1 ≤ c ≤ k) in the
same order as we placed their corresponding gadgets I1(c). See Figure 6 for an example.
This forms our instance (F ,R, k′) of the 2-interval pattern problem, where R = {<, G} and
k′ = 2k + 4

(
k
2
)
. Clearly, this arrangement can be done in FPT-time and one can verify that

every of pair of 2-intervals are {<, G}-comparable.

I Theorem 5. The 2-interval pattern problem is W[1]-hard when R = {<, G}.

4 Conclusion

We showed that 2-interval pattern problem is W[1]-hard when R = {@, G} and R = {<, G};
hence, fully settling the parameterized complexity of the problem when parameterized by
the size of an optimal solution. It would be interesting to examine FPT-algorithms with
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respect to other parameters such as the maximum number of pairwise intersecting 2-intervals.
Another direction would be to consider the complexity of a variant of the problem in which
every two input intervals are pairwise disjoint; i.e., each interval is a point on the real line [9].
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Abstract
We consider the problem of coloring an interval graph dynamically. Intervals arrive one after the
other and have to be colored immediately such that no two intervals of the same color overlap. In
each step only a limited number of intervals may be recolored to maintain a proper coloring (thus
interpolating between the well-studied online and offline settings). The number of allowed recolorings
per step is the so-called recourse budget. Our main aim is to prove both upper and lower bounds on
the required recourse budget for interval graphs, given a bound on the allowed number of colors.

For general interval graphs with n vertices and chromatic number k it is known that some
recoloring is needed even if we have 2k colors available. We give an algorithm that maintains a
2k-coloring with an amortized recourse budget of O(log n). For maintaining a k-coloring with k ≤ n,
we give an amortized upper bound of O(k · k! ·

√
n), and a lower bound of Ω(k) for k ∈ O(

√
n),

which can be as large as Ω(
√

n).
For unit interval graphs it is known that some recoloring is needed even if we have k + 1 colors

available. We give an algorithm that maintains a (k + 1)-coloring with at most O(k2) recolorings
per step in the worst case. We also give a lower bound of Ω(log n) on the amortized recourse budget
needed to maintain a k-coloring.

Additionally, for general interval graphs we show that if one does not insist on maintaining an
explicit coloring, one can have a k-coloring algorithm which does not incur a factor of O(k · k! ·

√
n)

in the running time. For this we provide a data structure, which allows for adding intervals in
O(k2 log3 n) amortized time per update and querying for the color of a particular interval in O(log n)
time. Between any two updates, the data structure answers consistently with some optimal coloring.
The data structure maintains the coloring implicitly, so the notion of recourse budget does not apply
to it.
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1 Introduction

Graph coloring is one of the most prominent disciplines within graph theory, with plenty
of variants, applications, and deep connections to theoretical computer science. A proper
k-coloring of a graph, for a positive integer k, is an assignment of colors in {1, . . . , k} to
the vertices of the graph in such a way that no two adjacent vertices share a color. The
chromatic number of the graph is the smallest integer k for which a proper k-coloring exists.
In general, it is NP-hard [17, 36] to approximate the chromatic number of an n-vertex graph
to within a factor of n1−ε for any constant ε > 0. The literature offers many results for
restricted graph classes.

In this paper, we consider the class of interval graphs, for which a linear time greedy
algorithm achieves the optimum coloring [26]. Our main interest is in a dynamic setting,
where intervals arrive one at a time, and one needs to maintain the coloring after each
interval addition. We mainly study how many vertex recolorings are needed to maintain
a reasonable coloring. The number of changes one needs to introduce to the maintained
solution (in our case vertex recolorings) upon an update is referred to as recourse bound
or recourse budget in the literature. A recourse budget of zero coincides with the online
setting, where the algorithm’s decisions are irrevocable. The online model is natural for many
problems [14, 24, 27, 29] and has been widely studied, very often revealing pessimistic lower
bounds. It is natural to ask if the situation improves if one allows a limited recourse budget.
This model has been successfully applied to a variety of problems, including spanning tree
and Steiner tree variants, bipartite matchings, and coloring [2, 3, 9, 10, 11, 16, 23, 21]. The
proposed algorithms could often be efficiently implemented [3, 9, 21].

Formally, we are interested in the following problem. We get a sequence of half-open
intervals {[ai, bi)}ni=1, which defines a sequence of instances Ij = {[ai, bi)}ji=1, where Ij
differs from Ij−1 by one interval. The instances may be interpreted as graphs, where the
nodes are intervals and the edges connect intersecting intervals. The intervals arrive one at a
time. After the j-th interval is revealed, the algorithm needs to compute a proper coloring
Cj for the intersection graph of Ij . We wish to minimize the recourse budget, which is the
number of vertices with different colors in Cj and Cj−1. We also consider the special case of
unit interval graphs, where each interval is of the form bi = ai + 1. For the sake of simplicity
we assume that every instance Ij is k-colorable and k is known a priori, but it is not difficult
to get rid of this assumption. Our results are summarized in Table 1 together with some
known results from the literature for comparison. Unless stated otherwise, all the bounds in
the table are amortized, i.e., they bound the average recourse budget per insertion.

For general interval graphs our first result shows that if we allow O(logn) recolorings
per interval insertion, we can improve the ratio of 3 of the online algorithm by Kierstead
and Trotter [20] to 2. Since the ratio of 3 is best possible in the online setting, our result
shows that only a modest number of recolorings are needed to obtain an improvement. If
we allow a higher number of O(k · k! ·

√
n) recolorings per update, we can even maintain an

optimal solution. A trivial algorithm that recolors all intervals in each step has a recourse
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Table 1 Our results for interval graphs (top) and unit interval graphs (bottom). All runtimes
are amortized, if not otherwise stated.

recourse budget
colors upper bound lower bound

general

3k − 2 0 [20] 0
2k O(log n) (Thm 5) > 0 [20]

k min{n,O(k · k! ·
√

n)} (Thm 10)


Ω(k) (Cor 21) for k ∈ O(

√
n)

Ω(
√

n) (Cor 20) for k ∈ Θ(
√

n)
Ω(log n) (Thm 1) for k = 2

unit
interval

2k − 1 0 [5] 0
k + 1 O(k2) worst case (Thm 2) > 0 [5]

k min{n,O(k · k! ·
√

n)} (Thm 10) Ω(log n) (Thm 1)

budget of n, resulting in the bound min{n,O(k · k! ·
√
n)} of Table 1. Note that this bound

is non-trivial (i.e., smaller than n) for k ∈ O( logn
log logn ). We complement these results with a

lower bound for the budget of Ω(k), which can be as high as Ω(
√
n) if k grows with n. We

obtain another lower bound of Ω(logn) for k = 2. The latter bound is even valid for unit
interval graphs, for which we also show that if we allow a budget of O(k2) recolorings (i.e.,
independent of n), we can maintain a solution using just one extra color compared to the
optimum. Due to our lower bound of Ω(logn) for maintaining an optimal coloring, it is clear
that an extra color is necessary if we want to keep the budget constant for a constant k.

It is straightforward to see that our algorithms, except for the exact algorithm for general
interval graphs that uses an amortized recourse budget of O(k · k! ·

√
n), can be implemented

efficiently. However, we can improve the exact algorithm significantly if we do not insist
on maintaining an explicit coloring, i.e., if we do not require that the color of an interval
can be retrieved in constant time. In Section 5 we provide a data structure, which allows
for adding intervals in O(k2 log3 n) amortized time per update and querying for the color
of a particular interval in O(logn) time. Between two updates the data structure answers
queries consistently with some optimal coloring. The data structure maintains the coloring
implicitly, so the notion of recourse budget does not apply to it.

1.1 Related work
Due to the inapproximability of the graph coloring problem, the positive results for dynamic
coloring of general graphs are mostly of heuristic and experimental nature [25, 28, 30, 32, 35].
From the theoretical perspective, just recently there have been a few results concerning the
recourse budget for coloring general graphs [2, 33] and dynamic general graph coloring with
∆ + 1 colors [4], where ∆ is the maximum degree in the graph.

Barba et al. [2] devise two complementary algorithms for the regime of adding and
removing edges. For any d > 0, the first (resp. second) algorithm maintains a k(d + 1)-
coloring (resp. k(d+ 1)n1/d-coloring) of a k-colorable graph and recolors at most (d+ 1)n1/d

(resp. d) vertices per update, where updates include edge and vertex additions and removals.
The authors also show that the first trade-off is essentially tight, and the bad example is a
tree. So if one insists on a constant approximation ratio, one must incur polynomial recourse
budget for every class of graphs that contains trees. The symmetry between these trade-offs
may make it tempting to believe that the second trade-off is also tight. However, Solomon
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and Wein [33] show, that in the regime of adding and removing edges, there is a deterministic
algorithm for maintaining an O(kd log3 n)-coloring with O(d) recolorings per update step for
any d ∈ O(logn). They also show that a randomized algorithm performs slightly better.
Solomon and Wein additionally consider bounded arboricity graphs, for which, using their
result on the recourse budget, they provide an efficient dynamic algorithm maintaining an
O(α log2 n)-coloring with polyloglog amortized time per update. Bhattacharya et al. [4]
studied the problem of efficient dynamic coloring when the maximum degree of the dynamic
graph remains bounded by ∆ at all times. They present a randomized (resp. deterministic)
algorithm for maintaining a (∆ + 1)-coloring (resp. ∆(1 + o(1))-coloring) with amortized
O(log ∆) (resp. polylog(∆)) update time.

To the best of our knowledge, no dynamic algorithms for the class of interval graphs
have been proposed in the literature. Our motivation for studying this class of graphs in the
incremental regime stems from the rich literature on the problem of online poset coloring.
Schmerl asked whether an effective online chain partitioning algorithm exists, and this was
answered in the affirmative by Kierstead in [18]. His algorithm uses at most (5w−1)/4 chains
on posets of width w. Szemerédi proved a quadratic lower bound of

(
w+1

2
)
(see [5, 19] for a

proof). In [7], Bosek and Krawczyk provide an online algorithm that partitions posets of
width w into at most w13 log2 w chains. This yields the first subexponential upper bound for
the online chain partitioning problem. In [6] Bosek et al. improve this to w6.5 log2 w+7 with a
shorter proof. Very recently, in [8] Bosek and Krawczyk present an online algorithm that
partitions posets of width w into wO(log logw) chains. At this point, the problem of whether
there is an online algorithm using polynomially many chains is still open.

The problem of online interval poset chain coloring is equivalent to the problem we are
studying with the recoloring budget limited to zero. It has been extensively studied in
many different variants [1, 5, 12, 20]. A well-known theorem of Kierstead and Trotter [20],
translated to our setting, states that a (3k−2)-coloring of k-colorable graph can be maintained
online and this is the best we can do if we do not allow recolorings. A folklore result [5]
states that for unit interval graphs a (2k− 1)-coloring of k-colorable graph can be maintained
online and this is also tight. It is natural to wonder how many recolorings we need when
the approximation ratio is going from 3 down to 1 for general interval graphs, or from 2
down to 1 for unit interval graphs. This is the main question we aim to answer in this paper.
Nevertheless, it is not hard to show that our (k + 1)-coloring algorithm for unit interval
graphs can be extended to a fully dynamic setting (allowing also interval removals). In
particular, this gives one more non-trivial class of graphs where the lower bound of Barba et
al. [2] does not apply.

2 Unit intervals

In this section we focus on the class of unit interval graphs. This class is equivalent with proper
interval graphs, i.e., interval graphs where no interval is contained in another interval [31].
We show a lower-bound of Ω(logn) for the recourse budget for maintaining an optimal
coloring.

I Theorem 1. Maintaining an optimum coloring of a 2-colorable unit interval graph requires
an amortized recourse budget of Ω(logn).

Proof. We describe a 2-colorable interval graph that appears online in the form of recursively
constructed gadgets. We start with with the gadget G0 consisting of the two intersecting
intervals [0, 1) and [0.5, 1.5) that can be 2-colored without recoloring. Obviously, G0 admits
a unique 2-coloring (up to renaming colors).
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Now, for i ∈ {1, 2, . . . }, assume we have a recursive construction Gi−1 that admits a
unique 2-coloring (up to renaming colors), and that all intervals in this coloring fall into [a, b)
in one color and into [a+0.5, b+0.5) in the other color. This means that, regarding 2-colorings,
Gi−1 behaves macroscopically exactly like two intervals of the form [a, b), [a+ 0.5, b+ 0.5).
To obtain Gi, we first introduce, one after the other, two Gi−1 gadgets shifted so that they
behave exactly like the pairs of intervals [a, b), [a+ 0.5, b+ 0.5) and [b+ 1, c), [b+ 1.5, c+ 0.5),
respectively. See Fig. 1 along with the following.

Up to renaming colors, there are two ways of coloring the gadgets. If [a, b) and [b+ 1, c)
receive the same color, we introduce the additional intervals [b+ 0.25, b+ 1.25) and [c, c+ 1).
Otherwise, [a, b) and [b+ 1.5, c+ 0.5) receive the same color, and we introduce the additional
intervals [b, b+ 1) and [b+ 0.5, b+ 1.5). In both cases, there is no way of consistently coloring
the new intervals without recoloring one of the two gadgets. Since the gadgets admit a unique
2-coloring up to renaming colors, we need to completely recolor one of them by changing
the color of all of its intervals. Afterwards, Gi admits a unique 2-coloring (up to renaming
colors), and all intervals fall into [a, c+ 0.5) in one color and [a+ 0.5, c+ 1) in the other color.
We can therefore proceed with the recursive construction.

The number of intervals ni of Gi is given by n0 = 2 and ni = 2ni−1 + 2 for i ∈ {1, 2, . . . },
which yields ni = 2i+1 +

∑i
j=1 2j = 2i+2 − 2. The number of recolorings required during the

recursive construction of Gi is given by r0 = 0 and ri = 2ri−1 +ni−1 for i ∈ {1, 2, . . . }, which
yields ri =

∑i
j=1 2i−jnj−1 =

∑i
j=1 2i−j(2j+1 − 2) = i · 2i+1 − 2

∑i−1
j=0 2j = i · 2i+1 − 2i + 1.

This means that, asymptotically, we have ni = Θ(2i) and the amortized number of required
recolorings is ri/ni = Θ(i) = Θ(log(ni)). J

We now prove an upper bound of O(k2) for the worst-case recourse budget, which holds if
the algorithm can use one extra color. This is in contrast with the lower bound of Theorem 1,
which is Ω(logn) recourse budget per update for an exact algorithm. We note that our
algorithm can also be made to work in the fully dynamic setting (allowing also interval
removals) with the same bounds on the required recolorings.

Before we begin, we introduce some definitions. Let I = {[a1, b1), . . . [an, bn)} be a unit
interval instance ordered by ai. A left boundary ξl(I) (respectively right boundary ξr(I)) is
a set of intervals intersecting the largest integer smaller than b1 (respectively the smallest
integer larger or equal an). Note that [a1, b1) ∈ ξl(I) and [an, bn) ∈ ξr(I). A circular arc
graph is an intersection graph of (open) arcs lying on the same circle.

I Theorem 2. There exists an algorithm which maintains a (k+ 1)-coloring of a k-colorable
unit interval graph with O(k2) worst case recourse budget per update.

Proof. We partition the current instance I into smaller instances I1, I2, . . . , Im and separa-
tors between them. Each instance is of size at least lk (except for the last one, which may
be smaller), and at most 2lk + k for l = max{4, k + 1}. The reason for this particular choice
of l will become apparent later. In the beginning there is just one instance I1. Whenever
an instance Ii grows above size 2lk + k, we pick a point p, such that there are at least lk
intervals in Ii completely to the left and lk intervals completely to the right of p. This point

Gi-1 Gi-1 Gi-1 Gi-1

Figure 1 Illustration of the two cases in the recursive construction of Gi.
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S1 I S2

p

Figure 2 Illustration of the proof of Lemma 3 for k = 5.

partitions Ii in the desired way. We declare the intervals intersecting p to be a separator Si.
At any point in time we maintain a partition of the current instance I into small instances
and separators: I = I1 ∪ S1 ∪ I2 ∪ S2 . . . ∪ Sm−1 ∪ Im, where m ∈ Θ(n/(k2)). When adding
a new interval, we will recolor the instance Ii into which the new interval falls, or separator
Si with neighboring instances if the new interval hits the integer point defining Si. The next
lemma will be used to do this with at most k + 1 colors without changing the colors of the
neighboring separators (which are given by some boundary integer points).

I Lemma 3. Let I be a k-colorable unit interval instance. If |I| ≥ lk for l = max{4, k + 1},
then, for any fixed coloring on ξl(I) and ξr(I) using colors from [k], one can complete this
coloring on I using colors from [k + 1].

Proof. We first reduce the color completion problem from the lemma statement to the
problem of coloring circular arc graphs. This reduction is shown in Figure 2. We draw the
intervals of I as arcs on the north half of a circle, in a way that preserves the intersection
relation. Let p be the south pole of the circle, i.e., the point extending the most to the south.
For each pair of intervals (I1, I2) ∈ ξl(I)× ξr(I) such that I1 and I2 are precolored with the
same color, we stretch I1 (respectively I2) anticlockwise (respectively clockwise) so that they
reach p and then glue them together to form the same arc. The remaining intervals of ξl(I)
and ξr(I) are only stretched to reach (and intersect) p and are not glued with anything.

We now make use of the following lemma from [34], which allows us to color the obtained
circular arc graph instance. We note that this theorem was also used in [15].

I Lemma 4 ([34]). Let G be a circular arc graph, L(G) be the maximum number of arcs
intersecting a common point on the circle, and l(G) be the smallest number of intervals that
cover the circle. If l(G) ≥ 5 then

⌈
l(G)−1
l(G)−2L(G)

⌉
colors suffice to color G and there is a linear

time coloring algorithm.

In order to apply Lemma 4, we need to consider quantities L(G) and l(G) for the instance
G that we created. Before the transformation, since I is k-colorable, there are at most
k intervals intersecting one point. After the transformation, if we cut out from the circle
[p − ε, p + ε] for some ε > 0, we get a stretched instance I. So for any point on the circle
outside [p − ε, p + ε] there are at most k arcs intersecting it. Within [p − ε, p + ε] also at
most k arcs intersect, since for every color used on ξl(I) and ξr(I) there is precisely one
arc intersecting p. So L(G) ≤ k. Also, because |I| ≥ lk and all intervals have unit length,
the distance between ξl(I) and ξr(I) is at least l, and so the minimal number of intervals
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needed to cover the circle is at least l + 1, i.e., l(G) ≥ l + 2. Setting l = max{4, k + 1}
ensures l(G) ≥ 5 so that the assumptions of Lemma 4 are satisfied and we ensure that
l(G) ≥ k + 2. Due to Lemma 4, we can color I with a number of colors bounded by⌈
l(G)−1
l(G)−2L(G)

⌉
=
⌈
(1 + 1

l(G)−2 )L(G)
⌉
≤
⌈
(1 + 1

k )k
⌉

= k + 1. Also, any intervals I1 ∈ ξl(I)
and I2 ∈ ξr(I) are colored the same if and only if their precoloring is the same. Hence, we
can permute colors in the obtained coloring so that it complies with the precoloring on ξl(I)
and ξr(I). J

When a new interval Inew is added, it either fits into an instance Ii or it belongs to a
separator Sj . In the first case, we recolor Ii ∪ {Inew} consistently with the current coloring
on Si−1 and Si. In the second case, we color the new interval Inew with the first color not
used on Sj and recolor Ij and Ij+1 consistently with the current coloring on Sj−1, Sj , and
Sj+1. What remains to be proved is that we can always recolor the chosen piece using k + 1
colors. This follows directly from Lemma 3. J

3 Low recourse budget for general interval graphs

In this section we focus on presenting the exact algorithm for arbitrary interval graphs with
an amortized recourse budget of min{n,O(k · k! ·

√
n)}. Before we move to that, let us

mention the bounds for approximating the number of colors (maintaining a ck-coloring is
referred to as c-approximation). The algorithm of Kierstead and Trotter [20] can be turned
into a 2-approximation if we allow an amortized O(logn) recourse budget. The proof of
Theorem 5 can be divided into two lemmas that follow below.

I Theorem 5. There is an algorithm maintaining a 2-approximate coloring of an interval
graph with amortized recourse budget O(logn).

I Lemma 6 ([20]). There is an online algorithm which receives an interval graph G in an
online way and produces a partition of G into subgraphs P1, . . . , Pω, where each Pi is a sum
of disconnected paths and ω is a clique number of G.

I Lemma 7. There is an incremental algorithm which uses 2 colors on a sum of disconnected
paths P with n log2 n total changes, where n is a size of P .

Proof of Lemma 6. While the algorithm receives next vertices, it tries to satisfy the following
invariant.
(I) For any j ≤ ω each clique in P1 ∪ P2 ∪ . . . ∪ Pj , has size at most j.
(II) For any j ≤ ω and for any vertex u ∈ Pj there is a clique in P1 ∪P2 ∪ . . .∪Pj−1 ∪ {u}

of size j.
When new vertex v is presented, the algorithm finds the last j for which the invariant (I) does
not hold plus one, i.e. algorithm finds j0 := max{j ∈ N : ω(P1 ∪ P2 ∪ . . .∪ Pj−1 ∪ {v}) ≥ j}.
Than, it adds v to Pj0 , i.e., defines a new partition P+

1 , . . . , P
+
ω of a new graph G+ =

G ∪ {v} in this way that P+
j0

:= Pj0 ∪ {v} and P+
i := Pi for i 6= j0. The invariant

(I) for P+
j ’s is trivially satisfied. The number j0 − 1 is too small, i.e., there is a clique

K ∈ P1 ∪ P2 ∪ . . . ∪ Pj0−1 ∪ {v} of size j0, which contains the newly presented vertex v.
Exactly this clique K ⊆ P+

1 ∪ . . . ∪ P
+
j0−1 ∪ {v} is a witness for the invariant (II) for v.

Moreover, the number j0 is defined so that it will never be greater than the clique number of
the graph G.

To understand why each Pi is a sum of disconnected paths, let’s consider the interval
representation I of graph G. It means that I is a family of closed intervals in R. Moreover,
for each j ≤ ω let’s define Ij as a family of intervals corresponding to the vertices of Pj .
First, we note the following claim.
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17:8 Recoloring Interval Graphs with Limited Recourse Budget

B Claim 8. There is no interval in Ij which is covered by the rest of the intervals from Ij .

Proof. For the contradiction let’s assume that there are different intervals I0, I1, . . . , It ∈ Ij
such that I0 ⊆ I1 ∪ . . . ∪ It. Let’s K ⊆ P1 ∪ . . . ∪ Pj be a clique for I0 from invariant (II).
Each clique in the interval representation can be identified with some real number that
belongs to all intervals corresponding to elements from that clique. Let’s r ∈ R be such a
number corresponding to the clique K. Then r ∈ I1 ∪ . . . ∪ It and in consequence r ∈ Is for
some s ≤ t. If vertex vs corresponds to the interval Is then K ∪ {vs} ⊆ P1 ∪ . . .∪ Pj forms a
clique of size j + 1 which contradicts the invariant (I). C

The above claim directly implies the following statement.

B Claim 9. Each vertex in Pj has at most two neighbours in Pj .

Proof. Again, let’s Ij be a family of interval corresponding to vertices from Pj . For the
contradiction let’s assume that v0 has three neighbours v1, v2, v3 which corresponds to the
intervals I0, I1, I2, I3. At the beginning, notice that the sum I0 ∪ I1 ∪ I2 ∪ I3 form also some
interval in R. Let’s l and r be the left and the right endpoint of I0 ∪ I1 ∪ I2 ∪ I3, respectively.
One of the intervals I1, I2, I3 does not contain any points of l, r. Without loss of generality
let us assume that this interval is I3. Then I3 ⊆ I0 ∪ I1 ∪ I2 which is contradictory to the
previous claim. C

Finally, it is worth noting that interval graphs are also chordal, so they can not contain
simple cycles. So, the only possibility is that Pj is a sum of disconnected paths. J

Proof of Lemma 7. When new vertex v is coming, it combines two paths. If neighbours of
v have the same color then the algorithm colors vertex v on the other one. If neighbours of v
have the different colors then the algorithm recolors the shortest path. The given vertex u
was recolored when the length of the path containing u increased by at least twice. This
causes the vertex u to be recolored at most log2 n times. Which gives the total number of
recoloring equal n log2 n. J

In the remainder of this section we show a k-coloring algorithm with min{n,O(k ·k! ·
√
n)}

recourse budget. Both for the algorithm and the analysis we use the greedy algorithm for
coloring interval graphs [26]. The greedy algorithm sorts intervals by their begin coordinates.
It processes intervals in that order, and assigns the smallest available colour to the currently
processed interval. This simple algorithm was proven optimal [26]. We are now ready to
prove the main theorem of this section.

I Theorem 10. There is an algorithm maintaining an optimum coloring of a k-chromatic
interval graph with an amortized recourse budget of min{n,O(k · k! ·

√
n)}.

Proof. Note that a trivial algorithm, which recolors all intervals in each step has recourse
budget n. We will show that there also is an algorithm with amortized budget O(k · k! ·

√
n),

which proves the claim. This algorithm is directly implied by Lemma 11, which is proved
next. Due to this lemma n interval insertions into an n-element instance can be executed
with a total recourse budget of O(k · k! · n

√
n). The implication is as follows. Imagine we

make a total of m insertions. We break the insertion sequence into powers of 2: once we
inserted 2i intervals, we add 2i more using O(k · k! · 2i

√
2i) recolorings. Let s be such that

2s−1 < m ≤ 2s. The total number of recolorings is bounded by
∑s
i=1O(k · k! · 2i

√
m) =

O(k · k! ·
√
m
∑s
i=1 2i) = O(2s+1k · k! ·

√
m) = O(k · k! ·m

√
m). J
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I Lemma 11. There is an algorithm, which, given n intervals, maintains the exact coloring
over the course of n interval insertions and recolors a total of O(k · k! · n

√
n) intervals.

Proof. We move on to presenting the algorithm, followed by the analysis. The idea is
to maintain a partition of the dynamically changing instance I into l disjoint instances
I1, I2, . . . , Il. We maintain the invariant that the size of each instance is at most 2d

√
ne+ 2k,

and that the size of each instance but the last one is at least d
√
ne. This invariant guarantees

that l ∈ O(
√
n). At the beginning, the algorithm starts with n intervals, so |I| = n. Then, it

is easy to find such a partition. Let I = {[a1, b1), . . . [an, bn)} be sorted by end coordinates.
We let x1 = bd

√
ne be the first separator point. It may happen that up to k intervals end in

the same coordinate, so there are at most d
√
ne+ k intervals to the left of x1. We remove

intervals to the left and intersecting x1 from I and continue in the same manner in order
to find separating points x2 . . . xl−1. We let Ii be the intervals contained between xi−1 and
xi, and we define separator Si to be the set of all intervals intersecting xi. Note that the
separators are not necessarily disjoint, since intervals can span a long stretch in which many
smaller intervals live.

Now consider the dynamically growing instance. If at any time some instance Ii grows to
more than 2d

√
ne+ 2k, we split it into instances I ′i and I ′′i , both of size at least d

√
ne, since

the separator takes away at most k intervals, and we possibly have to put d
√
ne+ k intervals

into I ′i. At this point Ii ceases to exist. This ensures that our size invariant remains satisfied
at all times.

In each step, the algorithm takes a new interval Inew as input. It uses a procedure
total-recolor(i, j) as a subroutine. Procedure total-recolor(i, j) takes two numbers
i, j ∈ {1, . . . , l − 1}, i ≤ j as parameters. It is an invariant that Inew is entirely contained
in (xi−1, xj). The procedure recolors the new instance I ∪ {Inew} in the following way. It
leaves the current coloring as it is on I1,S1, I2,S2, . . . , Ii−1,Si−1. Starting with the current
coloring on Si−1, it colors Ii ∪ Si ∪ . . . ∪ Ij ∪ Sj ∪ {Inew} greedily. The greedy coloring is
consistent with the coloring of Si−1, but may not be consistent with the current coloring
on Sj . Nevertheless, we can permute the colors in order to obtain the new greedy coloring
on Sj . The procedure permutes the colors in the same way on the remaining part of the
instance, i.e., for Ij+1,Sj+1, . . . ,Sl−1, Il. Procedure total-recolor(i, j) possibly recolors
the whole graph, i.e, it triggers O(n) recolorings.

Having procedure total-recolor(i, j) at hand, the algorithm distinguishes two cases.
1. Inew ∈ Ij for some Ij . In this case we try to recolor Ij ∪ {Inew} with k colors in a

way that is consistent with the current coloring on Sj−1 and Sj (see the parameterized
algorithm of Marx [22] for efficient implementation). There are two more cases now.
a. It is possible to recolor Ij ∪ {Inew} consistently with Sj−1 and Sj . In this case we

perform O(
√
n+ k) recolorings.

b. It is impossible to recolor Ij ∪ {Inew} in this way. In this case we call
total-recolor(j, j).

2. Inew intersects some separation point. If xi, xi+1, . . . xj−1 are the x-coordinates of the
separation points intersected by Inew, we call total-recolor(i, j).

As for the analysis of the above algorithm, the recoloring budget claimed in Lemma 11
follows from Lemma 12 and Lemma 13 below. Observe, that the only expensive operation
we need to amortize for is total-recolor(·, ·), which performs O(n) recolorings. Due to
Lemma 12, the total number of recolorings triggerred by total-recolor(i, j) for i 6= j is O(k ·
n
√
n). Due to Lemma 13, the total number of recolorings triggered by total-recolor(i, i)

on a particular instance Ii is O(k · k! · n). Observe, that the number of instances that
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ever exist is O(
√
n): the algorithm starts with n intervals, and for these initial intervals

it creates l ∈ O(
√
n) instances. Further on it creates at most O(

√
n) more instances by

splitting the existing ones. Summed over all instances that exist at some point of time this
gives O(k · k! ·

√
n · n) recolorings. The total number of recolorings caused by case 1 a) of

the algorithm is bounded by O(n(
√
n + k)). The number of all recolorings the algorithm

performs is hence bounded by O(k · k! · n
√
n), as claimed. J

I Lemma 12. The total number of calls to total-recolor(i, j) for any i 6= j is in O(k
√
n).

Proof. The call to total-recolor(i, j) for i 6= j is only made if Inew intersects some
separator line. There are O(

√
n) separator lines created by the algorithm, and at most k

intervals may be added to each separator. This gives the claim of the lemma. J

I Lemma 13. For every instance Ij the algorithm calls total-recolor(j, j) at most 2k · k!
times overall in step 1b).

Proof. Fix i ∈ [1, . . . , l] and consider the pair of separators Si−1 and Si. We say that Ii is
reset when procedure total-recolor(j1, j2) is called with j1 6= j2 for j1 ≤ i ≤ j2+1. In what
follows we will prove that between two consecutive resets of Ii, procedure total-recolor(i, i)
can be called at most k! times. This will finish the proof, as any total-recolor(j1, j2) call
resetting Ii adds an interval to either Si−1 or Si or both, so there can be at most 2k such
calls. Note that non-resetting calls of total-recolor() do not alter Si−1 and do not alter
Si, so between two resets of Ii separators Si−1 and Si remain unchanged (although their
colors may change). It may happen that we split Ij , but then Ij ceases to exists and hence
is recolored no more (instead, the instances that Ij splits into are recolored). In what follows
we consider a time period between two consecutive resets of Ii. We refer to this time period
as a phase. The phase starts when an interval has been added to either Si−1 or Si or both
and lasts as long as no other interval is added to Si−1 or Si and as long as Ii is not split.

Let Ifi be the instance Ii after the last insertion within the phase. In what follows
we always view Ii as a current instance, before inserting a new interval Inew. We let
Ji = Si−1 ∪ Ii ∪ Si and J fi = Si−1 ∪ Ifi ∪ Si.

For solution Sol maintained by the algorithm we define Soli−1 and Soli to be Sol
restricted to Si−1 and Si respectively. Similarly, for any optimum solution Opt for J fi
we define its restriction to Si−1 and Si as Opti−1 and Opti. Let Greedy(J fi ) be the
optimal greedy solution to J fi . Observe that if we permute colors of an optimal solution
for J fi , the solution remains optimal. This leads us to define the optimal solution space
Σ = Sk ◦ Greedy(J fi ), where Sk denotes the permutation group on [k]. In other words,
Σ contains all color permutations of Greedy(J fi ). Observe that Σ is closed under taking
permutations.

Let now Sol be the solution produced by the algorithm at the beginning of the phase, i.e.,
after the reset insertion. Let Opt ∈ Σ be the optimal solution such that Opti−1 = Soli−1.
One must exist, since we can permute the colors of Greedy(J fi ) in order to match Sol on
Si−1. Let τS ∈ Sk be any permutation such that Soli = τS ◦Opti. Observe, that if τS
can be chosen as identity permutation, total-recolor(i, i) is never called in this phase.
Hence, we may assume that τS is not the identity. So far we have Soli−1 = Opti−1 and
Soli = τS ◦Opti.

Within the phase there are two types of events that affect the coloring maintained by the
algorithm on Si−1 and Si. Event of type A is a call to total-recolor(j, k) for k < i, which
permutes the colors on Si−1 and Si with the same permutation. Event of type B is a call
to total-recolor(i, i), which leaves the colors on Si−1 intact while permuting colors on Si.
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Let us define Sol(j) to be the solution maintained by the algorithm right after the j’th event.
For some σ, τ ∈ Sk we get Sol(j)

i−1 = σ ◦ Sol(j−1)
i−1 ,Sol(j)

i = σ ◦ Sol(j−1)
i if the j’th event is

of type A and Sol(j)
i−1 = Sol(j−1)

i−1 ,Sol(j)
i = τ ◦ Sol(j−1)

i if the j’th event is of type B.
Also, after the j’th event, we define σj , τj ∈ Sk to be such that Sol(j)

i−1 = σj ◦ Soli−1

and Sol(j)
i = τj ◦ Soli. Our goal is to obtain τj−1 ◦ σj = τS for some j. If that holds then

total-recolor(i, i) is never called again in this phase, because then we have Sol(j)
i−1 =

σj ◦ Soli−1 = σj ◦Opti−1 and Sol(j)
i = τj ◦ Soli = τj ◦ τS ◦Opti = σj ◦Opti. But then

there is optimal solution σj ◦Opt that certifies that we can recolor Ji in compliance with
Sol(j)

i−1 and Sol(j)
i .

Now observe, that if we apply the same permutation α ∈ Sk to both Solji−1 and Solji ,
i.e., if Sol(j+1)

i−1 = α ◦ Sol(j)
i−1 = α ◦ σj ◦ Soli−1 and Sol(j+1)

i = α ◦ Sol(j)
i = α ◦ τj ◦ Soli,

then τ−1
j+1 ◦ σj+1 = (α ◦ τj)−1 ◦ α ◦ σj = τ−1

j ◦ σj , so permutation τ−1
j ◦ σj stays the same

when permuting colors on Si−1 and Si in the same way. Hence, the only way it can change
is due to total-recolor(i, i).

However, if total-recolor(i, i) is called, that means that the new interval causes that the
current coloring Sol(j)

i−1 and Sol(j)
i cannot be used on Si−1 and Si now, and hence it cannot

be used ever again in the future. This holds because we only add intervals, so any future
instance contains the current instance, and any coloring for the future instance is a coloring
for the current instance as well. This means that for k > j we have τ−1

k ◦ σk 6= τ−1
j ◦ σj .

For the proof of this fact assume otherwise: τ−1
j ◦ σj = τ−1

k ◦ σk = (α ◦ τj)−1 ◦ β ◦ σj . This
implies α = β and Sol(k)

i−1 = α ◦ Sol(j)
i−1 and Sol(k)

i = α ◦ Sol(j)
i . But this cannot happen

since we already know that the combined coloring Sol(j)
i−1 and Sol(j)

i cannot be used for
Si−1 and Si, and neither can any permutation of this coloring. But permutation σ−1

j ◦ τj
can only take k! different values until it reaches τS . This concludes the proof. J

4 Lower bounds for general interval graphs

In this section we provide lower bounds on the recourse budget needed in order to maintain
an optimum coloring of an interval graph. The following definition allows us to compare
different colorings locally and to formulate necessary conditions for optimum colorings.

I Definition 14. Let I be a set of intervals, let k ∈ N be the chromatic number of I, and
let R = [a, b) ⊂ R. The gap of a set C ⊆ I of disjoint intervals is given by gapR(C) :=
|R|−

∑
I∈C |R ∩ I|. The total gap of a partition C of I into disjoint sets wrt. R is gapR(C) :=∑

C∈C gapR(C). The total gap of I wrt. R is given by gapR(I) := k · |R| −
∑
I∈I |R ∩ I|.

The following fact provides a formal criterion for optimality of a coloring. Note that in
every proper coloring all intervals receiving the same color are disjoint.

I Fact 15. We have gapR(I) = gapR(C?), where C? is a partition of I corresponding to any
optimum coloring of I.

We are now ready to construct an instance that requires many recolorings. The main
building block for the bad instance is a staircase gadget Sk that guarantees a linear number
of recolorings overall (cf. Fig. 3). We will later use multiple copies of this gadget to force
Ω(
√
n) amortized recolorings.
The gadget consists of three sets L,X,R of intervals. We start with an initial configuration

of intervals in these sets, which we assume can be colored optimally with k colors without
ever recoloring (if an algorithm needs recolorings, this only strengthens our bound). We
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Figure 3 Illustration of the open (left) and closed (right) staircase gadget.

call the initial configuration open. Later, we introduce additional intervals in each of the
three sets in such a way that the chromatic number increases by exactly one, to k + 1, and
such that a significant portion of the previously colored intervals need to be recolored in
order not to exceed k + 1 colors. We refer to the final configuration of the staircase as closed.
Importantly, we ensure that both in the open and the closed configuration there is a unique
way to optimally color the intervals (apart from renaming colors). This ensures that “from
the outside” the gadget behaves like a clique of k intervals in the open configuration and a
clique of k + 1 intervals in the closed configuration.

We start by describing the open (initial) configuration (cf. Fig. 3 (left)). We set L =
{Li}ki=1 := {[i−∆, i)}ki=1, X = ∅, and R = {Ri}ki=1 := {[i+ε, i+ ∆)}ki=1, where 0 < ε < 1/k
is sufficiently small and ∆ ≥ k + 1 is sufficiently large. Observe that the open staircase
can be colored with k colors simply by coloring Li, Ri with color i, and k colors are needed
because L and R each are a clique of size k. The total gap in the interval [1, k + ε) is
gap[1,k+ε)(L ∪ R) = kε < 1. By Fact 15, no optimal solution with k colors can therefore
afford to leave a gap of size 1 or larger in any color. Since L and R each form a clique,
assigning the same color to L1 = [1−∆, 1) and Ri = [i+ ε, i+ ∆) with i ≥ 2 leads to a gap
of i+ ε− 1 > 1, and it follows that L1, R1 must get the same color. Repeating this argument,
so must Li, Ri for every i ∈ {1, . . . , k}. This means that (up to permuting the colors) there
is a unique coloring of the open staircase with k colors, as intended.

To obtain the closed configuration (cf. Fig. 3 (right)), we add the interval L0 := (−∞, 1+ε)
to L, the interval Rk+1 := [k,∞) to R, and the intervals X = {Xi}k−1

i=1 := {[i, i+ 1 + ε)}k−1
i=1 .

Note that the sets of intervals of the closed staircase can be colored with k + 1 colors
and zero total gap in the interval [1, k + ε): we can simply color Li−1, Ri with color i for
i ∈ {1, . . . , k + 1} and Xi with color i + 1 for i ∈ {1, . . . , k − 1}. This means that every
coloring with k + 1 colors must have zero total gap in the interval [1, k + ε), by Fact 15.
Since every point is the endpoint of at most two intervals in L,X,R, there is a unique way
of coloring the closed staircase with k + 1 colors, as intended.

Finally, consider the bipartite graph that has the elements of L on one side and the
elements of R on the other, with an edge connecting an interval from L to an interval from
R if they do not intersect. The staircase matching induces a unique matching in this graph,
where each edge selected in the matching corresponds to a color. We call this matching the
stair matching of Sk and conclude the following lemma.

I Fact 16. The staircase gadget Sk has chromatic number k when open and k + 1 when
closed. In either configuration there is a unique optimum coloring (up to renaming colors),
and the stair matchings of these two colorings are perfect and disjoint.

Since the stair matchings are disjoint, when adding intervals to obtain the closed staircase
from the open one, many intervals need to be recolored.

I Fact 17. When transitioning from the open to the closed staircase gadget, at least k
intervals of the open staircase must be recolored to maintain an optimum coloring.
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…
… …

Figure 4 Illustration of the construction in the proof of Theorem 19 after round 2. Green intervals
are (shifted) copies of Z and crossed-out intervals are passive.

We now describe a connector gadget Ck that generalizes the interface between consecutive
staircase gadgets as well as further gadgets. The connector gadget consists of an L-connector
and an R-connector, and is defined as follows. The L-connector of size k is a set of intervals
of the form {[ai, x + i)}ki=1 with ai ≤ x, and the R-connector of size k is of the form
{[x+ i, bi)}ki=1 with bi > x+ k. Here x ∈ R is an arbitrary offset. Together, the L-connector
and R-connector form the connector. Observe that for i ∈ {1, . . . , k} the intervals Li are an
R-connector, and the intervals Ri are an L-connector. The following property of connector
gadgets is obvious.

I Fact 18. There is a unique coloring of the connector gadget Ck with k colors (up to
renaming colors).

I Theorem 19. For every k ∈ N, there is an instance of online interval graph coloring with
chromatic number Θ(k) and Θ(k2) vertices that requires an amortized recourse budget of
Ω(k) to maintain an optimum solution.

Proof. We fix any number k ∈ N and any online coloring algorithm. We start by introducing
a large set of intervals offline that we allow the algorithm to color in a batch (i.e., not online
and without need to recolor), before introducing additional intervals online that each require
significant recoloring.

We first describe the offline intervals. We introduce multiple gadgets that each start with
an R-connector and end with an L-connector. In the following, each gadget (after the first)
is shifted to the right, such that it forms a connector gadget with the previous gadget. Let
Z := {[i, k + i)}ki=1, i.e., Z is both an R- and an L-connector. We introduce k copies of Z,
each shifted as described (green intervals in Fig. 4).

Since the copies of Z form a chain of connector gadgets, by Fact 18, there is a unique way
to color these gadgets with k colors. We further introduce k shifted open staircase gadgets
and then another k shifted copies of Z. Overall, our construction so far uses nopen = 4k2

intervals, has chromatic number k, and, by Fact 16 and Fact 18, there is a unique way to
color all intervals with k colors.

We now present additional sets of intervals online in k rounds. In each round, we close
the leftmost open staircase gadget by introducing k + 1 new intervals. In each round the
new intervals of the form L0 and Rk+1 overlap all intervals outside the staircase being closed.
Thus, while the chromatic number increases by one, the effective number of available colors
in all gadgets to the right remains unchanged. We call an interval of a staircase passive if
it is part of an R-connector (resp. L-connector) and shares a color with any interval of the
form L0 (resp. Rk+1), and active otherwise. This means in particular that in each round a
single interval of every open staircase becomes passive. By Corollary 17, at least k intervals
of a staircase need to be recolored when it is being closed. Since each active interval is
part of a connector gadget outside the staircase, and since each such connector gadget and
every other staircase must be colored in a unique way (Fact 16 and Fact 18), recoloring
an active interval requires to recolor all other intervals of the same color to the left or to
the right of the staircase. Thus, in round i, at least k − i + 1 active intervals need to be
recolored, each affecting k copies of Z, such that the total number of intervals that need
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to be recolored is at least (k − i + 1)k. After closing the staircase, by Fact 16, there is
again a unique way to color it. This means that we can repeat the process with the next
staircase, restricting everything to the colors that are occupied by the current gadget, and
so on. Overall, the number of intervals that need to be recolored in k rounds is at least∑k
i=1(k − i+ 1)k = k3 − k2(k + 1)/2 + k2 = Ω(k3).
Overall, we introduce k + 1 new intervals in each round, so the total number of intervals

is n = nopen + k(k + 1) = 5k2 + k. The chromatic number increases by one in every round,
hence the chromatic number of the final graph is k′ = 2k. The amortized recourse budget
the algorithm needs thus is Ω(k3/n) = Ω(k), as claimed. J

The next statements follow from Theorem 19 by setting k = Θ(
√
n), and by observing

that we can always add isolated vertices without affecting k.

I Corollary 20. Maintaining an optimum coloring of an interval graph online, requires an
amortized recourse budget of Ω(

√
n) in general (when k is not fixed).

I Corollary 21. Maintaining an optimum coloring of an interval graph with chromatic
number k ∈ O(

√
n) online, requires an amortized recourse budget of Ω(k) in general.

5 Trading off recourse budget with query times

Up to this point we worked in a model where we need to maintain the coloring explicitly, i.e.,
after each insertion of an interval we need to recolor every interval whose color changes. We
showed an algorithm, which achieves this by recoloring amortized O(k · k! ·

√
n) intervals,

and for this algorithm an efficient implementation is not obvious. In this section we give an
efficient algorithm maintaining the optimum coloring, but we relax the model. So far we
insisted on recoloring all intervals immediately. This requirement allows us to retrieve the
color of any interval in constant time, and is moreover crucial for some applications. In this
section we do not focus on maintaining an explicit coloring, but rather we design a coloring
oracle: a data structure that can be queried for the color of an interval. Our data structure
supports interval additions in O(k2 log3 n) amortized time, and it answers queries for a color
of a particular interval in O(logn) time. Between two consecutive updates it answers queries
consistently with some optimal proper coloring. We only sketch the data structure here, and
leave some details and the formal proof of the following theorem to Appendix A.

I Theorem 22. There is a dynamic datastructure that stores a k-colorable set of intervals I
and returns the color of any I ∈ I according to an optimum proper coloring of I in O(logn)
time. Furthermore, it needs O(k2 log3 n) amortized time to insert a new interval.

We store the intervals of the instance I in a modified interval tree [13]. That is, we
maintain a binary search tree T , for which each node v stores the x-coordinate lv ∈ R of a
vertical line and a subset Sv ⊆ I of intervals. For a node v of T , let Tv be the subtree of T
rooted at v, and let Iv contain all intervals stored in the sets Su for nodes u of Tv. We say
that an interval I is stored in Tv if Tv has a node u such that I ∈ Su, i.e., I ∈ Iv. The tree
T has the following properties.
1. If Iv = ∅ then v is a leaf of T with undefined value lv and empty set Sv.
2. Otherwise, Tv has a defined value lv ∈ R and two child nodes x and y in T , for which the

(defined) values lu of all nodes u of Tx are smaller than lv, while the (defined) values lu
of all nodes u of Ty are larger than lv. The trees Tx and Ty are called the left and right
subtree of Tv, respectively.
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3. The set Sv = {I ∈ Iv | beg(I) ≤ lv ≤ end(I)} contains all intervals of Iv intersecting lv.
The left and right subtrees Tx and Ty of Tv recursively store all intervals in Ix = {I ∈
Iv | end(I) < lv} and Iy = {I ∈ Iv | beg(I) > lv}, respectively.

The sets Sv stored in all nodes v of T partition I, and an interval I ∈ I is stored in
the highest node v of T for which I contains lv. Therefore each set Sv is a separator of the
intervals Iv stored in Tv, i.e., no interval from the left subtree of Tv overlaps with an interval
from the right subtree of Tv. Furthermore, the intervals of any set Sv form a clique, as they
all intersect lv, and thus at most k intervals are stored in a node v if I is k-colorable.

For reasons that will become apparent later, at all times we will make sure that the root
r of T has x-coordinate lr = 0, and we assume w.l.o.g. that beg(I) > 0 for all I ∈ I. This
means that all intervals of I are stored in the right subtree of T . We will also make sure
that for any node v 6= r different from the root, if Sv = ∅ then v is a leaf of T . This ensures
that the number of nodes of T is linear in n = |I|.

Instead of storing the color of each interval explicitly, we associate a permutation τe ∈ Sk

with each edge e of the search tree T . Also, for each node v of T we store the intervals of the
set Sv in a fixed order, so that Sv = {I1, . . . , Ij} for j ≤ k. The color of an interval Ii ∈ Sv
is obtained by applying the permutations along the path Pv from the root r of T to v to
the index i. That is, let e1, e2, . . . , eh be the sequence of edges of Pv such that e1 is incident
to r (note that e1 connects r to the right subtree of T by our assumption that lr = 0). We
denote the composite permutation along the path Pv by σeh

= (τeh
◦ · · · ◦ τe2 ◦ τe1), and the

color of Ii ∈ Sv is σeh
(i). Thus the color of any interval can be retrieved in time linear in

the height of the tree, by first finding its index i in the node storing it and then following
the search path back to the root to compute the image of i in the composite permutation
defining its color. It is also clear that there exist permutations for the edges that imply a
proper k-coloring of the intervals if I is k-colorable. In fact, only the permutation τeh

of the
last edge eh on Pv for some particular node v needs to be picked in relation to all previous
permutations along Pv, so that the indices of Sv are permuted according to a fixed proper
k-coloring.

To obtain logarithmic query times, we make sure that the tree T is α-balanced [13] at
all times. That is, let nv = |Iv| be the number of intervals stored in subtree Tv rooted at v,
and let α be a fixed constant such that 1/2 < α < 1. For any subtree Tv 6= T (i.e., v 6= r)
we maintain the property that max{n−v , n+

v } ≤ dαnve, where n−v and n+
v are the number of

intervals stored in the left and right subtrees of Tv, respectively. As an easy consequence we
get that the height of T is log1/α(n) +O(1) = O(logn). To maintain this invariant, we store
nv in node v.

5.1 Updates
We now describe how to update the search tree T and the permutations on its edges, so that
the colors induced by the permutations form a proper k-coloring and the tree is α-balanced
at all times. When a new interval Inew arrives, it is stored in the interval tree T in the usual
way [13]. That is, we follow the search path for Inew starting from the root. As soon as we
encounter a node v in T such that Inew belongs to the set Sv (because lv ∈ Inew), we add
Inew to Sv. The index i of the new interval Inew in Sv is the highest available, i.e., i = |Sv|
when Inew ∈ Sv. Additionally, we increase the variables nu along the nodes u of the path Pv
from v to the root of T by one each, to count the new interval Inew in the subtrees Tu. If
no node v for which lv ∈ Inew is found, let w be the leaf of T at the end of the search path
Pw for Inew. We set lw = beg(Inew), and add Inew as the only interval in the set Sw. We
also create two new leaves and set them as the new left and right subtrees of w. Again, we
increase the variables nu along the nodes u of Pw.
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Figure 5 The path Pu with nodes v0 to v7 from the root r of the search tree T to the node u.
The bars represent intervals, which are stored in the highest node w for which they contain lw (black
dashed lines). The subtree Tu is shaded in grey and stores Iu (green intervals). The leftmost and
rightmost points of these intervals are begu and endu (blue and red dotted lines), which define the
sets Lu and Ru (including the light blue and light red intervals, respectively). Some intervals can
be in the intersection of Lu and Ru (purple intervals). The remaining intervals are either to the left
of begu or to the right of endu (dark blue and dark red intervals, respectively). In this example,
L = {v2v3, v6v7} and R = {v1v2, v4v5}.

When adding Inew the tree T may become unbalanced, i.e., there may be a node u 6= r of
T for which max{n−u , n+

u } > dαnue. Note that u must be on the path Pv from the root r to
the node v into which Inew was added. To make T α-balanced again, we identify the closest
such node u to the root. We then rebalance Tu by first retrieving all intervals Iu stored in
Tu, and then sorting all the endpoints beg(I) and end(I) of the intervals I ∈ Iu. Next a
new balanced tree is built to take the place of Tu, using the standard recursive procedure
to create interval trees. That is, it takes as input a set of intervals I ′ (initially set to Iu)
and their sorted endpoints. The procedure creates a new root vertex w of the current tree,
and sets lw to the median of all endpoints of I ′. It then identifies the set Sw containing all
intervals of I ′ that intersect lw. The left and right subtrees are then recursively built for
the subsets of I ′ of all intervals to the left of lw and to the right of lw, respectively. In case
I ′ = ∅, a leaf is created and the recursion terminates. Note that the number of endpoints of
value less than the median is at most |I ′|, as there are 2|I ′| endpoints. Since each interval
has two endpoints, the left subtree will contain at most |I ′|/2 intervals, and analogously
this is also true for the right subtree. Therefore this results in a new tree Tu for which
max{n−w , n+

w} ≤ nw/2 for every node w of Tu, i.e., this tree is perfectly balanced.
To update the permutations we need some definitions (cf. Figure 5). For any node u

of T , let begu = min{beg(I) | I ∈ Iu} be the left-most point of any interval stored in Tu,
and accordingly let endu = max{end(I) | I ∈ Iu} be the right-most point. We then define
the two sets Lu = {I ∈ I | beg(I) ≤ begu < end(I)} \ Iu and Ru = {I ∈ I | beg(I) ≤
endu < end(I)} \ Iu of intervals not stored in Tu but containing begu or endu, respectively.
Note that each interval in Lu or Ru must be stored in some internal node w /∈ {r, u} of Pu
(meaning that it is contained in Sw), as Sw is non-empty and separates Iu from the intervals
stored in the (left or right) subtree of Tw not containing u. Let also L and R be the set of
edges of Pu that cross the boundary defined by endu in the sense that xy ∈ L if x is the
parent of y and lx ≥ endu > ly, and xy ∈ R if x is the parent of y and lx < endu ≤ ly.
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The algorithm performs the following steps after Inew was added to the set Sv.
1. If there is a node w 6= r on Pv for which max{n−w , n+

w} > dαnwe, then let w be the closest
such node to the root r. Rebuild the subtree Tw to obtain a new perfectly balanced
subtree Tw. In this case set u = w in the following, while otherwise u = v.

2. First retrieve begu and endu, and then Lu and Ru together with all colors of intervals in
Lu and Ru using the permutations stored on the edges of Pu.

3. Starting with the current coloring of Lu, use the greedy algorithm to color Iu ∪Ru with
at most k colors. As the intervals in Ru form a clique (they all contain endu), there is a
permutation µ ∈ Sk mapping the old colors of Ru to its new colors.

4. The permutations stored on edges e of Pu and Tu are updated to encode the new colors
for the intervals in Iu ∪ Ru as follows. Let σe and σ′e be the composite permutations
along the path from the root to edge e before and after the update, respectively.
a. For any edge e of Pu that is neither in L nor in R, the permutation τe remains

unchanged.
b. For any e ∈ L the permutation τe is chosen such that σ′e = σe.
c. For any e ∈ R the permutation τe is chosen such that σ′e = σe ◦µ for the permutation µ

of step 3.
d. Permutations τe for edges e of Tu are simply chosen so that the σe induce the new

colors of Iu.

The proof of correctness and runtime analysis of this data structure can be found in
Appendix A.
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A Correctness and runtime of the balanced interval tree

Recall that the interval tree T has the following properties.
1. If Iv = ∅ then v is a leaf of T with undefined value lv and empty set Sv.
2. Otherwise, Tv has a defined value lv ∈ R and two child nodes x and y in T , for which the

(defined) values lu of all nodes u of Tx are smaller than lv, while the (defined) values lu
of all nodes u of Ty are larger than lv. The trees Tx and Ty are called the left and right
subtree of Tv, respectively.

3. The set Sv = {I ∈ Iv | beg(I) ≤ lv ≤ end(I)} contains all intervals of Iv intersecting lv.
The left and right subtrees Tx and Ty of Tv recursively store all intervals in Ix = {I ∈
Iv | end(I) < lv} and Iy = {I ∈ Iv | beg(I) > lv}, respectively.

To insert a new interval Inew, we follow the search path for Inew starting from the root. As
soon as we encounter a node v in T such that Inew belongs to the set Sv (because lv ∈ Inew),
we add Inew to Sv. The index i of the new interval Inew in Sv is the highest available, i.e.,
i = |Sv| when Inew ∈ Sv. Additionally, we increase the variables nu along the nodes u of the
path Pv from v to the root of T by one each, to count the new interval Inew in the subtrees
Tu. If no node v for which lv ∈ Inew is found, let w be the leaf of T at the end of the search
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path Pw for Inew. We set lw = beg(Inew), and add Inew as the only interval in the set Sw.
We also create two new leaves and set them as the new left and right subtrees of w. Again,
we increase the variables nu along the nodes u of Pw.

In order to rebalance a subtree Tu rooted at a node u we use the following standard
procedure. It takes as input a set of intervals I ′ (initially set to Iu) and their sorted endpoints.
The procedure creates a new root vertex w of the current tree, and sets lw to the median of
all endpoints of I ′. It then identifies the set Sw containing all intervals of I ′ that intersect
lw. The left and right subtrees are then recursively built for the subsets of I ′ of all intervals
to the left of lw and to the right of lw, respectively. In case I ′ = ∅, a leaf is created and the
recursion terminates. Note that the number of endpoints of value less than the median is at
most |I ′|, as there are 2|I ′| endpoints. Since each interval has two endpoints, the left subtree
will contain at most |I ′|/2 intervals, and analogously this is also true for the right subtree.
Therefore this results in a new tree Tu for which max{n−w , n+

w} ≤ nw/2 for every node w of
Tu, i.e., this tree is perfectly balanced.

We will now prove the correctness of the algorithm, and later turn to analyzing its
amortized runtime.

I Lemma 23. The algorithm maintains an α-balanced interval tree T for I for which the
permutations stored on the edges induce a proper k-coloring of I, if k is the chromatic number
of I.

Proof. That the algorithm maintains an α-balanced tree is clear from step 1 and the
procedure to rebalance subtrees. That it is an interval tree follows from the fact that adding
Inew to the first node along the search path for Inew of T will store it in the highest node v
of T for which Inew contains lv, as required. Furthermore, this property is also maintained
when rebalancing a subtree Tw. As no interval will ever be added to the set Sr of the root r
(assuming beg(I) > 0 for all I ∈ I) and since Tr = T will never be considered for rebalancing,
we maintain the invariant that lr = 0 and all of I is stored in the right subtree of T . Finally,
when adding a new interval to a node or rebalancing a subtree, any node v with Sv = ∅ will
be a leaf of T , except for the root.

To prove that the coloring induced by the permutations of T ’s edges is a proper k-coloring,
we proceed by induction. The base case is when the tree does not store any intervals,
which is trivial. Now consider one step of the algorithm in which some interval Inew is
added to T , and let u be the node operated on during the execution, i.e., u = w if w is
rebalanced and then recolored, or u = v if no subtree needs to be rebalanced and Inew is
added to Sv. The main observation is that Lu and Ru form separators. More concretely,
let L−u = {I ∈ I | end(I) < begu} and R+

u = {I ∈ I | beg(I) > endu}, and note that I is
partitioned into L−u , Iu, R+

u , and Lu ∪Ru (Lu and Ru may share some intervals). For any
I ∈ Iu ∪ (Ru \ Lu) ∪ R+

u we have begu ≤ beg(I), while for any I ∈ Iu ∪ (Lu \ Ru) ∪ L−u
we have endu ≥ end(I). This means that Lu separates L−u from Iu ∪ (Ru \ Lu) ∪R+

u , and
similarly Ru separates R+

u from Iu ∪ (Lu \ Ru) ∪ L−u . Thus a k-coloring of L−u ∪ Lu and a
k-colouring of Lu ∪Iu ∪Ru together form a k-coloring of L−u ∪Lu ∪Iu ∪Ru, if the two given
colorings agree on the colors of the separator Lu. Furthermore, a k-coloring of Ru ∪ R+

u

together with a k-coloring of L−u ∪ Lu ∪ Iu ∪ Ru forms a k-coloring of I if the two given
colorings agree on the colors of Ru. Hence if we separately prove that the permutations
induce a proper k-coloring for each of the three sets L−u ∪ Lu, Lu ∪ Iu ∪Ru, and Ru ∪R+

u ,
then I is properly k-colored.

Let I be any interval from L−u ∪Lu, w be the node of T storing I, and e be the last edge
of Pw, i.e., which is farthest from the root r of T . If I ∈ L−u , then no edge of Pw can be
from Tu, by the above observation that Lu separates L−u from Iu. The same is true for Pw if
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I ∈ Lu, since Lu contains no interval from Iu by definition. In case no edge of Pw belongs to
L or R, according to step 4 every edge f of Pw stores the same permutation τf before and
after Inew was added. This implies σ′e = σe for the respective composite permutations σ′e
and σe along Pw before and after the update. Otherwise, let xy be the farthest edge of Pw
from the root r that belongs to L ∪R, where x is the parent of y. If xy ∈ L then σ′xy = σxy
by step 4, while τf is unchanged on any edge f of Pw that is farther than y from the root.
Thus if πyw is the composite permutation along Pw from y to w (with πyw being the identity
permutation in the trivial case when y = w) we obtain σ′e = πyw ◦ σ′xy = πyw ◦ σxy = σe. For
the last case xy ∈ R, note that since T is a search tree, it must be that lz ≥ endu for any
node z after y on the search path Pw: otherwise some edge after y on Pw would cross the
boundary endu, i.e., it would be in L, contradicting the fact that xy is the last edge of Pw
that is in L ∪ R. Hence for z = w we obtain end(I) ≥ lw ≥ endu. But as I ∈ Lu ∪ L−u we
also get beg(I) ≤ begu ≤ endu and so I ∈ Lu ∩Ru. Therefore the permutation µ of step 3
maps the color of I to itself, and if I is the ith interval of Sw, by our choice of τxy in step 4
we get σ′e(i) = (πyw ◦ σ′xy)(i) = (πyw ◦ σxy ◦ µ)(i) = (σe ◦ µ)(i) = σe(i). In conclusion, every
interval of Lu ∪ L−u has the same color before and after inserting Inew, and thus Lu ∪ L−u is
properly k-colored by induction.

Next consider an interval I from Lu ∪ Iu ∪Ru. We already know that if I ∈ Lu then it
keeps its color from before the update, i.e., the permutations on T ’s edges induce the same
color of I that the greedy algorithm assigns to it. By step 4, any interval of Iu (including
Inew) also obtains the colors assigned to it by the greedy algorithm. If I ∈ Ru \ Lu then
beg(I) > begu and I /∈ Iu. Thus the node w of T storing I is not in Tu. Furthermore,
following the search path Pw from the root r must end in a node w for which lw > endu,
if w is not in Tu and lw ≥ beg(I) > begu. As a consequence, Pw has some edge of R,
since lr = 0 and thus following the search path Pw there must be some edge of Pw that
crosses endu in order to reach w. Furthermore, if xy is the edge of Pw that lies in R and
is farthest from the root, where x is the parent of y, then no edge of Pw between y and
w can belong to L, as such an edge would cross over to the left of endu but lw > endu.
Hence by step 4 all edges f of Pw between y and w maintain their permutations τf during
the update. Let e be the last edge of Pw and let πyw denote the composite permutation
along Pw from y to w, which is the identity permutation if y = w. By the choice of τxy in
step 4, we have σ′e = πyw ◦ σ′xy = πyw ◦ σxy ◦ µ = σe ◦ µ. Thus the colors of all intervals of
Ru \ Lu are permuted according to µ, which by definition of µ in step 3 then means that
all of Lu ∪ Iu ∪ Ru is colored according to the greedy algorithm. This implies a proper
k-coloring of this set, due to the correctness of the greedy algorithm.

For the last set Ru ∪ R+
u we already know that any interval I from Ru is colored

according to the permutation σe ◦ µ, if e is the last edge of the path Pw to the node w
storing I (we argued this separately for I ∈ Ru \ Lu and I ∈ Ru ∩ Lu above). This is also
true for any I ∈ R+

u , since the premise is the same as for intervals from Ru \ Lu: we have
beg(I) > endu ≥ begu and I /∈ Iu as Ru separates Iu from R+

u . Therefore the colors of
intervals in Ru ∪R+

u are permuted by µ relative to the colors induced by the permutations
of the edges of T before the update. Hence Ru ∪ R+

u is properly k-colored by induction,
which concludes the proof. J

In order to bound the amortized runtime of one step when adding an interval Inew to the
search tree T , we first determine the actual runtime.

I Lemma 24. Let u be the node of T for which the update algorithm is run, let pu be the
number of nodes on the path Pu from the root of T to u, and let tu be the number of nodes
of the subtree Tu of T rooted at u. Then the update algorithm takes O(k(tu + pu) logn) time.
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Proof. Finding the node v in which to store Inew and a node w on Pv for which Tw needs
to be rebalanced is linear in the height of T , and can thus be done in O(logn) time as T
is α-balanced. If nw = |Iw| denotes the number of intervals stored in Tw, it is known that
rebalancing Tw can be done in O(nw lognw) time [13] for step 1. Next we set u = w or u = v

depending on whether some tree was rebalanced. As |Sx| ≤ k for every node x of T , we have
nu ≤ ktu, and the time to rebalance can be bounded by O(ktu logn).

Retrieving begu and endu in step 2 needs linear time in the height of the tree Tu, i.e.,
it can be done in O(logn) time. If the number of nodes of Pu is denoted by pu then the
number of intervals stored in nodes of Pu is at most kpu, by the observation that each set
stored in a node forms a clique in a k-colorable graph. Thus retrieving Lu and Ru together
with their colors takes O(kpu) time if traversing Pu bottom up towards the root and in each
step computing the composite permutation σe for each edge e of Pu from the permutation
σe′ of the previous edge e′.

For step 3, also the set Iu needs to be retrieved, which can be done in O(nu) time
given u. The runtime of the greedy algorithm [26] to color Iu ∪Ru given the colors of Lu is
O((nu + k) log(nu + k)) as both Lu and Ru form a clique in a k-colorable graph. Finding
the permutation µ takes O(k) time. As nu ≤ ktu, the time spent for step 3 can be bounded
by O(k(tu + pu) logn).

To update the permutations on edges e of Pu and Tu in step 4, the algorithm can
traverse Pu and Tu bottom up towards the root of T in order to first compute the composite
permutations σe. Then it can traverse Pu and Tu top down from the root in order to compute
σ′e and τe given σ′f of the parent edge f of e, as τe is uniquely defined by σ′f in all four cases
(a) to (d). Thus this takes O(k(tu + pu)) time, which concludes the proof. J

To obtain the amortized runtime we give a proof using the potential function method [13].

Proof of Theorem 22. As for Lemma 24, let tu be the number of nodes in Tu and pu be the
number of nodes of Pu. Given a potential function Φ, the amortized runtime is given by the
sum of the actual runtime per update, which is O(k(tu + pu) logn) by Lemma 24, and ∆Φ,
which is the difference between the potential after and before adding an interval Inew to T .

To define the potential, let h = O(logn) be the maximum height of the α-balanced tree
T , and for any node u let mu = max{n−u , n+

u }, su = |Su|, and au =
∑
w∈V (Pu) sw be the

number of intervals stored in nodes of Pu. Then define

Γ(u) = max
{
mu − nu/2
α− 1/2 , 0

}
, β = 4k2h+ 2k,

Λ(u) = 2ksu · (kpu − au), Φ(u) = β · Γ(u) + Λ(u).

Note that each node of Pu stores at most k intervals so that au ≤ kpu and thus Λ(u) ≥ 0.
Hence Φ(u) ≥ 0 and we can define a potential function Φ = C logn ·

∑
u∈V (T ) Φ(u), where C

is the constant hidden in the O-notation of the actual runtime according to Lemma 24. Note
that the change ∆Φ is only influenced by the addition of the new interval Inew into node v,
and the rebuilding of a subtree Tw in step 1 of the algorithm. That is, none of the steps 2
to 4 change any of the terms of Φ.

To bound the amortized runtime, we distinguish the cases when some subtree Tw is
rebalanced and when not. For the former case, let us begin by determining ∆Γ, i.e., the
change in

∑
u∈V (T ) Γ(u) during an update. After Inew is inserted into v we have mw > dαnwe

at the node w before Tw is being rebuilt in step 1. This means that before inserting Inew we
had mw ≥ dαnwe ≥ αnw, and thus Γ(w) ≥ nw. After rebuilding Tw it is perfectly balanced
and we have mx ≤ nx/2 for every node x of Tw, so that now Γ(x) = 0. In particular,
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during the update, Γ(w) decreased from at least nw to 0. Note that compared to before the
update, Tw may contain a different set of nodes after it is rebuilt. Nevertheless, the sum∑
x∈V (Tw) Γ(x) will decrease during the update, as afterwards Γ(x) = 0 for every node x of

Tw. In the remaining tree T the value Γ(u) can only increase by at most 1 for nodes u along
the path Pw. Hence we get that ∆Γ ≤ pw − nw.

We now determine ∆Λ, i.e., the change in
∑
u∈V (T ) Λ(u) during an update, when a tree

Tw is rebuilt in step 1. Note that Λ(u) does not change for any node u of T that is not
contained in Tw. As observed above, compared to before, Tw may contain a different set of
nodes after it is rebuilt. However, the set of intervals Iw stored in Tw remains the same. We
therefore consider the contribution of each interval in Sx towards Λ(x) for any node x of
Tw, before and after the update. Let us define Λ′(u) = 2k(kpu − au) for every node u, so
that the contribution of every interval I ∈ Su to Λ(u) is Λ′(u). For any node x of Tw, by
definition of ax and px we obtain

Λ′(x) =
∑

y∈V (Px)

2k(k − sy) = Λ′(w′) +
∑

y∈V (Qx)

2k(k − sy),

where Qx ⊆ Pw is the path from x to w and w′ is the parent of w (which exists since w 6= r).
We may bound Λ′(x) from below by Λ′(w′), and from above by Λ′(w′) + 2k2px. As Λ′(w′) is
unchanged during the update, the contribution of each interval I ∈ Iw different from Inew
changes by at most 2k2px, where x is the node of Tw storing I after the update. As Inew
was not present in Tw before, its contribution adds Λ′(w′) + 2k2px for the node x storing
Inew after Tw is rebuilt. We may bound px by the height h of T after the update for any
node x, and Λ′(w′) is at most 2k2h. Thus we get ∆Λ ≤ nw · 2k2h+ Λ′(w′) ≤ 2k2h(nw + 1),
where nw also counts Inew in Iw.

Since β = 4k2h+ 2k and nw ≥ 1, as a consequence of the above we obtain

∆Φ = C(β∆Γ + ∆Λ) logn ≤ C
(
β(pw − nw) + 2k2h(nw + 1)

)
logn

≤ C
(
βpw − (4k2h+ 2k)nw + 4k2hnw

)
logn ≤ C (βpw − 2knw) logn.

We have that tw ≤ 2nw, since we maintain the invariant that for every node u except the
root of T , if Su = ∅ then u is a leaf of the complete binary tree T . Hence the actual runtime
according to Lemma 24 can be upper bounded by Ck(2nw + pw) logn, which means that the
amortized runtime is C(β + k)pw logn = O(k2 log3 n) in case a subtree Tw is rebalanced in
step 1, since β = O(k2 logn) and pw ≤ h = O(logn).

We now turn to the case when no subtree is rebalanced in step 1 and the only change
of Φ is due to Inew being added to a node v of T . Note that Γ(u) only changes along the
nodes u of path Pv, where mu may increase by 1. Thus ∆Γ ≤ pv

α−1/2 . To bound ∆Λ we
consider two cases: either v was an existing internal node of T , or v was a leaf and is then
converted into an internal node. In the first case, au of every node u of Tv increases by 1
due to the new interval Inew stored in the ancestor v of u, and so Λ(u) decreases by 2ksu.
At the same time, Λ(u) is unchanged for any node u not in Tv, and we get ∆Λ ≤ −2knv.
Hence in this case ∆Φ ≤ C

(
βpv

α−1/2 − 2knv
)

logn. As we have seen the actual runtime
can be upper bounded by Ck(2nv + pv) logn, and thus the amortized runtime becomes
Cpv

(
β

α−1/2 + k
)

logn = O(k2 log3 n).
Finally, if Inew is added to a leaf v of T , then v is converted into an internal node by

adding two leaves to v. For any leaf x, Λ(x) = 0 as sx = 0, and thus these new nodes do
not contribute to ∆Λ. However v was formerly a leaf and now contains Inew, so that its
contribution to ∆Λ is 2k(kpv − av) ≤ 2k2pv. Hence we get ∆Φ ≤ C

(
βpv

α−1/2 + 2k2pv
)

logn =
O(k2 log3 n). The subtree Tv only stores Inew so that nv = 1 and the actual runtime is
Ck(2nv + pv) logn = O(k log2 n). Thus in this case we also obtain an amortized runtime of
O(k2 log3 n), which concludes the proof. J
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1 Introduction

Let X be a set of items that contains some defective items I ⊆ X. In group testing, we test
a subset Q ⊆ X of items. An answer to the test is 1 if Q contains at least one defective item,
i.e., Q∩I 6= ∅, and 0 otherwise. Group testing was initially introduced as a potential approach
to the economical mass blood testing, [15]. However, it has been proven to be applicable in a
variety of problems, including DNA library screening, [26], quality control in product testing,
[30], searching files in storage systems, [22], sequential screening of experimental variables,
[24], efficient contention resolution algorithms for multiple-access communication, [22, 34],
data compression, [20], and computation in the data stream model, [12]. See a brief history
and other applications in [11, 16, 17, 21, 25, 26] and references therein.

Estimating or determining exactly the number of defective items is an important problem
in biological and medical applications [4, 31]. For example it is used to estimate the
proportion of organisms capable of transmitting the aster-yellows virus in a natural population
of leafhoppers [32], estimating the infection rate of the yellow-fever virus in a mosquito
population [33] and estimating the prevalence of a rare disease using grouped samples to
preserve individual anonymity [23].

In adaptive algorithms, the tests can depend on the answers of the previous ones. In
non-adaptive algorithms, they are independent of the previous ones and; therefore, all tests
can be done in one parallel step.

In this paper, we study the problem of determining exactly the number of defective items
with adaptive group testing algorithms. We first give an algorithm that improves the number
of tests in the best-known algorithm by a factor of 4. Improving constant factors in Group
testing algorithms is one of the utmost important challenges in group testing since, in many
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applications, tests are incredibly costly and time-consuming [3, 6, 9, 17, 18, 27]. Moreover,
we give a lower bound that shows that our algorithm is optimal up to a small additive term.
To the best of our knowledge, this is the first non-trivial lower bound for this problem.

1.1 Previous and New Results

Let X be a set of n items with d defective items I. All the algorithms in this paper are
adaptive. That is, the tests can depend on the answers to the previous ones. All the non-
adaptive algorithms for determining exactly the number of defective items must ask at least
Ω((d2/ log d) logn) queries and Ω(logn/ log logn) for estimating their number, [1, 13, 14].
In [2], Bshouty et al. show that any deterministic or Las Vegas adaptive algorithm must ask
at least Ω(d log(n/d)) queries. Since the query complexity depends on the number of items
n, which, for most applications, is extremely large, non-adaptive algorithms and Las Vegas
(and deterministic) algorithms are not desirable for solving this problem.

In [5], Cheng gave a randomized Monte Carlo adaptive algorithm that for any constant c,
asks 4dc log d queries1 and, with probability at least 1− δ = 1− 1/dc−1, determines exactly
the number of defective items. His algorithm, with the technique used in this paper2, gives a
randomized Monte Carlo algorithm that asks 4d log(d/δ) queries with success probability at
least 1− δ for any δ.

In this paper, we first give lower bounds for the number of queries. The first lower bound
is d log(1/dδ) for any n, d and δ > 1/(2(n − d + 1)). See Theorem 4 in Section 3. This
shows that Cheng’s algorithm is almost optimal (up to a multiplicative factor of 4 and an
additive term of 4d log d). For δ < 1/(2(n − d + 1)), we give the tight bound d log(n/d),
which, in particular, is the number of tests required for any deterministic algorithm. This
bound matches the tight bound for finding all the defective items. We also give better lower
bound of d log(1/δ) for any large enough3 n. See Theorem 5 in Section 3.

Moreover, we give a new randomized Monte Carlo algorithm that asks d log(d/δ) queries.
See Theorem 7 in Section 4. Our algorithm improves Cheng algorithm by a multiplicative
factor of 4 and is optimal up to an additive term of d log d. Notice that, for δ = 1/dω(1)

(especially when δ depends on n), our algorithm is optimal up to a small additive term.
Estimating the number of defective items is studied in [2, 10, 13, 14, 19, 28]. The

problem is to find an integer D such that d ≤ D ≤ (1 + ε)d. In [2], Bshouty et al. modified
Falhatgar et al. algorithm, [19], and gave a randomized algorithm that makes expected
number of (1 − δ) log log d + O((1/ε2) log(1/δ)) tests. They also prove the lower bound
(1− δ) log log d+ Ω((1/ε) log(1/δ)).

2 Definitions and Preliminary Results

In this section we give some notations, definitions, the type of algorithms that are used in
the literature and some preliminary results.

1 All the log in this paper are log2 and all the complexities in this introduction are multiplied by 1 + o(1)
where the o(1) is with respect to d.

2 First estimate d using the algorithm in this paper. Then determine c to get success δ and run his
algorithm

3 n ≥ dω(1) where ω(1) is with respect to d for example log∗ d
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2.1 Notations and Definitions
Let X = [n] := {1, 2, 3, . . . , n} be a set of items with some defective items I ⊆ [n]. In group
testing, we query a subset Q ⊆ X of items and the answer to the query is Q(I) := 1 if Q
contains at least one defective item, i.e., Q ∩ I 6= ∅, and Q(I) := 0, otherwise.

Let I ⊆ [n] be the set of defective items. Let OI be an oracle that for a query Q ⊆ [n]
returns Q(I). Let A be an algorithm that has access to an oracle OI . The output of the
algorithm with an access to an oracle OI is denoted by A(OI). When the algorithm is
randomized, then we add the random seed r, and then the output of the algorithm is a
random variable A(OI , r) in [n]. When I is known from the context, we just write A(r).
Let A be a randomized algorithm and let r0 be a fixed seed. Then A(r0) is a deterministic
algorithm that is equivalent to the algorithm A with the fixed seed r0. We denote by Q(A,OI)
(or Q(A,OI , r)) the set of queries that A asks with oracle OI (and a seed r). We say that
the algorithm determines |I| = d exactly if A(OI , r) = |I|.

2.2 Types of Algorithms
In this paper we consider four types of algorithms whose running time is polynomial in n.
1. The deterministic algorithm A with an oracle OI , I ⊆ X. The query complexity of a

deterministic algorithm A is the worst case complexity, i.e, max|I|=d |Q(A,OI)|.
2. The randomized Las Vegas algorithm. We say that a randomized algorithm A(r) is a

randomized Las Vegas algorithm that has expected query complexity g(d) if for any I ⊆ X,
A(r) with an oracle OI asks g(|I|) expected number of queries and with probability 1
outputs |I|.

3. The randomized Monte Carlo algorithm. We say that a randomized algorithm A(r) is a
randomized Monte Carlo algorithm that has query complexity g(d, δ) if for any I ⊆ X,
A with an oracle OI asks at most g(|I|, δ) queries and with probability at least 1 − δ
outputs |I|.

4. The randomized Monte Carlo algorithm with average case complexity. We say that a
randomized algorithm A(r) is Monte Carlo algorithm with average case complexity that
has expected query complexity g(d, δ) if for any I ⊆ X, A asks g(|I|, δ) expected number
of queries and with probability at least 1− δ outputs |I|.

2.3 Preliminary Results
We now prove a few results that will be used throughout the paper.

Let s ∈ ∪∞i=0{0, 1}i be a string over {0, 1} (including the empty string λ ∈ {0, 1}0). We
denote by |s| the length of s, i.e., the integerm such that s ∈ {0, 1}m. Let s1, s2 ∈ ∪∞n=0{0, 1}n
be two strings over {0, 1} of length m1 and m2, respectively. We say that s1 is a prefix of s2
if m1 ≤ m2 and s1,i = s2,i for all i = 1, . . . ,m1. We denote by s1 · s2 the concatenation of
the two strings.

The following lemma is proved in [1].

I Lemma 1. Let S = {s1, . . . , sN} be a set of N distinct strings such that no string is a
prefix of another. Then

max
s∈S
|s| ≥ E(S) := Es∈S [|s|] ≥ logN.

I Lemma 2. Let A be a deterministic adaptive algorithm that asks queries. If A(OI) 6= A(OJ )
then there is Q0 ∈ Q(A,OI) ∩Q(A,OJ) such that Q0(I) 6= Q0(J).

In particular, if, in addition, I ⊆ J then Q0(I) = 0 and Q0(J) = 1.
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Proof. Since algorithm A is deterministic, in the execution of A with OI and OJ , A asks
the same queries as long as it gets the same answers to the queries. Since A(OI) 6= A(OJ),
there must be a query Q0 that is asked to both OI and OJ for which Q0(I) 6= Q0(J). J

I Lemma 3. Let A be a deterministic adaptive algorithm that asks queries. Let C ⊆ 2[n] =
{I|I ⊆ [n]}. If for every two distinct I1 and I2 in C there is a query Q ∈ Q(A,OI1) such
that Q(I1) 6= Q(I2) then

max
I∈C
|Q(A,OI)| ≥ EI∈C |Q(A,OI)| ≥ log |C|.

That is, the query complexity of A is at least log |C|.

Proof. For I ∈ C consider the sequence of the queries that A with the oracle OI asks and
let s(I) ∈ ∪∞n=0{0, 1}n be the sequence of answers. The query complexity and average-case
complexity of A is s(C) := maxI∈C |s(I)| and s̄(C) := EI∈C |s(I)| where |s(I)| is the length
of s(I). We show that for every two distinct I1 and I2 in C, s(I1) 6= s(I2) and s(I1) is not a
prefix of s(I2). This implies that {s(I) | I ∈ C} contains |C| distinct strings such that no
string is a prefix of another. Then by Lemma 1, the result follows.

Consider two distinct sets I1, I2 ⊆ [n]. There is a query Q0 ∈ Q(A,OI1) such that
Q0(I1) 6= Q0(I2). Consider the execution of algorithm A with both OI1 and OI2 , respectively.
Since A is deterministic, as long as the answers of the queries are the same both (A with OI1

and A with OI2) continue to ask the same query. Then, either we get to the query Q0 in
both execution and then Q0(I1) 6= Q0(I2), or we reach some other query Q′, that is asked
before Q0, satisfies Q′(I1) 6= Q′(I2). In both cases, s(I1) 6= s(I2) and s(I1) is not a prefix of
s(I2). J

3 Lower Bounds

In this section, we prove some lower bounds for the number of queries that are needed to
determine exactly the number of defective items with a Monte Carlo algorithm.

I Theorem 4. Let δ ≥ 1/(2(n − d + 1)). Let A be a randomized Monte Carlo adaptive
algorithm that for any set of defective items I of size |I| ∈ {d, d+ 1}, with probability at least
1− δ, determines exactly the number of defective items |I|. Algorithm A must ask at least

d log 1
2dδ − 1

queries.
In particular, when δ ≤ 1/(2(n − d + 1)) then A must ask at least d log(n/d) − O(d)

queries which is the query complexity (up to additive term O(d)) of finding the defective items
(and therefore, in particular, finding |I|) with δ = 0 error.

Proof. Let A(OI , r) be a randomized Monte Carlo algorithm that for |I| ∈ {d, d + 1},
determines |I| with probability at least 1− δ where r is the random seed of the algorithm.
Let X(I, r) be a random variable that is equal to 1 if A(OI , r) 6= |I| and 0 otherwise. Then,
for any I ⊆ [n], Er[X(I, r)] ≤ δ. Let m = b1/(2δ)c + d − 1 ≤ n. Consider any J ⊆ [m],
|J | = d. For any such J , let

YJ(r) = X(J, r) +
∑

i∈[m]\J

X(J ∪ {i}, r).
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Then, for every J ⊆ [m] of size d, Er [YJ(r)] ≤ (m− d+ 1)δ ≤ 1
2 . Therefore, for a random

uniform J ⊆ [m] of size d, we have Er[EJ [YJ(r)]] = EJ [Er[YJ(r)]] ≤ 1/2. Thus, there is r0
such that for at least half of the sets J ⊆ [m], of size d, YJ(r0) = 0. Let C be the set of all
J ⊆ [m], of size d, such that YJ(r0) = 0. Then

|C| ≥ 1
2

(
m

d

)
= 1

2

(
b1/(2δ)c+ d− 1

d

)
.

Consider the deterministic algorithm A(r0). We now claim that for every two distinct
J1, J2 ∈ C, there is a query Q0 ∈ Q(A(r0),OJ1) such that Q0(J1) 6= Q0(J2). If this is true
then, by Lemma 3, the query complexity of A(r0) is at least

log |C| ≥ log 1
2

(
b1/(2δ)c+ d− 1

d

)
≥ d log 1

2dδ − 1.

Proof. We now prove the claim. Consider two distinct J1, J2 ∈ C. There is w.l.o.g j ∈
J2\J1. Since YJ1(r0) = 0, we have X(J1, r0) = 0 and X(J1 ∪ {j}, r0) = 0 and, therefore,
A(OJ1 , r0) = d and A(OJ1∪{j}, r0) = d + 1. Thus, by Lemma 2, there is a query Q0 ∈
Q(A(r0),OJ1) ∩Q(A(r0),OJ1∪{j}) for which Q0(J1) = 0 and Q0(J1 ∪ {j}) = 1. Therefore,
Q0({j}) = 1 and then Q0(J1) = 0 and Q0(J2) = 1. C

J

In the Appendix, we prove this lower bound for any randomized Monte Carlo algorithm
with average-case complexity.

For large enough4 n, n = dω(1), the following result gives a better lower bound.

I Theorem 5. Any randomized Monte Carlo adaptive algorithm that with probability at least
1− δ determines the number of defectives must ask at least(

1− log d+ log(1/δ) + 1
logn+ log(1/δ)

)
d log 1

2δ

queries.
In particular, when n = dω(1) then the number of queries is at least

(1− o(1))d log 1
2δ .

Proof. Let A(r) be a randomized Monte Carlo algorithm that determines the number of
defective items with probability at least 1− δ where r is the random seed of the algorithm.
Let X ′(I, r) be a random variable that is equal to 1 if A(OI , r) 6= |I| and 0 otherwise. Then,
for every I, Er[X ′(I, r)] ≤ δ. For every set I and i ∈ [n]\I, let X(I, i, r) = X ′(I, r) +
X ′(I ∪ {i}, r). Then, for every I ⊆ [n] and i ∈ [n]\I, Er[X(I, i, r)] ≤ 2δ. For I of
size d chosen uniformly at random and i ∈ [n]\I chosen uniformly at random, we have
ErEIEi[X(I, i, r)] = EIEiEr[X(I, i, r)] ≤ 2δ. Therefore, there exists a seed r0 such that
EIEi[X(I, i, r0)] ≤ 2δ. We now choose q permutations φ1, . . . , φq : [n]→ [n] uniformly and
independently at random where

q =
⌈

1 + logn
log 1

2δ

⌉
.

4 The ω(1) is with respect to d. For example, n > dlog∗ d.

SWAT 2020



18:6 Algorithm to Detemine the Number of Defectives

Then, for any I and i ∈ [n]\I, φ1(I), . . . , φq(I) are uniform and independent random sets of
size d and φ1(i), . . . , φq(i) are uniform and independent random integers where φj(i) 6∈ φj(I)
for all j ∈ [q]. Hence,

E{φj}j

 q∏
j=1

X(φj(I), φj(i), r0)

 =
q∏
j=1

Eφj
[X(φj(I), φj(i), r0)] ≤ (2δ)q

and,

E{φj}j
EIEi

 q∏
j=1

X(φj(I), φj(i), r0)

 = EIEiE{φj}j

 q∏
j=1

X(φj(I), φj(i), r0)


≤ (2δ)q.

Therefore,

E{φj}j
EI

 ∑
i∈[n]\I

q∏
j=1

X(φj(I), φj(i), r0)

 ≤ (n− d)(2δ)q < 1
2 .

Thus, there are permutations {φ′j}j∈[q] such that

EI

 ∑
i∈[n]\I

q∏
j=1

X(φ′j(I), φ′j(i), r0)

 < 1
2 .

Since X takes values in {0, 1}, this implies that for at least half of the sets I ⊆ [n], of size d,
and all i ∈ [n]\I, there exists j ∈ [q] such that X(φ′j(I), φ′j(i), r0) = 0. Let C be the class of
such sets I for which the later statement is true. Then,

|C| ≥ 1
2

(
n

d

)
and

(∀I ∈ C)(∀i ∈ [n]\I)(∃j ∈ [q]) X(φ′j(I), φ′j(i), r0) = 0. (1)

Consider the following deterministic algorithm A∗:

Algorithm A∗

For j = 1, . . . , q
Run A(r0) with oracle OI

If A(r0) asks Q then ask the query φ′−1
j (Q).

First notice that, if algorithm A(r0) has query complexity M , then A∗ has query com-
plexity at most qM .

Since φ′−1
j (Q)∩I = ∅ if and only if Q∩φ′j(I) = ∅, at iteration j, the algorithm A(r0) runs

as if the defective items are φ′j(I). Therefore, at iteration j, the queries that are asked by
A(r0) are Q(A(r0),Oφ′

j
(I)) and the queries that are asked by A∗ are φ′−1

j (Q(A(r0),Oφ′
j
(I))).

Hence,

Q(A∗,OI) =
q⋃
j=1

φ′−1
j (Q(A(r0),Oφ′

j
(I))). (2)

We now show that,



N.H. Bshouty et al. 18:7

B Claim 6. For every two distinct sets I1, I2 ∈ C there is a query Q′ ∈ Q(A∗,OI1) that
gives different answers for I1 and I2.

If this Claim is true then, by Lemma 3, the query complexity qM of A∗ is at least log |C|
and then, since

(
n
d

)
≥ (n/d)d,

M ≥ log |C|
q

≥
log 1

2
(
n
d

)
1+logn

log(1/(2δ)) + 1

≥ logn− log d− 1
logn+ log 1

δ

· d log 1
2δ

=
(

1− log d+ log(1/δ) + 1
logn+ log(1/δ)

)
d log 1

2δ .

Proof. We now prove the claim. Let I1, I2 ∈ C be two distinct sets of size d. Then there is
i0 ∈ I2\I1. By (1) there is j0 ∈ [q] such that for φ := φ′j0

, X(φ(I1), φ(i0), r0) = 0. Therefore
A(Oφ(I1), r0) = |φ(I1)| = |I1| and

A(Oφ(I1)∪{φ(i0)}, r0) = |φ(I1) ∪ {φ(i0)}| = |I1|+ 1.

Therefore, by Lemma 2, there exists a query Q0 ∈ Q(A(r0),Oφ(I1)) that satisfies Q0(φ(I1)) =
0 and Q0(φ(I1)∪ {φ(i0)}) = 1. That is, Q0 ∩ φ(I1) = ∅ and Q0 ∩ (φ(I1)∪ {φ(i0)}) 6= ∅. This
implies that φ(i0) ∈ Q0. Since φ(i0) ∈ φ(I2), we get that Q0 ∩ φ(I1) = ∅ and Q0 ∩ φ(I2) 6= ∅.
Thus, φ−1(Q0) ∩ I1 = ∅ and φ−1(Q0) ∩ I2 6= ∅. That is, the query Q′ := φ−1(Q0) satisfies

Q′(I1) 6= Q′(I2).

Since Q0 ∈ Q(A(r0),Oφ(I1)), by (2), we have (recall that φ := φ′j0
)

Q′ = φ−1(Q0) ∈ φ−1(Q(A(r0),Oφ(I1))) ⊆ Q(A∗,OI)

and therefore, Q′ ∈ Q(A∗,OI) . This completes the proof of the claim. C

J

4 Upper Bound

In this section we prove:

I Theorem 7. There is a Monte Carlo adaptive algorithm that asks

d log d
δ

+O

(
d+ log d log 1

δ

)
= (1 + o(1))d log d

δ

queries and, with probability at least 1− δ, finds the number of defective items.

This improves the bound 4d log(d/δ) achieved in [5]. By Theorem 5, this bound is optimal
up to the additive term (1 + o(1))d log d.

We will use the following.

I Lemma 8 ([7, 8, 29]). There is a deterministic algorithm, Find-Defectives, that without
knowing d, asks d log(n/d) +O(d) queries and finds the defective items.

Our algorithm, at the first stage, calls the procedure Estimate that, with probability at
least 1 − δ/2 finds an estimate D of the number defective items where d ≤ D ≤ 8d. This
procedure makes O(d+ log d log(1/δ)) queries.
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At the second stage, it uniformly at random partitions the set of items [n] into t = D2/δ

disjoint sets B1, B2, . . . , Bt. We show that, with probability at least 1−δ/2, each set contains
at most one defective item. We call a set that contains a defective item a defective set.
Therefore, with probability at least 1− δ/2, the number of defective items is equal to the
number of defective sets. Then, we treat each set Bi as one item i and call the algorithm
Find-Defectives in Lemma 8 on t items to find the defective sets. To do that, each test
Q ⊆ [t] in Find-Defectives is simulated by the query S(Q) := ∪i∈QBi in our algorithm.
Obviously, the set Q contains an index of a defective set if and only if S(Q) contains a
defective item. Therefore, the algorithm will return the number of defective sets which, with
probability at least 1 − δ/2, is equal to the number of defective items. By Lemma 8, the
number of queries asked in the second stage is

d log t
d

+O(d) = d log D
2/δ

d
+O(d) = d log d

δ
+O(d).

We now prove:

I Lemma 9. There is a Monte Carlo adaptive algorithm Estimate that asks

O

(
d+ log d log 1

δ

)
queries and returns an integer D that, with probability at least 1 − δ, D ≥ d and, with
probability 1, D ≤ 8d.

Proof. The algorithm is in Figure 1. For each k = 2i, the algorithm does the following
t = d2 log(1/δ)/ke times: uniformly at random divides the items into k mutually disjoint
sets and then tests each set and counts (in the variable “count”) the number of sets that
contain at least one defective item. First, notice that, for k ≤ d,

Pr[count < k/4] ≤
(
k

k/4

)(
1
4

)d
≤ 2k

(
1
4

)d
≤ 2−d.

The probability that the algorithm outputs k < d is the probability that the event “count <
k/4” happens t = d2 log(1/δ)/ke times for some k = 2i < d. This is at most

blog dc∑
i=1

(2−d)d2 log(1/δ)/2ie ≤
blog dc∑
i=1

δ2d/2i

≤ δ.

Therefore, with probability at least 1− δ, the output is greater or equal to d. Since “count”
is always less than or equal to the number of defective items d, when 4d < k ≤ 8d, we have
count ≤ d < k/4 and the algorithm halts. Therefore, the output cannot be greater than 8d.

The number of queries that the algorithm asks is at most

dlog 8de∑
i=1

2i
⌈

2 log(1/δ)
2i

⌉
≤
dlog 8de∑
i=1

2 log(1/δ) + 2i = O

(
d+ log d log 1

δ

)
. J

We now prove Theorem 7.

Proof. The algorithm is in Figure 2. First, we run the algorithm in Figure 1 that estimates d
and returns D such that, with probability at least 1− δ/2, d ≤ D ≤ 8d. Then, the algorithm
chooses a function f : [n]→ [N ] uniformly at random where N = dD2/δe. This is equivalent
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Estimate(n, δ)
1) For k = 2i, i = 1, 2, 3, · · · do
2) For m = 1 to t :=

⌈ 2 log(1/δ)
k

⌉
3) Choose a function fm : [n]→ [k] uniformly at random
4) count← 0
5) For j = 1 to k
6) ask the query Q := f−1

m (j)
7) If the answer is 1 then count←count+1
8) EndFor
9) If (count≥ k/4) Break (leave the For loop)
10) EndFor
11) If (count≤ k/4) Output(k) and halt
12) EndFor

Figure 1 An algorithm that estimates d.

to uniformly at random divide the items into N mutually disjoint sets Qi, i = 1, . . . , N . The
probability that some Qi contains two defective items is

Pr[(∃i) Qi contains two defective items] = 1−
d−1∏
i=1

(
1− i

N

)

≤
d−1∑
i=1

i

N
≤ d2

2N ≤
δ

2 .

Then, the algorithm runs Find-Defectives in Lemma 8 on the N disjoint sets Q1, . . . , QN
to find the number of sets that contain a defective item. This number is, with probability at
least 1− δ/2, equal to the number of defective items. Therefore, with probability at least
1− δ, Find-Defectives finds d. This completes the proof of correctness.

The query complexity is the query complexity of Estimate(n, δ/2) and Find-Defectives
with N items. This, by Lemma 8 and 9, is equal to

d log N
d

+O(d) +O

(
d+ log d log 1

δ

)
= d log d

δ
+O

(
d+ log d log 1

δ

)
. J

Find-d(n, δ)
1) D ←Estimate(n, δ/2) .
3) N ← dD2/δe.
2) Choose a function f : [n]→ [N ] uniformly at random.
3) Define Qi = f−1(i) for i = 1, 2, . . . , N .
4) Run Find-Defectives with N items.
5) and for each query Q ask ∪j∈QQj .
6) Let ∆ be the output of Find-Defectives.
7) Output ∆.

Figure 2 An algorithm that finds d.
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5 Appendix

I Theorem 10. Let 1/dω(1) ≥ δ ≥ 1/(2(n − d + 1)). Let A be a randomized adaptive
algorithm that for any set of defective items I of size d or d + 1, with probability at least
1− δ, exactly determines the number of defective items |I|. Algorithm A must ask at least

(1− o(1))d log 1
δ

expected number of queries.
When δ ≤ 1/(2(n− d+ 1)) then A must ask at least (1− o(1))d logn queries which is,

asymptotically, the query complexity of finding the defective items with δ = 0 error.

Proof. Let A(r) be a randomized algorithm that for I ⊆ [n], |I| ∈ {d, d+ 1} and oracle OI ,
determines |I| with probability at least 1− δ where r is the random seed of the algorithm.
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Let X(I, r) be a random variable that is equal to 1 if A(r,OI) 6= |I| and 0 otherwise. Then
for any I ⊆ [n], Er[X(I, r)] ≤ δ. Let m = bτ/δc + d − 1 ≤ n where τ = 1/(d log(1/(dδ))).
Consider any J ⊆ [m], |J | = d. For any such J let

YJ(r) = X(J, r) +
∑

i∈[m]\J

X(J ∪ {i}, r).

Then for every J ⊆ [m] of size d, Er [YJ(r)] ≤ (m − d + 1)δ ≤ τ. Therefore for a random
uniform J ⊆ [m] of size d we have Er[EJ [YJ(r)]] = EJ [Er[YJ(r)]] ≤ τ . Therefore, by
Markov’s inequality, for η = 1/ log(1/(dδ)),

Prr[EJ [YJ(r)] > η] ≤ τ

η
= 1
d
.

That is, for random r, with probability at least 1− 1/d, at least 1− η fraction of the sets
J ⊆ [m] of size d satisfies YJ(r) = 0. Let R be the set of seeds r such that at least 1 − η
fraction of the sets J ⊆ [m] of size d satisfies YJ (r) = 0. Then Prr[R] ≥ 1− 1/d. Let r0 ∈ R.
Let Cr0 be the set of all J ⊆ [m] of size d such that YJ(r0) = 0. Then

|Cr0 | ≥ (1− η)
(
m

d

)
= (1− η)

(
bτ/δc+ d− 1

d

)
.

Consider the deterministic algorithm A(r0). As in Theorem 4, for every two distinct
J1, J2 ∈ Cr0 , there is a query Q ∈ Q(A(r0),OJ1) such that Q(J1) 6= Q(J2). Then by
Lemma 3, the average-case query complexity of A(r0) is at least

log |Cr0 | ≥ log(1− η)
(
bτ/δc+ d− 1

d

)
≥ d log τ

dδ
− log 1

1− η .

Let Z(OI , r) = |Q(A(r),OI)|. We have shown that for every r ∈ R,

EI∈Cr
[Z(OI , r)] ≥ d log τ

dδ
− log 1

1− η .

Therefore for every r ∈ R,

EI [Z(OI , r)] ≥ EI [Z(OI , r)|I ∈ Cr]Pr[I ∈ Cr]

≥ (1− η)
(
d log τ

dδ
− log 1

1− η

)
.

Therefore

EIEr[Z(OI , r)] = ErEI [Z(OI , r)]
≥ Er[EI [Z(OI , r)|r ∈ R]Pr[r ∈ R]]

≥
(

1− 1
d

)
(1− η)

(
d log τ

dδ
− log 1

1− η

)
.

Therefore there is I such that

Er[Z(OI , r)] ≥
(

1− 1
d

)
(1− η)

(
d log τ

dδ
− log 1

1− η

)
and then

Er[Z(OI , r)] ≥ (1− o(1))d log 1
δ
. J
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Abstract
We study the complexity of clustering curves under k-median and k-center objectives in the metric
space of the Fréchet distance and related distance measures. Building upon recent hardness results
for the minimum-enclosing-ball problem under the Fréchet distance, we show that also the 1-median
problem is NP-hard. Furthermore, we show that the 1-median problem is W[1]-hard with the number
of curves as parameter. We show this under the discrete and continuous Fréchet and Dynamic Time
Warping (DTW) distance. This yields an independent proof of an earlier result by Bulteau et al.
from 2018 for a variant of DTW that uses squared distances, where the new proof is both simpler
and more general. On the positive side, we give approximation algorithms for problem variants
where the center curve may have complexity at most ` under the discrete Fréchet distance. In
particular, for fixed k, ` and ε, we give (1 + ε)-approximation algorithms for the (k, `)-median and
(k, `)-center objectives and a polynomial-time exact algorithm for the (k, `)-center objective.
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1 Introduction

Clustering is an important tool in data analysis, used to split data into groups of similar objects.
Their dissimilarity is often based on distance between points in Euclidean space. However,
the dissimilarity of polygonal curves is more accurately measured by specialised measures:
Dynamic Time Warping (DTW) [23], continuous and discrete Fréchet distance [1, 13].

We focus on centroid-based clustering, where each cluster has a center curve and the
quality of the clustering is based on the similarity between the center and the elements inside
the cluster. In particular, given a distance measure δ, we consider the following problems:

I Problem 1 (k-median for curves with distance δ). Given a set G = {g1, . . . , gm} of
polygonal curves, find a set C = {c1, . . . ck} of polygonal curves with at most n vertices each
that minimizes

∑
g∈G

minki=1 δ(ci, g).

I Problem 2 (k-center for curves with distance δ). Given a set G = {g1, . . . , gm} of
polygonal curves, find a set C = {c1, . . . ck} of polygonal curves with at most n vertices each
that minimizes max

g∈G
minki=1 δ(ci, g).

For points in Euclidean space, the most widely-used centroid-based clustering problem
is k-means, in which the distance measure δ is the squared Euclidean distance. But also
for general metric spaces the k-median problem is well studied, often in the context of the
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closely related facility location problem [20]. In general metric spaces usually, the discrete
k-median problem is studied, where the centers must be selected from a finite set F , and are
called facilities.

For clustering curves, limiting the possible centers to a finite set of “facilities” is unneces-
sarily restrictive. In this paper, we are therefore interested in the unconstrained k-median
problem, where a center can be any element of the metric space (as in the case of k-means).
Often, we will simply write k-median problem to denote the unconstrained version. In this
paper, we are in particular interested in the complexity of the 1-median problem, which we
refer to as average curve problem.

Hardness of the average curve problem

While clustering on points for general k in the plane or higher dimension is often NP-hard [22],
many point clustering problems can be solved efficiently when k = 1 in low dimension. For
instance, the 1-center problem in the plane can be solved in linear time [21], and there
are practical algorithms for higher dimensional Euclidean space [15]. In contrast, the 1-
center problem (i.e., the minimum enclosing ball problem) for curves under the discrete
and continuous Fréchet distance is already NP-hard in 1D [6]. In this paper, we show that
also the average curve problem, i.e. the 1-median problem, is NP-hard. We show this for
the discrete and for the continuous Fréchet distance, and for the dynamic time-warping
(DTW) distance. Variants of the DTW distance differ in the norm used for comparing pairs
of points, and how that norm is used, see Section 1.1 for details. Our results apply to a
large class of variants of DTW. For the frequently used variant of DTW using the squared
Euclidean distance, Bulteau et al. [8] recently showed that the average curve problem is
NP-hard and even W[1]-hard when parametrized in the number of input curves m and there
exists no f(m) · no(m)-time algorithm unless the Exponential Time Hypothesis (ETH) fails1.
Because of its importance in time series clustering, there are many heuristics for the average
curve problem under DTW [18, 23]. Brill et al. [4] showed that dynamic programming yields
an exponential-time exact algorithm and additionally show the problem can be solved in
polynomial time when both the input curves and center curve use only vertices from {0, 1}.

Approximation algorithms

Since both the k-center and the k-median problem for curves are already NP-hard for
k = 1 in 1D, we further study efficient approximation algorithms for these problems. For
approximation in metric spaces, the discrete and unconstrained k-median (likewise for
k-center) are closely related: any set of curves that realises an α-approximation for the
discrete k-median problem realises an 2α-approximation for the unconstrained k-median
problem. There is an elegant O(kn) time 2-approximation algorithm for the k-center problem
in metric spaces [17]. This approximation factor is tight for clustering curves under the
discrete Fréchet distance [6]. Finding approximate solutions for k-median is more challenging:
the best known polynomial-time approximation algorithm for discrete k-median in general
metric space achieves a factor of 3 + ε for any ε > 0 [2] and it is NP-hard to achieve an
approximation factor of 1 + 2/e [19]. Unconstrained clustering of curves may result in centers
of high complexity. To avoid overfitting and to obtain a compact representation of the
data, we look at a variant of the clustering problems with center curves of at most a fixed
complexity, denoted by `. More formally, the (k, `)-center problem is to find a set of curves

1 See e.g. [11] for background on parametrized complexity
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Figure 1 (k, `)-center clustering of pigeon flight paths computed by the algorithm of [7].

C = {c1, . . . ck}, each of complexity at most `, that minimizes maxg∈G minki=1 δ(ci, g). The
(k, `)-median problem is defined analogously. Although the general case for this variant is
still NP-hard, we can find efficient algorithms when k and ` are fixed. The (k, `)-center and
(k, `)-median problems were introduced by Driemel et al. [12], who obtained an Õ(mn)-time
(1 + ε)-approximation algorithm for the (k, `)-center and (k, `)-median problem under the
Fréchet distance for curves in 1D, assuming k, `, ε are constant. In [6], Buchin et al. gave
polynomial-time constant-factor approximation algorithms for the (k, `)-center problem
under the discrete and continuous Fréchet distance for curves in arbitrary dimension. These
approximation algorithms have lead to efficient implementations of heuristics for the center
version showing that the considered clustering formulations are useful in practice [7]. See
Figure 1 for an example of a computed clustering. This encourages further study of the
median variants of the problem.

1.1 Definitions of distance measures

Let x be a polygonal curve, defined by a sequence of vertices x1, . . . , xn from Rd where
consecutive vertices are connected by straight line segments. We call the number of vertices of
x the complexity, denoted by |x|. Given a pair of polygonal curves x, y, a warping path between
them is a sequenceW = 〈w1, . . . , wL〉 of index pairs wl = (il, jl) from {1, . . . , |x|}×{1, . . . , |y|}
such that w1 = (1, 1), wL = (|x|, |y|), and (il+1 − il, jl+1 − jl) ∈ {(0, 1), (1, 0), (1, 1)} for all
1 ≤ l < L. We say two vertices xi, yi are matched if (i, j) ∈W .

Denote the set of all warping paths between curves x and y by Wx,y. For any integers
p, q ≥ 1, we define the Dynamic Time Warping Distance between x and y as

DTWq
p(x, y) :=

 min
W∈Wx,y

∑
(i,j)∈W

‖xi − yj‖p
q/p

,

where ‖ · ‖ denotes the Euclidean norm. In text, we refer to DTWq
p also as (p, q)-DTW.

Similarly, define the discrete Fréchet distance between x, y as

ddF (x, y) := min
W∈Wx,y

max
(i,j)∈W

‖xi − yj‖.

The continuous Fréchet distance is defined with a reparametrization f : [0, 1] → [0, 1],
which is a continuous injective function with f(0) = 0 and f(1) = 1. We say two points on
x and y are matched if f(i) = j. Denote the set of all reparametrizations by F , then the
continuous Fréchet distance is given by

dF (x, y) := inf
f∈F

max
α∈[0,1]

‖x(f(α))− y(α)‖.

SWAT 2020
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Table 1 Overview of results. In these tables, n denotes the length of the input curves, m denotes
the number of input curves and d denotes the ambient dimension of the curves.

(a) Results on exact computation.

Problem Result Restrictions Reference

1-median, DTWq
p

O(n2m+12mm) d = 1 Brill et al. [4]
O(mn1.87) Binary Schaar et al. [28]
NP-hard

p = q = 2 Bulteau et al. [8]
W[1]-hard in m

NP-hard
p, q ∈ N Theorem 7

W[1]-hard in m

1-median, Fréchet NP-hard Theorem 4
W[1]-hard in m

1-center,
discrete Fréchet NP-hard Buchin et al. [6]

(k, `)-center,
discrete Fréchet O((mn)2k`+1k` log(mn)) d ≤ 2 Theorem 13

(b) Approximation algorithms. (In stating the running times we assume k, `, and ε are constants
independent of n and m.)

Problem Result Approx factor Restrictions Reference

(k, `)-median,
continuous Fréchet Õ(nm) (1 + ε) d = 1 Driemel et al. [12]

(k, `)-median,
discrete Fréchet

Õ(nm) 65 Driemel et al. [12]
Õ(m2(m+ n)) 12 Theorem 10

Õ(nm) (1 + ε) k = 1 Theorem 12
Õ(nmdk`+1) (1 + ε) k > 1 Theorem 12

(k, `)-center,
discrete Fréchet

Õ(nm) 3 Buchin et al. [6]
Õ(nm) (1 + ε) Theorem 9

1.2 Results

We show that the average curve problem for discrete and continuous Fréchet distance in
1D is NP-complete, W[1]-hard when parametrized in the number of curves m, and admits
no f(m) · no(m)-time algorithm unless ETH fails. In addition, we prove the same hardness
results of the average curve problem for the (p, q)-DTW distance for any p, q ∈ N.

This is an independent proof that is simpler and more general than the result by
Bulteau et al. [8]. Their hardness result holds for the case of the (2, 2)-DTW distance,
which is widely-used. Other common variants, covered by our proof, are (1, 1)-DTW, i.e.,
(non-squared) Euclidean distance and Manhattan distance in 1D [16], (2, 1)-DTW, and
more generally (p, 1)-DTW [26, 27]. Note that, while we define (p, 1)-DTW in terms of the
pth power of the Euclidean norm, our hardness results also apply to the pth power of the
Lp-norm, since these norms are equal in 1D. Another difference is that hardness construction
by Bulteau et al. [8] uses binary input curves and a center curve that is not restricted to a
bounded set of vertices, while in our construction both the input curves and the center curve
use only vertices from {−1, 0, 1}. This means we answer a question by Brill et al. [4], who
asked whether their result can be extended to obtain a polynomial time algorithm when all
curves are restricted to sets of 3 vertices, in the negative.
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Since our and other hardness results exclude efficient algorithms for the (k, `)-center
or -median clustering without further assumptions, we investigate other approaches with
provable guarantees. In particular, we give a (1 + ε)-approximation algorithm that runs in
Õ(mn) time and a polynomial-time exact algorithm to solve the (k, `)-center problem for the
discrete Fréchet distance, when k, `, and ε are fixed. For the (k, `)-median problem under
the discrete Fréchet distance, we give a polynomial time 12-approximation algorithm, and
an (1 + ε)-approximation algorithm that runs in polynomial time when k, `, and ε are fixed.
Table 1 gives an overview of our results.

2 Hardness of the average curve problem for discrete and continuous
Fréchet

In this section, we will show that the 1-median problem (or average curve problem) is
NP-hard for the discrete and continuous Fréchet distance. The average curve problem for the
discrete Fréchet distance is as follows: given a set of curves G and an integer r, determine
whether there exists a center curve c such that

∑
g∈G ddF (c, g) ≤ r. We will show that this

problem is NP-hard. To find a reasonable algorithm, we can look at a parametrized version
of the problem. A natural parameter is the number of input curves, which we will denote by
m. However, we will show that this parametrized problem is W[1]-hard, which rules out any
f(m) · nO(1)-time algorithm, unless FPT = W[1]. To achieve these reductions, we create a
reduction from a variant of the shortest common supersequence (SCS) problem.

2.1 The FCCS problem
To show the hardness of the average curve problem for the Fréchet and DTW distance, we
reduce from a variant of the Shortest Common Supersequence (SCS) problem, which we will
call the Fixed Character Common Supersequence (FCCS) problem. If s is a string and x is a
character, #x(s) denotes the number of occurrences of x in s.

I Problem 3 (Shortest Common Supersequence (SCS)). Given a set S of m strings with
length at most n over the alphabet Σ and an integer t, does there exist a string s∗ of length t
that is a supersequence of each string s ∈ S?

I Problem 4 (Fixed Character Common Supersequence (FCCS)). Given a set S of m
strings with length at most n over the alphabet Σ = {A,B} and i, j ∈ N, does there exist a
string s∗ with #A(s∗) = i and #B(s∗) = j that is a supersequence of each string s ∈ S?

The SCS problem with a binary alphabet is known to be NP-hard [25] and W [1]-hard [24].
The same holds for FCCS:

I Lemma 1. The FCCS problem is NP-hard. The FCCS problem with m as parameter is
W[1]-hard. There exists no f(m) · no(m) time algorithm for FCCS unless ETH fails.

Proof. We reduce from SCS with the binary alphabet {A,B} to FCCS. Given an instance
(S, t) of SCS, construct S′ = {s + AB2tA + c(s) | s ∈ S}, where c(s) denotes the string
constructed by replacing all A characters in s by B and vice versa, and + denotes string
concatenation. We reduce to the instance (S′, t+ 2, 3t) of FCCS and claim that (S, t) is a
true instance of SCS if and only if (S′, t+ 2, 3t) is a true instance of FCCS.

If (S, t) is a true instance of SCS, then there exists a string q of length t that is a
supersequence of each string in S. Therefore, the string q′ = q + AB2tA + c(q) is a
supersequence of all strings in S′. Since #A(q′) = 2 + #A(q + c(q)) = 2 + t and #B(q′) =
2t+ #B(q + c(q)) = 3t, (S′, t+ 2, 3t) is a true instance of FCCS.
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If (S′, t + 2, 3t) is a true instance of FCCS, there is string q′ with #A(q′) = t + 2 and
#B(q′) = 3t that is a supersequence of each string s′ ∈ S′. Consider a pair of strings
s′1 = s1 +AB2tA+ c(s1) and s′2 = s2 +AB2tA+ c(s2) from S′. If there is no matching such
that the first character of the AB2tA substring in s′1 is matched to the same character of
q′ as the first character of that substring in s′1, then q′ is a supersequence of AB2tAB2tA

and so #B(q′) > 3t, a contradiction. By symmetry, the same holds for the last character
of the substring AB2tA and therefore q = q1 + q2 + q3, where q1 is a supersequence of
S, q2 is a supersequence of AB2tA and q3 is a supersequence of {c(s) | s ∈ S}. Note
that c(q3) is a supersequence of S. Also, #A(q1) + #A(c(q3)) = #A(q) −#A(q2) ≤ t and
#B(q1) + #B(c(q3)) = #B(q)−#B(q2) ≤ t. So, |q1|+ |c(q3)| ≤ 2t, which means that |q1| ≤ t
or |c(q3)| ≤ t and thus (S, t) is a true instance of SCS.

