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Abstract
We study the problem of low-stretch spanning trees in graphs of bounded width: bandwidth,
cutwidth, and treewidth. We show that any simple connected graph G with a linear arrangement
of bandwidth b can be embedded into a distribution T of spanning trees such that the expected
stretch of each edge of G is O(b2). Our proof implies a linear time algorithm for sampling from T .
Therefore, we have a linear time algorithm that finds a spanning tree of G with average stretch
O(b2) with high probability. We also describe a deterministic linear-time algorithm for computing a
spanning tree of G with average stretch O(b3). For graphs of cutwidth c, we construct a spanning
tree with stretch O(c2) in linear time. Finally, when G has treewidth k we provide a dynamic
programming algorithm computing a minimum stretch spanning tree of G that runs in polynomial
time with respect to the number of vertices of G.
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1 Introduction

Let G = (V,E) be an unweighted, connected graph with m edges and n vertices, and T

be any spanning tree of G. For any (u, v) ∈ E, the stretch of (u, v) with respect to T is
stretchT (u, v) = dT (u, v), where dT (u, v) denotes the length of the unique u-to-v path in T .
The stretch of T is then defined to be stretch(T ) = 1

m

∑
(u,v)∈E stretchT (u, v).

As minimal distance preserving structures, low-stretch spanning trees are a fundamental
concept that have been studied extensively; they have also found applications in computer
science in problems such as the k-server problem [3], minimum cost communication trees [26],
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and solving diagonally dominant linear systems [21]. Perhaps the first notable structural
result is the paper by Alon et al. [3], where they show that any general graph has a spanning
tree of stretch O(exp(

√
logn log logn)) and that there exist graphs with minimum stretch

Ω(logn). A series of papers [11, 1, 22, 2] followed the result of Alon et al., culminating in
the recent construction of Abraham and Neiman of an O(logn log logn) stretch spanning
tree for general graphs, which is almost tight considering the Ω(logn) lower bound. The
existence of spanning trees with bounded average distortion is often implied by a stronger
statement that the graph can be embedded into a distribution of spanning trees such that
the expected stretch of any edge is bounded.

Given these results for general graphs, a natural question is to consider restricted classes
of graphs, both in terms of finding better bounds than general graphs for some classes of
graphs, as well as finding lower bounds that match the general case in others. For example,
we know that constant factor stretch spanning trees exist for k-outerplanar graphs: they
have stretch ck for a constant c [17, 12]. On the lower bound side, we also know that grid
graphs, which are planar, have a lower bound of Ω(logn) on their stretch, so we cannot hope
to get constant factor for this class. Additionally, Gupta et al. [17] found a family of bounded
treewidth graphs (in fact, series parallel graphs) whose minimum stretch spanning trees have
stretch Ω(logn).

In light of these bounds, the search for families of graphs that might have smaller stretch
must be limited to classes of graphs that exclude these examples. In this regard, a natural
and still-open question is whether bounded pathwidth graphs admit a spanning tree of
sublogarithmic stretch. In fact, we conjecture that bounded pathwidth graphs admit constant
stretch spanning trees. In this paper, we make progress towards this conjecture by showing
this is true for bounded bandwidth (Theorem 3) and bounded cutwidth graphs (Theorem 4);
both classes are contained within the family of bounded pathwidth graphs. More precisely,
we prove:

For every n-vertex graph of bandwidth b there exists a random distribution over spanning
trees of the graph, such that the expected stretch of any individual edge of the graph
is O(b2). The random distribution can be sampled in linear time given a bandwidth-b
linear arrangement of the graph, or constructed explicitly in quadratic time.
Under the same assumptions, a spanning tree T of average stretch O(b3) can be constructed
deterministically in linear time.
Every n-vertex graph of cutwidth c has a spanning tree T of average stretch O(c2). T
can be constructed from a cutwidth-c linear arrangement of the graph in linear expected
time.
We provide a dynamic programming algorithm computing the minimum stretch spanning
tree of an unweighted graph with treewidth k. Our algorithm runs in O(23kk2knk+1)
time.

It is important to note that our algorithms require either a linear arrangement or a tree
decomposition realizing the width as input, and computing such structures is NP-hard
[25, 4, 15]. Due to space constraints the deterministic algorithm and some proofs have been
placed in the appendix.

Lee and Sidiropoulos [23] show that a bounded pathwidth graph admits an embedding
into a distribution of trees with constant distortion. In this paper, we conjecture that a
similar result holds for embedding into a distribution of spanning trees. For embedding of
bounded bandwidth graphs into normed spaces see Carrol et al. [8] and Bartal et al. [5].

The key insight by which we obtain these results lies in the connection between spanning
trees of low-stretch and fundamental cycle bases of low weight. Any spanning tree T of G
naturally gives a fundamental cycle basis for G: for each e = (u, v) ∈ E\T , the basis contains
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the unique cycle in T ∪ {e}. The weight of this basis is defined to be the sum of the lengths
of its cycles. A graph G has a spanning tree of average stretch O(logn) if and only if it has
a fundamental cycle basis of weight O(m logn). Similarly, a cycle basis of length O(m) is
equivalent to a spanning tree of stretch O(1). (The relationship between T ’s stretch and
fundamental cycle basis will be discussed in more detail in the next section.)

Shortest fundamental cycle bases have been studied as a basic structure of graphs and for
their different applications in graph drawing [14], electrical engineering [7], chemistry [16],
traffic light planning [20], periodic railway time tabling, [24, 27], and kinematic analysis of
mechanical structures [9].

2 Preliminaries

2.1 Cycle bases
Given a simple, connected, unweighted graph G with n vertices and m edges the cycle space
of G is an m− n+ 1 dimensional vector space over Z2 that spans the cycles in G. In this
context a cycle in G is any subgraph of G with even degree. We call a basis of this vector
space a cycle basis, and the weight of a cycle basis is the sum of the lengths of the cycles in
the basis. Given a spanning tree T of G we call a cycle formed by adding a non-tree edge to
T a fundamental cycle with respect to T . Every spanning tree T of G yields a basis of the
cycle space using the fundamental cycles induced by the m− n+ 1 edges in G \ T . We call
a basis of this form a fundamental cycle basis. Each cycle in the fundamental cycle basis
created by T corresponds to exactly one edge in G \ T . We call this edge the fundamental
edge of the cycle.

2.2 Fundamental cycle bases and low-stretch spanning trees
The weight of a fundamental cycle basis with respect to a tree T is closely related to the
stretch of T . The stretch of an edge e = (u, v) in G with respect to T , denoted stretchT (e),
is defined as the length of the unique u-to-v path in T . The stretch of T is defined as the
mean stretch of the edges,

stretch(T ) = 1
m

∑
e∈E(G)

stretchT (e).

