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Abstract
We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm
to find a minimum cut that 2-respects (cuts two edges of) a spanning tree T of a graph G. This
procedure can be used in place of the complicated subroutine given in Karger’s near-linear time
minimum cut algorithm [23]. We give a self-contained version of Karger’s algorithm with the new
procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on
an m-edge, n-vertex graph in O(m log3 n) time with high probability, matching the complexity of
Karger’s approach.
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1 Introduction

The minimum cut problem on an undirected (weighted) graph G asks for a vertex subset
S such that the total number (weight) of edges from S to V \ S is minimized. The
minimum cut problem is a fundamental problem in graph optimization and has received
vast attention by the research community across a number of different computation models
[23, 8, 36, 20, 25, 15, 41, 19, 5, 17, 4, 22, 11, 27, 18, 6, 10, 34, 39, 12]. Its applications include
network reliability [37, 21], cluster analysis [3], and a critical subroutine in cutting-plane
algorithms for the traveling salesman problem [2].

A seminal result in weighted minimum cut algorithms is an algorithm by Karger [23]
which produces a minimum cut on an m-edge, n-vertex graph in O(m log3 n) time with
high probability1. This algorithm stood as the fastest minimum cut algorithm for the past
two decades, until very recently, work published on arXiv shaved a log factor in Karger’s
approach [31, 9]. The main component of Karger’s algorithm is a subroutine that finds a
minimum cut that 2-respects (cuts two edges of) a given spanning tree T of a graph G. In
other words, the cut found is minimal amongst all cuts of G that cut exactly two edges
of T . Despite the number of pairs of spanning tree edges totaling Ω(n2), Karger shows

1 Probability 1− 1/nc for some constant c.
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12:2 Simple Min-Cut in Near-Linear Time

this can be accomplished in O(m log2 n) time. Unfortunately, the procedure developed is
particularly complex, a detail Karger admits when comparing the algorithm to a simpler
O(n2 logn) algorithm he develops to find all minimum cuts [23]. Indeed, perhaps for this
reason, implementation of the asymptotically fastest minimum cut algorithm has been avoided
in practical performance analyses [5, 19].

In this paper, we give a simple algorithm to find a minimum cut that 2-respects a
spanning tree T of a graph G. Our procedure runs in O(m log2 n) time, matching the
performance of Karger’s more-complicated subroutine. We achieve the simplification via a
clever use of the heavy-light decomposition. Although our procedure requires the top tree data
structure [1] to achieve optimal performance, at the cost of an extra O(logn) factor, heavy-
light decomposition can be used a second time so that only augmented binary search trees
are required. We also give a self-contained version of Karger’s algorithm [23] with this new
procedure and implement it, avoiding issues associated with previous implementations [23, 5].

Karger’s algorithm [23], as well as the edge-sampling technique it is based on [22], has been
extended and adapted to achieve results in a number of different settings [12, 6, 41, 11, 10, 34].
In particular, in the fully-dynamic setting, Thorup [41] uses the tree-packing technique
developed by Karger [23], but maintains a larger set of trees so that the minimum cut
1-respects at least one of them. In the parallel setting, Geissmann and Gianinazzi [11] are
able to parallelize both the dynamic tree data structure and the necessary computation
required by Karger’s algorithm [23]. This work is based off prior work in the cache-oblivious
model [10], also based on Karger’s algorithm [23]. In the distributed setting, Ghaffari and
Kuhn [12] achieve a (2 + ε)-approximation to the minimum cut based on Karger’s sampling
technique [22]. This is improved to a (1+ε)-approximation with similar runtime by Nanongkai
and Su [34]. Nanongkai and Su develop their algorithm from Thorup’s fully-dynamic min-cut
algorithm [41], Karger’s sampling technique [22], and Karger’s dynamic program to find
the minimum cut that 1-respects a tree [23]. Finally, Daga et al. [6] achieve a sublinear
time distributed algorithm to compute the exact minimum cut in an unweighted undirected
graph. This algorithm builds off a more recent development in minimum cut algorithms [27],
combined again with the tree-packing technique introduced by Karger [23]. Specifically, a tree
packing is found in an efficient number of distributed rounds, then Karger’s more-complicated
algorithm to find a minimum 2-respecting cut is applied in the distributed setting.

This vast amount of work based on Karger’s original near-linear time algorithm suggests
that simplifying it may yield additional techniques that can be applied both sequentially and
in alternative settings. Indeed, the very recent improvements to Karger’s algorithm [31, 9]
were published on arXiv two months after our paper was first made available online [28],
one of which [9] cites our paper as what drew the authors to the problem. Indeed, their
procedure for “descendent edges”, given in Section 3.1, is similar to our procedure given in
Section 5. We have further found use of the approach given in this paper to achieve new
results in dynamic higher connectivity algorithms [30].

This paper is organized as follows. In Section 2, we state the history of the minimum
cut problem, in particular discussing other simple algorithms. In Section 3, we give an
overview of Karger’s algorithm to pack spanning trees, leaving the details of the approach to
Appendix A. Our main contribution is given in Sections 4 and 5. In Section 4, we show how
to find minimum cuts that 1-respect (cut one edge of) a tree using our new procedure. In
Section 5, we extend the approach to find minimum cuts that 2-respect (cut two edges of) a
tree. We discuss our implementation in Section 6 and give concluding remarks in Section 7.
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2 Related Work

Before we begin, we give a brief history of the minimum cut problem. The minimum cut
problem was originally perceived as a harder variant of the maximum s-t flow problem and
was solved by

(
n
2
)
flow computations. Gomory and Hu [14] showed how to compute all

pairwise max flows in n− 1 flow computations, thus reducing the complexity of the minimum
cut problem by a Θ(n) factor. Hao and Orlin [16] further showed that the minimum cut in a
directed graph can be reduced to a single flow computation.

Nagamochi and Ibaraki [33, 32] developed a deterministic algorithm that is not based
on computing maximum s-t flows. They achieve O(nm + n2 logn) time on a capacitated,
undirected graph. This procedure was simplified by Stoer and Wagner [39], achieving the
same runtime. The Stoer-Wagner algorithm gives a simple procedure to find an arbitrary
minimum s-t cut. Vertices s and t are then merged, and the procedure repeats. Although
the O(nm+n2 logn) time complexity requires an efficient priority queue such as a Fibonacci
heap [7], a binary heap can be used to achieve runtime O(nm logn).