Note that this reduction is both a polynomial-time reduction and a parametrized reduction
in the parameter m. Since the SCS problem over the binary alphabet {A,B} is NP-hard [25]
and W[1]-hard when parametrized with the number of strings m [24], the first two parts of
the claim follow. The final part of the claim follows from the fact that this reduction

Together with the reduction from [24], we have a parametrized reduction from Clique
with a linear bound on the parameter, so the final part of the claim follows [11, Obs. 14.22]. J

2.2 Complexity of the average curve problem under the discrete and
continuous Fréchet distance

We will show the hardness of finding the average curve under the discrete and continuous
Fréchet distance via the following reduction from FCCS. Given an instance (S, i, j) of FCCS,
we construct a set of curves using the following vertices in R: ga = −1, gb = 1, gA = −3,
and gB = 3. For each string s ∈ S, we map each character to a subcurve in R:

A→ (gagb)i+jgA(gbga)i+j B → (gbga)i+jgB(gagb)i+j .

The curve γ(s) is constructed by concatenating the subcurves resulting from this mapping,
G = {γ(s) | s ∈ S} denotes the set of these curves. Additionally, we use the curves

Ai = gb(gAgb)i Bj = ga(gBga)j .

We will call subcurves containing only gA or gB vertices letter gadgets and subcurves
containing only ga or gb vertices buffer gadgets. Let Ri,j = {Ai, Bj}. We reduce to the
instance (G ∪ Ri,j , r) of the average curve problem, where r = |S| + 2. We use the same
construction for the discrete and continuous case. We call the interval of points p on a
subcurve gbgAgb with p < −1 an A-peak, and the interval of points p on a subcurve gagBga
with p > 1 a B-peak. A curve γ(s) has exactly one peak for every letter in s.

For an example of this construction, take S = {ABB,BBA,ABA}, i = 2, j = 2. Then
ABBA is a supersequence of S with the correct number of characters. Note that the curve
with vertices 0gA0gB0gB0gA0 has a (discrete) Fréchet distance of at most 1 to the curves in
G ∪Ri,j , see Figure 2, so the sum of those distances is at most |S|+ 2 = r.

I Lemma 2. If (S, i, j) is a true instance of FCCS, then (G ∪Ri,j , r) is a true instance of
the average curve problem for discrete and continuous Fréchet.

Proof. We will show the proof for the discrete Fréchet distance. Since the discrete Fréchet
distance is an upper bound of the continuous version, this proves the continuous case as well.
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Figure 2 Five curves from G ∪Ri,j in the reduction for the Fréchet average curve problem and a
center curve constructed from ABBA (purple) as in Lemma 2. Matchings are indicated by dotted
lines. Note that each of these matchings achieves a (discrete) Fréchet distance of 1.
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Figure 3 Five curves from G ∪ Ri,j in the reduction for the DTW average curve problem and
a center curve constructed from the string ABBA (purple) as in Lemma 5. Fat horizontal lines
indicate β consecutive vertices. Vertices that match at distance 0 touch, vertices that match at
distance 1 are indicated by dotted lines. The center has 1 mismatch with the first 3 curves and 2
with the final two, so the total cost here is 3 · (1p)q/p + 2α · (2 · 1p)q/p = 3 + 2α · 2q.
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Since (S, i, j) is a true instance of FCCS, there exists a common supersequence s∗ of S
with #A(s∗) = i and #B(s∗) = j. Construct the curve c of complexity 2|s∗|+ 1, given by

cl =


0 if l is odd
−2 if l is even and s∗l/2 = A

2 if l is even and s∗l/2 = B

,

for each l ∈ {1, . . . , 2|s∗|+ 1}. Let s ∈ S, then note that the sequence of letter gadgets in
γ(s) is a subsequence of the letter gadgets in c, because s is a subsequence of s∗. So, all
letter gadgets in γ(s) can be matched with a letter gadget in c, the remaining letter gadgets
in c with a buffer gadget in γ(s) and all remaining buffer gadgets with another buffer gadget,
such that ddF (c, γ(s)) ≤ 1. For the matching with Ai, note that c has exactly i gA vertices,
so these can be matched with the i gA vertices in Ai. All other vertices in c have distance 1
to the remaining buffer gadgets in Ai, so ddF (c, Ai) ≤ 1. Analogously, ddF (c,Bj) ≤ 1. So,
we get

∑
g∈G∪Ri,j

ddF (c, g) =
∑
s∈S ddF (c, γ(s)) + ddF (c, Ai) + ddF (c,Bj) ≤ |S|+ 2 = r, and

(G ∪Ri,j , r) is a true instance of average curve for discrete Fréchet. J

I Lemma 3. If (G∪Ri,j , r) is a true instance of the average curve problem for discrete and
continuous Fréchet, then (S, i, j) is a true instance of FCCS.

We give a sketch of the proof, see Appendix A for the full proof. Since (G ∪Ri,j , r) is a true
instance of the average curve problem for continuous Fréchet, there exists a curve c∗ such
that

∑
g∈G∪Ri,j

dF (c∗, g) ≤ r = |S|+ 2α. We show ddF (c, g) = 1 for all g ∈ G∪Ri,j and any
center curve c that exhibits this bound. It remains to show that such a center curve encodes
a solution to the initial FCCS instance. Note that such a center curve is also a solution
to the 1-center problem for this set of curves. We can now apply the proof of Lemma 33
from [5, 6], where the same gadgets were used in the reduction to the 1-center problem. J

I Theorem 4. The average curve problem for discrete and continuous Fréchet distance is
NP-hard. When parametrized in the number of input curves m, this problem is W[1]-hard.
There exists no f(m) · no(m) time algorithm for this problem unless ETH fails.

Proof. By Lemmas 2 and 3, we have a valid reduction from FCCS to the average curve
problem. Since this reduction runs in polynomial time and FCCS is NP-hard (Lemma 1),
the average curve problem for discrete and continuous Fréchet is NP-hard. Note that the
number of curves in the reduced average curve instance is k + 2, where k is the number
of input sequences of the FCCS instance. So, together with the reduction from Lemma 1,
this reduction is also a parametrized reduction from Clique with a linear bound on the
parameter to the average curve problem for discrete and continuous Fréchet with the number
of curves as a parameter, which implies the remainder of the theorem [11, Obs. 14.22]. J

3 Hardness of the average curve problem for (p, q)-DTW

We will show that the average curve problem under the (p, q)-DTW distance is NP-hard
for all p, q ∈ N. This generalises the result of [8], who use different methods to achieve the
same hardness results for the (2, 2)-DTW average curve problem only. We again reduce from
FCCS instance (S, i, j). Given a string s ∈ S over the binary alphabet {A,B}, we map each
character to a subcurve in R:

A→ gβ0 g
β
ag

β
0 B → gβ0 g

β
b g

β
0 ,
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where g0 = 0, ga = −1, gb = 1 as before and β is a large constant that will be determined later.
The curve γ(s) is constructed by concatenating these subcurves and G = {γ(s) | s ∈ S}. We
additionally use the curves

Ai = gβ0 (gβag
β
0 )i Bj = gβ0 (gβb g

β
0 )j .

Call any subcurve consisting of ga or gb vertices a letter gadget and any subcurve consisting
of g0 a buffer gadget. Let Ri,j contain curves Ai and Bj , both with multiplicity α. We reduce
to the instance (G ∪Ri,j , r) of (p, q)-DTW average curve, where r =

∑
s∈S(i+ j − |s|)q/p +

α(iq/p + jq/p), β = dr/εqe+ 1, α = |S| and ε = 1− (1−minx∈{i,j} (x+1)q/p−xq/p

4(i+j)q/p )1/q.2 See
Figure 3 for an example of this construction with S = {ABB,BBA,ABA} and i = j = 2.

The following definitions are used to prove Lemma 6. Take a vertex p on some center
curve c∗. If |p− ga| < ε, we call p an A-signal vertex. If |p− gb| < ε we call p an B-signal
vertex. If p is not a signal vertex, then we call p a buffer vertex. Note that ε is chosen
small enough such that no vertex is both an A- and B-signal vertex. We will show that the
sequence of signal vertices in the curve satisfying (G ∪Ri,j , r) is a supersequence satisfying
(S, i, j).

I Lemma 5. If (S, i, j) is a true instance of FCCS, then (G ∪Ri,j , r) is a true instance of
(p, q)-DTW average curve.

Proof. If (S, i, j) is a true instance of FCCS, then there exists a string s∗ that is a su-
persequence of S, with #A(s∗) = i and #B(s∗) = j. Construct the curve c of length
2(i+ j) + 1:

cl =


0 if l is odd
ga if l is even and s∗l/2 = A

gb if l is even and s∗l/2 = B

,

for each l ∈ {1, . . . , 2(i+ j) + 1}. Analogously to Lemma 2, we can match the letter gadgets
from γ(s) to gA or gB in c as s∗ is a supersequence of s, the letter gadgets of Ai, Bj to gA, gB
in c as the number of curves match, and g0 vertices to buffer gadgets. This gives a matching
such that

∑
g∈G∪Ri,j

DTWq
p(c, g) ≤ r. J

I Lemma 6. If (G ∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then (S, i, j) is
a true instance of FCCS.

We give a sketch of the proof, for the full proof, see Appendix A. Let c∗ be a center curve
such that

∑
g∈G∪Ri,j

DTWq
p(c∗, g) ≤ r. Since εq · β > r, each letter gadget must be matched

to a signal vertex. Additionally, each signal vertex can only be matched to at most one letter
gadget, because matching the buffer separating two gadgets costs at least (1− ε)q · β > r.
This means that the sequence of letter gadgets in γ(s) is a subsequence of the sequence of
signal vertices in c∗, so the sequence of signal vertices in c∗ induces a supersequence s′ of S.
What remains to be proven is that s′ doesn’t use too many characters, i.e. that there are no

2 Computing the values r, β, ε requires computing higher order roots. For simplicity, we assume that
we can compute the exact values in polynomial time. However, this assumption is not necessary,
as the construction also works if we use corresponding approximate values r̃, ε̃, β̃, as long as r̃ ∈
[r, r+ 1

4 minx∈{i,j}(x+ 1)q/p − xq/p), ε̃ ≤ ε, and β̃ ≥ β. So, we are allowed to make an error of at least
Ω((i+ j)−1) = Ω(n−1), which we can do in polynomial time.
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2∆

Figure 4 Given an approximate (1, `)-center curve (red) for a set of curves (dashed), the vertices
of the optimal center curve (black) will be close to the hypercube grids around the vertices of the
approximate center.

more than i A-signal vertices and j B-signal vertices on c∗. We prove this by deriving an
upper bound on DTWq

p(c∗, Ai) + DTWq
p(c∗, Bj) that cannot be achieved if c∗ has too many

signal vertices. J

I Theorem 7. The average curve problem for the (p, q)-DTW distance is NP-hard, for any
p, q ∈ N. When parametrized in the number of input curves m, this problem is W[1]-hard.
There exists no f(m) · no(m) time algorithm for this problem unless ETH fails.

Proof. By Lemmas 5 and 6, we have a valid reduction from FCCS to the average curve
problem. Since this reduction runs in polynomial time and FCCS is NP-hard (Lemma 1), the
average curve problem for discrete and continuous Fréchet is NP-hard. Since the reduction
runs in polynomial time (note that 1/ε can be bounded by a polynomial function in n, since
p, q are constants, so β can be polynomially bounded) and the number of input curves is
bounded by a linear function in |S|, the claim follows. J

4 Algorithms for (k, `)-center and -median curve clustering

4.1 (1 + ε)-approximation for (k, `)-center clustering for discrete
Frechét distance in Rd

In this section, we develop a (1 + ε)-approximation algorithm for the (k, `)-center problem
under the discrete Fréchet distance that runs in O(mn log(n)) time for fixed k, `, ε. In this
algorithm, we use hypercube grids Lv(a, b) around a vertex v of width a and resolution
b: take the axis-parallel d-dimensional hypercube centered at v of side-length a. Divide
this hypercube into smaller hypercubes of side-length at most b. The grid Lv(a, b) is the
set of all vertices of the smaller hypercubes that intersect the ball of diameter a around
v. See Figure 4 for an example. The algorithm is as follows: First, we compute a set of
curves C = {c1, . . . , ck} that forms a 3-approximation for the (k, `)-center problem, using the
algorithm by Buchin et al. [6]. Let ∆ be the cost of C. Let V be the union of the hypercube
grids Lv(4∆, 2∆ε

3
√
d
) over all vertices v of curves in C. For every set of k center curves with

complexity ` using only vertices from V , compute the clustering and cost as centers for G,
and return the set with minimal cost.

In order to show this algorithm gives an (1 + ε)-approximation, we use the following
lemma to show that there is a set of k center curves that is close enough to the optimal
solution:
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I Lemma 8. Let k, ` ∈ N, δ ∈ R and X > 0. Suppose there are two sets C = {c1, . . . , ck}
and C∗ = {c∗1, . . . , c∗k}, both containing k curves in Rd of complexity `. Additionally, suppose
that for all curves c∗ ∈ C∗, there exists a curve c ∈ C such that ddF (c, c∗) ≤ δ. Let V =
{Lv(2δ, 2 X√

d
) | v is a vertex of a curve in C}. Then there is a set of curves C̃ = {c̃1, . . . , c̃k},

using only vertices from V , such that ddF (c∗i , c̃i) ≤ X, |c̃i| = `, for all 1 ≤ i ≤ k.

Proof. Let v be a vertex of a curve in C, and let p be a point such that ‖p− v‖ ≤ δ. Then p
lies inside one of the small hypercubes and so there is a vertex p′ ∈ Lv(2δ, 2 X√

d
) (a vertex

of that small hypercube) such that ‖p − p′‖ ≤
√
d

2 ·
2X√
d

= X. Let c∗ ∈ C∗. There exists a
curve c ∈ C with ddF (c, c∗) ≤ δ, which means that each vertex u of c∗ has distance at most
δ to some vertex v of c. So, there exists a vertex v′ ∈ Lv(2δ, 2 X√

d
) such that ‖u− v′‖ ≤ X.

Construct the curve c̃ by connecting all such vertices v′ by line segments. By construction,
ddF (c̃, c∗) ≤ δ, |c̃| = `, and all vertices of c̃ are in V . So, we can take C̃ = {c̃ | c∗ ∈ C∗}. J

By the triangle inequality, curves of distance at most ε∆/3 to an optimal solution are
an (1 + ε)-approximation. We use Lemma 8 that show there is such a set of curves in the
hypercube grids our algorithm searches, leading to the following theorem:

I Theorem 9. Given m input curves in Rd, each of complexity at most n, and positive
integers k, ` and some 0 < ε ≤ 1, we can compute an (1+ε)-approximation to the (k, `)-center
problem for the discrete Fréchet distance in O

(
((Ck`)k` + log(`+ n)) · k` ·mn

)
time, with

C =
(

6
√
d
ε + 1

)d
.

Proof. We first show that the algorithm above achieves this approximation ratio. Let C∗ be
an optimal optimal solution for the (k, `)-center problem, and O its cost. Let c∗ ∈ C∗, then
there is a curve g ∈ G such that that ddF (c∗, g) ≤ O (assuming without loss of generality
that its cluster is non-empty). Since the solution C has cost ∆, there is a c ∈ C such that
ddF (c, g) ≤ ∆. So, ddF (c, c∗) ≤ ddF (c, g) + ddF (g, c∗) ≤ 2∆, and by Lemma 8 with δ = 2∆
and X = ε · ∆/3 ≤ εO, there is a solution C̃ with the properties in the Lemma. Since
for any g ∈ G, there is a curve c∗ ∈ C∗ such that ddF (g, c∗) ≤ O, there is a c̃ ∈ C̃ such
that ddF (g, c̃) ≤ ddF (g, c∗) + ddF (c̃, c∗) ≤ (1 + ε)O. Since the algorithm returns the best
solution using only from V , it returns a solution of cost at most that of C̃, and is therefore
an 1 + ε-approximation.

For the running time, computing the 3-approximation C takes O(k`mn log(`+n)) time [6].
A grid Lv(a, b) has at most (dab e+ 1)d vertices and the curves in C have at most k` vertices,
so |V | ≤ k`(d 6

√
d
ε e+ 1)d. There are O(|V |k`) solutions using only vertices from V , and we

can test each solution in O(k`mn) time: computing the discrete Fréchet distance between
an input curve and a center curve takes O(`n) time using dynamic programming, which
we do for all km pairs of input and center curves. In total, we get a running time of
O
(
(|V |k` + log(`+ n)) · k`mn

)
. J

Note that we can use any α-approximation algorithm instead of the 3-approximation
algorithm by Buchin et al. [6], if we scale the grids accordingly. This changes the value of C

to
(

2α
√
d

ε + 1
)d

. If ε is very small, we can use this to get a smaller C constant by running
our algorithm twice, first computing a 1.01-approximation, and using that approximation to
compute the (1 + ε)-approximation.

When ε and d are fixed constants, the algorithm from Theorem 9 yields fixed parameter
tractability for the parameter k + `. There is no (1 + ε)-approximation algorithm that is
fixed parameter tractable in either k or ` separately (the problem is not even in XP, in fact),
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unless P = NP. If we do not fix `, then achieving an approximation factor strictly better
than 2 is already NP-hard when k = 1 and d = 1 [6]. If we do not fix k and if ` = 1, the
(k, `)-center problem for discrete Fréchet is equivalent to the Euclidean k-center problem,
which is NP-hard to approximate within a factor of 1.82 for d ≥ 2 [14].

4.2 Approximation algorithms for (k, `)-median clustering for the
discrete Fréchet distance in Rd

We construct an (1 + ε)-approximation for the (k, `)-median problem for the discrete Fréchet
distance with a similar approach as above: first compute an constant factor approximation,
and then search in hypercube grids around the vertices of that approximation. The algorithm
for the constant factor approximation is essentially the same as the approximation algorithm
from [12] for 1D curves, except we use different subroutines and derive a tighter approximation
bound. We first introduce some techniques we will use to get a 12-approximation. Given a
polygonal curve γ, a simplification is a polygonal curve that is similar to γ, but has only
a few vertices. Specifically, a minimum error `-simplification γ̄ of a curve γ is a curve of
complexity at most ` that has a minimum distance to γ among all curves with complexity
at most `. We can compute a minimum error `-simplification under the discrete Fréchet
distance for a curve γ of complexity n in O(n` logn log(n/`) time [3].

The 12-approximation algorithms goes as follows: First, compute a minimum error
`-simplification ḡ for each input curve g and let G be the set of all simplified curves. Then,
compute a 4-approximation for the k-median problem with F = G and C = G, using the
algorithm by Jain et al. [19]. This yields a 12-approximation:

I Theorem 10. Given m input curves in Rd, each of complexity at most n, and positive
integers k, `, we can compute a 12-approximation to the (k, `)-median problem for the discrete
Fréchet distance in O(m3 +mn`(m+ logn log(n/`))) time.

Proof. We first show the approximation ratio. Let C∗ be the optimal solution to the
(k, `)-median problem with cost O, and let C be the solution computed by our algorithm
above. Each center curve c∗i has a set G∗i ⊆ G as its cluster. Let c′i be the minimum
error `-simplification of a curve ci from G∗i that has minimum distance to c∗i . The
curves C′ = {c′1, . . . , c′k} are a 3-approximation to the (k, `)-median problem: we have∑
g∈G minki=1 ddF (g, c′i) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c′i) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c∗i ) + ddF (c∗i , ci) +

ddF (ci, c′i) ≤ 3
∑k
i=1
∑
g∈G∗

i
ddF (g, c∗i ) = 3O, where ddF (c′i, ci) ≤ ddF (c∗i , ci) because |c∗i | = `

and c′i is a minimum error `-simplification of ci, and ddF (ci, c∗i ) ≤ ddF (g, c∗i ) for all g ∈ G∗i
by definition of ci. C′ is some solution to the k-median problem with F = G and C = G

of cost at most 3O, so the optimal solution to this problem has cost at most 3O. Since we
compute a 4-approximation for that problem, the result has cost at most 12O.

For the running time, note that computing the simplification of all curves in G takes
O(mn` logn log(n/`)) time. Then, we can compute the discrete Fréchet distances between
pairs from G × G in O(m2 · `n) time, and run the algorithm by Jain et al. [19] in O(m3)
time. J

We can modify the algorithm above to run in Õ(mn) time when k, ` are constant: Compute
G as before, but now use the algorithm by Chen [10] to compute a 10.5-approximation to
the k-median problem with F = C = G. This gives a 42-approximation.

I Lemma 11. Given m input curves in Rd, each of complexity at most n, and positive
integers k, `, we can compute a 42-approximation to the (k, `)-median problem for the discrete
Fréchet distance in O(mn` logn log(n/`) + `2(mk + k7 log5m)) time.



K. Buchin, A. Driemel, and M. Struijs 19:13

Proof. The proof is similar to Theorem 10, but now simplifications are clustered instead
of the original curves. We first show the approximation ratio. Given a cluster G∗i ⊂ G

from the optimal clustering with center c∗i , let c̄i be the simplification of a curve g in this
cluster such that ddF (c̄i, c∗i ) is minimal. The curves C = {c̄1, . . . , c̄′k} are a 4-approximation
to the (k, `)-median problem: we have

∑
g∈G minki=1 ddF (ḡ, c̄i) ≤

∑k
i=1
∑
g∈G∗

i
ddF (ḡ, c̄i) ≤∑k

i=1
∑
g∈G∗

i
ddF (ḡ, c∗i )+ddF (c∗i , c̄i) ≤

∑k
i=1
∑
g∈G∗

i
2 ddF (ḡ, c∗i ) ≤ 2

∑k
i=1
∑
g∈G∗

i
ddF (ḡ, g)+

ddF (g, c∗i ) ≤ 2
∑k
i=1
∑
g∈G∗

i
2 ddF (g, c∗i ) = 4O, where ddF (c̄i, c∗i ) ≤ ddF (ḡ, c∗i ) by definition

of c̄i and ddF (ḡ, g) ≤ ddF (g, c∗i ) because |c∗i | = ` and ḡ is a minimum error `-simplification
of g. Since we compute a 10.5-approximation to the problem for which C is a solution, the
approximation ratio 10.5 · 4 = 42.

Computing the simplification of all curves in G takes O(mn` logn log(n/`)) time. The
algorithm by Chen [10] takes O(mk + k7 log5m) time, so it uses at most that number of
distance computations between curves in G, which take O(`2) time each. J

We use the 42-approximation algorithm to compute an (1 + ε)-approximation C for the
(k, `)-median problem similar to section 4.1. Let C = {c1, . . . , ck} be the solution given by
the 42-approximation algorithm above, and ∆ its cost. If k = 1, let V be the union of the
hypercube grids Lv(4∆/m, ε∆

21m
√
d
) over all vertices v of curves in C. If k > 1, let V be the

union of the grids Lv(4∆, ε∆
21m
√
d
) over the same vertices, instead. For every set of k center

curves with complexity ` using only vertices from V , compute the clustering and cost (using
the median objective) as centers for G, and return the set with minimal cost.

I Theorem 12. Given m input curves in Rd, each of complexity at most n, and positive
integers k, ` and some 0 < ε ≤ 1, we can compute an (1+ε)-approximation to the (k, `)-center
problem for the discrete Fréchet distance in O

(
mn`((C`)` + logn log(n/`))

)
time when k = 1

with C =
(

84
√
d

ε

)d
. When k > 1, we require

O
(
(Ck`)k` · k` ·mdk`+1n+mn` logn log(n/`) + `2(mk + k7 log5m)

)
time.

Proof. We first show the approximation ratio. Let C∗ = {c∗1, . . . , c∗k} be an optimal solution
for the (k, `)-median problem, G∗i ⊂ G the cluster induced by the center c∗i , and O the
total cost of this solution. Let C̃ = {c̃1, . . . , c̃k} be a set of curves with complexity at most
` such that for all 1 ≤ i ≤ k, there is a curve c̃j ∈ C̃ with ddF (c∗i , c̃j) ≤ εO/m. Since∑
g∈G minkj=1 ddF (g, c̃j) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c̃j) ≤

∑k
i=1
∑
g∈G∗

i
ddF (g, c∗i ) + ddF (c∗i , c̃i) ≤∑

g∈G minki=1 ddF (g, c∗i ) + εO/m = (1 + ε)O, the set C̃ is an (1 + ε)-approximation. We will
show that there is such a set that uses only vertices of V .

If k = 1, then ddF (c1, c∗1) = 1
m

∑
g∈G ddF (c1, c∗1) ≤ 1

m

∑
g∈G ddF (c1, g) + ddF (g, c∗1) ≤

(∆ + O)/m ≤ 2∆/m. Applying Lemma 8 with δ = 2∆/m and X = ε∆/(42m) ≤ εO/m,
there is a (1 + ε)-approximation using only vertices of V .

Otherwise, if k > 1, then for each c∗i there is a cj such that the clusters of these centers
share some curve g ∈ G. So, ddF (c∗i , cj) ≤ ddF (c∗i , g) + ddF (g, cj) ≤ O + ∆ ≤ 2∆. Applying
Lemma 8 with δ = 2∆ and X = ε∆/(42m) ≤ εO/m, there is a (1 + ε)-approximation using
only vertices of V .

For the running time, we have |V | ≤ k`(dab e+ 1)d when we use grids with width a and
resolution b. If k = 1, ab = 4∆/m

ε∆/(21m
√
d) = 84

√
d

ε . If k > 1, ab = 84m
√
d

ε . The rest of the analysis
is similar to that in Theorem 9. J
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f1

f2

f3

f4

f5

f6

f7

f8
f9

v

f10

f11

Figure 5 An example configuration of G = (V,E). Crosses indicate the vertices from the curves
in G, dots indicate vertices from V and all bounded faces are numbered. The maximal intersection
regions are the faces f1 and f9 and the vertex v (in red). Note that while all arcs on the boundary
of f2 are convex for that face, f2 is not maximal, since its boundary intersects the boundary of f3

only at vertex v.

4.3 Exact algorithm for (k, `)-center under discrete Fréchet in R2

For the (k, `)-center problem under the discrete Fréchet distance in R2, we can give a
polynomial time algorithm if k and ` are fixed.

I Theorem 13. Given a set of m curves G in the plane with at most n vertices each,
we can find a solution to the (k, `)-center problem for the discrete Fréchet distance in
O((mn)2k`+1k` log(mn)) time.

Proof. We first give an algorithm for the decision version of the problem: Given a set of m
curves G in the plane with at most n vertices each and a positive real number r, does there
exist a set of k center curves C with at most ` vertices each such that minc∈C ddF (c, g) ≤ r
for all g ∈ G?

For a solution C of cost r, consider the planar subdivision formed by the circles of radius
r centred at the vertices of the input curves. Observe that we can move the vertices of curves
in C to different positions within the same region of the subdivision without changing the
cost. So, we select a single vertex per region and exhaustively test all sets with k curves of
` vertices that can be constructed by using only the selected vertices to determine if there
exists a set of curves C such that minc∈C ddF (c, g) ≤ r for all g ∈ G.

To find all maximal intersection regions, we first compute the planar graph G = (V,E),
where V is the set of all intersection points between boundaries of disks centred around a
vertex from our input curves with radius r and E is the set of arcs on the boundary of those
disks ending at two intersection points. This graph has O((nm)2) vertices and arcs and can
be computed in O((nm)2) time [9], see Figure 5 for an example.

By traversing the intersection points and arcs on the boundary, we can find the at most
O((nm)2) maximal intersection regions. So, we test O((mn)2k`) sets of center curves, for
which we can test whether a single input curve has discrete Fréchet distance less than r to a
single curve among the k center curves in O(n`). This means the algorithm for the decision
version takes O((mn)2k`+1k`) time.
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To find a minimum r such that a (k, `)-center exists, note that we only have to consider
the decision problem for those r where the topology of the intersection regions in G is different.
If we start with r = 0 and gradually increase it, the topology of G changes only when a new
maximal intersection is created, which then consists of exactly one point p. This means that
there is a subset of our disks such that point p is the earliest point where all disks have a
non-empty intersection. So, p must be the center of the minimum enclosing disk for this
subset of disks. Since a minimum enclosing disk is determined by at most 3 points, there
can be at most one unique point for every triple in set of vertices of the input curves which
give at most O((mn)3) distinct values of r where the topology of G changes. By performing
a binary search on these values, we can find the optimal value in O(log(mn)) calls to the
algorithm for the decision. J

5 Conclusion

In this paper, we have shown that the 1-median problem is computationally hard under the
discrete Fréchet, continuous Fréchet, and DTW distance. A natural question is whether
this problem is hard to approximate. Efficient constant factor approximation algorithms
are known for the Fréchet distance (see Section 4.2), but not for DTW. If we extend our
analysis in Lemma 3 to a solution c∗ with cost (1 + ε)r for some ε > 0, we can show
ddF (c∗, g) ≤ 1 +O(εm) for all input curves g (where the constant is independent of other
input parameters). Together with the approximation lower bound of 2 for 1-center under
continuous Fréchet distance [29], this implies a lower bound of 1+Ω( 1

m ) on the approximation
factor for 1-median. If we do the same for Lemma 6, we get that it is hard to approximate
1-median under (p, q)-DTW for any factor < 1 + 2((1 + 1

min(i,j) )q/p − 1). So, it remains an
open problem to find a constant lower bound for approximating 1-median for these distance
measures.

We have shown that computing a center curve for (p, q)-DTW is NP-hard even when
both the center and input curves are ternary. Bulteau et al. [8] have shown that this problem
is hard for (2, 2)-DTW when the input is binary, but the center curve is unrestricted. Can
this hardness result for binary inputs be extended to (p, q)-DTW? If both the center and
input are binary, a center curve for (2, 2)-DTW can be computed in polynomial time [28].
Can this be done for (p, q)-DTW? Can a mean be found in polynomial time if the input is
binary, but the center restricted to be ternary?

On the positive side, we have given (1 + ε)-approximation algorithms for (k, `)-center and
(k, `)-median problems under discrete Fréchet in Euclidean space and an exact algorithm
for the (k, `)-center problem under discrete Fréchet in 2D that all run in polynomial time
for fixed k, `, ε. It would be interesting to see if these algorithms can be adapted to the
DTW or continuous Fréchet settings. Our approximation algorithms rely on the fact that
good approximations have small distance to some optimal solution and that we can search a
bounded space (the set of balls surrounding the vertices) for better approximations. The
first property does not hold for DTW, since it is non-metric and the second property does
not hold for continuous Fréchet, since the vertices of a curve with small continuous Fréchet
distance do not have to be near the vertices of the other curve. The latter property is also
crucial for the exact algorithm.
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A Appendix

A.1 Proof of Lemma 3
I Lemma. If (G ∪Ri,j , r) is a true instance of the average curve problem for discrete and
continuous Fréchet, then (S, i, j) is a true instance of FCCS.

Proof. We will show the proof for the continuous Fréchet distance. Since the continuous
Fréchet distance is a lower bound of the discrete version, this proves the discrete case as well.

Since (G ∪Ri,j , r) is a true instance of the average curve problem for continuous Fréchet,
there exists a curve c∗ such that

∑
g∈G∪Ri,j

dF (c∗, g) ≤ r = |S|+ 2. We start by deriving
bounds for the distance between c∗ and the individual curves in G ∪Ri,j .

B Claim. dF (γ(s), γ(s′)) ≥ 2 for all s, s′ ∈ S such that s 6= s′.

Proof. If a letter vertex p on γ(s) is matched with a point p′ that does not lie on a peak of
the same letter in γ(s′), then |p− p′| ≥ 2 and so dF (γ(s), γ(s′)) ≥ 2. By symmetry, the same
holds if we exchange s and s′.

Otherwise, each letter vertex can be matched only with points on a peak of the same
letter. Let k be the first index such that s[k] 6= s′[k]. Then, the k-th letter vertex of γ(s)
cannot be matched to any point on the k-th peak of γ(s′) and must be matched to a point on
another peak; the same holds with s and s′ exchanged. It is not possible that on both curves
the k-th letter vertex is matched with a peak of index larger than k, since the matching is
monotone. So, one of the curves has its k-th letter vertex matched with a point on a peak of
index smaller than k, we assume w.l.o.g. that this curve is s.

By monotonicity, the first k letter vertices of s are matched to the first k − 1 peaks of s′,
so there are two letter vertices on s that are both matched with a point on the same peak
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on s′. The interval between those two points on this peak on s′ must be matched with the
interval between the letter vertices on s, so all points in the buffer gadget between the letter
vertices on s are matched to some point on the peak on s′. But then there is either a point
on an A-peak matched to gb or a point on a B-peak matched to ga, which in both cases has
distance a least 2, so dF (γ(s), γ(s′)) ≥ 2. C

B Claim. dF (c∗, Ai) + dF (c∗, Bj) ≤ 2

Proof. Using the previous claim and the triangle inequality, we have

dF (c∗, γ(sk)) + dF (c∗, γ(sk+1)) ≥ dF (γ(sk), γ(sk+1) ≥ 2

for all k ∈ {1, . . . ,m− 1} and dF (c, γ(sm)) + dF (c, γ(s1)) ≥ 2. The summation of these m
inequalities has each sk exactly twice on the lefthand side, so

∑m
k=1 2dF (c∗, γ(sk)) >= 2m,

hence
∑m
k=1 dF (c∗, γ(sk)) ≥ m = |S|. So, dF (c∗, Ai)+dF (c∗, Bj) ≤ r−

∑m
k=1 dF (c∗, γ(sk)) ≤

2. C

B Claim. dF (c∗, Ai) ≥ 1 and dF (c∗, Bj) ≥ 1.

Proof. Suppose dF (c∗, Ai) < 1. Then, all points p on c∗ are matched to some point in [−3, 1]
with distance < 1, which means |p− gB | > 1. We can assume that each string in S contains
at least one B character (if there is a string s with only A characters, any supersequence with
i A-characters is a supersequence of s when |s| ≤ i and none when |s| > i, so we can remove
such trivial strings from the instance and check if the instance is trivially false). Therefore,
dF (c∗, γ(s)) > 1 for any s ∈ S.

Since |ga− gb| = 2, we have dF (Ai, Bj) ≥ 2, so dF (c∗, Ai) + dF (c∗, Bj) ≥ dF (Ai, Bj) ≥ 2.
But then r ≥

∑
g∈G∪Ri,j

dF (c∗, g) > |S| + 2 = r, a contradiction, so dF (c∗, Ai) ≥ 1. The
proof of dF (c∗, Bj) ≥ 1 is analogous. C

B Claim. dF (c∗, g) = 1 for all g ∈ G ∪Ri,j .

Proof. The last two claims together imply dF (c∗, Ai) = dF (c∗, Bj) = 1. This means that for
each point p on c∗, |p| ≤ 2 (otherwise, p has distance > 1 to all points on Ai or all points on
Bj), so dF (c∗, γ(s)) ≥ 1 for all s ∈ S, since we can assume s contains at least one A and B
character. Therefore, dF (γ(s), c∗) ≤ r− dF (Ai, c∗)− dF (Bj , c∗)−

∑
s′∈S\{s} dF (γ(s′), c∗) ≤

|S| − (|S| − 1) = 1 for all s ∈ S. C

Now we have shown that any center curve that achieves a cost of |S|+2 for the constructed
k-median instance needs to have Fréchet distance equal to 1 to all curves in this instance. It
remains to show that such a center curve encodes a solution to the initial FCCS instance.
Note that such a center curve is also a solution to the 1-center problem for this set of curves.
We can now apply the proof of Lemma 33 from [6, 5], where the same gadgets were used in
the reduction to the 1-center problem. J

A.2 Proof of Lemma 6
I Lemma. If (G ∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then (S, i, j) is a
true instance of FCCS.

Proof. If (G∪Ri,j , r) is a true instance of (p, q)-DTW average curve, then there exists a curve
c∗ such that

∑
g∈G∪Ri,j

DTWq
p(c∗, g) ≤ r. Take a curve g ∈ G∪Ri,j . First note that there is

at least one signal vertex in c∗ matched to each letter gadget in g: otherwise, matching all β
vertices in the gadget costs at least εq ·β = εq · (r/εq + 1) > r, which contradicts the choice of
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c∗. Similarly, each signal vertex is matched to at most one letter gadget in g, since otherwise
it would have to match a gβ0 subcurve in between the letter gadgets, which would have a cost
of at least (1− ε)q ·β > εq ·β > r. This means that the sequence of letter gadgets in γ(s) is a
subsequence of the sequence of signal vertices in c∗. So, if we construct s′ from the sequence
of signal vertices in c∗ by mapping A-signal vertices to A characters and B-signal vertices to
B characters, we have that s′ is a supersequence of S. What remains to be proven is that
#A(s′) = i and #B(s′) = j, i.e. there are exactly i A-signal vertices and j B-signal vertices.

First, note that the sequence of A letter gadgets in Ai is a subsequence of the sequence
of signal vertices in c∗ (using the same argument as above), so there are at least i A-signal
vertices. Analogously, there are at least j B-signal vertices. Now if we can show that there
are at most i+ j signal vertices, then we are done.

Observe that there is at least one buffer vertex within a distance ε to g0 in between signal
vertices that are matched to letter gadget in Ai or Bj , as such a vertex must cover a gβ0
subcurve between the letter gadgets. We call signal vertices that are matched to the same
letter gadget in either Ai or Bj a group. (Note that by definition, a signal vertex cannot be
matched to letter gadgets in both Ai and Bj) This means that there are at least i groups of
A-signal vertices and at least j groups of B-signal vertices.

When matching c∗ and γ(s) for some s ∈ S, we can only match at most |s| groups of
signal vertices to a ga or gb vertex in a letter gadget in γ(s). So, for the at least i+ j − |s|
remaining groups of signal vertices, we can either match them to a g0 vertex in γ(s), or to a
corresponding ga or gb vertex. In the latter case, the signal vertex is matched to the same
gβa or gβb subcurve in γ(s) as another signal vertex in a different group. This means that the
buffer vertex that separates the two signal vertices is matched to a ga or gb vertex in the
letter gadget. So in all cases, we match two vertices at distance at leasts 1− ε. Since we do
this for at least i+ j − |s| vertices, DTWp(c∗, γ(s)) ≥ (1− ε)(i+ j − |s|)1/p.

Now, we have

α(DTWq
p(c∗, Ai) + DTWq

p(c∗, Bj)) ≤ r −
∑
s∈S

DTWq
p(c∗, γ(s))

≤ r −
∑
s∈S

(1− ε)q(i+ j − |s|)q/p

= α(iq/p + jq/p)

+
∑
s∈S

(1− (1− ε)q)(i+ j − |s|)q/p

≤ α(iq/p + jq/p) + (1− (1− ε)q)|S|(i+ j)q/p,

so that DTWq
p(c∗, Ai) + DTWq

p(c∗, Bj) ≤ iq/p + jq/p + (1 − (1 − ε)q)(i + j)q/p < iq/p +
jq/p + 1

2 minx∈{i,j}(x+ 1)q/p − xq/p. This means that there are at most i+ j signal vertices:
suppose there are at least i + 1 A-signal vertices, then DTWq

p(c∗, Ai) + DTWq
p(c∗, Bj) ≥

(1− ε)q((i+ 1)q/p + jq/p) ≥ iq/p + jq/p + ((i+ 1)q/p − iq/p)/2, a contradiction. Analogously,
at least j + 1 B-signal vertices lead to a contradiction. J
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Abstract
The sparse regression problem, also known as best subset selection problem, can be cast as follows:
Given a set S of n points in Rd, a point y ∈ Rd, and an integer 2 ≤ k ≤ d, find an affine combination
of at most k points of S that is nearest to y. We describe a O(nk−1 logd−k+2 n)-time randomized
(1 + ε)-approximation algorithm for this problem with d and ε constant. This is the first algorithm
for this problem running in time o(nk). Its running time is similar to the query time of a data
structure recently proposed by Har-Peled, Indyk, and Mahabadi (ICALP’18), while not requiring
any preprocessing. Up to polylogarithmic factors, it matches a conditional lower bound relying on
a conjecture about affine degeneracy testing. In the special case where k = d = O(1), we provide
a simple Oδ(nd−1+δ)-time deterministic exact algorithm, for any δ > 0. Finally, we show how to
adapt the approximation algorithm for the sparse linear regression and sparse convex regression
problems with the same running time, up to polylogarithmic factors.
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1 Introduction

Searching for a point in a set that is the closest to a given query point is certainly among the
most fundamental problems in computational geometry. It motivated the study of crucial
concepts such as multidimensional search data structures, Voronoi diagrams, dimensionality
reduction, and has immediate applications in the fields of databases and machine learning. A
natural generalization of this problem is to search not only for a single nearest neighbor, but
rather for the nearest em combination of a bounded number of points. More precisely, given
an integer k and a query point y, we may wish to find an affine combination of k points of
the set that is the nearest to y, among all possible such combinations. This problem has
a natural interpretation in terms of sparse approximate solutions to linear systems, and
is known as the sparse regression, or sparse approximation problem in the statistics and
machine learning literature. Sparsity is defined here in terms of the `0 pseudonorm ‖.‖0, the
number of nonzero components. The sparse affine regression problem can be cast as follows:
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I Problem 1 (Sparse affine regression). Given a matrix A ∈ Rd×n, a vector y ∈ Rd, and
an integer 2 ≤ k ≤ d, find x ∈ Rn minimizing ‖Ax− y‖2, and such that ‖x‖0 ≤ k,
and

∑n
i=1 xi = 1.

By interpreting the columns of A as a set of n points in Rd, the problem can be
reformulated in geometric terms as the nearest induced flat problem.

I Problem 2 (Nearest induced flat). Given a set S of n points in Rd, an additional point y ∈
Rd, and an integer k such that 2 ≤ k ≤ d, find k points of S such that the distance from y to
their affine hull is the smallest.

Here the distance from a point to a flat is the distance to the closest point on the flat. Note
that if we allow k = 1 in the definition above, we have the nearest neighbor problem as a
special case. We consider the setting in which the dimension d of the ambient space as well
as the number k of points in the sought combination are constant, and study the asymptotic
complexity of the problem with respect to n. As observed recently by Har-Peled, Indyk,
and Mahabadi [25], the problem is closely related to the classical affine degeneracy testing
problem, defined as follows.

I Problem 3 (Affine degeneracy testing). Given a set S of n points in Rd, decide whether
there exist d+ 1 distinct points of S lying on an affine hyperplane.

The latter can be cast as deciding whether a point set is in so-called general position, as is
often assumed in computational geometry problems. In the special case d = 2, the problem
is known to be 3SUM-hard [24, 9]. In general, it is not known whether it can be solved
in time O(nd−δ) for some positive δ [21, 3], even for randomized algorithms. Supposing
it cannot, we directly obtain a conditional lower bound on the complexity of the nearest
induced flat problem. This holds even for approximation algorithms, which return an induced
flat whose distance is within some bounded factor of the distance of the actual nearest flat.

I Lemma 1 (Har-Peled, Indyk, and Mahabadi [25]). If the nearest induced flat problem can
be approximated within any multiplicative factor in time O(nk−1−δ) for some positive δ, then
affine degeneracy testing can be solved in time O(nd−δ).

Proof. Suppose we have an approximation algorithm for the nearest induced flat problem.
Then given an instance of affine degeneracy testing, we can go through every point y ∈ S
and run this algorithm on an instance composed of the set S \ {y}, the point y, and k = d.
The answer to the degeneracy testing instance is positive if and only if for at least one of
these instances, the distance to the approximate nearest flat is zero. The running time
is O(nd−δ). J

Motivations and previous works
Sparse regression is a cornerstone computational task in statistics and machine learning, and
comes in a number of flavors. It is also referred to as best subset selection or, more generally,
as feature selection problems [31, 11]. In practice, it is often useful to allow for the sparsity
constraint by including a penalty term in the objective function, hence writing the problem
in a Lagrangian form. If the `1 norm is used instead of the `0 norm, this method is known
as the LASSO method [32], to which a tremendous amount of research has been dedicated in
the past twenty years. In the celebrated k-SVD algorithm for sparse dictionaries design [2],
the sparse coding stage consists of a number of sparse regression steps. In this context, they
are typically carried out using greedy methods such as the matching pursuit algorithm [29].
Efficient sparse regression is also at the heart of compressed sensing techniques [13, 18].
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Aiming at an exhaustive survey of the variants and applications of sparse regression is
futile; instead, we refer to Hastie, Tibshirani, and Friedman [26] (Chapter 3), Miller [30], and
references therein. We also point to Bertsimas, Pauphilet, and Van Parys [12] for a recent
survey on practical aspects of sparse regression methods.

The computational complexity of sparse regression problems is also well-studied [31,
17, 23, 22]. In general, when a solution x is sought that minimizes the number of nonzero
components while being at bounded distance from y, the problem is known to be NP-hard [31].
However, the complexity of the sparse regression problem when the sparsity constraint k is
taken as a fixed parameter has not been thoroughly characterized. In particular, no algorithm
with running time o(nk) is known.

Recently, Har-Peled, Indyk, and Mahabadi [25] showed how to use approximate nearest
neighbor data structures for finding approximate solutions to the sparse affine regression
problem. They mostly consider the online version of the problem, in which we allow some
preprocessing time, given the input point set S, to construct a data structure, which is
then used to answer queries with input y. They also restrict to approximate solutions, in
the sense that the returned solution has distance at most (1 + ε) times larger than the
true nearest neighbor distance for any fixed constant ε. They show that if there exists
a (1 + ε)-approximate nearest neighbor data structure with preprocessing time S(n, d, ε)
and query time Q(n, d, ε), then we can preprocess the set S in time nk−1S(n, d, ε) and
answer regression queries in time nk−1Q(n, d, ε). Plugging in state of the art results on
approximate nearest neighbor searching in fixed dimension [8], we obtain a preprocessing
time of O(nk logn) with query time O(nk−1 logn) for fixed constants d and ε.

They also consider the sparse convex regression problem, in which the coefficients of the
combination are not only required to sum to one, but must also be nonnegative. In geometric
terms, this is equivalent to searching for the nearest induced simplex. They describe a data
structure for the sparse convex regression problem having the same performance as in the
affine case, up to a O(logk n) factor. For k = 2, they also give a (2 + ε)-approximation
subquadratic-time offline algorithm. When d = O(1), the running time of this algorithm can
be made close to linear.

A closely related problem is that of searching for the nearest flat in a set [27, 10, 28].
This was also studied recently by Agarwal, Rubin, and Sharir [1], who resort to polyhedral
approximations of the Euclidean distance to design data structures for finding an approximate
nearest flat in a set. They prove that given a collection of n (k − 1)-dimensional flats in Rd,
they can construct a data structure in time O(nk polylog(n)) time and space that can be
used to answer (1 + ε)-approximate nearest flat queries in time O(polylog(n)). They also
consider the achievable space-time tradeoffs. Clearly, such a data structure can be used for
online sparse affine regression: We build the structure with all possible

(
n
k

)
flats induced by

the points of S. This solution has a very large space requirement and does not help in the
offline version stated as Problem 2.

In this paper, we give an efficient algorithm for Problem 2, and bridge the gap between
the trivial upper bound of O(nk) and the lower bound given by the affine degeneracy testing
problem, without requiring any preprocessing.

Our results
Nearest induced line, flat, or hyperplane

We prove that the nearest induced flat problem (Problem 2), can be solved within a (1 + ε)
approximation factor for constant d and ε in time O(nk−1 logd−k+2 n), which matches the
conditional lower bound on affine degeneracy testing, up to polylogarithmic factors. Har-
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Peled, Indyk, and Mahabadi [25] gave a data structure to preprocess a set of data points to
allow solving the nearest induced flat problem on this set for any query point. Their data
structure requires Õ(nk) preprocessing and Õ(nk−1) query time. We propose an algorithm
that gets rid of the preprocessing for single queries: the overall running time of our algorithm
is equal to the query time of their data structure, up to polylogarithmic factors. To the best
of our knowledge, this is a near-linear improvement on all previous methods for this special
case.

The two main tools that are used in our algorithms are on the one hand the approximation
of the Euclidean distance by a polyhedral distance, as is done in Agarwal, Rubin, and Sharir [1],
and on the other hand a reduction of the decision version of the problem to orthogonal range
queries. Note that orthogonal range searching data structures are also used in [25], albeit in
a significantly distinct fashion.

In §2, as warm-up, we focus on the special case of Problem 2 in which d = 3 and k = 2.

I Problem 4 (Nearest induced line in R3). Given a set S of n points in R3, and an additional
point y, find two points a, b ∈ S such that the distance from y to the line going through a
and b is the smallest.

Our algorithm for this special case already uses all the tools that are subsequently generalized
for arbitrary values of k and d. The general algorithm for the nearest induced flat problem is
described in §3.

In §4, we consider the special case of Problem 2 in which k = d, which can be cast as the
nearest induced hyperplane problem.

I Problem 5 (Nearest induced hyperplane). Given a set S of n points in Rd, and an additional
point y, find d points of S such that the distance from y to the affine hyperplane spanned by
the d points is the smallest.

For this case, we design an exact algorithm with running time O(nd−1+δ), for any δ > 0.
The solution solely relies on classical computational geometry tools, namely point-hyperplane
duality and cuttings [16, 15].

Our algorithms can be adapted to perform sparse linear regression, instead of sparse
affine regression. In the former, we drop the condition that the sum of the coefficients must
be equal to one. This is equivalent to the nearest linear induced k-flat problem. It can be
solved in the same time as in the affine case. To see this, realize that the problem is similar
to the nearest induced flat problem where the first vertex is always the origin. The obtained
complexity is the same as the one for the nearest induced flat problem.

Nearest induced simplex

Adapting our algorithm to sparse convex regression, which differs from sparse affine regression
by requiring x to be positive, is a bit more involved.

Har-Peled, Indyk, and Mahabadi [25] augment their data structure for the nearest induced
flat with orthogonal range searching data structures in (k + 1)-dimensional space to solve
this problem with an extra O(logk n) factor in both the preprocessing and query time. We
show we can perform a similar modification.

The sparse convex regression problem can be cast as the problem of finding the nearest
simplex induced by k points of S.

I Problem 6 (Nearest induced simplex). Given a set S of n points in Rd, an additional
point y, and an integer k such that 2 ≤ k ≤ d, find k points of S such that the distance
from y to their convex hull is the smallest.
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Table 1 Results. For the approximation algorithms, the dependency on ε in the running time is
of the order of ε(1−d)/2.

Problem Details Approximation Running Time
Problem 4: Nearest induced line in R3 §2 1 + ε Oε(n log3 n)
Problem 2: Nearest induced flat §3 1 + ε Od,ε(nk−1 logd−k+2 n)
Problem 5: Nearest induced hyperplane §4 1 Od,δ(nd−1+δ), ∀δ > 0
Problem 6: Nearest induced simplex §5 1 + ε Od,ε(nk−1 logd n)

We prove that this problem can also be approximated within a (1 + ε) approximation factor
for constant d and ε in time O(nk−1 logd n), hence with an extra O(logk−2 n) factor in the
running time compared to the affine case. This is described in §5.

Our results and the corresponding sections are summarized in Table 1.

2 A (1 + ε)-approximation algorithm for the nearest induced line
problem in R3

We first consider the nearest induced line problem (Problem 4). We describe a near-linear
time algorithm that returns a (1 + ε)-approximation to the nearest induced line in R3, that
is, a line at distance at most (1 + ε) times larger than the distance to the nearest line.

I Theorem 2. For any constant ε > 0, there is a randomized (1+ε)-approximation algorithm
for the nearest induced line problem in R3 running in time Oε(n log3 n) with high probability.

The sketch of our algorithm is as follows: First, reduce the problem of minimizing
the Euclidean distance to that of minimizing the polyhedral distance for some well-chosen
polyhedron depending on ε. Second, reduce the problem of minimizing the polyhedral
distance to that of edge-shooting. Third, reduce the problem of edge-shooting to that of
deciding whether an edge shot at a certain distance would hit any induced line through some
sort of binary search. Fourth, efficiently solve this decision problem using orthogonal range
counting data structures.

(1 + ε)-approximation via polyhedral distances

The polyhedral distance dQ(y, v) between two points y and v with respect to a polyhedron Q
centered on the origin is the smallest λ such that the dilation λQ of Q centered on y contains v,
hence such that v ∈ y + λQ. Our proof uses the following result, of which a weaker variant
due to Dudley [19] is a major ingredient in the design of the data structure described by
Agarwal, Rubin, and Sharir [1].

I Lemma 3 (Arya, Arya, da Fonseca, Mount [4]). For any positive integer d and positive
real ε, there exists a d-dimensional polyhedron Q with O(1/ε(d−1)/2) faces such that for
every y, v ∈ Rd:

‖y − v‖2 ≤ dQ(y, v) ≤ (1 + ε) · ‖y − v‖2 .

This bound is asymptotically optimal. See [5, 7, 6] for more details.
Next, we reduce Problem 4 to a counting problem in two steps.
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a

b

∆

Ca

Figure 1 The cone Ca.

Edge-shooting

We use Lemma 3 for d = 3. We give an exact algorithm for computing the nearest induced
line with respect to a polyhedral distance dQ, where Q is defined from ε as in Lemma 3. Given
a polyhedron Q, one can turn it into a simplicial polyhedron by triangulating it. Therefore,
for constant values of ε, this reduces the problem to a constant number of instances of the
edge-shooting problem, defined as follows: Given an edge e of Q, find the smallest value λ
such that y + λe intersects a line through two points of S. We iterate this for all edges of Q,
and pick the minimum value. This is exactly the polyhedral distance from y to its nearest
induced line.

Binary search

Using a randomized binary search procedure, we reduce the edge-shooting problem to a
counting problem, defined as follows: given the triangle ∆ defined as the convex hull of y
and y + λe, count how many pairs of points a, b ∈ S are such that the line `(a, b) through
them intersects ∆. Suppose there exists a procedure for solving this problem. We can use
this procedure to solve the edge-shooting problem efficiently as follows.

First initialize λ to some upper bound on the distance (for instance, initialize λ to
the distance to the closest data point p ∈ S: λ = minp∈S ‖p− y‖2). Then count how
many lines `(a, b) intersect ∆, using the procedure. If there is only one, then return its
(polyhedral) distance to y. Otherwise, pick one such line uniformly at random and compute
the value λ′ such that this line intersects y+λ′e. Then iterate the previous steps with λ← λ′,
unless λ′ = 0 in which case we return 0. Since we picked the line at random, and since there
are O(n2) such lines at the beginning of the search, the number of iterations of this binary
search is O(logn) with high probability.

We therefore reduced the nearest induced line problem to O(ε−1 logn) instances of the
counting problem.

Orthogonal range counting queries

Data structures for orthogonal range counting queries store a set of points in Rg in such a
way that the number of points in a given g-rectangle (cartesian product of g intervals) can
be returned quickly. Known data structures for orthogonal range counting queries in Rg
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a

∆

f

Figure 2 The order of the points defined by the planes containing an edge f of ∆.

require O(n logg−1 n) preprocessing time and can answer queries in O(logg−1 n) time [34, 14].
Note that the actual coordinates of the points do not matter: We only need to know the
order of their projections on each axis. We now show how to solve the counting problem
using a data structure for orthogonal range queries in R3.

Let us fix the triangle ∆ and a point a ∈ R3, and consider the locus of points b ∈ R3

such that the line `(a, b) intersects ∆. This is a double simplicial cone with apex a and
whose boundary contains the boundary of ∆. This double cone is bounded by three planes,
one for each edge of ∆. In fact, we will only consider one of the two cones, because `(a, b)
intersects ∆ if and only if either b is contained in the cone of apex a, or a is contained in the
cone of apex b. Let us call Ca the cone of apex a. This is illustrated on Figure 1.

Let us consider one edge f of ∆ and all the planes containing f . These planes induce a
circular order on the points of S, which is the order in which they are met by a plane rotating
around the supporting line of f . This is illustrated on Figure 2. Now let us denote by Hf

the plane containing a and f and by H+
f the halfspace bounded by Hf and containing ∆.

The set of points of S contained in H+
f is an interval in the circular order mentioned above.

Hence the set of points contained in Ca is the intersection of three intervals in the three
circular orders defined by the three edges of ∆.

Proof of Theorem 2. Let Q be some polyhedron in R3, λ ∈ R, S ⊂ R3, y ∈ R3, and e an
edge of Q. We use an orthogonal range counting data structure for storing the points of S
with coordinates corresponding to their ranks in each of the three permutations induced by
the three edges of ∆ = conv({ y, y + λe }). We get those rank-coordinates by sorting S three
times, once for each induced permutation, in time O(n logn), then construct the orthogonal
range counting data structure with those coordinates in time O(n log2 n). Then for each of
the n points a ∈ S, we count the number of points b in the cone Ca by querying the data
structure in O(log2 n) time. Hence overall, the counting problem is solved in time O(n log2 n).
Note that the circularity of the order can be easily handled by doubling every point.

This can be combined with the previous reductions provided we can choose a line
intersecting ∆ uniformly at random within that time bound. This is achieved by first
choosing a with probability proportional to the number of points b such that `(a, b) ∩∆ 6= ∅.
Then we can pick a point b uniformly at random in this set in linear time.

Combining with the previous reductions, we obtain an approximation algorithm running
in time Oε(n log3 n) for the nearest induced line problem in R3. J
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3 A (1 + ε)-approximation algorithm for the nearest induced flat
problem

This section is dedicated to proving our main result in full generality. We provide an efficient
approximation algorithm for the nearest induced flat problem (Problem 2).

We use the following notations: aff(X) denotes the affine hull of the set X and conv(X)
denotes its convex hull. The set { 1, 2, . . . , n } is denoted by [n].

I Theorem 4. For any constant positive real ε > 0 and constant positive integers d and k,
there is a randomized (1 + ε)-approximation algorithm for the nearest induced flat problem
in Rd running in time Oε(nk−1 logd−k+2 n) with high probability.

Proof. The algorithm is a generalization of the one in the previous section, in which the
point a is replaced by a set composed of k− 1 points a1, a2, . . . , ak−1, and the edge e is now a
(simplicial) (d− k)-face of Q. Given a k − 1-tuple of points a1, a2, . . . , ak−1, we characterize
the locus of points ak such that the affine hull of the points a1, a2, . . . , ak intersects the
convex hull of y and y + λe. These hyperplanes are again such that counting all such points
can be done using orthogonal range queries. More precisely, we perform the following steps.

(1 + ε)-approximation and binary search

From Lemma 3, there exists a polyhedron with O(1/ε(d−1)/2) faces such that the induced
polyhedral distance dQ(., .) is a (1 + ε)-approximation of the Euclidean distance. We know
that the distance dQ from the point y to the nearest induced flat is attained at a point
lying on a (d− k)-face of y + λQ. We can therefore perform the same procedure as in the
previous case, except that we now shoot a (d − k)-face e of Q, instead of an edge, in the
same way as is done in Agarwal, Rubin, Sharir [1]. ∆ still denotes the convex hull of y
and y+λe, which generalizes to a (d−k+1)-simplex. The binary search procedure generalizes
easily: start with a large enough λ, if there is more than one flat aff({ a1, a2, . . . , ak })
intersecting ∆ = conv({ y, y + λe }), pick one such flat uniformly at random, and compute
the value λ such that this flat intersects ∆. There are only O(nk) such flats at the beginning
of the search, hence a search takes O(logn) steps with high probability. We can therefore
reduce the problem to O(ε(1−d)/2 logn) instances of the following counting problem: given
a (d − k + 1)-simplex ∆, count the number of k-tuples of points a1, a2, . . . , ak ∈ S whose
affine hull aff(a1, a2, . . . , ak) intersects ∆.

An intersection condition

We first make a simple observation that characterizes such k-tuples. Let A be a set of k
points {a1, a2, . . . , ak}, and let B = {b1, b2, . . . , bd−k+2} be the set of vertices of ∆. We
assume without loss of generality that the points of A together with the vertices of ∆ are in
general position. We define d− k + 2 hyperplanes Hi = aff(A ∪B \ { bi, ak }), i ∈ [d− k + 2].
We then let H+

i be the halfspace supported by Hi that contains bi, and H−i the halfspace
that does not contain bi.

I Lemma 5.

aff(A) ∩∆ 6= ∅ ⇐⇒ ak ∈

((
d−k+2⋂
i=1

H+
i

)
∪

(
d−k+2⋂
i=1

H−i

))
.
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a1 a2

∆

b1

b2

H2

H1

Figure 3 Illustration of Lemma 5 in the case k = d = 3. The plane through a1, a2, a3 intersects
the line segment ∆ if and only if a3 is located either above or below the two planes H1, H2.

Proof. (⇒) Suppose that ak 6∈ (
⋂
iH

+
i ) ∪ (

⋂
iH
−
i ). Hence there exists i ∈ [d− k + 2] such

that ak ∈ H−i , and j ∈ [d− k + 2] such that ak ∈ H+
j . We show that aff(A) ∩∆ = ∅. Let

us consider the intersection of the two halfspaces H−i and H+
j with the (k − 1)-dimensional

subspace aff(A). In this subspace, both halfspaces have the points a1, a2, . . . , ak−1 on their
boundary, and contain ak. Hence it must be that H−i ∩ aff(A) = H+

j ∩ aff(A). Therefore,
every point p ∈ aff(A) either lies in H−i , or in H−j . In both cases, it is separated from ∆ by
a hyperplane, and p 6∈ ∆.

(⇐) Suppose that aff(A) ∩∆ = ∅. We now show that there exists i ∈ [d− k + 2] such
that ak ∈ H−i , and j ∈ [d− k + 2] such that ak ∈ H+

j . Since both aff(A) and ∆ are convex
sets, if aff(A) ∩∆ = ∅ then there exists a hyperplane H containing aff(A) and having ∆
on one side. Since the points of A are affinely independent, H can be rotated to contain
all points of A except ak, and separate ak from ∆. After this rotation, H has d − (k − 1)
degrees of freedom left, and can be further rotated to contain a whole (d − k)-face of ∆,
while still separating ∆ from ak. For some i ∈ [d − k + 2], this is now the hyperplane Hi

that separates some vertex bi from ak, and ak ∈ H−i .
Similarly, the same hyperplane H can instead be rotated in order to contain all points

of A except ak, and have ak and ∆ this time on the same side. It can then be further
rotated to contain a (d− k)-face of ∆, while still having ∆ and ak on the same side. Now for
some j ∈ [d − k + 2], this is now the hyperplane Hj that has bj and ak on the same side,
and ak ∈ H+

j . J

Note that for the case k = 2 and d = 3 the set (
⋂
iH

+
i ) ∪ (

⋂
iH
−
i ) is the double cone of

apex a; the lower part (
⋂
iH

+
i ) is the cone Ca in Figure 1. The case where k = 3 and d = 3

is illustrated on Figure 3.

Reduction to orthogonal range queries

We now show that in perfect analogy with the previous section, we can solve the counting
problem efficiently using an orthogonal range counting data structure.

Consider a vertex bi of ∆ and a (k − 2)-subset T of points of S, denoted by T =
{a1, a2, . . . , ak−2}. Let us denote by f the facet of ∆ that is induced by the vertices bj such
that j 6= i. Now consider the hyperplane containing f together with T , and one additional
point p of S. These hyperplanes all contain aff(f ∪ T ), which is a (d − 2)-flat. Let us
consider the unit normal vectors to these hyperplanes centered on some point contained in

SWAT 2020
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this (d− 2)-flat. These vectors lie in the orthogonal flat of dimension d− (d− 2) = 2, hence
in a plane. Therefore, they induce a circular order on the points of S. Hence for a fixed set
of k − 2 points of S and a fixed facet f of ∆, we can assign a rank to each other point of S.
These will play the role of the coordinates of the points in the range counting data structure.

We now observe that counting the number of k-tuples whose affine hull intersects ∆
amounts to orthogonal range counting with respect to these coordinates. Indeed, fix the
first (k − 2)-subset of points T = {a1, a2, . . . , ak−2}, and compute the rank of each other
point of S with respect to the circular order of the hyperplanes defined above, around each
facet f of ∆. Now consider a (k − 1)th point ak−1. From Lemma 5, all points ak contained
in the range (

⋂
iH

+
i )∪ (

⋂
iH
−
i ) are such that aff(a1, a2, . . . , ak) intersects ∆. But this range

is the union of two (d− k + 2)-rectangles in the space of coordinates that we defined. The
coordinates of these two (d−k+2)-rectangles are defined by the coordinates of ak−1. We can
therefore set up a new orthogonal range counting data structure for each (k − 2)-subset T ,
and perform 2n queries in it, two for each additional point ak−1 ∈ S.

We can now outline our algorithm for solving the counting problem:
1. For each (k − 2)-subset T of points a1, a2, . . . , ak−2 in

(
S
k−2
)
:

a. For each vertex bi of ∆, compute the rank of each point of S with respect to the
hyperplanes containing f = conv({bj : j 6= i}) and T .

b. Build a (d− k + 2)-dimensional range counting data structure on S using these ranks
as coordinates.

c. For each other point ak−1 ∈ S:
i. Perform two range counting queries using the rectangular ranges corresponding

to
⋂
iH

+
i and

⋂
iH
−
i , respectively.

d. Return the sum of the values returned by the range counting queries.

Note that there are a few additional technicalities which we have to take care of. First,
the orders defined by the hyperplanes are circular, hence we are really performing range
queries on a torus. This can be easily fixed, as mentioned previously, by doubling each point.
Then we have to make sure to avoid double counting, since any permutation of the ai in
the enumeration of k-tuples yields the same set A, and hence, the same flat aff(A). (Note
that in §2 we avoided double counting by observing that only one of a ∈ Cb and b ∈ Ca
can be true.) This only affects the counting problem and is not problematic if we consider
ordered subsets T ; it causes each intersecting flat to be counted exactly k! times.1 The
termination condition for the binary search can be changed to when the range count is k!
and the sampling method for finding a uniform random binary search pivot is unaffected
since each candidate flat is represented an equal number of times.

As for the running time analysis, step 1b costs O(n logd−k+1 n), while step 1(c)i costs
O(logd−k+1 n) and is repeated n − k + 2 times, hence costs O(n logd−k+1 n) overall as
well [34, 14]. These are multiplied by the number of iterations of the main loop, yielding a
complexity of O(nk−1 logd−k+1 n) for the counting procedure.

Finally, this counting procedure can be combined with the binary search procedure
provided we can choose a flat intersecting ∆ uniformly at random within that time bound.
This is achieved by first choosing a set prefix { a1, a2, . . . , ak−1 } ∈

(
S
k−1
)
with probability

proportional to the number of points ak ∈ S such that aff({ a1, a2, . . . , ak })∩∆ 6= ∅. Then we
can pick a point ak uniformly at random in this set in linear time. Multiplying by the number
of edge-shooting problems we have to solve, the counting procedure is invoked O(ε(1−d)/2 logn)
times, yielding the announced running time. J

1 Enumerating each subset T exactly once as (k − 2)-tuples in lexicographic order and only constructing
the orthogonal range searching data structure on the points of S that come after ak−2 reduces this
overcounting to 2 times per flat. In our case, this is unnecessary since k is constant.
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y

Figure 4 The candidate nearest hyperplanes.

4 An exact algorithm for the nearest induced hyperplane problem

In this section we consider the special case k = d, the nearest induced hyperplane problem
(Problem 5). The previous result gives us a randomized (1 + ε)-approximation algorithm run-
ning in time Oε(nd−1 log2 n) for this problem. We describe a simple deterministic O(nd−1+δ)-
time exact algorithm using only standard tools from computational geometry.

I Theorem 6. The nearest induced hyperplane problem can be solved in deterministic
time O(nd−1+δ) for any δ > 0.

The first tool we need is point-hyperplane duality. Let H̄ be the hyperplane arrangement
that is dual to S, in which each point of S is now a hyperplane. Note that every vertex of
this arrangement is the dual of a hyperplane induced by d points of S.

Unfortunately, while some dualities preserve vertical distances, there does not exist a
duality that preserves euclidean distances. To overcome this obstacle, we make a topological
observation. Recall that the zone of a hyperplane h in an arrangement H̄ (not including h)
is the union of the d-cells of H̄ intersected by h. Similarly, we define the refined zone of a
hyperplane h in an arrangement H̄ (not including h) to be the union of the d-simplices of
the bottom-vertex decomposition of H̄ intersected by h.

I Lemma 7. Let H̄ be the hyperplane arrangement that is dual to S, and ȳ the hyperplane
dual to the point y. The induced hyperplane that is nearest to y corresponds to a vertex of
the refined zone of ȳ in the arrangement H̄.

Proof. Consider the arrangement of all
(
n
k

)
hyperplanes induced by subsets of k points in S.

Then clearly, the induced hyperplane nearest to y must be one of the hyperplanes bounding
the cell of this arrangement that contains y (see Figure 4 for an illustration with d = 2).
Consider a rectilinear motion of y towards this nearest hyperplane. In the dual arrangement
H̄, this corresponds to a continuous motion of the hyperplane ȳ that at some point hits a
vertex of the arrangement. Because it is the first vertex that is hit, it must belong to a cell of
the bottom vertex decomposition of H̄ that ȳ intersects, hence to the refined zone of ȳ. J

We refer to chapter 28 of the Handbook of Discrete and Computational Geometry [33] for
background on hyperplane arrangements and their decompositions.

The second tool is an upper bound on the complexity of a zone in an arrangement [20].
The complexity of a zone is the sum of the complexities of its cells, and the complexity of a
cell is the number of faces of the cell (vertices, edges, . . . ). The upper bound is as follows:
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I Theorem 8 (Zone Theorem [20]). The complexity of a zone in an arrangement of n
hyperplanes in Rd is O(nd−1).

In particular, this result gives an upper bound of O(nd−1) vertices for a given zone. Since
the complexity of a refined zone is not more than the complexity of the corresponding zone,
this bound also holds for the complexity of a given refined zone.

The third tool is Chazelle’s efficient construction of cuttings [15]. A cutting of Rd is a
partition of Rd into disjoint regions. Given a set of hyperplanes H in Rd, a 1

r -cutting for H
is a cutting of Rd such that each region is intersected by no more than |H|r hyperplanes in H.
In particular, we are interested in Chazelle’s construction when r is constant. In that case,
only a single step of his construction is necessary and yields regions that are the simplices of
the bottom-vertex decomposition of some subset of H.

I Theorem 9 (Chazelle [15, Theorem 3.3]). Given a set H of n hyperplanes in Rd, for any
real constant parameter r > 1, we can construct a 1

r -cutting for those hyperplanes consisting
of the O(rd) simplices of the bottom-vertex decomposition of some subset of H in O(n) time.

More details on cuttings can be found in chapters 40 and 44 of the Handbook [33].

I Lemma 10. For any positive constant δ, given a hyperplane h and an arrangement
of hyperplanes H̄ in Rd, the vertices of the refined zone of h in H̄ can be computed in
time O(nd−1+δ).

Proof. Using Theorem 9 with some constant r, we construct, in linear time, a 1
r -cutting

of the arrangement consisting of O(rd) simplicial cells whose vertices are vertices of H̄. To
find the vertices of the refined zone, we only need to look at those cells that are intersected
by ȳ. If such a cell is not intersected by any hyperplane of H̄ then its vertices are part
of the refined zone of ȳ. Otherwise, we recurse on the hyperplanes intersecting that cell.
From Theorem 8, there are at most O(rd−1) such cells. The overall running time for the
construction is therefore:

T (n) ≤ O
(
rd−1)T (n

r

)
+O(n).

For all constant δ > 0, we can choose a sufficiently large constant r, such that T (n) =
O(nd−1+δ), as claimed. J

Proof of Theorem 6. From Lemma 10, we find the vertices of the refined zone of ȳ in the
arrangement H̄ in time O(nd−1+δ). Then we compute the distance from y to each of the
induced hyperplanes corresponding to vertices of the refined zone in time O(nd−1). From
Lemma 7, one of them must be the nearest. J

5 A (1 + ε)-approximation algorithm for the nearest induced simplex
problem

We now consider the nearest induced simplex problem (Problem 6). The algorithm described
in §2 for the case k = 2 and d = 3 can be adapted to work for this problem.

As in §2, consider the computation of the nearest induced segment under some polyhedral
distance dQ approximating the Euclidean distance. The reduction from this computation
to edge-shooting still works with some minor tweak: if we shoot edges to find the nearest
induced segment under dQ, we may miss some of the segments. Fortunately, the points of
these missed segments that are nearest to our query point under dQ must be endpoints of
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those segments. We can take those into account by comparing the nearest segment found
by edge-shooting to the nearest neighbor, found in linear time. As before, edge-shooting is
reduced to a counting problem.

Referring to the proof of Theorem 2 and Figure 1, the analogue of the counting problem
in §2 for the nearest induced segment problem amounts to searching for the points b lying in
the intersection of the cone Ca with the halfspace bounded by aff(∆) that does not contain a.
In dimension d, the affine hull of ∆ is a hyperplane, and we restrict b to lie on one side of
this hyperplane.

We therefore get a (1 + ε)-approximation O(n logd n)-time algorithm for the nearest
induced segment problem in any fixed dimension d. This compares again favorably with
the (2 + ε)-approximation O(n logn)-time algorithm proposed in [25].

We generalize this to arbitrary values of k and prove the following result.

I Theorem 11. For any constant positive real ε > 0 and constant positive integers d and
k, there is a randomized (1 + ε)-approximation algorithm for the nearest induced simplex
problem in Rd running in time O(nk−1 logd n) with high probability.

Again, we compute the nearest induced simplex under some polyhedral distance dQ. As
in the case k = 2, (d− k)-face-shooting can be adapted to take care of missed simplices: for
each 2 ≤ k′ ≤ k, shoot (d− k′)-faces of Q to find the nearest (k′ − 1)-simplex. For k′ = 1,
find the nearest neighbor in linear time. For any (k − 1)-simplex, let 0 ≤ k′ ≤ k be the
smallest natural number such that no (d − k′)-face of Q hits the simplex when shot from
the query point. It is obvious that, for all t < k′, some (d − t)-face of Q hits the simplex,
and that, for all t ≥ k′, no (d− t)-face of Q hits the simplex. For the sake of simplicity, we
hereafter focus on solving the face-shooting problem when k′ = k, thus ignoring the fact a
simplex can be missed. Because the obtained running time will be of the order of Õ(nk′−1),
the running time will be dominated by this case.

In order to reduce face-shooting to range counting queries, we need an analogue of
Lemma 5 for convex combinations. Let A be a set of k points {a1, a2, . . . , ak}, and let ∆ be
a (d− k+ 1)-simplex with vertices in B = {b1, b2, . . . , bd−k+2}. We suppose that these points
are in general position. We define the hyperplanes Hi = aff(A∪B\{ bi, ak }), for i ∈ [d−k+2],
and Gj = aff(A∪B \ { aj , ak }), for j ∈ [k− 1]. We let H+

i be the halfspace supported by Hi

that contains bi, and G−j the halfspace supported by Gj that does not contain aj .

I Lemma 12.

conv(A) ∩∆ 6= ∅ ⇐⇒ ak ∈

(d−k+2⋂
i=1

H+
i

)
∩

k−1⋂
j=1

G−j

 .

Proof. (⇐) Suppose that ak ∈ (
⋂
iH

+
i ) ∩ (

⋂
j G
−
j ). We have that conv(A) ∩∆ 6= ∅ if and

only if both aff(A) ∩∆ 6= ∅ and conv(A) ∩ aff(∆) 6= ∅ hold. From Lemma 5, we already
have aff(A) ∩∆ 6= ∅. It therefore remains to show that conv(A) ∩ aff(∆) 6= ∅.

We first prove that (
⋂
j Gj) ∩ conv(A) 6= ∅. We proceed by induction on k. It can

easily be shown to hold for k = 2. Let us suppose it holds for k − 1, and prove it for k.
The hyperplane Gk−1 separates ak−1 from ak. Consider the point a′k−1 of the segment
between ak−1 and ak that lies on Gk−1. Let A′ = {a1, a2, . . . , ak−2, a

′
k−1}. Consider the

intersection G′j of all hyperplanes Gj for j ∈ [k − 2] with the subspace aff(A′). In the
subspace aff(A′), The hyperplanes G′j for j ∈ [k − 2] all separate aj from a′k−1. Hence
we can apply induction on A′ and the hyperplanes G′ in dimension k − 2, and we have
that (∩j∈[k−2]G

′
j) ∩ conv(A′) 6= ∅. Now because a′k−1 ∈ conv({ak−1, ak}), we also have that

(∩j∈[k−1]Gj) ∩ conv(A) 6= ∅.
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a1

a2

∆

G1

H1

b1

H2

b2b3

Figure 5 Illustration of Lemma 12 in the case d = 3 and k = 2. The segment a1a2 intersects ∆
if and only if a2 is located in the colored region below ∆.

Now we also observe that
⋂
j Gj = aff(∆). The fact that aff(∆) ⊆

⋂
j Gj is immediate

since each Gj contains aff(∆). To prove that
⋂
j Gj cannot contain more than aff(∆) it

suffices to show that those flats are of the same dimensions. Since the set A∪B is in general
position, aj (and ak) cannot lie on Gj . Then we claim that the Gj are in general position.
Indeed if they are not, then there must be some 1 ≤ k′ ≤ k− 1 where ∩j≤k′−1Gj = ∩j≤k′Gj .
However, this is not possible since ak′ ∈ ∩j≤k′−1Gj but ak′ 6∈ ∩j≤k′Gj . The dimension of⋂
j Gj is thus d− k + 1, the same as the dimension of aff(∆).
Therefore, conv(A) ∩ aff(∆) 6= ∅, as needed.

(⇒) Suppose that ak 6∈ (
⋂
iH

+
i ) ∩ (

⋂
j G
−
j ). Then one of the halfspace does not contain ak.

It can be of the form H+
i or G−j . In both cases, all points of A are either contained in the

hyperplane Hi or Gj , or lie in H−i or G−j . Hence the hyperplane Hi or Gj separates the
interiors of the convex hulls. From the general position assumption, it also separates the
convex hulls. J

The Lemma is illustrated on Figures 5 and 6 in the cases d = 3, k = 2, and d = k = 3.

Proof of Theorem 11. The algorithm follows the same steps as the algorithm described in
the proof of Theorem 4, except that the ranges used in the orthogonal range counting data
structure are different, and involve a higher-dimensional space.

We reduce the problem to that of counting the number of k-subsets A of S whose convex
hull intersects a given (d − k + 1)-simplex ∆. We already argued that when fixing the
first k − 2 points a1, a2, . . . , ak−2, the hyperplanes Hi induce a circular order on the points
of S. Similarly, when the points a1, a2, . . . , ak−2 are fixed, the hyperplanes Gj all contain
the (d−2)-flat aff(A∪B\{aj , ak−1, ak}), hence also induce a circular order on the points of S.
Thus for each (k − 2)-subset of S, we can assign (d− k + 2) + (k − 1) = d+ 1 coordinates to
each point of S, one for each family of hyperplanes. We then build an orthogonal range query
data structure using these coordinates. For each point ak−1, we query this data structure
and count the number of points ak such that ak ∈ (

⋂
iH

+
i ) ∩ (

⋂
j G
−
j ). From Lemma 12, we

can deduce the number of subsets A whose convex hull intersects ∆.
We can decrease by one the dimensionality of the ranges by realizing that the supporting

hyperplane of G−k−1 is unique as it does not depend on ak−1, only the orientation of G−k−1
does. To only output points ak such that ak ∈ G−k−1 we construct two data structures: one
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a1 a2

∆

H1

b1

b2

G2

Figure 6 Illustration of Lemma 12 in the case k = d = 3. The triangle a1a2a3 intersects ∆ if and
only if a3 is located in the colored region.

with the points above Gk−1 and one with the points below Gk−1. We query the relevant data
structure depending whether ak−1 is above or below Gk−1. This spares a logarithmic factor
and yields an overall running time of O(nk−1 logd−1 n) for the counting problem. Multiplying
by the O(logn) rounds of binary search yields the claimed result. J
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Abstract
In a RAC drawing of a graph, vertices are represented by points in the plane, adjacent vertices are
connected by line segments, and crossings must form right angles. Graphs that admit such drawings
are RAC graphs. RAC graphs are beyond-planar graphs and have been studied extensively. In
particular, it is known that a RAC graph with n vertices has at most 4n− 10 edges.

We introduce a superclass of RAC graphs, which we call arc-RAC graphs. A graph is arc-RAC if
it admits a drawing where edges are represented by circular arcs and crossings form right angles. We
provide a Turán-type result showing that an arc-RAC graph with n vertices has at most 14n− 12
edges and that there are n-vertex arc-RAC graphs with 4.5n−O(

√
n) edges.
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1 Introduction

A drawing of a graph in the plane is a mapping of its vertices to distinct points and each
edge uv to a curve whose endpoints are u and v. Planar graphs, which admit crossing-
free drawings, have been studied extensively. They have many nice properties and several
algorithms for drawing them are known, see, e.g., [19, 20]. However, in practice we must
also draw non-planar graphs and crossings make it difficult to understand a drawing. For
this reason, graph classes with restrictions on crossings are studied, e.g., graphs that can be
drawn with at most k crossings per edge (known as k-planar graphs) or where the angles
formed by each crossing are “large”. These classes are categorized as beyond-planar graphs
and have experienced increasing interest in recent years [13].

As introduced by Didimo et al. [12], a prominent beyond-planar graph class that concerns
the crossing angles is the class of k-bend right-angle-crossing graphs, or RACk graphs for
short, that admit a drawing where all crossings form 90◦ angles and each edge is a polygonal
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α
β

r(α) r(β)

X

C(α) C(β)

Y

Figure 1 Circles α and β are orthogonal if and only if 4XC(α)C(β) is right-angled.

chain with at most k bends. Using right-angle crossings and few bends is motivated by
several cognitive studies suggesting a positive correlation between large crossing angles or
small curve complexity and the readability of a graph drawing [16–18]. Didimo et al. [12]
studied the edge density of RACk graphs. They showed that RAC0 graphs with n vertices
have at most 4n− 10 edges (which is tight), that RAC1 graphs have at most O(n 4

3 ) edges,
that RAC2 graphs have at most O(n 7

4 ) edges and that all graphs are RAC3. Dujmović et
al. [14] gave an alternative simple proof of the 4n−10 bound for RAC0 graphs using charging
arguments similar to those of Ackerman and Tardos [2] and Ackerman [1]. Arikushi et al. [5]
improved the upper bounds to 6.5n− 13 for RAC1 graphs and to 74.2n for RAC2 graphs.
The bound of 6.5n− 13 for RAC1 graphs was also obtained by charging arguments. They
also provided a RAC1 graph with 4.5n − O(

√
n) edges. The best known lower and upper

bound for the maximum edge density of RAC1 graphs of 5n− 10 and 5.5n− 11, respectively,
are due to Angelini et al. [4].

We extend the class of RAC0 graphs by allowing edges to be drawn as circular arcs but
still requiring 90◦ crossings. An angle at which two circles intersect is the angle between
the two tangents to each of the circles at an intersection point. Two circles intersecting at a
right angle are called orthogonal. For any circle γ, let C(γ) be its center and let r(γ) be its
radius. The following observation follows from the Pythagorean theorem.

I Observation 1.1. Let α and β be two circles. Then α and β are orthogonal if and only if
r(α)2 + r(β)2 = |C(α)C(β)|2; see Figure 1.

In addition we note the following.

I Observation 1.2. Given a pair of orthogonal circles, the tangent to one circle at one of
the intersection points goes through the center of the other circle; see Figure 1. In particular,
a line is orthogonal to a circle if the line goes through the center of the circle.

Similarly, two circular arcs α and β are orthogonal if they intersect properly (that is,
ignoring intersections at endpoints) and the underlying circles (that contain the arcs) are
orthogonal. For the remainder of this paper, all arcs will be circular arcs. We consider
any straight-line segment to be an arc with infinite radius. Note, though, that the above
observations do not hold for (pairs of) circles of infinite radius. As in the case of circles, for
any arc γ of finite radius, let C(γ) be its center.

We call a drawing of a graph an arc-RAC drawing if the edges are drawn as arcs and
any pair of intersecting arcs is orthogonal; see Figure 2. A graph that admits an arc-RAC
drawings is called an arc-RAC graph.

The idea of drawing graphs with arcs dates back to at least the work of the artist
Mark Lombardi who drew social networks, featuring players from the political and financial
sector [22]. Indeed, user studies [25,27] state that users prefer edges drawn with curves of
small curvature; not necessarily for performance (that is, tasks such as finding shortest paths,
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Figure 2 An arc-RAC drawing of a graph. This graph is not RAC0 [6].

identifying common neighbors, or determining vertex degrees) but for aesthetics. Drawing
graphs with arcs can help to improve certain quality measures of a drawing such as angular
resolution [3, 11] or visual complexity [21,26].

An immediate restriction on the edge density of arc-RAC graphs is imposed by the
following known result.

I Lemma 1.3 ( [23]). In an arc-RAC drawing, there cannot be four pairwise orthogonal arcs.

It follows from Lemma 1.3 that arc-RAC graphs are 4-quasi-planar, that is, an arc-RAC
drawing cannot have four edges that pairwise cross. This implies that an arc-RAC graph
with n vertices can have at most 72(n− 2) edges [1].

Our main contribution is that we reduce this bound to 14n−12 using charging arguments
similar to those of Ackerman [1] and Dujmović et al. [14]; see Section 2. For us, the main
challenge was to apply these charging arguments to a modification of an arc-RAC drawing
and to exploit, at the same time, geometric properties of the original arc-RAC drawing to
derive the bound. We also provide a lower bound of 4.5n−O(

√
n) on the maximum edge

density of arc-RAC graphs based on the construction of Arikushi et al. [5]; see Section 3. We
conclude with some open problems in Section 4. Throughout the paper our notation won’t
distinguish between the entities (vertices and edges) of an abstract graph and the geometric
objects (points and curves) representing them in a drawing.

As usual for topological drawings, we forbid vertices to lie in the relative interior of an
edge and we do not allow edges to touch, that is, to have a common point in their relative
interiors without crossing each other at this point. Hence an intersection point of two edges
is always a crossing. When we say that two edges share a point, we mean that they either
cross each other or have a common endpoint.

2 An Upper Bound for the Maximum Edge Density

Let G be a 4-quasi-planar graph, and let D be a 4-quasi-planar drawing of G. In his proof of
the upper bound on the edge density of 4-quasi-planar graphs, Ackerman [1] first modified
the given drawing so as to remove faces of small degree. We use a similar modification that
we now describe.

Consider two edges e1 and e2 in D that intersect multiple times. A region in D bounded
by pieces of e1 and e2 that connect two consecutive crossings or a crossing and a vertex of
G is called a lens. If a lens is adjacent to a crossing and a vertex of G, then we call such a
lens a 1-lens, otherwise a 0-lens. A lens that does not contain a vertex of G is empty. Every
drawing with 0-lenses has a smallest empty 0-lens, that is, an empty 0-lens that does not

SWAT 2020



21:4 Drawing Graphs with Circular Arcs and Right-Angle Crossings

e

e0 e1
e2

e

e0 e2 e1

Figure 3 A simplification step resolves a smallest empty 0-lens; if two edges e1 and e2 change
the order in which they cross the edge e, they form an empty 0-lens intersecting e before the step,
and thus, in the original 4-quasi-planar drawing.

contain any other empty 0-lenses in its interior. We can swap [1, 24] the two curves that
bound a smallest empty 0-lens; see Figure 3. We call such a swap a simplification step. Since
a simplification step resolves a smallest empty lens, we observe the following.

I Observation 2.1. A simplification step does not introduce any new pairs of crossing edges
or any new empty lenses.

We exhaustively apply simplification steps to our drawing and refer to this as the simplification
process. Observation 2.1 guarantees that applying the simplification process to a drawing D
terminates, that is, it results in an empty-0-lens-free drawing D′ of G. We call the resulting
drawing D′ simplified; it is a simplification of D. Observation 2.1 implies the following
important property of any simplification step.

I Observation 2.2. Applying a simplification step to a 4-quasi-planar drawing yields a
4-quasi-planar drawing.

As mentioned above, Ackerman [1] used a similar modification to prepare a 4-quasi-planar
drawing for his charging arguments; note, that unlike Ackerman, we do not resolve 1-lenses.
We look at the simplification process in more detail, in particular, we consider how it changes
the order in which edges cross.

I Lemma 2.3. Let D be an arc-RAC drawing, and let D′ be a simplification of D. If two
edges e1 and e2 cross another edge e in D′ in an order different from that in D, then e1 and
e2 form an empty 0-lens intersecting e in D.

Proof. Let e1 and e2 be two edges as in the statement of the lemma. Then there is a
simplification step i where the order in which e1 and e2 cross e changes. Let Di be the
drawing immediately before simplification step i, and let Di+1 be the drawing right after
step i. By construction, the order in which e1 and e2 cross e is different in Di and in Di+1.
Since Di is 4-quasi-planar (see Observation 2.2) and since we always resolve a smallest empty
0-lens, the edges e1 and e2 form a smallest empty 0-lens in Di; see Figure 3. Given that the
simplification process does not introduce new empty lenses (see Observation 2.1), e1 and e2
form an empty 0-lens in the original 4-quasi-planar drawing. J

We now focus on the special type of 4-quasi-planar drawings we are interested in. Suppose
that G is an arc-RAC graph, D is an arc-RAC drawing of G, and D′ is a simplification of D.
Note that, in general, D′ is not an arc-RAC drawing. If two edges e1 and e2 cross in D′,
then they do not form an empty 0-lens in D. This holds because for any two edges forming
an empty 0-lens in D, the simplification process removes both of their crossings; therefore, in
D′ the two edges do not have any crossings. If e1 and e2 are incident to the same vertex,
they also do not form an empty 0-lens in D, as otherwise they would share three points in
D (the two crossing points of the lens and the common vertex of G). Thus, we have the
following observation.
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I Observation 2.4. Let D be an arc-RAC drawing, and let D′ be a simplification of D. If
two edges e1 and e2 share a point in D′, then they do not form an empty 0-lens in D.

In the following, we first state the main theorem of this section and provide the structure
of its proof (deferring one small lemma and the main technical lemma until later). Then, we
prove the remaining technical details in Lemmas 2.6 to 2.10 to establish the result.

I Theorem 2.5. An arc-RAC graph with n vertices can have at most 14n− 12 edges.

Proof. Let G = (V,E) be an arc-RAC graph, let D be an arc-RAC drawing of G, let D′
be a simplification of D, and let G′ = (V ′, E′) be the planarization of D′. Our charging
argument consists of three steps.

First, each face f of G′ is assigned an initial charge ch(f) = |f | + v(f) − 4, where |f |
is the degree of f in the planarization and v(f) is the number of vertices of G on the
boundary of f . Applying Euler’s formula several times, Ackerman and Tardos [2] showed
that

∑
f∈G′ ch(f) = 4n − 8, where n is the number of vertices of G. In addition, we

set the charge ch(v) of a vertex v of G to 16/3. Hence the total charge of the system is
4n− 8 + 16n/3 = 28n/3− 8.

In the next two steps (described below), similarly to Dujmović et al. [14], we redistribute
the charges among faces of G′ and vertices of G so that, for every face f , the final charge
chfin(f) is at least v(f)/3 and the final charge of each vertex is non-negative. Observing that

28n/3− 8 ≥
∑
f∈G′

chfin(f) ≥
∑
f∈G′

v(f)/3 =
∑
v∈G

deg(v)/3 = 2|E|/3

yields that the number of edges of G is at most 14n−12 as claimed. (The second-last equality
holds since both sides count the number of vertex–face incidences in G′.)

After the first charging step above, it is easy to see that ch(f) ≥ v(f)/3 holds if |f | ≥ 4.
We call a face f of G′ a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding
shape and v(f) = k. Similarly, we call a face of degree two a digon. Note that any digon is a
1-digon since all empty 0-lenses have been simplified.

After the first charging step, each digon and each 0-triangle has a charge of −1, and each
1-triangle has a charge of 0. Thus, in the second charging step, we need to find 4/3 units
of charge for each digon, one unit of charge for each 0-triangle, and 1/3 unit of charge for
each 1-triangle. Note that all other faces including 2- and 3-triangles already have sufficient
charge.

To charge a digon d incident to a vertex v of G, we decrease ch(v) by 4/3 and increase
ch(d) by 4/3; see Figure 4a. We say that v contributes charge to d.

To charge triangles, we proceed similarly to Ackerman [1] and Dujmović et al. [14,
Theorem 7].

Consider a 1-triangle t1. Let v be the unique vertex incident to t1, and let s1 ∈ E′ be
the edge of t1 opposite of v; see Figure 4b. Note that the endpoints of s1 are intersection
points in D′. Let f1 be the face on the other side of s1. If f1 is a 0-quadrilateral, then we
consider its edge s2 ∈ E′ opposite to s1 and the face f2 on the other side of s2. We continue
iteratively until we meet a face fk that is not a 0-quadrilateral. If fk is a triangle, then all
the faces t1, f1, f2, . . . , fk belong to the same empty 1-lens l incident to the vertex v of t1. In
this case, we decrease ch(v) by 1/3 and increase ch(t1) by 1/3; see Figure 4a. Otherwise, fk
is not a triangle and |fk|+ v(fk)− 4 ≥ 1 (see Figure 4b). In this case, we decrease ch(fk) by
1/3 and increase ch(t1) by 1/3. We say that the face fk contributes charge to the triangle t1
over its side sk.
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(a) Vertex v contributes
charge to a digon and
two triangles contained in
empty 1-lenses.
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t0
t′

1
3

v

(c) Vertex v con-
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(d) 1-quadrilateral q
contributes charge to at
most two triangles.

Figure 4 Transferring charge from vertices and high-degree faces to small-degree faces.

For a 0-triangle t0, we repeat the above charging over each side. If the last face on our
path is a triangle t′, then t0 and t′ are contained in an empty 1-lens (recall that D′ does not
contain empty 0-lenses) and t′ is a 1-triangle incident to a vertex v of G. In this case, we
decrease ch(v) by 1/3 and increase ch(t0) by 1/3; see Figure 4c.

Thus, at the end of the second step, the charge of each digon and triangle f is at least
v(f)/3. Note that the charge of f comes either from a higher-degree face or from a vertex v
incident to an empty 1-lens containing f .

In the third step, we do not modify the charging any more, but we need to ensure that
(i) ch(f) ≥ v(f)/3 still holds for each face f of G′ with |f | ≥ 4 and
(ii) ch(v) ≥ 0 for each v of G.

We first show statement (i). Ackerman [1] noted that a face f with |f | ≥ 4 can contribute
charges over each of its edges at most once. Moreover, f can contribute at most one third unit
of charge over each of its edges. Therefore, if |f |+ v(f) ≥ 6, then in the worst case (that is, f
contributes charge over each of its edges) f still has a charge of |f |+v(f)−4−|f |/3 ≥ v(f)/3.
Thus, it remains to verify that 1-quadrilaterals and 0-pentagons, which initially had only
one unit of charge, have a charge of at least 1/3 unit or zero, respectively, at the end of the
second step.

A 1-quadrilateral q can contribute charge to at most two triangles since the endpoints of
any edge of G′ over which a face contributes charge must be intersection points in D′; see
Figure 4d and recall that q now plays the role of fk in Figure 4b.

A 0-pentagon cannot contribute charge to more than three triangles; see Lemma 2.10.
Now we show statement (ii). Recall that a vertex v can contribute charge to a digon

incident to v or to at most two triangles contained in an empty 1-lens incident to v. Observe
that two empty 1-lenses with either triangles or a digon taking charge from v cannot overlap;
see Figure 4a. We show in Lemma 2.6 that v cannot be incident to more than four such
empty 1-lenses. In the worst case, v contributes 4/3 units of charge to each of the at most
four incident digons representing these empty 1-lenses. Thus, v has non-negative charge at
the end of the second step. J

I Lemma 2.6. In any simplified arc-RAC drawing, each vertex is incident to at most four
non-overlapping empty 1-lenses.

Proof. Let v be a vertex incident to some non-overlapping empty 1-lenses. Consider a small
neighborhood of the vertex v in the simplified drawing and notice that in this neighborhood
the simplified drawing is the same as the original arc-RAC drawing. Let l be one of the
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90◦

90◦

90◦
90◦

Figure 5 The edges of an empty
1-lens form a π/2 angle at the ver-
tex of the lens.

e

e1
e2

e3

e4 e5 e6

Figure 6 The relation Π(· ; ·) does not necessarily de-
scribe all intersection points along an edge. Here, e.g.,
Π(e; e1, e2, e3, e4, e3, e5, e6) and Π(e; e1, e3, e4, e5) both hold.

non-overlapping empty 1-lenses incident to v. Then l forms an angle of 90◦ between the two
edges incident to v that form l; see Figure 5. This is due to the fact that the other “endpoint”
of l is an intersection point where the two edges must meet at 90◦. Thus v is incident to at
most four non-overlapping empty 1-lenses. J

We now set the stage for proving Lemma 2.10, which shows that a 0-pentagon in a
simplified drawing does not contribute charge to more than three triangles. The proof goes
by a contradiction. Consider a 0-pentagon that contributes charge to at least four triangles
in the simplified drawing. First, we examine which edges of this 0-pentagon cross; see
Lemma 2.7. We then describe the order in which these edges share points in the simplified
drawing and show that the original arc-RAC drawing must adhere to the same order; see
Lemma 2.8. Finally, we use geometric arguments to show that, under these order constraints,
an arc-RAC drawing of the edges does not exist; see Lemma 2.9.

Let D be an arc-RAC drawing of some arc-RAC graph G = (V,E), let D′ be its
simplification, and let p be a 0-pentagon that contributes charge to at least four triangles.
Let s0, s1, . . . , s4 be the sides of p in clockwise order and denote the edges of G that contain
these sides as e0, e1, . . . , e4 so that edge e0 contains side s0 etc. Since p contributes charge
over at least four sides, these sides are consecutive around p. Without loss of generality, we
assume that s4 is the side over which p does not necessarily contribute charge.

For i ∈ {0, 1, 2, 3}, let ti be the triangle that gets charge from p over the side si. The
triangle ti is bounded by the edges ei−1 and ei+1. (Indices are taken modulo 5.) Note that
all faces bounded by ei−1 and ei+1 that are between ti and p must be 0-quadrilaterals. If ti
is a 1-triangle, then ei−1 and ei+1 are incident to the same vertex of the triangle. Otherwise,
ti is a 0-triangle and ei−1 and ei+1 cross at a vertex of the triangle. Let A′i−1,i+1 denote this
common point of ei−1 and ei+1, and let Ep = {e0, . . . , e4}; see Figure 7a.

We now describe the order in which the edges in Ep share points in D′. To this end, we
orient the edges in Ep so that this orientation conforms with the orientation of a clockwise
walk around the boundary of p inD′. In addition, we write Π(ek; ei1 , ei2 , . . . , eil) if the edge ek
shares points (either crossing points or vertices of the graph) with the edges ei1 , ei2 , . . . , eil
in this order with respect to the orientation of ek; see Figure 6. (Note that we can have
Π(ek; ei, ej , ei) as edges may intersect twice. We will not consider more than two edges
sharing the same endpoint.) Due to the order in which we numbered the edges in Ep, it holds
in D′ that Π(e0; e4, e1, e2), Π(e3; e1, e2, e4), and, for i ∈ {1, 2, 4}, Π(ei; ei−2, ei−1, ei+1, ei+2);
see Figure 7a. Now we show that in D the order is the same. Obviously every pair of edges
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(a) Notation: A 0-pentagon p in D′ and the
edges in Ep. The points of type A′i−1,i+1 are
either intersection points or vertices of G.
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(b) Also inD, it holds that Π(e0; e4, e1, e2),
Π(e3; e1, e2, e4), and, for i ∈ {1, 2, 4},
Π(ei; ei−2, ei−1, ei+1, ei+2).

Figure 7 A 0-pentagon cannot contribute charge to more than three triangles.

(ei−1, ei+1) that shares an endpoint in D′ also shares an endpoint in D. Furthermore, every
pair (ei, ei+1) or (ei−1, ei+1) of crossing edges crosses in D, too, because the simplification
process does not introduce new pairs of crossing edges; see Observation 2.1.

I Lemma 2.7. In the drawing D, the edges e0 and e3 do not cross.

Proof. Assume that the edges e0 and e3 cross in D and notice that each of the pairs of
edges (e0, e1), (e1, e2), and (e2, e3) forms a crossing in D′ (see Figure 7a), and hence in D,
too. For any arc e, let ē denote the circle containing e. Recall that a family of Apollonian
circles [9, 23] consists of two sets of circles such that each circle in one set is orthogonal to
each circle in the other set. Thus, the pairs of circles (ē1, ē3) and (ē0, ē2) belong to such a
family; the pair (ē1, ē3) belongs to one set of the family and (ē0, ē2) belongs to the other set.
If not all of the circles in the family share the same point, which is the case for the circles ē0,
ē1, ē2, and ē3, then one such set consists of disjoint circles. So either the pair (ē0, ē2) or the
pair (ē1, ē3) must consist of disjoint circles. This is a contradiction because each of the two
pairs shares a point in D′ (see Figure 7a), and thus, in D. J

I Lemma 2.8. In the drawing D, it holds that Π(e0; e4, e1, e2), Π(e3; e1, e2, e4), and, for
each i ∈ {1, 2, 4}, Π(ei; ei−2, ei−1, ei+1, ei+2).

Proof. Recall that in the drawing D′, it holds that Π(e0; e4, e1, e2), Π(e3; e1, e2, e4), and,
for each i ∈ {1, 2, 4}, Π(ei; ei−2, ei−1, ei+1, ei+2); see Figure 7a. Consider distinct indices
i, j, k ∈ {0, 1, 2, 3, 4} so that the edges ei and ej share points with ek in this order in D′,
that is, Π(ek; ei, ej) in D′. We will show that the edges ei and ej share points with ek in the
same order in D, that is, Π(ek; ei, ej) in D. In other words, the order in which the edges
in Ep share points in D is the same as in D′.

First, note that if the edge ei or the edge ej shares an endpoint with ek, then ei and ej
do not change the order in which they share points with ek. This is due to the fact that the
simplification process does not modify the graph. Therefore, ei and ej share points with ek
in the same order in D as in D′, that is, Π(ek; ei, ej) in D.

Assume now that both ei and ej cross ek.
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If (i, j) ∈ {(0, 3), (3, 0)}, then, according to Lemma 2.7, the edges ei and ej do not cross
in D, so they do not form an empty 0-lens in D, and thus, by Lemma 2.3, ei and ej cross ek
in the same order in D as in D′, that is, Π(ek; ei, ej) in D.

Otherwise, the edges ei and ej share a point in D′; see Figure 7a. Therefore, by
Observation 2.4, ei and ej do not form an empty 0-lens in D, and thus, by Lemma 2.3, ei
and ej cross ek in the same order in D as in D′, that is, Π(ek; ei, ej) in D. J

Thus, we have shown that the order in which the edges in Ep share points in D is the
same as in D′, see Figure 7b. We show now that an arc-RAC drawing with this order does
not exist; see Lemma 2.9. This is the main ingredient to prove Lemma 2.10, which says that
a 0-pentagon in a simplified arc-RAC drawing contributes charge to at most three triangles.

For simplicity of presentation and without loss of generality, we assume that the points
A′i−1,i+1 are vertices of G, which we denote by vi−1,i+1.

I Lemma 2.9. The edges in Ep do not admit an arc-RAC drawing where it holds that
Π(e0; e4, e1, e2), Π(e3; e1, e2, e4), and, for i ∈ {1, 2, 4}, Π(ei; ei−2, ei−1, ei+1, ei+2).

Proof. Assume that the edges in Ep admit an arc-RAC drawing where they share points
in the order indicated above. For i ∈ {0, . . . , 4}, let Pi,i+1 be the intersection point of ei
and ei+1; see Figure 7b. Note that on ei, the point Pi−1,i is before the point Pi,i+1 (due to
Π(ei; ei−1, ei+1)).

Recall that an inversion [23] with respect to a circle α, the inversion circle, is a mapping
that takes any point P 6= C(α) to a point P ′ on the straight-line ray from C(α) through P
so that |C(α)P ′| · |C(α)P | = r(α)2. Inversion maps each circle not passing through C(α) to
another circle and each circle passing through C(α) to a line. The center of the inversion
circle is mapped to the “point at infinity”. It is known that inversion preserves angles.

We invert the drawing of the edges in Ep with respect to a small inversion circle centered
at v24. Let e◦i be the image of ei, v◦i−1,i+1 be the image of vi−1,i+1 (v◦24 is the point at
infinity), and P ◦i,i+1 be the image of Pi,i+1. Because in the pre-image the arcs e2 and e4 pass
through v24, in the image e◦2 and e◦4 are straight-line rays. We assume that in the image e◦2
meets e◦4 at the point at infinity, that is, at v◦24. Then, taking into account that inversion is
a continuous and injective mapping, the order in which the edges in Ep share points is the
same in the image.

We consider two cases regarding whether the edges e2 and e4 belong to two different
circles or not.

Case I: e2 and e4 belong to two different circles.
One of the intersection points of their circles is v24, and we let X denote the other intersection
point. Here we have that e◦2 and e◦4 are two straight-line rays meeting at infinity at v◦24. Their
supporting lines are different and intersect at X◦, which is the image of X; see Figure 8.

We now assume for a contradiction that the arc e◦1 forms a concave side of the triangle
∆1 = P ◦12v

◦
41X

◦; see Figure 8a where the triangle is filled gray. (Symmetrically, we can
show that the arc e◦0 cannot form a concave side of the triangle ∆0 = P ◦40v

◦
02X

◦.) By
Observation 1.2, C(e◦1) must lie on the ray e◦2. Since we assume that the arc e◦1 forms a
concave side of the triangle ∆1, C(e◦1) and v◦02 are separated by P ◦12 on e◦2. Consider the
tangent l0 to e◦0 at P ◦01. Again in light of Observation 1.2, l0 has to go through C(e◦1) because
e◦0 and e◦1 are orthogonal. On the one hand, v◦02 is to the same side of l0 as P ◦12; see Figure 8a.
On the other hand, l0 separates P ◦12 and v◦41 due to Π(e1; e4, e0, e2). Moreover, l0 does not
separate v◦41 and P ◦40 since it intersects the line of e◦4 when leaving the gray triangle ∆1. So
the two points v◦02 and P ◦40 of the same arc e◦0 are separated by l0, which is a tangent of this
arc; contradiction.
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X◦

v◦41

v◦02

P ◦
40

P ◦
12

P ◦
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e◦1

e◦4e◦2

e◦0
l0
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(a)

P ◦
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P ◦
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P ◦
12

P ◦
23

C(e◦0)C(e◦1)
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e◦1 e◦0

e◦3
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X◦
v◦41v◦02

l0 l1

∆1

(b)

Figure 8 Illustration for the proof of Lemma 2.9 when e2 and e4 belong to two different circles.
Image of the inversion with respect to the red circle in Figure 7b.

P ◦
01

P ◦
40P ◦

12 P ◦
34P ◦

23

e◦1 e◦0

e◦3

e◦4e◦2

v◦02 v◦41

C(e◦1) C(e◦0)C(e◦3)

Figure 9 Illustration to the proof of Lemma 2.9 when e2 and e4 belong to the same circle. Image
of the inversion with respect to the red circle in Figure 7b.

Thus, the arc e◦1 forms a convex side of the triangle ∆1, and e◦0 forms a convex side of ∆0;
see Figure 8b. Now, due to Observation 1.2, C(e◦0) is between v◦41 and P ◦40, and C(e◦1) is
between v◦02 and P ◦12, because that is where the tangents l1 of e◦1 and l0 of e◦0 in P ◦01 intersect
the lines of e◦4 and e◦2, respectively. Taking into account that C(e◦3) = X◦, because e◦3 is
orthogonal to both e◦2 and e◦4, we obtain that the points C(e◦3), C(e◦1), P ◦12, P ◦23 appear on
the line of e◦2 in this order. Thus, the circle of e◦1 is contained within the circle of e◦3. This is
a contradiction because e◦3 and e◦1 must share a point; namely v◦13.
Case II: e2 and e4 belong to the same circle.
Here e◦2 and e◦4 are two disjoint straight-line rays on the same line l (meeting at infinity at
v◦24); see Figure 9. We direct l as e◦4 and e◦2 (from right to left in Figure 9). Because e◦0,
e◦1, and e◦3 are orthogonal to l, their centers have to be on l. Due to our initial assumption,
we have Π(e4; e2, e3, e0, e1) and Π(e2; e0, e1, e3, e4). Hence, along l, we have P ◦34, P ◦40, v◦41,
(on e◦4) and then v◦02, P ◦12, P ◦23 (on e◦2). Therefore, the circle of e◦1 is contained in that of e◦3.
Hence, e◦1 does not share a point with e◦3; a contradiction. J

I Lemma 2.10. A 0-pentagon in a simplified arc-RAC drawing contributes charge to at most
three triangles.

Proof. As discussed above, if a 0-pentagon formed by edges e0, e1, . . . , e4 contributes charge
to more than three triangles in a simplified drawing (see Figure 7a), then this implies
the existence of an arc-RAC drawing where it holds that Π(e0; e4, e1, e2), Π(e3; e1, e2, e4)
and, for i ∈ {1, 2, 4}, Π(ei; ei−2, ei−1, ei+1, ei+2); see Figure 7b. This, however, contradicts
Lemma 2.9. J

With the proofs of Lemmas 2.6 and 2.10 now in place, the proof of Theorem 2.5 is
complete.
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3 A Lower Bound for the Maximum Edge Density

In this section, we construct a family of arc-RAC graphs with high edge density. Our
construction is based on a family of RAC1 graphs of high edge density that Arikushi et al. [5]
constructed. Let G be an embedded graph whose vertices are the vertices of the hexagonal
lattice clipped inside a rectangle; see Figure 10a. The edges of G are the edges of the lattice
and, inside each hexagon that is bounded by the cycle (P0, . . . , P5), six additional edges
(Pi, Pi+2 mod 6) for i ∈ {0, 1, . . . , 5}; see Figure 10b. We refer to a part of the drawing made
up of a single hexagon and its diagonals as a tile. In Theorem 3.3 below, we show that each
hexagon can be drawn as a regular hexagon and its diagonals can be drawn as two sets of
arcs A = {α0, α1, α2} and B = {β0, β1, β2}, so that the arcs in A are pairwise orthogonal,
the arcs in B are pairwise non-crossing, and for each arc in B intersecting another arc in A
the two arcs are orthogonal; we use this construction to establish the theorem. In particular,
the arcs in A form the 3-cycle (P0, P2, P4), and the arcs in B form the 3-cycle (P1, P3, P5).

We first define the radii and centers of the arcs in a tile and show that they form
only orthogonal crossings. We use the geometric center of the tile as the origin of our
coordinate system in the following analysis. We now discuss the arcs in A; then we turn
to the arcs in B. For each j ∈ {0, 1, 2}, the arc αj has radius rA = 1 and center C(αj) =
(dA cos(π/6 + j 2π

3 ), dA sin(π/6 + j 2π
3 )), where dA =

√
2/3 is the distance of the centers from

the origin; see Figure 11a.

I Lemma 3.1. The arcs in A are pairwise orthogonal.

Proof. Consider the equilateral triangle 4C(α0)C(α1)C(α2) formed by the centers of the
three arcs in A. Because the origin is in the center of the triangle, the edge length of the
triangle is 2dA cosπ/6 =

√
2, and so the distance between the centers of any two arcs is

√
2.

The radii of the arcs are 1, hence by Observation 1.1, every two arcs are orthogonal. J

As in Figure 11b, for each j ∈ {0, 1, 2}, the arc βj has radius rB =
√

70+40
√

3
6 and center

C(βj) = (dB cos(π2 + (j+1)2π
3 ), dB sin(π2 + (j+1)2π

3 )), where dB =
√

1
6 +

√
73+40

√
3

6 is the
distance of the centers from the origin.

I Lemma 3.2. If an arc in B intersects an arc in A, then the two arcs are orthogonal.

Proof. Let i, j ∈ {0, 1, 2}. If j 6= i, ‖C(αi)−C(βj)‖2 = 76+40
√

3
6 = 1+ 70+40

√
3

6 = r2
A+r2

B , so
by Observation 1.1 αi and βj are orthogonal. Otherwise, for i ∈ {0, 1, 2}, ‖C(αi)−C(βi)‖ =√

112+64
√

3
6 > 1 +

√
70+40

√
3

6 = rA + rB , so αi and βi do not intersect. J

I Theorem 3.3. For infinitely many values of n, there exists an n-vertex arc-RAC graph
with 4.5n−O(

√
n) edges.

Proof. We first construct a tile and show that its drawing is indeed a valid arc-RAC drawing.
Then it is easy to draw an embedded graph G with the claimed edge density.

Consider two circles α and β that intersect in two points of different distance from the
origin. Let X−αβ be the intersection point that is closer to the origin, and let X+

αβ be the
intersection point further from the origin.

Let the vertices of the hexagon in a tile be P0 = X+
α0α1

, P1 = X−β2β0
, P2 = X+

α1α2
,

P3 = X−β0β1
, P4 = X+

α2α0
, and P5 = X−β1β2

. Due to the symmetric definitions of the arcs,
the angle between two consecutive vertices of the hexagon is π/3. Moreover, by a simple
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(a) The hexagonal lattice.

P0

P3

P1

P2 P4

P5

α2

α0

β0

β2

α1

β1

d

(b) A tile.

Figure 10 Tiling used for the lower-bound construction.

C(α1) C(α0)

C(α2)

P0

P2 P4

dA

(a) Circles covering the arcs in A.

C(β0) C(β1)

C(β2)

P1 P5

P3

dB

(b) Circles covering the arcs in B.

Figure 11 Construction for the lower bound on the maximum edge density of arc-RAC graphs.

computation, we see that for each j ∈ {0, 1, 2} and with d =
√

1/2+
√

1/6 being the distance
of the vertices of the hexagon from the origin, we have:

P2j = X+
αjαj+1 mod 3

=
(
d cos(π2 + j 2π

3 ), d sin(π2 + j 2π
3 )
)

P2j+3 mod 6 = X−βjβj+1 mod 3
=
(
d cos(π6 + (j + 2) 2π

3 ), d sin(π6 + (j + 2) 2π
3 )
)
.