Let FCB(T ) denote the weight of the fundamental cycle basis corresponding to T . By
observing that the length of a fundamental cycle induced by an edge e is stretchT (e) + 1 we
see that the fundamental cycle basis with respect to T is related to the stretch of T by

FCB(T ) = m · stretch(T ) +m− 2n+ 2 (1)

It follows that FCB(T ) = O(m) if and only if stretch(T ) = O(1).

2.3 Linear arrangements
A bijective map φ : V (G)→ {1, 2, ..., n} is called a linear arrangement of G. For any subset
of vertices S ⊆ V (G) if s ∈ S maximizes φ restricted to S we call it the right endpoint of S;
similarly if s minimizes φ restricted to S we call it the left endpoint of S. If u and v are the
left and right endpoints of S we define the spread of S to be φ(v)− φ(u). For any vertex v
we call the sets {u ∈ V (G) | φ(u) < φ(v)} and {u ∈ V (G) | φ(v) < φ(u)} the left and right
sides of v, respectively.

SWAT 2020
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2.4 The arrangement tree
Given a linear arrangement φ of G the arrangement tree A is defined as a balanced binary
tree with the following two properties. The leaves of A are in bijection with V (G) and each
internal node v is mapped to the subgraph of G induced by the vertices corresponding to the
descendent leaves of v. More specifically we construct A as follows: let n be the number of
vertices in G, and let p be the largest power of two that is less than n. Let the left subtree
of A be constructed recursively from the first p vertices in the linear arrangement, and let
the right subtree be constructed recursively from the remaining n− p vertices (Figure 1).

Figure 1 Linear arrangement of a graph of bandwidth three and its arrangement tree. The root
node and the edges split by the root node are marked in red.

We denote the induced subgraph of the leaves descending from v by Gv. Consider the
children x and y of v in A. The induced subgraph Gv has the form Gv = Gx ∪Gy ∪Sv where
Sv is the set of edges connecting Gy and Gx. We call Sv the set of edges split by v. Note
that each edge is split by exactly one vertex.

2.5 Bandwidth and cutwidth
The bandwidth of a linear arrangement φ of a graph G is defined as

max
(u,v)∈E(G)

|φ(u)− φ(v)|.

Note that |φ(u)− φ(v)| is the spread of (u, v) with respect to the arrangement tree arising
from φ. The bandwidth of G is the minimum bandwidth over all possible linear arrangements.
In a graph with bandwidth b we have deg(v) ≤ 2b for all v ∈ V (G). Hence, when b = O(1)
we have |E(G)| = O(n). Consider the induced subgraph Gv = Gx ∪Gy ∪ Sv corresponding
to node v of A with x as the left and y as the right child of v. Any edge (q, r) ∈ Sv with q
and r from Gx and Gy, respectively, has spread at most b. So, if r is i positions away from
the left endpoint of Gy then q is at most b− i positions away from the right endpoint of Gx.
It follows that

|Sv| ≤
1
2(b− 1)(b− 2) = O(b2). (2)

The cutwidth of a linear arrangement φ of a graph G is defined as

max
i∈Z
|{(u, v) ∈ E(G) | φ(u) ≤ i, φ(v) ≥ i+ 1}|.

The cutwidth of G is the minimum cutwidth over all linear arrangements. The cutwidth
measures the number of edges that cross a fixed position in the linear arrangement.
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2.6 Tree decompositions
A tree decomposition of a graph G is a tree D = (I, E) where the vertex set I is in bijection
with a collection {Bi}i∈I of subsets of V (G), called bags, meeting the following conditions.

1. Every vertex v ∈ V (G) is contained in some bag. That is,
⋃

i∈I Bi = V (G).
2. For every edge (u, v) ∈ E(G) there exists an i ∈ I with u, v ∈ Bi.
3. For all v ∈ V (G) the subgraph induced by the set of bags containing v is a tree.
The width of a tree decomposition is defined to be maxi∈I |Bi| − 1. The treewidth of G is
the minimum width over all of its tree decompositions, denoted k. We will use the notation
D(B) to refer to the set of vertices in the bag B and the descendants of B. Similarly, by
A(B) we denote the set of vertices in B and the ancestors of B. We call a tree decomposition
a nice tree decomposition if it meets the following extra conditions.
4. D is a rooted binary tree.
5. If i, j, k ∈ I with j and k the children of i, then Bi = Bj = Bk.
6. If j is the child of i and deg(i) = 2 then either Bj ⊂ Bi and |Bi| = |Bj |+ 1 or Bi ⊂ Bj

and |Bi| = |Bj | − 1.
We call the parent bags satisfying property 5 join nodes. We call the parent bags satisfying
the two conditions of property 6 introduce nodes and forget nodes, respectively. Without loss
of generality we may assume all tree decompositions are nice since any tree decomposition
can be transformed into a nice tree decomposition in polynomial time [6]. Further, we
may assume that every leaf bag contains only one vertex and the root bag is a forget node
containing only one vertex.

3 Spanning trees from linear arrangements

Both our construction of a random family of spanning trees with low expected stretch on
each edge and our construction of a deterministic spanning tree with low mean stretch will
depend on a construction of spanning trees from arrangement trees, which we now describe.

Although we will use a different construction algorithm, our tree can be described as the
one constructed by the following greedy algorithm:

Algorithm 1 Spanning tree from a linear arrangement.
Given a graph G and arrangement tree A:
T ← ∅
for node x ∈ A in leaf-to-root order:

for edge e ∈ Sx in increasing order by spread:
if T ∪ {e} is acyclic, add e to T .

Return T .

This algorithm is simply Kruskal’s algorithm for the minimum spanning tree of G, with
each edge weighted by the height in the arrangement tree of the least common ancestor of
the edge endpoints with ties broken by spread. Because the result is a minimum spanning
tree for these edge weights, we can construct the same tree by any other minimum spanning
tree algorithm. Finding the lowest common ancestor for all edges in G can be done in O(n)
time [18]. The algorithm of Fredman and Willard [13], which finds a minimum spanning tree
of a graph with integer weights in O(n) time, implies that our algorithm can be implemented
in linear time.

SWAT 2020
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I Lemma 1. Let e be an arbitrary edge of G, let i and j (with 1 ≤ i < j ≤ n) be the positions
of the endpoints of e in the linear arrangement, and let p be the largest power of two that
divides an integer in the half-open interval [i, j). Then the stretch of e in the tree constructed
as above is O(p).