Two algorithms based on edge contraction have been devised. The first is an algorithm
of Karger [20] and is incredibly simple. The algorithm randomly contracts edges until only
two vertices remain. Repeated O(n2 logn) times, the algorithm finds all minimum cuts on
an undirected, weighted graph in O(n2m logn) time with high probability. This technique
was improved by Karger and Stein [25] by observing an edge of the minimum cut is more
likely to be contracted later in the contraction procedure. Their improvement branches the
contraction procedure after a certain threshold has been reached, spending more time to
avoid contracting an edge of the minimum cut when fewer edges remain. The Karger-Stein
algorithm achieves runtime O(n2 log3 n), finding the minimum cut with high probability.

In an unweighted graph, Gabow [8] showed how to compute the minimum cut in
O(cm log(n2/m)) time, where c is the capacity of the minimum cut. Karger [22] improved
Gabow’s algorithm by applying random sampling, achieving runtime Õ(m

√
c) in expectation2.

The sampling technique developed by Karger [22], combined with the tree-packing technique
devised by Gabow [8], form the basis of Karger’s near-linear time minimum cut algorithm [23].
As previously mentioned, this technique finds the minimum cut in an undirected, weighted
graph in O(m log3 n) time with high probability.

A recent development uses low-conductance cuts to find the minimum cut in an undirected
unweighted graph. This technique was introduced by Kawarabayashi and Thorup [27], who
achieve near-linear deterministic time (estimated to be O(m log12 n)). This was improved by
Henzinger, Rao, and Wang [18], who achieve deterministic runtime O(m log2 n (log logn)2).
Although the algorithm of Henzinger et al. is more efficient than Karger’s algorithm [23] on
unweighted graphs, the procedure, as well as the one it was based on [27], are quite involved,
thus making them largely impractical for implementation purposes.

Since an earlier version of this paper became available online [28], several important
improvements in minimum cut algorithms have been discovered. Ghaffari et al. [13] devise a
randomized unweighted minimum cut algorithm by using contraction based on sampling from
each vertex, rather than standard uniform edge sampling. Their algorithm reduces unweighted
minimum cuts to weighted minimum cuts on a graph with O(n) edges, achieving O(min(m+
n log3 n,m logn)) time complexity. Gawrychowski et al. [9] improve Karger’s procedure
for finding the minimum cut that 2-respects a tree to O(m logn) time. This improves the
state-of-the-art for weighted minimum cuts to O(m log2 n) time and, by Ghaffari et al. [13],

2 The Õ(f) notation hides O(log f) factors.
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improves the complexity of unweighted minimum cuts to O(min(m+ n log2 n,m logn)) time.
Mukhopadhyay and Nanongkai [31] also study Karger’s procedure for finding the minimum
cut that 2-respects a tree, arriving at an O(m log2 n

log logn + n log6 n) time weighted minimum cut
algorithm. Mukhopadhyay and Nanongkai further apply their new procedure to minimum
cuts in the cut-query and streaming models.

3 Overview of Karger’s Spanning Tree Packing

We first formalize the definition mentioned earlier in this paper and originally given by
Karger.

I Definition 1 (Karger [23]). Let T be a spanning tree of G. We say that a cut in G k-respects
T if it cuts at most k edges of T . We also say that T k-constrains the cut in G.

We also define weighted tree packings.

I Definition 2 (Karger [23]). A weighted tree packing is a set of spanning trees, each with
an assigned non-negative weight, such that the total weight of trees containing a given edge
of G is no greater than the weight of that edge. The weight of the packing is the total weight
of the trees in it.

The first stage of Karger’s algorithm is to sample edges independently and uniformly at
random from graph G to form a graph H, and then pack spanning trees in H. If we sample
a tree T from a packing with probability proportional to its weight, a minimum cut in G
will cut at most two edges of T with constant probability. Thus, if we sample O(logn) trees
from the weighted packing, a minimum cut in G 2-respects at least one of the sampled trees
with high probability. The remainder of the algorithm is a procedure that, given a spanning
tree T of a graph G, finds a minimal cut of G that 2-respects T . This procedure is applied
to all O(logn) sampled spanning trees.

We leave the intuition behind Karger’s approach and the relevant mathematics to Ap-
pendix A. We will use Algorithm 1 to pack spanning trees, credited to Thorup and Karger [42],
Plotkin-Shmoys-Tardos [36], and Young [43]. The procedure appears in Gawrychowski et
al. [9].

Algorithm 1 Obtain a Packing of Weight at least .4c from a Graph G.

Let G be a graph with m edges and n vertices.
1. Initialize `(e)← 0 for all edges e of G. Initialize multiset P ← ∅. Initialize W ← 0.
2. Repeat the following:

a. Find a minimum spanning tree T with respect to `(·).
b. Set `(e)← `(e) + 1/(75 lnm) for all e ∈ T . If `(e) > 1, return W,P .
c. Set W ←W + 1/(75 lnm).
d. Add T to P .

I Lemma 3 ([36, 42, 43]). Given an undirected unweighted graph G with m edges, n
vertices, and minimum cut c, Algorithm 1 returns a weighted packing of weight at least .4c in
O(mc logn) time.

Algorithm 1 and Lemma 3 are given in Appendix A with general epsilon and proven.
To achieve O(mc logn) time in Algorithm 1, we may use a linear time minimum spanning
tree routine [24] or the following implementation trick given by Gawrychowski et al. [9]. In
the use of Algorithm 1 in Algorithm 2, the graph in Algorithm 1 has edges which may be
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duplicated O(logn) times, while the number of distinct edges can be bounded as a factor
Θ(logn) fewer. It suffices to invoke the minimum spanning tree algorithm of Algorithm 1
with only the minimum of each set of parallel edges. We can easily maintain the minimum
of each set of parallel edges in O(logn) time per edge per iteration, which suffices to shave a
log factor in the runtime of Algorithm 1. Note that if we chose to avoid these optimizations
and/or avoid the use of top trees in Section 5, the final runtime becomes O(m log4 n).