Thus, all the vertices of the hexagon are equidistant from its center, so the hexagon is
regular. According to Lemmas 3.1 and 3.2 all crossings of the arcs that belong to the same
tile are orthogonal. Now we argue that the arcs in A and B are contained in the regular
hexagon. To this end, we show that the arcs do not intersect the relative interior of the
edges of the hexagon. To see this, take, for example, the arc α2, which connects P2 and P4.
The line segment P2P4 is orthogonal to the side P1P2 of the hexagon. As the center of α2 is
below P2P4, the tangent of α2 in P2 enters the interior of the hexagon in P2. Thus, α2 does
not intersect the relative interior of the edge P1P2 (or of any other edge) of the hexagon.
Similarly we can show that the arcs in B do not intersect the relative interior of an edge of
the hexagon. Therefore, each tile is an arc-RAC drawing, and G is an arc-RAC graph.

Almost all vertices of the lattice with the exception of at most O(
√
n) vertices at the

lattice’s boundary have degree 9 [5]. Hence G has 4.5n−O(
√
n) edges. J

As any n-vertex RAC graph has at most 4n− 10 edges [12], we obtain the following.

I Corollary 3.4. The arc-RAC graphs are a proper superclass of the RAC0 graphs.
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4 Open Problems and Conjectures

An obvious open problem is to tighten the bounds on the edge density of arc-RAC graphs in
Theorems 2.5 and 3.3.

Another immediate question is the relation to RAC1 graphs, which also extend the class of
RAC0 graphs. This is especially intriguing as the best known lower bound for the maximum
edge density of RAC1 graphs is indeed larger than our lower bound for arc-RAC graphs
whereas there may be arc-RAC graphs that are denser than the densest RAC1 graphs.

The relation between RACk graphs and 1-planar graphs is well understood [5–8,10,15].
What about the relation between arc-RAC graphs and 1-planar graphs? In particular, is
there a 1-planar graph which is not arc-RAC?

We are also interested in the area required by arc-RAC drawings. Are there arc-RAC
graphs that need exponential area to admit an arc-RAC drawing? (A way to measure this
off the grid is to consider the ratio between the longest and the shortest edge in a drawing.)

Finally, the complexity of recognizing arc-RAC graphs is open, but likely NP-hard.
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Abstract
Clustering is a fundamental problem of spatio-temporal data analysis. Given a set X of n moving
entities, each of which corresponds to a sequence of τ time-stamped points in Rd, a k-clustering
of X is a partition of X into k disjoint subsets that optimizes a given objective function. In this
paper, we consider two clustering problems, k-Center and k-MM, where the goal is to minimize
the maximum value of the objective function over the duration of motion for the worst-case input
X . We show that both problems are NP-hard when k is an arbitrary input parameter, even when
the motion is restricted to R. We provide an exact algorithm for the 2-MM clustering problem in
Rd that runs in O(τdn2) time. The running time can be improved to O(τn logn) when the motion
is restricted to R. We show that the 2-Center clustering problem is NP-hard in R2. Our 2-MM
clustering algorithm provides a 1.15-approximate solution to the 2-Center clustering problem in
R2. Moreover, finding a (1.15− ε)-approximate solution remains NP-hard for any ε > 0. For both
the k-MM and k-Center clustering problems in Rd, we provide a 2-approximation algorithm that
runs in O(τdnk) time.
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1 Introduction

The technology of tracking moving entities (e.g., humans, animals, vehicles, etc.) using GPS,
motion capture, and other location-tracking devices has developed rapidly and has become
widely adopted across a range of applications in the past decade. Tracking devices record
the location of a moving entity over time, corresponding to a sequence of time-stamped
spatial coordinates. In many cases, the positions of multiple moving entities are tracked
simultaneously. In this paper, we consider a set of entities moving continuously in Euclidean
space, such that at any given time, the position of each entity is represented by a point in Rd.
Several applications (e.g., animal migration analysis, weather forecasting, and component
classification from motion capture data) require clustering moving entities [16]. The goal of
clustering is to partition a given set of objects into groups of similar objects, where the degree
of similarity, i.e., the quality of the clustering, is measured according to a given objective
function. Some previous work on clustering moving entities has examined the problem of
updating clusters over time to maintain a good clustering [7, 9, 14, 16, 18]. In these types of
clustering, an entity is often required to switch from one cluster to another to maintain the

1 This research was completed while Stephane Durocher was a visiting researcher with the Morpheo
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Figure 1 Trajectories of three entities x, y, z in R2 within time stamps t1 to t4.

optimality of the objective function. These types of clustering are not suitable for applications
that require an entity to remain in a cluster while optimizing a global objective over the
entire motion. For example, consider an input consisting of trajectories of a set of sensors
recorded during the motion capture of a person running, for which the goal is to identify
different body parts during the motion, e.g., torso, arms, legs, etc. If we allow entities (in
this case, sensors) to change clusters over time, then one part of the body (one trajectory)
might be classified into one cluster (say an arm) at one time and another cluster (say a leg)
later during the same motion. To prevent such inconsistencies, we examine the problem of
clustering a set of moving entities where the moving entities cannot switch clusters over time.
In particular, the basic unit of clustering is the whole trajectory of each moving entity.

The discrete sequence of time-stamped locations of an entity can be linearly interpolated
to obtain a continuous piecewise-linear curve. Depending on the application, we may need to
cluster just the curves (e.g., when clustering animal migration routes followed by multiple
herds or flocks of animals, possibly at different times and speeds) or the curves along with
their associated time stamps (e.g., when clustering animals into groups that moved together
during migration). The k-Center clustering of trajectories of moving entities has been
studied under the Fréchet distance metric [5, 6]. This type of clustering considers only the
piecewise-linear curves of each entity, without factoring the time at which moving entities
occupied points on their trajectory. Fréchet distance considers all possible walk sequences
between two trajectories. Therefore, input consisting of position as a function of time leads
to different clusters than when the input consists of trajectories only. For example, consider
three entities x, y and z moving in R2 whose trajectories from time t1 to t4 are given in
Figure 1. The Fréchet distance between the trajectories of x and y is greater than the Fréchet
distance between the trajectories of y and z. Therefore, if we partition {x, y, z} into two
clusters to minimize the maximum intra-cluster Fréchet distance, then y and z would be in
one cluster, and x would be in another cluster. However, the Euclidean distance between y
and z at time t3 is greater than the distance between x and y at any time. When time is
considered, the resulting clustering assigns y and z to different clusters. As a result, when
time is important, clustering should optimize the objective function based on the position of
entities over the entire motion, i.e., at all times during the motion. In this paper, we examine
clustering algorithms for moving entities in Euclidean space where each entity’s trajectory
has associated time stamps. In particular, we consider k-MM and k-Center clustering of
moving entities, where k specifies the number of clusters.
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Problem description

We are given a set X of n entities moving in Rd that are tracked over a given time interval.
The spatial coordinates of entities are recorded at a set T of τ discrete time stamps. Therefore,
the location of each entity over time traces a piecewise-linear trajectory in Rd consisting
of τ vertices. At any time t ∈ T , the position of each entity xi ∈ X is a fixed point in Rd,
denoted xi(t). For any time t ∈ T , X (t) = {x(t) | x ∈ X} denotes the multiset of points
corresponding to the positions of the entities in X at time t. Similarly, for a cluster Ci ⊆ X ,
Ci(t) denotes the multiset of points corresponding to the positions of entities in Ci at time t.

I Definition 1. Given a set T of τ discrete time stamps and a finite set X of n moving
entities in Rd, the goal of the k-clustering problem is to partition X into k disjoint sets
C1, C2, . . . , Ck to optimize a given objective function f : {C1, C2, . . . , Ck} → R. The goal is
to minimize the maximum value of f(t) over all t ∈ T for the worst-case input X .

Kinetic clustering refers to clustering problems on moving or dynamic entities for which
entities may switch clusters over time; static clustering refers to clustering problems on
moving or dynamic entities for which each entity is assigned to a single cluster. Note that
static facility location does not imply static entities, i.e., entity positions can change over
time in static clustering, but their assignment to clusters cannot. This paper examines the
static setting for the problem of clustering moving entities.

The particular objective function depends on the applications of the problem. Common
clustering problems are k-Center, k-median, k-MM and k-means clustering. In this paper,
we present the results for the k-MM and k-Center clustering of moving entities in Rd. In
the k-MM clustering problem, the objective function f measures the maximum distance
during the motion between any two entities in any cluster Ci. The “MM” in the objective
function refers to “max max”. The objective of the k-MM clustering is to find a partition
C1, . . . , Ck of X that minimizes

max
i∈{1,...,k}

max
{x,y}⊆Ci

max
t∈T

δ(x(t), y(t)), (1)

where δ is the Euclidean (`2) distance metric. For any set of points in R2, the k-MM
clustering is often denoted k-2MM, where “2” refers to Euclidean (`2) distance. The k-2MM
problem is NP-hard in R2 when k is an arbitrary input parameter [12]. In the k-Center
clustering problem, the objective function f measures the maximum distance during the
motion from any x ∈ X to its cluster center, where the center of each cluster Ci at time t
is the center of the smallest enclosing d-ball of Ci(t). Therefore, the objective is to find a
partition C1, . . . , Ck of X that minimizes

max
i∈{1,...,k}

max
x∈Ci

max
t∈T

δ(x(t),mi(t)), (2)

where mi(t) denotes the center of the smallest enclosing d-ball of Ci(t). That minimum value
of Equation 2 corresponds to the smallest radius r such that each cluster can be covered at
all times by a d-ball of radius r. We consider the continuous k-Center clustering problem,
where the center of a cluster can be placed anywhere in Euclidean space (i.e., the cluster
center is not restricted to X (t), as is the case in discrete facility location). The k-Center
clustering problem is also NP-hard in R2 when k is an arbitrary input parameter [19].

Results and organization.

In this paper, we study k-MM and k-Center clustering of moving entities in Rd. In Section
2, we discuss related work on clustering moving entities. In Section 3, we present algorithms
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that solve the 2-MM clustering problem optimally in O(τdn2) time in Rd, and in O(τn logn)
time in R. In Section 4, we show that 2-Center clustering is NP-hard for entities moving in
R2; this differs from the 2-Center problem on a set of points in Rd, which can be solved in
polynomial time [2]. The 2-MM clustering algorithm gives an 1.15-approximate solution for
the 2-Center clustering problem in R2. Moreover, computing a (1.15− ε)-approximation
remains NP-hard for any ε > 0. In Section 5, we show that the k-MM and k-Center
clustering problems are NP-hard when k is an arbitrary input parameter, even in R; again,
this differs from the k-MM and k-Center problems on a set of points, which can be solved
in polynomial time in R [11]. We provide a 2-approximation algorithm for both problems by
using the greedy technique of Gonzalez’s algorithm [12]. Finally, in Section 6, we conclude
with a discussion of possible directions for future research.

2 Related work

The k-Center and k-MM clustering problems have been studied extensively for sets of points
in Rd [1, 12]. Both problems are NP-hard in R2 when k is an arbitrary input parameter
[12, 19]. Gonzalez [12] provides a 2-approximation algorithm for both k-MM and k-Center
clustering of a set of points in R2 which requires O(nk) time. However, the algorithm works
for any metric space. Frederickson [11] gives an algorithm for the k-Center problem on a
tree that uses O(n) time and space. The algorithm allows centers to be located at any points
on the edges. Therefore, the k-Center problem for any set of points in R can be solved in
O(n) time using Frederickson’s algorithm. The 2-Center clustering of a set of points in R2

can be solved exactly in O(n log2 n) time [10, 21].
Har-Peled [13] examines the k-Center problem for sets of moving entities in Rd, giving an

algorithm that partitions the input into kµ+1 clusters for entities whose motion has algebraic
degree µ. The 1-Center, 2-Center, and k-Center clustering problems have been studied
for sets of moving entities in the kinetic setting, where entities may switch clusters, with the
goal to maintain a good approximation of the objective function while bounding the relative
velocity of the cluster centers [3, 7, 9, 8]. Variants of these problems have been studied, such
as k-clustering to minimize the average value of the objective function throughout the motion
(e.g., [14]). Li et al. [17] examine a movement pattern of moving entities, called swarm, where
a group of entities moves together for a set of (possibly nonconsecutive) timestamps.

Previous work also examines clustering trajectories of moving entities under different
similarity measures: Fréchet distance, dynamic time warping, and edit distance [22]. Lee
et al. [15] propose a two-phase algorithm to cluster similar portions of a set of trajectories.
Buchin et al. [4] provide a trajectory grouping framework where the structure of a group
of similar trajectories is represented by a Reeb graph. Driemel et al. [6] introduce the
(k, l)-Center clustering problem for a set of curves in R under the Fréchet distance metric,
where each of the k-Center curves has complexity at most l. A (1 + ε)-approximation
algorithm is proposed for this problem, which runs in near-linear time. Buchin et al. [5] show
that (k, l)-Center clustering under Fréchet distance is NP-hard even if k = 1.

3 Algorithms for 2-MM clustering

Given a set X of n moving entities in Rd, we can construct a weighted undirected complete
graph G, where the vertices of G are the moving entities in X = {x1, x2, . . . , xn} and the
weight of the edge between two vertices xi and xj is

max
t∈T

δ(xi(t), xj(t)). (3)
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I Lemma 2. The weights of graph G satisfies the triangular inequality.

Proof. Let x, y, and z be three moving entities in Rd. At any time t, the positions of these
entities satisfy triangle inequality (i.e., δ(x(t), y(t)) + δ(y(t), z(t)) ≥ δ(z(t), x(t))). For this
instance, the graph G has three vertices {x, y, z} and three edges {e1(x, y), e2(y, z), e3(z, x)}.
The weights of the edges are

e1 = δ(x(t1), y(t1)); e2 = δ(y(t2), z(t2)); e3 = δ(z(t3), x(t3));

where, t1 = arg maxt δ(x(t), y(t)); t2 = arg maxt δ(y(t), z(t)); t3 = arg maxt δ(z(t), x(t)).
From the weights of the edges we get,

e1 + e2 = δ(x(t1), y(t1)) + δ(y(t2), z(t2))
≥ δ(x(t3), y(t3)) + δ(y(t3), z(t3)); (from the definition of t1, t2 and t3)

≥ δ(x(t3), z(t3)); (since x, y, z satisfy the triangle inequality at time t3)
≥ e3 J

We can solve the 2-MM clustering of X by partitioning G into two clusters C1, C2 such
that the partitioning minimizes

max
i∈{1,2}

max
{x,y}⊆Ci,x 6=y

w(x, y), (4)

where w(x, y) is the weight of the edge between x and y. In other words, we want to minimize
the maximum intra-cluster edge weight, where an edge having both end vertices in the same
cluster is called an intra-cluster edge. To partition the graph G, we first compute a tree T
that is a Maximum Spanning Tree of G using Prim’s algorithm. Proceed to 2-color T by
alternatively coloring vertices red and blue in a breadth-first search. This coloring defines
the two clusters, C1 and C2.

I Theorem 3. C1 and C2 define an optimal 2-MM clustering.

Proof. The algorithm constructs a tree T , i.e., a bipartite graph whose vertices are divided
into two disjoint and independent sets C1 and C2. Suppose x and y are two vertices in C1
(or C2), such that the edge (x, y) in G is a maximum-weight intra-cluster edge (outcome
of Equation 4). Since T is bipartite, there exists a path from x to y with an even number
of edges. Adding the edge (x, y) to T would create a cycle in T . Since T is a maximum
spanning tree of G, each edge in that cycle has a weight at least w(x, y). As a result, there
exists at least one vertex z1 in C2 (or C1) having w(x, z1) ≥ w(x, y), and there exists at least
one vertex z2 in C2 (or C1) having w(y, z2) ≥ w(x, y). If there exists an edge between (x, z2)
in T , then w(x, z2) ≥ w(x, y) (since x, z2, y creates a cycle in T ). If there is no edge between
(x, z2) in T , then adding the edge (x, z2) to T would create a cycle where w(x, z2) ≥ w(y, z2).
Since w(y, z2) ≥ w(x, y), we can say that w(x, z2) ≥ w(x, y). Similarly, we can say that
w(y, z1) ≥ w(x, y).

In every possible 2-clustering of G where x and y are in different cluster, there is an
intra-cluster edge that has weight at least w(x, y) (because z1 or z2 can be in any of the
two clusters). On the other hand, when x and y are in the same cluster, every possible
2-clustering of G has an intra-cluster edge having weight w(x, y). This proves that, in every
possible 2-clustering of G, there exists an intra-cluster edge which has weight at least w(x, y).
Therefore, G cannot be partitioned into two clusters where the maximum intra-cluster edge
has weight less than w(x, y). Hence, the clustering C1, C2 is optimal. J
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We have n moving entities in Rd, and the pairwise distance of all pair of entities using
Equation 3 can be computed in O(τdn2) time. Thus, constructing the graph G requires
O(τdn2) time. The running time of Prim’s algorithm is O(n2). Since, the tree T has n− 1
edges, the breadth-first search in the 2-coloring algorithm requires Θ(n) time. Therefore, the
running time of the 2-MM clustering algorithm is O(τdn2).

I Theorem 4. The 2-MM clustering of moving entities in Rd can be computed in O(τdn2)
time.

3.1 Improved algorithm for entities in R

We consider a set X of n moving entities in R. We plot the entities’ position functions over
time, such that horizontal axis represents time and the vertical axis represents the positions
of the entities.

I Definition 5. The upper trajectory of X , denoted UX , is a piecewise-linear trajectory
corresponding to the upper envelope of the plots of trajectories of entities in X . That is, at
any time t ∈ T , the position of the upper trajectory UX (t) is max{x(t)|x ∈ X}. The lower
trajectory of X , denoted LX , is defined analogously with respect to the lower envelope of
the plots of the trajectories of entities in X .

To compute UX and LX , at each time t, we need to find the maximum and minimum
value of X (t). Therefore, UX and LX can be computed in Θ(τn) time. Examples of the
upper and lower trajectories of six entities are shown in Figure 2.

Figure 2 Upper and Lower trajectories of six entities moving in R.

I Observation 6. The upper and lower trajectories of X can be computed in Θ(τn) time.

We can find the furthest pair of entities in X by using UX and LX . A pair (x, y) ∈ X is
called the furthest pair if

max
t∈T

δ(x(t), y(t)) ≥ max
{x′,y′}⊆X ,
x′ 6=x,y′ 6=y

max
t∈T

δ(x′(t), y′(t)).

At each time stamp t, we calculate the distance between entities x(t) ∈ UX (t) and y(t) ∈ LX (t).
The furthest pair is the one which has maximum distance over all time.

I Observation 7. Given the upper and lower trajectories of X , the furthest pair of entities
in X can be found in Θ(τ) time.
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At every time stamp, we consider maintaining the sorted order of the entities where
they are sorted according to their positions. This takes O(τn logn) time. If an entity is
added to or removed from X , then UX and LX need to be updated as well. Consider a new
entity x that is added to X . To maintain the sorted order, the insertion of x would take
O(τ logn) time by using a balanced search tree. After that, we can update the upper and
lower trajectories of X in Θ(τ) time. For each time t, if x(t) ≥ UX (t), then we update the
value of UX (t) to x(t). Similarly, if x(t) ≤ LX (t), then we update the value of LX (t) to x(t).
If an entity x is deleted from X , we can update the sorted order of X in O(τ) time. UX and
LX can also be updated in Θ(τ) time. For each time t, if x(t) = UX (t), we update the value
of UX (t) to y(t), where y ∈ X and y(t) is the closest neighbor of x(t). Similarly, we can also
update the lower trajectory of X .

Consider two sets X1 and X2 of moving entities in R. We want to find an entity x ∈ X1
that is furthest away from all entities in X2. Therefore, x ∈ X1 is the entity that maximizes

max
y∈X2

max
t∈T

δ(x(t), y(t)).

After computing the upper and lower trajectories of X1 and X2, the farthest entity can be found
in Θ(τ) time. At each time t, we need to find the furthest entity x(t) ∈ X1(t) by calculating
the maximum of {δ(UX1(t), UX2(t)), δ(UX1(t), LX2(t)), δ(LX1(t), UX2(t)), δ(LX1(t), LX2(t))}.

I Observation 8. Given two sets X1 and X2 of moving entities in R and their upper and
lower trajectories, the furthest entity x ∈ X1 from all entities in X2 can be computed in Θ(τ)
time.

Unlike the 2-MM clustering algorithm in Rd, we do not need to construct the graph G
for the 2-MM clustering in R. In this case, we construct a graph G′, which is equivalent to
the maximum spanning tree of G. We use the idea of Prim’s algorithm to construct G′. At
every time stamp, we maintain the sorted order of the entities. We then use the following
approach to find the 2-MM clustering of X :
1. Calculate UX and LX .
2. Find the furthest pair (x1, x2) of entities in X .
3. Let G′ be a graph with two vertices (entities) x1, x2.
4. Add an edge between x1 and x2.
5. Let Y = {x1, x2}. Remove x1 and x2 from X .
6. Update UX , LX , UY and LY .
7. For i = 1 to n− 2:

Find an entity x ∈ X that is farthest away from all entities in Y. Let y ∈ Y be the
entity for which x becomes the furthest from Y.
Add x to Y and remove x from X . Then, update UX , LX , UY and LY .
Add a vertex x to graph G′. Since, y is already added to G′, add an edge between y
and x.

8. The graph G′ is a bipartite graph; run the 2-coloring algorithm in graph G′.

Each vertex of G′ represents a moving entity in R. The algorithm initially adds the
furthest pair of entities in G′ and grows G′ by one edge in each iteration. Similar to Prim’s
algorithm, in each iteration, the algorithm finds an entity that is furthest away from all
entities (vertices) in G′, and then adds that entity to G′. Therefore the graph G′ is equivalent
to the maximum spanning tree of the graph G. After constructing G′, we apply the 2-coloring
algorithm (similar to the 2-MM algorithm in Rd) to find the clusters C1 and C2.
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I Theorem 9. The 2-MM clustering of moving entities in R can be computed in O(τn logn)
time.

Proof. The sorting operations in all time stamps take total O(τn logn) time. Initially, we
compute the upper and lower trajectories in Θ(τn) time. In each iteration, we find the
furthest entity from X , and then update the upper and lower trajectories of X and Y . Since
we are maintaining the sorted order of entities in all time stamps, the insert operation in Y
would take O(τ logn) time. The upper and lower trajectories of X and Y are updated in
Θ(τ) time. Therefore, constructing G′ requires O(τn logn) time. The 2-coloring algorithm
requires Θ(n) time. Thus, the overall running time of the algorithm is O(τn logn). J

4 Hardness results of 2-Center clustering

Given any set P of points in R, the diameter of the smallest enclosing circle of P and the
maximum possible distance between any two points in P are equal. Therefore, the k-Center
and k-MM clustering of P are equivalent. This result also holds for the k-Center and
k-MM clustering of a set of moving entities in R. However, the two problems have different
solutions in general when entities move in higher dimensions (see Example 11 below).

I Observation 10. If X is a set of moving entities in R, then the k-Center and the k-MM
clustering of X are equivalent.

I Example 11. Consider four points a(0, 33), b(0,−33), c(−56, 0), d(−124, 0) in R2 (see
Figure 3). In exact 2-Center clustering, the radius of any cluster would be at most 34 by
keeping {a, b} in one cluster and {c, d} in another cluster. Because the smallest enclosing
circle containing any three points among {a, b, c, d} would have radius at least 37.7 (the
radius of circle passing through {a, b, c}). However, the exact 2-MM clustering would keep
{a, b, c} in one cluster, leaving {d} for the other cluster, since the maximum distance between
any two points in {a, b, c} is at most 66.

Figure 3 Illustration in support of Example 11.

As we now show, computing the 2-Center clustering of a set X of n moving entities in
R2 is NP-hard. This differs from the problem of computing a 2-Center of a set of points in
R2 which can be solved in O(n log2 n) time [21]. Given a set X of n moving entities and a
real parameter r∗, the decision version of the 2-Center clustering problem asks to determine
whether X can be partitioned into two sets C1 and C2, such that each cluster can be covered
by a disc of radius r∗ at all times. We prove that the decision version of 2-Center clustering
in R2 is NP-complete. We obtain the result by reduction from the Monotone Not-All-Equal



S. Durocher and M.Y. Hassan 22:9

3SAT (NAE-3SAT) problem. The Monotone NAE-3SAT is one of many variants of the 3SAT
problem, which is NP-Complete [20]. The Monotone NAE-3SAT problem consists of a set
of Boolean variables and a set of monotone clauses, i.e., variables in each clause are never
negated. Unlike the 3SAT problem, each clause of the NAE3SAT problem requires to have
at least one true and one false Boolean value.

I Theorem 12. The decision version of the 2-Center clustering problem in R2 is NP-
complete.

Proof. Choose any instance of the Monotone NAE-3SAT problem, let S denote its set of
Boolean variables, and let n = |S|. We describe how to construct a corresponding instance
of the decision version of the 2-Center clustering problem with r∗ = 1. Each element in S
is mapped to a corresponding moving entity in R2, and the number of time stamps is equal
to the number of clauses.

Figure 4 Blue points represent the positions of entities x, y, z at time ti. All entities other than x,
y, and z are placed at the red point. The circumradius of the triangle is 1 + ε, for some small ε > 0.

At each time ti, we take the ith clause from the instance of the Monotone NAE-3SAT
problem and assign coordinates to the moving entities in the plane as follows. Let x, y, z ∈ S
be the three entities from the clause and let x(ti), y(ti), z(ti) denote their respective positions
at time ti. We place x(ti), y(ti), z(ti) at the vertices of an equilateral triangle such that the
circumradius of the triangle is slightly larger than one; thus, x, y, and z cannot be covered by
a unit-radius disc at time ti. The remaining n− 3 entities are placed at the circumcenter of
the triangle. This transformation can be done in O(n) time. Each cluster in the partitioning
of S can be covered by a unit-radius disc if and only if the three entities x, y, z are not in
the same cluster. In the instance of the Monotone NAE-3SAT problem, the values of three
variables in each clause cannot be equal to each other. Similarly, the corresponding three
entities from each clause cannot be in the same cluster if the instance is a “yes” instance
of the decision version of the 2-Center clustering problem. Therefore, the instance of the
Monotone NAE-3SAT problem is satisfiable if and only if the corresponding instance of the
decision version of 2-Center clustering problem is a “yes” instance. J

We can achieve a 1.15-approximate solution for the 2-Center clustering of moving
entities in R2 by applying the 2-MM clustering algorithm from Section 3. We also prove that
no polynomial-time algorithm can achieve a better approximation ratio. In what follows, we
prove the approximation ratio and its lower bound.

I Theorem 13. The exact 2-MM clustering of moving entities in R2 gives a 1.15-approximate
solution for the 2-Center clustering problem.
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Proof. We partition X into two clusters C1 and C2 by applying the algorithm described in
Section 3. Let l be the maximum distance over all time between any pair of entities from the
same cluster (C1 or C2). As argued in the proof of Theorem 3, in every possible 2-clustering
of X , there exists a pair of entities in some cluster whose maximum distance over all time
is at least l. By Jung’s theorem, if the largest possible distance between two points from
a finite set of points in the plane is l, then there exists a circle enclosing all these points
with a radius no greater than l/

√
3. Hence, in any 2-MM clustering of X , the maximum

radius of any cluster would be at most l/
√

3. Since every possible 2-clustering of X consists
a pair of entities in any cluster whose maximum distance over all time is at least l, the
maximum radius of any cluster in exact 2-Center clustering of X would be at least l/2.
Thus, the exact 2-MM clustering gives a 2/

√
3-approximation (or 1.15-approximation) for

the 2-Center clustering problem. J

I Theorem 14. If P 6= NP , no polynomial-time algorithm can achieve a (1.15 − ε)-
approximate solution for the 2-Center clustering of moving entities in R2 for any ε > 0.

Proof. Choose any instance of the Monotone NAE-3SAT problem, let S denote its set of
Boolean variables, and let n = |S|. We show how to construct a corresponding instance
of the 2-Center problem in R2. Each Boolean variable is mapped to a moving entity in
R2. At each time ti, the three entities in the ith clause from the instance of the Monotone
NAE-3SAT problem are placed at the vertices of an equilateral triangle where the length
of each side of the triangle is 2. The remaining entities are placed at the circumcenter of
the triangle. If we can partition S into two clusters {C1, C2} such that all three entities in
each clause are split by this partition, then the maximum radius of any partition over all
time would be 1. For any ε > 0, a (1.15 − ε)-approximation algorithm for the 2-Center
clustering of S will give us two clusters whose maximum radius over all time would be less
than 1.15, in this case, it has to be 1.

We consider the value of a Boolean variable in S is true if the corresponding entity is in
cluster C1 in the 2-Center clustering of S. Similarly, the value of a variable is false if the
corresponding entity is in cluster C2. The instance of the Monotone NAE-3SAT problem
is satisfiable if and only if all the entities in each clause are not in the same cluster. This
can only be done by a (1.15 − ε)-approximation algorithm for 2-Center clustering of S.
Therefore, a polynomial-time (1.15− ε)-approximation algorithm for 2-Center clustering
of S can be used to decide the satisfiability of the corresponding instance of the Monotone
NAE-3SAT problem. This cannot happen assuming P 6= NP . J

5 k-MM and k-Center clustering

The k-MM and k-Center clustering problems are solvable in polynomial-time for any set of
fixed points in R, i.e., without motion [7]. As we now show, both problems are NP-hard for
entities moving in R. We reduce an instance of a restricted version of the k-gMM clustering
problem to an instance of the k-MM clustering problem for moving entities in R. k-gMM is
the more general version of the geometric k-MM problem on arbitrarily weighted graphs; any
instance of the k-MM problem directly corresponds to an instance of the k-gMM problem.

Given an arbitrary weighted graph G = (V,E), the goal of the k-gMM clustering problem
is to partition V into k disjoint sets (k clusters) such that the maximum weight of any
intra-cluster edge is minimized. The decision version of the k-gMM problem has been proved
to be NP-complete [12]. The result is obtained by a reduction from a restricted version of
the exact cover by 3-sets problem. Given an instance of the restricted version of the exact
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cover by 3-sets problem, Gonzalez constructed a weighted complete graph as an instance
of the decision version of k-gMM problem, where the weight of each edge is either one or
two. Therefore, the decision version of k-gMM problem remains NP-complete even when the
input graph is a weighted complete graph with edge weights either one or two. We call this
problem the restricted k-gMM problem which we use in our reduction.

I Theorem 15. Given a set of moving entities in Rd, for any d ≥ 1, the k-MM and
k-Center clustering problems are NP-hard when k is an arbitrary input parameter.

Proof. We consider an instance of the restricted k-gMM clustering problem, where we are
given a weighted complete graph G with edge weights in {1, 2}. We construct a corresponding
instance of the k-MM clustering problem. Each vertex of G is mapped to a moving entity in
R. The number of time stamps and the number of edges in G are equal. For each time ti, we
take the ith edge ei from G and assign coordinates to its two end vertices x, y (two entities)
on the real line such that the Euclidean distance between them is equal to the weight of
that edge. At that time, ti, the remaining entities are positioned at the midpoint of the line
segment between x and y. Since the minimum and maximum weight of an edge in G is one
and two, respectively, the maximum distance between any two entities over all time is equal
to the weight of the longest edge connecting two entities (vertices) in G. Therefore, we can
achieve the optimal solution of the restricted k-gMM clustering problem for graph G if and
only if we achieve the optimal solution of the k-MM clustering problem for the corresponding
transformed instance. Since the k-MM and k-Center clustering problems are equivalent in
R (Observation 10), this hardness result also holds for the k-Center problem as well. J

Gonzalez [12] provides a 2-approximation algorithm for the k-MM and k-Center cluster-
ing of fixed points in Rd. We provide a modified version of Gonzalez’s algorithm to compute
an approximate solution for the k-MM and k-Center clustering of a set X of n moving
entities in Rd. The algorithm initially assigns all entities to cluster C1 and arbitrarily labels
one entity as the head of that cluster, denoted head1. The remaining clusters are computed
in k − 1 iterations. In the ith iteration, we compute the head of cluster Ci. An entity x ∈ X
is considered as the head of the cluster Ci if it maximizes

max
j∈{1,...,i}

max
x∈Cj

max
t∈T

δ(headj(t), x(t)).

We label x as headi and add it to cluster Ci. After computing the ith head, the entities
are assigned to a cluster such that, for each entity y ∈ {C1 ∪ · · · ∪ Ci−1}, we move y to
Ci if the maximum distance between y and its current cluster head over all time is larger
than the maximum distance between y and headi. The ith iteration of choosing the ith
head takes O(τn) time. Therefore, the total running time of the algorithm is O(τnk).
Since the algorithm makes its decision by comparing maximum distances between pairs of
entities over all time, it can be generalized for moving entities in Rd, where computing the
Euclidean distance between two points takes O(d) time. If d is an input parameter, then
the algorithm runs in O(τdnk) time. The algorithm guarantees a 2-approximation for both
the k-MM and k-Center clustering problems. The objective function value of k-MM and
k-Center clustering of X by using the above algorithm is denoted by φP1(X ) and φP2(X )
respectively. Let OPTP1(X ) and OPTP2(X ) be the objective function values of optimal
k-MM and k-Center clustering of X respectively.

I Lemma 16. Given a set X of n moving entities in Rd, where L = {x1, . . . , xk+1} is a
subset of X , for every pair {x, y} ⊆ L, if maxt∈T δ(x(t), y(t)) ≥ h, then OPTP1(X ) ≥ h, for
any h > 0.

SWAT 2020
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Proof. We have k + 1 entities to make k clusters. By the pigeonhole principle, one cluster
must contain two entities, and the rest of the k − 1 clusters contain one entity in each. The
maximum distance between any two entities in X over all time is at least h, for any h > 0.
We have only one cluster with two entities where the maximum distance between them over
all time is at least h, therefore we can say that OPTP1(X ) ≥ h. J

I Theorem 17. The modified Gonzalez algorithm is a 2-approximation algorithm for the
k-MM and k-Center clustering of X .

Proof. Let x denote an entity in cluster Ci that maximizes

max
i∈{1,...,k}

max
x∈Ci

max
t∈T

δ(headi(t), x(t)).

Let h be the maximum distance between x and headi over all time. This distance satisfies
triangle inequality (Lemma 2). Therefore, φP1(X ) ≤ 2 · h. In every iteration, the maximum
distance between x and headi over all time is at least h. Therefore, when a new cluster is added,
the maximum distance between the new cluster’s head and any previously added cluster’s
head over all time is at least h. That is to say, for any i 6= j, maxt∈T δ(headi(t), headj(t)) ≥ h.
Let L = {head1, . . . , headk, x} be a set of k + 1 entities. The maximum distance between
any pair of entities in L over all time is at least h. Since, L is a subset of X , OPTP1(X ) ≥ h
(Lemma 16). Thus, we can conclude that φP1(X ) ≤ 2 ·OPTP1(X ).

In the algorithm, the head of a cluster can be considered to be the center of that cluster.
For k-Center clustering, we assume that φP2(X ) > 2 ·OPTP2(X ). This implies that in L,
we have k + 1 entities, and their pairwise maximum distance over all time is greater than
2 · OPTP2(X ). By the pigeonhole principle, at least two of these entities (say, headi and
headj) must be in the same cluster in the optimal k-Center clustering. Let s be the center
of that cluster. Therefore, we get

max
t∈T

δ(headi(t), s(t)) ≤ OPTP2(X ), max
t∈T

δ(headj(t), s(t)) ≤ OPTP2(X ).

By triangle inequality, maxt∈T δ(headi(t), headj(t)) ≤ 2 ·OPTP2(X ). This contradicts our
initial assumption. Therefore, φP2(X ) cannot be greater than 2 ·OPTP2(X ). J

From the above discussion, we can state the following theorem.

I Theorem 18. A 2-approximate solution for the k-MM and k-Center clustering of moving
entities in Rd can be computed in O(τdnk) time.

6 Conclusion and possible directions for future research

In this paper, we examine the k-MM and k-Center clustering problems for sets of moving
entities in Rd. Both problems have been studied for sets of fixed points in Rd; this paper
examines these problems in the mobile setting. We show that both problems are NP-hard,
even if entities move in R. The 2-MM clustering problem can be solved exactly in O(τdn2)
time in Rd, and O(τn logn) time in R. Unlike the 2-MM clustering problem, the 2-Center
clustering problem is NP-hard in R2. We show that our 2-MM clustering algorithm gives a
1.15-approximate solution for the 2-Center clustering problem. Furthermore, we prove that
no polynomial-time algorithm can achieve a better approximation ratio unless P = NP . We
use the idea of Gonzalez’s algorithm [12] and provide a 2-approximation algorithm for the
k-MM and k-Center clustering problems. Possible directions for future research include
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studying these problems when the time stamps of entities differ. It would be interesting
to develop an algorithm for the 2-MM clustering problem that runs in less than O(τdn2)
time. Finally, if the distance traveled by an entity between two time stamps is bounded by a
constant, can we develop algorithms for these problems whose running time is logarithmic in
τ?
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Abstract
We study the problem of testing whether there exists a time at which two entities moving along
different piece-wise linear trajectories among polygonal obstacles are mutually visible. We study
several variants, depending on whether or not the obstacles form a simple polygon, trajectories may
intersect the polygon edges, and both or only one of the entities are moving.

For constant complexity trajectories contained in a simple polygon with n vertices, we provide
an O(n) time algorithm to test if there is a time at which the entities can see each other. If the
polygon contains holes, we present an O(n logn) algorithm. We show that this is tight.

We then consider storing the obstacles in a data structure, such that queries consisting of two
line segments can be efficiently answered. We show that for all variants it is possible to answer
queries in sublinear time using polynomial space and preprocessing time.

As a critical intermediate step, we provide an efficient solution to a problem of independent
interest: preprocess a convex polygon such that we can efficiently test intersection with a quadratic
curve segment. If the obstacles form a simple polygon, this allows us to answer visibility queries in
O(n 3

4 log3 n) time using O(n log5 n) space. For more general obstacles the query time is O(logk n),
for a constant but large value k, using O(n3k) space. We provide more efficient solutions when one
of the entities remains stationary.
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1 Introduction

We consider the following question: two entities q and r follow two different trajectories, with
(possibly different) constant speed. Their trajectories lie in an environment with obstacles
that block visibility. Can the two entities, at any time, see each other? This question
combines two key concepts from computational geometry, namely trajectories and visibility.
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Trajectories. A recent increase in the availability of low-cost, internet connected GPS
tracking devices has driven considerable interest in spatio-temporal data (commonly called
trajectories) across fields including GIScience, databases, and computational geometry.
Problems studied recently in computational geometry include detecting and describing flocks
[5, 31], detecting hotspots, clustering and categorising trajectories, map construction and
others [9, 25, 32]. Formally, a trajectory is a sequence of time-stamped locations in the
plane, or more generally in Rd, which models the movement of an entity. Trajectory data is
obtained by tracking the movements of animals [7, 30], hurricanes [41], traffic [33], or other
moving entities [20] over time. For a more extensive overview of trajectory analysis we refer
the reader to the excellent survey by Gudmundsson et al. [27].

Visibility. Two points, amidst a number of obstacles, are mutually visible if the line segment
between them does not intersect any obstacle. Visibility is one of the most studied topics
in computational geometry [36, 42] and in adjacent fields such as computer graphics [22],
GIScience [24], and robotics [36]. Within computational geometry, Gosh and Giswani compiled
a survey of unsolved problems in this area [26]. Core visibility problems in computational
geometry include ray shooting [16, 13], guarding [15, 23] and visibility graph recognition [10].
For more information about visibility problems, refer to O’Rourke’s book [39] ch. 8, and the
surveys by Durant [22] and Gosh [26].

Trajectory visibility. In this paper, we study the following fundamental question, which we
refer to as trajectory visibility testing. Given a simple polygon, or a polygonal domain, P ,
and the trajectories of two moving entities q and r, is there a time t at which q and r can
see each other? We assume that q and r move linearly with constant (but possibly different)
speeds between trajectory vertices, and cannot see though the edges of P . We distinguish
several variants depending on whether P is a simple polygon or a polygonal domain, and
whether the trajectories are allowed to intersect P (e.g. vehicles moving through fog, animals
moving through foliage) or not (e.g. pedestrians moving among buildings, ships moving on
water bodies). These variants are illustrated in Figure 1. We further consider the same
variants in the simpler scenario in which one of the entities is a point (e.g. a stationary
guard and a moving intruder). Note that we are interested only whether there exists a time
at which the two entities see each other. This implies we can temporally decompose the
problem: the answer is no if and only if the answer is no between all two consecutive time
stamps. When considering this question, two fundamentally different approaches come to
mind. On the one hand, when the number τ of trajectory vertices is small compared to the
number n of polygon vertices, the best approach may be to simply solve the problem for
each time interval separately. On the other hand, when τ is large compared to n, it may be
more efficient to spend some time on preprocessing P first, if this allows us to spend less
time per trajectory edge. We therefore distinguish between the algorithmic question and the
data structure question. Our results are discussed below and summarized in Table 1.

Related work on visibility for moving entities. There is a vast amount of research on
both trajectories and visibility, but surprisingly not much previous work exists on their
combination. One reason is that the already developed tools for visibility and trajectory
analysis cannot be combined in a straightforward manner. Consider two trajectories q and
r within a simple polygon P : existing visibility tools allow us to easily check if there are
subtrajectories of q and r which are mutually visible. However, the two moving entities see
each other only if there is a time at which the two entities are simultaneously within two
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Figure 1 Different variations of the problem: two trajectories inside a simple polygon (left), two
trajectories in a polygonal domain (middle), or two trajectories intersecting a simple polygon (right).
Our approach for the middle variant is independent of whether the trajectories intersect the domain.

mutually visible subtrajectories. There could be quadratically many pairs of subtrajectories
which are mutually visible; yet, it could be that the two entities are never simultaneously
within such a pair. To determine visibility between moving entities, one needs to incorporate
the concept of time into pre-existing tools for visibility. An early result in this direction is by
Bern et al. [6] and Mulmuley [37], who study maintaining the visibility polygon of a point
that moves over a straight path. Aronov et al. [3] demonstrate a kinetic data structure that
tracks the visibility polygon of a moving query point q. The most recent result on visibility
and motion is by Diez et al. [18] who show how to maintain the shortest path between two
moving entities using a kinetic data structure. Here q and r are mutually visible if and only
if their shortest path is a line segment.

From event based modelling to algebraic range searching. The above attempts for vis-
ibility testing model the passage of time using a sequence of events. However, as q and r
traverse their trajectories there may be a linear number of such events and thus far, there
does not exist a data structure that can answer if there is visibility between trajectories
in sub-linear time. In this paper, we diverge from the classical event-based approach and
model the problem in an algebraic way. Such an algebraic reformulation is not rare in
computational geometry: for example, circular range queries get solved by reformulating
them into higher-dimensional halfspace range queries. Yet we are unaware of any algebraic
approaches used for visibility testing. The challenge with such an algebraic approach is
that the more complicated the algebraic expression, the worse the complexity of both the
paper and the runtimes involved. However, our transformation in Section 2 that transforms
visibility testing into testing for an intersection between a convex polygon and an algebraic
curve, uses only degree two planar polynomials. This transformation allows us to introduce
tools and concepts from algebraic range searching to obtain the first sublinear query times
for visibility testing for a variety of geometric settings.

Our Results. We focus on trajectories of at most two vertices; any set of trajectories of
τ vertices can be handled by applying our algorithms or queries τ times. Our results are
summarized in Table 1. In Section 2, we discuss our algorithmic results; we build on the
structural geometric properties established in this section in the remainder of the paper. In
Section 3 we consider the sub-problem of preprocessing a convex polygon P ′ for intersection
queries with quadratic curve segments. We then extend the solution in Section 4 to a data
structure for visibility testing in a simple polygon P using multi-level data structures. In
Section 5 we discuss the case in which one of the entities is stationary. In Section 6 we briefly
outline our results for polygonal domains, more detailed descriptions of this data structures
can be found in Appendix C. Due to space constraints, several proofs and the full description
of all results are deferred to the appendix.
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Table 1 The two leftmost columns specify if the query entity is a point (•) or line segment (/).
The third column specifies if the domain P is a simple polygon where the query segments may not
intersect P (S), a simple polygon where the query segments may intersect P (I), or a polygonal
domain with n vertices where the query segments may intersect P (D). The value k is an unspecified
constant.

q r P algorithm data structure source
space preprocessing query

• • S or I Θ(n) O(n) Θ(n) Θ(logn) [28]
D Θ(n) O(n2) O(n2) Θ(logn) [40]

• / S Θ(n) O(n) O(n logn) Θ(logn) Section 5
I O(n logn) O(n2 log3 n) O(n2 log3 n) O(n 3

4 +ε) Section 5
D Θ(n logn) O(n4 log3 n) O(n4 log3 n) O(n 3

4 +ε) Section 5
/ / S Θ(n) O(n log5 n) O(n1 log5 n) O(n 3

4 log3 n) Section 4
I O(n logn) O(n3k) O(n3k) O(logk n) Appendix C
D Θ(n logn) O(n3k) O(n3k) O(logk n) Appendix C

2 Algorithms for testing visibility

Let P be a polygonal domain with n edges and let q and r each be a line segment or a point
in the plane. We first present an O(n logn) time algorithm to solve the visibility problem for
q, r and P and we show this algorithm is tight in the worst case. Then we show how to solve
the visibility problem in linear time in the case where P is a simple polygon and q and r are
contained in P . All other sections depend on the notion of hourglass that is presented here.

An O(n log n) time algorithm. The entities q and r each move along a line segment with
constant speed (depending on the length of the line segment) during the time interval [0, 1].1
Consider the line g(t) through both entities at time t. We dualize this line to a point using
classical point-line dualization (i.e. we map the line y = ax+ b to the point (a,−b)); this
point γ(t) now traces a segment of a curve γ : [0, 1]→ R2 in the dual space.2

I Lemma 1. The segment γ is a segment of a quadratic curve with 5 degrees of freedom.

Let e be an edge of P and denote by Le the set of lines intersecting e. The dual of Le is
a wedge Λe [17]. If the segment between q and r is blocked by e at time t then g(t) must
lie in Le. In the dual, this means that the curve segment γ must intersect Λe. There are at
most two connected time intervals where a quadratic curve segment γ can intersect a wedge
Λe; it follows that each edge e has at most two connected time intervals where it blocks
the visibility between q and r. This leads to a straightforward general algorithm to test if
there is a time at which q can see r: for each edge e ∈ P , we compute the at most two time
intervals where it blocks visibility between q and r in constant time. We sort these time
intervals in O(n logn) time and check if their union covers the time interval [0, 1].

I Theorem 2. Given a polygonal domain P with n vertices and moving entities q and r, we
can test trajectory visibility in O(n logn) time.

1 With slight abuse of notation, we use q and r to refer to both the (moving) entities and their trajectory.
2 Throughout this paper we follow the convention of using latin letters for objects in the primal space

and greek letters for their duals.
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A

Figure 2 The reduction when P is a polygonal domain with Ω(n) holes.

An Ω(n log n) lower bound. If P is a polygonal domain with Ω(n) holes, this result is tight:
suppose we are given a set A of n numbers and we want to test if A = B for a given arbitrary
sorted set B = {x1, x2, . . . , xn}. Ben-Or [4] shows that this problem has an Ω(n logn) lower
bound in the algebraic decision tree model. This leads to the following reduction (illustrated
in Figure 2): we construct a set of n horizontal edges whose y-coordinates are 0 and whose
x-coordinates are {(xi + ε, xi+1 − ε) | i ∈ [1, n − 1]} where ε is smaller than half of the
minimal difference between two consecutive numbers in B; a value for ε can be found in
linear time since B is sorted. For each of the n numbers x ∈ A we construct an axis-aligned
rectangle from the point (x, 1) to (x, 2) with a width of 2ε. The entity q walks from the
point (x1,−1) to (xn,−1) and entity r walks from (x1, 3) to (xn, 3). Suppose the number xj
from B is not in A, then q can see r at the x-coordinate xj . Note that this construction also
extends to the case where one of the two entities is stationary: consider the cone between
the stationary entity q and a horizontal line segment trajectory r: we can transform the set
B into a set of n horizontal edges that cut in the cone between q and r. Each rectangle
modelling a number a ∈ A gets stretched such that it intersects a ray from q to r.

I Theorem 3. There exists a polygonal domain P with n vertices, and entities q and r

moving inside P for which testing trajectory visibility requires Ω(n logn) time.

A linear-time algorithm for when P is a simple polygon and q, r ⊂ P . Any segment
between q and r that is contained in P is a geodesic shortest path in P between a point
on q and a point on r. Guibas and Hershberger [28] define, for any two segments q and r
in a simple polygon P , the hourglass H(q, r) to be the union of all shortest paths between
points on q and r. The hourglass H(q, r) is a subset of P and bounded by the segments q
and r and by two shortest paths. The “upper” chain3 is the shortest path between the upper
end points p+

q p+
r of q and r, and the “lower” chain is the shortest path between p−q and p−r

(refer to Figure 3). We define the visibility glass L(q, r) as the (possibly empty) union of line
segments between q and r that are contained in P . Notice that L(q, r) is a subset of H(q, r).

I Observation 1. For any two segments q, r ⊂ P either L(q, r) is empty or there exist
segments q′ ⊂ q, r′ ⊂ r such that L(q, r) = H(q′, r′). Moreover, q′ and r′ are bounded by two
bitangents on the shortest paths between the endpoints of q and r.

Proof. Suppose that the interior of the upper and lower chains of H(q, r) intersect. Then
the visibility glass L(q, r) is either a single segment or empty. Thus we can either find two
points q′ and r′ on q and r whose line segment forms H(q′, r′) = L(q, r) or L(q, r) is empty.
If the interior of the upper and lower chains are disjoint then they are semi-convex [28].

3 We use the names “upper” and “lower” since they intuitively correspond to our figures. If q and r are
not vertical but their endpoints are in convex position, we rotate the plane until one of them is vertical.
If the endpoints of q and r do not lie in convex position, the two chains share an endpoint, which is a
simpler case.

SWAT 2020
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p+q

p−r

Figure 3 (left) H(q, r) in orange. The path from p+
q to r−q shown as a dotted path. (middle) The

path from p+
q to r−q can be represented as a collection of binary trees on the vertices. The bitangent

(in grey) is incident to the only vertex at which the path switches from making left turns to making
right turns (or vice versa) (right) Using the bitangents, we identify the endpoints of q′ and r′ and
obtain L(q, r) in grey.

Consider the shortest path from p+
q to p−r , it has one edge (u, v) connecting the upper and

lower chain. This is the unique edge for which the path makes a clockwise turn at u and a
counterclockwise turn at v or vice versa. There exists an edge with similar properties on the
shortest path between p−q and p+

r . The extension of these two edges bounds q′ and r′ [14]. J

Chazelle and Guibas [14] note that (the supporting lines of) all line segments in L(q, r)
can be dualized into a convex polygon of linear complexity which we denote by Λ(q, r). The
shortest path between two points in P can be computed in linear time [29]. Finding the
bitangents also takes linear time. It follows that we can compute L(q, r) and its dual Λ(q, r)
in linear time. Suppose that we are given two entities q and r contained in a simple polygon
P . Recall that the line g(t) through q and r traces a quadratic segment γ in the dual.

I Observation 2. Entities q and r are mutually visible at time t if γ(t) lies in Λ(q, r).

Proof. The entities can see one another at time t if and only if g(t) ∈ L(q, r). J

We can derive γ in constant time, construct Λ(q, r) in linear time, and we can check if a
quadratic curve intersects a convex polygon in linear time. Thus we conclude:

I Theorem 4. Given a simple polygon P with n vertices and two entities q and r moving
linearly inside P , we can test trajectory visibility in Θ(n) time.

3 Intersecting a convex polygon with an algebraic curve

We now turn our attention to the data structure question: can we preprocess P such that
trajectory visibility may be tested efficiently (i.e. in sublinear time) for a pair of query
segments q, r? By Observation 2, we can phrase such a query as an intersection between a
quadratic curve segment and a convex polygon. Note, however, that both the curve segment
and the convex polygon depend on the query segments q and r. As an intermediate step,
we study a simplified problem in which the convex polygon is independent of q and r. In
particular, the question that we study is: let P ′ be a convex polygon with n edges. Is it
possible to preprocess P ′ such that for any quadratic curve segment γ, we can quickly test if
γ intersects P ′? We believe this problem to be of independent interest. We then use our
solution to this question as a subroutine in Section 4.
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(a) (b) (c) (∗)

∆v

Figure 4 The cases (a), (b) and (c) of intersection between γ and P ′. (*) the right-subspace
bounded by three halfspaces. The red points are the points of intersection which we try to identify.

Semi-algebraic range searching. Let X be a set of n geometric objects, where each object is
parametrized by a vector ~x in Rd (e.g. a point is parametrized by a vector of its coordinates).
Let Γ be a family of geometric regions (called semi-algebraic ranges) in Rd where each region
G ∈ Γ is bounded by an algebraic surface γ which is parametrized by a vector ~a. Agarwal et
al. [2] describe how to store X, such that for any query range G ∈ Γ, we can efficiently count
the number of objects of X whose parameter vector lies in G. Let F be a function mapping
(the parameterizations of) x ∈ X and G ∈ Γ to R such that F (~x,~a) ≤ 0 if and only if ~x ∈ G.
Agarwal et al. show that if F can be written in the form F (~x,~a) = g0(~a) +

∑k
i=1 gi(~a)fi(~x)

then there is a function f that maps the objects in X to points in Rk, and a function g that
maps the ranges in Γ to halfspaces in Rk, such that f(x) ∈ g(G) if and only if ~x ∈ G. This
so-called linearization process transforms a d-dimensional semi-algebraic range searching
problem into a halfspace range searching problem in Rk. Refer to Appendix B for examples.

The resulting set of n points in Rk can be stored in a data structure of linear size
such that the points in a query halfspace can be counted in O(n1− 1

k ) time (with high
probability) [11]. Testing if a query halfspace is empty can be done in expected O(n1− 1

k/2 )
time. Data structures with a slightly slower deterministic query time are also known [11]. If
we are willing to use (much) more space, faster query times are also possible [11, 35].

Semi-algebraic range searching and our intersection query. The n edges of a convex
polygon P ′ are geometric objects. A natural parametrization for an edge e ∈ P ′ is a 4-
dimensional vector ~xe specifying its start and end points. A quadratic curve segment γ per
definition is an semi-algebraic range parametrized by its own parameters ~aγ . If we want to
apply semi-algebraic range searching, we need to design a predicate function F (~xe,~aγ) that
outputs a negative real number whenever the edge e is intersected by γ.

It is tempting to immediately construct such a predicate function using the parameters
~xe and ~aγ only (ignoring geometric facts such as the convexity or connectedness of P ′).
However, we have to linearize the resulting predicate function F (~xe,~aγ) into k terms. The
more complex the description of the objects, the query, and their intersection, the more
complex the predicate will be and therefore the higher this number k will be.

Geometry of our intersection query. Let P ′ be a convex polygon with n edges. Let γ be
a quadratic curve segment ending in the points s and z and let Γ denote the unique degree-2
curve Γ ⊃ γ given by a1x

2 + a2x + a3xy + a4y + a5y
2 + a6 = 0. We say ~a = (a1, . . . , a6).

Observe (Figure 4) that if γ intersects P ′, then either (a) an endpoint s or z lies in P ′, or
(b) γ cuts off a vertex or (c) γ intersects only a single edge of P ′ twice and has no endpoint
in P ′ (we call this dipping). Intersections of type (a) and (c) can be identified with a regular
binary search on P ′. An intersection of type (b) is detected using algebraic range searching.
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Since P ′ is convex, we can test if an endpoint of γ lies inside P ′ in O(logn) time. To
detect an intersection of case (c), we store a Dobkin-Kirkpatrick hierarchy [19] of P ′. This
takes O(n) space and requires O(n) preprocessing time. Given γ, we detect an intersection of
type (c) as follows (Figure 4 (*)): any node v in this decomposition represents a sub-polygon
P ′′ of P ′ and a triangle ∆v which splits P ′′ in a left and right part. Consider the border of
the right part R = (e1, e2, . . . , em). Note that if γ does not intersect ∆v, then γ can only
dip an edge in R if it is contained in the union of the halfspaces that lie to the right of the
lines supporting: (1) one edge of ∆v and (2) e1 and em (refer to the blue area in the figure).
Given the node v we do three constant time checks. First we check if γ intersects ∆v. If not
then we check for both the left and right sub-polygon if γ is contained in the specified area.
If that is the case for both or neither sub-polygons then γ can never dip an edge of P ′, else
we recurse in the approprate subtree. It follows that we can detect case (c) in O(logn) time.

I Lemma 5. We can preprocess a convex polygon P ′ consisting of n edges in O(n) time and
using O(n) space, such that for any degree-2 curve segment γ we can detect an intersection
of type (a) or (c) in O(logn) time.

The curve Γ of which γ is a segment divides the plane into two areas, Γ− := {a1x
2 +

a2x+ a3xy+ a4y+ a5y
2 + a6 ≤ 0} and its complement Γ+. An edge ((x1, x2), (x3, x4)) of P ′

is intersected by γ with an intersection of type (b) only if one endpoint of the edge lies in Γ−
and the other in Γ+. If Γ is a curve with k + 1 ≤ 6 degrees of freedom then the formulation
of Γ− and Γ+ is a predicate that specifies whenever a point ~x = (x1, x2) lies in Γ− or Γ+

with k linearized terms. Thus we can detect if an edge has two endpoints on opposite sides of
Γ with two consecutive halfspace range queries in Rk. We build a three-level data structure
where the first two levels are 5-dimensional partition trees [34, 11].4 On top of each node in
the second level we build a binary tree on the clockwise ordering (with respect to P ′) of the
edges in that node.

During query time, we transform the degree-2 curve Γ into two k-dimensional halfspaces
g(Γ+) and g(Γ−). With two consecutive halfspace range queries we obtain the collection
EΓ(P ) of edges which have one endpoint on each side of Γ in O(n1− 1

k ) time. Note that the
set EΓ(P ) does not have to be a connected set of edges of P (refer to Figure 4 (b)). However,
the subset of EΓ(P ) that is intersected by the curve segment γ is consecutive in the clockwise
ordering of EΓ(P ). The set EΓ(P ) is returned as O(n1− 1

k ) subtrees {T1, T2, . . . , Tm} of the
secondary trees. Consider a subtree Ti and the associated binary search tree on its edges.
Because of the earlier discussed property, the subset of EΓ(P ) that is intersected by the
segment γ must be a consecutive subset of the leaves of Ti. Thus using Ti we can obtain
these consecutive leaves in O(logn) time by testing if the segment γ lies before or after the
point of intersection between Γ and an edge in EΓ(P ).

The time and space needed for detecting case (b) dominates the time and space needed
for case (a) and (c) and we conclude:

I Theorem 6. Let P ′ be a convex polygon with n vertices. In O(n log2 n) time we can build
a data structure of size O(n log2 n) with which we can test if an arbitrary degree-2 query
curve segment γ with k + 1 ≤ 6 degrees of freedom intersects P ′ in O(n1− 1

k logn) time.

4 Alternatively, cutting trees [12] can be applied to obtain faster query time at a larger space cost.
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Figure 5 A triangulated polygon P with the diagonals labelled d1 to d14. There are 14 diagonals
between q and r. However, we have pre-stored hourglasses H(d1, d3), H(d3, d7), H(d7, d11) and
H(d11, d14). At query time, we only have to concatenate these O(logn) hourglasses to get H(d1, d14).

4 A data structure for two entities moving inside a simple polygon

In this section we build a data structure to answer trajectory visibility queries when both
the entities q and r move linearly, possibly at different speeds, inside a simple polygon P .
Our main approach is the same as in our algorithm from Theorem 4: we obtain the convex
polygon Λ(q, r) that is the dual of the visibility glass L(q, r), and test if the curve segment γ
tracing the line through q and r in the dual space intersects Λ(q, r). By Observation 2 this
allows us to answer trajectory visibility queries. The main challenge is that we cannot afford
to construct Λ(q, r) explicitly. Instead, our data structure will allow us to obtain a compact
representation of Λ(q, r) that we can query for intersections with γ.

To obtain Λ(q, r) we use a variation of two-point shortest-path query data structure of
Guibas and Hershberger [28]. Their data structure (Figure 5) compactly stores a collection
of hourglasses that can be concatenated to obtain a shortest path between two arbitrary
points p, p′ ∈ P . All shortest paths, in particular the boundary of the hourglasses, are
represented using balanced binary search trees storing the vertices on the path. By reusing
shared subtrees these O(n) hourglasses can be stored using only O(n) space. To report the
shortest path between two query points their data structure concatenates O(logn) of these
hourglasses. The result is again represented by a balanced binary tree.

We now present a short overview of our data structure (refer to Figure 6). Unlike the
Guibas and Hershberger structure, we store the hourglasses explicitly. In particular, the
vertices on the boundary of an hourglass are stored in the leaves of a balanced binary search
tree. The internal nodes of these trees correspond to semi-convex subchains. Let T denote
the collection of all these nodes. Each node v ∈ T stores its subchain Cv in an associated
data structure. Specifically, we dualize the supporting-lines of the edges in Cv to points
(refer to Figure 7). Two consecutive edges produce two points in the dual, which we again
connect into semi-convex polygonal chains. So for every vertex in the sub-chain Cv the
associated data structure ∆v actually stores a line-segment; together these segments again
form a polygonal chain Ψv. The associated data structure will support intersection queries
with a quadratic query segment γ; i.e. it will allow us to report the segments of Ψv intersected
by γ. We implement ∆v using the data structure from Theorem 6.

I Lemma 7. The total size of all chains Ψv over all nodes v is O(n log3 n).

Proof. The Guibas and Hershberger data structure is essentially a balanced hierarchical
subdivision that recursively partitions the polygon into two roughly equal size subpolygons.
Every subpolygon has O(logn) diagonals [28], and thus stores at most O(log2 n) hourglasses.5

5 We use the version of Guibas and Hersberger’s structure that achieves only O(log2 n) query time.
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Λ(q, r)

~x1 = (a, b, c, d)

~x2 = (c, d, e, f)

~x3 = (e, f, g, h)

~x4 = (g, h, i, j)
γ(t)

f(~x2)

f(~x3)

f(~x4)

f(~x1)

(1) (2) (3) (4)

Figure 6 (1) The base level of our data structure is a hierarchical triangulation. (2) Given q and
r, we compute Λ(q, r) and the degree-2 curve segment γ. (3) We store the parameters of each edge
of Λ(q, r) (4) Each parameter vector gets mapped to a point in R4 and the query curve segment
gets mapped to a 4-dimensional halfspace which is empty only if γ intersects no edge from Λ(q, r).

It follows that all hourglasses of a subpolygon of size m use at most O(m log2 n) space. The
height of the balanced hierarchical subdivision is O(logn), and at every level the total size
of the subpolygons is O(n). Therefore, the total size of all subpolygons is O(n logn). J

For a chain of size m = |Ψv| the data structure ∆v has size O(m log2m) and can be built
in O(m log2m) time. It follows that our data structure uses O(n log5 n) space in total, and
can be built in O(n log5 n) time.

Querying the data structure. When we get a trajectory visibility query with entities q and
r we have to test if the curve γ traced by the point dual to the line through q and r intersects
Λ(q, r). By Observation 1 the primal representation L(q, r) of Λ(q, r) is an hourglass H(q′, r′).
We now argue that: (i) we can find the subsegments q′ and r′ in O(logn) time, (ii) that
our data structure can report O(log2 n) nodes from T that together represent an hourglass
H(q′, r′), and (iii) that we can then test if γ intersects Λ(q, r) by using the associated data
structures of these reported nodes. This will result in O(n 3

4 log3 n) query time.

I Lemma 8. Given our data structure, we can detect if L(q, r) is empty, or compute the
subsegments q′ ⊆ q and r′ ⊆ r such that L(q, r) = H(q′, r′) in O(logn) time.

Proof. By Observation 1 the visibility glass L(q, r) is either empty or the hourglass H(q′, r′)
for two subsegments q′ and r′ and these two subsegments are bounded by the two bitangents
of H(q, r). These bitangents are the extension of two edges, from the shortest paths between
the edges of q and r. We explained in the proof of Observation 1 that the hourglass H(q, r)
had an upper and lower semi-convex chain which may or may not share a point. The upper
and lower chain are both a shortest path between endpoints of q and r. We can obtain them

τ1

τ2
τ3 τ4

τ5

C3

C3

τ2

τ1

τ3

τ4

τ5

τ3

τ4

Figure 7 (left) An hourglass between q and r in orange. The lower chain consists of four chains
that coincide with P , joined by outer tangents in dotted lines labelled τ1 . . . τ5. (middle) The area
bounded by the dualized chain C3. Note that this chain has four edges since in the primal C3 has
four vertices. (right) A simplified version of Λ(q, r). Outer tangents become vertices of Λ(q, r).



P. Eades, I. van der Hoog, M. Löffler, and F. Staals 23:11

using the data structure D from [28] as a balanced binary search tree and we can verify if
they share a point using this tree. If that is the case then L(q, r) is either empty or a single
segment and we can verify this using an additional O(logn) time.

If the upper and lower chain do not share a point then we want to identify the subsegments
q′ and r′ for which L(q, r) = H(q′, r′) and recall that q′ and r′ are bounded by the bitangents
of H(q, r). Such a bitangent is the extension of an edge (u, v) on the shortest path between
two endpoints of q and r. The edge (u, v) is the unique edge on this path for which the path
makes a clockwise turn at u and a counterclockwise turn at v or vice versa. Using D we can
obtain any path as a balanced binary search tree. We perform a binary search on this tree
to identify the edge (u, v) whose endpoints have this unique clockwise ordering. J

We use Lemma 8 to find the endpoints q1, q2 of q′ and r1, r2 of r′, respectively. We can
obtain the shortest paths π(r1, q1) and π(r2, q2) bounding L(q, r) = H(q′, r′) by concatenating
O(logn) of the pre-stored hourglasses. To concatenate two hourglasses we actually select
two contiguous subchains in both hourglasses, and compute two bridge edges connecting
them. Such a contiguous subchain can be represented by O(logn) nodes in the binary search
trees representing the hourglass boundary. It follows that π(r1, q1) can be represented by
O(log2 n) nodes; each representing a pre-stored subchain in the data structure, together with
O(log2 n) line-segments (the bridge segments). We now observe that the chains stored in the
associated data structures of these nodes together with O(log2 n) line segments Ξ (the duals
of the bridge segments) actually represent the dual Λ(q, r) of L(q, r).

To check if the quadratic query segment γ intersects Λ(q, r) we check if one of the
endpoints of Q lies in Λ(q, r); in this case one of the paths π(r1, q1) or π(r2, q2) is actually
a single segment, or if γ intersects the boundary of Λ(q, r). To this end, we query each of
these associated data structures. Since γ has k + 1 = 5 degrees of freedom (Lemma 1) this
takes O(n 3

4 log3 n) time. We test for intersection with the segments in Ξ separately. We thus
obtain the following result.

I Theorem 9. Let P be a simple polygon with n vertices. We can store P in a data structure
of size O(n log5 n) that allows us to answer trajectory visibility queries in O(n 3

4 log3 n) time.
Building the data structure takes O(n log5 n) time.

5 A data structure for queries with one moving entity

In this section we develop data structures that can efficiently answer trajectory visibility
queries in case one of the entities q is stationary, while r travels along a line segment. The
appraoch described above also applies here; but we present a simpler solution using linear
space which gives O(logn) query time.

We consider three variants of this setting: (i) P is a simple polygon and r is contained in
P , (ii) P is a simple polygon but the trajectory of r may intersect edges of P , and (iii) P is
a polygonal domain and r may intersect edges of P .

Figure 8 Three times a query pair (q, r) in a simple polygon. In the middle case, the paths π1, π2

share their first line segment but there still is a point on r which is visible from q.
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Entity r is contained in a simple polygon. Consider the shortest paths π1, π2 from q to
the end points of r. Observe that if edges of π1 and π2 coincide, they coincide in a connected
chain from q [28]. Moreover (Figure 8) if more than one line segment of π1 and π2 coincide,
then any shortest path from q to a point on r cannot be a single line segment. If no edges of
π1 and π2 coincide then there is at least one point on r, whose shortest path to q is a line
segment. If exactly one line segment of π1 coincides with a segment of π2, then that segment
must be connected to q and if there is a line-of-sight between q and r, it has to follow that
line segment. This observation allows us to answer a visibility query by considering only
the first three vertices of π1 and π2. These vertices can be found in O(logn) time using the
two-point shortest path data structure of Guibas and Hershberger [28]. We conclude:

I Theorem 10. Let P be a simple polygon with n vertices. We can store P in a data
structure of size O(n) that allows us to answer trajectory visibility queries between a static
and a linearly moving entity in O(logn) time. Building the data structure takes O(n) time.

Entity r can cross a simple polygon. If r is able to move through edges of P then its
trajectory may intersect the boundary of P linearly often. Inspecting each of the resulting
subsegments explicitly would thus require at least Ω(n) time. Hence, we use a different
approach. Let Vq denote the visibility polygon of point q: the set of all points visible from q.
There is a time at which q can see r if and only if the trajectory of r intersects (the boundary
of) Vq. We build a data structure to find such a point (if one exists).

Aronov et al. [3] actually developed an O(n2) size data structure that can be built in
O(n2 logn) time and can report the visibility polygon of an arbitrary query point q ∈ P in
O(log2 n) time. The visibility polygon Vq is returned in its combinatorial representation, that
is, as a (pointer to a) balanced binary search tree, storing the vertices of Vq in order along the
boundary. It is important to note that this combinatorial representation does not explicitly
store the locations of all vertices of Vq. Instead, a vertex v of Vq may be represented by a
pair (e, w), indicating that v is the intersection point of polygon edge e and the line through
vertex w ∈ P and the query point q. Computing the explicit location of all vertices of Vq
thus takes O(|Vq|) time, if so desired, by traversing the tree. We now extend the results of
Aronov et al. in such a way that we can efficiently test if a line segment intersects Vq without
spending the O(|Vq|) time to compute the explicit locations.

We briefly review the results of Aronov et al. first. They build a balanced hierarchical
decomposition of P [14]. Each node v in the balanced hierarchical decomposition represents a
subpolygon Pv of P (the root corresponds to P itself) and a diagonal of Pv that splits Pv into
two roughly equal size subpolygons P` and Pr. For subpolygon P` the data structure stores
a planar subdivision S` (of the area outside P`) such that for all points in a cell of S` the
part of the visibility polygon inside P` has the same combinatorial representation. Moreover,
for each cell it stores the corresponding combinatorial representation. These representations
can be stored compactly by traversing S` while maintaining the (representation of the)
visibility polygon in P` in a partially persistent red black tree [3]. The data structure stores
an analogous subdivision for Pr. The complete visibility polygon of q can be obtained by
concatenating O(logn) subchains of these pre-stored combinatorial representations (one from
every level of the hierarchical decomposition).

We use the same approach as Aronov et al. [3], but we use a different representation
of Vq (refer to Figure 9). Our representation will be a weight balanced binary search tree
(BB[α]-tree [38]) whose leaves store the vertices of Vq in order along the boundary. An
internal node of this tree corresponds to a subchain of vertices along Vq, which is stored in an
associated data structure. We distinguish two types of vertices in such a chain: fixed vertices,
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Figure 9 (left) A simple polygon split in O(n2) cells. For each cell, there exists a red-black
tree that represents a visibility polygon. (middle) Given Vq and r, r could intersect the explicit Vq

depending on the location of q. We shoot two rays from q to r and find their intersection with Vq in
the red-black tree. That gives us three leaves highlighted in orange. (right top) All the fixed edges
in this node are stored in a ray-shooting data structure, (right bottom) all the variate edges have
8-dimensional points that are stored in an 8-dimensional partition tree.

for which we know the exact location, and variate vertices, which are represented by an
polygon-edge, polygon-vertex pair (e, w). We store the fixed vertices in a linear size dynamic
data structure that supports halfspace emptyness queries, that is, a dynamic convex hull data
structure [8]. This data structure uses O(m) space, and supports O(logm) time updates and
queries, where m is the number of stored points. The variate vertices are mapped to a point
in R8 using a function f that is independent of q. We give the precise definition later. We
store the resulting points in a dynamic data structure that can answer halfspace emptyness
queries [1]. This data structure uses O(m logm) space, answers queries in O(m 3

4 +ε) time
and supports updates in O(log2m) time, where m is the number of points stored. It follows
that our representation of Vq uses O(n log2 n) space, and supports updates in amortized
O(log3 n) time.

Since all nodes in the data structure have constant in-degree we can make it partially
persistent at the cost of O(log3 n) space per update [21]. It follows we can represent the
visibility polygons for all cells in S` in O(n2 log3 n) space.

Querying. Given a query q, r we test if the segment r intersects Vq. The main idea is to
query our data structure for the part of Vq in the wedge defined by q and r. We then extend
r into a line ρ, and test if this line separates a vertex of Vq in this wedge from q. The segment
r intersects Vq, and thus there is a time at which r is visible from q, if and only if this is the
case.

We can obtain the part of Vq that lies in the wedge defined by q and r, represented by
O(log2 n) BB[α]-tree nodes. For each of these nodes we query the associated data structures
to test if the halfspace ρ¬q not containing q is empty. We can directly query the data
structure storing the fixed vertices with ρ¬q. To test if there is a variate vertex that lies in
ρ¬q we map it to a halfspace in R8 using a function g.

I Lemma 11. There are functions f and g such that f maps each variate vertex (e, w) to a
point f(e, w) ∈ R8 and g maps each ρ¬q to a halfspace g(ρ¬q) in R8 such that f(e, w) ∈ g(ρ¬q)
if and only if the location of the variate vertex (e, w) in Vq lies in ρ¬q.

Proof. Let q = (a3, a4), and let ρ = {x, y | 0 = a1x − a2 − y} be the supporting line of
the trajectory of r. We describe the construction for the case that q lies below ρ and ρ is
non-vertical. The other cases can be handled analogously.
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ρ qw`e
r

Figure 10 (left) Two points in orange and blue, which have the same implicit visibility polygon,
however there could be several placement of r such that r only intersects one of the two explicit
visibility polygons. (middle) Entity r in green, q in orange and the chain of uncertain edges. (right)
An illustration of the geometric argument. We compute the intersection between `e and qv and
check if that point lies below or above ρ.

Refer to Figure 10 (right) for an illustration of the proof. For each variate vertex (e, w)
in a chain we know that the line qw intersects the line `e supporting e on the domain of e
(this property is guaranteed since (e, w) is a vertex of Vq). Moreover, it is guaranteed that
the intersection point between qv and ρ lies on the trajectory of r. It follows that q can see
r if and only if, the intersection point (x, y) between qw and `e lies above ρ. Given ρ, q, w
and `e, we can algebraically compute this intersection point (x, y). We then substitute the
equation for (x, y) into the equation for ρ and the point (x, y) lies above this line if and only
if the result is greater than 0:

wq :=
{
x, y | 0 = x4 − a4

x3 − a3
x− x4 − a4

x3 − a3
x3 + x4

}
The lines wq and `e intersect at the point where their y-coordinate is equal and therefore:

x1x− x2 = x4 − a4

x3 − a3
x− x4 − a4

x3 − a3
x3 + x4

(x3 − a3)(x1x− x2) = (x4 − a4)x− (x4 − a4)x3 + (x3 − a3)x4

(x3 − a3)x1x− (x4 − a4)x = x2(x3 − a3)− (x4 − a4)x3 + (x3 − a3)x4

From this equation we can extract the coordinates of the intersection point (x, y) between
wq and `e:

x = x2(x3 − a3)− (x4 − a4)x3 + (x3 − a3)x4

(x3 − a3)x1 − (x4 − a4)

y = x1
x2(x3 − a3)− (x4 − a4)x3 + (x3 − a3)x4

(x3 − a3)x1 − (x4 − a4) − x2

Lastly we substitute the algebraic expression for (x, y) into the formula for ρ and we
linearize the predicate:

0 ≥ a1(x2(x3 − a3)− (x4 − a4)x3 + (x3 − a3)x4)−
x2 − x1(x2(x3 − a3)− (x4 − a4)x3 + (x3 − a3)x4) + x2

0 ≥ [−a1a3](x2) + [a3](x1x2) + [a1](x2x3) + [a1a4](x3)+
[−a4](x1x3) + [−a1a3](x4) + [a3](x1x4) + [−1](x1x2x3)

Thus we found a predicate F (~x,~a) with:

(f1, f2, f3, f4, f5, f6, f6, f8) = (x2, x1x2, x2x3, x3, x1x3, x4, x1x4, x1x2x3)
(g0, g1, g2, g3, g4, g5, g6, g7, g8) = (0,−a1a3, a3, a1, a1a4,−a4,−a1a3, a3,−1)
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It follows that we can map every variate vertex to a point in R8 using the f -maps provided
by the predicate. Any query consisting of the halfplane ρ¬q defined by ρ and q gets mapped
to a halfspace in R8. The halfplane ρ¬q contains the variate vertex defined by q, w, and e if
and only if its representative point lies in this halfspace. J

This theorem now immediately follows:

I Theorem 12. Let P be a simple polygon with n vertices. We can store P in a data
structure of size O(n2 log3 n) that allows us to answer trajectory visibility queries between a
static and a linearly moving entity that may cross P in O(n 3

4 +ε) time. Building the data
structure takes O(n2 log3 n) time.

Polygonal domains. In case P is a polygonal domain we use a similar approach; we build
a subdivision S in which all points in a cell have a visibility polygon Vq with the same
combinatorial structure, and then traverse S while maintaining Vq in a partially persistent
data structure. To obtain S we simply we simply take all O(n2) lines defined by pairs
of polygon vertices. The subdivision S is the arrangement of these lines and has O(n4)
complexity. We obtain a traversal of S by computing an Euler tour of a spanning tree of the
dual of S. We conclude

I Theorem 13. Let P be a polygonal domain with n vertices. We can store P in a data
structure of size O(n4 log3 n) that allows us to answer trajectory visibility queries between a
static and a linearly moving entity that may cross P in O(n 3

4 +ε) time. Building the data
structure takes O(n4 log3 n) time.

Next, we investigate the variants where the entities can walk through edges of P , and/or
where P is a polygonal domain. We switch to different techniques, focused on representing
the set of all potential visibility polygons in P compactly. Our representation supports
efficient intersection queries of the visibility polygon of a specific point q with the trajectory
of r. We obtain the following result.

I Theorem 14. Let P be a simple polygon with n vertices. We can store P in a data
structure of size O(n2 log3 n) that allows us to answer trajectory visibility queries between a
static and a linearly moving entity that may cross P in O(n 3

4 +ε) time. Building the data
structure takes O(n2 log3 n) time. If P is a polygonal domain, we can still obtain this result
using O(n4 log3 n) space and O(n 3

4 +ε) query time.

6 A data structure for queries in polygonal domains

Finally, in Appendix C we consider the most general version of the problem, where both
entities are moving in a polygonal domain (and/or can move through walls). Now the set of
visibility lines from one trajectory to the other does not form a single hourglass but consist
of linearly many hourglasses, thus the visibility glass does not dualize to a convex polygon.
As a result, the solutions based on partition trees no longer lead to sublinear query times.
Instead, we discuss a different approach based on cutting trees, leading to polylogarithmic
query time at the cost of much higher space usage. We obtain the following result.

I Theorem 15. Let P be a polygonal domain with n vertices. We can store P in a data
structure of size O(n3k), for some sufficiently large constant k, that allows us to answer
trajectory visibility queries in O(logk n) time. Building the data structure takes O(n3k) time.
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A Transforming two entites into an algebraic curve.

Throughout this paper, we study the line-of-sight between two entities that each move along
a linear trajectory (possibly at different but constant speeds) during the time t ∈ [0, 1].
Consider the line g(t) through the two entities at time t. We can dualize g(t) to a point
using classical point-line dualization. In Section 3 we claim that the continuous dualization
of the line through the two entities traces a degree-2 curve segment denoted by γ in the dual.
Here we show why this is the case:

I Lemma 1. The segment γ is a segment of a quadratic curve with 5 degrees of freedom.

Proof. For algebraic convenience we say that entity q walks from (a1, a2) to (a1 +a3, a2 +a4)
and that entity r walks from (a5, a6) to (a5 + a7, a6 + a8). Note that the speed of entity q is
‖(a3, a4)‖ and that the speed of entity r is ‖(a7, a8)‖. We can parametrize the position of
entity q and r on the time t ∈ [0, 1] as follows:

q(t) =
(
xq(t)
yq(t)

)
=
(
a1 + a3t

a2 + a4t

)
r(t) =

(
xr(t)
yr(t)

)
=
(
a5 + a7t

a6 + a8t

)
(1)

At all times, the line g(t) is the line through the points q(t) and r(t). We say that at all
times, g(t) has slope and offset (α(t), β(t)). The parametrisation of g(t) then becomes:

g(t) =
(
α(t)
β(t)

)
=
(

yr(t)−yq(t)
xr(t)−xq(t)

α(t) · xq(t) − yq(t)

)
=
(

a6−a2+(a8−a4)t
a5−a1+(a7−a3)t

α(t)(a1 − a3t)− a2 − a4t

)
(2)

If the time t lies between 0 and 1, this parametric equation traces our curve segment γ
and if we take t over all of R, the parametric equation traces a full curve which we denote by
Γ. To show the degree of the curve Γ we rewrite the parametrized curve to a canonical form
that drops the dependence on t. First we take the formula for the β-coordinate and isolate t:

t = α(t)a1 − a2 − β(t)
α(t)a3 + a4

We then take the formula for the α-coordinate and remove the fraction by multiplying both
sides with ((a5 − a1) + (a7 − a3)t). Note that this expression is only zero if the line g(t) is
vertical. Refer to below on how to avoid such degeneracies.

α(t)(a5 − a1) + α(t)(a7 − a3)t = (a6 − a2) + (a8 − a4)t

We substitute the value for t into this equation, and remove the fraction by multiplying
both sides with (α(t)a3 + a4):

α(t)(a5 − a1) · (α(t)a3 + a4) + α(t)(a7 − a3) · (α(t)a1 − a2 − β(t)) =
(a6 − a2) · (α(t)a3 + a4) + (a8 − a4) · (α(t)a1 − a2 − β(t))⇒

α(t)2a3(a5 − a1) + α(t)a4(a5 − a1)+
α(t)2a1(a7 − a3)− α(t)a2(a7 − a3)− α(t)β(t)(a7 − a3) =

α(t)a3(a6 − a2) + a4(a6 − a2) + α(t)a1(a8 − a4)− a2(a8 − a4)− β(t)(a8 − a4)

Lastly we show that this equation provides a linearization as defined in Appendix B by
separating polynomials based on α(t) and β(t) from polynomials based on a1 . . . a8.

[α(2)2](a3(a5 − a1) + a1(a7 − a3))+ (3)
[α(t)](a4(a5 − a1)− a2(a7 − a3)− a3(a6 − a2)− a1(a8 − a4))− (4)

[α(t)β(t)](a7 − a3) + [β(t)](a8 − a4) + α(t)(a1(a8 − a4))[1](a2(a8 − a4)− a4(a6 − a2)) (5)

J
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Dealing with degeneracies in this paper. Observe that in Equation 2 it is possible to
divide by zero. Note that this occurs only if there is a moment in time where the line-of-sight
between the two entities is a vertical segment. This situation occurs throughout this paper,
and in this case the dual of their line-of-sight is also not well defined. Generally we cannot
construct the dual of a visibility glass if in the primal it contains any vertical lines of sight.

This is a common degeneracy with visibility queries and dualization algorithms in
computational geometry and it can be solved as follows: For any two (input or query)
segments, one can split the time interval into two disjoint intervals, such that in one interval
the segment is never vertical and in the second interval the segment is never horizontal. Note
that only one split is needed, which can be calculated in constant time, because the entities
move linearly. Therefore we solve the algorithmic question or the data structure question by
solving two separate inputs or queries, where for the time interval that can contain vertical
but not horizontal lines-of-sight, we consider a rotated version of the plane.

Similarly, whenever we consider any visibility glass, we split it into lines that are steeper
than y = x and lines that are not. One such set will never contain horizontal lines and the
other will never contain vertical lines. Therefore, for each set of lines we can construct the
dual of the visibility glass in an appropriate rotated version of the plane.

B Semi-algebraic range searching

Throughout this paper we make extensive use of the semi-algebraic (or linearization) tech-
niques from Agarwal et al. [2]. We describe the technique in detail for completeness.

Let X be a set of n geometric objects in Rd, where each object is parametrized by a
vector ~x. If X is a set of points, then the most natural parametrization is a vector of its
coordinates. But X could be a more complicated algebraic object such as a line, in that case
the most natural parametrization is a two-dimensional vector containing its slope and offset.

We denote by Γ the family of geometric regions (called semi-algebraic ranges) in Rd where
each region G ∈ Γ is bounded by an algebraic curve γ which is parametrized by a vector ~a.
Two examples of such a family is the set of all disks and the set of all disks of radius 1. An
arbitrary disk can be represented as a vector in many ways: three non-colinear points define
a unique circle so one could represent a circle as a six-dimensional vector which specifies
the coordinates of these points. However the larger the representation vector, the more
complicated the linearization process becomes. The most efficient representation of a circle is
by a three-dimensional vector specifying its center and radius. The family of disks of radius
1 has fewer degrees of freedom than the family of all disks, and thus their representation can
be more efficiently represented (e.g. as a 2-dimensional vector specifying only its center).

Given X and Γ, we are interested in preprocessing X such that for any range G ∈ Γ,
we can report which objects of X intersect G. To accomplish this, we first want to derive
what we have dubbed a predicate function F (~x,~a) ≤ 0. The predicate function F takes any
instance of X (parametrized by ~x) and any instance of Γ (parametrized by ~a) and outputs a
real number. The object intersects the range if and only if the output value is lesser then
or equal to zero. At this point we present an example: let X be a set of two-dimensional
points parametrized by ~x = (x1, x2) and Γ be the set of arbitrary disks, each parametrized
by ~a = (a1, a2, r). The disk parametrized by ~a has center (a1, a2) and radius r. Any point
(x1, x2) is contained in this disk if and only if F (~x,~a) = (a1 − x1)2 + (a2 − x2)2 − r2 ≤ 0 and
thus we have found our predicate function.

The predicate function F (~x,~a) could be seen as a map from the parameter space of
our intersection problem to the boolean space {0, 1} and thus F partitions our parameter
space into areas where the answer is yes or areas where the answer is no. The idea behind
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0 3−1

{~y | ((1− 4)− 2y1 + y2 ≤ 0}

−2→ (−2, 4)
−1→ (−1, 1)
0→ (0, 0)

1→ (1, 1)

y2

y1
~x→ (f1(~x), f2(~x))

Figure 11 Consider the family Γ of 1-dimensional unit disks. We can parametrize their border by
supplying a 1-dimensional center point and a radius ~a = (a1, a2). Any 1-dimensional point ~x = (x1) is
contained in a disk G ∈ Γ if and only if (a1−x1)2−a2

2 ≤ 0⇒ [a2
1−a2

2]+ [−2a1](x1)+(x2
1) ≤ 0. If we

linearize this predicate function, we get that (g0, g1, g2) = (a2
1 − a2

2,−2a1, 1) and (f1, f2) = (x1, x
2
1).

It follows that any intersection query between a disk G and a set of points X can be answered using
a halfspace emptyness query. In the figure we show an example for the points (−2,−1, 0, 1) and the
disk G with center 1 and radius 2.

semi-algebraic range searching is that we search for an intersection in this parameter space,
as opposed to searching in the space where our problem lives. However, the border of these
areas do not have to be particularly nice. In our example. each of the yes areas is bounded
by a quadratic surface. This is where linearization comes in. We transform the parameter
space through a polynomial map into a k-dimensional space where the boundary of the yes
spaces becomes a linear-complexity surface. At this point, we wish to mention that in full
generality, this map does not have to be a polynomial map. But for the purpose of this paper,
we can restrict the results from [2] so that at all times, all the functions that we regard are
bounded degree polynomials.

Given such a linearization, we can solve our problem using halfspace range searching.
Specifically, we rewrite the function F (~x,~a) to the form: F (~x,~a) = g0(~a) +

∑k
i=1 gi(~a)fi(~x)

where fi and gi are polynomials dependent only on ~x and ~a respectively. In our example we
had: F (~x,~a) = (a1 − x1)2 + (a2 − x2)2 − r2 ≤ 0. To linearize this function we need to first
expand the squares: F (~a, ~x) = a2

1−2a1x1 +x2
1 +a2

2−2a2x2 +x2
2−r2. This immediately gives a

straight-forward linearization of seven terms. However, we can reduce the number of terms by
grouping variables and writing: F (~x,~a) = [a2

1 + a2
2 − r2] + [−2a1](x1) + [−2a2](x2) + [1](x2

1 +
x2

2) and obtain a linearization where: (g0, g1, g2, g3) = (a2
1 + a2

2 − r2,−2a1,−2a2, 1) and
(f1, f2, f3) = (x1, x2, x

2
1 + x2

2). We get the term g0 (which is not attached to any polynomial
dependent on x) “for free” and this thus becomes a three-dimensional linearization.

Agarwal et al. prove that you can map any d-dimensional point ~x to the k-dimensional
point f(~x) = (f1(~x), f2(~x), . . . fk(~x)), and any query range to the k-dimensional halfspace
G(~a) =

{
~y ∈ Rk | g0(~a) +

∑k
i gi(~a)yi ≤ 0

}
and that ~x intersects G if and only if f(~x) is

contained in G(~a). Consider our example. The map f that we found, is the well-known
paraboloid projection: We map all the two-dimensional points onto a three-dimensional
paraboloid and they are contained in a circle G ∈ G if and only if the points lie within a
halfplane cutting the paraboloid. Refer to Figure 11 for an even shorter example.

C Two moving entities in a polygonal domain

We investigate the two cases where (1) the entities can walk through edges of P and (2) P is
a polygonal domain simultaneously. Let k be an unspecified constant. We prove that it is
possible to preprocess a polygonal domain P with n vertices in O(nk) time, such that for any
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Λ(e1, e2) T+(e1, e2) T+(e1, e2) ⊂ R3 T ∗(e1, e2) ⊂ R3

Figure 12 Unfortunately we cannot draw figures in four dimensions. So we illustrate the mapping
from a visibility glass to a three-dimensional volume instead using the map F1(a, b) based on only
the edge e1 and not the edge e2.

two entities q and r that each traverse a line segment possibly through edges of P , we can
determine if there is a moment when q and r are mutually visible in sub-linear time. Our
approach almost certainly does not generate an optimal solution with respect to its space
requirement and query time. However, it is a non-trivial proof that sub-linear query times
are achievable. We obtain these results, by transforming the visibility query in the plane into
an intersection query in R4 and then immediately applying semi-algebraic range searching.

Let e1 and e2 be two edges of P and denote their visibility glass by L(e1, e2). We say that
e1 lies on the line y = x1x− x2 and e2 lies on the line y = x3x− x4. Let ` :: y = ax− b be a
line through L(e1, e2) with positive slope and let e1 lie below e2 along `. The x-coordinate
of the intersection between ` and the edges is given by F1(a, b) = b−x2

a−x1
and F2(a, b) = b−x4

a−x3
.

I Observation 3. Suppose we have a segment on ` that starts at the point q and ends at the
point r then this segment is contained in L(e1, e2) if and only if F1(a, b) ≤ xq ≤ xr ≤ F2(a, b).

This observation leads to the following approach for detecting if there is a line-of-sight
between q and r: we construct for each of the n2 pairs of edges e1, e2, the two-dimensional
area Λ+(e1, e2) which is the dualization of all positive slope lines through the visibility
glass between e1 and e2. For reasons that will become apparent later, we triangulate
Λ+(e1, e2). Consider any triangle T+(e1, e2) of this triangulation. It represents a collection
of positive-slope lines that stab through the visibility glass L(e1, e2). We lift T+(e1, e2) to a
two-dimensional surface to R4 with the map that takes a point (a, b) in T+(e1, e2) and that
maps it to the point (a, b, F1(a, b), F2(a, b)). This creates a two-dimensional surface in R4

which has a constant description size. Now consider the following cylinder-like volume in R4:
T ∗(e1, e2) = {(a, b, c, d) ∈ R4 | (a, b, c′, d′) ∈ T+(e1, e2) ∧ c′ ≤ c ∧ c ≤ d ∧ d ≤ d′}. Any point
(a, b, c, d) ∈ T ∗(e1, e2), represents a line segment that lies on the line y = ax− b, whose start
point lies below its end point, and whose start and end points lie between e1 and e2. Refer
to Figure 12 for an example of this transformation in R3:

Let q and r be given as two line-segment trajectories that do not intersect (if they do
intersect, we can always split the visibility query into constantly many visibility queries).
Note that we can split q and r into two sub-segments q′ and r′ where the entity q always
has a lower y-coordinate than entity r and where the line through q and r has positive
slope. We denote by γ′ the continuous dualization of q′ and r′ according to equation 3. The
two-dimensional curve segment γ′ can be mapped to a curve segment in R4 with a mapping
that is very similar to our earlier transformation. Each point (a, b) ∈ γ′ represents a segment
following the line y = ax− b between q and r where q must lie below r. We map the point
(a, b) to the point (a, b, c, d) where c and d are the x-coordinates of intersections of the line

SWAT 2020



23:22 Trajectory Visibility

y = ax − b with the trajectories of q and r respectively. Coincidentally, this means that
we are mapping a point (a, b) to (a, b, xq, xr). If γ′ intersects T ∗(e1, e2) then at the time
if intersection, the two entities realise a line segment that lies within the visibility glass
L(e1, e2) and it follows that the entities are mutually visible. Both the volume T ∗ and the
query segment γ′ can be parametrized with a constant-length parameter, so the predicate
that tests their intersection can be linearized to a constant k number of terms.

It follows that we can create a data structure that stores O(n3) of these volumes (one for
each triangle in both the positive and negative visibility glasses), each represented by a point
in Rk. Specifically, we build a cutting tree on these O(n3) points in O(n3k) time. A query
supplied as two segments q and r, can be cut into constantly many pairs of segments where
for each pair of segments either q is above r or vice versa. For each pair of segments, we
derive its corresponding k-dimensional halfspace in O(k) time and we query the cutting tree
in O(logk n) time to see if the halfspace if empty. There is no time when the two entities are
mutually visible if and only if each of these queries reports an empty halfspace. Thus we
conclude:

I Theorem 15. Let P be a polygonal domain with n vertices. We can store P in a data
structure of size O(n3k), for some sufficiently large constant k, that allows us to answer
trajectory visibility queries in O(logk n) time. Building the data structure takes O(n3k) time.
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Abstract
We formalize the simplification of activity-on-edge graphs used for visualizing project schedules,
where the vertices of the graphs represent project milestones, and the edges represent either tasks of
the project or timing constraints between milestones. In this framework, a timeline of the project
can be constructed as a leveled drawing of the graph, where the levels of the vertices represent the
time at which each milestone is scheduled to happen. We focus on the following problem: given an
activity-on-edge graph representing a project, find an equivalent activity-on-edge graph—one with
the same critical paths—that has the minimum possible number of milestone vertices among all
equivalent activity-on-edge graphs. We provide an O(mn2)-time algorithm for solving this graph
minimization problem.
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1 Introduction

The critical path method is used in project modeling to describe the tasks of a project, along
with the dependencies among the tasks; it was originally developed as PERT by the United
States Navy in the 1950s [18]. A dependency graph is used to identify bottlenecks, and in
particular to find the longest path among a sequence of tasks, where each task has a required
length of time to complete (this is known as the critical path).

In this paper we consider a phase in planning a given project in which we do not yet know
the time lengths of each task. We are interested in the problem of visualizing an abstract
timeline of the potential critical paths (i.e., paths that could be critical depending on the
lengths of the tasks) of the project, represented abstractly as a partially ordered set of tasks.
The most common method of visualizing partially ordered sets, as an activity-on-node graph
(a transitively reduced directed acyclic graph with a vertex for each task) is unsuitable for
this aim, because it represents each task as a point instead of an object that can extend over
a span of time in a timeline. To resolve this issue, we choose to represent each task as an
edge in a directed acyclic graph. In this framework, the endpoints of the task edges have a
natural interpretation, as the milestones of the project to be scheduled. Additional unlabeled
edges do not represent tasks to be performed within the project, but constrain certain pairs
of milestones to occur in a certain chronological order. The resulting activity-on-edge graph
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Figure 1 An activity-on-node graph, above, and its naively expanded activity-on-edge graph,
below, with solid arrows as task edges and empty arrows as unlabeled edges.

can then be drawn in standard upward graph drawing style [1, 6, 8, 10, 11]. Alternatively,
once the lengths of the tasks are known and the project has been scheduled, this graph can
be drawn in leveled style [12,16], where the level of each milestone vertex represents the time
at which it is scheduled.

It is straightforward to expand an activity-on-node graph into an activity-on-edge graph
by expanding each task vertex of the activity-on-node graph into a pair of milestone vertices
connected by a task edge, with the starting milestone of each task retaining all of the
incoming unlabeled edges of the activity-on-node graph and the ending milestone retaining
all of the outgoing edges. It is convenient to add two more milestones at the start and end of
the project, connected respectively to all milestones with no incoming edges and from all
milestones with no outgoing edges. The size of the resulting activity-on-edge graph is linear
in the size of the activity-on-node graph. An example of such a transformation is depicted in
Figure 1.

However, the graphs that result from this naive expansion are not minimal. Often, one can
merge some pairs of milestones (for instance the ending milestone of one task and the starting
milestone of another task) to produce a simpler activity-on-edge graph (such as the one for
the same schedule in Figure 2). Despite having fewer milestones, this simpler graph can be
equivalent to the original, in the sense that its potential critical paths (maximal sequences
of tasks that belong to a single path in the graph) are the same. By being simpler, this
merged graph should aid in the visualization of project schedules. In this paper we formulate
and provide an O(mn2)-time algorithm (where n is the number of milestones and m is the
number of unlabeled edges) for the problem of optimal simplification of activity-on-edge
graphs.

1.1 New Results

We describe a polynomial-time algorithm that, given an activity-on-edge graph (i.e., a directed
acyclic graph with a subset of its edges labeled as tasks), produces a directed acyclic graph
that preserves the potential critical paths of the graph and has the minimum possible number
of vertices among all critical-path-preserving graphs for the given input. Our algorithm is
agnostic about the weights of the tasks. In more general terms, the resulting graph has the
following properties:

The task edges in the given graph correspond one-to-one with the task edges in the new
graph.
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Figure 2 A simplification of the graph from Figure 1.

The new graph has the same dependency (reachability) relation among task edges as the
original graph.
The new graph has the same potential critical paths as the original graph.
The number of vertices of the graph is minimized among all graphs with the first three
properties.

Our algorithm repeatedly applies a set of local reduction rules, each of which either
merges a pair of adjacent vertices or removes an unlabeled edge, in arbitrary order. When
no rule can be applied, the algorithm outputs the resulting graph.

We devote the rest of this section to related work and then describe the preliminaries in
Section 2. We then present the algorithm in Section 3 and show in Section 4 that its output
preserves the potential critical paths of the input, and in Section 5 that it has the minimum
possible number of vertices. We also show that the output is independent of the order in
which the rules are applied. We discuss the running time in Section 6 and conclude with
Section 7.

1.2 Related work
Constructing clear and aesthetically pleasing drawings of directed acyclic graphs is an old
and well-established task in graph drawing, with many publications [5,6,13,19]. The work in
this line that is most closely relevant for our work involves upward drawings of unweighted
directed acyclic graphs [1, 8, 10,11] or leveled drawings of directed acyclic graphs that have
been given a level assignment [12,16] (an assignment of a y-coordinate to each vertex, for
instance representing its height on a timeline).

Although multiple prior publications use activity-on-edge graphs [3,7,15,17] and even
consider graph drawing methods specialized for these graphs [20], we have been unable to
locate prior work on their simplification. This problem is related to a standard computational
problem, the construction of the transitive reduction of a directed acyclic graph or equivalently
the covering graph of a partially ordered set [2]. We note in addition our prior work on
augmenting partially ordered sets with additional elements (preserving the partial order on
the given elements) in order to draw the augmented partial order as an upward planar graph
with a minimum number of added vertices [9].

The PERT method may additionally involve the notion of “float”, in which a given task
may be delayed some amount of time (depending on the task) without any effect on the
overall time of the project [4, 14]. We do not consider constraints of this form in the present
work, although the unlabeled edges of our output can in some sense be seen as serving a
similar purpose.
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2 Preliminaries

We first define an activity-on-edge graph. The graph can be a multigraph to allow tasks that
can be completed in parallel to share both a start and end milestone when possible.

I Definition 1. An activity-on-edge graph (AOE) is a directed acyclic multigraph G = (V, E),
where a subset of the edges of E, denoted T , are labeled as task edges. The labels, denoting
tasks, are distinct, and we identify each edge in T with its label.

I Definition 2. Given an AOE G with tasks T , for all T ∈ T , let StG(T ) be the start vertex
of T , and let EndG(T ) be the end vertex of T .

When the considered graph is clear from context, we omit the subscript G and write St(T )
and End(T ). It may be that St(T ) = St(T ′), or End(T ) = End(T ′), or End(T ) = St(T ′)
with T 6= T ′.

To define potential critical paths formally, we introduce the following notation.

I Definition 3. Given an AOE G with tasks T , for all T, T ′ ∈ T with T 6= T ′, say that T

has a path to T ′ in G if there exists a path from End(T ) to St(T ′), or if End(T ) = St(T ′),
and write T  G T ′.

I Definition 4. Given an AOE G with tasks T , a potential critical path is a sequence of
tasks P = (T1, . . . , Tk), where for all i = 1, . . . , k − 1, Ti  G Ti+1, and where P is not a
subsequence of any other sequence with this property.

Our algorithm will apply a set of transformation rules to an input AOE of a canonical
form.

I Definition 5. A canonical AOE is an AOE which is naively expanded from an activity-on-
node graph.

Every AOE G can be transformed into a canonical AOE with the same reachability
relation on its tasks. First, we start by computing the reachability relation of the tasks. The
transitive closure of the resulting reachability matrix gives an activity-on-node graph (which
is quadratic, in the worst case, in the size of the original AOE). Then, this activity-on-node
graph can be converted to a canonical AOE as described in Section 1.

I Definition 6. Two AOE graphs G and H are equivalent, i.e. G ≡ H, if G and H have
the same set of tasks—i.e., there is a label-preserving bijection between the task edges of G

and those of H—and, with respect to this bijection, G and H have the same set of potential
critical paths.

IDefinition 7. An AOE G is optimal if G minimizes the number of vertices for its equivalence
class: i.e., if for every AOE H ≡ G, |V (H)| ≥ |V (G)|.

We now formally define our problem.
Problem 1. Given a canonical AOE G, find some optimal AOE H with H ≡ G.

3 Simplification Rules

Our algorithm takes a canonical AOE and greedily applies a set of rules until no more rules
can be applied. Given an AOE G = (V, E) and given two distinct vertices u, v ∈ V , the
simplification rules used by our algorithm are:
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Figure 3 On the left, an AOE in which each of rules 1-3 can be applied, and on the right, the
corresponding graph output by the algorithm.

1. if u and v have no outgoing task edges and have precisely the same outgoing neighbors,
merge u and v. Symmetrically, if u and v have no incoming task edges and have precisely
the same incoming neighbors, merge u and v.

2. If u has an unlabeled edge to v, and u has another path to v, remove the edge (u, v).
3. If u has an unlabeled edge to v and the following conditions are satisfied, merge u and v:

rule 2 is not applicable to the edge (u, v).
if u has an outgoing task, then v has no incoming edge other than (u, v).
if v has an incoming task, then u has no outgoing edge other than (u, v).
every incoming neighbor of v has a path to every outgoing neighbor of u.

Figure 3 depicts an AOE graph and the graph output by the algorithm after applying all
possible rules. Vertices u and v can be merged by rule 3, since there is no other path from
u to v to apply rule 2 (satisfying the first condition in the application of rule 3), u and v

have no outgoing and no incoming task, respectively, and v has no incoming neighbor other
than u. Therefore, the conditions of rule 3 are true (the second and third hold vacuously).
Further, vertices u′ and v′ can be merged since the first three conditions for applying rule 3
are satisfied and there exists a path from w′ to y′, satisfying the last condition.

It will be convenient for the proofs in Section 5 to give a name to the output of the
algorithm:

I Definition 8. An output AOE, denoted A, is any AOE obtained from a canonical AOE G

by a sequence of applications of rules 1, 2, and 3, to which none of these rules can still be
applied.

We will show (Theorem 19) that A does not depend on the order in which the rules are
applied.

4 Correctness

In this section we prove the correctness of our algorithm (its output graph is equivalent to
its input graph).

We begin with preserving potential critical paths. We show that the rules never change
the existence or nonexistence of a path from one task to another, and that this implies
preservation of potential critical paths.

I Lemma 9. Given two AOEs G and H with the same set of tasks T , G and H have the
same reachability relation  on the tasks if and only if G ≡ H.

Proof. Trivially, we have T  G T ′ (or T  H T ′) if and only if T is earlier than T ′ in some
potential critical path of G (or H). Therefore, preservation of potential critical paths is
equivalent to preservation of the reachability relation. J
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I Lemma 10. The output of the algorithm is equivalent to its input.

Proof. We show the invariant that given tasks T and T ′, T  T ′ at a given iteration of the
algorithm if and only if T  T ′ at the next iteration. From this, and from the fact that the
rules never change the set of tasks, it follows that the output of the algorithm has the same
reachability relation on its tasks as the input, and then the lemma follows from Lemma 9.

The invariant is true because merging a pair of vertices (rules 1 and 3) never disconnects
a path, and no edge is ever removed (by rule 2) between two vertices unless another path
exists between the two vertices. In particular, the end vertex of T still has a path to the
start vertex of T ′ after the application of any of the rules.

For the other direction, removing an edge never introduces a new path. Furthermore, if
vertices u and v are merged by applying rule 1, and if some vertex w has a path to some
vertex z through the newly merged uv, then the condition of rule 1 ensures that w has a path,
through u or v, to z before the merge. Similarly, suppose u and v are merged by applying
rule 3. Then if w has a path to z through uv, then (abusing notation) either w  u and
v  z before the merge, so w  z (via the edge (u, v)), or for some incoming neighbor x of
v and outgoing neighbor y of u, w  x and y  z. In this case, by the conditions of the
rule, w  z before the merge. J

I Lemma 11. Any intermediate graph that results from applying rules of the algorithm to
an input canonical AOE graph, is acyclic.

Proof. Given Definition 1 and Definition 5, the canonical AOE input G is acyclic. Now we
show none of the rules can create a cycle after being applied to an intermediate acyclic graph
G′. This is obvious for rule 2 as it removes edges. Suppose for a contradiction that merging
vertices u and v creates a cycle. The cycle must involve the new vertex resulting from the
merge. For rule 1, this implies the existence of a cycle in G′ either from u or v to itself which
is a contradiction. For rule 3, it implies the existence of a cycle in G′ including the unlabeled
edge (u, v) or a cycle including an incoming neighbor of v and an outgoing neighbor of u,
which is a contradiction. J

I Corollary 12. Any graph A output by the algorithm is acyclic.

5 Optimality

In this section we prove the optimality of our algorithm: it uses as few vertices as possible.
Let A be any output AOE. Let Opt be any optimal AOE such that A ≡ Opt. Our proof
relies on an injective mapping from the vertices of A to the vertices of Opt. The existence
of this mapping shows that A has at most as many vertices as Opt, and therefore has the
optimal number of vertices. Once we have identified the vertices of A with the vertices of
Opt in this way, we show that, for a given input, any two graphs output by the algorithm
(but not necessarily Opt) must have the same unlabeled edges. Since the task edges are
determined, and since the injective mapping to Opt determines the vertices, determining the
unlabeled edges implies the order-independence of our algorithm’s choice of simplification
rules.

Before defining the mapping between A and Opt, we establish some facts about the
structure of A.

I Lemma 13. For every unlabeled edge (u, v) in any output AOE A, there exist tasks T and
T ′ such that u = End(T ) and v = St(T ′).
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Proof. By Definition 8, A is produced by the algorithm from some canonical AOE G. This
property holds for G by Definition 5. As every rule of the algorithm either removes an
unlabeled edge or merges two vertices, and never creates a new edge or vertex, the proof is
complete. J

I Corollary 14. Every vertex in an output AOE A has an incident task edge.

We can now define a mapping from the vertices of A to those of Opt:

I Definition 15. Given an output AOE A with task set T , and given an optimal AOE Opt
with A ≡ Opt, let M : V (A)→ V (Opt) be the following mapping: for every v ∈ V (A):

Let M(v) = StOpt(T ), for some T ∈ T for which v = StA(T ), if such a task exists.
Let M(v) = EndOpt(T ), where v = EndA(T ), otherwise.

As shown in Corollary 14, every vertex in A has an incident task edge, and by Definition 6,
A and Opt have the same set of tasks. Therefore, this mapping is well-defined (up to its
arbitrary choices of which task to use for each v). To prove that M is injective, we will use
the fact that since A ≡ Opt, A and Opt have the same reachability relation (by Lemma 9
and Lemma 10).

The heart of the proof that M is injective lies in showing that if two tasks do not share a
vertex in A, the corresponding tasks also do not share the corresponding vertices in Opt.
From this it follows that M cannot map distinct vertices in A to the same vertex in Opt.

I Lemma 16. Given an output AOE A, and an optimal AOE Opt ≡ A, with task set T , let
T and T ′ be two distinct tasks in T . If StA(T ) 6= StA(T ′), then StOpt(T ) 6= StOpt(T ′). If
EndA(T ) 6= EndA(T ′), then EndOpt(T ) 6= EndOpt(T ′).

Proof. Suppose for a contradiction that StA(T ) 6= StA(T ′), but StOpt(T ) = StOpt(T ′) (the
other case is symmetrical). Let u = StA(T ) and v = StA(T ′). Consider the following
(exhaustive) cases for u and v:
1. u and v have no incoming edges
2. u or v has an incoming unlabeled edge, but neither u nor v has an incoming task edge
3. u or v has an incoming task edge A

In case 1, applying rule 1 results in merging u and v. However, since A is the output of
the algorithm, no rule can be applied to A. This is a contradiction.

In case 2, u and v cannot have the same incoming neighbors or else rule 1 would apply.
We may assume without loss of generality that there exist a vertex w and an unlabeled edge
(w, u), such that the edge (w, v) does not exist. By Lemma 13, there exists a task A where
w = EndA(A). Since A A T and A ≡ Opt (by Lemma 10), then by Lemma 9, A Opt T ,
so A Opt T ′, since StOpt(T ) = StOpt(T ′). Again by Lemma 9, A A T ′, so there is a path
P from w to v. If |P | = 1, then this contradicts that (w, v) does not exist. Suppose |P | > 1.
Then we show there exist some vertex w′ 6= w and an unlabeled edge (w′, v). The following
cases are exhaustive:
(a) P contains a path from u to v. As such a path to v exists and v has no incoming task

edge, there exist a vertex w′ and an unlabeled edge (w′, v) (w′ 6= u), not belonging to P

unless rule 3 can be applied to vertex v and its incoming neighbor in path P .
(b) P does not contain a path from u to v. As |P | > 1, an unlabeled edge (w′, v) belonging

to path P exists.
Given the existence of (w′, v), by Lemma 13, there exists a task B where w′ = EndA(B).
B  A T ′, so by reasoning similar to the above, B  A T . Then, one can apply rule 2
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Figure 4 Lemma 16, case 2, subcase b (double arrows indicate paths).
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Figure 5 Lemma 16, case 3, subcase b.

and either remove edge (w′, v) in case a or (w, u) in case b (Figure 4); this contradicts the
definition of A.

In case 3, we can assume without loss of generality that u has an incoming task A;
consequently, u = EndA(A). Then, by Lemma 9, we have A Opt T ′ and thus A A T ′ via
a path P . Consider the following cases for P :
(a) P contains a task edge B

(b) P is a sequence of unlabeled edges

In case a, by Lemma 9 B  Opt T ′, and thus B  Opt T , and therefore B  A T . This
creates a cycle between u and EndA(B), contradicting Corollary 12.

In case b, illustrated in Figure 5, since rule 3 cannot be applied (if it could, this would
contradict the definition of A), there exist a vertex x not on the path from u to v, and an
edge (x, v) (a task edge or an unlabeled edge). Therefore, there exists a task B where either
v = EndA(B) or by Lemma 13, x = EndA(B). Considering Opt and applying Lemma 9,
B  Opt T so B  A T . This path either creates a cycle in A or allows for removing edge
(x, v) by rule 2, which is a contradiction.

Thus if StA(T ) 6= StA(T ′), then StOpt(T ) 6= StOpt(T ′). J

I Lemma 17. Given an output AOE A, and an optimal AOE Opt ≡ A, with task set T , let
T and T ′ be two distinct tasks in T . If EndA(T ) 6= StA(T ′), then EndOpt(T ) 6= StOpt(T ′).

Proof. The proof, which is in Appendix A.1, uses essentially the same approach as the proof
of Lemma 16: supposing that the two vertices are the same, then using the fact that A and
Opt have the same reachability relation on their tasks, and the definition of A as having no
more rules to apply, to derive a contradiction. J

There is one remaining technicality: we have defined an optimal AOE as being acyclic;
the question arises whether one could reduce the number of vertices by allowing (unlabeled)
cycles. However, this is not the case; it is easy to see that any unlabeled cycle can be merged
into one vertex, reducing the number of vertices, without changing the reachability relation
on the tasks.

We are ready to prove our main results.

I Theorem 18. Given a canonical AOE G, the algorithm produces an optimal AOE Opt ≡ G.
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Proof. Let A be the output AOE produced by the algorithm on G. Given any optimal AOE
Opt and A, the mapping M in Definition 15 is injective: suppose for a contradiction that u

and v are distinct vertices in A, and w = M(u) = M(v). Then by the definition of M , either
u, v, and w have the same incoming task, or u, v, and w have the same outgoing task, or
there exist tasks T and T ′ such that (without loss of generality) u = EndA(T ), v = StA(T ′),
and EndOpt(T ) = w = StOpt(T ′). By Lemmas 16 and 17, all three of these cases imply that
u = v.

Therefore, |V (Opt)| = |V (A)|. Furthermore, A ≡ G, by Lemma 10. The theorem
follows. J

I Theorem 19. Given an input, the algorithm produces the same output regardless of the
order in which the rules are applied.