Proof. Let v be the node of the arrangement tree with e ∈ Sv. From our construction of the
arrangement tree it follows that the number of leaf descendants of v is at least p+ 1 and
at most 2p. By the greedy algorithm for the construction of a spanning tree, the spanning
tree contains a path connecting the endpoints of e within these at most 2p descendants, for
otherwise e itself would have been added to the spanning tree. Therefore, the stretch of e is
at most 2p− 1. J

4 Embedding into a distribution of trees

Let G be any graph having a linear arrangement φ of bandwidth b. In this section, we
construct a random distribution over spanning trees T of G with the property that each edge
of G has expected stretch O(b2). That is, for an arbitrary edge e (chosen independently from
the construction of T ) we have ET [stretch(e)] = O(b2). A single tree from the distribution
can be sampled in time O(n), and the entire distribution can be constructed explicitly in
time O(n2).

Let n be the number of vertices in G, and let n′ be the smallest power of two greater
than or equal to 2n (so, n′ = Θ(n)). Let G′ be formed from G by adding n′ − n isolated
vertices. Consider the n′ − n ≥ n different linear arrangements φi of G′ obtained from the
linear arrangement φ of G by placing i isolated vertices before the vertices of G and n′−n− i
vertices after the vertices of G (for 0 ≤ i ≤ n′ − n). Denote the collection of arrangement
trees of these linear arrangements by A = {Ai}n′−n

i=1 . For each arrangement tree Ai ∈ A,
Algorithm 1 produces a tree Ti. Our random distribution T is generated by choosing i
uniformly at random and, based on that choice, selecting tree Ti.

Given a fixed choice of edge e, define `(Ai) to be the node v of the arrangement tree
Ai such that e ∈ Sv (that is, the endpoints of e are in distinct children of v). Given two
arrangement trees Ai and Aj we say Ai ≡ Aj if the rightmost leaf descendants of the left
children of `(Ai) and `(Aj) are equal. That is, Ai ≡ Aj are equivalent if and only if e is split
in the same position of the linear arrangements φi and φj . Note that ≡ is an equivalence
relation that is defined with respect to a fixed e.

Therefore, we can calculate the expected spread of e by concentrating only on a single
equivalence class [A] of ≡. Since the bound holds for every equivalence class, the same
expected spread will hold for our entire random distribution, by averaging over the equivalence
classes.

Given an arrangement tree Ai (chosen from a fixed equivalence class [A]) let vi be the
node of Ai such that e ∈ Svi

(that is, vi splits e), and let hi be the height of vi in the
arrangement tree. Then for all Aj in the same equivalence class with hi = hj , we have
Gvi

= Gvj
and the edges in this induced subgraph have the same minimum spanning tree

weights, so they also have Ti ∩Gvi
= Tj ∩Gvj

. Within these two subtrees these nodes have
the same two paths connecting the endpoints of e. Because this path depends only on the
height hi and not on i itself, we denote it Phi

. Different heights may have the same associated
paths. We say that hi is a critical height if Phi 6= Phi−1; that is, if hi is the lowest height
that gives rise to its path.

I Lemma 2. For a fixed choice of edge e and equivalence class [A] there are O(b) critical
heights.
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Proof. Let Ai, Aj ∈ [A] be arrangement trees that split the edge e at vertices vi and vj ,
respectively. Further, we assume vi and vj are at heights hi and hj = hi − 1 where hi is a
critical height. We denote the spanning trees produced by Algorithm 1 with input Ai and
Aj by Ti and Tj . The associated induced subgraphs are related by the inclusion Gvj ⊂ Gvi .

We now describe the ways in which Tvi
= Ti ∩Gvi

can differ from Tvj
= Tj ∩Gvj

. By
the construction of the equivalence relation every edge split by vj is also split by vi, that is
Svj
⊂ Svi

. The edges in Tvj
\ Svj

must be included in Tvi
since their weights are the same in

both Ai and Aj . This is because in the linear arrangement Gvi adds an equal number of
vertices to the left and right of Gvj

and this number is equal to a power of two. It follows
that Tvi

differs from Tvj
by the addition of non-split edges, the potential addition of split

edges, and the potential removal of split edges.
Consider the case when there exists some edge e′ ∈ Tvj

∩ Svj
but e′ /∈ Tvi

. The edge e′
was added to Tvj by Algorithm 1 because it connected to previously disconnected components
of Gvj

. These connected components must have already been contained in a larger connected
component of Gvi , since otherwise Algorithm 1 would have picked e′ for Tvi . It follows that
these connected components must have been connected by the addition of a non-split edge
not contained in Tvj

.
When e′ ∈ Tvi

∩ Svi
but not in Tvj

then e′ must contain an endpoint outside of Gvj
.

Since there are O(b) vertices within b positions away from the split point, and once a critical
height excludes a split edge it cannot be reintroduced to the spanning tree, we see that at
most O(b) split edges can be added across all critical heights.

The height hi can only be a critical height if Tvi∩Gvj differs from Tvj , otherwise Phi = Phj .
Hence, hi can only be a critical height if Tvi

excludes a split edge appearing in Tvj
. The

number of split edges at the smallest critical height is O(b) because these edges form an
acyclic subgraph on the O(b) vertices within b positions away from the split point. Since an
edge can be excluded from the spanning tree at a critical height at most once we conclude
that there are O(b) critical heights. J

I Theorem 3. For an arbitrary edge e (chosen independently from the construction of T )
the expected stretch of e is O(b2).

Proof. Let [A] be any equivalence class of the equivalence relation ≡, and let stretch[A](e)
denote the expected stretch of e over all arrangement trees from the class [A]. Also, let
h1 < h2 < . . . < hk be the critical heights of e in [A]. Finally, let v be the (random) vertex in
the arrangement tree that splits e, and let Hv be the random variable of v’s height. We have

E[stretch[A](e)] =
k∑

i=1
len(Phi

) · Pr[Phi
],

where Pr[Phi
] is the probability that Phi

is the path connecting the endpoints of e in the
(randomly) selected tree. It follows, by the definition of critical heights, that

Pr[Phi
] = Pr[hi ≤ Hv < hi+1] ≤ Pr[hi ≤ Hv] = O(spread(e)/2hi).