We use Algorithm 1 in Algorithm 2 to obtain Θ(logn) trees for the 2-respect algorithm
given in Sections 4 and 5.

Algorithm 2 Obtain Θ(logn) Spanning Trees for the 2-respect Algorithm.

Let d denote the exponent in the probability of success 1− 1/nd. Let b = 3 · 62(d+ 2) lnn.
1. Form graph G′ from G by first normalizing the edge weights of G so the smallest non-zero

edge weight has weight 1, then multiplying each edge weight by 100 and rounding to the
nearest integer. Let U be an upper bound for the size of the minimum cut of G′.

2. Initialize c′ ← U . Repeat the following:
a. Construct H in the following way: for each edge e of G′, let e have weight in H drawn

from the binomial distribution with probability p = min(b/c′, 1) and number of trials
the weight of e in G′. Cap the weight of any edge in H to at most d7/6 · 12be.

b. Run Algorithm 1 on H, considering an edge of weight w as w parallel edges. There
are three cases:
i. If p = 1, set P to the packing returned and skip to step 3.
ii. If the returned packing is of weight 24b/70 or greater, set c′ ← c′/6 and repeat

steps 2a and 2b, setting P to the packing returned and then proceeding to step 3.
iii. Otherwise, repeat steps 2a and 2b with c′ ← c′/2.

3. Return d36.53d lnne trees sampled uniformly at random proportional to their weights
from P .

I Lemma 4. Algorithm 2 returns a collection of Θ(logn) spanning trees of G in time
O(m log3 n) such that the minimum cut of G 2-respects at least one tree in the collection
with high probability.

Algorithm 2 and Lemma 4 are given in Appendix A with general epsilon and proven.

4 Minimum Cuts that 1-Respect a Tree

We now give our algorithm for finding a minimum cut that 1-respects a spanning tree T of a
graph G. We present it here only to build intuition for the idea used to find 2-respecting
cuts in the following section, which also finds 1-respecting cuts.

We use the following lemma, a consequence of Sleator and Tarjan’s heavy-light decom-
position [38].

I Lemma 5 (Sleator and Tarjan [38]). Given a tree T , there is an ordering of the edges of T
such that the edges of the path between any two vertices in T consist of the union of up to
2 logn contiguous subsequences of the order. The order can be found in O(n) time.

Proof. We use heavy-light decomposition, credited to Sleator and Tarjan [38]. Note that
the algorithm assumes T is rooted. We can root T arbitrarily. We then take the heavy paths
given from the usual construction and concatenate them in any order. J

SWAT 2020
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Our algorithm begins by labeling the edges of T in heavy-light decomposition order
e1, . . . , en−1 as given by Lemma 5. Consider the cut of G induced by the vertex partition
resulting from cutting a single edge of T . We iterate index i through heavy-light decomposition
order and keep up-to-date the total weight of all edges of G that cross the cut induced by ei.
The minimum weight found is then returned.

Call the edges of G in T tree edges and edges of G not in T non-tree edges. Critical to
our approach is the following proposition.

I Proposition 6. For any cut of G that 2-respects T , the non-tree edge uv crosses the cut if
and only if exactly one tree edge from the uv-path in T crosses the cut.

Proof. Recall that for any edge of T crossing the cut, the components of each of its endpoints
must fall on opposite sides of the cut. Therefore if the number of tree edges in the cut on
the uv-path in T is odd, the non-tree edge uv crosses the cut. Since we are only considering
cuts that cut at most 2 edges of T , the proposition follows. J

We now give our algorithm explicitly.

Algorithm 3 Minimum Cuts that 1-Respect T .

1. Arrange the edges of T in the order of Lemma 5; label them e1, . . . , en−1.
2. For each non-tree edge uv, mark every i such that ei is on the uv-path in T and ei+1 is

not on the uv-path in T , or vice versa. Indicate whether edge e1 is on the uv-path in T .
3. Iterate index i from 1 to n− 1, in each iteration keeping track of the total weight of all

non-tree edges uv such that ei lies on the uv-path in T , added together with the weight
of edge ei.

4. Return the minimum total weight found in step 3.

I Lemma 7. Algorithm 3 finds the value of the minimum cut that 1-respects a spanning tree
T of a graph G in O(m logn) time.

Proof. Via Proposition 6, in a 1-respecting cut including only ei from T , a non-tree edge uv
is cut if and only if the edge ei lies on the uv-path in T . Algorithm 3 keeps track of all such
non-tree edges for each possible ei that is cut, therefore it finds the minimum cut of G that
cuts a single edge of T .

The time complexity can be determined as follows. Finding the heavy-light decomposition
for step 1 takes O(n) time. In doing so, we can label each edge and each heavy path so that
every edge knows its index in the order as well as the heavy path to which it belongs. Each
heavy path can store its starting and ending index in the order. With this information, step
2 can be completed by walking up from u and v in T towards the root of T . We spend O(1)
work per heavy path from root to vertex, which is bounded by O(logn) via the heavy-light
decomposition. In total this step takes O(m logn) time.

In step 3, we spend O(n) total work plus O(1) work for each transition of the current
edge ei on or off the uv path for all non-tree edges uv. Each non-tree edge transitions on or
off O(logn) times as guaranteed by Lemma 5, therefore the time complexity of this step is
O(m logn). Overall, Algorithm 3 takes O(m logn) time. J

Note that if we wish to find the edges in the minimum cut, we can keep track of the
minimum-achieving index i so we know the vertex separation of the minimum cut. With the
vertex separation, it is easy to find in O(m logn) time which non-tree edges cross the cut.
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Further note that we need not know the identity of the non-tree edge uv as ei falls on
or off the uv-path. Thus the space required for step 2 need only be O(m), since at each
transition point we can just keep track of the total weight added or subtracted from the
minimum cut.

5 Minimum Cuts that 2-Respect a Tree

We now discuss an extension of Algorithm 3 to find a minimum cut that 2-respects a tree.
We still iterate i through heavy-light decomposition order, but in addition to cutting ei, we
find the best j so that the cut resulting from cutting ei and ej is minimal. To find the best j
efficiently we use a clever data structure.