Proof. As stated earlier, all task edges of an input canonical AOE G are present in any
output of the algorithm and the mapping determines the vertices. Therefore, it suffices to
show that any two graphs output by the algorithm have the same set of unlabeled edges.
Suppose for a contradiction that A1 and A2 are two distinct outputs of the algorithm,
resulting from applying different sequences of rules. By Theorem 18, the algorithm always
produces an optimal AOE. Therefore, |VA1 | = |VA2 | = |VOpt|. Since A1 6= A2, there is an
unlabeled edge (u, v) in A1 (without loss of generality) that is not in A2. By Lemma 13, there
exist task edges T and T ′ such that u = EndA1(T ) and v = StA1(T ′). We have T  A1 T ′.
Since by Lemma 9 and Lemma 10, A1 and A2 both preserve the reachability relation of the
tasks of G, we have T  A2 T ′. Consider the cases for path P from T to T ′ in A2:
1. There exists a task A in P other than T and T ′.
2. Path P is a sequence of unlabeled edges.

In case 1, we have T  A2 A A2 T ′ and therefore, T  A1 A A1 T ′. Then by rule 2,
one can remove the edge (u, v), which contradicts the definition of A1.

In case 2, the length of P is at least two, and P contains a vertex w. By Lemma 13,
there exist tasks A and B where w = EndA2(A) = StA2(B). Now, since A1 ≡ A2, both
graphs are optimal, and both graphs are outputs of the algorithm, Lemma 17 implies that
EndA1(A) = StA1(B). Call this vertex x. Then there exists a path from u to v, through x,
by Lemma 9, and one can remove the edge (u, v) by rule 2. This contradicts the definition of
A1. J

It is tempting to imagine that Theorem 19 implies uniqueness of the optimal AOE.
However, this is not the case: the unlabeled edges of an optimal AOE are not determined by
our bijection. Figure 6 shows an optimal AOE graph that our algorithm cannot produce
(because it violates Lemma 13). One way to see the optimality is to expand the graph naively
into a canonical AOE, apply the algorithm, and verify that the resulting number of vertices
is the same.

6 Analysis

Let n be the number of vertices in a canonical AOE (which is linear in the number of tasks),
and m the number of unlabeled edges. (The number of task edges is O(m).) There are
at most O(n + m) iterations in the algorithm, because each iteration either merges two
vertices or removes an edge, by applying one of the three rules. This requires finding an edge
to remove (O(m) potential edges) or two vertices to merge (O(n2) potential pairs), then
performing the merge or the removal. Intuitively, our algorithm runs in polynomial time as
it takes polynomial time to find and apply a rule.
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Figure 6 An optimal AOE graph that the algorithm cannot produce.

Algorithm 1 the proposed transformation algorithm.

Data: Canonical AOE G

Result: Optimal AOE Opt
1 while true do
2 Initialize and compute the reachability matrix M ;
3 Remove, by rule 2, all unlabeled edges (u, v) where M [u][v] = 2;
4 if rule 1 applies then
5 apply rule 1;
6 else if rule 3 applies then
7 apply rule 3;
8 else
9 return the graph;

We provide a faster implementation of our algorithm than the naive approach. The
algorithm transforms a canonical AOE graph G into an optimal AOE graph by applying
rules 1, 2 or 3. For simplicity, we label the vertices 1, . . . , n. At each iteration, compute
a reachability matrix M for the current graph. M [u][v] indicates whether there exist zero,
one, or more than one paths from u to v. In order to compute M , for all u and v initialize
M [u][v] = 1 if the edge (u, v) exists. Then sort the vertices in topological order (such an
ordering exists according to Lemma 11). For each vertex v in this order, and for each vertex
u, set M [u][v] to min(2,

∑
w∈W (M [u][w])), where W is the set of all vertices w such that

either w = v or there exists an edge (w, v). This procedure takes O(nm) time. Algorithm 1
provides a summary.

Given the reachability matrix, an unlabeled edge (u, v) is removed by rule 2 in O(1) time,
if M [u][v] ≥ 2. Therefore, checking rule 2 for all edges takes O(m) time.

Without loss of generality, for rule 1, we only consider merges of pairs of vertices with
the same outgoing neighbors. This requires, for each vertex u with no outgoing task edge, a
sorted list of outgoing neighbors (S[u]). To obtain such lists for all vertices, list unlabeled
edges as pairs of vertices and sort all the pairs with two bucket sorts: first over the first
elements of the pairs, then over the second elements. Breaking the sorted list into chunks of
pairs with the same first element (say u), gives the outgoing neighbors of u, in the second
elements of the pairs, in a numerically sorted order. This takes O(m) time. Then find pairs of
vertices to merge, if any exist: first, bucket sort vertices based on their out-degree. Vertices
in different buckets cannot be merged by rule 1. For each bucket b containing vertices with
degree d (0 ≤ d < n), call MergeDetection(b, d):
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10 Function MergeDetection(bucket a, i):
11 if i = 0 then
12 return bucket a

13 else
14 bucket sort vertices v of a based on S[v][i]
15 foreach newly created bucket a′ do
16 MergeDetection(a′, i− 1)

The vertices in each resulting bucket have the same outgoing neighbors and can be merged
by rule 1. As each vertex with degree d appears in one bucket in each of d + 1 iterations,
this sort takes O(

∑
v(deg(v))) = O(m) time. Upon merging vertices u and v, name the new

vertex min(u, v).
To check rule 3, for each vertex v, compute I(v): the intersection of the reachable sets of

the incoming neighbors of v. This takes O(mn) time.
Consider only those unlabeled edges (u, v) that meet the preconditions of rule 3 concerning

the existence of outgoing and incoming tasks of u and v respectively. Test whether the last
point in rule 3 applies to edge (u, v) by testing in O(n) time whether all outgoing neighbors
of u are in I(v).

Computing the reachability matrix takes O(mn) time, and using this matrix to check
for rule 2 takes O(m) time per iteration. Checking for rule 1 or 3 takes O(mn) time per
iteration. Further, the outer loop in Algorithm 1 runs at most n times as it either merges two
vertices or returns the output. This gives a total complexity of O(mn2) for our algorithm.

7 Conclusion

Our algorithm reduces the visual complexity of an activity-on-edge graph, making it easier
to understand bottlenecks in a project. The algorithm repeatedly applies simple rules and
therefore can be implemented easily. We have shown that the algorithm runs in O(mn2)
time. One question for future work is whether this analysis is tight. Another question is
whether some other algorithm could achieve an optimal graph more efficiently.

Furthermore, one can measure the complexity of a graph in other ways. One question for
future work is whether one can minimize the number of edges in an AOE graph in polynomial
time. Another question is whether one can, in polynomial time, convert an AOE graph G

into a graph that (i) has the same potential critical paths as G, and (ii) has a plane drawing
with fewer edge crossings than all other graphs satisfying (i). It would also be interesting to
implement this algorithm and run it on realistic graphs arising in project planning, and to
evaluate the visual complexity of the resulting graphs in terms of the measures described
above.
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Figure 7 Lemma 17, case 1.
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Figure 8 Lemma 17, case 2a.

A Appendix

A.1 Proof of Lemma 17
I Lemma 17. Given an output AOE A, and an optimal AOE Opt ≡ A, with task set T , let
T and T ′ be two distinct tasks in T . If EndA(T ) 6= StA(T ′), then EndOpt(T ) 6= StOpt(T ′).

Proof. Suppose for a contradiction that u = EndA(T ) 6= v = StA(T ′), but EndOpt(T ) =
StOpt(T ′). Since T  Opt T ′, then by Lemma 9, T  A T ′, so u has a path P to v. Consider
the following possible cases for path P :

1. There exists a task A in P .
2. P only consists of unlabeled edges. Consider the cases for any unlabeled edge (u′, v′) in

P :
a. There exist incident tasks S and S′, pointing away from and toward u′ and v′,

respectively.
b. There exists an incident unlabeled edge (u′, w′) pointing away from u′ and an incident

task S′ pointing toward v′.
c. There exists an incident task S pointing away from u′ and an incident unlabeled edge

(w′, v′) pointing toward v′.
d. There exists an incident unlabeled edge (u′, w′) pointing away from u′ and an incident

unlabeled edge (x′, v′) pointing toward v′. Vertices u′ and v′ have no outgoing or
incoming task edges, respectively.

These cases are exhaustive as path P either has a task or it is a sequence of unlabeled
edges. Further, for case 2, suppose for an unlabeled edge (u′, v′), none of the subcases of 2a,
2b, 2c and 2d holds. Then, by rule 3, one can merge vertices u′ and v′; this contradicts the
definition of A.

In case 1, shown in Figure 7, we have T  A A A T ′ so by Lemma 9, T  Opt A Opt
T ′. Therefore, there is a path in Opt (through A) from EndOpt(T ) to StOpt(T ′). Since
EndOpt(T ) = StOpt(T ′), this path creates a cycle in Opt. However, Opt is an AOE graph
and is therefore acyclic by Definition 1.

In case 2a, shown in Figure 8, S′  A T ′, so by Lemma 9, S′  Opt T ′, i.e. there is a path
from S′ to StOpt(T ′). Similarly, T  A T ′, so there is a path from EndOpt(T ) to S. Since

SWAT 2020
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StOpt(T ′) = EndOpt(T ), this implies S′  Opt S, so by Lemma 9, S′  A S. Therefore, there
is a path in A from EndA(S′) to StA(S). This path creates a cycle in A and contradicts
Corollary 12.

In case 2b, shown in Figure 9, by Lemma 13, there exists a task S where w′ = StA(S).
Since we have T  A S and S′  A T ′ and EndOpt(T ) = StOpt(T ′), by Lemma 9, we have
S′  Opt S. Therefore, there is a path in A from v′ = EndA(S′) to w′ = StA(S). This path
either creates a cycle between u′ and v′, contradicting Corollary 12 or by rule 2, one can
remove edge (u′, w′), which is a contradiction by the definition of A.

Case 2c is almost identical to case 2b, and again leads to the existence of a path from S′

to S (similarly defined), resulting in either a cycle or an application of rule 2 .
In case 2d, shown in Figure 10, by Lemma 13, there exist task edges S and S′ where

w′ = StA(S) and x′ = EndA(S′), and unlabeled edges (x′, v′) and (u′, w′). We have
S′  Opt S, then by Lemma 9, S′  A S. Therefore, there is a path in A from EndA(S′) to
StA(S). This path either creates a cycle between u′ and v′, contradicting Corollary 12 or by
rule 3, one can merge u′ and v′ in A, which is a contradiction by the definition of A.

Thus if EndA(T ) 6= StA(T ′), then EndOpt(T ) 6= StOpt(T ′). J
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Abstract
Many modern data analysis algorithms either assume or are considerably more efficient if the
distances between the data points satisfy a metric. However, as real data sets are noisy, they often
do not possess this fundamental property. For this reason, Gilbert and Jain [10] and Fan et al. [9]
introduced the closely related sparse metric repair and metric violation distance problems. Given
a matrix, representing all distances, the goal is to repair as few entries as possible to ensure they
satisfy a metric. This problem was shown to be APX-hard, and an O(OP T 1/3)-approximation was
given, where OP T is the optimal solution size.

In this paper, we generalize the problem, by describing distances by a possibly incomplete
positively weighted graph, where again our goal is to find the smallest number of weight modifications
so that they satisfy a metric. This natural generalization is more flexible as it takes into account
different relationships among the data points. We demonstrate the inherent combinatorial structure
of the problem, and give an approximation-preserving reduction from MULTICUT, which is hard
to approximate within any constant factor assuming UGC. Conversely, we show that for any fixed
constant ς, for the large class of ς-chordal graphs, the problem is fixed parameter tractable, answering
an open question from previous work. Call a cycle broken if it contains an edge whose weight is larger
than the sum of all its other edges, and call the amount of this difference its deficit. We present
approximation algorithms, one depending on the maximum number of edges in a broken cycle, and
one depending on the number of distinct deficit values, both quantities which may naturally be
small. Finally, we give improved analysis of previous algorithms for complete graphs.
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is fortuitous when the underlying distances arise from a metric space or are at least well
modeled by one, as certain tasks become provably easier over metric data (e.g., approximating
the optimal TSP tour), and moreover it allows us to use a number of computational tools
such as metric embeddings. However, due to noise, missing data, and other corruptions, in
practice these distances often do not adhere to a metric.

As a motivating example, consider the following standard manifold learning task ([3, 13,
15]). Given a high dimensional data set, we wish to uncover its intrinsic lower dimensional
structure, allowing us to visualize and to understand the geometry of the data. Isomap [15]
is one of the standard embedding tools used to find this lower dimensional structure, and
Figure 1 shows how Isomap nicely recovers the 2d spiral when embedding a 3d Swiss roll
data set. However, as shown on the right in Figure 1, if we perturb even a small fraction of
the distances this structure is lost in the embedding produced by Isomap.

(a) Original Swissroll data. (b) Embedded true distances. (c) Embedded corrupted distances.

Figure 1 (a) 2000 data points in the Swissroll. For (b) and (c) we took the pairwise distance
matrix and added 2N (0, 1) noise to 5% of the distances. We then constructed the 30-nearest-neighbor
graph G from these distances, where roughly 8.5% of the edge weights of G were perturbed. For (b)
we used the true distances on G as the input to Isomap. For (c) we used the perturbed distances.

Motivated by the above applications, the problem of minimally fixing the distances to
uncover the data metric was previously considered. Specifically, Fan et al. [9] and Gilbert
and Jain [10] respectively formulated the Metric Violation Distance (MVD) and the Sparse
Metric Repair (SMR) problems, where in both cases one is given a full distance matrix, and
the goal is to modify as few entries as possible so that the repaired distances satisfy a metric.

More generally, however, the underlying distance graph will be incomplete as data may be
missing or the constructed distance graph is inherently sparse, as the above manifold example
demonstrates. Working directly with this incomplete graph is not only computationally
more desirable when the graph is sparse, but also may be necessary to uncover the ground
truth. For example, observe that for any graph we can attempt to fill in its missing edges by
assigning them weights according to their shortest path distance. Thus naively one could
attempt to fix the input graph, by solving MVD/SMR on this complete graph, and afterwards
dropping any selected edges that were not in the original graph. Figure 2 shows that doing
so, however, can produce radically different and sub-optimal solutions.

Thus to appropriately capture this more general problem, we define the Graph Metric
Repair problem as the natural graph theoretic generalization of the MVD and SMR problems:

Given a positively weighted undirected graph G = (V,E,w) and a set Ω ⊆ R, find the
smallest set of edges S ⊆ E such that by modifying the weight of each edge in S, by
adding a value from Ω, the new distances satisfy a metric.
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Figure 2 Original graph is the four solid green edges of weight 1, and two dashed red edges of
weight 4. Added blue dotted edges all have weight 2. The original graph is repaired by increasing the
lower left green edge, but the optimal solution in the complete graph decreases the two red edges.

The additional graph structure introduced in the generalized problem lets us incorporate
different types of relationships amongst data points and gives us more flexibility in its
structure, and hence avails itself to be applicable to a richer class of problems. This
general graph structure also elucidates the deep connections to cutting problems, which
underlie several results in this paper, and which were not previously observed in [9, 10]. In
particular, as discussed below, our problem is closely related to MULTICUT (Problem 4.1),
a generalization of the standard s-t cut problem to multiple s-t pairs, as well as LB-CUT
(Problem 4.2), where only s-t paths with lengths up to a given threshold L must be cut.

It should also be noted that Graph Metric Repair, as well as MVD and SMR, are related
to a large number of other previously studied problems. A short list includes: metric nearness,
seeking the metric minimizing the sum of distance value changes [5]; metric embedding with
outliers, seeking the fewest points whose removal creates a metric [14]; matrix completion,
seeking to fill missing matrix entries to produce a low rank [6]; and many more. See [9] for a
more detailed discussion of these and other problems.

Contributions and Results. The main contributions of this paper are as follows:
We transition all previously known structural results about SMR and MVD to the new
graph theoretic version. In particular, we provide a characterization for the support
of solutions to the increase (Ω = R≥0) and general (Ω = R) versions of the problem.
Furthermore, we provide a new structural result showing that the increase only problem
reduces to the general one, where it is unknown if such a result holds for SMR and MVD.
For any fixed constant ς, by parameterizing on the size of the optimal solution, we present
a fixed parameter tractable algorithm for the case when G is ς-chordal. This not only
answers an open question posed by [9] for complete graphs, but significantly extends it to
the larger ς-chordal case (see [7] for characterizations of such graphs, many of which are
the complements of a variety of families of graphs). Moreover, we get an upper bound on
the number of optimal supports, as each one is seen by some branch of the algorithm.
We give polynomial-time approx-preserving reductions from MULTICUT and LB-CUT to
graph metric repair. This connection to the well studied MULTICUT problem is interesting
in its own right, but by [8] it also implies graph metric repair is NP-hard, and cannot be
approximated within any constant factor assuming the Unique Games Conjecture (UGC).
We give approximation algorithms, parameterized by different measures of how far the
input is from a metric. Significantly, our approximations mirror our hardness results. Call
a cycle broken if it contains an edge whose weight is larger than the sum of all its other
edges, and call the amount of this difference its deficit. We give an L-approximation,
where L is the maximum number of edges in a broken cycle, while LB-CUT gives Ω(

√
L)-

hardness. We give an O(κ logn)-approximation, where κ is the number of distinct cycle
deficit values, while in general the best known approximation for MULTICUT is O(logn).
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Finally, we give improved analysis of previous algorithms for the complete graph case.
To keep the focus on our main results, this entire section has been moved to Appendix C.

2 Preliminaries

2.1 Notation and problem definition

Let us start by defining some terminology. Throughout the paper, the input is an undirected
and weighted graph G = (V,E,w). A subgraph C = (V ′, E′) is called a k-cycle if |V ′| =
|E′| = k, and the subgraph is connected with every vertex having degree exactly 2. We often
overload this notation and use C to denote either the cyclically ordered list of vertices or
edges from this subgraph. Let C \ e denote the set of edges of C after removing the edge e,
and π(C \ e) denote the corresponding induced path between the endpoints of e.

A cycle C is broken if there exists an edge h ∈ C such that w(h) >
∑
e∈C\h w(e). In

this case, we call the edge h the heavy edge of C, and all other edges of C are called light
edges. We call a set of edges a light cover if it contains at least one light edge from each
broken cycle. Similarly, we call it a regular cover if it contains at least one edge from
each broken cycle. We say that a weighted graph G = (V,E,w) satisfies a metric if there
are no broken cycles. Finally, let Symn(Ω) be the set of n × n symmetric matrices with
entries drawn from Ω ⊆ R. Note that the weight function w can be viewed as an n × n
symmetric matrix (missing edges get weight ∞), and thus for any W ∈ Symn(Ω), the matrix
sum w +W defines a new weight function. Now we can define the generalized graph metric
repair problem as follows. In the following, ‖W‖0 is the number of non-zero entries in the
matrix W , i.e., the `0 pseudonorm when viewing the matrix W as a vector.

I Problem 2.1. Given Ω ⊆ R and a positively weighted graph G = (V,E,w) we want to find

arg min
W∈Sym(Ω)

‖W‖0 such that G = (V,E,w +W ) satisfies a metric, or return NONE,

if no such W exists. Denote this problem as graph metric repair or MR(G,Ω).

A matrix W is an optimal solution if it realizes the arg min in the above, and is a solution
(without the optimal prefix) if G = (V,E,w+W ) satisfies a metric, but ‖W‖0 is not required
to be minimum. The support of a matrix W ∈ Sym(Ω), denoted SW , is the set of edges
corresponding to non-zero entries in W . As we will see in Proposition 7, given a support for a
solution W , we can easily find satisfying entries. Thus, the main difficulty lies in finding the
support. Throughout we use OPT to denote the size of the support of an optimal solution.

We also need the following basic graph theory definitions: Kn is the complete graph
on n vertices. Cn is the cycle n vertices. A chord of a cycle is an edge connecting two
non-adjacent vertices. For a given value ς, a graph G is called a ς-chordal if the size of the
largest chordless cycle in G is ≤ ς.

Let the deficit of a broken cycle C, denoted δ(C), be the weight of its heavy edge minus
the sum of the weights of all other edges in C. Similarly, δ(G) denotes the maximum of δ(C)
over all broken cycles. Finally, let L+ 1 be the maximum number of edges in a broken cycle
(i.e., L counts the light edges). Note δ and L are both parameters measuring the extent to
which cycles are broken, δ with respect to weights and L with respect to the number of edges.

In several places we compute all pairs shortest paths (APSP). Let TAPSP denote the time
to do so, where TAPSP = O(mn+ n2 logn) using Dijkstra’s algorithm and Fibonacci heaps.
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2.2 Previous results
Fan et al. [9] and Gilbert and Jain [10] studied the special case of MR(G,Ω) where G = Kn.
Three sub-cases based on Ω were considered, namely Ω = R≤0 (decrease only), R≥0 (increase
only), and R (general). Various structural, hardness, and algorithmic results were presented
for these cases. In particular, the major results from these previous works are as follows.
(Note the notation and terminology here differs slightly from [9, 10].)

I Theorem 1. [9, 10] The problem MR(Kn,R≤0) can be solved in O(TAPSP) time.

I Theorem 2. [9] For a complete positively weighted graph Kn = (V,E,w) and S ⊆ E:
nosep S is a regular cover if and only if S is the support to a solution to MR(Kn,R).
nosep S is a light cover if and only if S is the support to a solution to MR(Kn,R≥0).

I Theorem 3. [9, 10] Given the support S of a solution to MR(Kn,R≥0) or MR(Kn,R), in
polynomial time one can find a weight assignment to the edges in S which is a solution.

[10] Moreover, for MR(Kn,R≥0), if Kn−S is connected, then for any edge uv ∈ S, setting
the weight of uv to be the shortest distance between u and v in Kn−S is a solution.

I Theorem 4. [9] The problems MR(Kn,R≥0) and MR(Kn,R) are APX-Complete, and
moreover permit O(OPT 1/3) approximation algorithms.

3 Transitioning to Graph Metric Repair

In this section we generalize Theorems 1, 2, and 3 to the case when G is any graph, and
additionally show that for general graphs MR(G,R≥0) reduces to MR(G,R). Subsequently, in
the later sections of paper, we provide a number of new stronger hardness and approximation
results for MR(G,R≥0) and MR(G,R) for general graphs, as well as an FPT algorithm
for ς-chordal graphs, in effect generalizing and strengthening Theorem 4, and answering
previously unresolved questions.

For MR(G,R≤0) we have the following generalization of Theorem 1. Moreover, we observe
the hardness proof of [9] implies if weights are allowed to increase even by a single value,
the problem is APX-Complete. The proof of the theorem below follows fairly directly from
previous work, and so has been moved to Appendix A.1, which contains additional corollaries.

I Theorem 5. The problem MR(G,R≤0) can be solved in O(TAPSP) time.
Moreover, the problem becomes hard if even a single positive value is allowed. That is, if

0 ∈ Ω and Ω ∩ R>0 6= ∅ then MR(G,Ω) is APX-Complete.

3.1 Structural results
Theorem 2 suggests that the problem is mostly combinatorial in nature. We shall see that,
in general, the difficult part of the problem is finding the support of an optimal solution.
Next, we present a characterization of the support of all solutions to the graph metric repair
problem, generalizing Theorems 2, 3. It should be noted that the proof of the following is
significantly simpler than the proof of Theorem 2 in [9]. The key insight is:
(i) If the shortest path between two adjacent vertices is not the edge connecting them,

then this edge is the heavy edge of a broken cycle.

I Theorem 6. For any positively weighted graph G = (V,E,w) and S ⊆ E:
1. S is a regular cover if and only if S is the support to a solution to MR(G,R).
2. S is a light cover if and only if S is the support to a solution to MR(G,R≥0).
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Proof. First, assume that S is the support of a solution to MR(G,R) (MR(G,R≥0)). Suppose
C is a broken cycle in G. If S does not contain any (light) edges from C, then changing
(increasing) the weights on S could not have fixed C. Hence, S must be a regular (light)
cover thus proving the “if” direction of both parts of the theorem.

For the “only if” direction, we are given a regular (light) cover S ⊆ E which we use to
define a graph Ĝ = (V,E \ S,w). Note that since S is either a regular or light cover, S
contains at least one edge from all broken cycles of G. Thus, since Ĝ is G with the edges
of S removed, Ĝ has no broken cycles. Therefore, the shortest path between all adjacent
vertices in Ĝ is the edge connecting them.

Now we define another graph G′ = (V,E,w′) where w′(e) = w(e) for all e ∈ E \ S and
for all e ∈ S, w′(e) is the length of the shortest path between its end points in Ĝ or ‖w‖∞
(the maximum edge weight in Ĝ) if no path exists.

To prove 1., it suffices to show G′ satisfies a metric, since G′ is G with only weights from
edges in S modified. For any edge e ∈ E, if w′(e) is the shortest path between its nodes in G′
then e is not a heavy edge in G′. Therefore, edges that are in both G′ and Ĝ and edges that
are in G′ whose weight was set to length of the shortest path between its end points in Ĝ are
not heavy edges. Thus, we only need to look at edges in G′ whose weight is ‖w‖∞. These are
edges that connect two disconnected components in Ĝ. Thus, any cycle in G′ with such an
edge must involve another edge between components which also has weight ‖w‖∞. However,
a cycle with two edges of maximum weight cannot be broken, and thus such edges cannot be
heavy in G′. Therefore, there are no heavy edges in G′, and so G′ satisfies a metric.

To prove 2., it now suffices to show that for all e ∈ E, we have that w′(e) ≥ w(e). For all
e ∈ E \ S, we know that w′(e) = w(e). Now, suppose for contradiction that for some e ∈ S,
we have w′(e) < w(e). Note if we set w′(e) = ‖w‖∞, then we cannot have w′(e) < w(e).
Thus, w′(e) must be the weight of the shortest path between the end points of e in Ĝ. Let P
be this shortest path in Ĝ. This implies G has a broken cycle C = P ∪ {e} for which e is the
heavy edge. Since S is a light cover, it has a light edge from each broken cycle. So, S must
have a light edge from C, but then P could not have existed in Ĝ, a contradiction. Hence,
w′(e) ≥ w(e) and we have an increase only solution with such a set S. J

Furthermore, given a weighted graph G and a potential support SW for a solution W , in
O(TAPSP) time we can determine if there exists a valid (increase only or general) solution
on that support, and if so, find one. This is a generalization of Theorem 3, interestingly
improving upon the linear programming approach of [9]. Its proof is related to the above
theorem, and again uses insight i, though due to space has been moved to Appendix A.2.

Algorithm 1 Verifier.

1: function Verifier(G = (V,E,w), S)
2: M = ‖w‖∞, Ĝ = (V,E, ŵ)
3: For each e ∈ S set ŵ(e) = M and for each e ∈ E \ S, set ŵ(e) = w(e)
4: For each (u, v) ∈ E, update w(u, v) to be length of the shortest path from u to v in Ĝ
5: if Only edges in S had weights changed (or increased for increase only case) then
6: return w

7: else
8: return NULL

I Proposition 7. The Verifier algorithm, given a weighted graph G and a potential support
for a solution S, determines in O(TAPSP) time whether there exists a valid (increase only or
general) solution on that support and if so finds one.



C. Fan, A. C. Gilbert, B. Raichel, R. Sonthalia, and G. Van Buskirk 25:7

3.2 Reducing MR(G,R≥0) to MR(G,R)
We now show that MR(G,R≥0) reduces to MR(G,R). In later sections, this lets us focus on
MR(G,R) for our algorithms and MR(G,R≥0) for our hardness results. Note that whether
an analogous statement holds for the previously studied G = Kn case, is not known, and the
following does not immediately imply this as it does not construct a complete graph.

I Theorem 8. There is an approximation-preserving, polynomial-time reduction from
MR(G,R≥0) to MR(G,R).

Proof. Let G = (V,E,w) be an instance of MR(G,R≥0). Find the set H = {(s1, t1), . . . ,
(s|H|, t|H|)} of heavy edges of all broken cycles by comparing the weight of each edge to the
shortest path distance between its endpoints. We now construct an instance, G′ = (V ′, E′, w),
of MR(G,R). For all 1 ≤ i ≤ |H| and 1 ≤ j ≤ |E|+1, let Q = {vij}i,j be a vertex set, and let
Fl = {(si, vij)}i,j and Fr = {(ti, vij)}i,j be edge sets. Let V ′ = V ∪Q and E′ = E ∪ Fl ∪ Fr,
where all (si, vij) edges in Fl have weight Z = 1 + maxe∈E w(e), and for any i all (ti, vij)
edges in Fr have weight Z − w((si, ti)).

Let C be any broken cycle in G with heavy edge (si, ti) for some i. First, observe that
C ′ = (C \ (si, ti)) ∪ {(si, vij), (ti, vij)} is a broken cycle with heavy edge (si, vij), for any j.
To see this, note that w((si, vij)) = Z = w((ti, vij)) + w((si, ti)). Thus since C is broken,

w((si, vij)) = w((ti, vij)) + w((si, ti)) > w((ti, vij)) + w(C \ (si, ti)),

and thus by definition C ′ is broken with heavy edge (si, vij). Hence each broken cycle C in
G, with heavy edge (si, ti), corresponds to |E|+ 2 broken cycles in G′, namely, C itself and
the cycles obtained by replacing (si, ti) with a pair (si, vij), (ti, vij), for any j.

We now show the converse, that any broken cycle C ′ in G′ is either also a broken cycle C
in G, or obtained from a broken cycle C in G by replacing (si, ti) with (si, vij), (ti, vij) for
some j. First, observe that for any i, any cycle containing the edge (si, vij) must also contain
the edge (ti, vij), and moreover, if a cycle containing such a pair is broken, then its heavy edge
must be (si, vij) as w((si, vij)) = Z. Similarly, any cycle containing more than one of these
pairs of edges (over all i and j) is not broken, since such cycles then would contain at least
two edges with the maximum edge weight Z. So let C ′ be any broken cycle containing exactly
one such (si, vij), (ti, vij) pair. Note that C ′ cannot be the cycle ((si, vij), (ti, vij), (si, ti)),
as this cycle is not broken because w((si, vij)) = w((ti, vij)) + w((si, ti)). Thus, C =
C ′ \ {(si, vij), (ti, vij)} ∪ {(si, ti)} is a cycle, and C ′ being broken implies C is broken with
heavy edge (si, ti), implying the claim. This holds since

w(si, ti) = w((si, vij))− w((ti, vij)) > w(C ′ \ (si, vij))− w((ti, vij)) = w(C \ (si, ti)).

Now consider any optimal solution M to the MR(G,R≥0) instance G, which by Theorem
6 we know is a minimum cardinality light cover of G. By the above, we know that M is
also a light cover of G′, and hence is also a regular cover of G′. Thus by Theorem 6, M is
a valid solution to the MR(G,R) instance. Conversely, consider any optimal solution M ′
to the MR(G,R) instance G′, which by Theorem 6 is a minimum cardinality regular cover
of G′. The claim is that M ′ is also a light cover of G, and hence is a valid solution to the
MR(G,R≥0) instance. To see this, observe that since all broken cycles in G are broken cycles
in G′, M ′ must be a regular cover of all broken cycles in G, and we now argue that it is in
fact a light cover. Specifically, consider all the broken cycles in G which have a common
heavy edge (si, ti). Suppose there is some cycle in this set, call it C, which is not light
covered by M ′. As M ′ is a regular cover for G′, this implies that for any j, the broken
cycle described above determined by removing the edge (si, ti) from C and adding edges
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(si, vij) and (ti, vij), must be covered either with (si, vij) or (ti, vij). However, as j ranges
over |E|+ 1 values, and these edge pairs have distinct edges for different values of j, M ′ has
at least |E|+ 1 edges. This is a clear contradiction with M ′ being a minimum sized cover, as
any light cover of G is a regular cover of G′, and G only has |E| edges in total. J

4 Hardness

Previously, [9] gave an approximation-preserving reduction from Vertex Cover to both
MR(Kn,R) and MR(Kn,R≥0). Thus, both are APX-complete, and in particular are hard to
approximate within a factor of 2− ε for any ε > 0, assuming UGC [11]. Since these hardness
results were proven for complete graphs, they also immediately apply to the general problems
MR(G,R) and MR(G,R≥0). Here we give stronger hardness results for MR(G,R≥0) and
MR(G,R) by giving approximation-preserving reductions from MULTICUT and LB-CUT.

I Problem 4.1 (MULTICUT). Given an undirected unweighted graph G = (V,E) on n = |V |
vertices together with k pairs of vertices {si, ti}ki=1, compute a minimum size subset of edges
M ⊆ E whose removal disconnects all the demand pairs, i.e., in the subgraph (V,E \M)
every si is disconnected from its corresponding vertex ti.

Chawla et al. [8] proved that if UGC is true, then it is NP-hard to approximate MULTI-
CUT within any constant factor L > 0, and assuming a stronger version of UGC, within
Ω(
√

log logn). (The MULTICUT version in [8] allowed weights, but they remark their hardness
proofs extend to the unweighted case.)

I Theorem 9. There is an approximation-preserving, polynomial-time reduction from MUL-
TICUT to MR(G,R≥0).

Proof. Let G = (V,E) be an instance of MULTICUT with k pairs of vertices {si, ti}ki=1.
First, if (si, ti) ∈ E for any i, then that edge must be included in the solution M . Thus, we
can assume no such edges exists in the MULTICUT instance, as assuming this can only make
it harder to approximate the optimum value of the MULTICUT instance. We now construct
an instance of MR(G,R≥0), G′ = (V ′, E′, w). Let V ′ = V and E′ = E ∪ {si, ti}ki=1 where
the edges in E have weight one and the edges (si, ti), for all i ∈ [k], have weight n = |V |.

If a cycle in G′ has exactly one edge of weight n, then it must be broken since there can
be at most n− 1 other edges in the cycle. Conversely, if a cycle C has no edge or more than
one edge with weight n, then C does not have a heavy edge, and so is not broken.

Note that the edges from G are exactly the weight one edges in G′, and thus, the paths
in G are in one-to-one correspondence with the paths in G′ which consist of only weight
one edges. Moreover, the weight n edges in G′ are in one-to-correspondence with the (si, ti)
pairs from G. Thus, the cycles in G′ with exactly one weight n edge followed by paths of
all weight one edges connecting their endpoints, which by the above are exactly the set of
broken cycles, are in one-to-one correspondence with paths between (si, ti) pairs from G.
Therefore, a minimum cardinality subset of edges which light cover all broken cycles, i.e., an
optimal MR(G,R≥0) support, corresponds to a minimum cardinality subset of edges from E

which cover all paths from si to ti for all i, i.e., an optimal solution to MULTICUT. J

I Problem 4.2 (LB-CUT). Given a value L and an undirected unweighted graph G = (V,E)
with source s and sink t, find a minimum size subset of edges M ⊆ E such that no s-t-path
of length less than or equal to L remains in the graph after removing the edges in M .
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An instance of LB-CUT with length L, is referred to as an instance of L-LB-CUT. For any
fixed L, Lee [12] showed that it is hard to approximate L-LB-CUT within a factor of Ω(

√
L).

Using a similar reduction as above, we argue the following.

I Theorem 10. For any fixed value L, there is an approximation-preserving, polynomial-time
reduction from L-LB-CUT to MR(G,R≥0).

Proof. Let G = (V,E) be an instance of L-LB-CUT with source s and sink t. First, if
(s, t) ∈ E, then that edge must be included in the solution M . Thus we can assume that
edge is not in the LB-CUT instance, as assuming this can only make it harder to approximate
the optimum value of the LB-CUT instance. We now construct an instance of MR(G,R≥0),
G′ = (V ′, E′, w). Let V ′ = V and E′ = E ∪ {(s, t)} where the edges in E have weight 1 and
the edge (s, t) has weight L+ 1.

First, observe that any cycle containing the edge (s, t) followed by ≤ L unit weight edges
is broken, as the sum of the unit weight edges will be < L+ 1 = w((s, t)). Conversely, any
broken cycle must contain the edge (s, t) followed by ≤ L unit weight edges. Specifically, if a
cycle does not contain (s, t) then it is unbroken since all edges would then have weight 1.
Moreover, if a cycle contains (s, t) and > L other edges, then the total sum of those unit
edges will be ≥ L+ 1 = w((s, t)).

Note that the edges from G are exactly the weight one edges in G′, and thus the paths in
G are in one-to-one correspondence with the paths in G′ which consist of only weight one
edges. Moreover, the edge (s, t) in G′ corresponds with the source and sink from G. Thus
by the above, the broken cycles in G′ are in one-to-one correspondence with s-t-paths with
length ≤ L in G. Therefore, a minimum cardinality subset of edges which light cover all
broken cycles, i.e., an optimal support to MR(G,R≥0), corresponds to a minimum cardinality
subset of edges from E which cover all paths from s to t of length ≤ L, i.e., an optimal
solution to LB-CUT. J

In the L-LB-CUT to MR(G,R≥0) reduction of Theorem 10, one edge (the s, t pair)
has weight L + 1 and all other edges have unit weight. Moreover, in the reduction from
MR(G,R≥0) to MR(G,R) of Theorem 8, the max edge weight increases by 1. Thus, by these
reductions, and previous hardness results, we have the following summarizing theorem.

I Theorem 11. MR(G,R≥0) and MR(G,R) are APX-complete, and moreover assuming
UGC neither can be approximated within any constant factor.

For any positive integer L, consider the problem defined by the restriction of MR(G,R)
to integer weight instances with maximum edge weight L and minimum edge weight 1, or the
further restriction of MR(G,R≥0) to instances where all weights are 1 except for a single
weight L edge. Then assuming UGC these problems are hard to approximate within Ω(

√
L).

5 Fixed Parameter Analysis for ς-Chordal Graphs

Let ς be a fixed constant, and let Fς be the family of all ς-chordal graphs. Here we provide
an FPT for MR(G,R) for any G ∈ Fς , parameterized on the optimal solution size OPT .

By Theorem 6, we seek a minimum sized cover of all broken cycles. First, we argue below
that if G has a broken cycle, then it has a broken chordless cycle. This seems to imply a
natural FPT algorithm for constant ς. Namely, find an uncovered broken chordless cycle and
recursively try adding each one of its edges to our current solution.1 However, it is possible

1 One might construe this as FPT kernelization. The edges of the broken chordless cycles do form a kernel
but its size is not bounded in our parameter. As an example, take G = Kn, set one edge weight to n + 1,
and all other weights to 1. There are 2n− 3 edges in the kernel while the optimal solution has size 1.
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to cover all broken chordless cycles while not covering the broken chorded cycles. These
cycles are difficult to cover as they may be much larger than ς, though again by Theorem 6
they must be covered.

Consider an optimal solution W , with support SW . Suppose that we have found a subset
S ( SW , covering all broken chordless cycles in G. Intuitively, if we add to each edge in S
its weight from W , then any remaining broken chordless cycle must be covered further, in
effect revealing which edges to consider from the chorded cycles from the original graph G.
The challenge, however, is of course that we don’t know W a priori. We argue that despite
this one can still identify a bounded sized subset of edges containing an edge from a cycle
needing to be covered further.

I Lemma 12. If G has a broken cycle, then G has a broken chordless cycle.

Proof. Let C = v1, . . . , vk be the broken cycle in G with the fewest edges, with v1vk being
the heavy edge. If C is chordless, then the claim holds. Otherwise, this cycle has at least
one chord vivj . Now there are two paths P1 and P2 from vi to vj on the cycle. Let P1
be the path containing the heavy edge of C. If w(vi, vj) >

∑
e∈P2

w(e), then P2 together
with the edge vivj defines a broken cycle with fewer edges than C. On the other hand, if
w(vi, vj) ≤

∑
e∈P2

w(e) then P1 together with the edge vivj defines a broken cycle with fewer
edges than C. In either case we get a contradiction as C was the broken cycle with the
fewest edges. J

Our FPT is shown in Algorithm 2, where we recursively build a potential support S up to
our current guess at the optimal size k. The following lemma is key to arguing correctness.

Algorithm 2 FPT.

1: function F(G,S, k)
2: if |S| = k then return verifier(G,S)
3: P = ∅
4: if there exists a broken chordless cycle C such that C ∩ S = ∅ then P = C

5: else
6: for s ⊆ S such that |s| ≤ ς − 1 do
7: Let C = {Chordless cycles C such that C ∩ S = s}
8: C1 ← arg minC∈C

∑
e∈C\s w(e)

9: C2 ← arg maxC∈C w(h)−
∑
e∈C\(s∪{h}) w(e), where h = arg maxf∈C\s w(f)

10: Add (C1 ∪ C2) \ S to P
11: for e ∈ P do
12: X = F(G,S ∪ {e}, k)
13: if X 6= NULL then return X

14: return NULL

15: function FPTWrapper(G)
16: for k = 1, 2, . . . do
17: X = F(G, ∅, k)
18: if X 6= NULL then return X

I Lemma 13. Consider any optimal solution W and its support SW to an instance of metric
repair for G = (V,E,w) ∈ Fς . If S ( SW , then F (G,S,OPT ) adds at least one edge in
SW \ S to P .
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Proof. Consider the auxiliary graph GS = (V,E, w̃), which has the same vertex and edge
sets as G, but with the modified weight function:

w̃ =
{
w(e) e 6∈ S
W (e) + w(e) e ∈ S

Since S ( SW , we have that GS has a broken cycle. Thus, by Lemma 12, GS has a chordless
broken cycle. Suppose there is a chordless broken cycle in GS that is edge disjoint from S

(which occurs if and only if it is also broken in G), in which case, line 4 finds such a cycle.
As this is a broken cycle, it must be covered by some edge in SW \ S, and thus, we have
added some edge in SW \ S to P .

Let us assume otherwise, that any chordless broken cycle in GS has non-empty intersection
with S. Let C be any such chordless broken cycle with C ∩ S 6= ∅. Observe that as C is
broken in GS , it must be that |C ∩ S| < |C|, as otherwise it would imply W was not a
solution. Thus, as G ∈ Fς , we know that |C| ≤ ς, and so |C ∩ S| < ς. This implies in some
for loop iteration, C ∈ C on line 7.

Let h be the heavy edge, in GS , of the broken cycle C. We now have two cases:
Case 1: h ∈ S. In this case we have that

W (h) + w(h) >
∑
e∈C\S

w(e)

︸ ︷︷ ︸
(1)

+
∑
e∈S

W (e) + w(e).

On line 8 we found a cycle C1 that minimized (1). Thus, since C is broken in GS , C1 is also
broken in GS , and so must be covered by some edge in SW \ S. Hence, we added some edge
in SW \ S to P .

Case 2 h 6∈ S. In this case h has the maximum weight of all edges in C \ s. We have that

w(h)−
∑

e∈C\(S∪{h})

w(e)

︸ ︷︷ ︸
(2)

>
∑
e∈S

W (e) + w(e).

On line 9 we found a cycle C2 maximizing (2). Thus, if C is broken in GS , then C2 is broken
in GS , and so must be covered by some edge in SW \ S. Hence, we added some edge in
SW \ S to P . J

I Lemma 14. Any time we call F , we have that |P | ≤ 2ς|S|ς

Proof. Note |P | is upper bounded by ς multiplied by the number of chordless cycles we add.
If the conditional on line 4 is true then we add only a single chordless cycle to P . Otherwise,
for each s ⊆ S such that |s| ≤ ς − 1 we find two cycles. There are at most

ς−1∑
i=1

(
|S|
i

)
≤

ς−1∑
i=1
|S|i ≤ |S|ς

many such subsets, and thus we add at most 2|S|ς many cycles, implying the claim. J

I Theorem 15. For any fixed constant ς, Algorithm 2 is an FPT algorithm for MR(G,R)
for any G ∈ Fς , when parameterized by OPT. The running time is Θ((2ςOPT ς)OPT+1nς).
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Proof. FPTWrapper iteratively calls F (G, ∅, k) for increasing values of k until it returns
a non-Null value. First, we argue that while k < OPT , F (G, ∅, k) will return Null. In the
initial call to F , we have S = ∅. F then adds exactly one edge in each recursive call until
|S| = k, at which point it returns Verifier(G,S). Thus, as k < OPT , by proposition 7,
NULL is returned.

Now we argue that when k = OPT an optimal solution is returned. Fix any optimal
solution W and its support SW to the given instance G. By Lemma 13, if S ( SW (which is
true initially as S = ∅) then at least one edge in SW \ S is added to P . Thus, as F makes a
recursive call to F (G,S ∪ {e}, k) for every edge e ∈ P , in at least one recursive call an edge
of SW is added to S. Thus there is some path in the tree of recursive calls to F in which
all k = OPT edges from SW are added, at which point F returns Verifier(G,S), which
returns an optimal solution by proposition 7. (Note this recursive call may not be reached, if
a different optimal solution is found first.)

Now we consider bounding the running time. Observe that in each call to F , a set P
is constructed, and then recursive calls to F (G,S ∪ {e}, k) are made for each e ∈ P . By
Lemma 14, |P | ≤ 2ς|S|ς ≤ 2ςkς at all times. So in the tree of all recursive calls made by any
initial call to F (G, ∅, k), the branching factor is always bounded by 2ςkς , and the depth is k.
Thus there are O((2ςkς)k) nodes in our recursion tree.

Now we bound the time needed for each node in the recursion tree. If Verifier is
called then it takes O(TAPSP) time by proposition 7. Otherwise, note that there are O(nς)
chordless cycles. Thus it takes O(ςnς) time to enumerate and check them on line 4. Similarly
|C| = O(nς) on line 7, and so the run time of each iteration of the for loop is O(ςnς). There
are O(|S|ς) = O(kς) iterations of the for loop, thus the total time per node is O(ςkςnς).

Thus the total time for each call to F (G, ∅, k) is O((2ςkς)kςkςnς) = O((2ςkς)k+1nς).
Since FPTWrapper calls F (G, ∅, k) for k = 1, . . . , OPT , the overall running time is

O

((
OPT∑
k=1

(2ςkς)k+1

)
· nς
)

= O((2ςOPT ς)OPT+1nς). J

As lemma 13 holds for any optimal solution, the bound on the recursion tree size in the
above proof actually bounds the number of optimal solutions.

I Corollary 16. If G ∈ Fς then there are at most (2ςOPT ς)OPT subsets S ⊂ E such that S
is the support of an optimal solution to MR(G,R).

I Remark 17. Using the approximation-preserving reduction from MR(G,R≥0) to MR(G,R)
in Theorem 8, the above also yields an FPT for MR(G,R≥0). This holds since the reduction
does not change the optimal solution size, nor ς as it only adds triangles. Alternatively, the
above algorithm can be carefully modified to consider light covering broken cycles.

6 Approximation Algorithms

In this section we present approximation algorithms for MR(G,R≥0) and MR(G,R).
By Theorem 6, the support of an optimal solution to MR(G,R) is a minimum cardinality

regular cover of all broken cycles. This naturally defines a hitting set instance (E, C), where
the ground set E is the edges from G, and C is the collection of the subsets of edges determined
by broken cycles. Unfortunately, constructing (E, C) explicitly is infeasible as there may be an
exponential number of broken cycles. In general just counting the number of paths in a graph
is #P-Hard [16], though it is known how to count paths of length up to roughly O(logn)
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using color-coding. (See [1, 4] and references therein.) Moreover, observe our situation is
more convoluted as we wish to count only paths corresponding to broken cycles.

Despite these challenges, we argue there is sufficient structure to at least roughly apply
the standard greedy algorithms for hitting set. Our first key insight, related to insight i, is:
(ii) One can always find some broken cycle, if one exists, by finding any edge whose weight

is more than the shortest path length between its endpoints (using APSP).
Thus we have a polynomial time oracle, returning an arbitrary set in C. Recall the greedy
algorithm for hitting set, which repeatedly picks an arbitrary uncovered set, and adds
all its elements to the solution. If L = maxc∈C |c| is the largest set size, this gives an L-
approximation, as each time we take the elements of a set, we get at least one element of the
optimal solution. Below we apply this approach to approximate MR(G,R) and MR(G,R≥0).

We would prefer, however, to have an oracle for the number of broken cycles that an
edge e ∈ E participates in as using such an oracle would yield an O(logn)-approximation
algorithm for MR(G,R) (regardless of the size of L) by running the standard greedy algorithm
for hitting set which repeatedly selects the element that hits the largest number of uncovered
sets. Towards this end, we have the following key insight:
(iii) We can find the most broken cycle (i.e., with maximum deficit) and, more importantly,

count how many such maximum deficit cycles each edge is in.
To argue that insight iii is true, first we observe that the cycle with the largest deficit value
corresponds to a shortest path. This in turn, argued over several lemmas, allows us to
quickly get a count when restricting to such cycles. Thus, if κ denotes the number of distinct
cycle deficit values, the above insight implies an O(κ logn)-approximation, by breaking the
problem into κ hitting set instances, where for each instance we can run the greedy algorithm.

6.1 L-approximation
In this section, we consider the problems defined by restricting MR(G,R) and MR(G,R≥0)
to the subset of instances where the largest number of light edges in a broken cycle is L. We
present an (L+ 1)-approximation algorithm for MR(G,R) which runs in O(TAPSP ·OPT )
time, which also will imply an L-approximation for MR(G,R≥0) with the same running time.

As mentioned above, the main idea comes from insight ii. In particular, the following
algorithm, Short Path Cover (SPC), can be easily understood by viewing it as running
the standard L-approximation for the corresponding instance (E, C) of hitting set, where we
have an oracle for finding a set c ∈ C. In the following, APSP is a subroutine returning a
shortest path distance function d(u, v), and a function P (u, v) giving the set of edges along
any shortest path from u to v.

Algorithm 3 Short Path Cover (SPC) for MR(G,R).

1: function SPC(G = (V,E,w))
2: H = (VH = V,EH = E,wH = w)
3: while True do
4: d, P = APSP(H)
5: if ∃ e = (u, v) ∈ EH such that w(e) > d(u, v) then EH = EH \ (P (u, v) ∪ {e})
6: else return Verifier(G,E \ EH)

I Theorem 18. SPC gives an (L+ 1)-approximation for MR(G,R) in O(TAPSP ·OPT ) time.

Proof. First, note that if there is a broken cycle in H, then for some edge e = (u, v),
w(e) > d(u, v), and moreover, in this case P (u, v) ∪ {e} is a broken cycle. Thus, when the
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algorithm terminates there are no broken cycles in H. Also, for any broken cycle in G, if all
of its edges are still in H, then it will be a broken cycle in H. Thus, when the algorithm
terminates at least one edge from each broken cycle in G is in E \ EH , which by Theorem 6
implies E \ EH is a valid support.

Note that removing edges does not create any new broken cycles, thus, any broken cycle
in H is also a broken cycle in G. Thus, the support of any optimum solution must contain
at least one edge from each broken cycle in H (again by Theorem 6), and so every time we
remove the edges of a broken cycle P (u, v) ∪ {e}, we remove at least one optimum edge. As
the largest broken cycle length is L+ 1, this implies overall we get an (L+ 1)-approximation.
The same argument implies the while loop can get executed at most OPT times, and as
APSP takes O(TAPSP) time, and line 5 takes O(m) time, we obtain the running time in the
theorem statement. J

I Remark 19. If we modify SPC so that in line 5 we only remove P (u, v) from EH (rather
than P (u, v) ∪ {e}), then by the second part of Theorem 6, the same argument implies that
SPC is an L-approximation for MR(G,R≥0) that runs in O(TAPSP ·OPT ) time.

I Remark 20. Theorem 11 restricts MR(G,R≥0) and MR(G,R) to integer instances with
max weight L, implying any broken cycle has ≤ L edges. As this is a subset of the instances
here, SPC is an L or L+ 1 approx for instances that are hard to approximate within Ω(

√
L).

6.2 O(κ logn)-approximation
Using insight iii, our approach is to iteratively cover cycles by decreasing deficit value,
ultimately breaking the problem into multiple hitting set instances. We present the algorithm
for MR(G,R) first and then remark on the minor change needed to apply it to MR(G,R≥0).

For any pair of vertices s, t ∈ V , let d(s, t) denote their shortest path distance in G, and
#sp(s, t) denote the number of shortest paths from s to t. It is straightforward to show that
#sp(s, t) can be computed in O(m+ n) time given all d(u, v) values have been precomputed.

I Lemma 21. Let G be a positively weighted graph, where for all pairs of vertices u, v one
has constant time access to the value d(u, v). Then for any pair of vertices s, t, the value
#sp(s, t) can be computed in O(m+ n) time.

Recall that for a broken cycle C with heavy edge h, the deficit of C is δ(C) = w(h)−∑
e∈(C\h) w(e). Moreover, δ(G) denotes the maximum deficit over all cycles in G. For any

edge e, define Nh(e, α) to be the number of distinct broken cycles of deficit α whose heavy
edge is e. Similarly, let Nl(e, α) denote the number of distinct broken cycles with deficit α
which contain the edge e, but where e is not the heavy edge. While for general α it is not
clear how to even approximate Nl(e, α) and Nh(e, α), we argue that when α = δ(G) these
values can be computed exactly.

I Lemma 22. For any edge e = (s, t), if w(e) = d(s, t) + δ(G) then Nh(e, δ(G)) = #sp(s, t),
and otherwise Nh(e, δ(G)) = 0.

Proof. If w(e) 6= d(s, t) + δ(G), then as δ(G) is the maximum deficit over all cycles, it must
be that w(e) < d(s, t) + δ(G), which in turn implies any broken cycle with heavy edge e has
deficit strictly less than δ(G). Now suppose w(e) = d(s, t) + δ(G), and consider any path ps,t
from s to t such that e together with ps,t creates a broken cycle with heavy edge e. If ps,t is
a shortest path then w(e)− w(ps,t) = w(e)− d(s, t) = δ(G), and otherwise w(ps,t) > d(s, t)
and so w(e)− w(ps,t) < w(e)− d(s, t) = δ(G). Thus Nh(e, δ(G)) = #sp(s, t) as claimed. J
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As G is undirected, every edge e ∈ E correspond to some unordered pair {a, b}. However,
often we write e = (a, b) as an ordered pair, according to some fixed arbitrary total ordering
of all the vertices. We point this out to clarify the following statement.

I Lemma 23. Fix any edge e = (s, t), and let X = {f = (a, b) | w(f) = d(a, s) + w(e) +
d(t, b) + δ(G)}, and Y = {f = (a, b) | w(f) = d(b, s) + w(e) + d(t, a) + δ(G)}. Then

Nl(e, δ(G)) =

 ∑
(a,b)∈X

#sp(a, s) ·#sp(t, b)

+

 ∑
(a,b)∈Y

#sp(b, s) ·#sp(t, a)

 .

Proof. Consider any broken cycle C containing e = (s, t), with heavy edge f = (a, b) and
where δ(C) = δ(G). Such a cycle must contain a shortest path between a and b, as otherwise
it would imply δ(G) > δ(C). Now if we order the vertices cyclically, then the subset of
C’s vertices {a, b, s, t}, must appear either in the order a, s, t, b or b, s, t, a. In the former
case, as the cycle must use shortest paths, w(f) = d(a, s) + w(e) + d(t, b) + δ(G), and
the number of cycles satisfying this is #sp(a, s) · #sp(t, b). In the latter case, w(f) =
d(b, s) +w(e) + d(t, a) + δ(G), and the number of cycles satisfying this is #sp(b, s) ·#sp(t, a).
Note also that the set X from the lemma statement is the set of all f = (a, b) satisfying the
equation in the former direction, and Y is the set of all f = (a, b) satisfying the equation in
the later direction. Thus summing over each relevant heavy edge in X and Y , of the number
of broken cycles of deficit δ(G) which involve that heavy edge and e, yields the total number
of broken cycles with deficit δ(G) containing e as a light edge. J

I Corollary 24. Given constant time access to d(u, v) and #sp(u, v) for any vertices u and
v, Nh(e, δ(G)) can be computed in O(1) time and Nl(e, δ(G)) in O(m) time.

Algorithm 4 Finds a valid solution for MR(G,R).

1: function Approx(G = (V,E,w))
2: Let S = ∅
3: while True do
4: For every pair s, t ∈ V compute d(s, t)
5: Compute δ(G) = maxe=(s,t)∈E w(e)− d(s, t)
6: if δ(G) = 0 then return Verifier(G,S)
7: For every edge (s, t) ∈ E compute #sp(s, t)
8: For every e ∈ E compute count(e) = Nh(e, δ(G)) +Nl(e, δ(G))
9: Set f = arg maxe∈E count(e)
10: Update S = S ∪ {f} and G = G \ f

I Theorem 25. For any positive integer κ, consider the set of MR(G,R) instances where
the number of distict deficit values is at most κ, i.e., |{δ(C) | C is a cycle in G}| ≤ κ. Then
Algorithm 4 gives an O((TAPSP +m2) ·OPT · κ logn) time O(κ logn)-approximation.

Proof. Observe that the algorithm terminates only when δ(G) = 0, i.e., only once there are
no broken cycles left. As no new edges are added, and weights are never modified, this implies
that when the algorithm terminates it outputs a valid regular cover S. (The algorithm must
terminate as every round removes an edge.) Therefore, by Theorem 6, S is a valid MR(G,R)
support, and so we only need to bound its size.
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Let the edges in S = {s1, . . . , sk} be indexed in increasing order of the loop iteration
in which they were selected. Let G1, . . . , Gk+1 be the corresponding sequence of graphs
produced by the algorithm, where Gi = G \ {s1, . . . , si−1}. Note that for all i, Gi = (V,Ei)
induces a corresponding instance of hitting set, (Ei, Ci), where the ground set is the set of
edges from the MR(G,R) instance Gi, and Ci = {Ei(C) | C is a broken cycle in Gi} (where
Ei(C) is the set of edges in C).

Let D = {δ(C) | C is a cycle in G}, where by assumption |D| ≤ κ. Note that any
cycle C in any graph Gi, is also a cycle in G. Thus as we never modify edge weights,
δ(G1), . . . , δ(Gk+1) is a non-increasing sequence. Moreover X = {δ(Gi)}i ⊆ D, and in
particular |X| ≤ κ. For a given value δ ∈ X, let Gα, Gα+1, . . . , Gβ be the subsequence of
graphs with deficit δ (which is consecutive as the deficit values are non-increasing). Observe
that for all α ≤ i ≤ β, the edge si is an edge from a cycle with deficit δ = δ(Gi). So for each
α ≤ i ≤ β, define a sub-instance of hitting set (E′i, C′i), where E′i is the set of edges in cycles
of deficit δ from Gi, and C′i is the family of sets of edges from each cycle of deficit δ in Gi.

The claim is that for the hitting set instance (E′α, C′α), that {sα, . . . , sβ} is an O(logn)
approximation to the optimal solution. To see this, observe that for any α ≤ i ≤ β in line
8, count(e) is the number of times e is contained in a broken cycle with deficit δ = δ(Gi),
as by definition Nh(e, δ(Gi)) and Nl(e, δ(Gi)) count the occurrences of e in such cycles as
a heavy edge or light edge, respectively. Thus si is the edge in E′i which hits the largest
number of sets in C′i, and moreover, (E′i+1, C′i+1) is the corresponding hitting set instance
induced by removing si and the sets it hit from (E′i, C′i). Thus {sα, . . . , sβ} is the resulting
output of running the standard greedy hitting set algorithm on (E′α, C′α) (that repeatedly
removes the element hitting the largest number of sets), and it is well known this greedy
algorithm produces an O(logn) approximation.

The bound on the size of S now easily follows. Specifically, let I = {i1, i2, . . . , i|X|} be
the collection of indices, where ij was the first graph considered with deficit δ(Gij ). By
the above, S is the union of the O(logn)-approximations to the sequence of hitting set
instance (E′i1 , C

′
i1

), . . . , (E′i|X|
, C′i|X|

). In particular, note that for all ij , (E′ij , C
′
ij

) is a hitting
set instance induced from the removal of a subset of edges from the initial hitting set instance
(E1, C1), and then further restricted to sets from cycles with a given deficit value. Thus the
size of the optimal solution on each of these instances can only be smaller than on (E1, C1).
This implies that the total size of the returned set S is O(OPT · |X| logn) = O(OPT ·κ logn).

As for the running time, first observe that by the above, there are O(OPT · κ logn) while
loop iterations. Next, the single call to Verifier in line 6 takes O(TAPSP). For a given loop
iteration, computing all pairwise distances in line 4 also takes O(TAPSP) time. Computing
the graph deficit in line 5 can then be done in O(m) time. For any given vertex pair s, t,
computing #sp(s, t) takes O(m + n) time by Lemma 21. Thus computing the number of
shortest paths over all edges in line 7 takes O(m2 +mn) time. For each edge e, by Corollary
24, count(e) = Nh(e, δ(G))+Nl(e, δ(G)) can be computed in O(m) time, and thus computing
all counts in line 8 takes O(m2) time. As the remaining steps can be computed in linear
time, each while loop iteration in total takes O(TAPSP +mn+m2) = O(TAPSP +m2) time,
thus implying the running time bound over all iterations in the theorem statement. J

I Remark 26. If we modify line 8 to instead set count(e) = Nl(e, δ(G)), by Theorem 6, we
get the same result for MR(G,R≥0). If instead we used the reduction from MR(G,R≥0) to
MR(G,R) of Theorem 8, the graph size increases by a linear factor, giving a slower run time.
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A Transitioning to Graph Metric Repair

A.1 The decrease only case
For the problem MR(G,R≤0), consider the following simple algorithm, used in previous
works for the special case when G = Kn.

Algorithm 5 Decrease Metric Repair (Dmr).

1: function DMR(G = (V,E,w))
2: Let W = w

3: For any edge e = uv ∈ E, set W (e) = weight of a shortest path between u and v
4: return W − w
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I Theorem 5. The problem MR(G,R≤0) can be solved in O(TAPSP) time.
Moreover, the problem becomes hard if even a single positive value is allowed. That is, if

0 ∈ Ω and Ω ∩ R>0 6= ∅ then MR(G,Ω) is APX-Complete.

Proof. For the first part, let e ∈ G be an edge whose edge weight is bigger than the shortest
path between the two end points of e. Then in this case e is the heavy edge in a broken
cycle. Hence, any decrease only solution must decrease this edge. Thus all edges decreased
by Dmr are edges that must be decreased.

By the same reasoning we see that this new weighted graph has no broken cycles. Thus,
we see that our algorithm gives a sparsest solution to MR(G,R≤0) in Θ(TAPSP) time.

For the second part, the reduction is the same as that of Fan et al. [9]. However, we
make the observation that for any value α > 0, by appropriately scaling the weights of
the reduction in Fan et al. [9], MR(G,R≤0) is still APX-Hard in the extreme case when
Ω = {0, α}. J

I Corollary 27. For any G = (V,E,w) Dmr returns the smallest solution for any `p norm
for p ∈ [1,∞).

Proof. The proof of Theorem 5 actually shows that there is a unique support for the sparsest
solution, i.e., the set of all heavy edges. In fact any decrease only solution must contain all
of these edges in its support. We can also see that Dmr decreases these by the minimum
amount so that the cycles are unbroken. Thus, this solution is in fact the smallest for any `p
norm. J

A.2 Structural results
I Proposition 7. The Verifier algorithm, given a weighted graph G and a potential support
for a solution S, determines in O(TAPSP) time whether there exists a valid (increase only or
general) solution on that support and if so finds one.

Proof. Let G = (V,E,w) be the original graph and let M be the maximum edge weight from
the graph G. The algorithm defines a new graph Ĝ = (V,E, ŵ), with the following weights

ŵ(e) =
{
w(e) e 6∈ S
M e ∈ S

For each e = (v1, v2) ∈ E, line 4 sets w(e) to be the weight of the shortest path in Ĝ from v1
to v2. Thus, at the end of the algorithm w(e) satisfies the shortest path metric of Ĝ. As the
algorithm outputs w if and only if only edge weights in S are modified (increased), it suffices
to argue S is a regular cover (light cover) if and only if only edge weights in S are modified
(increased).

Assume that S is a regular or light cover. We argue line 4 only updates the weights of
the edges in S. Note that G \ S has no broken cycles. Thus, for any e = (v1, v2) ∈ G \ S we
have that the shortest path from v1 to v2 must be e. Now consider any path P from v1 to v2
in Ĝ. If P ∩ S = ∅, then w(P ) ≥ w(e). On the other hand if P ∩ S 6= ∅, then let ẽ ∈ P ∩ S.
Then, we have that

w(P ) ≥ w(ẽ) = M ≥ w(e)

Thus, in either case, w(P ) ≥ w(e). Hence for all e ∈ G \ S we do not change its weight.
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If S is a light cover, we also need to argue that the weights only increased. Let e =
(v1, v2) ∈ S. Let P be a path of smallest weight in Ĝ. Suppose P ∩ S 6= ∅, then, we have
that w(P ) ≥M ≥ w(e). Thus, in this case we could not have decreased the weight. Thus,
assume that P ∩ S = ∅. If we still have that w(P ) ≥ w(e), then we could not have decreased
the weight. Thus, let us further assume that w(P ) < w(e). In this case, P along with e form
a broken cycle in G, with e as the heavy edge. But then since S is a light cover, we have
that P ∩ S 6= ∅. Thus, we have a contradiction and this case cannot occur. Thus, if S is a
light cover, then we only increase the edge weights.

Now assume S is not a regular cover (light cover). Then there exists a broken cycle C
such that none of its (light) edges are in S. Thus, there is a broken cycle C in Ĝ. Let e be
the heavy edge of C, then on line 4 the weight of e will be decreased, and thus our algorithm
will return NULL. J

The next theorem shows that once we know the support, the set of all possible solutions
on that support is a nice space.

I Theorem 28. For any weighted graph G and support S we have that the set of solutions
with support S is a closed convex subset of Rn×n. Additionally, if G−S is a connected graph
or we require an upper bound on the weight of each edge, then the set of solutions is compact.

Proof. Let xij for 1 ≤ i, j ≤ n be our coordinates. Then the equations xij = cij for (i, j)
not in the support and xij ≤ xik + xkj define a closed convex set. Thus, we see the first part.
For the second part we just need to see that set is bounded to get compactness. If we have
that G− S is connected then for all e ∈ S there is a path between end points of e in G− S.
Thus, the weight of this path is an upper bound. On the other hand 0 is always a lower
bound. Thus, we get compactness if G− S is connected. J

B Approximation Algorithms

Here we give the missing proofs from our O(κ logn)-approximation algorithm.

I Lemma 21. Let G be a positively weighted graph, where for all pairs of vertices u, v one
has constant time access to the value d(u, v). Then for any pair of vertices s, t, the value
#sp(s, t) can be computed in O(m+ n) time.

Proof. Let V = {v1, v2, v3, ..., vn}, and let N(vi) denote the set of neighbors of vi. Define
Xi = {vj ∈ N(vi) | w(vi, vj) + d(vj , t) = d(vi, t)}, that is, Xi is the set of neighbors of vi
where there is a shortest path from t to vi passing through that neighbor. Thus we have,

#sp(vi, t) =
∑
vj∈Xi

#sp(vj , t).

Note that any shortest path from vi to t can only use vertices vj which are closer to t than
vi. So consider a topological ordering of the vertices, where edges are conceptually oriented
from smaller to larger d(vi, t) values. Thus if we compute the #sp(vi, t) values in increasing
order of the index i, then each #sp(vi, t) value can be computed in time proportional to the
degree of vi, and so the overall running time is O(m+ n). J

I Corollary 24. Given constant time access to d(u, v) and #sp(u, v) for any vertices u and
v, Nh(e, δ(G)) can be computed in O(1) time and Nl(e, δ(G)) in O(m) time.
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Proof. By Lemma 22, in constant time we can check whether w(e) = d(s, t) + δ(G), in
which case set Nh(e, δ(G)) = #sp(s, t), and otherwise set Nh(e, δ(G)) = 0. By Lemma
23, we can compute Nl(e, δ(G)) with a linear scan of the edges, where for each edge f in
constant time we can compute whether w(f) = d(a, s) + w(e) + d(t, b) + δ(G) and if so add
#sp(a, s) ·#sp(t, b) to the sum over X, and if w(f) = d(b, s) + w(e) + d(t, a) + δ(G) add
#sp(b, s) ·#sp(t, a) to the sum over Y . J

C Improved Analysis for Complete Graphs

Here we consider the special case when G = Kn, improving parts of the analysis from [9, 10].
First, we consider the O(OPT 1/3)-approximation algorithm of [9], which works for both
MR(Kn,R) and MR(Kn,R≥0). The running time of this algorithm is Θ(n6), since at some
point it enumerates all cycles of length ≤ 6. With a more careful analysis, we observe it suffices
to consider cycles of length ≤ 5, improving the running time to Θ(n5). For MR(Kn,R≥0) we
consider a simple, appealing algorithm with good empirical performance from [10], referred
to as IOMR-fixed. We prove that unfortunately it is an Ω(n) approximation.

C.1 5 Cycle Cover
Here we argue the running time of the O(OPT 1/3)-approximation algorithm of [9], which
works for both MR(Kn,R) and MR(Kn,R≥0), can be improved from Θ(n6) to Θ(n5). The
algorithm presented in [9] has 3 major steps. The first two steps are used to approximate the
support of the optimal solution and then the last step is actually used to find a solution given
this support. We shall focus on the first 2 steps as these are where we make modifications.

Figure 3 Left: Embedding from [9]. Right: Our modified embedding for a smaller cycle. Here
the black edge is the heavy edge. The blue edges are the light edges and the red edges are the
embedded 4 cycle. The curved blue edge indicates that there are more vertices along that path.

First Step: In the first step, [9] find a cover for all broken cycles of length ≤ m. In
particular, the authors use the case when m = 6. As described in [9], we can obtain an
m− 1 approximation of the optimal cover for all broken cycles of length ≤ m in O(nm) time.
Denote this cover by S≤m.

Second Step: For this step, we need to first define unit cycles. Given a broken cycle C
with heavy edge h, let e be a chord of C. Then e divides C into 2 cycles, one that contains h,
denoted heavy(C, e) and one that does not contain h denoted light(C, e). We say this cycle
is a unit cycle if for all chords e, e is not the heavy edge of light(C, e).
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From the definition of a unit cycle, a light cover of all unit cycles light covers all broken
cycles. Hence, step 2 of the algorithm from [9] light covers all unit cycles not covered by S≤6
as follows. Let C be such a unit cycle. Now we know that C has at least 7 edges. Consider
the red C4 shown in Figure 3. We know that for each e ∈ C4, we have that heavy(C, e) is a
broken cycle with at most 6 edges. Hence, we must have at least 1 edge in S≤6. But since C
has no light edges in S≤6, we must have e ∈ S≤6. Thus, we know all edges in C4 are edges
in S≤6. Moreover, observe that either chord of C4 is a light edge of C. Thus it suffices to
compute a cover with least one chord of every four cycle from the edges in S≤6, a step which
the authors in [9] denote chord4(S≤6).

In Figure 3, we observe that the same 4 cycle can be embedded in a 6 cycle instead of a 7
cycle. Thus, our modified algorithm is shown in Algorithm 6.

Algorithm 6 5-Cycle Cover.

1: function 5 Cycle Cover(G = (V,E,w))
2: Compute a regular cover of S≤5 of all broken cycles with ≤ 5 edges
3: Compute a cover Sc = chord4(S≤5)
4: return Verifier(G,Sc ∪ S≤5)

C.2 IOMR-fixed
We will now show that IOMR-fixed is an Ω(n) approximation algorithm. The algorithm
presented in Gilbert and Jain [10] is as follows:

Algorithm 7 IOMR Fixed.

Require: D ∈ Symn(R≥0)
1: function IOMR-Fixed(D)
2: D̂ = D

3: for k ← 1 to n do
4: for i← 1 to n do
5: D̂ik = max(D̂ik,maxj<i(D̂ij − D̂jk))
6: return D̂ −D

I Lemma 29. For every n, there exists a weighted graph G such that IOMR-Fixed repairs(
n−1

2
)
edge weights while an optimal solutions repairs at most (n− 2) edge weights.

Proof. Consider a matrix D where

Dij =


0 if i 6= 1, j 6= 1
2i if j = 1, i > 1
2j if i = 1, j > 1

This matrix D will be the weight matrix for the input graph Kn.
First, we claim that all entries of the form Ds1 will never be updated as entries will only

be updated the first time they are seen. Thus

Ds1 = max(Ds1,max
t<s

(Ds1 −D1t)) = max(2s,max
t<s

(2s − 2t)) = 2s
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Now we just have to verify that the rest of the non-diagonal entries are updated. Let us
look at the first time an entry Drs is updated. (Here r < s.) Then we have that

D̂rs = max(Drs,max
t<s

(Dst −Dtr)) = max
t<s

(Dst −Dtr) [Since Drs = 0]

≥ Ds1 −D1r = 2s − sr > Drs.

Thus all other non-diagonal entries will be updated the first time seen. Thus, for the solution
W = D̂ −D that IOMR-fixed returns, we see that Wij > 0 for exactly all 1 < i, j ≤ n and
i 6= j. Thus, we repaired

(
n−1

2
)
edge weights.

Finally, a sparser increase only solution W can be obtained as follows. For all s > 1 we
set

W1s = Ws1 = 2n −Ds1

and all other entries of W are 0. This then gives us the desired result. J

I Corollary 30. IOMR-fixed is an Ω(n) approximation algorithm.
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Abstract
Given an undirected graph G and integers c and k, the Maximum Edge-Colorable Subgraph
problem asks whether we can delete at most k edges in G to obtain a graph that has a proper edge
coloring with at most c colors. We show that Maximum Edge-Colorable Subgraph admits, for
every fixed c, a linear-size problem kernel when parameterized by the edge deletion distance of G to
a graph with maximum degree c− 1. This parameterization measures the distance to instances that,
due to Vizing’s famous theorem, are trivial yes-instances. For c ≤ 4, we also provide a linear-size
kernel for the same parameterization for Multi Strong Triadic Closure, a related edge coloring
problem with applications in social network analysis. We provide further results for Maximum
Edge-Colorable Subgraph parameterized by the vertex deletion distance to graphs where every
component has order at most c and for the list-colored versions of both problems.
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1 Introduction

Edge coloring and its many variants form a fundamental problem family in algorithmic graph
theory [3, 12, 13, 14]. In the classic Edge Coloring problem, the input is a graph G and
an integer c and the task is to decide whether G has a proper edge coloring, that is, an
assignment of colors to the edges of a graph such that no pair of incident edges receives the
same color, with at most c colors. The number of necessary colors for a proper edge coloring
of a graph G is closely related to the degree of G: Vizing’s famous theorem states that
any graph G with maximum degree ∆ can be edge-colored with ∆ + 1 colors [27], an early
example of an additive approximation algorithm. Later it was shown that Edge Coloring
is NP-hard for c = 3 [13], and in light of Vizing’s result it is clear that the hard instances
for c = 3 are exactly the subcubic graphs. Not surprisingly, the NP-hardness extends to
every fixed c ≥ 3 [21].

In the more general Maximum Edge-Colorable Subgraph (ECS) problem, we are
given an additional integer k and want to decide whether we can delete at most k edges
in the input graph G so that the resulting graph has a proper edge coloring with c colors.
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ECS is NP-hard for c = 2 [6] and it has received a considerable amount of interest for small
constant values of c such as c = 2 [6, 18], c = 3 [18, 19, 23], and c ≤ 7 [15]. Feige et al. [6]
mention that ECS has applications in call admittance in telecommunication networks. Given
the large amount of algorithmic literature on this problem, it is surprising that there is, to
the best of our knowledge, no work on fixed-parameter algorithms for ECS. This lack of
interest may be rooted in the NP-hardness of Edge Coloring for every fixed c ≥ 3, which
implies that ECS is not fixed-parameter tractable with respect to k + c unless P=NP.

Instead of the parameter k, we consider the parameter ξc−1 which we define as the
minimum number of edges that need to be deleted in the input graph to obtain a graph
with maximum degree c− 1. This is a distance-from-triviality parameterization [11]: Due to
Vizing’s Theorem, the answer is always yes if the input graph has maximum degree c− 1.
We parameterize by the edge-deletion distance to this trivial case. Observe that the number
of vertices with degree at least c is at most 2ξc−1. If we consider Edge Coloring instead
of ECS, the instances with maximum degree larger than c are trivial no-instances. Thus, in
non-trivial instances, the parameter ξc−1 is essentially the same as the number of vertices
that have degree c. This is, arguably, one of the most natural parameterizations for Edge
Coloring. We achieve a kernel that has linear size for every fixed c.

I Theorem 1.1. ECS admits a problem kernel with at most 4ξc−1 ·c vertices and O(ξc−1 ·c2)
edges that can be computed in O(n+m) time.

Herein, n denotes the number of vertices of the input graph G and m denotes the number
of edges. This kernel is obtained by making the following observation about the proof of
Vizing’s Theorem: When proving that an edge can be safely colored with one of c colors, we
only need to consider the closed neighborhood of one endpoint of this edge. This allows us
to show that all vertices which have degree at most c− 1 and only neighbors of degree at
most c− 1 can be safely removed.

Next, we consider ECS parameterized by the size λc of a smallest vertex set D such that
deleting D from G results in a graph where each connected component has at most c vertices.
The parameter λc presents a different distance-from-triviality parameterization, since a graph
with connected components of order at most c can trivially be colored with c edge colors.
Moreover, observe that λc is never larger than the vertex cover number which is a popular
structural parameter. Again, we obtain a linear-vertex kernel for λc when c is fixed.

I Theorem 1.2. ECS admits a problem kernel with O(c3 · λc) vertices.

We then consider Multi Strong Triadic Closure (Multi-STC) a closely related
edge coloring problem with applications in social network analysis [25]. In Multi-STC, we
are given a graph G and two integers k and c and aim to find a coloring of the edges with
one weak and at most c strong colors such that every pair of incident edges that forms an
induced path on three vertices does not receive the same strong color and the number of
weak edges is at most k. The idea behind this problem is to uncover the different strong
relation types in social networks by using the following assumption: if one person has for
example two colleagues, then these two people know each other and should also be connected
in the social network. In other words, if a vertex has two neighbors that are not adjacent
to each other, then this is evidence that either the strong interaction types with these two
neighbors are different or one of the interaction types is merely weak.

Combinatorically, there are two crucial differences to ECS: First, two incident edges may
receive the same strong color if the subgraph induced by the endpoints is a triangle. Second,
instead of deleting edges to obtain a graph that admits such a coloring, we may label edges
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Table 1 A summary of our results for the two problems. Herein, ξc−1 denotes the edge-deletion
distance to graphs with maximum degree at most c− 1, and λc denotes the vertex-deletion distance
to graphs where every connected component has order at most c.

Parameter ECS Multi-STC
(ξc−1, c) O(ξc−1c)-vertex kernel (Thm. 1.1) O(ξc−1)-edge kernel (Thm. 4.14),

if c ≤ 4
(λc, c) O(c3 · λc)-vertex kernel (Thm. 1.2) No poly Kernel, even for c = 1 [10]

as weak. In ECS this does not make a difference; in Multi-STC, however, deleting an edge
may destroy triangles which would add an additional constraint on the coloring of the two
remaining triangle edges.

In contrast to ECS, Multi-STC is NP-hard already for c = 1 [25]. This special case is
known as Strong Triadic Closure (STC). Not surprisingly, Multi-STC is NP-hard for
all fixed c ≥ 2 [1]. Moreover, for c ≥ 3 Multi-STC is NP-hard even if k = 0, that is, even
if every edge has to be colored with a strong color. STC and Multi-STC have received a
considerable amount of interest recently [25, 9, 10, 1, 16, 17].

Since the edge coloring for Multi-STC is a relaxed version of a proper edge coloring,
we may observe that Vizing’s Theorem implies the following: If the input graph G has
degree at most c− 1, then the instance is a yes-instance even for k = 0. Hence, it is very
natural to apply the parameterization by ξc−1 also for Multi-STC. We succeed to transfer
the kernelization result from ECS to Multi-STC for c ≤ 4. In fact, our result for c = 3
and c = 4 can be extended to the following more general result.

I Theorem 1.3. Multi-STC admits a problem kernel with O(ξb c
2 c+1 · c) vertices and

O(ξb c
2 c+1 · c2) edges, when limited to instances with c ≥ 3. The kernel can be computed

in O(n+m) time.

For c = 5, this gives a linear-size kernel for the parameter ξ3, for c = 6, a linear-size kernel for
the parameter ξ4 and so on. Our techniques to prove Theorem 1.3 are very loosely inspired by
the proof of Vizing’s Theorem but in the context of Multi-STC several obstacles need to be
overcome. As a result, the proof differs quite substantially from the one for ECS. Moreover,
in contrast do ECS, Multi-STC does not admit a polynomial kernel when parameterized
by the vertex cover number [10] which excludes almost all popular structural parameters.

We then show how far our kernelization for ξt can be lifted to generalizations of ECS
and Multi-STC where each edge may choose its color only from a specified list of colors,
denoted as Edge List ECS (EL-ECS) and Edge List Multi-STC (EL-Multi-STC).
We show that for ξ2 we obtain a linear kernel for every fixed c.

I Theorem 1.4. For all c ∈ N, EL-ECS and EL-Multi-STC admit an 11ξ2-edge and 10ξ2-
vertex kernel for EL-ECS that can be computed in O(n2) time.

For c = 3, this extends Theorem 1.1 to the list colored version of ECS. For c > 3
parameterization by ξ2 may seem a bit uninteresting compared to the results for ECS and
Multi-STC. However, Theorem 1.4 is unlikely to be improved by considering ξt for t > 2.

I Proposition 1.5. EL-ECS and EL-Multi-STC are NP-hard for all c ≥ 3 on triangle-free
cubic graphs even if ξ3 = k = 0.

A summary of our results is shown in Table 1. Due to space constraints, the proofs
of Theorem 1.4 and Proposition 1.5 and further propositions and lemmas needed to show
Theorems 1.1–1.3 are deferred to a full version.
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2 Preliminaries

Notation. We consider simple undirected graphs G = (V,E). For a vertex v ∈ V , we denote
by NG(v) := {u ∈ V | {u, v} ∈ E} the open neighborhood of v and by NG[v] := NG(v) ∪ {v}
the closed neighborhood of v. For a given set V ′ ⊆ V , we define NG(V ′) :=

⋃
v∈V ′ NG(v)

as the neighborhood of V ′. Moreover, let degG(v) := |N(v)| be the degree of a vertex v

in G and ∆G := maxv∈V degG(v) denote the maximum degree of G. For any two vertex
sets V1, V2 ⊆ V , we let EG(V1, V2) := {{v1, v2} ∈ E | v1 ∈ V1, v2 ∈ V2} denote the set of
edges between V1 and V2. For any vertex set V ′ ⊆ V , we let EG(V ′) := EG(V ′, V ′) denote
the set of edges between the vertices of V ′. The subgraph induced by a vertex set S is denoted
by G[S] := (S,EG(S)). For a given vertex set V ′ ⊆ V , we let G−V ′ := G[V \V ′] denote the
graph that we obtain after deleting the vertices of V ′ from G. We may omit the subscript G
if the graph is clear from the context.

A finite sequence A = (a0, a1, . . . , ar−1) of length r ∈ N0 is an r-tuple of specific
elements ai (for example vertices or numbers). For given j ∈ {0, . . . , r − 1}, we refer
to the jth element of a finite sequence A as A(j). A path P = (v0, . . . , vr−1) is a finite
sequence of vertices v0, . . . , vr−1 ∈ V , where {vi, vi+1} ∈ E for all i ∈ {0, . . . , r − 2}. A
path P is called vertex-simple, if no vertex appears twice on P . A path is called edge-simple,
if there are no distinct i, j ∈ {0, . . . , r− 2} such that {P (i), P (i+ 1)} = {P (j), P (j+ 1)}. For
a given path P = (P (0), . . . , P (r− 1)) we define the sets V (P ) := {P (j) | j ∈ {0, . . . , r− 1}}
and E(P ) := {{P (j), P (j + 1)} | j ∈ {0, . . . , r − 2}} as the set of vertices or edges on P .

For the relevant definitions of parameterized complexit such as parameterized reduction
and problem kernelization refer to the standard monographs [4, 5, 7, 22].

Problem Definitions. We now formally define the two main problems considered in this
work, ECS and Multi-STC, as well as their extensions to input graphs with edge lists.

I Definition 2.1. A c-colored labeling L = (S1
L, . . . , S

c
L,WL) of an undirected graph G =

(V,E) is a partition of the edge set E into c+ 1 color classes. The edges in SiL, i ∈ {1, . . . , c},
are strong and the edges in WL are weak.
1. A c-colored labeling L is a proper labeling if there exists no pair of edges e1, e2 ∈ SiL for

some strong color i, such that e1 ∩ e2 6= ∅.
2. A c-colored labeling L is an STC-labeling if there exists no pair of edges {u, v} ∈ SiL and
{v, w} ∈ SiL such that {u,w} 6∈ E.

We consider the following two problems.

Edge-Colorable Subgraph (ECS)
Input: An undirected graph G = (V,E) and integers c ∈ N and k ∈ N.
Question: Is there a c-colored proper labeling L with |WL| ≤ k?

Multi Strong Triadic Closure (Multi-STC)
Input: An undirected graph G = (V,E) and integers c ∈ N and k ∈ N.
Question: Is there a c-colored STC-labeling L with |WL| ≤ k?

If c is clear from the context, we may call a c-colored labeling just labeling. Two labelings L =
(S1
L, . . . , S

c
L,WL), and L′ = (S1

L′ , . . . , S
c
L′ ,WL′) for the same graph G = (V,E) are called

partially equal on a set E′ ⊆ E if and only if for all e ∈ E′ and i ∈ {1, . . . , c} it holds that e ∈
SiL ⇔ e ∈ SiL′ . If two labelings L and L′ are partially equal on E′ we write L|E′ = L′|E′ .
For given path P = (P (0), . . . , P (r − 1)) and labeling L = (S1

L, . . . , S
c
L,WL), we define the

color sequence QPL of P under L as a finite sequence QPL = (q0, q1, . . . , qr−2) of elements
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in {0, . . . , c}, such that {P (i), P (i+ 1)} ∈ Sqi

L if qi ≥ 1 and {P (i), P (i+ 1)} ∈WL if qi = 0.
Throughout this work we call a c-colored STC-labeling L (or proper labeling, respectively)
optimalif the number of weak edges |WL| is minimal.

Edge-Deletion Distance to Low-Degree Graphs and Component Order Connectivity. We
consider parameters related to the edge deletion-distance ξt to low-degree graphs and the
vertex-deletion distance λt to graphs with small connected components.

First, we define the parameter ξt. For a given graph G = (V,E) and a constant t ∈ N, we
call Dt ⊆ E an edge-deletion set of G and t if the graph (V,E \Dt) has maximum degree t.
We define the parameter ξt as the size of the minimum edge-deletion set of G and t. Note
that an edge-deletion set of G and t of size ξt can be computed in polynomial time [8]. More
importantly for our applications, we can compute a 2-approximation D′t for an edge-deletion
set of size ξt in linear time as follows: Add for each vertex v of degree at least t + 1 an
arbitrary set of deg(v)− t incident edges to D′t. Then |D′t| ≤

∑
v∈V max(deg(v)− t, 0). This

implies that D′t is a 2-approximation since
∑
v∈V max(deg(v) − t, 0) ≤ 2ξt as every edge

deletion decreases the degree of at most two vertices. A given edge-deletion set Dt induces
the following important partition of the vertex set V of a graph.

I Definition 2.2. Let t ∈ N, let G = (V,E) be a graph, and let Dt ⊆ E be an edge-deletion
set of G and t. We call C = C (Dt) := {v ∈ V | ∃e ∈ Dt : v ∈ e} the set of core vertices
and P = P(Dt) := V \ C the set of periphery vertices of G.

Note that for arbitrary t ∈ N and G we have |C | ≤ 2|Dt| and for every v ∈P it holds
that degG(v) ≤ t. Moreover, every vertex in C is incident with at most t edges in E \Dt. In
context of ECS and Multi-STC, for a given instance (G, c, k) we consider some fixed edge
deletion set Dt of the input graph G and some integer t which depends on the value of c.

Second, we define the parameter λt. For a given graph G = (V,E) and a constant t ∈ N,
we call D ⊆ V an order-t component cover if every connected component in G−D contains
at most t vertices. Then, we define the component order connectivity λt to be the size of
a minimum oder-t component cover. In context of ECS we study λc, for the amount of
colors c. A (c+ 1)-approximation of the minimal order-c-component cover can be computed
in polynomial time [20].

Note that the parameters are incomparable in the following sense: In a path Pn the
parameter λc can be arbitrarily large when n increases while ξc−1 = 0 for all c ≥ 3. In a
star Sn the parameter ξc−1 can be arbitrary large when n increases while λc = 1.

3 Problem Kernelizations for Edge-Colorable Subgraph

In this section, we provide problem kernels for ECS parameterized by the edge deletion
distance ξc−1 to graphs with maximum degree c− 1, and the size λc of a minimum order-
c component cover. We first show that ECS admits a kernel with O(ξc−1 · c) vertices
and O(ξc−1 · c2) edges that can be computed in O(n+m) time. Afterwards, we consider λc
and show that ECS admits a problem kernel with O(c3λc) vertices, which is a linear vertex
kernel for every fixed value of c. Note that if c = 1 we can solve ECS by computing a
maximal matching in polynomial time. Hence, we assume c ≥ 2 for the rest of this section.
In this case the problem is NP-hard [6].
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3.1 Edge Deletion-Distance to Low-Degree Graphs
The kernelization presented inhere is based on Vizing’s Theorem [27]. Note that Vizing’s
Theorem implies, that an ECS instance (G, c, k) is always a yes-instance if ξc−1 = 0. Our
kernelization relies on the following lemma. This lemma is a reformulation of a known fact
about edge colorings [26, Theorem 2.3] which, in turn, is based on the so-called Vizing Fan
Equation [26, Theorem 2.1].

I Lemma 3.1. Let G = (V,E) be a graph and let e := {u, v} ∈ E. Moreover, let c := ∆G

and let L be a proper c-colored labeling for the graph (V,E \ {e}) such that WL = ∅. If for
all Z ⊆ NG(u) with |Z| ≥ 2 and v ∈ Z it holds that

∑
z∈Z(degG(z) + 1− c) < 2, then there

exists a proper c-colored labeling L′ for G such that WL′ = ∅.

We now use Lemma 3.1 as a plug-in for ECS to prove the next lemma which is the main
tool that we need for our kernelization. In the proof, we exploit the fact that, given any
proper labeling L for a graph G = (V,E), the labeling (S1

L, . . . , S
c
L, ∅) is a proper labeling

for the graph (V,E \WL).

I Lemma 3.2. Let L := (S1
L, S

2
L, . . . , S

c
L,WL) be a proper labeling with |WL| = k for a

graph G := (V,E). Moreover, let e := {u, v} ⊆ V such that e 6∈ E and let G′ := (V,E ∪ {e})
be obtained from G by adding e. If for one endpoint u ∈ e it holds that every vertex w ∈ NG′ [u]
has degree at most c− 1 in G′, then there exists a proper labeling L′ for G′ with |WL′ | = k.

Proof. Consider the auxiliary graph Gaux := (V,E \WL). Since L is a proper labeling for G,
we conclude that Laux := (S1

L, . . . , S
c
L, ∅) is a proper labeling for Gaux. Let Haux := (V,EH)

where EH := (E \WL) ∪ {e}. In order to prove the lemma, we show that there exists a
proper labeling L′aux for Haux such that WL′aux

= ∅.
To this end, we first consider the maximum degree of Haux. Observe that degHaux(w) ≤

degG′(w) for all w ∈ V . Hence, the property that degG′(w) ≤ c − 1 for all w ∈ NG′ [u]
implies ∆Haux = max(∆Gaux , c − 1). Since Laux is a proper c-colored labeling for Gaux we
know that ∆Gaux ≤ c and therefore we have ∆Haux ≤ c. So, to find a proper c-colored labeling
without weak edges for Haux it suffices to consider the following cases.

Case 1: ∆Haux ≤ c − 1. Then, there exists a proper labeling L′aux for Haux such
that WL′aux

= ∅ due to Vizing’s Theorem.
Case 2: ∆Haux = c. In this case we can apply Lemma 3.1: Observe that (V,EH \ {e}) =

Gaux and Laux is a proper labeling for Gaux such that WLaux = ∅. Consider an arbitrary Z ⊆
NHaux(u) with |Z| ≥ 2 and v ∈ Z. Note that Z ⊆ NHaux(u) implies degHaux(z) ≤ c− 1 for
all z ∈ Z. It follows that

∑
z∈Z(degHaux(z) + 1− c) < 2. Since Z was arbitrary, Lemma 3.1

implies that there exists a proper labeling L′aux for Haux such that WL′aux
= ∅.

We now define L′ := (S1
L′aux

, S2
L′aux

, . . . ScL′aux
,WL). Note that the edge set E ∪ {e} of G′

can be partitioned into WL and the edges of G′aux. Together with the fact that L′aux is a
labeling for G′aux it follows that every edge of G′ belongs to exactly one color class of L′.
Moreover, it obviously holds that |WL′ | = |WL| = k. Since there is no vertex with two
incident edges in the same strong color class SiL′aux

, the labeling L′ is a proper labeling
for G′. J

We now introduce the kernelization rule. Recall that C is the set of vertices that are incident
with at least one of the ξc−1 edge-deletions that transform G into a graph with maximum
degree c− 1. We make use of the fact that edges that have at least one endpoint u that is
not in C ∪N(C ) satisfy deg(w) ≤ c− 1 for all w ∈ N [u]. Lemma 3.2 guarantees that these
edges are not important to solve an instance of ECS.
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I Rule 3.1. Remove all vertices in V \ (C ∪N(C )) from G.

I Proposition 3.3. Rule 3.1 is safe.

Proof. Let (G′ = (V ′, E′), c, k) be the reduced instance after applying Rule 3.1. We prove
the safeness of Rule 3.1 by showing that there is a proper labeling with at most k weak edges
for G if and only if there is a proper labeling with k weak edges for G′.

(⇒) Let L = (S1
L, S

2
L, . . . , S

c
L,WL) be a proper labeling with |WL| ≤ k for G. Then,

obviously L′ := (S1
L∩E′, S2

L∩E′, . . . , ScL∩E′,WL∩E′) is a proper labeling for G′ with |WL′ | ≤
|WL| ≤ k.

(⇐) Conversely, let L′ = (S1
L′ , S

2
L′ , . . . , S

c
L′ ,WL′) be a proper labeling with |WL′ | ≤ k

for G′. Let E \ E′ = {e1, e2, . . . , ep}. We define p + 1 graphs G0, G1, G2, . . . , Gp by G0 :=
(V,E′), and Gi := (V,E′ ∪ {e1, . . . , ei}) for i ∈ {1, . . . , p}. Note that Gp = G, degGi

(v) ≤
degG(v), and NGi

(v) ⊆ NG(v) for every i ∈ {0, 1, . . . , p}, and v ∈ V . We prove by induction
over i that all Gi have a proper labeling with at most k weak edges.

Base Case: i = 0. Then, since G0 and G′ have the exact same edges, L′ is a proper
labeling for G0 with at most k weak edges.

Inductive Step: 0 < i ≤ p. Then, by the inductive hypothesis, there exists a proper
labeling Li−1 for Gi−1 = (V,E′ ∪ {e1, . . . , ei−1}) with at most k weak edges. From E′ =
E(C ∪N(C )) we conclude ei ∈ E \ E(C ∪N(C )) = E(P) \ E(N(C )). Hence, for at least
one of the endpoints u of e it holds that NG[u] ⊆ P. Therefore degG(w) ≤ c − 1 for
all w ∈ NG[u]. Together with the facts that degGi

(w) ≤ degG(w) and NGi
(w) ⊆ NG(w) we

conclude degGi
(w) ≤ c− 1 for all w ∈ NGi [u]. Then, by Lemma 3.2, there exists a proper

labeling Li for Gi such that |WLi
| = |WLi−1 | ≤ k. J

I Theorem 1.1. ECS admits a problem kernel with at most 4ξc−1 ·c vertices and O(ξc−1 ·c2)
edges that can be computed in O(n+m) time.

Proof. Let (G, c, k) be an instance of ECS. We apply Rule 3.1 on (G, c, k) as follows:
First, we compute a 2-approximation D′c−1 of the smallest possible edge-deletion set Dc−1
in O(n+m) time as described in Section 2. Let C := C (D′c−1) and note that |D′c−1| ≤ 2ξc−1.
We then remove all vertices in V \ (C ∪NG(C )) from G which can also be done in O(n+m)
time. Hence, applying Rule 3.1 can be done in O(n+m) time.

We next show that after this application of Rule 3.1 the graph consists of at most 4ξc−1 · c
vertices and O(ξc−1 · c2) edges. Since D′c−1 is a 2-approximation of the smallest possible edge-
deletion set we have |C | ≤ 4ξc−1. Since every vertex in C has at most c−1 neighbors in V \C ,
we conclude |C ∪N(C )| ≤ 4ξc−1 · c. In E(C ∪N(C )) there are obviously the at most 4ξc−1
edges of D′c−1. Moreover, each of the at most 4ξc−1 ·c vertices might have up to c−1 incident
edges. Hence, after applying Rule 3.1, the reduced instance has O(ξc−1 · c2) edges. J

If we consider Edge Coloring instead of ECS, we can immediately reject if one vertex
has degree more than c. Then, since there are at most |C | ≤ 2ξc−1 vertices that have a
degree of at least c, Theorem 1.1 implies the following.

I Corollary 3.4. Let hc be the number of vertices with degree c. Edge Coloring admits a
problem kernel with O(hc · c) vertices and O(hc · c2) edges that can be computed in O(n+
m) time.
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3.2 Component Order Connectivity
In this section we present a problem kernel for ECS parameterized by the number of strong
colors c and the component order connectivity λc. We prove that ECS admits a problem
kernel with O(c3 · λc) vertices, which is a linear vertex kernel for every fixed value of c. Our
kernelization is based on the Expansion Lemma [24], a generalization of the Crown Rule [2].
We use the formulation given by Cygan et al. [4].

I Lemma 3.5 (Expansion Lemma). Let q be a positive integer and G be a bipartite graph
with partite sets A and B such that |B| ≥ q|A| and there are no isolated vertices in B. Then
there exist nonempty vertex sets X ⊆ A and Y ⊆ B with N(Y ) ⊆ X. Moreover, there exist
edges M ⊆ E(X,Y ) such that
a) every vertex of X is incident with exactly q edges of M , and
b) q · |X| vertices in Y are endpoints of edges in M .
The sets X and Y can be found in polynomial time.

To apply Lemma 3.5 on an instance of ECS, we need the following definition for
technical reasons.

I Definition 3.6. For a given graph G = (V,E), let D be an order-c component cover. We
say that D is saturated if for every v ∈ D it holds that EG({v}, V \D) 6= ∅.

Note that every order-c component cover D′ can be transformed into a saturated order-c
component cover by removing any vertex v ∈ D′ with N(v) ⊆ D′ from D′ while such a
vertex exists. Let (G = (V,E), c, k) be an instance of ECS and let D ⊆ V be a saturated
order-c component cover. Furthermore, let I := V \D be the remaining set of vertices.

I Rule 3.2. If there exists a set J ⊆ I such that J is a connected component in G, remove
all vertices in J from G.

Rule 3.2 is safe since |J | ≤ c and therefore the graph G[J ] has maximum degree c − 1
and can be labeled by Vizing’s Theorem with c colors. For the rest of this section we assume
that (G, c, k) is reduced regarding Rule 3.2. The following proposition is a direct consequence
of Lemma 3.5.

I Proposition 3.7. Let (G = (V,E), c, k) be an instance of ECS that is reduced regarding
Rule 3.2, let D be a saturated order-c component cover of G, and let I := V \D. If |I| ≥ c2 ·|D|,
then there exist nonempty sets X ⊆ D and Y ⊆ I with N(Y ) ⊆ X ∪ Y . Moreover, there
exists a set M ⊆ E(X,Y ) such that
a) every vertex of X is incident with exactly c edges of M , and
b) c · |X| vertices in Y are endpoints of edges in M and every connected component in G[Y ]

contains at most one such vertex.
The sets X and Y can be computed in polynomial time.

Proof. We prove the proposition by applying Lemma 3.5. To this end we define an equivalence
relation ∼ on the vertices of I: Two vertices v, u ∈ I are equivalent, denoted u ∼ v if and only
if u and v belong to the same connected component in G[I]. Obviously, ∼ is an equivalence
relation. For a given vertex u ∈ I, let [u] := {v ∈ I | v ∼ u} denote the equivalence class
of u. Note that |[u]| ≤ c since D is an order-c component cover.

We next define the auxiliary graph Gaux, on which we will apply Lemma 3.5. Intuitively,
we obtain Gaux from G by deleting all edges in EG(D) and merging the at most c vertices in
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every equivalence class in I. Formally Gaux := (D ∪ I∗, Eaux), with I∗ := {[u] | u ∈ I} and

Eaux := {{[u], v} | [u] ∈ I∗, v ∈
⋃
w∈[u]

(NG(w) \ I)}.

Note that Gaux can be computed from G in polynomial time and that |I| ≥ |I∗| ≥ 1
c |I|.

Observe that Gaux is bipartite with partite sets D and I∗. Since G is reduced regarding
Rule 3.2, every [u] ∈ I∗ is adjacent to some v ∈ D in Gaux. Furthermore, since D is saturated,
every v ∈ D is adjacent to some u ∈ I in G and therefore {v, [u]} ∈ Eaux. Hence, Gaux
is a bipartite graph without isolated vertices. Moreover, from |I| ≥ c2|D| and |I∗| ≥ 1

c |I|
we conclude |I∗| ≥ c · |D|. By applying Lemma 3.5 on Gaux we conclude that there exist
nonempty vertex sets X ′ ⊆ D and Y ′ ⊆ I∗ with NGaux(Y ′) ⊆ X ′ that can be computed in
polynomial time such that there exists a set M ′ ⊆ EGaux(X ′, Y ′) of edges, such that every
vertex of X ′ is incident with exactly c edges of M ′, and c · |X ′| vertices in Y ′ are endpoints
of edges in M ′.

We now describe how to construct the sets X, Y , and M from X ′, Y ′, and M ′. We
set X := X ′ ⊆ D, and Y :=

⋃
[u]∈Y ′ [u] ⊆ I. We prove that NG(Y ) ⊆ X ∪ Y . Let y ∈ Y .

Note that all neighbors of y in I are elements of Y by the definition of the equivalence
relation ∼ and therefore

NG(y) ⊆ NGaux([y]) ∪ Y ⊆ X ′ ∪ Y = X ∪ Y.

Next, we construct M ⊆ EG(X,Y ) from M ′. To this end we define a mapping π : M ′ →
EG(X,Y ). For every edge {[u], v} ∈ M ′ with [u] ∈ Y ′ and v ∈ X ′ we define π({[u], v}) :=
{w, v}, where w is some fixed vertex in [u]. We set M := {π(e′) | e′ ∈ M ′}. It remains to
show that the statements a) and b) hold for M .

a) Observe that π({[u1], v1}) = π({[u2], v2}) implies [u1] = [u2] and v1 = v2 and therefore,
the mapping π is injective. We conclude |M | = |M ′|. Moreover, observe that the edges of M
have the same endpoints in X as the edges of M ′. Thus, since every vertex of X ′ is incident
with exactly c edges of M ′ it follows that statement a) holds for M .

b) By the conditions a) and b) of Lemma 3.5, no two edges inM ′ have a common endpoint
in Y ′. Hence, in every connected component in G[Y ] there is at most one vertex incident
with an edge in M . Moreover, since |M | = |M ′| and there are exactly c · |X ′| vertices in Y ′
that are endpoints of edges in M ′ we conclude that statement b) holds for M . J

The following rule is the key rule for our kernelization.

I Rule 3.3. If |I| ≥ c2 · |D|, then compute the sets X and Y from Proposition 3.7, delete all
vertices in X ∪ Y from G, and decrease k by |EG(X,V )| − c · |X|.

I Proposition 3.8. Rule 3.3 is safe.

Rules 3.2 and 3.3 together with the fact that we can compute a (c+ 1)-approximation of
the minimum order-c component cover in polynomial time [20] give us the following.

I Theorem 1.2. ECS admits a problem kernel with O(c3 · λc) vertices.

Proof. We first consider the running time. We use a (c + 1)-approximation for the min-
imum oder-c component cover and compute an order-c component cover D′ in polynomial
time [20]. Afterwards we remove any vertex v ∈ D′ with N(v) ⊆ D′ from D′ while such a
vertex exists and we end up with a saturated order-c component cover D ⊆ D′. Afterwards,
consider Rules 3.2 and 3.3. Obviously, one application of Rule 3.2 can be done in polynomial
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e1

e2 e3 e4

C

Figure 1 Left: A graph where in any STC-labeling with four strong colors and without weak
edges, the edges e1, e2, e3, and e4 are part of the same strong color class. Right: A no-instance of
Multi-STC with c = 4 and k = 0, where Rule 3.1 does not produce an equivalent instance: The
inner rectangles correspond to two copies of the gadget on the left. Observe that all blue edges must
have a common strong color, and all red edges must have a common strong color distinct that is not
blue. Hence, for any STC-labeling of G[C ∪N(C )] it is not possible to extend the labeling to the
dotted edges without violating STC. However, Rule 3.1 converts this no-instance into a yes-instance.

time if D is known. Moreover, Rule 3.3 can also be applied in polynomial time due to
Proposition 3.7. Since every application of one of these two rules removes some vertices, we
can compute an instance that is reduced regarding Rules 3.2 and 3.3 from an arbitrary input
instance of ECS in polynomial time.

We next consider the size of a reduced instance (G = (V,E), c, k) of ECS regarding
Rules 3.2 and 3.3. LetD ⊆ V be a (c+1)-approximate saturated order-c component cover, and
let I := V \D. Since no further application of Rule 3.3 is possible, we conclude |I| < c2 · |D|.
Thus, we have |V | = |I|+ |D| < (c2 + 1) · |D| ≤ (c2 + 1) · (c+ 1) · λc ∈ O(c3λc). J

4 Multi-STC parameterized by Edge Deletion-Distance to
Low-Degree Graphs

In this section we provide a problem kernelization for Multi-STC parameterized by ξc−1
when c ≤ 4. Before we describe the problem kernel, we briefly show that Multi-STC does
not admit a polynomial kernel for the component order connectivity ξc−1 even if c = 1:
If NP 6⊆ coNP/poly, STC does not admit a polynomial kernel if parameterized by the
number of strong edges [10] which – in nontrivial instances – is bigger than the size of a
maximal matchingM . Since the vertex cover number s is never larger than 2|M |, this implies
that Multi-STC has no polynomial kernel if parameterized by s unless NP ⊆ coNP/poly.
Since λc ≤ s, we conclude that Multi-STC does not admit a polynomial kernel for λc
unless NP ⊆ coNP/poly.

Next, consider parameterization by ξc−1. Observe that Rule 3.1 which gives a problem
kernel for ECS does not work for Multi-STC; see Figure 1 for an example. Furthermore, for
Multi-STC we need a fundamental new approach: For STC-labelings the maximum degree
and the number of colors are not as closely related as in ECS, and therefore, Lemma 3.1
might not be helpful for Multi-STC. Moreover, in the proof of Lemma 3.2 we exploit that
in ECS we may remove weak edges from the instance, which does not hold for Multi-STC
since removing a weak edge may produce P3s. However, the results for ECS parameterized
by (ξc−1, c) can be lifted to the seemingly harder Multi-STC for c ∈ {1, 2, 3, 4}. We will
first discuss the cases c = 1 and c = 2. For the cases c ∈ {3, 4} we show the more general
statement that Multi-STC admits a problem kernel with O(ξb c

2 c+1 · c) vertices.
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If c = 1, the parameter ξc−1 = ξ0 equals the number m of edges in G. Hence, Multi-STC
admits a trivial ξc−1-edge kernel in this case. If c = 2, any input graph consists of core
vertices C , periphery vertices in N(C ) and isolated vertices and edges. We can compute an
equivalent instance in linear time by deleting these isolated components. Afterwards, the
graph contains at most 2ξc−1 core vertices. Since each of these vertices has at most one
neighbor outside C , we have a total number of 4ξc−1 vertices.

To extend this result to c ∈ {3, 4}, we now provide a problem kernel for Multi-STC
parameterized by (c, ξb c

2 c+1). Let (G, c, k) be an instance of Multi-STC with edge-deletion
set D := Db c

2 c+1, and let C and P be the core and periphery of G. A subset A ⊆P is called
periphery component if it is a connected component in G[P]. Furthermore, for a periphery
component A ⊆P we define the subset A∗ ⊆ A of close vertices in A as A∗ := N(C ) ∩A,
that is, the set of vertices of A that are adjacent to core vertices. The key technique of our
kernelization is to move weak edges along paths inside periphery components.

I Definition 4.1. Let (G, c, k) be an instance of Multi-STC with core vertices C and
periphery vertices P. A periphery component A ⊆ P is called good, if for every STC-
labeling L = (S1

L, . . . , S
c
L,WL) for G with E(A) ⊆ WL there exists an STC-labeling L′ =

(S1
L′ , . . . , S

c
L′ ,WL′) for G such that 1. L′|E\E(A) = L|E\E(A), and 2. WL′ ∩ E(A) = ∅.

Intuitively, a good periphery component A is a periphery component where the edges
in E(A) can always be added to some strong color classes of an STC-labeling, no matter
how the other edges of G are labeled. The condition E(A) ⊆ WL is a technical condition
that makes the proof of the next proposition easier.

I Proposition 4.2. Let (G, c, k) be an instance of Multi-STC with core vertices C and
periphery vertices P. Furthermore, let A ⊆P be a good periphery component. Then, (G, c, k)
is a yes-instance if and only if (G− (A \A∗), c, k) is a yes-instance.

In the following, we show that for instances (G, c, k) with c ≥ 3 we can compute an
equivalent instance of size O(ξb c

2 c+1c). We first consider all cases where c ≥ 3 is odd. In this
case, we can prove that all periphery components are good.

I Proposition 4.3. Let (G, c, k) be an instance of Multi-STC, where c ≥ 3 is odd. Moreover,
let A ⊆P be a periphery component. Then, A is good.

The Propositions 4.2 and 4.3 guarantee the safeness of the following rule:

I Rule 4.1. If c is odd, remove A \A∗ from all periphery components A ⊆P.

I Proposition 4.4. Let (G = (V,E), c, k) be an instance of Multi-STC where c ≥ 3
is odd. Then, we can compute an instance (G′ = (V ′, E′), c, k) in O(n + m) time such
that |V ′| ≤ 2 · ξb c

2 c+1 · (b c2c+ 1), and |E′| ∈ O(ξb c
2 c+1 · c2).

It remains to consider instances where c is an even number and c ≥ 4. In this case, not
every periphery component is good (Figure 1 shows an example), so we need to identify good
periphery components more carefully. The first rule removes isolated periphery components.

I Rule 4.2. Remove periphery components A ⊆P with A∗ = ∅ from G.

I Proposition 4.5. Rule 4.2 is safe.

The intuition for the next lemma is that the small degree of vertices in periphery
components can be used to “move” weak edges inside periphery components, the key
technique of our kernelization. More precisely, if there is an edge-simple path in a periphery
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component, that starts with a weak edge, we can either move the weak edge to the end of
that path by keeping the same number of weak edges or find a labeling with fewer weak
edges.

I Lemma 4.6. Let A ⊆P, let L be an STC-labeling of G, and let e ∈WL ∩E(A) be a weak
edge in E(A). Furthermore, let P = (v1, v2, . . . , vr−1, vr) be an edge-simple path in G[A]
with {v1, v2} = e and color sequence QPL = (q1 = 0, q2, q3, . . . , qr−1) under L. Then, there
exists an STC-labeling L′ with L′|E\E(P ) = L|E\E(P ) such that

QPL′ = (q2, q3, . . . , qr−1, 0) or |WL′ | < |WL|.

Proof. We prove the statement by induction over the length r of P .
Base Case: r = 2. Then, P = (v1, v2) and QPL = (0). We can trivially define the

labeling L′ by setting L′ := L.
Inductive Step: Let P = (v1, . . . , vr) be an edge-simple path with color sequence QPL =

(0, q2, . . . , qr−1) under L. Consider the edge-simple subpath P ′ = (v1, . . . , vr−1). By induc-
tion hypothesis there exists an STC-labeling L′′ for G with L′′|E\E(P ′) = L|E\E(P ′), such
that QP ′L′′ = (q2, q3, . . . , qr−2, 0) or |WL′′ | < |WL|.

Case 1: |WL′′ | < |WL|. Then, we define L′ by L′ := L′′.
Case 2: |WL′′ | ≥ |WL|. Then, QP

′

L′′ = (q2, q3, . . . , qr−2, 0). Since QP ′L′′ contains the same
elements as QP ′L and L′′|E\E(P ′) = L|E\E(P ′), we have |WL′′ | = |WL|.

Case 2.1: There exists an edge e 6= {vr−1, vr} with e ∈ S
qr−1
L′′ that is incident

with {vr−2, vr−1}. From the fact that deg(vr−2) ≤ b c2c + 1 and deg(vr−1) ≤ b c2c + 1,
we conclude that {vr−2, vr−1} is incident with at most c other edges of G. Since two of these
incident edges have the same strong color qr−1 under L′′, the edge {vr−2, vr−1} is incident
with at most c−1 edges of distinct strong colors under L′′. Consequently, there exists a strong
color i ∈ {1, . . . , c}, such that {vr−2, vr−1} can safely be added to the strong color class SiL′′
and be removed from WL′′ without producing any strong P3. This way, we transformed L′′
into an STC-labeling L′, such that L′|E\E(P ′) = L|E\E(P ′) and |WL′ | < |WL|.

Case 2.2: No edge e 6= {vr−1, vr} with e ∈ Sqr−1
L′′ is incident with {vr−2, vr−1}. We then

define L′ by

WL′ := WL′′ ∪ {{vr−1, vr}} \ {{vr−2, vr−1}}, and
S
qr−1
L′ := S

qr−1
L′′ ∪ {{vr−2, vr−1}} \ {{vr−1, vr}}.

Note that QPL′ = (q2, q3, . . . , qr−1, 0) and L′|E\E(P ) = L|E\E(P ). Moreover, since P is edge-
simple, the edge {vr−1, vr} does not lie on P ′ and since L′′|E\E(P ′) = L|E\E(P ′), it holds
that {vr−1, vr} ∈ Sqr−1

L′′ . Therefore, every edge has exactly one color under L′. It remains to
show that L′ satisfies STC. Assume towards a contradiction, that this is not the case. Then,
since L′′ satisfies STC, there exists an induced P3 on {vr−2, vr−1} ∈ Sqr−1

L′ and some edge e ∈
S
qr−1
L′ . Since {vr−1, vr} ∈WL′ and L′|E\{{vr−2,vr−1},{vr−1,vr}} = L′′|E\{{vr−2,vr−1},{vr−1,vr}},

the edge e 6= {vr−1, vr} is incident with {vr−2, vr−1} and it holds that e ∈ S
qr−1
L′′ . This

contradicts the condition of Case 2.2. J

We will now use Lemma 4.6 to show useful properties of periphery components. First, if
there are two weak edges in one periphery component A, we can make these two weak edges
incident, which then helps us to define a new labeling that has fewer weak edges in A:

I Proposition 4.7. Let A ⊆P be a periphery component and let L be an STC-labeling for G.
Then, there exists an STC-labeling L′ with L′|E\E(A) = L|E\E(A) and |WL′ ∩ E(A)| ≤ 1.
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Proof. If |WL ∩ E(A)| ≤ 1 the statement already holds for L′ = L. So, assume there are
two distinct edges e1, e2 ∈WL ∩E(A). In this case, we construct an STC-labeling which is
partially equal to L on E \ E(A) and has strictly fewer weak edges in E(A) than L, which
then proves the claim.

