
Using Property-Based Testing to Generate
Feedback for C Programming Exercises
Pedro Vasconcelos
Computer Science Department, Faculty of Science, University of Porto, Portugal
LIACC, Porto, Portugal
pbv@dcc.fc.up.pt

Rita P. Ribeiro
Computer Science Department, Faculty of Science, University of Porto, Portugal
LIAAD-INESC TEC, Porto, Portugal
rpribeiro@dcc.fc.up.pt

Abstract
This paper reports on the use of property-based testing for providing feedback to C programming
exercises. Test cases are generated automatically from properties specified in a test script; this not
only makes it possible to conduct many tests (thus potentially find more mistakes), but also allows
simplifying failed tests cases automatically.

We present some experimental validation gathered for an introductory C programming course
during the fall semester of 2018 that show significant positive correlations between getting feedback
during the semester and the student’s results in the final exam. We also discuss some limitations
regarding feedback for undefined behaviors in the C language.

2012 ACM Subject Classification Social and professional topics → Student assessment; Software
and its engineering → Software testing and debugging; Software and its engineering → Domain
specific languages

Keywords and phrases property-based testing, C language, Haskell language, teaching programming

Digital Object Identifier 10.4230/OASIcs.ICPEC.2020.28

1 Introduction

This paper reports on the use of property-based testing for automatically generating feedback
to exercises in an introductory C programming course. As part of weekly worksheets, students
were given assignments with automatic tests; they submitted solutions through a web-system
and got feedback automatically. The tests assessed functional correctness, reporting the test
data leading to a failure in case of wrong answers. Students could also perform multiple
attempts, either to fix mistakes or to try alternative solutions.

Instead of fixed test suites, test cases are generated randomly from properties in a test
script. This not only makes it easier to conduct more tests (thus potentially find more
mistakes), but also allows reporting failed test cases: because new tests are generated, students
cannot “cheat” simply by submitting solutions that are over-fitted to previously-reported
cases. Furthermore, shrinking heuristics can be used to simplify failing cases automatically;
this is helpful because randomly generated data often contains “noise” that is not relevant to
the failure. Reporting shorter examples should help students debug their code and clarify
misunderstandings.

This paper is structured as follows: Section 2 presents some related work; Sections 3
and 4 review property-based testing and describe our testing framework; Section 5 presents
the experimental results; and Section 6 presents conclusions and directions for further work.

© Pedro Vasconcelos and Rita P. Ribeiro;
licensed under Creative Commons License CC-BY

First International Computer Programming Education Conference (ICPEC 2020).
Editors: Ricardo Queirós, Filipe Portela, Mário Pinto, and Alberto Simões; Article No. 28; pp. 28:1–28:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8387-9772
mailto:pbv@dcc.fc.up.pt
https://orcid.org/0000-0002-6852-8077
mailto:rpribeiro@dcc.fc.up.pt
https://doi.org/10.4230/OASIcs.ICPEC.2020.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

28:2 Using PBT to Generate Feedback for C Programming Exercises

2 Related work

There has been increasing interest in the use of automated testing as an aid for teaching
programming. Keuning et al. present a systematic comparison of tools for automatic feedback
generation for programming exercises [10].

Gao et al. employ concolic testing to generate automatic feedback for a C programming
course [8]; this approach is based on symbolic execution, and when compared to the one
presented here, requires extra work to setup and process each exercise.

Fisher and Johnson describe the use of formal specifications as test case generators for
Java programs [7]; this was done in the context of a software engineering course where
understanding and writing specifications are part of the learning outcomes.

Our work is more closely-related to the one by Earle et al. [4] on using property-based
testing to automatically assess Java programs. The main differences are: 1) we use Haskell
instead of Scala for specifications; 2) we test C rather than Java programs and deal with
the C specific issues such as undefined behaviours; and 3) we focus on functional correctness
rather than grading.

3 Property-based testing

Property-based testing consists of specifying general assertions about software units and
using these as test oracles; the actual test data can then be automatically generated (e.g.
sampled randomly). The first property-based testing tool was the QuickCheck library for the
Haskell language [5]. Similar libraries have since been developed for other languages, e.g.
Erlang [1], Scala [12] and Python [11].