I Lemma 8 (Alstrup et al. [1]). There is a data structure that supports the following operations
on a weighted tree T in O(logn) time:

PathAdd(u, v, x) := Add weight x to all edges on the unique uv-path in T .
NonPathAdd(u, v, x) := Add weight x to all edges not on the unique uv-path in T .
QueryMinimum() := Query for the minimum weight edge in T .

Proof. Operations PathAdd() and QueryMinimum() are just Theorems 3 and 4 of [1]. Oper-
ation NonPathAdd(u, v, x) can be achieved by keeping a counter of global weight added to
(subtracted from) T and executing PathAdd(u, v, -x) to undo this action on the uv-path.
See also [40]. J

Note that the weight x can be positive or negative.
If we seek to avoid implementing any sophisticated data structures, we can instead use

heavy-light decomposition again and support the above two operations in O(log2 n) time. To
see how, by Lemma 5 each path of T represents at most O(logn) contiguous segments of the
total order of edges. Range add and a global minimum query can be supported in O(logn)
time via an augmented binary search tree. Thus the total time complexity per operation is
O(log2 n).

We use the range operations as follows. As we iterate index i through the order of
Lemma 5, we keep up to date the cost of the cut resulting from cutting any other edge ej
via the data structure of Lemma 8. Instead of querying each other edge ej directly, however,
we just use a global minimum query to find the best choice of j. The procedure is given in
Algorithm 4. The first two steps are the same as Algorithm 3.

I Lemma 9. Algorithm 4 finds the value of the minimum cut that 2-respects a spanning tree
T of a graph G in O(m log2 n) time.

Proof. By Proposition 6, in a 2-respecting cut including ei and ej of T , a non-tree edge
uv is cut if and only if exactly one of ei or ej lies on the uv-path in T . Observe that the
invariants enforced in step 4 guarantee that in each iteration the total weight of edges from
the cut resulting from cutting any other edge ej along with ei is kept up-to-date in the data
structure of Lemma 8. Since the minimum such j is found for every i, it follows that step 4
finds the weight of the minimum cut of G that cuts exactly two edges of T . In step 5, we
return the minimum of this weight with a single call to QueryMinimum() where we assume
edge ei to be off the path of all non-tree edges uv. Observe that this computes the minimum
cut of G that cuts exactly one edge of T . Thus, the minimum cut of G that 2-respects T is
returned in step 5.

The time complexity follows similarly to Algorithm 3. Steps 1 and 2 take O(m logn)
total time. However, step 4 requires O(logn) time for non-tree edge uv whenever edge ei

SWAT 2020
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Algorithm 4 Minimum Cuts that 2-Respect T .

1. Arrange the edges of T in the order of Lemma 5; label them e1, . . . , en−1.
2. For each non-tree edge uv, mark every i such that ei is on the uv-path in T and ei+1 is

not on the uv-path in T , or vice versa. Indicate whether edge e1 is on the uv-path in T .
3. Initialize the data structure of Lemma 8 on T so that the weight of edge ej is equal to its

weight in T .
4. Iterate index i from 1 to n− 1. Via the computation done in step 2, maintain the

following invariants in the data structure of Lemma 8 as i is iterated.
a. When edge ei is on the uv-path in T , add the weight of non-tree edge uv to all edges

off the uv-path in T .
b. When edge ei is off the uv-path in T , add the weight of non-tree edge uv to all edges

on the uv-path in T .
Each time i is incremented, after updating weights in Lemma 8 as per 4a and 4b, add ∞
to edge ei, execute QueryMinimum(), then subtract ∞ from edge ei. The value of the
minimum cut found in each iteration is the result of QueryMinimum() plus the weight of
ei.

5. Return the minimum of the smallest cut found in step 4 with the result of
QueryMinimum() when we consider edge ei to be off the path of all non-tree edges uv in
the data structure of Lemma 8.

falls on or off the uv-path in T , since the data structure of Lemma 8 takes O(logn) time per
operation. For a given non-tree edge uv, edge ei falls on or off the uv-path in T a total of
O(logn) times by Lemma 5; thus step 4 takes O(m log2 n) time. The final QueryMinimum()
call in step 5 takes O(m logn) time. The total time taken is O(m log2 n). J

We make a few further remarks about Algorithm 4. To determine the edges of the
minimum cut, the data structure of Lemma 8 can be augmented to return the index j of the
edge that achieves the minimum given in operation QueryMinimum(). With ei and ej , we
can determine the vertex partition in G of the minimum cut and, as stated in Section 4, and
from this we can find which non-tree edges cross the minimum cut easily in O(m logn) time.

The space complexity of Algorithm 3 was easily linear. In Algorithm 4, we must know
the identity of each non-tree edge uv in every transition point where edge ei falls on or off
the uv-path. Naively this costs O(m logn) space. This can be improved to O(m) space
by performing step 2 incrementally while executing step 4. That is, we only need to know
the next transition point where the non-tree edge uv falls on or off the uv-path, and from
the current transition point this can be determined in constant time via the heavy-light
decomposition.

Recall that while Algorithm 3 helped demonstrate the approach of Algorithm 4, we need
only implement Algorithm 4, since Algorithm 4 finds the minimum cut of G that cuts either
1 or 2 edges of T .

From this we get our final theorem, equivalent to the result of Karger [23].

I Theorem 10. The minimum cut in a weighted undirected graph can be found in O(m log3 n)
time with high probability.

Proof. We first find Θ(logn) spanning trees by Algorithm 2. We then find the minimum
cuts that 2-respect each of these trees by Algorithm 4. By Lemmas 4 and 9, this finds the
minimum cut with high probability in O(m log3 n) time. J
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Figure 1 Performance comparison of an O(m log4 n) implementation of our algorithm with an
O(n3) Stoer-Wagner [39] and O(n3 logn) Karger [20].

6 Implementation

We have implemented an O(m log4 n) version of our algorithm in C++3. Algorithm 1 together
with an O(m logn) minimum spanning tree routine take about 100 lines of code, Algorithm 2
takes about 200 lines, Algorithm 4 takes about 200 lines, and using an augmented binary
search tree as the data structure for Lemma 8 takes about 200 lines. To the best of our
knowledge, our implementation is the first to achieve near-linear time complexity. We
have tested it against an O(n3) implementation of the Stoer-Wagner algorithm [39] and
an O(n3 logn) implementation of Karger’s randomized contraction algorithm [20]. Under
favorable inputs, the runtime compares as in Figure 1.