In addition, we have len(Phi
) = O(2hi) by Lemma 1. Putting everything together, we have

E[stretch[A](e)] =
k∑

i=1
O(2hi) ·O(spread(e)/2hi) = O(k · spread(e)) = O(b2),

as k = O(b) by Lemma 2, and spread(e) ≤ b by the definition of bandwidth.
Since stretch(e) is a weighted average of stretch[A](e) for different classes [A], and

stretch[A](e) = O(b2) for all classes [A], we conclude that stretch(e) = O(b2). J

SWAT 2020
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5 Bounded cutwidth

A theorem from Chung [10] says that for any graph G with cutwidth c there exists a
subdivision of G with bandwidth c. However, this entails expanding the number of edges
by a factor of c, so combining this with our construction of low-stretch spanning trees for
low-bandwidth graphs would give us a tree with average stretch O(c3). In this section we
provide a direct construction that obtains stretch O(c2). The proof of Theorem 4 is almost
identical to that of Theorem 3, however since we do not have the inequality spread(e) ≤ c
we instead compute the expected stretch of the tree rather than the expected stretch of a
single edge.

I Theorem 4. A graph G with cutwidth c has a spanning tree with expected stretch O(c2).

Proof. We apply the same construction for a random distribution of spanning trees as in
Theorem 3 to a linear arrangement of G with cutwidth c. We show that the expected stretch
a spanning tree produced by Algorithm 1 on a randomly chosen arrangement tree from the
distribution is O(c2). Therefore, there exists a spanning tree with stretch at least as good as
this expected value.

As before, we fix an equivalence class of arrangement trees [A] from our random distri-
bution. Let h1 < h2 < · · · < hk denote the critical heights of [A]. Since at hk there are at
most O(c) split edges, we can conclude that there are at most O(c) critical heights. As in
the proof of Theorem 3, for a fixed edge e the expected stretch is given by

E[stretch[A](e)] =
k∑

i=1
len(Phi) · Pr[Phi ].

We have that Pr[Phi ] = O(spread(e)/2hi) and len(Phi) = O(2hi), hence E[stretch[A](e)] =
O(c · spread(e)). Let T be the spanning tree constructed by Algorithm 1 from the randomly
selected arrangement tree. We compute the expected stretch of T by

E[stretch(T )] = 1
m

∑
e∈E(G)

O(c · spread(e)).

Note that
∑

e∈E(G) spread(e) ≤ cn since by the definition of cutwidth at most c edges cross
any given interval in the linear arrangement. Hence, E[stretch(T )] = O(c2). J

I Corollary 5. Any graph with cutwidth c has a fundamental cycle basis with weight O(c2n).

Because this method produces high expected stretch for edges of high spread, it is not
clear how to strengthen this result to obtain a distribution with low-stretch for each edge, as
we did for bandwidth. We leave the question of whether this is possible as open for future
research.

6 Bounded treewidth

In this section we consider simple, connected, unweighted graphs with fixed treewidth k.
We provide a dynamic programming approach computing a spanning tree that minimizes
the total stretch over all spanning trees of G. The dynamic programming table indexes
partial solutions based on a localized view of the complete solution from a bag of the
tree decomposition. This is done by indexing the table with trees that correspond with
weighted contracted spanning trees of G that retain the stretch of the edges inside the current
bag. The approach yields a dynamic programming table whose size is polynomial in n but
superexponential in k. The goal of this section is to prove the following theorem.
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I Theorem 6. A minimum stretch spanning tree of a graph with n vertices and treewidth k
can be computed in O(23kk2knk+1) time.

6.1 Spanning trees conforming to a configuration
Let T be a spanning tree of G and (T, c) be a tuple consisting of a tree T and a weight
function c on the edges of T . Fix a bag B in the tree decomposition of G. We say that T
conforms to (T, c) if T can be transformed into T by in the following way. Initialize c(e) = 1
for every edge in T and update by applying the following contractions while any of them is
possible.
1. If e is not contained in any (u, v)-path where u, v ∈ B then contract e.
2. If e = (u, v) where u, v /∈ B and degT (v) = 2 then contract e. Let e′ be the other edge

incident to v. Set c(e′) := c(e) + c(e′).
3. If e = (u, v) where u ∈ B, v /∈ B, and degT (v) = 2 then contract e. Let e′ be the other

edge incident to v. Set c(e′) := c(e) + c(e′).
T is the unique minimal minor of T retaining the structure of the paths between vertices in
B. We call a tuple (T, c) a configuration of the bag B. In Lemma 7, we will show that any
spanning tree T conforms to a bounded number of configurations. Our dynamic program
will maintain an array of forests DPi[T, c] indexed by a bag Bi of the tree decomposition and
all configurations with respect to the bag. Each configuration at Bi will describe a spanning
tree T on G that has been contracted in the way described above. We say a forest F meets a
configuration (T, c) if by following the contraction rules stated above F can be transformed
into T \ SA for some SA ⊆ V (T ) \ V (B). We will define the subset SA in the following
paragraph. The solution stored at DPi[T, c] will be the minimum cost forest of G[D(Bi)]
meeting the configuration (T, c). We will describe how to calculate the cost of F in the next
subsection. We will use DPi[T, c] to refer to the total stretch of the partial solution and use
F to denote the partial solution that has been computed.

Let T be a tree built by our dynamic program conforming to (T, c) and let v1, . . . , vn be
a path in T such that v1, vn ∈ V (B) and v2, . . . , vn−1 ∈ V (T ) \ V (B). By property 3 of the
tree decomposition either v2, . . . , vn ∈ D(B) or v2, . . . , vn ∈ A(B). We call the vertices in
V (T )\V (B) Steiner vertices and partition them into two sets SA and SB , the Steiner vertices
above the bag and the Steiner vertices below the bag. A forest F meets the configuration
(T, c) if it can be transformed into T \ SA following our contraction scheme. The cost of
F is defined to be the sum

∑
e∈E(G) stretchF (e) where stretchF (e) is the stretch of e in F

when e’s endpoints are in the same connected component of F , when e’s endpoints are in
different connected components we set stretchF (e) to be the distance between e’s endpoints
in T weighted by the cost function c. Our dynamic program will process the bags of the tree
decomposition in a leaf-to-root order. Paths in SA will represent paths that will eventually
be added to the complete solution by the dynamic program and paths in SB will represent
paths that have already been added to the partial solution by the dynamic program.

I Lemma 7. Let T be a spanning tree of G. There is a configuration (T, c) at bag B that T
conforms to such that |V (T )| = O(k).

We now describe how to populate each entry in the dynamic programming table by
considering each type of bag separately. We will prove that the forests indexed at each entry
DPi[T, c] span D(Bi) and minimize the cost over all forests meeting the configuration (T, c).
We will prove each case by induction using the fact that any solution stored at a leaf node is
a single vertex as our base case.
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6.2 Leaf nodes
If Bi is a leaf node in the tree decomposition it contains one vertex v. The only configuration
on Bi is ({v}, ∅) where ∅ is the empty function. We initialize Fi := {v} and DPi[{v}, ∅] := 0.