Properties are universally quantified assertions; testing these requires generating values
and checking the assertion for each case. Passing a suitable large number of tests increases
confidence in the correctness of the property. A single failed test, however, provides evidence
that the property does not hold. Moreover, the failed test case can then be simplified
automatically by applying “shrinking” heuristics for generated values.1 Shrinking is useful
because it can automatically remove irrelevant details from randomly generated data, leading
to shorter and more insightful counter-examples.

Libraries for property-based testing provide functions for defining properties and generat-
ors from simpler ones and to control the number of tests and size data, making it possible to
apply this methodology to real programs [3, 9].

4 Testing framework

4.1 Overview
Exercises consisted of individual C functions rather than complete programs. Alongside the
problem description, the instructor sets up a test script written using codex-quickcheck2, a
custom version of the Haskell QuickCheck library with functionality to ease generating C

1 For example, a strategy for shrinking strings is to try substrings of smaller length, or to replace some
characters with strictly smaller ones.

2 Available at https://github.com/pbv/codex-quickcheck.

https://github.com/pbv/codex-quickcheck

P. Vasconcelos and R. P. Ribeiro 28:3

types, testing C functions and producing student-friendly reports. This library is part of
the Codex system for programming exercises3 but can be used independently. The testing
workflow consists of:
1. compiling the student code to an object file;
2. compiling and linking the test script together with the object file;
3. running the executable (under a sandbox) to produce an accepted/failure report.

Submissions are classified as follows:
CompileError rejected attempt due to a compiler error or warning;
RuntimeError, TimeLimitExceeded or MemoryLimitExceeded the execution was aborted

due to a runtime error or resource exhaustion;
WrongAnswer testing found a witness that falsifies a property;
Accepted all tests passed.

Because the exercises were not computationally intensive, the turn-around for student
feedback was quick (typically 2-4 seconds). Since students could edit code directly on the
web interface and there was no penalty for repeated submissions, many submissions were
made even for short assignments.

4.2 Example: testing the median function

Listing 1 Test script for the median function exercise.
1 import Data.List (sort)
2

3 foreign import ccall " median " median :: CInt -> CInt -> CInt -> CInt
4

5 prop_correct
6 = testing " median " $
7 forArbitrary "a" $ \a ->
8 forArbitrary "b" $ \b ->
9 forArbitrary "c" $ \c ->

10 median a b c ?== sort [a,b,c] !! 1
11

12 main = quickCheckMain prop_correct

Listing 1 presents the script for testing a sample exercise: write a function to compute
the median of three numbers. Line 3 imports the C function to be tested using the standard
Haskell foreign-function interface. Lines 5–10 specify the correctness property: the median
of a, b, c is the value at index position 1 (i.e. the middle element) of the sorted list of values.4
The forArbitrary function introduces a quantified property using the default generator (for
C integers, in this case) and also names the variable for reporting. The assertion operator
?== compares the left-hand side with the (expected) right-hand side, producing a suitable
message otherwise.

Listing 2 shows a hypothetical feedback for a submission that gives a wrong result when
two arguments are equal. Reports always follow this format: the name of the function being
tested, the names and values of arguments and the expected and obtained results. Students
can use reports to clarify their understanding of the exercise, or as a starting point for
debugging, without any knowledge of Haskell or property-based testing.

3 Available at https://github.com/pbv/codex.
4 !! is the list indexing operator in Haskell.

ICPEC 2020

https://github.com/pbv/codex

28:4 Using PBT to Generate Feedback for C Programming Exercises

Listing 2 Example feedback for the median function exercise.
*** Failed ! Falsified (after 1 test and 2 shrinks):
Testing median with:

a = 0
b = 0
c = 1

Expected :
0

Got:
1

In principle, properties are quantified over all possible values; in practice, they are tested
with a finite sample of randomly-generated test cases (100 by default). The number of tests
and the maximum size of values are configured as metadata for exercises; it is also possible
to fix the seed for pseudo random-number generation (and thus get reproducible results).
Test cases are generated with increasing sizes, so that the smaller examples are tried first.
Furthermore, shrinking simplifies failed examples before reporting.

4.3 Custom generators and shrinking
The previous example used the default generators for integers. In general, we need to be
able to define properties using custom generators. Listing 3 presents a test script for such an
example, namely, a function that checks if a string is a “strong password” according to the
following rules: it should have at least 6 characters and contain one lowercase, one uppercase
and one digit character.