Figure 1 demonstrates the near-linear growth in the running time of our algorithm.
Unfortunately, it does not appear our implementation is competitive compared to existing im-
plementations [5]. The bottleneck is in obtaining the O(logn) spanning trees for Algorithm 4,
even when Algorithm 2 runs in O(m log3 n) time and Algorithm 4 runs in O(m log4 n) time.
The issue is the large constant factors due to the quadratic dependencies on epsilons, seen in
Algorithms 5 and 6. We have calculated that the number of calls to the minimum spanning
tree routine in our implementation can be as much as 8100 lnn lnm, and that changing the
choices of epsilons for Algorithms 1 and 2 does not yield significant improvement.

If we replace Algorithm 1 with the more-complicated Gabow’s algorithm [8], we can
likely improve our implementation’s runtime. Further, a factor of about two can be saved by
finding c′ via an approximation algorithm [26]. However, a large constant factor will remain
due to the sampling procedure in Lemma 14, discussed in Appendix A. All known algorithms
to compute weighted tree packings have dependence on c, the value of the minimum cut,
and Lemma 14 reduces the value of the minimum cut to at least 3(d+ 2)(lnn)/ε2, which in
our algorithms manifests as a factor of 108(d+ 2) lnn. It appears that for Karger’s approach
to be made practical, this large constant factor will likely need to be improved or heuristic
approaches would need to be considered [5].

3 Our implementation is available at: https://github.com/nalinbhardwaj/min-cut-paper.
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7 Conclusion

In this paper, we have discussed a simplification to Karger’s original near-linear time minimum
cut algorithm [23]. In contrast to Karger’s original algorithm [23], finding spanning trees that
have a constant probability of 2-respecting the minimum cut is now the more-complicated
part of the algorithm and finding minimum cuts that 2-respect a tree is relatively simpler.
In actuality, both were complicated in Karger’s original algorithm, however the work to find
the tree packing was largely abstracted to previous publications. The same can be said for
many statements of Karger’s near-linear time algorithm [9, 31]. Our version, on the other
hand, is self-contained: the only procedures outside of Algorithms 1, 2, and 4 required to
implement the full algorithm are a minimum spanning tree subroutine and (optionally) a top
tree data structure.

The main contribution of our algorithm is a new, simple procedure to find a minimum cut
that 2-respects a tree T in O(m log2 n) time. Karger advertises that the complexity of his
near-linear time algorithm is O(m log3 n) and thus his routine to find a minimum cut that
2-respects a tree also takes O(m log2 n) time. However, he gives two small improvements to
the algorithm to reduce the overall runtime to O(m log2 n log(n2/m)/ log logn + n log6 n).
The first uses the fact that finding a 1-respecting cut can be done in linear time, and the
other is an improvement which reduces an O(logn) factor to an O(log(n2/m)) factor in the
2-respect routine. For our algorithm, the first improvement can be applied by substituting
our 1-respect algorithm with his. The second improvement can not be applied. Thus, when
m = Θ(n2), his algorithm is faster by an O(logn) factor. However, for this case, Karger
gives a different, simpler algorithm [23] which finds the global minimum cut in O(n2 logn)
time anyway.

There are three algorithms that are referred to as simple min-cut algorithms: the Stoer-
Wagner algorithm [39] which runs in O(nm logn) time or O(nm + n2 logn) time with a
Fibonacci heap [7], Karger’s randomized contraction algorithm [20] which runs in O(n2m logn)
time, and the improvement to Karger’s algorithm by Karger and Stein [25] which runs in
O(n2 log3 n) time. In comparison to these, our approach is the least simple. However, our
O(m log3 n) runtime is significantly better. While the large constant factors in our approach
make this only relevant at large values of n, we hope the procedure developed in this paper
can be used in conjunction with an optimized version of Karger’s sampling technique to
produce an asymptotically fast, practical minimum cut algorithm.
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A Karger’s Algorithm for Packing Spanning Trees

In this section we give the intuition and mathematics behind the spanning tree packing of
Karger’s algorithm.

A.1 Tree Packing
The basic idea of Karger’s near-linear time algorithm [23] is to exploit the following com-
binatorial result. Recall that a tree packing of an undirected unweighted graph G is a set
of spanning trees such that each edge of G is contained in at most one spanning tree. The
weight of a tree packing is the number of trees in it.

I Theorem 11 (Nash-Williams [35]). Any undirected unweighted multigraph with minimum
cut c contains a tree packing of weight at least c/2.

Now consider a minimum cut and a tree packing given by Theorem 11. Each edge of the
minimum cut can only be present in at most one spanning tree. As there are c edges of the
minimum cut, this implies that the average spanning tree contains at most c/(c/2) = 2 edges
of the minimum cut. In other words, a spanning tree chosen at random from a packing of
Theorem 11 will 2-constrain the minimum cut with probability at least 1/2.
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Suppose we are given a spanning tree T of G with each edge of T marked if it crosses
the minimum cut. The endpoints of any marked edge must fall on opposite sides of the cut.
Conversely, the endpoints of any unmarked edge must be on the same side of the cut. It
follows that if we know the edges of T that cross the minimum cut, we can determine the
vertex partition of the minimum cut and its total weight in G.

This gives the intuition behind Karger’s algorithm [23]. We sample spanning trees
from a tree packing of G and for each tree T , we find the minimum cut that 2-respects
T . Unfortunately, several obstacles need be overcome before this can be made into an
efficient algorithm. For one, all currently known approaches of determining a tree packing of
Theorem 11 have runtime Ω(cm), which for large values of c is far more than the runtime we
seek. Further, Theorem 11 must be generalized to weighted graphs.

We first address the latter concern. Recall the definition of weighted tree packings given
in Section 3.

I Lemma 12 (Karger [23]). Any undirected weighted graph with minimum cut c contains a
weighted tree packing of weight at least c/2.

Proof. For contradiction, suppose some graph G with minimum cut c and ε > 0 exist such
that G does not contain a weighted packing of weight (1− ε)c/2 or greater.