6.3 Introduce nodes
When Bi is an introduce node with child Bj we have Bi = Bj ∪ {v} where v is the vertex
being introduced to Bi. Let (Ti, ci) and (Tj , cj) be configurations of Bi and Bj . Let Fj be
the partial solution stored at DPj [Tj , cj ]. We say (Ti, ci) and (Tj , cj) are compatible with
one another if (Ti, ci) can be constructed from (Tj , cj) in a way that extends Fj to a partial
solution Fi in the following way. If T is a spanning tree conforming to (Tj , cj) such that
T [D(Bj)] = Fj we construct Fi and (Ti, ci) such that T [D(Bi)] = Fi and T conforms to
(Ti, ci). We enumerate the six ways Fj can be extended to Fi meeting this criteria; by N(v)
and I(v) we denote the neighbors of a vertex v and the edges incident to v.
I1 Let e = (v, u) ∈ E(G) with u ∈ E(G[Bi]). Define Ti := Tj ∪ {e} and ci(e) = `(e). This

extends Fj to Fi := Fj ∪ {e}.
I2 Let v be adjacent to some set of vertices Bv ⊆ B in G and let s ∈ SA

j such that
Bv = N(s) ∩Bj and cj(b, s) = 1 for each b ∈ Bv. Define SA

i := SA
j \ {v}, SB

i := SB
j , and

E(Ti) := E(Tj) ∪ I(v) ∩ E(Bi) with ci(e) = 1 for all e ∈ I(v) ∩ E(Bi) and ci(e) = cj(e)
for all e /∈ I(v) ∩ E(Bi). This extends Fj to Fi := Fj ∪ (I(v) ∩ I(Bv)).

I3 Let v be adjacent to some vertex b ∈ Bj in G. Let b be adjacent to some Steiner vertex
s ∈ SA

j with cj(b, s) > 1. Define Ti := Tj ∪{(v, b), (v, s)} with ci(v, s) := cj(v, s)− 1. This
extends Fj to Fi := Fj ∪ {(v, b)}.

I4 Let s ∈ SA
j and define Ti := Tj ∪ {(v, s)} with 1 ≤ ci(v, s) ≤ n. This extends Fj to

Fi := Fj ∪ {v}.
I5 Define SA

i := SA
j ∪{s} and let b ∈ Bj . Define Ti := Tj∪{(v, s), (b, s)} with 1 ≤ ci(v, s) ≤ n

and 1 ≤ ci(b, s) ≤ n. This extends Fj to Fi := Fj ∪ {v}.
I6 Let s ∈ SA

j be a Steiner vertex with deg(s) > 2 and let b ∈ Bj be adjacent to s in Tj .
We remove (b, s) and introduce a new Steiner vertex s′ with edges (b, s′), (s, s′), and
(v, s′). Hence SA

i := SA
j ∪ {s′} and Ti := (Tj \ {b, s}) ∪ {(b, s′), (s, s′), (v, s′)} such that

ci(b, s′) + ci(s, s′) = cj(b, s) and 1 ≤ ci(v, s′) ≤ n. This extends Fj to Fi := Fj ∪ {v}.

Each of these six constructions correspond to a possible way that v can be connected to
the complete solution constructed by the dynamic program. See Figure 2 for an example of
each case. In I1 v is directly connected to the partial solution at DPi[Ti, ci] via some edge in
E(Bi). In I2 and I3 v can be thought of as the next vertex along the paths being built by
the dynamic program. In I4, I5, and I6 v is connected to the complete solution via some
path that has yet to be built by the dynamic program.

We now prove that these are the only six ways we can extend Fj to Fi while preserving
the conformity.

I Lemma 8. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the bag
Bj. Let Bi be the parent of Bj introducing the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via I1 through
I6.

The value of a subproblem at an introduce node is given by

DPi[Ti, ci] = min

DPj [Tj , cj ] +
∑

e∈I(v)

stretchTi
(e)

 (3)
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(I1) The introduced vertex is at-
tached to the spanning tree via
an edge incident to a vertex con-
tained in Bi.

(I2) The introduced vertex takes
the role of a Steiner vertex in
SA

i .

(I3) The introduced vertex sub-
divides an edge between Bi and
SA

i . The introduced vertex is
the next vertex along a path be-
ing built by the dynamic pro-
gram.

(I4) The introduced vertex is at-
tached to a Steiner vertex. This
shows that the introduced ver-
tex will be connected to the
spanning tree along a path that
the dynamic program has not
yet initialized.

(I5) The newly added Steiner
vertex represents the intersec-
tion of two paths that have yet
to be initialized by the dynamic
program. The introduced ver-
tex is connected to the spanning
tree along one of these paths.

(I6) The introduced vertex is
connected to the spanning tree
along a path that has not yet
been initialized. The newly ini-
tialized path is attached to the
spanning tree on a path that has
already been initialized.

Figure 2 The six types of compatible configurations at an introduce node. The original tree
consists of the black vertices and solid edges. The modifications are represented by the white vertices
and dashed edges. The white vertex inside the circle is the vertex being introduced. The vertices
enclosed in the circle are contained in the Bi and the vertices above the circle are contained in SA

i .

where the minimum is taken over all compatible configurations of Bj . Fi is constructed from
Fj and the inclusion of v. Since D(Bi) = D(Bj) ∪ {v} the inductive hypothesis implies that
Fi spans D(Bi). Finally, we show that the cost of Fi is minimum over all forests meeting
(Ti, ci).

I Lemma 9. Fix a spanning tree T of G and an introduce node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

6.4 Forget nodes
When Bi is a forget node with child Bj we have Bi = Bj \ {v} where v is the vertex being
forgotten in Bi. Let (Ti, ci) and (Tj , cj) be configurations of Bi and Bj . We say (Ti, ci) and
(Tj , cj) are compatible with one another if (Ti, ci) can be constructed from (Tj , cj) in the
following way.
F1. If v is a leaf construct Ti by contracting the edge incident to v. If this edge is incident

to a Steiner vertex of degree 2 contract it as well.
F2. If v is an internal vertex let S ⊆ SD

j be the set of Steiner vertices with degree 2 adjacent
to v. Construct Ti by contracting each edge (v, s) for s ∈ S. Set SD

i := SD
j ∪ {v} and

ci(v, s′) := cj(v, s) + cj(s, b) where b ∈ Bj is the other neighbor of s.