Lines 6–8 define a functional wrapper for the C function to be tested; it uses withCString
to convert a Haskell string into a C character buffer5, ensuring proper deallocation. Lines
10–13 define a Haskell specification for the solution; lines 15–18 specify the correctness
property using forAllShrink instead of forArbitrary; this allows using a custom generator
(line 20) and shrinking function (line 21) that generates strings containing only a subset of
printable ASCII characters. The generator is defined using functions listOf and choose
from the QuickCheck library; we use shrinkMap to apply the default shrinking for strings
filtering out characters outside the desired range.

Listing 3 Test script for the strong password exercise.
1 import Data.Char(isUpper , isLower , isDigit)
2

3 foreign import ccall " strong_passwd "
4 strong_passwd :: CString -> IO CInt
5

6 strong_passwd_wrapper :: String -> CInt
7 strong_passwd_wrapper str
8 = runC $ withCString str strong_passwd
9

10 strong_spec :: String -> Bool
11 strong_spec str
12 = length str >=6 && any isUpper str &&
13 any isLower str && any isDigit str
14

5 Haskell strings are linked-lists rather than contiguous buffers.

P. Vasconcelos and R. P. Ribeiro 28:5

15 prop_correct
16 = testing " strong_passwd " $
17 forAllShrink "str" genPasswd shrinkPasswd $ \str ->
18 strong_passwd_wrapper str ?== fromBool (strong_spec str)
19

20 genPasswd = listOf (choose (’0’, ’z ’))
21 shrinkPasswd = shrinkMap (filter (\c -> c>=’0’ && c<=’z ’)) id
22

23 main = quickCheckMain prop_correct

Listing 4 presents reports based on a real student attempt that incorrectly assumed that
all characters in the string must be letters or digits. The top report illustrates a random test
case obtained (before shrinking), while the bottom one is obtained after shrinking; we report
the later to students. This example illustrates the effectiveness of shrinking to automatically
produce more insightful counter-examples.6

Listing 4 Example feedback for the strong password function exercise with shrinking disabled
and enabled.
*** Failed ! Falsified (after 16 tests):
Testing strong_passwd with:

str = "gSvF <NiXz]BH_"
Expected :

0
Got:

1

*** Failed ! Falsified (after 16 tests and 7 shrinks):
Testing strong_passwd with:

str = " aaaaA_ "
Expected :

0
Got:

1

4.4 Mitigating undefined behavior
One of the challenges of teaching the C language is the need to alert students to avoid
inadvertently causing undefined behaviors (UB). It is important to catch UB when doing
automated testing because they can lead to puzzling results (e.g. non-deterministic answers
across operating systems, compiler versions, etc.). While ensuring the complete absence
of UB is quite difficult, we employed some simple mitigation techniques using the GNU C
Compiler:

enabling exhaustive warnings and treating them as compile-time errors;
enabling optimizations (e.g. -O1) also enables static checks about potential errors (e.g.
uses of uninitialized variables);
enabling the UB sanitizer (e.g. -fsanitize=undefined) for introducing runtime checks
for some UB (e.g. division by zero and integer overflows).

6 The string found is, in fact, a local minimum that distinguishes the student’s attempt from a correct
solution: it has length 6, at least 1 lower and uppercase letter, but no digit.

ICPEC 2020

28:6 Using PBT to Generate Feedback for C Programming Exercises

Another mitigation technique is to perform all memory management and array initializa-
tion from the Haskell side (e.g. the withCString function). The codex-quickcheck library
provides a checked initialization function that places random “canaries” [6] outside the array
boundaries and checks for overwrites. This allows detecting and reporting off-by-one index
errors in student code that performs array writes; however, it is not so effective at catching
index errors for array reads (see also the discussion in Section 5.2 regarding exercise ex8_2).7

4.5 Developing specifications
We developed test scripts for 15 exercises covering elementary programming concepts (e.g.
function definitions, conditionals, loops, arrays and strings). Most test scripts are short (e.g.
under 50 lines) and required between 15 to 60 minutes to develop. Moreover, properties and
generators developed for one exercise can often be easily adapted to related ones. The largest
script has 116 lines (exercise ex9_5 in Table 1); this is due to code for generators of matrices
that are “magic squares” and ones that fail each of the necessary conditions.