Take G and approximate each edge ei of weight wi by a rational number ai/bi such that
ai/bi < wi and wi − ai/bi < ε. Multiply all edges by d =

∏
i bi and call the resulting graph

G′. Then by Theorem 11, when viewed as an unweighted multigraph, G′ has a tree packing
of weight at least (1 − ε)dc/2. If we weight each tree of the packing by 1/d, the packing
becomes a weighted packing of G of weight at least (1− ε)c/2, a contradiction. J

Note that for both Lemma 11 and Lemma 12, an upper bound of weight c also exists,
because every spanning tree in the packing must cross the minimum cut at least once.

To effectively use Lemma 12, we formally state the relationship between weighted packings
and trees that 2-constrain small cuts.

I Lemma 13 (Karger [23]). Consider a weighted graph G and a weighted tree packing of
weight βc, where c is the weight of the minimum cut in G. Then given a cut of weight αc, a
fraction at least 1

2 (3− α/β) of the trees (by weight) 2-constrain the cut.

Proof. Note that every spanning tree must cross every cut. Let x denote the total weight
of trees with at least three edges crossing the cut and y the total weight of trees with one
or two edges crossing the cut. Then x + y = βc and 3x + y ≤ αc. Rearranging, we get
y ≥ 1

2 (3βc− αc). J

A.2 Random Sampling
In order to avoid the Ω(cm) complexity of finding a packing of weight c/2, we first apply
random sampling to G. Specifically, we use the following from Karger’s earlier work.

I Lemma 14 (Karger [22]). Let p = 3(d+ 2)(lnn)/(ε2γc) ≤ 1, where c is the weight of the
minimum cut of an unweighted multigraph G and γ ≤ 1, γ = Θ(1). Then if we sample each
edge of G independently with probability p, the resulting graph H has the following properties
with probability 1− 1/nd.
1. The minimum cut in H is of size within a (1 + ε) factor of cp = 3(d + 2)(lnn)/(γε2),

which is O(ε−2 logn).
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2. A cut in G takes value within a factor (1 + ε) of its expected value in H. In particular,
the minimum cut in G corresponds (under the same vertex partition) to a (1 + ε)-times
minimum cut of H.

By picking ε to be a constant such as 1/6, Lemma 14 will allow us to reduce the size of
the minimum cut in H to O(logn). We can then run existing algorithms [36, 8] to pack trees
in H in Õ(m) time. Further, since the minimum cut of G corresponds to a (1 + ε)-times
minimum cut of H, we can still apply Lemma 13 on the sampled graph H so that a tree
randomly sampled from the packing has a constant probability of 2-constraining the minimum
cut in G.

There are still several issues to resolve. Lemma 14 applies to unweighted multigraphs
G, but our graph G can have non-negative real weights. The other issue is that the value γ
needs to be known ahead of time in order to apply the lemma. We first address the latter
issue.

Lemma 14 requires knowing a constant-factor underestimate c′ = γc for the minimum
cut c. In particular, without γ ≤ 1, property 2 of Lemma 14 is not guaranteed with high
probability, and if γ = o(1), the minimum cut of H will be of size ω(ε−2 logn) with high
probability. We may run a linear-time 3-approximation algorithm [29], with modifications to
work on weighted graphs [26], to find this approximation. This is simple to state, but more
difficult to implement.

A different approach is to start with a known upper bound U for c′. Karger states that
we can then halve this upper bound until “our algorithms succeed” [22]. This approach
is taken by the implementation of Chekuri et al. [5]. Unfortunately, it is not rigorous as
stated. Lemma 14 indicates that with a constant-factor underestimate c′ = γc for c, our
algorithm can proceed. However, it does not give a process for rejecting a guess c′ that
is not a constant-factor underestimate for c. We could try all powers of 2 for c′ within a
known lower and upper bound of the value of the minimum cut, and run our algorithms for
all possibilities. This is rigorous, but introduces an extra O(logn) factor in our runtimes,
assuming the range of c′ we try is polynomial in n. We instead show the following.

I Lemma 15. Let p = 3(d + 2)(lnn)/(ε2γc) ≤ 1 as in Lemma 14, but with γ ≥ 6 and
ε ≤ 1/3. Then if we sample each edge of the unweighted multigraph G uniformly at random
with probability p, the resulting graph H has minimum cut of size less than (d+ 2)(lnn)/ε2
with probability at least 1− 1/nd+2.

Proof. Consider the size of a minimum cut of G as a cut in H. Let X be a random variable
denoting this size. Then E [X] = cp. By a Chernoff bound, Pr [X ≥ (1 + δ)cp] ≤ e− 1

3 (cpδ) for
δ ≥ 1. Let (1 + δ) = γ

3 . Then

Pr
[
X ≥ (d+ 2)(lnn)/ε2

]
≤ e− 1

3 (cp( γ
3−1))

= e−(d+2)(lnn)γ−1ε−2( γ
3−1))

= n−
1
3 (d+2)ε−2+(d+2)γ−1ε−2

≤ n− 1
6 (d+2)ε−2

< n−(d+2).

Therefore, the minimum cut in H has size less than (d + 2)(lnn)/ε−2 with probability at
least 1− 1/nd+2. J

Lemma 15 states that if our estimate c′ = γc satisfies γ ≥ 6, the minimum cut will be at
least a factor 3 smaller than 3(d+ 2)(lnn)/ε2 with high probability. Recall that with γ = 1
and therefore c′ = c, we expect the minimum cut in H to be within a factor (1 + ε) from
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3(d+ 2)(lnn)/ε2 with high probability. Lemma 15 gives us the necessary tool to reject c′
that are not a constant factor underestimate of c. We try a value for c′, and if the size of the
minimum cut in H is greater than (1 + ε)−13(d+ 2)(lnn)/ε2, we know c′ < 6c. Therefore we
can decrease c′ by a factor of 6 and rerun the tree packing algorithm. The resulting graph H
must satisfy the conditions of Lemma 14, therefore the algorithm may proceed. Since our
tree packing algorithms determine the minimum cut up to constant factors, this approach
avoids the need of a different (or recursive!) minimum cut algorithm to run on H.