I Lemma 10. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the
bag Bj. Let Bi be the parent of Bj forgetting the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via F1 or F2.
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Figure 3 A pair of compatible configurations at a forget node. The figure on the left is the
original tree, and the white vertex is the vertex being forgotten. The figure on the right is the result
of the contraction.

The value of a subproblem at a forget node is given by the recurrence

DPi[Ti, ci] = min DPj [Tj , cj ] (4)

where the minimum is taken over all (Tj , cj) compatible with (Ti, ci). We set Fi := Fj where
Fj is the partial solution stored in the minimum DPj [Tj , cj ]. Since D(Bi) = D(Bj) it follows
inductively that Fi spans D(Bi). We now use the inductive hypothesis to prove that Fi is
the minimum cost forest meeting (Ti, ci).

I Lemma 11. Fix a spanning tree T of G and a forget node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

6.5 Join nodes
When Bi is a join node with children Bj and Bk we have Bi = Bj = Bk. Given a configuration
(Ti, ci) of Bi we show how to build compatible configurations (Tj , cj) and (Tk, ck) of Bj and
Bk. At a join node we decide which previously computed paths in the partial solutions at
Bj and Bk to keep in the partial solution at Bi.

For a fixed configuration (T, c) of a bag B let S be the set of maximal, connected, induced
subgraphs of SD. We invert a tree S ∈ S by setting SD := SD \ S and SA := SA ∪ S. If
(u, v) ∈ E(S) or (u, v) has u ∈ SD

i and v ∈ B we add (u, v) to E(SA). Moreover, we do not
change the value of c(u, v). Inverting S does not change the structure of the tree it only
changes the way we interpret the Steiner vertices in S.

We enumerate over the subsets S ′ of S. In one child of Bi we invert S ′ and in the other
we invert S \ S ′. For each configuration (Ti, ci) of Bi and subset of trees S ′ ⊂ S we build a
compatible triplet of configurations in the following way. Define Tj to be the tree constructed
by inverting S ′ in Ti and Tk to be the tree constructed by inverting S \ S ′ in Ti. The cost
functions cj and ck are inherited from ci.

Figure 4 A pair of compatible configurations corresponding to an inverted tree.

Fix a tree S ∈ S ′. The configuration (Tj , cj) is anticipating the construction of a subtree
isomorphic to S in order to connect the vertices in Bj . Similarly, the configuration (Tk, ck)
has already constructed a subtree isomorphic to S connecting the vertices in Bk. Since
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D(Bj)\Bi and D(Bk)\Bi are disjoint we can safely merge the solutions to form the solution
at the configuration (Ti, ci). Hence, the stretch of the partial solution at a join node is given
by

DPi[Ti, ci] = min

DPj [Tj , cj ] + DPk[Tk, ck]−
∑

e∈E(Bi)

stretchTi
(e)

 . (5)

The minimization is taken over all triplets of compatible configurations. We subtract∑
e∈E(Bi)

stretchTi
(e)

to prevent double counting the stretch of the edges in Bi since Bi = Bj = Bk. If Fj and
Fk are the partial solutions at DPj [Tj , cj ] and DPk[Tk, ck] then the result of the join node is
Fi := Fj ∪ Fk. By induction Fj spans D(Bj) and Fk spans D(Bk), hence Fi spans D(Bi).

I Lemma 12. Fix a spanning tree of T of G and a join node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

6.6 Correctness
Let Br be the root node of the tree decomposition of G. Without loss of generality we can
assume that Br is a forget node containing one vertex vr. The only configuration on Br is
({vr}, ∅) which is a single vertex. Since every spanning tree of G conforms to ({vr}, ∅) the
solution indexed at DPr[{vr}, ∅] must be a minimum stretch spanning tree of G. We analyze
the runtime and provide complete proofs in the appendix.
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We use a charging scheme to pay for the cycles in the fundamental basis created by
our spanning tree algorithm. Each fundamental cycle with sufficiently large spread will be
assigned a charge. Moreover, the sum of the charges is an upper bound on the sum of the
lengths of the cycles.

We are now ready to define the key component to our charging scheme. Let x be a node
in A. A long component of Gx is a connected component of Gx that includes at least one
vertex within distance b of each endpoint in the linear arrangement of Gx. The number of
long components in Gx will be denoted with `x.

I Lemma 13. For any x ∈ V (G) we have (1) `x ≤ b and (2) if x is the parent of y then
`x ≤ `y.

Proof. Since a long component is a special type of connected component a vertex can be in
at most one long component. A long component contains at least one vertex from the first b
vertices in the linear arrangement. This implies there can be at most b long components,
hence `x ≤ b.

Let x be a node in A with left child y and right child z. Recall that Gx = Gy ∪Gz ∪ Sx.
The left endpoint of Gx is the left endpoint of Gy, and the right endpoint of Gx is the right
endpoint of Gz. Any edge in Sx connects a vertex within the rightmost b vertices of Gy to a
vertex within the leftmost b vertices of Gz. Therefore a long component in Gx must contain
a long component in Gy, a long component in Gz, and an edge in Sx, thus `x ≤ `y. J

Here we introduce a charging scheme that will be used to pay for the cycles added to our
basis. For any node x in the arrangement tree A let nx be the number of leaf descendants of
x. If x is the parent of y and z such that `x < `y and `x < `z we assign a charge cx = ny +nz

to x, if `x < `y and `x = `z we assign a charge cx = ny to x, similarly if `z < `x and `y = `z

we assign cx = nz, otherwise cx = 0. Next, we show that the sum over all charges is O(n).

I Lemma 14. The sum of the charges is linear in the number of vertices in G. That is,∑
x∈V (A) cx ≤ bn.

Proof. Consider the set J of nodes with exactly j long components and non-zero charge. If
u, v ∈ J such that v is a descendent of u, then all nodes on the u to v path are in J since
by Lemma 13 the number of long components is monotonic in depth. Let x be a node on
this path, let z be its child on the path, and let y be its child off the path. If both x and y
have j long components our charging scheme makes cy = 0, therefore y /∈ J and cx is the
number of leaf descendants of y. Therefore, the sets of leaf descendants from which every
node in J derives its charge are disjoint. Thus,

∑
x∈J cx ≤ n. By Lemma 13 the number of

long components in any induced subgraph is at most b, therefore
∑

x∈V (A) cx ≤ bn. J

Recall that the spread of a fundamental cycle C is defined to be φ(v`)− φ(vr) where v`

and vr are the left and right endpoints of C. In Lemma 15 we show that the spread of C
is within a constant factor of its length. In Lemma 16 we show that C’s fundamental edge
induces a charge that is within a constant factor of the spread of C. This justifies the use of
our charging scheme.