In order to check adequate test case distribution, first we developed the correctness
properties alone, and subsequently collect statistics to adjust the testing parameters and
generators. For the example of Section 4.3, we can count the percentage of “small” test cases
(i.e. length less than 6) by introducing into line 18 of Listing 3:

classify (length str < 6) "small" $...

To also count which combinations of conditions are tested, we further add:

collect (any isUpper str, any isLower str, any isDigit str) $...

Running the test script with a reference solution we obtain:

+++ OK, passed 100 tests (20% small)
81% (True,True,True)
9% (True,True,False)
5% (False,False,False)
2% (False,True,False)
1% (False,False,True)
1% (False,True,True)
1% (True,False,False)

This shows that 20% of the generated strings were small and 81% satisfied all conditions;
also, some combinations of conditions were poorly tested and one combination was untested.
We can now improve this distribution by changing the test data generation; for this example
it suffices to reduce the maximum data size (i.e. the maximum string length) and increase
the number of tests.

5 Experimental evaluation

Throughout the semester students could submit exercise solutions using the web system;
they were not penalized for multiple attempts and could also continue submitting even
after having an accepted solution (e.g. to experiment with alternatives). Submissions were
used as formative rather than summative assessment; however, a minimal number of correct
submissions was required to qualify for the final exam.

7 The GCC address sanitizer (-fsanitize=address) cannot help here because it does not track heap
overflows in memory managed by the Haskell runtime system.

P. Vasconcelos and R. P. Ribeiro 28:7

Table 1 Summary of exercises, total number of attempts, percentage of wrong answers and
median (maximum) number of attempts per student.

Exercise Description #Attempts %WrongAns #Attempts
per student

ex3_8 median of 3 integers 1024 17.2% 5.0 (41)
ex3_9 compute integer powers 1288 28.3% 3.5 (84)
ex4_5 sum integer divisors 740 30.4% 3.0 (28)
ex4_7 determine next leap year 1048 23.5% 4.0 (48)
ex5_8 approximate a power series 1103 45.6% 4.0 (67)
ex6_4 initialize an array 484 14.0% 2.0 (36)
ex6_8 test repeated values in array 712 38.2% 2.0 (33)
ex7_5 check strong passwords 767 27.8% 3.5 (24)
ex7_10 filter positive values in array 656 42.5% 1.5 (54)
ex8_2 check if an array is ordered 830 50.1% 3.0 (62)
ex8_7 insertion into an ordered array 1192 40.4% 4.0 (63)
ex9_2 check if 2 strings are anagrams 848 32.1% 3.0 (33)
ex9_5 check magic squares 785 47.3% 2.0 (74)
ex10_4 array max and min using pointers 539 42.3% 2.0 (25)
ex10_9 find character in a string using pointers 368 12.0% 1.0 (21)

Ideally, we would assess the effect of automatic feedback by comparing the learning results
of students in two groups, one group getting the automatic feedback while the control group
getting no feedback. However, this would be undesirable due to the differentiate treatment
of students in the class. Instead, we followed an approach similar to Ahadi et al. [2] and
performed a correlation analysis between students’ submissions and their final results. In
particular, we measured correlations between the total number of attempts and the number
of wrong answers on each exercise and the students’ final exam scores.

5.1 Experimental setup

The exam was attended by 152 students which, during the semester, had performed a total
of 12384 submissions for the 15 proposed exercises. From these submissions, we gathered, for
each student and each exercise: the number of attempts made (#Attempts); and the number
of attempts classified with Wrong Answer (#WrongAns).

The data set consists of 2280 (152 × 15) observations. Table 1 lists, for each exercise, the
total number of submissions made, the percentage of Wrong Answers, the median and the
maximum number of attempts per student. Observe that some exercises have quite more
attempts than others. Moreover, the percentage of Wrong Answer varies considerably. Note
also that the median number of attempts per student is much smaller than the maximum,
which indicates that only a few students perform such large amount of attempts.

For each of the 15 exercises, we classified students according to the following scenarios:
1. the student made < 2n attempts;
2. the student made ≥ 2n attempts;
3. the student made < 2n Wrong Answer attempts;
4. the student made ≥ 2n Wrong Answer attempts.
The maximum number of attempts per student for any exercise was 84 (cf. Table 1); thus,
we have considered n ranging from 0 to 6 in the above scenarios.