Since periphery components are connected components in G[P], there exists an edge-
simple path P = (v1, . . . , vr) in G[A] such that e1 = {v1, v2} and e2 = {vr−1, vr}. Applying
Lemma 4.6 on the edge-simple subpath P ′ = (v1, . . . , vr−1) gives us an STC-labeling L′
with L′|E\E(P ) = L|E\E(P ) such that |WL′ | < |WL| or QP

′

L′ = (q2, q3, . . . , qr−2, 0).
In case of |WL′ | < |WL|, nothing more needs to be shown. So, assume |WL′ | = |WL|. It

follows that QP ′L′ = (q2, q3, . . . , qr−2, 0) and therefore QPL′ = (q2, q3, . . . , qr−2, 0, 0). Then, e1
and e2 are weak under L′. Since deg(vr−1) ≤ b c2c+ 1 and deg(vr) ≤ b c2c+ 1, the edge e2
is incident with at most c edges. Since at least one of these incident edges is weak, e2 is
incident with at most c−1 edges of distinct strong colors. Consequently, there exists a strong
color color i ∈ {1, . . . , c} such that e2 can be added to the strong color class SiL′ and deleted
from WL′ without violating STC. This way, we transformed L′ into an STC-labeling L′′ such
that L′′|E\E(A) = L|E\E(A) and |WL′′ ∩ E(A)| < |WL ∩ E(A)|. J

Next, we use Proposition 4.7 to identify specific good components.

I Proposition 4.8. Let A ⊆P be a periphery component such that some edge {u, v} ∈ E(A)
forms an induced P3 with less than c other edges in G. Then, A is good.

Proof. Let L be an arbitrary STC-labeling for G with E(A) ⊆WL. We prove that there is
an STC-labeling which is partially equal to L on E \ E(A) and has no weak edges in E(A).

Let L′ be an STC-labeling for G with L′|E\E(A) = L|E\E(A). If WL′ ∩E(A) = ∅, nothing
more needs to be shown. So, letWL′∩E(A) 6= ∅. By Proposition 4.7 we can assume that there
is one unique edge e ∈WL′∩E(A). Since A is a connected component in G[P], there exists an
edge-simple path P = (v1, . . . , vr) such that {v1, v2} = e, and {vr−1, vr} = {u, v} with QPL′ =
(0, q2, . . . , qr−1). By Lemma 4.6, there exists an STC-labeling L′′ with L′′|E\E(A) = L|E\E(A)
such that |WL′′ | < |WL| or QPL′′ = (q2, . . . , qr−1, 0). In case of |WL′′ | < |WL|, nothing more
needs to be shown. Otherwise, the edge e is weak under L′′. Since e is part of less than c
induced P3s in G, there exists one strong color i ∈ {1, . . . , c}, such that e can safely be added
to SiL′′ and be removed from WL′′ without violating STC. This way, we transform L′′ into
an STC-labeling L′′′ with L′′′|E\E(A) = L|E\E(A) and WL′′′ ∩ E(A) = ∅.

Since L was arbitrary, the periphery component A is good by definition. J

I Proposition 4.9. Let A ⊆P be a periphery component such that there exists a vertex v ∈ A
with degG(v) < b c2c+ 1. Then, A is good.

Proof. If |A| = 1, then A is obviously good, since E(A) = ∅. Let |A| ≥ 2. Since A contains
at least two vertices and forms a connected component in G[P] there exists a vertex u ∈ A,
such that {u, v} ∈ E(A). Since degG(v) < b c2c+ 1, and degG(u) ≤ b c2c+ 1, the edge {u, v}
forms induced P3s with less than c other edges in G. Then, by Proposition 4.8 we conclude
that A is good. J

Propositions 4.2 and 4.9 guarantee the safeness of the following rule.

I Rule 4.3. If there is a periphery component A ⊆P with A \A∗ 6= ∅ such that there exists
a vertex v ∈ A with deg(v) < b c2c+ 1, then delete A \A∗ from G.

I Proposition 4.10. Let A ⊆ P be a periphery component such that there exists an
edge {u, v} ∈ E(A) which is part of a triangle G[{u, v, w}] in G. Then, A is good.
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Proof. Since u, v ∈ A, we know degG(u) ≤ b c2c+ 1 and degG(v) ≤ b c2c+ 1. Since u, v are
part of a triangle in G, it follows that {u, v} forms an induced P3 with less than c other
edges in G. Then, by Proposition 4.8 we conclude that A is good. J

Propositions 4.2 and 4.10 guarantee the safeness of the following rule.

I Rule 4.4. If there is a periphery component A ⊆P with A \A∗ 6= ∅ such that there exists
an edge {u, v} ∈ A which is part of a triangle G[{u, v, w}] in G, then delete A \A∗ from G.

For the rest of this section we consider instances (G, c, k) for Multi-STC, that are
reduced regarding Rules 4.2–4.4. Observe that these instances only contain triangle-free
periphery components A where every vertex v ∈ A has deg(v) = b c2c + 1. Since ECS
and Multi-STC are the same on triangle-free graphs one might get the impression that we
can use Vizing’s Theorem to prove that all periphery components in G are good. Consider
the example in Figure 1 to see that this is not necessarily the case.

We now continue with the description of the kernel for Multi-STC. Let (G, c, k) be an
instance of Multi-STC that is reduced regarding Rules 4.2–4.4. We analyze the periphery
components of G that contain cycles. In this context, a cycle (of length r) is an edge-simple
path P = (v0, v1, . . . , vr−1, v0) where the last vertex and the first vertex of P are the same,
and all other vertices occur at most once in P . We will see that acyclic periphery components
– which are periphery components A ⊆ P where G[A] is a tree – are already bounded
in c and ξb c

2 c+1. To remove the other components, we show that periphery components
with cycles are always good. To this end we show two lemmas. The intuitive idea behind
Lemmas 4.11 and 4.12 is, that we use Lemma 4.6 to rotate weak and strong edge-colors
around a cycle.

I Lemma 4.11. Let A ⊆ P be a periphery component, and let L be an STC-labeling
for G. Moreover, let P = (v0, v1, . . . , vr−1, v0) be a cycle in A such that WL ∩ E(P ) 6= ∅
and let QPL = (q0, q1, . . . , qr−1) be the color sequence of P under L. Then, there exist
STC-labelings L0, L1, L2, . . . , Lr−1 for G such that Li|E\E(P ) = L|E\E(P ) and

QPLi
(j) = q(i+j) mod r or |WLi

| < |WL|

for all i, j ∈ {0, . . . , r − 1}.

Proof. Without loss of generality we assume that {v0, v1} ∈WL and therefore q0 = 0. We
prove the existence of the labelings Li with i ∈ {0, 1, . . . , r − 1} by induction over i.

Base Case: i = 0. In this case we set L0 := L.
Inductive Step: By inductive hypothesis, there is a labeling Li−1 with |WLi−1 | < |WL| or

QPLi−1
(j) = q(i−1+j) mod r.

If |WLi−1 | < |WL|, then we define Li by Li := Li−1 and nothing more needs to be shown.
Otherwise, we consider P ′ = (vr−i+1, vr−i+2, . . . , vr−1, v0, v1, . . . , vr−i+1). Note that P ′
describes the same cycle as P by rotating the vertices. More precisely,

P (j) = P ′((j + i− 1) mod r).

Therefore, P ′ is edge-simple and has the color sequence QP ′Li−1
= (q0 = 0, q1, . . . , qr−1). By

Lemma 4.6, there exists an STC-labeling Li with Li|E\E(P ) = Li−1|E\E(P ), such that |WLi | <
|WLi−1 | or

QP
′

Li
(j) = q(j+1) mod r.
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In case of |WLi
| < |WLi−1 |, nothing more needs to be shown. Otherwise, observe that

QPLi
(j) = QP

′

Li
((j + i− 1) mod r) = q(j+i) mod r

which completes the inductive step. J

I Lemma 4.12. Let A ⊆P be a periphery component, let L be an STC-labeling. Moreover,
let P = (v0, v1, . . . , vr−1, v0) be a cycle in A with WL ∩ E(P ) 6= ∅, and let e1, e2 ∈ E(P )
with e2 ∈ SqL for some strong color q ∈ {1, . . . , c}. Then, there exists an STC-labeling L′
with L′|E\E(P ) = L|E\E(P ) such that e1 ∈ SqL′ or |WL′ | < |WL|.

Proof. Let QPL := (q0, q1, . . . , qr−1). Without loss of generality assume that {v0, v1} ∈WL

and e2 = {vt, vt+1} for some t ∈ {1, . . . , r − 1}. It then holds, that q0 = 0, and q = qt.
Furthermore, since e1 ∈ E(P ) we have e1 = {P (j), P (j + 1)} for some j ∈ {0, 1, . . . , r − 1}.

Consider the STC-labelings L0, L1, L2, . . . Lr−1 from Lemma 4.11. If for one such la-
beling Li it holds that |WLi | < |WL|, then nothing more needs to be proven. Otherwise,
set i := (t− j) mod r. We show that e1 ∈ Sqt

Li
by proving QPLi

(j) = qt as follows:

QPLi
(j) = q(i+j) mod r = q((t−j) mod r)+j) mod r = q(t−j+j) mod r = qt. J

We next use Lemma 4.12 to prove that periphery components with cycles are good.

I Proposition 4.13. Let (G = (V,E), c, k) be a reduced instance of Multi-STC regarding
rules 4.2–4.4, where c ≥ 4 is even. Let A ⊆ P be a periphery component in G such
that A \A∗ 6= ∅ and there is a cycle P = (v0, v1, . . . , vr−1, v0) in G[A]. Then, A is good.

Propositions 4.13 and 4.2 imply the safeness of the final rule which together with Rules 4.2–
4.4 gives the kernel.

I Rule 4.5. If there is a periphery component A ⊆P with A \A∗ 6= ∅ such that there exists
a cycle P in G[A], then delete A \A∗ from G.

I Theorem 4.14. Multi-STC restricted to instances with c ≥ 3 admits a problem kernel
with O(ξb c

2 c+1 · c) vertices and O(ξb c
2 c+1 · c2) edges that can be computed in O(n+m) time.

Proof. Throughout this proof let ξ := 2ξb c
2 c+1 denote the size of a 2-approximate edge-

deletion set Db c
2 c+1 of G and b c2c + 1. We defer the proof of the running time and show

that |V ′| ≤ (c + 7) · ξ. Let C be the set of core vertices of G′ and P be the set of
periphery vertices of G′. Since |C | ≤ 2ξ, and every v ∈ C is incident with at most c

2 + 1
edges, there are 2ξ + 2ξ( c2 + 1) = ξc + 4ξ vertices in C ∪ N(C ). It remains to show
that there are at most 3ξ non-close vertices in P. Consider the family A := {A ⊆ P |
A is periphery component with A \A∗ 6= ∅} of periphery components.

Since G′ is reduced regarding Rules 4.3, 4.4, and 4.5, every G[A] with A ∈ A is a tree,
where every vertex v ∈ A has degree degG(v) = c

2 + 1 in G. We define a leaf vertex as a
vertex v ∈

⋃
A∈AA with degG[P](v) = 1. Note that these vertices are exactly the leaves

of a tree G[A] for some A ∈ A, and all leaf vertices are close vertices in P. Let p be
the number of leaf vertices. We show that p ≤ 3ξ. Since (G′, c, k) is reduced regarding
Rule 4.3, every vertex v ∈

⋃
A∈AA has a degree of degG(v) = c

2 + 1, hence every leaf
vertex has exactly c

2 neighbors in C . We thus have p · c2 ≤ |E(C , N(C ))| ≤ 2ξ( c2 + 1), and
therefore p ≤ 2ξ+ 4ξ

c ≤ 3ξ, since c ≥ 4. Recall that every non-close vertex v in some tree G[A]
satisfies degG[A](v) = c

2 + 1 > 2. Since a tree has at most as many vertices with degree at
least three as it has leaves, we conclude |(

⋃
A∈AA) \ (

⋃
A∈AA

∗)| ≤ 3ξ. Hence, there are at
most 3ξ non-close vertices in P. Then, G′ contains of at most (c+ 7) · ξ ∈ O(ξc) vertices, as
claimed. Since each vertex is incident with at most c

2 + 1 edges, G′ has O(ξc2) edges. J
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5 Conclusion

In this work, we showed that Maximum Edge-Colorable Subgraph with c colors is
tractable on instances that have small edge-deletion distance to graphs whose maximum
degree is c− 1. This result implies that Edge Coloring with c colors is fixed-parameter
tractable with respect to the combination of c and the number of vertices that have degree c.
For Multi Strong Triadic Closure with c colors, we obtain fixed-parameter algorithms
for the same parameter for c ≤ 4. For Multi Strong Triadic Closure with c ≥ 5, the
parameter in our fixed-parameter algorithms is the edge-deletion distance to graphs with
maximum degree c′ for some c′ < c− 1.

There are several ways of extending our results that seem interesting topics for future
research. First, in our fixed-parameter algorithms the value of c is always part of the
parameter and it would be very interesting to understand whether this is necessary. For
example, is Edge Coloring fixed-parameter tractable with respect to the number of vertices
that have degree at least c alone? Second, our results are obtained via kernelizations. Are
there any direct fixed-parameter algorithms that achieve a better running time than using
kernelization and brute-force on the kernels? Third, can our results for Multi Strong
Triadic Closure and c ≥ 5 be improved to fixed-parameter algorithms for the edge-deletion
distance to graphs with maximum degree c − 1? Moreover, our parameters use the edge-
deletion distance to tractable special cases. Can one improve these results by obtaining
fixed-parameter algorithms for the vertex-deletion distance? Finally, in our parameterization
for Multi Strong Triadic Closure we use the fact that Multi Strong Triadic
Closure is polynomial-time solvable on graphs with maximum degree c−1. This is a simple
corollary of Vizing’s theorem and the fact that every proper edge coloring is a valid coloring
for Multi Strong Triadic Closure. It would be nice to extend the class of tractable
instances further in the following sense: For which superclasses of the graphs with maximum
degree c − 1 does Multi Strong Triadic Closure remain polynomial-time solvable?
Surely, our fixed-parameter algorithms give such superclasses but are there some that can
be described without the use of parameters, for example via a characterization of forbidden
induced subgraphs of size at most f(c)?
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Abstract
We consider the Π-free Deletion problem parameterized by the size of a vertex cover, for a range of
graph properties Π. Given an input graph G, this problem asks whether there is a subset of at most k

vertices whose removal ensures the resulting graph does not contain a graph from Π as induced
subgraph. Many vertex-deletion problems such as Perfect Deletion, Wheel-free Deletion,
and Interval Deletion fit into this framework. We introduce the concept of characterizing a
graph property Π by low-rank adjacencies, and use it as the cornerstone of a general kernelization
theorem for Π-Free Deletion parameterized by the size of a vertex cover. The resulting framework
captures problems such as AT-Free Deletion, Wheel-free Deletion, and Interval Deletion.
Moreover, our new framework shows that the vertex-deletion problem to perfect graphs has a
polynomial kernel when parameterized by vertex cover, thereby resolving an open question by Fomin
et al. [JCSS 2014]. Our main technical contribution shows how linear-algebraic dependence of
suitably defined vectors over F2 implies graph-theoretic statements about the presence of forbidden
induced subgraphs.
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1 Introduction

Background. This paper continues a long line of investigation [2, 3, 13, 15, 19, 27], aimed
at answering the following question: how and when can an efficient preprocessing algorithm
reduce the size of inputs to NP-hard problems, without changing their answers? This
question can be framed and answered using the notion of kernelization, which originated in
parameterized complexity theory.

In parameterized complexity theory, the complexity analysis is done not only in the size
of the input, but also in terms of another complexity measure related to the input. This
complexity measure is called the parameter. For graph problems, typical parameters are
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the size of a solution, the treewidth of the graph, or the size of a minimum vertex cover
(the vertex cover number). The latter two are often called structural parameterizations. A
kernelization is a polynomial-time preprocessing algorithm with a performance guarantee.
It reduces an instance (x, k) of a parameterized problem to an instance (x′, k′) that has an
equivalent yes/no answer, such that |x′| and k′ are bounded by f(k) for some computable
function f , called the size of the kernel. If f is a polynomial function, the parameterized
problem is said to admit a polynomial kernel. Polynomial kernels are highly sought after, as
they allow problem instances to be reduced to a relatively small size.

We investigate polynomial kernels for the class of graph modification problems, in an
attempt to develop a widely applicable and generic kernelization framework. In graph
modification problems, the goal is to make a small number of changes to an input graph to
make it satisfy a certain property. Possible modifications are vertex deletions, edge deletions,
and edge additions. In this work, we consider the problem of deleting a bounded-size set
of vertices such that the resulting graph does not contain certain graphs as an induced
subgraph.

The study of kernelization for graph modification problems parameterized by solution
size has an interesting and rich history [1, 6, 7, 10, 14, 17, 20, 23]. However, some graph
modification problems such as Perfect Vertex Deletion [16] and Wheel-free Vertex
Deletion [25] are W[2]-hard parameterized by the solution size and therefore do not admit
any kernels unless FPT = W[2]. Together with the intrinsic interest in obtaining generic
kernelization theorems that apply to a large class of problems with a single parameter, this
has triggered research into polynomial kernelization for graph problems under structural
parameterizations [4, 13, 15, 19, 26] such as the vertex cover number. The latter parameter
is often used for its mathematical elegance, and due to the fact that slightly less restric-
tive parameters such as the feedback vertex number already cause simple problems such as
3-Coloring not to admit polynomial kernels [18], under the standard assumption NP 6⊆ coN-
P/poly. This work therefore focuses on the following class of NP-hard [24] parameterized
problems, where Π is a fixed (possibly infinite) set of graphs:

Π-free Deletion Parameter: |X|
Input: A graph G, a vertex cover X of G, and an integer k.
Question: Does there exist a set S ⊆ V (G) of size at most k such that G− S does not
contain any graph from Π as induced subgraph?

The assumption that a vertex cover X is given in the input is for technical reasons. If the
problem would be parameterized by an upper-bound on the vertex cover number of the graph,
without giving such a vertex cover, then the kernelization algorithm would have to verify
that this is indeed a correct upper bound; an NP-hard problem. Instead, in this setting we
just want to allow the kernelization algorithm to exploit the structural restriction guaranteed
by having a small vertex cover in the graph. We refer to the discussion by Fellows et al. [12,
§2.2] for more background. To apply the kernelization algorithms for problems defined in
this way, one may simply use a 2-approximate vertex cover as X.

Fomin et al. [13] have investigated characteristics of Π-free Deletion problems that
admit a polynomial kernel parameterized by the size of a vertex cover. They introduced a
generic framework that poses three conditions on the graph property Π, which are sufficient
to reach a polynomial kernel for Π-free Deletion parameterized by vertex cover. Examples
of graph properties that fit in their framework are for instance “having a chordless cycle of
length at least 4” or “having an odd cycle”. This results in polynomial kernels for Chordal
Deletion and Odd Cycle Transversal respectively. Interval Deletion does not fit
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Table 1 Kernels obtained by our framework for problems parameterized by a vertex cover X.

Problem Vertices in kernel
Perfect Deletion O(|X|5)
Even-hole-free Deletion (F) O(|X|4)
AT-free Deletion O(|X|9)
Interval Deletion O(|X|9)
Wheel-free Deletion O(|X|5)

in this framework, even though interval graphs are hereditary. Agrawal et al. [1] show that
it admits a polynomial kernel parameterized by solution size, and therefore also by vertex
cover size. They introduced a linear-algebraic technique, which assigns a vector over F2 to
each vertex, to find an induced subgraph that preserves the size of an optimal solution by
combining several disjoint bases of systems of such vectors. This formed the inspiration for
our work, in which we improve the generic kernelization framework of Fomin et al. [13] using
linear-algebraic techniques inspired by the kernel [1] for Interval Deletion.

Results. We introduce the notion of characterizing a graph property Π by low-rank adjacen-
cies, and use it to generalize the kernelization framework by Fomin et al. [13] significantly.
The resulting kernelization algorithms consist of a single, conceptually simple reduction
rule for Π-free Deletion, whose property-specific correctness proofs show how the linear
dependence of suitably defined vectors implies certain graph-theoretic properties. This results
in a simpler kernelization for Interval Deletion parameterized by vertex cover compared
to the one by Agrawal et al. [1]. More importantly, several vertex-deletion problems whose
kernelization complexity was previously open can be covered by the framework. These include
AT-free Deletion (eliminate all asteroidal triples [22] from the graph), Wheel-free
Deletion, and also Perfect Deletion which was an explicit open question of Fomin et
al. [13, §5]. An overview is given in Table 1. Moreover, we give evidence that the distin-
guishing property of our framework (being able to characterize Π by low-rank adjacencies)
is the right one to capture kernelization complexity. While the Wheel-free Deletion
problem fits into our framework and therefore has a polynomial kernel, the situation is very
different for the related problem Almost Wheel-free Deletion (ensure the resulting
graph does not contain any wheel, except possibly W4). We prove the latter problem does
not fit into our framework, and that it does not admit a polynomial kernel parameterized by
vertex cover, unless NP ⊆ coNP/poly.

Related work. Even though the vertex cover is generally not small compared to the size of
the input graph, it is not always the case that a polynomial kernel parameterized by vertex
cover number exists. This was shown by Bodlaender et al. [3]. They showed that for instance
the Clique problem that asks whether a graph contains a clique of k vertices, does not
admit a polynomial kernel parameterized by the vertex cover size, unless coNP ⊆ NP/poly.

A graph is perfect if for every induced subgraph H, the chromatic number of H is equal to
the size of the largest clique of H. Conjectured by Berge in 1961 and proven in the beginning
of this century by Chudnovsky et al. [8], the strong perfect graph theorem states that a graph
is perfect if and only if it is Berge. The forbidden induced subgraphs of Berge graphs (and
hence of perfect graphs) are C2k+1 and C2k+1 for k ≥ 2, that is, induced cycles and their
edge complements of odd length at least 5. A survey of forbidden subgraph characterizations
of some other hereditary graph classes is given in [5, Chapter 7].
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Organization. In Section 2 we give preliminaries and definitions used throughout this work.
In Section 3 we introduce the framework. In Section 4 we show that several problems such
as Perfect Deletion and Interval Deletion fit in this framework. Finally we conclude
in Section 5. For statements marked F, the proof is deferred to the full version [21].

2 Preliminaries

Notation. For i ∈ N, we denote the set {1, ..., i} by [i]. For a set S, we denote the set of
subsets of size at most k by

(
S
≤k

)
= {S′ ⊆ S | |S′| ≤ k}. Similarly,

(
S
k

)
denotes the set of

subsets of size exactly k. We consider simple graphs that are unweighted and undirected
without self-loops. A graph G has vertex and edge sets V (G) and E(G) respectively. An edge
between vertices u, v ∈ V (G) is an unordered pair {u, v}. For a set of vertices S ⊆ V (G),
by G[S] we denote the graph induced by S. For v ∈ V (G) and S ⊆ V (G), by G − v and
G− S we mean the graphs G[V (G) \ {v}] and G[V (G) \ S] respectively. We denote the open
neighborhood of v ∈ V (G) by NG(v) = {u | {u, v} ∈ E(G)}. When clear from context, we
sometimes omit the subscript G. For a graph G, let G be the edge complement graph of
G on the same vertex set, such that for distinct u, v ∈ V (G) we have {u, v} ∈ E(G) if and
only if {u, v} /∈ E(G). The path graph on n vertices (v1, ..., vn) is denoted by Pn. Similarly,
the n-vertex cycle for n ≥ 3 is denoted by Cn. When n ≥ 4, the graph Cn is often called
a hole. For n ≥ 3, the wheel Wn of size n is the graph on vertices {c, v1, ..., vn} such that
(v1, ..., vn) is a cycle and c is adjacent to vi for all i ∈ [n]. An asteroidal triple (AT) in a
graph G consists of three vertices such that every pair is connected by a path that avoids
the neighborhood of the third. A vertex cover in a graph G is a set of vertices that contains
at least one endpoint of every edge. The minimum size of a vertex cover in a graph G is
denoted by vc(G).

Parameterized complexity. A parameterized problem [9, 11] is a language Q ⊆ Σ∗ × N,
where Σ is a finite alphabet. The notion of kernelization is formalized as follows.

I Definition 1. Let Q ⊆ Σ∗ × N be a parameterized problem and let f : N → N be a
computable function. A kernelization for Q of size f is an algorithm that, given an instance
(x, k) ∈ Σ∗ × N, outputs in time polynomial in |x| + k an instance (x′, k′) (known as the
kernel) such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q and such that |x′|, k′ ≤ f(k). If f is a
polynomial function, then the algorithm is a polynomial kernelization.

Previous kernelization framework. We state some of the results from the kernelization
framework by Fomin et al. [13] that forms the basis of this work. A graph property Π is a
(possibly infinite) set of graphs.

I Definition 2 (Definition 3, [13]). A graph property Π is characterized by cΠ ∈ N adjacencies
if for all graphs G ∈ Π, for every vertex v ∈ V (G), there is a set D ⊆ V (G) \ {v} of size
at most cΠ such that all graphs G′ which are obtained from G by adding or removing edges
between v and vertices in V (G) \D, are also contained in Π.

As an example, the graph property “having a chordless cycle of length at least 4” is
characterized by 3 adjacencies. The graph property “not being an interval graph” is not
characterized by a finite number of adjacencies. Other examples are given by Fomin et al. [13].

Any finite graph property Π is trivially characterized by maxG∈Π |V (G)| − 1 adjacencies.
We state the following easily verified fact without proof.
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I Proposition 3. Let Π′ be the set of all graphs that contain a graph from a finite set Π as
induced subgraph. Then Π′ is characterized by maxG∈Π |V (G)| − 1 adjacencies.

A graph G is vertex-minimal with respect to Π if G ∈ Π and for all S ( V (G) the graph
G[S] is not contained in Π. The following framework can be used to get polynomial kernels
for the Π-free Deletion problem parameterized by vertex cover.

I Theorem 4 (Theorem 2, [13]). If Π is a graph property such that:
(i) Π is characterized by cΠ adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a non-decreasing polynomial p : N→ N such that all graphs G that are vertex-

minimal with respect to Π satisfy |V (G)| ≤ p(vc(G)),
then Π-free Deletion parameterized by the vertex cover size x admits a polynomial kernel
with O((x+ p(x))xcΠ) vertices.

3 Framework based on low-rank adjacencies

3.1 Incidence vectors and characterizations
As a first step towards our kernelization framework for Π-free Deletion, we introduce
an incidence vector definition (inc) that characterizes the neighborhood of a given vertex.
Compared to the vector encoding used by Agrawal et al. [1] for Interval Deletion, our
vector definition differs because it supports arbitrarily large subsets (they consider subsets of
size at most two), and because an entry of a vector simultaneously prescribes which neighbors
should be present, and which neighbors should not be present.

I Definition 5 (c-incidence vector). Let G be a graph with vertex cover X and let c ∈ N. Let
Q′, R′ ⊆ X such that |Q′|+ |R′| ≤ c. We define the c-incidence vector incc,(Q′,R′)

(G,X) (u) for a
vertex u ∈ V (G) \X as a vector over F2 that has an entry for each (Q,R) ∈ X ×X with
Q ∩R = ∅ such that |Q|+ |R| ≤ c, Q′ ⊆ Q and R′ ⊆ R. It is defined as follows:

incc,(Q′,R′)
(G,X) (u)[Q,R] =

{
1 if NG(u) ∩Q = ∅ and R ⊆ NG(u),
0 otherwise.

We drop superscript (Q′, R′) if both Q′ and R′ are empty sets. The intuition behind the
superscript (Q′, R′) is that it projects the entries of the full incidence vector incc

(G,X) to those
for supersets of Q′, R′. The c-incidence vectors can be naturally summed coordinate-wise.
For ease of presentation we do not define an explicit order on the coordinates of the vector,
as any arbitrary but fixed ordering suffices.

If the sum of some vectors equals some other vector with respect to a certain graph G,
then this equality is preserved when decreasing c or taking induced subgraphs of G.

I Proposition 6. Let G be a graph with vertex cover X, let c ∈ N, and let D ⊆ V (G) be
disjoint from X. If v ∈ V (G) \ (D ∪X) and incc

(G,X)(v) =
∑

u∈D incc
(G,X)(u), then

incc′

(G,X)(v) =
∑

u∈D incc′

(G,X)(u) for any c′ ≤ c, and
incc

(H,X∩V (H))(v) =
∑

u∈D incc
(H,X∩V (H))(u) for any induced subgraph H of G that con-

tains D and v.

Proof. For the first point, observe that for any vertex v /∈ (D ∪X), the vector incc′

(G,X)(v)
is simply a projection of incc

(G,X)(v) to a subset of its coordinates. Hence if the complete
vector of v is equal to the sum of the complete vectors of u ∈ D, then projecting the vector
of both v and of the sum to the same set of coordinates, yields identical vectors.
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For the second point, observe that since X is a vertex cover of G, we have NG(v) ⊆ X for
all v ∈ V (G)\X. Moreover, ifH is an induced subgraph of G containing D and v, then XH :=
X ∩ V (H) is a vertex cover of H. Hence for any u ∈ V (H) \ XH the c-incidence vector
incc

(H,X∩V (H))(u) is well-defined. If Q,R are disjoint sets for which incc
(H,X∩V (H))(u)[Q,R] is

defined, then Q,R ⊆ XH , so the adjacencies between u and Q∪R in the induced subgraph H
are identical to those in G, which implies incc

(G,X)(u)[Q,R] = incc
(H,X∩V (H))(u)[Q,R]. Hence

when we replace a c-incidence vector with subscript (G,X) by a vector with subscript
(H,X ∩ V (H)), we essentially project the vector to a subset of its coordinates without
changing any values. For the same reason as above, this preserves the fact that the vectors
of D sum to that of v. J

We are ready to introduce the main definition, namely characterization of a graph property
Π by rank-c adjacencies for some c ∈ N. In our framework, this replaces characterization by
c adjacencies in the framework of Fomin et al. [13] (Theorem 4).

I Definition 7 (rank-c adjacencies). Let c ∈ N be a natural number. Graph property Π is
characterized by rank-c adjacencies if the following holds. For each graph H, for each vertex
cover X of H, for each set D ⊆ V (H) \X, for each v ∈ V (H) \ (D ∪X), if

H −D ∈ Π, and
incc

(H,X)(v) =
∑

u∈D incc
(H,X)(u) when evaluated over F2,

then there exists D′ ⊆ D such that H − v − (D \D′) ∈ Π. If there always exists such set D′
of size 1, then we say Π is characterized by rank-c adjacencies with singleton replacements.

Intuitively, the definition demands that if we have a set D such that H −D ∈ Π, and the
c-incidence vectors of D sum to the vector of some vertex v over F2, then there exists D′ ⊆ D
such that removing v from H−D and adding back D′ results in a graph that is still contained
in Π. For example, in Section 4.1 we show that the graph property “containing an odd hole
or odd-anti-hole” is characterized by rank-4 adjacencies. Using our framework, this leads to
a polynomial kernel for Perfect Deletion parameterized by vertex cover. Other examples
of graph properties which are characterized by a rank-c adjacencies for some c ∈ O(1) include
“containing a cycle” and “being wheel-free”. On the other hand, we will show in Theorem 25
that the property “containing an induced wheel whose size is 3 or at least 5” cannot be
characterized by rank-c adjacencies for any finite c.

3.2 A generic kernelization

Our kernelization framework for Π-free Deletion relies on a single reduction rule presented
in Algorithm 1. It assigns an incidence vector to every vertex outside the vertex cover and
uses linear algebra to select vertices to store in the kernel. Let us therefore recall the
relevant algebraic background. A basis of a set S of d-dimensional vectors over a field F is
a minimum-size subset B ⊆ S such that all v ∈ S can be expressed as linear combinations
of elements of B, i.e., v =

∑
u∈B αu · u for a suitable choice of coefficients αu ∈ F. When

working over the field F2, the only possible coefficients are 0 and 1, which gives a basis B
of S the stronger property that any vector v ∈ S can be written as

∑
u∈B′ u, where B′ ⊆ B

consists of those vectors which get a coefficient of 1 in the linear combination.
Our reduction algorithm repeatedly computes a basis of the incidence vectors of the

remaining set of vertices, and stores the vertices corresponding to the basis in the kernel.
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Algorithm 1 Reduce (Graph G, vertex cover X of G, ` ∈ N, c ∈ N).

1: Let Y1 := V (G) \X.
2: for i← 1 to ` do
3: Let Vi = {incc

(G,X)(y) | y ∈ Yi} and compute a basis Bi of Vi over F2.
4: For each v ∈ Bi, choose a unique vertex yv ∈ Yi such that v = incc

(G,X)(yv).
5: Let Ai := {yv | v ∈ Bi} and Yi+1 = Yi \Ai.
6: end for
7: return G[X ∪

⋃`
i=1Ai]

I Proposition 8. For a fixed c ∈ N, Algorithm 1 runs in polynomial time in terms of ` and
the size of the graph, and returns a graph on O(|X|+ ` · |X|c) vertices.

Proof. Observe that for each i, the vectors in Vi have at most 2c · |
(

X
≤c

)
| = O(|X|c) entries

and therefore the rank of the vector space is O(|X|c). Hence each computed basis contains
O(|X|c) vectors. For constant c, this means that each basis can be computed in polynomial
time using Gaussian elimination. The remaining operations can be done in polynomial time
in terms of ` and the size of the graph. Since |Ai| ∈ O(|X|c) for each i ∈ [`], the resulting
graph has O(|X|+ ` · |X|c) vertices. J

I Theorem 9. If Π is a graph property such that:
(i) Π is characterized by rank-c adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that are

vertex-minimal with respect to Π satisfy |V (G)| ≤ p(vc(G)),
then Π-free Deletion parameterized by the the vertex cover size x admits a polynomial
kernel on O((x+ p(x)) · xc) vertices.

Proof. Consider an instance (G,X, k) of Π-free Deletion. Note that if k ≥ |X|, then
we can delete the entire vertex cover to get an edgeless graph, which is Π-free by (ii), and
therefore we may output a constant size yes-instance as the kernel. If k < |X|, let G′ be the
graph obtained by the procedure Reduce(G,X,` := k + 1 + p(|X|),c). By Proposition 8 this
can be done in polynomial time and the resulting graph contains O((|X|+ p(|X|)) · |X|c)
vertices. All that is left to show is that the instance (G′, X, k) is equivalent to the original
instance. Since G′ is an induced subgraph of G, it follows that if (G,X, k) is a yes-instance,
then so is (G′, X, k). In the other direction, suppose that (G′, X, k) is a yes-instance with
solution S. We show that S also is a solution for the original instance.

For the sake of contradiction assume that this is not the case. Then the graph G − S
contains an induced subgraph that belongs to Π. Let P be a minimal set of vertices of G−S
for which G[P ] ∈ Π and that minimizes |P \ V (G′)|. Since S is a solution for (G′, X, k), it
follows that there exists a vertex v ∈ P \ V (G′). Moreover we have that v /∈ X, since the
graph G′ returned by Algorithm 1 contains all vertices of X. The set P ∩X is a vertex cover
for G[P ], therefore by property (iii) we have that |P | ≤ p(vc(G[P ])) ≤ p(|X|). Since the
vertex sets A1, . . . , A` computed in the Reduce operation are disjoint, and since |S| ≤ k, it
follows that there exists an i ∈ [k+ 1 + p(|X|)] such that the set of vertices Ai corresponding
to basis Bi is disjoint from both S and P .

As v /∈ V (G′) implies v /∈
⋃`

i=1Ai, in each iteration of line 3 the vectors of the computed
vertex set Ai span the vector of v. Hence, since we work over F2, there exists D ⊆ Ai ⊆ V (G′)
such that incc

(G,X)(v) =
∑

u∈D incc
(G,X)(u). Consider the graph H := G[P ∪D]. Since H is

an induced subgraph that includes D and D is disjoint from X, by Proposition 6 it follows
that incc

(H,X∩V (H))(v) =
∑

u∈D incc
(H,X∩V (H))(u). Moreover H −D ∈ Π as H −D = G[P ].
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By the definition of rank-c adjacencies it follows that there exists D′ ⊆ D such that
P ′ = H − v − (D \ D′) ∈ Π. But since |P ′ \ V (G′)| < |P \ V (G′)|, this contradicts the
minimality of P . Therefore S must be a solution for the original instance. J

3.3 Properties of low-rank adjacencies
In this section we present several technical lemmata dealing with low-rank adjacencies. These
will be useful when applying the framework to various graph properties. The next lemma
shows that if Π is characterized by low-rank adjacencies with singleton replacements, then
the edge-complement graphs are as well.

I Lemma 10. Let Π be a graph property that is characterized by rank-c adjacencies with
singleton replacements. Let Π be the graph property such that G ∈ Π if and only if G ∈ Π.
Then Π is characterized by rank-c adjacencies with singleton replacements.

Proof. LetH be a graph with vertex coverX. LetD ⊆ V (H)\X be a set such thatH−D ∈ Π.
Consider some vertex v ∈ V (H) \ (D ∪X) such that incc

(H,X)(v) =
∑

u∈D incc
(H,X)(u). Let

X ′ = V (H) \ (D ∪ {v}).

B Claim 11. We have incc
(H,X′)(v) =

∑
u∈D incc

(H,X′)(u).

Proof. Since vertices outside X are independent, neither v nor any vertex in D is adjacent
to any vertex in X ′ \ X. So for any disjoint Q,R ⊆ X ′ with R ∩ (X ′ \ X) 6= ∅ we
have incc

(H,X′)(v)[Q,R] = incc
(H,X′)(u)[Q,R] = 0 for all u ∈ D by definition, while for R ∩

(X ′ \X) = ∅ we have incc
(H,X′)(u)[Q,R] = incc

(H,X)(u)[Q ∩X,R] for any u ∈ D ∪ {v}. C

Let H ′ be obtained from H by (1) taking the edge complement, and then (2) turning
H ′[D ∪ {v}] back into an independent set (the complement made it a clique). Note that X ′
is a vertex cover of H ′.

B Claim 12. We have incc
(H′,X′)(v) =

∑
u∈D incc

(H′,X′)(u).

Proof. Immediate from Claim 11 since incc
(H′,X′)(u)[Q,R] = incc

(H,X′)(u)[R,Q] for all u ∈
D ∪ {v}. C

Observe that H ′−D is the edge-complement of H−D, so H ′−D ∈ Π. Together with the
previous claim, since Π is characterized by rank-c adjacencies with singleton replacements, it
follows that there exists v′ ∈ D such that G′ := H ′ − v − (D \ {v′}) ∈ Π. Since G′ contains
only a single vertex of {v} ∪ D, none of its edges were edited during step (2) above, so
that G := H − v − (D \ {v′}) is the edge-complement of G′, implying G ∈ Π. This shows
that Π is characterized by rank-c adjacencies with singleton replacements. J

Lemma 13 proves closure under taking the union of two characterized properties.

I Lemma 13. Let Π and Π′ be graph properties characterized by rank-cΠ and rank-cΠ′ adja-
cencies (with singleton replacements), respectively. Then the property Π ∪Π′ is characterized
by rank-max(cΠ, cΠ′) adjacencies (with singleton replacements).

Proof. Consider a graph H with vertex cover X and set D ⊆ V (H) \ X such that H −
D ∈ Π ∪ Π′. Let v ∈ V (H) \ (D ∪ X) be some vertex such that incmax(cΠ,cΠ′ )

(H,X) (v) =∑
u∈D incmax(cΠ,cΠ′ )

(H,X) (u). By Proposition 6, we have inccΠ
(H,X)(v) =

∑
u∈D inccΠ

(H,X)(u). If
H − D ∈ Π, then there exists D′ ⊆ D such that H − v − (D \ D′) ∈ Π and hence,
H − v− (D \D′) ∈ Π∪Π′ (in case of singleton replacements, D′ is replaced by {v′} for some
v′ ∈ D). The case H −D ∈ Π′ is symmetric. J
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While the intersection of two graph properties which are characterized by a finite number
of adjacencies is again characterized by a finite number of adjacencies [13, Proposition 4], the
same does not hold for low-rank adjacencies; there is no analog of Lemma 13 for intersections.

In a graph G, we say that vertices u and v share adjacencies to a set S, if NG(u) ∩ S =
NG(v)∩S. The following lemma states that when we have a set D whose c-incidence vectors
sum to the vector of v, then for any set S of size up to c there exists a nonempty subset
D′ ⊆ D whose members all share adjacencies with v to S.

I Lemma 14. Let G be a graph with vertex cover X, let D ⊆ V (G) be disjoint from X, and
let c ∈ N. Consider a vertex v ∈ V (G) \ (D ∪X). If incc

(G,X)(v) =
∑

u∈D incc
(G,X)(u), then

for any set S ⊆ V (G) with |S| ≤ c there exists D′ ⊆ D, such that:
|D′| ≥ 1 is odd,
each vertex u ∈ D′ shares adjacencies with v to S, and
incc,(Q′,R′)

(G,X) (v) =
∑

u∈D′ incc,(Q′,R′)
(G,X) (u), where Q′ = (S \NG(v))∩X and R′ = S ∩NG(v).

Proof. For any vertex d ∈ D that does not share adjacencies with v to S, the vector
incc,(Q′,R′)

(G,X) (d) is the vector containing only zeros. Let D′ ⊆ D be the set of vertices
that do share adjacencies with v to S. Clearly incc,(Q′,R′)

(G,X) (v) =
∑

u∈D′ incc,(Q′,R′)
(G,X) (u), as

removing all-zero vectors does not change the sum. Since incc,(Q′,R′)
(G,X) (v)[Q′, R′] = 1 and

incc,(Q′,R′)
(G,X) (u)[Q′, R′] = 1 for all u ∈ D′, |D′| ≥ 1 must be odd. J

Our framework adapts Theorem 4 by replacing characterization by c adjacencies by rank-c
adjacencies. From the following statement we can conclude that our framework extends
Theorem 4.

I Lemma 15. A graph property Π characterized by c adjacencies is also characterized by
rank-c adjacencies with singleton replacements.

Proof. Let Π be a graph property characterized by c adjacencies. We show that Π is
characterized by rank-c adjacencies. Let G be a graph with vertex cover X and D ⊆
V (G) \X be a set such that G −D ∈ Π. Let v ∈ V (G) \ (D ∪X) be a vertex such that
incc

(G,X)(v) =
∑

u∈D incc
(G,X)(u).

Since Π is characterized by c adjacencies, there exists a set B of size at most c such that
all graphs obtained by changing adjacencies between v and V (G) \ B are also contained
in Π. By Lemma 14 there exists w ∈ D that shares adjacencies with v to B. Now consider
the graph G − v − (D \ {w}). This graph is isomorphic to G −D where w is matched to
v and the adjacencies between v and V (G) \B are changed. But then by the definition of
characterization by c adjacencies it follows that G− v − (D \ {w}) ∈ Π. J

4 Using the framework

In this section we give some results using our framework, which are listed in Table 1. We give
polynomial kernels for Perfect Deletion, AT-free Deletion, Interval Deletion,
Even-hole-free Deletion, and Wheel-free Deletion parameterized by vertex cover.

4.1 Perfect Deletion
Let ΠP be the set of graphs that contain an odd hole or an odd anti-hole. The ΠP -free
Deletion problem is known as the Perfect Deletion problem. It was mentioned as an
open question by Fomin et al. [13], since one can show that ΠP is not characterized by a
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finite number of adjacencies. In this section we show that ΠP is characterized by rank-4
adjacencies with singleton replacements. Following this result, we show that it admits a
polynomial kernel using Theorem 9. First, we give a lemma that will be helpful in the proof
later on. We say that a vertex sees an edge if it is adjacent to both of its endpoints.

I Lemma 16. Let G be a graph, P = (v1, ..., vn) where n ≥ 4 is even be an induced path in
G, and let y be a vertex not on P that is adjacent to both endpoints of P and sees an even
number of edges of P . Then G[V (P ) ∪ {y}] contains an odd hole as induced subgraph.

Proof. We prove the claim by induction on n. Consider the case that n = 4. If y would
be adjacent to exactly one of v2 or v3, then y would see a single edge {v1, v2} or {v3, v4}
respectively. If y would be adjacent to both v2 and v3, then y would see all three edges of P .
Since y sees an even number of edges of P , it follows that y is only adjacent to v1 and v4.
Then G[V (P ) ∪ {y}] induces an odd hole.

In the remaining case we assume that the claim holds for n′ < n, where n ≥ 6 and
both n′ and n are even. Suppose that y sees both edges {v1, v2} and {vn−1, vn}, then
P ′ = (v2, ..., vn−1) is an induced path on an even number of vertices such that y is adjacent
to both of its endpoints and y sees an even number edges in P ′. By the induction hypothesis
G[V (P ′) ∪ {y}] contains an odd hole, therefore G[V (P ) ∪ {y}] contains an odd hole as well.
If y does not see both {v1, v2} and {vn−1, vn}, then assume without loss of generality that
y does not see the last edge {vn−1, vn}. Let vj for 1 ≤ j < n − 1 be the largest index
before n for which y is adjacent to vj . If j is odd, then G[{vj , ..., vn, y}] induces an odd hole.
Otherwise P ′ = (v1, ..., vj) is an induced path on an even number of vertices, y is adjacent
to both of its endpoints, and y sees an even number of edges in P ′; hence the induction
hypothesis applies. In all cases we get that G[V (P ) ∪ {y}] contains an odd hole. J

Before we show the proof that ΠP is characterized by rank-4 adjacencies with singleton
replacements, we give some intuition for the replacement argument. Suppose we want to
replace a vertex v of some odd hole, and we have a set D where each vertex in D is adjacent
to both neighbors of v in the hole. Furthermore, the 4-incidence vectors of D sum to the
vector of v. Then there must exist some vertex in D that sees an even number of edges of
the induced path between the neighbors of v. This together with Lemma 16 would result in
a graph that contains an odd hole. Figure 1 adds to this intuition.

Let ΠOH be the set of graphs that contain an odd hole. We show that ΠOH is characterized
by rank-4 adjacencies with singleton replacements.

I Theorem 17. ΠOH is characterized by rank-4 adjacencies with singleton replacements.

Proof. Consider some graph H with vertex cover X and let D ⊆ V (H) \ X such that
H −D ∈ ΠOH . Let v be an arbitrary vertex in V (H) \ (D ∪X) such that inc4

(H,X)(v) =∑
u∈D inc4

(H,X)(u). We show that H − v − (D \ {v′}) ∈ ΠOH for some v′ ∈ D.
Let C be an odd hole in H −D. If v /∈ V (C), then for every v′ ∈ D we have H − v −

(D \ {v′}) ∈ ΠOH . So suppose that v ∈ C. Let C = (v, p, v1, ..., vn−3, q), where |V (C)| = n.
Consider the induced path P = (p, v1, ..., vn−3, q). We have that v is adjacent to p and q.
Let D′ ⊆ D be a set that shares adjacencies with v to {p, q} such that |D′| ≥ 1 is odd and
inc4,(∅,{p,q})

(H,X) (v) =
∑

u∈D′ inc4,(∅,{p,q})
(H,X) (u). Such set exists by Lemma 14. Since C is an odd

hole, |V (P )| is even. Hence by Lemma 16, G[V (P )∪{u}] contains an odd hole if there exists
some u ∈ D′ that sees an even number of edges of P . Suppose for the sake of contradiction
that every vertex in D′ sees an odd number of edges of P . Let Eu be the set of edges in
P that are seen by u ∈ D′. Then

∑
u∈D′ |Eu| is odd as it is a sum of an odd number of

odd numbers. Let D′{u,w} ⊆ D
′ be the set of vertices that see edge {u,w} ∈ E(P ). In order
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p

v1

v2

v3

v4

q

y3

y4

y5

y6

y7

v y1 y2

· · ·

· · ·

y1 y2 y3 y4 y5 y6 y7 v

[Q = ∅, R = {p, q, v1}] 1 1 0 1 0 0 1 0
[Q = ∅, R = {p, q, v1, v2}] 1 0 0 0 0 0 1 0
[Q = ∅, R = {p, q, v2, v3}] 1 0 0 0 0 1 0 0
[Q = ∅, R = {p, q, v3, v4}] 1 0 0 0 1 0 0 0
[Q = ∅, R = {p, q, v4}] 1 1 1 0 1 0 0 0
[Q = {v1}, R = {p, q}] 0 0 1 0 1 1 0 1
[Q = {v1}, R = {p, q, v2}] 0 0 1 0 0 1 0 0
[Q = {v2, v4}, R = {p, q}] 0 0 0 1 0 0 0 1

...

Figure 1 Graph G with vertex cover X = {p, q, v1, . . . , v4}, containing an odd hole H =
{v, p, v1, ..., v4, q}, such that inc4,(∅,{p,q})

(G,X) (v) =
∑7

i=1 inc4,(∅,{p,q})
(G,X) (yi). All edges {p, yi} and {q, yi}

for i ∈ [7] exist, but not all are drawn. The table shows entries of the vectors inc4,(∅,{p,q})
(G,X) (u /∈ X).

Vertex y2 sees an even number of edges ({p, v1} and {v4, q}), and (v1, ..., v4, y2) is an odd hole.

to satisfy
∑

u∈D′ inc(∅,{p,q})(u)[∅, {p, q, u, w}] = inc(∅,{p,q})(v)[∅, {p, q, u, w}] = 0 over F2, for
{u,w} ∈ E(P ), we require |D′{u,w}| to be even. But then

∑
e∈E(P ) |D′e| =

∑
u∈D′ |Eu| would

also need to be an even number. This contradicts the fact that
∑

u∈D′ |Eu| is odd. Therefore
there must exist some u ∈ D′ that sees an even number of edges in P . J

Let ΠOAH be the set of graphs that contain an odd anti-hole. Then ΠP = ΠOH ∪ΠOAH .
From applications of Lemma 10 and Lemma 13 we get the following.

I Corollary 18. Graph properties ΠOH , ΠOAH , and ΠP are characterized by rank-4 adja-
cencies with singleton replacements.

I Theorem 19. Perfect Deletion parameterized by the size of a vertex cover admits a
polynomial kernel on O(|X|5) vertices.

Proof. By Corollary 18 we have that ΠP is characterized by rank-4 adjacencies with singleton
replacements. Each graph in ΠP contains at least one edge. For each odd hole or odd anti-hole
H, we have |V (H)| ≤ 2 ·vc(H). Therefore by Theorem 9 it follows that ΠP -free Deletion
and hence Perfect Deletion parameterized by vertex cover admits a polynomial kernel
on O(|X|5) vertices. J

A variation of Theorem 17 presented in the full version [21] shows that the set ΠEH

of graphs containing an even hole are characterized by rank-3 adjacencies, which leads to
a kernel for Even-hole-free Deletion parameterized by the size of a vertex cover of
O(|X|4) vertices.

4.2 AT-free Deletion
In his dissertation, Köhler [22] gives a forbidden subgraph characterization of graphs without
asteroidal triples. This forbidden subgraph characterization consists of 15 small graphs on
6 or 7 vertices each, chordless cycles of length at least 6, and three infinite families often
called asteroidal witnesses. Let ΠAT be the set of graphs that contain an asteroidal triple. A
technical case analysis leads to the following results.

I Theorem 20 (F). ΠAT is characterized by rank-8 adjacencies with singleton replacements.
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I Theorem 21. AT-free Deletion parameterized by the size of a vertex cover admits a
polynomial kernel on O(|X|9) vertices.

Proof. Every graph in ΠAT contains at least one edge. By Theorem 20 it follows that ΠAT

is characterized by rank-8 adjacencies with singleton replacements. Each small graph has at
most 7 vertices. For each cycle C, we have |V (C)| ≤ 2 ·vc(C). Finally each asteroidal witness
consists of an induced path with 2 or 3 additional vertices, hence there exists c ∈ N such that
for G ∈ ΠAT , |V (G)| ≤ c · vc(G). Hence by Theorem 9, AT-free Deletion parameterized
by the size of a vertex cover admits a polynomial kernel on O(|X|9) vertices. J

4.3 Interval Deletion
Interval Deletion does not fit in the framework of Fomin et al. [13], since one can
show that its forbidden subgraph characterization is not characterized by a finite number of
adjacencies. It was shown to admit a polynomial kernel by Agrawal et al. [1]. We show that
our framework captures this result. Consider the graph property ΠIV = ΠAT ∪ΠC≥4 , where
ΠAT is the set of graphs that contain an asteroidal triple as in Section 4.2 and ΠC≥4 is the set
of graphs that contain an induced cycle of length at least 4. Making a graph ΠIV -free makes
it chordal and AT-free, therefore ΠIV -free Deletion corresponds to Interval Deletion.

I Theorem 22. Interval Deletion parameterized by the size of a vertex cover admits a
polynomial kernel on O(|X|9) vertices.

Proof. Every graph in ΠIV contains at least one edge. By Theorem 20, ΠAT is characterized
by rank-8 adjacencies. Furthermore, ΠC≥4 is characterized by 3 adjacencies as shown by
Fomin et al. [13, Proposition 3], and therefore by Lemma 15 also by rank-3 adjacencies.
Therefore by Lemma 13, it follows that ΠIV is also characterized by rank-8 adjacencies.
Each vertex minimal graph in ΠC≥4 is a cycle C, for which we have |V (C)| ≤ 2 · vc(C).
Recall that ΠAT = ΠS ∪ΠC≥6 ∪ΠAW . Each vertex minimal graph in ΠS contains at most 7
vertices. Finally each asteroidal witness consists of an induced path with 2 or 3 additional
vertices, hence there exists c ∈ N such that for G ∈ ΠIV , |V (G)| ≤ c · vc(G). Therefore
by Theorem 9, Interval Deletion parameterized by the size of a vertex cover admits a
polynomial kernel on O(|X|9) vertices. J

4.4 (Almost) Wheel-free Deletion
Let ΠW≥3 be the set of graphs that contain a wheel of size at least 3 as induced sub-
graph. Then Wheel-free Deletion corresponds to ΠW≥3-free Deletion. We present a
characterization by rank-4 adjacencies.

I Theorem 23 (F). ΠW≥3 is characterized by rank-4 adjacencies.

Every graph that contains a wheel contains at least one edge. For every wheel Wn, we
have |V (Wn)| ≤ 2 · vc(Wn). Therefore by Theorem 9 we obtain:

I Theorem 24. Wheel-free Deletion parameterized by the size of a vertex cover admits
a polynomial kernel on O(|X|5) vertices.

It turns out that this good algorithmic behavior is very fragile. Let ΠW 6=4 be the set of
graphs that contain a wheel of size 3, or at least 5. Then ΠW 6=4-free Deletion corresponds
to Almost Wheel-free Deletion. While ΠW≥3 can be characterized by rank-4 adjacencies,
the following shows that ΠW 6=4 is not characterized by adjacencies of any finite rank, and
therefore does not fall within the scope of our kernelization framework.
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I Theorem 25 (F). ΠW 6=4 is not characterized by rank-c adjacencies for any c ∈ N.

This is not a deficiency of our framework; we prove that the problem does not have any
polynomial compression, and therefore no polynomial kernel, unless NP ⊆ coNP/poly.

I Theorem 26 (F). Almost Wheel-free Deletion parameterized by vertex cover does
not admit a polynomial compression unless coNP ⊆ NP/poly.

This suggests that the condition of being characterized by low-rank adjacencies is the
right way to capture kernelization complexity.

5 Conclusion

We have presented a framework that can be used to obtain polynomial kernels for the Π-free
Deletion problem parameterized by the size of a vertex cover, based on the novel concept
of characterizations by low-rank adjacencies. Our framework significantly extends the scope
of the earlier framework of Fomin et al. [13]. In addition to the examples given in Table 1,
the framework can be applied to obtain kernels for a wide range of vertex-deletion problems.
Using the fact that graph properties characterized by low-rank adjacencies are closed under
taking a union (Lemma 13), together with the characterizations by low-rank adjacencies
developed here, and characterizations by few adjacencies by Fomin et al. [13, Table 1], we
obtain the following.

I Corollary 27. Let F be a hereditary graph class defined by an arbitrary combination of
the following properties: being wheel-free, being odd-hole-free, being odd-anti-hole-free, being
even-hole-free, being AT-free, being bipartite, being C≥c-free for some fixed c ∈ N, being
H-minor-free for some fixed graph H, being H-free for some fixed graph H containing at
least one edge, and having a Hamiltonian cycle (respectively, path). Then the problem of
testing whether an input graph G can be turned into a member of F by removing at most k
vertices, has a polynomial kernel parameterized by vertex cover.

It would be interesting to see whether the exponents given by Table 1 are tight (cf. [15]).
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Abstract
Locality Sensitive Hashing (LSH) is an effective method to index a set of points such that we can
efficiently find the nearest neighbors of a query point. We extend this method to our novel Set-query
LSH (SLSH), such that it can find the nearest neighbors of a set of points, given as a query.

Let s(x, y) be the similarity between two points x and y. We define a similarity between a set
Q and a point x by aggregating the similarities s(p, x) for all p ∈ Q. For example, we can take
s(p, x) to be the angular similarity between p and x

(
i.e., 1− ∠(x,p)

π

)
, and aggregate by arithmetic

or geometric averaging, or taking the lowest similarity.
We develop locality sensitive hash families and data structures for a large set of such arithmetic

and geometric averaging similarities, and analyze their collision probabilities. We also establish an
analogous framework and hash families for distance functions. Specifically, we give a structure for
the euclidean distance aggregated by either averaging or taking the maximum.

We leverage SLSH to solve a geometric extension of the approximate near neighbors problem.
In this version, we consider a metric for which the unit ball is an ellipsoid and its orientation is
specified with the query.

An important application that motivates our work is group recommendation systems. Such a
system embeds movies and users in the same feature space, and the task of recommending a movie
for a group to watch together, translates to a set-query Q using an appropriate similarity.
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1 Introduction

The focus of this paper is on similarity search for queries which are sets of points (set-queries),
where we aim to efficiently retrieve points with a high aggregated similarity to the points of
the set-query.
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28:2 LSH for Set-Queries, Motivated by Group Recommendations

Efficient similarity search for massive databases is central in many application areas,
such as recommendation systems, content-based image or audio retrieval, machine learning,
pattern recognition, and data analysis. The database is often composed of high-dimensional
feature vectors of documents, images, etc., and we are interested in finding the near neighbors
of a query vector.

Traditional tree-based indexing mechanisms do not scale well to higher dimensions, a
phenomenon known as the “curse of dimensionality”. To cope with this curse of dimensionality,
Indyk and Motwani [11, 10] introduced Locality Sensitive Hashing (LSH), a framework based
on hash functions for which the probability of hash collision is higher for similar points than
for dissimilar points.

Using such hash functions, one can determine near neighbors by hashing the query point
and retrieving the data points stored in its bucket. Typically, multiple LSH functions are
concatenated to reduce false positives, and multiple hash tables are needed to reduce false
negatives. This gives rise to a data structure which satisfies the following property: for any
query point q, if there exists an S-similar data point to q in the database, it retrieves (with
constant probability) some cS-similar data point to q for some constant 0 < c < 1. This
data structure is parameterized by a parameter ρ = log(p1)

log(p2) < 1, where p1 is the minimal
collision probability for any two points of similarity at least S, and p2 is the maximal collision
probability for any two points of similarity at most cS. The data structure can be built in
time and space O(1/p1 · n1+ρ), and its query time is O(1/p1 · nρ log1/p2(n)).

Since the seminal paper of Indyk and Motwani [11, 10], many extensions have been
considered for the LSH framework [16]. A notable extension is the work of Shrivastava and
Li [22], which study the inner product similarity ip-sim(x, y) = xT y. They find near neighbors
for the inner product similarity by extending the LSH framework to allow asymmetric hashing
schemes (ALSH) [20], in which we hash the query and the data points using different hash
functions. There is also an analogous LSH framework for distance functions, based on hash
functions for which the probability of hash collision is higher for near points than for far
points. An important distance function to which the LSH framework has been applied is
the `p distance [19]. Datar et al. [8] study the `p distance for p ∈ (0, 2], and present a hash
based on p-stable distributions. Andoni and Indyk [2] give a near-optimal (data oblivious)
scheme for p = 2. Recently, several theoretically superior data dependent schemes have been
designed [3, 4].

A noteworthy application of LSH is for recommendation systems [15], which are required
to recommend points that are similar feature-wise to the user. Group recommendation
systems [14, 17] are recommendation systems which provide recommendations, not only to
an individual, but also to a whole group of people, and are gaining popularity in recent years.
The need in such systems arises in many scenarios: when searching for a movie or a TV show
for friends to watch together [21, 23], a travel destination for a family to spend a holiday
break in [13, 18], or a good restaurant for a group of tourists to have lunch in [5]. In the
literature of group recommendation systems, Jameson et al. [14] survey various techniques to
aggregate individual user-point similarities s to a group-point similarity s∗. The most famous
aggregation techniques are the average similarity which defines the aggregated similarity to
be s∗(Q, x) = 1

|Q|
∑
q∈Q s(q, x), and the center similarity (sometimes called Least-Misery)

which defines the aggregated similarity to be s∗(Q, x) = min
q∈Q

(s(q, x)).

Most of the work to date on group recommendations is experimental on relatively small
data sets. In this paper we give (the first to the best of our knowledge) rigorous mathematical
treatment of this problem using the LSH framework. LSH-based recommendation schemes are
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used for individual recommendations but do not naturally support group recommendations.
We extend LSH to support set-queries. We formalize this setting by introducing the notions
of a set-query-to-point (s2p) similarity function, and of the novel set-query LSH (SLSH).

Our novel set-query LSH (SLSH) framework extends the LSH framework to similarities
between a set of points and a point (s2p similarities). We define such a similarity between a
set-query Q = {q1, . . . , qk} ⊂ Z and a point x ∈ Z by aggregating (e.g., averaging) point-
to-point (p2p) similarities (s(q1, x), . . . , s(qk, x)) where s : Z × Z → R≥0 is a p2p similarity.
Specifically, we consider the `p similarity sp(Q, x) = 1

k

∑k
i=1 (s(qi, x))p for a constant p ∈ N

(of which the average similarity savg(Q, x) = s1(Q, x) is a special case), the geometric
similarity sgeo(Q, x) =

∏k
i=1 s(qi, x), and the center similarity scen(Q, x) = minq∈Q s(q, x)

of s.1 Analogously, we can define s2p distance functions and SLSH framework for distances.
We develop hash families for which the probability of collision between a set-query Q and a
point x is higher when Q is similar to x than when Q is dissimilar to x.

Our contribution

We extend the LSH framework to a novel framework for handling set-queries (SLSH) for
both distance and similarity functions, and study their set-query extensions. We develop
various techniques for designing set-query LSH schemes, either by giving an SLSH family
directly for the s2p similarity at hand, or by reducing the problem to a previously solved
problem for a different distance or similarity.

Simple SLSH schemes via achievable p2p similarities. We say that a p2p similarity s is
achievable if there exists a hash family such that the collision probability between x and y
is exactly s(x, y). The angular, hamming and Jaccard p2p similarities have this property.
We show how to construct SLSH families for the `p and geometric s2p similarities that are
obtained by aggregating a p2p similarity which is achievable.

Many of our SLSH families for s2p similarities can be extended to weighted s2p similarity
functions, in which the contribution of each individual p2p similarity has a different weight.
For example, define the weighted geometric s2p similarity (of a p2p similarity s) of a set-query
Q and a data point x to be swgeo(Q, x) =

∏k
i=1 (s (qi, x))wi . These weights are independent

of the specific query and are given at preprocessing time. As an example, a solution for the
SLSH problem for swgeo for any achievable p2p similarity s appears in Appendix A.2.

Additionally, we present an SLSH scheme for the average euclidean distance which is
based upon the shrink-lift transformation (the “lift” refers to the lifting transformation from
Bachrach et al. [6]) which approximately reduces euclidean distances to angular distances.
We get an average angular distance problem which we then solve using the fact that the
angular similarity is achievable and inversely related to the angular distance.2

1 For ease of presenting our ideas, we define the sp and center similarities to be the p’th and k’th power
of their conventional definition in the literature. Note that the results follow for the conventional
definitions since maximizing a similarity is equivalent to maximizing a constant power of it.

2 We note that as the LSH approximation parameter c approaches 1, the required shrink approaches 0.
This makes the angles between the lifted points small, which in turn deteriorates the performance of
the angular similarity structure (in particular, one can show that the term in log1/p2

(n) in the query
time bound of the LSH structure approaches infinity). Therefore, we conclude that the shrink-lift
transformation is useful for values of c which are not too close to 1. However, note that such a property
holds for any LSH-based nearest neighbors algorithm, where for approximation ratios c → 1, the
performance becomes equivalent or worse than linear scan.
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Ellipsoid ALSH. We define the novel euclidean ellipsoid distance which naturally extends
the regular euclidean distance. We develop an LSH-based near neighbors structure for this
distance by a reduction to an SLSH problem with respect to the geometric angular distance.
Recall that in the euclidean approximate near neighbor problem, the query specifies the
center of two concentric balls such that one is a scaled version of the other. Analogously, in
our novel ellipsoid distance, the query specifies the center and orientation of two concentric
ellipsoids such that one is a scaled version of the other. If there is a point in the small
ellipsoid, we have to return a point in the large one. We reduce this problem to a novel
angular ellipsoid distance counterpart via the shrink-lift transformation mentioned before. In
this angular distance counterpart, the distance is a weighted sum of squared angles (rather
than squared distances in the euclidean ellipsoid distance).

To solve the angular ellipsoid ALSH problem, we make a neat observation that the
squared angle that a point creates in the direction of an angular ellipsoid axis, is inversely
related to the collision probability of the point with the hyperplane perpendicular to the axis,
in the ALSH family of Jain et al. [12]. This observation reduces the problem to a weighted
geometric angular similarity SLSH problem, which we finally solve as indicated above using
the fact that the angular similarity is achievable.

Center euclidean distance SLSH. The most challenging s2p distance is the center euclidean
distance which wants to minimize the maximum distance from the points of the set-query.
For this distance function, we obtain an SLSH scheme when the set-query is of size 2, via a
reduction to the euclidean ellipsoid ALSH problem. This reduction is based on an observation
that the points of center euclidean distance at most r to a set-query of size 2, approximately
form an ellipsoid.

We focus on developing techniques to construct SLSH families, but we do not compute
closed formulas for ρ as a function of S and c. These expressions can be easily derived for the
simpler families but are more challenging to derive for the more complicated ones. We leave
the optimization of ρ and testing the method on real recommendation data for future work.

Other related work

Since we study our novel SLSH framework, there is no direct previous work on this. That
been said, there is related previous work on LSH, ALSH, and recommendation systems which
are as follows. In the literature of recommendation systems, Koren and Volinsky [15] discuss
matrix factorization models where user-item interactions are modeled as inner products, and
Bachrach et al. [6] propose a transformation that reduces the inner product similarity to
euclidean distances. Regarding group recommendation systems, Masthoff and Judith [17]
show that humans care about fairness and avoiding individual misery when giving group
recommendations, and Yahia et al. [1] formalize semantics that account for item relevance
to a group, and disagreements among the group members. Regarding LSH and ALSH,
Neyshabur and Srebro [20] study symmetric and asymmetric hashing schemes for the inner
product similarity, and show a superior symmetric LSH to that of Shrivastava and Li [22],
that uses the transformation of Bachrach et al. [6]. As stated before, we use the ALSH family
of Jain et al. [12] to solve the angular ellipsoid ALSH problem. We show that this family can
be interpreted as a private case of an SLSH family for an appropriate s2p similarity, however
Jain et al. [12] did not need this property, and the connection is coincidental.
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2 Preliminaries

We use the following standard definition of a Locality Sensitive Hash Family (LSH) with
respect to a given point-to-point (p2p) similarity function s : Z × Z → R≥0.

I Definition 1 (Locality Sensitive Hashing (LSH)). Let c < 1, S > 0 and p1 > p2. A family H
of functions h : Z → Γ is an (S, cS, p1, p2)-LSH for a p2p similarity function s : Z×Z → R≥0
if for any x, y ∈ Z,
1. If s(x, y) ≥ S then Prh∈H [h(x) = h(y)] ≥ p1, and
2. If s(x, y) ≤ cS then Prh∈H [h(x) = h(y)] ≤ p2.

Note that in the definition above, and in all the following definitions, the hash family H is
always sampled uniformly. Following Shrivastava and Li [22] we extend the LSH framework
to asymmetric similarities s : Z1×Z2 → R≥0 (where Z1 is the domain of the data points and
Z2 is the domain of the queries). Here the (S, cS, p1, p2)-ALSH family H consists of pairs of
functions f : Z1 → Γ and g : Z2 → Γ, and the requirement is that Pr(f,g)∈H [f(x) = g(y)] ≥ p1
if s(x, y) ≥ S, and Pr(f,g)∈H [f(x) = g(y)] ≤ p2 if s(x, y) ≤ cS.

Set-Query LSH

A special kind of asymmetric similarities are similarities between a set of points and a point
(s2p similarities). That is, similarities of the form s∗ : P(Z, k)× Z → R≥0, where P(Z, k) is
the set of subsets of Z of size k. We focus on s2p similarity functions that are obtained by
aggregating the vector of p2p similarities (s(q1, x), . . . , s(qk, x)) where s : Z × Z → R≥0 is a
p2p similarity function, as we discussed in the introduction. We call an (S, cS, p1, p2)-ALSH
for an s2p similarity s∗, an (S, cS, p1, p2)-SLSH for s∗. Our focus is on s2p similarities and
SLSH families.

From similarities to distances

For distance functions we wish that close points collide with a higher probability than
far points do. Specifically, we require that Prh∈H [h(x) = h(y)] ≥ p1 if d(x, y) ≤ r, that
Prh∈H [h(x) = h(y)] ≤ p2 if d(x, y) ≥ cr, and that c > 1. We extend the LSH framework
for distances to asymmetric distances and for s2p distances, and define ALSH and SLSH
families as we did for similarities. As for similarity functions, we consider s2p distance
functions that are defined based on the vector of p2p distances (d(q1, x), . . . , d(qk, x)). In
particular, we consider the `p distance dp(Q, x) = 1

k

∑
q∈Q (d(q, x))p for a constant p ∈ N (of

which the average distance davg(Q, x) = d1(Q, x) is a special case), the geometric distance
dgeo(Q, x) =

∏
q∈Q d(q, x), and the center distance dcen(Q, x) = maxq∈Q d(q, x) of d, where

d : Z × Z → R≥0 is a p2p distance function.

Additional definitions

We consider the following common p2p similarity functions s : Rd×Rd → R≥0: 1) The angular
similarity ∠sim(x, y) = 1−∠(x,y)

π , and 2) The inner product similarity ip-sim(x, y) = xT y [22].
We also consider the following common p2p distance functions d : Rd × Rd → R≥0: 1) The
angular distance ∠(x, y), and 2) The euclidean distance ed(x, y) = ‖x− y‖2.

We say that a hash family is an (S, cS)-LSH for a p2p similarity function s if there
exist p1 > p2 such that it is an (S, cS, p1, p2)-LSH. An (S, cS)-LSH family can be used (see
[11, 10]) to solve the corresponding (S, cS)-LSH problem of finding an (S, cS)-LSH structure.
An (S, cS)-LSH structure finds (with constant probability) a neighbor of similarity at least
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28:6 LSH for Set-Queries, Motivated by Group Recommendations

cS to a query q if there is a neighbor of similarity at least S to q. We define these concepts
analogously (and apply analogous versions of [11, 10]) for ALSH and SLSH hash families
and for LSH for distances.

We denote the unit ball in Rd by Bd and the unit sphere in Rd by Sd. We also
denote [n] := {1, . . . , n}, and occasionally use the abbreviations (xi)mi=1 := (x1, . . . , xm) and
{xi}mi=1 := {x1, . . . , xm}. All the missing proofs (from the body of the paper, and from the
appendix) appear in the full version of the paper.3

3 Similarity schemes

We call a (symmetric or asymmetric) similarity function s achievable if there exists a hash
family H such that for every query q and point x, Pr(f,g)∈H [f(q) = g(x)] = s(q, x) (for
symmetric p2p similarity functions f = g). Clearly, such an H is an (S, cS)-ALSH for s for
any S and c. In this section, we show that the `p and geometric s2p similarity functions of
an achievable p2p similarity, is by iteself achievable and therefore has and (S, cS)-SLSH.

Note that many natural p2p similarity functions are achievable. For example, the random
hyperplane hash family [2] achieves the angular similarity function s(x, y) = 1− ∠(x,y)

π , the
random bit hash family [9] achieves the hamming similarity s ((x1, . . . , xd), (y1, . . . , yd)) =
|{i|xi=yi}|

d , and MinHash [7] achieves the Jaccard similarity s(S, T ) = |S∩T |
|S∪T | .

In the full version of the paper, we also give a very simple reduction from the average
inner product SLSH problem to the regular inner product ALSH problem (which is not
achievable).

`p similarity

In this section, we define repeat-SLSH, and prove that it is an SLSH for the `p s2p similarity
sp of any achievable p2p similarity function s for any constant p ∈ N. The intuition behind
repeat-SLSH is that given an LSH family that achieves a p2p similarity function s, a query
point q collides with a data point x on p randomly and independently selected hash functions
with probability (s(Q, x))p. Thus, if we uniformly sample a point q ∈ Q of the set-query,4
and then compute p consecutive hashes of q, the expected collision probability will be the `p
similarity of Q and x. The formal definition is as follows.

I Definition 2 (Repeat-SLSH). Let s be an achievable p2p similarity function achieved by a
hash family Hs, let k be the size of the set-query, and let p ∈ N. We define the repeat-SLSH
of Hs to be

H =
{(
Q→ (hj(qi))pj=1, x→ (hj(x))pj=1

)
| i ∈ [k], (h1, . . . , hp) ∈ Hp

s

}
,

where qi is the i’th element of the set-query Q = {q1, . . . , qk} in some consistent arbitrary
order.5

I Theorem 3. Let s be an achievable p2p similarity function, and let Hs be a family that
achieves s. Then for any S > 0 and c < 1, the repeat-SLSH of Hs is an (S, cS)-SLSH for sp,
the `p similarity of s.

Proof. It is clear that Pr(f,g)∈H [f(Q) = g(x)] = sp(Q, x) for any set-query Q = {qi}ki=1 and
data point x, so it is an (S, cS)-SLSH for any S > 0 and c < 1. J

3 The link to the full paper appears in the front matter.
4 Therefore, for repeat-SLSH we do not need to know the set-query size k a-priori.
5 Let A be a set, and let p ∈ N. We define Ap := {(xi)pi=1 | ∀i, xi ∈ A}.
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Figure 1 The shrink-lift transformation x↑.

Geometric similarity

The geometric similarity is somewhat similar to the center similarity - both similarities are
suitable when we want to enforce high similarity to all points of the set-query. Analogously,
here a query Q is mapped to (hi(qi))ki=1 where h1, . . . , hk are random hash functions, each
applied to a corresponding item in Q. A data point x is mapped to (hi(x))ki=1. It is not hard
to see that the collision probability is sgeo(Q, x). In Appendix A, we give a formal theorem
analogous to Theorem 3 both for the unweighted and weighted versions of the geometric
similarity.

4 Distance schemes

The notion of achievability that allowed us to construct simple SLSH families for s2p similarity
functions does not naturally extend to distance functions. Nevertheless, in this section we
directly design two important SLSH families for the average angular and the average euclidean
distance functions.

We start with the easy observation that repeat-SLSH from Section 3 for p = 1 is, as is,
an SLSH family for the average angular distance (the easy proof is in Appendix B.1).6 In the
rest of this section we show how to reduce the average euclidean distance SLSH problem to
the average angular distance SLSH problem. We assume that all data points x and queries
Q are in Bd, and given the parameters r > 0 and c > 1, we build an (r, cr)-SLSH structure
for the average euclidean distance, edavg, as follows.

We consider the shrink transformation Tε : Rd → Rd defined by Tε(x) = εx for some
ε < 1

2 . Additionally, we use the lifting transformation L : Bd → Sd+1 of Bachrach et

al. [6], defined by L(x) =
(
x;
√

1− ‖x‖2
)
. For an ε, which will always be clear from the

context, we define the shrink-lift transformation (·)↑ : Bd → Sd+1, illustrated in Figure 1, by
x↑ := L(Tε(x)).

6 This family hashes a random point from the set-query Q to {−1, 1} by a random hyperplane.
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Figure 2 An angular ellipsoid ALSH query (p, {ei}di=1) and ∠1(q, x) for some x ∈ Sd+1.

The following lemma specifies the relation between the angle of the lifted points and
the euclidean distance between the original points. The exact details of the reduction,
including the presentation of an SLSH structure for the average euclidean distance, appear
in Appendix B.2.

I Lemma 4. Let x, y ∈ Bd and ε ∈ (0, 1
2 ], and define m(x) =

√
1+2x2
√

1−2x2 . Then,

ε ‖x− y‖ ≤ ∠(x↑, y↑) ≤ m(ε) · ε ‖x− y‖ .

5 Euclidean ellipsoid ALSH

In this section we present our most technically challenging result – an example that leverages
SLSH to solve a geometric extension of the approximate near neighbor problem for the
euclidean distance. Our structure is built for a specific “shape” of two concentric ellipsoids
(specified by the weights of their axis), and their “sizes”, r and cr, respectively. Given a query
which defines the common center and orientation of these ellipsoids, if there is a data point
in the smaller r-ellipsoid, then the structure must return a point in the larger cr-ellipsoid.
Specifically, we define the euclidean ellipsoid distance as follows.

Euclidean ellipsoid ALSH

Let q = (p, {ei}di=1) be a “query” pair where p ∈ Bd is a center of an ellipsoid and {ei}di=1
are orthogonal unit vectors specifying the directions of the ellipsoid axes, let x ∈ Bd be a
data point, and let {w1, . . . , wd} be a fixed set of d rational non-negative weights.

We define the euclidean ellipsoid distance d◦ (q, x) between q and x with respect to the
weights {w1, . . . , wd} to be

∑d
i=1 wi

(
eTi (x− p)

)2.
In this section, we describe a structure for the euclidean ellipsoid distance (r, cr)−ALSH

problem via a sequence of reductions. We reduce this problem to what we call an angular
ellipsoid ALSH problem, which is then solved via another reduction to the weighted geometric
angular similarity SLSH problem, which is solved in Appendix A.2.

We give a high level description of these reductions and differ the details to Appendix C.
The first reduction is from the euclidean ellipsoid ALSH to what we call the angular ellipsoid
ALSH. Recall that in Section 4, we have shown that for small values of ε, the shrink-lift
transformation approximately reduces euclidean distances in Bd to angular distances on
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Figure 3 A query (p, {ei}di=1) for the euclidean ellipsoid ALSH, and a corresponding angular axis
ei of ei.

Sd+1, for which we can use structures for the angular similarity to solve the associated SLSH
problems.7 Here, we apply the same shrink-lift transformation to our data, and transform
the ellipsoid queries to an angular counterpart defined as follows. An angular ellipsoid is
specified by a center on the unit sphere and axes perpendicular to it. A point is inside
it if the weighted sum of the squared angles that the point creates with the hyperplanes
perpendicular to each axis and passing through the origin is smaller than r. We formalize
this as follows.

Angular ellipsoid ALSH

Let q = (p, {ei}di=1) be a “query” pair where p ∈ Sd+1 is a center of an “angular ellipsoid”,
and {ei}di=1 ⊂ Sd+1 are unit vectors orthogonal to p (but need not be orthogonal to each
other), let x ∈ Sd+1 be a data point, and let {w1, . . . , wd} be a fixed set of d rational
non-negative weights.

Given an index i ∈ [d], we define ∠i(q, x) ∈ [0, π2 ) to be the angle between x and its
projection onto the hyperplane through the origin which is orthogonal to ei. Note that since
ei is orthogonal to p, this hyperplane contains p. This is illustrated in Figure 2, from which
we can also observe that ∠i(q, x) = sin−1 (∣∣eTi · x∣∣).

We define the angular ellipsoid distance d∠◦ (q, x) between q and x with respect to the
weights {w1, . . . , wd} to be

∑d
i=1 wi · ∠i(q, x)2.

We prove that the shrink-lift transformation approximately maps an ellipsoid to an
angular ellipsoid with the same weights, and with a center as the shrink-lift of the original
ellipsoid’s center, and axes which are slight “upwards” (to the direction of the axis xd+1)
rotations of the axes of the original ellipsoid, such that they are perpendicular to the angular
ellipsoid’s center (see Figure 3).

We solve the angular ellipsoid ALSH problem by reducing it to the weighted geometric
angular similarity SLSH problem. Our reduction is based on the H-hash of Jain et al. [12],
which stores points that reside on Sd+1 such that for a query hyperplane h through the
origin, we can efficiently retrieve the data points that have a small angular distance with their
projection on h. H-hash in fact uses an SLSH family for the geometric angular similarity

7 As stated in the introduction, we do not want to set ε to be too small since this deteriorates the
performance of subsequent LSH structures we reduce to.
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for sets of size 2, using the following observation which we adapt to our setting. For any
direction e and hyperplane h perpendicular to e through the origin, and any x ∈ Sd, it holds
that ∠simgeo({e,−e} , x) = (1 − ∠(x, e)/π)(1 − ∠(x,−e)/π) = 1

4 −
∠(x,h)2

π2 , where ∠(x, h)
is the angle between x and its projection on h, and the last step follows by the fact that
min (∠(x, e),∠(x,−e)) = π

2 −∠(x, h) and max (∠(x, e),∠(x,−e)) = π
2 +∠(x, h). Recall that

the angular ellipsoid distance between a query q = (p, {ei}di=1) and a point x is a weighted
sum of (∠i(q, x))2. Therefore, if we hash the hyperplane orthogonal to ei with H-hash, it will
collide with higher probability with data points x with a smaller (∠i(q, x))2. This suggests
that we can answer an angular ellipsoid query q = (p, {ei}di=1) by a weighted geometric
angular similarity SLSH set-query where the set is the union of the sets {ei,−ei} for all i ∈ [d],
using the angular ellipsoid weight wi associated with the axis ei for each i ∈ [d]. Specifically,
the corresponding set-query is Q = {e1,−e1, e2,−e2, . . . , ed,−ed}, and the structure is built
with the weights {w1, w1, w2, w2, . . . , wd, wd}. For the reduction’s analysis to hold, we must
require that any query q = (p, {ei}di=1) and data point x satisfy ∠(p, x) ≤

√
c−1
c ·

π
4 . This

can be easily guaranteed by taking a sufficiently small value of ε in the previous reduction
from euclidean ellipsoids to angular ellipsoids, such that the set of transformed queries and
data points has a sufficiently small angular diameter.

Finally, the weighted geometric angular similarity SLSH problem is solved in Ap-
pendix A.2.

6 Center euclidean distance for set-queries of size 2

In this section we present a data structure for the center euclidean (r, cr)-SLSH problem. This
is among our most technically challenging results. Our data structure receives a set-query
Q = {q1, q2} and returns (with constant probability) a data point v such that
edcen(Q, v) = max (‖v − q1‖ , ‖v − q2‖) ≤ cr, if there is a data point v such that
edcen(Q, v) = max (‖v − q1‖ , ‖v − q2‖) ≤ r.

Our data structure requires that c is larger than cmin where cmin = 3
2
√

2 ≈ 1.06066 is a
constant slightly larger than 1. We also assume that the possible queries Q = {q1, q2} are
such that 1

2 ‖q1 − q2‖ < (1− φ)r, for a parameter φ < 1 that is known to the structure.8
We construct our structure via a reduction to the euclidean ellipsoid ALSH from

Section 5. Consider the query Q = {qa, q−a} to the center euclidean SLSH structure
where qa = (a, 0, . . . , 0) and q−a = (−a, 0, . . . , 0), for some 0 < a < (1 − φ)r/2. Let
Ls = {v | max (‖v − qa‖ , ‖v − q−a‖) ≤ r} be the set of point of center distance at most r
from Q, and let Lb = {v | max (‖v − qa‖ , ‖v − q−a‖) ≤ cr} be the set of point of center
distance at most cr from Q. We also define the following two ellipsoids S and B centered at
the origin with axes aligned with the standard axes x1, . . . , xd:

S =
{

(x1, . . . , xd) |
r + a

r − a
x2

1 +
d∑
i=2

x2
i ≤ r2 − a2

}
,

B =
{

(x1, . . . , xd) |
r + a

r − a
x2

1 +
d∑
i=2

x2
i ≤

(
cr

cmin

)2
− a2

}
.

Our reduction depends on the crucial observation stated in the following lemma.

8 For queries Q = {q1, q2} such that 1
2 ‖q1 − q2‖ > r, no point v can satisfy max (‖v − q1‖ , ‖v − q2‖) ≤ r,

and returning no points for such queries satisfies our structure requirements trivially.
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Figure 4 Plots of yLs , yS , yB , and yLb as functions of x1. a = 3.6, r = 6, c = 1.35.

I Lemma 5. We have that Ls ⊆ S ⊆ B ⊆ Lb.

To illustrate the relation between Ls, S, B, and Lb, we denote the distances of their
boundaries from the axis x1 by yLs(x1), yS(x1), yB(x1) and yLb(x1), respectively. These
functions are plotted in Figure 4.

Intuitively, our reduction will replace Ls by S and Lb by B: If there is a point x in Ls
then x is also in S and the euclidean ellipsoid structure will find a point in B which is in
Lb. Specifically, we would like to query with {qa, q−a} a euclidean ellipsoid (r′, c′r′)-ALSH
structure where r′ = r2 − a2, c′ is set such that c′r′ =

(
cr
cmin

)2
− a2, and the weights are{

r+a
r−a , 1 . . . , 1

}
.

The problem is that a depends on the query (it is half the distance between the query
points) and obviously we cannot prepare a different euclidean ellipsoid (r′, c′r′)-ALSH
structure for each query. To overcome this we quantize the range of possible values of a and
construct a data structure for each quantized value. The range of the possible values for a
is [0, (1− φ)r] and our quantization consists of the values i · δ for i = 0, . . . d (1−φ)r

δ e where
δ = min

( 1
2 , 1−

√
cmin
c

)
φr.9,10

The euclidean ellipsoid (r′, c′r′)-ALSH structure corresponding to the value i · δ has
r′ = c

cmin
·
(
r2 − (i · δ)2), c′ = c

cmin
and weights

{
r+i·δ
r−i·δ , 1, . . . , 1

}
. For correctness we will

prove that the ellipsoids
S+ =

{
(x1, . . . , xd) | r+a′

r−a′x
2
1 +

∑d
i=2 x

2
i ≤ c

cmin
·
(
r2 − (a′)2)} and

B− =
{

(x1, . . . , xd) | r+a′
r−a′x

2
1 +

∑d
i=2 x

2
i ≤

(
c

cmin

)2
·
(
r2 − (a′)2)}, where a′ =

⌈
a
δ

⌉
· δ, are

such that S ⊆ S+ ⊂ B− ⊆ B. One can easily show that r ≥ a′ ≥ 0, so the coefficients
of x2

1 and the right hand side of the equations in S+ and B− are both non-negative and
well-defined.

Query phase

Let Q = {q1, q2} ⊆ Bd be a set-query where ‖q1 − q2‖ = 2a for a ∈ [0, (1 − φ)r). Let
a′ =

⌈
a
δ

⌉
δ as before. To get the answer, we query the euclidean ellipsoid (r′, c′r′)-ALSH

structure, where r′ = c
cmin
·
(
r2 − (a′)2

)
, c′ = c

cmin
and the weights are

{
r+a′
r−a′ , 1, . . . , 1

}
with

a query q defined as follows.

9 To ensure rationality of weights, if δ is irrational, we replace it by Q>0 3 δ′ < δ.
10 Intuitively, when c is close to cmin, and when φ is small, our quantization is finer.
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Let Rq1,q2 be a rigid transformation (rotation and translation) such that Rq1,q2(q1) = qa
and Rq1,q2(q2) = q−a for qa = (a, 0 . . . , 0) and q−a = (−a, 0 . . . , 0). We set q = (p, {ei}di=1)
where p = R−1

q1,q2
((0, . . . , 0)) = q1+q2

2 ∈ Bd and ∀i, ei = R−1
q1,q2

(ei) where {ei}di=1 is the
standard basis of Rd. Our main result is,

I Theorem 6. The structure described above is an (r, cr)-SLSH structure for the center
euclidean distance and queries of size 2. (For any c > cmin, and queries Q = {q1, q2} such
that 1

2 ‖q1 − q2‖ < (1− φ)r.)

7 Conclusions and directions for future work

We present a novel extended LSH framework, motivated by group recommendation systems.
We define several set-query extensions for distance and similarity functions, and show how
to design SLSH families and data structures for them using different techniques. We use
this framework to solve a geometric extension of the euclidean distance approximate near
neighbor problem, which we call euclidean ellipsoid ALSH, via reduction to an SLSH problem.
All the reductions we describe have some performance loss, which (for distance functions) is
expressed by a smaller p1 and p2, and a worse value of ρ. Estimating the exact performance
loss (the value of ρ) and finding more efficient reductions is an interesting line of research.
Finding a method for the center euclidean distance for set-queries larger than two is another
intriguing open question.
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A Missing parts from Section 3

A.1 Geometric similarity
In this section, we define exhaustive-SLSH, and prove that it is an SLSH for the geometric
similarity, sgeo, of any achievable p2p similarity function s.

Note that the geometric similarity is somewhat similar to the center similarity - both
similarities are suitable when we want to enforce high similarity to all points of the set-
query. Our scheme for center similarity given in Section 6 is technically challenging. Thus,
exhaustive-SLSH could be a simple alternative that somewhat relaxes the requirement to be
similar to all points of the query for simplicity.

The intuition behind exhaustive-SLSH is that given an LSH family H that achieves
a p2p similarity function s, then for a set-query Q = {q1, . . . , qk} and a point x, the
expected collision probability of (h1(q1), . . . , hk(qk)) with (h1(x), . . . , hk(x)) when the {hi}’s
are sampled from H, is sgeo(Q, x). The formal definition is as follows.
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Exhaustive-SLSH

Let s be an achievable p2p similarity function achieved by a hash family Hs, and let k be
the set-query size. We define the exhaustive-SLSH of Hs to be the following family of pairs
H =

{(
Q→ (hj(qj))kj=1, x→ (hj(x))kj=1

)
| (h1, . . . , hk) ∈ Hk

s

}
.

I Theorem 7. Let s be an achievable p2p similarity, and Hs be a family that achieves s.
Then the exhaustive-SLSH of Hs is an SLSH for the geometric similarity of s.

Proof. It is clear that Pr(f,g)∈H [f(Q) = g(x)] = sgeo(Q, x) for any set-query Q = {qi}ki=1
and data point x, so it is an (S, cS)-SLSH for any S > 0 and c < 1. J

A.2 Weighted geometric similarity
In this section, we define weighted exhaustive-SLSH, and prove that it is an SLSH structure
for the weighted geometric similarity swgeo of any achievable p2p similarity function s. So far,
we have only considered equal-weighted query points, however, motivated by recommending
movies to a set of people, a logical extension would be giving the individuals weights according
to their importance, or the strength of their general preferences. To define the weighted
geometric similarity, we use a sequence of non-negative rational weights W = {w1, . . . , wk},
where each wi is defined by a pair (ai, bi) such that ai ∈ N ∪ {0}, bi ∈ N, and wi = ai

bi
,

and k is the set-query size. Given W and a p2p similarity function s, we define the
weighted geometric similarity (of s) of a set-query Q = {q1, . . . , qk} and a data point x
to be swgeo(Q, x) =

∏k
i=1 (s (qi, x))wi .11 In case the underlying p2p similarity function s

is achievable, we reduce the weighted geometric similarity (S, cS)-SLSH problem to the
geometric similarity (S′, c′S′)-SLSH problem.

Weighted exhaustive-SLSH

Given S > 0, c < 1, a p2p similarity function s, the set-query size k, and non-negative
rational weights {wi}ki=1 as defined above, we define m = lcm

(
{bi}ki=1

)
∈ N.12 The

weighted exhaustive-SLSH structure works as follows. In the preprocessing phase, we store
all the data points in an (Sm, cmSm)-SLSH structure for the geometric similarity for a
set-query of size k′ = m ·

∑k
i=1 wi.13 Given a set-query Q = {qi}ki=1, we query the structure

built in the preprocessing phase, with the set-query T (Q) = {q1, . . . , q1, . . . , qk, . . . , qk},14
where each qi ∈ T (Q) is repeated m · wi = ai · mbi ∈ N times.

I Theorem 8. Weighted exhaustive-SLSH is an (S, cS)-SLSH structure for the weighted
geometric similarity swgeo of any achievable p2p similarity function s.

Proof. Observe that for any set-query Q = {qi}ki=1 of size k and any data point x, it
holds that sgeo(T (Q), x) =

∏k
i=1 (s (qi, x))m·wi =

(∏k
i=1 (s (qi, x))wi

)m
= (swgeo(Q, x))m .

Thus, the claim follows since if there is a data point x such that swgeo(Q, x) ≥ S, then
sgeo(T (Q), x) ≥ Sm, and the (Sm, cmSm)-SLSH structure finds a data point x such that
sgeo(T (Q), x) ≥ cmSm, i.e., such that swgeo(Q, x) ≥ cS. J

11For weighted similarities we assume that the set-query is ordered, and this order determines the
correspondence between the weights and the points in the set-query.

12By lcm we denote the least common multiple.
13We can derive such a structure from exhaustive-SLSH (which can be applied since s is achievable).
14We allow set-queries that are in fact multi-sets. All our derivations apply to multi set-queries.
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B Detailed results from Section 4

B.1 Average angular distance
We warm up with an easy result, and show that repeat-SLSH for the average angular
similarity (Section 3) is an SLSH family for the average angular distance - a fact that
follows since the average angular similarity is a decreasing function with respect to the
average angular distance.
I Theorem 9. Repeat-SLSH for the average angular similarity is an SLSH for the average
angular distance ∠avg.

Proof. For any set-queryQ of size k and data point x, ∠simavg(Q, x) = 1
k

∑
q∈Q

(
1− ∠(q,x)

π

)
= 1−

1
k

∑
q∈Q

∠(q,x)
π = 1− ∠1(Q,x)

π . Thus, the claim follows since for any r > 0 and c > 1, by
Theorem 3, repeat-SLSH for the average angular similarity is an (1− r

π , 1−
cr
π , p1, p2)-SLSH

for ∠sim1 for some p1 > p2, and specifically is an (r, cr, p1, p2)-SLSH for ∠avg. J

B.2 Average euclidean distance
We give a formal definition of Shrink-lift-SLSH, which reduces the average euclidean distance
problem to the average angular distance problem. Shrink-lift-SLSH works as follows.

Preprocessing phase. Given the parameters r > 0, c > 1 and the set-query size k, define
ε = 1

2

√
1− 2

1+c2 <
1
2 . We transform each data point x to x↑, and store the transformed data

points in an (r′, c′r′)-SLSH structure for the average angular distance, for the parameters
r′ = m(ε)·εr, c′ = εcr

r′ = c
m(ε) and k′ = k, where we definem :

[
0, 1

2
]
→ R bym(x) =

√
1+2x2
√

1−2x2 .

Query phase. Let Q be a set-query of size k. We query the average angular distance (r′, c′r′)-
SLSH structure constructed in the preprocessing phase with the set-query Q′ = {q↑ | q ∈ Q}.

In order to prove that shrink-lift-SLSH is an (r, cr)-SLSH structure for the average euc-
lidean distance, Lemma 10 bounds the angle between the lifted points in terms of their original

euclidean distance, using the error function e(ε, x, y) :=
(√

1
ε2 − ‖x‖2 −

√
1
ε2 − ‖y‖2

)2
.

I Lemma 10. Let x, y ∈ Bd and ε ∈ (0, 1]. Then

2 sin−1
(ε

2 · ‖x− y‖
)
≤ ∠(x↑, y↑) = 2 sin−1

(
ε

2

√
‖x− y‖2 + e(ε, x, y)

)
.

The following lemma bounds the error term.
I Lemma 11. For any x, y ∈ Bd and ε ∈ (0, 1

2 ], 0 ≤ e(ε, x, y) ≤ 4
3 ‖x− y‖

2
ε2.

Next, we show the following property of sin−1(·), which is used in the proof of Lemma 13,
and later in the proof of Lemma 15.
I Lemma 12. x ≤ sin−1(x) ≤ x√

1−x2 for any x ∈ [0, 1).
Then, we use Lemmas 10, 11 and 12 to derive the following important Lemma.

I Lemma 13. Let x, y ∈ Bd and ε ∈ (0, 1
2 ]. Then, ε ‖x− y‖ ≤ ∠(x↑, y↑) ≤ m(ε) · ε ‖x− y‖ .

Finally, we use Lemma 13 to prove the following theorem, which is the main result of
this section.
I Theorem 14. Shrink-lift-SLSH is an (r, cr)-SLSH structure for the average euclidean
distance edavg.
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C Euclidean ellipsoid ALSH detailed presentation

In this section, we give a detailed presentation of the two reductions we use to solve the
euclidean ellipsoid ALSH problem from Section 5. Section C.1 gives a reduction from the
euclidean ellipsoid ALSH to the angular ellipsoid problem. Section C.2 then reduces this
problem to the weighted geometric angular similarity SLSH problem, which is solved in
Appendix A.2. We note that this reduction requires that any query q = (p, {ei}di=1) and
data point x in the angular ellipsoid structure satisfy ∠(p, x) ≤

√
c−1
c ·

π
4 . As we will see,

the inputs to the angular ellipsoid structure that we produce by the first reduction (i.e., from
the euclidean ellipsoid problem) will satisfy this requirement.

It is worth mentioning that the solution in Appendix A.2 requires that the weights are
rational, hence we also require rational weights in both the ellipsoid structures.

C.1 From euclidean ellipsoid ALSH to angular ellipsoid ALSH
In this section, we reduce the euclidean ellipsoid (r, cr)-ALSH problem to an angular ellipsoid
(r′, c′r′)-ALSH problem. To do this, we use the shrink-lift transformation (·)↑ from Section 4
with an appropriately tuned shrinking parameter ε, to map our data points from Bd to Sd+1.
For our proofs of Lemma 15 and Theorem 16 to hold, we need that ε ≤ 1

8 . Additionally,
to prove that the parameter c′ that we use for the angular ellipsoid (r′, c′r′) structure is
larger than 1 (Theorem 16), we need that ε ≤

8√c−1
8√c+1 and ε ≤

√
(c−
√
c)r

5(
√
c+1)·

∑d

i=1
wi
. Finally,

to ensure that ∠(p, x) ≤
√

c−1
c ·

π
4 for any query q = (p, {ei}di=1) and data point x in the

angular ellipsoid structure (see the proof of Theorem 16 in the full paper), we need that
ε ≤

√
1− 1

4√c ·
π

8
√

2 . We therefore set ε to be the minimum of all these upper bounds, that is

ε = min
(

1
8 ,

8√c−1
8√c+1 ,

√
(c−
√
c)r

5(
√
c+1)·

∑d

i=1
wi
,
√

1− 1
4√c ·

π
8
√

2

)
.

We store the images (by the shrink-lift transformation) of our data points in the an-
gular ellipsoid (r′, c′r′)-ALSH structure.15 We recall (Lemma 13) that for a sufficiently
small ε the angular distance between x↑ and y↑ is approximately equal to ε times the
euclidean distance between x and y. We set r′ = ε2(1+ε)2 ·

(
r + 5β(ε) ·

∑d
i=1 wi

)
, and c′ =

ε2(1−ε)2·
(
cr−5β(ε)·

∑d

i=1
wi
)

r′ , where β(ε) = 1−
√

1−ε2
√

1−ε2 ≈ ε2

2 ≥ 0. Our choice of ε guarantees that
β(ε) ·

∑d
i=1 wi � r and thereby r′ is approximately ε2 · r, as we expect since the angular

ellipsoid distance is a sum of (weighted) squared angular distances each of which is smaller
by a factor of ε from its corresponding euclidean distance. Notice also that for our choice of
ε, c′ is approximately equal to 4

√
c.16 The angular ellipsoid structure uses the same weights

as of the euclidean ellipsoid structure.

The query

Let q0 = (p, {ei}di=1) be a euclidean ellipsoid query, where p ∈ Bd is a center of an ellipsoid
and {ei}di=1 are the unit vectors of Rd in the directions of the ellipsoid axes. We query the
angular ellipsoid structure constructed in the preprocessing phase with the angular ellipsoid

15We do not want to set ε to be too small since this is likely to deteriorate the performance of the angular
ellipsoid structure on these images.

16By using a smaller ε we can make c′ closer to c.
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query q = (p↑, {ei}di=1), where each ei is obtained by rotating (ei, 0) in the direction of
(0, . . . , 0, 1), until its angle with p↑ becomes π

2 (this is illustrated in Figure 3). Formally, we

define ei := (ai · ei;
√

1− a2
i ) where ai = −sign(pi) ·

√
1−‖εp‖2

ε2p2
i
+1−‖εp‖2 ∈ [−1, 1], and sign(x) ={

1 if x ≥ 0
−1 if x < 0

. To simplify the expression above, we define z(p, ε) :=
√
ε2p2

i + 1− ‖εp‖2,

so we get that ai = −sign(pi) ·
√

1−‖εp‖2

z(p,ε) , and
√

1− a2
i = ε|pi|

z(p,ε) = εpi·sign(pi)
z(p,ε) .

Note that this definition of ei makes ei orthogonal to p↑. Indeed, eiT · p↑ = ai · εpi +√
1− a2

i ·
√

1− ‖εp‖2 = −sign(pi) ·
√

1−‖εp‖2

z(p,ε) · εpi + εpi·sign(pi)
z(p,ε) ·

√
1− ‖εp‖2 = 0, where the

first equality follows from the definition x↑ = (εx1, . . . , εxd,

√
1− ‖εx‖2).

The following Lemma implies the correctness of our structure, stated in Theorem 16.

I Lemma 15. Let ε ∈ (0, 1
2 ), x, p ∈ Bd, and a euclidean ellipsoid query q0 = (p, {ei}di=1),

where {ei}di=1 is the standard basis in Rd. Then taking q = (p↑, {ei}di=1) as above, for every i ∈
[d] we have that max (0, ε(1− ε) · (|xi − pi| − β(ε))) ≤ ∠i(q, x↑) ≤ ε(1 + ε) · (|xi−pi|+β(ε)),
where ∠i(q, x) is the angular distance between x and its projection on the hyperplane orthogonal
to ei (see Figure 2).

In Section C.2, we show the existence of an angular ellipsoid (r′, c′r′)-ALSH structure, so
we conclude the following theorem.

I Theorem 16. The structure above is an (r, cr)-ALSH structure for the euclidean ellipsoid
distance d◦.

Our reduction guarantees that any query q = (p↑, {ei}di=1) for the angular ellipsoid
structure and any data point x↑ stored in it, satisfy ∠(p, x) ≤

√
c′−1
c′ ·

π
4 as required.

C.2 From angular ellipsoid ALSH to weighted geometric angular
similarity SLSH

In this section, we reduce the angular ellipsoid (r, cr)-ALSH problem that we have studied
in Section C.1, to a weighted geometric angular similarity (r′, c′r′)-SLSH problem.

C.2.1 H-hash - the LSH scheme of Jain et al.
Our data structure is based on the H-hash of Jain et al. [12]. The H-hash stores points which
reside on Sd+1 such that for a query hyperplane h through the origin, we can efficiently
retrieve the data points that have a small angular distance with their projection on h.

H-hash in fact uses an SLSH family for the s2p geometric angular similarity for sets of
size 2. That is, a hash function is defined by two random directions u and v. We hash a point
x to the concatenation of sign(xTu) and sign(xT v) and we represent a query hyperplane h,
perpendicular to e, by the set {e,−e}, which is hashed to the concatenation of sign(eTu)
and sign((−e)T v).

The probability that a data point x collides with the hyperplane h perpendicular to
e is equal to ∠sim(x, e) · ∠sim(x,−e) = (1 − ∠(x, e)/π)(1 − ∠(x,−e)/π). This collision
probability increases with the angle between x and its projection on h, and attains its
maximum when x is on h.

Recall that the angular ellipsoid distance between a query q = (p, {ei}di=1) and a point x
is a weighted sum of the terms (∠i(q, x))2. Therefore, if we hash the hyperplane orthogonal
to ei with H-hash, it will collide with higher probability with data points x with a smaller
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∠i(q, x). This suggests that we can answer an angular ellipsoid query q = (p, {ei}di=1) by a
weighted geometric angular similarity SLSH set-query where the set is the union of the sets
{ei,−ei} for all i ∈ [d], using an appropriate weight wi for each i ∈ [d]. Specifically, given
the parameters r > 0 and c > 1, we store the data points in an (S′, c′S′)-SLSH structure
for the weighted geometric angular s2p similarity for queries of size k′ = 2d and with the
weights {w1, w1, w2, w2, . . . , wd, wd}.17 We define c′ and S′ as follows

S′ = e

∑d

i=1
wi·ln( 1

4 )− 4r
π2−4ψ2

c , and c′ = e
∑d

i=1
wi ln( 1

4 )− 4cr
π2

S′
= e
−4r
(

c
π2− 1

π2−4ψ2
c

)
,

where we define ψc =
√

c−1
c ·

π
4 .

18 To answer an angular ellipsoid query q = (p, {ei}di=1),
we query our structure with the set-query Q = {e1,−e1, e2,−e2, . . . , ed,−ed}. For the
reduction to succeed, we require that any query q = (p, {ei}di=1) and data point x satisfy
∠(p, x) ≤

√
c−1
c ·

π
4 .

Correctness of our structure follows from the following two theorems.

I Theorem 17. Let x ∈ Sd+1 and q = (p, {ei}di=1) be an angular ellipsoid query. Then,
∠simgeo({ei,−ei} , x) = 1

4 −
∠i(q,x)2

π2 for all i ∈ [d].

I Theorem 18. The structure above is an (r, cr)-ALSH structure for the angular ellipsoid
distance d∠◦.

17 Such a structure is given in Appendix A.2.
18 In the full paper we prove that c′ < 1.
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1 Introduction

In this paper, we consider the following problem. We are given a finite set U and, for each
element i ∈ U , a function fi from the subsets of U to some ring R. The task is to compute
the function g given by

g(T ) =
∑
S⊆T

∏
i∈T

fi(S) , T ⊆ U . (1)

We shall call g the multi-subset transform of (fi)i∈U . While the present study of this operation
on set functions stems from a particular application to weighted counting of acyclic digraphs,
which we will introduce later in this section, we believe the multi-subset transform could
also have applications elsewhere.

A straightforward computation of the multi-subset transform requires Ω(3n) arithmetic
operations (i.e., additions and multiplications in the ring R) when U has n elements. In the
light of the input size O(2nn) and output size O(2n), one could hope for an algorithm that
requires 2nnO(1) operations. Some support for optimism is provided by the close relation to
two similar operations on set functions: the zeta transform of f and the subset convolution
of f1 and f2, given respectively by

(fζ)(T ) =
∑
S⊆T

f(S) and (f1 ∗ f2)(T ) =
∑
S⊆T

f1(S)f2(T \S) , T ⊆ U ;
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these unary and binary operations can be performed using O(2nn) [18, 12] and O(2nn2)
[2] arithmetic operations, thus significantly beating the naive Ω(3n)-computation. Indeed,
consider the seemingly innocent replacement of “i ∈ T” by “i ∈ S” or “i ∈ U” in (1): either
one would yield a variant that immediately (and efficiently) reduces to the zeta transform.
Likewise, replacing the factor

∏
i∈T\S fi(S) in the product by

∏
i∈T\S fi(T \S) would give

us an instance of subset convolution. The present authors do not see how to fix these
“broken reductions” – the multi-subset transform could be a substantially harder problem
not admitting a nearly linear-time algorithm. One might even be tempted to hypothesize
that one cannot reduce the base of the exponential complexity below the constant 3. We
refute this hypothesis:

I Theorem 1. The multi-subset transform can be computed using O(2.985n) arithmetic
operations.

We obtain our result by a reduction to rectangular matrix multiplication (RMM). The
basic idea is to split the ground set U into two halves U1 and U2 and divide the product
over i ∈ T into two smaller products accordingly. In this way we can view (1) as a matrix
product of dimensions 2|U1| × 2|U | × 2|U2|. The two rectangular matrices are sparse, with
at most 6n/2 = O(2.4495n) non-zero elements out of the total 8n/2. The challenge is to
exploit the sparsity. Known algorithms for general sparse matrix multiplication [19, 11]
turn out to be insufficient for getting beyond the O(3n) bound (see Section 2.1 for details).
Fortunately, in our case the sparsity occurs in a special, structured form that enables better
control of zero-entries, and thereby a more efficient reduction to dense RMM. To get the
best available constant base in the exponential bound, we call upon the recently improved
fast RMM algorithms [7].

1.1 Application to weighted counting of acyclic digraphs
Let an be the number of labeled acyclic digraphs on n nodes. Robinson [14] and Harary and
Palmer [10], independently discovered the following inclusion–exclusion recurrence:

an =
n∑
s=1

(−1)s−1
(
n

s

)
2s(n−s)an−s .

To see why the formula holds, view s as the number of sinks (i.e., nodes with no out-neighbors),
each of which can choose its in-neighbors freely form the remaining n− s nodes.

Tian and He [16] generalized the recurrence to weighted counting of acyclic digraphs
on a given set of n nodes V . Now every acyclic digraph D on V is assigned a modular
weight, that is, a real-valued weight w(D) that factorizes into node-wise weights wi(Di),
where Di ⊆ V \{i} is the set of in-neighbors of node i in D. This counting problem has
applications particularly in Bayesian learning of Bayesian networks from data; the weighted
count is the partition function of a statistical model that associates each node of the graph
with a random variable, and evaluating the partition function is the main computational
bottleneck [6, 16, 15]. Letting aV denote the weighted sum of acyclic digraphs on V , we have

aV =
∑
D

∏
i∈V

wi(Di) =
∑
∅6=S⊆V

(−1)|S|−1

(∏
i∈S

∑
Di⊆V \S

wi(Di)
)
aV \S . (2)

The recurrence enables computing aV using O(3nn) arithmetic operations [16].
We will apply Theorem 1 to lower the base of the exponential bound:

I Theorem 2. The sum over acyclic digraphs with modular weights can be computed using
O(2.985n) arithmetic operations.
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1.2 Related work
There are numerous previous applications of fast matrix multiplication algorithms to decision,
optimization, and counting problems. Here we only mention a few that are most related to
the present work.

Williams [17] employs fast square matrix multiplication to count all variable assignments
that satisfy a given number of constraints, each involving at most two variables. By a simple
reduction, this yields the fastest known algorithm for the Max-2-CSP problem. The present
work is based on the same idea of viewing the product of a group of low-arity functions as a
large matrix; this general idea is also studied in the doctoral thesis of the first author [13,
Sects. 3.3 and 3.6], including reductions to RMM, however, without concrete applications.

Björklund, Kaski, and Kowalik [3] apply fast RMM to show the following: Given a
nonnegative integer q and three mappings f , g, h from the subsets of an n-element set to
some ring, one can sum up the products f(A)g(B)h(C) over all pairwise disjoint triplets
of q-sets A,B,C using O

(
n3qτ+c) ring operations, where τ < 1

2 and c ≥ 0 are constants
independent of q and n. Consequently, one can count the occurrences of constant-size paths
(or any other small-pathwidth patterns) faster than in the “meet-in-the-middle time” [3].
While the involvement of set functions and set relations bear a resemblance to those in
multi-subset transform, the reduction of Björklund et al. is based on solving an appropriately
constructed system of linear equations, and is thus very different from the combinatorial
approach taken in the present work.

2 Fast multi-subset transform: proof of Theorem 1

We will develop an algorithm for multi-subset transform in several steps. In Section 2.1 we
give the basic reduction to RMM and the idea of splitting the sum over into several smaller
sums. Then, in Section 2.2 we present a simple implementation of the splitting idea, and get
our first below-3 algorithm. This algorithm is improved upon in Section 2.3, yielding the
claimed complexity bound. We end this section by presenting a more sophisticated splitting
scheme in Section 2.4. We have not succeeded to give a satisfactory analysis of its complexity.
Yet, our numerical calculations suggest the bound O(2.930n).

We will denote by ω(k), for k ≥ 0, the smallest value such that the product of an N×dNke
matrix by an dNke ×N can be computed using O

(
Nω(k)+ε) arithmetic operations for any

constant ε > 0; for a formal definition of ω(k), see Gall and Urrutia [7]. Thus, the exponent
of square matrix multiplication is ω := ω(1).

We will make repeated use of the following facts about binomial coefficients:

I Fact 3. For integers k ≥ 1 and n ≥ 2k we have

(2n)−1/2b
(k
n

)n
≤
(
n

k

)
≤

k∑
j=0

(
n

j

)
≤ b

(k
n

)n
= 2nH(k/n) ,

where

b(x) := x−x(1− x)x−1 and H(x) := log2 b(x) , x ∈ [0, 1] .

This can be proven using Stirling’s approximation to factorials.

I Fact 4. Let n be a positive integer. The function k 7→
(
n
k

)
2k is increasing in [0, 2

3n) and
strictly decreasing in [ 2

3n, n).

This can be proven by observing that the ratio
(
n
k+1
)
2k+1/

(
n
k

)
2k equals 2(n− k)/(k+ 1), and

is thus decreasing in k, and is greater or equal to 1 exactly when k ≤ 2
3n−

1
3 .
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2.1 Basic reduction to rectangular matrix multiplication
Assume without loss of generality that n is even. Let us arbitrarily partition U into two
disjoint sets U1 and U2, both of size h := n/2. If T ⊆ U , denote by T1 and T2 respectively
the intersections T ∩ U1 and T ∩ U2. Furthermore, write N := 2h so that 2n = N2.

Armed with this notation, we write the multi-subset transform of set functions (fi)i∈U as

g(T ) = G(T1, T2) :=
∑
S⊆U

F1(T1, S)F2(T2, S) , T ⊆ U , (3)

where we define

Fp(Tp, S) := [S ∩ Up ⊆ Tp]
∏
i∈Tp

fi(S) , p = 1, 2 .

Here the Iverson’s bracket notation [Q] evaluates to 1 if Q is true, and to 0 otherwise.
We can write the representation (3) in terms of a matrix product as

G = F1F
>
2 ,

where G is an N ×N matrix indexed in 2U1 × 2U2 and Fp is an N ×N2 matrix indexed in
2Up × 2U . As above, we will write the index pair in parentheses (not as subscripts).