I Lemma 15. If C is a cycle with length |C| and spread s, then we have the inequality
2s
b ≤ |C| ≤ s+ 1.

Proof. The upper bound is trivial. Conversely, decompose C into the two unique v`-to-vr

paths. Each edge in these paths has a spread of at most b in the linear arrangement, so each
path needs at least s

b edges. Therefore, 2s
b ≤ |C|. J

SWAT 2020



15:16 Low-Stretch Spanning Trees of Graphs with Bounded Width

Let C be a fundamental cycle of T with length |C|, spread s ≥ 4b, and whose fundamental
edge is in Sx. Since C’s fundamental edge is in Sx, Gx must be the first induced subgraph
in the leaf-to-root ordering that contains C since every tree edge of C must be added to T
before the fundamental edge is considered by Algorithm 1. Let S = {v ∈ V (G) | φ(v`) ≤
φ(v) ≤ φ(vr)} where v` and vr are the left and right endpoints of C. Let u and v be the left
and right child of x in A, respectively. We call S ∩Gu the left half of S and S ∩Gv the right
half of S. Without loss of generality assume that |S ∩Gv| ≥ |S ∩Gu|. Let y be the deepest
descendant of x such that Gy contains the right half of S. Note that it may be the case that
y = v. We call y the charging node of C. This is illustrated in Figure 5. In the following
lemma we show that the existence of C implies that cy = Θ(|C|). This is the charge that
will pay for C in the cycle basis.

I Lemma 16. Let C be a fundamental cycle of T as described above. It follows that C’s
charging node y has cy > 0 and y’s left child z contributes nz to its charge. Moreover,
1
4 (|C| − 1) ≤ cy ≤ b · |C|.

Proof. Consider the two unique v`-to-vr paths, P1 and P2, in C. Since there are at least
b vertices in Gz there must be edges e1 ∈ E(P1) and e2 ∈ E(P2) connecting Gu to Gz.
One of these edges belongs to T , and the other is the fundamental edge of C. The right
endpoints of e1 and e2 must belong to long components of Gz since they belong to P1 and
P2 which extend to vr. Moreover, these long components are distinct. For otherwise, C’s
right endpoint would be in Gz, contradicting our choice of y. By the existence of P1 and
P2, these long components are merged in Gy. Since y is the parent of z with `y < `z, we
have cy ≥ nz. We also have that cy ≤ ny = 2nz. Further, by our choice of y as the deepest
descendant, nz ≤ s ≤ 4nz. Combining these inequalities with those of Lemma 15 yields
1
4 (|C| − 1) ≤ cy ≤ b · |C|. J

Figure 5 An illustration of the conditions of Lemma 16. The colored region encloses the linear
arrangement of Gx, and the partitions represent the subgraphs induced by the descendants of x.
The dotted lines represent the paths P1 and P2. The solid lines represent the edges that induce the
charge cy.

We are now ready to prove the main theorem of the section.

I Theorem 17. The spanning tree T of G produced by Algorithm 1 has FCB(T ) ≤ 4b3n.
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Proof. There are at most 1
2 (b − 1)(b − 2) edges in Sx by (2). By Lemma 16, sum of the

lengths of all of the fundamental cycles with spread at least 4b is at most∑
y∈V (A)

1
2(b− 1)(b− 2)(4cy + 1) ≤ n+ 2(b− 1)(b− 2)

∑
y∈V (A)

cy

≤ n+ 2(b− 1)(b− 2)bn
≤ 3b3n

Where the first and second inequalities come from Lemmas 16 and 14, respectively. All
fundamental cycles with spread at most 4b have their non-tree edges a node of A of height
at most log 4b. Therefore, there are at most n nodes in A with |V (Gx)| ≤ 4b that contain a
cycle. These contribute at most 1

2 (b−1)(b−2)n to the sum of the lengths of the fundamental
cycles. In total we have

FCB(T ) ≤ 3b3n+ b2n ≤ 4b3n

as desired. J

I Corollary 18. The tree T produced by our spanning tree algorithm has stretch(T ) ≤ 4b3 +2.

Proof. According to (1), the weight of the fundamental cycle basis and the minimum stretch
spanning tree are related by

stretch(T ) = 1
m

(FCB(T )−m+ 2n+ 2).

The result follows immediately from the fact that n ≤ m ≤ bn. J

B Details for the bounded treewidth dynamic program

I Lemma 7. Let T be a spanning tree of G. There is a configuration (T, c) at bag B that T
conforms to such that |V (T )| = O(k).

Proof. Let (T, c) be the configuration obtained by applying the contraction rules to T . Every
vertex v ∈ V (T ) \B is an internal vertex of T , otherwise its incident edge is not contained
in a path connecting a pair of vertices from B and should have been contracted. Further,
any vertex of V (T ) \B with degree 2 in T is adjacent to two vertices of B. Therefore, T is a
tree with at most k + 1 leaves and k + 1 vertices of degree 2. It follows that |V (T )| = O(k).

J

I Lemma 8. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the bag
Bj. Let Bi be the parent of Bj introducing the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via I1 through
I6.

Proof. If (Ti, ci) was constructed from (Tj , cj) from one of the six methods described in the
preceding subsection then either Ti and Tj are isomorphic (I2) and T conforms to (Ti, ci) or
Ti differs from Tj by the inclusion of v, or the inclusion of v and some Steiner vertex. In
I1, I4, I5, and I6 we have deg(v) = 1 and v is either adjacent to another vertex in Bi, a
Steiner vertex with degree 2 whose second neighbor is in Bi, or a Steiner vertex of degree
of degree at least 3. In each of these cases T conforms to (Ti, ci). In I3 v has degree two
and is adjacent to a vertex in the bag and some Steiner vertex. This case is equivalent to
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subdividing the edge incident to the Steiner vertex to make v, hence the Steiner vertex still
meets the conforming criteria.