ICPEC 2020

28:8 Using PBT to Generate Feedback for C Programming Exercises

We performed a Pearson correlation test for each of the binary variables generated in the
4 scenarios above and the binary variable indicating whether the student scored above the
overall median grade of the exam. As all the variables involved in the correlation analysis
are binary, this corresponds to obtaining the phi correlation coefficient. This coefficient is
obtained on the basis of a contingency table for two binary variables, as exemplified in the
Table 2. This table contains the number of students satisfying each of the four possible
combinations for the two binary variables under analysis. One of the variables refers to one
of the 4 scenarios for a given exercise and the other refers to the obtained score w.r.t. to the
overall median score of the final exam. This means that each of the 15 exercises was tested
against the final exam score, in all the possible scenarios.

Table 2 Contingency table for exercise X in the context of scenario Y w.r.t the overall final exam
score median.

final exam score ≥ median?
yes no

exercise X meets
criterion of scenario Y?

yes a b

no c d

Based on Table 2, the phi coefficient is obtained by the following formula:

phi = ad − bc√
(a + b)(c + d)(a + c)(b + d)

(1)

The correlation tests were performed using the function cor from the R statistical
language [13]. The following criteria were used for pruning the contingency tables (similar to
the ones used in [2]):
1. to avoid over-fitting [14], contingency tables with any cell value less than 5 were pruned;
2. contingency tables with negative phi were pruned; for each of these there is a “mirror

image” table for the reversed criteria with a positive phi value;
3. if two contingency tables have phi values that differ less than 0.01 and one is more general

than the other, the less general one was pruned (e.g. “≥ 2 attempts” is more general than
“≥ 4 attempts”);

4. if two contingency tables have phi values that differ more than 0.01 and the more general
one has a higher phi value, the less general one was pruned.

5.2 Main results and discussion
Table 3 presents the results obtained by our tests that are significant with a 95% confidence
level, i.e. with a p-value < 0.05.

One might expect that solving exercises in fewer attempts would correlate with better
final results, but we detected more correlations with “≥” criteria; this was also observed in
the previous work [2] and we conjecture that similar explanations apply here:

some exercises with a high number of total attempts also exhibit high correlation with
final results (e.g. ex5_8, ex8_7); perhaps these exercises trigger difficulties that students
need to experience in order to improve their understanding;
students could submit attempts out of class, thus if they performed too few submissions
it could simply indicate they were getting solutions from someone else;
finally, a high number of attempts could also be an indicator that the student used the
system specifically as a study aid for the exam.

P. Vasconcelos and R. P. Ribeiro 28:9

Table 3 Significant correlations between the number of attempts or wrong answers by exercise
and the final exam score (p-value < 0.05).

Exercise #Attempts #WrongAns phi p-value

* ≥ 1 0.238 0.003ex3_9
≥ 2 * 0.190 0.019

ex4_5 * ≥ 2 0.179 0.027

* ≥ 1 0.277 0.001ex5_8
≥ 4 * 0.198 0.015

ex6_8 ≥ 2 * 0.199 0.014

ex7_5 ≥ 1 * 0.229 0.005

* ≥ 1 0.302 0.000ex7_10
≥ 1 * 0.272 0.001

* < 4 0.196 0.016ex8_2
< 8 * 0.199 0.014

* ≥ 4 0.239 0.003ex8_7
≥ 1 * 0.287 0.000

* ≥ 1 0.267 0.001ex9_2
≥ 1 * 0.272 0.001

* ≥ 2 0.303 0.000ex9_5
≥ 2 * 0.254 0.002

* ≥ 1 0.174 0.032ex10_4
≥ 1 * 0.230 0.004

ex10_9 ≥ 1 * 0.200 0.013

The results for exercise ex8_2 show an unusual pattern: criteria with “<” conditions cor-
related better with final results, while criteria with “≥” do not exhibit significant correlation.
Also, this exercise had an unusually high percentage of Wrong Answer outcomes (cf. Table 1).
Analyzing the submissions, we observed that a large number of Wrong Answers were actually
caused by reading past the end of the array. The testing library does not detect this error
as an undefined behavior (see Section 4.4) and the test case reported might not be easily
reproducible; this might explain why the feedback obtained was less helpful.

For the remaining exercises in Table 3 having a higher number of attempts correlated
positively with better student’s results, and in particular, for exercises ex3_9 ex4_5, ex5_8,
ex7_10 and ex9_5, the number of Wrong Answer attempts had a higher and more significant
correlation than the number of attempts alone. While these results do not prove causality,
they are consistent with the hypothesis that automatically generating feedback has improved
students’ results.