Applying fast RMM without any further tricks already yields a somewhat competitive
asymptotic complexity bound. To see this, recall that ω(k) denotes the exponent of RMM
of dimensions N × dNke × N . Since ω(2) < 3.252 [7], we get that G, and thus g, can be
computed using O

(
N3.252) = O(3.087n) arithmetic operations. If the lower bound ω(2) ≥ 3

was tight, we would achieve the bound O(2.829n).
So far, we have ignored the sparsity of the matrices Fp. An entry Fp(Tp, S) is zero

whenever the intersection Sp = S ∩ Up is not contained in Tp. Thus, out of the 8n/2 entries
of Fp, at most 3h2h = 6n/2 are nonzero. In general, one can compute a matrix product of
dimensions r × rk × r using O

(
mr(ω−1)/2+ε) operations, provided that the matrices have at

most m ≥ r(ω+1)/2 non-zero entries, irrespective of k [11]. This result applies to our case,
but with the best known upper bound for ω [8], it only yields a bound O(3.108n). A direct
reduction to multiple multiplications of sparse square matrices [19] yields an even worse
bound, O(3.142n) (calculations omitted). Output-sensitive sparse matrix multiplication
algorithms [1] will not work either, as our output matrix is dense in general.

Luckily, in our case, we can make more efficient use of the sparsity. We will decompose
the matrix product into a sum of smaller matrix products, as formulated by the following
representation (the proof is trivial and omitted):

I Lemma 5. Let {S1, S2, . . . , SM} be a set partition of 2U . Let Fpq be the submatrix of Fp
obtained by removing all columns but those in Sq, for p = 1, 2 and q = 1, 2, . . . ,M . Then

G =
M∑
q=1

Gq , where Gq = F1qF
>
2q .

We will also apply this decomposition after removing some rows from the matrices Fpq.
Then the index sets may be different for different Gq. To properly define the entry-wise
addition in these cases, we simply make the convention that the missing entries equal zero.

To employ a fast RMM algorithm we will call a function Fast-RMM(T1, S,T2). The
function returns the product E1E

>
2 , where each Ep is obtained from Fp by only keeping the

rows Tp and the columns S. Note that we do not show the input matrices explicitly in the
function call, as the submatrices will always be extracted from F1 and F2.
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Algorithm 1 The Columns algorithm for the multi-subset transform.

function Columns-Directly(S)
1 G[T ]← 0 for all T ⊆ U
2 for S ∈ S

3 for T ⊆ U s.t. S ⊆ T
4 G[T ]← G[T ] + F1(T1, S)F2(T2, S)
5 return G

Algorithm Columns
(
(fi)i∈U

)
1 G[T ]← 0 for all T ⊆ U
2 select σ ∈ ( 1

3 ,
1
2 )

3 S1 ← {S ⊆ U : |S| ≤ σn}
4 G← G+ Fast-RMM

(
2U1 , S1, 2U2

)
5 G← G+ Columns-Directly

(
2U \ S1

)
6 return G

2.2 A simple below-3 algorithm
We apply Lemma 5 with M = 2 and split the columns to those that are smaller than a
threshold σn and to those that are at least as large:

S1 = {S ⊆ U : |S| < σn} and S2 = {S ⊆ U : |S| ≥ σn} .

We assume σn is an integer and that 1
3 < σ < 1

2 . We will optimize the parameter σ later.
The idea is to call fast RMM only for summing over the columns S1 and to handle the
remaining columns in a brute-force manner. The algorithm Column is given in Algorithm 1.

Consider first the computation of the matrix G1. We compute G1 using fast RMM. The
computational complexity depends on the number of columns in the matrices F11 and F21.
Letting C be the number of columns, the required number of operations for the matrix
multiplication of dimensions N × C ×N is O

(
Nω(k)), where k = logN C. We have

C = |S1| =
σn∑
s=0

(
n

s

)
≤ b(σ)n , (4)

where the inequality follows by Fact 3.
Consider then the computation of the matrix G2. To compute G2(T ), for T ⊆ U , it

suffices to compute the sum of the products F1(T1, S)F2(T2, S) over all columns S ⊆ T whose
size is at least σn. Thus, the required number pairs (S, T ) to be considered is at most

B :=
n∑

s=σn

(
n

s

)
2n−s ≤ n

(
n

σn

)
2n(1−σ) ≤ n

(
21−σb(σ)

)n (5)

where the penultimate inequality follows by Fact 4 (since 1− σ < 2
3 ) and the last by Fact 3.

Let us finally combine the bounds in (4) and (5).

I Proposition 6. For any ε > 0, the number of operations required by Columns is

O
(

2n(ω(2H(σ))+ε)/2 + n2n(1−σ+H(σ))
)
.
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It remains to choose σ so as to optimize the bound. Clearly the first term is increasing
and the second term is decreasing in σ. Thus, the bound is (asymptotically) minimized by
choosing a σ that makes ω

(
2H(σ)

)
equal to 2(1 − σ +H(σ)). There are two obstacles to

implement this idea: first, we only know upper bounds for ω(k), for various k; second, no
closed-form expression is known for the best upper bounds – upper bounds for ω(k) have
been computed and reported only at some points k [7].

Due to these complications, we resort to the following facts:

I Fact 7 ([7]). The exponent of RMM satisfies ω(1.75) ≤ 3.021591.

I Fact 8. Let k > 0 and r ≥ 0. The exponent of RMM satisfies ω(k + r) ≤ ω(k) + r.

(This follows by reducing the larger RMM instance trivially to multiple smaller instances.)
Combining these two facts yields an upper bound:

ω(2H(σ)) ≤ ω(1.75) + 2H(σ)− 1.75 ≤ 1.271591 + 2H(σ) .

Now, solving 1.271591 + 2H(σ) = 2(1− σ +H(σ)) gives

σ = 1− 1.271591/2 = 0.3642045 .

With this choice of σ the complexity bound becomes O(2.994n).

2.3 A faster below-3 algorithm
Next we give a slightly faster algorithm to compute G1. This will allow us to choose a larger
threshold σ, thus also rendering the computation of G2 faster.

Instead of computing G1 directly using fast RMM, we now compute some rows and
columns of G1 in a brute-force manner and only apply fast RMM to the remaining smaller
matrix. Specifically, the algorithm only calls fast RMM to compute the entries G1(T1, T2)
where the sizes of T1 and T2 exceed τh. We assume that τh is an integer and that τ ∈ ( 1

2 ,
2
3 ).

We will optimize the parameter τ together with σ later. The algorithm Rows&Columns is
given in Algorithm 2. The correctness of the algorithm being clear, we proceed to analysing
the complexity in terms of the required number of arithmetic operations.

Consider first the computation of an entry G1(T1, T2) where |T1| ≤ τh. The number of
pairs (S, T ) satisfying S ⊆ T ⊆ U and |T1| ≤ τh is given by

B′ := 3h
τh∑
t=0

(
h

t

)
2t ≤ 3hh

(
h

τh

)
2τh ≤ h

(
3 · 2τ b(τ)

)h ; (6)

the penultimate inequality follows by Fact 4 (since τ < 2
3 ) and the last inequality by Fact 3.

Similarly, computing the entries G1(T1, T2) for all T1 ⊆ U1 and T2 ⊆ U2 such that
|T2| ≤ τh requires at most B′ additions and multiplications.

It remains to compute the entries G1(T1, T2) for T1 ⊆ U1 and T2 ⊆ U2 such that
|T1|, |T2| > τh. This can be computed as a product of two matrices (submatrices of F1 and
F>2 ) whose sizes are at most R× C and C ×R, where C is as before and

R :=
h∑

j=τh+1

(
h

j

)
≤ b(τ)h , (7)

where the inequality follows by Fact 3 (since τ > 1
2 ).

Let us combine the bounds in (6) and (7):
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Algorithm 2 The Rows&Columns algorithm for the multi-subset transform.

function Rows-Trimmed(τ, S)
1 G[T ]← 0 for all T ⊆ U
2 Tp ← {Tp ⊆ Up : |Tp| > τh} for p← 1, 2
3 for S ⊆ T ⊆ U s.t. S ∈ S and (T1 6∈ T1 or T2 6∈ T2)
4 G[T ]← G[T ] + F1(T1, S)F2(T2, S)
5 G← G+ Fast-RMM

(
T1, S,T2

)
6 return G

Algorithm Rows&Columns
(
(fi)i∈U

)
1 G[T ]← 0 for all T ⊆ U
2 select σ ∈ ( 1

3 ,
1
2 ) and τ ∈ ( 1

2 ,
2
3 )

3 S1 ← {S ∈ U : |S| ≤ σn}
4 G← G+ Rows-Trimmed(τ, S1)
5 G← G+ Columns-Directly

(
2U \ S1

)
6 return G

I Proposition 9. For any ε > 0, the number of operations required by Rows&Columns is

O
(
n(3 · 2τ b(τ))n/2 + b(τ)(ω(k)+ε)n/2 + n

(
21−σb(σ)

)n)
, where k = 2 logb(τ) b(σ) .

To set the parameters σ and τ , we resort to the bound ω(k) ≤ 1.271591 + k (Fact 7 and
Fact 8). Balancing the latter two terms in the bound yields the equation

(1.271591 + k)H(τ) = 2
(
1− σ +H(σ)

)
.

Equivalently, 1.271591 ·H(τ) = 2(1− σ). Solving for σ and equating the first and the third
term in the bound leaves us the equation

log2 3 + τ +H(τ) = 1.271591 ·H(τ) + 2H
(
1− 0.6357955 ·H(τ)

)
.

By numerical calculations we find one solution in the valid range, τ ≈ 0.59777, and corre-
spondingly σ ≈ 0.38185. With these choices the complexity bound becomes O(2.985n). This
completes the proof of Theorem 1.

2.4 A covering based algorithm
The previous algorithms were based on pruning some columns and rows of the matrices F1
and F2, and applying fast RMM to the remaining multiplication of two reduced matrices.
Now, we take a different approach and reduce the original problem instance into multiple,
smaller RMM instances applying Lemma 5 with some M > 2. To this end, we cover – in the
sense of a set cover – the columns by multiple groups such that the columns in one group
contain a large block of zero entries (in the same set of rows) in the matrices F1 and F2.

It will be convenient to consider sets of fixed sizes. For a set V and a nonnegative integer
s, write

(
V
s

)
for the set of all s-element subsets of V . Let s1, s2 ∈ {0, 1, . . . , h} fix the sizes of

the intersection of a column with the sets U1 and U2. We wish to cover the set (of set pairs)(
U1
s1

)
×
(
U2
s2

)
by a small number of sets of the form

(
K1
s1

)
×
(
K2
s2

)
, where the sets K1 and K2

are of some fixed sizes k1 ≥ s1 and k2 ≥ s2. The following classic result [5] shows that this
covering design problem has an efficient solution:
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I Theorem 10 ([5]). Let c(v, k, s) be the minimum number of subsets of {1, 2, . . . , v} of size
k such that every subset of size s ≤ k is contained by at least one of the sets. We have

c(v, k, s)
(
k

s

)(
v

s

)−1
≤ 1 + ln

(
k

s

)
.

In particular, c(v, k, s) is within the factor k of the obvious lower bound
(
v
s

)(
k
s

)−1.

I Remark 11. Although the work needed for constructing a covering does not contribute to
the number of operations in the ring R, a remark is in order if one is interested in the required
number of other operations. The authors are not aware of any deterministic algorithm
for constructing an optimal covering in time polynomial in

(
v
k

)
+
(
v
s

)
, while asymptotically

optimal randomized polynomial-time algorithms are known [9].
Fortunately, for our purposes it suffices to run the well known greedy algorithm that

iteratively picks a set that covers the largest number of yet uncovered elements. It finds
a set cover whose size is within a logarithmic factor of the optimum, which is sufficient in
our context. Furthermore, it can be implemented to run in time linear in the input size [4,
Ex. 35.3–3], which is

(
v
k

)(
k
s

)
≤ 3v in our case (with v = h = n/2).

From now on, we assume that for p = 1, 2 we are given a set family Kp ⊆
(
Up

kp

)
that has

the desired coverage property, i.e.,
{(
Kp

sp

)
: Kp ∈ Kp

}
is a set cover of

(
Up

sp

)
, so that for every

column S ⊆ U satisfying |S1| = s1, |S2| = s2 there is a pair (K1,K2) ∈ K1 ×K2 such that
S1 ⊆ K1, S2 ⊆ K2. In what follows, we will assume that some appropriate values of k1, k2
are chosen based on s1, s2; we will return back to the issue of finding good values at the end
of this subsection.

For each pair (K1,K2), we construct a submatrix E1 of F1 as follows: remove from F1 all
columns S not covered by (K1,K2), and all rows T1 whose intersection with K1 contains less
than s1 elements (as otherwise we cannot have S1 ⊆ T1 and the entry F1(T1, S) vanishes). We
construct a matrix E2 analogously by removing columns and rows from F2. The dimensions
of the matrix product E1E

>
2 are R1 × C ′ ×R2, where

R1 :=
k1∑
j=s1

(
k1

j

)
2h−k1 , C ′ :=

(
k1

s1

)(
k2

s2

)
, R2 :=

k2∑
j=s2

(
k2

j

)
2h−k2 .

Algorithm Cover-Columns, given in Algorithm 3, organizes the reduction to multiple
RMM instances like this using Lemma 5. Specifically, from the set cover of the columns it
extracts a set partition by trivially keeping track of the already covered columns.

To analyze the complexity of the algorithm, let us first bound the dimensions R1, C ′,
and R2 for fixed s1, s2, k1, k2. We aim at bounds of the form Nα for some 0 < α < 2, and
therefore parameterize the set sizes as

sp = σph and kp = κph , p = 1, 2 .

Thus 0 ≤ σp ≤ κp ≤ 1. In what follows, we let σp/κp evaluate to 0 if σp = κp = 0.

I Lemma 12. We have

R1 ≤ Nβ1 , C ′ ≤ Nα1+α2 , R2 ≤ Nβ2 ,

where

αp := κpH
(σp
κp

)
and βp := 1− κp + κpH

(
max

{σp
κp
,

1
2

})
, p = 1, 2 . (8)
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Algorithm 3 The Cover-Columns algorithm for the multi-subset transform.

Algorithm Cover-Columns
(
(fi)i∈U

)
1 G[T ]← 0 for all T ⊆ U
2 C← ∅ // Already covered columns
3 for (s1, s2) ∈ {0, 1, . . . , h}2

4 select k1 and k2
5 Kp ← Covering-Design(sp, kp, Up) for p← 1, 2
6 for (K1,K2) ∈ K1 ×K2
7 S← {S1 ∪ S2 : S1 ∈ K1 and S2 ∈ K2}
8 G← G+ Rows-Trimmed(0, S \ C) // Trim only all-zero rows
9 C← C ∪ S

10 return G

Proof. The bound for C ′ follows directly from the definitions of σp, κp, αp and from Fact 3.
For the bound on R1 (equivalently R2), suppose first that κ1 ≥ 2σ1. Then using the simple

inequality
∑k1
j=s1

(
k1
j

)
≤ 2k1 = Nκ1H(1/2) gives the claimed bound. Otherwise, κ1 ≤ 2σ1 and

thus, by Fact 3,
∑k1
j=s1

(
k1
j

)
≤ 2k1H(1−σ1/κ1) = Nκ1H(σ1/κ1), implying the claimed bound. J

It remains to turn the bounds on the dimensions to a bound on the complexity of the
corresponding RMM and sum up these bounds over the multiple matrix multiplication tasks.

I Proposition 13. For any ε > 0, the number of operations required by Cover-Columns
is O

(
2(γ+ε)n/2), where

γ := max
0≤σ1≤1
0≤σ2≤1

min
σ1≤κ1≤1
σ2≤κ2≤1

H(σ1) +H(σ2)− α1 − α2 + β1 + β2 + β∗

(
ω
(α1 + α2

β∗

)
− 2
)
, (9)

with αp and βp as defined in (8), and β∗ := min{β1, β2}.

Proof. Let ε > 0.
Consider first the complexity of a single matrix multiplication with fixed σp, κp, for

p = 1, 2. By Lemma 12 we obtain an upper bound by taking Nmax{β1,β2}−β∗ = Nβ1+β2−2β∗

matrix multiplications of dimensions Nβ∗ ×Nα1+α2 ×Nβ∗ . This gives us the upper bound
O
(
Nβ1+β2+β∗(ω(k)−2)+ε/2), where k = (α1 +α2)/β∗. Note that we used only a half of ε – we

will need the other half for tolerating a nonzero underestimation that is due to minimizing
κp over reals. We will return to this issue at the end of the proof.

Consider then the number of matrix multiplications for fixed sp, kp, for p = 1, 2. By
Theorem 10 and by the approximation ratio of the greedy algorithm, the number is at most

n4
(
h

s1

)(
h

s2

)(
k1

s1

)−1(
k2

s2

)−1
≤ n5b(σ1)hb(σ2)hb(σ1/κ1)−κ1hb(σ2/κ2)−κ2h

= n5NH(σ1)+H(σ2)−α1−α2 .

Here we used Fact 3 to bound the binomial coefficients, observing that (2k1)1/2(2k2)1/2 ≤ n.
Now, combine the above two bounds, recall that N = 2n/2, and observe that replacing

the sum over (s1, s2) by the maximum over (σ1, σ2) is compensated by adding a factor of n2

to the bound. The algorithm can select optimal k1 and k2 by optimizing the upper bound,
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which costs yet another factor of n2. Due to the constant ε in the exponent, we can ignore
the nO(1) factor in the asymptotic complexity bound.

To complete the proof, we show that for any values of σp and κp (hence also for the
optimal values) and for any large enough integer h, there are rational numbers κ′p ≥ σp such
that (i) κ′ph are integers and (ii) Γ(σ1, σ2, κ

′
1, κ
′
2) ≤ Γ(σ1, σ2, κ1, κ2) + ε/2, where

Γ(σ1, σ2, κ1, κ2) := H(σ1) +H(σ2) + β1 + β2 + β∗

(
ω
(α1 + α2

β∗

)
−
(α1 + α2

β∗

)
− 2
)
. (10)

Note that we rearranged some terms in (9), for a reason that will be revealed in a moment.
We will consider two cases: either σ1 or σ2 is near the boundary values 0 or 1, or both

are in [c, 1− c], where c > 0 is a small constant. We choose c < 1
2 such that if 0 ≤ σ1 < c or

1− c < σ1 ≤ 1, then regardless of σ2,

Γ(σ1, σ2, 1, 1) ≤ ω(1) + ε/2 ,

and symmetrically for σ2. To see that this is possible, observe first that at κ1 = κ2 = 1 we
have α1 = H(σ1), α2 = H(σ2), and thus

Γ(σ1, σ2, 1, 1) = β1 + β2 + β∗

(
ω
(α1 + α2

β∗

)
− 2
)

≤ β1 + β2 + β∗

(
ω
(α∗
β∗

)
+ α1 + α2 − α∗

β∗
− 2
)
,

where α∗ := αp if β∗ = βp. Observe that α∗ ≤ β∗. Since ω(1)− 2 ≥ 0 and α1, α2, β1, β2 ≤ 1,

Γ(σ1, σ2, 1, 1) ≤ α1 + α2 − α∗ + β1 + β2 + ω(1)− 2 ≤ ω(1) +H(σ1) .

For the latter inequality we used the facts that α∗ = α2 if σ1 < c and that β1 = H(σ1) if
σ1 > 1− c. Finally, we observe that H(σ1) tends to 0 when σ1 tends to 0 or 1.

On the other hand, we have the lower bound Γ( 1
2 ,

1
2 , κ1, κ2) ≥ 2+β1+β2−β∗ ≥ 2.5 > ω(1),

since ω(z)− z ≥ 1 and βp = 1− κp + κpH
(
1/(2κp)

)
≥ κp ≥ 1

2 ; here we used the fact that
H(x) ≥ 2− 2x for x ∈

[ 1
2 , 1
]
.

We may thus restrict out attention to the domain

Λc :=
{

(σ1, σ2, κ1, κ2) : c ≤ σ1, σ2 ≤ 1− c, σ1 ≤ κ1 ≤ 1, σ2 ≤ κ2 ≤ 1
}
.

We now show that Γ is continuous on Λc. Observe first that the functions H, αp, and βp
are continuous on Λc (as κp > c). We also have that β∗ is continuous and strictly positive
(as σp ≤ 1− c) and that z 7→ ω(z) is continuous (as |ω(z + δ)− ω(z)| ≤ δ for all δ > 0).

Since the domain Λc is compact, we have that Γ is uniformly continuous on Λc. This in
turn implies that there is a δε > 0 such that (ii) holds whenever |κ′p − κp| < δε, implying
that we can make both (i) and (ii) hold for all h > 1/δε by putting κ′p := dκphe/h. J

Now we know that the complexity of the algorithm is O
(
2(γ+ε)n/2), but we do not know

how large γ is. Unlike for the simpler algorithms given in the previous subsections, we
cannot just select some values of the parameters σp and κp and bound γ from above by
Γ(σ1, σ2, κ1, κ2), as defined in (10), for we do not know the maximizing values of σp. Since
Γ is uniformly continuous on the domain Λc, one could in principle prove any fixed strict
upper bound on γ with a sufficiently large, finite computation. While at the present time
the authors have not produced such a proof, evaluations of Γ(σ1, σ2, κ1, κ2) at various values
of the four parameters suggest the following:

I Conjecture 14. The number of operations required by Cover-Columns is O(2.930n).
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3 Fast weighted counting of acyclic digraphs: proof of Theorem 2

Let us write the inclusion–exclusion recurrence (2) as a multi-subset transform:

I Lemma 15. Without loss of generality, suppose 0 6∈ V . Let 0 ∈ T ⊆ V ∪ {0} and

g(T ) =
∑
S⊆T

∏
i∈T

fi(S) ,

where

fi(S) =


0 if 0 6∈ S or |S| = |T |;
(−1)|S|−1aS\{0} else if i = 0;∑
Di⊆S\{0} wi(Di) else if i 6∈ S;

1 otherwise.

Then aT\{0} = (−1)|T |g(T ).

Proof. Because the summand vanishes unless 0 ∈ S 6= T and because fi(S) = 1 unless
i ∈ {0} ∪ (T \ S), we have

(−1)|T |g(T ) = (−1)|T |
∑

0∈S(T
f0(S)

∏
i∈T\S

fi(S)

=
∑

0∈S(T
(−1)|T |+|S|−1aS\{0}

∏
i∈T\S

∑
Di⊆S\{0}

wi(Di) .

Writing in terms of T ′ := T \ {0} and S′ := T \ S, and observing that |S| and −|S| have the
same parity,

(−1)|T |g(T ) =
∑

∅6=S′⊆T ′
(−1)|S

′|−1aT ′\S′
∏
i∈S′

∑
Di⊆T ′\S′

wi(Di) = aT ′ .

The last equality follows immediately from (2). J

It remains to organize the computations so that when computing aT for some T ⊆ V , the
values aS have already been computed for all S ( T . To this end, we proceed in increasing
order by |T |: for each t = 1, 2, . . . , n in this order we simultanously compute the values
aT for all T ∈

(
V
t

)
by calling the fast multi-subset transform, as detailed in algorithm

Sum-Acyclic-Digraphs given in Algorithm 4. As we only need n calls, the asymptotic
complexity bound (with a rounded constant base of the exponential) remains valid.
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Abstract
Partially ordered sets (posets) are fundamental combinatorial objects with important applications in
computer science. Perhaps the most natural algorithmic task, given a size-n poset, is to compute its
number of linear extensions. In 1991 Brightwell and Winkler showed this problem to be #P-hard.
In spite of extensive research, the fastest known algorithm is still the straightforward O(n2n)-time
dynamic programming (an adaptation of the Bellman-Held-Karp algorithm for the TSP). Very
recently, Dittmer and Pak showed that the problem remains #P-hard for two-dimensional posets,
and no algorithm was known to break the 2n-barrier even in this special case. The question of
whether the two-dimensional problem is easier than the general case was raised decades ago by
Möhring, Felsner and Wernisch, and others. In this paper we show that the number of linear
extensions of a two-dimensional poset can be computed in time O(1.8286n).

The related jump number problem asks for a linear extension of a poset, minimizing the number
of neighboring incomparable pairs. The problem has applications in scheduling, and has been widely
studied. In 1981 Pulleyblank showed it to be NP-complete. We show that the jump number problem
can be solved (in arbitrary posets) in time O(1.824n). This improves (slightly) the previous best
bound of Kratsch and Kratsch.
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1 Introduction

A partially ordered set (poset) P = (X,≺) consists of a ground set X and an irreflexive
and transitive binary relation ≺ on X. A linear extension of P is a total order on X that
contains ≺. The main problem considered in this paper is to determine, given a poset P on
a ground set of size n, the number of linear extensions LE(P) of P . We refer to this counting
problem as #LE. A poset can alternatively be seen as a transitive directed acyclic graph
(DAG), where #LE asks for the number of topological orderings of the graph.

Posets are fundamental objects in combinatorics (for a detailed treatment we refer to the
monographs [44, 37], [40, § 3], [19, § 8]) with several applications in computer science. For
instance, every comparison-based algorithm (e.g. for sorting) implicitly defines a sequence of
posets on the input elements, where each poset captures the pairwise comparisons known to
the algorithm at a given time. An efficient sorter must find comparisons whose outcomes
split the number of linear extensions in a balanced way. A central and long-standing open
question in this area is whether a comparison with ratio (at worst) 1/3 : 2/3 exists in every
poset [5]; slightly weaker constant ratios are known to be achievable [23, 4].

Counting linear extensions (exactly or approximately) is a bottleneck in experimental
work, e.g. when testing combinatorial conjectures. In computer science the #LE problem
is relevant, besides the mentioned task of optimal comparison-based sorting, for learning
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graphical models [45, 34], probabilistic ranking [46, 18, 30], reconstruction of partial orders
from sequential data [31], convex rank tests [32], multimedia delivery in networks [1], and
others.

The complexity of #LE has been thoroughly studied (see Linial [28] for an early reference).
Lovász [29, § 2.4] mentions the problem as a special case of polytope volume computation;
Stanley [39] gives a broad overview of the polytope-formulation of #LE. Brightwell and
Winkler [6] show that #LE is #P-hard, and thus unlikely to admit a polynomial-time solution.
In fact, despite the significant attention the problem has received (e.g. the mentioned papers
and references therein and thereof), the best upper bound on the running time remains
O(n2n). This bound can be achieved via dynamic programming over the subsets of the
ground set [26, 11], an approach1 that closely resembles the Bellman-Held-Karp algorithm
for the traveling salesman problem (TSP) [3, 20].

A bound of 2n appears to be a natural barrier2 for the running time of #LE, similarly
to some of the most prominent combinatorial optimization problems (e.g. set cover/hitting
set, CNF-SAT, graph coloring, TSP).3 We show that #LE can be solved faster when the
input poset is two-dimensional. Dimension is perhaps the most natural complexity-measure
of posets, and can be seen informally as a measure of the nonlinearity of a poset (see e.g.
Trotter [44]). As one-dimensional posets are simply total orders, the first nontrivial case is
dimension two. The structure of two-dimensional posets is, however, far from trivial. Posets
in this class capture the point-domination order in the plane.

The question of the complexity of #LE in two-dimensional posets was raised in the 1980s
by Möhring [33] and later by Felsner and Wernisch [17]. An even earlier mention of the
problem is by Atkinson, Habib, and Urrutia, in a discussion of open problems concerning
posets, cf. Rival [37, p. 481].

Efficient algorithms for #LE are known for various restricted classes of posets, e.g. series-
parallel [33], low treewidth [25, 24, 15], small width [11], avoiding certain substructures [16],
and others; see Möhring [33] for an early survey of tractable special cases. However, as the
techniques used in these works rely on certain kinds of sparsity in the input, they are not
applicable for the case of two-dimensional posets. It is easy to see that the latter may be
arbitrarily dense, containing, for example, a complete bipartite graph of linear size. In fact,
Dittmer and Pak [12] recently showed that #LE is #P-hard already for this class of inputs.
Our first result is stated in the following theorem.

I Theorem 1. The number of linear extensions of a two-dimensional poset of size n can be
computed in time O(1.8286n).

Our second result is an algorithm for the jump number problem. In this (optimization)
problem a linear extension of P is sought, such as to minimize the number of adjacent pairs
of elements that are incomparable in P (such pairs are called jumps). The problem is known
to be NP-hard [36], and has been well-studied due to its applications in scheduling.

Similarly to #LE, the jump number problem can be solved by dynamic programming in
time 2nnO(1). An improved algorithm with running time O(1.8638n) was given by Kratsch
and Kratsch [27]. We also refer to their paper for further background and motivation for the
problem. Improving the bound of Kratsch and Kratsch, we obtain the following result.

1 A finer bound on the running time is O(w · |I|), where w is the width of the poset, and I is its set of
ideals (i.e. downsets); in the worst case, however, this expression does not improve the given bound.

2 We only study exact algorithms in this paper; for approximating LE(P), fully polynomial-time randomized
schemes are known [14, 7].

3 The strong exponential time hypothesis [21] states that a running time O(cn) with c < 2 is not achievable
for CNF-SAT, and a similar barrier has been conjectured for set cover [10].



L. Kozma 30:3

I Theorem 2. The jump number problem can be solved in time O(1.824n).

Note that in this case no assumption is made on the dimension of the input poset.
Whether jump number remains NP-hard in two-dimensional posets is a long-standing open
question [33, 8, 42].

Poset dimension. Formally, the dimension dim(P) of a poset P = (X,≺) is the smallest
number d of total orders, whose intersection is P . In other words, if dim(P) = d, then there
exists a collection of orders <1, . . . , <d (called realizers of P), such that for all x, y ∈ X, we
have x ≺ y if and only if x <k y for all 1 ≤ k ≤ d.

Poset dimension was introduced by Dushnik and Miller in 1941 [13], and the concept
has since been extensively studied; we refer to the monograph of Trotter dedicated to poset
dimension theory [44]. Various kinds of sparsity of P are known to imply upper bounds on
dim(P) (see e.g. [22, 38] for recent results in a long line of such works). The converse is, in
general, not true, as two-dimensional posets may already be arbitrarily dense, and are known
not to have a characterisation in terms of finitely many forbidden substructures [2, 33].

The term dimension is motivated by the following natural geometric interpretation.
Suppose P is a d-dimensional, size-n poset with realizers <1, . . . , <d. The ground set can
then be viewed as a set of n points in d-dimensional Euclidean space, with no two points
aligned on any coordinate, such that the ordering of the points according to the k-th
coordinate coincides with the order <k, for all 1 ≤ k ≤ d. The partial order ≺ is then
exactly the point-domination order, i.e. x ≺ y if and only if all d coordinates of y are larger
than the corresponding coordinates of x. In this geometric view, a linear extension of a
low-dimensional poset can be seen as a tour that visits all points, never moving behind the
Pareto front of the already visited points.

Two-dimensional posets are particularly natural, as they are in bijection with permutations
(the ranks of points by <1 and <2 can be seen respectively as the index and value of a
permutation-entry). Swapping the two coordinates yields a dual poset, turning chains into
antichains and vice versa. It follows that the complement of the comparability graph is itself a
comparability graph, which is yet another exact characterization of two-dimensional posets.4
It is not hard to see that two-dimensional posets are exactly the inclusion-posets of intervals
on a line.

Yet another interpretation of two-dimensional posets relates them to the weak Bruhat
order on permutations. In this setting the number of linear extensions of a two-dimensional
poset equals the number of permutations that are reachable from a given permutation π

by a sequence of swaps between mis-sorted adjacent elements; a question of independent
interest [17, 12].

2 Counting linear extensions in two-dimensional posets

Denote [k] = {1, . . . , k}. For a set Y with partial order ≺, let max (Y ) denote the set of
maxima of Y , i.e. the set of elements x ∈ Y with the property that x ≺ y implies y /∈ Y .

Let P = (X,≺) be a size-n poset. To introduce the main elements of our #LE algorithm,
we review first the classical O(n2n) time algorithm.

4 Given a poset P = (X,≺), its comparability graph is C(P) = (X, E), where {x, y} ∈ E if x ≺ y or y ≺ x.
The width of P is the size of the largest antichain in P, i.e. independent set in C(P), and the height of
P is one less than the size of the largest chain in P, i.e. clique in C(P).
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For all Y ⊆ X, let LE(Y ) denote the number of linear extensions of the subposet of P
induced by Y , and let LE(∅) = 1. We recursively express LE(Y ) for all nonempty Y , by
removing in turn all elements that can appear at the end of a total order on Y :

LE(Y ) =
∑

x∈max (Y )

LE (Y \ {x}). (1)

To compute LE(P) = LE(X), we evaluate recurrence (1), saving all intermediate entries
LE(Y ) for Y ⊆ X. There are at most 2n such entries, and computing each takes O(n) time,
once the results of the recursive calls are available. (With simple bookkeeping, max (Y ) is
available for all calls without additional overhead.)

2.1 A first improvement
A well-known observation is that when computing LE(X) by (1) only those subproblems
Y ⊆ X arise where y ∈ Y and x ≺ y imply x ∈ Y , i.e. the downsets of P. In general, the
number of downsets can be as high as 2n, when P consists of a single antichain. Nonetheless,
we can give better bounds on the number of downsets, if necessary, by modifying the input
poset P.

Large matching case. An observation already made in previous works (e.g. [27]) is the
following. Consider a size-m matching M in the comparability graph C(P), with matched
edges {xi, yi}, where xi ≺ yi, for all i ∈ [m]. Let W denote the set of vertices matched by
M and let A = X \W .

Then, the sets Y ⊆ X where Y ∩ {xi, yi} = {yi} for some i ∈ [m] are not downsets and
cannot be reached by recursive calls. The remaining sets can be partitioned as T0∪T1∪· · ·∪Tm,
where T0 ⊆ A is an arbitrary subset of the unmatched vertices, and Ti ∈ {∅, {xi}, {xi, yi}}
for i ∈ [m].

The number of sets of this form is 2n−2m · 3m. If m = αn, this quantity equals (2 · ( 3
4 )α)n.

When α ≥ 1/3, the number of subproblems is thus less than 1.8172n, and the running time
is within the required bounds.

Small matching case. Let us assume from now on that M is a maximum matching of size
m = αn for α < 1/3. The maximality of M implies that the unmatched vertices A form an
independent set in C(P), i.e. an antichain of P, of size |A| = (1− 2α)n. We assume α > 0,
as otherwise P is a single antichain and the problem is trivial.

For x ∈ A, let N(x) denote the open neighborhood of x in C(P), i.e. the set of elements
in X that are comparable with x. Observe that N(x) ∩A = ∅ for all x ∈ A.

If N(x) ∩ A = ∅ for an element x ∈ W , then we say that x is incomparable with A.
Otherwise, if x ≺ y for some y ∈ N(x) ∩A, we say that x is below A, and if y ≺ x, for some
y ∈ N(x) ∩ A, we say that x is above A. Observe that x cannot be both below and above
A, as that would make two elements of A comparable, contradicting the fact that A is an
antichain.

The sets N(x) define a partition of A, where x, y ∈ A are in the same class if and only
if N(x) = N(y). In general posets there can be as many as min {2n−|A|, |A|} classes. The
following lemma states that in two-dimensional posets the number of classes is much smaller.

I Lemma 3. Let P = (X,≺) be a size-n poset, with dim(P) ≤ 2, and let A ⊆ X be an
antichain. Then, N(·) partitions A into at most 2(n− |A|) classes.
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Before proving Lemma 3, we show that it can be used to compute LE(P) more efficiently.
Let A1, . . . , A` be the partition of A defined by N(·), and for each i ∈ [`], denote ai = |Ai|.
Let xk

i , where i ∈ [`] and k ∈ [ai], be a virtual element, and let Q denote the set of all such
virtual elements.

Construct a new poset P ′ = (X ′,≺′) as follows. Let X ′ = W ∪Q. In words, the ground
set X ′ contains all vertices matched by M , and instead of the elements of the antichain A, it
contains the virtual elements of Q. Observe that |Q| = |A| and therefore |X ′| = |X|.

The relation ≺′ is defined as follows, covering all cases:
if x, y ∈W , then x ≺′ y ⇐⇒ x ≺ y,
if x = xp

i and y = xq
j , then x ≺′ y ⇐⇒ i = j and p < q,

if x ∈W and y = xp
i , then x ≺′ y ⇐⇒ x ≺ z, for some z ∈ Ai,

if x = xp
i and y ∈W , then x ≺′ y ⇐⇒ z ≺ y, for some z ∈ Ai.

In words, ≺′ preserves the relation ≺ between elements of W . Virtual elements with the
same index i form a chain x1

i ≺′ · · · ≺′ x
ai
i , for all i ∈ [`]. Virtual elements with different

indices are incomparable. The relation between a virtual element xk
i and an element y ∈W

preserves the relation ≺ between an arbitrary element z ∈ Ai and y. The choice of z is
indeed arbitrary, as the elements in Ai are by definition indistinguishable.

Intuitively, xk
i is a placeholder for the element of Ai that appears as the k-th among all

elements of Ai in some linear extension of P. The sequence x1
i , . . . , x

ai
i corresponds to an

arbitrary permutation of the elements of Ai. This intuition is captured by the following
statement.

I Lemma 4. With the above definitions:

LE(P) =
∏
i∈[`]

(ai!) · LE(P ′).

Let us postpone proving Lemma 4 as well, and state our first algorithm, #LE-2D, as
Algorithm 1. The algorithm constructs the poset P ′ and computes its number of linear
extensions using recurrence (1), then computes the correct count for P via Lemma 4.

Algorithm 1 Algorithm #LE-2D.

Input: Poset P = (X,≺), where |X| = n.
Output: The number of linear extensions LE(P) of P.

1: Find a maximum matching M of C(P) with vertex set W .
2: Let A = X \W .
3: Let A1, . . . , A` be the partition of A by the neighborhoods in C(P).
4: Let ai = |Ai| for i ∈ [`].
5: Construct P ′ = (X ′,≺′), as described.
6: Compute N = LE(P ′) using (1).
7: return

∏
i∈[`] (ai!) ·N .

Analysis of the running time. Step 1 amounts to running a standard maximum matching
algorithm (see e.g. [43]). Computing the partition in Step 3 takes linear time with careful
data structuring. Steps 2,4,5,7 clearly take linear time overall.

The polynomial-time overhead of steps other then Step 6, as well as the polynomial factor
in the analysis of (1) are absorbed in the exponential running time of Step 6, where we round
the base of the exponential upwards. To derive a worst-case upper bound on the running
time of Step 6, it only remains to bound the number of downsets of P ′.
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Observe that the ground set X ′ can, by construction, be partitioned into chains. The
matched vertices of W are partitioned into m chains xi ≺′ yi, for i ∈ [m], as before. The
virtual elements of Q are partitioned into ` chains of lengths a1, . . . , a`, where the i-th chain is
x1

i ≺′ · · · ≺′ x
ai
i . All downsets of P ′ are then of the form (T1∪· · ·∪Tm)∪(Q1∪· · ·∪Q`), where

Ti ∈ {∅, {xi}, {xi, yi}} for i ∈ [m], and Qi = {xj
i : j ≤ ti}, for some threshold 0 ≤ ti ≤ ai,

for i ∈ [`].
The number of such sets is 3m ·

∏
i∈[`] (ai + 1). Recall that m = αn and |A| = (1− 2α)n.

The quantity
∏`

i=1 (ai + 1) is maximized when the values ai + 1 are all equal, and thus equal

to (|A|+ `)/`, yielding the overall upper bound
(

3α
(

(1−2α)n
` + 1

)`
)n

. (Observe that ` ≥ 1

always holds.)
Since the quantity is increasing in `, and ` ≤ 2(n− |A|) = 4αn by Lemma 3, we obtain

the upper bound
(

3α
( 1+2α

4α
)4α
)n

. In the range of interest 0 < α < 1/3 the base achieves its
maximum for α ≈ 0.258 at a value below 1.975, resulting in the bound O(1.975n) on the
running time.

To reach the bound given in Theorem 1, we need further ideas. Let us first prove the two
lemmas from which the correctness of the current algorithm and its analysis follow.

Proof of Lemma 4. Let q =
∏`

i=1 (ai!). We describe an explicit mapping from linear
extensions of P to linear extensions of P ′.

Consider a linear extension < of P viewed as a sequence z = (z1, . . . , zn), where z1 <

· · · < zn. The sequence z contains ` disjoint subsequences of lengths a1, . . . , a` formed
respectively by the elements of A1, . . . , A`. Let z′ = (z′1, . . . , z′n) be the sequence obtained
from z by replacing, for all i ∈ [`], the elements of Ai in the sequence z, in the order of their
appearance, by the virtual elements x1

i , . . . , x
ai
i .

We proceed via two claims about the mapping z → z′ from which the statement follows:
(1) z′ is a linear extension of P ′, and (2) for every linear extension z′ of P ′ there are q
different linear extensions of P that map to z′.

For (1), let i1, i2 be two arbitrary indices 1 ≤ i1 < i2 ≤ n. We need to show that z′i2
⊀′ z′i1

.
The four cases to consider are: (1a) z′i1

, z′i2
∈W , (1b) z′i1

= xp
i and z′i2

= xq
j , (1c) z′i1

∈W
and z′i2

= xp
i , and (1d) z′i1

= xp
i , and z′i2

∈ W . These correspond to the four cases in the
definition of ≺′ and the claim easily follows in each case by the construction of z′.

For (2), consider a linear extension (sequence) z′ of P ′, and for all i ∈ [`] replace the
elements {x1

i , . . . , x
ai
i } in z′ by an arbitrary permutation of the elements of Ai. In this way

we obtain q different linear extensions of P, and when applying the above mapping to these
linear extensions, they all yield the same z′. J

Proof of Lemma 3. Let t = |A|, and let us label the elements of A as z1, . . . , zt. Let <1 and
<2 be the realizers of the two-dimensional poset P. Then, as A is an antichain, its elements
can be labeled such that z1 <1 · · · <1 zt, and zt <2 · · · <2 z1. The crucial observation is
that the neighborhood of an arbitrary y ∈ X \A in A is defined by an interval of indices.

Formally, for y ∈ X \A that is above or below A, let zi, zj be the elements of N(y) ∩A
with smallest, resp. largest index (it may happen that i = j). Define b(y) = i − 0.5 and
b′(y) = j + 0.5 the boundaries of the neighborhood of y. If y is incomparable with A, set the
boundaries to dummy values b(y) = 0, b′(y) = t+ 1.

If y is above A, then for all k such that b(y) < k < b′(y), we have zk ≺ y. To see this,
observe that zk <1 zj <1 y, and zk <2 zi <2 y.

Symmetrically, if y is below A, then for all k such that b(y) < k < b′(y), we have y ≺ zk.
To see this, observe that y <1 zi <1 zk, and y <2 zj <2 zk.
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Let b1, . . . , b2(n−t) be the multiset of neighborhood boundaries sorted in increasing order.
Their number is 2(n − t) as each of the n − t elements of X \ A contribute exactly two
boundaries. Let us add the two dummy boundaries b0 = 0 and b2(n−t)+1 = t + 1 (in case
they never occurred during the process).

The classes of A defined by the partition N(·) are then of the form {zj : bi < j < bi+1}
where 0 ≤ i ≤ 2(n− t). There are at most 2(n− t) + 1 such classes (not all boundaries are
necessarily distinct, and we can now remove empty classes due to duplicate boundaries).
Moreover, the two classes delimited by b0 to the left, respectively by b2(n−t)+1 to the right
are identical, corresponding to elements of A incomparable to all y ∈ X \A. The claimed
bound on the maximum number of classes follows. J

2.2 A faster algorithm
We now describe the improvements to Algorithm #LE-2D and its analysis that lead to the
running time claimed in Theorem 1.

Canonical matchings. Observe that set A in Lemma 3 denotes an arbitrary antichain.
When A is assumed to be the complement of a maximum matching with a certain property,
a stronger statement can be shown.

Let M be a maximum matching of C(P), let W be its vertex set, and let A = X \W . We
call an edge {xi, yi} of M separated, if there exist x1, x2 ∈ A such that xi ≺ x1 and x2 ≺ yi.
(In other words, xi is below A, and yi is above A.) Observe that, in this case, x1 and x2
must be the same, as otherwise M could be made larger by replacing edge {xi, xj} by the
two edges {xi, x1}, {x2, xj}. A matching is canonical if it contains no separated edges.

We argue that in an arbitrary poset a canonical matching of the same size as the
maximum matching can be found in polynomial time. Indeed, start with an arbitrary
maximum matching M . If M contains no separated edges, we are done. Otherwise, let
{xi, yi} be an edge of M with x ∈ A such that xi ≺ x ≺ yi. (Such a triplet can easily be
found in polynomial time.) Replace the edge {xi, yi} in M by the edge {x, yi}. As x was
previously not matched, the resulting set of edges is still a maximum matching. We claim
that with O(n2) such swaps we obtain a canonical matching (i.e. one without separated
edges). To see this, consider as potential function the sum of ranks of all vertices in the
current matching, according to an arbitrary fixed linear extension of P . Each swap increases
the potential by at least one (since x must come after xi in every linear extension). Since
the sum of ranks is an integer in O(n2), the number of swaps until we are done is also in
O(n2). In the following, we can therefore assume that M is a canonical maximum matching.
We can now state the stronger structural lemma.

I Lemma 5. Let P = (X,≺) be a size-n poset, with dim(P) ≤ 2. Let M be a canonical
maximum matching in C(P) with vertex set W , and let A = X \W . Then, N(·) partitions
A into at most |W | classes.

Proof. Since M is canonical, for every edge {xi, yi}, one of the following must hold:
(i) xi and yi are both above A,
(ii) xi and yi are both below A,
(iii) xi is incomparable with A and yi is above A,
(iv) yi is incomparable with A and xi is below A.

Recall that in the proof of Lemma 3, we considered, for all y ∈ X \A, the two boundaries
of the interval N(y) ∩ A. Now, in cases (iii) and (iv), only one of xi and yi need to be
considered, as the neighborhood of the other is disjoint from A.
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In cases (i) and (ii), it is also sufficient to consider only one of xi and yi as we have
N(xi) ∩ A = N(yi) ∩ A. Furthermore, in this case |N(xi) ∩ A| = 1. To see this, suppose
that there are z, z′ ∈ A such that z ∈ N(xi) and z′ ∈ N(yi). Then M could be extended by
replacing the edge {xi, yi} with the edges {z, xi} and {z′, yi}, contradicting the maximality
of M .

It follows that in the argument of Lemma 3 we only need to consider the intervals created
by |M | elements of X \ A, yielding the bound 2|M | = |W | on the number of classes. It is
easy to construct examples where the bound is tight. J

It follows that, if we require the matching M in Step 1 of Algorithm #LE-2D to be
canonical, then by Lemma 4, the bound on the number of downsets improves to

(
3α
( 1

2α
)2α
)n

.
In the range of interest 0 < α < 1/3 this quantity is easily upper bounded by 1.8912n with
maximum at α ≈ 0.319.

Packing triplets and quartets. The final improvement in running time comes from the
attempt to find, instead of a matching (i.e. a packing of edges), a packing of larger connected
structures. Beyond the concrete improvement, the technique may be of more general
applicability and interest, which we illustrate in § 3 for the jump number problem.

Assume, as before, that M is a canonical maximum matching of C(P) of size αn with
vertex set W and that A denotes the antichain X \W . Let us form an auxiliary bipartite
graph B with vertex sets L and R, where L = A, and R = M , i.e. R consists of the edges of
M . A vertex x ∈ L is connected to a vertex {xi, yi} ∈ R exactly if x is comparable to one or
both of xi and yi. Let MB be a maximum matching of B, of size βn. Clearly, β ≤ α.

Edges of MB connect vertices in A to matched edges of M , forming triplets of vertices of
X that induce connected subgraphs in C(P). Let T denote the set of all triplets created by
edges of MB .

Let us form now another auxiliary bipartite graph B′ with vertex sets L′ and R′, where
L′ consist of the vertices of A unmatched in MB , and let R′ = T , i.e. the triplets found in the
previous round. A vertex x ∈ L′ is connected to a vertex z ∈ R′ exactly if x is comparable
to at least one of the vertices forming the triplet z. Let MB′ be a maximum matching of B′,
and denote its size by γn. Clearly, γ ≤ β.

Edges of MB′ connect vertices in A to triplets of T , forming quartets of vertices of X
that induce connected subgraphs in C(P). Let Q denote the set of all quartets created by
edges of MB′ .

Let A′ denote the vertices of A that were not matched in either of the two matching
rounds. Observe that |A′| = n(1− 2α− β− γ). We make the following observations.

(1) The endpoints of edges of M that were unmatched in MB are not comparable to
any vertex in A′ (assuming that A′ is nonempty), as otherwise MB would not have been
maximal. There are n(α− β) such unmatched edges. These contribute a factor of 3n(α−β)

to the number of downsets.
(2) The vertices in triplets of T that were unmatched in MB′ are not comparable to

any vertex in A′ (assuming that A′ is nonempty), as otherwise MB′ would not have been
maximal. There are n(β− γ) such triplets. A simple case-analysis shows that the number of
downsets of a size-3 poset with connected comparability graph is at most 5. It follows that
these triplets contribute a factor of at most 5n(β−γ) to the number of downsets.



L. Kozma 30:9

(3) There are γn quartets in Q. A case-analysis5 shows that the number of downsets of a
size-4 poset with connected comparability graph is at most 9. It follows that these quartets
contribute a factor of at most 9nγ to the number of downsets.

(4) All vertices in X \A′ are accounted for. As for the vertices in A′, we partition them
into classes A1, . . . , A` by N(·), and apply the same transformation as previously, creating a
new poset P ′. By the previous discussion, only the vertices from the quartets in Q may be
comparable to vertices in A′. Furthermore, in each quartet, only the vertices coming from
the original matching M may be comparable to a vertex in A′ (other vertices come from the
antichain A ⊇ A′). Thus, by Lemma 5, the number of classes created on A′ is ` ≤ 2γn.

Putting everything together, assuming γ > 0 (the case γ = 0 is discussed later), we
obtain the upper bound τn on the number of downsets of P ′, where τ = τ(α,β,γ) =
3(α−β) · 5(β−γ) · 9γ ·

(
1−2α−β+γ

2γ

)2γ
. Under the constraint 0 < γ ≤ β ≤ α < 1/3, the bound

τ < 1.8286 holds, with the maximum attained for α = β = γ(≈ 0.1882). Observe that the
least favorable case occurs when all edges of M are matched into triplets, and all triplets are
matched into quartets.

When γ = 0, no quartets are created, and A′ forms a single class, transformed in P ′ into
a single chain, contributing a linear factor to the overall bound. Thus, the upper bound
n · τn holds, with τ = τ(α,β) = 3(α−β) · 5β < 1.71, maximum attained for α = β(≈ 1/3).

The resulting algorithm #LE-2D∗ is listed as Algorithm 2. The correctness and running
time bounds (Theorem 1) follow from the previous discussion. We defer some remarks about
the algorithm and its analysis to § 4.

Open questions. The following questions about counting linear extensions are suggested in
increasing order of difficulty. (1) Can #LE be solved in two-dimensional posets faster than
the algorithm of Theorem 1? (2) Can #LE be solved in time O(cn) for c < 2 in d-dimensional
posets, for d ≥ 3? (3) Can #LE be solved in time O(cn) for c < 2 in arbitrary posets?

3 The jump number problem

In this section we present our improvement for the jump number problem. We start with
a formal definition of the problem, and the straightforward dynamic programming. We
then review the algorithm of Kratsch and Kratsch, followed by our extension. The result
is intended as an illustration of the matching technique of § 2, which is not specific to
two-dimensional posets.

Given a linear extension x1 < · · · < xn of a poset P = (X,≺), a pair of neighbors (xi,
xi+1) is a jump if xi ⊀ xi+1, and is a bump if xi ≺ xi+1. The number of jumps, resp. bumps
of the linear extension < of P is denoted as jump(<), resp. bump(<). The jump number
problem asks to compute the minimum possible value jump(<) for a linear extension < of P .
Additionally, a linear extension realizing this value should be constructed. In the algorithms
we describe, obtaining a linear extension that realizes the minimum jump number is a mere
technicality, we thus focus only on computing the minimum jump number.

An easy observation is that the relation jump(<) + bump(<) = n− 1 holds for all linear
extensions < of P. Minimizing the number of jumps is thus equivalent to maximizing the
number of bumps, allowing us to focus on the latter problem.

5 An easy induction shows more generally that the maximum number of downsets of a size-n poset with
connected comparability graph is 2n−1 + 1.
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Let bump(P) denote the maximum bump number of a linear extension of P. For all
Y ⊆ X, and x ∈ max (Y ), let bump(Y, x) denote the maximum bump number of a linear
extension of the subposet of P induced by Y that ends with element x. Let us define
bump({x}, x) = 0, for all x ∈ X. We recursively express bump(Y, x) by removing x from the
end and trying all remaining elements in turn as the new last element:

bump(Y, x) = max
y∈max (Y \{x})

(
bump(Y \ {x}, y) + [y ≺ x]

)
. (2)

The term [y ≺ x] denotes the value 1 if y ≺ x, i.e. if the last pair forms a bump, and 0
otherwise. Executing recurrence (2) naïvely leads to an algorithm that computes bump(P)
in time O(2n · n2).

We now describe the improvement of Kratsch and Kratsch [27]. Observe that jumps
partition a linear extension of P uniquely into a sequence of chains of P, such that the last
element of each chain is incomparable with the first element of the next chain, and all other
neighboring pairs are comparable.

Consider a linear extension with minimum jump number and let C1, . . . , Ck denote the
non-trivial chains of its decomposition (i.e. all chains of length at least 2). Let C denote the
set of vertices of chains C1, . . . , Ck. Then, as all bumps occur between elements of C, the
bump number of P equals the bump number of the subposet induced by C. In other words,
to compute the maximum bump number, it is sufficient to consider in recurrence (2) the
subsets of the ground set X that are candidate sets C in the optimum.

Kratsch and Kratsch consider a maximum matching M of C(P) with vertex set W and
observe that the vertices of the antichain A = X \W that participate in nontrivial chains
(i.e. that are in C) form a matching with vertices of W . (This is because a vertex v ∈ A can
only form a bump together with a vertex from X \A, and two vertices v, v′ ∈ A cannot form
bumps with the same vertex, as that would contradict their incomparability.) Moreover,
v, v′ ∈ A cannot be the neighbors of the two endpoints of a matched edge of M , as that
would contradict the maximality of M .

Thus, it suffices to compute (2) over subsets of X that consist of W ∪A′, where A′ ⊆ A
and |A′| ≤ |M |. Furthermore, only downsets of P need to be considered, leading to a further
saving due to the fact that W forms a matching. Denoting |M | = αn, the overall number of
subsets of X that need to be considered is

((1−2α)n
≤αn

)
· 3αn.

Packing triplets. We now describe our improvement. Again, letM be a canonical maximum
matching of C(P) of size αn with vertex set W and let A denote the antichain X \W . Form
an auxiliary bipartite graph B with vertex sets L and R, where L = A, and R = M . A
vertex x ∈ L is connected to a vertex {xi, yi} ∈ R (i.e. an edge of M) exactly if x ≺ yi or
xi ≺ x. Let MB be a maximum matching of B, and denote its size by βn. Clearly, β ≤ α.

Edges of MB connect vertices in A to matched edges of M , forming triplets of vertices of
X that induce connected subgraphs in C(P). Let T denote the set of all such triplets. (To
keep the argument simple we forgo in this case further rounds of matching and the forming
of quartets. The result is thus not optimized to the fullest extent.)

Let A′ denote the vertices of A that were not matched in MB. Observe that |A′| =
n(1− 2α− β). We make the following observations.

(1) The endpoints of edges of M that were unmatched in MB are not comparable to any
vertex in A′ (assuming that A′ is nonempty), as otherwise MB would not have been maximal.
There are n(α− β) such edges. These edges contribute a factor of 3n(α−β) to the number of
downsets.
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(2) There are βn triplets in T . These contribute a factor of at most 5nβ to the number
of downsets.

(3) All vertices in X \A′ are accounted for. Vertices of A′ that participate in non-trivial
chains of the optimal linear extension can be matched to vertices in the triplets of T . A
vertex v ∈ A′ can only be connected to those vertices of a triplet in T that are endpoints of
an edge in M (all other vertices come from A, are thus incomparable with v). Furthermore,
v, v′ ∈ A′ may not connect to different endpoints of the same edge in M , as that would
contradict the maximality of M . It follows that each vertex in A′ that participates in C must
be matched to a unique triplet in T . Thus, at most βn vertices of A′ need to be considered.

The resulting Algorithm JN is listed as Algorithm 3. Its correctness follows from the
previous discussion.

Running time. In the large matching (α ≥ 1/3) case, the bound given in § 2 on the number
of downsets holds, and the running time is within the bound of Theorem 2. We assume
therefore that α < 1/3.

In the special case β = 0 only vertices in M need to be considered, with an overall upper
bound 3αn on the number of downsets. For α < 1/3, this quantity is below 1.443n.

Assuming β > 0, we have an upper bound τn on the number of downsets of P, where
τn = 3(α−β)n · 5βn ·

(
n(1−2α−β)
≤βn

)
. To obtain a simpler expression, we use a standard upper

bound [9, p. 406] on the sum of binomial coefficients. Assuming 0 ≤ 2b ≤ a ≤ 1, we have(
na
≤nb

)
=
∑nb

k=0
(

na
k

)
≤ nO(1) ·

(
aa

bb·(a−b)(a−b)

)n

.
Plugging in a = 1 − 2α − β and b = β, and assuming 2b ≤ a, we have 2α + 3β ≤ 1.

Omitting the polynomial factor, we obtain τ ≤ 3(α−β) · 5β · (1−2α−β)(1−2α−β)

ββ·(1−2α−2β)(1−2α−2β) . In the
critical region 0 < β ≤ α < 1/3 we obtain the bound τ < 1.824, with the maximum attained
for α = β(≈ 0.1918).

When 2α + 3β ≥ 1, we use the easier upper bound on the sum of binomial coefficients(
na
≤nb

)
≤ 2na, obtaining τ ≤ 3(α−β) · 5β · 2(1−2α−β). In the allowed range 0 < β ≤ α < 1/3

and additionally requiring 2α + 3β ≥ 1, the quantity is maximized for α = β = 0.2, yielding
τ < 1.8206, within the required bounds.

4 Discussion

We start with some remarks about algorithm #LE-2D∗. It is straightforward to extend this
algorithm beyond pairs, triplets, and quartets, to also form k-tuples for k > 4 via further
matching rounds. A similar analysis, however, indicates no further improvements in the
upper bound. When forming triplets and quartets, other strategies are also possible. For
instance, we may try to combine connected pairs of edges fromM into quartets. The quartets
formed in this way are, in fact, preferable to those obtained by augmenting triplets, as their
number of downsets is strictly less than the value 9 given before. (The value 9 is attained
when 3 of the 4 vertices form an antichain, which is not possible if the quartet consists of
two matched edges.)

We observe that in some instances, the largest antichain may be significantly larger than
the antichain A obtained as the complement of the maximum matching. One can find the
largest antichain in time O(n5/2) via a reduction to bipartite matching (see e.g. [43]). In
these cases, using the partition of the antichain Ai, . . . , A` (without arguing about matchings)
may lead to a better running time. In two-dimensional posets with a realization <1, <2,
the largest antichain can be found in time O(n logn) by reduction to the largest decreasing
subsequence problem. In our analysis, we assumed the classes Ai to be of equal size. The
running time can, of course, be significantly lower when the distribution of class sizes is far
from uniform.

SWAT 2020
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We further remark that the actual time and space requirement of our algorithms is
dominated by the number of downsets of a given poset P (or rather, of the transformed poset
P ′). The number of downsets (order ideals) is known to equal the number of antichains [40,
§ 3]. Counting antichains is, in general, #P-hard [35], but solvable in two-dimensional
posets in polynomial time [41, 33]. Thus, assuming that the transformed poset P ′ is also
two-dimensional, we can efficiently compute a precise, instance-specific estimate of the time
and space requirements of our algorithms.

To see that indeed, dim(P ′) ≤ 2, recall that P ′ is obtained from P by replacing antichains
Ai by chains of equal size, such that the comparability of the involved elements to elements
in X \A is preserved. We can obtain a two-dimensional embedding of P ′ by starting with a
two-dimensional embedding of P, with points having integer coordinates, and no two points
aligned on either coordinate. For an arbitrary x ∈ Ai, form a 0.5× 0.5 box around the point
x, and place the chain replacing Ai on the main diagonal of this box. Then the comparability
of points in the chain with elements in X \Ai is the same as for the point x.

Optimization. Our first two bounds in § 2 depend only on the fraction α of matched
vertices, and their maxima are found using standard calculus. The final bounds given
in Theorem 1 and Theorem 2 however, require us to optimize over unwieldy multivariate
quantities with constrained variables. The given numerical bounds were obtained using
Wolfram Mathematica software. We have, however, independently certified the bounds, by
the method illustrated next.

Suppose we want to show that τ < 1.8286, where τ = τ(α,β,γ) = 3(α−β) · 5(β−γ) · 9γ ·(
1−2α−β+γ

2γ

)2γ
, and A ≤ γ ≤ β ≤ α ≤ B, for A,B ∈ (0, 1/3).

Consider a box B = [α1,α2]× [β1,β2]× [γ1,γ2] ⊆ [A,B]3. Then, at an arbitrary point
(α,β,γ) ∈ B, the following (rather weak) upper bound holds.

τ(α,β,γ) ≤ 3α2 ·
(

5
3

)β2

·
(

9
5

)γ2

·
(

1− 2α1 − β1 + γ2

2γ1

)2γ2

.

To show τ < 1.8286, it is sufficient to exhibit a collection of boxes, such that (1) for all
boxes, the stated upper bound evaluates to a value smaller than 1.8286, and (2) the union of
the boxes covers the entire domain of the variables. We can find such a collection of boxes if
we start with a single box that contains the entire domain of the variables, and recursively
split boxes into two equal parts (along the longest side) whenever the upper bound evaluates
to a value larger than the required value.

Higher dimensions. A straightforward extension of Algorithms #LE-2D and #LE-2D∗ to
higher dimensional posets does not yield improvements over the naïve dynamic programming.
The crux of the argument in two dimensions is that a large antichain in P is split, according
to the neighborhoods in C(P) into a small number of classes. In dimensions three and above
it is easy to construct posets with an antichain containing almost all elements, e.g. such
that |X \A| = O(

√
n), with the property that all elements of A have unique neighborhoods.

In this case, the number of classes is |A| and the described techniques yield no significant
savings.
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Algorithm 2 Algorithm #LE-2D∗.

Input: Poset P = (X,≺), where |X| = n.
Output: The number of linear extensions LE(P) of P.

1: Find a maximum matching M of C(P) with vertex set W .
2: Let A = X \W .
3: Find T and Q as described, and let A′ be the unmatched part of A.
4: Let A1, . . . , A` be the partition of A′ by the neighborhoods in C(P).
5: Let ai = |Ai| for i ∈ [`].
6: Construct P ′ = (X ′,≺′).
7: Compute N = LE(P ′) using (1).
8: return

∏
i∈[`] (ai!) ·N .

Algorithm 3 Algorithm JN.

Input: Poset P = (X,≺), where |X| = n.
Output: The minimum jump number of a linear extension of P.

1: Find a maximum matching M of C(P) with vertex set W .
2: Let A = X \W .
3: Find T as described, and let A′ be the unmatched part of A.
4: Let β = |T |.
5: Compute B = bump(P) by (2), using downsets of P with at most βn vertices from A′.
6: return n− 1−B.
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Abstract
A lattice is a partially-ordered set in which every pair of elements has a unique meet (greatest lower
bound) and join (least upper bound). We present new data structures for lattices that are simple,
efficient, and nearly optimal in terms of space complexity.

Our first data structure can answer partial order queries in constant time and find the meet or
join of two elements in O(n3/4) time, where n is the number of elements in the lattice. It occupies
O(n3/2 log n) bits of space, which is only a Θ(log n) factor from the Θ(n3/2)-bit lower bound for
storing lattices. The preprocessing time is O(n2). This structure admits a simple space-time tradeoff
so that, for any c ∈ [ 1

2 , 1], the data structure supports meet and join queries in O(n1−c/2) time,
occupies O(n1+c log n) bits of space, and can be constructed in O(n2 + n1+3c/2) time.

Our second data structure uses O(n3/2 log n) bits of space and supports meet and join in O(d log n
log d

)
time, where d is the maximum degree of any element in the transitive reduction graph of the lattice.
This structure is much faster for lattices with low-degree elements.

This paper also identifies an error in a long-standing solution to the problem of representing
lattices. We discuss the issue with this previous work.
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1 Introduction

A lattice is a partially-ordered set with the property that for any pair of elements x and y,
the set of all elements greater than or equal to both x and y must contain a unique minimal
element less than all others in the set. This element is called the join (or least upper bound)
of x and y. A similar condition holds for the set of all elements less than both x and y: It
must contain a maximum element called the meet (or greatest lower bound) of x and y.

We consider lattices from the perspective of succinct data structures. This area of study
is concerned with representing a combinatorial object in essentially the minimum number of
bits while supporting the “natural” operations in constant time. The minimum number of
bits required is the logarithm (base 2) of the number of such objects of size n, e.g. about
2n bits for a binary tree on n nodes. Succinct data structures have been very successful
in dealing with trees, planar graphs, and arbitrary graphs. Our goal in this paper is to
broaden the horizon for succinct and space-efficient data structures and to move to more
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algebraic structures. There has indeed been progress in this direction with abelian groups [7]
and distributive lattices [17]. We take another step here in studying space-efficient data
structures for arbitrary finite lattices.

Lattices have a long and rich history spanning many disciplines. Existing at the in-
tersection of order theory and abstract algebra, lattices arise naturally in virtually every
area of mathematics [9]. The area of formal concept analysis is based on the notion of a
concept lattice. These lattices have been studied since the 1980s [24] and have applications in
linguistics, data mining, and knowledge management, among many others [8]. Lattices have
also found numerous applications in the social sciences [16].

Within computer science, lattices are also important, particularly for programming
languages. Lattice theory is the basis for many techniques in static analysis of programs,
and thus has applications to compiler design. Dataflow analysis and abstract interpretation,
two major areas of static analysis, rely on fixed-point computations on lattices to draw
conclusions about the behaviour of a program [18].

Lattice operations appear in the problem of hierarchical encoding, which is relevant to
implementing type inclusion for programming languages with multiple inheritance (among
other applications) [1, 4, 5, 15]. Here the problem is to represent a partially-ordered set
by assigning a short binary string to each element so that lattice-like operations can be
implemented using bitwise operations on these strings. The goal is to minimize the length of
the strings for the sake of time and space efficiency.

In short, lattices are pervasive and worthy of study. From a data structures perspective,
the natural question follows: How do we represent a lattice so that not too much space is
required and basic operations like partial order testing, meet, and join can be performed
quickly?

It was proven by Klotz and Lucht [14] that the number of different lattices on n elements
is at least 2Ω(n3/2), and an upper bound of 2O(n3/2) was shown by Kleitman and Winston [13].
Thus, any representation for lattices must use Ω(n3/2) bits in the worst case, and this lower
bound is tight within a constant factor. We should then expect a data structure for lattices
to use comparably little space.

Two naive solutions suggest themselves immediately. First, we could simply build a table
containing the meet and join of every pair of elements in the given lattice. Any simple lattice
operation could be performed in constant time. However, the space usage would be quadratic
– a good deal larger than the lower bound. Alternatively, we could store only the transitive
reduction graph of the lattice. This method turns out to be quite space-efficient: Since the
transitive reduction graph of a lattice can only have O(n3/2) edges [14, 25], the graph can
be stored in O(n3/2 log n) bits of space; thus, the space complexity lies within a Θ(log n)
factor of the lower bound. However, the lattice operations become extremely slow as they
require exhaustively searching through the graph. Indeed, it is not easy to come up with a
data structure for lattices that uses less than quadratic space while answering meet, join,
and partial order queries in less than linear time in the worst case.

The construction of a lattice data structure with good worst-case behaviour also has
attractive connections to the more general problem of reachability in directed acyclic graphs
(DAGs). Through its transitive reduction graph, a lattice can be viewed as a special type
of DAG. Among other things, this paper shows that we can support reachability queries in
constant time for this class of graphs while using subquadratic space. Most classes of DAGs
for which this has been achieved, such as planar DAGs [23], permit a strong bound on the
order dimension of the DAGs within that class. This is a property not shared by lattices,
which may have order dimension linear in the size of the lattice. A long-standing difficult
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problem in this line of research is to show a similar nontrivial result for the case of arbitrary
sparse DAGs [19].

There has been significant progress in representation of distributive lattices, an especially
common and important class of lattices. Space-efficient data structures for distributive
lattices have been established since the 1990s [10, 11] and have been studied most recently
by Munro and Sinnamon [17]. Munro and Sinnamon show that it is possible to represent a
distributive lattice on n elements using O(n log n) bits of space while supporting meet and
join operations (and thus partial order testing) in O(log n) time. This comes within a Θ(log n)
factor of the space lower bound by enumeration: As the number of distributive lattices on n

elements is 2Θ(n) [6], at least Θ(n) bits of space are required for any representation.
The problem of developing a space-efficient data structure for arbitrary lattices was first

studied by Talamo and Vocca in 1994, 1997, and 1999 [20, 21, 22]. They claimed to have
an O(n3/2 log n)-bit data structure that supports partial order queries in constant time and
meet and join operations in O(

√
n) time. However, there is a nontrivial error in the details of

their structure. Although much of the data structure is correct, we believe that this mistake
is a critical flaw that is not easily repaired.

To our knowledge, no other data structures have been proposed that can perform lattice
operations efficiently while using less than quadratic space. Our primary motivation is to fill
this gap.

2 Contributions

Drawing on ideas from [22], we present new data structures for lattices that are simple,
efficient for the natural lattice operations, and nearly optimal in space complexity. Our data
structures support three queries:

Test Order: Given two elements x and y, determine whether x 6 y in the lattice order.
Find Meet: Find the meet of two elements.
Find Join: Find the join of two elements.

Our first data structure (Theorem 9) is based on a two-level decomposition of a lattice into
many smaller lattices. It tests the order between any two elements in O(1) time and answers
meet and join queries in O(n3/4) time in the worst case. It uses O(n3/2) words of space1,
which is a Θ(log n) factor from the known lower bound of Ω(n3/2) bits. The preprocessing
time is O(n2).

We generalize this structure (Corollary 10) to allow for a tradeoff between the time
and space requirements. For any c ∈ [ 1

2 , 1], we give a data structure that supports meet
and join operations in O(n1−c/2) time, occupies O(n1+c) space, and can be constructed in
O(n2 + n1+3c/2) time. At c = 1/2, it coincides with the first data structure.

Taking a different approach to computing meets and joins, we present another data
structure (Theorem 12) based on a recursive decomposition of the lattice. Here the operational
complexity is parameterized by the maximum degree d of any element in the lattice, where
the degree is defined in reference to the transitive reduction graph of the lattice. This
structure answers meet and join queries in O(d log n

log d ) time, which improves significantly on
the first data structure when applied to lattices with low degree elements (as is the case for
distributive lattices, for example). It uses O(n3/2) space.

1 We assume a word RAM model with Θ(log n)-bit words. Henceforth, unless bits are specified, “f(n)
space” means f(n) words of size Θ(log n).
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This paper is organized as follows. In Section 3, we give the necessary definitions and
notation used throughout the paper. In Section 4, we give the main tool we use to decompose
a lattice, which we call a block decomposition. Section 5 describes the order-testing data
structure and Section 6 extends this data structure to compute meets and joins. Some details
of the preprocessing are left to Appendix A. Section 7 contains our recursive degree-bounded
data structure. In Appendix B, we discuss the error in the papers [21, 22] and give some
evidence of why it may be irreparable.

3 Preliminaries

Given a partially-ordered set (poset) (P,6), we define the downset of an element x ∈ P by
↓x = {z ∈ P | z 6 x} and the upset of x by ↑x = {z ∈ P | z > x}.

I Definition 1. A lattice is a partially-ordered set (L,6) in which every pair of elements
has a meet and a join.

The meet of x and y, denoted x ∧ y, is the unique maximal element of ↓x ∩ ↓ y with
respect to 6. Similarly, the join of x and y, denoted x ∨ y, is the unique minimal element of
↑x ∩ ↑ y.

Meet (∧) and join (∨) are also called greatest lower bound (GLB) and least upper bound
(LUB), respectively. Lattices have the following elementary properties. Let x, y, z ∈ L.

The meet and join operations are idempotent, associative, and commutative:

x ∨ x = x x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∨ y = y ∨ x

x ∧ x = x x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∧ y = y ∧ x

If x 6 y, then x ∧ y = x and x ∨ y = y.
If z 6 x and z 6 y, then z 6 x ∧ y. If z > x and z > y, then z > x ∨ y.
A lattice must have a unique top element above all others and unique bottom element
below all others in the lattice order.

Moreover, meet and join are dual operations. If the lattice is flipped upside-down, then meet
become join and vice versa.

In this paper, we prefer to work with partial lattices. A partial lattice is the same as a
lattice except that it does not necessarily have top or bottom elements. Thus, the meet or
join of two elements may not exist in a partial lattice; we use the symbol null to indicate
this. We write x ∧ y = null if ↓x ∩ ↓ y = ∅ and x ∨ y = null if ↑x ∩ ↑ y = ∅. Note that in a
partial lattice the meet or join of x and y may not exist, but when they do exist they must
be unique.

Equivalently, a partial lattice is a partially-ordered set satisfying the lattice property: If
there are four elements x1, x2, y1, and y2 such that x1, x2 < y1, y2, then there must exists
an intermediate element z with x1, x2 6 z 6 y1, y2. See Figure 1. This statement trivially
follows from the definition of a lattice; it only says that there cannot be multiple maximal
elements in ↓ y1 ∩ ↓ y2 or multiple minimal elements in ↑x1 ∩ ↑x2.

Henceforth, we use the term “lattice” to mean “partial lattice”. The difference is trivial in
a practical sense, and our results are easier to express when we only consider partial lattices.

We assume that any lattice we wish to represent is given initially its transitive reduction
graph (TRG). This is a directed acyclic graph (DAG) having a node for each lattice element
and an edge (u, v) whenever u < v and there is no intermediate node w such that u < w < v.
The edge relation of this graph is called the covering relation: Whenever (u, v) is an edge of
the TRG we say that v covers u.
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x1 x2

y1 y2 y1 y2

x1x2

z

Figure 1 The configuration on the left cannot exist in a lattice for any nodes x1, x2, y1, and y2.
There must be a node z between them as shown. We refer to this as the lattice property.

4 Block Decompositions

The main tool used in our data structure is called a block decomposition of a lattice. It is
closely based on techniques used by Talamo and Vocca in [21, 22].

Let L be a lattice with n elements. A block decomposition of L is a partition of the
elements of L into subsets called blocks. The blocks are chosen algorithmically using the
following method. We first specify a positive integer k to be the block size of the decomposition
(our application will use the block size

√
n). Then we label the elements of L as “fat” or

“thin” according to the sizes of their downsets. A fat node is “minimal” if all elements in its
downset, except itself, are thin. Formally:

I Definition 2. A node x ∈ L is called fat if | ↓x| ≥ k, and x is called thin if | ↓x| < k. We
say x is a minimal fat node if x is fat and every other node in ↓x is thin.

Minimal fat nodes are the basis for choosing blocks, which is done as follows. While there
exists a minimal fat node h in the lattice, create a new principal block B containing the
elements of ↓h, and then delete those nodes from the lattice. The node h is called the block
header of B.

Deleting the elements of B may cause some fat nodes to become thin by removing elements
from their downsets; this should be accounted for before choosing the next block. When
there are no fat nodes in the lattice, put the remaining elements into a single block Bres
called the residual block.

This method creates a set of principal blocks {B1, B2, . . . , Bm} and a residual block Bres.
Each principal block Bi has a block header hi, which was the minimal fat node used to
create Bi. A block header is always the top element within its block. The residual block may
or may not have a top element, but it is not considered to have a block header regardless.
Figure 2 shows a full block decomposition.

The block decomposition algorithm is summarized in Algorithm 1; it will be shown later
that this algorithm can be implemented to run in O(n7/4) time, where n is the number of
elements in the lattice.

4.1 Properties of Block Decompositions
Let us note some elementary properties of block decompositions. Let L be a lattice with n

elements.
Every element of the lattice lies in exactly one block.
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B

1

B2

B5

h2

h3

h

↓h

L\↓h

|↓h| ≥ k

(a) (b)

Figure 2 (a) A minimal fat node h is used as a block header during the decomposition. The
downset of h is removed and the process repeats on L \ ↓ h. (b) A block decomposition yields a set
of disjoint principal blocks, each having a block header. The residual block consists of the lattice
elements that are not below any block header.

Algorithm 1 Block Decomposition (Intuitive Version).

Input: A partial lattice L on n elements and a positive integer k.
Output: A block decomposition of L with block size k.
1: i = 1
2: while there exists a minimal fat node h do
3: Bi = ↓h ∩ L

4: L = L \Bi

5: i = i + 1
6: Bres = L

There can be at most n/k principal blocks as each one has size between k and n.
Consequently, there are at most n/k block headers.
Since the block headers are chosen to be minimal fat nodes, every other element is thin
relative to the block it lies in. That is, if x lies in a block B and x is not the block header
of B, then | ↓x ∩B| < k.

The last fact motivates the following term, which we will use frequently.

I Definition 3. The local downset of an element x is the set ↓x ∩B, where B is the block
containing x.

Restated, the last property listed above says that the local downset of any element that
is not a block header has size less than k. We also note that if h is the block header of a
principal block B, then the local downset of h is B.

Somewhat less obvious is the following lemma.

I Lemma 4. Every block is a partial lattice.2

2 Here the partial order on a block is inherited from the order on L.



J. I. Munro, B. Sandlund, and C. Sinnamon 31:7

Proof. The lemma follows from two facts.

1. The downset of any element in a partial lattice is also a partial lattice.

2. If the downset of an element is removed from a partial lattice, then the remaining elements
still form a partial lattice.

We prove the first fact. Let h be an element of a partial lattice L. We prove that the
poset ↓h satisfies the lattice property (see Figure 1). Suppose there are four elements
x1, x2, y1, y2 ∈ ↓h such that x1, x2 < y1, y2. These elements also lie in L, and since L is a
lattice there must be an element z ∈ L such that x1, x2 6 z 6 y1, y2. As z 6 y1 6 h, z must
lie in ↓h. Thus ↓h is a partial lattice because it satisfies the lattice property.

The second fact is similar. Suppose ↓h is removed from a partial lattice L. If there are
four elements x1, x2, y1, y2 ∈ L \ ↓h with x1, x2 < y1, y2, then there must be an element
z ∈ L with x1, x2 6 z 6 y1, y2. This element z cannot lie in ↓h because x1 6 z and x1 6∈ ↓h.
Therefore z ∈ L \ ↓h. J

I Remark 5. To avoid confusion in our notation, all lattice relations and operators are
assumed to be with respect to L. In particular, ∧, ∨, ↑, and ↓ always reference the full lattice
and are not restricted to a single block.

4.2 Intuition for Block Decompositions

We can now explain intuitively why a block decomposition is a good idea and how it leads to
an effective data structure. Lemma 4 means that the blocks can be treated as independent
partial lattices. Moreover, the elements within each block are all thin, with the noteworthy
exception of the block headers. For any single block, this thinness condition makes it possible
to create a fast, simple, space-efficient data structure that facilitates computations within
that block. However, such a data structure only contains local information about its block;
it cannot handle operations that span multiple blocks.

For those operations, we rely upon the block headers to bridge the gaps. The block
headers are significant because they induce a unique representative property on the blocks: If
h is the block header of some principal block B and x is some element of the lattice, then
we think of x ∧ h as the representative of x in block B. For all of the operations that we
care about, the representative of x in B faithfully serves the role of x during computations
within B.

Combining the power of the unique representative property with our ability to quickly
perform block-local operations gives us an effective data structure for lattices, which we are
now prepared to describe.

5 A Data Structure for Order Testing

First, we describe a simple data structure that performs order-testing queries (answers “Is
x 6 y?”) in constant time. We later extend it to handle meet and join queries as well.

Given a partial lattice L with n elements, we perform a block decomposition on L using
the block size k =

√
n. Let B1, B2, . . . , Bm, and Bres be the blocks of this decomposition

and h1, . . . , hm be the block headers. Note that m ≤
√

n.
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5.1 Information Stored
We represent each element of L by a node with two fields.3 One field contains a unique
identifier for the lattice element, a number between 0 and n− 1, for indexing purposes. The
other field indicates the block that the element belongs to.

Our data structure consists of (A), a collection of arrays, and (B), a collection of
dictionaries.

(A) For each block header hi, we store an array containing a pointer to the node hi ∧ x for
each x ∈ L. The meet of any node with any block header can be found with one access
to the appropriate array.

(B) For each x ∈ L we store a dictionary DOWN(x) containing the identifiers of all the
nodes in the local downset of x. By using a space-efficient static dictionary (e.g. [3]),
membership queries can be performed in constant time. With this, we can test the order
between any two nodes in the same block in constant time.

5.2 Testing Whether x 6 y

Given nodes x and y in L, we can test whether x 6 y in three cases.
Case 1: If x is in a principal block Bi, then find yi = hi ∧ y using (A). If yi ∈ Bi, then x 6 y

if and only if x is a member of DOWN(yi); this can be tested using (B). If yi 6∈ Bi,
then x 66 y.

Case 2: If x ∈ Bres and y ∈ Bres, then x 6 y if and only if x is a member of DOWN(y).
Case 3: If x ∈ Bres and y 6∈ Bres, then x 66 y.

The three cases can be tested in constant time using (A) and (B).

I Proposition 6. The above method correctly answers order queries.

Proof. Clearly the three cases cover all possibilities for x and y.
In Case 1, yi = hi ∧ y has the property that x 6 y if and only if x 6 yi. This property

holds because x 6 hi by assumption, and by the definition of meet,

x 6 hi ∧ y if and only if x 6 hi and x 6 y.

If yi ∈ Bi, then the order can be tested directly using DOWN(yi). If yi 6∈ Bi, then yi cannot
be above x in the lattice because yi 6 hi and every element between x and hi must lie in Bi.

Case 2 is checked directly using (B).
Case 3 is correct because Bres consists of all elements that are not below any block header.

As y is in some principal block, it must lie below some block header. Hence, x cannot be
below y. J

5.3 Space Complexity
Storing the n nodes of the lattice requires Θ(n) space. Each array of (A) requires Θ(n) space
and there are at most

√
n block headers, yielding O(n3/2) space in total.

Assuming (B) uses a succinct static dictionary (see [3]), the space usage for (B) will be
proportional to the sum of | ↓x ∩Bx| over all x ∈ L, where Bx is the block containing x. If
x is not a block header, then | ↓x ∩Bx| <

√
n because the local downsets must be smaller

3 We often use the term “node” to refer to the element of L that the node represents.
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than the block size of the decomposition. There are n−m such elements, as m denotes the
number of principal blocks. If x is a block header, then ↓x ∩Bx = Bx. Thus∑

x∈L

| ↓x ∩Bx| ≤ (n−m)
√

n +
m∑

i=1
|Bi| ≤ (n−m)

√
n + n ≤ 2n3/2.

The total space for the data structure is therefore O(n3/2).

6 Finding Meets and Joins

We now extend the order-testing data structure of the last section to answer meet queries:
Given two elements x and y in L, we wish to find x∧ y. Our data structure can answer these
queries in O(n3/4) time.

6.1 Subblock Decompositions
Let Bi be a principal block with block header hi. A subblock decomposition of Bi is simply a
block decomposition of Bi \ {hi}.

To state it explicitly, the subblock decomposition is a partition of Bi \ hi into a set of
principal subblocks {Si,1, Si,2, . . . , Si,`i

}, each having a subblock header gi,j , and one residual
subblock Si,res. The decomposition strategy is identical to that of a block decomposition,
and it still depends on a subblock size r that we specify.

We exclude hi from the subblock decomposition as a convenience. We want to use the
property that the local downsets of the elements in Bi have size less than

√
n, and this holds

for every element of Bi except for hi.
Obviously, the subblocks have the same properties as blocks.
Each principal subblock Si,j is a subset of Bi with |Si,j | ≥ r. Hence, `i ≤ |Bi|

r .
If x ∈ Si,j \ {gi,j} then | ↓x ∩ Si,j | < r.
If x ∈ Si,res then | ↓x ∩ Si,res| < r.
Each subblock is a partial lattice.

6.2 Extending the Data Structure
As before, let B1, B2, . . . , Bm, and Bres be the blocks of the decomposition of L, each having
size at least

√
n. Within each principal block Bi, we perform a subblock decomposition

with subblock size r =
√
|Bi|, yielding subblocks Si,1, Si,2, . . . , Si,`i , and Si,res. We have

`i ≤
√
|Bi| for 1 ≤ i ≤ m. There is a subblock header gi,j for each principal subblock Si,j ,

1 ≤ i ≤ m and 1 ≤ j ≤ `i.

6.3 Information Stored
We add a new field to each node that indicates which subblock contains it. We store (A)
and (B) as in the order-testing structure, and additionally:
(C) For each subblock header gi,j , we store an array containing a pointer to gi,j ∧ x for all

x ∈ Bi. These arrays allow us to determine the meet of any subblock header and any
node in the same block with a single access.

(D) For each principal subblock Si,j , we store a table that contains the meet of each pair of
elements from Si,j , unless the meet lies outside Si,j . That is, the table has |Si,j |2 entries
indexed by pairs of elements in Si,j . The entry for (x, y) contains a pointer to x ∧ y if it
lies in Si,j , or null otherwise. We can compute meets within any principal subblock in
constant time using these tables.
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(E) For every element x in a residual subblock Si,res, we store ↓x ∩ Si,res as a linked list
of pointers. This allows us to iterate through the local downset of each element in the
residual subblock.

6.4 Finding the Meet

This data structure allows us to find the meet of two elements x, y ∈ L in O(n3/4) time. The
meet-finding operation works by finding representative elements for x and y in each principal
block and computing the meet of each pair of representatives. We call these candidate meets
for x and y. Once the set of candidate meets is compiled, the algorithm finds the largest
element among them (with respect to the lattice order) and returns it.

We refer to the algorithm as Meet. This algorithm uses a subroutine called Meet-In-
Block that finds the meet of two elements from the same principal block, or else determines
that the meet does not lie within that block. The subroutine is similar to the main procedure
except that it works on the subblock level instead of the block level.

Algorithm 2 Meet.

Meet: Given x, y ∈ L, find x ∧ y.
(a) Initialize an empty set Z to store candidate meets for x and y.
(b) Check principal blocks: For each principal block Bi, find the representative elements

xi = x ∧ hi and yi = y ∧ hi using (A). If xi ∈ Bi and yi ∈ Bi, then use the subroutine
Meet-In-Block to either find xi∧yi or determine that Bi does not contain it. If xi∧yi

is found, then add it to Z.
(c) Check residual block: If x and y are both in the residual block Bres, then use DOWN(x)

to iterate through every element z ∈ ↓x ∩Bres. Add z to Z whenever z 6 y.
(d) Using the order-testing operation, determine the maximum element in Z and return it.

If Z is empty, then conclude that the meet of x and y does not exist and return null.

Algorithm 3 Meet-In-Block.

Meet-In-Block: Given xi, yi ∈ Bi, either find xi ∧ yi ∈ Bi or determine that xi ∧ yi 6∈ Bi.
(a) If xi = hi or yi = hi, then return the smaller of xi and yi. Otherwise, initialize an empty

set Zi to store candidate meets for xi and yi in Bi.
(b) Check principal subblocks: For each principal subblock Si,j , find the representative

elements xi,j = xi ∧ gi,j and yi,j = yi ∧ gi,j using (C). If xi,j and yi,j are both in Si,j ,
then look up

zi,j =
{

xi,j ∧ yi,j if xi,j ∧ yi,j ∈ Si,j

null otherwise

using the appropriate table in (D). If zi,j 6= null then add it to Zi.
(c) Check residual subblock: If xi and yi are both in the residual subblock Si,res, then use

(E) to iterate through every element z ∈ ↓xi ∩ Si,res. Add z to Zi whenever z 6 yi.
(d) Using the order-testing operation, determine the largest node in Zi and return it. If Zi

is empty, then conclude that xi ∧ yi 6∈ Bi and return null.
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6.5 Correctness
We now prove that this algorithm is correct, beginning with the correctness of Meet-In-
Block.

I Lemma 7. Meet-In-Block returns xi ∧ yi if it lies in Bi and null otherwise.

Proof. If xi = hi or yi = hi, then xi ∧ yi is returned in step (i). Otherwise, the correctness
of the algorithm relies on two facts.
Fact 1. Every element z ∈ Zi satisfies z 6 xi ∧ yi.
Fact 2. If xi ∧ yi exists and lies in Bi, then it is added to Z.
Assuming these hold, step (iv) must correctly answer the query: In the case that xi ∧ yi ∈ Bi,
the meet must be added to Zi and it must the maximum element among all elements in Zi.
If xi ∧ yi 6∈ Bi, then Zi will be empty by the first fact.

Fact 1 is straightforward. Every candidate meet z added to Zi in step (ii) is xi,j ∧ yi,j for
some j ∈ {1, . . . , `i}, as reported by (D). Since xi,j 6 xi and yi,j 6 yi we have z 6 xi ∧ yi.
When a candidate meet z is added to Z in step (iii) it is because z ∈ ↓xi ∩Bres and z 6 yi;
hence z 6 xi ∧ yi.

To prove Fact 2, first suppose that xi ∧ yi lies in a principal subblock Si,j . Then
xi ∧ yi 6 gi,j . By the elementary properties of the meet operation,

xi ∧ yi = xi ∧ yi ∧ gi,j = (xi ∧ gi,j) ∧ (yi ∧ gi,j) = xi,j ∧ yi,j .

Thus, xi ∧ yi is added to Z during step (ii) when the subblock Si,j is considered.
Now suppose that xi ∧ yi lies in the residual subblock Si,res. In this case, xi and yi must

themselves lie in Si,res, for if either one is below any subblock header of Bi then their meet
would also be below that same block header. Thus, xi ∧ yi will be added to Zi in step (3)
during which every element of ↓xi ∩ ↓ yi ∩ Si,res is added to Zi. This proves Fact 2. J

I Lemma 8. Meet finds x ∧ y or correctly concludes that it does not exist.

Proof. This proof is similar to that of Lemma 7. It relies on the same two facts.
Fact 1. Every element z ∈ Z satisfies z 6 x ∧ y.
Fact 2. If x ∧ y exists, then it is added to Z.
Assuming these hold, step (4) must correctly answer the query. The only significant difference
between Meet and Meet-In-Block is the method of finding candidate meets in step (2).
Meet calls Meet-In-Block to find xi ∧ yi if it lies in Bi whereas Meet-In-Block uses
(D) to find xi,j ∧ yi,j if it lies in Si,j . By Lemma 7, Meet-In-Block accurately returns
xi ∧ yi if xi ∧ yi ∈ Bi and null otherwise. Now Facts 1 and 2 may be proved by the same
arguments. J

6.6 Time Analysis
The meet procedure takes O(n3/4) time in the worst case. We first analyze the time for
Meet-In-Block applied to a principal block Bi. Step (i) takes constant time. Step (ii)
takes constant time per principal subblock of Bi using (C) and (D). Since each principal
subblock has size at least

√
|Bi|, there are at most |Bi|/

√
|Bi| =

√
|Bi| principal subblocks;

hence the time for step (ii) is O(
√
|Bi|). Step (iii) performs constant-time order testing on

all the elements below xi in the residual subblock. By the subblock decomposition method,
there are at most

√
|Bi| such elements.

When step (iv) is reached, Zi has been populated with at most one element per principal
subblock (

√
|Bi| in total) and at most

√
|Bi| elements from the residual sublock. The

maximum element in Zi is found in linear time during this step. Thus, Meet-In-Block
runs in O(

√
|Bi|) time when applied to block Bi.
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Now the main procedure can be analyzed in a similar fashion. Step (1) takes constant time.
Step (2) calls Meet-In-Block on every principal block, and hence the total time for step (2)
is proportional to

∑m
i=1

√
|Bi|. By Jensen’s inequality,

∑m
i=1

√
|Bi| is maximized when all

the blocks have size
√

n, since each principal block has size at least
√

n and
∑m

i=1 |Bi| ≤ n.
Thus

m∑
i=1

√
|Bi| ≤

√
n∑

i=1
n1/4 ≤ n3/4.

As in the analysis of steps (iii) and (iv), steps (3) and (4) take O(
√

n) time. Therefore
the time complexity of Meet is O(n3/4).

6.7 Space Complexity
The space required to store the nodes, (A), and (B) is O(n3/2) as in Section 5.

Fix i ∈ {1, . . . , m}. We show that the parts of (C), (D), and (E) relating to Bi occupy
O(|Bi|

√
n) space. Since

∑m
i=1 |Bi| ≤ n, it follows that the entire data structure takes O(n3/2)

space.
Each array in (C) requires O(|Bi|) space. There are at most

√
|Bi| subblock headers for

a total of O(|Bi|3/2) space.
The lookup table in (D) for subblock Si,j takes O(|Si,j |2) space. Since

√
|Bi| ≤ |Si,j | ≤√

n, we have
∑`i

j=1 |Si,j |2 ≤
√

n
∑`i

j=1 |Si,j |. Notice
∑`i

j=1 |Si,j | ≤ |Bi| as the subblocks are
disjoint subsets of Bi. Therefore the total space occupied by (D) is O(|Bi|

√
n).

The lists stored by (E) occupy O(
√
|Bi|) space each for a total of O(|Bi|3/2) space. The

space charged to block Bi is therefore O(|Bi|3/2 + |Bi|
√

n + |Bi|3/2) = O(|Bi|
√

n).

6.8 Preprocessing
It remains to discuss how to efficiently decompose the lattice and initialize the structures
(A) – (E). Recall that we the lattice is presented initially by its transitive reduction graph.
It is known that the number of edges in the TRG of a lattice is O(n3/2) [14, 25]. We assume
that the TRG is stored as a set of n nodes, each with a list of its out-neighbours (nodes that
cover it) and a list of in-neighbours (nodes that it covers). The total space needed for this
representation is O(n3/2). The preprocessing takes O(n2) time and the space usage never
exceeds O(n3/2).

The first step in preprocessing is to determine the block decomposition. The same
technique will apply to subblock decompositions. We begin by computing a linear extension
of the lattice. A linear extension of a partially-ordered set is an order of the elements
x1, x2, . . . , xn such that if i ≤ j then xj 66 xi. A linear extension may be found by performing
a topological sort on the TRG, which can be done in O(n3/2) time [12].

We now visit each element of L in the order of this linear extension and determine
the size of its downset. The size of the downset can be computed by a depth-first search
beginning with the element and following edges descending the lattice. This search takes
time proportional to the number of edges between elements in the downset. As soon as this
process discovers a fat node h (a node with at least

√
n elements in its downset), it can be

used as a block header. Then h and every element of its downset can be deleted from L.
The process of computing the sizes of the downsets can continue from the node following h

in the linear extension, and the only difference is that the graph searches used to compute
the size of each downset must now be restricted to L \ ↓h. There is no need to recompute
the downset size of any node before h in the linear extension because the size of its downset
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was less than
√

n previously and deleting ↓h can only reduce this value. The fat nodes
encountered in this way form the block headers of the decomposition. After every node has
been visited, the remaining elements can be put into the residual block.

The time needed for the decomposition depends on the number of edges in each downset.
By Lemma 4, every downset is a partial lattice, and thus a downset with k nodes can have
only O(k3/2) edges. For every thin node encountered, the number of edges in the downset is
at most O((

√
n)3/2) = O(n3/4) because it contains less than

√
n elements. Thus, the time

needed to visit all the thin nodes is O(n7/4).
Whenever a fat node is discovered its downset is removed immediately, and so the edges

visited during the DFS are never visited again. Hence, the time needed to examine all of the
block headers is proportional to the number of edges in the whole TRG. Therefore a block
decomposition can be computed in O(n7/4) time.

By the same procedure, the subblocks can be computed in O(
∑m

i=1 |Bi|7/4) time. Since∑m
i=1 |Bi| ≤ n, this is at most O(n7/4).
With the block and subblock decompositions in hand, data structures (A) – (E) can be

initialized. See Appendix A for details.
We have now proven the main theorem of this paper.

I Theorem 9. There is a data structure for lattices that requires O(n3/2) space, answers
order-testing queries in O(1) time, and computes the meet or join of two elements in O(n3/4)
time. The preprocessing time starting from the transitive reduction graph of the lattice is
O(n2).

A straightforward generalization of the data structure allows for a space-time tradeoff.

I Corollary 10. For any c ∈ [ 1
2 , 1], there is a data structure for lattices that requires O(n1+c)

space and computes the meet or join of two elements in O(n1−c/2) time. The preprocessing
time, starting from the transitive reduction graph of the lattice, is O(n2 + n1+3c/2).

Proof. The modification is obtained by adjusting the block size of the initial decomposition
from

√
n to nc. Otherwise, the data structure and methods are identical. The time, space,

and preprocessing analyses are similar. J

Note that for c = 1
2 , this data structure is precisely that of Theorem 9.

7 Degree-Bounded Extensions

Recall that we assume that the lattice is initially represented by its transitive reduction
graph (TRG). Let the degree of a lattice node be the number of in-neighbours in the TRG,
or equivalently, the number of nodes it covers. Interestingly, developing methods that handle
high-degree nodes efficiently has been the primary obstacle to improving on our data structure.
Indeed, the “dummy node” technique of Talamo and Vocca, explained in Appendix B, is
effectively used to get around high-degree lattice elements. We have found that meets and
joins can be computed more efficiently as long as the maximum degree of any node in the
lattice is not too large. This is the case for distributive lattices, for example, as log2 n is the
maximum degree of a node in a distributive lattice4. In this section, we explore new data
structures for meet and join operations that perform well under this assumption.

4 We leave this as an exercise using Birkhoff’s Representation Theorem [2].
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Let d be the maximum degree of any node in a partial lattice L. As a convenience, we
assume in this section that L has a top element. The purpose of this assumption is to avoid
a lattice with more than d maximal elements; otherwise we would need to define d as the
larger of the maximum degree and the number of maximal elements in the lattice.

This assumption has the effect that the residual block in any block decomposition of L

has a top element (unless it is empty). The only practical difference between the residual
block and a principal block is that the residual block may be smaller than the block size of
the decomposition. The results of this section are easier to relate if we assume henceforth
that all blocks are principal blocks and each has a block header. Thus, a block decomposition
with block size k creates m blocks B1, . . . , Bm with block headers h1, . . . , hm, where |Bi| ≥ k

for 1 ≤ i ≤ m− 1. The number of blocks is at most n
k + 1.

We begin with a simple data structure that computes joins between elements using a new
strategy. It is more efficient than our earlier method when d ≤ n3/4. We then generalize
the idea to create a more sophisticated recursive data structure. It improves on the simple
structure for all values of d and works especially well when d ≤

√
n. The space usage is

O(n3/2) for both data structures. Either one can be used to compute meets as well by
inverting the lattice order and rebuilding the data structure, although the value of d may be
different in the flipped lattice.

I Theorem 11. There is a data structure for lattices that requires O(n3/2) space and computes
the join of two elements in O(

√
n + d) time.

Proof. This data structure uses a block decomposition with block size k =
√

n and stores
(A) and (B) just as in Section 5. This is everything we need to perform order-testing in
constant time. However, we now use this information to compute joins instead of meets.

Let B1, . . . , Bm be the blocks of the decomposition with block headers h1, . . . , hm. Further
assume that the order B1, B2, . . . , Bm reflects the order that the blocks were extracted from
L during the decomposition.

Given x, y ∈ L, x ∨ y may be found as follows.
(1) Use order-testing to compare x and y to every block header. Let i∗ ∈ {1, . . . , m} be the

smallest value for which x 6 hi∗ and y 6 hi∗ .
(2) It must be that x ∨ y lies in Bi∗ . Let c1, c2, . . . , ct ∈ Bi∗ be the elements covered by

hi∗ in Bi∗5. Compare x and y to each of these elements using order-testing queries. If
x, y 6 cj for some j ∈ {1, . . . , t}, then proceed to step (3). Otherwise, conclude that
x ∨ y = hi∗ .

(3) The join of x and y must lie in the local downset of cj . Find x ∨ y by comparing x and
y to every element in ↓ cj ∩Bi∗ and choosing the smallest node z with x, y ≤ z.

This procedure always finds x∨ y. The purpose of step (1) is to identify the block containing
x ∨ y. With i∗ defined as in the algorithm, observe that x ∨ y must have been added to Bi∗

during the decomposition because x ∨ y ∈ ↓hi∗ and x ∨ y 6∈ ↓hi for any i < i∗. This step
takes O(

√
n) time as m ≤

√
n + 1.

Once Bi∗ has been identified, the difficulty lies in finding the join. The algorithm checks
all of the children c1, . . . , ct of hi∗ to find an element cj above x ∨ y. This step requires O(d)
time as t ≤ d. If the algorithm succeeds in finding cj then it compares x and y with all of
the elements in the local downset of cj to determine the join. By the thinness property, this
step takes only O(

√
n) time. If no such cj exists, then hi∗ must be the only element in Bi∗

above both x and y. Thus, this data structure finds x ∨ y in O(
√

n + d) time. J

5 It is possible that hi∗ covers other elements belonging to earlier blocks. These are not included.
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I Theorem 12. There is a data structure for lattices that requires O(n3/2) space and computes
the join of two elements in O(d log n

log d ) time.

Proof. We extend the ideas of Theorem 11 using a recursive decomposition of a lattice.
The recursive decomposition works in two stages. First, we perform a block decomposition

of L using the block size n/d. This produces up to d + 1 blocks B1, . . . , Bm.
We decompose each Bi further using a cover decomposition. If Bi has a block header hi

and c1, c2, . . . , ct ∈ Bi are the elements covered by hi, then a cover decomposition of Bi is a
partition of Bi into the sets

Ci,j = (↓ cj ∩Bi) \ (
j−1⋃
`=1
↓ cj) for 1 ≤ j ≤ t.

We call these sets chunks to avoid overloading “block” and we call cj the chunk header of
Ci,j . Unlike a block decomposition, a cover decomposition does not depend on a block size.
It is unique up to the ordering of c1, . . . , ct.

So far, our decomposition produces blocks {B1, . . . , Bm} and chunks {Ci,j | 1 ≤ i ≤
m, 1 ≤ j ≤ deg(hi)}. We recursively decompose every chunk Ci,j in the same two stages,
first by a block decomposition with block size |Ci,j |

d and then by a cover decomposition of
each of the resulting blocks. The recursive decomposition continues in this fashion on any
chunk with size at least 2d.

The recursion induces a tree structure on the set of block headers and chunk headers
in the lattice. The children of each block header are the chunk headers chosen during its
decomposition and vice versa. The order of the children of a node corresponds to the order
that the blocks or chunks are taken during the decomposition. Finally, we create one special
node to act as the root of the tree. The children of the root are the block headers of the
initial decomposition. We call this the decomposition tree.

It is easy to see that every lattice element occurs at most once in the tree and that the
maximum degree of any tree node is at most d + 1. Less obvious is the fact that the depth of
the tree is O( log n

log d ).
To see this, let c be a chunk header, let h be one of its children in the tree, and let c′ be a

child of h. Assume c is the header of a chunk C, h is the header of a block B contained in C,
and c′ is the header of a chunk C ′ contained in B; see Figure 3. Block B was formed during
a block decomposition of C with size |C|/d. Since h covers c′ in B, c′ must have been a thin
node during that decomposition. The chunk C ′ was then created from the local downset of
c′ in B. Thus |C ′| ≤ | ↓ c′ ∩B| ≤ |C|/d.

c

h

c
0

C

c

B
C

0

h

c
0

Figure 3 Three nodes in the decomposition tree and the corresponding chunks and block of the
recursive decomposition. The size of C′ can be no larger than |C|/d.
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This implies that the size of chunks decreases by a factor of d between every chunk
header and its grandchildren in the decomposition tree. After 2d log n

log d e generations in the
decomposition tree, every chunk must have size less than 2d. This proves the claim.

The data structure is now simple to describe. We store the decomposition tree and, for
each leaf, we store a list of the elements in the chunk of that chunk header. Since the chunks
represented by leaves are pairwise disjoint, only O(n) space is needed for this structure.
Additionally, we create and store the order-testing structure of Section 5, bringing the total
space to O(n3/2).

The join of two elements can be found using a recursive version of the algorithm from
Theorem 11. Suppose we are given x, y ∈ L and must determine x∨ y. Through a variable u

that represents the node being considered, we recursively traverse the decomposition tree.
Initially set u equal to the root and proceed as follows.

7.1 Base Case

If u is a leaf, then consider the stored list of elements for u. Find x ∨ y by comparing x and
y to every element in the list and returning the smallest node z with x, y ≤ z.

7.2 Recursive Case

If u is not a leaf, let v1, v2, . . . , vk be the children of u in the decomposition tree, listed in
order. Use order-testing to compare x and y to each vi. If there is no vi such that x 6 vi and
y 6 vi, then conclude that x ∨ y = u. Otherwise, let i∗ ∈ {1, . . . , k} be the smallest value for
which x 6 vi∗ and y 6 vi∗ . Recurse on vi∗ .

This procedure spends O(d) time on each node. In the base case, the list stored for u has
length O(d) and the join can be found in this list in linear time. The recursive case takes
O(d) time as well since the maximum degree of the decomposition tree is at most d + 1. As
the depth of the tree is O( log n

log d ), the total time of this procedure is O(d log n
log d ).

Correctness is a consequence of the fact that x ∨ y lies in the first block of each block
decomposition whose header is above both x and y. The same fact holds for the chunks in
a cover decomposition. Thus, each time i∗ is chosen in the recursive case, it must be that
x ∨ y lies in the block or chunk for vi∗ . J

8 Conclusions

We have presented a data structure to represent lattices in O(n3/2) words of space, which is
within a Θ(log n) factor of optimal. It answers order queries in constant time and meet or join
queries in O(n3/4) time. This work is intended to replace the earlier solution to this problem
which was incorrect; see Appendix B for a discussion of the error. Our degree-bounded data
structure uses O(n3/2) space and answers meet or join queries in O(d log n

log d ) time. For some
low-degree lattices, this structure improves dramatically on our subblock-based approach.
Ours are the only data structures known to us that uses less than the trivial O(n2) space.

We wonder what can be done to improve on our results. The time to answer meet and
join queries may yet be reduced, perhaps to the O(

√
n) bound claimed by [22]. Another

natural question is whether the space of the representation can be reduced to the theoretical
minimum of Θ(n3/2) bits.
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A Initializing the Data Structure

We now show how (A), (B), (C), (D), and (E) can be constructed in O(n2) time. We assume
that we have access to the TRG of the lattice and that the block and subblock decompositions
have already been computed.

(A) Some care is required to construct (A) efficiently. Let x1, . . . , xn be a linear extension
of L. Consider a principal block Bi with block header hi. To find z ∧ hi for each z ∈ L,
we do the following.
1. Initialize an array of length n to store the meet of hi with each element and populate

the array with null in every entry.
2. Perform a DFS to find ↓hi in L. Note that ↓hi may be considerably larger than Bi.

Put the elements of ↓hi (note that this includes hi) into a linear extension y1, . . . , yk

by restricting the linear extension of L to these elements.
3. Traverse the nodes in reverse order of this extension (beginning with yk and ending at

y1). For each node yj , perform a DFS on the upset of that node in the full lattice. For
every node z visited during the DFS for node yj , record that z ∧ hi = yj in the array,
and then mark z so that it will not be visited by later graph searches. After all the
nodes in ↓hi have been processed, restore the lattice by unmarking all nodes.

By this method, the entry for z ∧ hi in the array is recorded to be the last element in
the linear extension of ↓hi that is below z. This must be the correct node because it is
below both z and hi, and every other element below z and hi occurs earlier in the linear
extension. Whenever z ∧ hi does not exist in the lattice, the array entry for z ∧ hi is the
default value null.
The time for this procedure is bounded by the number of edges in the TRG for L because
no node is visited more than once over all of the graph searches. Recall that the number
of edges in the TRG is O(n3/2). Summing over all block headers, the total time to create
(A) is at most O(n3/2√n) = O(n2).

(B) This can be computed by performing a DFS on the local downset of each node and
adding the elements visited to a dictionary for that node.
Initializing and populating the space-efficient dictionary of [3] takes time linear in the
number of dictionary entries. Excluding the block headers, the local downsets have at
most

√
n nodes and O(n3/4) edges; hence the time spent on all non-block headers is at

most O(n7/4). The local downsets of the block headers are all disjoint, so the total time
required is O(n7/4).

(C) Use the same method for (A) restricted to each block to compute (C). The total time is
O(

∑m
i=1 |Bi|2), which is no larger than O(n2).

(D) The method of (A) can also be used to compute (D). For each element z in a principal
subblock Si,j , find the meet of z with every other element in the subblock in O(|Si,j |3/2)
time, where z plays the role of hi in the method for (A). It takes O(|Si,j |5/2) time to do
this for every element in a single subblock and the total time is proportional to

m∑
i=1

`i∑
j=1
|Si,j |5/2 ≤

m∑
i=1

`i∑
j=1
|Si,j |(

√
n)3/2 ≤ n7/4.

The first inequality uses the fact that each subblock has size at most
√

n. The second
inequality holds because the subblocks are disjoint.

(E) Each linked list can be constructed by performing a DFS on the downset of each element
in a residual subblock. This takes O(n7/4) time as in the analysis for (B).
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B Correcting Earlier Work

As stated in the introduction, this paper relies on ideas from the lattice data structure
of [20, 21, 22]. These papers contain a mistake that we believe is not easily repaired. The
purpose of this section is to summarize their techniques, explain where the error occurs, and
argue that it cannot be fixed by a minor modification. We urge the interested reader to
consult [22] to confirm this analysis.

We restate their algorithm in the language of this paper. In the interest of a clear and
concise explanation, we do not rebuild all the machinery of their work. In particular, we
ignore their double-tree structure and we only consider blocks made from downsets (in their
papers, blocks may be built from upsets or downsets). In our observation, the double-tree
structure is necessary only as a null/non-null value check for order testing and meet/join
queries (thus a simple dictionary suffices); further, while we have concerns about using both
upsets and downsets for blocks, using downsets alone avoids such issues and still satisfies the
requirements in their papers (Lemma 4.1 in [22]). We take these liberties for the purpose of
quickly coming to the relevant issue. Readers will need to confirm for themselves that our
explanation is fundamentally accurate.

Their method relies on a lattice decomposition to build the data structure, and our block
decomposition is similar to the basic version of the decomposition described in their papers.
Note that what we call “blocks” are called “ideals” in [21] and “clusters” in [22]. They do
not decompose the lattice at a second level like our subblock decompositions. The error is
introduced in the extended version of their lattice decomposition, which we now describe.

The intuition behind their data structure is that everything would be easier if every block
had size Θ(

√
n), say between

√
n and 2

√
n. If this were the case, then we could afford to

explicitly store the meet/join and reachability property between every pair of elements from
the same block, as this would use roughly

∑√n
i=1(
√

n)2 = O(n3/2) space. This would allow
the meet of two elements from the same block to be found in constant time by a simple table
lookup. In terms of our meet-finding algorithm from Section 6, this would reduce the time
for Meet-In-Block to a constant and the time for Meet to O(

√
n).

B.1 Dummy Nodes
A block decomposition by itself cannot guarantee anything about the sizes of the blocks
except that each is at least

√
n. They attempt to simulate blocks of size

√
n by modifying

the transitive reduction graph (TRG) of the lattice, creating “dummy nodes” with downsets
of size Θ(

√
n) to act as block headers when none exist naturally.

Dummy nodes are introduced as follows. Suppose a block B is created that has more
than 2

√
n elements. Assume that the block header has children c1, c2, . . . , ct in the TRG.

Consider the sequence

| ↓ c1 ∩B|, |(↓ c1 ∪ ↓ c2) ∩B|, . . . , |(↓ c1 ∪ · · · ∪ ↓ ct) ∩B|.

As each of the children is a thin element (its local downset has size less than
√

n), the
difference between adjacent numbers in this sequence is less than

√
n. Thus, there is some

i ∈ {1, . . . , k} such that
√

n ≤ |(↓ c1 ∪ · · · ∪ ↓ ci) ∩B| ≤ 2
√

n.

The children c1, . . . , ci may be grouped together and the set (↓ c1 ∪ · · · ∪ ↓ ci)∩B may be
considered as an artificial block having size Θ(

√
n). By removing this artificial block and
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iterating on the remaining children, B is partitioned into a collection of artificial blocks with
sizes between

√
n and 2

√
n (except that there may be one smaller block at the end). The

only difference between these artificial blocks and ordinary principal blocks is that they lack
a block header.

To remedy this, a dummy node is introduced at the top of each artificial block. That is,
a new element d is created and inserted into the TRG with c1, . . . , ci as its in-neighbours
and the block header of B as its only out-neighbour.

d

c1 c2 · · · ci ci+1 ck· · ·

c1 c2 · · · ci ci+1 ck· · ·

h

h

Figure 4 Dummy nodes are inserted between the block header and its children to simulate blocks
of size Θ(

√
n).

Talamo and Vocca rely on the fact that the graph still represents a partial lattice after
adding dummy nodes in this way. They state on page 1794 of [22]:

“By construction, the dag obtained by adding dummy vertices still satisfies the lattice
property.”

Unfortunately, this claim is not true in many cases. Consider the stripped-down example
in Figure 5. The lattice on the left is changed to the graph on the right by introducing a
dummy node as described. However, the graph on the right fails the lattice property because
the join of x and y is not well-defined: Both c3 and d are minimal among elements in ↑x∩↑ y.
Symmetrically, the meet of c3 and d is not well-defined either. In this case, adding d broke
the lattice property.

Although the example is on a very small lattice, it scales easily to any size. Any number
of nodes could be added to the original lattice so that | ↓ c1 ∪ ↓ c2| ∈ [

√
n, 2
√

n]. The dummy
node added in this case would still violate the lattice property.

This detail is easy to overlook, especially since ↓ d ∩ B is necessarily a partial lattice.
However, the lattice property may fail in the larger structure when dummy nodes are added.
This fundamentally impacts the correctness of their approach.
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h

c1 c2 c3

h

c1 c2 c3

d

x y x y

Figure 5 Inserting a dummy node breaks the lattice property.