We briefly remark on the choice of known upper bound U . If the edge weights are
polynomially bounded by the number of vertices, n, a simple upper bound of the sum of
weights of edges attached to any single vertex will do. If we do not consider this guarantee,
Karger shows [22] that the minimum weight edge w in a maximum spanning tree has the
property that the minimum cut must have weight between w and n2w. Thus, setting U = n2w

gives only O(logn) values of c′ to try regardless of edge weights. The choice of an upper
bound U is further discussed in [5].

We now return to the issue of real-value weights in Lemma 14. This was described
as a complication in [5], to which they substituted a heuristic method in order to achieve
practicality. The approach we have described thus far is amenable to small constant-factor
approximations. Suppose we replace G with a graph G′ such that each edge weight is first
normalized so the smallest weight edge has weight 1, then all edge weights are multiplied by
100 and rounded to the nearest integer. Normalizing has no effect on the relative sizes of cuts
in G′. Rounding to the nearest integer when the smallest weight edge has weight at least
100 has the effect that a cut of weight x will take on a new weight in range [.995x, 1.005x].
Then the original minimum cut of G corresponds to an at most 201/199-times minimum cut
of G′. Now, G′ can be represented as an unweighted multigraph and then sampled according
to Lemma 14. In the resulting graph H, the minimum cut of G corresponds to an at most
201/199 · 7/6-times minimum cut of H with the choice ε = 1/6. By adjusting constants
throughout the rest of our approach, this shows we can treat real weighted graphs G correctly.
The other issue is how to do so efficiently.

If we consider G′ as an unweighted multigraph, the number of edges of G′ is proportional
to the weight of edges of G, which may be quite large. However, we may also consider
G′ as an integer-weighted graph, in which case we can sample each edge of G′ by drawing
from the binomial distribution with probability p and number of trials the weight of the
respective edge. There are many methods to sample from the binomial distribution. One
simple method that can be made efficient for our purposes is inverse transform sampling. Let
X denote a random variable sampled from the binomial distribution as described. In inverse
transform sampling, we draw a number u uniformly at random between 0 and 1, and then
choose our sample x to be the largest such that P (X < x) ≤ u. Instead of having to sample
a number of times equal to the weight of an edge, we must only compute the probabilities
of the cumulative distribution function for the binomial distribution for all possible values
that may result in H. We can make this efficient with the following observation. Say the
weight of the minimum cut in H is ĉ. Then a tree packing of H has value at most ĉ, and in
particular for a given edge, any weight beyond ĉ is excess capacity that cannot be used in
the tree packing. It follows that capping the weight of any edge of H to the maximum size
of the minimum cut in H, thus O(logn), will have no impact on the packing found. Thus,
we must only compute O(logn) probabilities of the binomial distribution per edge, which
can be done in total O(logn) time per edge.

The final choice is to pick a tree packing algorithm. Karger gives two options. The first
is an algorithm by Gabow [8], which computes a c/2 packing. The second is a more general
approach by Plotkin-Shmoys-Tardos [36], which can find a packing a factor (1 + ε′) from
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the maximum packing, which has value in [c/2, c]. Karger describes the latter approach as
simpler, using only minimum spanning tree computations. Although the paper [36] does not
explicitly give a routine for packing spanning trees, such a procedure is explicitly given in
Thorup and Karger [42], with credit given to Plotkin-Shmoys-Tardos [36] and Young [43].
This procedure also appears in Gawrychowski et al. [9]. We give the procedure in Algorithm 1
and state a version of Algorithm 1 with general epsilon in Algorithm 5.

Algorithm 5 Obtain a Packing of Weight at least (1− ε)c/2 from a Graph G.

Let G be a graph with m edges and n vertices.
1. Initialize `(e)← 0 for all edges e of G. Initialize multiset P ← ∅. Initialize W ← 0.
2. Repeat the following:

a. Find a minimum spanning tree T with respect to `(·).
b. Set `(e)← `(e) + ε2/(3 lnm) for all e ∈ T . If `(e) > 1, return W,P .
c. Set W ←W + ε2/(3 lnm).
d. Add T to P .

We now give the general form of Lemma 3 with proof.

I Lemma 16 ([36, 42, 43]). Given 0 < ε < 1 and an undirected unweighted graph G with m
edges, n vertices, and minimum cut c, Algorithm 5 returns a weighted packing of weight at
least (1− ε)c/2 in O(mc logn) time.

Proof. On each iteration, the weight of some tree is increased by ε2/(3 lnm). Since the
weight of the resulting packing is bounded by c, there are at most 3c lnm/ε2 = O(c logn)
iterations. The bottleneck in each iteration is the time to compute a minimum spanning tree
in G. With an O(m) time minimum spanning tree algorithm [24] our final time complexity
is O(mc logn); an alternative way to achieve this runtime when Algorithm 5 is used in
Algorithm 6 was shown in Section 3. Correctness is given via Thorup and Karger [42],
Young [43], and Plotkin-Shmoys-Tardos [36]. J

Our full procedure for obtaining Θ(logn) spanning trees for the rest of the algorithm is
given in Algorithm 2. We give a version of Algorithm 2 with general epsilons in Algorithm 6.

We give the generalization of Lemma 4 for Algorithm 6 below.

I Lemma 17. Algorithm 6 returns a collection of Θ(logn) spanning trees of G in time
O(m log3 n) such that the minimum cut of G 2-respects at least one tree in the collection
with high probability.

Proof. We first prove correctness. Consider general epsilons ε1, ε2, ε3 > 0, where in Al-
gorithm 2, ε1 = 1/100 is the real-weight approximation, ε2 = 1/6 is the approximation for
Lemmas 14 and 15, and ε3 = 1/5 is the approximation for Algorithm 1 to return a packing
of size (1− ε3)c/2 or greater.

Suppose for a particular c′ that c′ ≥ 6c, where c is the size of the minimum cut in G′.
Then by Lemma 15, H will have minimum cut of size less than b/3 = (d+ 2) lnn/ε22 with
high probability. A maximum tree packing of H will have weight at most ĉ, the weight of the
minimum cut in H, and thus the weight of the tree packing found by Algorithm 5 will be at
most b/3 < 1

2 (1− ε3)(1 + ε2)−1b because (1 + ε2)−1(1− ε3) > 2/3. Therefore Algorithm 6 will
proceed to the next iteration with c′ ← c′/2. Note that the overall probability of failure from
any of the O(logn) iterations of this step is at most O(logn · n−(d+2)) ≤ n−d for sufficiently
large n.
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Algorithm 6 Obtain Θ(logn) Spanning Trees for the 2-respect Algorithm.