6 Conclusion and further work

We have presented the use of property-based testing for providing automatic feedback to
C programming exercises. Our approach is to use a library in a high-level language for
defining properties to generate many random test cases. Furthermore, the test cases can be
automatically simplified before reporting to students. Experimental results indicate that
there were significant positive correlations between the use of this testing system and the
students’ final results.

ICPEC 2020

28:10 Using PBT to Generate Feedback for C Programming Exercises

One direction for further work is to integrate an interactive simulator into the feedback
loop. Automatically invoking a web-based system such as the C Tutor8 should help students
investigate failures (we recommended students performed this step manually in classes).
The visualizer could also help students because it explicitly highlights undefined behaviors
as errors.

To test interfaces with multiple functions rather than single ones we could use the finite-
state machine approach of the Erlang QuickCheck [9]; this could be useful for more advanced
C programming courses (e.g. on data structures or operating systems).

References
1 QuviQ AB. Erlang QuickCheck. http://www.quviq.com/products/erlang-quickcheck/,

2018. [Online; accessed April 2020].
2 Alireza Ahadi, Raymond Lister, and Arto Vihavainen. On the number of attempts students

made on some online programming exercises during semester and their subsequent performance
on final exam questions. In Proc. of the 2016 ACM Conf. on Innovation and Technology in
Computer Science Education, ITiCSE ’16, pages 218–223. ACM, 2016.

3 Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing telecoms software with
Quviq QuickCheck. In Proc. of the 2006 ACM SIGPLAN Workshop on Erlang, ERLANG ’06,
pages 2–10. ACM, 2006.

4 Clara Benac Earle, Lars-Åke Fredlund, and John Hughes. Automatic grading of programming
exercises using property-based testing. In Proc. of the 2016 ACM Conf. on Innovation and
Technology in Computer Science Education, ITiCSE ’16, pages 47–52. ACM, 2016.

5 Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of
haskell programs. In Proc. of the Fifth ACM SIGPLAN International Conf. on Functional
Programming, ICFP ’00, pages 268–279. ACM, 2000.

6 Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer
overflows: attacks and defenses for the vulnerability of the decade. Foundations of Intrusion
Tolerant Systems, pages 227–237, 2003.

7 Gene Fisher and Corrigan Johnson. Making formal methods more relevant to software
engineering students via automated test generation. In Proc. of the 2016 ACM Conf. on
Innovation and Technology in Computer Science Education, ITiCSE ’16, pages 224–229. ACM,
2016.

8 Jianxiong Gao, Bei Pang, and Steven S. Lumetta. Automated feedback framework for
introductory programming courses. In Proc. of the 2016 ACM Conf. on Innovation and
Technology in Computer Science Education, ITiCSE ’16, pages 53–58. ACM, 2016.

9 John Hughes. Experiences with QuickCheck: Testing the Hard Stuff and Staying Sane, pages
169–186. Springer International Publishing, 2016.

10 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review of automated
feedback generation for programming exercises. In Proc. of the 2016 ACM Conf. on Innovation
and Technology in Computer Science Education, ITiCSE ’16, pages 41–46. ACM, 2016.

11 David R. MacIver. Hypothesis. https://hypothesis.readthedocs.io/, 2018. [Online;
accessed April 2020].

12 Rickard Nilsson. Scalacheck: Property-based testing for Scala. https://www.scalacheck.org/,
2018. [Online; accessed April 2020].

13 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, 2019. URL: https://www.R-project.org/.

14 Frank Yates. Contingency tables involving small number and the χ2 test. Supplement to the
Journal of the Royal Statistical Society, 1(2):217–235, 1934.

8 http://www.pythontutor.com/c.html

http://www.quviq.com/products/erlang-quickcheck/
https://hypothesis.readthedocs.io/
https://www.scalacheck.org/
https://www.R-project.org/
http://www.pythontutor.com/c.html

	Introduction
	Related work
	Property-based testing
	Testing framework
	Overview
	Example: testing the median function
	Custom generators and shrinking
	Mitigating undefined behavior
	Developing specifications

	Experimental evaluation
	Experimental setup
	Main results and discussion

	Conclusion and further work