B.2 Impact Of The Error
With dummy nodes, it is no longer true that every element has a unique representative in
each block. Talamo and Vocca use the following text on page 1789 of [22], “given an external
vertex v, the pair (v, Clus(c)) univocally identifies a vertex u ∈ Clus(c) representing either
the LUB(Clus+(c) ∩ Clus+(v)) or the GLB(Clus−(c) ∩ Clus−(v)).” In the language of our
paper, the claim is that for every block header h, any external element v must have a unique
representative x ∧ h. Consider again the example in Figure 5 with d as the block header
of its downset. The external element c3 does not have a unique representative in the block
headed by d, since the meet of d and c3 is now undefined.

In [22], this breaks Lemma 3.1 when c is a dummy node, which in turn breaks Lemma 3.3
and implies their data structure C on page 1792 of [22] would need to keep multiple entries
for an element-cluster pair in order to guarantee correctness of the reachability algorithm
described below it. We see no reason why the number of such representatives stored per
element should be small, nor that the total number of representatives stored should be small,
which undermines both the proposed query and space complexities.

The same issue arises in Talamo and Vocca’s meet and join algorithms. The algorithm
given relies on the unique representative of an element with a block, and without it, neither
the O(n

√
n) space bound nor the O(

√
n) time bound on meet or join operations follow in

Proposition 6.4 of [22].
Further, if dummy nodes are avoided altogether, the space bound can be Ω(n2), as

explained on page 1793 of [22].
It has been suggested to us that the issues may be avoided if the dummy nodes are not

considered as actual nodes of the lattice itself, but instead as a construct to group small
clusters together for a counting reason. That is, the claim is that an O(n

√
n)-space O(1)-time

order-testing structure can be made without tangibly introducing dummy nodes. As we
have shown in this paper, this is indeed true. However, let us emphasize that the work
of Talamo and Vocca does not achieve this. It describes a very different technique that
crucially relies on the unique representative property remaining true after grouping clusters
using dummy nodes, which does not hold in general regardless of whether dummy nodes are
actually inserted into the graph or just used as a conceptual tool. With their techniques, we
see no way to achieve their claimed O(

√
n) time meet/join algorithm without their erroneous

dummy nodes. We give evidence in the following section as to why this might be infeasible.

B.3 Can It Be Fixed?
It is natural to search for a small change to the dummy node method that will fix this issue,
allowing us to effectively perform a block decomposition where every principal block has size
Θ(
√

n). It is especially tempting to do so because it could reduce the time for meet and join
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operations from O(n3/4) to O(
√

n), as is claimed in [22]. The dummy node technique also
seems like a reasonable approach to handling high-degree lattice nodes, which have often
been an obstacle to the approaches we have considered.

There is good reason to expect that this is not possible, relying on some small assumptions.
Suppose that there were a correct method of creating artificial principal blocks and that the
method still works when we increase the block size from

√
n to n2/3. That is, suppose that

we can reliably decompose any lattice into Θ(n1/3) blocks of size Θ(n2/3) (and perhaps some
O(n1/3) smaller blocks). Note that the structure of the lattice has no impact on the ability
to apply this method, thus we assume it applicable to all lattices.

There is the remaining issue of the residual block, however this is not a major difficulty.
By adding a top element to the partial lattice (as in a complete lattice), we can treat the
residual block in the same fashion as a principal block using the new top element as its block
header.

Since the number of lattices on k elements is 2Θ(k3/2), it is possible to uniquely identify
any such lattice using only Θ(k3/2) bits. Thus, each block of size Θ(n2/3) can be encoded in
Θ(n) bits, and all of the blocks in the decomposition can be encoded in Θ(n4/3) bits. The
order between any pair of elements in the same block can be tested, however inefficiently,
using the encoding for that block. As well, since there are only Θ(n1/3) block headers, all of
the meets between a lattice element and a block header can be stored in Θ(n4/3) space. In
other words, we can simulate both (A) and (B) in only O(n4/3) space.

This information is sufficient to perform order-testing between any pair of elements, and
thus it uniquely determines the lattice. Lattices do not permit such a small representation;
this would violate the Θ(n3/2)-bit lower bound. This strongly suggests that artificial blocks
cannot be simulated without sacrificing the unique representative property, which is essential
to the data structure.



Online Embedding of Metrics
Ilan Newman
Department of Computer Science, University of Haifa, Israel
http://cs.haifa.ac.il/~ilan/
ilan@cs.haifa.ac.il

Yuri Rabinovich
Department of Computer Science, University of Haifa, Israel
http://cs.haifa.ac.il/~yuri/
yuri@cs.haifa.ac.il

Abstract
We study deterministic online embeddings of metric spaces into normed spaces of various dimensions
and into trees. We establish some upper and lower bounds on the distortion of such embedding, and
pose some challenging open questions.

2012 ACM Subject Classification Networks → Network algorithms

Keywords and phrases Metric spaces, online embedding

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.32

Funding Ilan Newman: This Research was supported by The Israel Science Foundation, grant
number 497/17.

1 Introduction

The modern theory of low-distortion embeddings of finite metrics spaces into various host
spaces began to take shape with the appearance of the classical results of Johnson and
Lindenstrauss [7]1 and Bourgain [4]2, in the last decades of the 20’th century. It was soon
observed that this theory provides powerful tools for numerous theoretical and practical
algorithmic problems. Nowadays, it is a mathematically deep and widely applicable developed
theory, whose importance to algorithmic design is well recognized.

In this paper we study a relatively neglected aspect of metric embeddings, the online
embeddings. In this setting, the vertices of the input finite metric space (V, d) are exposed
one by one, together with their distances to the previously exposed vertices. Each newly
exposed vertex v is mapped to the host space (H, dH) before the next vertex is exposed, and
without altering the embedding of previously exposed vertices. The quality of the resulting
embedding φ : V → H is measured by its expansion and contraction:

expansion : max
v,u∈V

dH(φ(v), φ(u))
d(v, u) contraction : max

v,u∈V

d(v, u)
dH(φ(v), φ(u))

The product of the two is called the (multiplicative) distortion of φ. The distortion dist(d ↪→
dH) of embedding (V, d) into (H, dH) is the minimum possible distortion of any such mapping
φ. Since usually (and in this paper in particular) the host space is scalable, dist(d ↪→ dH) can
be alternatively defined in the offline setting as the minimum possible expansion over non-
contracting mappings, or the minimum possible contraction over non-expanding mappings.

1 Any n-point Euclidean metric can be efficiently embedded into `
logn
ε2

2 with (1 + ε)-distortion.
2 Any n-point metric can be efficiently embedded into the Euclidean space of dimension O(logn).
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In the online setting the above three notions may not, and probably do not, coincide. This
is so since the scaling of φ cannot be performed in the end, after having finished constructing
the entire mapping. For the same reason, in the online setting, the maximum between
the distortion and the contraction may be a more suitable measure of similarity than the
multiplicative distortion. Also, the knowledge of n = |V | in advance matters, and may
potentially be of help.

In addition to deterministic online embedding algorithms, it is natural to consider
probabilistic online embeddings against non-adaptive adversary. In this setting, instead of
considering the distortion between d and dH for a fixed embedding, we consider the expected
distortion between d and a random embedding that is selected from some pre-designed
distribution.

In this paper we focus only on deterministic embeddings into the standard normed spaces
`2, `1, `∞ of various dimensions, and into trees. Our results clarify what can be achieved in
dimension 1, and in dimension exponential in n. What happens in between is a challenging
open problem. We also present a lower bound on online embedding of a size-n metrics into
`2 of unbounded dimension.

It is our hope that the findings of the present paper may provide a good starting point
for further studies of deterministic online embeddings.

1.1 Previous Work
To the best of our knowledge, the first result about online embedding appeared implicitly in
a paper of the authors [8]. The authors show a (

√
logn) lower bound on the distortion of

an offline embedding of a shortest path metric of a certain family of serious-parallel graphs
{Dn} into `2. Without ever mentioning the term “online”, the proof, in fact, establishes a
lower bound of

√
n on the distortion of an online embedding of the shortest path metric of a

certain family of graphs G2n on 2n vertices that are subgraphs of Dn. Although [8] received
due attention, and its online implications were noticed e.g. by the authors of [6]3, the explicit
statement (which was and still remains state of the art in its context) has never appeared in
print, and went largely unnoticed. Here we amend this situation (see Section 2).

Another related result appeared in [1] (Th. 3.1) in a rather unrelated context. It claims
the following. Let (V, d) an arbitrary metric space with |V | = n. Assume that V is exposed
in a random uniform order. Then the greedy online algorithm that attaches each new point
v to the closest one among the points exposed so far, say u, by an edge of length d(v, u),
produces a random dominating tree T so that E[dT ] expands d by O(n2).

If the order is fixed, a similar by simpler analysis implies that dT expands d by at most
O(2n). Since this turns out to be rather tight (up to the basis of the exponent) for a
deterministic embedding into a tree, we shall discuss it in more details in Section 3. Another
somewhat related notion, that we do not discuss here, is that of terminal embedding and
using extension techniques [5].

The first (and, to our knowledge, the only) published paper explicitly dedicated to online
embeddings is [6]. Observing that a large part of the offline embedding procedure from [2]
can be implemented online, the authors in [6] establish quite strong results for probabilistic
online embeddings. Most of these results depend on the so called aspect ratio ∆ of the input
metric d – that is, the ratio between the largest and the smallest distance in it. The main
results of [6] are as follows (it is assumed that |V | = n):

3 It served as partial motivation for their paper. [Private communication]
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1. A metric space (V, d) can be probabilistically online embedded into `logn·(log ∆)1/p

p with
distortion O(logn · log ∆) for any p ∈ [1,∞].
For p =∞, (V, d) can also be embedded in `logO(1) n

∞ with distortion O(logn ·
√

log ∆).
On the negative side, (V, d) cannot be online embedded into `D2 with distortion better
than Ω(n1/D−1) even when d is (1 + ε)-close to a submetric of `D2 .

2. A metric space (V, d) can be probabilistically online embedded into a distribution of a non-
contracting ultrametics (and subsequently tree-metrics) with distortion O(logn · log ∆).
On the negative side, (V, d) cannot be probabilistically online embedded into a distribution
of a non-contracting ultrametics with distortion better than min{n, log ∆}.

A very recent result [3] also discuss probabilistic online embeddings into trees, in the context of
terminal-embedding. In particular they also obtain lower bounds on probabilistic embeddings
into trees that are parameterized by the aspect ratio.

1.2 Our Results
We are interested in deterministic online embeddings into normed spaces, and in particular
in the interplay between the distortion and the dimension of the host space. Unlike [6], we
seek bounds independent of the aspect ratio.
1. Embedding Into `2 : There exists a family of metrics {d2n} such that each d2n (a

metric on 2n points) requires distortion
√
n in any deterministic online embedding into

`2 of any dimension. The metrics {d2n} are the shortest-path metrics of a family {G2n}
of weighted series-parallel graphs. These metrics are quite simple; e.g., they embed into
the line with a constant universally bounded distortion.
By John’s Theorem from the theory of finite-dimensional normed spaces, this implies an√
n/D lower bound on online embedding of d2n into any normed space of dimension D.

Comparing to the corresponding lower bounds of [6] (and ignoring the restrictions on
d), we conclude that their result is stronger for D = 2, 3, and incompatible or weaker for
other dimensions.
Our only positive results for online embedding into `2 follow from the embedding into
the line.

2. Embedding Into the line, and into trees. As mentioned above, a simple greedy
online embedding algorithms results in a dominating tree whose metric distorts the input
metric dn, on n points, by at most O(2n). Using a more complicated argument, we show
that d can be online embedded into the line with distortion O(n · 6n).
We also establish a lower bound of Ω(2n/2) for online embedding metrics on n points into
trees. The “hard” metrics used in the proof are in fact submetrics of a (continuos) cycle,
and they embed (offline) in the line with a constant universally bounded distortion.

3. Distortion and dimension. What is the smallest dimension D such that d can be
embedded into `D∞ with distortion at most 1 + ε?4 Our first, rather surprising result, is
that even a metric d on 4 points requires D = Ω

(
log 1

ε

)
in this setting.

On the positive side, we (efficiently) prove that D =
( 4n
ε

)n suffices.
4. Isometric online embeddings. We show that size-n tree metrics d (i.e., arbitrary

submetrics of the shortest-path metrics of weighted trees) isometrically online embed
into `n−1

1 . This implies that such d isometrically online embeds into `2n−2

∞ for n > 1. One
conclusion is that if d probabilistically online embeds with expansion a into a distribution
of tree metrics supported on at most k trees, then d embeds with the same expansion
into `k(n−1)

1 and `2k(n−1)−1

∞ .

4 It is well known that any metric d of size n can be isometrically embedded into `n−1
∞ . Thus, unlike any

other `p, `∞ is universal in the sense that any metrics is isometric to its submetric.
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Open questions:
Can every n-points metric be online embedded into `2 (of some dimension) with poly(n)
small distortion?
Can every n-points metric be online embedded into `D∞, where D is at most polynomial in
n, and with poly(n) distortion. In particular this is open for D = 2, with a polynomially
small distortion?
At what rate does the quality of the best online embedding (e.g., into `D∞) improve when
D grows?

2 A lower bound for embeddings into `2

As mentioned in the previous section, the following theorem is implied by the proof of the
main result of [8]:

I Theorem 1. There is a family of metrics {d2n} on 2n points for any natural n, that
requires expansion ≥

√
n in any non-contracting online embedding into `2 of any dimension

(including infinite dimension).

Given an online non-contracting embedding algorithm A, the “hard” {d2n} is constructed as
follows. It will be the shortest-path metric of the following weighted graph G2n. G2 is simply
unit-weighted K2. The graph G2n+2 is obtained by choosing an edge e = (v, u) of weight
22−n in G2n, and replacing it by a 4-cycle v-x-u-y-v with edges of weight 23−n. It remains
to specify the edge e. It is proven in [8], inductively, that one of weight 22−n edges in G2n
is expanded by A, by at least

√
n. Further, this implies that of the four new edges (v, x),

(x, u), (u, y) and (y, u), at least one edge must be expanded by A by at least
√
n. This is the

new edge to be chosen by the adversary.
As mentioned above, the metrics d2n are very simple. E.g., it is an easy matter to verify

that each d2n (offline) embeds into the line with distortion ≤ 3, and isometrically embeds
into `1.

Currently, we do not know how tight is the above bound, and whether is it at all possible
to obtain a polynomially small in n (online) distortion for online embedding into `2. We do
know that it is possible for tree metrics (in view of Theorem 15), and that in general it is at
most exponential (by Theorem 10).

3 Online embedding into trees

In tree embeddings we refer to online embeddings that constructs a tree whose vertices may
contain Steiner points. That is, the constructed tree, besides the points corresponding to the
input metric, may contain additional points. At each step, once a new vertex is exposed, the
embedding algorithm picks an existing edge of the tree, subdivide it (without changing its
total weight) by creating a new Steiner point, and attaches to it the new vertex by a new
edge of a corresponding weight. The new edge is always a leaf, except when the weight is 0.

I Theorem 2. Any metric on n points can be deterministically online embedded into a tree
with distortion ≤ 2n−1 − 1, even without using Steiner points.

Proof. Just connect the new point v to the previously exposed point u that is the closest
to v in the metric d, by an edge of weight d(v, u).
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The analysis is essentially the same as in [1]. Let d̃ denote the tree metric approximating d.
Clearly, d̃ is not-contracting. Let αk denote the its expansion after k steps. Then, α2 = 1,
and αk+1 ≤ 2αk + 1. Indeed, let x be the new point, and assume it was connected to y.
Then, for any previously exposed vertex a,

d̃(a, x) = d̃(a, y) + d(x, y) ≤ αk · d(a, y) + d(x, y) ≤ αk · (d(a, x) + d(x, y)) + d(x, y)
≤ (2αk + 1) · d(a, x)

where the penultimate inequality is by the triangle inequality, and the last one follows from
the choice of y.
The recursive formula αk+1 ≤ 2αk + 1 implies that αn ≤ 2n−1 − 1. J

In view of the above theorem, this is rather tight:

I Theorem 3. There is a class of metrics on n points for which any online embedding algo-
rithm for that class into a tree metric, results in a distortion of at least 2(n−4)/2. Furthermore,
every metric in the class is (offline) embeddable into a line with constant distortion.

Proof. The metric that will be exposed is a finite submetric of the continuous unit cycle C.
Let dC be the shortest path metric induced on C. We will show that for every k ≥ 1, the
tree that is constructed on the first 4 + 2k points distorts dC on the induced 4 + 2k points
by no less than 2k.

Working with the infinite metric space C (instead of a finite metric space), simplifies
notions. One may consider the case in which n, the number of points in the metric space that
is going to be exposed is given to the algorithm at the beginning. Even then, the following
proof works. Moreover, we may restrict ourselves to the finite submetric space of C induced
by 2n points that are uniformly placed on C.

We start with the following simple facts. For two points x, y PT (x, y) will always refer to
the path between x and y in the tree T that would be relevant to the context.

B Claim 4. Let u1, u2, u3, u4 be four vertices in a tree T = (Y,E). Let P (ui, uj), 1 ≤
i < j ≤ 4 be the path in the tree form ui to uj . Then either P (u1, u2) ∩ P (u3, u4) 6= ∅ or
P (u2, u3) ∩ P (u1, u4) 6= ∅.

The lower bound on the distortion will follow from the following claim.

B Claim 5. Let p, q, r, s be points in a metric space such that d(p, q), d(r, s) ≤ α while
d(p, r), d(p, s), d(q, r), d(q, s) ≥ β. Assume also that p, q, r, s are embedded into a weighted
tree, T , such that PT (p, q) ∩ PT (r, s) 6= ∅. Then the tree distance dT distort d by at least
β/α.

Proof. Assume that the expansion is γ ≥ 1. Then in the tree, dT (p, q), dT (r, s) ≤ γ · α. In
particular it follows that,∑

e∈P1

w(e) +
∑
e∈P2

w(e) = dT (p, q) + dT (r, s) ≤ 2γ · α (1)

However, as the paths P1 = PT (p, q) and P2 = PT (r, s) intersect, it follows that their union
include the paths P = {PT (p, s), PT (s, q), PT (q, r), PT (r, p)}. More over, every edge in P1∪P2
appears in exactly two of the paths from P. Hence we conclude that,∑
e∈PT (p,s)

w(e)+
∑

e∈PT (s,q)

w(e)+
∑

e∈PT (q,r)

w(e)+
∑

e∈PT (r,p)

w(e) ≤ 2
∑
e∈P1

w(e)+2
∑
e∈P2

w(e) (2)
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Where the last inequality may be strict as the edges in the intersection of P1 and P2 contribute
four times to the right hand side.

Combining Equations (1) and (2), we conclude that for at least one path P ∈ P, the
length of P is at least γ ·α. Assume w.l.o.g that P = P (p, s), then the contraction is at least
ν = d(p,s)

γ·α ≥
β
γ·α which implies that the distortion is at least ν · γ ≥ β/α. C

We return to the proof of the theorem. Let d = dC the metric induced by C. For two subsets
S, T ⊆ C let d(S, T ) = mins∈S,t∈T d(s, t) (in our applications this minimum will always exist).
We fix one point in the cycle v(0) ∈ C as a reference point, this then defines every point by
its distance along the cycle going clockwise. Thus we denote by v(α), 0 ≤ α < 1 the point of
length α form v(0) when going along the cycle. For two points x = v(α), y = v(β) let C[x : y]
be the segment of the cycle on the shortest path between x and y. The mid point of C[x : y]
is the point on the geodesic path between x, y which is of equal distance from x and y (this
is not well defined only if d(x, y) = 1/2, but we will never use this definition in this case).

Fix an online embedding algorithm for n points from C into a tree T , and denote the
resulted metric is dT . The adversary first exposes u1 = v(0), u2 = v( 1

4 ), u3 = v( 1
2 ), u4 = v( 3

4 ).
Let T1 be the tree constructed by the algorithm just after this point. Using fact 4 (with
that order on the points) we may assume w.l.o.g that P (u1, u2) ∩ P (u3, u4) 6= ∅. Note that
d(C[u1 : u2], C[u3 : u4]) ≥ 1/4.

The adversary will work in phases, each time exposing 2 points. The initial phase
(numbered as k = 0 exposing 4 points) results in T0 above. Let T = Tk be the tree that
is constructed by the algorithm at steps k = 1, . . . after exposing 4 + 2k points. The
adversary will always hold two pairs of points that are already exposed x, y ∈ C[u1 : u2],
x′, y′ ∈ C[u3 : u4], maintaining the invariant that: all points in C[x : y] \ {x, y} and in
C[x′ : y′] \ {x′, y′} are not exposed, and PT (x, y) ∩ PT (x′, y′) 6= ∅. It will also be the case
that dC(C[x : y], C[x′ : y′]) ≥ 1/4, while dC(x, y) = dC(x′, y′) = 2−k−2.

For k = 0 the points x = u1, y = u2, x
′ = u3, y

′ = u4 already comply with the invariants
above. Assume that after phase k we already have exposed 4 + 2k and the adversary holds
x, y, x′, y′ as required. Then at phase k+1 the adversary exposes two new vertices: z that is the
mid point in C[x : y] and z1 that is the mid point of C[x′, y′]. Since PT (x, y)∩PT (x′, y′) 6= ∅
then at least one of PT (x, z), PT (z, y) intersects PT (x′, y′). We replace y with z if PT (x, z)
intersects PT (x′, y′), otherwise, we replace x with z. Similarly, we replace either x′ or y′ with
z1, so that the resulting two paths still intersect. It is easy to see that the distances are as
claimed.

Finally, by Claim 5, applied on x, y, x′, y′ (in this order) at the end of any phase k, we
conclude that the tree distance dT distort dC on the four points by at least 2k.

We end this proof by noting that the actual metric that is exposed is (offline) embeddable
into a tree and even into a line with a constant distortion. This can be done by e.g., ’cutting’
C at the point v(7/8) and embedding each point x at v(x) in the resulting interval. J

4 Embedding into the line

Theorem 3 implies that online embedding of general metrics into the line results in a distortion
that in the worst case is at least exponential in the number of points. This is true even for
online embedding of tree metrics into the line (using a similar argument as in the proof of
Theorem 3). Here we show that any metric (V, d) on n points can be online embedded into
the line with distortion that is most exponential (in the number of points exposed so far).
We don’t assume here that n, the number of points or any upper bound on this number is
given in advance.
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I Theorem 6. Let (V, d) be a metric, then V can be online embedded into the line (without
a priori knowing n = |V |), with distortion bounded by O(n6n).

Proof. For every point x that is already embedded let φ(x) be its embedding.
Assume at stage i that xi is exposed and let z be the closet point to xi from the previously

exposed points, with d(xi, z) = d. Let I be the left most interval of length 3−id that is right
of z and is empty of any previously exposed point. We then place xi in the mid point of I.
Note that since there are only i− 1 previously exposed points (including z), then there must
be such empty interval at distance at most (i− 2) · 3−id.

In the following we call z the father of xi in this embedding and denote it as father(xi).
We are going to bound separately the expansion and the contraction.

Let γ(k) denote the bound on the expansion after the kth point is embedded. Bounding
γ(k) is by a similar argument to the tree embedding. Let xk be the last point that is
embedded, let z = father(xk) and let y be any previously exposed point. The triangle
inequality asserts that,

d(y, z) ≤ d(y, xk) + d(xk, z) ≤ 2d(xk, y) (3)

Thus, by the definition of the embedding of xk and the induction hypothesis,

|φ(xk)− φ(y)| ≤ |φ(xk)− φ(z)|+ |φ(z)− φ(y)| ≤
+(k − 1.5) · 3−kd(xk, z) + γ(k − 1)d(z, y) ≤ k3−k · d(xk, y) + γ(k − 1)d(z, y) (4)

where the last inequality is by the fact that d(xk, z) ≤ d(xk, y).
Using equation (3) we get,

|φ(xk)− φ(y)| ≤ (k3−k + 2γ(k − 1)) · d(xk, y). (5)

We get the following recursion on γ(k): γ(k) ≤ k3−k + 2γ(k − 1) which implies that
γ(k) ≤ 3 · 2k.

To bound the contraction let a, b be any two exposed points. By the embedding algorithm
there are two sequences z = y1, y2, . . . , yk = a and z = w1, w2, . . . , w` = b where yi =
father(yi+1), wi = father(wi+1) and {yi}k1 , {wi}`1 are disjoint. A marginal case is when
z = a and one of the sequences is empty. The argument for the marginal case will be
presented at the end of the proof (after the proof of Claim 8).

Let δi = d(yi−1, yi), i = 2, . . . , k and νi = d(wi−1, wi), i = 2, . . . , `. For any point x let
order(x) = ` if x = x` namely, x is the ` exposed point (do not confuse the order(x) with
its location in the sequences of yi’s or wi’s).

Let D = max{d(x, father(x))} where x ranges over all points except z in the two
sequences above, and assume w.l.o.g. that the last exposed point among the two sequences,
xj , for which d(xj , father(xj)) = D is yi (namely, that the maximum is achieved in the
sequence that corresponds to a). Let s = order(yi).

By our algorithm yi = xs is embedded in the middle of an empty interval I of size 3−sD.
We use the following claims.
For j = 1, . . . , k − i let rj = order(yi+j)− s.

B Claim 7. For any j ≥ 1, yi+j is embedded inside I and 0 ≤ φ(yi+s)−φ(yi) ≤ |I|2 ·(1−2−rj ).

Proof. We first describe the situation for the case j = 1. The case for larger j is similar. Let
r1 = order(yi+1) = r. Namely, r − 1 points xs+1, . . . xs+r−1 are exposed after yi and before
yi+1.

SWAT 2020



32:8 Online Embedding of Metrics

Recall that at time i when yi is embedded, I is empty, and yi is placed in the middle of I
splitting I into two empty intervals IL, IR of size |I|/2 each. According to the algorithm yi+1
needs to be embedded in the middle of an interval of size α = 3−(r+s) · δi+1 ≤ 3−r · 3−s ·D ≤
3−r · |I| that is empty at time s+ r. If r = 1, namely if yi+1 is exposed right after yi = xs,
then obviously there is a α-size empty interval right of φ(yi), as IR is empty at this point
and |I|/2 > α. Generally, for r > 1, some of the r − 1 points that are exposed between yi
and yi+1 may occupy parts of I forcing yi+1 to be embedded further to the right.

Each time a point x 6= yi+1 is placed in IR it must be in the middle of an empty interval
splitting the right empty interval of IR into two empty subintervals, hence leaving an empty
interval of at least half the size at the right of IR. Hence after placing at most r − 1 such
points, there will still be an empty interval of size |IR|/2r−1 > α. Hence there is a suitable
empty interval for yi+1 in IR and it follows that φ(yi+1)−φ(yi) ≤ |I|/2− 2−r+1|IR|+α/2 ≤
|I|
2 · (1− 2−r).

In the general case for yi+j the argument is identical except that rj − 1 points might
have been embedded into IR before yi+j . C

B Claim 8. |φ(a)− φ(b)| ≥ 2−(rk+1)|I|.

Proof. Claim 7 asserts that a = yk is embedded inside I to the right of yi and φ(a)−φ(yi) ≤
|I|
2 · (1− 2−rk).

We now consider the place where b is embedded. Let t be the largest so that wt is exposed
before yi. Again, since I is empty when yi is exposed, wt must be embedded to the right or
to the left of I. If wt is embedded to the right of I then b, that is embedded right of wt, is
right of I and hence φ(b)− φ(a) ≥ |I|2 · 2

−rk implying the claim.
On the other hand, if wt is embedded to the left of I, then by a similar calculation

that is done in Claim 7, all points wt+j are embedded at most at distance |I|2 from wt.
(Since they all are exposed after yi and in particular have νt+j < D and order(wt+j) > s)).
Since φ(yi) − φ(wt) ≥ |I|/2 by the assumption that wt is left of I, we conclude that
φ(a)− φ(b) ≥ φ(a)− φ(yi) + φ(yi)− φ(wt) ≥ |I|2 · 2

−rk in this case too.
This completes the proof of Claim 8. C

Now with this lower bound on |φ(a) − φ(b)|, to bound the contraction it is enough to
upper bound d(a, b). Indeed,

d(a, b) ≤
k∑
1
d(yi, yi−1) +

∑̀
1
d(wi, wi−1) ≤ n ·D =⇒

d(a, b)
|φ(a)− φ(b)| ≤

nD

2−(rk+1)|I|
≤ n2rk+1 · 3s ≤ n3n

To complete the proof, consider the case where one of the sequences is empty. Namely w.l.o.g
z = b. If b is exposed before yi then we are at the same situation as in Claim 8, implying the
same lower bound on φ(yi)− φ(b). If z = yi then Claim 7 asserts that a = yk is embedded
in I, and φ(a)− φ(b) ≥

∑k
j=2(φ(yj)− φ(yj−1) ≥

∑k
2 δj · 3−rj/2, where the inequality is by

the fact that for every j, yj is embedded to the right of yj−1 at distance at least 3−rjδj/2.
But this last expression is at least 3−n

2
∑k

2 δj ≥ 3−nd(a, b)/2 proving that in this case the
contraction is bounded by 2 · 3n as well.

This completes the proof of the Theorem. J
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5 Online embedding into `∞ with (1 + ε) distortion

It is well known that any metric on n points can be (offline) embedded isometrically online
into `n−1

∞ . It therefore comes as a surprise that even the metics on 4 points cannot be online
isometrically embedding into `∞ of any finite dimension. This will be proven using a special
class of 4-points metrics that are submetrics of a continuous cycle.

I Theorem 9. There exists µ on four points for which any online embedding into `D∞
incurs a distortion (1 + Ω(1/42D)). Consequently, to ensure a distortion (1 + ε), one needs
Ω(log(1/epsilon)) dimensions.

Proof. The metrics under discussion look as depicted in Figure 1. They are all defined by 4
points on the cycle whose circumference is of size 2. All these metrics contain two antipodal
points a, b as in Figure 1, that are exposed first and with d(a, b) = 1. After a, b are embedded
the next two points c, d are exposed. c, d are also antipodal and are defined by the distance
d(a, c) = ν.

 
a

c
u

u
d

b

Figure 1 The metric µ4. a, b are exposed first and then ν is set (defining c, d).

We view φ as D online non-contacting embeddings into the line Φ = {ψ1, . . . , ψd}, where
ψi : {a, b, c, d} → R, i = 1, . . . , D. The adversary reveals first the antipodal points a, b. It
will then choose ν appropriately, and reveal the corresponding antipodal points c, d.

Let δ = 4−(D+1). Assume that a, b are exposed and w.l.o.g., 0 = ψ(a) ≤ ψ(b) for every
ψ ∈ Φ. Moreover, we may assume that every ψi is not expanding by more than 1 + δ, as
otherwise we are done. Hence by multiplying by 1

1+δ we may assume that every ψ ∈ Φ is
non-expanding.

We partition the interval [0, 1] into d + 1 sets B0 = (1 − 4−D, 1], Bi = (1 − 4i−D, 1 −
4i−D−1], i = 1, . . . , D − 1, and finally BD = [0, 3/4].

After exposing a, b, ψ(b) is determined for every ψ ∈ Φ. This partitions Φ into D + 1
classes B̃0, . . . B̃d by letting ψ ∈ B̃i if ψ(b) ∈ Bi. Hence for some i ∈ [D + 1], B̃i = ∅. Fix
such an i, and set ν = 4i−D/3, which define c and d.

Consider first the case j > i, then for ψ ∈ B̃j , ψ(b) < 1− 4i−D ≤ 1− 3ν.
Since ψ is non-expanding, µ(a, c) = ν implies that ψ(c) ∈ Ic = [−ν, ν]. Similarly,

ψ(d) ∈ Id = [1− ψ(b)− ν, 1− ψ(b) + ν]. But max{|y − x|, y ∈ Id, x ∈ Ic} ≤ 1− ψ(b) + 2ν.
Hence the contraction of µ(c, d) in this case is at least 1

1−ψ(b)+2ν ≥
1

1−4i−D−1 .
On the other hand, for ψ ∈ B̃j and j < i, ψ(b) ≥ 1− 4i−1−D. But then since ψ is non-

expanding, it follows that ψ(d) ≤ 1− ν (on account of µ(a, d)), and ψ(c) ≥ ψ(b)− (1− ν) =
ν− (1−ψ(b)). It follows that the ψ(d)−ψ(c) ≤ 1− 2ν + (1−ψ(b)) ≤ 1− 2·4i−D

3 + 4i−1−D ≤
1− 4i−D−1. Hence each such ψ contracts µ(c, d) by at least 1

1−4i−D−1 .
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We conclude that for the above setting of ν, every ψ contracts µ(c, d) by at least 1
1−4−(D+1) .

Recall that we have started the proof by multiplying Φ by 1
1+δ . Hence the distortion of Φ is

at least 1
(1+δ)(1−4−(D+1)) ≥

1
1−4−2(D+1) . J

Let us note, without providing more details here, that for metrics µ as above the about
lower bound is tight and cannot be strengthened. We conjecture that every metric on 4
points can be online embedded in `D∞ with distortion 1 + exp(−D).

Next we show a result complementary to Theorem 9. That is – any metric can be
embedded into `∞ with distortion arbitrary close to 1, using large enough dimension.

I Theorem 10. Let (V, d) be any metric space, ε > 0 an arbitrary small constant, and let
n = |V | (or an upper bound on |V |) be known in advance. Then using ( 2n

ln(1+ε) )2n coordinates
one can embed d online in a 1-Lipschitz embedding with contraction bounded by (1 + ε).

Proof. The proof idea is to approximate the universal embedding of d into `∞∞.
Let V ′ ⊆ V be points from V and z ∈ V ′ one fixed point. Let φUz (U here stands for

universal) be the following embedding of V ′ into the line. φUz (z) = 0 and for every x ∈ V ′,
φUz (x) = d(z, x).

The following claim is standard and immediate form the defintion.

B Claim 11. φUz is a 1-Lipschitz embedding of d and for every x ∈ V ′ it does not distort d(z, x).

It follows then that if for every z ∈ V there is a coordinate on which φUz is realized, then
the embedding is an isometry of d in `∞. Hence, `∞ of dimension n− 1 is universal for any
metric space on n points.

Here we will online approximate each of these coordinates by preparing in advance a
coordinate (in fact a collection of coordinates) for each possible new z. Suppose that the
points a1, . . . , ak are exposed (not necessarily in that order), and that for a new point z,
there is a line (coordinate) in which a1, . . . , ak are embedded in increasing order that is
consistent with the distance order to z. We show below that under some restrictions on the
embedding of these first k points, there is an augmentation of this embedding to any possible
consistent z.

Since there are only finite number of ordering of the first k points with respect to their
distance from z, we will prepare in advance a line (in fact, a set of lines) for every possible
ordering. This will allows us to embed every possible new coming z.

We start with the following Claim asserting that a consistent ordering on the line can be
augmented to a new point, under some suitable restriction.

B Claim 12. Let k < n and {a1, . . . , ak} ⊂ V a set of arbitrary points. Let δ > 0 be a
small constant and 1 ≤ `i ≤ n

δ , i = 2, . . . k, a sequence of integers. Let φ̃ a fixed 1-Lipschitz
embedding of a1, . . . , ak on the line with φ̃(ai+1) = φ̃(ai)+ li+1−1

n ·δd(ai, ai+1), i = 1, . . . , k−1.
Then for any z ∈ V \ {a1, . . . , ak} such that
1. d(z, ai) ≤ d(z, ai+1), i = 1, . . . , k − 1.
2. For every i = 1, . . . , k − 1,

(`i+1 − 1)δ
n

· d(ai+1, ai) < d(z, ai+1)− d(z, ai) ≤
`i+1δ

n
· d(ai+1, ai)

The augmentation of φ̃ with φ̃(z) = φ̃(a1)− d(z, a1) is 1-Lipschitz, contracting the distances
d(z, ai), i = 1, . . . , k by at most e2δ.

We call such φ̃ “additive shifted approximation” of φUz .
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Proof. We will show that for any possible z for which the premises of the Claim hold, the
augmented embedding φ̃ above is an approximation of φUz .

Fix a1, . . . , ak and let φ̃ be the augmented embedding for an arbitrary z for which the
assumptions of the claim hold. Let ci = e2δi/n. We prove by induction on i = 1, . . . , k that

cid(z, ai) ≤ d̃(z, ai) = φ̃(ai)− φ̃(z) ≤ d(z, ai). (6)

Which will assert that the embedding is 1-Lipschitz and with contraction of d(z, ak) which is
at most ck.

Indeed for i = 1, d̃(z, a1) = d(z, a1).
Assume that Equation (6) is already proved for i and let us prove it for i+ 1.
By definition, d̃(z, ai+1) = d̃(z, ai)+ (li+1−1)δ

n ·d(ai, ai+1) ≤ d(z, ai)+d(z, ai+1)−d(z, ai) ≤
d(z, ai+1), where the inequality follows from the induction hypothesis that d̃(z, ai) ≤ d(z, ai)
and the 2nd condition in the claim. This establish the fact that the mapping is non-expanding.

The contraction ci+1 is bounded by (again using condition 2 of the claim)

d(z, ai+1)
d̃(z, ai+1)

≤
d(z, ai) + `i+1 · δn · d(ai+1, ai)

d̃(z, ai) + (`i+1 − 1) · δn · d(ai+1, ai)
(7)

Next we note that by assumption d(z, ai+1) − d(z, ai) ≤ `i+1 · δn · d(ai, ai+1), while by
the triangle inequality d(ai, ai+1) ≤ d(z, ai+1) + d(z, ai). Combining these two conditions
implies that,

d(z, ai) ≥
1
2 · (1− `i+1 ·

δ

n
)d(ai, ai+1) (8)

Plugging this in Equation (7), using that by induction d̃(z, ai) ≥ d(z, ai)/ci, we get,

ci+1 ≤ ci ·
d(z, ai) + `i+1 · δn · d(ai, ai+1)

d(z, ai) + ci · (`i+1 − 1) δn · d(ai, ai+1)

≤ ci ·
d(z, ai) + `i+1 · δn · d(ai, ai+1)

d(z, ai) + (`i+1 − 1) δn · d(ai, ai+1)
≤

ci · (1 +
δ
n · d(ai.ai+1)

d(z, ai) + (`i+1 − 1) δn · d(ai, ai+1)
)

Using again equation (8) for d(z, ai) in the denominator we get,

ci+1 ≤ ci · (1 +
2δ
n

1 + (`i+1 − 2) δn
)

The last expression is the largest when `i+1 = 1 for which we get ci+1 ≤ ci · (1 + 2 δn ) and the
claim follows. C

To complete the proof, we will show that when exposing the k+ 1 point z, having already
embedded the first k points in a 1-Lipschitz embedding, there is a coordinate for which the
points are placed along the line according to non-decreasing order of the distances from z,
and with pairwise distances φ̃(ai+1)− φ̃(ai) that are approximated as in the second item of
the Claim.

Indeed fix ε > 0 and let δ < 1
2 ln(1+ε), namely, such that e2δ < 1+ε. For every i = 2, . . . , n

(note that n needs to be known in advance), we will make sure that after exposing the kth
point, for any permutation π ∈ Sk, and any setting of (s2, . . . , sk) ∈ {0, 1, . . . bnδ c}

k we have
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at least one coordinate, namely a line and a 1-Lipschitz embedding ψ̃ of ai, i = 1, . . . , k
such that the points appear in order as specified by the permutation π, and in which
ψ(aπ(i+1))− ψ(aπ(i)) = si+1 · δnd(aπ(i+1), aπ(i)). Note, that we assume inductively that for
all coordinates (that is, lines) these embedding are required to be 1-Lipschitz.

Having such situation, once z is exposed, assume that a1, . . . , ak is a re-enumeration of
the points by their distance to z, and let si, i = 2, . . . , k be such that (`i+1−1)δ

n · d(ai+1, ai) <
d(z, ai+1) − d(z, ai) ≤ `i+1δ

n · d(ai+1, ai). By the triangle inequality, such sequence si, i =
2, . . . , k exists, and hence by assumption there is a line and an embedding of a1, . . . , ak for
which the conditions of Claim 12 hold with respect to z. Then Claim 12 asserts that z can
be placed in that line and the corresponding augmented embedding that is a “online” shifted
additive approximation of φUz is 1-Lipschitz, and with bounded contraction as needed.

For every other line we only need to place z so that it will remain 1-Lipschitz. Indeed
since the embedding of a1, . . . , ak is 1-Lipschitz on the line, it is folklore that z can be placed
too, so to result in a 1-Lipschitz embedding (e.g., by using the Helly property for the line).

One last thing to observe, is that in order to take care for future points, we also need to
make sure that any relevant order of ν ∈ Sk+1, namely including z and any set of relevant
integers s2, . . . , sk+1 is also realized. To do this, for any possible such set of integers, and
any permutation π ∈ Sk, we prepare enough identical copies of the same embedding of
{a1, . . . , ak+1} \ {z} so to be able to place place z in any of the corresponding k+ 1 intervals,
and in any of the possible n

δ placers in the interval, so to cover all possible sequences
s2, . . . , sk+1. Thus to estimate the required dimension, let f(k) denote the number of lines
needed for step k, in which we assume that every order and every sequence of numbers
s1, . . . , sk is realized. By the previous discussion we need f(k + 1) = f(k) · (k + 1) · nδ lines
for step k + 1. Since f(1) = 1, the recurrence implies that f(n) = n! · (nδ )n−1. We conclude
that the dimension needed for the online embedding above is at most f(n) < (nδ )2n in order
to embed any n-point metric. J

6 Isometric online embeddings

We conclude with a number of remarks on isometric embeddings. First, observe that the tree
metrics dT (like the Euclidean metrics) are essentially rigid, i.e., there exists an essentially
unique (minimal) weighted tree T ∗ with Steiner points realizing dT as its submetric. Moreover,
this T ∗ can be constructed in an online manner, regardless of the order of exposure.

I Theorem 13. Every tree metric dT can be isometrically embedded into a metric of a
weighted tree T ∗ (using Steiner points). The knowledge of n is not required.

Skipping the details, the embedding at each step, given a new point x, introduces a new
Steiner point yx into the tree constructed so far, and attaches x to yx by a new edge of
weight wx. Interestingly, the use of Steiner points is essential:

I Lemma 14. There is a family of tree metrics that suffer an exponential distortion in
every online embedding into a tree that does not use Steiner points, even when n is known in
advance.

The proof of Lemma 14 is based on the same ideas as in the proof of Theorem 3. We omit
further details from this draft.

Next, we claim that tree metrics isometrically embed online into `1.

I Theorem 15. Every tree metric on n points is isometrically online embeddable into `n−1
1 .
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We do not present a proof of this theorem here. The general idea is to follow the isometric
embedding into a weighted tree T ∗ as outlined above. The invariant property of the embedding
is that the adjacent points in the tree will differ by a simple coordinate. Thus, adding a
new Steiner point will require no increase in dimension. Attaching a new point x to the
corresponding Steiner point yx involves taking the vector representing yx, and adding to it a
new coordinate with value wx. The vectors constructed so far are assume to have value 0 on
this coordinate.

Our last remark is that if a metric d is online-embeddable into `1 of an a priori known
dimension D(n), then d can also be online embedded into `∞ of dimension 2D(n)−1. This is
so, since the embeddings: x = (x1, . . . , xD)→ (〈x, ε1〉, . . . , 〈x, ε2D 〉), where εi range over all
possible choices of D-dimensional ±1 vectors, is an isometry from `D1 into `2D∞ , and, moreover,
it is online constructible. 2D can be improved to 2D−1 by fixing the first sign to be 1. Thus,
e.g.,

I Theorem 16. Every tree metric on n points is isometrically online embeddable into `2n−2

∞ .
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Abstract
We study a Multiple Depot Heterogeneous Traveling Salesman Problem (MDHTSP) where the
cost of the traveling between any two targets depends on the type of the vehicle. The travel costs
are assumed to be symmetric, satisfy the triangle inequality, and are monotonic, i.e., the travel
costs between any two targets monotonically increases with the index of the vehicles. Exploiting
the monotonic structure of the travel costs, we present a 2-approximation algorithm based on the
primal-dual method.
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1 Introduction

We consider a generalization of a multiple Traveling Salesman Problem (TSP) involving
heterogeneous vehicles, where the cost of traveling between any two locations depends on
the type of the vehicle. Given a set of targets, the initial location (depot) and metric travel
costs corresponding to each vehicle, the objective is to find a tour for each vehicle such that
each target is visited exactly once by some vehicle and the sum of the travel costs of all
the vehicles is minimum. This problem is referred to as the Multiple Depot Heterogeneous
Traveling Salesman Problem (MDHTSP) and is widely studied in the unmanned vehicle
community [4, 5, 10,11,13–16,20,22].

MDHTSP is a generalization of the classic TSP and is NP-Hard. Therefore, we are
interested in developing approximation algorithms for the MDHTSP. Henceforth, we assume
the travel costs for each vehicle are symmetric and satisfy the triangle inequality unless
otherwise mentioned. For covering all targets with multiple TSPs when all the vehicles
are identical, there are several constant-factor approximation algorithms in the literature
[6, 12,17, 21]. Generally, most of these algorithms follow a three-step procedure: In the first
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step, the tour requirements are relaxed to find an optimal constrained forest. In the second
step, the edges in the constrained forest are doubled, or in special cases, a matching problem
is solved (à la Christofides) for a subset of vertices and the corresponding edges are added to
the forest to obtain an Eulerian graph for each vehicle. In the final step, the Eulerian graph
for each vehicle is used to obtain an Eulerian walk and the repeated visits are shortcut to
find a tour. Similar procedures are also used to find approximation algorithms for multiple
Hamiltonian Path Problems in [3, 18].

No constant factor approximation algorithms are known for the MDHTSP. In [22], a
3n
2 -approximation algorithm is presented for the MDHTSP where n denotes the number of
vehicles (not the number of nodes in the metric). For a related variant of MDHTSP where
all the vehicles start from the same depot and the objective is to minimize the makespan
(maximum travel cost of any vehicle), a constant-factor approximation algorithm is presented
in [8]. For the same makespan objective, when the vehicles are functionally heterogeneous1,
a (2dln(n)e+ 1)-approximation algorithm has been presented recently in [23].

Monotonic MDHTSP. We are interested in the special case of the MDHTSP in which some
restriction is placed on the travel costs of the vehicles. Intuitively, we assume the vehicles are
ordered and the costs are monotonic. Formally, let D = {d1, d2, · · · , dn} denote the n depots
(initial locations) of the vehicles. Let T represent the set of targets. For each i ∈ {1, · · · , n},
let Vi := T ∪ {di} denote the set of vertices corresponding to the ith vehicle, and let Ei
denote the set of all the edges that join any two distinct vertices in Vi. For i ∈ {1, · · · , n},
let the cost of traversing an edge e ∈ Ei for the ith vehicle be denoted by costie. We assume
the travel costs for each vehicle satisfy the triangle inequality and are monotonic i.e., for any
two vehicles i < j, costie ≤ costje. However, we do not assume that they are proportional (i.e.
costie = ρ · costje). A tour for vehicle i is given by the sequence (di, ui1, · · · , uili , di) where
uij ∈ T for j = 1, · · · , li and li denotes the number of targets visited by vehicle i. The
travel cost of vehicle i is equal to costi(di,ui1) +

∑li−1
j=1 cost

i
(uij ,ui(j+1)) + costi(uili

,di) if li ≥ 1,
and is equal to 0 otherwise. The objective is to find a tour for each vehicle such that each
target is visited exactly once by some vehicle and the sum of travel costs of all the vehicles is
minimum.

Even though the travel costs are monotonic, the partitioning of the targets amongst the
vehicles is still non-trivial because the vehicles start their tours from different initial locations
or depots. This is an important special case that naturally arises in the following practical
applications: (1) If the vehicles are modelled as ground robots [19] traveling with the same
speed but with different turning radius constraints and ri denotes the minimum turning
radius of vehicle i, then the vehicles can be ordered such that r1 ≤ r2 · · · ≤ rn. In this case,
the travel costs (the shortest distances required to travel between targets subject to the
turning radius constraints) are monotonic. (2) If the vehicles travel at different speeds and
the travel cost for any vehicle between two targets is defined as the ratio of the Euclidean
distance between the targets and the speed of the vehicle, then the travel costs satisfy the
case of proportional costs, which are also monotonic. (3) If each vehicle has a fuel capacity
and the vehicles are allowed to refuel at gas stations, then the cost of traveling between any
two targets subject to the refueling constraints also increases as the fuel capacity of a vehicle
decreases [9]. Here, again, the travel costs are monotonic.

1 The travel costs for the vehicles may be the same but there are compatibility constraints between
vehicles and targets.
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When n = 2 and the travel costs are monotonic, a 2-approximation algorithm was
presented for MDHTSP in [2] extending the primal-dual algorithm for the prize collecting
TSP [7] to the two vehicle case. Similar to the prize-collecting TSP in which any target not
visited by a vehicle must pay a penalty, for the two vehicle case, any target not visited by
the first vehicle is on the tour of the second vehicle that is modeled by some form of penalty.

For the multiple vehicle case we address, it is not difficult to design a primal-dual algorithm
to find a feasible solution where each target is connected to some depot. However, the key
to proving a good approximation ratio is in the pruning procedure of such an algorithm so
that the edges retained after the pruning procedure can be paid for by an appropriate dual
solution. A closely related problem where a similar pruning procedure arises is the Prize
Collecting Steiner Tree problem (PCST)2. In the primal-dual algorithm for the PCST [7], the
greedy growth of the duals must be frozen due to the constraints represented by the penalties
on the nodes, particularly when the total sum of duals associated with any subset of vertices
reaches the total sum of penalties for this set. How such frozen components are handled in
terms of whether they are connected to the final solution tree or not is the crucial step of
the pruning procedure in [7]. This is accomplished by a labeling procedure which was also
used in [2] for the two vehicle case. However, its direct generalization to the many vehicles
case we address is much more involved. In this paper, we provide an alternate simpler view
of the pruning procedure for the PCST and re-purpose it for our multi-vehicle extension.
This is the main technical novelty in our work.

Contributions. We present a primal-dual 2-approximation algorithm for the n vehicle case
of monotonic MDHTSP. Like the prior work [2], we use a primal-dual approach, but avoid
the use of the prize-collecting TSP as explained above. The heart of our result is a 2-
approximation for the Heterogeneous Spanning Forest (HSF) problem of finding a minimum
cost collection of n trees from the depots covering all the targets among the different graphs
corresponding to the vehicles3. The following is a summary of our key technical steps.
1. While multiple LP relaxations are possible for the MDHTSP, we present an LP relaxation

and a dual that allows the primal-dual method to construct a HSF with a special nesting
structure among its components (Lemma 3).

2. This structure is then used to prove that pruning appropriate edges from the output of
the main loop of the primal-dual method will result in a feasible HSF (Lemma 4 and
Theorem 5).

3. Finally, we show that the value of the dual can be decomposed into the sum of the dual
values corresponding to each of the vehicles (Lemma 8). This allows us to decompose the
proof of the bound on the cost of the edges in each tree in terms of its corresponding
dual value.

Putting together the above components, we show that the cost of the HSF constructed
using the proposed algorithm is at most the optimal LP relaxation cost of the MDHTSP.
Short-cutting the Euler tours on the trees in this HSF provides a 2-approximation algorithm
for the MDHTSP for the n-vehicle case (Theorem 7).

2 Given a graph, a depot node, a penalty for each node and a cost of each edge in the graph, the objective
of the PCST is to find a tree containing the depot such that the sum of the cost of all the edges present
in the tree and the penalty of all the nodes not present in the tree is minimum.

3 This result does not require the different costs to be metric, but only that they are monotonic across
the vehicles. The metric condition is only used in converting the forests to tours.
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2 LP Relaxation for MDHTSP and its Dual

We use two sets of integer variables that will be later relaxed to formulate an LP relaxation
for the MDHTSP. The first set of variables denoted by xie determines whether edge e ∈ Ei is
present in the tour of vehicle i ∈ {1, · · · , n}. The second set of variables ziU is defined for
i = 1, · · · , n− 1 and any U ⊆ T . Specifically, ziU is equal to 1 if U is the subset of all the
targets visited by vehicles i+ 1, · · · , n; otherwise, ziU is equal to 0. Refer to Fig. 1 for an
illustration of these variables.

Note that
∑
U⊆T z

i
U = 1 ∀i ∈ {1, · · · , n − 1}, i.e., every vehicle of index i up to n − 1

picks a single subset of targets that will be covered by vehicles i+ 1 or later.
The following proposition is a simple consequence of the fact that the z-variables can be

used to identify subsets of targets that need to be covered by vehicle i. For any S ⊆ T and
i = 1, · · · , n, let δi(S) := {(u, v) : u ∈ S, v ∈ Vi \ S}.

I Proposition 1. Any feasible solution to the MDHTSP satisfies the following constraints:∑
e∈δi(S)

xie ≥ 2
∑

U :S⊆U⊆T
(zi−1
U − ziU ) ∀ S ⊆ T, |S| ≥ 1, i ∈ {1, · · · , n};

z0
T = 1; z0

U = 0 ∀U 6= T ; znU = 0 ∀U ⊆ T .

Proof. Both
∑
U :S⊆U⊆T z

i−1
U and

∑
U :S⊆U⊆T z

i
U can either be 0 or 1. The constraint is

trivially satisfied except for the case when
∑
U :S⊆U⊆T z

i−1
U = 1 and

∑
U :S⊆U⊆T z

i
U = 0. But∑

U :S⊆U⊆T z
i−1
U = 1 can occur only if all the targets in S are visited by vehicles in {i, · · · , n}.

Also,
∑
U :S⊆U⊆T z

i
U = 0 can occur only if there is at least one target in S visited by a vehicle

in {1, · · · , i}. Therefore, if
∑
U :S⊆U⊆T z

i−1
U = 1 and

∑
U :S⊆U⊆T z

i
U = 0, there is at least one

target in S that must be visited by vehicle i. This is implied by the constraint as it reduces
to

∑
e∈δi(S) x

i
e ≥ 2 which is true. J

The LP relaxation of the MDHTSP that we work with contains only the constraints from
the above proposition.

Costlp = min
n∑
i=1

∑
e∈Ei

costie x
i
e (1)

∑
e∈δi(S)

xie ≥ 2
∑

U :S⊆U⊆T
(zi−1
U − ziU ) ∀ S ⊆ T, i = 1, · · · , n, (2)

z0
T = 1; z0

U = 0 ∀U 6= T ; znU = 0 ∀U ⊆ T (3)
xie ≥ 0 ∀ e ∈ Ei, i = 1, · · · , n, (4)
ziU ≥ 0 ∀ U ⊆ T, i = 1, · · · , n− 1. (5)

The dual of the above linear program is as follows:

max 2
∑
S⊆T

Y1(S) (6)

∑
S:e∈δi(S)

Yi(S) ≤ costie ∀ e ∈ Ei, ∀i = 1, · · · , n, (7)

∑
S:S⊆U

Yi(S) ≤
∑

S:S⊆U
Yi+1(S) ∀ U ⊆ T, ∀i = 1, · · · , n− 1, (8)

Yi(S) ≥ 0 ∀ S ⊆ T, ∀ i = 1, · · · , n. (9)
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d1

d2

d3

d4

U1

U2

U3

Target
Depot

z1U1
= z2U2

= z3U3
= 1

Figure 1 An illustration of a feasible solution involving four vehicles. In this example, U1 ⊇
U2 ⊇ U3.

Other than the usual packing constraints in (7), the more interesting constraints (8) restrict
the dual value of the subsets of any set U in a cheaper cost level to be at most that
accumulated in any higher cost level.

3 Primal-Dual Algorithm

We define some terms before presenting the main steps of the primal-dual algorithm. The
algorithm maintains a forest of edges defined over the targets and the respective depot for
each vehicle separately, by using the known primal-dual moat-growing procedure separately
and simultaneously in each of the graphs (Vi, Ei) [1, 7].

Let Fi(t) be the forest obtained in (Vi, Ei) for the vehicle i ∈ {1, · · · , n} at the end
of iteration t of the main loop. For any two distinct vehicles i, j ∈ {1, · · · , n}, i < j and
any iteration t, consider (connected) components Ci in forest Fi(t) and Cj in forest Fj(t).
Because of the monotonicity of costs across the indices, typically the edges between targets in
the lower level i will become packed and hence chosen in the forest before those in the higher
cost level j. Ci is considered as an ancestor of Cj , or Cj is a descendant of Ci if Ci ⊇ Cj .
Note that Cj cannot be a descendant of Ci if it contains a depot. Note carefully that we
have the subset inclusion only among the targets in the components in different levels but
not among the set of tight edges connecting them.

A component can either be active, inactive or frozen. A component is active at the start
of an iteration if its dual variable will be allowed to increase during the iteration without
violating any of the constraints in the dual problem. A component is inactive if it either
contains a depot or if any of its ancestor contains a depot. A component is frozen if it
stopped growing due to the constraint in (8), i.e., each descendant of this component is not
active as it contains targets connected to some higher level depots. If a component is inactive
or frozen at the start of an iteration, its dual value will not change during the iteration.
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Initialization. Initially, each forest consists of singleton components which is either a depot
or a target. The singleton components with only targets are active; any component with
a depot is inactive. The dual variables corresponding to all the active components are
initialized to zero.

Main loop. In each iteration of the primal-dual algorithm, the dual variables of all active
components in all the forests (in all graphs (Vi, Ei)) are increased simultaneously as much
as possible by the same amount until at least one of the constraints in the dual problem
becomes tight. If multiple constraints in both (7) and (8) become tight simultaneously during
iteration t, only one constraint either in (7) or (8) is chosen and processed based on the
following procedure.

If constraints in (7) become tight, then a tight constraint corresponding to the vehicle
with the least vehicle number (say i) is chosen. The edge corresponding to the chosen
constraint is added to the forest corresponding to vehicle i merging two components at
its ends (say C1 and C2). If both C1 and C2 do not contain a depot, then the merged
component is active. If one of the components contains a depot (say di ∈ C2), then the
merged component and all its descendants (specifically the descendants of C1) become
inactive.
If a constraint in (8) becomes tight (i.e., it risks being violated if the current dual variables
all continue to grow) for some vehicle i, then the corresponding component is deactivated
and becomes frozen.

The main loop of the algorithm stops when each component in all the forests is either inactive
or frozen. We will detail some properties of the components before describing the pruning
step of the algorithm in Section 3.1.

Remarks.
1. If a component C1 merges with a component C2 that contains a depot, the merged

component and its descendants are deactivated and will never become active again in the
main loop.

2. It is straightforward to compute the maximum possible increase (41) in the dual variables
that do not violate the constraints in (7) using standard techniques involving internal
variables for each target in polynomial time. Since we do not grow dual variables more
than this amount, it is straightforward to verify that the dual solution we construct obeys
the constraints in (7). Specifically, we can use internal variables pi(u) defined for each
target u and vehicle i in the following way: All these internal variables are first set to
zero during the initialization. Suppose, at the start of an iteration, C1 and C2 are two
components corresponding to vehicle i, and u ∈ C1 and v ∈ C2. Assume at least one of
these components is active. Let active(C) denote if a component C is active or not. For
j = 1, 2, active(Cj) = 1 if Cj is active and is equal to 0 otherwise. Then, the maximum
amount by which the dual variable corresponding to C1 or C2 can be increased before
violating the constraint corresponding to edge e = (u, v) is given by Costie−pi(u)−pi(v)

active(C1)+active(C2) .
This amount can be computed for all such candidate edges and the least of these amounts
is equal to 41. During an iteration, if the primal-dual algorithm decides to increase the
dual variable of each active component by 4, then pi(u) for each target u and vehicle i
will be set to pi(u) +4 if the component containing u is active; otherwise pi(u) doesn’t
change.

3. Similarly, we can compute the maximum possible increase (42) in the dual variables that
do not violate the constraints in (8), using internal variables defined for each component
again in polynomial time. Specifically, we use two internal variables Ȳi(C) and Boundi(C)
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for each component C ∈ Fi(t), i = 1, · · · , n−1 defined4 as follows: Ȳi(C) :=
∑
S:S⊆C Yi(C)

and Boundi(C) :=
∑
S:S⊆C Yi+1(C). All the internal variables are first set to zero during

the initialization (t = 0). For any i = 1, · · · , n− 1, suppose at the end of iteration t, an
active component C ∈ Fi(t) has mC active descendants in Fi+1(t). Then, during iteration
t+1, the constraint corresponding to C in (8) can become tight only ifmC = 0. In the case
mC = 0, the maximum amount by which the dual variable of C can be increased without
violating its constraint is given by Boundi(C)− Ȳi(C). This amount can be computed for
each of components in {C : C is active and mC = 0, C ∈ Fi(t+ 1), i = 1, · · · , n− 1} and
the least of these amounts is equal to 42. In addition, if the primal-dual algorithm decides
to increase the dual variable of each active component by 4 during iteration t+ 1, before
any merger occurs, for all i = 1, · · · , n−1, for all active C ∈ Fi(t), Ȳi(C)← Ȳi(C)+4 and
Boundi(C)← Boundi(C) +mC4; in addition, if two components C1, C2 ∈ Fi(t) merge,
Ȳi(C1

⋃
C2)← Ȳi(C1) + Ȳi(C2) and Boundi(C1

⋃
C2)← Boundi(C1) +Boundi(C2).

Observations on the Main Loop. We review a few facts that follow from the running of
the main loop. Consider any i ∈ {1, · · · , n} and a vertex u ∈ T . Let Ci(t, u) denote the
component containing u in the forest corresponding to vehicle i at the start of iteration t of
the main loop. Let activei(t, u) be an indicator denoting if Ci(t, u) is active or not. That is,
activei(t, u) = 1 if Ci(t, u) is active and activei(t, u) = 0 otherwise.

I Lemma 2. The main loop of the primal-dual algorithm terminates in 2n(|T |+1) iterations.

Proof. At the start of the main loop, the number of components in all the forests is n(|T |+1)
and the number of active components in all the forests is n|T |. During each iteration of the
main loop, the sum of the number of components and the number of active components in all
the forests decreases by at least 1. Therefore, the main loop will require at most 2n|T |+ n

iterations. J

Note that components in smaller index vehicles typically merge before their corresponding
analogues in the larger indices since the distances are shorter in the smaller index metric.
Hence, in addition to the laminar structure on the target nodes among these components
for a fixed vehicle, there is an inclusion relation among these components when viewing
them across the vehicle indices (after we ignore the depots that are present only in their
corresponding graphs). The following lemma shows that at any time t′ in the main loop of
the algorithm, for j > i, the set of connected components for vehicle index j are contained in
those for vehicle index i. Let the main loop of the primal-dual procedure terminate after tf
iterations. Also, let 4t denote the amount by which the dual value of each active component
is increased during iteration t.

I Lemma 3. In any iteration t′ = 1, · · · , tf , for any vehicles i, j ∈ {1, · · · , n}, i < j

and any target u ∈ T , the following relations hold true: activei(t′, u) ≥ activej(t′, u) and
Ci(t′, u) ⊇ Cj(t′, u) if dj /∈ Cj(t′, u).

Proof. We prove this lemma by induction on t′. For t′ = 1, the lemma is trivially satisfied.
Assume the lemma is true for iterations t′ = 1, · · · , t for some t < tf .

Suppose that in iteration t, the constraint in (7) becomes tight for some edge (u, v)
corresponding to vehicle i . There are two cases.

4 In the special case when C only consists of di, we define Boundi(C) = 0.
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The merged component does not contain di: In this case, the merged component will be
active at the end of the iteration and will be an ancestor to the descendants of Ci(t, u)
and Ci(t, v). In addition, if i ≥ 2, Ci−1(t, u) must be the same component as Ci−1(t, v).
If this is not true, for edge e = (u, v),

costi−1
e −

t−1∑
t′=1

(activei−1(t′, u) + activei−1(t′, v))4t′

≤ costie −
t−1∑
t′=1

(activei(t′, u) + activei(t′, v))4t′ . (10)

Therefore, during iteration t, the algorithm would have added (u, v) to the forest corre-
sponding to vehicle i− 1 due to our rule in processing the vehicle with the least index
in the main loop, which is a contradiction. One can now verify that for any target u,
activei(t+ 1, u) ≥ activej(t+ 1, u) and Ci(t+ 1, u) ⊇ Cj(t+ 1, u) if dj /∈ Cj(t+ 1, u).
Merged component contains di: If di ∈ Ci(t, u), then the merged component and all the
descendants of the merged component also become inactive. Again, one can verify the
lemma is true for iteration t+ 1.

Suppose a constraint in (8) becomes tight for some component C. If C is frozen, then C
cannot have any descendants that are active. Again, it is easy to check that the lemma is
true for iteration t+ 1. J

I Lemma 4. Consider a frozen component C corresponding to vehicle i ∈ {1, · · · , n− 1}
at the start of iteration t. Consider any target u ∈ C. Then, either Ci+1(t, u) is frozen and
Ci+1(t, u) ⊆ C or Ci+1(t, u) contains di+1 and Ci+1(t, u) \ {di+1} ⊆ C.

Proof. If di+1 /∈ Ci+1(t, u), using Lemma 3, Ci+1(t, u) ⊆ Ci(t, u) = C; also, since Ci+1(t, u)
is not active and cannot5 have an ancestor that is connected to a depot, Ci+1(t, u) is frozen. If
di+1 ∈ Ci+1(t, u), then any target v ∈ Ci+1(t, u)\{di+1} must also belong to C. If this is not
the case, there is an edge joining targets w and v in component Ci+1(t, u) such that w ∈ C
and v /∈ C. From Lemma 3, using a similar argument as in (10), this is not possible. J

3.1 Pruning
For i = 1, · · · , n, the pruning phase of the primal-dual procedure selects a subgraph F̄i
of Fi(tf ) such that each target is connected to exactly one of the depots. We need a few
definitions before describing the pruning procedure. The degree of a subgraph C of forest
F is defined as |{(u, v) : u ∈ C, v /∈ C, (u, v) ∈ F}|. A subgraph C of Fi(tf ) is referred as
a frozen subgraph if C is a component that is frozen during some iteration t ≤ tf . A
subgraph C of Fi(tf ) is referred to as a pendent-frozen subgraph if C is a frozen subgraph
and its degree is equal to 1 (Ref to Fig. 2). A maximal pendent-frozen subgraph is a
pendent-frozen subgraph C ∈ Fi(t) such that there is no other pendent-frozen subgraph
C ′ ∈ Fi(t) with C ′ ⊃ C. Given vehicle i, iteration t of the main loop and a component C
spanning a subset of targets, let FCi (t) be a subgraph of Fi(t) induced by di and the targets
in C. It follows from this definition that if C was frozen during iteration t of the main loop
for vehicle i, then for all j = i, i+ 1, · · · , n, FCj (t) = FCj (tf ).

The pruning procedure is implemented in n iterations. Let i := 1 at the start of the
pruning procedure and let G1 = F1(tf ).

5 If Ci+1(t, u) has an ancestor that is connected to a depot, then C also has an ancestor that is connected
to a depot which makes C inactive and this is not possible.
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Figure 2 An illustration of forest Gi corresponding to vehicle i. Each shaded region corresponds
to a frozen subgraph.

1. Remove all the frozen subgraphs that are components (not containing di) from Gi.
Furthermore, in the tree containing di in Gi, remove all the maximal pendent-frozen
subgraphs. The resultant pruned tree is F̄i (Refer to Figs. 2, 3).

2. If i = n, stop. Else, let Gi+1 be the union of all the subgraphs FCi+1(tC) obtained for
every frozen subgraph C frozen at time tC and discarded from Gi in the previous step.
Set i = i+ 1 and go to step 1.

Intuitively, frozen components contain targets connected to depots in higher index graphs
and hence the pruning step discards them for processing in an appropriate (later) iteration.
Similarly, maximal pendent-frozen subgraphs must be pruned so as to ensure that no inactive
component in this index contributes degree one in the standard degree-based inductive
argument for the 2-approximation ratio in the primal-dual method [7].

3.2 Feasibility
We are ready to prove the following main theorem.

I Theorem 5. Each target in T is connected to exactly one of the depots in {F̄1, · · · , F̄k},
i.e, {F̄1, · · · , F̄k} is a feasible Heterogeneous Spanning Forest (HSF).

Proof. We will prove the Theorem by induction on the stages of the pruning procedure.

I Lemma 6. Consider any iteration k of the pruning procedure. Let the subset of targets
connected to di in F̄i be denoted as Ti. Then, each target in

⋃k
i=1 Ti is connected to exactly

one of the depots in {F̄1, · · · , F̄k} and the remaining targets are contained in the frozen
subgraphs discarded in Gk.

Proof. Clearly the lemma is true for k = 1. Assume that the lemma is true for k = k′ − 1.
We will now show that the lemma is true for k = k′ also. Applying Lemma 4 to each
discarded frozen subgraph in Gk′−1, all the targets in T \

⋃k′−1
i=1 Ti are either present in the
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Figure 3 Output forest F̄i after removing the maximal pendent-frozen subgraphs and frozen
subgraphs that are components from Gi.

frozen components of Gk′ or connected to dk′ using only targets from T \
⋃k′−1
i=1 Ti. By the

definition of the pruning step on Gk′ , the targets that are pruned away do not affect the
connectivity from dk′ to the targets retained in Tk′ . Hence the induction step is proved. J

By the above lemma, when k = n, we see that the targets Ti covered in the various iterations
form a partition of T . J

4 Approximation Guarantee

I Theorem 7. The approximation ratio of the primal-dual algorithm for MDHTSP is 2.

We show that the dual value of the LP relaxation can be equivalently written as the sum
of the dual values corresponding to each of the vehicles (Lemma 8). This will allow us to
bound the cost of the edges in each forest with respect to its dual value (Lemma 9). The
approximation ratio will readily follow from these results.

Consider any vehicle i ∈ {1, · · · , n− 1}. Let Ci1, · · · , Cimi
denote the discarded, frozen

subgraphs of Gi (as defined in the pruning procedure) for vehicle i. Also, let the subset of
targets in all these discarded components be Ui. To simplify the ensuing derivation (with a
slight abuse of notation), we also refer to C as a subset of targets present in component C.

I Lemma 8.

∑
S⊆T

Y1(S) =
∑

S⊆T,S 6⊆U1

Y1(S) +
n−1∑
j=2

∑
S⊆Uj−1,S 6⊆Uj

Yj(S) +
∑

S⊆Un−1

Yn(S).

Proof. Note that∑
S⊆T

Y1(S) =
∑

S⊆T,S 6⊆U1

Y1(S) +
∑
S⊆U1

Y1(S). (11)
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For any j = 2, · · · , n− 1,∑
S⊆Uj−1

Yj−1(S) =
mj−1∑
k=1

∑
S⊆C(j−1)k

Yj−1(S).

Each C(j−1)k is a frozen component. Therefore, its corresponding constraint in (8) is tight.

⇒
∑

S⊆Uj−1

Yj−1(S) =
mj−1∑
k=1

∑
S⊆C(j−1)k

Yj(S) =
∑

S⊆Uj−1

Yj(S)

=
∑

S⊆Uj−1,S 6⊆Uj

Yj(S) +
∑
S⊆Uj

Yj(S).

Applying the above relation recursively in equation (11), the lemma follows. J

For any j = 1, · · · , n, let Cost(F̄j) =
∑
e∈F̄j

costje.

I Lemma 9. For any j = 2, · · · , n− 1,

Cost(F̄j) ≤ 2
∑

S⊆Uj−1,S 6⊆Uj

Yj(S).

Proof.

Cost(F̄j) =
∑
e∈F̄j

costje =
∑
e∈F̄j

∑
S:e∈δj(S)

Yj(S) =
∑
S⊆T

Yj(S)|δj(S)
⋂
F̄j |.

Note that from Lemma 3, any S ⊆ T that loaded an edge e ∈ F̄j must be a subset of
Uj−1. In addition, |δj(S)

⋂
F̄j | = 0 for any S ⊆ Uj , since Uj was discarded in the pruning.

Therefore, we get

Cost(F̄j) =
∑
S⊆T

Yj(S)|δj(S)
⋂
F̄j | =

∑
S⊆Uj−1,S 6⊆Uj

Yj(S)|δj(S)
⋂
F̄j |.

Therefore, the lemma reduces to proving that∑
S⊆Uj−1,S 6⊆Uj

Yj(S)|δj(S)
⋂
F̄j | ≤ 2

∑
S⊆Uj−1,S 6⊆Uj

Yj(S). (12)

The above result can be proved by induction on the main loop, using the usual degree
argument for such primal-dual algorithms [7]. At the start of any iteration t and vehicle
j, let A denote the set of active components defined as follows: A := {C : C is active,
C ⊆ Uj−1, C 6⊆ Uj}. Similarly, let I denote the set of inactive or frozen components defined
as follows I := {C : C is inactive or frozen, C ⊆ Uj−1, C 6⊆ Uj}. Form a graph H with
components in A ∪ I as vertices and e ∈ F̄j ∩ δj(C) for C ∈ A ∪ I as edges.

Let deg(u) represent the degree of a vertex u in graph H. Let the dual variable of each
active component during the iteration increase by 4t. Due to this dual increase, the right
hand side of the inequality (12) will increase by 24t|A|, whereas the left hand side of the
inequality (12) will increase by 4t

∑
u∈A deg(u). Therefore, the lemma is proved if we can

show that
∑
u∈A deg(u) ≤ 2|A|.

Note that H is a tree that spans all the the components in A ∪ I. Therefore, deg(u) ≥ 1
for any component u in A∪ I. There is exactly one inactive component in I, and this inactive
component contains dj6. In addition, for any vertex u that represents a frozen component,

6 A component in a forest corresponding to vehicle j can also be inactive if its ancestor is connected to a
depot. But from Lemma 3, such a component never becomes active again and never gets connected to
dj .
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deg(u) ≥ 2 due to the pruning procedure that discards maximal pendant-frozen subgraphs.
Therefore,∑

u∈A
deg(v) =

∑
u∈A∪I

deg(u)−
∑
u∈I

deg(u)

=
∑

u∈A∪I
deg(u)−

∑
u∈{C:C∈I,dj /∈C}

deg(u)−
∑

u∈{C:C∈I,dj∈C}

deg(u)

≤ 2(|A|+ |I| − 1)− 2(|I| − 1)− 1
< 2|A|. J

Similarly, one can also show that Cost(F̄1) ≤ 2
∑
S⊆T,S 6⊆U1

Y1(S) and Cost(F̄n) ≤
2

∑
S⊆Un−1

Yn(S). Hence, using Lemma 8, we get

n∑
i=1

Cost(F̄i) ≤2
∑

S⊆T,S 6⊆U1

Y1(S) + 2
n−2∑
j=1

∑
S⊆Uj ,S 6⊆Uj+1

Yj+1(S) + 2
∑

S⊆Un−1

Yn(S)

=2
∑
S⊆T

Y1(S) ≤ Costlp.

Therefore, the cost of the constructed HSF will be at most the optimal cost of the
MDHTSP. Doubling the edges in the constructed HSF and short cutting the repeated
visits to the targets in an Euler walk suitably leads to a 2-approximation algorithm for the
MDHTSP.
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Abstract
For a family of graphs G, the G-Contraction problem takes as an input a graph G and an integer k,
and the goal is to decide if there exists F ⊆ E(G) of size at most k such that G/F belongs to G. Here,
G/F is the graph obtained from G by contracting all the edges in F . In this article, we initiate the
study of Grid Contraction from the parameterized complexity point of view. We present a fixed
parameter tractable algorithm, running in time ck · |V (G)|O(1), for this problem. We complement
this result by proving that unless ETH fails, there is no algorithm for Grid Contraction with
running time co(k) · |V (G)|O(1). We also present a polynomial kernel for this problem.
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1 Introduction

Graph modification problems are one of the central problems in graph theory that have
received a lot of attention in theoretical computer science. Some of the important graph
modification operations are vertex deletion, edge deletion, and edge contraction. For graph
G, any graph that can be obtained from G by using these three types of modifications is
called a minor of G. If only the first two types of modification operations are allowed then
resulting graph is said to a subgraph of G. If the only third type of modification is allowed
then the resulting graph is called a contraction of G.

For two positive integer r, q, the (r × q)-grid is a graph in which every vertex is assigned
a unique pair of the form (i, j) for 1 ≤ i ≤ r and 1 ≤ j ≤ l. A pair of vertices (i1, j1) and
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(i2, j2) are adjacent with each other if and only if |i1 − i2|+ |j1 − j2| = 1. There has been
considerable attention to the problem of obtaining a grid as a minor of the given graph. We
find it surprising that the very closely related question of obtaining a grid as a contraction
did not receive any attention. In this article, we initiate a study of this problem from the
parameterized complexity point of view.

The contraction of edge uv in simple graph G deletes vertices u and v from G, and
replaces them by a new vertex, which is made adjacent to vertices that were adjacent to
either u or v. Note that the resulting graph does not contain self-loops and multiple edges.
A graph G is said to be contractible to graph H if H can be obtained from G by edge
contractions. Equivalently, G is contractible to H if V (G) can be partitioned into |V (H)|
many connected sets, called witness sets, and these sets can be mapped to vertices in H such
that adjacency between witness sets is consistent with their mapped vertices in H. If such a
partition of V (G) exists then we call it H-witness structure of G. A graph G is said to be
k-contractible to H if H can be obtained from G by k edge contractions. For a family of
graphs G, the G-Contraction problem takes as an input a graph G and an integer k, and
the objective is to decide if G is k-contractible to a graph H in G.

Related Work. Early papers of Watanabe et al. [20, 21], Asano and Hirata [3] showed
G-Contraction is NP-Complete for various class of graphs like planar graphs, outer-planar
graphs, series-parallel graphs, forests, chordal graphs. Brouwer and Veldman proved that it is
NP-Complete even to determine whether a given graph can be contracted to a path of length
four or not [5]. In the realm of parameterized complexity, G-Contraction has been studied
with the parameter being the number of edges allowed to be contracted. It is known that
G-Contraction admits an FPT algorithm when G is set of paths [15], trees [15], cactus [17],
cliques [6], planar graphs [12] and bipartite graphs [14, 13]. For a fixed integer d, let H≥d,H≤d
and H=d denote the set of graphs with minimum degree at least d, maximum degree at most
d, and d-regular graphs, respectively. Golovach et al. [11] and Belmonte et al. [4] proved that
G-Contraction admits an FPT algorithm when G ∈ {H≥d,H≤d,H=d}. When G is split
graphs or chordal graphs, the G-Contraction is known to be W[1]-hard [2] and W[2]-hard
[18, 6], respectively. To the best of our knowledge, it is known that G-Contraction admits
a polynomial kernel only when G is a set of paths [15] or set of paths or cycle i.e. H≤2 [4]. It
is known that G does not admit a polynomial kernel, under standard complexity assumptions,
when G is set of trees [15], cactus [16], or cliques [6].

Our Contribution. In this article we study parameterized complexity of Grid Contrac-
tion problem. We define the problem as follows.

Grid Contraction Parameter: k
Input: Graph G and integer k
Question: Is G k-contractible to a grid?

To the best of our knowledge, the computation complexity of the problem is not known
nor it is implied by the existing results regarding edge contraction problems. We prove
that the problem is indeed NP-Complete (Theorem 21). We prove that there exists an FPT
algorithm which given an instance (G, k) of Grid Contraction runs in time 46k · |V (G)|O(1)

and correctly concludes whether it is a Yes instance or not (Theorem 20). We complement
this result by proving that unless ETH fails there is no algorithm for Grid Contraction
with running time 2o(k) · |V (G)|O(1) (Theorem 21). We present a polynomial kernel with
O(k4) vertices and edges for Grid Contraction (Theorem 27).
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Our Methods. Our FPT algorithm for Grid Contraction is divided into two phases. In
the first phase, we introduce a restricted version of Grid Contraction problem called
Bounded Grid Contraction. In this problem, along with a graph G and an integer k, an
input consists of an additional integer r. The objective is to determine whether graph G can
be k-contracted to a grid with r rows. We present an FPT algorithm parameterized by (k+ r)
for this problem. This algorithm is inspired by the exact exponential algorithm for Path
Contraction in [1]. It is easy to see that an instance (G, k) is a Yes instance of Grid
Contraction if and only if (G, k, r) is a Yes instance of Bounded Grid Contraction
for some r in {1, 2, . . . , |V (G)|}. In the second phase, given an instance (G, k) of Grid
Contraction we produce polynomially many instances of Bounded Grid Contraction
such that – (a) the input instance is a Yes instance if and only if at least one of the produced
instances is a Yes instance and (b) for any produced instance, say (G′, k′, r), we have k′ = k

and r ∈ {1, 2, . . . , 2k + 5}. We prove that all these instances can be produced in time
polynomial in the size of the input. An FPT algorithm for Grid Contraction is a direct
consequence of these two results. We use techniques presented in the second phase to obtain
a polynomial kernel for Grid Contraction.

We present a brief overview of the FPT algorithm for Bounded Grid Contraction.
Boundary vertices of a subset S of V (G) are the vertices in S which are adjacent to at least
one vertex in V (G) \ S. A subset S of V (G) is nice if both G[S], G− S are connected, and
G[S] can be contracted to a (r × q)-grid with all boundary vertices in S in an end-column
for some integer q. In other words, a subset S of V (G) is nice if it is a union of witness
sets appearing in first few columns in some grid witness structure of G. See Definition 9.
The objective is to keep building a special partial solution for some nice subsets. In this
special partial solution, all boundary vertices of a particular nice subset are contained in bags
appearing in an end-column. This partial solution is then extended to the remaining graph.
The central idea is – for a nice subset S of graph G, if G[S] can be contracted to a grid such
that all boundary vertices of S are in an end bag then how one contract G[S] is irrelevant.
This allows us to store one solution for G[S] and build a dynamic programming table nice
subsets of vertices. The running time of such an algorithm depends on the following two
quantities (i) the number of possible entries in the dynamic programming table, and (ii)
time spent at each entry. We prove that to bound both these quantities as a function of k, it
is sufficient to know the size of neighborhood of S and the size of the union of witness sets in
an end-column in a grid contraction of G[S] which contains all boundary vertices of S.

In the second phase, we first check whether a given graph G can be k-contracted to a
grid with r rows for r ∈ {1, 2, . . . , 2k + 5} using the algorithm mentioned in the previous
paragraph. If for any value of r it returns Yes then we can conclude that (G, k) is a Yes
instance of Grid Contraction. Otherwise, we argue that there exists a special separator
S in G which induces a (2× q) grid for some positive integer p. We prove that it is safe to
contract q vertical edges in G[S]. Let G′ be the graph obtained from G by contracting these
parallel edges. Formally, we argue that G is k-contractible to a (r′ × q)-grid if and only if G′
is k-contractible to ((r′ − 1)× q)-grid. We keep repeating the process of finding a special
separator and contracting parallel edges in it until one of the following things happens – (a)
The resultant graph is k-contractible to a (r′× q)-grid for some r′ < 2k+ 5. (b) The resultant
graph does not contain a special separator. We argue that in Case (b), it is safe to conclude
that (G, k) is a No instance for Grid Contraction.

Organization of the paper. We present some preliminary notations which will be used in
rest of the paper in Section 2. We present a crucial combinatorial lemma in Section 3. As
mentioned earlier, this algorithm is divided into two phases. We present the first and the
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second phase in Section 4 and 5, respectively. Section 5 also contains an FPT algorithm
for Grid Contraction. We prove that the dependency on the parameter in the running
time of this algorithm is optimal, up to a constant factor, unless ETH fails in Section 6. In
Section 7, we present a polynomial kernel for Grid Contraction problem.

Due to space constraints we have omitted the proofs of the statements marked
with (?). We present them in a full version of the paper.

2 Preliminaries

For a positive integer k, [k] denotes the set {1, 2, . . . , k}.

2.1 Graph Theory
In this article, we consider simple graphs with a finite number of vertices. For an undirected
graph G, sets V (G) and E(G) denote its set of vertices and edges respectively. Two vertices
u, v in V (G) are said to be adjacent if there is an edge uv in E(G). The neighborhood
of a vertex v, denoted by NG(v), is the set of vertices adjacent to v and its degree dG(v)
is |NG(v)|. The subscript in the notation for neighborhood and degree is omitted if the
graph under consideration is clear. For a set of edges F , set V (F ) denotes the collection of
endpoints of edges in F . For a subset S of V (G), we denote the graph obtained by deleting
S from G by G− S and the subgraph of G induced on the set S by G[S]. For two subsets
S1, S2 of V (G), we say S1, S2 are adjacent if there exists an edge with one endpoint in S1
and other in S2. For a subset S of V (G), let Φ(S) denotes set of vertices in S which are
adjacent with at least one vertex outside S. Formally, Φ(S) = {s ∈ S| N(s) \ S 6= ∅}. These
are also called boundary vertices of S.

A path P = (v1, . . . , vl) is a sequence of distinct vertices where every consecutive pair of
vertices is adjacent. For two vertices v1, v2 in G, dist(v1, vl) denotes the length of a shortest
path between these two vertices. A graph is called connected if there is a path between
every pair of distinct vertices. It is called disconnected otherwise. A set S of V (G) is said
to be a connected set if G[S] is connected. For two vertices v1, v2 in G, a set S is called
(v1-v2)-separator, if any v1-v2 paths intersects S. If a set is a (v1-v2)-separator as well as
(v3-v4)-separator then we write it as {(v1-v2), (v3-v4)}-separator.

For two positive integer r, q, the (r × q)-grid is a graph on r · q vertices. The vertex set
of this graph consists of all pairs of the form (i, j) for 1 ≤ i ≤ r and 1 ≤ j ≤ q. A pair of
vertices (i1, j1) and (i2, j2) are adjacent with each other if and only if |i1 − i2|+ |j1 − j2| = 1.
We say that such graph is a grid with r rows and q columns. It is called a (r× q)-grid and is
denoted by �r×q. We use � to denote a grid with unspecified number of rows and columns.
The vertices in grid � are denoted by �[i, j] or simply by [i, j]. Note that the grid with
exactly one row is a path. To remove some corner cases, we consider grids that have at least
two rows and two columns. Any grid contains exactly four vertices that have degree two.
These vertices are called corner vertices. Let t1 = [1, 1], t2 = [1, q], t3 = [r, q], and t4 = [r, 1]
be the corner vertices in grid �r×q.

I Observation 2.1 (?). If Ŝ is a connected {(t1-t4), (t2-t3)}-separator in �r×q then its size
is at least q. Moreover, if |Ŝ| = q then it corresponds to a row in �r×q.

2.2 Graph Contraction
The contraction of edge uv in G deletes vertices u and v from G, and adds a new vertex,
which is made adjacent to vertices that were adjacent to either u or v. Notice that no
self-loop or parallel edge is introduced in this process. The resulting graph is denoted
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by G/e. For a given graph G and edge e = uv, we formally define G/e in the following
way: V (G/e) = (V (G) ∪ {w})\{u, v} and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈
E(G)} ∪ {wx| x ∈ NG(u) ∪NG(v)}. Here, w is a new vertex which was not in V (G). Note
that an edge contraction reduces the number of vertices in a graph by exactly one. Several
edges might disappear due to one edge contraction. For a subset of edges F in G, graph
G/F denotes the graph obtained from G by contracting each connected component in the
sub-graph G′ = (V (F ), F ) to a vertex.

I Definition 1 (Graph Contraction). A graph G is said to be contractible to graph H if there
exists an onto function ψ : V (G)→ V (H) such that following properties hold.

For any vertex h in V (H), graph G[W (h)] is connected and not empty, where set W (h) :=
{v ∈ V (G) | ψ(v) = h}.
For any two vertices h, h′ in V (H), edge hh′ is present in H if and only if there exists
an edge in G with one endpoint in W (h) and another in W (h′).

We say graph G is contractible to H via mapping ψ. For a vertex h in H, set W (h) is
called a witness set associated with/corresponding to h. We define H-witness structure of
G, denoted by W, as collection of all witness set. Formally, W = {W (h) | h ∈ V (H)}. A
witness structure W is a partition of vertices in G. If a witness set contains more than one
vertex then we call it big witness-set, otherwise it is small/singleton witness set.

If graph G has a H-witness structure then graph H can be obtained from G by a series of
edge contractions. For a fixed H-witness structure, let F be the union of spanning trees of all
witness sets. By convention, the spanning tree of a singleton set is an empty set. To obtain
graph H from G, it is necessary and sufficient to contract edges in F . We say graph G is
k-contractible to H if cardinality of F is at most k. In other words, H can be obtained from
G by at most k edge contractions. The following observations are immediate consequences of
definitions.

I Observation 2.2 (?). If graph G is k-contractible to graph H via mapping ψ then following
statements are true.
1. |V (G)| ≤ |V (H)|+ k.
2. Any H-witness structure of G has at most k big witness sets.
3. For a fixed H-witness structure, the number of vertices in G which are contained in big

witness sets is at most 2k.
4. If S is a (x1 − x2)-separator in G then ψ(S) is a (ψ(s1)− ψ(s2))-separator in H.
5. If S is a separator in G such that there are at least two connected components of G \ S

which has at least k + 1 vertices, then ψ(S) is a separator in H.

2.3 Parameterized Complexity
An instance of a parameterized problem comprises of an input I, which is an input of the
classical instance of the problem and an integer k, which is called as the parameter. A
problem Π is said to be fixed-parameter tractable or in FPT if given an instance (I, k) of Π,
we can decide whether or not (I, k) is a Yes instance of Π in time f(k) · |I|O(1). Here, f(·)
is some computable function whose value depends only on k. We say that two instances,
(I, k) and (I ′, k′), of a parameterized problem Π are equivalent if (I, k) ∈ Π if and only if
(I ′, k′) ∈ Π. A reduction rule, for a parameterized problem Π is an algorithm that takes an
instance (I, k) of Π as input and outputs an instance (I ′, k′) of Π in time polynomial in |I|
and k. If (I, k) and (I ′, k′) are equivalent instances then we say the reduction rule is safe. A
parameterized problem Π admits a kernel of size g(k) (or g(k)-kernel) if there is a polynomial
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Figure 1 An example of a 4-slab. See Definition 2. For Q = {q1, q2, q3, q4, q5} and its partition
P4(Q) = {{q1}, {q2}, {q3}, {q4, q5}}, A is an (P4(Q), α, β)-4-slab.

time algorithm (called kernelization algorithm) which takes as an input (I, k), and in time
|I|O(1) returns an equivalent instance (I ′, k′) of Π such that |I ′|+ k′ ≤ g(k). Here, g(·) is
a computable function whose value depends only on k. For more details on parameterized
complexity, we refer the reader to the books of Downey and Fellows [8], Flum and Grohe [9],
Niedermeier [19], and the more recent books by Cygan et al. [7] and Fomin et al. [10].

3 Combinatorial Lemma

We introduce the notion of r-slabs which can be thought of as connected components with
special properties. A r-slab is a connected set which can be partitioned into r connected
subsets such that the adjacency between these parts and their neighbourhood follows certain
pattern. For an integer r and a set A, an ordered r-partition is a list of subsets of A whose
union is A. We define r-slab as follows.

I Definition 2 (r-Slab). A r-slab in G is an ordered r-partition of a connected set A, say
A1, A2, . . . , Ar, which satisfy following conditions.

For every i in [r], set Ai is a non-empty set and G[Ai] is connected.
For i 6= j in [r], sets Ai, Aj are adjacent if and only if |i− j| = 1.
For every i in [r], define Bi = N(Ai) \ A. For i 6= j in [r], sets Bi, Bj are mutually
disjoint and if Bi and Bj are adjacent then |i− j| = 1.

We denote a r-slab by 〈A1, A2, . . . , Ar〉. For a r-slab 〈A1, A2, . . . , Ar〉, set A denotes union
of all Ais. We note that every connected subset of G is an 1-slab.

For positive integers α, β, a connected set A in graph G is called an (α, β)-connected set
if |A| ≤ α and |N(A)| ≤ β. For a non-empty set Q ⊆ V (G) a connected set A in G is a
(Q)-connected set if Q ⊆ A. We generalize these notations for r-slab as follows.

I Definition 3 ((α, β)-r-slab). For a graph G and integers α, β, a r-slab 〈A1, A2, . . . , Ar〉 is
said to be an (α, β)-r-slab if |A| ≤ α and |N(A)| ≤ β.

For a set Q, let Pr(Q) = {Q1, Q2, . . . , Qr} denotes its ordered r-partition. An ordered
r-partition is said to be valid if for any two vertices u ∈ Qi and v ∈ Qj , u, v are adjacent
implies |i− j| ≤ 1.

I Definition 4 (Pr(Q)-r-slab). For a graph G, a subset Q of V (G) and its ordered valid
partition Pr(Q) = {Q1, Q2, . . . , Qr}, a r-slab 〈A1, A2, . . . , Ar〉 in G is said to be a Pr(Q)-r-
slab if Qi is a subset of Ai for every i in [r].
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See Figure 1 for an example. We combine properties mentioned in previous two definitions
to define specific types of r-slabs.

I Definition 5 ((Pr(Q), α, β)-r-slab). For a graph G, a non-empty subset Q of V (G), its
ordered valid partition Pr(Q) = {Q1, Q2, . . . , Qr}, and integers α, β, a r-slab 〈A1, A2, . . . , Ar〉
in G is a (Pr(Q), α, β)-r-slab if it is an (α, β)-r-slab as well as a Pr(Q)-r-slab.

We mention following two observations which are direct consequences of the definition.

I Observation 3.1. Let 〈A1, A2, . . . , Ar〉 be a (Pr(Q), α, β)-r-slab in graph G. If a vertex v
is in N(A) then 〈A1, A2, . . . , Ar〉 is a (Pr(Q), α, β − 1)-r-slab in graph G− {v}.

For a graph G, consider a vertex v and let G′ = G−{v}. For a non-empty subset Q′ of V (G′),
its ordered partition Pr(Q′) = {Q′1, Q′2, . . . , Q′r}, and integers α, β, let 〈A′1, A′2, . . . , A′r〉 be a
(Pr(Q′), α, β)-r-slab in G′.

I Observation 3.2. If vertex v satisfy following two properties then 〈A′1, A′2, . . . , A′r〉 is a
(Pr(Q′), α, β + 1)-r-slab in G.

Vertex v is adjacent with exactly one part, say A′i, of the r-slab
For any vertex u in N ′G(A′j) \A′, if u and v are adjacent in G then |i− j| ≤ 1.

Definition 5 generalizes the notation of (Q,α, β)-connected set defined in [1]. In the same
paper, authors proved that there is an algorithm that given a graph G on n vertices, a
non-empty set Q ⊆ V (G), and integers α, β, enumerates all (Q,α, β)-connected sets in G in
time 2α−|Q|+β · nO(1). We present similar combinatorial lemma for (Pr(Q), α, β)-r-slabs.

I Lemma 6. There is an algorithm that given a graph G on n vertices, a non-empty set
Q ⊆ V (G), its ordered partition Pr(Q) = {Q1, Q2, . . . , Qr}, and integers α, β, enumerates
all (Pr(Q), α, β)-r-slabs in G in time 4α−|Q|+β · nO(1).

Proof. Let N(Q) = {v1, v2, . . . , vp}. Arbitrarily fix a vertex vl in N(Q). We partition
(Pr(Q), α, β)-r-slabs in G based on whether vl is contained in it or not. In later case, such
(Pr(Q), α, β)-r-slab is also a (Pr(Q), α, β − 1)-r-slab in G− {v}. We now consider the first
case. Let i be the smallest integer in [r] such that vl is adjacent with Qi. Note that, by
definition, if vl is present in a Pr(Q)-r-slab then it can be part of either Ai−1, Ai or Ai+1. We
encode this fact by moving vl to either Qi−1, Qi or Qi+1. Let Pi−1

r (Q ∪ {vl}),Pir(Q ∪ {vl})
and Pi+1

r (Q ∪ {vl}) be r-partitions of Q ∪ {vl} obtained from Pr(Q) by adding vl to set
Qi−1, Qi and Qi+1, respectively. Formally, these three sets are defined as follows.
- Pi−1

r (Q ∪ {vl}) := {Q1, . . . , Qi−1 ∪ {vl}, Qi, Qi+1, . . . , Qr}
- Pir(Q ∪ {vl}) := {Q1, . . . , Qi−1, Qi ∪ {vl}, Qi+1, . . . , Qr}
- Pi+1

r (Q ∪ {vl}) := {Q1, . . . , Qi−1, Qi, Qi+1 ∪ {vl}, . . . , Qr}

Algorithm. We present a recursive enumeration algorithm which takes (G,Pr(Q), α, β) as
an input and outputs a set, say A, of all (Pr(Q), α, β)-r-slab in G. The algorithm initializes
A to an empty set. The algorithm returns A if one of the following statements is true: (i)
Pr(Q) is not a valid partition of Q, (ii) α−|Q| < 0 or β < 0, (iii) there is a vertex vl in N(Q)
which is adjacent with Qi and Qj for some i, j in [r] such that |i− j| ≥ 2. If α− |Q|+ β = 0,
the the algorithm checks if Pr(Q) is a (Pr(Q), 0, 0)-r-slabs in G. If it is the case then the
algorithm returns singleton set containing Pr(Q) otherwise it returns an empty set. If there
is a vertex vl in N(Q) which is adjacent with Qi−1, Qi and Qi+1 for some i in [r] then the
algorithm calls itself on instance (G,Pir(Q ∪ {vl}), α, β) where Pir(Q ∪ {v}) is r-partition
as defined above. It returns the set obtained on this recursive call as the output. If there
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are no such vertices in N(Q), then for some l ∈ {1, . . . , |N(Q)|}, the algorithm creates four
instances viz (G− {vl},Pr(Q), α, β − 1) and (G,Pi0r (Q ∪ {vl}), α, β) for i0 ∈ {i− 1, i, i+ 1}.
The algorithm calls itself recursively on these four instances. Let Avl ,A

i−1
l ,Ail, and Ai+1 be

the set returned, respectively, by the recursive call of the algorithm. The algorithm adds all
elements in Ai−1

l ∪ Ail ∪ A
i+1
l to A. For every (Pr(Q), α, β − 1)-r-slabs 〈A′1, A′2, . . . , A′r〉 in

Avl , the algorithm checks whether it is a (Pr(Q), α, β)-r-slabs in G using Observation 3.2. If
it is indeed a (Pr(Q), α, β)-r-slabs in G then it adds it to A. The algorithm returns A at the
end of this process.

We now argue the correctness of the algorithm. For every input instance (G,Pr(Q), α, β)
we define its measure as µ((G,Pr(Q), α, β)) = α − |Q| + β. We proceed by the induction
hypothesis that the algorithm is correct on any input whose measure is strictly less than
α − |Q| + β. Consider the base cases α − |Q| + β = 0. In this case, the only possible
(Pr(Q), α, β)-r-slab is Pr(Q). The algorithm checks this and returns the correct answer
accordingly. We consider the case when α − |Q| + β ≥ 1. Every (Pr(Q ∪ {vl}), α, β)-r-
slab is also a (Pr(Q), α, β)-r-slab. The algorithm adds a r-slab in Avl to A only if it is a
(Pr(Q), α, β)-r-slabs in G. Hence the algorithm returns a set of (Pr(Q), α, β)-r-slabs in G.
In remaining part we argue that every (Pr(Q), α, β)-r-slabs is enumerated by the algorithm.

By Definition 2, no vertex in closed neighbourhood of a r-slab can be adjacent to two
non-adjacent parts of a r-slab. Hence, if there is a vertex vl in N(Q) which is adjacent with
Qi and Qj for some i, j in [r] such that |i− j| ≥ 2 then the algorithm correctly returns an
empty set. Suppose there exists a vertex v in N(Q) which is adjacent with Qi−1, Qi and Qi+1
for some i in [r]. By Definition 2, any r-slab containing Pr(Q) must contains v in it. In this
case, the number of (Pr(Q), α, β)-r-slab is same as the number of (Pir(Q ∪ {v}), α, β)-r-slab
where Pir(Q∪{v}) is the r-partition of Q∪{v} obtained from Pr(Q) by adding v to Qi. The
measure for input instance (G,Pir(Q ∪ {v}), α, β) is strictly smaller than α− |Q|+ β. Hence
by induction hypothesis, the algorithm correctly computes all (Pr(Q), α, β)-r-slab.

Consider the case when there is no vertex which is adjacent with Qi−1, Qi and Qi+1 for
any i in [r]. Let vl be a vertex in N(Q) and there is an integer i in [p] such that i is the
smallest integer, and vl is adjacent with Qi. As mentioned earlier, either vl is a part of
(Pr(Q), α, β)-r-slab or not. In first case, by Definition 2, vl can be part of Ai−1, Ai or Ai+1
in any Pr(Q)-r-slab. The measure of input instance (G,Pi0r (Q∪{v}), α, β) is α− |Q|+β− 1.
Hence by induction hypothesis, the algorithm correctly enumerates all (Pi0r (Q∪ {v}), α, β)-r-
slabs in Gl. Consider a (Pr(Q), α, β)-r-slab 〈A1, A2, . . . , Ar〉 in G which does not contain vl.
By Observation 3.1, 〈A1, A2, . . . , Ar〉 is a (Pr(Q), α, β − 1)-r-slab in G− {v}. By induction
hypothesis, the algorithm correctly computes all (Pr(Q), α, β − 1)-r-slabs in G− {v}. Since
〈A1, A2, . . . , Ar〉 is a (Pr(Q), α, β)-r-slab in G, vertex vl satisfy both the properties mentioned
in Observation 3.2. Hence algorithm adds 〈A1, A2, . . . , Ar〉 to the set Al. Hence, we can
conclude that the algorithm correctly enumerates all (Pr(Q), α, β)-r-slabs in G

Using the induction hypothesis that the algorithm correctly outputs the set of all
(Pr(Q), α, β)-r-slabs in time 4α−|Q|+β · nO(1), the running time of the algorithm follows.
This concludes the proof of the lemma. J

We use following corollary of Lemma 6.

I Corollary 7. There is an algorithm that given a graph G on n vertices and integers α, β,
enumerates all (α, β)-r-slab in G in time 4α+β · nO(1).
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4 An FPT algorithm for Bounded Grid Contraction

In this section, we present an FPT algorithm for Bounded Grid Contraction. We
formally define the problem as follows.

Bounded Grid Contraction Parameter: k, r
Input: Graph G and integers k, r
Question: Is G k-contractible to a grid with r rows?

We start with a definition of nice subsets mentioned in the Introduction section. As
mentioned before, vertices of a nice subset corresponds to witness sets in first few columns of
a grid-witness structure of the input graph. Hence boundary vertices of a nice set corresponds
to witness sets in some column of a grid. Note that we are interested in the grids that
have exactly r-rows. Hence, we use the notation of r-slab defined in previous section to
formally define nice sets. Consider a r-slab 〈D1, D2, . . . , Dr〉 which corresponds to a column
in some grid that can be obtained from the input graph with at most k edge contraction. By
Observation 2.2, an edge contraction reduces the number of vertices by exactly one. As there
are 3r many vertices in three adjacent rows in a grid, the size of closed neighborhood of D
in G is at most k + 3r. Thus, we can focus our attention on r-slabs with bounded closed
neighborhood. We define k-potential r-slabs as follows.

I Definition 8 (k-Potential r-Slab). For a given graph G and integers k, r, a r-slab 〈D1, D2,

. . . , Dr〉 is said to be a k-potential r-slab of G if it satisfies following two conditions:
|D|+ |N(D)| ≤ k + 3r; and
G−D has at most two connected components.

Here, D = D1 ∪D2 ∪ · · · ∪Dr.

I Definition 9 (Nice Subset). A subset S of V (G) is said to be a nice subset of G if there
exists a k-potential r-slab, say 〈D1, D2, . . . , Dr〉, such that D is a subset of S and G[S \D] is
one of the connected components of G−D. We say that r-slab 〈D1, D2, . . . , Dr〉 is responsible
for nice subset S.

Since 〈D1, D2, . . . , Dr〉 is a k-potential r-slab, both G[S] and G− S are connected. There
may be more than one k-potential r-slabs responsible for a nice subset. We define a pair of
nice sets and k-potential r-slabs responsible for it.

I Definition 10 (Valid Tuple). A tuple (S,Pr(D)) is called a valid tuple if S is a nice subset
and Pr(D) ≡ 〈D1, D2, . . . , Dr〉 is a k-potential r-slab responsible for it.

Let Vk be the set of all valid tuples. For a valid tuple (S,Pr(D)) in Vk, we define a
collection of k-potential r-slabs which is denoted by A[(S,Pr(D))]. This set can be thought
of as a collection of “potential column extenders” for S. See Figure 2. In other words, we
can append a k-potential-r-slab in A[(S,Pr(D))] to get a grid witness structure of a larger
graphs containing S. Let Pr(A) be a k-potential-r-slab in A[(S,Pr(D))]. Intuitively speaking,
Pr(A) is the “new” column to be “appended” to a grid witness structure of G[S], to obtain
a grid witness structure for G[S ∪ A]. Hence if G[S] can be k′-contracted to a grid then
G[S ∪A] can be k′+ (|A| − r)-contracted to a grid. For improved analysis, we concentrate on
subset Aa,b[(S,Pr(D))] of A[(S,Pr(D))] defined for integers a, b. The set Aa,b[(S,Pr(D))] is
a collection of k-potential r-slabs of size at most a which have at most b neighbors outside
S. We impose additional condition that a+ b+ |D| is at most k + 3r for improved analysis.
Formally, Aa,b[(S,Pr(D))] = {〈A1, A2, . . . , Ar〉 | |A| ≤ a, |N(A) \ S| ≤ b, where A = A1 ∪
A2 ∪ · · · ∪Ar and for every Di in Pr(D), (N(Di) \ S) ⊆ Ai, and a+ b+ |D| ≤ k + 3r}.
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Figure 2 All sets with smooth (non-rectangular) boundary are connected. Set A is a possible
extension of nice subset S. In other words, A is an element in A|A|,|B|[(S,Pr(D))]. See paragraph
before Lemma 11.

Algorithm. The algorithm takes a graph G on n vertices and integers k, r as input and
outputs either True or False. The algorithm constructs a dynamic programming table Γ in
which there is an entry corresponding to every index [(S,Pr(D)); k′] where (S,Pr(D)) is a
valid tuple in Vk and k′ is an integer in {0} ∪ [k]. It initialize values corresponding to all
entries to False.
(for-loop Initialization) For a tuple (S,Pr(D)) ∈ Vk such that S = D and k′ ≥ |S|−r = |D|−r,
the algorithm sets Γ[(S,Pr(D)); k′] = True.
(for-loop Table) The algorithm processes indices in the table in chronologically increasing
order. It first checks the size of S, then the size of D, followed by k. Ties are broken
arbitrarily. At table index [(S,Pr(D)); k′], if Γ[(S,Pr(D)); k′] is False then the algorithm
continues to next tuple. If Γ[(S,Pr(D)); k′] is True then it runs the following for-loop at this
index.
(for-loop at Index) The algorithm computes the set Aa,b[(S,Pr(D))] for every pair of integers
a (≥ r), b (≥ 0) which satisfy following properties (1) a+ b+ |D| ≤ k+ 3r, (2) k′+ a− r ≤ k,
and (3) |N(S)| ≤ a. For every k-potential r-slab Pr(A) in Aa,b[(S,Pr(D))], the algorithm
sets Γ[(S ∪A,Pr(A)); k1] to True for every k1 ≥ k′ + (a− r).
If Γ[(V (G),Pr(D)); k′] is set to True for some Pr(D) and k′ then the algorithm returns True
otherwise it returns False. This completes the description of the algorithm.

Recall that for a given connected subset S of V (G), Φ(S) denotes its boundary vertices
i.e. set of vertices in S which are adjacent with at least one vertex outside S.

I Lemma 11. For every tuple (S,Pr(D)) in Vk and integer k′ in {0} ∪ [k], the algorithm
assign Γ[(S,Pr(D)); k′] = True if and only if k′ + |N(S)| − r ≤ k and there is a (r × q)-grid
witness structure of G[S], for some integer q, such that Pr(D) is collection of witness sets in
an end-column and Φ(S) is in D.

Proof. We prove the lemma by induction on |S| + k′ for indices ((S,Pr(D)); k′) in the
dynamic programming table. For the induction hypothesis, we assume that for a positive
integer z the algorithm computes Γ[(S,Pr(D)); k′] correctly for each (S,Pr(D)) in Vk and k′
in 0 ∪ [k] for which |S|+ k′ ≤ z.

Consider the base case when |S| = |D| = r and k′ = 0. Since D ⊆ S, we have S = D.
This implies Pr(S) = Pr(D) is a r-slab. Any connected subset of a graph can be contracted
to a vertex by contracting a spanning tree. Hence, G[S] can be contracted to a (r × 1)-grid
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by contracting |D| − r many edges. This implies that the values assigned by the algorithm
in (for-loop Initialization) are correct. We note that once the algorithm sets a particular
value to True, it does not change it afterwards.

Assuming induction hypothesis, we now argue that the computation of Γ[·] for indices of
the form [(S1,Pr(D1)); k1] where |S1|+ k1 = z+ 1 are correct. Note that if [(S1,Pr(D1)); k1]
is an entry in the table then (S1,Pr(D1)) is a valid tuple in Vk and k1 is an integer in the
set {0} ∪ [k].

(⇒) Assume that G[S1] is k1-contractible to a (r × q)-grid such that all vertices in Φ(S1)
are in an end-column Pr(D1) and k1 + |N(S1)| − r ≤ k. We argue that the algorithm
sets Γ[(S1,Pr(D1); k1] to True. Let G[S1] be k1-contractible to a (r × q)-grid. If q = 1
then D1 = S1 and in this case algorithm correctly computes Γ[(S1,Pr(D)); k1]. Consider
the case when q ≥ 2. Let W = {Wij | (i, j) ∈ [r] × [q]} be a (r × q)-grid structure of G
such that Pr(D) is collection of witness sets in an end-column and Φ(S1) is a subset of
D. Define W c

j as union of all witness sets in column j. Formally, W c
j =

⋃r
i=1 Wij . Hence,

W = W c
1 ∪W c

2 ∪· · ·∪W c
q−1∪W c

q and Pr(D) = W c
q . Consider set S0 = W c

1 ∪W c
2 ∪· · ·∪W c

q−1.
Since q ≥ 2, S0 is an non-empty set. Let k0 = k1− (|W c

q |−r). We argue that [(S0,W
c
q−1); k0]

is an index in the table and |S0|+ k0 ≤ z. As W is a k1-grid witness structure, |W c
q | − r ≤ k1

and hence k0 is a non-negative integer. Since G[W c
q ] is a connected graph, G−W c

q−1 has
exactly two connected components viz G[W c

1 ∪ · · · ∪W c
q−2] and the component containing

W c
q . As W is a k1-grid witness structure, |W c

q−2| + |W c
q−1| + |W c

q | ≤ k1 + 3r ≤ k + 3r
and N(W c

q−1) ⊆ W c
q−2 ∪ W c

q . (We note that W c
q−2 may not exists but this does not

change the argument. For the sake of clarity, we do not consider this as separate case.) Since
|W c

q−1|+|N(W c
q−1)| ≤ k+3r and G−W c

q−1 has at most two connected components,W c
q−1 is a

k-potential r-slab. Note that 〈W1j ,W2j , . . . ,Wrj〉 is the r-partition of k-potential r-slabW c
q−1.

Hence (S0,W
c
q−1) is a tuple in Vk and ((S0,W

c
q−1); k0) is an index in the table. Since W c

q is
not an empty set, |S0|+k0 ≤ |S1|−|W c

q |+k1−(|W c
q |−r) ≤ z+1+r−2|W c

q | as |S1|+k1 = z+1.
Since |W c

q | ≥ r ≥ 1, we conclude |S0|+ k0 ≤ z. Note that W \{W c
q } is a (k1− |Wq|+ r)-grid

witness structure for G[S0]. This implies that G[S0] is k0-contractible to a grid with W c
q−1 as

collection of bags in an end-column and k0 + |N(S0)| − r ≤ k1 ≤ k. Moreover, S0 = S1 \W c
q ,

Φ(S0) is contained in W c
q−1. By the induction hypothesis, the algorithm has correctly set

Γ[(S0,W
c
q−1); k0] to True. Let x0 = |W c

q−1|, a = |W c
q | and b = |W c

q \N(S0)| = |N(S1)|. We
first claim that x0 + a+ b ≤ k + 3r. Note that |W c

q−1|+ |W c
q | ≤ k1 + 2r and k1 + b ≤ k + r.

Hence |W c
q−1| + |W c

q | + b = x0 + a + b ≤ k + 3r. At index [(S0,W
c
q−1); k0], the algorithm

computes Aa,b[(S0,W
c
q−1)]. Clearly, W c

q is one of the sets in Aa,b[(S0,W
c
q−1)] as for every

i in [r], N(Wi,q−1) \ S0 is contained in Wiq and G[Wiq] is a connected graph. Hence the
algorithm sets Γ[(S1,W

c
q ), k1] = Γ[(S1,Pr(D)), k1] to True.

(⇐) To prove other direction, we assume that the algorithm sets Γ[(S1,Pr(A)); k1] to
True. We argue that G[S1] is k1-contractible to a grid such that Pr(A) is a collection of
witness sets in an end-column in a witness structure; Φ(S1) is in A; and k1 + |N(S1)| − r ≤ k.
If Γ[(S1,Pr(A)); k1] is set to True in the (for-loop Initialization) then, as discussed in first
paragraph, this is correct. Consider the case when the value at Γ[(S1,Pr(A)); k1] is set
to True when the algorithm was processing at index [(S0,Pr(D)); k0]. Note that value at
[(S0,Pr(D)); k0] has been set True by the algorithm as otherwise it will not change any value
while processing this index. Note that |A| = a and |N(S1)| = b. Since a is a positive integer
and k0 + a − r ≤ k1 (because (for-loop at Index) updates only for such values), we know
|S0|+ k0 ≤ |S1|+ k1− 2a+ r = z+ 1− 2a+ r. Since a ≥ r ≥ 1, we get |S0|+ k0 ≤ z. By the
induction hypothesis, algorithm has correctly computed value at [(S0,Pr(D)); k0]. Hence
G[S0] can be k0-contracted to a grid such that Φ(S0) is in D and there exists a grid witness
structure, say W0, such that Pr(D) is a collection of witness sets in an end-column. The
induction hypothesis also implies and k0 + |N(S0)| − r ≤ k + 3r.
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Let Pr(A) = 〈A1, A2, . . . , Ar〉 be the r-partition of A in Aa,b[(S0,Pr(A))] at which for-
loop at Index changes the value at Γ[(S1,Pr(A)); k1]. By construction, every Di in Pr(D),
Di is contained in Ai. Since Φ(S0) is contained in D, no vertex in S0 \D is adjacent with
any vertex in A. Since Pr(A) is a r-slab, W0 ∪ {A1, A2, . . . , Ar} is a grid witness structure
of G[S1]. Moreover, since N(S0) is in A, Φ(S1) is contained in A. Hence, G[S1] can be
k1-contractible to a grid with all vertices in Φ(S) in a A and there exists a witness structure
for which Pr(A) is a collection of witness sets in an end-columns. It remains to argue that
k1 + |N(S1)|−r ≤ k. We prove this for the case k1 = k0 +a−r as k1 > k0 +a−r case follows
from the definition of k1-contratibility. Let x0 = |D|. As x0 is the size of an end-column in
W0, we have x0 − r ≤ k0. As algorithm only considers a, b such that x0 + a + b ≤ k + 3r,
substituting a = k1 − k0 + r and b = |N(S1)| we get x0 + k1 − k0 + r + |N(S1)| ≤ k + 3r.
Using x0 − r ≤ k0, we get the desired bound.