Conversely, assume T conforms to (Ti, ci). If v is a leaf in Ti then it is connected to
some other vertex in Bi along some path consisting of zero or more Steiner vertices. Since T
conforms to (Tj , cj) this path must have been contracted in Tj . Hence, to build Ti we need
to undo the contraction. This corresponds to I1, I4, I5, and I6. If v is an internal vertex
in Ti with deg(v) = 2 with one neighbor in SA

i then v must have been contracted when
building Tj . In this case Ti is built by undoing the contraction which corresponds to I3. If v
is any other internal vertex in Ti then it is contained in some path whose endpoints are in
Bj . Moreover, its neighbors must also be contained in such a path otherwise they would
have been contracted. It follows that Ti is isomorphic to Tj which corresponds to I1 where
the only change is a relabeling of the vertices. J

I Lemma 9. Fix a spanning tree T of G and an introduce node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

Proof. When Bi is an introduce node we have Bi = Bj ∪{v} where Bj is the child of Bi. Let
(Tj , cj) be a configuration of Bj that is compatible with (Ti, ci). We need to show that if T
conforms to (Ti, ci) then T also conforms to (Tj , cj). Since (Ti, ci) and (Tj , cj) are compatible
Ti differs from Tj by at most the inclusion of v and possibly a Steiner vertex s adjacent to
v. By contracting the newly added edges incident to s and v we see that T conforms to
(Tj , cj). By the inductive hypothesis we have DPj [Tj , cj ] ≤

∑
e∈G[D(Bj)] stretchT (e). Since

D(Bi) = D(Bj) ∪ {v} it follows that

DPi[Ti, ci] ≤ DPj [Tj , cj ] +
∑

e∈I(v)∩Bj

stretchT (e) ≤
∑

e∈G[D(Bi)]

stretchT (e). J

I Lemma 10. Let T be a spanning tree of G conforming to a configuration (Tj , cj) of the
bag Bj. Let Bi be the parent of Bj forgetting the vertex v. It follows that T conforms to a
configuration (Ti, ci) of Bi if and only if (Ti, ci) was constructed from (Tj , cj) via F1 or F2.

Proof. Assume T conforms to (Ti, ci). Since T conforms to (Tj , cj) and Bj \ Bi = {v} it
follows that Ti differs from Tj by the contraction of edges incident to v. These edges are
the edges contracted by rules F1 and F2. Conversely, assume (Ti, ci) was constructed from
(Tj , cj) by either F1 or F2. Since F1 and F2 apply the contraction rules for conformity on
the edges incident to v it follows that T conforms to (Ti, ci). J

I Lemma 11. Fix a spanning tree T of G and a forget node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

Proof. When Bi is a forget node we have Bi = Bj \ {v} where Bj is the child of Bi,
hence D(Bi) = D(Bj). If T conforms to (Ti, ci) then T conforms to some configuration
(Tj , cj) of Bj . The configuration (Tj , cj) can be found by undoing the contractions made
by F1 and F2 and choosing the minimum such DPj [Tj , cj ]. It follows that (Ti, ci) and
(Tj , cj) are compatible, hence DPi[Ti, ci] = DPj [Tj , cj ]. Applying the inductive hypothesis
DPj [Tj , cj ] ≤

∑
e∈G[D(Bj)] stretchT (e) proves the claim. J

I Lemma 12. Fix a spanning tree of T of G and a join node Bi with configuration (Ti, ci).
If T conforms to (Ti, ci) then DPi[Ti, ci] ≤

∑
e∈G[D(Bi)] stretchT (e).

Proof. Let Bi be a join node with children Bj and Bk with configurations (Tj , cj) and
(Tk, ck). When (Ti, ci), (Tj , cj), and (Tk, ck) are compatible with each other the trees Ti, Tj ,
and Tk are isomorphic since they only differ by the labeling of the Steiner vertices. Hence,
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if T conforms to (Ti, ci) also conforms to (Tj , cj) and (Tk, ck). By the inductive hypothesis
we have DPj [Tj , cj ] ≤

∑
e∈G[D(Bj)] stretchT (e) and DPk[Tk, ck] ≤

∑
e∈G[D(Bk)] stretchT (e).

From the equality∑
e∈G[D(Bk)]

stretchT (e)+
∑

e∈G[D(Bk)]

stretchT (e)−
∑

e∈G[Bi]

stretchT (e) =
∑

e∈G[D(Bi)])

stretchT (e)

it follows that

DPi[Ti, ci] ≤ DPj [Tj , cj ] + DPk[Tk, ck]−
∑

e∈G[Bi])

stretchT (e) ≤
∑

e∈G[D(Bi)])

stretchT (e),

which proves the theorem. J

B.1 Runtime analysis for Section 6
In this section we analyze the runtime of our dynamic program on a graph G with treewidth
k. We begin by analyzing the size of the three dimensional array DPi[T, c]. The subscript
i represents a bag in the nice tree decomposition of G. It is known that a graph with n

vertices has a nice tree decomposition of width k with at most 4n bags [19]. It follows from
Lemma 7 that any tree T used as an index in our array has at most 2k vertices. By Cayley’s
formula there are at most (2k)2k−2 = O(22kk2k) such trees that will ever be built as an index
by our dynamic program. The cost function c has domain E(T ) which has size k. The range
of c is {1, . . . , n} since the value of the cost function is only ever incremented by one when
an edge is contracted. Hence the total number of possible cost functions is nk. We conclude
that the total size of our dynamic programming table is O(22kk2knk+1).

Next we analyze the complexity of filling in the entries of our dynamic programming
table. We will need to analyze introduce, forget, and join nodes as separate cases. In each
case we find the compatible configurations of the child nodes by undoing the operations
described in the previous section.

At an introduce node Bi we compute the value of DPi[Ti, ci] by undoing the six methods
used to build a pair of compatible configurations. For each v ∈ V (Ti) ∩ Bi we transform
(Ti, ci) into (Tj , cj) by reversing the methods described in the introduce nodes section with v
being treated as the vertex introduced to Bi. When v is a leaf in Ti or an internal vertex
with one neighbor in Bi this is done by contracting the added edges. Otherwise, we take
(Tj , cj) := (Ti, ci). Hence, equation 3 takes the minimum over O(k) compatible configurations.

When Bi is a forget node forgetting a vertex v there are two methods for finding compatible
configurations of (Ti, ci). In the case that v was a leaf in Tj we attach v to each of the O(k)
vertices in V (Ti) ∩Bi to construct each possible compatible configuration (Tj , cj). We have
to consider the two cases where v is adjacent to the vertex in V (T ) ∩Bj and where there
exists one intermediate Steiner vertex of degree 2 in between them. In the case that v was an
internal vertex we consider each of the O(k) Steiner vertices in SD

i that are adjacent to some
vertex in V (Ti) ∩Bi via some edge of cost 1. To undo the operation we subdivide each of its
incident edges with cost greater than 1 whose endpoint is in Bi. It follows that equation 4
takes its minimum over O(k) compatible configurations.

When Bi is a join node there is a pair of compatible configurations for each of the O(2k)
subsets of SD

i . It follows that equation 5 takes the minimum over O(2k) values. Computing
the entries of DPi[T, c] is dominated by the time it takes to compute the value at join nodes.
We have now proven the main theorem of the section.
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