Let d denote the exponent in the probability of success 1− 1/nd. Let ε1, ε2, ε3 > 0 be
constants of approximation such that f = 3/2− ( 2+ε1

2−ε1
)(1 + ε2)(1− ε3)−1 > 0 and

(1 + ε2)−1(1− ε3) > 2/3. Let b = 3(d+ 2) lnn/ε22.
1. Form graph G′ from G by first normalizing the edge weights of G so the smallest non-zero

edge weight has weight 1, then multiplying each edge weight by ε−1
1 and rounding to the

nearest integer. Let U be an upper bound for the size of the minimum cut of G′.
2. Initialize c′ ← U . Repeat the following:

a. Construct H in the following way: for each edge e of G′, let e have weight in H drawn
from the binomial distribution with probability p = min(b/c′, 1) and number of trials
the weight of e in G′. Cap the weight of any edge in H to at most d(1 + ε2)12be.

b. Run Algorithm 5 on H with approximation ε3, considering an edge of weight w as w
parallel edges. There are three cases:
i. If p = 1, set P to the packing returned and skip to step 3.
ii. If the returned packing is of weight 1

2 (1− ε3)(1 + ε2)−1b or greater, set c′ ← c′/6
and repeat steps 2a and 2b, setting P to the packing returned and then proceeding
to step 3.

iii. Otherwise, repeat steps 2a and 2b with c′ ← c′/2.
3. Return d−d lnn/ ln(1− f)e trees sampled uniformly at random proportional to their

weights from P .

Now suppose Algorithm 5 returns a tree packing of weight 1
2 (1− ε3)(1 + ε2)−1b or greater.

By the above, c′ < 6c with high probability. If c′ ≤ c, Lemma 14 says that the weight of the
minimum cut is at least (1 + ε2)−1b with high probability, unless p > 1. In the latter case,
this implies the weight of the minimum cut is O(logn) and there is no need to apply sampling
to G′. Consider the former case. The tree packing is of weight at least (1− ε3) times half the
minimum cut. It follows that the tree packing will be of weight at least 1

2 (1− ε3)(1 + ε2)−1b.
The consequence of this is that if a tree packing of this weight or greater is found in step 2b,
in addition to the bound c′ < 6c, we also know c′ > c/2 with high probability, since whenever
c′ ≤ c, Lemma 14 says the packing will have weight at least 1

2 (1 − ε3)(1 + ε2)−1b, and we
decrease c′ by a factor of 2 in each iteration. Therefore, if we set c′ ← c′/6, then in the next
iteration we will have c/12 < c′ < c.

Now consider the next iteration when the tree packing is returned. In sampling H, we only
preserve weights in H up to d(1+ε2) ·12be. Since c′ > c/12, the expected size of the minimum
cut in H is at most 12b = 12 · 3(d+ 2) lnn/ε22. Thus, with high probability, by Lemma 14,
the size of the minimum cut in H is at most (1 + ε2)12b, and as explained previously, we
can afford to remove the capacity of any edge beyond (1 + ε2)12b without impacting the
returned packing. Now by Lemma 13 with α ≤ 2+ε1

2−ε1
(1 + ε2) and β ≥ 1

2 (1− ε3), a fraction of
at least f = 3/2− ( 2+ε1

2−ε1
)(1 + ε2)(1− ε3)−1 of the trees in the packing found will 2-constrain

the minimum cut of G. The probability that no tree in a sample of size t 2-constrains
the minimum cut is (1− f)t. Solving for t in (1− f)t = n−d yields t = −d lnn/ ln(1− f).
Therefore with probability at least 1− 1/nd, at least one tree in the returned sample will
2-constrain the minimum cut.

Time complexity can be proven as follows. Sampling H can be done in O(m logn) time,
as explained previously. Algorithm 5 runs in O(m′ĉ log2 n) time using a textbook O(m logn)
minimum spanning tree algorithm, where ĉ is the value of the minimum cut in H and m′ is

SWAT 2020
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the number of edges in H, where weighted edges are considered parallel unit weight edges.
Due to the sampling procedure, m′ = O(m logn). To reduce this complexity, we can either
use a linear time minimum spanning tree algorithm [24] or the implementation trick given in
Section 3. If we use the latter, we reduce the effective m′ needed in Algorithm 5 to O(m).
Further, in expectation, the value of the minimum cut ĉ of H doubles in each iteration
of Algorithm 6. A high probability statement can be made via an argument similar to
Lemma 15. Therefore the cost of running Algorithm 5 doubles in each iteration, with the
final cost being O(m log3 n), since ĉ = O(logn) by Lemma 14. This is a geometric series,
so the entire cost is O(m log3 n), and so Algorithm 6 runs in O(m log3 n) time with high
probability. J

Since Algorithm 5 returns O(logn) trees, we could avoid sampling trees from the weighted
packing and instead return all of them. We keep the sampling in Algorithm 6 because,
depending on the constants, sampling may require less trees. Further, the above version of
Algorithm 5 is more versatile in that the packing algorithm can be changed. Observe that
the entire algorithm is still only correct with high probability, since we required sampling G′
to construct graph H. Finally, returning all trees from Algorithm 5 does not actually allow
us to relax ε1, ε2, or ε3. The condition f = 3/2− (1 + ε1)(1 + ε2)(1− ε3)−1 > 0 is satisfied
for all values of α and β that guarantee at least one tree in a weighted packing of weight βc
2-constrains a cut of weight αc given by Lemma 13.

Algorithm 6 is slightly different than the approach taken by Karger [23]. In particular,
Karger sparsifies edges of H to have m′ = O(n logn) and replaces an O(m logn) time
minimum spanning tree computation in the tree packing algorithm with an O(m) one, avoiding
the implementation trick of Gawrychowski et al. [9]. This gives complexity O(n log3 n) for
finding the Θ(logn) spanning trees. However, since the remaining part of the algorithm also
takes O(m log3 n) time, we avoid these optimizations to simplify our procedures.
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