This completes the proof of the lemma. J

I Lemma 12. Given a graph G on n vertices and integers k, r, the algorithm terminates in
time 4k+3r · nO(1).

Proof. We first describe an algorithm that given a graph G on n vertices and integers
k, r, enumerates all valid tuples in time 4k+3r · nO(1). The algorithm computes all r-slabs
in G which satisfy first property in Definition 8 using Corollary 7. For every r-slabs, it
checks whether it satisfy the second property in Definition 8 to determine whether it is a
k-potential r-slab or not. For a k-potential r-slab Pr(D) ≡ 〈D1, D2, . . . , Dr〉, if G−D has
exactly one connected component, say C1, the it adds (V (C1) ∪D,Pr(D)) and (D,Pr(D))
to set of valid tuples. If G − D has two connected components, say C1, C2, then it adds
(V (C1) ∪D,Pr(D)) and (V (C2) ∪D,Pr(D)) to the set of valid tuples. This completes the
description of the algorithm. Note that the algorithm returns a set of valid tuples. For a
k-potential r-slab Pr(D) ≡ 〈D1, D2, . . . , Dr〉, G−D has at most two connected components.
Hence any k-potential r-slab is responsible for at most two nice subsets. By definition of nice
subsets, for any nice subset there exists a k-potential r-slab responsible for it. Hence the
algorithm constructs the set of all valid tuples. The algorithm spends polynomial time for
each r-slab it constructs. Hence, the running time of the algorithm follows from Corollary 7.

The algorithm can computes the table and completes for-loop Initialization in time
4k+3r · nO(1) using the algorithm mentioned in above paragraph. We now argue that the
for-loop Table takes 4k+3r · nO(1) time to complete. We partition the set of valid tuples Vk
using the sizes of the neighborhood of connected component and size of r-slab in a tuple.
For two fixed integers x, y, define Vx,yk := {(S,Pr(D)) ∈ Vk| |D| ≤ x and |N(S)| ≤ y}. In
other words, Vx,yk collection of all nice subsets whose neighborhood is of size y and there
is a k-potential r-slab of size x responsible for it. Alternatively, Vx,yk is a collection of
k-nice subsets for which there is a (x, y)-r-slab is responsible for it. Since the number of
(x, y)-r-slabs are bounded (Corollary 7) and each k-potential r-slab is responsible for at most
two nice subsets, |Vx,yk | is bounded by 4x+y · nO(1).

For each (S,Pr(D)) ∈ Vx,yk , the algorithm considers every pair of integers a(> 0), b(≥ 0),
such that x+ a+ b ≤ k + 3 and |N(S)| = y ≤ a, and computes the set Aa,b[(S,Pr(D))]. By
Lemma 6, set Aa,b[(S,Pr(D))] can be computed in time 4a+b−|N(S)| · nO(1). The algorithm
spends time proportional to |Aa,b[(S,Pr(D))]| for for-loop at Index. Hence for two fixed
integers x, y, algorithm spends∑

a,b
x+a+b≤k+3r

4x+y · 4a+b−y · nO(1) =
∑
a,b

x+a+b≤k+3r

4x+a+b · nO(1) = 4k+3r · nO(1)
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time to process all valid tuples in Vx,yk . Since there are at most O(k2) feasible values for
x, y, the overall running time of algorithm is bounded by 4k+3r · nO(1). This concludes the
proof. J

The following theorem is implied by Lemmas 11, 12, and the fact that (V (G),Pr(D)) is
a tuple in Vk for some D.

I Theorem 13. There exists an algorithm which given an instance (G, k, r) of Bounded
Grid Contraction runs in time 4k+3r ·nO(1) and correctly determines whether it is a Yes
instance or not. Here, n is the number of vertices in G.

5 An FPT algorithm for Grid Contraction

In this section, we present an FPT algorithm for Grid Contraction. Given instance
(G, k) of Grid Contraction is a Yes instance if and only if (G, k, r) is a Yes instance of
Bounded Grid Contraction for some r in {1, 2, . . . , |V (G)|}. For r < 2k + 5, we can use
algorithm presented in Section 4 to check whether given graph can be contracted to grid
with r rows or not in FPT time. A choice of this threshold will be clear in the latter part of
this section. If algorithm returns Yes then we can conclude that (G, k) is a Yes instance of
Grid Contraction. If not then we can correctly conclude that if G is k-contractible to
a grid then the resulting grid has at least 2k + 5 rows. This information allows us to find
two rows in G which can safely be contracted. We need the following generalized version of
Grid Contraction to state these results formally.

Annotated Bounded Grid Contraction Parameter: k, r
Input: Graph G, integers k, r, q, and a tuple (x1, x2, x3, x4) of four different vertices in
V (G)
Question: Is G k-contractible to �r×q such that there is a �r×q-witness structure of
G in which the witness sets containing x1, x2, x3, and x4 correspond to four corners in
�r×q?

Assume that G is k-contractible to �r×q with desired properties via mapping ψ. Let
t1, t2, t3, and t4 be corners in �r×q such that t1 ≡ [1, 1], t2 ≡ [1, q], t3 ≡ [r, q], and t4 ≡ [r, 1].
There are 4! ways in which vertices in {x1, x2, x3, x4} can be uniquely mapped to corners
{t1, t2, t3, t4}. For the sake of simplicity, we assume that we are only interest in the case in
which x1, x2, x3, x4 are mapped to t1, t2, t3, and t4 respectively. In other words, ψ(xi) = ti
for all i ∈ {1, 2, 3, 4}.

We can modify the algorithm presented in Section 4 obtain an algorithm for Annot-
ated Bounded Grid Contraction problem which is fixed parameter tractable when
parameterized by (k + r) (?).

I Lemma 14. There exists an algorithm which given an instance (G, k, r, q, (x1, x2, x3, x4))
of Annotated Bounded Grid Contraction runs in time 4k+3r · nO(1) and correctly
determines whether it is a Yes instance or not. Here, n is the number of vertices in G.

In the case, when r < 2k + 5 the algorithm mentioned in the above lemma is fixed
parameter tractable when the parameter is k alone. When r ≥ 2k + 5, we argue that if
(G, k, r, q, (x1, x2, x3, x4)) is a Yes instance then there exists a horizontal decomposition of
G (Lemma 16). We formally define horizontal decomposition as follows.
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I Definition 15 (Horizontally-Decomposible). Consider an instance (G, k, r, q, (x1, x2, x3, x4))
of Annotated Bounded Grid Contraction. A graph G is said to be horizontally-
decomposible if V (G) can be partitioned into four non-empty parts C12, Su, Sv, and C34
which satisfies following properties.

The graphs G[C12], G[C34] are connected and x1, x2 ∈ C12, x3, x4 ∈ C34.
The graph G[Su ∪ Sv] is a 2× q grid with Su, Sv correspond to vertices in its two rows.
C12 and C34 are the two connected components of G \ (Su ∪ Sv).
N(C12) = Su and N(C34) = Sv.

I Lemma 16 (?). Consider an instance (G, k, r, q, (x1, x2, x3, x4)) of Annotated Bounded
Grid Contraction such that 2k+5 ≤ r. If it is a Yes instance then there exists a horizontal
decomposition of G.

Consider an instance (G, k, r, q, (x1, x2, x3, x4)), let (C12, Su, Sv, C34) be a horizontal
decomposition of G. Reduction Rule 5.1 contracts all the edges across Su, Sv. Note that in
the resulting instance, r is decreased by one.

I Reduction Rule 5.1. For an instance (G, k, r, q, (x1, x2, x3, x4)), let (C12, Su, Sv, C34) be a
horizontal decomposition of G. Let Su(= {u1, u2, . . . , uq}) and Sv(= {v1, v2, . . . , vq}). Let G′
be the graph obtained from G by contracting all the edges in {ujvj | j ∈ [q]}. Return instance
(G′, k, r − 1, q, (x1, x2, x3, x4)).

As Su, Sv are {(x1−x4), (x2−x3)}-separators in G, by Observation 2.2, sets ψ(Su), ψ(Sv)
are {(t1 − t4), (t2 − t3)}-separators in �r×q. We argue that ψ(Su) and ψ(Sv) correspond to
two consecutive rows and it was safe to contract edges across Su, Sv.

I Lemma 17 (?). Reduction Rule 5.1 is safe.

It remains to argue that Reduction Rule 5.1 can be implemented in polynomial time. In
Lemma 19, we argue there exists an algorithm that can find a horizontal decomposition, if
exists, in polynomial time. We use the following structural lemma to prove the previous
statement.

I Lemma 18 (?). Given two adjacent vertices u1, v1 in G, there is at most one subset S of
V (G) such that (a) G[S] is a (2× q) grid, (b) u1, v1 are two vertices in the first column of
G[S], and (c) each row in S is a separator in G. Moreover, if such a subset exists then it
can be found in polynomial time.

I Lemma 19 (?). There exists an algorithm which given an instance (G, k, r, q, (x1, x2, x3, x4))
of Annotated Bounded Grid Contraction runs in polynomial time and either returns
a horizontal decomposition of G or correctly concludes that no such decomposition exits.

We are now in a position to present main result of this section.

I Theorem 20. There exists an algorithm which given an instance (G, k) of Grid Con-
traction runs in time 46k · nO(1) and correctly determines whether it is a Yes instance or
not. Here, n is the number of vertices in G.

Proof. The algorithm starts with checking whether graph G is k-contractible to a path using
the algorithm in [15]. If it is then the algorithm returns Yes else it creates polynomially many
instances of Annotated Bounded Grid Contraction by guessing all possible values of
r, q, x1, x2, x3, x4. It processes these instances with increasing values of r. Ties are broken
arbitrarily. For r < 2k + 5, the algorithm check whether (G, k, r, q, (x1, x2, x3, x4)) is a Yes
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instance of Annotated Bounded Grid Contraction using Lemma 14. For r ≥ 2k + 5,
the algorithm checks whether there exists a horizontal decomposition of G using Lemma 19.
If there exists a horizontal decomposition of G then the algorithm applies Reduction Rule 5.1
to obtain another instance of Annotated Bounded Grid Contraction with a smaller
value of r. The algorithm repeats the above step until r < 2k + 5 or the graph in a reduced
instance does not have a horizontal decomposition. In the first case, it checks whether a
reduced instance is a Yes instance or not using Lemma 14. In the second case, it continues
to the next instance created at the start of the algorithm. The algorithm returns Yes if at
least one of the instances of Annotated Bounded Grid Contraction is a Yes instance.

It is easy to see that an instance (G, k) of Grid Contraction is a Yes instance
if and only if there exists integers r, q in {1, 2, . . . , |V (G)|} and four vertices x1, x2, x3, x4
in V (G) such that (G, k, r, q, (x1, x2, x3, x4)) is a Yes instance of Annotated Bounded
Grid Contraction. Lemma 17 implies the correctness of the step where the algorithm
repeatedly applies Reduction Rule 5.1 and check whether the reduced instance is a Yes
instance of Annotated Bounded Grid Contraction or not. Consider an instance
(G, k, r, q, (x1, x2, x3, x4)) such that r > 2k + 5 and there is no horizontal decomposition of
G. By Lemma 16, the algorithm correctly concludes that it is a No instance and continues
to the next instance. This implies the correctness of the algorithm. The running time of
the algorithm is implied by Lemmas 14, 19 and the fact that the algorithm presented in [15]
runs in time 2k+o(k) · nO(1). J

6 NP-Completeness and Lower Bounds

In this section, we prove that Grid Contraction problem is NP-Complete. We also argue
that the dependency on the parameter in the running time of the algorithm presented in
Section 5 is optimal, up to constant factors in the exponent, under a widely believed hypothesis.
Brouwer and Veldman presented a reduction from Hypergraph 2-Colorability problem
to H-Contraction problem [5]. We present a reduction from NAE-SAT problem to
Hypergraph 2-Colorability problem. We argue that the reduction used by Brouwer
and Veldman can be used to reduce the Hypergraph 2-Colorability problem to Grid
Contraction problem. Using these reductions and the fact there is no sub-exponential
time algorithm for NAE-SAT, we obtain desired results.

I Theorem 21. Grid Contraction is NP-Complete. Moreover, unless ETH fails, it can
not be solved in time 2o(n), where n is the number of vertices in an input graph.

7 Kernelization

In this section, we present a polynomial kernel for the Grid Contraction problem. In
Section 5, we reduced an instance of Grid Contraction to polynomially many instances of
Annoted Bounded Grid Contraction such that the original instance is a Yes instance
if and only one of these instances is a Yes instance. One can argue that exhaustively
application of Reduction Rule 5.1 leads to a Turing Compression1 of the size O(k2). We use
the similar approach, but with weaker bounds, to obtain a kernel of size O(k4).

If the input graph is not connected then we can safely conclude that we are working with
a No instance. The following reduction rule checks two more criteria in which it is safe to
return a No instance.

1 Please see, for example, [10, Chapter 22] for formal definition.
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I Reduction Rule 7.1. For an instance (G, k), if
there exists a vertex in G whose degree is more than k + 5, or
there are 6k + 1 vertices in G whose degrees are more than 5,

then return a trivial No instance.

I Lemma 22 (?). Reduction Rule 7.1 is safe.

We define ko = (4k + 8) · (k + 1) + 1 . Consider an instance (G, k) on which Reduction
Rule 7.1 is not applicable. If G has at most k2

o + k + 1 vertices then we can argue that we
have a kernel of the desired size. Consider a case when |V (G)| ≥ k2

o + k + 1. We argue that
in this case, if (G, k) is a Yes instance then there exits a large grid separator in a graph G
(Lemma 24).

I Definition 23 ((p× t)-grid-separator). Consider an instance (G, k) of Grid Contraction.
A subset S of V (G) is called a (p× t)-grid-separator of G if it has following three properties.

G[S] = Γp×t.
Graph G− S has exactly two connected components, say C1 and C2.
|V (C1)|, |V (C2)| ≥ k + 1 and N(C1) = R1, N(C2) = Rp, where R1, Rp are the first and
last row in G[S].

I Lemma 24 (?). Consider an instance (G, k) of Grid Contraction such that |V (G)| ≥
k2
o + k + 1. If (G, k) is a Yes instance then there exists a ((4k + 6)× t)-grid-separator in G

for some integer t.

We argue that if there is a large grid that is a separator in G then we can safely contract
two consecutive rows in this grid.

I Reduction Rule 7.2. For an instance (G, k), let S be a ((4k + 6)× t)-grid-separator of G
for some integer t. Let Su(= {u1, u2, . . . , ut}) and Sv(= {v1, v2, . . . , vt}) be two consecutive
internal rows in S. Let G′ be the graph obtained from G by contracting all the edges in
{ujvj | j ∈ [q]}. Return instance (G′, k).

We prove that the reduction rule is safe along the same line as that of Lemma 17.

I Lemma 25 (?). Reduction Rule 7.2 is safe.

The following lemma, which is analogous to Lemma 19, is essential to argue that Reduction
Rule 7.2 can be applied in polynomial time.

I Lemma 26 (?). There exists an algorithm which given an instance (G, k) of Grid Con-
traction and integers p, t runs in polynomial time and either returns a (p×t)-grid-separator
of G or correctly concludes that no such separator exits.

We are now in a position to present the main result of the section.

I Theorem 27 (?). Grid Contraction admits a kernel with O(k4) vertices and edges.
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Abstract
We propose and study a generalization to the well-known problem of polyline simplification. Instead
of a single polyline, we are given a set of ` polylines possibly sharing some line segments and bend
points. Our goal is to minimize the number of bend points in the simplified bundle with respect to
some error tolerance δ (measuring Fréchet distance) but under the additional constraint that shared
parts have to be simplified consistently. We show that polyline bundle simplification is NP-hard to
approximate within a factor n 1

3 −ε for any ε > 0 where n is the number of bend points in the polyline
bundle. This inapproximability even applies to instances with only ` = 2 polylines. However, we
identify the sensitivity of the solution to the choice of δ as a reason for this strong inapproximability.
In particular, we prove that if we allow δ to be exceeded by a factor of 2 in our solution, we can
find a simplified polyline bundle with no more than O(log(`+ n)) ·OPT bend points in polytime,
providing us with an efficient bi-criteria approximation. As a further result, we show fixed-parameter
tractability in the number of shared bend points.
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1 Introduction

Visualization of geographical information is a task of high practical relevance, e.g., for the
creation of online maps. Such maps are most helpful if the information is neatly displayed
and can be grasped quickly and unambiguously. This means that the full data often needs to
be filtered and abstracted. Many important elements in maps like borders, streets, rivers, or
trajectories are displayed as polylines (also known as polygonal chains). For such a polyline, a
simplification is supposed to be as sparse as possible and as close to the original as necessary.

A simplified polyline is usually constructed by a subset of bend points of the original
polyline such that the (local) distance to the original polyline does not exceed a specifiable
value according to a given distance measure, e.g., Fréchet distance or the Hausdorff distance.
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35:2 Simplification of Polyline Bundles

Figure 1 Example where the total complexity increases if each polyline is simplified independently.
Left: Initial bundle of polylines. Right: Bundle of independently simplified polylines.

Figure 2 Example of a bundle of three polylines before and after consistent simplification.

The first such algorithm, which is still of high practical importance, was proposed by
Ramer [16] and by Douglas and Peucker [7]. Hershberger and Snoeyink [13] proposed an
implementation of this algorithm that runs in O(n logn) time, where n is the number of
bend points in the polyline. It is a heuristic algorithm as it does not guarantee optimality
(or something close to it) in terms of retained bend points. An optimal algorithm in this
sense was first proposed by Imai and Iri [14]. Chan and Chin [5] improved the running time
of this algorithm to O(n2) for the Hausdorff distance. For the Fréchet distance, the optimal
solution can be determined in time O(n3) as described by Godau [10].

We remark that all of these algorithms consider the distance segment-wise. This is, the
distance between each segment of the simplification and its corresponding sub-polyline of the
input polyline does not exceed the given threshold. We adhere to this widespread approach.
Intuitively and from an application point of view, it makes sense to map a point p of the
input polyline only to a point of a segment of the simplification “spanning over” p with
respect to the input polyline as this ensures a certain degree of locality. However, the general
unrestricted approach has also received attention in the literature. Here, the Hausdorff or
Fréchet distance between the input polyline and the simplification as a whole polyline is
considered. For the (undirected) Hausdorff distance, this problem becomes NP-hard [17] and
for the Fréchet distance, there is an O(kn5) time algorithm, where k is the output complexity
of the simplification [17]. The problem variant where in addition the requirement is dropped
that all bend points of the simplification must be bend points of the input polyline, is called
a weak simplification. Agarwal et al. [1] show that an optimal simplification under the
segment-wise Fréchet distance with distance threshold δ, as computable using the algorithm
by Imai and Iri, has no more bend points than an optimal weak simplification with distance
threshold δ/4. We note that computing the Fréchet distance between two polylines can
be solved in polynomial time [2], but may become NP-hard when considering additional
properties like allowing to take shortcuts, which replace outliers in one of the polylines [3].
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From a Single Polyline to a Bundle of Polylines

On a map, there are usually multiple polylines to display. Such polylines may share bend
points (bends) and line segments between bends (segments) sectionwise. We call them a
bundle of polylines. One example is a schematic map of a public transport network where
bus lines are the polylines and these share some of the stations and legs.

One might consider simplifying the polylines of a bundle independently. This has some
drawbacks, though. On the one hand, the total complexity might even increase when the
shared parts are simplified in different ways; see Figure 1. On the other hand, it might
suggest a misleading picture when we remove common segments and bends of some polylines,
but not of all. Therefore, we require that a bend in a simplification of a bundle of polylines
is either kept in all polylines containing it or discarded in all polylines. Our goal is then to
minimize the total number of bend points that have to be kept. In Figure 2, we give an
example of a simplification of a bundle of polylines.

Related Work

Polyline bundles were studied before in different contexts. In [4], the goal is to interfere
a concise graph which represents all trajectories in a given bundle sufficiently well. But
this approach primarily aims at retrieving split and merge points of trajectories correctly
and does not produce a simplification of each trajectory in the bundle. Methods for map
generation based on movement trajectories [12] have a similar scope but explicitly allow
to discard outliers and to unify sufficiently similar trajectories, which is not allowed in our
setting.

Agarwal et al. [1] describe an O(n logn) time approximation algorithm for (classical)
polyline simplification under the Fréchet distance. It is an approximation algorithm in the
sense that the output simplification for distance threshold δ has at most as many bends as
an optimal solution with distance threshold δ/2. In Theorem 10, we also relate the size of
our approximate solution respecting a distance thershold of δ to an optimal solution with
distance threshold δ/2.

There is also a multitude of polyline simplification problem variants for single polylines
which involve additional constraints. One important variant is the computation of the
smallest possible simplification of a single polyline which avoids self-intersection [6]. Another
practically relevant variant is the consideration of topological constraints. For example, if the
polyline represents a country border, important cities within the country should remain on
the same side of the polyline after simplification. It was proven that those problem variants
are hard to approximate within a factor n 1

5−ε [8]. Hence, in practice, they are typically
tackled with heuristic approaches [8, 9].

Note that the only allowed inputs to those problem variants are either a single polyline
without self-intersections or a set of polylines without self-intersections and without common
bends or segments (except for common start or end points). In contrast, we explicitly allow
non-planar inputs and polyline bundles in which bends and segments may be shared among
multiple polylines. We also remark that the known results on hardness of approximation of
these problems heavily rely on the constraint that feasible solutions are still non-intersecting.
Since we do not require this, we have to resort to different techniques.
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Contribution

We introduce the optimization problem of polyline bundle simplification, where we are given
` polylines on an underlying set of n points as well as an error bound δ and seek to find a
simplified polyline bundle with the smallest possible number of remaining points, where each
simplified polyline has a Fréchet distance of no more than δ to the original polyline and the
simplification is consistent for shared parts.

While the optimal simplification of a single polyline can be computed in polynomial time,
we show that polyline bundle simplification is NP-hard to approximate within a factor n 1

3−ε

for any ε > 0. This result applies already to bundles of two polylines, hence excluding an
efficient FPT-algorithm depending on parameter `.

On the positive side, we show that this strong inapproximability can be overcome
when relaxing the error bound δ slightly. In particular, we design an efficient bi-criteria
approximation algorithm. Here, we allow the simplified polylines in our solution to have a
Fréchet distance of 2δ instead of only δ to the original polylines. We can then approximate
the optimal solution for the original choice of δ within a factor logarithmic in the input
size. As the choice of δ for real-world problems often is made in a rather ad hoc fashion and
uncertainties with respect to the precision of the input polylines have to be factored in as
well, we deem our bi-criteria approximation to be of high practical relevance.

We furthermore show that, while the number of polylines in the bundles is not suitable
to obtain an FPT-algorithm, the problem of polyline bundle simplification is indeed fixed-
parameter tractable in the number of bend points that are shared among the polylines.

2 Formal Problem Definition

An instance of the polyline bundle simplification problem (from now on abbreviated by PBS)
is specified by a triple (B,L, δ) , where B = {b1, . . . , bn} is a set of n points (bends) in the
plane, a polyline bundle L, which is a set L = {L1, . . . , L`} of ` polylines Li = (si, . . . , ti)
represented as lists of points from B, and a distance parameter δ, which specifies a threshold
for the the maximum (segment-wise) Fréchet distance between original and simplified polyline
bundle. Each polyline Li (i ∈ {1, . . . , `}) is simple in the sense that each bend of B appears
at most once in its list.

I Definition 1 (Polyline Bundle Simplification). Given a triple (B,L, δ), the goal is to obtain
a minimum size subset B∗ ⊆ B of points, such that for each polyline Li ∈ L its induced
simplification Si (which is Li ∩B∗ while preserving the order of points)

contains the start and the end point of Li, i.e., si, ti ∈ Si, and
has a segment-wise Fréchet distance of at most δ to Li, i.e., for each line segment (a, b)
of Si and the corresponding sub-polyline of Li from a to b, abbreviated by Li[a, . . . , b], we
have dFréchet((a, b), Li[a, . . . , b]) ≤ δ.

For the sake of self-containedness we restate the definition of the Fréchet distance below.

I Definition 2 (Fréchet Distance). Between two polylines L1 = (b1,1, b1,2, . . . , b1,|L1|) and
L2 = (b2,1, b2,2, . . . , b2,|L2|) in the Euclidean plane, the Fréchet distance dFréchet(L1, L2) is

dFréchet(L1, L2) := inf
α,β

max
t∈[0,1]

‖cL1(α(t))− cL2(β(t))‖ ,

where α : [0, 1]→ [1, |L1|] and β : [0, 1]→ [1, |L2|] are continuous and non-decreasing functions
with α(0) = β(0) = 1, α(1) = |L1|, β(1) = |L2|,
and cLi

: [1, |Li|]→ R2 with cLi
: x 7→ (bxc+ 1− x)bi,bxc + (x− bxc)bi,dxe.
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3 Hardness of Polyline Bundle Simplification

In this section, we describe a polynomial-time reduction from Minimum Independent Domi-
nating Set (MIDS) to PBS to show NP-hardness and hardness of approximation. In the
MIDS problem, we are given a graph G = (V,E), where V is the vertex set and E is the
edge set of G. We define n̂ = |V | and m̂ = |E|. The goal is to find a set V ∗ ⊆ V of minimum
cardinality that is a dominating set of G as well as an independent set in G. A dominating
set contains for each vertex v, v itself or at least one of v’s neighbors. An independent
set contains for each edge at most one of its endpoints. Halldórsson [11] has shown that
MIDS, which is also referred to as Minimum-Maximal-Independent-Set, is NP-hard
to approximate within a factor of |V |1−ε for any ε > 0. In his proof, he uses a reduction
from SAT to MIDS: from a SAT formula Φ, he constructs a graph such that an algorithm
approximating MIDS would decide if Φ is satisfiable. We observe that this reduction is still
correct if Φ is a 3-SAT formula. Moreover, we observe that the number of edges in the graph
constructed in this reduction by a 3-SAT formula is linear in the number of vertices. Thus,
we conclude the following corollary and assume henceforth that we reduce only from sparse
graph instances of MIDS, in other words, m̂ ≤ cn̂ for some sufficiently large constant c.

I Corollary 3. MIDS on graphs of n̂ vertices and O(n̂) edges, i.e., sparse graphs, is NP-hard
to approximate within a factor of n̂1−ε for any ε > 0.

In our reduction, we use three types of gadgets, which are in principle all lengthy zigzag
pieces. We use vertex gadgets to indicate whether a vertex is in the set V ∗ or not, edge
gadgets to enforce the independent set property, and neighborhood gadgets to enforce the
dominating set property. See Fig. 3 for an overview. We define our gadgets in terms of an
arbitrary δ (threshold for the maximum Fréchet distance) and some γ ≤ 2δ/(10n̂2 + 5). Note
that our problem setting allows overlaps of different polylines without having a common
bend or segment (non-planar input). In our reduction there can also be overlaps, which do
not affect the involved polylines locally.

Vertex Gadget. For each vertex, we construct a vertex gadget (see Figure 3a), which we
arrange vertically next to each other on a horizontal line in arbitrary order and with some
distance xspacing ≥ (2n̂2 + 2)3δ between one and the next vertex gadget.

A vertex gadget has 2n̂+ 2 bends arranged in a zigzag course with x-distance 2δ (δ for
the first and the last segment) and y-distance 3δ between each two consecutive bends.

B Claim 4. In a vertex gadget, there is precisely one shortcut, which starts at the first and
ends at the last bend.

Clearly, the line segment from the first to the last bend has Fréchet distance at most δ to the
other bends and segments of the vertex gadget. Moreover, observe that there is no shortcut
starting or ending at any inner bend. Thus, either none or all inner bends are skipped. We
say that the corresponding vertex is in V ∗ if and only if we do not skip the inner vertices.

Edge Gadget. For each edge {u, v}, we construct an edge gadget (see Figure 3b) being a
zigzag course with 2n̂2 + 5 bends and sharing its second and second last bend with one of
the two corresponding vertex gadgets – the vertex gadgets of u and v. All neighboring bends
from the second to the second last are equidistant in x-dimension, while the first and second
bend, and the second last and last bend have the same x-coordinate. In y-dimension, the
first and the last bend are 2/5δ+ γ below the second and second last bend, respectively. The
other bends are 3/5δ − γ above the second bend or 3/5δ below the first bend.
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2n̂

δ δ

(a) Vertex gadget; bends
that may be shared with
edge or neighborhood gad-
gets are drawn as squares.
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3
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3
5δ

≥ xspacing
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5δ

(b) Edge gadget for an edge uv; the second and second last bend (drawn
as squares) are shared with the vertex gadgets of u and v, respectively. If
and only if at least one of the two shared bends is skipped, we can skip all
2n̂2 + 1 inner bends.

2n̂2 + 1

︸ ︷︷ ︸
2n̂2 + 1

︸ ︷︷ ︸
t3t 3t

b1
b|Adj(v)|

b2

≥ xspacing

. . . ...4
5δ
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(c) Neighborhood gadget for a vertex v; the bends drawn as squares are shared with the vertex gadgets
of v and v’s neighbors in the graph. Only if we keep at least one of the shared bends, we can skip almost
all bends of the gadget.

v1 v2 v3
xspacing xspacing

(d) Combination of three vertex gadgets (for the vertices v1, v2, v3) with two edge gadgets (for the edges
v1v2 and v2v3) and a neighborhood gadget for the vertex v2.

Figure 3 Schematization of our reduction from MIDS to PBS. Shortcuts are indicated by dashed
green line segments. Dashed red line segments between two bends indicate that there is no shortcut.
The vertices in our minimum independent dominating set are precisely the ones for which we do not
take the shortcut of the corresponding vertex gadgets.

B Claim 5. In an edge gadget, there are precisely three long shortcuts. These are (i) from
the first to the last bend, (ii) from the first to the second last bend, and (iii) from the second
to the last bend. Beside these three shortcuts, there are ≤ 4 more shortcuts, which skip only
the second and the second last bend (and possibly also the third and third last bend). There
is no shortcut not skipping one of the shared bends, i.e., the second or the second last bend.
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In Appendix A, we argue that Claim 5 is correct. It follows that not skipping one of the
two shared bends is a relatively expensive choice in terms of retained bends. Remember that
not skipping one of the shared bends means not taking the shortcut in the corresponding
vertex gadget, which means putting the corresponding vertex into V ∗. So, skipping almost all
bends in the edge gadget of {u, v} implies not having u or v in V ∗, which means respecting
the independent set property for the edge {u, v}.

Neighborhood Gadget. For each vertex v, we construct a neighborhood gadget (see Fig-
ure 3c). This gadget shares a bend with every vertex gadget corresponding to a vertex of
Adj(v), which is v and the vertices being adjacent to v. These shared bends are on the same
height. The vertex gadgets of Adj(v) appear in some horizontal order in our construction.
Say the corresponding vertices in order are u1, . . . , u|Adj(v)|. Let the shared bends with u1 and
u|Adj(v)| be b1 and b|Adj(v)|, respectively, and define t as the distance between b1 and b|Adj(v)|.
We place the first bend (the starting point) of the neighborhood gadget 4/5δ below and 3t
to the left of b1, where t is the distance between b1 and b|Adj(v)|, and let the second bend be
b1. Symmetrically, we place the last bend (the end point) of the gadget 4/5δ below and 3t to
the right of b|Adj(v)| and let the second last bend be b|Adj(v)|. Between each two bends bi and
bi+1 shared with the vertex gadgets of ui and ui+1 for each i ∈ {1, . . . , |Adj(v)| − 1}, we add
a zigzag with 2n̂2 + 1 bends as in Figure 3c.

B Claim 6. In a neighborhood gadget, the only shortcuts are (i) the shortcuts skipping
only bi for i ∈ {1, . . . , |Adj(v)|} and (ii) the shortcuts starting at the first bend or bi with
i ∈ {1, . . . , |Adj(v)|} and ending at the last bend or bj with i < j ∈ {1, . . . , |Adj(v)|} – except
for the shortcut starting at the first and ending at the last bend.

In Appendix A, we argue that Claim 6 is correct. Consequently, we can skip almost all
bends in a neighborhood gadget if we keep at least one bend of b1, . . . , b|Adj(v)|. If we skip all
of them, we can skip no other bend. So, to avoid high costs, we must not take the shortcut
of the vertex gadget of at least one vertex of Adj(v). This means that we must, for each
v ∈ V , add a vertex of Adj(v) to V ∗, which enforces the dominating set property.

Observe that all shared bends are shared between only two polylines – by a vertex gadget
and either an edge gadget or a neighborhood gadget. With 2n̂ inner bends, a vertex gadget
provides enough bends that are shared with the edge and neighborhood gadgets as a vertex is
contained in at most n̂ neighborhoods and has at most n̂− 1 incident edges. In the following
lemma, we analyze the size of the constructed PBS instance.

I Lemma 7. By our reduction, we obtain from an instance G = (V,E) of MIDS an instance
of PBS with n bends such that n ≤ 10cn̂3, where n̂ = |V | ≥ 2, |E| ≤ cn̂ (c ≥ 1 is constant).

Proof. To count the bends of the vertex, edge, and neighborhood gadgets without double
counting, we charge the shared bends to the vertex gadgets. All vertex gadgets together
have n̂(2n̂+ 2) bends, all edge gadgets have m̂(2n̂2 + 3) bends without shared bends, and all
neighborhood gadgets have 2m̂ · (2n̂2 + 1) + 2n̂ bends without shared bends. Summing these
values up and using m̂ = |E| ≤ cn̂ yields (for n̂ ≥ 2)

n = 2n̂2 + 2n̂+ 2m̂n̂2 + 3m̂+ 4m̂n̂2 + 2m̂+ 2n̂ ≤ 6cn̂3 + 2n̂2 + (4 + 5c)n̂ ≤ 10cn̂3 . (1)

J

We say a simplification of an instance of PBS obtained by this reduction corresponds to an
independent and dominating set V ′ and vice versa if we take all “long” shortcuts in the vertex
gadgets except for the ones corresponding to V ′ and we skip all inner unshared bends in all
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edge and neighborhood gadgets, which is possible since V ′ is independent and dominating.
Observe that for each independent and dominating set there is precisely one corresponding
simplification (which is also valid acc. to δ).

I Lemma 8. Let V ′ be a solution for an instance G = (V,E) of MIDS. In the in-
stance (B,L, δ) of PBS obtained by our reduction, the size of the simplification corresponding
to V ′ is 2n̂(|V ′|+ c+ 2), where n̂ = |V | and c ≥ 1 is constant.

Proof. Only for all v ∈ V \ V ′, we take the shortcuts in the corresponding vertex gadgets in
(B,L, δ). This gives us (n̂− |V ′|) · 2 + |V ′| · (2 + 2n̂) = 2n̂ (1 + |V ′|) remaining bends in all
vertex gadgets combined. In the following, we will count shared bends for the vertex gadgets.
We take a “long” shortcut in all of the edge gadgets. This gives us two remaining unshared
bends in all edges gadgets (cn̂ · 2 bends in total). Moreover, we skip all inner unshared
bends in all of the neighborhood gadgets (2n̂ bends remaining). Altogether, this sums up to
2n̂(|V ′|+ 1 + c+ 1). J

By Lemma 8, we know that for an optimal solution V ∗ of an instance of MIDS, the
corresponding simplification in the instance (B,L, δ) of PBS obtained by our reduction
has size 2n̂(OPTMIDS + c+ 2), where OPTMIDS = |V ∗| and which of course is at least the
size OPTPBS of the optimal solution of (B,L, δ). We formalize this in the following corollary.

I Corollary 9. For an instance G = (V,E) of MIDS and the instance (B,L, δ) of PBS
obtained by our reduction from G, OPTPBS ≤ 2n̂(OPTMIDS + c+ 2).

I Theorem 10. PBS is NP-hard to approximate within a factor of n 1
3−ε for any ε > 0,

where n is the number of bend points in the polyline bundle.

Proof. Assume that there is an approximation algorithm A solving any instance of PBS
within a factor of n 1

3−ε for some constant ε > 0 relative to the optimal solution. We can
transform any instance G = (V,E) of MIDS, where n̂ = |V |, m̂ = |E|, and OPTMIDS = |V ∗|,
this is the size of an optimal solution, to an instance (B,L, δ) of PBS using the reduction
described above in this section, where |B| = n and the size of an optimal solution is OPTPBS.

Employing A to solve (B,L, δ) yields a (simplified) polyline bundle LA. We denote the
number of bends in LA by nA and we know that nA ≤ OPTPBS · n

1
3−ε for some ε > 0.

If all (2n̂2 + 1)-bend-sequences in all edge and neighborhood gadgets are skipped, we can
immediately read an independent dominating vertex set V ′ ⊆ V from the vertex gadgets
where the shortcut is not taken. Otherwise, we replace LA such that it corresponds to any
maximal independent set V ′ ⊆ V (which is always an independent and dominating set and
can be found greedily in polynomial time). Observe that this can only lower the number
of bends compared to a solution not skipping all (2n̂2 + 1)-bend-sequences in the edge and
neighborhood gadgets as in all vertex gadgets together we can skip at most n̂ · 2n̂ bends.

Using Lemma 8 and Corollary 9, we can state that

n
1
3−ε ≥ nA

OPTPBS
≥ 2n̂(|V ′|+ c+ 2)

2n̂(OPTMIDS + c+ 2) >
|V ′|

OPTMIDS + c+ 2 , (2)

which we can reformulate as |V ′| < n
1
3−ε(OPTMIDS +c+2). We can assume that OPTMIDS >

c+ 2 as otherwise we could check all subsets of V of size at most c+ 2 in polynomial time.
Similarly, we can assume that n̂ is large enough so that n̂2ε > 20c. Beside this, we apply
Lemma 7 and obtain

|V ′| < 2n 1
3−εOPTMIDS ≤ 2 · (10cn̂3) 1

3−εOPTMIDS (3)
< 20c · n̂1−3εOPTMIDS < n̂2ε · n̂1−3εOPTMIDS = n̂1−εOPTMIDS . (4)
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Since we know that it is NP-hard to approximate MIDS within a factor of n̂1−ε for any
ε > 0, it follows that A cannot be a polynomial time algorithm, unless P = NP. Or in other
words, it is NP-hard to approximate PBS within a factor of n 1

3−ε for any ε > 0. J

Currently, we use one polyline per gadget. So, our reduction uses 2n̂ + m̂ polylines.
We can reduce the number of polylines to two by connecting all vertex gadgets – one after
the other – in arbitrary order by two segments, which gives us the first polyline, and by
connecting all edge and neighborhood gadgets in arbitrary order by two segments, which
gives us the second polyline. The extra bend between each pair of new segments is placed far
away from the construction, e.g. at (∞,∞). This never creates new shortcuts for skipping a
bend in a vertex gadget or in a neighborhood gadget. Yet, we might create new shortcuts
that allow for additionally skipping the first and the last bend of an edge gadget. However,
we cannot skip any further bend unless the second or second last bend is skipped, which
preserves the functionality of our gadget. For the analysis, this gives us an additive constant
of at most 2n̂+ m̂ bends that cannot be skipped, which we can include to Inequalities (2)–(4)
in Theorem 10 with the same result to obtain the following corollaries.

I Corollary 11. Even for instances of two polylines, PBS is NP-hard to approximate within
a factor of n 1

3−ε for any ε > 0, where n is the number of bend points in the polyline bundle.

I Corollary 12. PBS is not fixed-parameter tractable in the number of polylines `.

4 Bi-criteria Approximation for Polyline Bundle Simplification

In this section, we describe a bi-criteria approximation algorithm for PBS. Conceptually, a
bi-criteria approximation is a generalization of a (classical) approximation where it is allowed
to violate a certain constraint by a specific factor. In particular, an algorithm is called
a bi-criteria (α, β)-approximation algorithm if it runs in polynomial time and produces a
solution of size at most α ·OPT while relaxing the constraint by a factor of β.

In our particular problem PBS, we relax the error bound δ. In Section 3, we have shown
that there is no bi-criteria (n 1

3−ε, 1)-approximation algorithm for PBS for any ε > 0 unless
P = NP. This strong inapproximability comes from the high sensitivity towards choices of
keeping or discarding single bends, which is modulated by the given value of δ. By making
a bad choice we cannot take (helpful) shortcuts that have a distance just a little greater
than the given distance threshold δ to the original sub-polyline. This can be overcome by
relaxing the constraint slightly. In particular, we show that allowing a constraint violation
by a factor of β = 2, we can design an efficient algorithm with an approximation guarantee
of α ∈ O(log(`+ n)). For an overview of our algorithm see Fig. 6.

The key building block of our algorithm is a connection between PBS and a certain
geometric set cover problem, which we call star cover problem. The star cover problem
models the aspect of shortcutting polylines by few bend points but does not take into account
consistency. We argue, however, that approximate solutions to the star cover problem can be
post-processed to form consistent PBS solutions by slightly violating the error threshold δ.

Star Cover Problem

Next, we introduce the star cover problem, which is a special type of the set cover problem
defined over instances of PBS. Informally spoken, a star is a bend together with some
incident shortcut segments. These shortcut segments span sets of original segments of the
polylines. To this end, we first direct each polyline L ∈ L in a given PBS instance (B,L, δ)
arbitrarily but ensuring that all (shortcut) segments of L are oriented in the same direction.
Then a star consists of a set of incoming shortcuts of some bend; see Fig. 4 for an example.
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bcentralbcentral

Figure 4 Example of a star (in orange)
around a bend bcentral, which lies on three poly-
lines. Each polyline was assigned an arbitrary
direction indicated by arrow heads.

by bz

bi
bj

≤ δ

≤ δ

≤ 2δ

Figure 5 Example of the maximum Fréchet
distance between a line segment (bi, bj) and its
corresponding sub-polyline if there is a valid
shortcut (by, bz) going over bi and bj .

I Definition 13 (Star). A star is the combination of a bend bcentral ∈ B and, for each polyline
L ∈ L that contains bcentral, one or zero incoming shortcut segments (according to δ).

We say a star s covers a segment–polyline pair (e, L), if s contains for L a shortcut
(bouter, bcentral) and e lies on L between bouter and bcentral. Our goal is to find a small
set of stars that cover all segment–polyline pairs. We denote the set of all segment–polyline
pairs in the input by U and the subset of pairs covered by a particular star s by Us. Then
the star cover problem is defined as follows.

I Definition 14 (Star Cover). A star cover C is a set of stars, such that
⋃
s∈C Us = U , i.e.

all segment–polyline pairs are covered. The star cover problem (abbreviated by StCo) asks
for a minimum size star cover.

Relationship between Instances of Polyline Bundle Simplification and Star Cover

Next, we investigate the relationship between an instance of StCo and its corresponding
instance of PBS. We argue that every (optimal) solution for PBS can be decomposed into a
star cover. Hence an optimal StCo yields a lower bound for an optimal PBS solution.

I Lemma 15. The size OPTStCo of an optimal solution of any instance of StCo obtained
from an instance (B,L, δ) of PBS is bounded by OPTStCo ≤ OPTPBS, where OPTPBS is the
size of an optimal solution of (B,L, δ).

Proof. Consider an optimal solution B∗ of (B,L, δ). From the simplified polyline bundle
induced by B∗, we can get a star cover for any instance of StCo obtained from (B,L, δ)
by iteratively adding a star in the following way until there are only isolated bends. Get
a star s by taking any connected bend bcentral ⊆ B∗ as a central bend and the bends that
precede bcentral on each of the simplified polylines as its outer bends. Remove the segment–
polyline pairs covered by s from our simplified polyline bundle. Repeat this until there are
no more segment–polyline pairs. The obtained star cover has at most |B∗| stars and at least
as many stars as a minimum star cover. So, OPTStCo ≤ OPTPBS. J

Approximation for the Star Cover Problem

We can compute an approximate solution for StCo by employing the classical greedy
algorithm [15] for set cover, which iteratively selects the set with the most uncovered
elements until all elements are covered. However, if applied naively, the running time would
be exponential in the size of the PBS instance as the number of stars might be in the order
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of n · 2`. We observe, however, that it suffices to consider only maximal stars (containing
on each polyline incident to the central bend the incoming shortcut that covers the largest
number of segments). As there are only n maximal stars, this guarantees polynomial running
time.

I Lemma 16. We can compute an O(log(t+ w))-approximation for an instance of StCo
obtained from an instance (B,L, δ) in time O(`n3), where t is the maximum number of
polylines any bend point occurs in and w is the maximum number of segments any valid
shortcut (according to δ) can skip.

Proof. There is a polynomial time greedy algorithm that yields an O(logm) approximation
for the set cover problem, where m is the size of the largest set in the given collection of
subsets of the universe [15]. The greedy algorithm works as follows. While there are uncovered
elements from the universe, add the set with the largest number of uncovered elements to
the set cover. In an instance of StCo, this m is the maximum number of segment–polyline
pairs maxstar s |Us| a single star can cover. If the central bend point of a star lies in at most t
polylines, the star contains at most t shortcut segments, and each of which covers at most w
segments, hence we have m = tw. Observe that O(log(tw)) = O(log(t+ w)).

Having settled the O(log(t+w)) approximation ratio, it remains to prove the polynomial
running time. Using the algorithm by Imai and Iri [14] independently for each polyline, we
can find all (maximal) shortcuts for every bend on every polyline in time O(`n3). Combining
these shortcuts at every bend gives us all n maximal stars in time O(`n). For each star,
we also save the number of segment–polyline pairs it covers and, to each segment–polyline
pair, we link all stars it appears in. Both can be done in time O(`n2). As long as there are
uncovered segments, we find the star with the most uncovered segments and then update the
number of uncovered segments for the other stars. This can be done in O(`n2) time in total
as well. J

Relationship between Star Covers and Solutions of Polyline Bundle Simplification

While a solution for PBS can be directly converted into a star cover as argued above, the
converse is more intricate. The shortcuts contained in the selected stars may be overlapping
or nested along a polyline, that is, bends skipped by one shortcut may be end points of
another shortcut in the set. Moreover, shared parts of different polylines may be shortcut
differently. Therefore consistency is not guaranteed. We explain how to derive from a star
cover solution a solution for its corresponding instance of PBS. Some of the shortcuts of
the StCo solution are replaced by shorter shortcuts in order to integrate some intermediate
point to the PBS solution. Lemma 17 states that those newly introduced shortcuts can be at
most 2δ away from the original polyline. The situation described there is depicted in Fig. 5.
It follows immediately from a lemma by Agarwal et al. ([1], Lemma 3.3).

I Lemma 17. Given a polyline L = (b1, b2, . . . , b|L|) and a distance threshold δ. If there are
y, z ∈ N with 1 ≤ y < z ≤ |L| and dFréchet((by, bz), L[by, . . . , bz]) ≤ δ (i.e., segment (by, bz) is
a valid shortcut), then for any i, j ∈ N with y ≤ i < j ≤ z, dFréchet((bi, bj), L[bi, . . . , bj ]) ≤ 2δ.

Equipped with this lemma, we now discuss the actual transformation from a StCo
solution to a PBS solution. The idea is to keep, beside the starting points of all polylines,
only the central bend points of the selected stars while dropping their leaves. This is closely
tied with the fact that we minimize the number of stars while ignoring their degree in the
algorithm. The main insight here is that the shortcuts induced by this augmented point set
still have a small distance to the original polylines.
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(a) initial polyline bundle. (b) assigning a direction to each polyline.

(c) all maximal stars.

≤ δ

(d) greedy star cover of maximal stars.

≤ 2δ

(e) retaining only bends of Bcentral ∪Bfirst. (f) resulting simplified polyline bundle.

Figure 6 Example of our bi-criteria (O(log(`+ n)), 2)-approximation algorithm for PBS.

I Lemma 18. Let C be a star cover for an instance of StCo obtained from an in-
stance (B,L, δ) of PBS. If C is an α-approximation for its instance of StCo, a bi-criteria
(α+ 1, 2)-approximation for (B,L, δ) can be computed in time O(n) from C.

Proof. Let Bcentral be the set of central bends of the stars in C and let Bfirst be the set of first
bends of all polylines from L. We return Bcentral∪Bfirst as the bi-criteria approximate solution.
Clearly, we can construct this set in timeO(n). According to Lemma 15, OPTStCo ≤ OPTPBS,
where OPTPBS is the size of the optimal solution of (B,L, δ) and OPTStCo is the size of the
optimal solution of the instance of StCo where C is an approximation for. We conclude

|Bcentral ∪Bfirst| ≤ αOPTStCo +OPTPBS ≤ (α+ 1)OPTPBS . (5)

Let L′ be the polyline bundle induced by Bcentral ∪ Bfirst. It remains to prove that the
Fréchet distance between each induced segment of each polyline in L′ and its corresponding
sub-polyline in L is at most 2δ. Consider any segment (bi, bj) of any polyline L′ ∈ L′
corresponding to a polyline L ∈ L such that bi precedes bj in L. There is a star s in C that
covers all segments of L[bi, bj ]. Clearly, all segments of L[bi, bj ] are covered by the stars of C
and if there was no single star s covering all segments of L[bi, bj ], but multiple stars, there
would be another central bend of a star between bi and bj on L and, in L′, (bi, bj) would
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not be a segment. The central bend bcentral of s succeeds bj or is equal to bj as otherwise
s would not cover all of L[bi, bj ]. Accordingly, the outer bend bouter of s on L precedes bi
or is equal to bi as otherwise s would not cover all of L[bi, bj ]. By the definition of a star,
we know that dFréchet((bouter, bcentral), L[bouter, bcentral]) ≤ δ. By Lemma 17, it follows that
dFréchet((bi, bj), L[bi, bj ]) ≤ 2δ. J

Bi-criteria Approximation for Polyline Bundle Simplification via Star Cover

Using the previous lemmas, we obtain the main theorem of this section. It is reasonable to
assume that the number ` of polylines is polynomial in n in practically relevant settings.
Hence, we essentially obtain an exponential improvement over the complexity-theoretic lower
bound n 1

3−ε if we allow the slight violation of the error bound.

I Theorem 19. There is a bi-criteria (O(log(`+ n)), 2)-approximation algorithm for PBS
running in time O(`n3), where ` is the number of polylines and n is the number of bend
points in the polyline bundle.

Proof. We describe a (kind of) approximation-preserving reduction from PBS to StCo,
which can be realized as a bi-criteria approximation algorithm. Its steps are depicted in Fig. 6.
Given an instance (B,L, δ) of PBS, where we let the size of the optimal solution be OPTPBS,
we assign an arbitrary direction to each L ∈ L. This yields our corresponding instance of
StCo. For this corresponding instance of StCo, compute an O(log(t+ w)) approximation
star cover C. We can do this in time O(`n3) according to Lemma 16. According to Lemma 18,
we can compute a bi-criteria (O(log(t+ w)), 2)-approximation for (B,L, δ) from C in O(n)
time. Since t ≤ ` and w ≤ n, this is also a bi-criteria (O(log(`+ n)), 2)-approximation. J

5 Fixed-Parameter Tractability

A brute force approach is checking for every subset of the bend set B in time O(` ·n) whether
it is a valid simplification and accepting the one with the smallest number of bends or
segments. Consequently, the runtime of this approach is O(2n · ` ·n). When considering fixed-
parameter tractability, investigating parameters of the input is a natural choice. According
to Corollary 12, PBS is not fixed-parameter tractable (FPT) in the number of polylines `.
However, PBS is FPT in the number of shared bends, i.e., bends contained in more than
one polyline. We denote the set of those bends by Bshared and we let k := |Bshared|.

I Theorem 20. PBS is FPT in the number of shared bends k. There is an algorithm solving
PBS in time O(2k · ` · n2 + `n3).

Proof. We describe an algorithm that solves PBS in time O(2k · ` · n3). Given an in-
stance (B,L, δ) of PBS, the first step is to compute, for each L ∈ L, its shortcut graph GL
using the algorithm by Imai and Iri [5]. This can be done in time O(` · n3). For a polyline L
and a distance threshold δ, the shortcut graph is the directed graph that has the bends of L
as its vertices and has an edge from u to v if dFréchet((u, v), L[u, · · · , v]) ≤ δ, this is, if there
is a shortcut from u to v in L. Given the shortcut graph GL of L, the vertices of a shortest
path in GL from the first bend of L to the last bend of L define an optimal simplification
of L.

The second step is to iterate over all subsets B′ ⊆ Bshared and check if B′ is part of an
optimal solution. Before the first iteration, we initialize a variable nmin =∞ and we will save
the current best solution by Smin. Then, in each iteration, we temporarily remove from all
shortcut graphs GL all vertices Bnot-contained = Bshared −B′ and all edges that correspond
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(a) initial bundle with shortcuts. (b) optimal for Min-Bends . (c) optimal for Min-Segments .

Figure 7 Example of three polylines, where the goals Min-Segments and Min-Bends differ.

to a shortcut skipping a bend in B′. Clearly, removing Bnot-contained can be performed in
O(n2) time for each GL. For the removal of the edges in GL, note that we can sort the list
of bends Bnot-contained and the list of all edges (defined by their endpoints) alphanumerically
by the occurrence of the bends within the polyline L. If we traverse both lists simultaneously
in ascending order, we remove an edge if and only if its endpoint-bends come before and
after the currently considered bend from Bnot-contained. Therefore, the removal operations
can be performed in O(n2) time per GL.

If some shortcut graph becomes disconnected by these removal operations, we continue
with the next iteration. Otherwise, we take the bends of a shortest path from the first to
the last bend in each reduced version of GL. Together they define a simplification S of our
PBS instance. If the number nS of bends in S is less than nmin, we set nmin = nS and
Smin = S. After the iteration process, we return Smin. Since we have 2k subsets of Bshared
and each iteration can be performed in O(` · n2) time, the running time of the algorithm is
in O(2k · ` · n2 + `n3).

It remains to prove that Smin is in the end an optimal solution of our input instance of
PBS. First note that our algorithm always returns some polyline simplification because for
B′ = Bshared, we do not get a disconnected GL after the removal operations.

The returned solution is valid because the shared bends of B′ are taken in all simplified
polylines (they cannot be skipped) and the other shared bends are skipped in all simplified
polylines. Our algorithm finds the minimum size solution because in one iteration it considers
B′ = B∗∩Bshared, where B∗ is the set of retained bends of an optimal solution. Moreover, an
optimal solution cannot have fewer bends occurring in only one polyline L than our algorithm
since this would imply a shorter shortest path within the reduced version of GL. J

6 Conclusion and Outlook

We have generalized the well-known problem of polyline simplification from a single polyline
to polyline bundles. Although in the case of one polyline, efficient algorithms have long been
known, it turned out that simplifying two or more polylines is a problem that is indeed hard
to approximate within a factor of n 1

3−ε for any ε > 0. However, if we relax the constraint
on the maximum Fréchet distance between original and simplified polyline by a factor of 2,
we can overcome this strong inapproximability bound. Moreover, we can find an optimal
simplification quickly if we have only a small number of shared bends since the problem of
polyline bundle simplification is fixed-parameter tractable (FPT) in this parameter.

Based on our results, there are many possible directions for future research.
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Our current bi-criteria approximation guarantee is logarithmic in the number of polylines `
plus the number of bend points n. In most practical application, ` is smaller than n or at
most polynomial in n. From a theoretical perspective, however, it might be interesting
to get rid off the dependency on ` in the bi-criteria approximation in order to get
improvements for the case where ` is significantly larger than n.
As a distance measure, we employed the Fréchet distance, which we consider to be more
natural and intuitive than the Hausdorff distance when comparing polylines. However,
the Hausdorff distance is sometimes used in classical polyline simplification as well. Our
hardness results also apply to the Hausdorff distance, but our bi-criteria approximation
algorithm fails since Lemma 17 is not true for the Hausdorff distance. One might
consider PBS using the Hausdorff distance or other (even non-segment-wise) distance
measurements.
In our generalization to bundles of polylines, we aim for a minimizing the number of
retained bends (Min-Bends). However, minimizing the number of retained segments
(Min-Segments) is an alternative goal, which also generalizes the classical minimization
problem for a single polyline. Optimal simplifications for both goals may differ; see Fig. 7.
Our hardness and FPT results also apply for the goal Min-Segments. However, it is
not clear how to obtain a similar result for the bi-criteria approximability.
For practical purposes, the scalability of the proposed bi-criteria approximation algorithm,
the FPT algorithm, and possibly new heuristics should be investigated on real-world data.
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A Omitted Content of Section 3

It remains to show the correctness of Claim 5 and Claim 6, which we use in our reduction
from MIDS to PBS. Our gadgets are depicted in Fig. 3. For convenience, we provide by
Fig. 8 a copy of them with some additional details, to which we will refer in this appendix.
For example r is the x-distance between two consecutive (inner) vertices in an edge and a
neighborhood gadget (if a gadget is rotated, the distance is measured along the corresponding
rotated axis). We know that r ≥ xspacing/(2n̂2 + 2).

B Claim 5. In an edge gadget, there are precisely three long shortcuts. These are (i) from
the first to the last bend, (ii) from the first to the second last bend, and (iii) from the second
to the last bend. Beside these three shortcuts, there are ≤ 4 more shortcuts, which skip only
the second and the second last bend (and possibly also the third and third last bend). There
is no shortcut not skipping one of the shared bends, i.e., the second or the second last bend.

In (i), both of the shared bends, these are the second and the second last, are skipped
and we can take the “long” shortcut from the first to the last bend because the line segment
between them is horizontal and has y-distance 3/5δ or 2/5δ+γ or δ to all inner bends. In (ii),
the most critical part is the distance d1 between the third last bend and the straight-line
segment from the first to the second last bend (see Figure 3b). It is

d1 ≤
3
5δ +

(
2
5δ + γ

)
−

2
5δ + γ

2n̂2 + 2 ≤ δ + γ −
2
5 ·

10n̂2+5
2 γ + γ

2n̂2 + 2 = δ . (6)

Observe that (iii) is the same as (ii) but mirrored. If neither the second nor the second last
bend is skipped, i.e., if u and v are in the set V ∗, then we cannot cut short anything in this
gadget. Clearly, we cannot take a “long” shortcut from the second to the second last bend
because the lower row of inner bends has distance δ + γ from the potential shortcut segment.
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(c) Neighborhood gadget.

Figure 8 Some additional details to Fig. 3.

Moreover, we cannot take a “short” shortcut from a bend of the lower row to a bend of the
upper row or the other way around. If we would aim to skip two inner bends, the distance d2
(see Figure 3b) from an inner bend to the shortcut segment would have to be at most δ.
However, it is

d2 = sinα · 2r = sin arctan
8
5δ

3r · 2r =
8δ

15r√( 8δ
15r
)2 + 1

· 2r = 16δr√
(8δ)2 + (15r)2

, (7)

where

r ≥ xspacing
2n̂2 + 2 ≥

(2n̂2 + 2)3δ
2n̂2 + 2 = 3δ , (8)

and hence,

d2 ≥
48δ2

√
64δ2 + 2025δ2

= 48√
2089

δ = 1.0502 . . . δ . (9)

Observe that this becomes even greater if we aim for skipping four or more bends or
if we start or end at one of the two shared bends. To make this clearer, we explicitly
consider the latter case where a potential shortcut would start at the second bend and end
at the (2i+ 1)-th bend. This situation is depicted in Fig. 9. If it was a valid shortcut, d3
would be less than or equal to δ. Since d3 is inside a rectangular triangle, its length is

d3 = t · sin β , (10)
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(2i− 1)r

d 3

α2

β
α1

t

85
δ

r

δ
+
γ

Figure 9 The potential shortcut segment in an edge gadget from the second bend to an inner
bend (the (2i+ 1)-th bend) is dashed in red. However, d3 > δ makes it no valid shortcut segment.

where t is inside another rectangular triangle with legs of length r and 8/5δ, so

t =

√
r2 +

(
8
5δ
)2

. (11)

We can determine β via the angles α1 and α2 as

β = α1 − α2 = arctan
8
5δ

r
− arctan δ + γ

(2i− 1)r . (12)

In the arctan-functions, all parameters are positive, so they live in the range [0, π/2). Hence,
β lives in the range (−π/2, π/2). In this range, the sin-function is monotonously increasing.
Therefore, to give a lower bound on d3, we can use a lower bound on sin β by specifying a
lower bound on β. Since i ≥ 2, γ < δ/(5n̂2) and n̂ ≥ 1, we state that

β = α1 − α2 > arctan
8
5δ

r
− arctan

6
5δ

3r = arctan 8
5r′ − arctan 2

5r′ , (13)

where r′ = r/δ. A lower bound on t is

t =

√
(r′δ)2 +

(
8
5δ
)2

> r′δ . (14)

So, we can get a lower bound on d3 by

d3 = t · sin β > r′ sin
(

arctan 8
5r′ − arctan 2

5r′

)
︸ ︷︷ ︸

c(r′)

· δ . (15)

To prove that d3 is always greater than δ, it suffices to show that the prefactor c(r′) is equal
to or greater than 1 for all possible values of r′. We reformulate c(r′) using well-known
trigonometric identities:

c(r′) = r′ sin
(

arctan 8
5r′ − arctan 2

5r′

)
= 6√

25 + 68
r′2 + 256

25r′4

(16)
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d
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δ

3r
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α3
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Figure 10 The potential shortcut segment in a neighborhood gadget form a bend bi to an inner
bend is dashed in red. However, d4 > δ makes it no valid shortcut segment.

For r′ = 3, this is c(r′) = 1.0495 . . . and, from Equation (16), it is easy to see that c(r′) is
even greater for r′ > 3. Thus, we conclude that d3 > δ always holds.

It remains to consider potential shortcuts starting or ending at the first or the last bend.
Clearly, skipping only the second or second last bend is always possible. Skipping the second
and the third bend or skipping the second last and the third last bend may sometimes
be possible depending on how much the edge gadget is stretched horizontally. However,
according to the previous analysis, skipping more bends is not possible since the distance
between the potential shortcut segment and the bend before the end point of the potential
shortcut is at least d3.

B Claim 6. In a neighborhood gadget, the only shortcuts are (i) the shortcuts skipping
only bi for i ∈ {1, . . . , |Adj(v)|} and (ii) the shortcuts starting at the first bend or bi with
i ∈ {1, . . . , |Adj(v)|} and ending at the last bend or bj with i < j ∈ {1, . . . , |Adj(v)|} – except
for the shortcut starting at the first and ending at the last bend.

Clearly, the shortcuts (i) for skipping any bi (or exactly one neighbor of bi) are valid and
there is no shortcut from the first to the last bend since the potential shortcut segment has
distance 8/5δ to the upper row of bends. In (ii), there clearly is a shortcut if we start at any
bi and end at any bj . If we start at some bi and end at the last bend, observe that, in the
most extreme case, the segment from b1 to the last bend has a y-distance to the upper row
of

4
5δ + t

4t ·
4
5δ = δ (17)

when it passes b|Adj(v)| in x-dimension. Thus, this shortcut is valid and the same holds for
the shortcuts from the first bend to some bj .

It remains to argue that there are no more shortcuts. A shortcut starting and ending
at a bend on the upper or lower row is not possible because it would either be a horizontal
segment, which has distance 8/5δ to the other row, or the distance to some bend in between
would be at least d2, which we have shown to be greater than δ in Equations (7)–(9). It is
easy to see that there is no shortcut starting at the first bend and ending at some inner bend
of the upper or lower row. The same holds true for shortcuts starting at some inner bend of
the upper or lower row and ending at the last bend.

Moreover, a shortcut segment starting (ending) at some bi for i ∈ {1, . . . , |Adj(v)|} and
skipping one bend would have a distance of d4 to this bend as depicted in Fig. 10. Since d4
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is inside a rectangular triangle, we can determine d4 by

d4 = 3r · sinα3 , (18)

where α3 is in another rectangular triangle and thus can be determined by

α3 = arctan
8
5δ

4r = arctan 2
5r′ . (19)

Putting them together, we get

d4 = 3r′δ · sin arctan 2
5r′ = 3r′δ

2
5r′√

1− 4
25r′2

= 6√
25− 4

r′2

δ . (20)

For r′ = 3, this is 1.2108 . . . δ and again, for r′ > 3, d4 is even greater.
If we skip more than one inner bend, the distance to the last skipped bend becomes only

greater. Hence, we conclude that Claim 6 is correct.



Quantum Algorithm for Finding the Optimal
Variable Ordering for Binary Decision Diagrams
Seiichiro Tani
NTT Communication Science Laboratories, NTT Corporation, Atsugi, Japan
seiichiro.tani.cs@hco.ntt.co.jp

Abstract
An ordered binary decision diagram (OBDD) is a directed acyclic graph that represents a Boolean
function. Since OBDDs have many nice properties as data structures, they have been extensively
studied for decades in both theoretical and practical fields, such as VLSI (Very Large Scale Integration)
design, formal verification, machine learning, and combinatorial problems. Arguably, the most
crucial problem in using OBDDs is that they may vary exponentially in size depending on their
variable ordering (i.e., the order in which the variables are to be read) when they represent the same
function. Indeed, it is NP hard to find an optimal variable ordering that minimizes an OBDD for a
given function. Friedman and Supowit provided a clever deterministic algorithm with time/space
complexity O∗(3n), where n is the number of variables of the function, which is much better than
the trivial brute-force bound O∗(n!2n). This paper shows that a further speedup is possible with
quantum computers by presenting a quantum algorithm that produces a minimum OBDD together
with the corresponding variable ordering in O∗(2.77286n) time and space with an exponentially
small error probability. Moreover, this algorithm can be adapted to constructing other minimum
decision diagrams such as zero-suppressed BDDs.
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have gathered much attention from various research fields. To enjoy these nice properties,
however, we actually need to address a crucial problem, which is that OBDDs may vary
exponentially in size depending on their variable ordering. For instance, a Boolean function
f(x1, . . . , x2n) = x1x2 + x3x4 + · · ·+ x2n−1x2n has a (2n+ 2)-sized OBDD for the ordering
(x1, . . . , x2n) and a 2n+1-sized OBDD for the ordering (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n) [8,
Sec. 8.1] (see Figure 1 for the case where n = 6). This is not a rare phenomenon; it could
happen in many concrete functions that one encounters. Thus, since the early stages of
OBDD research, one of the most central problems has been how to find an optimal variable
ordering, i.e., one that minimizes OBDDs. Since there are n! permutations over n variables,
the brute-force search requires at least n! = 2Ω(n logn) time to find an optimal variable
ordering. Indeed, finding an optimal variable ordering for a given function is an NP hard
problem (see a short survey in the full paper [11]).

To tackle this high complexity, many heuristics have been proposed to find an optimal
variable ordering or a relatively good one. These heuristics work well for Boolean functions
appearing in specific applications since they are based on very insightful observations, but
they do not guarantee a worst-case time complexity lower than that achievable with the
brute-force search. The only algorithm with a much lower worst-case time complexity bound,
O∗(3n) time (O∗(·) hides a polynomial factor), than the brute-force bound O∗(n!2n) for all
Boolean functions with n variables was provided by Friedman and Supowit [5], and that was
almost thirty years ago!

1.2 Our Results
In this paper, we show that quantum speedup is possible for the problem of finding an
optimal variable ordering of the OBDD for a given function. This is the first quantum
speedup for the OBDD-related problems. Our algorithms assume the quantum random
access memory (QRAM) model [6], which is commonly used in the literature concerned with
quantum algorithms. In the model, one can read contents from or write them into quantum
memory in a superposition. We provide our main result in the following theorem.

I Theorem 1. There exists a quantum algorithm that, for a function f : {0, 1}n → {0, 1} given
as its truth table, produces a minimum OBDD representing f together with the corresponding
variable ordering in O∗(γn) time and space with an exponentially small error probability with
respect to n, where the constant γ is at most 2.77286. Moreover, the OBDD produced by
our algorithm is always a valid one for f , although it is not minimum with an exponentially
small probability.

This improves upon the classical best bound O∗(3n) [5] on time/space complexity. The
classical algorithm achieving this bound is a deterministic one. However, there are no
randomized algorithms that compute an optimal variable ordering in asymptotically less
time complexity as far as we know.

It may seem somewhat restricted to assume that the function f is given as its truth
table, since there are other common representations of Boolean functions such as DNFs,
CNFs, Boolean circuits and OBDDs. However, this is not the case. Our algorithm actually
works in more general settings where the input function f is given as any representation such
that the value of f on any specified assignment can be computed over the representation
in polynomial time in n, such as polynomial-size DNFs/CNFs/circuits and OBDDs of any
size. This is because, in such cases, the truth table of f can be prepared in O∗(2n) time and
the minimum OBDD is computable from that truth table with our algorithm. We restate
Theorem 1 in a more general form as follows.
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I Corollary 2. Let R(f) be any representation of a Boolean function f with n variables such
that the value of f(x) on any given assignment x ∈ {0, 1}n can be computed on R(f) in
polynomial time with respect to n. Then, there exists a quantum algorithm that, for a function
f : {0, 1}n → {0, 1} given as R(f), produces a minimum OBDD representing f together with
the corresponding variable ordering in O∗(γn) time and space with an exponentially small error
probability with respect to n, where the constant γ is at most 2.77286. Possible representations
as R(f) are polynomial-size DNFs/CNFs/circuits and OBDDs of any size for function f .

There are many variants of OBDDs, among which the zero-suppressed BDDs (ZDDs
or ZBDDs) introduced by Minato [9] have been shown to be very powerful in dealing
with combinatorial problems (see Knuth’s famous book [7] for how to apply ZDDs to such
problems). With slight modifications, our algorithm can construct a minimum ZDD with
the same time/space complexity. We believe that similar speedups are possible for many
other variants of OBDDs (adapting our algorithm to multiterminal BDDs (MTBDDs) [8] is
almost trivial).

Technical Contribution

Recently, Ambainis et al. [1] has introduced break-through quantum techniques to speed
up classical dynamic programming approaches. Inspired by their technique, our quantum
algorithm speeds up the classical one (called FS) discovered by Friedman and Supowit [5].
Ambainis et al.’s results depend on the property that a large problem can be divided into
subproblems that can be regarded as a scale-down version of the original problem and can be
solved with the same algorithm, as is often the case with graph problems. In our case, firstly,
it is unclear whether the problem can be divided into subproblems. Secondly, subproblems
would be to optimize the ordering of variables starting from the middle variable or even
from the opposite end, i.e., from the variable to be read first, toward the one to be read last.
Such subproblems cannot be solved with the algorithm FS, and, in particular, optimizing in
the latter case essentially requires the equivalence check of subfunctions of f , which is very
costly. Our technical contribution is to find, by carefully observing the unique properties
of OBDDs, that it is actually possible to even recursively divide the original problem into
not the same but somewhat similar kinds of subproblems, to generalize the algorithm FS so
that it can solve the subproblems, and to use the quantum minimum finding algorithm to
efficiently select the subproblems that essentially contribute to the optimal variable ordering.
In the full paper [11], we provide the technical outline of our algorithm, which would help
readers understand the structure of our algorithm.

2 Preliminaries

2.1 Basic Terminology

Let N, Z and R be the sets of natural numbers, integers, and real numbers, respectively. For
each n ∈ N, let [n] be the set {1, . . . , n}, and Sn be the permutation group over [n]. We may
denote a singleton set {k} by k for notational simplicity if it is clear from the context; for
instance, I \ {k} may be denoted by I \ k, if we know I is a set. For any subset I ⊆ [n], let
Πn(I) be the set of π ∈ Sn such that the first |I| members {π[1], . . . , π[|I|]} constitutes I,
i.e.,

Πn(I) := {π ∈ Sn : {π[1], . . . , π[|I|]} = I} ⊆ Sn.

SWAT 2020
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For simplicity, we omit the subscript n and write Π(I). More generally, for any two disjoint
subsets I, J ⊆ [n], let

Πn(〈I, J〉) := {π ∈ Sn : {π[1], . . . , π[|I|]} = I, {π[|I|+ 1], . . . , π[|I|+ |J |]} = J} ⊆ Sn.

For any disjoint subsets I1, . . . , Im ⊆ [n] for m ∈ [n], Πn(〈I1, . . . , Im〉) is defined similarly.
For simplicity, we may denote 〈I〉 by I, if it is clear from the context.

We denote the union operation over disjoint sets by t (instead of ∪) when we emphasize
the disjointness of the sets.

For n Boolean variables x1, . . . , xn, any set I ⊆ [n], and any vector b = (b1, . . . , b|I|) ∈
{0, 1}|I|, xI denotes the ordered set (xj1 , . . . , xj|I|), where {j1, . . . , j|I|} = I and j1 <

· · · < j|I|, and xI = b denotes xji = bi for each i = [|I|]. For any Boolean function
f : {0, 1}n → {0, 1} with variables x1, . . . , xn, we denote by f |xI=b the function obtained by
restricting f with xI = b. If I is a singleton set, say, I = {i}, we may write xi and f |xi=b to
mean x{i} and f |x{i}=b, respectively, for notational simplicity. We say that g is a subfunction
of f if g is equivalent to the function f |xI=b for some I ⊆ [n] and b ∈ {0, 1}|I|.

For any function g(n) in n, we use the notation O∗(g(n)) to hide a polynomial factor in
n. We further denote X = O∗(Y ) by X / Y .

We use the following upper bound many times in this paper. For n ∈ N and k ∈ [n]∪{0},
it holds that

(
n
k

)
≤ 2nH(k/n), where H(·) represents the binary entropy function H(δ) :=

−δ log2 δ − (1− δ) log2(1− δ).

2.2 Ordered Binary Decision Diagrams
We provide a quick review of OBDDs. For more details, consult standard textbooks (e.g.,
Refs. [8, 12]).

For any Boolean function f : {0, 1}n → {0, 1} over variables x1, . . . , xn and any permuta-
tion π ∈ Sn (called a variable ordering), an OBDD B(f, π) is a single-rooted directed acyclic
graph G(V,E) that is unique up to isomorphism, defined as follows (examples are shown in
Figure 1).
1. The node set V is the union of two disjoint sets N and T of non-terminal nodes with

out-degree two and terminal nodes with out-degree zero, respectively, where T contains
exactly two nodes: T = {f, t}. The set N contains a unique source node r, called the root.

2. B(f, π) is a leveled graph with n + 1 levels. Namely, the node set can be partitioned
into n subsets: V := V0 t V1 t · · · t Vn, where Vn = {r} and V0 = T = {t, f}, such that
each directed edge (u, v) ∈ E is in Vi × Vj for a pair (i, j) ∈ [n] × ({0} t [n − 1]) with
i > j. For each i ∈ [n], subset Vi (called the level i) is associated with the variable xπ[i],
or alternatively, each node in Vi is labeled with xπ[i].1 For convenience, we define a map
var : N → [n] such that if v ∈ Vi then var = π[i].

3. The two edges emanating from every non-terminal node v are called the 0-edge and the
1-edge, which are labeled with 0 and 1, respectively. For every u ∈ N , let u0 and u1 be
the destinations of the 0-edge and 1-edge of u, respectively.

4. Let F(f) be the set of all subfunctions of f . Define a bijective map F : V → F(f) as
follows: (a) F (r) = f for r ∈ Vn; (b) F (t) = true and F (f) = false for t, f ∈ V0; (c) For
every u ∈ N and b ∈ {0, 1}, F (ub) is the subfunction obtained from F (u) by substituting
xvar(u) with b, i.e., F (ub) = F (u)|xvar(u)=b.

1 In the standard definition, Vi is associated with the variable xπ[n−i]. Our definition follows the one
given in [5] to avoid complicated subscripts of variables.
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Figure 1 The OBDDs represent the function f(x1, x2, x3, x4, x5, x6) = x1x2 + x3x4 + x5x6 under
two variable orderings: (x1, x2, x3, x4, x5, x6) (left) and (x1, x3, x5, x2, x4, x6) (right), where the
solid and dotted arcs express 1-edges and 0-edges, respectively, and the terminal nodes for true
and false are labeled with T and F, respectively. For each n ∈ N, the function f(x1, . . . , x2n) =
x1x2 + x3x4 + · · · + x2n−1x2n has a (2n + 2)-sized OBDD for the ordering (x1, . . . , x2n) and a
2n+1-sized OBDD for the ordering (x1, x3, . . . , x2n−1, x2, x4, . . . , x2n).

5. B(f, π) must be minimal in the sense that the following reduction rules cannot be applied.
In other words, B(f, π) is obtained by maximally applying the following rules:
a. if there exists a redundant node u ∈ N , then remove u and its outgoing edges, and

redirect all the incoming edges of u to u0, where a node u is redundant if u0 is the
same node as u1.

b. if there exist equivalent nodes {u, v} ⊂ N , then remove v (i.e., any one of them) and its
outgoing edges, and redirect all incoming edges of v to u, where u and v are equivalent
if (1) var(u) is equal to var(v), and (2) u0 and u1 are the same nodes as v0 and v1,
respectively.

For each j ∈ [n], Costj(f, π) denotes the width at the level associated with the variable
xj , namely, the number of nodes in the level π−1[j] (see Figure 2 in Appendix). For I ⊆ [n],
let πI be a permutation π in Π(I) that minimizes the number of nodes in level 1 to level |I|:

πI := arg min


|I|∑
j=1

Costπ[j](f, π) : π ∈ Π(I)

 . (1)

Note that
∑|I|
j=1 Costπ[j](f, π) =

∑
i∈I Costi(f, π) for π ∈ Π(I). More generally, for disjoint

subsets I1, . . . , Im ⊆ [n], π〈I1,...,Im〉 is a permutation in Π(〈I1, . . . , Im〉) that minimizes the
number of the nodes in level 1 to level |I1|+ · · ·+ |Im| over all π ∈ Π(〈I1, . . . , Im〉):

π〈I1,...,Im〉 := arg min


|I1|+···+|Im|∑

j=1
Costπ[j](f, π) : π ∈ Π(〈I1, . . . , Im〉)

 . (2)

Note that min
∑|I1|+···+|Im|
j=1 Costπ[j](f, π) =

∑
i∈I1t···tIm Costi(f, π) for any π ∈ Π(〈I1, . . . , Im〉).

The following well-known lemma captures the essential property of OBDDs. It states that
the number of nodes at level i ∈ [n] is constant over all π, provided that the two sets
{π[1], . . . , π[i− 1]} and {π[i+ 1], . . . , π[n]} are fixed (see Figure 3 in Appendix).
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I Lemma 3 ([5]). For any non-empty subset I ⊆ [n] and any i ∈ I, there exists a constant
cf such that, for each π ∈ Π(〈I \ {i}, {i}〉), Costπ[|I|](f, π) ≡ Costi(f, π) = cf .

For convenience, we define shorthand for the minimums of the sums in Eqs. (1) and (2).
For I ′ ⊆ I ⊆ [n], mincostI [I ′] is defined as the number of nodes in the levels associated
with variables indexed by elements in I ′ under permutation πI , namely, mincostI [I ′] :=∑

i∈I′ Costi(f, πI). More generally, for disjoint subsets I1, . . . , Im ⊆ [n] and I ′ ⊆ I1t · · ·t Im,

mincost〈I1,...,Im〉[I
′] :=

∑
i∈I′

Costi(f, π〈I1,...,Im〉).

As a special case, we denote mincost〈I1,...,Im〉[I1 t · · · t Im] by mincost〈I1,...,Im〉. We define
mincost∅ as 0.

2.3 The Algorithm by Friedman and Supowit
This subsection reviews the algorithm by Friedman and Supowit [5]. We will generalize their
idea later and heavily use the generalized form in our quantum algorithm. Hereafter, we call
their algorithm FS.

2.3.1 Key Lemma and Data Structures
The following lemma is the basis of the dynamic programming approach used in FS.

I Lemma 4. For any non-empty subset I ⊆ [n] and any Boolean function f : {0, 1}n → {0, 1},
the following holds:
mincostI = mink∈I

(
mincostI\k + Costk(f, π〈I\k,k〉)

)
= mink∈I

(
mincost〈I\k,k〉

)
.

The proof is given in the full paper [11].
Before sketching algorithm FS, we provide several definitions. For any I ⊆ [n], tableI

is an array with 2n−|I| cells each of which stores a non-negative integer. Intuitively, for
b ∈ {0, 1}n−|I|, the cell tableI [b] stores (the pointer to) the unique node of B(f, πI) associated
via F with function f |x[n]\I=b. Hence, we may write tableI [x[n]\I = b] instead of tableI [b]
to clearly indicate the value assigned to each variable xj for j ∈ [n] \ I. The purpose of
tableI is to relate all subfunctions f |x[n]\I=b (b ∈ {0, 1}n−|I|) to the corresponding nodes of
B(f, πI). We assume without loss of generality that the pointers to nodes of B(f, πI) are
non-negative integers and, in particular, those to the two terminal nodes corresponding to
false and true are the integers 0 and 1, respectively. Thus, table∅ is merely the truth table
of f .

Algorithm FS computes tableI together with πI , mincostI , and another data structure,
nodeI for all I ⊆ [n], starting from table∅ via dynamic programming. nodeI is the set of
all triples of (the pointers to) nodes, (u, u0, u1) ∈ N × (N t T )× (N t T ), in B(f, πI), where
var(u) = πI [|I|], and (u, u0) and (u, u1) are the 0-edge and 1-edge of u, respectively. Thus,
nodeI contains the structure of the subgraph of B(f, πI) induced by V|I|. The purpose of
the nodeI is to prevent the algorithm from duplicating existing nodes, i.e., creating nodes
associated with the same subfunctions as those with which the existing nodes are associated.
By the definition, node∅ is the empty set. We assume that nodeI is implemented with an
appropriate data structure, such as a balanced tree, so that the time complexity required for
membership testing and insertion is the order of logarithm in the number of triples stored in
nodeI . An example of tableI and nodeI is shown in Figure 4 in Appendix.
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More generally, for disjoint subset I1, . . . , Im ⊆ [n], table〈I1,...,Im〉 is an array with
2n−|I1t···tIm| cells such that, for b ∈ {0, 1}n−|I1t···tIm|, table〈I1,...,Im〉[b] stores the nodes
of B(f, π〈I1,...,Im〉) associated with the function f |x[n]\I1t···tIm=b. node〈I1,...,Im〉 is defined
similarly for B(f, π〈I1,...,Im〉). For simplicity, we hereafter denote by FS(〈I1, . . . , Im〉) the
quadruplet (π〈I1,...,Im〉,mincost〈I1,...,Im〉,table〈I1,...,Im〉,node〈I1,...,Im〉).

2.3.2 Sketch of Algorithm FS
Algorithm FS performs the following operations for k = 1, . . . , n in this order. For each
k-element subset I ⊆ [n], compute FS(〈I \ i, i〉) from FS(〈I \ i〉) for each i ∈ I in the manner
described later (note that, since the cardinality of the set I \ i is k − 1, FS(〈I \ i〉) has
already been computed). Then set FS(I)←− FS(〈I \ i∗, i∗〉), where i∗ is the index i ∈ I
that minimizes mincost〈I\i,i〉, implying that πI is π〈I\i∗,i∗〉. This is justified by Lemma 4.
A schematic view of the algorithm is shown in Figure 5 in Appendix.

To compute FS(〈I \ i, i〉) from FS(〈I \ i〉), do the following. First set node〈I\i,i〉 ← ∅
and mincost〈I\i,i〉 ← mincostI\i as their initial values. Then, for each b ∈ {0, 1}n−|I|, set

u0 ← tableI\i[x[n]\I = b, xi = 0], u1 ← tableI\i[x[n]\I = b, xi = 1].

If u0 = u1, then store u0 in table〈I\i,i〉[b]. Otherwise, test whether (u, u0, u1) for some u is
a member of nodeI\i. If it is, store u in the table〈I\i,i〉[b]; otherwise create a new triple
(u′, u0, u1), insert it to node〈I\i,i〉 and increment mincost〈I\i,i〉. Since u′ is the pointer to
the new node, u′ must be different from any pointer already included in node〈I\i,i〉 and
from any pointer to a node in V1 t · · · t Vk−1 in B(f, π〈I\i〉), where k = |I|. Such u′ can
be easily chosen by setting u′ to two plus the value of mincost〈I\i,i〉 before the increment,
since the mincost〈I\i,i〉 is exactly the number of triples in node〈I\i,i〉 plus |V1 t · · · t Vk−1|,
and the numbers 0 and 1 are reserved for the terminal nodes. We call the above procedure
table folding with respect to xi, because it halves the size of table〈I\i〉. We also mean it by
“folding table〈I\i〉 with respect to xi”.

The complexity analysis is fairly simple. For each k, we need to compute FS(I) for(
n
k

)
possible I’s with |I| = k. For each I, it takes O∗(2n−k) time since the the size of

tableI\i is 2n−k+1 and each operation to nodeI\i takes a polynomial time in n. Thus,
the total time is

∑n
k=0 2n−k+1(n

k

)
= 2 · 3n up to a polynomial factor. The point is that

computing each FS(I) takes time linear to the size of tableI\i up to a polynomial factor.
The space required by Algorithm FS during the process for k is dominated by that for tableI ,
tableI\i and nodeI for all I and i ∈ I, which is O∗

(
2n−k

(
n
k

))
. The space complexity is

thus O∗
(
maxk∈{0}∪[n] 2n−k

(
n
k

))
= O∗(3n).

I Theorem 5 (Friedman and Supowit [5]). Suppose that the truth table of f : {0, 1}n → {0, 1}
is given as input. Algorithm FS produces FS([n]) in O∗(3n) time and space.

2.4 Quantum Computation
We assume that readers have a basic knowledge of quantum computing (e.g., Ref. [10]). We
provide only a lemma used to obtain our results.

I Lemma 6 (Quantum Minimum Finding [4, 3]). For every ε > 0 there exists a quantum
algorithm that, for a function f : [N ]→ Z given as an oracle, finds an element x ∈ [N ] at
which f(x) achieves the minimum, with error probability at most ε by making O(

√
N log(1/ε))

queries.
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In this paper, the search space N is exponentially large in n and we are interested in
exponential complexities, ignoring polynomial factors in them. We can thus safely assume
ε = 1/2p(n) for a polynomial p(n), so that the overhead is polynomially bounded. Since our
algorithms use Lemma 6 a constant number of times, their overall error probabilities are
exponentially small for a sufficiently large p(n). In the following proofs, we thus assume that
ε is exponentially small whenever we use Lemma 6, and do not explicitly analyze the error
probability for simplicity.

Our algorithms assume the quantum random access memory (QRAM) model [6], which
is commonly used in the literature when considering quantum algorithms. In the model, one
can read contents from or write them into quantum memory in a superposition.

3 Quantum Algorithm with Divide-and-Conquer

We generalize Lemma 4 and Theorem 5 and use them in our quantum algorithm.

I Lemma 7. For any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅ and any Boolean
function f : {0, 1}n → {0, 1}, the following holds:

mincost〈I1,...,Im,J〉 = min
k∈J

(
mincost〈I1,...,Im,J\{k}〉 + Costk(f, π〈I1,...,Im,J\{k},{k}〉)

)
= min

k∈J

(
mincost〈I1,...,Im,J\{k},{k}〉

)
.

The proof of this lemma is very similar to that of Lemma 4 and given in the full paper [11].
Based on Lemma 7, we generalize Theorem 5 to obtain algorithm FS∗ (its pseudo code is
given below, and a schematic view of FS∗ is shown in Figure 6 in Appendix).

I Lemma 8 (Classical Composition Lemma). For disjoint subsets I1, . . . , Im, J ⊆ [n] with
J 6= ∅, there exists a deterministic algorithm FS∗ that produces FS(〈I1, . . . , Im, J〉) from
FS(〈I1, . . . , Im〉) for an underlying function f : {0, 1}n → {0, 1} in O∗

(
2n−|I1t···tImtJ| · 3|J|

)
time and space. More generally, for each k ∈ [|J |], the algorithm produces the set {FS(〈I1, . . . ,
Im,K〉) : K ⊆ J, |K| = k} from FS(〈I1, . . . , Im〉) in O∗

(
2n−|I1t···tImtJ|

∑k
j=0 2|J|−j

(|J|
j

))
time and space.

Note that if I1 t · · · t Im = ∅ and J = [n], then we obtain Theorem 5.

Proof. We focuses on the simplest case of m = 1, for which our goal is to show an algorithm
that produces FS(〈I, J〉) from FS(I). It is straightforward to generalize the proof to the
case of m ≥ 2. Starting from FS(I), the algorithm first folds tableI with respect to each
variable in {xj : j ∈ J} to obtain FS(〈I, j〉) for every j ∈ J , then fold table〈I,j1〉 with
respect to xj2 and table〈I,j2〉 with respect to xj1 to obtain FS(〈I, {j1, j2}〉) by taking the
minimum of mincost〈I,j1,j2〉 and mincost〈I,j2,j1〉 for every j1, j2 ∈ J , and repeat this to
finally obtain FS(〈I, J〉). This algorithms is justified by Lemma 7. For each j ∈ [|J |], K ⊆ J
with |K| = j, and h ∈ K, the time complexity of computing FS(〈I,K〉) from FS(〈I,K−h〉)
is linear to the size of table〈I,K〉, i.e., 2n−|I|−j up to a polynomial factor. The total time is
thus, up to a polynomial factor,

|J|∑
j=1

2n−|I|−j
(
|J |
j

)
< 2n−|I|−|J|

|J|∑
j=0

2|J|−j
(
|J |
j

)
= 2n−|ItJ| · 3|J|.

If we stop the algorithm at j = k, then the algorithm produces the set {FS(〈I,K〉) : K ⊆
J, |K| = k}. The time complexity in this case is at most 2n−|I|−|J|

∑k
j=0 2|J|−j

(|J|
j

)
, up to a

polynomial factor.
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Since the space complexity is trivially upper-bounded by the time complexity, we complete
the proof. J

I Remark 9. It is not difficult to see that the algorithm FS∗ works even when the function f
has a multivalued function: f : {0, 1}n → Z. The only difference from the Boolean case is that
the truth table maps each Boolean assignment to a value in Z. In this case, the algorithm
produces a variant of an OBDD (called a multi-terminal BDD, MTBDD) of minimum size.
In addition, our algorithm with slight modifications to the table folding rule in FS∗ can
construct a minimum zero-suppressed BDD (ZDD) [9] for a given Boolean function. The
details are described in the full paper [11]. These modifications are also possible for the
quantum algorithms described later, since they perform table folding by running FS∗ as a
subroutine.

Algorithm FS∗ Composable variant of algorithm FS. “A← B” means that B is substituted
for A.
Input: disjoint subsets I, J ∈ [n] and FS(I)
Output: FS(〈I, J〉)

1 Function Main()
2 for ` := 1 to |J | do
3 for each `-element subset K ⊆ J do
4 mincost〈I,K〉 ← +∞; // init.
5 for each k ∈ K do
6 FS(〈I,K \ k, k〉)← FOLD(I,K, k,FS(〈I,K \ k〉));
7 if mincost〈I,K〉 > mincost〈I,K\k,k〉 then
8 FS(〈I,K〉)← FS(〈I,K \ k, k〉);
9 end

10 end
11 end
12 end
13 return FS(〈I, J〉)
14 end
15 Function FOLD(I,K, k,FS(〈I,K \ k〉)) // produce FS(〈I,K \ k, k〉) from FS(〈I,K \ k〉)
16 π〈I,K\k,k〉 ∈ {π ∈ Π(〈I,K \ k, k〉) : π[i] = π〈I,K\k〉[i] (i = 1, . . . , |I tK| − 1)} ; // init.
17 mincost〈I,K\k,k〉 ← mincost〈I,K\k〉; // init.
18 node〈I,K \ k, k〉 ← ∅; // init.
19 for b ∈ {0, 1}n−|I|−|K| do
20 u0 ← table〈I,K\k〉[x[n]\(ItK) = b, xk = 0];
21 u1 ← table〈I,K\k〉[x[n]\(ItK) = b, xk = 1];
22 if u0 = u1 then
23 table〈I,K\k,k〉[x[n]\(ItK) = b]← u0

24 else if ∃u (u, u0, u1) ∈ node〈I,K \ k, k〉 then
25 table〈I,K\k,k〉[x[n]\(ItK) = b]← u

26 else // create a new node
27 u← mincost〈I,K\k,k〉 + 2;
28 table〈I,K\k,k〉[x[n]\(ItK) = b]← u;
29 mincost〈I,K\k,k〉 ← mincost〈I,K\k,k〉 + 1;
30 insert (u, u0, u1) into node〈I,K \ k, k〉
31 end
32 end
33 return FS(〈I,K \ k, k〉)
34 end
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The following theorem is the basis of our quantum algorithms.

I Lemma 10 (Divide-and-Conquer). For any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅
and any k ∈ [|J |], it holds that mincost〈I1,...,Im,J〉[J ] is equal to

min
K : K⊆J,|K|=k

(
mincost〈I1,...,Im,K〉[K] + mincost〈I1,...,Im,K,J\K〉[J \K]

)
. (3)

In particular, when I1 t · · · t Im = ∅ and J = [n], it holds that

mincost[n] = min
K⊆[n],|K|=k

(
mincostK + mincost〈K,[n]\K〉[[n] \K]

)
. (4)

Proof. We first prove the special case of I1 t · · · t Im = ∅ and J = [n]. By the definition, we
have

mincost[n] =
n∑
j=1

Costπ[j](f, π) =
k∑
j=1

Costπ[j](f, π) +
n∑

j=k+1
Costπ[j](f, π)

for the optimal permutation π = π[n]. Let K = {π[1], . . . , π[k]}. By Lemma 3, the
first sum is independent of how π maps {k + 1, . . . , n} to [n] \ K. Thus, it is equal to
the minimum of

∑k
j=1 Costπ1[j](f, π) over all π1 ∈ Π(K), i.e., mincostK . Similarly, the

second sum is independent of how π maps [k] to K. Thus, it is equal to the minimum of∑n
j=k+1 Costπ2[j](f, π) over all π2 ∈ Π(〈K, [n] \ K〉), i.e., mincost〈K,[n]\K〉[[n] \ K]. This

completes the proof of Eq. (4).
We can generalize this in a straightforward manner. Let π = π〈I1,...,Im,J〉 and ` =

|I1 t · · · t Im|. Then, we have

mincost〈I1,...,Im,J〉[J ] =
k∑
j=1

Costπ[`+j](f, π) +
|J|∑

j=k+1
Costπ[`+j](f, π).

By definingK := {π[`+1], . . . , π[`+k]}, the same argument as the special case of ` = 0 implies
that the first and second sums are mincost〈I1,...,Im,K〉[K] and mincost〈I1,...,Im,K,J\K〉[J \K],
respectively. This completes the proof of Eq. (3). J

A schematic view of the above lemma is shown in Figure 7 in Appendix.

3.1 Simple Cases
We provide simple quantum algorithms on the basis of Lemma 10. The lemma states
that, for any k ∈ [n], mincost[n] is the minimum of mincostK + mincost〈K,[n]\K〉[[n] \K]
over all K ⊆ [n] with |K| = k. To find K from among

(
n
k

)
possibilities that minimizes

this amount, we use the quantum minimum finding (Lemma 6). To compute mincostK +
mincost〈K,[n]\K〉[[n] \K] = mincost〈K,[n]\K〉, it suffices to first compute FS(K) (including
mincostK), and then FS(〈K, [n]\K〉) (including mincost〈K,[n]\K〉) from FS(K). The time
complexity for computing FS(K) from FS(∅) isO∗(2n−k3k) by Lemma 8 with I1t· · ·tIm = ∅
and J = K, while that for computing FS(〈K, [n] \ K〉) from FS(K) is O∗(3n−k) by
Lemma 8 with m = 1, I1 = K, and J = [n] \K. Thus, the time complexity for computing
FS(〈K, [n] \K〉) from FS(∅) is O∗(2n−k3k + 3n−k). Thus, for k = αn with α ∈ [0, 1] fixed
later, the total time complexity up to a polynomial factor is

T (n) =

√(
n

αn

)(
2(1−α)n3αn + 3(1−α)n

)
≤ 2 1

2 H(α)n
{

2[(1−α)+α log2 3]n + 2[(1−α) log2 3]n
}
.
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To balance the both terms, we set (1 − α) + α log2 3 = (1 − α) log2 3 and obtain α = α∗,
where α∗ = log2 3−1

2 log2 3−1 ≈ 0.269577. We have

min
α∈[0,1]

T (n) = O
(

2 1
2 H(α∗)n+(1−α∗)n+α∗(log2 3)n

)
= O(γn0 ),

where γ0 = 2.98581 . . . . 2 This slightly improves the classical best bound O∗(3n) on the
time complexity. To improve the bound further, we introduce a preprocess that classically
computes FS(K) for every K with |K| = αn (α ∈ (0, 1)) by using Algorithm FS∗. By
Lemma 8, the preprocessing time is then

αn∑
j=1

2n−j ·
(
n

j

)
≤ αn · max

j∈[αn]
2n−j

(
n

j

)
/

{
2(1−α)n+H(α)n (α < 1/3)
2 2

3n+H(1/3)n (α ≥ 1/3), (5)

since 2n−j
(
n
j

)
increases when j < n/3 and decreases otherwise. Note that once this preprocess

is completed, we can use FS(K) for free and assume that the cost for accessing FS(K) is
polynomially bounded for all K ⊆ [n] with |K| = αn.

Then, assuming that α < 1/3, the total time complexity up to a polynomial factor is

T (n) =
αn∑
j=1

2n−j ·
(
n

j

)
+

√(
n

αn

)(
nO(1) + 3(1−α)n

)
/ 2[(1−α)+H(α)]n+2[ 1

2 H(α)+(1−α) log2 3]n.

To balance the both terms, we set (1 − α) + H(α) = 1
2H(α) + (1 − α) log2 3 and obtain

the solution α = α∗, where α∗ := 0.274863 . . . , which is less than 1/3 as we assumed. At
α = α∗, we have T (n) / 2[(1−α∗)+H(α∗)]n = O∗(γn1 ), where γ1 is at most 2.97625 (< γ0).
Thus, introducing the preprocess improves the complexity bound. A schematic view of the
above algorithm is shown in Figure 8 in Appendix.

3.2 General Case
We can improve this bound further by applying Lemma 10 k times. We denote the resulting
algorithm with constant parameters k ∈ N and α := (α1, . . . , αk) by OptOBDD(k,α) where
0 < α1 < · · · < αk < 1. Its pseudo code is given below. In addition, we assume α1 < 1/3
and αk+1 = 1 in the following complexity analysis.

To simplify notations, define two function as follows: for x, y ∈ (0, 1) such that x < y,
f(x, y) := 1

2y ·H (x/y) + g(x, y) and g(x, y) := (1− y) + (y − x) log2(3).
By Lemma 8, the time required for the preprocess is

∑α1n
`=1 2n−` ·

(
n
`

)
up to a polynomial

factor. Thus, the total time complexity can be described as the following recurrence:

T (n) =
α1n∑
`=1

2n−` ·
(
n

`

)
+ Lk+1(n), (6)

Lj+1(n) =

√(
αj+1n

αjn

)(
Lj(n) + 2(1−αj+1)n3(αj+1−αj)n

)
=

√(
αj+1n

αjn

)(
Lj(n) + 2g(αj ,αj+1)n

)
, (7)

2 More precisely, α∗ must be rounded so that α∗n is an integer. We assume hereafter for simplicity of
analysis that n is sufficiently large so that the rounding error is negligible compared to the approximation
error in the optimum parameter values, such as α∗.
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Algorithm OptOBDD(k, α) Quantum OBDD-minimization algorithm with constant paramet-
ers k ∈ N and α := (α1, . . . , αk) ∈ [0, 1]k satisfying 0 < α1 < · · · < αk < 1, where the quantum
minimum finding algorithm is used in line 8, and FS∗ is used in lines 2 and 15. “A← B” means
that B is substituted for A.
Input: FS(∅) :={ table∅, π∅, mincost∅, node∅ } (accessible from all Functions)
Output: FS([n])

1 Function Main()
2 compute the set {FS(K) : K ⊆ [n], |K| = bα1nc} by algorithm FS (or FS∗);
3 make the set of these FS(K) global (i.e., accessible from all Functions);
4 return DivideAndConquer([n], k + 1)
5 end
6 Function DivideAndConquer(L, t) // Compute FS(L) with α1, . . . , αt(= |L|/n)
7 if t = 1 then return FS(L); // FS(L) has been precomputed.
8 Find K(⊂ L) of cardinality bαt−1nc, with Lemma 6, that minimizes mincost〈K,L\K〉,
9 which is computed as a component of FS(〈K,L \K〉) by calling ComputeFS(K,L \K, t);

10 let K∗ be the set that achieves the minimum;
11 return FS(〈K∗, L \K∗〉)
12 end
13 Function ComputeFS(K,M, t) // Compute FS(〈K,M〉) with α1, . . . , αt
14 FS(K)← DivideAndConquer(K, t− 1);
15 FS(〈K,M〉)← FS∗(K,M,FS(K));
16 return FS(〈K,M〉)
17 end

where j ∈ [k] and L1(n) = O∗(1). Intuitively, Lj(n) is the time required for producing
FS(〈K1,K2 \K1, . . . ,Kj \Kj−1〉) such that mincost〈K1,K2\K1,...,Kj\Kj−1〉 is minimum over
all K1, . . . ,Kj−1 satisfying |K`| = α`n for every ` ∈ [k + 1] and K` ⊂ K`+1 for every ` ∈ [k].

Since L1(n) = O∗(1), we have L2(n) /
√(

α2n
α1n

)
· 2g(α1,α2)n / 2f(α1,α2)n. By setting

f(α1, α2) = g(α2, α3), we have L3(n) =
√(

α3n
α2n

)
· (L2(n)+2g(α2,α3)n) /

√(
α3n
α2n

)
·2g(α2,α3)n /

2f(α2,α3)n. In general, for j = 2, . . . , k, setting f(αj−1, αj) = g(αj , αj+1) yields

Lj+1(n) / 2f(αj ,αj+1)n.

Therefore, the total complexity [Eq. (6)] is

T (n) /
α1n∑
`=1

2n−` ·
(
n

`

)
+ 2f(αk,αk+1)n / 2(1−α1)n+H(α1)n + 2f(αk,1)n,

where we use α1 < 1/3, αk+1 = 1, and Eq. (5). To optimize the right-hand side, we set
parameters so that 1− α1 + H(α1) = f(αk, 1).

In summary, we need to find the values of parameters α1, . . . , αk that satisfy the following
system of equations and α1 < 1/3:

1− α1 + H(α1) = f(αk, 1), (8)
f(αj−1, αj) = g(αj , αj+1) (j = 2, . . . , k). (9)

By numerically solving this system of equations, we obtain T (n) = O(γnk ), where γk is at most
2.83728 for k = 6. The value of γk becomes smaller as k increases. However, incrementing k
beyond 6 provides only negligible improvement of γk. Since the space complexity is trivially
upper-bounded by the time complexity, we have the following theorem. Note that the values
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of αi’s are not symmetric with respect to 1/2. This reflects the fact that optimizing cost is
not symmetric with respect to 1/2, contrasting with many other combinatorial problems.

I Theorem 11. There exists a quantum algorithm that, for the truth table of f : {0, 1}n →
{0, 1} given as input, produces FS([n]) with probability 1− exp(−Ω(n)) in O∗(γn) time and
space, where the constant γ is at most 2.83728, which is achieved by OptOBDD(k,α) with
k = 6 and α = (0.183791, 0.183802, 0.183974, 0.186131, 0.206480, 0.343573).

4 Quantum Algorithm with Composition

4.1 Quantum Composition Lemma
By generalizing the quantum algorithm given in Theorem 11, we now provide a quantum
version of Lemma 8, called the quantum composition lemma.

I Lemma 12 (Quantum Composition: Base Part). For any disjoint subsets I1, . . . , Im, J ⊆ [n]
with J 6= ∅, there exists a quantum algorithm that, with probability 1− exp(−Ω(n)), produces
FS(〈I1, . . . , Im, J〉) from FS(〈I1, . . . , Im〉) for an underlying function f : {0, 1}n → {0, 1} in
O∗
(
2n−|I1t···tImtJ| · γ|J|

)
time and space, where γ is the constant defined in Theorem 11.

The proof is given in the full paper [11]. The proof idea is similar to that used in the
proof of Lemma 8. A pseudo code of the algorithm provided in Lemma 12 is shown below
as OptOBDD∗Γ(k,α), where the subroutine Γ appearing in line 17 is set to the deterministic
algorithm FS∗, and k and α are set to the values specified in Theorem 11.

Algorithm OptOBDD∗Γ(k, α) Composable Quantum OBDD-minimization algorithm with
subroutine Γ and constant parameters k ∈ N and α = (α1, . . . , αk) ∈ [0, 1]k satisfying 0 < α1 <

· · · < αk < 1, where the quantum minimum finding algorithm is used in line 9, and subroutine Γ
is used in line 17. “A← B” means that B is substituted for A. Γ(I1, I2, J,FS(I1, I2)) produces
FS(〈I1, I2, J〉) from FS(〈I1, I2〉).

Input: I ⊆ [n], J ⊆ [n], FS(I). (accessible from all Functions)
Output: FS(〈I, J〉)

1 Function Main()
2 n′ ← |J |; // init.
3 compute the set {FS(〈I,K〉) : K ⊆ J, |K| = bα1n

′c} by algorithm FS∗;
4 make n′ and the above set of FS(〈I,K〉) global (i.e., accessible from all Functions);
5 return DivideAndConquer(J, k + 1)
6 end
7 Function DivideAndConquer(L, t) // Compute FS(〈I, L〉) with α1, . . . , αt
8 if t = 1 then return FS(I, L); // FS(I, L) has been precomputed.
9 Find K(⊂ L) of cardinality bαt−1n

′c, with Lemma 6, that minimizes mincost〈I,K,L\K〉
10 which is computed as a component of FS(〈I,K,L \K〉)
11 by calling ComputeFS(I,K,L \K, t);
12 let K∗ be the set that achieves the minimum;
13 return FS(〈I,K∗, L \K∗〉)
14 end
15 Function ComputeFS(I,K,M, t) // Compute FS(〈I,K,M〉) with α1, . . . , αt
16 FS(I,K)← DivideAndConquer(K, t− 1);
17 FS(〈I,K,M〉)← Γ(I,K,M,FS(I,K));
18 return FS(〈I,K,M〉)
19 end
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I Lemma 13 (Quantum Composition: Induction Part). Suppose that Γ is a quantum algorithm
that, for any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅, produces FS(〈I1, . . . , Im, J〉)
from FS(〈I1, . . . , Im〉) with probability 1 − exp(−Ω(n)) in O∗

(
2n−|I1t···tImtJ| · γ|J|

)
time

and space for an underlying function f : {0, 1}n → {0, 1}. Then, for any constant para-
meters k ∈ N and α = (α1, . . . , αk) ∈ [0, 1]k with α1 < · · · < αk and for any disjoint
subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅, OptOBDD∗Γ(k,α) produces FS(〈I1, . . . , Im, J〉) from
FS(〈I1, . . . , Im〉) with probability 1 − exp(−Ω(n)) in O∗

(
2n−|I1t···tImtJ| · β|J|k

)
time and

space for the function f , where βnk upper-bounds, up to a polynomial factor, the time complex-
ity required for OptOBDD∗Γ(k, α) to compute FS([n]) from FS(∅), that is, T (n) = O∗(βnk )
for T (n) that satisfies the following recurrence:

T (n) =
α1n∑
`=1

2n−`
(
n

`

)
+ Lk+1, (10)

Lj+1 =

√(
αj+1n

αjn

)(
Lj + 2(1−αj+1)nγ(αj+1−αj)n

)
=

√(
αj+1n

αjn

)(
Lj + 2gγ(αj ,αj+1)

)
,

(11)

where j ∈ [k], L1 = O∗(1) and gγ(x, y) := (1− y) + (y − x) log2 γ.

Proof. Recall that algorithm FS∗ is used as a subroutine in OptOBDD(k,α) provided in
Theorem 11. Since the input and output of Γ assumed in the statement are the same as those
of algorithm FS∗, one can use Γ instead of algorithm FS∗ in OptOBDD(k,α) (compromising
on an exponentially small error probability). Let OptOBDDΓ(k,α) be the resulting algorithm.
Then, one can see that the time complexity T (n) of OptOBDDΓ(k,α) satisfies the recurrence:
Eqs. (10)-(11), which are obtained by just replacing g(x, y) with gγ(x, y) in Eqs. (6)-(7).
Suppose that T (n) = O∗(βnk ) follows from the recurrence.

Next, we generalize OptOBDDΓ(k,α) so that it produces FS(〈I1, . . . , Im, J〉) from
FS(〈I1, . . . , Im〉) for any disjoint subsets I1, . . . , Im, J ⊆ [n] with J 6= ∅. The proof is
very similar to that of Lemma 12. The only difference is that the time complexity of Γ is
O∗
(
2n−|I1t···tImtJ| · γ|J|

)
, instead of O∗

(
2n−|I1t···tImtJ| · 3|J|

)
. Namely, when m = 1 and

n′ = |J |, the time complexity of OptOBDD∗Γ(k,α) satisfies the following recurrence: for each
j ∈ [n],

T ′(n, n′) = 2n−|I|−n
′
α1n

′∑
`=1

2n
′−`
(
n′

`

)
+ L′k+1(n, n′),

L′j+1(n, n′) =

√(
αj+1n′

αjn′

)(
L′j(n, n′) + 2n−|I|−αj+1n

′
γ(αj+1−αj)n′

)
[j ∈ [n]],

L′1(n, n′) = O∗(1),

from which it follows that T ′(n, n′) = 2n−|I|−n′T (n′) = O∗
(

2n−|ItJ| · β|J|k
)
. It is straight-

forward to generalize to the case of m ≥ 2.
The total error probability is exponentially small by union bound, if the error probabilities

of Γ and the quantum minimum finding (Lemma 6) are made sufficiently small. J

4.2 The Final Algorithm
Lemmas 12 and 13 naturally lead to the following algorithm. We first define Γ1 as
OptOBDD∗FS∗(k(0),α(0)) for some k(0) ∈ N and α(0) ∈ [0, 1]k(0) . Then, we define Γ2 as
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OptOBDD∗Γ1
(k(1),α(1)) for some k(1) ∈ N and α(1) ∈ [0, 1]k(1) . In this way, we can define

Γi+1 as OptOBDD∗Γi(k
(i),α(i)) for some k(i) ∈ N and α(i) ∈ [0, 1]k(i) .

Fix k(i) = 6 for every i. Note that, in the proof of Lemmas 12 and 13, parameter
α(i) = (α(i)

1 , . . . , α
(i)
6 ) ∈ [0, 1]6 is set for each i so that it satisfies the system of equations, a

natural generalization of Eqs. (8)-(9),

1− α(i)
1 + H(α(i)

1 ) = fγ(α(i)
6 , 1), (12)

fγ(α(i)
j−1, α

(i)
j ) = gγ(α(i)

j , α
(i)
j+1) (j = 2, . . . , 6), (13)

where fγ(x, y) := 1
2y ·H (x/y) + gγ(x, y) and gγ(x, y) := (1− y) + (y − x) log2 γ.

By numerically solving this system of equations for γ = 3, we have β6 < 2.83728 as shown
in Theorem 11. Then, numerically solving the system of equations with γ = 2.83728, we have
β6 < 2.79364. In this way, we obtain a certain γ less than 2.77286 at the tenth composition.
We therefore obtain the following theorem.

I Theorem 14. There exists a quantum algorithm that, for the truth table of f : {0, 1}n →
{0, 1} given as input, produces FS([n]) in O∗(γn) time and space with probability 1 −
exp(−Ω(n)), where the constant γ is at most 2.77286.
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A Appendix
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Figure 2 Schematic expression of Costj(f, π).
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Figure 3 Schematic expression of Lemma 3: For any two permutations π, π′ ∈ Sn such that
{π[1], . . . , π[|I| − 1]} = {π′[1], . . . , π′[|I| − 1]} and π[|I|] = π′[|I|], it holds that the number of nodes
labeled with xi in B(f, π) is equal to that of nodes labeled with xi in B(f, π′).
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Figure 4 Examples of data structures used in Algorithm FS: tableI and nodeI with I = {1, 3, 5}
for the OBDD (rhs) representing f(x1, . . . , x6) = x1x2 + x3x4 + · · ·+ x5x6 for the variable ordering
(x1, x3, x5, x2, x4, x6). The pointers (integers) to the nodes labeled with x1, x3, x5 are each shown at
the top-left positions of the nodes.
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𝑛
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Figure 5 Schematic view of Friedman-Supowit Algorithm. The algorithm goes from the left to
the right. On the vertical line indicated by k, there are

(
n
k

)
dots, each of which corresponds to

FS(I) for a subset I ⊆ [n] of size k. FS(I) is computed from FS(〈I \ i〉) for all i ∈ I, which are
arranged as dots on the line indicated by k − 1 and have already been computed.
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Lemma There is a deterministic algorithm FS* that, 
given the partial OBDD for 𝜋! and 𝐽 ⊆ 𝑛 ∖ 𝐾, 
produces the partial OBDD for 𝜋!⊔# in time 
𝑂∗ 2%& ! & # 3 # time/space.

𝐼

ℱ𝒮(𝐼 ⊔ 𝐽)
ℱ𝒮(𝐼)

|𝐼 ⊔ 𝐽|

Figure 6 Schematic view of FS∗. This view corresponds to the case where m = 1 and J ⊂ [n] \ I
in Lemma 8. The shaded area is the one that FS∗ sweeps to produce FS(〈I, J〉).

ℱ𝒮( 𝐼, 𝑛 ∖ 𝐼 )

This corresponds to ℱ𝒮 𝐼
for 𝐼 ⊂ 𝑛 .

|𝐼|0 𝑛

Output 𝜋 +, , ∖+

ℱ𝒮(∅)

Figure 7 Schematic view of Eq. (4) in Lemma 10. Intuitively, the lemma says that it is possible
to decompose FS∗ into the parts each of which consists of the two shaded rectangles that share the
dot corresponding to FS(I) on the line indicated by |I| for a subset I ⊆ [n] of some fixed size. The
optimal variable ordering is induced by one of the parts.
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ℱ𝒮(∅) ℱ𝒮( 𝑛 )

𝑘

Quantumly 
find the 
minimum

FS*

Computed in the 
classical preprocess 
(a truncation of FS*)

Figure 8 Schematic view of our algorithm in the simplest case (one-parameter case). The dotted
area is computed in the classical preprocess, which is realized by truncating the process of FS∗ as
stated in Lemma 8. The shaded area is computed by using FS∗. The actual algorithm runs the
quantum minimum finding, which calls FS∗ to coherently compute the shaded area corresponding to
every dot on the vertical line indicated by k.
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